Sample records for electron spectroscopy

  1. Electron Spectroscopic Methods in Teaching.

    ERIC Educational Resources Information Center

    Allan, Michael

    1987-01-01

    Discusses electron-loss spectroscopy and the experimentally observed excitation energies in terms of qualitative MO theory. Reviews information on photoelectron spectroscopy and electron transmission spectroscopy and their relation to the occupied and unoccupied orbital levels. Focuses on teaching applications. (ML)

  2. Vibrational spectroscopy in the electron microscope.

    PubMed

    Krivanek, Ondrej L; Lovejoy, Tracy C; Dellby, Niklas; Aoki, Toshihiro; Carpenter, R W; Rez, Peter; Soignard, Emmanuel; Zhu, Jiangtao; Batson, Philip E; Lagos, Maureen J; Egerton, Ray F; Crozier, Peter A

    2014-10-09

    Vibrational spectroscopies using infrared radiation, Raman scattering, neutrons, low-energy electrons and inelastic electron tunnelling are powerful techniques that can analyse bonding arrangements, identify chemical compounds and probe many other important properties of materials. The spatial resolution of these spectroscopies is typically one micrometre or more, although it can reach a few tens of nanometres or even a few ångströms when enhanced by the presence of a sharp metallic tip. If vibrational spectroscopy could be combined with the spatial resolution and flexibility of the transmission electron microscope, it would open up the study of vibrational modes in many different types of nanostructures. Unfortunately, the energy resolution of electron energy loss spectroscopy performed in the electron microscope has until now been too poor to allow such a combination. Recent developments that have improved the attainable energy resolution of electron energy loss spectroscopy in a scanning transmission electron microscope to around ten millielectronvolts now allow vibrational spectroscopy to be carried out in the electron microscope. Here we describe the innovations responsible for the progress, and present examples of applications in inorganic and organic materials, including the detection of hydrogen. We also demonstrate that the vibrational signal has both high- and low-spatial-resolution components, that the first component can be used to map vibrational features at nanometre-level resolution, and that the second component can be used for analysis carried out with the beam positioned just outside the sample--that is, for 'aloof' spectroscopy that largely avoids radiation damage.

  3. Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations.

    PubMed

    Ferreira da Silva, F; Lange, E; Limão-Vieira, P; Jones, N C; Hoffmann, S V; Hubin-Franskin, M-J; Delwiche, J; Brunger, M J; Neves, R F C; Lopes, M C A; de Oliveira, E M; da Costa, R F; Varella, M T do N; Bettega, M H F; Blanco, F; García, G; Lima, M A P; Jones, D B

    2015-10-14

    The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5-10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.

  4. Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Ferreira da Silva, F.; Lange, E.; Limão-Vieira, P.; Jones, N. C.; Hoffmann, S. V.; Hubin-Franskin, M.-J.; Delwiche, J.; Brunger, M. J.; Neves, R. F. C.; Lopes, M. C. A.; de Oliveira, E. M.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Blanco, F.; García, G.; Lima, M. A. P.; Jones, D. B.

    2015-10-01

    The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5-10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.

  5. Ultrafast Spectroscopy of Proton-Coupled Electron Transfer (PCET) in Photocatalysis

    DTIC Science & Technology

    2016-07-08

    AFRL-AFOSR-VA-TR-2016-0244 Ultrafast Spectroscopy of Proton-Coupled Electron Transfer (PCET) in Photocatalysis Jahan Dawlaty UNIVERSITY OF SOUTHERN...TITLE AND SUBTITLE Ultrafast Spectroscopy of Proton-Coupled Electron Transfer (PCET) in Photocatalysis 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550...298 Back (Rev. 8/98) DISTRIBUTION A: Distribution approved for public release. Final Report: AFOSR YIP Grant FA9550-13-1-0128: Ultrafast Spectroscopy

  6. Study of clusters using negative ion photodetachment spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yuexing

    1995-12-01

    The weak van der Waals interaction between an open-shell halogen atom and a closed-shell atom or molecule has been investigated using zero electron kinetic energy (ZEKE) spectroscopy. This technique is also applied to study the low-lying electronic states in GaAs and GaAs -. In addition, the spectroscopy and electron detachment dynamics of several small carbon cluster anions are studied using resonant multiphoton detachment spectroscopy.

  7. A study on the anisole-water complex by molecular beam-electronic spectroscopy and molecular mechanics calculations.

    PubMed

    Becucci, M; Pietraperzia, G; Pasquini, M; Piani, G; Zoppi, A; Chelli, R; Castellucci, E; Demtroeder, W

    2004-03-22

    An experimental and theoretical study is made on the anisole-water complex. It is the first van der Waals complex studied by high resolution electronic spectroscopy in which the water is seen acting as an acid. Vibronically and rotationally resolved electronic spectroscopy experiments and molecular mechanics calculations are used to elucidate the structure of the complex in the ground and first electronic excited state. Some internal dynamics in the system is revealed by high resolution spectroscopy. (c) 2004 American Institute of Physics

  8. Study by AES, EELS Spectroscopy of electron Irradiation on InP and InPO4/InP in comparison with Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Lounis, Z.; Bouslama, M.; Hamaida, K.; Jardin, C.; Abdellaoui, A.; Ouerdane, A.; Ghaffour, M.; Berrouachedi, N.

    2012-02-01

    We give the great interest to characterise the InP and InPO4/InP submitted to electron beam irradiation owing to the Auger Electron Spectroscopy (AES) associated to both methods Electron Energy Loss Spectroscopy (EELS). The incident electron produces breaking of (In-P) chemical bonds. The electron beam even acts to stimulate oxidation of InP surface involving on the top layers. Other, the oxide InPO4 developed on InP does appear very sensitive to the irradiation due to electron beam shown by the monitoring of EELS spectra recorded versus the irradiated times of the surface. There appears a new oxide thought to be In2O3. We give the simulation methods Casino (Carlo simulation of electron trajectory in solids) for determination with accuracy the loss energy of backscattered electrons and compared with reports results have been obtained with EELS Spectroscopy. These techniques of spectroscopy alone do not be able to verify the affected depth during interaction process. So, using this simulation method, we determine the interaction of electrons in the matter.

  9. Single-electron detection and spectroscopy via relativistic cyclotron radiation

    DOE PAGES

    Asner, D. M.; Bradley, R. F.; de Viveiros, L.; ...

    2015-04-20

    Since 1897, we've understood that accelerating charges must emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. We demonstrate single-electron detection in a novel radiofrequency spec- trometer. Here, we observe the cyclotron radiation emitted by individual magnetically-trapped electrons that are produced with mildly-relativistic energies by a gaseous radioactive source. The relativistic shift in the cyclotron frequency permits a precisemore » electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work demonstrates a fundamentally new approach to precision beta spectroscopy for future neutrino mass experiments.« less

  10. Development of an Electron-Positron Source for Positron Annihilation Lifetime Spectroscopy

    DTIC Science & Technology

    2007-01-01

    positron source for positron annihilation lifetime spectroscopy Final Report Report Title...Development of an Electron- Positron Source for Position Annihilation Lifetime Spectroscopy DAAD19-03-1-0287 Final Report 2/17/2007... annihilation lifetime spectroscopy REPORT DOCUMENTATION PAGE 18. SECURITY CLASSIFICATION ON THIS PAGE UNCLASSIFIED 2. REPORT DATE: 12b. DISTRIBUTION

  11. Analytical Chemistry of Surfaces: Part II. Electron Spectroscopy.

    ERIC Educational Resources Information Center

    Hercules, David M.; Hercules, Shirley H.

    1984-01-01

    Discusses two surface techniques: X-ray photoelectron spectroscopy (ESCA) and Auger electron spectroscopy (AES). Focuses on fundamental aspects of each technique, important features of instrumentation, and some examples of how ESCA and AES have been applied to analytical surface problems. (JN)

  12. Single-Electron Detection and Spectroscopy via Relativistic Cyclotron Radiation.

    PubMed

    Asner, D M; Bradley, R F; de Viveiros, L; Doe, P J; Fernandes, J L; Fertl, M; Finn, E C; Formaggio, J A; Furse, D; Jones, A M; Kofron, J N; LaRoque, B H; Leber, M; McBride, E L; Miller, M L; Mohanmurthy, P; Monreal, B; Oblath, N S; Robertson, R G H; Rosenberg, L J; Rybka, G; Rysewyk, D; Sternberg, M G; Tedeschi, J R; Thümmler, T; VanDevender, B A; Woods, N L

    2015-04-24

    It has been understood since 1897 that accelerating charges must emit electromagnetic radiation. Although first derived in 1904, cyclotron radiation from a single electron orbiting in a magnetic field has never been observed directly. We demonstrate single-electron detection in a novel radio-frequency spectrometer. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay end point, and this work demonstrates a fundamentally new approach to precision beta spectroscopy for future neutrino mass experiments.

  13. Low-loss electron energy loss spectroscopy: An atomic-resolution complement to optical spectroscopies and application to graphene

    DOE PAGES

    Kapetanakis, Myron; Zhou, Wu; Oxley, Mark P.; ...

    2015-09-25

    Photon-based spectroscopies have played a central role in exploring the electronic properties of crystalline solids and thin films. They are a powerful tool for probing the electronic properties of nanostructures, but they are limited by lack of spatial resolution. On the other hand, electron-based spectroscopies, e.g., electron energy loss spectroscopy (EELS), are now capable of subangstrom spatial resolution. Core-loss EELS, a spatially resolved analog of x-ray absorption, has been used extensively in the study of inhomogeneous complex systems. In this paper, we demonstrate that low-loss EELS in an aberration-corrected scanning transmission electron microscope, which probes low-energy excitations, combined with amore » theoretical framework for simulating and analyzing the spectra, is a powerful tool to probe low-energy electron excitations with atomic-scale resolution. The theoretical component of the method combines density functional theory–based calculations of the excitations with dynamical scattering theory for the electron beam. We apply the method to monolayer graphene in order to demonstrate that atomic-scale contrast is inherent in low-loss EELS even in a perfectly periodic structure. The method is a complement to optical spectroscopy as it probes transitions entailing momentum transfer. The theoretical analysis identifies the spatial and orbital origins of excitations, holding the promise of ultimately becoming a powerful probe of the structure and electronic properties of individual point and extended defects in both crystals and inhomogeneous complex nanostructures. The method can be extended to probe magnetic and vibrational properties with atomic resolution.« less

  14. Electron spectroscopy of the diamond surface

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1981-01-01

    The diamond surface is studied by ionization loss spectroscopy and Auger electron spectroscopy. For surfaces heated to temperatures not exceeding 900 C, the band gap was found to be devoid of empty states in the absence of electron beam effects. The incident electron beam generates empty states in the band gap and loss of structure in the valence band for these surfaces. A cross section of 1.4 x 10 to the -19th sq cm was obtained for this effect. For surfaces heated to temperatures exceeding 900 C the spectra were identical to those from surfaces modified by the electron beam. The diamond surface undergoes a thermal conversion in its electronic structure at about 900 C.

  15. The Lewis Electron-Pair Model, Spectroscopy, and the Role of the Orbital Picture in Describing the Electronic Sructure of Molecules.

    ERIC Educational Resources Information Center

    Gallup, G. A.

    1988-01-01

    Describes why specific forms of orbitals used to interpret spectroscopy involving electronic transitions may not say much about the electronic structure of molecules. Discusses several theoretical approaches to explain the anomoly. Determines that the Lewis electron-pair model for molecules is a good predictor of spectroscopic results. (ML)

  16. Low-dose electron energy-loss spectroscopy using electron counting direct detectors.

    PubMed

    Maigné, Alan; Wolf, Matthias

    2018-03-01

    Since the development of parallel electron energy loss spectroscopy (EELS), charge-coupled devices (CCDs) have been the default detectors for EELS. With the recent development of electron-counting direct-detection cameras, micrographs can be acquired under very low electron doses at significantly improved signal-to-noise ratio. In spectroscopy, in particular in combination with a monochromator, the signal can be extremely weak and the detection limit is principally defined by noise introduced by the detector. Here we report the use of an electron-counting direct-detection camera for EEL spectroscopy. We studied the oxygen K edge of amorphous ice and obtained a signal noise ratio up to 10 times higher than with a conventional CCD.We report the application of electron counting to record time-resolved EEL spectra of a biological protein embedded in amorphous ice, revealing chemical changes observed in situ while exposed by the electron beam. A change in the fine structure of nitrogen K and the carbon K edges were recorded during irradiation. A concentration of 3 at% nitrogen was detected with a total electron dose of only 1.7 e-/Å2, extending the boundaries of EELS signal detection at low electron doses.

  17. A method for the direct measurement of electronic site populations in a molecular aggregate using two-dimensional electronic-vibrational spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Nicholas H. C.; Dong, Hui; Oliver, Thomas A. A.

    2015-09-28

    Two dimensional electronic spectroscopy has proven to be a valuable experimental technique to reveal electronic excitation dynamics in photosynthetic pigment-protein complexes, nanoscale semiconductors, organic photovoltaic materials, and many other types of systems. It does not, however, provide direct information concerning the spatial structure and dynamics of excitons. 2D infrared spectroscopy has become a widely used tool for studying structural dynamics but is incapable of directly providing information concerning electronic excited states. 2D electronic-vibrational (2DEV) spectroscopy provides a link between these domains, directly connecting the electronic excitation with the vibrational structure of the system under study. In this work, we derivemore » response functions for the 2DEV spectrum of a molecular dimer and propose a method by which 2DEV spectra could be used to directly measure the electronic site populations as a function of time following the initial electronic excitation. We present results from the response function simulations which show that our proposed approach is substantially valid. This method provides, to our knowledge, the first direct experimental method for measuring the electronic excited state dynamics in the spatial domain, on the molecular scale.« less

  18. A method for the direct measurement of electronic site populations in a molecular aggregate using two-dimensional electronic-vibrational spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Nicholas H. C.; Dong, Hui; Oliver, Thomas A. A.

    2015-09-28

    Two dimensional electronic spectroscopy has proved to be a valuable experimental technique to reveal electronic excitation dynamics in photosynthetic pigment-protein complexes, nanoscale semiconductors, organic photovoltaic materials, and many other types of systems. It does not, however, provide direct information concerning the spatial structure and dynamics of excitons. 2D infrared spectroscopy has become a widely used tool for studying structural dynamics but is incapable of directly providing information concerning electronic excited states. 2D electronic-vibrational (2DEV) spectroscopy provides a link between these domains, directly connecting the electronic excitation with the vibrational structure of the system under study. In this work, we derivemore » response functions for the 2DEV spectrum of a molecular dimer and propose a method by which 2DEV spectra could be used to directly measure the electronic site populations as a function of time following the initial electronic excitation. We present results from the response function simulations which show that our proposed approach is substantially valid. This method provides, to our knowledge, the first direct experimental method for measuring the electronic excited state dynamics in the spatial domain, on the molecular scale.« less

  19. A method for the direct measurement of electronic site populations in a molecular aggregate using two-dimensional electronic-vibrational spectroscopy.

    PubMed

    Lewis, Nicholas H C; Dong, Hui; Oliver, Thomas A A; Fleming, Graham R

    2015-09-28

    Two dimensional electronic spectroscopy has proved to be a valuable experimental technique to reveal electronic excitation dynamics in photosynthetic pigment-protein complexes, nanoscale semiconductors, organic photovoltaic materials, and many other types of systems. It does not, however, provide direct information concerning the spatial structure and dynamics of excitons. 2D infrared spectroscopy has become a widely used tool for studying structural dynamics but is incapable of directly providing information concerning electronic excited states. 2D electronic-vibrational (2DEV) spectroscopy provides a link between these domains, directly connecting the electronic excitation with the vibrational structure of the system under study. In this work, we derive response functions for the 2DEV spectrum of a molecular dimer and propose a method by which 2DEV spectra could be used to directly measure the electronic site populations as a function of time following the initial electronic excitation. We present results from the response function simulations which show that our proposed approach is substantially valid. This method provides, to our knowledge, the first direct experimental method for measuring the electronic excited state dynamics in the spatial domain, on the molecular scale.

  20. Investigation of the surface sensitivity of positron-annihilation-induced Auger-electron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehl, D.R.

    1990-01-01

    The first surface sensitivity studies of positron-annihilation-induced Auger-electron spectroscopy (PAES) are presented. Preliminary measurements on polycrystalline Al with adsorbates indicate that PAES is more selective of the surface than conventional electron-induced Auger electron spectroscopy (EAES). PAES and EAES studies of well-defined overlayer-metal systems of Cu(110)+S and Cu(110)+Cs verify that PAES is selective of the top atomic layer. This surface selectivity is accounted for by theoretical calculations which indicate that the positron surface state is displaced away from the substrate by the over-layer, decreasing the annihilation rate of positrons with substrate core electrons.

  1. QUARTERLY PROGRESS REPORT NO. 83,

    DTIC Science & Technology

    Topics included are: microwave spectroscopy; radio astronomy; solid-state microwave electronics; optical and infrared spectroscopy; physical electronics and surface physics; physical acoustics; plasma physics; gaseous electronics; plasmas and controlled nuclear fusion ; energy conversion research; statistical communication theory; linguistics; cognitive information processing; communications biophysics; neurophysiology; computation research.

  2. Direct characterization of the energy level alignments and molecular components in an organic hetero-junction by integrated photoemission spectroscopy and reflection electron energy loss spectroscopy analysis.

    PubMed

    Yun, Dong-Jin; Shin, Weon-Ho; Bulliard, Xavier; Park, Jong Hwan; Kim, Seyun; Chung, Jae Gwan; Kim, Yongsu; Heo, Sung; Kim, Seong Heon

    2016-08-26

    A novel, direct method for the characterization of the energy level alignments at bulk-heterojunction (BHJ)/electrode interfaces on the basis of electronic spectroscopy measurements is proposed. The home-made in situ photoemission system is used to perform x-ray/ultraviolet photoemission spectroscopy (XPS/UPS), reflection electron energy loss spectroscopy (REELS) and inverse photoemission spectroscopy of organic-semiconductors (OSCs) deposited onto a Au substrate. Through this analysis system, we are able to obtain the electronic structures of a boron subphthalocyanine chloride:fullerene (SubPC:C60) BHJ and those of the separate OSC/electrode structures (SubPC/Au and C60/Au). Morphology and chemical composition analyses confirm that the original SubPC and C60 electronic structures remain unchanged in the electrodes prepared. Using this technique, we ascertain that the position and area of the nearest peak to the Fermi energy (EF = 0 eV) in the UPS (REELS) spectra of SubPC:C60 BHJ provide information on the highest occupied molecular orbital level (optical band gap) and combination ratio of the materials, respectively. Thus, extracting the adjusted spectrum from the corresponding SubPC:C60 BHJ UPS (REELS) spectrum reveals its electronic structure, equivalent to that of the C60 materials. This novel analytical approach allows complete energy-level determination for each combination ratio by separating its electronic structure information from the BHJ spectrum.

  3. Electronic Structure of Small Lanthanide Containing Molecules

    NASA Astrophysics Data System (ADS)

    Kafader, Jared O.; Ray, Manisha; Topolski, Josey E.; Chick Jarrold, Caroline

    2016-06-01

    Lanthanide-based materials have unusual electronic properties because of the high number of electronic degrees of freedom arising from partial occupation of 4f orbitals, which make these materials optimal for their utilization in many applications including electronics and catalysis. Electronic spectroscopy of small lanthanide molecules helps us understand the role of these 4f electrons, which are generally considered core-like because of orbital contraction, but are energetically similar to valence electrons. The spectroscopy of small lanthanide-containing molecules is relatively unexplored and to broaden this understanding we have completed the characterization of small cerium, praseodymium, and europium molecules using photoelectron spectroscopy coupled with DFT calculations. The characterization of PrO, EuH, EuO/EuOH, and CexOy molecules have allowed for the determination of their electron affinity, the assignment of numerous anion to neutral state transitions, modeling of anion/neutral structures and electron orbital occupation.

  4. HREELS to identify electronic structures of organic thin films.

    PubMed

    Oeter, D; Ziegler, C; Göpel, W

    1995-10-01

    The electronic structure of alpha-oligothiophene (alphanT) thin films has been investigated for increasing chain lengths of n= 4-8 thiophene units with high resolution electron energy loss spectroscopy (HREELS) in the specular reflection geometry at a primary energy of 15 eV. The great advantage of this technique in contrast to UV/VIS absorption spectroscopy results from the fact, that the impact scattering mechanism of HREELS makes it possible to also detect optically forbidden electronic transitions. On the other hand, the electrons used as probes in HREELS have a wavelength which is two orders of magnitudes smaller if compared to those of photons used in UV/VIS absorption spectroscopy. Therefore individual molecules are excited by HREELS independent from each other and hence the excitation of collective excitons is not possible. As a result, information about the orientation of the molecules cannot be achieved with HREELS, which, however, is possible in polarization-dependent UV/VIS spectroscopy.

  5. Ultrafast electron transfer processes studied by pump-repump-probe spectroscopy.

    PubMed

    Fischer, Martin K; Gliserin, Alexander; Laubereau, Alfred; Iglev, Hristo

    2011-03-01

    The photodetachment of Br(-), I(-) and OH(-) in aqueous solution is studied by 2- and 3-pulse femtosecond spectroscopy. The UV excitation leads to fast electron separation followed by formation of a donor-electron pairs. An additional repump pulse is used for secondary excitation of the intermediates. The 3-pulse technique allows distinguishing the pair-intermediate from the fully separated electron. Using this method we observe a novel geminate recombination channel of .OH with adjacent hydrated electrons. The process leads to an ultrafast quenching (0.7 ps) of almost half the initial number of radicals. The phenomenon is not observed in Br(-) and I(-). Our results demonstrate the potential of the 3-pulse spectroscopy to elucidate the mechanism of ultrafast ET reactions. Photodetachment of aqueous anions studied by two- and three pulse spectroscopy. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Electron impact action spectroscopy of mass/charge selected macromolecular ions: Inner-shell excitation of ubiquitin protein

    NASA Astrophysics Data System (ADS)

    Ranković, Miloš Lj.; Giuliani, Alexandre; Milosavljević, Aleksandar R.

    2016-02-01

    We have performed inner-shell electron impact action spectroscopy of mass and charge selected macromolecular ions. For this purpose, we have coupled a focusing electron gun with a linear quadrupole ion trap mass spectrometer. This experiment represents a proof of principle that an energy-tunable electron beam can be used in combination with radio frequency traps as an activation method in tandem mass spectrometry (MS2) and allows performing action spectroscopy. Electron impact MS2 spectra of multiply protonated ubiquitin protein ion have been recorded at incident electron energies around the carbon 1 s excitation. Both MS2 and single ionization energy dependence spectra are compared with literature data obtained using the soft X-ray activation conditions.

  7. Theoretical studies of electronically excited states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Besley, Nicholas A.

    2014-10-06

    Time-dependent density functional theory is the most widely used quantum chemical method for studying molecules in electronically excited states. However, excited states can also be computed within Kohn-Sham density functional theory by exploiting methods that converge the self-consistent field equations to give excited state solutions. The usefulness of single reference self-consistent field based approaches for studying excited states is demonstrated by considering the calculation of several types of spectroscopy including the infrared spectroscopy of molecules in an electronically excited state, the rovibrational spectrum of the NO-Ar complex, core electron binding energies and the emission spectroscopy of BODIPY in water.

  8. Optogalvanic photodetachment spectroscopy

    NASA Technical Reports Server (NTRS)

    Mcdermid, I. S.; Webster, C. R.

    1983-01-01

    A new extension to optogalvanic spectroscopy, in which electrons detached from negative ions formed in the discharge are observed as a function of incident laser wavelength, has been developed. The determination of the electron affinities of I(-) and Cl(-) atomic ions is described. The potential of the technique for studying the spectroscopy of molecular negative ions is also discussed.

  9. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy

    DOE PAGES

    Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; ...

    2015-05-07

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this report, we present a theoretical formalism to demonstrate themore » slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. In conclusion, we also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions« less

  10. Development of an Apparatus for High-Resolution Auger Photoelectron Coincidence Spectroscopy (APECS) and Electron Ion Coincidence (EICO) Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kakiuchi, Takuhiro; Hashimoto, Shogo; Fujita, Narihiko; Mase, Kazuhiko; Tanaka, Masatoshi; Okusawa, Makoto

    We have developed an electron electron ion coincidence (EEICO) apparatus for high-resolution Auger photoelectron coincidence spectroscopy (APECS) and electron ion coincidence (EICO) spectroscopy. It consists of a coaxially symmetric mirror electron energy analyzer (ASMA), a miniature double-pass cylindrical mirror electron energy analyzer (DP-CMA), a miniature time-of-flight ion mass spectrometer (TOF-MS), a magnetic shield, an xyz stage, a tilt-adjustment mechanism, and a conflat flange with an outer diameter of 203 mm. A sample surface was irradiated by synchrotron radiation, and emitted electrons were energy-analyzed and detected by the ASMA and the DP-CMA, while desorbed ions were mass-analyzed and detected by the TOF-MS. The performance of the new EEICO analyzer was evaluated by measuring Si 2p photoelectron spectra of clean Si(001)-2×1 and Si(111)-7×7, and by measuring Si-L23VV-Si-2p Auger photoelectron coincidence spectra (Si-L23VV-Si-2p APECS) of clean Si(001)-2×1.

  11. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.

    2015-05-07

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this paper, we present a theoretical formalism to demonstrate themore » slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. We also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions.« less

  12. A THz Spectroscopy System Based on Coherent Radiation from Ultrashort Electron Bunches

    NASA Astrophysics Data System (ADS)

    Saisut, J.; Rimjaem, S.; Thongbai, C.

    2018-05-01

    A spectroscopy system will be discussed for coherent THz transition radiation emitted from short electron bunches, which are generated from a system consisting of an RF gun with a thermionic cathode, an alpha-magnet as a magnetic bunch compressor, and a linear accelerator for post-acceleration. The THz radiation is generated as backward transition radiation when electron bunches pass through an aluminum foil. The emitted THz transition radiation, which is coherent at wavelengths equal to and longer than the electron bunch length, is coupled to a Michelson interferometer. The performance of the spectroscopy system employing a Michelson interferometer is discussed. The radiation power spectra under different conditions are presented. As an example, the optical constant of a silicon wafer can be obtained using the dispersive Fourier transform spectroscopy (DFTS) technique.

  13. The effect of Sr and Bi on the Si(100) surface oxidation - Auger electron spectroscopy, low energy electron diffraction, and X-ray photoelectron spectroscopy study

    NASA Technical Reports Server (NTRS)

    Fan, W. C.; Mesarwi, A.; Ignatiev, A.

    1990-01-01

    The effect of Sr and Bi on the oxidation of the Si(100) surface has been studied by Auger electron spectroscopy, low electron diffraction, and X-ray photoelectron spectroscopy. A dramatic enhancement, by a factor of 10, of the Si oxidation has been observed for Si(100) with a Sr overlayer. The SR-enhanced Si oxidation has been studied as a function of O2 exposure and Sr coverage. In contrast to the oxidation promotion of Sr on Si, it has been also observed that a Bi overlayer on Si(100) reduced Si oxidation significantly. Sr adsorption on the Si(100) with a Bi overlayer enhances Si oxidation only at Sr coverage of greater than 0.3 ML.

  14. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope.

    PubMed

    Li, Meng; Xu, Chunkai; Zhang, Panke; Li, Zhean; Chen, Xiangjun

    2016-08-01

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  15. Positron annihilation induced Auger electron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, A.

    1991-02-01

    A review is given on the results of PAES (positron annihilation induced Auger Electron Spectroscopy) studies to data, with a concentration on those results obtained at the University of Texas at Arlington. Low energy positions, trapped in a surface localized state annihilate with core electrons resulting in the emission of Auger electrons. The advantages of PEAS include: (i) the elimination of the very large secondary electron background, and (ii) increased surface selectivity. (AIP)

  16. Electron Effective-Attenuation-Length Database

    National Institute of Standards and Technology Data Gateway

    SRD 82 NIST Electron Effective-Attenuation-Length Database (PC database, no charge)   This database provides values of electron effective attenuation lengths (EALs) in solid elements and compounds at selected electron energies between 50 eV and 2,000 eV. The database was designed mainly to provide EALs (to account for effects of elastic-eletron scattering) for applications in surface analysis by Auger-electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS).

  17. Study of irradiated Hadfield steel using transmission Mössbauer spectroscopy with high velocity resolution and conversion electron Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Semionkin, V. A.; Neshev, F. G.; Tsurin, V. A.; Milder, O. B.; Oshtrakh, M. I.

    2010-03-01

    Proton irradiated Hadfield steel foil was studied using transmission Mössbauer spectroscopy with high velocity resolution and conversion electron Mössbauer spectroscopy. It was shown that proton irradiation leads to structural changes in the foil as well as to surface oxidation with ferric hydrous oxide formation (ferrihydrite). Moreover, oxidation on the foil underside was higher than on the foil right side.

  18. Applications of infrared free electron lasers in picosecond and nonlinear spectroscopy

    NASA Astrophysics Data System (ADS)

    Fann, W. S.; Benson, S. V.; Madey, J. M. J.; Etemad, S.; Baker, G. L.; Rothberg, L.; Roberson, M.; Austin, R. H.

    1990-10-01

    In this paper we describe two different types of spectroscopic experiments that exploit the characteristics of the infrared FEL, Mark III, for studies of condensed matter: - the spectrum of χ(3)(-3ω; ω, ω, ω) in polyacetylene: an application of the free electron laser in nonlinear optical spectroscopy, and - a dynamical test of Davydov-like solitons in acetanilide using a picosecond free electron laser. These two studies highlight the unique contributions FELs can make to condensed-matter spectroscopy.

  19. Electron impact action spectroscopy of mass/charge selected macromolecular ions: Inner-shell excitation of ubiquitin protein

    DOE PAGES

    Rankovic, Milos Lj.; Giuliani, Alexandre; Milosavljevic, Aleksandar R.

    2016-02-11

    In this study, we have performed inner-shell electron impact action spectroscopy of mass and charge selected macromolecular ions. For this purpose, we have coupled a focusing electron gun with a linear quadrupole ion trap mass spectrometer. This experiment represents a proof of principle that an energy-tunable electron beam can be used in combination with radio frequency traps as an activation method in tandem mass spectrometry (MS 2) and allows performing action spectroscopy. Electron impact MS 2 spectra of multiply protonated ubiquitin protein ion have been recorded at incident electron energies around the carbon 1s excitation. Both MS 2 and singlemore » ionization energy dependence spectra are compared with literature data obtained using the soft X-ray activation conditions.« less

  20. Electron impact action spectroscopy of mass/charge selected macromolecular ions: Inner-shell excitation of ubiquitin protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rankovic, Milos Lj.; Giuliani, Alexandre; Milosavljevic, Aleksandar R.

    In this study, we have performed inner-shell electron impact action spectroscopy of mass and charge selected macromolecular ions. For this purpose, we have coupled a focusing electron gun with a linear quadrupole ion trap mass spectrometer. This experiment represents a proof of principle that an energy-tunable electron beam can be used in combination with radio frequency traps as an activation method in tandem mass spectrometry (MS 2) and allows performing action spectroscopy. Electron impact MS 2 spectra of multiply protonated ubiquitin protein ion have been recorded at incident electron energies around the carbon 1s excitation. Both MS 2 and singlemore » ionization energy dependence spectra are compared with literature data obtained using the soft X-ray activation conditions.« less

  1. Measuring the Density of States of the Inner and Outer Wall of Double-Walled Carbon Nanotubes.

    PubMed

    Chambers, Benjamin A; Shearer, Cameron J; Yu, LePing; Gibson, Christopher T; Andersson, Gunther G

    2018-06-19

    The combination of ultraviolet photoelectron spectroscopy and metastable helium induced electron spectroscopy is used to determine the density of states of the inner and outer coaxial carbon nanotubes. Ultraviolet photoelectron spectroscopy typically measures the density of states across the entire carbon nanotube, while metastable helium induced electron spectroscopy measures the density of states of the outermost layer alone. The use of double-walled carbon nanotubes in electronic devices allows for the outer wall to be functionalised whilst the inner wall remains defect free and the density of states is kept intact for electron transport. Separating the information of the inner and outer walls enables development of double-walled carbon nanotubes to be independent, such that the charge transport of the inner wall is maintained and confirmed whilst the outer wall is modified for functional purposes.

  2. Multipurpose setup for low-temperature conversion electron Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Augustyns, V.; Trekels, M.; Gunnlaugsson, H. P.; Masenda, H.; Temst, K.; Vantomme, A.; Pereira, L. M. C.

    2017-05-01

    We describe an experimental setup for conversion electron Mössbauer spectroscopy (CEMS) at low temperature. The setup is composed of a continuous flow cryostat (temperature range of 4.2-500 K), detector housing, three channel electron multipliers, and corresponding electronics. We demonstrate the capabilities of the setup with CEMS measurements performed on a sample consisting of a thin enriched 57Fe film, with a thickness of 20 nm, deposited on a silicon substrate. We also describe exchangeable adaptations (lid and sample holder) which extend the applicability of the setup to emission Mössbauer spectroscopy as well as measurements under an applied magnetic field.

  3. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Meng; Xu, Chunkai, E-mail: xuck@ustc.edu.cn, E-mail: xjun@ustc.edu.cn; Zhang, Panke

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than themore » size of the incident electron beam.« less

  4. X-ray absorption spectroscopy to determine originating depth of electrons that form an inelastic background of Auger electron spectrum

    NASA Astrophysics Data System (ADS)

    Isomura, Noritake; Cui, Yi-Tao; Murai, Takaaki; Oji, Hiroshi; Kimoto, Yasuji

    2017-07-01

    In Auger electron spectroscopy (AES), the spectral background is mainly due to inelastic scattering of Auger electrons that lose their kinetic energy in a sample bulk. To investigate the spectral components within this background for SiO2(19.3 nm)/Si(100) with known layer thickness, X-ray absorption spectroscopy (XAS) was used in the partial-electron-yield (PEY) mode at several electron kinetic energies to probe the background of the Si KLL Auger peak. The Si K-edge PEY-XAS spectra constituted of both Si and SiO2 components at each kinetic energy, and their component fractions were approximately the same as those derived from the simulated AES background for the same sample structure. The contributions of Auger electrons originating from layers at different depths to the inelastic background could thus be identified experimentally.

  5. Direct Detection Electron Energy-Loss Spectroscopy: A Method to Push the Limits of Resolution and Sensitivity.

    PubMed

    Hart, James L; Lang, Andrew C; Leff, Asher C; Longo, Paolo; Trevor, Colin; Twesten, Ray D; Taheri, Mitra L

    2017-08-15

    In many cases, electron counting with direct detection sensors offers improved resolution, lower noise, and higher pixel density compared to conventional, indirect detection sensors for electron microscopy applications. Direct detection technology has previously been utilized, with great success, for imaging and diffraction, but potential advantages for spectroscopy remain unexplored. Here we compare the performance of a direct detection sensor operated in counting mode and an indirect detection sensor (scintillator/fiber-optic/CCD) for electron energy-loss spectroscopy. Clear improvements in measured detective quantum efficiency and combined energy resolution/energy field-of-view are offered by counting mode direct detection, showing promise for efficient spectrum imaging, low-dose mapping of beam-sensitive specimens, trace element analysis, and time-resolved spectroscopy. Despite the limited counting rate imposed by the readout electronics, we show that both core-loss and low-loss spectral acquisition are practical. These developments will benefit biologists, chemists, physicists, and materials scientists alike.

  6. Vapor phase diamond growth technology

    NASA Technical Reports Server (NTRS)

    Angus, J. C.

    1981-01-01

    Ion beam deposition chambers used for carbon film generation were designed and constructed. Features of the developed equipment include: (1) carbon ion energies down to approx. 50 eV; (2) in suit surface monitoring with HEED; (3) provision for flooding the surface with ultraviolet radiation; (4) infrared laser heating of substrate; (5) residual gas monitoring; (6) provision for several source gases, including diborane for doping studies; and (7) growth from either hydrocarbon source gases or from carbon/argon arc sources. Various analytical techniques for characterization of from carbon/argon arc sources. Various analytical techniques for characterization of the ion deposited carbon films used to establish the nature of the chemical bonding and crystallographic structure of the films are discussed. These include: H2204/HN03 etch; resistance measurements; hardness tests; Fourier transform infrared spectroscopy; scanning auger microscopy; electron spectroscopy for chemical analysis; electron diffraction and energy dispersive X-ray analysis; electron energy loss spectroscopy; density measurements; secondary ion mass spectroscopy; high energy electron diffraction; and electron spin resonance. Results of the tests are summarized.

  7. In situ TEM Raman spectroscopy and laser-based materials modification.

    PubMed

    Allen, F I; Kim, E; Andresen, N C; Grigoropoulos, C P; Minor, A M

    2017-07-01

    We present a modular assembly that enables both in situ Raman spectroscopy and laser-based materials processing to be performed in a transmission electron microscope. The system comprises a lensed Raman probe mounted inside the microscope column in the specimen plane and a custom specimen holder with a vacuum feedthrough for a tapered optical fiber. The Raman probe incorporates both excitation and collection optics, and localized laser processing is performed using pulsed laser light delivered to the specimen via the tapered optical fiber. Precise positioning of the fiber is achieved using a nanomanipulation stage in combination with simultaneous electron-beam imaging of the tip-to-sample distance. Materials modification is monitored in real time by transmission electron microscopy. First results obtained using the assembly are presented for in situ pulsed laser ablation of MoS 2 combined with Raman spectroscopy, complimented by electron-beam diffraction and electron energy-loss spectroscopy. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Correlative Raman spectroscopy and focused ion beam for targeted phase boundary analysis of titania polymorphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangum, John S.; Chan, Lisa H.; Schmidt, Ute

    Site-specific preparation of specimens using focused ion beam instruments for transmission electron microscopy is at the forefront of targeting regions of interest for nanoscale characterization. Typical methods of pinpointing desired features include electron backscatter diffraction for differentiating crystal structures and energy-dispersive X-Ray spectroscopy for probing compositional variations. Yet there are situations, notably in the titanium dioxide system, where these techniques can fail. Differentiating between the brookite and anatase polymorphs of titania is either excessively laborious or impossible with the aforementioned techniques. However, due to differences in bonding structure, Raman spectroscopy serves as an ideal candidate for polymorph differentiation. In thismore » work, a correlative approach utilizing Raman spectroscopy for targeted focused ion beam specimen preparation was employed. Dark field imaging and diffraction in the transmission electron microscope confirmed the region of interest located via Raman spectroscopy and demonstrated the validity of this new method. Correlative Raman spectroscopy, scanning electron microscopy, and focused ion beam is shown to be a promising new technique for identifying site-specific preparation of nanoscale specimens in cases where conventional approaches do not suffice.« less

  9. Correlative Raman spectroscopy and focused ion beam for targeted phase boundary analysis of titania polymorphs.

    PubMed

    Mangum, John S; Chan, Lisa H; Schmidt, Ute; Garten, Lauren M; Ginley, David S; Gorman, Brian P

    2018-05-01

    Site-specific preparation of specimens using focused ion beam instruments for transmission electron microscopy is at the forefront of targeting regions of interest for nanoscale characterization. Typical methods of pinpointing desired features include electron backscatter diffraction for differentiating crystal structures and energy-dispersive X-Ray spectroscopy for probing compositional variations. Yet there are situations, notably in the titanium dioxide system, where these techniques can fail. Differentiating between the brookite and anatase polymorphs of titania is either excessively laborious or impossible with the aforementioned techniques. However, due to differences in bonding structure, Raman spectroscopy serves as an ideal candidate for polymorph differentiation. In this work, a correlative approach utilizing Raman spectroscopy for targeted focused ion beam specimen preparation was employed. Dark field imaging and diffraction in the transmission electron microscope confirmed the region of interest located via Raman spectroscopy and demonstrated the validity of this new method. Correlative Raman spectroscopy, scanning electron microscopy, and focused ion beam is shown to be a promising new technique for identifying site-specific preparation of nanoscale specimens in cases where conventional approaches do not suffice. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Correlative Raman spectroscopy and focused ion beam for targeted phase boundary analysis of titania polymorphs

    DOE PAGES

    Mangum, John S.; Chan, Lisa H.; Schmidt, Ute; ...

    2018-02-23

    Site-specific preparation of specimens using focused ion beam instruments for transmission electron microscopy is at the forefront of targeting regions of interest for nanoscale characterization. Typical methods of pinpointing desired features include electron backscatter diffraction for differentiating crystal structures and energy-dispersive X-Ray spectroscopy for probing compositional variations. Yet there are situations, notably in the titanium dioxide system, where these techniques can fail. Differentiating between the brookite and anatase polymorphs of titania is either excessively laborious or impossible with the aforementioned techniques. However, due to differences in bonding structure, Raman spectroscopy serves as an ideal candidate for polymorph differentiation. In thismore » work, a correlative approach utilizing Raman spectroscopy for targeted focused ion beam specimen preparation was employed. Dark field imaging and diffraction in the transmission electron microscope confirmed the region of interest located via Raman spectroscopy and demonstrated the validity of this new method. Correlative Raman spectroscopy, scanning electron microscopy, and focused ion beam is shown to be a promising new technique for identifying site-specific preparation of nanoscale specimens in cases where conventional approaches do not suffice.« less

  11. Electronic and structural characteristics of zinc-blende wurtzite biphasic homostructure GaN nanowires

    DOE PAGES

    Jacobs, Benjamin W.; Ayres, Virginia M.; Petkov, Mihail P.; ...

    2007-04-07

    Here, we report a new biphasic crystalline wurtzite/zinc-blende homostructure in gallium nitride nanowires. Cathodoluminescence was used to quantitatively measure the wurtzite and zinc-blende band gaps. High-resolution transmission electron microscopy was used to identify distinct wurtzite and zinc-blende crystalline phases within single nanowires through the use of selected area electron diffraction, electron dispersive spectroscopy, electron energy loss spectroscopy, and fast Fourier transform techniques. A mechanism for growth is identified.

  12. Electronic and structural characteristics of zinc-blende wurtzite biphasic homostructure GaN nanowires.

    PubMed

    Jacobs, Benjamin W; Ayres, Virginia M; Petkov, Mihail P; Halpern, Joshua B; He, Maoqi; Baczewski, Andrew D; McElroy, Kaylee; Crimp, Martin A; Zhang, Jiaming; Shaw, Harry C

    2007-05-01

    We report a new biphasic crystalline wurtzite/zinc-blende homostructure in gallium nitride nanowires. Cathodoluminescence was used to quantitatively measure the wurtzite and zinc-blende band gaps. High-resolution transmission electron microscopy was used to identify distinct wurtzite and zinc-blende crystalline phases within single nanowires through the use of selected area electron diffraction, electron dispersive spectroscopy, electron energy loss spectroscopy, and fast Fourier transform techniques. A mechanism for growth is identified.

  13. Characterization study of polycrystalline tin oxide surfaces before and after reduction in CO

    NASA Technical Reports Server (NTRS)

    Drawdy, Jean E.; Hoflund, Gar B.; Davidson, Mark R.; Schryer, David R.

    1990-01-01

    Polycrystalline tin oxide surfaces have been examined before and after reduction in 40 Torr of CO at 100 and 175 C using Auger electron spectroscopy (AES), electron spectroscopy for chemical analysis (ESCA), ion scattering spectroscopy (ISS) and electron stimulated desorption (ESD). The changes in the surface composition and chemical states of the surface species generally are subtle for the reductive conditions used. However, significant changes do occur with regard to the amounts and the chemical forms of the hydrogen-containing species remaining after both the 100 and 175 C reductions.

  14. Two-dimensional vibrational-electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira

    2015-10-01

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.

  15. Two-dimensional vibrational-electronic spectroscopy.

    PubMed

    Courtney, Trevor L; Fox, Zachary W; Slenkamp, Karla M; Khalil, Munira

    2015-10-21

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([Fe(III)(CN)6](3-) dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5Fe(II)CNRu(III)(NH3)5](-) dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.

  16. Some performance tests of a microarea AES. [Auger Electron Spectroscopy

    NASA Technical Reports Server (NTRS)

    Todd, G.; Poppa, H.

    1978-01-01

    An Auger electron spectroscopy (AES) system which has a submicron analysis capability is described. The system provides secondary electron imaging, as well as micro- and macro-area AES. The resolution of the secondary electron image of an oxidized Al contact pad on a charge-coupled device chip indicates a primary beam size of about 1000 A. For Auger mapping, a useful resolution of about 4000 A is reported

  17. Direct and simultaneous observation of ultrafast electron and hole dynamics in germanium

    DOE PAGES

    Zurch, Michael; Chang, Hung -Tzu; Borja, Lauren J.; ...

    2017-06-01

    Understanding excited carrier dynamics in semiconductors is crucial for the development of photovoltaics and efficient photonic devices. However, overlapping spectral features in optical pump-probe spectroscopy often render assignments of separate electron and hole carrier dynamics ambiguous. Here, ultrafast electron and hole dynamics in germanium nanocrystalline thin films are directly and simultaneously observed by ultrafast transient absorption spectroscopy in the extreme ultraviolet at the germanium M 4,5 edge. We decompose the spectra into contributions of electronic state blocking and photo-induced band shifts at a carrier density of 8 × 10 20 cm –3. Separate electron and hole relaxation times are observedmore » as a function of hot carrier energies. A first-order electron and hole decay of ~1 ps suggests a Shockley–Read–Hall recombination mechanism. Furthermore, the simultaneous observation of electrons and holes with extreme ultraviolet transient absorption spectroscopy paves the way for investigating few- to sub-femtosecond dynamics of both holes and electrons in complex semiconductor materials and across junctions.« less

  18. Electronic properties of Mn-phthalocyanine–C{sub 60} bulk heterojunctions: Combining photoemission and electron energy-loss spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Friedrich; Herzig, Melanie; Knupfer, Martin

    2015-11-14

    The electronic properties of co-evaporated mixtures (blends) of manganese phthalocyanine and the fullerene C{sub 60} (MnPc:C{sub 60}) have been studied as a function of the concentration of the two constituents using two supplementary electron spectroscopic methods, photoemission spectroscopy (PES) and electron energy-loss spectroscopy (EELS) in transmission. Our PES measurements provide a detailed picture of the electronic structure measured with different excitation energies as well as different mixing ratios between MnPc and C{sub 60}. Besides a relative energy shift, the occupied electronic states of the two materials remain essentially unchanged. The observed energy level alignment is different compared to that ofmore » the related CuPc:C{sub 60} bulk heterojunction. Moreover, the results from our EELS investigations show that, despite the rather small interface interaction, the MnPc related electronic excitation spectrum changes significantly by admixing C{sub 60} to MnPc thin films.« less

  19. Direct and simultaneous observation of ultrafast electron and hole dynamics in germanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zurch, Michael; Chang, Hung -Tzu; Borja, Lauren J.

    Understanding excited carrier dynamics in semiconductors is crucial for the development of photovoltaics and efficient photonic devices. However, overlapping spectral features in optical pump-probe spectroscopy often render assignments of separate electron and hole carrier dynamics ambiguous. Here, ultrafast electron and hole dynamics in germanium nanocrystalline thin films are directly and simultaneously observed by ultrafast transient absorption spectroscopy in the extreme ultraviolet at the germanium M 4,5 edge. We decompose the spectra into contributions of electronic state blocking and photo-induced band shifts at a carrier density of 8 × 10 20 cm –3. Separate electron and hole relaxation times are observedmore » as a function of hot carrier energies. A first-order electron and hole decay of ~1 ps suggests a Shockley–Read–Hall recombination mechanism. Furthermore, the simultaneous observation of electrons and holes with extreme ultraviolet transient absorption spectroscopy paves the way for investigating few- to sub-femtosecond dynamics of both holes and electrons in complex semiconductor materials and across junctions.« less

  20. Direct and simultaneous observation of ultrafast electron and hole dynamics in germanium.

    PubMed

    Zürch, Michael; Chang, Hung-Tzu; Borja, Lauren J; Kraus, Peter M; Cushing, Scott K; Gandman, Andrey; Kaplan, Christopher J; Oh, Myoung Hwan; Prell, James S; Prendergast, David; Pemmaraju, Chaitanya D; Neumark, Daniel M; Leone, Stephen R

    2017-06-01

    Understanding excited carrier dynamics in semiconductors is crucial for the development of photovoltaics and efficient photonic devices. However, overlapping spectral features in optical pump-probe spectroscopy often render assignments of separate electron and hole carrier dynamics ambiguous. Here, ultrafast electron and hole dynamics in germanium nanocrystalline thin films are directly and simultaneously observed by ultrafast transient absorption spectroscopy in the extreme ultraviolet at the germanium M 4,5 edge. We decompose the spectra into contributions of electronic state blocking and photo-induced band shifts at a carrier density of 8 × 10 20  cm -3 . Separate electron and hole relaxation times are observed as a function of hot carrier energies. A first-order electron and hole decay of ∼1 ps suggests a Shockley-Read-Hall recombination mechanism. The simultaneous observation of electrons and holes with extreme ultraviolet transient absorption spectroscopy paves the way for investigating few- to sub-femtosecond dynamics of both holes and electrons in complex semiconductor materials and across junctions.

  1. Direct and simultaneous observation of ultrafast electron and hole dynamics in germanium

    PubMed Central

    Zürch, Michael; Chang, Hung-Tzu; Borja, Lauren J.; Kraus, Peter M.; Cushing, Scott K.; Gandman, Andrey; Kaplan, Christopher J.; Oh, Myoung Hwan; Prell, James S.; Prendergast, David; Pemmaraju, Chaitanya D.; Neumark, Daniel M.; Leone, Stephen R.

    2017-01-01

    Understanding excited carrier dynamics in semiconductors is crucial for the development of photovoltaics and efficient photonic devices. However, overlapping spectral features in optical pump-probe spectroscopy often render assignments of separate electron and hole carrier dynamics ambiguous. Here, ultrafast electron and hole dynamics in germanium nanocrystalline thin films are directly and simultaneously observed by ultrafast transient absorption spectroscopy in the extreme ultraviolet at the germanium M4,5 edge. We decompose the spectra into contributions of electronic state blocking and photo-induced band shifts at a carrier density of 8 × 1020 cm−3. Separate electron and hole relaxation times are observed as a function of hot carrier energies. A first-order electron and hole decay of ∼1 ps suggests a Shockley–Read–Hall recombination mechanism. The simultaneous observation of electrons and holes with extreme ultraviolet transient absorption spectroscopy paves the way for investigating few- to sub-femtosecond dynamics of both holes and electrons in complex semiconductor materials and across junctions. PMID:28569752

  2. Time- and angle-resolved photoemission spectroscopy of hydrated electrons near a liquid water surface.

    PubMed

    Yamamoto, Yo-ichi; Suzuki, Yoshi-Ichi; Tomasello, Gaia; Horio, Takuya; Karashima, Shutaro; Mitríc, Roland; Suzuki, Toshinori

    2014-05-09

    We present time- and angle-resolved photoemission spectroscopy of trapped electrons near liquid surfaces. Photoemission from the ground state of a hydrated electron at 260 nm is found to be isotropic, while anisotropic photoemission is observed for the excited states of 1,4-diazabicyclo[2,2,2]octane and I- in aqueous solutions. Our results indicate that surface and subsurface species create hydrated electrons in the bulk side. No signature of a surface-bound electron has been observed.

  3. Fourier transform infrared difference and time-resolved infrared detection of the electron and proton transfer dynamics in photosynthetic water oxidation.

    PubMed

    Noguchi, Takumi

    2015-01-01

    Photosynthetic water oxidation, which provides the electrons necessary for CO₂ reduction and releases O₂ and protons, is performed at the Mn₄CaO₅ cluster in photosystem II (PSII). In this review, studies that assessed the mechanism of water oxidation using infrared spectroscopy are summarized focusing on electron and proton transfer dynamics. Structural changes in proteins and water molecules between intermediates known as Si states (i=0-3) were detected using flash-induced Fourier transform infrared (FTIR) difference spectroscopy. Electron flow in PSII and proton release from substrate water were monitored using the infrared changes in ferricyanide as an exogenous electron acceptor and Mes buffer as a proton acceptor. Time-resolved infrared (TRIR) spectroscopy provided information on the dynamics of proton-coupled electron transfer during the S-state transitions. In particular, a drastic proton movement during the lag phase (~200μs) before electron transfer in the S3→S0 transition was detected directly by monitoring the infrared absorption of a polarizable proton in a hydrogen bond network. Furthermore, the proton release pathways in the PSII proteins were analyzed by FTIR difference measurements in combination with site-directed mutagenesis, isotopic substitutions, and quantum chemical calculations. Therefore, infrared spectroscopy is a powerful tool for understanding the molecular mechanism of photosynthetic water oxidation. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Disentangling atomic-layer-specific x-ray absorption spectra by Auger electron diffraction spectroscopy

    NASA Astrophysics Data System (ADS)

    Matsui, Fumihiko; Matsushita, Tomohiro; Kato, Yukako; Hashimoto, Mie; Daimon, Hiroshi

    2009-11-01

    In order to investigate the electronic and magnetic structures of each atomic layer at subsurface, we have proposed a new method, Auger electron diffraction spectroscopy, which is the combination of x-ray absorption spectroscopy (XAS) and Auger electron diffraction (AED) techniques. We have measured a series of Ni LMM AED patterns of the Ni film grown on Cu(001) surface for various thicknesses. Then we deduced a set of atomic-layer-specific AED patterns in a numerical way. Furthermore, we developed an algorithm to disentangle XANES spectra from different atomic layers using these atomic-layer-specific AED patterns. Surface and subsurface core level shift were determined for each atomic layer.

  5. Electronic structure and fine structural features of the air-grown UNxOy on nitrogen-rich uranium nitride

    NASA Astrophysics Data System (ADS)

    Long, Zhong; Zeng, Rongguang; Hu, Yin; Liu, Jing; Wang, Wenyuan; Zhao, Yawen; Luo, Zhipeng; Bai, Bin; Wang, Xiaofang; Liu, Kezhao

    2018-06-01

    Oxide formation on surface of nitrogen-rich uranium nitride film/particles was investigated using X-ray photoelectron spectroscopy (XPS), auger electron spectroscopy (AES), aberration-corrected transmission electron microscopy (TEM), and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) coupled with electron energy-loss spectroscopy (EELS). XPS and AES studies indicated that the oxidized layer on UN2-x film is ternary compound uranium oxynitride (UNxOy) in 5-10 nm thickness. TEM/HAADF-STEM and EELS studies revealed the UNxOy crystallizes in the FCC CaF2-type structure with the lattice parameter close to the CaF2-type UN2-x matrix. The work can provide further information to the oxidation mechanism of uranium nitride.

  6. Electronic Spectroscopy of Phthalocyanine and Porphyrin Derivatives in Superfluid Helium Nanodroplets.

    PubMed

    Slenczka, Alkwin

    2017-07-25

    Phthalocyanine and porphyrin were among the first organic compounds investigated by means of electronic spectroscopy in superfluid helium nanodroplets. Superfluid helium nanodroplets serve as a very gentle host system for preparing cold and isolated molecules. The uniqueness of helium nanodroplets is with respect to the superfluid phase which warrants the vanishing viscosity and, thus, minimal perturbation of the dopant species at a temperature as low as 0.37 K. These are ideal conditions for the study of molecular spectra in order to analyze structures as well as dynamic processes. Besides the investigation of the dopant species itself, molecular spectroscopy in helium droplets provides information on the helium droplet and in particular on microsolvation. This article, as part of a special issue on phthalocyanines and porphyrins, reviews electronic spectroscopy of phthalocyanine and porphyrin compounds in superfluid helium nanodroplets. In addition to the wide variety of medical as well as technical and synthetical aspects, this article discusses electronic spectroscopy of phthalocyanines and porphyrins in helium droplets in order to learn about both the dopant and the helium environment.

  7. Surface Characterization.

    ERIC Educational Resources Information Center

    Fulghum, J. E.; And Others

    1989-01-01

    This review is divided into the following analytical methods: ion spectroscopy, electron spectroscopy, scanning tunneling microscopy, atomic force microscopy, optical spectroscopy, desorption techniques, and X-ray techniques. (MVL)

  8. The electronic properties of potassium doped copper-phthalocyanine studied by electron energy-loss spectroscopy.

    PubMed

    Flatz, K; Grobosch, M; Knupfer, M

    2007-06-07

    The authors have studied the electronic structure of potassium doped copper-phthalocyanine using electron energy-loss spectroscopy. The evolution of the loss function indicates the formation of distinct KxCuPc phases. Taking into account the C1s and K2p core level excitations and recent results by Giovanelli et al. [J. Chem. Phys. 126, 044709 (2007)], they conclude that these are K2CuPc and K4CuPc. They discuss the changes in the electronic excitations upon doping on the basis of the molecular electronic levels and the presence of electronic correlations.

  9. Characterization of CuHal-intercalated carbon nanotubes with x-ray absorption spectroscopy combined with x-ray photoelectron and resonant photoemission spectroscopies

    NASA Astrophysics Data System (ADS)

    Brzhezinskaya, M.; Generalov, A.; Vinogdradov, A.; Eliseev, A.

    2013-04-01

    Encapsulated single-walled carbon nanotubes (SWCNTs) with inner channels filled by different compounds present the new class of composite materials. Such CNTs give opportunity to form 1D nanocrystals as well as quantum nanowires with new physical and chemical properties inside the tubes. The present study is aimed to characterize the possible chemical interaction between CuHal (Hal=I, Cl, Br) and SWCNTs in CuHal@SWCNTs and electronic structure of the latter using high-resolution near edge X-ray absorption fine structure (NEXAFS) spectroscopy combined with high-resolution X-ray photoelectron spectroscopy and resonant photoemission spectroscopy. The present study has shown that there is a chemical interaction between the filler and π-electron subsystem of CNTs which is accompanied by changes of the atomic and electronic structure of the filler during the encapsulating it inside CNTs.

  10. Polyaniline decorated Bi2MoO6 nanosheets with effective interfacial charge transfer as photocatalysts and optical limiters.

    PubMed

    Zhao, Wei; Li, Cheng; Wang, Aijian; Lv, Cuncai; Zhu, Weihua; Dou, Shengping; Wang, Qian; Zhong, Qin

    2017-11-01

    Polyaniline (PANI)-decorated Bi 2 MoO 6 nanosheets (BMO/PANI) were prepared by a facile solvothermal method. Different characterization techniques, including X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, diffuse reflectance ultraviolet-visible spectroscopy, photoluminescence spectroscopy, electrochemical impedance spectroscopy, photocurrent spectroscopy, and nanosecond time-resolved emission studies, have been employed to investigate the structure, optical and electrical properties of the BMO/PANI composites. The wide absorption of the samples in the visible light region makes them suitable for nonlinear transmission and photocatalytic activity studies. The associated photocatalytic activity and optical nonlinearities for the BMO/PANI composites are shown to be dependent on the PANI loadings. The rational mechanisms responsible for deteriorating pollutants and improving optical nonlinearities were also proposed, which could be mainly attributed to the efficient interfacial charge transfer and the interfacial electronic interactions between PANI and Bi 2 MoO 6 . The photoluminescence spectroscopy, electrochemical impedance spectroscopy, and photocurrent spectroscopy studies confirmed that the interface charge separation efficiency was greatly improved by coupling Bi 2 MoO 6 with PANI. The tuning of photocatalysis and nonlinear optical behaviors with variation in the content of PANI provides an easy way to attain tunable properties, which are exceedingly required in optoelectronics applications.

  11. Damage-free vibrational spectroscopy of biological materials in the electron microscope

    PubMed Central

    Rez, Peter; Aoki, Toshihiro; March, Katia; Gur, Dvir; Krivanek, Ondrej L.; Dellby, Niklas; Lovejoy, Tracy C.; Wolf, Sharon G.; Cohen, Hagai

    2016-01-01

    Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an ‘aloof' electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies <1 eV can be ‘safely' investigated. To demonstrate the potential of aloof spectroscopy, we record electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C–H, N–H and C=O vibrational signatures with no observable radiation damage. The technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ∼10 nm, simultaneously combined with imaging in the electron microscope. PMID:26961578

  12. Damage-free vibrational spectroscopy of biological materials in the electron microscope.

    PubMed

    Rez, Peter; Aoki, Toshihiro; March, Katia; Gur, Dvir; Krivanek, Ondrej L; Dellby, Niklas; Lovejoy, Tracy C; Wolf, Sharon G; Cohen, Hagai

    2016-03-10

    Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an 'aloof' electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies <1 eV can be 'safely' investigated. To demonstrate the potential of aloof spectroscopy, we record electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C-H, N-H and C=O vibrational signatures with no observable radiation damage. The technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ∼10 nm, simultaneously combined with imaging in the electron microscope.

  13. Damage-free vibrational spectroscopy of biological materials in the electron microscope

    DOE PAGES

    Rez, Peter; Aoki, Toshihiro; March, Katia; ...

    2016-03-10

    Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an ‘aloof’ electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies o1 eV can be ‘safely’ investigated. To demonstrate the potential of aloof spectroscopy, we record electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C–H, N–H and C=O vibrational signatures with nomore » observable radiation damage. Furthermore, the technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ~10nm, simultaneously combined with imaging in the electron microscope.« less

  14. Damage-free vibrational spectroscopy of biological materials in the electron microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rez, Peter; Aoki, Toshihiro; March, Katia

    Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an ‘aloof’ electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies o1 eV can be ‘safely’ investigated. To demonstrate the potential of aloof spectroscopy, we record electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C–H, N–H and C=O vibrational signatures with nomore » observable radiation damage. Furthermore, the technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ~10nm, simultaneously combined with imaging in the electron microscope.« less

  15. Ion scattering and electron spectroscopy of the chemical species at a HF-prepared Si(211) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaime-Vasquez, M.; Martinka, M.; Groenert, M.

    2006-01-16

    The species and the nature of their chemical bonds at the surface of a hydrogen-terminated Si(211) wafer were characterized using temperature desorption spectroscopy, ion scattering spectroscopy, and electron spectroscopy. The surface region is dominated by monohydride species with dihydrides present in small amounts. Fluorine is distributed across the top layer as largely a physisorbed species to the Si substrate. Low-energy {sup 3}He{sup +} ions remove the H and F species with only minimal damage to the underlying region.

  16. Infrared Multiphoton Dissociation Spectroscopy with Free-Electron Lasers: On the Road from Small Molecules to Biomolecules.

    PubMed

    Jašíková, Lucie; Roithová, Jana

    2018-03-07

    Infrared multiphoton dissociation (IRMPD) spectroscopy is commonly used to determine the structure of isolated, mass-selected ions in the gas phase. This method has been widely used since it became available at free-electron laser (FEL) user facilities. Thus, in this Minireview, we examine the use of IRMPD/FEL spectroscopy for investigating ions derived from small molecules, metal complexes, organometallic compounds and biorelevant ions. Furthermore, we outline new applications of IRMPD spectroscopy to study biomolecules. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Effects of high energy radiation on the mechanical properties of epoxy-graphite fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Fornes, R. E.; Gilbert, R. D.; Memory, J. D.

    1985-01-01

    In an effort to elucidate the changes in molecular structural and mechanical properties of epoxy/graphite fiber composites upon exposure to ionizing radiation in a simulated space environment, spectroscopic and surface properties of tetraglycidyl-4,4'-diamino diphenyl methane (TGDDM) red with diamino diphenyl sulfone (DDS) and T-300 graphite fiber were investigated following exposure to ionizing radiation. Cobalt-60 gamma radiation and 1/2 MeV electrons were used as radiation sources. The system was studied using electron spin resonance (ESR) spectroscopy, infrared absorption spectroscopy, contact angle measurements, and electron spectroscopy for chemical analysis.

  18. Direct observation of spin-resolved full and empty electron states in ferromagnetic surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berti, G., E-mail: giulia.berti@polimi.it; Calloni, A.; Brambilla, A.

    2014-07-15

    We present a versatile apparatus for the study of ferromagnetic surfaces, which combines spin-polarized photoemission and inverse photoemission spectroscopies. Samples can be grown by molecular beam epitaxy and analyzed in situ. Spin-resolved photoemission spectroscopy analysis is done with a hemispherical electron analyzer coupled to a 25 kV-Mott detector. Inverse photoemission spectroscopy experiments are performed with GaAs crystals as spin-polarized electron sources and a UV bandpass photon detector. As an example, measurements on the oxygen passivated Fe(100)-p(1×1)O surface are presented.

  19. Investigations of photosynthetic light harvesting by two-dimensional electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Read, Elizabeth Louise

    Photosynthesis begins with the harvesting of sunlight by antenna pigments, organized in a network of pigment-protein complexes that rapidly funnel energy to photochemical reaction centers. The intricate design of these systems---the widely varying structural motifs of pigment organization within proteins and protein organization within a larger, cooperative network---underlies the remarkable speed and efficiency of light harvesting. Advances in femtosecond laser spectroscopy have enabled researchers to follow light energy on its course through the energetic levels of photosynthetic systems. Now, newly-developed femtosecond two-dimensional electronic spectroscopy reveals deeper insight into the fundamental molecular interactions and dynamics that emerge in these structures. The following chapters present investigations of a number of natural light-harvesting complexes using two-dimensional electronic spectroscopy. These studies demonstrate the various types of information contained in experimental two-dimensional spectra, and they show that the technique makes it possible to probe pigment-protein complexes on the length- and time-scales relevant to their functioning. New methods are described that further extend the capabilities of two-dimensional electronic spectroscopy, for example, by independently controlling the excitation laser pulse polarizations. The experiments, coupled with theoretical simulation, elucidate spatial pathways of energy flow, unravel molecular and electronic structures, and point to potential new quantum mechanical mechanisms of light harvesting.

  20. Development of an Electron-Positron Source for Positron Annihilation Lifetime Spectroscopy

    DTIC Science & Technology

    2009-12-19

    REPORT Development of an electron- positron source for positron annihilation lifetime spectroscopy : FINAL REPORT 14. ABSTRACT 16. SECURITY...to generate radiation, to accelerate particles, and to produce electrons and positrons from vacuum. From applications using existing high-repetition...theoretical directions. This report reviews work directed toward the application of positron generation from laser interaction with matter 1. REPORT DATE

  1. Symposium N: Materials and Devices for Thermal-to-Electric Energy Conversion

    DTIC Science & Technology

    2010-08-24

    X - ray diffraction, transmission electron microscopy, scanning electron microscopy, and dynamic light scattering. Thermal conductivity measurements...SEM), X - ray diffraction (XRD) measurements as well as Raman spectroscopy. The results from these techniques indicate a clear modification...was examined by using scanning electron microscope (SEM; HITACHI S-4500 model) attached with an energy dispersive x - ray spectroscopy. The electrical

  2. Modern Material Analysis Instruments Add a New Dimension to Materials Characterization and Failure Analysis

    NASA Technical Reports Server (NTRS)

    Panda, Binayak

    2009-01-01

    Modern analytical tools can yield invaluable results during materials characterization and failure analysis. Scanning electron microscopes (SEMs) provide significant analytical capabilities, including angstrom-level resolution. These systems can be equipped with a silicon drift detector (SDD) for very fast yet precise analytical mapping of phases, as well as electron back-scattered diffraction (EBSD) units to map grain orientations, chambers that admit large samples, variable pressure for wet samples, and quantitative analysis software to examine phases. Advanced solid-state electronics have also improved surface and bulk analysis instruments: Secondary ion mass spectroscopy (SIMS) can quantitatively determine and map light elements such as hydrogen, lithium, and boron - with their isotopes. Its high sensitivity detects impurities at parts per billion (ppb) levels. X-ray photo-electron spectroscopy (XPS) can determine oxidation states of elements, as well as identifying polymers and measuring film thicknesses on coated composites. This technique is also known as electron spectroscopy for chemical analysis (ESCA). Scanning Auger electron spectroscopy (SAM) combines surface sensitivity, spatial lateral resolution (10 nm), and depth profiling capabilities to describe elemental compositions of near and below surface regions down to the chemical state of an atom.

  3. Measurement of Electron Density Using the Multipole Resonance Probe, Langmuir Probe and Optical Emission Spectroscopy in Low Pressure Plasmas with Different Electron Energy Distribution Functions

    NASA Astrophysics Data System (ADS)

    Oberberg, Moritz; Bibinov, Nikita; Ries, Stefan; Awakowicz, Peter; Institute of Electrical Engineering; Plasma Technology Team

    2016-09-01

    In recently publication, the young diagnostic tool Multipole Resonance Probe (MRP) for electron density measurements was introduced. It is based on active plasma resonance spectroscopy (APRS). The probe was simulated und evaluated for different devices. The geometrical and electrical symmetry simplifies the APRS model, so that the electron density can be easily calculated from the measured resonance. In this work, low pressure nitrogen mixture plasmas with different electron energy distribution functions (EEDF) are investigated. The results of the MRP measurement are compared with measurements of a Langmuir Probe (LP) and Optical Emission Spectroscopy (OES). Probes and OES measure in different regimes of kinetic electron energy. Both probes measure electrons with low kinetic energy (<10 eV), whereas the OES is influenced by electrons with high kinetic energy which are needed for transitions of molecule bands. By the determination of the absolute intensity of N2(C-B) and N2+(B-X)electron temperature and density can be calculated. In a non-maxwellian plasma, all plasma diagnostics need to be combined.

  4. Alpha and conversion electron spectroscopy of 238,239Pu and 241Am and alpha-conversion electron coincidence measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dion, Michael P.; Miller, Brian W.; Warren, Glen A.

    2016-09-01

    A technique to determine the isotopics of a mixed actinide sample has been proposed by measuring the coincidence of the alpha particle during radioactive decay with the conversion electron (or Auger) emitted during the relaxation of the daughter isotope. This presents a unique signature to allow the deconvolution of isotopes that possess overlapping alpha particle energy. The work presented here are results of conversion electron spectroscopy of 241Am, 238Pu and 239Pu using a dual-stage peltier-cooled 25 mm2 silicon drift detector. A passivated ion implanted planar silicon detector provided measurements of alpha spectroscopy. The conversion electron spectra were evaluated from 20–55more » keV based on fits to the dominant conversion electron emissions, which allowed the relative conversion electron emission intensities to be determined. These measurements provide crucial singles spectral information to aid in the coincident measurement approach.« less

  5. Effects of the electron-hole pair in Auger and X-ray photoemission spectroscopy from surfaces of Fe-Si

    NASA Astrophysics Data System (ADS)

    Gervasoni, J. L.; Jenko, M.; Poniku, B.; Belič, I.; Juan, A.

    2015-07-01

    In this work, we investigate in detail the effects due to the interaction between an electron and a stationary positive ion (or atomic hole) in the neighborhood of a surface of Fe-Si, having a strong plasmon peak in their electron energy loss spectra, when it is excited with synchrotron radiation. We take into account the effects due to the sudden creation of an electron and the residual holes, one in the case of X-ray photoemission spectroscopy (XPS) and two in the case of Auger electron spectroscopy (AES). We use a semi classical dielectric formulation for the photoelectron trajectory, and we estimated the parameter rs, the radius of the sphere occupied by one electron in the solid, which is critical in order to define the electron density of the alloy. With the cited formulation, we have obtained a detailed behavior of the different contributions of the collective excitations in both processes.

  6. Emerging surface characterization techniques for carbon steel corrosion: a critical brief review.

    PubMed

    Dwivedi, D; Lepkova, K; Becker, T

    2017-03-01

    Carbon steel is a preferred construction material in many industrial and domestic applications, including oil and gas pipelines, where corrosion mitigation using film-forming corrosion inhibitor formulations is a widely accepted method. This review identifies surface analytical techniques that are considered suitable for analysis of thin films at metallic substrates, but are yet to be applied to analysis of carbon steel surfaces in corrosive media or treated with corrosion inhibitors. The reviewed methods include time of flight-secondary ion mass spectrometry, X-ray absorption spectroscopy methods, particle-induced X-ray emission, Rutherford backscatter spectroscopy, Auger electron spectroscopy, electron probe microanalysis, near-edge X-ray absorption fine structure spectroscopy, X-ray photoemission electron microscopy, low-energy electron diffraction, small-angle neutron scattering and neutron reflectometry, and conversion electron Moessbauer spectrometry. Advantages and limitations of the analytical methods in thin-film surface investigations are discussed. Technical parameters of nominated analytical methods are provided to assist in the selection of suitable methods for analysis of metallic substrates deposited with surface films. The challenges associated with the applications of the emerging analytical methods in corrosion science are also addressed.

  7. Emerging surface characterization techniques for carbon steel corrosion: a critical brief review

    NASA Astrophysics Data System (ADS)

    Dwivedi, D.; Lepkova, K.; Becker, T.

    2017-03-01

    Carbon steel is a preferred construction material in many industrial and domestic applications, including oil and gas pipelines, where corrosion mitigation using film-forming corrosion inhibitor formulations is a widely accepted method. This review identifies surface analytical techniques that are considered suitable for analysis of thin films at metallic substrates, but are yet to be applied to analysis of carbon steel surfaces in corrosive media or treated with corrosion inhibitors. The reviewed methods include time of flight-secondary ion mass spectrometry, X-ray absorption spectroscopy methods, particle-induced X-ray emission, Rutherford backscatter spectroscopy, Auger electron spectroscopy, electron probe microanalysis, near-edge X-ray absorption fine structure spectroscopy, X-ray photoemission electron microscopy, low-energy electron diffraction, small-angle neutron scattering and neutron reflectometry, and conversion electron Moessbauer spectrometry. Advantages and limitations of the analytical methods in thin-film surface investigations are discussed. Technical parameters of nominated analytical methods are provided to assist in the selection of suitable methods for analysis of metallic substrates deposited with surface films. The challenges associated with the applications of the emerging analytical methods in corrosion science are also addressed.

  8. Emerging surface characterization techniques for carbon steel corrosion: a critical brief review

    PubMed Central

    Dwivedi, D.; Becker, T.

    2017-01-01

    Carbon steel is a preferred construction material in many industrial and domestic applications, including oil and gas pipelines, where corrosion mitigation using film-forming corrosion inhibitor formulations is a widely accepted method. This review identifies surface analytical techniques that are considered suitable for analysis of thin films at metallic substrates, but are yet to be applied to analysis of carbon steel surfaces in corrosive media or treated with corrosion inhibitors. The reviewed methods include time of flight-secondary ion mass spectrometry, X-ray absorption spectroscopy methods, particle-induced X-ray emission, Rutherford backscatter spectroscopy, Auger electron spectroscopy, electron probe microanalysis, near-edge X-ray absorption fine structure spectroscopy, X-ray photoemission electron microscopy, low-energy electron diffraction, small-angle neutron scattering and neutron reflectometry, and conversion electron Moessbauer spectrometry. Advantages and limitations of the analytical methods in thin-film surface investigations are discussed. Technical parameters of nominated analytical methods are provided to assist in the selection of suitable methods for analysis of metallic substrates deposited with surface films. The challenges associated with the applications of the emerging analytical methods in corrosion science are also addressed. PMID:28413351

  9. Positron annihilation induced Auger electron spectroscopy

    NASA Technical Reports Server (NTRS)

    Weiss, Alex; Koymen, A. R.; Mehl, David; Jensen, K. O.; Lei, Chun; Lee, K. H.

    1990-01-01

    Recently, Weiss et al. have demonstrated that it is possible to excite Auger transitions by annihilating core electrons using a low energy (less than 30eV) beam of positrons. This mechanism makes possible a new electron spectroscopy, Positron annihilation induced Auger Electron Spectroscopy (PAES). The probability of exciting an Auger transition is proportional to the overlap of the positron wavefunction with atomic core levels. Since the Auger electron energy provides a signature of the atomic species making the transition, PAES makes it possible to determine the overlap of the positron wavefunction with a particular element. PAES may therefore provide a means of detecting positron-atom complexes. Measurements of PAES intensities from clean and adsorbate covered Cu surfaces are presented which indicate that approx. 5 percent of positrons injected into CU at 25eV produce core annihilations that result in Auger transitions.

  10. Direct determination of energy level alignment and charge transport at metal-Alq3 interfaces via ballistic-electron-emission spectroscopy.

    PubMed

    Jiang, J S; Pearson, J E; Bader, S D

    2011-04-15

    Using ballistic-electron-emission spectroscopy (BEES), we directly determined the energy barrier for electron injection at clean interfaces of Alq(3) with Al and Fe to be 2.1 and 2.2 eV, respectively. We quantitatively modeled the sub-barrier BEES spectra with an accumulated space charge layer, and found that the transport of nonballistic electrons is consistent with random hopping over the injection barrier.

  11. Direct determination of energy level alignment and charge transport at metal/Alq{sub 3} interfaces via ballistic-electron-emission spectroscopy.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, J. S.; Pearson, J. E.; Bader, S. D.

    2011-04-15

    Using ballistic-electron-emission spectroscopy (BEES), we directly determined the energy barrier for electron injection at clean interfaces of Alq{sub 3} with Al and Fe to be 2.1 and 2.2 eV, respectively. We quantitatively modeled the sub-barrier BEES spectra with an accumulated space charge layer, and found that the transport of nonballistic electrons is consistent with random hopping over the injection barrier.

  12. Folding and stacking defects of graphene flakes probed by electron nanobeam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persichetti, L.; Fanfoni, M.; Sgarlata, A.

    2011-07-25

    Combining nanoscale imaging with local electron spectroscopy and diffraction has provided direct information on folding and stacking defects of graphene flakes produced by unrolled multi-walled carbon nanotubes. Structural data obtained by nanoarea electron diffraction complemented with systematic electron energy loss spectroscopy measurements of the surface plasmon losses of single flakes show the presence of flat bilayer regions coexisting with folded areas where the topology of buckled graphene resembles that of warped carbon nanostructures.

  13. Green synthesis of BiVO4 nanorods via aqueous extracts of Callistemon viminalis

    NASA Astrophysics Data System (ADS)

    Mohamed, H. E. A.; Sone, B. T.; Fuku, X. G.; Dhlamini, M. S.; Maaza, M.

    2018-05-01

    Nowadays, the development of efficient green chemistry methods for synthesis of metal oxides nanoparticles has become a major focus of researchers. These methods are being investigated in order to find an eco-friendly technique for production of well-characterized nanoparticles. In this contribution we report for the first time, the synthesis and structural characterization of n-type Bismuth vanadate (BiVO4) nanoparticles using aqueous extracts of Callistemon viminalis as a chelating agent. To ascertain the formation of BiVO4, X-Ray diffraction analysis (XRD), Scanning Electron Microscopy (SEM), High Resolution Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED), Electron Dispersion X-ray Spectroscopy (EDS), Fourier Transform Infra-red Spectroscopy (FTIR), and Photoluminescence spectroscopy (PL) were carried out.

  14. Molecular orbital imaging of the acetone S2 excited state using time-resolved (e, 2e) electron momentum spectroscopy.

    PubMed

    Yamazaki, Masakazu; Oishi, Keiya; Nakazawa, Hiroyuki; Zhu, Chaoyuan; Takahashi, Masahiko

    2015-03-13

    We report a time-resolved (e, 2e) experiment on the deuterated acetone molecule in the S2 Rydberg state with a lifetime of 13.5 ps. The acetone S2 state was prepared by a 195 nm pump laser and probed with electron momentum spectroscopy using a 1.2 keV incident electron beam of 1 ps temporal width. In spite of the low data statistics as well as of the limited time resolution (±35  ps) due to velocity mismatch, the experimental results clearly demonstrate that electron momentum spectroscopy measurements of short-lived transient species are feasible, opening the door to time-resolved orbital imaging in momentum space.

  15. Electron Spectroscopy: Ultraviolet and X-Ray Excitation.

    ERIC Educational Resources Information Center

    Baker, A. D.; And Others

    1980-01-01

    Reviews recent growth in electron spectroscopy (54 papers cited). Emphasizes advances in instrumentation and interpretation (52); photoionization, cross-sections and angular distributions (22); studies of atoms and small molecules (35); transition, lanthanide and actinide metal complexes (50); organometallic (12) and inorganic compounds (2);…

  16. WEATHERING DEGRADATION OF A POLYURETHANE COATING. (R828081E01)

    EPA Science Inventory

    The degradation of polyurethane topcoat over a chromate pigmented epoxy primer was examined by atomic force microscopy (AFM), scanning electronic microscopy (SEM), X-ray photo-electron spectroscopy (XPS) and Fourier transform infra-red spectroscopy (FTIR) after the coated pane...

  17. Effects of 160 keV electron irradiation on the optical properties and microstructure of "Panda" type Polarization-Maintaining optical fibers

    NASA Astrophysics Data System (ADS)

    Hong-Chen, Zhang; Hai, Liu; Hui-Jie, Xue; Wen-Qiang, Qiao; Shi-Yu, He

    2012-11-01

    In this paper, effects of 160 keV electron irradiated "Panda" type Polarization-Maintaining optical fiber at 1310 nm are investigated by us. Attenuation coefficient induced in optical fiber by electron beams at 1310 nm increases with increase in electron fluence. Electron irradiation-induced damage mechanism are studied by means of CASINO simulation program, the X-ray photoelectron spectroscopy (XPS), electron spin resonance spectrometer (EPR) and Fourier transform infrared spectroscopy (FTIR). The results show that Si-OH impurity defect concentration is the main reason of increasing attenuation coefficient at 1310 nm.

  18. Elucidating the design principles of photosynthetic electron-transfer proteins by site-directed spin labeling EPR spectroscopy.

    PubMed

    Ishara Silva, K; Jagannathan, Bharat; Golbeck, John H; Lakshmi, K V

    2016-05-01

    Site-directed spin labeling electron paramagnetic resonance (SDSL EPR) spectroscopy is a powerful tool to determine solvent accessibility, side-chain dynamics, and inter-spin distances at specific sites in biological macromolecules. This information provides important insights into the structure and dynamics of both natural and designed proteins and protein complexes. Here, we discuss the application of SDSL EPR spectroscopy in probing the charge-transfer cofactors in photosynthetic reaction centers (RC) such as photosystem I (PSI) and the bacterial reaction center (bRC). Photosynthetic RCs are large multi-subunit proteins (molecular weight≥300 kDa) that perform light-driven charge transfer reactions in photosynthesis. These reactions are carried out by cofactors that are paramagnetic in one of their oxidation states. This renders the RCs unsuitable for conventional nuclear magnetic resonance spectroscopy investigations. However, the presence of native paramagnetic centers and the ability to covalently attach site-directed spin labels in RCs makes them ideally suited for the application of SDSL EPR spectroscopy. The paramagnetic centers serve as probes of conformational changes, dynamics of subunit assembly, and the relative motion of cofactors and peptide subunits. In this review, we describe novel applications of SDSL EPR spectroscopy for elucidating the effects of local structure and dynamics on the electron-transfer cofactors of photosynthetic RCs. Because SDSL EPR Spectroscopy is uniquely suited to provide dynamic information on protein motion, it is a particularly useful method in the engineering and analysis of designed electron transfer proteins and protein networks. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. Copyright © 2016. Published by Elsevier B.V.

  19. REVIEWS OF TOPICAL PROBLEMS: lonization and quenching of excited atoms with the production of fast electrons

    NASA Astrophysics Data System (ADS)

    Kolokolov, N. B.; Blagoev, A. B.

    1993-03-01

    Studies of reactions involving excited atoms, which result in the release of electrons with energies exceeding the mean plasma electron energy, are reviewed. Particular attention is devoted to plasma electron spectroscopy (PES) which combines the advantages of studies of elementary plasma processes with those of traditional electron spectroscopy. Data obtained by investigating the following reactions are reported: chemoionization with the participation of two excited inert-gas atoms, Penning ionization of atoms and molecules by metastable helium atoms, and electron quenching of excited inert-gas atoms and mercury atoms. The effect of processes in which fast electrons are emitted on plasma properties is discussed.

  20. Charge transfer from TiO2 into adsorbed benzene diazonium compounds

    NASA Astrophysics Data System (ADS)

    Merson, A.; Dittrich, Th.; Zidon, Y.; Rappich, J.; Shapira, Yoram

    2004-08-01

    Electron transfer from sol-gel-prepared TiO2 into adsorbed benzene diazonium compounds has been investigated using cyclic voltammetry, x-ray photoelectron spectroscopy, contact potential difference, and surface photovoltage spectroscopy. The results show that the potential of maximum electron transfer depends strongly on the dipole moment of the benzene compound. Two reactive surface sites at which electron transfer occurs have been identified.

  1. Detection of Nitric Oxide by Electron Paramagnetic Resonance Spectroscopy

    PubMed Central

    Hogg, Neil

    2010-01-01

    Electron paramagnetic resonance (EPR) spectroscopy has been used in a number of ways to study nitric oxide chemistry and biology. As an intrinsically stable and relatively unreactive diatomic free radical, the challenges for detecting this species by EPR are somewhat different than those for transient radical species. This review gives a basic introduction to EPR spectroscopy and discusses its uses to assess and quantify nitric oxide formation in biological systems. PMID:20304044

  2. Adsorption and photodecomposition of Mo(CO)[sub 6] on Si(111) 7[times]7: An infrared reflection absorption spectroscopy study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, L.J.; Buntin, S.A.; Chu, P.M.

    1994-02-15

    The adsorption and photodecomposition of Mo(CO)[sub 6] adsorbed on Si(111) 7[times]7 surfaces has been studied with Auger electron spectroscopy, temperature programmed desorption, low energy electron diffraction and infrared reflection absorption spectroscopy in a single external reflection configuration. The external-reflection technique is demonstrated to have adequate sensitivity to characterize submonolayer coverages of photogenerated Mo(CO)[sub [ital x

  3. DESIGN NOTE: A modified Nanosurf scanning tunnelling microscope for ballistic electron emission microscopy and spectroscopy

    NASA Astrophysics Data System (ADS)

    Appelbaum, Ian; Thompson, Pete; van Schendel, P. J. A.

    2006-04-01

    We describe the design and implementation of modifications to an ambient STM with a slip stick approach mechanism to create a system capable of ballistic electron emission microscopy (BEEM) and spectroscopy (BEES). These modifications require building a custom sample holder which operates as a high gain transimpedance preamplifier. Results of microscopy and spectroscopy using a Au/n-GaAs Schottky device demonstrate the effectiveness of our design.

  4. Electroluminescence and other diagnostic techniques for the study of hot-electron effects in compound semiconductor devices

    NASA Astrophysics Data System (ADS)

    Zanoni, Enrico; Meneghesso, Gaudenzio; Menozzi, Roberto

    2000-03-01

    Hot electron in III-V FETs can be indirectly monitored by measuring the current coming out from the gate when the device is biased at high electric fields. This negative current is due to the collection of holes generated by impact ionization in the gate-to drain region. Electroluminescence represents a powerful tool in order to characterize not only hot electrons but also material properties. By using spatially resolved emission microscopy it is possible to show that the light due to cold electron/hole recombination is emitted between the gate and the source (low electric field region), while the contribution due to hot electrons is emitted between the gate and the drain (high electric field region). Deep-traps created in the device by hot carriers can be analysed by means of drain current deep level transient spectroscopy and by transconductance frequency dispersion. Cathodoluminescence, optical beam induced current, X-ray spectroscopy, electron energy loss spectroscopy in combination with a transmission electron microscopy are powerful tools in order to identify and localize surface modification following hot-electron stress tests.

  5. An improved approach to identify irradiated spices using electronic nose, FTIR, and EPR spectroscopy.

    PubMed

    Sanyal, Bhaskar; Ahn, Jae-Jun; Maeng, Jeong-Hwan; Kyung, Hyun-Kyu; Lim, Ha-Kyeong; Sharma, Arun; Kwon, Joong-Ho

    2014-09-01

    Changes in cumin and chili powder from India resulting from electron-beam irradiation were investigated using 3 analytical methods: electronic nose (E-nose), Fourier transform infrared (FTIR) spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. The spices had been exposed to 6 to 14 kGy doses recommended for microbial decontamination. E-nose measured a clear difference in flavor patterns of the irradiated spices in comparison with the nonirradiated samples. Principal component analysis further showed a dose-dependent variation. FTIR spectra of the samples showed strong absorption bands at 3425, 3007 to 2854, and 1746 cm(-1). However, both nonirradiated and irradiated spice samples had comparable patterns without any noteworthy changes in functional groups. EPR spectroscopy of the irradiated samples showed a radiation-specific triplet signal at g = 2.006 with a hyper-fine coupling constant of 3 mT confirming the results obtained with the E-nose technique. Thus, E-nose was found to be a potential tool to identify irradiated spices. © 2014 Institute of Food Technologists®

  6. Two dimensional molecular electronics spectroscopy for molecular fingerprinting, DNA sequencing, and cancerous DNA recognition.

    PubMed

    Rajan, Arunkumar Chitteth; Rezapour, Mohammad Reza; Yun, Jeonghun; Cho, Yeonchoo; Cho, Woo Jong; Min, Seung Kyu; Lee, Geunsik; Kim, Kwang S

    2014-02-25

    Laser-driven molecular spectroscopy of low spatial resolution is widely used, while electronic current-driven molecular spectroscopy of atomic scale resolution has been limited because currents provide only minimal information. However, electron transmission of a graphene nanoribbon on which a molecule is adsorbed shows molecular fingerprints of Fano resonances, i.e., characteristic features of frontier orbitals and conformations of physisorbed molecules. Utilizing these resonance profiles, here we demonstrate two-dimensional molecular electronics spectroscopy (2D MES). The differential conductance with respect to bias and gate voltages not only distinguishes different types of nucleobases for DNA sequencing but also recognizes methylated nucleobases which could be related to cancerous cell growth. This 2D MES could open an exciting field to recognize single molecule signatures at atomic resolution. The advantages of the 2D MES over the one-dimensional (1D) current analysis can be comparable to those of 2D NMR over 1D NMR analysis.

  7. Two-dimensional vibrational-electronic spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.

    2015-10-21

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE)more » to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (ν{sub CN}) and either a ligand-to-metal charge transfer transition ([Fe{sup III}(CN){sub 6}]{sup 3−} dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN){sub 5}Fe{sup II}CNRu{sup III}(NH{sub 3}){sub 5}]{sup −} dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific ν{sub CN} modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.« less

  8. Three-Dimensional Intercalated Porous Graphene on Si(111)

    NASA Astrophysics Data System (ADS)

    Pham, Trung T.; Sporken, Robert

    2018-02-01

    Three-dimensional intercalated porous graphene has been formed on Si(111) by electron beam evaporation under appropriate conditions and its structural and electronic properties investigated in detail by reflection high-energy electron diffraction, x-ray photoemission spectroscopy, Raman spectroscopy, high-resolution scanning electron microscopy, atomic force microscopy, and scanning tunneling microscopy. The results show that the crystalline quality of the porous graphene depended not only on the substrate temperature but also on the SiC layer thickness during carbon atom deposition.

  9. Growth and Electronic Structure of Heusler Compounds for Use in Electron Spin Based Devices

    DTIC Science & Technology

    2015-06-01

    either Co– or MnSi– initiated films on c(4x4) GaAs. Studies using x - ray photoemission spectroscopy (XPS), STM/STS, and transmission electron microscopy...Co– or MnSi– initiated films on c(4x4) GaAs. Studies using x - ray photoemission spectroscopy (XPS), STM/STS, and transmission electron microscopy (TEM...diagram of the Palmstrøm lab in-situ growth and char- acterization setup, with 6 MBE growth chambers, 3 scanning probe microscopes, an x - ray

  10. Electron heated target temperature measurements in petawatt laser experiments based on extreme ultraviolet imaging and spectroscopy.

    PubMed

    Ma, T; Beg, F N; MacPhee, A G; Chung, H-K; Key, M H; Mackinnon, A J; Patel, P K; Hatchett, S; Akli, K U; Stephens, R B; Chen, C D; Freeman, R R; Link, A; Offermann, D T; Ovchinnikov, V; Van Woerkom, L D

    2008-10-01

    Three independent methods (extreme ultraviolet spectroscopy, imaging at 68 and 256 eV) have been used to measure planar target rear surface plasma temperature due to heating by hot electrons. The hot electrons are produced by ultraintense laser-plasma interactions using the 150 J, 0.5 ps Titan laser. Soft x-ray spectroscopy in the 50-400 eV region and imaging at the 68 and 256 eV photon energies give a planar deuterated carbon target rear surface pre-expansion temperature in the 125-150 eV range, with the rear plasma plume averaging a temperature approximately 74 eV.

  11. Design and performance of an instrument for electron impact tandem mass spectrometry and action spectroscopy of mass/charge selected macromolecular ions stored in RF ion trap*

    NASA Astrophysics Data System (ADS)

    Ranković, Milos Lj.; Giuliani, Alexandre; Milosavljević, Aleksandar R.

    2016-06-01

    A new apparatus was designed, coupling an electron gun with a linear quadrupole ion trap mass spectrometer, to perform m/ z (mass over charge) selected ion activation by electron impact for tandem mass spectrometry and action spectroscopy. We present in detail electron tracing simulations of a 300 eV electron beam inside the ion trap, design of the mechanical parts, electron optics and electronic circuits used in the experiment. We also report examples of electron impact activation tandem mass spectra for Ubiquitin protein, Substance P and Melittin peptides, at incident electron energies in the range from 280 eV to 300 eV.

  12. The electronic characterization of biphenylene—Experimental and theoretical insights from core and valence level spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lüder, Johann; Sanyal, Biplab; Eriksson, Olle

    In this paper, we provide detailed insights into the electronic structure of the gas phase biphenylene molecule through core and valence spectroscopy. By comparing results of X-ray Photoelectron Spectroscopy (XPS) measurements with ΔSCF core-hole calculations in the framework of Density Functional Theory (DFT), we could decompose the characteristic contributions to the total spectra and assign them to non-equivalent carbon atoms. As a difference with similar molecules like biphenyl and naphthalene, an influence of the localized orbitals on the relative XPS shifts was found. The valence spectrum probed by photoelectron spectroscopy at a photon energy of 50 eV in conjunction withmore » hybrid DFT calculations revealed the effects of the localization on the electronic states. Using the transition potential approach to simulate the X-ray absorption spectroscopy measurements, similar contributions from the non-equivalent carbon atoms were determined from the total spectrum, for which the slightly shifted individual components can explain the observed asymmetric features.« less

  13. Hypernuclear Spectroscopy with Electron Beam at JLab Hall C

    NASA Astrophysics Data System (ADS)

    Fujii, Y.; Chiba, A.; Doi, D.; Gogami, T.; Hashimoto, O.; Kanda, H.; Kaneta, M.; Kawama, D.; Maeda, K.; Maruta, T.; Matsumura, A.; Nagao, S.; Nakamura, S. N.; Shichijo, A.; Tamura, H.; Taniya, N.; Yamamoto, T.; Yokota, K.; Kato, S.; Sato, Y.; Takahashi, T.; Noumi, H.; Motoba, T.; Hiyama, E.; Albayrak, I.; Ates, O.; Chen, C.; Christy, M.; Keppel, C.; Kohl, M.; Li, Y.; Liyanage, A.; Tang, L.; Walton, T.; Ye, Z.; Yuan, L.; Zhu, L.; Baturin, P.; Boeglin, W.; Dhamija, S.; Markowitz, P.; Raue, B.; Reinhold, J.; Hungerford, Ed. V.; Ent, R.; Fenker, H.; Gaskell, D.; Horn, T.; Jones, M.; Smith, G.; Vulcan, W.; Wood, S. A.; Johnston, C.; Simicevic, N.; Wells, S.; Samanta, C.; Hu, B.; Shen, J.; Wang, W.; Zhang, X.; Zhang, Y.; Feng, J.; Fu, Y.; Zhou, J.; Zhou, S.; Jiang, Y.; Lu, H.; Yan, X.; Ye, Y.; Gan, L.; Ahmidouch, A.; Danagoulian, S.; Gasparian, A.; Elaasar, M.; Wesselmann, F. R.; Asaturyan, A.; Margaryan, A.; Mkrtchyan, A.; Mkrtchyan, H.; Tadevosyan, V.; Androic, D.; Furic, M.; Petkovic, T.; Seva, T.; Niculescu, G.; Niculescu, I.; López, V. M. Rodríguez; Cisbani, E.; Cusanno, F.; Garibaldi, F.; Uuciuoli, G. M.; de Leo, R.; Maronne, S.

    2010-10-01

    Hypernuclear spectroscopy with electron beam at JLab Hall C has been studied since 2000. The first experiment, JLab E89-009, demonstrated the possibility of the (e,e'K+) reaction for hypernuclear spectroscopy by achieving an energy resolution of better than 1 MeV (FWHM). The second experiment, JLab E01-011 employed a newly constructed high resolution kaon spectrometer and introduced a vertically tilted electron arm setup to avoid electrons from bremsstrahlung and Moeller scattering. The setup allowed us to have 10 times yield rate and 4 times better signal to accidental ratio with expected energy resolution of 400 keV (FWHM). The third experiment, JLab E05-11B will be performed in 2009 with employing newly constructed high resolution electron spectrometer and a new charge-separation magnet. With the fully customized third generation experimental setup, we can study a variety of targets up to medium-heavy ones such as 52Cr.

  14. Hypernuclear Spectroscopy with Electron Beam at JLab Hall C

    NASA Astrophysics Data System (ADS)

    Fujii, Y.; Chiba, A.; Doi, D.; Gogami, T.; Hashimoto, O.; Kanda, H.; Kaneta, M.; Kawama, D.; Maeda, K.; Maruta, T.; Matsumura, A.; Nagao, S.; Nakamura, S. N.; Shichijo, A.; Tamura, H.; Taniya, N.; Yamamoto, T.; Yokota, K.; Kato, S.; Sato, Y.; Takahashi, T.; Noumi, H.; Motoba, T.; Hiyama, E.; Albayrak, I.; Ates, O.; Chen, C.; Christy, M.; Keppel, C.; Kohl, M.; Li, Y.; Liyanage, A.; Tang, L.; Walton, T.; Ye, Z.; Yuan, L.; Zhu, L.; Baturin, P.; Boeglin, W.; Dhamija, S.; Markowitz, P.; Raue, B.; Reinhold, J.; Hungerford, Ed. V.; Ent, R.; Fenker, H.; Gaskell, D.; Horn, T.; Jones, M.; Smith, G.; Vulcan, W.; Wood, S. A.; Johnston, C.; Simicevic, N.; Wells, S.; Samanta, C.; Hu, B.; Shen, J.; Wang, W.; Zhang, X.; Zhang, Y.; Feng, J.; Fu, Y.; Zhou, J.; Zhou, S.; Jiang, Y.; Lu, H.; Yan, X.; Ye, Y.; Gan, L.; Ahmidouch, A.; Danagoulian, S.; Gasparian, A.; Elaasar, M.; Wesselmann, F. R.; Asaturyan, A.; Margaryan, A.; Mkrtchyan, A.; Mkrtchyan, H.; Tadevosyan, V.; Androic, D.; Furic, M.; Petkovic, T.; Seva, T.; Niculescu, G.; Niculescu, I.; Rodríguez López, V. M.; Cisbani, E.; Cusanno, F.; Garibaldi, F.; Uuciuoli, G. M.; de Leo, R.; Maronne, S.

    Hypernuclear spectroscopy with electron beam at JLab Hall C has been studied since 2000. The first experiment, JLab E89-009, demonstrated the possibility of the (e, e‧ K+) reaction for hypernuclear spectroscopy by achieving an energy resolution of better than 1 MeV (FWHM). The second experiment, JLab E01-011 employed a newly constructed high resolution kaon spectrometer and introduced a vertically tilted electron arm setup to avoid electrons from bremsstrahlung and Moeller scattering. The setup allowed us to have 10 times yield rate and 4 times better signal to accidental ratio with expected energy resolution of 400 keV (FWHM). The third experiment, JLab E05-115 will be performed in 2009 with employing newly constructed high resolution electron spectrometer and a new charge-separation magnet. With the fully customized third generation experimental setup, we can study a variety of targets up to medium-heavy ones such as 52Cr.

  15. Adsorption of Atoms of 3 d Metals on the Surfaces of Aluminum and Magnesium Oxide Films

    NASA Astrophysics Data System (ADS)

    Ramonova, A. G.; Kibizov, D. D.; Kozyrev, E. N.; Zaalishvili, V. B.; Grigorkina, G. S.; Fukutani, K.; Magkoev, T. T.

    2018-01-01

    The adsorption and formation of submonolayer structures of Ti, Cr, Fe, Ni, Cu on the surfaces of aluminum and magnesium oxide films formed on Mo(110) under ultrahigh vacuum conditions are studied via X-ray, ultraviolet photo-, and Auger electron spectroscopy (XPS, UVES, AES); spectroscopy of energy losses of high-resolution electrons (SELHRE); spectroscopy of the backscattering of low-energy ions (SBSLEI); infrared absorption spectroscopy (IAS); and the diffraction of slow electrons (DSE). Individual atoms and small clusters of all the investigated metals deposited on oxides acquire a positive charge, due presumably to interaction with surface defects. As the concentration of adatoms increases when the adsorption centers caused by defects are filled, charge transfer from adatoms to substrates is reduced. This is accompanied by further depolarization caused by the lateral interaction of adatoms.

  16. Development of Holmium-163 electron-capture spectroscopy with transition-edge sensors

    DOE PAGES

    Croce, Mark Philip; Rabin, Michael W.; Mocko, Veronika; ...

    2016-08-01

    Calorimetric decay energy spectroscopy of electron-capture-decaying isotopes is a promising method to achieve the sensitivity required for electron neutrino mass measurement. The very low total nuclear decay energy (Q EC < 3 keV) and short half-life (4570 years) of 163Ho make it attractive for high-precision electron-capture spectroscopy (ECS) near the kinematic endpoint, where the neutrino momentum goes to zero. In the ECS approach, an electron-capture-decaying isotope is embedded inside a microcalorimeter designed to capture and measure the energy of all the decay radiation except that of the escaping neutrino. We have developed a complete process for proton irradiation-based isotope production,more » isolation, and purification of 163Ho. We have developed transition-edge sensors for this measurement and methods for incorporating 163Ho into high-resolution microcalorimeters, and have measured the electron-capture spectrum of 163Ho. Finally, we present our work in these areas and discuss the measured spectrum and its comparison to current theory.« less

  17. Development of Holmium-163 electron-capture spectroscopy with transition-edge sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croce, Mark Philip; Rabin, Michael W.; Mocko, Veronika

    Calorimetric decay energy spectroscopy of electron-capture-decaying isotopes is a promising method to achieve the sensitivity required for electron neutrino mass measurement. The very low total nuclear decay energy (Q EC < 3 keV) and short half-life (4570 years) of 163Ho make it attractive for high-precision electron-capture spectroscopy (ECS) near the kinematic endpoint, where the neutrino momentum goes to zero. In the ECS approach, an electron-capture-decaying isotope is embedded inside a microcalorimeter designed to capture and measure the energy of all the decay radiation except that of the escaping neutrino. We have developed a complete process for proton irradiation-based isotope production,more » isolation, and purification of 163Ho. We have developed transition-edge sensors for this measurement and methods for incorporating 163Ho into high-resolution microcalorimeters, and have measured the electron-capture spectrum of 163Ho. Finally, we present our work in these areas and discuss the measured spectrum and its comparison to current theory.« less

  18. Electronic and geometric structure of thin CoO(100) films studied by angle-resolved photoemission spectroscopy and Auger electron diffraction

    NASA Astrophysics Data System (ADS)

    Heiler, M.; Chassé, A.; Schindler, K.-M.; Hollering, M.; Neddermeyer, H.

    2000-05-01

    We have prepared ordered thin films of CoO by evaporating cobalt in an O 2 atmosphere on to a heated (500 K) Ag(100) substrate. The geometric and electronic structure of the films was characterized by means of Auger electron diffraction (AED) and angle-resolved photoemission spectroscopy (ARUPS), respectively. The experimental AED results were compared with simulated data, which showed that the film grows in (100) orientation on the Ag(100) substrate. Synchrotron-radiation-induced photoemission investigations were performed in the photon energy range from 25 eV to 67 eV. The dispersion of the transitions was found to be similar to that of previous results on a single-crystal CoO(100) surface. The resonance behaviour of the photoemission lines in the valence-band region was investigated by constant-initial-state (CIS) spectroscopy. The implications of this behaviour for assignment of the photoemission lines to specific electronic transitions is discussed and compared with published theoretical models of the electronic structure.

  19. Metal Ion Interactions with Immunoglobulin G (IgG). 1. Preliminary Studies with Electron Paramagnetic Resonance (EPR) Spectroscopy and Ultrafiltration

    DTIC Science & Technology

    1978-12-12

    EPR and ultrafiltration studies are recommceided to conduct luture metal ion- IgG binding research. Using Scatchard plots, bind.ng levels can be...of the binding sites can be best pursued by EPR and ultrafiltration using the fragments of IgG . This report noted some difference in the binding...immunoelectrophoresis, ultrafiltration, UV spectroscopy, atomic absorption spectroscopy, and electron paramagnetic resonance (EPR). IgG used ,- ,is non

  20. Synthesis and electrochemical properties of polyaniline nanofibers by interfacial polymerization.

    PubMed

    Manuel, James; Ahn, Jou-Hyeon; Kim, Dul-Sun; Ahn, Hyo-Jun; Kim, Ki-Won; Kim, Jae-Kwang; Jacobsson, Per

    2012-04-01

    Polyaniline nanofibers were prepared by interfacial polymerization with different organic solvents such as chloroform and carbon tetrachloride. Field emission scanning electron microscopy and transmission electron microscopy were used to study the morphological properties of polyaniline nanofibers. Chemical characterization was carried out using Fourier transform infrared spectroscopy, UV-Vis spectroscopy, and X-ray diffraction spectroscopy and surface area was measured using BET isotherm. Polyaniline nanofibers doped with lithium hexafluorophosphate were prepared and their electrochemical properties were evaluated.

  1. Simulation and Modeling of Positrons and Electrons in advanced Time-of-Flight Positron Annihilation Induced Auger Electron Spectroscopy Systems

    NASA Astrophysics Data System (ADS)

    Joglekar, Prasad; Shastry, Karthik; Satyal, Suman; Weiss, Alexander

    2011-10-01

    Time of Flight Positron Annihilation Induced Auger Electron Spectroscopy (T-O-F PAES) is a highly surface selective analytical technique in which elemental identification is accomplished through a measurement of the flight time distributions of Auger electrons resulting from the annihilation of core electron by positrons. SIMION charged particle optics simulation software was used to model the trajectories both the incident positrons and outgoing electrons in our existing T-O-F PAES system as well as in a new system currently under construction in our laboratory. The implication of these simulation regarding the instrument design and performance are discussed.

  2. Development of an electron-ion coincidence apparatus for molecular-frame electron energy loss spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Watanabe, Noboru; Hirayama, Tsukasa; Yamada, So; Takahashi, Masahiko

    2018-04-01

    We report details of an electron-ion coincidence apparatus, which has been developed for molecular-frame electron energy loss spectroscopy studies. The apparatus is mainly composed of a pulsed electron gun, an energy-dispersive electron spectrometer, and an ion momentum imaging spectrometer. Molecular-orientation dependence of the high-energy electron scattering cross section can be examined by conducting measurements of vector correlation between the momenta of the scattered electron and fragment ion. Background due to false coincidences is significantly reduced by introducing a pulsed electron beam and pulsing scheme of ion extraction. The experimental setup has been tested by measuring the inner-shell excitation of N2 at an incident electron energy of 1.5 keV and a scattering angle of 10.2°.

  3. Correlation between morphology, electron band structure, and resistivity of Pb atomic chains on the Si(5 5 3)-Au surface

    NASA Astrophysics Data System (ADS)

    Jałochowski, M.; Kwapiński, T.; Łukasik, P.; Nita, P.; Kopciuszyński, M.

    2016-07-01

    Structural and electron transport properties of multiple Pb atomic chains fabricated on the Si(5 5 3)-Au surface are investigated using scanning tunneling spectroscopy, reflection high electron energy diffraction, angular resolved photoemission electron spectroscopy and in situ electrical resistance. The study shows that Pb atomic chains growth modulates the electron band structure of pristine Si(5 5 3)-Au surface and hence changes its sheet resistivity. Strong correlation between chains morphology, electron band structure and electron transport properties is found. To explain experimental findings a theoretical tight-binding model of multiple atomic chains interacting on effective substrate is proposed.

  4. Advanced Undergraduate Laboratory Experiment in Inelastic Electron Tunneling Spectroscopy.

    ERIC Educational Resources Information Center

    White, H. W.; Graves, R. J.

    1982-01-01

    An advanced undergraduate laboratory experiment in inelastic electron tunneling spectroscopy is described. Tunnel junctions were fabricated, the tunneling spectra of several molecules absorbed on the surface of aluminum oxide measured, and mode assignments made for several of the prominent peaks in spectra using results obtained from optical…

  5. 1300929

    NASA Image and Video Library

    2013-08-15

    ARTHUR BROWN (AST, AEROSPACE METALLIC MATERIALS) LOADS A CERAMIC COATED SILICON WAFER INTO A KRATOS (ELECTRON SPECTROSCOPY FOR CHEMICAL ANALYSIS) TO PERFORM X-RAY PHOTOELECTRON SPECTROSCOPY (XPS). XPS IS A TECHNIQUE THAT ANALYZES THE SURFACE CHEMISTRY OF A SAMPLE BY IRRADIATING IT WITH X-RAYS AND MEASURING THE NUMBER AND KINETIC ENERGY OF ELECTRON THAT ESCAPE.

  6. Structural evolution and electronic properties of n-type doped hydrogenated amorphous silicon thin films

    NASA Astrophysics Data System (ADS)

    He, Jian; Li, Wei; Xu, Rui; Qi, Kang-Cheng; Jiang, Ya-Dong

    2011-12-01

    The relationship between structure and electronic properties of n-type doped hydrogenated amorphous silicon (a-Si:H) thin films was investigated. Samples with different features were prepared by plasma enhanced chemical vapor deposition (PECVD) at various substrate temperatures. Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy were used to evaluate the structural evolution, meanwhile, electronic-spin resonance (ESR) and optical measurement were applied to explore the electronic properties of P-doped a-Si:H thin films. Results reveal that the changes in materials structure affect directly the electronic properties and the doping efficiency of dopant.

  7. Spectroscopic investigation of the electronic structure of yttria-stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Götsch, Thomas; Bertel, Erminald; Menzel, Alexander; Stöger-Pollach, Michael; Penner, Simon

    2018-03-01

    The electronic structure and optical properties of yttria-stabilized zirconia are investigated as a function of the yttria content using multiple experimental and theoretical methods, including electron energy-loss spectroscopy, Kramers-Kronig analysis to obtain the optical parameters, photoelectron spectroscopy, and density functional theory. It is shown that many properties, including the band gaps, the crystal field splitting, the so-called defect gap between acceptor (YZr') and donor (VO••) states, as well as the index of refraction in the visible range exhibit the same "zig-zag-like" trend as the unit cell height does, showing the influence of an increased yttria content as well as of the tetragonal-cubic phase transition between 8 mol % and 20 mol %Y2O3 . Also, with Čerenkov spectroscopy (CS), a new technique is presented, providing information complementary to electron energy-loss spectroscopy. In CS, the Čerenkov radiation emitted inside the TEM is used to measure the onset of optical absorption. The apparent absorption edges in the Čerenkov spectra correspond to the energetic difference between the disorder states close to the valence band and the oxygen-vacancy-related electronic states within the band gap. Theoretical computations corroborate this assignment: they find both, the acceptor states and the donor states, at the expected energies in the band structures for diverse yttria concentrations. In the end, a schematic electronic structure diagram of the area around the band gap is constructed, including the chemical potential of the electrons obtained from photoelectron spectroscopy. The latter reveal that tetragonal YSZ corresponds to a p -type semiconductor, whereas the cubic samples exhibit n -type semiconductor properties.

  8. Theoretical Modeling of Various Spectroscopies for Cuprates and Topological Insulators

    NASA Astrophysics Data System (ADS)

    Basak, Susmita

    Spectroscopies resolved highly in momentum, energy and/or spatial dimensions are playing an important role in unraveling key properties of wide classes of novel materials. However, spectroscopies do not usually provide a direct map of the underlying electronic spectrum, but act as a complex 'filter' to produce a 'mapping' of the underlying energy levels, Fermi surfaces (FSs) and excitation spectra. The connection between the electronic spectrum and the measured spectra is described as a generalized 'matrix element effect'. The nature of the matrix element involved differs greatly between different spectroscopies. For example, in angle-resolved photoemission (ARPES) an incoming photon knocks out an electron from the sample and the energy and momentum of the photoemitted electron is measured. This is quite different from what happens in K-edge resonant inelastic X-ray scattering (RIXS), where an X-ray photon is scattered after inducing electronic transitions near the Fermi energy through an indirect second order process, or in Compton scattering where the incident X-ray photon is scattered inelastically from an electron transferring energy and momentum to the scattering electron. For any given spectroscopy, the matrix element is, in general, a complex function of the phase space of the experiment, e.g. energy/polarization of the incoming photon and the energy/momentum/spin of the photoemitted electron in the case of ARPES. The matrix element can enhance or suppress signals from specific states, or merge signals of groups of states, making a good understanding of the matrix element effects important for not only a robust interpretation of the spectra, but also for ascertaining optimal regions of the experimental phase space for zooming in on states of the greatest interest. In this thesis I discuss a comprehensive scheme for modeling various highly resolved spectroscopies of the cuprates and topological insulators (TIs) where effects of matrix element, crystal structure, strong electron correlations (for cuprates) and spin-orbit coupling (for TIs) are included realistically in material-specific detail. Turning to the cuprates, in order to obtain a realistic description of various spectroscopies, one must include not only the effects of the matrix elements and the complexity of the crystal structure, but also of strong electronic correlations beyond the local density approximation (LDA)-based conventional picture, so that the physics of kinks, pseudogaps and superconductivity can be taken into account properly. In this connection, a self-consistent, intermediate coupling scheme informed by material-specific, first-principles band structures has been developed, where electron correlation effects beyond the LDA are incorporated via appropriate self-energy corrections to the electron and hole one-particle Green's functions. Here the antiferromagnetic (AFM) order is used as the simplest model of a competing order. A number of salient features of the resulting electronic spectrum and its energy, momentum and doping dependencies are in accord with experimental observations in electron as well as hole doped cuprates. This scheme thus provides a reasonable basis for undertaking a comprehensive, beyond-LDA level of modeling of various spectroscopies. The specific topics considered here are: (i) Origin of high-energy kink or the waterfall effect found in ARPES; (ii) Identification of the three energy scales observed in RIXS spectra as the pseudogap, charge transfer gap, and Mott gap; (iii) Evolution of the electron momentum densities with holedoping as seen in Compton scattering experiments. For three dimensional topological insulators, the ARPES and scanning tunneling microscopy (STM) spectra has been analyzed using a tight-binding model as well as a k · p model. The spin-orbit coupling, which is essential to produce the characteristic features of the surface states of a TI, is included realistically in the above models. In our generalized k · p model Dresselhaus spin-orbit coupling term extends up to fifth order to reproduce the correct spin-polarization of the surface electrons. These model calculations explain a number of important features associated with the energy and spins of the surface electrons of the first and second generations of TIs. The specific issues addressed in this article are: (i) Non-orthogonality between spin and momentum of the surface electrons; (ii) Electron dynamics at the TI-metal interface; (iii) Origin of the broken time-reversal symmetry observed in the Fourier transform scanning tunneling spectroscopy.

  9. Gallium interstitial in irradiated germanium: Deep level transient spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolkovsky, Vl.; Petersen, M. Christian; Larsen, A. Nylandsted

    Two electronic levels at 0.34 eV above the valence band and 0.32 eV below the conduction band, in gallium doped, p-type Ge irradiated with 2 MeV electrons have been studied by deep level transient spectroscopy (DLTS) with both majority- and minority-carrier injections, and Laplace DLTS spectroscopy. It is concluded that these levels, having donor and acceptor characters, respectively, are correlated with interstitial Ga atoms, formed by the Watkins-replacement mechanism via self-interstitials.

  10. Gallium interstitial in irradiated germanium: Deep level transient spectroscopy

    NASA Astrophysics Data System (ADS)

    Kolkovsky, Vl.; Petersen, M. Christian; Mesli, A.; van Gheluwe, J.; Clauws, P.; Larsen, A. Nylandsted

    2008-12-01

    Two electronic levels at 0.34 eV above the valence band and 0.32 eV below the conduction band, in gallium doped, p -type Ge irradiated with 2 MeV electrons have been studied by deep level transient spectroscopy (DLTS) with both majority- and minority-carrier injections, and Laplace DLTS spectroscopy. It is concluded that these levels, having donor and acceptor characters, respectively, are correlated with interstitial Ga atoms, formed by the Watkins-replacement mechanism via self-interstitials.

  11. Evidence of alloy formation during reduction of platinized tin oxide surfaces

    NASA Technical Reports Server (NTRS)

    Gardner, Steven D.; Hoflund, Gar B.; Davidson, Mark R.; Schryer, David R.

    1989-01-01

    Ion scattering spectroscopy, Auger electron spectroscopy, and electron spectroscopy for chemical analysis have been used to examine a platinized tin oxide catalyst surface before, during, and after reduction by annealing under vacuum at 250 to 450 C. These techniques were then used to examine the reduced surface after a room-temperature, low-pressure oxygen exposure. The spectral results and the behavior of the reduced surface toward oxygen exposure both indicate that a Pt/Sn alloy is produced during reduction.

  12. Synthesis of samarium doped gadolinium oxide nanorods, its spectroscopic and physical properties

    NASA Astrophysics Data System (ADS)

    Boopathi, G.; Gokul Raj, S.; Ramesh Kumar, G.; Mohan, R.; Mohan, S.

    2018-06-01

    One-dimensional samarium doped gadolinium oxide [Sm:Gd2O3] nanorods have been synthesized successfully through co-precipitation technique in aqueous solution. The as-synthesized and calcined products were characterized by using powder X-ray diffraction pattern, Fourier transform Raman spectroscopy, thermogravimetric/differential thermal analysis, scanning electron microscopy with energy-dispersive X-ray analysis, transmission electron microscopy, Fourier transform infrared spectroscopy, Ultraviolet-Visible spectrometry, photoluminescence spectrophotometer and X-ray photoelectron spectroscopy techniques. The obtained results are discussed in detailed manner.

  13. Donors, Acceptors, and Traps in AlGaN and AlGaN/GaN Epitaxial Layers

    DTIC Science & Technology

    2006-07-31

    the background. 3.3 Positron annihilation spectroscopy (PAS): acceptor-type defects Positrons injected into defect-free GaN are annihilated by electrons...electron concentration n, and the average Ga-vacancy VGa concentration deduced from positron annihilation spectroscopy . 0.09 3.47 3.46 - 3.45 •ŗ.47225...of this paper, are often investigated by deep level transient spectroscopy (DLTS), and the usual analysis of DLTS data is based on the assumption that

  14. Elucidating the Wavelength Dependence of Phonon Scattering in Nanoparticle-Matrix Composites using Phonon Spectroscopy

    DTIC Science & Technology

    2016-07-11

    composites with x - ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Rutherford backscattering spectroscopy...RBS), particle-induced x - ray emission (PIXE), and energy dispersive x - ray spectroscopy (EDX). This work complements earlier works on CdSe...sample shows only In2Se3 and CdIn2Se4 XRD peaks (Figure 1.4e), it is stoichiometrically   Figure 1.4. X - ray diffraction patterns of (a) γ-In2Se3

  15. HANFORD WASTE MINERALOGY REFERENCE REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DISSELKAMP RS

    2010-06-29

    This report lists the observed mineral phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports that used experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases observed in Hanford waste.

  16. HANFORD WASTE MINEROLOGY REFERENCE REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DISSELKAMP RS

    2010-06-18

    This report lists the observed mineral phase phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports using experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases present observed in Hanford waste.

  17. Spin noise spectroscopy of ZnO

    NASA Astrophysics Data System (ADS)

    Horn, H.; Berski, F.; Balocchi, A.; Marie, X.; Mansur-Al-Suleiman, M.; Bakin, A.; Waag, A.; Hübner, J.; Oestreich, M.

    2013-12-01

    We investigate the thermal equilibrium dynamics of electron spins bound to donors in nanoporous ZnO by optical spin noise spectroscopy. The spin noise spectra reveal two noise contributions: A weak spin noise signal from undisturbed localized donor electrons with a dephasing time of 24 ns due to hyperfine interaction and a strong spin noise signal with a spin dephasing time of 5 ns which we attribute to localized donor electrons which interact with lattice defects.

  18. The extraction of gold nanoparticles from oat and wheat biomasses using sodium citrate and cetyltrimethylammonium bromide, studied by x-ray absorption spectroscopy, high-resolution transmission electron microscopy, and UV-visible spectroscopy.

    PubMed

    Armendariz, Veronica; Parsons, Jason G; Lopez, Martha L; Peralta-Videa, Jose R; Jose-Yacaman, Miguel; Gardea-Torresdey, Jorge L

    2009-03-11

    Gold (Au) nanoparticles can be produced through the interaction of Au(III) ions with oat and wheat biomasses. This paper describes a procedure to recover gold nanoparticles from oat and wheat biomasses using cetyltrimethylammonium bromide or sodium citrate. Extracts were analyzed using UV-visible spectroscopy, high-resolution transmission electron microscopy (HRTEM), and x-ray absorption spectroscopy. The HRTEM data demonstrated that smaller nanoparticles are extracted first, followed by larger nanoparticles. In the fourth extraction, coating of chelating agents is visible on the extracted nanoparticles.

  19. Stress corrosion in titanium alloys and other metallic materials

    NASA Technical Reports Server (NTRS)

    Harkins, C. G. (Editor); Brotzen, F. R.; Hightower, J. W.; Mclellan, R. B.; Roberts, J. M.; Rudee, M. L.; Leith, I. R.; Basu, P. K.; Salama, K.; Parris, D. P.

    1971-01-01

    Multiple physical and chemical techniques including mass spectroscopy, atomic absorption spectroscopy, gas chromatography, electron microscopy, optical microscopy, electronic spectroscopy for chemical analysis (ESCA), infrared spectroscopy, nuclear magnetic resonance (NMR), X-ray analysis, conductivity, and isotopic labeling were used in investigating the atomic interactions between organic environments and titanium and titanium oxide surfaces. Key anhydrous environments studied included alcohols, which contain hydrogen; carbon tetrachloride, which does not contain hydrogen; and mixtures of alcohols and halocarbons. Effects of dissolved salts in alcohols were also studied. This program emphasized experiments designed to delineate the conditions necessary rather than sufficient for initiation processes and for propagation processes in Ti SCC.

  20. Fabrication of ZnS nanoparticle chains on a protein template

    PubMed Central

    Hulleman, J.; Kim, S. M.; Tumkur, T.; Rochet, J.-C.; Stach, E.; Stanciu, L.

    2011-01-01

    In the present study, we have exploited the properties of a fibrillar protein for the template synthesis of zinc sulfide (ZnS) nanoparticle chains. The diameter of the ZnS nanoparticle chains was tuned in range of ~30 to ~165 nm by varying the process variables. The nanoparticle chains were characterized by field emission scanning electron microscopy, UV–Visible spectroscopy, transmission electron microscopy, electron energy loss spectroscopy, and high-resolution transmission electron microscopy. The effect of incubation temperature on the morphology of the nanoparticle chains was also studied. PMID:21804765

  1. Electronic structure evolution of fullerene on CH 3NH 3PbI 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chenggong; Wang, Congcong; Liu, Xiaoliang

    2015-03-19

    The thickness dependence of fullerene on CH 3NH 3PbI 3 perovskitefilm surface has been investigated by using ultraviolet photoemission spectroscopy (UPS), X-ray photoemission spectroscopy(XPS), and inverse photoemission spectroscopy (IPES). The lowest unoccupied molecular orbital and highest occupied molecular orbital (HOMO) can be observed directly with IPES and UPS. It is observed that the HOMO level in fullerene shifts to lower binding energy. The XPS results show a strong initial shift of core levels to lower binding energy in the perovskite, which indicates that electrons transfer from the perovskitefilm to fullerene molecules. Further deposition of fullerene forms C 60 solid, accompaniedmore » by the reduction of the electron transfer. As a result, the strongest electron transfer happened at 1/4 monolayer of fullerene.« less

  2. Electronic structure evolution of fullerene on CH{sub 3}NH{sub 3}PbI{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chenggong; Wang, Congcong; Kauppi, John

    2015-03-16

    The thickness dependence of fullerene on CH{sub 3}NH{sub 3}PbI{sub 3} perovskite film surface has been investigated by using ultraviolet photoemission spectroscopy (UPS), X-ray photoemission spectroscopy (XPS), and inverse photoemission spectroscopy (IPES). The lowest unoccupied molecular orbital and highest occupied molecular orbital (HOMO) can be observed directly with IPES and UPS. It is observed that the HOMO level in fullerene shifts to lower binding energy. The XPS results show a strong initial shift of core levels to lower binding energy in the perovskite, which indicates that electrons transfer from the perovskite film to fullerene molecules. Further deposition of fullerene forms C{submore » 60} solid, accompanied by the reduction of the electron transfer. The strongest electron transfer happened at 1/4 monolayer of fullerene.« less

  3. Multidimensional Time-Resolved Spectroscopy of Vibrational Coherence in Biopolyenes

    NASA Astrophysics Data System (ADS)

    Buckup, Tiago; Motzkus, Marcus

    2014-04-01

    Multidimensional femtosecond time-resolved vibrational coherence spectroscopy allows one to investigate the evolution of vibrational coherence in electronic excited states. Methods such as pump-degenerate four-wave mixing and pump-impulsive vibrational spectroscopy combine an initial ultrashort laser pulse with a nonlinear probing sequence to reinduce vibrational coherence exclusively in the excited states. By carefully exploiting specific electronic resonances, one can detect vibrational coherence from 0 cm-1 to over 2,000 cm-1 and map its evolution. This review focuses on the observation and mapping of high-frequency vibrational coherence for all-trans biological polyenes such as β-carotene, lycopene, retinal, and retinal Schiff base. We discuss the role of molecular symmetry in vibrational coherence activity in the S1 electronic state and the interplay of coupling between electronic states and vibrational coherence.

  4. Through a Window, Brightly: A Review of Selected Nanofabricated Thin-Film Platforms for Spectroscopy, Imaging, and Detection.

    PubMed

    Dwyer, Jason R; Harb, Maher

    2017-09-01

    We present a review of the use of selected nanofabricated thin films to deliver a host of capabilities and insights spanning bioanalytical and biophysical chemistry, materials science, and fundamental molecular-level research. We discuss approaches where thin films have been vital, enabling experimental studies using a variety of optical spectroscopies across the visible and infrared spectral range, electron microscopies, and related techniques such as electron energy loss spectroscopy, X-ray photoelectron spectroscopy, and single molecule sensing. We anchor this broad discussion by highlighting two particularly exciting exemplars: a thin-walled nanofluidic sample cell concept that has advanced the discovery horizons of ultrafast spectroscopy and of electron microscopy investigations of in-liquid samples; and a unique class of thin-film-based nanofluidic devices, designed around a nanopore, with expansive prospects for single molecule sensing. Free-standing, low-stress silicon nitride membranes are a canonical structural element for these applications, and we elucidate the fabrication and resulting features-including mechanical stability, optical properties, X-ray and electron scattering properties, and chemical nature-of this material in this format. We also outline design and performance principles and include a discussion of underlying material preparations and properties suitable for understanding the use of alternative thin-film materials such as graphene.

  5. Introduction to Spin Label Electron Paramagnetic Resonance Spectroscopy of Proteins

    ERIC Educational Resources Information Center

    Melanson, Michelle; Sood, Abha; Torok, Fanni; Torok, Marianna

    2013-01-01

    An undergraduate laboratory exercise is described to demonstrate the biochemical applications of electron paramagnetic resonance (EPR) spectroscopy. The beta93 cysteine residue of hemoglobin is labeled by the covalent binding of 3-maleimido-proxyl (5-MSL) and 2,2,5,5-tetramethyl-1-oxyl-3-methyl methanethiosulfonate (MTSL), respectively. The excess…

  6. X-ray Photoelectron Spectroscopy Database (Version 4.1)

    National Institute of Standards and Technology Data Gateway

    SRD 20 X-ray Photoelectron Spectroscopy Database (Version 4.1) (Web, free access)   The NIST XPS Database gives access to energies of many photoelectron and Auger-electron spectral lines. The database contains over 22,000 line positions, chemical shifts, doublet splittings, and energy separations of photoelectron and Auger-electron lines.

  7. Thickness determination of few-layer hexagonal boron nitride films by scanning electron microscopy and Auger electron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutter, P., E-mail: psutter@bnl.gov; Sutter, E.

    2014-09-01

    We assess scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) for thickness measurements on few-layer hexagonal boron nitride (h-BN), the layered dielectric of choice for integration with graphene and other two-dimensional materials. Observations on h-BN islands with large, atomically flat terraces show that the secondary electron intensity in SEM reflects monolayer height changes in films up to least 10 atomic layers thickness. From a quantitative analysis of AES data, the energy-dependent electron escape depth in h-BN films is deduced. The results show that AES is suitable for absolute thickness measurements of few-layer h-BN of 1 to 6 layers.

  8. Role of the kinematics of probing electrons in electron energy-loss spectroscopy of solid surfaces

    NASA Astrophysics Data System (ADS)

    Nazarov, V. U.; Silkin, V. M.; Krasovskii, E. E.

    2016-01-01

    Inelastic scattering of electrons incident on a solid surface is determined by two properties: (i) electronic response of the target system and (ii) the detailed quantum-mechanical motion of the projectile electron inside and in the vicinity of the target. We emphasize the equal importance of the second ingredient, pointing out the fundamental limitations of the conventionally used theoretical description of the electron energy-loss spectroscopy (EELS) in terms of the "energy-loss functions." Our approach encompasses the dipole and impact scattering as specific cases, with the emphasis on the quantum-mechanical treatment of the probe electron. Applied to the high-resolution EELS of Ag surface, our theory largely agrees with recent experiments, while some instructive exceptions are rationalized.

  9. Electron tunneling spectroscopy study of electrically active traps in AlGaN/GaN high electron mobility transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jie, E-mail: jie.yang@yale.edu; Cui, Sharon; Ma, T. P.

    2013-11-25

    We investigate the energy levels of electron traps in AlGaN/GaN high electron mobility transistors by the use of electron tunneling spectroscopy. Detailed analysis of a typical spectrum, obtained in a wide gate bias range and with both bias polarities, suggests the existence of electron traps both in the bulk of AlGaN and at the AlGaN/GaN interface. The energy levels of the electron traps have been determined to lie within a 0.5 eV band below the conduction band minimum of AlGaN, and there is strong evidence suggesting that these traps contribute to Frenkel-Poole conduction through the AlGaN barrier.

  10. Modeling the Effect of Polychromatic Light in Quantitative Absorbance Spectroscopy

    ERIC Educational Resources Information Center

    Smith, Rachel; Cantrell, Kevin

    2007-01-01

    Laboratory experiment is conducted to give the students practical experience with the principles of electronic absorbance spectroscopy. This straightforward approach creates a powerful tool for exploring many of the aspects of quantitative absorbance spectroscopy.

  11. Green Synthesis of Novel Polyaniline Nanofibers: Application in pH Sensing.

    PubMed

    Tanwar, Shivani; Ho, Ja-an Annie

    2015-10-13

    An optically active polyaniline nanomaterial (PANI-Nap), doped with (S)-naproxen, was developed and evaluated as a potent pH sensor. We synthesized the material in one pot by the addition of the dopant, (S)-naproxen, prior to polymerization, followed by the addition of the oxidizing agent (ammonium persulfate) that causes polymerization of the aniline. This green chemistry approach allowed us to take only 1 h to produce a water-soluble and stable nanomaterial. UV-visible spectroscopy, fluorescence spectroscopy, FT-IR spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) were used to characterize the designed nanomaterial. This nanomaterial exhibited excellent pH sensing properties and showed long term stability (up to one month) without loss of sensor performance.

  12. Time-Resolved IR-Absorption Spectroscopy of Hot-Electron Dynamics in Satellite and Upper Conduction Bands in GaP

    NASA Technical Reports Server (NTRS)

    Cavicchia, M. A.; Alfano, R. R.

    1995-01-01

    The relaxation dynamics of hot electrons in the X6 and X7 satellite and upper conduction bands in GaP was directly measured by femtosecond UV-pump-IR-probe absorption spectroscopy. From a fit to the induced IR-absorption spectra the dominant scattering mechanism giving rise to the absorption at early delay times was determined to be intervalley scattering of electrons out of the X7 upper conduction-band valley. For long delay times the dominant scattering mechanism is electron-hole scattering. Electron transport dynamics of the upper conduction band of GaP has been time resolved.

  13. Probing battery chemistry with liquid cell electron energy loss spectroscopy

    DOE PAGES

    Unocic, Raymond R.; Baggetto, Loic; Veith, Gabriel M.; ...

    2015-09-15

    Electron energy loss spectroscopy (EELS) was used to determine the chemistry and oxidation state of LiMn 2O 4 and Li 4Ti 5O 12 thin film battery electrodes in liquid cells for in situ scanning/transmission electron microscopy (S/TEM). Using the L2,3 white line intensity ratio method we determine the oxidation state of Mn and Ti in a liquid electrolyte solvent and discuss experimental parameters that influence measurement sensitivity.

  14. Electronic states of Myricetin. UV-Vis polarization spectroscopy and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Vojta, Danijela; Karlsen, Eva Marie; Spanget-Larsen, Jens

    2017-02-01

    Myricetin (3,3‧,4‧,5,5‧,7‧-hexahydroxyflavone) was investigated by linear dichroism spectroscopy on molecular samples partially aligned in stretched poly(vinyl alcohol) (PVA). At least five electronic transitions in the range 40,000-20,000 cm- 1 were characterized with respect to their wavenumbers, relative intensities, and transition moment directions. The observed bands were assigned to electronic transitions predicted with TD-B3LYP/6-31 + G(d,p).

  15. A fundamental approach to adhesion: Synthesis, surface analysis, thermodynamics and mechanics

    NASA Technical Reports Server (NTRS)

    Chen, W.; Wightman, J. P.

    1979-01-01

    Adherend surfaces and fractography were studied using electron spectroscopy for chemical analysis and scanning electron microscopy/energy dispersive analysis of X-rays. In addition, Auger Electron Spectroscopy with depth profiling capability was used. It is shown that contamination of adhesion systems plays an important role not only in determining initial bond strengths but also in the durability of adhesive bonds. It is concluded that the analytical techniques used to characterize and monitor such contamination.

  16. Study of the Vibrational Modes of Subsurface Oxygen on Al (111) Using Diode Laser Infrared Reflection-Absorption Spectroscopy.

    DTIC Science & Technology

    1987-10-15

    apparent shift of this band to higher energy with increasing coverage, observed at lower resolution (but higher sensitivity) in electron energy loss...apparent shift of this band to higher energy with increasing coverage, observed at lower resolution (but higher sen- sitivity) in electron energy ...11 using high-resolution electron energy -loss spectroscopy (EELS), is especially intriguing. 02 dissociates on this surface to populate two types of

  17. 229Thorium-doped calcium fluoride for nuclear laser spectroscopy.

    PubMed

    Dessovic, P; Mohn, P; Jackson, R A; Winkler, G; Schreitl, M; Kazakov, G; Schumm, T

    2014-03-12

    The (229)thorium isotope presents an extremely low-energy isomer state of the nucleus which is expected around 7.8 eV, in the vacuum ultraviolet (VUV) regime. This unique system may bridge between atomic and nuclear physics, enabling coherent manipulation and precision spectroscopy of nuclear quantum states using laser light. It has been proposed to implant (229)thorium into VUV transparent crystal matrices to facilitate laser spectroscopy and possibly realize a solid-state nuclear clock. In this work, we validate the feasibility of this approach by computer modelling of thorium doping into calcium fluoride single crystals. Using atomistic modelling and full electronic structure calculations, we find a persistent large band gap and no additional electronic levels emerging in the middle of the gap due to the presence of the dopant, which should allow direct optical interrogation of the nuclear transition.Based on the electronic structure, we estimate the thorium nuclear quantum levels within the solid-state environment. Precision laser spectroscopy of these levels will allow the study of a broad range of crystal field effects, transferring Mössbauer spectroscopy into the optical regime.

  18. Electron heating and thermal relaxation of gold nanorods revealed by two-dimensional electronic spectroscopy.

    PubMed

    Lietard, Aude; Hsieh, Cho-Shuen; Rhee, Hanju; Cho, Minhaeng

    2018-03-01

    To elucidate the complex interplay between the size and shape of gold nanorods and their electronic, photothermal, and optical properties for molecular imaging, photothermal therapy, and optoelectronic devices, it is a prerequisite to characterize ultrafast electron dynamics in gold nanorods. Time-resolved transient absorption (TA) studies of plasmonic electrons in various nanostructures have revealed the time scales for electron heating, lattice vibrational excitation, and phonon relaxation processes in condensed phases. However, because linear spectroscopic and time-resolved TA signals are vulnerable to inhomogeneous line-broadening, pure dephasing and direct electron heating effects are difficult to observe. Here we show that femtosecond two-dimensional electronic spectroscopy, with its unprecedented time resolution and phase sensitivity, can be used to collect direct experimental evidence for ultrafast electron heating, anomalously strong coherent and transient electronic plasmonic responses, and homogenous dephasing processes resulting from electron-vibration couplings even for polydisperse gold nanorods.

  19. A highly sensitive electron spectrometer for crossed-beam collisional ionization: A retarding-type magnetic bottle analyzer and its application to collision-energy resolved Penning ionization electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamakita, Yoshihiro; Tanaka, Hideyasu; Maruyama, Ryo; Yamakado, Hideo; Misaizu, Fuminori; Ohno, Koichi

    2000-08-01

    A highly sensitive electron energy analyzer which utilizes a "magnetic bottle" combined with a retarding electrostatic field has been developed for Penning ionization electron spectroscopy. A beam of metastable rare-gas atoms is crossed with a continuous supersonic sample beam in the source region of the analyzer. The emitted electrons are collected by an inhomogeneous magnetic field (the magnetic bottle effect) with a high efficiency of nearly 4π solid angle, which is more than 103 times higher than that of a conventional hemispherical analyzer. The kinetic energy of electrons is analyzed by scanning the retarding field in a flight tube of the analyzer in the presence of a weak magnetic field. The velocity of the metastable atoms can also be resolved by a time-of-flight method in the present instrument. Examples of Penning ionization electron energy spectra as a function of collision energy are presented for Ar and N2 with metastable He*(2 3S) atoms. This instrument has opened the possibility for extensive studies of Penning ionization electron spectroscopy for low-density species, such as clusters, ions, electronically excited species, unstable or transient species, and large molecules with low volatility.

  20. Effect of Electron Beam Irradiation on Structural and Optical Properties of Cu-Doped In2O3 Films Prepared by RF Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Krishnan, R. Reshmi; Sanjeev, Ganesh; Prabhu, Radhakrishna; Pillai, V. P. Mahadevan

    2018-02-01

    Undoped and Cu-doped In2O3 films were prepared by radiofrequency magnetron sputtering technique. The effects of Cu doping and high-energy electron beam irradiation on the structural and optical properties of as-prepared films were investigated using techniques such as x-ray diffraction, x-ray photoelectron spectroscopy (XPS), lateral scanning electron microscopic image analysis, energy-dispersive x-ray (EDX) spectroscopy, micro-Raman, and ultraviolet-visible (UV-vis) spectroscopy. Moderate doping of Cu in In2O3 enhanced the intensity of (222) peak, indicating alignment of crystalline grains along <111>. Electron beam irradiation promoted orientation of crystalline grains along <111> in undoped and moderately Cu-doped films. EDX spectroscopic and XPS analyses revealed incorporation of Cu2+ ions in the lattice. The transmittance of Cu-doped films decreased with e-beam irradiation. Systematic reduction of the bandgap energy with increase in Cu doping concentration was seen in unirradiated and electron-beam-irradiated films.

  1. Elucidating ultrafast electron dynamics at surfaces using extreme ultraviolet (XUV) reflection-absorption spectroscopy.

    PubMed

    Biswas, Somnath; Husek, Jakub; Baker, L Robert

    2018-04-24

    Here we review the recent development of extreme ultraviolet reflection-absorption (XUV-RA) spectroscopy. This method combines the benefits of X-ray absorption spectroscopy, such as element, oxidation, and spin state specificity, with surface sensitivity and ultrafast time resolution, having a probe depth of only a few nm and an instrument response less than 100 fs. Using this technique we investigated the ultrafast electron dynamics at a hematite (α-Fe2O3) surface. Surface electron trapping and small polaron formation both occur in 660 fs following photoexcitation. These kinetics are independent of surface morphology indicating that electron trapping is not mediated by defects. Instead, small polaron formation is proposed as the likely driving force for surface electron trapping. We also show that in Fe2O3, Co3O4, and NiO, band gap excitation promotes electron transfer from O 2p valence band states to metal 3d conduction band states. In addition to detecting the photoexcited electron at the metal M2,3-edge, the valence band hole is directly observed as transient signal at the O L1-edge. The size of the resulting charge transfer exciton is on the order of a single metal-oxygen bond length. Spectral shifts at the O L1-edge correlate with metal-oxygen bond covalency, confirming the relationship between valence band hybridization and the overpotential for water oxidation. These examples demonstrate the unique ability to measure ultrafast electron dynamics with element and chemical state resolution using XUV-RA spectroscopy. Accordingly, this method is poised to play an important role to reveal chemical details of previously unseen surface electron dynamics.

  2. A next generation positron microscope and a survey of candidate samples for future positron studies

    NASA Astrophysics Data System (ADS)

    Dull, Terry Lou

    A positron microscope has been constructed and is nearing the conclusion of its assembly and testing. The instrument is designed to perform positron and electron microscopy in both scanning and magnifying modes. In scanning mode, a small beam of particles is rastered across the target and the amplitude of a positron or electron related signal is recorded as a function of position. For positrons this signal may come from Doppler Broadening Spectroscopy, Reemitted Positron Spectroscopy or Positron Annihilation Lifetime Spectroscopy. For electrons this signal may come from the number of secondary electrons or Auger Electron Spectroscopy. In magnifying mode an incident beam of particles is directed onto the target and emitted particles, either secondary electrons or reemitted positrons, are magnified to form an image. As a positron microscope the instrument will primarily operate in magnifying mode, as a positron reemission microscope. As an electron microscope the instrument will be able to operate in both magnifying and scanning modes. Depth-profiled Doppler Broadening Spectroscopy studies using a non-microscopic low-energy positron beam have also been performed on a series of samples to ascertain the applicability of positron spectroscopies and/or microscopy to their study. All samples have sub-micron film and/or feature size and thus are only susceptible to positron study with low-energy beams. Several stoichiometries and crystallinities of chalcogenide thin films (which can be optically reversibly switched between crystalline states) were studied and a correlation was found to exist between the amorphous/FCC S-parameter difference and the amorphous/FCC switching time. Amorphous silicon films were studied in an attempt to observe the well-established Staebler-Wronski effect as well as the more controversial photodilatation effect. However, DBS was not able to detect either effect. The passive oxide films on titanium and aluminum were studied in an attempt to verify the Point Defect Model, a detailed, but as yet microscopically unconfirmed, theory of the corrosive breakdown of passive films. DBS results supportive of the PDM were observed. Graphitic carbon fibers were also studied and DBS indicated the presence of a 200 nm thick outer fiber skin possibly characterized by a high degree of graphitic crystallite alignment.

  3. High-pressure studies with x-rays using diamond anvil cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Guoyin; Mao, Ho Kwang

    2016-11-22

    Pressure profoundly alters all states of matter. The symbiotic development of ultrahigh-pressure diamond anvil cells, to compress samples to sustainable multi-megabar pressures; and synchrotron x-ray techniques, to probe materials' properties in situ, has enabled the exploration of rich high-pressure (HP) science. In this article, we first introduce the essential concept of diamond anvil cell technology, together with recent developments and its integration with other extreme environments. We then provide an overview of the latest developments in HP synchrotron techniques, their applications, and current problems, followed by a discussion of HP scientific studies using x-rays in the key multidisciplinary fields. Thesemore » HP studies include: HP x-ray emission spectroscopy, which provides information on the filled electronic states of HP samples; HP x-ray Raman spectroscopy, which probes the HP chemical bonding changes of light elements; HP electronic inelastic x-ray scattering spectroscopy, which accesses high energy electronic phenomena, including electronic band structure, Fermi surface, excitons, plasmons, and their dispersions; HP resonant inelastic x-ray scattering spectroscopy, which probes shallow core excitations, multiplet structures, and spin-resolved electronic structure; HP nuclear resonant x-ray spectroscopy, which provides phonon densities of state and time-resolved Mössbauer information; HP x-ray imaging, which provides information on hierarchical structures, dynamic processes, and internal strains; HP x-ray diffraction, which determines the fundamental structures and densities of single-crystal, polycrystalline, nanocrystalline, and non-crystalline materials; and HP radial x-ray diffraction, which yields deviatoric, elastic and rheological information. Integrating these tools with hydrostatic or uniaxial pressure media, laser and resistive heating, and cryogenic cooling, has enabled investigations of the structural, vibrational, electronic, and magnetic properties of materials over a wide range of pressure-temperature conditions.« less

  4. High-pressure studies with x-rays using diamond anvil cells

    NASA Astrophysics Data System (ADS)

    Shen, Guoyin; Mao, Ho Kwang

    2017-01-01

    Pressure profoundly alters all states of matter. The symbiotic development of ultrahigh-pressure diamond anvil cells, to compress samples to sustainable multi-megabar pressures; and synchrotron x-ray techniques, to probe materials’ properties in situ, has enabled the exploration of rich high-pressure (HP) science. In this article, we first introduce the essential concept of diamond anvil cell technology, together with recent developments and its integration with other extreme environments. We then provide an overview of the latest developments in HP synchrotron techniques, their applications, and current problems, followed by a discussion of HP scientific studies using x-rays in the key multidisciplinary fields. These HP studies include: HP x-ray emission spectroscopy, which provides information on the filled electronic states of HP samples; HP x-ray Raman spectroscopy, which probes the HP chemical bonding changes of light elements; HP electronic inelastic x-ray scattering spectroscopy, which accesses high energy electronic phenomena, including electronic band structure, Fermi surface, excitons, plasmons, and their dispersions; HP resonant inelastic x-ray scattering spectroscopy, which probes shallow core excitations, multiplet structures, and spin-resolved electronic structure; HP nuclear resonant x-ray spectroscopy, which provides phonon densities of state and time-resolved Mössbauer information; HP x-ray imaging, which provides information on hierarchical structures, dynamic processes, and internal strains; HP x-ray diffraction, which determines the fundamental structures and densities of single-crystal, polycrystalline, nanocrystalline, and non-crystalline materials; and HP radial x-ray diffraction, which yields deviatoric, elastic and rheological information. Integrating these tools with hydrostatic or uniaxial pressure media, laser and resistive heating, and cryogenic cooling, has enabled investigations of the structural, vibrational, electronic, and magnetic properties of materials over a wide range of pressure-temperature conditions.

  5. A new endstation at the Swiss Light Source for ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy measurements of liquid solutions.

    PubMed

    Brown, Matthew A; Redondo, Amaia Beloqui; Jordan, Inga; Duyckaerts, Nicolas; Lee, Ming-Tao; Ammann, Markus; Nolting, Frithjof; Kleibert, Armin; Huthwelker, Thomas; Müächler, Jean-Pierre; Birrer, Mario; Honegger, Juri; Wetter, Reto; Wörner, Hans Jakob; van Bokhoven, Jeroen A

    2013-07-01

    A new liquid microjet endstation designed for ultraviolet (UPS) and X-ray (XPS) photoelectron, and partial electron yield X-ray absorption (XAS) spectroscopies at the Swiss Light Source is presented. The new endstation, which is based on a Scienta HiPP-2 R4000 electron spectrometer, is the first liquid microjet endstation capable of operating in vacuum and in ambient pressures up to the equilibrium vapor pressure of liquid water at room temperature. In addition, the Scienta HiPP-2 R4000 energy analyzer of this new endstation allows for XPS measurements up to 7000 eV electron kinetic energy that will enable electronic structure measurements of bulk solutions and buried interfaces from liquid microjet samples. The endstation is designed to operate at the soft X-ray SIM beamline and at the tender X-ray Phoenix beamline. The endstation can also be operated using a Scienta 5 K ultraviolet helium lamp for dedicated UPS measurements at the vapor-liquid interface using either He I or He II α lines. The design concept, first results from UPS, soft X-ray XPS, and partial electron yield XAS measurements, and an outlook to the potential of this endstation are presented.

  6. On-Surface Synthesis and Characterization of 9-Atom Wide Armchair Graphene Nanoribbons

    DOE PAGES

    Talirz, Leopold; Söde, Hajo; Dumslaff, Tim; ...

    2017-01-27

    The bottom-up approach to synthesize graphene nanoribbons strives not only to introduce a band gap into the electronic structure of graphene but also to accurately tune its value by designing both the width and edge structure of the ribbons with atomic precision. Within this paper, we report the synthesis of an armchair graphene nanoribbon with a width of nine carbon atoms on Au(111) through surface-assisted aryl–aryl coupling and subsequent cyclodehydrogenation of a properly chosen molecular precursor. By combining high-resolution atomic force microscopy, scanning tunneling microscopy, and Raman spectroscopy, we demonstrate that the atomic structure of the fabricated ribbons is exactlymore » as designed. Angle-resolved photoemission spectroscopy and Fourier-transformed scanning tunneling spectroscopy reveal an electronic band gap of 1.4 eV and effective masses of ≈0.1 m e for both electrons and holes, constituting a substantial improvement over previous efforts toward the development of transistor applications. We use ab initio calculations to gain insight into the dependence of the Raman spectra on excitation wavelength as well as to rationalize the symmetry-dependent contribution of the ribbons’ electronic states to the tunneling current. Lastly, we propose a simple rule for the visibility of frontier electronic bands of armchair graphene nanoribbons in scanning tunneling spectroscopy.« less

  7. From Single Atoms to Nanoparticles — Spectroscopy on the Atomic Level

    NASA Astrophysics Data System (ADS)

    Nilius, Niklas

    2003-12-01

    The scanning tunneling microscope is not only a well-established tool for a topographic characterization of the sample surface on the atomic scale. It also provides a variety of spectroscopic techniques to examine electronic, magnetic, vibrational and optical properties of a localized system. The following presentation gives an overview, how scanning tunneling spectroscopy, inelastic electron tunneling spectroscopy and photon emission spectroscopy with the STM can be employed to investigate spatially confined metal systems and their interaction with molecular gases. The experiments were performed on single Pd and Au atoms, mono-atomic chains and individual Ag clusters on a NiAl support and a Al2O3 thin film.

  8. High-Yield Spin Labeling of Long RNAs for Electron Paramagnetic Resonance Spectroscopy.

    PubMed

    Kerzhner, Mark; Matsuoka, Hideto; Wuebben, Christine; Famulok, Michael; Schiemann, Olav

    2018-05-10

    Site-directed spin labeling is a powerful tool for investigating the conformation and dynamics of biomacromolecules such as RNA. Here we introduce a spin labeling strategy based on click chemistry in solution that, in combination with enzymatic ligation, allows highly efficient labeling of complex and long RNAs with short reaction times and suppressed RNA degradation. With this approach, a 34-nucleotide aptamer domain of the preQ1 riboswitch and an 81-nucleotide TPP riboswitch aptamer could be labeled with two labels in several positions. We then show that conformations of the preQ1 aptamer and its dynamics can be monitored in the absence and presence of Mg 2+ and a preQ1 ligand by continuous wave electron paramagnetic resonance spectroscopy at room temperature and pulsed electron-electron double resonance spectroscopy (PELDOR or DEER) in the frozen state.

  9. Bandgap profiling in CIGS solar cells via valence electron energy-loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Deitz, Julia I.; Karki, Shankar; Marsillac, Sylvain X.; Grassman, Tyler J.; McComb, David W.

    2018-03-01

    A robust, reproducible method for the extraction of relative bandgap trends from scanning transmission electron microscopy (STEM) based electron energy-loss spectroscopy (EELS) is described. The effectiveness of the approach is demonstrated by profiling the bandgap through a CuIn1-xGaxSe2 solar cell that possesses intentional Ga/(In + Ga) composition variation. The EELS-determined bandgap profile is compared to the nominal profile calculated from compositional data collected via STEM-based energy dispersive X-ray spectroscopy. The EELS based profile is found to closely track the calculated bandgap trends, with only a small, fixed offset difference. This method, which is particularly advantageous for relatively narrow bandgap materials and/or STEM systems with modest resolution capabilities (i.e., >100 meV), compromises absolute accuracy to provide a straightforward route for the correlation of local electronic structure trends with nanoscale chemical and physical structure/microstructure within semiconductor materials and devices.

  10. Analysis of electronic structure of amorphous InGaZnO/SiO{sub 2} interface by angle-resolved X-ray photoelectron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueoka, Y.; Ishikawa, Y.; Maejima, N.

    2013-10-28

    The electronic structures of amorphous indium gallium zinc oxide (a-IGZO) on a SiO{sub 2} layers before and after annealing were observed by constant final state X-ray photoelectron spectroscopy (CFS-XPS) and X-ray adsorption near-edge structure spectroscopy (XANES). From the results of angle-resolved CFS-XPS, the change in the electronic state was clearly observed in the a-IGZO bulk rather than in the a-IGZO/SiO{sub 2} interface. This suggests that the electronic structures of the a-IGZO bulk strongly affected the thin-film transistor characteristics. The results of XANES indicated an increase in the number of tail states upon atmospheric annealing (AT). We consider that the increasemore » in the number of tail states decreased the channel mobility of AT samples.« less

  11. ULTRAFAST CHEMISTRY: Using Time-Resolved Vibrational Spectroscopy for Interrogation of Structural Dynamics

    NASA Astrophysics Data System (ADS)

    Nibbering, Erik T. J.; Fidder, Henk; Pines, Ehud

    2005-05-01

    Time-resolved infrared (IR) and Raman spectroscopy elucidates molecular structure evolution during ultrafast chemical reactions. Following vibrational marker modes in real time provides direct insight into the structural dynamics, as is evidenced in studies on intramolecular hydrogen transfer, bimolecular proton transfer, electron transfer, hydrogen bonding during solvation dynamics, bond fission in organometallic compounds and heme proteins, cis-trans isomerization in retinal proteins, and transformations in photochromic switch pairs. Femtosecond IR spectroscopy monitors the site-specific interactions in hydrogen bonds. Conversion between excited electronic states can be followed for intramolecular electron transfer by inspection of the fingerprint IR- or Raman-active vibrations in conjunction with quantum chemical calculations. Excess internal vibrational energy, generated either by optical excitation or by internal conversion from the electronic excited state to the ground state, is observable through transient frequency shifts of IR-active vibrations and through nonequilibrium populations as deduced by Raman resonances.

  12. Time-dependent investigation of sub-monolayers of Ni on Pd using Positron-annihilation induced Auger Electron Spectroscopy and XPS

    NASA Astrophysics Data System (ADS)

    Zimnik, Samantha; Piochacz, Christian; Vohburger, Sebastian; Hugenschmidt, Christoph

    2016-01-01

    The surface of a polycrystalline Pd-substrate covered with (sub-) monolayers of Ni was investigated with Positron-annihilation induced Auger Electron Spectroscopy (PAES). Comparative studies using conventional AES induced by electrons and X-rays showed the outstanding surface sensitivity of PAES. Time-dependent PAES was performed on a 0.5 ML Ni cover layer on Pd and compared with conventional X-ray induced Photoelectron Spectroscopy (XPS) in order to observe changes in the elemental composition of the surface. The PAES results appear to show a migration of Ni atoms into the Pd substrate, whereas the Ni signal shows a decrease of 12% within 13 h with respect to the initial value.

  13. Soft X-ray spectroscopy of transition metal compounds: a theoretical perspective

    NASA Astrophysics Data System (ADS)

    Bokarev, S. I.; Hilal, R.; Aziz, S. G.; Kühn, O.

    2017-01-01

    To date, X-ray spectroscopy has become a routine tool that can reveal highly local and element-specific information on the electronic structure of atoms in complex environments. Here, we report on the development of an efficient and versatile theoretical methodology for the treatment of soft X-ray spectra of transition metal compounds based on the multi-configurational self-consistent field electronic structure theory. A special focus is put on the L-edge photon-in/photon-out and photon-in/electron-out processes, i.e. X-ray absorption, resonant inelastic scattering, partial fluorescence yield, and photoelectron spectroscopy, all treated on the same theoretical footing. The investigated systems range from small prototypical coordination compounds and catalysts to aggregates of biomolecules.

  14. Hydrogen-Mediated Electron Doping of Gold Clusters As Revealed by In Situ X-ray and UV-vis Absorption Spectroscopy.

    PubMed

    Ishida, Ryo; Hayashi, Shun; Yamazoe, Seiji; Kato, Kazuo; Tsukuda, Tatsuya

    2017-06-01

    We previously reported that small (∼1.2 nm) gold clusters stabilized by poly(N-vinyl-2-pyrrolidone) (Au:PVP) exhibited a localized surface plasmon resonance (LSPR) band at ∼520 nm in the presence of NaBH 4 . To reveal the mechanism of this phenomenon, the electronic structure of Au:PVP during the reaction with NaBH 4 in air was examined by means of in situ X-ray absorption spectroscopy at Au L 3 -edge and UV-vis spectroscopy. These measurements indicated that the appearance of the LSPR band is not associated with the growth in size but is ascribed to electron doping to the Au sp band by the adsorbed H atoms.

  15. Dispersive electron transport in tris(8-hydroxyquinoline) aluminum (Alq3) probed by impedance spectroscopy.

    PubMed

    Berleb, Stefan; Brütting, Wolfgang

    2002-12-31

    Electron transport in tris(8-hydroxyquinoline) aluminum (Alq3) is investigated by impedance spectroscopy under conditions of space-charge limited conduction (SCLC). Existing SCLC models are extended to include the field dependence of the charge carrier mobility and energetically distributed trap states. The dispersive nature of electron transport is revealed by a frequency-dependent mobility with a dispersion parameter alpha in the range 0.4-0.5, independent of temperature. This indicates that positional rather than energetic disorder is the dominant mechanism for the dispersive transport of electrons in Alq3.

  16. A characterization study of a hydroxylated polycrystalline tin oxide surface

    NASA Technical Reports Server (NTRS)

    Hoflund, Gar B.; Grogan, Austin L., Jr.; Asbury, Douglas A.; Schryer, David R.

    1989-01-01

    In this study Auger electron spectroscopy, electron spectroscopy for chemical analysis (ESCA) and electron-stimulated desorption (ESD) have been used to examine a polycrystalline tin oxide surface before and after annealing in vacuum at 500 C. Features due to surface hydroxyl groups are present in both the ESCA and ESD spectra, and ESD shows that several chemical states of hydrogen are present. Annealing at 500 C causes a large reduction in the surface hydrogen concentration but not complete removal.

  17. The study of molecular spectroscopy by ab initio methods

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1991-01-01

    This review illustrates the potential of theory for solving spectroscopic problems. The accuracy of approximate techniques for including electron correlation have been calibrated by comparison with full configuration-interaction calculations. Examples of the application of ab initio calculations to vibrational, rotational, and electronic spectroscopy are given. It is shown that the state-averaged, complete active space self-consistent field, multireference configuration-interaction procedure provides a good approach for treating several electronic states accurately in a common molecular orbital basis.

  18. Electronic states of Myricetin. UV-Vis polarization spectroscopy and quantum chemical calculations.

    PubMed

    Vojta, Danijela; Karlsen, Eva Marie; Spanget-Larsen, Jens

    2017-02-15

    Myricetin (3,3',4',5,5',7'-hexahydroxyflavone) was investigated by linear dichroism spectroscopy on molecular samples partially aligned in stretched poly(vinyl alcohol) (PVA). At least five electronic transitions in the range 40,000-20,000cm -1 were characterized with respect to their wavenumbers, relative intensities, and transition moment directions. The observed bands were assigned to electronic transitions predicted with TD-B3LYP/6-31+G(d,p). Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Electron beam induced green luminescence and degradation study of CaS:Ce nanocrystalline phosphors for FED applications

    NASA Astrophysics Data System (ADS)

    Kumar, Vinay; Mishra, Varun; Biggs, M. M.; Nagpure, I. M.; Ntwaeaborwa, O. M.; Terblans, J. J.; Swart, H. C.

    2010-01-01

    Green luminescence and degradation of Ce 3+ doped CaS nanocrystalline phosphors were studied with a 2 keV, 10 μA electron beam in an O 2 environment. The nanophosphors were synthesized by the co-precipitation method. The samples were characterized using X-ray diffraction, Transmission electron microscopy, Scanning electron microscopy/electron dispersive X-ray spectroscopy and Photoluminescence (PL) spectroscopy. Cubic CaS with an average particle size of 42 ± 2 nm was obtained. PL emission was observed at 507 nm and a shoulder at 560 nm with an excitation wavelength of 460 nm. Auger electron spectroscopy and Cathodoluminescence (CL) were used to monitor the changes in the surface composition of the CaS:Ce 3+ nanocrystalline phosphors during electron bombardment in an O 2 environment. The effect of different oxygen pressures ranging from 1 × 10 -8 to 1 × 10 -6 Torr on the CL intensity was also investigated. A CaSO 4 layer was observed on the surface after the electron beam degradation. The CL intensity was found to decrease up to 30% of its original intensity at 1 × 10 -6 Torr oxygen pressure after an electron dose of 50 C/cm 2. The formation of oxygen defects during electron bombardment may also be responsible for the decrease in CL intensity.

  20. Electronic structure of the organic semiconductor Alq3 (aluminum tris-8-hydroxyquinoline) from soft x-ray spectroscopies and density functional theory calculations.

    PubMed

    DeMasi, A; Piper, L F J; Zhang, Y; Reid, I; Wang, S; Smith, K E; Downes, J E; Peltekis, N; McGuinness, C; Matsuura, A

    2008-12-14

    The element-specific electronic structure of the organic semiconductor aluminum tris-8-hydroxyquinoline (Alq(3)) has been studied using a combination of resonant x-ray emission spectroscopy, x-ray photoelectron spectroscopy, x-ray absorption spectroscopy, and density functional theory (DFT) calculations. Resonant and nonresonant x-ray emission spectroscopy were used to measure directly the carbon, nitrogen and oxygen 2p partial densities of states in Alq(3), and good agreement was found with the results of DFT calculations. Furthermore, resonant x-ray emission at the carbon K-edge is shown to be able to measure the partial density of states associated with individual C sites. Finally, comparison of previous x-ray emission studies and the present data reveal the presence of clear photon-induced damage in the former.

  1. Time-resolved inner-shell photoelectron spectroscopy: From a bound molecule to an isolated atom

    NASA Astrophysics Data System (ADS)

    Brauße, Felix; Goldsztejn, Gildas; Amini, Kasra; Boll, Rebecca; Bari, Sadia; Bomme, Cédric; Brouard, Mark; Burt, Michael; de Miranda, Barbara Cunha; Düsterer, Stefan; Erk, Benjamin; Géléoc, Marie; Geneaux, Romain; Gentleman, Alexander S.; Guillemin, Renaud; Ismail, Iyas; Johnsson, Per; Journel, Loïc; Kierspel, Thomas; Köckert, Hansjochen; Küpper, Jochen; Lablanquie, Pascal; Lahl, Jan; Lee, Jason W. L.; Mackenzie, Stuart R.; Maclot, Sylvain; Manschwetus, Bastian; Mereshchenko, Andrey S.; Mullins, Terence; Olshin, Pavel K.; Palaudoux, Jérôme; Patchkovskii, Serguei; Penent, Francis; Piancastelli, Maria Novella; Rompotis, Dimitrios; Ruchon, Thierry; Rudenko, Artem; Savelyev, Evgeny; Schirmel, Nora; Techert, Simone; Travnikova, Oksana; Trippel, Sebastian; Underwood, Jonathan G.; Vallance, Claire; Wiese, Joss; Simon, Marc; Holland, David M. P.; Marchenko, Tatiana; Rouzée, Arnaud; Rolles, Daniel

    2018-04-01

    Due to its element and site specificity, inner-shell photoelectron spectroscopy is a widely used technique to probe the chemical structure of matter. Here, we show that time-resolved inner-shell photoelectron spectroscopy can be employed to observe ultrafast chemical reactions and the electronic response to the nuclear motion with high sensitivity. The ultraviolet dissociation of iodomethane (CH3I ) is investigated by ionization above the iodine 4 d edge, using time-resolved inner-shell photoelectron and photoion spectroscopy. The dynamics observed in the photoelectron spectra appear earlier and are faster than those seen in the iodine fragments. The experimental results are interpreted using crystal-field and spin-orbit configuration interaction calculations, and demonstrate that time-resolved inner-shell photoelectron spectroscopy is a powerful tool to directly track ultrafast structural and electronic transformations in gas-phase molecules.

  2. Spatial interferences in the electron transport of heavy-fermion materials

    NASA Astrophysics Data System (ADS)

    Zhang, Shu-feng; Liu, Yu; Song, Hai-Feng; Yang, Yi-feng

    2016-08-01

    The scanning tunneling microscopy/spectroscopy and the point contact spectroscopy represent major progress in recent heavy-fermion research. Both have revealed important information on the composite nature of the emergent heavy-electron quasiparticles. However, a detailed and thorough microscopic understanding of the similarities and differences in the underlying physical processes of these techniques is still lacking. Here we study the electron transport in the normal state of the periodic Anderson lattice by using the Keldysh nonequilibrium Green's function technique. In addition to the well-known Fano interference between the conduction and f -electron channels, our results further reveal the effect of spatial interference between different spatial paths at the interface on the differential conductance and their interesting interplay with the band features such as the hybridization gap and the Van Hove singularity. We find that the spatial interference leads to a weighted average in the momentum space for the electron transport and could cause suppression of the electronic band features under certain circumstances. In particular, it reduces the capability of probing the f -electron spectral weight near the edges of the hybridization gap for large interface depending on the Fermi surface of the lead. Our results indicate an intrinsic inefficiency of the point contact spectroscopy in probing the f electrons.

  3. Practical Problems in the Cement Industry Solved by Modern Research Techniques

    ERIC Educational Resources Information Center

    Daugherty, Kenneth E.; Robertson, Les D.

    1972-01-01

    Practical chemical problems in the cement industry are being solved by such techniques as infrared spectroscopy, gas chromatography-mass spectrometry, X-ray diffraction, atomic absorption and arc spectroscopy, thermally evolved gas analysis, Mossbauer spectroscopy, transmission and scanning electron microscopy. (CP)

  4. Two-dimensional Electronic Double-Quantum Coherence Spectroscopy

    PubMed Central

    Kim, Jeongho; Mukamel, Shaul

    2009-01-01

    CONSPECTUS The theory of electronic structure of many-electron systems like molecules is extraordinarily complicated. A lot can be learned by considering how electron density is distributed, on average, in the average field of the other electrons in the system. That is, mean field theory. However, to describe quantitatively chemical bonds, reactions, and spectroscopy requires consideration of the way that electrons avoid each other by the way they move; this is called electron correlation (or in physics, the many-body problem for fermions). While great progress has been made in theory, there is a need for incisive experimental tests that can be undertaken for large molecular systems in the condensed phase. Here we report a two-dimensional (2D) optical coherent spectroscopy that correlates the double excited electronic states to constituent single excited states. The technique, termed two-dimensional double-coherence spectroscopy (2D-DQCS), makes use of multiple, time-ordered ultrashort coherent optical pulses to create double- and single-quantum coherences over time intervals between the pulses. The resulting two-dimensional electronic spectrum maps the energy correlation between the first excited state and two-photon allowed double-quantum states. The principle of the experiment is that when the energy of the double-quantum state, viewed in simple models as a double HOMO to LUMO excitation, equals twice that of a single excitation, then no signal is radiated. However, electron-electron interactions—a combination of exchange interactions and electron correlation—in real systems generates a signal that reveals precisely how the energy of the double-quantum resonance differs from twice the single-quantum resonance. The energy shift measured in this experiment reveals how the second excitation is perturbed by both the presence of the first excitation and the way that the other electrons in the system have responded to the presence of that first excitation. We compare a series of organic dye molecules and find that the energy offset for adding a second electronic excitation to the system relative to the first excitation is on the order of tens of milli-electronvolts, and it depends quite sensitively on molecular geometry. These results demonstrate the effectiveness of 2D-DQCS for elucidating quantitative information about electron-electron interactions, many-electron wavefunctions, and electron correlation in electronic excited states and excitons. PMID:19552412

  5. Determination and Comparison of Carbonyl Stretching Frequency of a Ketone in Its Ground State and the First Electronic Excited State

    ERIC Educational Resources Information Center

    Bandyopadhyay, Subhajit; Roy, Saswata

    2014-01-01

    This paper describes an inexpensive experiment to determine the carbonyl stretching frequency of an organic keto compound in its ground state and first electronic excited state. The experiment is simple to execute, clarifies some of the fundamental concepts of spectroscopy, and is appropriate for a basic spectroscopy laboratory course. The…

  6. Charge-Carrier-Scattering Spectroscopy With BEEM

    NASA Technical Reports Server (NTRS)

    Hecht, Michael H.; Bell, Lloyd D.; Kaiser, William J.

    1992-01-01

    Ballistic-electron-emission microscopy (BEEM) constitutes basis of new spectroscopy of scattering of electrons and holes. Pointed tip electrode scans near surface of metal about 100 angstrom thick on semiconductor. Principle similar to scanning tunneling microscope, except metal acts as third electrode. Used to investigate transport phenomena, scattering phenomena, and creation of hot charge carriers in Au/Si and Au/GaAs metal/semiconductor microstructures.

  7. X-ray absorption spectroscopy using a self-seeded soft X-ray free-electron laser

    DOE PAGES

    Kroll, Thomas; Kern, Jan; Kubin, Markus; ...

    2016-09-19

    X-ray free electron lasers (XFELs) enable unprecedented new ways to study the electronic structure and dynamics of transition metal systems. L-edge absorption spectroscopy is a powerful technique for such studies and the feasibility of this method at XFELs for solutions and solids has been demonstrated. But, the required x-ray bandwidth is an order of magnitude narrower than that of self-amplified spontaneous emission (SASE), and additional monochromatization is needed. We compare L-edge x-ray absorption spectroscopy (XAS) of a prototypical transition metal system based on monochromatizing the SASE radiation of the linac coherent light source (LCLS) with a new technique based onmore » self-seeding of LCLS. We demonstrate how L-edge XAS can be performed using the self-seeding scheme without the need of an additional beam line monochromator. Lastly, we show how the spectral shape and pulse energy depend on the undulator setup and how this affects the x-ray spectroscopy measurements.« less

  8. Pathways of energy transfer in LHCII revealed by room-temperature 2D electronic spectroscopy.

    PubMed

    Wells, Kym L; Lambrev, Petar H; Zhang, Zhengyang; Garab, Gyözö; Tan, Howe-Siang

    2014-06-21

    We present here the first room-temperature 2D electronic spectroscopy study of energy transfer in the plant light-harvesting complex II, LHCII. Two-dimensional electronic spectroscopy has been used to study energy transfer dynamics in LHCII trimers from the chlorophyll b Qy band to the chlorophyll a Qy band. Observing cross-peak regions corresponding to couplings between different excitonic states reveals partially resolved fine structure at the exciton level that cannot be isolated by pump-probe or linear spectroscopy measurements alone. Global analysis of the data has been performed to identify the pathways and time constants of energy transfer. The measured waiting time (Tw) dependent 2D spectra are found to be composed of 2D decay-associated spectra with three timescales (0.3 ps, 2.3 ps and >20 ps). Direct and multistep cascading pathways from the high-energy chlorophyll b states to the lowest-energy chlorophyll a states have been resolved occurring on time scales of hundreds of femtoseconds to picoseconds.

  9. X-ray absorption spectroscopy using a self-seeded soft X-ray free-electron laser

    PubMed Central

    Kroll, Thomas; Kern, Jan; Kubin, Markus; Ratner, Daniel; Gul, Sheraz; Fuller, Franklin D.; Löchel, Heike; Krzywinski, Jacek; Lutman, Alberto; Ding, Yuantao; Dakovski, Georgi L.; Moeller, Stefan; Turner, Joshua J.; Alonso-Mori, Roberto; Nordlund, Dennis L.; Rehanek, Jens; Weniger, Christian; Firsov, Alexander; Brzhezinskaya, Maria; Chatterjee, Ruchira; Lassalle-Kaiser, Benedikt; Sierra, Raymond G.; Laksmono, Hartawan; Hill, Ethan; Borovik, Andrew; Erko, Alexei; Föhlisch, Alexander; Mitzner, Rolf; Yachandra, Vittal K.; Yano, Junko; Wernet, Philippe; Bergmann, Uwe

    2016-01-01

    X-ray free electron lasers (XFELs) enable unprecedented new ways to study the electronic structure and dynamics of transition metal systems. L-edge absorption spectroscopy is a powerful technique for such studies and the feasibility of this method at XFELs for solutions and solids has been demonstrated. However, the required x-ray bandwidth is an order of magnitude narrower than that of self-amplified spontaneous emission (SASE), and additional monochromatization is needed. Here we compare L-edge x-ray absorption spectroscopy (XAS) of a prototypical transition metal system based on monochromatizing the SASE radiation of the linac coherent light source (LCLS) with a new technique based on self-seeding of LCLS. We demonstrate how L-edge XAS can be performed using the self-seeding scheme without the need of an additional beam line monochromator. We show how the spectral shape and pulse energy depend on the undulator setup and how this affects the x-ray spectroscopy measurements. PMID:27828320

  10. Ultrafast X-Ray Spectroscopy of Conical Intersections

    NASA Astrophysics Data System (ADS)

    Neville, Simon P.; Chergui, Majed; Stolow, Albert; Schuurman, Michael S.

    2018-06-01

    Ongoing developments in ultrafast x-ray sources offer powerful new means of probing the complex nonadiabatically coupled structural and electronic dynamics of photoexcited molecules. These non-Born-Oppenheimer effects are governed by general electronic degeneracies termed conical intersections, which play a key role, analogous to that of a transition state, in the electronic-nuclear dynamics of excited molecules. Using high-level ab initio quantum dynamics simulations, we studied time-resolved x-ray absorption (TRXAS) and photoelectron spectroscopy (TRXPS) of the prototypical unsaturated organic chromophore, ethylene, following excitation to its S2(π π*) state. The TRXAS, in particular, is highly sensitive to all aspects of the ensuing dynamics. These x-ray spectroscopies provide a clear signature of the wave packet dynamics near conical intersections, related to charge localization effects driven by the nuclear dynamics. Given the ubiquity of charge localization in excited state dynamics, we believe that ultrafast x-ray spectroscopies offer a unique and powerful route to the direct observation of dynamics around conical intersections.

  11. The adsorption of methyl iodide on uranium and uranium dioxide: Surface characterization using X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES)

    NASA Astrophysics Data System (ADS)

    Dillard, J. G.; Moers, H.; Klewe-Nebenius, H.; Kirch, G.; Pfennig, G.; Ache, H. J.

    1984-09-01

    The adsorption of methyl iodide on uranium and on uranium dioxide has been studied at 25 °C. Surfaces of the substrates were characterized before and after adsorption by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). The XPS binding energy results indicate that CH 3I adsorption on uranium yields a carbide-type carbon, UC, and uranium iodide, UI 3. On uranium dioxide the carbon electron binding energy measurements are consistent with the formation of a hydrocarbon, —CH 3-type moiety. The interpretation of XPS and AES spectral features for CH 3I adsorption on uranium suggest that a complex dissociative adsorption reaction takes place. Adsorption of CH 3I on UO 2 occurs via a dissociative process. Saturation coverage occurs on uranium at approximately two langmuir (1 L = 10 -6 Torr s) exposure whereas saturation coverage on uranium dioxide is found at about five langmuir.

  12. High quality atomically thin PtSe2 films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Yan, Mingzhe; Wang, Eryin; Zhou, Xue; Zhang, Guangqi; Zhang, Hongyun; Zhang, Kenan; Yao, Wei; Lu, Nianpeng; Yang, Shuzhen; Wu, Shilong; Yoshikawa, Tomoki; Miyamoto, Koji; Okuda, Taichi; Wu, Yang; Yu, Pu; Duan, Wenhui; Zhou, Shuyun

    2017-12-01

    Atomically thin PtSe2 films have attracted extensive research interests for potential applications in high-speed electronics, spintronics and photodetectors. Obtaining high quality thin films with large size and controlled thickness is critical. Here we report the first successful epitaxial growth of high quality PtSe2 films by molecular beam epitaxy. Atomically thin films from 1 ML to 22 ML have been grown and characterized by low-energy electron diffraction, Raman spectroscopy and x-ray photoemission spectroscopy. Moreover, a systematic thickness dependent study of the electronic structure is revealed by angle-resolved photoemission spectroscopy (ARPES), and helical spin texture is revealed by spin-ARPES. Our work provides new opportunities for growing large size single crystalline films to investigate the physical properties and potential applications of PtSe2.

  13. Synthesis of adenine-modified reduced graphene oxide nanosheets.

    PubMed

    Cao, Huaqiang; Wu, Xiaoming; Yin, Gui; Warner, Jamie H

    2012-03-05

    We report here a facile strategy to synthesize the nanocomposite of adenine-modified reduced graphene oxide (AMG) via reaction between adenine and GOCl which is generated from SOCl(2) reacted with graphite oxide (GO). The as-synthesized AMG was characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), UV-vis absorption spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and galvanostatic discharge analysis. The AMG owns about one adenine group per 53 carbon atoms on a graphene sheet, which improves electronic conductivity compared with reduced graphene oxide (RGO). The AMG displays enhanced supercapacitor performance compared with RGO accompanying good stability and good cycling behavior in the supercapacitor.

  14. Size controlled biogenic silver nanoparticles as antibacterial agent against isolates from HIV infected patients

    NASA Astrophysics Data System (ADS)

    Suganya, K. S. Uma; Govindaraju, K.; Kumar, V. Ganesh; Dhas, T. Stalin; Karthick, V.; Singaravelu, G.; Elanchezhiyan, M.

    2015-06-01

    Silver nanoparticles (AgNPs) are synthesized using biological sources due to its high specificity in biomedical applications. Herein, we report the size and shape controlled synthesis of AgNPs using the aqueous extract of blue green alga, Spirulina platensis. Size, shape and elemental composition of AgNPs were characterized using UV-vis spectroscopy, Fluorescence spectroscopy, FT-IR (Fourier Transform-Infrared Spectroscopy), FT-RS (Fourier Transform-Raman Spectroscopy), SEM-EDAX (Scanning Electron Microscopy-Energy Dispersive X-ray analysis) and HR-TEM (High Resolution Transmission Electron Microscopy). AgNPs were stable, well defined and monodispersed (spherical) with an average size of 6 nm. The synthesized AgNPs were tested for its antibacterial potency against isolates obtained from HIV patients.

  15. Titanium-silicon oxide film structures for polarization-modulated infrared reflection absorption spectroscopy

    PubMed Central

    Dunlop, Iain E.; Zorn, Stefan; Richter, Gunther; Srot, Vesna; Kelsch, Marion; van Aken, Peter A.; Skoda, Maximilian; Gerlach, Alexander; Spatz, Joachim P.; Schreiber, Frank

    2010-01-01

    We present a titanium-silicon oxide film structure that permits polarization modulated infrared reflection absorption spectroscopy on silicon oxide surfaces. The structure consists of a ~6 nm sputtered silicon oxide film on a ~200 nm sputtered titanium film. Characterization using conventional and scanning transmission electron microscopy, electron energy loss spectroscopy, X-ray photoelectron spectroscopy and X-ray reflectometry is presented. We demonstrate the use of this structure to investigate a selectively protein-resistant self-assembled monolayer (SAM) consisting of silane-anchored, biotin-terminated poly(ethylene glycol) (PEG). PEG-associated IR bands were observed. Measurements of protein-characteristic band intensities showed that this SAM adsorbed streptavidin whereas it repelled bovine serum albumin, as had been expected from its structure. PMID:20418963

  16. STUDY BY AES AND EELS OF InP, InSb, InPO4 AND InxGa1-xAs SUBMITTED TO ELECTRON IRRADIATION

    NASA Astrophysics Data System (ADS)

    Ghaffour, M.; Abdellaoui, A.; Bouslama, M.; Ouerdane, A.; Al-Douri, Y.

    2012-02-01

    The surface of materials plays an important role in their technological applications. In the interest to study the stability of materials and their behavior, we irradiate them by the electrons by using the electron spectroscopy such as the Auger electron spectroscopy (AES) and the electron energy loss spectroscopy (EELS). These methods have proved their good sensitivity to study material surfaces. In this paper, we give some results about the effect of the electron beam irradiating the compounds InP, InSb, InPO4 and InxGa1-xAs. The III-V semiconductors InP and InSb seem to be sensitive to the electron irradiation. This breaks the chemical bonds between the element III and V which leads to an oxidation process at the surface. The AES and EELS spectroscopy are also used to characterize the oxide InPO4 whose thickness is about 10 Å grown on the substrate InP(100). The irradiation of the system InPO4/InP(100) by the electron beam of 5 keV energy leads to a structural change of the surface, so that there is breaking of chemical bonds between indium and phosphorus (In-P) and formation of new oxide other than InPO4. In this study we show an important result concerning the effect of the electron beam on the compound InxGa1-xAs by varying the parameter x to obtain In0.2Ga0.8As and In0.53Ga0.47As. It appears that the electron beam affects In0.2Ga0.8As too much in comparison with In0.53Ga0.47As. In the case of the irradiation of In0.2Ga0.8As, there is breaking of chemical bonds between indium and GaAs leading to formation of indium oxide associated to GaAs.

  17. Photoacoustic Spectroscopy for Trace Vapor Detection and Standoff Detection of Explosives

    DTIC Science & Technology

    2016-08-01

    ARL-RP-0577 ● AUG 2016 US Army Research Laboratory Photoacoustic Spectroscopy for Trace Vapor Detection and Standoff Detection...Photoacoustic Spectroscopy for Trace Vapor Detection and Standoff Detection of Explosives by Ellen L Holthoff and Paul M Pellegrino Sensors and Electron...

  18. Femtosecond MeV Electron Energy-Loss Spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, R. K.; Wang, X. J.

    2017-11-01

    Pump-probe electron energy-loss spectroscopy (EELS) with femtosecond temporal resolution will be a transformative research tool for studying nonequilibrium chemistry and electronic dynamics of matter. In this paper, we propose a concept of femtosecond EELS utilizing mega-electron-volt electron beams from a radio-frequency (rf) photocathode source. The high acceleration gradient and high beam energy of the rf gun are critical to the generation of 10-fs electron beams, which enables an improvement of the temporal resolution by more than 1 order of magnitude beyond the state of the art. In our proposal, the "reference-beam technique" relaxes the energy stability requirement of the rf power source by roughly 2 orders of magnitude. The requirements for the electron-beam quality, photocathode, spectrometer, and detector are also discussed. Supported by particle-tracking simulations, we demonstrate the feasibility of achieving sub-electron-volt energy resolution and approximately 10-fs temporal resolution with existing or near-future hardware performance.

  19. Auger electron spectroscopy at high spatial resolution and nA primary beam currents

    NASA Technical Reports Server (NTRS)

    Todd, G.; Poppa, H.; Moorhead, D.; Bales, M.

    1975-01-01

    An experimental Auger microprobe system is described which incorporates a field-emission electron gun and total beam currents in the nanoampere range. The distinguishing characteristics of this system include a large multistation UHV specimen chamber, pulse counting and fully digital Auger signal-processing techniques, and digital referencing methods to eliminate the effects of beam instabilities. Some preliminary results obtained with this system are described, and it is concluded that field-emission electron sources can be used for high-resolution Auger electron spectroscopy with primary-beam spots of less than 100 nm and beam currents of the order of 1 nA.

  20. Mahan excitons in degenerate wurtzite InN: Photoluminescence spectroscopy and reflectivity measurements

    NASA Astrophysics Data System (ADS)

    Feneberg, Martin; Däubler, Jürgen; Thonke, Klaus; Sauer, Rolf; Schley, Pascal; Goldhahn, Rüdiger

    2008-06-01

    Unintentionally degenerately doped n -type hexagonal wurtzite InN samples were studied by using Fourier-transform photoluminescence spectroscopy and reflectivity measurements. We found in luminescence overlapping band acceptor (e,A0) transitions related to two different acceptors with a strong enhancement of their intensities close to the Fermi energy of the electrons recombining with the localized holes. Our explanation is in terms of a Fermi-edge singularity of the electrons due to strongly increased electron-hole scattering. Electron-hole pairs with such resonantly enhanced oscillator strengths have been referred to as Mahan excitons. Temperature-dependent reflectivity measurements confirm this interpretation.

  1. Heavy atom vibrational modes and low-energy vibrational autodetachment in nitromethane anions

    NASA Astrophysics Data System (ADS)

    Thompson, Michael C.; Baraban, Joshua H.; Matthews, Devin A.; Stanton, John F.; Weber, J. Mathias

    2015-06-01

    We report infrared spectra of nitromethane anion, CH3NO2-, in the region 700-2150 cm-1, obtained by Ar predissociation spectroscopy and electron detachment spectroscopy. The data are interpreted in the framework of second-order vibrational perturbation theory based on coupled-cluster electronic structure calculations. The modes in the spectroscopic region studied here are mainly based on vibrations involving the heavier atoms; this work complements earlier studies on nitromethane anion that focused on the CH stretching region of the spectrum. Electron detachment begins at photon energies far below the adiabatic electron affinity due to thermal population of excited vibrational states.

  2. Heavy atom vibrational modes and low-energy vibrational autodetachment in nitromethane anions.

    PubMed

    Thompson, Michael C; Baraban, Joshua H; Matthews, Devin A; Stanton, John F; Weber, J Mathias

    2015-06-21

    We report infrared spectra of nitromethane anion, CH3NO2 (-), in the region 700-2150 cm(-1), obtained by Ar predissociation spectroscopy and electron detachment spectroscopy. The data are interpreted in the framework of second-order vibrational perturbation theory based on coupled-cluster electronic structure calculations. The modes in the spectroscopic region studied here are mainly based on vibrations involving the heavier atoms; this work complements earlier studies on nitromethane anion that focused on the CH stretching region of the spectrum. Electron detachment begins at photon energies far below the adiabatic electron affinity due to thermal population of excited vibrational states.

  3. Simulation and Modeling of charge particles transport using SIMION for our Time of Flight Positron Annihilation Induce Auger Electron Spectroscopy systems

    NASA Astrophysics Data System (ADS)

    Joglekar, Prasad; Shastry, K.; Satyal, Suman; Weiss, Alexander

    2012-02-01

    Time of flight Positron Annihilation Induced Auger Electron Spectroscopy system, a highly surface selective analytical technique using time of flight of auger electron resulting from the annihilation of core electrons by trapped incident positron in image potential well. We simulated and modeled the trajectories of the charge particles in TOF-PAES using SIMION for the development of new high resolution system at U T Arlington and current TOFPAES system. This poster presents the SIMION simulations results, Time of flight calculations and larmor radius calculations for current system as well as new system.

  4. Complete elimination of the secondary electron background in Auger spectra using Time of Flight Positron Annihilation Induced Auger Electron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Joglekar, Prasad; Shastry, Karthik; Kalaskar, Sushant; Satyal, Suman; Lim, L.; Weiss, Alexander

    2010-03-01

    Time of flight- positron annihilation induced Auger electron spectroscopy (TOF-PAES) is a surface analysis technique with high surface selectivity. Almost 95% of the TOF-PAES signal emerges from the topmost layer of the sample due to the trapping of positrons in an image-potential-well before annihilation. In this poster we will present new results that demonstrate how very low energy positron beams can be used together with the time of Flight (TOF) technique developed at The University of Texas at Arlington to obtain Auger spectra that are completely free of secondary electron background.

  5. The use of analytical surface tools in the fundamental study of wear. [atomic nature of wear

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1977-01-01

    Various techniques and surface tools available for the study of the atomic nature of the wear of materials are reviewed These include chemical etching, x-ray diffraction, electron diffraction, scanning electron microscopy, low-energy electron diffraction, Auger emission spectroscopy analysis, electron spectroscopy for chemical analysis, field ion microscopy, and the atom probe. Properties of the surface and wear surface regions which affect wear, such as surface energy, crystal structure, crystallographic orientation, mode of dislocation behavior, and cohesive binding, are discussed. A number of mechanisms involved in the generation of wear particles are identified with the aid of the aforementioned tools.

  6. Low-lying singlet states of carotenoids having 8-13 conjugated double bonds as determined by electronic absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Nakamura, Ryosuke; Kanematsu, Yasuo; Koyama, Yasushi; Nagae, Hiroyoshi; Nishio, Tomohiro; Hashimoto, Hideki; Zhang, Jian-Ping

    2005-07-01

    Electronic absorption spectra were recorded at room temperature in solutions of carotenoids having different numbers of conjugated double bonds, n = 8-13, including a spheroidene derivatives, neurosporene, spheroidene, lycopene, anhydrorhodovibrin and spirilloxanthin. The vibronic states of 1Bu+(v=0-4), 2Ag-(v=0-3), 3Ag- (0) and 1Bu- (0) were clearly identified. The arrangement of the four electronic states determined by electronic absorption spectroscopy was identical to that determined by measurement of resonance Raman excitation profiles [K. Furuichi et al., Chem. Phys. Lett. 356 (2002) 547] for carotenoids in crystals.

  7. Applications of Doppler-free saturation spectroscopy for edge physics studies (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, E. H., E-mail: martineh@ornl.gov; Caughman, J. B. O.; Isler, R. C.

    Doppler-free saturation spectroscopy provides a very powerful method to obtain detailed information about the electronic structure of the atom through measurement of the spectral line profile. This is achieved through a significant decrease in the Doppler broadening and essentially an elimination of the instrument broadening inherent to passive spectroscopic techniques. In this paper we present the technique and associated physics of Doppler-free saturation spectroscopy in addition to how one selects the appropriate transition. Simulations of H{sub δ} spectra are presented to illustrate the increased sensitivity to both electric field and electron density measurements.

  8. Hydrothermal Synthesis and Biocompatibility Study of Highly Crystalline Carbonated Hydroxyapatite Nanorods

    NASA Astrophysics Data System (ADS)

    Xue, Caibao; Chen, Yingzhi; Huang, Yongzhuo; Zhu, Peizhi

    2015-08-01

    Highly crystalline carbonated hydroxyapatite (CHA) nanorods with different carbonate contents were synthesized by a novel hydrothermal method. The crystallinity and chemical structure of synthesized nanorods were studied by Fourier transform infrared spectroscopy (FTIR), X-ray photo-electronic spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM). The biocompatibility of synthesized CHA nanorods was evaluated by cell viability and alkaline phosphatase (ALP) activity of MG-63 cell line. The biocompatibility evaluation results show that these CHA nanorods are biologically active apatites and potentially promising bone-substitute biomaterials for orthopedic application.

  9. Probing plasmonic breathing modes optically

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krug, Markus K., E-mail: markus.krug@uni-graz.at; Reisecker, Michael; Hohenau, Andreas

    2014-10-27

    The confinement of surface plasmon modes in flat nanoparticles gives rise to plasmonic breathing modes. With a vanishing net dipole moment, breathing modes do not radiate, i.e., they are optically dark. Having thus escaped optical detection, breathing modes were only recently revealed in silver nanodisks with electron energy loss spectroscopy in an electron microscope. We show that for disk diameters >200 nm, retardation induced by oblique optical illumination relaxes the optically dark character. This makes breathing modes and thus the full plasmonic mode spectrum accessible to optical spectroscopy. The experimental spectroscopy data are in excellent agreement with numerical simulations.

  10. X-Ray photoelectron Spectroscopy Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engelhard, Mark H.; Droubay, Timothy C.; Du, Yingge

    2017-01-03

    With capability for obtaining quantitative elemental composition, chemical and electronic state, and overlayer thickness information from the top ~10 nm of a sample surface, X-ray Photoelectron Spectroscopy (XPS) or Electron Spectroscopy for Chemical Analysis (ESCA) is a versatile and widely used technique for analyzing surfaces. The technique is applied to a host of materials, from insulators to conductors in virtually every scientific field and sub-discipline. More recently, XPS has been extended under in-situ and operando conditions. Following a brief introduction to XPS principles and instrument components, this article exemplifies widely ranging XPS applications in material and life sciences.

  11. A study of muscular tissue of animal origin by reflection-spectroscopy methods

    NASA Astrophysics Data System (ADS)

    Plotnikova, L. V.; Nechiporenko, A. P.; Orekhova, S. M.; Plotnikov, P. P.; Ishevskii, A. L.

    2017-06-01

    A comparative analysis of the spectral characteristics of the surface of muscular tissue of animal origin (pork) and its main components has been performed by the methods of diffuse reflection electronic spectroscopy (DRES) and frustrated total internal reflection IR spectroscopy. The experiments have shown that the application of the DRES method makes it possible to detect more pronounced changes in the surface optical characteristics of muscular tissue and obtain electronic spectra containing information about the component composition of its main parts under successive extraction of sarcoplasmic materials, myofibrillar proteins of the actomyosin complex, and stroma mucopolysaccharides.

  12. Applications of Doppler-free saturation spectroscopy for edge physics studies (invited).

    PubMed

    Martin, E H; Zafar, A; Caughman, J B O; Isler, R C; Bell, G L

    2016-11-01

    Doppler-free saturation spectroscopy provides a very powerful method to obtain detailed information about the electronic structure of the atom through measurement of the spectral line profile. This is achieved through a significant decrease in the Doppler broadening and essentially an elimination of the instrument broadening inherent to passive spectroscopic techniques. In this paper we present the technique and associated physics of Doppler-free saturation spectroscopy in addition to how one selects the appropriate transition. Simulations of H δ spectra are presented to illustrate the increased sensitivity to both electric field and electron density measurements.

  13. The ROSPHERE γ-ray spectroscopy array

    NASA Astrophysics Data System (ADS)

    Bucurescu, D.; Căta-Danil, I.; Ciocan, G.; Costache, C.; Deleanu, D.; Dima, R.; Filipescu, D.; Florea, N.; Ghiţă, D. G.; Glodariu, T.; Ivaşcu, M.; Lică, R.; Mărginean, N.; Mărginean, R.; Mihai, C.; Negret, A.; Niţă, C. R.; Olăcel, A.; Pascu, S.; Sava, T.; Stroe, L.; Şerban, A.; Şuvăilă, R.; Toma, S.; Zamfir, N. V.; Căta-Danil, G.; Gheorghe, I.; Mitu, I. O.; Suliman, G.; Ur, C. A.; Braunroth, T.; Dewald, A.; Fransen, C.; Bruce, A. M.; Podolyák, Zs.; Regan, P. H.; Roberts, O. J.

    2016-11-01

    The ROmanian array for SPectroscopy in HEavy ion REactions (ROSPHERE) has been designed as a multi-detector setup dedicated to γ-ray spectroscopy studies at the Bucharest 9 MV Tandem accelerator. Consisting of up to 25 detectors (either Compton suppressed HPGe detectors or fast LaBr3(Ce) scintillator detectors) together with a state of the art plunger device, ROSPHERE is a powerful tool for lifetime measurements using the Recoil Distance Doppler Shift (RDDS) and the in-beam Fast Electronic Scintillation Timing (FEST) methods. The array's geometry, detectors, electronics and data acquisition system are described. Selected results from the first experimental campaigns are also presented.

  14. Direct observation and analysis of york-shell materials using low-voltage high-resolution scanning electron microscopy: Nanometal-particles encapsulated in metal-oxide, carbon, and polymer

    NASA Astrophysics Data System (ADS)

    Asahina, Shunsuke; Suga, Mitsuo; Takahashi, Hideyuki; Young Jeong, Hu; Galeano, Carolina; Schüth, Ferdi; Terasaki, Osamu

    2014-11-01

    Nanometal particles show characteristic features in chemical and physical properties depending on their sizes and shapes. For keeping and further enhancing their features, the particles should be protected from coalescence or degradation. One approach is to encapsulate the nanometal particles inside pores with chemically inert or functional materials, such as carbon, polymer, and metal oxides, which contain mesopores to allow permeation of only chemicals not the nanometal particles. Recently developed low-voltage high-resolution scanning electron microscopy was applied to the study of structural, chemical, and electron state of both nanometal particles and encapsulating materials in yolk-shell materials of Au@C, Ru/Pt@C, Au@TiO2, and Pt@Polymer. Progresses in the following categories were shown for the yolk-shell materials: (i) resolution of topographic image contrast by secondary electrons, of atomic-number contrast by back-scattered electrons, and of elemental mapping by X-ray energy dispersive spectroscopy; (ii) sample preparation for observing internal structures; and (iii) X-ray spectroscopy such as soft X-ray emission spectroscopy. Transmission electron microscopy was also used for characterization of Au@C.

  15. Visualizing electron pockets in cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Das, Tanmoy; Markiewicz, R. S.; Bansil, A.; Balatsky, A. V.

    2012-06-01

    Fingerprints of the electron pocket in cuprates have been obtained only in numerous magnetotransport measurements, but its absence in spectroscopic observations poses a long-standing mystery. We develop a theoretical tool to provide ways to detect electron pockets via spectroscopies including scanning tunneling microscopy (STM) spectra, inelastic neutron scattering (INS), and angle-resolved photoemission spectroscopy (ARPES). We show that the quasiparticle-interference (QPI) pattern, measured by STM, shows an additional seven q vectors associated with the scattering on the electron pocket than that on the hole pocket. Furthermore, the Bogolyubov quasiparticle scatterings of the electron pocket lead to a second magnetic resonance mode in the INS spectra at a higher resonance energy. Finally, we reanalyze some STM, INS, and ARPES experimental data of several cuprates which dictates the direct fingerprints of electron pockets in these systems.

  16. Communication: Coherences observed in vivo in photosynthetic bacteria using two-dimensional electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Dahlberg, Peter D.; Norris, Graham J.; Wang, Cheng; Viswanathan, Subha; Singh, Ved P.; Engel, Gregory S.

    2015-09-01

    Energy transfer through large disordered antenna networks in photosynthetic organisms can occur with a quantum efficiency of nearly 100%. This energy transfer is facilitated by the electronic structure of the photosynthetic antennae as well as interactions between electronic states and the surrounding environment. Coherences in time-domain spectroscopy provide a fine probe of how a system interacts with its surroundings. In two-dimensional electronic spectroscopy, coherences can appear on both the ground and excited state surfaces revealing detailed information regarding electronic structure, system-bath coupling, energy transfer, and energetic coupling in complex chemical systems. Numerous studies have revealed coherences in isolated photosynthetic pigment-protein complexes, but these coherences have not been observed in vivo due to the small amplitude of these signals and the intense scatter from whole cells. Here, we present data acquired using ultrafast video-acquisition gradient-assisted photon echo spectroscopy to observe quantum beating signals from coherences in vivo. Experiments were conducted on isolated light harvesting complex II (LH2) from Rhodobacter sphaeroides, whole cells of R. sphaeroides, and whole cells of R. sphaeroides grown in 30% deuterated media. A vibronic coherence was observed following laser excitation at ambient temperature between the B850 and the B850∗ states of LH2 in each of the 3 samples with a lifetime of ˜40-60 fs.

  17. Electronic excitation of carbonyl sulphide (COS) by high-resolution vacuum ultraviolet photoabsorption and electron-impact spectroscopy in the energy region from 4 to 11 eV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Limão-Vieira, P., E-mail: plimaovieira@fct.unl.pt; Department of Physics, Sophia University, Tokyo 102-8554; Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA

    2015-02-14

    The electronic state spectroscopy of carbonyl sulphide, COS, has been investigated using high resolution vacuum ultraviolet photoabsorption spectroscopy and electron energy loss spectroscopy in the energy range of 4.0–10.8 eV. The spectrum reveals several new features not previously reported in the literature. Vibronic structure has been observed, notably in the low energy absorption dipole forbidden band assigned to the (4π←3π) ({sup 1}Δ←{sup 1}Σ{sup +}) transition, with a new weak transition assigned to ({sup 1}Σ{sup −}←{sup 1}Σ{sup +}) reported here for the first time. The absolute optical oscillator strengths are determined for ground state to {sup 1}Σ{sup +} and {sup 1}Πmore » transitions. Based on our recent measurements of differential cross sections for the optically allowed ({sup 1}Σ{sup +} and {sup 1}Π) transitions of COS by electron impact, the optical oscillator strength f{sub 0} value and integral cross sections (ICSs) are derived by applying a generalized oscillator strength analysis. Subsequently, ICSs predicted by the scaling are confirmed down to 60 eV in the intermediate energy region. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of carbonyl sulphide in the upper stratosphere (20–50 km)« less

  18. Transport mirages in single-molecule devices

    NASA Astrophysics Data System (ADS)

    Gaudenzi, R.; Misiorny, M.; Burzurí, E.; Wegewijs, M. R.; van der Zant, H. S. J.

    2017-03-01

    Molecular systems can exhibit a complex, chemically tailorable inner structure which allows for targeting of specific mechanical, electronic, and optical properties. At the single-molecule level, two major complementary ways to explore these properties are molecular quantum-dot structures and scanning probes. This article outlines comprehensive principles of electron-transport spectroscopy relevant to both these approaches and presents a new, high-resolution experiment on a high-spin single-molecule junction exemplifying these principles. Such spectroscopy plays a key role in further advancing our understanding of molecular and atomic systems, in particular, the relaxation of their spin. In this joint experimental and theoretical analysis, particular focus is put on the crossover between the resonant regime [single-electron tunneling] and the off-resonant regime [inelastic electron (co)tunneling spectroscopy (IETS)]. We show that the interplay of these two processes leads to unexpected mirages of resonances not captured by either of the two pictures alone. Although this turns out to be important in a large fraction of the possible regimes of level positions and bias voltages, it has been given little attention in molecular transport studies. Combined with nonequilibrium IETS—four-electron pump-probe excitations—these mirages provide crucial information on the relaxation of spin excitations. Our encompassing physical picture is supported by a master-equation approach that goes beyond weak coupling. The present work encourages the development of a broader connection between the fields of molecular quantum-dot and scanning probe spectroscopy.

  19. Total photoelectron yield spectroscopy of energy distribution of electronic states density at GaN surface and SiO2/GaN interface

    NASA Astrophysics Data System (ADS)

    Ohta, Akio; Truyen, Nguyen Xuan; Fujimura, Nobuyuki; Ikeda, Mitsuhisa; Makihara, Katsunori; Miyazaki, Seiichi

    2018-06-01

    The energy distribution of the electronic state density of wet-cleaned epitaxial GaN surfaces and SiO2/GaN structures has been studied by total photoelectron yield spectroscopy (PYS). By X-ray photoelectron spectroscopy (XPS) analysis, the energy band diagram for a wet-cleaned epitaxial GaN surface such as the energy level of the valence band top and electron affinity has been determined to obtain a better understanding of the measured PYS signals. The electronic state density of GaN surface with different carrier concentrations in the energy region corresponding to the GaN bandgap has been evaluated. Also, the interface defect state density of SiO2/GaN structures was also estimated by not only PYS analysis but also capacitance–voltage (C–V) characteristics. We have demonstrated that PYS analysis enables the evaluation of defect state density filled with electrons at the SiO2/GaN interface in the energy region corresponding to the GaN midgap, which is difficult to estimate by C–V measurement of MOS capacitors.

  20. Scanning transmission electron microscopy and its application to the study of nanoparticles and nanoparticle systems.

    PubMed

    Liu, Jingyue

    2005-06-01

    Scanning transmission electron microscopy (STEM) techniques can provide imaging, diffraction and spectroscopic information, either simultaneously or in a serial manner, of the specimen with an atomic or a sub-nanometer spatial resolution. High-resolution STEM imaging, when combined with nanodiffraction, atomic resolution electron energy-loss spectroscopy and nanometer resolution X-ray energy dispersive spectroscopy techniques, is critical to the fundamental studies of importance to nanoscience and nanotechnology. The availability of sub-nanometer or sub-angstrom electron probes in a STEM instrument, due to the use of a field emission gun and aberration correctors, ensures the greatest capabilities for studies of sizes, shapes, defects, crystal and surface structures, and compositions and electronic states of nanometer-size regions of thin films, nanoparticles and nanoparticle systems. The various imaging, diffraction and spectroscopy modes available in a dedicated STEM or a field emission TEM/STEM instrument are reviewed and the application of these techniques to the study of nanoparticles and nanostructured catalysts is used as an example to illustrate the critical role of the various STEM techniques in nanotechnology and nanoscience research.

  1. Superatom spectroscopy and the electronic state correlation between elements and isoelectronic molecular counterparts.

    PubMed

    Peppernick, Samuel J; Gunaratne, K D Dasitha; Castleman, A W

    2010-01-19

    Detailed in the present investigation are results pertaining to the photoelectron spectroscopy of negatively charged atomic ions and their isoelectronic molecular counterparts. Experiments utilizing the photoelectron imaging technique are performed on the negative ions of the group 10 noble metal block (i.e. Ni-, Pd-, and Pt-) of the periodic table at a photon energy of 2.33 eV (532 nm). The accessible electronic transitions, term energies, and orbital angular momentum components of the bound electronic states in the atom are then compared with photoelectron images collected for isoelectronic early transition metal heterogeneous diatomic molecules, M-X- (M = Ti,Zr,W; X = O or C). A superposition principle connecting the spectroscopy between the atomic and molecular species is observed, wherein the electronic structure of the diatomic is observed to mimic that present in the isoelectronic atom. The molecular ions studied in this work, TiO-, ZrO-, and WC- can then be interpreted as possessing superatomic electronic structures reminiscent of the isoelectronic elements appearing on the periodic table, thereby quantifying the superatom concept.

  2. Room-temperature ultrafast nonlinear spectroscopy of a single molecule

    NASA Astrophysics Data System (ADS)

    Liebel, Matz; Toninelli, Costanza; van Hulst, Niek F.

    2018-01-01

    Single-molecule spectroscopy aims to unveil often hidden but potentially very important contributions of single entities to a system's ensemble response. Albeit contributing tremendously to our ever growing understanding of molecular processes, the fundamental question of temporal evolution, or change, has thus far been inaccessible, thus painting a static picture of a dynamic world. Here, we finally resolve this dilemma by performing ultrafast time-resolved transient spectroscopy on a single molecule. By tracing the femtosecond evolution of excited electronic state spectra of single molecules over hundreds of nanometres of bandwidth at room temperature, we reveal their nonlinear ultrafast response in an effective three-pulse scheme with fluorescence detection. A first excitation pulse is followed by a phase-locked de-excitation pulse pair, providing spectral encoding with 25 fs temporal resolution. This experimental realization of true single-molecule transient spectroscopy demonstrates that two-dimensional electronic spectroscopy of single molecules is experimentally within reach.

  3. Electronic Structure of the Organic Semiconductor Alq3 (aluminum tris-8-hydroxyquinoline) from Soft X-ray Spectroscopies and Density Functional Theory Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeMasi, A.; Piper, L; Zhang, Y

    2008-01-01

    The element-specific electronic structure of the organic semiconductor aluminum tris-8-hydroxyquinoline (Alq3) has been studied using a combination of resonant x-ray emission spectroscopy, x-ray photoelectron spectroscopy, x-ray absorption spectroscopy, and density functional theory (DFT) calculations. Resonant and nonresonant x-ray emission spectroscopy were used to measure directly the carbon, nitrogen and oxygen 2p partial densities of states in Alq3, and good agreement was found with the results of DFT calculations. Furthermore, resonant x-ray emission at the carbon K-edge is shown to be able to measure the partial density of states associated with individual C sites. Finally, comparison of previous x-ray emission studiesmore » and the present data reveal the presence of clear photon-induced damage in the former.« less

  4. Auger electron spectroscopy and x-ray photoelectron spectroscopy of the biocorrosion of copper by Gum Arabic, BCS and Pseudomonas atlantica exopolymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jolley, J.G.; Geesey, G.G.; Hankins, M.R.

    1987-01-01

    Thin films (3.4 nm) of copper on germanium substrates were exposed to 10% Gum Arabic aqueous solution, 1% BCS (aqueous and simulated sea water solutions) and 0.5% Pseudomonas atlantica exopolymer (aqueous and simulated sea water solutions). Pre- and post-exposure characterization were done by Auger electron spectroscopy and x-ray photoelectron spectroscopy. Ancillary graphite furnace atomic absorption spectroscopy was used to monitor the removal process of the copper thin film from the germanium substrate. Results indicate that the copper was oxidized by the Gum Arabic and BCS, and some was removed from the Cu/Ge interface by all three polymers and incorporated intomore » the polymer matrix. Thus biocorrosion of copper was exhibited by the Gum Arabic, BCS and Pseudomonas atlantica exopolymer. 14 refs., 4 figs., 3 tabs.« less

  5. Free-electron laser spectroscopy in biology, medicine, and materials science; Proceedings of the Meeting, Los Angeles, CA, Jan. 22, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwettman, H.A.

    1993-01-01

    Various papers on FEL spectroscopy in biology, medicine, and materials science are presented. Individual topics addressed include: Vanderbilt University FEL Center, FIR FEL facility at the University of California/Santa Barbara, FEL research facilities and opportunities at Duke, facilities at the Stanford Picosecond FEL Center, FIR nonlinear response of electrons in semiconductor nanostructures, FIR harmonic generation from semiconductor heterostructures, intrinsic response times of double-barrier resonant tunneling diodes at tetrahertz frequencies, semiconductor spectroscopy and ablation processes with the Vanderbilt FEL. Also discussed are: picosecond nonlinear optics in semiconductor quantum wells with the SCA FEL, excitation spectroscopy of thin-film disordered semiconductors, biophysical applicationmore » of FELs, FEL investigation of energy transfer in condensed phase systems, probing protein photochemistry and dynamics with ultrafast infrared spectroscopy, plasma ablation of hard tissues by FEL, FEL irradiation of the cornea.« less

  6. A simple method to synthesize polyhedral hexagonal boron nitride nanofibers

    NASA Astrophysics Data System (ADS)

    Lin, Liang-xu; Zheng, Ying; Li, Zhao-hui; shen, Xiao-nv; Wei, Ke-mei

    2007-12-01

    Hexagonal boron nitride (h-BN) fibers with polyhedral morphology were synthesized with a simple-operational, large-scale and low-cost method. The sample obtained was studied by X-ray photoelectron spectrometer (XPS), electron energy lose spectroscopy (EELS), X-ray powder diffraction (XRD), Fourier transformation infrared spectroscopy (FT-IR), etc., which matched with h-BN. Environment scanning electron microscopy (ESEM) and transmission electron microscope (TEM) indicated that the BN fibers possess polyhedral morphology. The diameter of the BN fibers is mainly in the range of 100-500 nm.

  7. Electronic structure of β-Ga2O3 single crystals investigated by hard X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Guo-Ling; Zhang, Fabi; Cui, Yi-Tao; Oji, Hiroshi; Son, Jin-Young; Guo, Qixin

    2015-07-01

    By combination of hard X-ray photoelectron spectroscopy (HAXPES) and first-principles band structure calculations, the electronic states of β-Ga2O3 were investigated to deepen the understanding of bulk information for this compound. The valence band spectra of HAXPES presented the main contribution from Ga 4sp, which are well represented by photoionization cross section weighted partial density of states. The experimental data complemented with the theoretical study yield a realistic picture of the electronic structure for β-Ga2O3.

  8. Electronic fingerprints of DNA bases on graphene.

    PubMed

    Ahmed, Towfiq; Kilina, Svetlana; Das, Tanmoy; Haraldsen, Jason T; Rehr, John J; Balatsky, Alexander V

    2012-02-08

    We calculate the electronic local density of states (LDOS) of DNA nucleotide bases (A,C,G,T), deposited on graphene. We observe significant base-dependent features in the LDOS in an energy range within a few electronvolts of the Fermi level. These features can serve as electronic fingerprints for the identification of individual bases in scanning tunneling spectroscopy (STS) experiments that perform image and site dependent spectroscopy on biomolecules. Thus the fingerprints of DNA-graphene hybrid structures may provide an alternative route to DNA sequencing using STS. © 2012 American Chemical Society

  9. Optical Diagnostics in the Gaseous Electronics Conference Reference Cell

    PubMed Central

    Hebner, G. A.; Greenberg, K. E.

    1995-01-01

    A number of laser-induced fluorescence and absorption spectroscopy studies have been conducted using Gaseous Electronics Conference Reference Cells. Laser-induced fluorescence has been used to measure hydrogen atom densities, to measure argon metastable spatial profiles, to determine the sheath electric field, and to infer the electron density and temperature. Absorption spectroscopy, using lamp sources and diode lasers, has been used to measure metastable atom densities in helium and argon discharges and fluorocarbon densities in silicon etching discharges. The experimental techniques and sample results of these investigations are reviewed. PMID:29151748

  10. Surface molecular imprinting onto fluorescein-coated magnetic nanoparticlesvia reversible addition fragmentation chain transfer polymerization: A facile three-in-one system for recognition and separation of endocrine disrupting chemicals

    NASA Astrophysics Data System (ADS)

    Li, Ying; Dong, Cunku; Chu, Jia; Qi, Jingyao; Li, Xin

    2011-01-01

    In this study, we present a general protocol for the making of surface-imprinted magnetic fluorescence beads viareversible addition-fragmentation chain transfer polymerization. The resulting composites were characterized by X-ray diffraction analysis, transmission electron microscopy, scanning electron microscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy, and energy dispersive spectroscopy. The as-synthesized beads exhibited homogeneous polymer films (thickness of about 5.7 nm), spherical shape, high fluorescence intensity and magnetic property (Magnetization (Ms) = 3.67 emu g-1). The hybrids bind the original template 17β-estradiol with an appreciable selectivity over structurally related compounds. In addition, the resulting hybrids performed without obvious deterioration after five repeated cycles. This study therefore demonstrates the potential of molecularly imprinted polymers for the recognition and separation of endocrine disrupting chemicals.In this study, we present a general protocol for the making of surface-imprinted magnetic fluorescence beads viareversible addition-fragmentation chain transfer polymerization. The resulting composites were characterized by X-ray diffraction analysis, transmission electron microscopy, scanning electron microscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy, and energy dispersive spectroscopy. The as-synthesized beads exhibited homogeneous polymer films (thickness of about 5.7 nm), spherical shape, high fluorescence intensity and magnetic property (Magnetization (Ms) = 3.67 emu g-1). The hybrids bind the original template 17β-estradiol with an appreciable selectivity over structurally related compounds. In addition, the resulting hybrids performed without obvious deterioration after five repeated cycles. This study therefore demonstrates the potential of molecularly imprinted polymers for the recognition and separation of endocrine disrupting chemicals. Electronic supplementary information (ESI) available: Supplementary figure S1. The hysteresis loop of Fe3O4 (a), Fe3O4@SiO2 (b), and Fe3O4@SiO2-Dye-SiO2 (c). See DOI: 10.1039/c0nr00614a

  11. Revealing electronic structure changes in Chevrel phase cathodes upon Mg insertion using X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Liwen F.; Wright, Joshua; Perdue, Brian R.

    Following previous work predicting the electronic response of the Chevrel phase Mo6S8 upon Mg insertion (Thole et al., Phys. Chem. Chem. Phys., 2015, 17, 22548), we provide the experimental proof, evident in X-ray absorption spectroscopy, to illustrate the charge compensation mechanism of the Chevrel phase compound during Mg insertion and de-insertion processes.

  12. Formation of multicomponent matrix metal oxide films in anodic alumina matrixes by chemical deposition

    NASA Astrophysics Data System (ADS)

    Gorokh, G. G.; Zakhlebayeva, A. I.; Metla, A. I.; Zhilinskiy, V. V.; Murashkevich, A. N.; Bogomazova, N. V.

    2017-11-01

    The metal oxide films of SnxZnyOz and SnxMoyOz systems deposited onto anodic alumina matrixes by chemical and ion layering from an aqueous solutions were characterized by scanning electron microscopy, Raman spectroscopy, electron probe X-ray microanalysis and IR spectroscopy. The obtained matrix films had reproducible composition and structure and possessed certain morphological characteristics and properties.

  13. Image simulation for electron energy loss spectroscopy

    DOE PAGES

    Oxley, Mark P.; Pennycook, Stephen J.

    2007-10-22

    In this paper, aberration correction of the probe forming optics of the scanning transmission electron microscope has allowed the probe-forming aperture to be increased in size, resulting in probes of the order of 1 Å in diameter. The next generation of correctors promise even smaller probes. Improved spectrometer optics also offers the possibility of larger electron energy loss spectrometry detectors. The localization of images based on core-loss electron energy loss spectroscopy is examined as function of both probe-forming aperture and detector size. The effective ionization is nonlocal in nature, and two common local approximations are compared to full nonlocal calculations.more » Finally, the affect of the channelling of the electron probe within the sample is also discussed.« less

  14. SmB6 electron-phonon coupling constant from time- and angle-resolved photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Sterzi, A.; Crepaldi, A.; Cilento, F.; Manzoni, G.; Frantzeskakis, E.; Zacchigna, M.; van Heumen, E.; Huang, Y. K.; Golden, M. S.; Parmigiani, F.

    2016-08-01

    SmB6 is a mixed valence Kondo system resulting from the hybridization between localized f electrons and delocalized d electrons. We have investigated its out-of-equilibrium electron dynamics by means of time- and angle-resolved photoelectron spectroscopy. The transient electronic population above the Fermi level can be described by a time-dependent Fermi-Dirac distribution. By solving a two-temperature model that well reproduces the relaxation dynamics of the effective electronic temperature, we estimate the electron-phonon coupling constant λ to range from 0.13 ±0.03 to 0.04 ±0.01 . These extremes are obtained assuming a coupling of the electrons with either a phonon mode at 10 or 19 meV. A realistic value of the average phonon energy will give an actual value of λ within this range. Our results provide an experimental report on the material electron-phonon coupling, contributing to both the electronic transport and the macroscopic thermodynamic properties of SmB6.

  15. Epitaxial growth of CoO films on semiconductor and metal substrates by constructing a complex heterostructure

    NASA Astrophysics Data System (ADS)

    Entani, S.; Kiguchi, M.; Saiki, K.; Koma, A.

    2003-01-01

    Epitaxial growth of CoO films was studied using reflection high-energy electron diffraction (RHEED), electron energy loss spectroscopy (EELS), ultraviolet photoelectron spectroscopy (UPS) and Auger electron spectroscopy (AES). The RHEED results indicated that an epitaxial CoO film grew on semiconductor and metal substrates (CoO (0 0 1)∥GaAs (0 0 1), Cu (0 0 1), Ag (0 0 1) and [1 0 0]CoO∥[1 0 0] substrates) by constructing a complex heterostructure with two alkali halide buffer layers. The AES, EELS and UPS results showed that the grown CoO film had almost the same electronic structure as bulk CoO. We could show that use of alkali halide buffer layers was a good way to grow metal oxide films on semiconductor and metal substrates in an O 2 atmosphere. The alkali halide layers not only works as glue to connect very dissimilar materials but also prevents oxidation of metal and semiconductor substrates.

  16. Analytical modeling of electron energy loss spectroscopy of graphene: Ab initio study versus extended hydrodynamic model.

    PubMed

    Djordjević, Tijana; Radović, Ivan; Despoja, Vito; Lyon, Keenan; Borka, Duško; Mišković, Zoran L

    2018-01-01

    We present an analytical modeling of the electron energy loss (EEL) spectroscopy data for free-standing graphene obtained by scanning transmission electron microscope. The probability density for energy loss of fast electrons traversing graphene under normal incidence is evaluated using an optical approximation based on the conductivity of graphene given in the local, i.e., frequency-dependent form derived by both a two-dimensional, two-fluid extended hydrodynamic (eHD) model and an ab initio method. We compare the results for the real and imaginary parts of the optical conductivity in graphene obtained by these two methods. The calculated probability density is directly compared with the EEL spectra from three independent experiments and we find very good agreement, especially in the case of the eHD model. Furthermore, we point out that the subtraction of the zero-loss peak from the experimental EEL spectra has a strong influence on the analytical model for the EEL spectroscopy data. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Chemical mapping and quantification at the atomic scale by scanning transmission electron microscopy.

    PubMed

    Chu, Ming-Wen; Chen, Cheng Hsuan

    2013-06-25

    With innovative modern material-growth methods, a broad spectrum of fascinating materials with reduced dimensions-ranging from single-atom catalysts, nanoplasmonic and nanophotonic materials to two-dimensional heterostructural interfaces-is continually emerging and extending the new frontiers of materials research. A persistent central challenge in this grand scientific context has been the detailed characterization of the individual objects in these materials with the highest spatial resolution, a problem prompting the need for experimental techniques that integrate both microscopic and spectroscopic capabilities. To date, several representative microscopy-spectroscopy combinations have become available, such as scanning tunneling microscopy, tip-enhanced scanning optical microscopy, atom probe tomography, scanning transmission X-ray microscopy, and scanning transmission electron microscopy (STEM). Among these tools, STEM boasts unique chemical and electronic sensitivity at unparalleled resolution. In this Perspective, we elucidate the advances in STEM and chemical mapping applications at the atomic scale by energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy with a focus on the ultimate challenge of chemical quantification with atomic accuracy.

  18. To the application of the emission Mössbauer and positron annihilation spectroscopies for detection of carcinogens

    NASA Astrophysics Data System (ADS)

    Bokov, A. V.; Byakov, V. M.; Kulikov, L. A.; Perfiliev, Yu. D.; Stepanov, S. V.

    2017-11-01

    Being the main cause of cancer, almost all chemical carcinogens are strong electrophiles, that is, they have a high affinity for the electron. We have shown that positron annihilation lifetime spectroscopy (PALS) is able to detect chemical carcinogens by their inhibition of positronium (Ps) formation in liquid media. Electrophilic carcinogens intercept thermalized track electrons, which are precursors of Ps, and as a result, when they are present Ps atom does not practically form. Available biophysical data seemingly indicate that frozen solutions model better an intracellular medium than the liquid ones. So it is reasonable to use emission Mössbauer spectroscopy (EMS) to detect chemical carcinogens, measuring the yield of 57Fe2+ions formed in reactions of Auger electrons and other secondary electrons they produced with 57Fe3+. These reactions are similar to the Ps formation process in the terminal part the positron track: e++ e- =>Ps. So EMS and PALS are complementary methods for detection of carcinogenic compounds.

  19. Response surface modeling for optimization heterocatalytic Fenton oxidation of persistence organic pollution in high total dissolved solid containing wastewater.

    PubMed

    Sekaran, G; Karthikeyan, S; Boopathy, R; Maharaja, P; Gupta, V K; Anandan, C

    2014-01-01

    The rice-husk-based mesoporous activated carbon (MAC) used in this study was precarbonized and activated using phosphoric acid. N2 adsorption/desorption isotherm, X-ray powder diffraction, electron spin resonance, X-ray photoelectron spectroscopy and scanning electron microscopy, transmission electron microscopy, (29)Si-NMR spectroscopy, and diffuse reflectance spectroscopy were used to characterize the MAC. The tannery wastewater carrying high total dissolved solids (TDS) discharged from leather industry lacks biodegradability despite the presence of dissolved protein. This paper demonstrates the application of free electron-rich MAC as heterogeneous catalyst along with Fenton reagent for the oxidation of persistence organic compounds in high TDS wastewater. The heterogeneous Fenton oxidation of the pretreated wastewater at optimum pH (3.5), H2O2 (4 mmol/L), FeSO4[Symbol: see text]7H2O (0.2 mmol/L), and time (4 h) removed chemical oxygen demand, biochemical oxygen demand, total organic carbon and dissolved protein by 86, 91, 83, and 90%, respectively.

  20. Gas Phase Molecular Spectroscopy: Electronic Spectroscopy of Combustion Intermediates, Chlorine Azide kinetics, and Rovibrational Energy Transfer in Acetylene

    NASA Astrophysics Data System (ADS)

    Freel, Keith A.

    This dissertation is composed of three sections. The first deals with the electronic spectroscopy of combustion intermediates that are related to the formation of polycyclic aromatic hydrocarbons. Absorption spectra for phenyl, phenoxy, benzyl, and phenyl peroxy radicals were recorded using the technique of cavity ring-down spectroscopy. When possible, molecular constants, vibrational frequencies, and excited state lifetimes for these radicals were derived from these data. The results were supported by theoretical predictions. The second section presents a study of electron attachment to chlorine azide (ClN3) using a flowing-afterglow Langmuir-probe apparatus. Electron attachment rates were measured to be 3.5x10-8 and 4.5x10-8 cm3s-1 at 298 and 400 K respectively. The reactions of ClN3 with eighteen cations and seventeen anions were characterized. Rate constants were measured using a selected ion flow tube. The ionization energy (>9.6eV), proton affinity (713+/-41 kJ mol-1), and electron affinity (2.48+/-0.2 eV) for ClN 3 were determined from these data. The third section demonstrates the use of double resonance spectroscopy to observe state-selected rovibrational energy transfer from the first overtone asymmetric stretch of acetylene. The total population removal rate constants from various rotational levels of the (1,0,1,00,00) vibrational state were determined to be in the range of (9-17) x 10 -10 cm3s-1. Rotational energy transfer accounted for approximately 90% of the total removal rate from each state. Therefore, the upper limit of vibrational energy transfer from the (1,0,1,0 0,00) state was 10%.

  1. Investigating Antibacterial Effects of Garlic (Allium sativum) Concentrate and Garlic-Derived Organosulfur Compounds on Campylobacter jejuni by Using Fourier Transform Infrared Spectroscopy, Raman Spectroscopy, and Electron Microscopy ▿ †

    PubMed Central

    Lu, Xiaonan; Rasco, Barbara A.; Jabal, Jamie M. F.; Aston, D. Eric; Lin, Mengshi; Konkel, Michael E.

    2011-01-01

    Fourier transform infrared (FT-IR) spectroscopy and Raman spectroscopy were used to study the cell injury and inactivation of Campylobacter jejuni from exposure to antioxidants from garlic. C. jejuni was treated with various concentrations of garlic concentrate and garlic-derived organosulfur compounds in growth media and saline at 4, 22, and 35°C. The antimicrobial activities of the diallyl sulfides increased with the number of sulfur atoms (diallyl sulfide < diallyl disulfide < diallyl trisulfide). FT-IR spectroscopy confirmed that organosulfur compounds are responsible for the substantial antimicrobial activity of garlic, much greater than those of garlic phenolic compounds, as indicated by changes in the spectral features of proteins, lipids, and polysaccharides in the bacterial cell membranes. Confocal Raman microscopy (532-nm-gold-particle substrate) and Raman mapping of a single bacterium confirmed the intracellular uptake of sulfur and phenolic components. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to verify cell damage. Principal-component analysis (PCA), discriminant function analysis (DFA), and soft independent modeling of class analogs (SIMCA) were performed, and results were cross validated to differentiate bacteria based upon the degree of cell injury. Partial least-squares regression (PLSR) was employed to quantify and predict actual numbers of healthy and injured bacterial cells remaining following treatment. PLSR-based loading plots were investigated to further verify the changes in the cell membrane of C. jejuni treated with organosulfur compounds. We demonstrated that bacterial injury and inactivation could be accurately investigated by complementary infrared and Raman spectroscopies using a chemical-based, “whole-organism fingerprint” with the aid of chemometrics and electron microscopy. PMID:21642409

  2. Metallic scattering lifetime measurements with terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Lea, Graham Bryce

    The momentum scattering lifetime is a fundamental parameter of metallic conduction that can be measured with terahertz time-domain spectroscopy. This technique has an important strength over optical reflectance spectroscopy: it is capable of measuring both the phase and the amplitude of the probing radiation. This allows simultaneous, independent measurements of the scattering lifetime and resistivity. Broadly, it is the precision of the phase measurement that determines the precision of scattering lifetime measurements. This thesis describes milliradian-level phase measurement refinements in the experimental technique and measures the conductivity anisotropy in the correlated electron system CaRuO3. These phase measurement refinements translate to femtosecond-level refinements in scattering lifetime measurements of thin metallic films. Keywords: terahertz time-domain spectroscopy, calcium ruthenate, ruthenium oxides, correlated electrons, experimental technique.

  3. Auger electron spectroscopy, secondary ion mass spectroscopy and optical characterization of a-C-H and BN films

    NASA Technical Reports Server (NTRS)

    Pouch, J. J.; Alterovitz, S. A.; Warner, J. D.

    1986-01-01

    The amorphous dielectrics a-C:H and BN were deposited on III-V semiconductors. Optical band gaps as high as 3 eV were measured for a-C:H generated by C4H10 plasmas; a comparison was made with bad gaps obtained from films prepared by CH4 glow discharges. The ion beam deposited BN films exhibited amorphous behavior with band gaps on the order of 5 eV. Film compositions were studied by Auger electron spectroscopy (AES), x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). The optical properties were characterized by ellipsometry, UV/VIS absorption, and IR reflection and transmission. Etching rates of a-C:H subjected to O2 dicharges were determined.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ledbetter, Rhesa N.; Garcia Costas, Amaya M.; Lubner, Carolyn E.

    The biological reduction of dinitrogen (N 2) to ammonia (NH 3) by nitrogenase is an energetically demanding reaction that requires low-potential electrons and ATP; however, pathways used to deliver the electrons from central metabolism to the reductants of nitrogenase, ferredoxin or flavodoxin, remain unknown for many diazotrophic microbes. The FixABCX protein complex has been proposed to reduce flavodoxin or ferredoxin using NADH as the electron donor in a process known as electron bifurcation. Herein, the FixABCX complex from Azotobacter vinelandii was purified and demonstrated to catalyze an electron bifurcation reaction: oxidation of NADH (E m = -320 mV) coupled tomore » reduction of flavodoxin semiquinone (E m = -460 mV) and reduction of coenzyme Q (E m = 10 mV). Knocking out fix genes rendered ..delta..rnf A. vinelandii cells unable to fix dinitrogen, confirming that the FixABCX system provides another route for delivery of electrons to nitrogenase. Characterization of the purified FixABCX complex revealed the presence of flavin and iron-sulfur cofactors confirmed by native mass spectrometry, electron paramagnetic resonance spectroscopy, and transient absorption spectroscopy. Transient absorption spectroscopy further established the presence of a short-lived flavin semiquinone radical, suggesting that a thermodynamically unstable flavin semiquinone may participate as an intermediate in the transfer of an electron to flavodoxin. A structural model of FixABCX, generated using chemical cross-linking in conjunction with homology modeling, revealed plausible electron transfer pathways to both high- and low-potential acceptors. Altogether, this study informs a mechanism for electron bifurcation, offering insight into a unique method for delivery of low-potential electrons required for energy-intensive biochemical conversions.« less

  5. Nucleotide-Specific Contrast for DNA Sequencing by Electron Spectroscopy.

    PubMed

    Mankos, Marian; Persson, Henrik H J; N'Diaye, Alpha T; Shadman, Khashayar; Schmid, Andreas K; Davis, Ronald W

    2016-01-01

    DNA sequencing by imaging in an electron microscope is an approach that holds promise to deliver long reads with low error rates and without the need for amplification. Earlier work using transmission electron microscopes, which use high electron energies on the order of 100 keV, has shown that low contrast and radiation damage necessitates the use of heavy atom labeling of individual nucleotides, which increases the read error rates. Other prior work using scattering electrons with much lower energy has shown to suppress beam damage on DNA. Here we explore possibilities to increase contrast by employing two methods, X-ray photoelectron and Auger electron spectroscopy. Using bulk DNA samples with monomers of each base, both methods are shown to provide contrast mechanisms that can distinguish individual nucleotides without labels. Both spectroscopic techniques can be readily implemented in a low energy electron microscope, which may enable label-free DNA sequencing by direct imaging.

  6. Surface studies of praseodymium by electron spectroscopies

    NASA Astrophysics Data System (ADS)

    Krawczyk, Mirosław; Pisarek, Marcin; Lisowski, Wojciech; Jablonski, Aleksander

    2016-12-01

    Electron transport properties in praseodymium (Pr) foil samples were studied by elastic-peak electron spectroscopy (EPES). Prior to EPES measurements, the Pr sample surface was pre-sputtered by Ar ions with ion energy of 2-3 keV. After such treatment, the Pr sample still contained about 10 at.% of residual oxygen in the surface region, as detected by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) analyses. The inelastic mean free path (IMFP), characterizing electron transport within this region (4 nm-thick), was evaluated from EPES using both Ni and Au standards as a function of energy in the range of 0.5-2 keV. Experimental IMFPs, λ, were approximated by the simple function λ = kEp, where E is energy (in eV), and k = 0.1549 and p = 0.7047 were the fitted parameters. These values were compared with IMFPs for the praseodymium surface in which the presence of oxygen was tentatively neglected, and also with IMFPs resulting from the TPP-2M predictive equation for bulk praseodymium. We found that the measured IMFP values to be only slightly affected by neglect of oxygen in calculations. The fitted function applied here was consistent with the energy dependence of the EPES-measured IMFPs. Additionally, the measured IMFPs were found to be from 2% to 4.2% larger than the predicted IMFPs for praseodymium in the energy range of 500-1000 eV. For electron energies of 1500 eV and 2000 eV, there was an inverse correlation between these values, and then the resulting deviations of -0.4% and -2.7%, respectively, were calculated.

  7. Resonant tunneling through electronic trapping states in thin MgO magnetic junctions.

    PubMed

    Teixeira, J M; Ventura, J; Araujo, J P; Sousa, J B; Wisniowski, P; Cardoso, S; Freitas, P P

    2011-05-13

    We report an inelastic electron tunneling spectroscopy study on MgO magnetic junctions with thin barriers (0.85-1.35 nm). Inelastic electron tunneling spectroscopy reveals resonant electronic trapping within the barrier for voltages V>0.15  V. These trapping features are associated with defects in the barrier crystalline structure, as confirmed by high-resolution transmission electron microscopy. Such defects are responsible for resonant tunneling due to energy levels that are formed in the barrier. A model was applied to determine the average location and energy level of the traps, indicating that they are mostly located in the middle of the MgO barrier, in accordance with the high-resolution transmission electron microscopy data and trap-assisted tunneling conductance theory. Evidence of the influence of trapping on the voltage dependence of tunnel magnetoresistance is shown.

  8. Electron spectroscopy analysis

    NASA Technical Reports Server (NTRS)

    Gregory, John C.

    1992-01-01

    The Surface Science Laboratories at the University of Alabama in Huntsville (UAH) are equipped with x-ray photoelectron spectroscopy (XPS or ESCA) and Auger electron spectroscopy (AES) facilities. These techniques provide information from the uppermost atomic layers of a sample, and are thus truly surface sensitive. XPS provides both elemental and chemical state information without restriction on the type of material that can be analyzed. The sample is placed into an ultra high vacuum (UHV) chamber and irradiated with x-rays which cause the ejection of photoelectrons from the sample surface. Since x-rays do not normally cause charging problems or beam damage, XPS is applicable to a wide range of samples including metals, polymers, catalysts, and fibers. AES uses a beam of high energy electrons as a surface probe. Following electronic rearrangements within excited atoms by this probe, Auger electrons characteristic of each element present are emitted from the sample. The main advantage of electron induced AES is that the electron beam can be focused down to a small diameter and localized analysis can be carried out. On the rastering of this beam synchronously with a video display using established scanning electron microscopy techniques, physical images and chemical distribution maps of the surface can be produced. Thus very small features, such as electronic circuit elements or corrosion pits in metals, can be investigated. Facilities are available on both XPS and AES instruments for depth-profiling of materials, using a beam of argon ions to sputter away consecutive layers of material to reveal sub-surface (and even semi-bulk) analyses.

  9. Electron spectroscopy imaging and surface defect configuration of zinc oxide nanostructures under different annealing ambient

    NASA Astrophysics Data System (ADS)

    Ann, Ling Chuo; Mahmud, Shahrom; Bakhori, Siti Khadijah Mohd

    2013-01-01

    In this study, electron spectroscopy imaging was used to visualize the elemental distribution of zinc oxide nanopowder. Surface modification in zinc oxide was done through annealing treatment and type of surface defect was also inferred from the electron spectroscopy imaging investigation. The micrographs revealed the non-stoichiometric distribution of the elements in the unannealed samples. Annealing the samples in nitrogen and oxygen ambient at 700 °C would alter the density of the elements in the samples as a result of removal or absorption of oxygen. The electrical measurement showed that nitrogen annealing treatment improved surface electrical conductivity, whereas oxygen treatment showed an adverse effect. Observed change in the photoluminescence green emission suggested that oxygen vacancies play a significant role as surface defects. Structural investigation carried out through X-ray diffraction revealed the polycrystalline nature of both zinc oxide samples with hexagonal phase whereby annealing process increased the crystallinity of both zinc oxide specimens. Due to the different morphologies of the two types of zinc oxide nanopowders, X-ray diffraction results showed different stress levels in their structures and the annealing treatment give significant effect to the structural stress. Electron spectroscopy imaging was a useful technique to identify the elemental distribution as well as oxygen defect in zinc oxide nanopowder.

  10. Scalable NMR spectroscopy with semiconductor chips

    PubMed Central

    Ha, Dongwan; Paulsen, Jeffrey; Sun, Nan; Song, Yi-Qiao; Ham, Donhee

    2014-01-01

    State-of-the-art NMR spectrometers using superconducting magnets have enabled, with their ultrafine spectral resolution, the determination of the structure of large molecules such as proteins, which is one of the most profound applications of modern NMR spectroscopy. Many chemical and biotechnological applications, however, involve only small-to-medium size molecules, for which the ultrafine resolution of the bulky, expensive, and high-maintenance NMR spectrometers is not required. For these applications, there is a critical need for portable, affordable, and low-maintenance NMR spectrometers to enable in-field, on-demand, or online applications (e.g., quality control, chemical reaction monitoring) and co-use of NMR with other analytical methods (e.g., chromatography, electrophoresis). As a critical step toward NMR spectrometer miniaturization, small permanent magnets with high field homogeneity have been developed. In contrast, NMR spectrometer electronics capable of modern multidimensional spectroscopy have thus far remained bulky. Complementing the magnet miniaturization, here we integrate the NMR spectrometer electronics into 4-mm2 silicon chips. Furthermore, we perform various multidimensional NMR spectroscopies by operating these spectrometer electronics chips together with a compact permanent magnet. This combination of the spectrometer-electronics-on-a-chip with a permanent magnet represents a useful step toward miniaturization of the overall NMR spectrometer into a portable platform. PMID:25092330

  11. Investigation of nanoparticulate silicon as printed layers using scanning electron microscopy, transmission electron microscopy, X-ray absorption spectroscopy and X-ray photoelectron spectroscopy

    DOE PAGES

    Unuigbe, David M.; Harting, Margit; Jonah, Emmanuel O.; ...

    2017-08-21

    The presence of native oxide on the surface of silicon nanoparticles is known to inhibit charge transport on the surfaces. Scanning electron microscopy (SEM) studies reveal that the particles in the printed silicon network have a wide range of sizes and shapes. High-resolution transmission electron microscopy reveals that the particle surfaces have mainly the (111)- and (100)-oriented planes which stabilizes against further oxidation of the particles. X-ray absorption spectroscopy (XANES) and X-ray photoelectron spectroscopy (XPS) measurements at the O 1s-edge have been utilized to study the oxidation and local atomic structure of printed layers of silicon nanoparticles which were milledmore » for different times. XANES results reveal the presence of the +4 (SiO 2) oxidation state which tends towards the +2 (SiO) state for higher milling times. Si 2pXPS results indicate that the surfaces of the silicon nanoparticles in the printed layers are only partially oxidized and that all three sub-oxide, +1 (Si 2O), +2 (SiO) and +3 (Si 2O 3), states are present. The analysis of the change in the sub-oxide peaks of the silicon nanoparticles shows the dominance of the +4 state only for lower milling times.« less

  12. Structural and electrical properties of conducting diamond nanowires.

    PubMed

    Sankaran, Kamatchi Jothiramalingam; Lin, Yen-Fu; Jian, Wen-Bin; Chen, Huang-Chin; Panda, Kalpataru; Sundaravel, Balakrishnan; Dong, Chung-Li; Tai, Nyan-Hwa; Lin, I-Nan

    2013-02-01

    Conducting diamond nanowires (DNWs) films have been synthesized by N₂-based microwave plasma enhanced chemical vapor deposition. The incorporation of nitrogen into DNWs films is examined by C 1s X-ray photoemission spectroscopy and morphology of DNWs is discerned using field-emission scanning electron microscopy and transmission electron microscopy (TEM). The electron diffraction pattern, the visible-Raman spectroscopy, and the near-edge X-ray absorption fine structure spectroscopy display the coexistence of sp³ diamond and sp² graphitic phases in DNWs films. In addition, the microstructure investigation, carried out by high-resolution TEM with Fourier transformed pattern, indicates diamond grains and graphitic grain boundaries on surface of DNWs. The same result is confirmed by scanning tunneling microscopy and scanning tunneling spectroscopy (STS). Furthermore, the STS spectra of current-voltage curves discover a high tunneling current at the position near the graphitic grain boundaries. These highly conducting regimes of grain boundaries form effective electron paths and its transport mechanism is explained by the three-dimensional (3D) Mott's variable range hopping in a wide temperature from 300 to 20 K. Interestingly, this specific feature of high conducting grain boundaries of DNWs demonstrates a high efficiency in field emission and pave a way to the next generation of high-definition flat panel displays or plasma devices.

  13. Measuring the electron affinity of organic solids: an indispensable new tool for organic electronics.

    PubMed

    Yoshida, Hiroyuki

    2014-04-01

    Electron affinity is a fundamental energy parameter of materials. In organic semiconductors, the electron affinity is closely related to electron conduction. It is not only important to understand fundamental electronic processes in organic solids, but it is also indispensable for research and development of organic semiconductor devices such as organic light-emitting diodes and organic photovoltaic cells. However, there has been no experimental technique for examining the electron affinity of organic materials that meets the requirements of such research. Recently, a new method, called low-energy inverse-photoemission spectroscopy, has been developed. A beam of low-energy electrons is focused onto the sample surface, and photons emitted owing to the radiative transition to unoccupied states are then detected. From the onset of the spectral intensity, the electron affinity is determined within an uncertainty of 0.1 eV. Unlike in conventional inverse-photoemission spectroscopy, sample damage is negligible and the resolution is improved by a factor of 2. The principle of the method and several applications are reported.

  14. Communication: Vibrational and vibronic coherences in the two dimensional spectroscopy of coupled electron-nuclear motion.

    PubMed

    Albert, Julian; Falge, Mirjam; Gomez, Sandra; Sola, Ignacio R; Hildenbrand, Heiko; Engel, Volker

    2015-07-28

    We theoretically investigate the photon-echo spectroscopy of coupled electron-nuclear quantum dynamics. Two situations are treated. In the first case, the Born-Oppenheimer (adiabatic) approximation holds. It is then possible to interpret the two-dimensional (2D) spectra in terms of vibrational motion taking place in different electronic states. In particular, pure vibrational coherences which are related to oscillations in the time-dependent third-order polarization can be identified. This concept fails in the second case, where strong non-adiabatic coupling leads to the breakdown of the Born-Oppenheimer-approximation. Then, the 2D-spectra reveal a complicated vibronic structure and vibrational coherences cannot be disentangled from the electronic motion.

  15. Heavy atom vibrational modes and low-energy vibrational autodetachment in nitromethane anions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Michael C.; Weber, J. Mathias, E-mail: weberjm@jila.colorado.edu; Department of Chemistry and Biochemistry, University of Colorado at Boulder, 215UCB, Boulder, Colorado 80309-0215

    2015-06-21

    We report infrared spectra of nitromethane anion, CH{sub 3}NO{sub 2}{sup −}, in the region 700–2150 cm{sup −1}, obtained by Ar predissociation spectroscopy and electron detachment spectroscopy. The data are interpreted in the framework of second-order vibrational perturbation theory based on coupled-cluster electronic structure calculations. The modes in the spectroscopic region studied here are mainly based on vibrations involving the heavier atoms; this work complements earlier studies on nitromethane anion that focused on the CH stretching region of the spectrum. Electron detachment begins at photon energies far below the adiabatic electron affinity due to thermal population of excited vibrational states.

  16. Boron difluoride dibenzoylmethane derivatives: Electronic structure and luminescence

    NASA Astrophysics Data System (ADS)

    Tikhonov, Sergey A.; Vovna, Vitaliy I.; Osmushko, Ivan S.; Fedorenko, Elena V.; Mirochnik, Anatoliy G.

    2018-01-01

    Electronic structure and optical properties of boron difluoride dibenzoylmethanate and four of its derivatives have been studied by X-ray photoelectron spectroscopy, absorption and luminescence spectroscopy and quantum chemistry (DFT, TDDFT). The relative quantum luminescence yields have been revealed to correlate with charge transfers of HOMO-LUMO transitions, energy barriers of aromatic substituents rotation and the lifetime of excited states in the investigated complexes. The bathochromic shift of intensive bands in the optical spectra has been observed to occur when the functional groups are introduced into p-positions of phenyl cycles due to destabilizing HOMO levels. Calculated energy intervals between electronic levels correlate well with XPS spectra structure of valence and core electrons.

  17. Analysis of Local Structure, Chemistry and Bonding by Electron Energy Loss Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mayer, Joachim

    In the present chapter, the reader will first be introduced briefly to the basic principles of analytical transmission electron microscopy (ATEM) with special emphasis on electron energy-loss spectroscopy (EELS) and energy-filtering TEM. The quantification of spectra to obtain chemical information and the origin and interpretation of near-edge fine structures in EELS (ELNES) are discussed. Special attention will be given to the characterization of internal interfaces and the literature in this area will be reviewed. Selected examples of the application of ATEM in the investigation of internal interfaces will be given. These examples include both EELS in the energy-filtering TEM and in the scanning transmission electron microscope (STEM).

  18. Communication: Vibrational and vibronic coherences in the two dimensional spectroscopy of coupled electron-nuclear motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, Julian; Falge, Mirjam; Hildenbrand, Heiko

    2015-07-28

    We theoretically investigate the photon-echo spectroscopy of coupled electron-nuclear quantum dynamics. Two situations are treated. In the first case, the Born-Oppenheimer (adiabatic) approximation holds. It is then possible to interpret the two-dimensional (2D) spectra in terms of vibrational motion taking place in different electronic states. In particular, pure vibrational coherences which are related to oscillations in the time-dependent third-order polarization can be identified. This concept fails in the second case, where strong non-adiabatic coupling leads to the breakdown of the Born-Oppenheimer-approximation. Then, the 2D-spectra reveal a complicated vibronic structure and vibrational coherences cannot be disentangled from the electronic motion.

  19. The spectroscopy of singlets and triplets excites electronic states, spatial and electronic structure of hydrocarbons and quantum classifications in chemmotology

    NASA Astrophysics Data System (ADS)

    Obukhov, A. E.

    2017-01-01

    In this work we demonstrate the physical foundations of the spectroscopy of the grounds states: E- and X-ray, (RR) Raman scattering the NMR 1H and 13C and IR-, EPR- absorption and the singlets and triplets electronic excited states in the multinuclear hydrocarbons in chemmotology. The parameters of UV-absorption, RR-Raman scattering of light, the fluorescence and the phosphorescence and day-lasers at the pumping laser and lamp, OLEDs and OTETs- are measurements. The spectral-energy properties are briefly studied. The quantum-chemical LCAO-MO SCF expanded-CI PPP/S and INDO/S methods in the electronic and spatial structure hidrocarbons are considered.

  20. Ligand exchange synthesis of organometallic Rh nanoparticles and application in explosive sensing

    NASA Astrophysics Data System (ADS)

    Srivastav, Amit K.; Agrawal, Bhavesh; Swami, Bhavya; Agrawal, Yadvendra K.; Maity, Prasenjit

    2017-06-01

    Alkyne {phenyl acetylene (PA) and 9-ethynylphenanthrene (EPT)}-ligated Rh nanoparticles ( 1 and 2, respectively) with mean diameter of 1.5 ± 0.2 nm were synthesized via a facile and high-yield biphasic ligand exchange protocol using similar sized ethylene glycol (EG)-stabilized Rh nanoparticles as precursors (EG:Rh). The synthesized organometallic Rh nanoparticles were convincingly characterized using several spectroscopic and microscopic techniques, e.g., Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H NMR), optical absorption spectroscopy (UV-Vis), photoluminescence spectroscopy (PL), powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscope (TEM). We propose that the syntheses mechanism relies on catalytic acetylenic (≡C-H, carbon-hydrogen) bond breaking by EG:Rh followed by strong metal-carbon bond formation with a vinyldiene (>C═C═M) motif. The obtained 1 and 2 showed luminescence property, which arises from ligand structure through intraparticle conjugation. Electron-rich phenanthrene-ligated Rh nanoparticles ( 2) showed good sensing performance for detection of electron deficient nitro-aromatic explosive molecules (NA) in solution phase through luminescence quenching method.

  1. In Situ Industrial Bimetallic Catalyst Characterization using Scanning Transmission Electron Microscopy and X-ray Absorption Spectroscopy at One Atmosphere and Elevated Temperature.

    PubMed

    Prestat, Eric; Kulzick, Matthew A; Dietrich, Paul J; Smith, Mr Matthew; Tien, Mr Eu-Pin; Burke, M Grace; Haigh, Sarah J; Zaluzec, Nestor J

    2017-08-18

    We have developed a new experimental platform for in situ scanning transmission electron microscope (STEM) energy dispersive X-ray spectroscopy (EDS) which allows real time, nanoscale, elemental and structural changes to be studied at elevated temperature (up to 1000 °C) and pressure (up to 1 atm). Here we demonstrate the first application of this approach to understand complex structural changes occurring during reduction of a bimetallic catalyst, PdCu supported on TiO 2 , synthesized by wet impregnation. We reveal a heterogeneous evolution of nanoparticle size, distribution, and composition with large differences in reduction behavior for the two metals. We show that the data obtained is complementary to in situ STEM electron energy loss spectroscopy (EELS) and when combined with in situ X-ray absorption spectroscopy (XAS) allows correlation of bulk chemical state with nanoscale changes in elemental distribution during reduction, facilitating new understanding of the catalytic behavior for this important class of materials. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  2. An investigation on the photoelectrochemical properties of dye-sensitized solar cells based on graphene-TiO2 composite photoanodes

    NASA Astrophysics Data System (ADS)

    Zhu, Menghua; Li, Xin; Liu, Weiwei; Cui, Ying

    2014-09-01

    The graphene-TiO2 nanocomposite has been prepared by mixing graphene oxide (GO) and tetra-n-butyl titanate (TBT) followed by the facile hydrothermal process when the reduction of GO to reduced graphene oxide (RGO) and the hydrolysis of TBT to TiO2 happen. Characterization of the graphene-TiO2 nanostructures is investigated in detail by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. A dye-sensitized solar cell (DSSC) based on graphene-TiO2 composite photoelectrode exhibits a high energy conversion efficiency of 4.28%, compared with a DSSC based on pure TiO2 photoelectrode (3.11%), accompanied by an increment in both short-circuit photocurrent density and open-circuit voltage. The significant enhancement in performance of DSSC is investigated through intensity-modulated photovoltage spectroscopy, intensity-modulated photocurrent spectroscopy, and electrochemical impedance spectroscopy. It is found that the incorporation of two-dimensional graphene nanosheets in the TiO2 electrodes is the key factor leading to the improved photogenerated electron transfer ability and reduced charge recombination.

  3. Iron- and 4-hydroxy-2-alkylquinoline-containing periplasmic inclusion bodies of Pseudomonas aeruginosa: A chemical analysis

    USGS Publications Warehouse

    Royt, P.W.; Honeychuck, R.V.; Pant, R.R.; Rogers, M.L.; Asher, L.V.; Lloyd, J.R.; Carlos, W.E.; Belkin, H.E.; Patwardhan, S.

    2007-01-01

    Dark aggregated particles were seen on pellets of iron-rich, mid-logarithmic phase Pseudomonas aeruginosa. Transmission electron microscopy of these cells showed inclusion bodies in periplasmic vacuoles. Aggregated particles isolated from the spent medium of these cells contained iron as indicated by atomic absorption spectroscopy and by electron paramagnetic resonance spectroscopy that revealed Fe3+. Scanning electron microscopy/energy dispersive X-ray analysis of whole cells revealed the presence of iron-containing particles beneath the surface of the cell, indicating that the isolated aggregates were the intracellular inclusion bodies. Collectively, mass spectroscopy and nuclear magnetic resonance spectroscopy of the isolated inclusion bodies revealed the presence of 3,4-dihydroxy-2-heptylquinoline which is the Pseudomonas quinolone signaling compound (PQS) and an iron chelator; 4-hydroxy-2-heptylquinoline (pseudan VII), which is an iron chelator, antibacterial compound and precursor of PQS; 4-hydroxy-2-nonylquinoline (pseudan IX) which is an iron chelator and antibacterial compound; 4-hydroxy-2-methylquinoline (pseudan I), and 4-hydroxy-2-nonylquinoline N-oxide. ?? 2006 Elsevier Inc. All rights reserved.

  4. Synthesis and characterization of nano TiO2-SiO2: PVA composite - a novel route

    NASA Astrophysics Data System (ADS)

    Venckatesh, Rajendran; Balachandaran, Kartha; Sivaraj, Rajeshwari

    2012-07-01

    A novel, simple, less time consuming and cost-effective sol-gel method has been developed to synthesize nano titania-silica with polyvinyl alcohol (PVA) composite relatively at low temperature in acidic pH. Titania sol is prepared by hydrolysis of titanium tetrachloride and was mixed with silicic acid and tetrahydrofuran mixture. The reaction was carried out under vigorous stirring for 6 h and dried at room temperature with the addition of PVA solution. The resulting powders were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared (FT-IR), UV-visible spectroscopy and thermal techniques. The grain size of the particles was calculated by X-ray diffraction; surface morphology and chemical composition were determined from scanning electron microscopy-energy dispersive spectroscopy; metal oxide stretching was confirmed from FT-IR spectroscopy; bandgap was calculated using UV-visible spectroscopy, and thermal stability of the prepared composite was determined by thermogravimetric/differential thermal analysis. Since TiO2 got agglomerated on the surface of SiO2, effective absorptive sites increase which in turn increase the photocatalytic efficiency of the resulting composite.

  5. Auger electron and X-ray photoelectron spectroscopic study of the biocorrosion of copper by alginic acid polysaccharide

    NASA Astrophysics Data System (ADS)

    Jolley, John G.; Geesey, Gill G.; Hankins, Michael R.; Wright, Randy B.; Wichlacz, Paul L.

    1989-08-01

    Thin films (3.4 nm) of copper on germanium substrates were exposed to 2% alginic acid polysaccharide aqueous solution. Pre- and post-exposure characterization were done by Auger electron spectroscopy and X-ray photoelectron spectroscopy. Ancillary graphite furnace atomic absorption spectroscopy was used to monitor the removal process of the copper thin film from the germanium substrate. Results indicate that some of the copper was oxidized by the alginic acid solution. Some of the copper was removed from the Cu/Ge interface and incorporated into the polymer matrix. Thus, biocorrosion of copper was exhibited by the alginic acid polysaccharide.

  6. Optical properties of hydrothermally synthesized TGA-capped CdS nanoparticles: controlling crystalline size and phase

    NASA Astrophysics Data System (ADS)

    Tavakoli Banizi, Zoha; Seifi, Majid

    2017-10-01

    TGA-capped CdS nanoparticles were obtained in the presence of thioglycolic acid (TGA) as capping agent via a facile hydrothermal method at relatively low temperature and over a short duration. As-synthesized TGA-capped CdS nanoparticles were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectra, photoluminescence spectroscopy, Ultraviolet-visible spectroscopy and energy-dispersive x-ray spectroscopy. The products had spherical shapes, although their crystalline size and phase was dependent on temperature and time of the reaction. Photoluminescence spectra showed that the fluorescence intensity decreased when increasing the reaction time and temperature.

  7. Preface

    NASA Astrophysics Data System (ADS)

    Jung, Young Mee; Baranska, Malgorzata

    2018-05-01

    This special issue of the Spectrochimica Acta A is dedicated to the retirement of Professor Yukihiro Ozaki of Kwansei Gakuin University, Japan as an internationally well recognized scientist in molecular spectroscopy studies including vibrational and electronic spectroscopy.

  8. A detailed study on the working mechanism of a heteropoly acid modified TiO2 photoanode for efficient dye-sensitized solar cells.

    PubMed

    Jiang, Yanxia; Yang, Yulin; Qiang, Liangsheng; Fan, Ruiqing; Li, Liang; Ye, Tengling; Na, Yong; Shi, Yan; Luan, Tianzhu

    2015-03-14

    A novel heteropolyacid (HPA) K6SiW11O39Ni(H2O)·xH2O (SiW11Ni) modified TiO2 has been successfully synthesized and introduced into the photoanode of dye-sensitized solar cells (DSSCs). The performance of the cell with the HPA-modified photoanode (SiW11Ni/TiO2), mixed with P25 powder in the ratio of 2 : 8, is better than the cell with a pristine P25 photoanode. An increase of 31% in the photocurrent and 22% improvement in the conversion efficiency are obtained. The effect of the heteropolyacid was well studied by UV-vis spectroscopy, spectro-electrochemical spectroscopy, dark current, intensity-modulated photocurrent spectroscopy and intensity-modulated photovoltage spectroscopy, open-circuit voltage decay and electrochemical impedance spectroscopy. The results show that the interfacial layer modified by SiW11Ni can enhance the injection and transport of electrons, and then retard the recombination of electrons, which results in a longer electron lifetime. What's more, the introduction of SiW11Ni can simultaneously broaden the absorption in the visible region, eventually leading to an efficient increase in energy conversion efficiency.

  9. Coherent Electron Transfer at the Ag / Graphite Heterojunction Interface

    NASA Astrophysics Data System (ADS)

    Tan, Shijing; Dai, Yanan; Zhang, Shengmin; Liu, Liming; Zhao, Jin; Petek, Hrvoje

    2018-03-01

    Charge transfer in transduction of light to electrical or chemical energy at heterojunctions of metals with semiconductors or semimetals is believed to occur by photogenerated hot electrons in metal undergoing incoherent internal photoemission through the heterojunction interface. Charge transfer, however, can also occur coherently by dipole coupling of electronic bands at the heterojunction interface. Microscopic physical insights into how transfer occurs can be elucidated by following the coherent polarization of the donor and acceptor states on the time scale of electronic dephasing. By time-resolved multiphoton photoemission spectroscopy (MPP), we investigate the coherent electron transfer from an interface state that forms upon chemisorption of Ag nanoclusters onto graphite to a σ symmetry interlayer band of graphite. Multidimensional MPP spectroscopy reveals a resonant two-photon transition, which dephases within 10 fs completing the coherent transfer.

  10. Nonlinear X-Ray and Auger Spectroscopy at X-Ray Free-Electron Laser Sources

    NASA Astrophysics Data System (ADS)

    Rohringer, Nina

    2015-05-01

    X-ray free-electron lasers (XFELs) open the pathway to transfer non-linear spectroscopic techniques to the x-ray domain. A promising all x-ray pump probe technique is based on coherent stimulated electronic x-ray Raman scattering, which was recently demonstrated in atomic neon. By tuning the XFEL pulse to core-excited resonances, a few seed photons in the spectral tail of the XFEL pulse drive an avalanche of resonant inelastic x-ray scattering events, resulting in exponential amplification of the scattering signal by of 6-7 orders of magnitude. Analysis of the line profile of the emitted radiation permits to demonstrate the cross over from amplified spontaneous emission to coherent stimulated resonance scattering. In combination with statistical covariance mapping, a high-resolution spectrum of the resonant inelastic scattering process can be obtained, opening the path to coherent stimulated x-ray Raman spectroscopy. An extension of these ideas to molecules and a realistic feasibility study of stimulated electronic x-ray Raman scattering in CO will be presented. Challenges to realizing stimulated electronic x-ray Raman scattering at present-day XFEL sources will be discussed, corroborated by results of a recent experiment at the LCLS XFEL. Due to the small gain cross section in molecular targets, other nonlinear spectroscopic techniques such as nonlinear Auger spectroscopy could become a powerful alternative. Theory predictions of a novel pump probe technique based on resonant nonlinear Auger spectroscopic will be discussed and the method will be compared to stimulated x-ray Raman spectroscopy.

  11. Synchrotron-based soft X-ray spectroscopic studies of the electronic structure of organic semiconducting molecules

    NASA Astrophysics Data System (ADS)

    Demasi, Alexander

    Organic molecules have been the subject of many scientific studies due to their potential for use in a new generation of optoelectronic and semiconducting devices, such as organic photovoltaics and organic light emitting diodes. These studies are motivated by the fact that organic semiconductor devices have several advantages over traditional inorganic semiconductor devices. Unlike inorganic semiconductors, where the electronic properties are a result of the deliberate introduction of dopants to the material, the properties of organic semiconductors are often intrinsic to the molecules themselves. As a result, organic semiconductor devices are frequently less susceptible to contamination by impurities than their inorganic counterparts, which results in the relatively lower cost of producing such devices. Accurate experimental determination of the bulk and surface electronic structure of organic semiconductors is a prerequisite in developing a comprehensive understanding of such materials. The organic materials studied in this thesis were N,N-Ethylene-bis(1,1,1trifluoropentane-2,4-dioneiminato)-copper(ii) (abbreviated Cu-TFAC), aluminum tris-8hydroxyquinoline (A1g3), lithium quinolate (Liq), tetracyanoquinodimethane (TCNQ), and tetrafluorotetracyanoquinodimethane (F4TCNQ). The electronic structures of these materials were measured with several synchrotron-based x-ray spectroscopies. X-ray photoemission spectroscopy was used to measure the occupied total density of states and the core-level states of the aforementioned materials. X-ray absorption spectroscopy (XAS) was used to probe the element-specific unoccupied partial density of states (PDOS); its angle-resolved variant was used to measure the orientation of the molecules in a film and, in some circumstances, to gauge the extent of an organic film's crystallinity. Most notably, x-ray emission spectroscopy (XES) measures the element- specific occupied PDOS and, when aided by XAS, resonant XES can additionally be used to probe the electronic structure of individual atomic sites within a molecule. Most of the results in this thesis are accompanied by the results of electronic structure calculations determined with density functional theory (DFT). DFT is a useful aid in interpreting the results of the x-ray spectroscopies employed. The experimental results, combined with DFT calculations, provide a wealth of information regarding the electronic structures of these organic materials. v

  12. The Electron Bifurcating FixABCX Protein Complex from Azotobacter vinelandii: Generation of Low-Potential Reducing Equivalents for Nitrogenase Catalysis.

    PubMed

    Ledbetter, Rhesa N; Garcia Costas, Amaya M; Lubner, Carolyn E; Mulder, David W; Tokmina-Lukaszewska, Monika; Artz, Jacob H; Patterson, Angela; Magnuson, Timothy S; Jay, Zackary J; Duan, H Diessel; Miller, Jacquelyn; Plunkett, Mary H; Hoben, John P; Barney, Brett M; Carlson, Ross P; Miller, Anne-Frances; Bothner, Brian; King, Paul W; Peters, John W; Seefeldt, Lance C

    2017-08-15

    The biological reduction of dinitrogen (N 2 ) to ammonia (NH 3 ) by nitrogenase is an energetically demanding reaction that requires low-potential electrons and ATP; however, pathways used to deliver the electrons from central metabolism to the reductants of nitrogenase, ferredoxin or flavodoxin, remain unknown for many diazotrophic microbes. The FixABCX protein complex has been proposed to reduce flavodoxin or ferredoxin using NADH as the electron donor in a process known as electron bifurcation. Herein, the FixABCX complex from Azotobacter vinelandii was purified and demonstrated to catalyze an electron bifurcation reaction: oxidation of NADH (E m = -320 mV) coupled to reduction of flavodoxin semiquinone (E m = -460 mV) and reduction of coenzyme Q (E m = 10 mV). Knocking out fix genes rendered Δrnf A. vinelandii cells unable to fix dinitrogen, confirming that the FixABCX system provides another route for delivery of electrons to nitrogenase. Characterization of the purified FixABCX complex revealed the presence of flavin and iron-sulfur cofactors confirmed by native mass spectrometry, electron paramagnetic resonance spectroscopy, and transient absorption spectroscopy. Transient absorption spectroscopy further established the presence of a short-lived flavin semiquinone radical, suggesting that a thermodynamically unstable flavin semiquinone may participate as an intermediate in the transfer of an electron to flavodoxin. A structural model of FixABCX, generated using chemical cross-linking in conjunction with homology modeling, revealed plausible electron transfer pathways to both high- and low-potential acceptors. Overall, this study informs a mechanism for electron bifurcation, offering insight into a unique method for delivery of low-potential electrons required for energy-intensive biochemical conversions.

  13. The Electron Bifurcating FixABCX Protein Complex from Azotobacter vinelandii: Generation of Low-Potential Reducing Equivalents for Nitrogenase Catalysis

    DOE PAGES

    Ledbetter, Rhesa N.; Garcia Costas, Amaya M.; Lubner, Carolyn E.; ...

    2017-07-13

    The biological reduction of dinitrogen (N 2) to ammonia (NH 3) by nitrogenase is an energetically demanding reaction that requires low-potential electrons and ATP; however, pathways used to deliver the electrons from central metabolism to the reductants of nitrogenase, ferredoxin or flavodoxin, remain unknown for many diazotrophic microbes. The FixABCX protein complex has been proposed to reduce flavodoxin or ferredoxin using NADH as the electron donor in a process known as electron bifurcation. Herein, the FixABCX complex from Azotobacter vinelandii was purified and demonstrated to catalyze an electron bifurcation reaction: oxidation of NADH (E m = -320 mV) coupled tomore » reduction of flavodoxin semiquinone (E m = -460 mV) and reduction of coenzyme Q (E m = 10 mV). Knocking out fix genes rendered ..delta..rnf A. vinelandii cells unable to fix dinitrogen, confirming that the FixABCX system provides another route for delivery of electrons to nitrogenase. Characterization of the purified FixABCX complex revealed the presence of flavin and iron-sulfur cofactors confirmed by native mass spectrometry, electron paramagnetic resonance spectroscopy, and transient absorption spectroscopy. Transient absorption spectroscopy further established the presence of a short-lived flavin semiquinone radical, suggesting that a thermodynamically unstable flavin semiquinone may participate as an intermediate in the transfer of an electron to flavodoxin. A structural model of FixABCX, generated using chemical cross-linking in conjunction with homology modeling, revealed plausible electron transfer pathways to both high- and low-potential acceptors. Altogether, this study informs a mechanism for electron bifurcation, offering insight into a unique method for delivery of low-potential electrons required for energy-intensive biochemical conversions.« less

  14. Direct measurement of cyclotron coherence times of high-mobility two-dimensional electron gases.

    PubMed

    Wang, X; Hilton, D J; Reno, J L; Mittleman, D M; Kono, J

    2010-06-07

    We have observed long-lived (approximately 30 ps) coherent oscillations of charge carriers due to cyclotron resonance (CR) in high-mobility two-dimensional electrons in GaAs in perpendicular magnetic fields using time-domain terahertz spectroscopy. The observed coherent oscillations were fitted well by sinusoids with exponentially-decaying amplitudes, through which we were able to provide direct and precise measures for the decay times and oscillation frequencies simultaneously. This method thus overcomes the CR saturation effect, which is known to prevent determination of true CR linewidths in high-mobility electron systems using Fourier-transform infrared spectroscopy.

  15. Analysis of Multilayer Devices for Superconducting Electronics by High-Resolution Scanning Transmission Electron Microscopy and Energy Dispersive Spectroscopy

    DOE PAGES

    Missert, Nancy; Kotula, Paul G.; Rye, Michael; ...

    2017-02-15

    We used a focused ion beam to obtain cross-sectional specimens from both magnetic multilayer and Nb/Al-AlOx/Nb Josephson junction devices for characterization by scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDX). An automated multivariate statistical analysis of the EDX spectral images produced chemically unique component images of individual layers within the multilayer structures. STEM imaging elucidated distinct variations in film morphology, interface quality, and/or etch artifacts that could be correlated to magnetic and/or electrical properties measured on the same devices.

  16. Electronic processes in TTF-derived complexes studied by IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Graja, Andrzej

    2001-09-01

    We focus our attention on the plasma-edge-like dispersion of the reflectance spectra of the selected bis(ethylenodithio)tetrathiafulvalene (BEDT-TTF)-derived organic conductors. The standard procedure to determine the electron transport parameters in low-dimensional organic conductors consists of fitting the appropriate theoretical models with the experimental reflectance data. This procedure provides us with basic information like plasma frequency, the optical effective mass of charge carriers, their number, mean free path and damping constant. Therefore, it is concluded that the spectroscopy is a powerful tool to study the electronic processes in conducting organic solids.

  17. The perspectives of femtosecond imaging and spectroscopy of complex materials using electrons

    NASA Astrophysics Data System (ADS)

    Ruan, Chong-Yu; Duxbury, Phiilp M.; Berz, Martin

    2014-09-01

    The coexistence of various electronic and structural phases that are close in free-energy is a hallmark in strongly correlated electron systems with emergent properties, such as metal-insulator transition, colossal magnetoresistance, and high-temperature superconductivity. The cooperative phase transitions from one functional state to another can involve entanglements between the electronically and structurally ordered states, hence deciphering the fundamental mechanisms is generally difficult and remains very active in condensed matter physics and functional materials research. We outline the recent ultrafast characterizations of 2D charge-density wave materials, including the nonequilibrium electron dynamics unveiled by ultrafast optical spectroscopy-based techniques sensitive to the electronic order parameter. We also describe the most recent findings from ultrafast electron crystallography, which provide structural aspects to correlate lattice dynamics with electronic evolutions to address the two sides of a coin in the ultrafast switching of a cooperative state. Combining these results brings forth new perspectives and a fuller picture in understanding lightmatter interactions and various switching mechanisms in cooperative systems with many potential applications. We also discuss the prospects of implementing new ultrafast electron imaging as a local probe incorporated with femtosecond select-area diffraction, imaging and spectroscopy to provide a full scope of resolution to tackle the more challenging complex phase transitions on the femtosecond-nanometer scale all at once based on a recent understanding of the spacespace- charge-driven emittance limitation on the ultimate performance of these devices. The projection shows promising parameter space for conducting ultrafast electron micordiffraction at close to single-shot level, which is supported by the latest experimental characterization of such a system.

  18. Ultrafast forward and backward electron transfer dynamics of coumarin 337 in hydrogen-bonded anilines as studied with femtosecond UV-pump/IR-probe spectroscopy.

    PubMed

    Ghosh, Hirendra N; Verma, Sandeep; Nibbering, Erik T J

    2011-02-10

    Femtosecond infrared spectroscopy is used to study both forward and backward electron transfer (ET) dynamics between coumarin 337 (C337) and the aromatic amine solvents aniline (AN), N-methylaniline (MAN), and N,N-dimethylaniline (DMAN), where all the aniline solvents can donate an electron but only AN and MAN can form hydrogen bonds with C337. The formation of a hydrogen bond with AN and MAN is confirmed with steady state FT-IR spectroscopy, where the C═O stretching vibration is a direct marker mode for hydrogen bond formation. Transient IR absorption measurements in all solvents show an absorption band at 2166 cm(-1), which has been attributed to the C≡N stretching vibration of the C337 radical anion formed after ET. Forward electron transfer dynamics is found to be biexponential with time constants τ(ET)(1) = 500 fs, τ(ET)(2) = 7 ps in all solvents. Despite the presence of hydrogen bonds of C337 with the solvents AN and MAN, no effect has been found on the forward electron transfer step. Because of the absence of an H/D isotope effect on the forward electron transfer reaction of C337 in AN, hydrogen bonds are understood to play a minor role in mediating electron transfer. In contrast, direct π-orbital overlap between C337 and the aromatic amine solvents causes ultrafast forward electron transfer dynamics. Backward electron transfer dynamics, in contrast, is dependent on the solvent used. Standard Marcus theory explains the observed backward electron transfer rates.

  19. Positron Annihilation Ratio Spectroscopy (PsARS) Applied to Positronium Formation Studies

    DTIC Science & Technology

    2010-03-01

    POSITRON ANNIHILATION RATIO SPECTROSCOPY (PsARS) APPLIED TO POSITRONIUM FORMATION STUDIES THESIS...AFIT/GNE/ENP/10-M07 POSITRON ANNIHILATION RATIO SPECTROSCOPY (PsARS) APPLIED TO POSITRONIUM FORMATION STUDIES ...lifetime studies in local electric field experiments. High local electric fields can polarize a positron -electron pair, which may result in an extended

  20. Electronic structure and electron energy-loss spectroscopy of ZrO2 zirconia

    NASA Astrophysics Data System (ADS)

    Dash, L. K.; Vast, Nathalie; Baranek, Philippe; Cheynet, Marie-Claude; Reining, Lucia

    2004-12-01

    The atomic and electronic structures of zirconia are calculated within density functional theory, and their evolution is analyzed as the crystal-field symmetry changes from tetrahedral [cubic (c-ZrO2) and tetragonal (t-ZrO2) phases] to octahedral (hypothetical rutile ZrO2 ), to a mixing of these symmetries (monoclinic phase, m-ZrO2 ). We find that the theoretical bulk modulus in c-ZrO2 is 30% larger than the experimental value, showing that the introduction of yttria in zirconia has a significant effect. Electronic structure fingerprints which characterize each phase from their electronic spectra are identified. We have carried out electron energy-loss spectroscopy experiments at low momentum transfer and compared these results to the theoretical spectra calculated within the random phase approximation. We show a dependence of the valence and 4p ( N2,3 edge) plasmons on the crystal structure, the dependence of the latter being brought into the spectra by local-field effects. Last, we attribute low energy excitations observed in EELS of m-ZrO2 to defect states 2eV above the top of the intrinsic valence band, and the EELS fundamental band gap value is reconciled with the 5.2 or 5.8eV gaps determined by vacuum ultraviolet spectroscopy.

  1. Novel electronic ferroelectricity in an organic charge-order insulator investigated with terahertz-pump optical-probe spectroscopy

    PubMed Central

    Yamakawa, H.; Miyamoto, T.; Morimoto, T.; Yada, H.; Kinoshita, Y.; Sotome, M.; Kida, N.; Yamamoto, K.; Iwano, K.; Matsumoto, Y.; Watanabe, S.; Shimoi, Y.; Suda, M.; Yamamoto, H. M.; Mori, H.; Okamoto, H.

    2016-01-01

    In electronic-type ferroelectrics, where dipole moments produced by the variations of electron configurations are aligned, the polarization is expected to be rapidly controlled by electric fields. Such a feature can be used for high-speed electric-switching and memory devices. Electronic-type ferroelectrics include charge degrees of freedom, so that they are sometimes conductive, complicating dielectric measurements. This makes difficult the exploration of electronic-type ferroelectrics and the understanding of their ferroelectric nature. Here, we show unambiguous evidence for electronic ferroelectricity in the charge-order (CO) phase of a prototypical ET-based molecular compound, α-(ET)2I3 (ET:bis(ethylenedithio)tetrathiafulvalene), using a terahertz pulse as an external electric field. Terahertz-pump second-harmonic-generation(SHG)-probe and optical-reflectivity-probe spectroscopy reveal that the ferroelectric polarization originates from intermolecular charge transfers and is inclined 27° from the horizontal CO stripe. These features are qualitatively reproduced by the density-functional-theory calculation. After sub-picosecond polarization modulation by terahertz fields, prominent oscillations appear in the reflectivity but not in the SHG-probe results, suggesting that the CO is coupled with molecular displacements, while the ferroelectricity is electronic in nature. The results presented here demonstrate that terahertz-pump optical-probe spectroscopy is a powerful tool not only for rapidly controlling polarizations, but also for clarifying the mechanisms of ferroelectricity. PMID:26864779

  2. Exploring size and state dynamics in CdSe quantum dots using two-dimensional electronic spectroscopy

    PubMed Central

    Caram, Justin R.; Zheng, Haibin; Dahlberg, Peter D.; Rolczynski, Brian S.; Griffin, Graham B.; Dolzhnikov, Dmitriy S.; Talapin, Dmitri V.; Engel, Gregory S.

    2014-01-01

    Development of optoelectronic technologies based on quantum dots depends on measuring, optimizing, and ultimately predicting charge carrier dynamics in the nanocrystal. In such systems, size inhomogeneity and the photoexcited population distribution among various excitonic states have distinct effects on electron and hole relaxation, which are difficult to distinguish spectroscopically. Two-dimensional electronic spectroscopy can help to untangle these effects by resolving excitation energy and subsequent nonlinear response in a single experiment. Using a filament-generated continuum as a pump and probe source, we collect two-dimensional spectra with sufficient spectral bandwidth to follow dynamics upon excitation of the lowest three optical transitions in a polydisperse ensemble of colloidal CdSe quantum dots. We first compare to prior transient absorption studies to confirm excitation-state-dependent dynamics such as increased surface-trapping upon excitation of hot electrons. Second, we demonstrate fast band-edge electron-hole pair solvation by ligand and phonon modes, as the ensemble relaxes to the photoluminescent state on a sub-picosecond time-scale. Third, we find that static disorder due to size polydispersity dominates the nonlinear response upon excitation into the hot electron manifold; this broadening mechanism stands in contrast to that of the band-edge exciton. Finally, we demonstrate excitation-energy dependent hot-carrier relaxation rates, and we describe how two-dimensional electronic spectroscopy can complement other transient nonlinear techniques. PMID:24588185

  3. Novel electronic ferroelectricity in an organic charge-order insulator investigated with terahertz-pump optical-probe spectroscopy.

    PubMed

    Yamakawa, H; Miyamoto, T; Morimoto, T; Yada, H; Kinoshita, Y; Sotome, M; Kida, N; Yamamoto, K; Iwano, K; Matsumoto, Y; Watanabe, S; Shimoi, Y; Suda, M; Yamamoto, H M; Mori, H; Okamoto, H

    2016-02-11

    In electronic-type ferroelectrics, where dipole moments produced by the variations of electron configurations are aligned, the polarization is expected to be rapidly controlled by electric fields. Such a feature can be used for high-speed electric-switching and memory devices. Electronic-type ferroelectrics include charge degrees of freedom, so that they are sometimes conductive, complicating dielectric measurements. This makes difficult the exploration of electronic-type ferroelectrics and the understanding of their ferroelectric nature. Here, we show unambiguous evidence for electronic ferroelectricity in the charge-order (CO) phase of a prototypical ET-based molecular compound, α-(ET)2I3 (ET:bis(ethylenedithio)tetrathiafulvalene), using a terahertz pulse as an external electric field. Terahertz-pump second-harmonic-generation(SHG)-probe and optical-reflectivity-probe spectroscopy reveal that the ferroelectric polarization originates from intermolecular charge transfers and is inclined 27° from the horizontal CO stripe. These features are qualitatively reproduced by the density-functional-theory calculation. After sub-picosecond polarization modulation by terahertz fields, prominent oscillations appear in the reflectivity but not in the SHG-probe results, suggesting that the CO is coupled with molecular displacements, while the ferroelectricity is electronic in nature. The results presented here demonstrate that terahertz-pump optical-probe spectroscopy is a powerful tool not only for rapidly controlling polarizations, but also for clarifying the mechanisms of ferroelectricity.

  4. An electron momentum spectroscopy and density functional theory study of the outer valence electronic structure of stella-2,6-dione

    NASA Astrophysics Data System (ADS)

    Nixon, K. L.; Wang, F.; Campbell, L.; Maddern, T.; Winkler, D.; Gleiter, R.; Loeb, P.; Weigold, E.; Brunger, M. J.

    2003-07-01

    We report on the first electron momentum spectroscopy (EMS) study into the outer valence electronic structure of the ground electronic state for the organic molecule stella-2,6-dione (C8H8O2). Experimentally measured binding-energy spectra are compared against a He(Ialpha) photoelectron spectroscopy result, while our derived momentum distributions (MDs) are compared against corresponding results from the plane wave impulse approximation (PWIA) level calculations. These computations employed density functional theory (DFT) basis states at the triple zeta valence polarization (TZVP) level, with a range of exchange-correlation (XC) functionals. A detailed comparison between the experimental and PWIA DFT-XC/TZVP calculated MDs enabled us to evaluate the accuracy of the various functionals, the Becke-Perdew (BP) XC functional being found to provide the most accurate description here. The importance of the through-bond interaction to the molecular orbitals (MOs) of stella-2,6-dione is demonstrated using the orbital imaging capability of EMS. Finally we show that the molecular geometry of this molecule, as derived from BP/TZVP, is in quite good agreement with corresponding independent experimental data.

  5. Electronic structure of SmO and SmO- via slow photoelectron velocity-map imaging spectroscopy and spin-orbit CASPT2 calculations

    NASA Astrophysics Data System (ADS)

    Weichman, Marissa L.; Vlaisavljevich, Bess; DeVine, Jessalyn A.; Shuman, Nicholas S.; Ard, Shaun G.; Shiozaki, Toru; Neumark, Daniel M.; Viggiano, Albert A.

    2017-12-01

    The chemi-ionization reaction of atomic samarium, Sm + O → SmO+ + e-, has been investigated by the Air Force Research Laboratory as a means to modify local electron density in the ionosphere for reduction of scintillation of high-frequency radio waves. Neutral SmO is a likely unwanted byproduct. The spectroscopy of SmO is of great interest to aid in interpretation of optical emission spectra recorded following atmospheric releases of Sm as part of the Metal Oxide Space Cloud (MOSC) observations. Here, we report a joint experimental and theoretical study of SmO using slow photoelectron velocity-map imaging spectroscopy of cryogenically cooled SmO- anions (cryo-SEVI) and high-level spin-orbit complete active space calculations with corrections from second order perturbation theory (CASPT2). With cryo-SEVI, we measure the electron affinity of SmO to be 1.0581(11) eV and report electronic and vibrational structure of low-lying electronic states of SmO in good agreement with theory and prior experimental work. We also obtain spectra of higher-lying excited states of SmO for direct comparison to the MOSC results.

  6. Fabrication of graphene/titanium carbide nanorod arrays for chemical sensor application.

    PubMed

    Fu, Chong; Li, Mingji; Li, Hongji; Li, Cuiping; Qu, Changqing; Yang, Baohe

    2017-03-01

    Vertically stacked graphene nanosheet/titanium carbide nanorod array/titanium (graphene/TiC nanorod array) wires were fabricated using a direct current arc plasma jet chemical vapor deposition (DC arc plasma jet CVD) method. The graphene/TiC nanorod arrays were characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction spectroscopy. The TiO 2 nanotube array was reduced to the TiC nanorod array, and using those TiC nanorods as nucleation sites, the vertical graphene layer was formed on the TiC nanorod surface. The multi-target response mechanisms of the graphene/TiC nanorod array were investigated for ascorbic acid (AA), dopamine (DA), uric acid (UA), and hydrochlorothiazide (HCTZ). The vertically stacked graphene sheets facilitated the electron transfer and reactant transport with a unique porous surface, high surface area, and high electron transport network of CVD graphene sheets. The TiC nanorod array facilitated the electron transfer and firmly held the graphene layer. Thus, the graphene/TiC nanorod arrays could simultaneously respond to trace biomarkers and antihypertensive drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Tungsten doped titanium dioxide nanowires for high efficiency dye-sensitized solar cells.

    PubMed

    Archana, P S; Gupta, Arunava; Yusoff, Mashitah M; Jose, Rajan

    2014-04-28

    Metal oxide semiconductors offering simultaneously high specific surface area and high electron mobility are actively sought for fabricating high performance nanoelectronic devices. The present study deals with synthesis of tungsten doped TiO2 (W:TiO2) nanowires (diameter ∼50 nm) by electrospinning and evaluation of their performance in dye-sensitized solar cells (DSCs). Similarity in the ionic radii between W(6+) and Ti(4+) and availability of two free electrons per dopant are the rationale for the present study. Materials were characterized by X-ray diffraction, scanning and transmission electron microscopy, X-ray fluorescence measurements, and absorption spectroscopy. Nanowires containing 2 at% W:TiO2 gave 90% higher short circuit current density (JSC) (∼15.39 mA cm(-2)) in DSCs with a nominal increase in the open circuit voltage compared with that of the undoped analogue (JSC ∼8.1 mA cm(-2)). The results are validated by multiple techniques employing absorption spectroscopy, electrochemical impedance spectroscopy and open circuit voltage decay. The above studies show that the observed increments resulted from increased dye-loading, electron density, and electron lifetime in tungsten doped samples.

  8. Electronic structure of germanium selenide investigated using ultra-violet photo-electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Mishra, P.; Lohani, H.; Kundu, A. K.; Patel, R.; Solanki, G. K.; Menon, Krishnakumar S. R.; Sekhar, B. R.

    2015-07-01

    The valence band electronic structure of GeSe single crystals has been investigated using angle resolved photoemission spectroscopy (ARPES) and x-ray photoelectron spectroscopy. The experimentally observed bands from ARPES, match qualitatively with our LDA-based band structure calculations along the Γ-Z, Γ-Y and Γ-T symmetry directions. The valence band maximum occurs nearly midway along the Γ-Z direction, at a binding energy of -0.5 eV, substantiating the indirect band gap of GeSe. Non-dispersive features associated with surface states and indirect transitions have been observed. The difference in hybridization of Se and Ge 4p orbitals leads to the variation of dispersion along the three symmetry directions. The predominance of the Se 4pz orbitals, evidenced from theoretical calculations, may be the cause for highly dispersive bands along the Γ-T direction. Detailed electronic structure analysis reveals the significance of the cation-anion 4p orbitals hybridization in the valence band dispersion of IV-VI semiconductors. This is the first comprehensive report of the electronic structure of a GeSe single crystal using ARPES in conjugation with theoretical band structure analysis.

  9. Ultrafast Structural Dynamics in Combustion Relevant Model Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Peter M.

    2014-03-31

    The research project explored the time resolved structural dynamics of important model reaction system using an array of novel methods that were developed specifically for this purpose. They include time resolved electron diffraction, time resolved relativistic electron diffraction, and time resolved Rydberg fingerprint spectroscopy. Toward the end of the funding period, we also developed time-resolved x-ray diffraction, which uses ultrafast x-ray pulses at LCLS. Those experiments are just now blossoming, as the funding period expired. In the following, the time resolved Rydberg Fingerprint Spectroscopy is discussed in some detail, as it has been a very productive method. The binding energymore » of an electron in a Rydberg state, that is, the energy difference between the Rydberg level and the ground state of the molecular ion, has been found to be a uniquely powerful tool to characterize the molecular structure. To rationalize the structure sensitivity we invoke a picture from electron diffraction: when it passes the molecular ion core, the Rydberg electron experiences a phase shift compared to an electron in a hydrogen atom. This phase shift requires an adjustment of the binding energy of the electron, which is measurable. As in electron diffraction, the phase shift depends on the molecular, geometrical structure, so that a measurement of the electron binding energy can be interpreted as a measurement of the molecule’s structure. Building on this insight, we have developed a structurally sensitive spectroscopy: the molecule is first elevated to the Rydberg state, and the binding energy is then measured using photoelectron spectroscopy. The molecule’s structure is read out as the binding energy spectrum. Since the photoionization can be done with ultrafast laser pulses, the technique is inherently capable of a time resolution in the femtosecond regime. For the purpose of identifying the structures of molecules during chemical reactions, and for the analysis of molecular species in the hot environments of combustion processes, there are several features that make the Rydberg ionization spectroscopy uniquely useful. First, the Rydberg electron’s orbit is quite large and covers the entire molecule for most molecular structures of combustion interest. Secondly, the ionization does not change vibrational quantum numbers, so that even complicated and large molecules can be observed with fairly well resolved spectra. In fact, the spectroscopy is blind to vibrational excitation of the molecule. This has the interesting consequence for the study of chemical dynamics, where the molecules are invariably very energetic, that the molecular structures are observed unobstructed by the vibrational congestion that dominates other spectroscopies. This implies also that, as a tool to probe the time-dependent structural dynamics of chemically interesting molecules, Rydberg spectroscopy may well be better suited than electron or x-ray diffraction. With recent progress in calculating Rydberg binding energy spectra, we are approaching the point where the method can be evolved into a structure determination method. To implement the Rydberg ionization spectroscopy we use a molecular beam based, time-resolved pump-probe multi-photon ionization/photoelectron scheme in which a first laser pulse excites the molecule to a Rydberg state, and a probe pulse ionizes the molecule. A time-of-flight detector measures the kinetic energy spectrum of the photoelectrons. The photoelectron spectrum directly provides the binding energy of the electron, and thereby reveals the molecule’s time-dependent structural fingerprint. Only the duration of the laser pulses limits the time resolution. With a new laser system, we have now reached time resolutions better than 100 fs, although very deep UV wavelengths (down to 190 nm) have slightly longer instrument functions. The structural dynamics of molecules in Rydberg-excited states is obtained by delaying the probe ionization photon from the pump photon; the structural dynamics of molecules in their ground state or excited valence states is measured by inducing the dynamics using a near UV laser pulse, and employing a multi-photon ionization scheme via the Rydberg states as a probe process. Thus, the technique is capable of measuring the reaction dynamics in any electronic state of neutral molecules.« less

  10. High-resolution broadband terahertz spectroscopy via electronic heterodyne detection of photonically generated terahertz frequency comb.

    PubMed

    Pavelyev, D G; Skryl, A S; Bakunov, M I

    2014-10-01

    We report an alternative approach to the terahertz frequency-comb spectroscopy (TFCS) based on nonlinear mixing of a photonically generated terahertz pulse train with a continuous wave signal from an electronic synthesizer. A superlattice is used as a nonlinear mixer. Unlike the standard TFCS technique, this approach does not require a complex double-laser system but retains the advantages of TFCS-high spectral resolution and wide bandwidth.

  11. Combined electron energy-loss and cathodoluminescence spectroscopy on individual and composite plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Coenen, Toon; Schoen, David T.; Brenny, Benjamin J. M.; Polman, Albert; Brongersma, Mark L.

    2016-05-01

    We systematically investigate the plasmonic "dolmen" geometry and its constituent elements using electron energy-loss spectroscopy and cathodoluminescence spectroscopy. In particular, we study the effects of the particle size and spacing on the resonant behavior and interparticle coupling. Because we apply both techniques on the same structures we can directly compare the results and investigate the radiative versus nonradiative character of the different modes. We find that the cathodoluminescence response is significantly lower than the electron energy-loss response for higher-energy modes because strong absorption reduces the scattering efficiency in this regime. Furthermore, we show that the overall resonant response roughly scales with size as expected for plasmonic structures but that the transverse resonant modes do become more dominant in larger structures due to a relative reduction in Ohmic dissipation. Using EELS and CL we can rigorously study coupling between the elements and show that the coupling diminishes for larger spacings.

  12. Synthesis, Characterization and Antibacterial Activity of BiVO4 Microstructure

    NASA Astrophysics Data System (ADS)

    Ekthammathat, Nuengruethai; Phuruangrat, Anukorn; Thongtem, Somchai; Thongtem, Titipun

    2018-05-01

    Hyperbranched BiVO4 microstructure were successfully synthesized by a hydrothermal method. Upon characterization the products by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, selected area electron diffraction (SAED) and photoluminescence (PL) spectroscopy, pure monoclinic hyperbranched BiVO4 with dominant vibration peak at 810 cm-1 and strong photoemission peak at 360 nm was synthesized in the solution with pH 1. In the solution with pH 2, tetragonal BiVO4 phase was also detected. In this research, antibacterial activity against S. aureus and E. coli was investigated by counting the colony forming unit (CFU). At 37°C within 24 h, the monoclinic BiVO4 phase can play the role in inhibiting S. aureus growth (350 CFU/mL remaining bacteria) better than that against E. coli (a large number of remaining bacteria).

  13. Ultrafast quantum control of ionization dynamics in krypton.

    PubMed

    Hütten, Konrad; Mittermair, Michael; Stock, Sebastian O; Beerwerth, Randolf; Shirvanyan, Vahe; Riemensberger, Johann; Duensing, Andreas; Heider, Rupert; Wagner, Martin S; Guggenmos, Alexander; Fritzsche, Stephan; Kabachnik, Nikolay M; Kienberger, Reinhard; Bernhardt, Birgitta

    2018-02-19

    Ultrafast spectroscopy with attosecond resolution has enabled the real time observation of ultrafast electron dynamics in atoms, molecules and solids. These experiments employ attosecond pulses or pulse trains and explore dynamical processes in a pump-probe scheme that is selectively sensitive to electronic state of matter via photoelectron or XUV absorption spectroscopy or that includes changes of the ionic state detected via photo-ion mass spectrometry. Here, we demonstrate how the implementation of combined photo-ion and absorption spectroscopy with attosecond resolution enables tracking the complex multidimensional excitation and decay cascade of an Auger auto-ionization process of a few femtoseconds in highly excited krypton. In tandem with theory, our study reveals the role of intermediate electronic states in the formation of multiply charged ions. Amplitude tuning of a dressing laser field addresses different groups of decay channels and allows exerting temporal and quantitative control over the ionization dynamics in rare gas atoms.

  14. Milligram-per-second femtosecond laser production of Se nanoparticle inks and ink-jet printing of nanophotonic 2D-patterns

    NASA Astrophysics Data System (ADS)

    Ionin, Andrey; Ivanova, Anastasia; Khmel'nitskii, Roman; Klevkov, Yury; Kudryashov, Sergey; Mel'nik, Nikolay; Nastulyavichus, Alena; Rudenko, Andrey; Saraeva, Irina; Smirnov, Nikita; Zayarny, Dmitry; Baranov, Anatoly; Kirilenko, Demid; Brunkov, Pavel; Shakhmin, Alexander

    2018-04-01

    Milligram-per-second production of selenium nanoparticles in water sols was realized through 7-W, 2 MHz-rate femtosecond laser ablation of a crystalline trigonal selenium pellet. High-yield particle formation mechanism and ultimate mass-removal yield were elucidated by optical profilometry and scanning electron microscopy characterization of the corresponding crater depths and topographies. Deposited selenium particles were inspected by scanning and transmission electron microscopy, while their hydrosols (nanoinks) were characterized by optical transmission, Raman and dynamic light scattering spectroscopy. 2D patterns and coatings were ink-jet printed on thin supported silver films and their bare silica glass substrates, as well as on IR-transparent CaF2 substrates, and characterized by electron microscopy, energy-dispersive x-ray spectroscopy, and broadband (vis-mid IR) transmission spectroscopy, exhibiting crystalline selenium nanoparticles with high refractive index as promising all-dielectric sensing building nanoblocks in nanophotonics.

  15. Single-molecule spectroscopy for plastic electronics: materials analysis from the bottom-up.

    PubMed

    Lupton, John M

    2010-04-18

    pi-conjugated polymers find a range of applications in electronic devices. These materials are generally highly disordered in terms of chain length and chain conformation, besides being influenced by a variety of chemical and physical defects. Although this characteristic can be of benefit in certain device applications, disorder severely complicates materials analysis. Accurate analytical techniques are, however, crucial to optimising synthetic procedures and assessing overall material purity. Fortunately, single-molecule spectroscopic techniques have emerged as an unlikely but uniquely powerful approach to unraveling intrinsic material properties from the bottom up. Building on the success of such techniques in the life sciences, single-molecule spectroscopy is finding increasing applicability in materials science, effectively enabling the dissection of the bulk down to the level of the individual molecular constituent. This article reviews recent progress in single molecule spectroscopy of conjugated polymers as used in organic electronics.

  16. Spin noise spectroscopy of donor-bound electrons in ZnO

    NASA Astrophysics Data System (ADS)

    Horn, H.; Balocchi, A.; Marie, X.; Bakin, A.; Waag, A.; Oestreich, M.; Hübner, J.

    2013-01-01

    We investigate the intrinsic spin dynamics of electrons bound to Al impurities in bulk ZnO by optical spin noise spectroscopy. Spin noise spectroscopy enables us to investigate the longitudinal and transverse spin relaxation time with respect to nuclear and external magnetic fields in a single spectrum. On one hand, the spin dynamic is dominated by the intrinsic hyperfine interaction with the nuclear spins of the naturally occurring 67Zn isotope. We measure a typical spin dephasing time of 23 ns, in agreement with the expected theoretical values. On the other hand, we measure a third, very high spin dephasing rate which is attributed to a high defect density of the investigated ZnO material. Measurements of the spin dynamics under the influence of transverse as well as longitudinal external magnetic fields unambiguously reveal the intriguing connections of the electron spin with its nuclear and structural environment.

  17. Influence of the adsorption geometry of PTCDA on Ag(111) on the tip-molecule forces in non-contact atomic force microscopy.

    PubMed

    Langewisch, Gernot; Falter, Jens; Schirmeisen, André; Fuchs, Harald

    2014-01-01

    Perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) adsorbed on a metal surface is a prototypical organic-anorganic interface. In the past, scanning tunneling microscopy and scanning tunneling spectroscopy studies of PTCDA adsorbed on Ag(111) have revealed differences in the electronic structure of the molecules depending on their adsorption geometry. In the work presented here, high-resolution 3D force spectroscopy measurements at cryogenic temperatures were performed on a surface area that contained a complete PTCDA unit cell with the two possible geometries. At small tip-molecule separations, deviations in the tip-sample forces were found between the two molecule orientations. These deviations can be explained by a different electron density in both cases. This result demonstrates the capability of 3D force spectroscopy to detect even small effects in the electronic properties of organic adsorbates.

  18. Role of C–N Configurations in the Photoluminescence of Graphene Quantum Dots Synthesized by a Hydrothermal Route

    PubMed Central

    Permatasari, Fitri Aulia; Aimon, Akfiny Hasdi; Iskandar, Ferry; Ogi, Takashi; Okuyama, Kikuo

    2016-01-01

    Graphene quantum dots (GQDs) containing N atoms were successfully synthesized using a facile, inexpensive, and environmentally friendly hydrothermal reaction of urea and citric acid, and the effect of the GQDs’ C–N configurations on their photoluminescence (PL) properties were investigated. High-resolution transmission electron microscopy (HR-TEM) images confirmed that the dots were spherical, with an average diameter of 2.17 nm. X-ray photoelectron spectroscopy (XPS) analysis indicated that the C–N configurations of the GQDs substantially affected their PL intensity. Increased PL intensity was obtained in areas with greater percentages of pyridinic-N and lower percentages of pyrrolic-N. This enhanced PL was attributed to delocalized π electrons from pyridinic-N contributing to the C system of the GQDs. On the basis of energy electron loss spectroscopy (EELS) and UV-Vis spectroscopy analyses, we propose a PL mechanism for hydrothermally synthesized GQDs. PMID:26876153

  19. Group Theory in Spectroscopy

    ERIC Educational Resources Information Center

    Mooney, A.

    1973-01-01

    Discusses application of group theory to the teaching of selection rules in electronic and vibrational spectroscopy. Indicates that acquaintance with such a mathematical concept is essential for high school students to understand molecular spectrum courses. (CC)

  20. Sonochemical fabrication of fluorinated mesoporous titanium dioxide microspheres

    NASA Astrophysics Data System (ADS)

    Yu, Changlin; Yu, Jimmy C.; Chan, Mui

    2009-05-01

    A sonochemical-hydrothermal method for preparing fluorinated mesoporous TiO 2 microspheres was developed. Formation of mesoporous TiO 2 and doping of fluorine was achieved by sonication and then hydrothermal treatment of a solution containing titanium isopropoxide, template, and sodium fluoride. The as-synthesized TiO 2 microspheres were characterized by X-ray diffraction (XRD), Fourier translation infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) spectroscopy, photoluminescence spectroscopy (PL), and BET surface areas. The P123 template was removed completely during the hydrothermal and washing steps, which was different from the conventional calcination treatment. The as- synthesized TiO 2 microspheres had good crystallinity and high stability. Results from the photocatalytic degradation of methylene blue (MB) showed that fluorination could remarkably improve the photocatalytic activity of titanium dioxide.

  1. Electron-spectroscopy studies of clean thorium and uranium surfaces. Chemisorption and initial stages of reaction with O2, CO, and CO2

    NASA Astrophysics Data System (ADS)

    McLean, W.; Colmenares, C. A.; Smith, R. L.; Somorjai, G. A.

    1982-01-01

    The adsorption of O2, CO, and CO2 on the thorium (111) crystal face and on polycrystalline α-uranium has been investigated by x-ray photoelectron spectroscopy, Auger electron spectroscopy (AES), and secondary-ion mass spectroscopy (SIMS) at 300 K. Oxygen adsorption on both metals resulted in the formation of the metal dioxide. CO and CO2 adsorption on Th(111) produced species derived from atomic carbon and oxygen; the presence of molecular CO was also detected. Only atomic carbon and oxygen were observed on uranium. Elemental depth profiles by AES and SIMS indicated that the carbon produced by the dissociation of CO or CO2 diffused into the bulk of the metals to form a carbide, while the oxygen remained on their surfaces as an oxide.

  2. Adaptive real-time dual-comb spectroscopy.

    PubMed

    Ideguchi, Takuro; Poisson, Antonin; Guelachvili, Guy; Picqué, Nathalie; Hänsch, Theodor W

    2014-02-27

    The spectrum of a laser frequency comb consists of several hundred thousand equally spaced lines over a broad spectral bandwidth. Such frequency combs have revolutionized optical frequency metrology and they now hold much promise for significant advances in a growing number of applications including molecular spectroscopy. Despite an intriguing potential for the measurement of molecular spectra spanning tens of nanometres within tens of microseconds at Doppler-limited resolution, the development of dual-comb spectroscopy is hindered by the demanding stability requirements of the laser combs. Here we overcome this difficulty and experimentally demonstrate a concept of real-time dual-comb spectroscopy, which compensates for laser instabilities by electronic signal processing. It only uses free-running mode-locked lasers without any phase-lock electronics. We record spectra spanning the full bandwidth of near-infrared fibre lasers with Doppler-limited line profiles highly suitable for measurements of concentrations or line intensities. Our new technique of adaptive dual-comb spectroscopy offers a powerful transdisciplinary instrument for analytical sciences.

  3. Adaptive real-time dual-comb spectroscopy

    NASA Astrophysics Data System (ADS)

    Ideguchi, Takuro; Poisson, Antonin; Guelachvili, Guy; Picqué, Nathalie; Hänsch, Theodor W.

    2014-02-01

    The spectrum of a laser frequency comb consists of several hundred thousand equally spaced lines over a broad spectral bandwidth. Such frequency combs have revolutionized optical frequency metrology and they now hold much promise for significant advances in a growing number of applications including molecular spectroscopy. Despite an intriguing potential for the measurement of molecular spectra spanning tens of nanometres within tens of microseconds at Doppler-limited resolution, the development of dual-comb spectroscopy is hindered by the demanding stability requirements of the laser combs. Here we overcome this difficulty and experimentally demonstrate a concept of real-time dual-comb spectroscopy, which compensates for laser instabilities by electronic signal processing. It only uses free-running mode-locked lasers without any phase-lock electronics. We record spectra spanning the full bandwidth of near-infrared fibre lasers with Doppler-limited line profiles highly suitable for measurements of concentrations or line intensities. Our new technique of adaptive dual-comb spectroscopy offers a powerful transdisciplinary instrument for analytical sciences.

  4. Adaptive real-time dual-comb spectroscopy

    PubMed Central

    Ideguchi, Takuro; Poisson, Antonin; Guelachvili, Guy; Picqué, Nathalie; Hänsch, Theodor W.

    2014-01-01

    The spectrum of a laser frequency comb consists of several hundred thousand equally spaced lines over a broad spectral bandwidth. Such frequency combs have revolutionized optical frequency metrology and they now hold much promise for significant advances in a growing number of applications including molecular spectroscopy. Despite an intriguing potential for the measurement of molecular spectra spanning tens of nanometres within tens of microseconds at Doppler-limited resolution, the development of dual-comb spectroscopy is hindered by the demanding stability requirements of the laser combs. Here we overcome this difficulty and experimentally demonstrate a concept of real-time dual-comb spectroscopy, which compensates for laser instabilities by electronic signal processing. It only uses free-running mode-locked lasers without any phase-lock electronics. We record spectra spanning the full bandwidth of near-infrared fibre lasers with Doppler-limited line profiles highly suitable for measurements of concentrations or line intensities. Our new technique of adaptive dual-comb spectroscopy offers a powerful transdisciplinary instrument for analytical sciences. PMID:24572636

  5. Nanoscale infrared spectroscopy as a non-destructive probe of extraterrestrial samples.

    PubMed

    Dominguez, Gerardo; Mcleod, A S; Gainsforth, Zack; Kelly, P; Bechtel, Hans A; Keilmann, Fritz; Westphal, Andrew; Thiemens, Mark; Basov, D N

    2014-12-09

    Advances in the spatial resolution of modern analytical techniques have tremendously augmented the scientific insight gained from the analysis of natural samples. Yet, while techniques for the elemental and structural characterization of samples have achieved sub-nanometre spatial resolution, infrared spectral mapping of geochemical samples at vibrational 'fingerprint' wavelengths has remained restricted to spatial scales >10 μm. Nevertheless, infrared spectroscopy remains an invaluable contactless probe of chemical structure, details of which offer clues to the formation history of minerals. Here we report on the successful implementation of infrared near-field imaging, spectroscopy and analysis techniques capable of sub-micron scale mineral identification within natural samples, including a chondrule from the Murchison meteorite and a cometary dust grain (Iris) from NASA's Stardust mission. Complementary to scanning electron microscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy probes, this work evidences a similarity between chondritic and cometary materials, and inaugurates a new era of infrared nano-spectroscopy applied to small and invaluable extraterrestrial samples.

  6. Crystallography with online optical and X-ray absorption spectroscopies demonstrates an ordered mechanism in copper nitrite reductase.

    PubMed

    Hough, Michael A; Antonyuk, Svetlana V; Strange, Richard W; Eady, Robert R; Hasnain, S Samar

    2008-04-25

    Nitrite reductases are key enzymes that perform the first committed step in the denitrification process and reduce nitrite to nitric oxide. In copper nitrite reductases, an electron is delivered from the type 1 copper (T1Cu) centre to the type 2 copper (T2Cu) centre where catalysis occurs. Despite significant structural and mechanistic studies, it remains controversial whether the substrates, nitrite, electron and proton are utilised in an ordered or random manner. We have used crystallography, together with online X-ray absorption spectroscopy and optical spectroscopy, to show that X-rays rapidly and selectively photoreduce the T1Cu centre, but that the T2Cu centre does not photoreduce directly over a typical crystallographic data collection time. Furthermore, internal electron transfer between the T1Cu and T2Cu centres does not occur, and the T2Cu centre remains oxidised. These data unambiguously demonstrate an 'ordered' mechanism in which electron transfer is gated by binding of nitrite to the T2Cu. Furthermore, the use of online multiple spectroscopic techniques shows their value in assessing radiation-induced redox changes at different metal sites and demonstrates the importance of ensuring the correct status of redox centres in a crystal structure determination. Here, optical spectroscopy has shown a very high sensitivity for detecting the change in T1Cu redox state, while X-ray absorption spectroscopy has reported on the redox status of the T2Cu site, as this centre has no detectable optical absorption.

  7. Preparation of high performance NBR/HNTs nanocomposites using an electron transferring interaction method

    NASA Astrophysics Data System (ADS)

    Yang, Shuyan; Zhou, Yanxue; Zhang, Peng; Cai, Zhuodi; Li, Yangping; Fan, Hongbo

    2017-12-01

    Interfacial interaction is one of the key factors to improve comprehensive properties of polymer/inorganic filler nanocomposites. In this work, a new interfacial interaction called electron transferring interaction is reported in the nitrile-butadiene rubber/halloysite nanotubes (NBR/HNTs) nanocomposites. The X-ray photoelectron spectroscopy (XPS) and in-situ controlling temperature Fourier transform infrared spectroscopy (FTIR) have confirmed that electrons of electron-rich -CN groups in NBR can transfer to the electron-deficiency aluminum atoms of HNTs, which packs a part of NBR molecules onto the surface of HNTs to form bound rubber and stabilize the homogeneous dispersion of HNTs with few agglomeration as revealed by scanning electron microscope (SEM) and dynamic mechanical analysis (DMA) performances, even at high HNTs addition, resulting in high light transmittance. The tensile strength of NBR/30wt%HNTs nanocomposites is about 291% higher than pure NBR, without sacrificing the elongation at break.

  8. Quantifying electronic band interactions in van der Waals materials using angle-resolved reflected-electron spectroscopy.

    PubMed

    Jobst, Johannes; van der Torren, Alexander J H; Krasovskii, Eugene E; Balgley, Jesse; Dean, Cory R; Tromp, Rudolf M; van der Molen, Sense Jan

    2016-11-29

    High electron mobility is one of graphene's key properties, exploited for applications and fundamental research alike. Highest mobility values are found in heterostructures of graphene and hexagonal boron nitride, which consequently are widely used. However, surprisingly little is known about the interaction between the electronic states of these layered systems. Rather pragmatically, it is assumed that these do not couple significantly. Here we study the unoccupied band structure of graphite, boron nitride and their heterostructures using angle-resolved reflected-electron spectroscopy. We demonstrate that graphene and boron nitride bands do not interact over a wide energy range, despite their very similar dispersions. The method we use can be generally applied to study interactions in van der Waals systems, that is, artificial stacks of layered materials. With this we can quantitatively understand the 'chemistry of layers' by which novel materials are created via electronic coupling between the layers they are composed of.

  9. 8 MeV electron beam induced modifications in the thermal, structural and electrical properties of nanophase CeO2 for potential electronics applications

    NASA Astrophysics Data System (ADS)

    Babitha, K. K.; Sreedevi, A.; Priyanka, K. P.; Ganesh, S.; Varghese, Thomas

    2018-06-01

    The effect of 8 MeV electron beam irradiation on the thermal, structural and electrical properties of CeO2 nanoparticles synthesized by chemical precipitation route was investigated. The dose dependent effect of electron irradiation was studied using various characterization techniques such as, thermogravimetric and differential thermal analyses, X-ray diffraction, Fourier transformed infrared spectroscopy and impedance spectroscopy. Systematic investigation based on the results of structural studies confirm that electron beam irradiation induces defects and particle size variation on CeO2 nanoparticles, which in turn results improvements in AC conductivity, dielectric constant and loss tangent. Structural modifications and high value of dielectric constant for CeO2 nanoparticles due to electron beam irradiation make it as a promising material for the fabrication of gate dielectric in metal oxide semiconductor devices.

  10. The spatial coherence function in scanning transmission electron microscopy and spectroscopy.

    PubMed

    Nguyen, D T; Findlay, S D; Etheridge, J

    2014-11-01

    We investigate the implications of the form of the spatial coherence function, also referred to as the effective source distribution, for quantitative analysis in scanning transmission electron microscopy, and in particular for interpreting the spatial origin of imaging and spectroscopy signals. These questions are explored using three different source distribution models applied to a GaAs crystal case study. The shape of the effective source distribution was found to have a strong influence not only on the scanning transmission electron microscopy (STEM) image contrast, but also on the distribution of the scattered electron wavefield and hence on the spatial origin of the detected electron intensities. The implications this has for measuring structure, composition and bonding at atomic resolution via annular dark field, X-ray and electron energy loss STEM imaging are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Ultrafast dynamics of electrons in ammonia.

    PubMed

    Vöhringer, Peter

    2015-04-01

    Solvated electrons were first discovered in solutions of metals in liquid ammonia. The physical and chemical properties of these species have been studied extensively for many decades using an arsenal of electrochemical, spectroscopic, and theoretical techniques. Yet, in contrast to their hydrated counterpart, the ultrafast dynamics of ammoniated electrons remained completely unexplored until quite recently. Femtosecond pump-probe spectroscopy on metal-ammonia solutions and femtosecond multiphoton ionization spectroscopy on the neat ammonia solvent have provided new insights into the optical properties and the reactivities of this fascinating species. This article reviews the nature of the optical transition, which gives the metal-ammonia solutions their characteristic blue appearance, in terms of ultrafast relaxation processes involving bound and continuum excited states. The recombination processes following the injection of an electron via photoionization of the solvent are discussed in the context of the electronic structure of the liquid and the anionic defect associated with the solvated electron.

  12. Soft x-ray spectroscopy studies of novel electronic materials using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Newby, David, Jr.

    Soft x-ray spectroscopy can provide a wealth of information on the electronic structure of solids. In this work, a suite of soft x-ray spectroscopies is applied to organic and inorganic materials with potential applications in electronic and energy generation devices. Using the techniques of x-ray absorption (XAS), x-ray emission spectroscopy (XES), and x-ray photoemission spectroscopy (XPS), the fundamental properties of these different materials are explored. Cycloparaphenylenes (CPPs) are a recently synthesized family of cyclic hydrocarbons with very interesting properties and many potential applications. Unusual UV/Visible fluorescence trends have spurred a number of theoretical investigations into the electronic properties of the CPP family, but thus far no comprehensive electronic structure measurements have been conducted. XPS, XAS, and XES data for two varieties, [8]- and [10]-CPP, are presented here, and compared with the results of relevant DFT calculations. Turning towards more application-centered investigations, similar measurements are applied to two materials commonly used in solid oxide fuel cell (SOFC) cathodes: La1-xSrxMnO 3 (LSMO) and La1-xSr1- xCo1-yFe yO3 (LSCF). Both materials are structurally perovskites, but they exhibit strikingly different electronic properties. SOFC systems very efficiently produce electricity by catalyzing reactions between oxygen and petroleum-based hydrocarbons at high temperatures (> 800 C). Such systems are already utilized to great effect in many industries, but more widespread adoption could be had if the cells could operate at lower temperatures. Understanding the electronic structure and operational evolution of the cathode materials is essential for the development of better low-temperature fuel cells. LSCF is a mixed ion-electron conductor which holds promise for low-temperature SOFC applications. XPS spectra of LSCF thin films are collected as the films are heated and gas-dosed in a controlled environment. The surface evolution of these films is discussed, and the effects of different gas environments on oxygen vacancy concentration are elucidated. LSMO is commonly used in commercial fuel cell devices. Here the resonant soft x-ray emission (RIXS) spectrum of LSMO is examined, and it is shown that the inelastic x-ray emission structure of LSMO arises from local atomic multiplet effects.

  13. Laser-Induced Breakdown Spectroscopy (LIBS) for Monitoring the Formation of Hydroxyapatite Porous Layers

    PubMed Central

    Sola, Daniel; Paulés, Daniel; Grima, Lorena

    2017-01-01

    Laser-induced breakdown spectroscopy (LIBS) is applied to characterize the formation of porous hydroxyapatite layers on the surface of 0.8CaSiO3-0.2Ca3(PO4)2 biocompatible eutectic glass immersed in simulated body fluid (SBF). Compositional and structural characterization analyses were also conducted by field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), and micro-Raman spectroscopy. PMID:29211006

  14. Electronic and Optical properties of Graphene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Molinari, Elisa; Ferretti, Andrea; Cardoso, Claudia; Prezzi, Deborah; Ruini, Alice

    Narrow graphene nanoribbons (GNRs) exhibit substantial electronic band gaps, and optical properties expected to be fundamentally different from the ones of their parent material graphene. Unlike graphene the optical response of GNRs may be tuned by the ribbon width and the directly related electronic band gap. We have addressed the optical properties of chevron-like and finite-size armchair nanoribbons by computing the fundamental and optical gap from ab initio methods. Our results are in very good agreement with the experimental values obtained by STS, ARPES, and differential reflectance spectroscopy, indicating that this computational scheme can be quantitatively predictive for electronic and optical spectroscopies of nanostructures. These study has been partly supported by the EU Centre of Excellence ''MaX - MAterials design at the eXascale''.

  15. Revealing the electronic structure of LiC 6 by soft X-ray spectroscopy

    DOE PAGES

    Zhang, L.; Li, X.; Augustsson, A.; ...

    2017-03-09

    The electronic structure of LiC 6 has been investigated in this paper by soft X-ray absorption and emission spectroscopies. The results reveal that upon full lithiation of graphite, the Li 2s electrons are transferred into the carbon π* states in a near rigid-band behavior, resulting in the increased density of states near E F and the shift of σ* states to lower energies. Finally, in addition, the resonant inelastic X-ray scattering spectra of LiC 6 do not show strong dispersive features as that of graphite, indicating that the crystal momentum is not conserved during the scattering process due to themore » delocalization of electrons in the intermediate state.« less

  16. Monitoring long-range electron transfer pathways in proteins by stimulated attosecond broadband X-ray Raman spectroscopy

    DOE PAGES

    Zhang, Yu; Biggs, Jason D.; Govind, Niranjan; ...

    2014-10-09

    In this study, long-range electron transfer (ET) plays a key role in many biological energy conversion and synthesis processes. We show that nonlinear spectroscopy with attosecond X-ray pulses provides a real time movie of the evolving oxidation states and electron densities around atoms, and can probe these processes with high spatial and temporal resolution. This is demonstrated in a simulation study of the stimulated X-ray Raman (SXRS) signals in Re-modified azurin, which had long served as a benchmark for long-range ET in proteins. Nonlinear SXRS signals are sensitive to the local electronic structure and should offer a novel window formore » long-range ET.« less

  17. Silver nanoparticle production by Rhizopus stolonifer and its antibacterial activity against extended spectrum {beta}-lactamase producing (ESBL) strains of Enterobacteriaceae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banu, Afreen; Rathod, Vandana, E-mail: drvandanarathod@rediffmail.com; Ranganath, E.

    Highlights: {yields} Silver nanoparticle production by using Rhizopus stolonifer. {yields} Antibacterial activity of silver nanoparticles against extended spectrum {beta}-lactamase producing (ESBL) strains of Enterobacteriaceae. {yields} Synergistic effect of antibiotics with silver nanoparticles towards ESBL-strains. {yields} Characterization of silver nanoparticles made by UV-vis spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) spectroscopy, atomic force microscopy (AFM). -- Abstract: This report focuses on the synthesis of silver nanoparticles using the fungus, Rhizopus stolonifer and its antimicrobial activity. Research in nanotechnology highlights the possibility of green chemistry pathways to produce technologically important nanomaterials. Characterization of newly synthesized silvermore » nanoparticles was made by UV-visible absorption spectroscopy, scanning electron microscope (SEM), transmission electron microscope (TEM), Fourier transform infrared (FTIR) spectroscopy and atomic force microscope (AFM). TEM micrograph revealed the formation of spherical nanoparticles with size ranging between 3 and 20 nm. The biosynthesized silver nanoparticles (AgNPs) showed excellent antibacterial activity against ESBL-strains which includes E. coli, Proteus. sp. and Klebsiella sp.« less

  18. Combining UV photodissociation action spectroscopy with electron transfer dissociation for structure analysis of gas-phase peptide cation-radicals.

    PubMed

    Shaffer, Christopher J; Pepin, Robert; Tureček, František

    2015-12-01

    We report the first example of using ultraviolet (UV) photodissociation action spectroscopy for the investigation of gas-phase peptide cation-radicals produced by electron transfer dissociation. z-Type fragment ions (●) Gly-Gly-Lys(+), coordinated to 18-crown-6-ether (CE), are generated, selected by mass and photodissociated in the 200-400 nm region. The UVPD action spectra indicate the presence of valence-bond isomers differing in the position of the Cα radical defect, (α-Gly)-Gly-Lys(+) (CE), Gly-(α-Gly)-Lys(+) (CE) and Gly-Gly-(α-Lys(+))(CE). The isomers are readily distinguishable by UV absorption spectra obtained by time-dependent density functional theory (TD-DFT) calculations. In contrast, conformational isomers of these radical types are calculated to have similar UV spectra. UV photodissociation action spectroscopy represents a new tool for the investigation of transient intermediates of ion-electron reactions. Specifically, z-type cation radicals are shown to undergo spontaneous hydrogen atom migrations upon electron transfer dissociation. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Size and shape dependence of CO adsorption sites on sapphire supported Fe microcrystals

    NASA Technical Reports Server (NTRS)

    Papageorgopoulos, C.; Heinemann, K.

    1985-01-01

    The surface structure and stoichiometry of alumina substrates, as well as the size, growth characteristics, and shape of Fe deposits on sapphire substrates have been investigated by low energy electron diffraction (LEED), Auger electron spectroscopy, electron energy loss spectroscopy, and X-ray photoemission spectroscopy (XPS), as well as work function measurements, in conjunction with transition electron microscopy observations. The substrates used in this work were the following: (1) new, clean Al2O3; (2) same surface amorphized by Ar ion bombardment; (3) same surface regenerated by 650 C annealing; (4) amorphous alumina films on Ta slab; and (5) polycrystal alumina films, obtained by heating amorphous films to 600 C. Substrate cleaning was found to be most effective in producing a reproducible surface upon oxygen RF plasma treatment. The Fe nucleation and growth process was found to depend strongly on the type of substrate surface and deposition conditions. Ar ion bombardment under beam flooding, and subsequent annealing at 650 C was found an effective means to restore the original Al2O3 (1102) surface for renewed Fe deposition.

  20. Metalloprotein structures at ambient conditions and in real-time: biological crystallography and spectroscopy using X-ray free electron lasers

    DOE PAGES

    Kern, Jan; Yachandra, Vittal K.; Yano, Junko

    2015-09-02

    We have studied the structure of enzymes and the chemistry at the catalytic sites, intensively and have acquired an understanding of the atomic-scale chemistry which requires a new approach beyond steady state X-ray crystallography and X-ray spectroscopy at cryogenic temperatures. Following the dynamic changes in the geometric and electronic structure of metallo-enzymes at ambient conditions, while overcoming the severe X-ray-induced changes to the redox active catalytic center, is key for deriving reaction mechanisms. Such studies become possible by the intense and ultra-short femtosecond (fs) X-ray pulses from an X-ray free electron laser (XFEL) by acquiring a signal before the samplemore » is destroyed. Our review describes the recent and pioneering uses of XFELs to study the protein structure and dynamics of metallo-enzymes using crystallography and scattering, as well as the chemical structure and dynamics of the catalytic complexes (charge, spin, and covalency) using spectroscopy during the reaction to understand the electron-transfer processes and elucidate the mechanism.« less

  1. Metalloprotein structures at ambient conditions and in real-time: biological crystallography and spectroscopy using X-ray free electron lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kern, Jan; Yachandra, Vittal K.; Yano, Junko

    We have studied the structure of enzymes and the chemistry at the catalytic sites, intensively and have acquired an understanding of the atomic-scale chemistry which requires a new approach beyond steady state X-ray crystallography and X-ray spectroscopy at cryogenic temperatures. Following the dynamic changes in the geometric and electronic structure of metallo-enzymes at ambient conditions, while overcoming the severe X-ray-induced changes to the redox active catalytic center, is key for deriving reaction mechanisms. Such studies become possible by the intense and ultra-short femtosecond (fs) X-ray pulses from an X-ray free electron laser (XFEL) by acquiring a signal before the samplemore » is destroyed. Our review describes the recent and pioneering uses of XFELs to study the protein structure and dynamics of metallo-enzymes using crystallography and scattering, as well as the chemical structure and dynamics of the catalytic complexes (charge, spin, and covalency) using spectroscopy during the reaction to understand the electron-transfer processes and elucidate the mechanism.« less

  2. Attachment of Single-wall Carbon Nanotubes (SWNTs) on Platinum Surfaces by Self-Assembling Techniques

    NASA Technical Reports Server (NTRS)

    Rosario-Castro, Belinda I.; Cabrera, Carlos R.; Perez-Davis, Maria; Lebron, Marisabel; Meador, Michael

    2003-01-01

    Single-wall carbon nanotubes (SWNTs) are very interesting materials because of their morphology, electronic and mechanical properties. Its morphology (high length-to-diameter ratio) and electronic properties suggest potential application of SWNTs as anode material for lithium ion secondary batteries. The introduction of SWNTs on these types of sources systems will improve their performance, efficiency, and capacity to store energy. A purification method has been applied for the removal of iron and amorphous carbon from the nanotubes. Unpurified and purified SWNTs were characterized by transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). In order to attach carbon nanotubes on platinum electrode surfaces, a self-assembled monolayer (SAM) of 4-aminothiophenol (4-ATP) was deposited over the electrodes. The amino-terminated SAM obtained was characterized by cyclic voltammetry, X-ray photoelectron spectroscopy (XPS), and Fourier-transforms infrared (FTIR) spectroscopy. Carbon nanotubes were deposited over the amino-terminated SAM by an amide bond formed between SAM amino groups and carboxylic acid groups at the open ends of the carbon nanotubes.This deposition was characterized using Raman spectroscopy and Scanning Electron microscopy (SEM).

  3. Nanowire Electron Scattering Spectroscopy

    NASA Technical Reports Server (NTRS)

    Hunt, Brian; Bronikowsky, Michael; Wong, Eric; VonAllmen, Paul; Oyafuso, Fablano

    2009-01-01

    Nanowire electron scattering spectroscopy (NESS) has been proposed as the basis of a class of ultra-small, ultralow-power sensors that could be used to detect and identify chemical compounds present in extremely small quantities. State-of-the-art nanowire chemical sensors have already been demonstrated to be capable of detecting a variety of compounds in femtomolar quantities. However, to date, chemically specific sensing of molecules using these sensors has required the use of chemically functionalized nanowires with receptors tailored to individual molecules of interest. While potentially effective, this functionalization requires labor-intensive treatment of many nanowires to sense a broad spectrum of molecules. In contrast, NESS would eliminate the need for chemical functionalization of nanowires and would enable the use of the same sensor to detect and identify multiple compounds. NESS is analogous to Raman spectroscopy, the main difference being that in NESS, one would utilize inelastic scattering of electrons instead of photons to determine molecular vibrational energy levels. More specifically, in NESS, one would exploit inelastic scattering of electrons by low-lying vibrational quantum states of molecules attached to a nanowire or nanotube.

  4. Effect of size on structural, optical and magnetic properties of SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Thamarai Selvi, E.; Meenakshi Sundar, S.

    2017-07-01

    Tin Oxide (SnO2) nanostructures were synthesized by a microwave oven assisted solvothermal method using with and without cetyl trimethyl ammonium bromide (CTAB) capping agent. XRD confirmed the pure rutile-type tetragonal phase of SnO2 for both uncapped and capped samples. The presence of functional groups was analyzed by Fourier transform infrared spectroscopy. Scanning electron microscopy shows the morphology of the samples. Transmission electron microscopy images exposed the size of the SnO2 nanostructures. Surface defect-related g factor of SnO2 nanoparticles using fluorescence spectroscopy is shown. For both uncapped and capped samples, UV-visible spectrum shows a blue shift in absorption edge due to the quantum confinement effect. Defect-related bands were identified by electron paramagnetic resonance (EPR) spectroscopy. The magnetic properties were studied by using vibrating sample magnetometer (VSM). A high value of magnetic moment 0.023 emu g-1 at room temperature for uncapped SnO2 nanoparticles was observed. Capping with CTAB enhanced the saturation magnetic moment to high value of 0.081 emu g-1 by altering the electronic configuration on the surface.

  5. Teaching the Rovibronic Spectroscopy of Molecular Iodine

    ERIC Educational Resources Information Center

    Williamson, J. Charles

    2007-01-01

    The rovibronic spectroscopy of molecular iodine provides a clearer understanding of the electronic potential parameters of various systems to the undergraduate students. The technique also helps them to test the various other quantum mechanical concepts.

  6. Scanning electron and atomic force microscopy, and raman and x-ray photoelectron spectroscopy characterization of near-isogenic soft and hard wheat kernels and corresponding flours

    USDA-ARS?s Scientific Manuscript database

    Atomic force microscopy (AFM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) are used to investigate vitreous (hard) and non-vitreous (soft) wheat kernels and their corresponding wheat flours. AFM data reveal two different microstructures. The vitreous kernel reveals a granular text...

  7. Independent Research and Independent Exploratory Development Annual Report Fiscal Year 1975

    DTIC Science & Technology

    1975-09-01

    and Coding Study.(Z?80) ................................... ......... .................... 40 Optical Cover CMMUnicallor’s Using Laser Transceiverst...Using Auger Spectroscopy and PUBLICATIONS Additional Advanced Analytical Techniques," Wagner, N. K., "Auger Electron Spectroscopy NELC Technical Note 2904...K.. "Analysis of Microelectronic Materials Using Auger Spectroscopy and Additional Advanced Analytical Techniques," Contact: Proceedings of the

  8. Competitive Self-Assembly Manifests Supramolecular Darwinism in Soft-Oxometalates

    NASA Astrophysics Data System (ADS)

    Das, Santu; Kumar, Saurabh; Mallick, Apabrita; Roy, Soumyajit

    2015-09-01

    Topological transformation manifested in inorganic materials shows manifold possibilities. In our present work, we show a clear topological transformation in a soft-oxometalate (SOM) system which was formed from its polyoxometalate (POM) precursor [PMo12@Mo72Fe30]. This topological transformation was observed due to time dependent competitive self-assembly of two different length scale soft-oxometalate moieties formed from this two-component host-guest reaction. We characterized different morphologies by scanning electron microscopy, electron dispersive scattering spectroscopy, dynamic light scattering, horizontal attenuated total reflection-infrared spectroscopy and Raman spectroscopy. The predominant structure is selected by its size in a sort of supramolecular Darwinian competition in this process and is described here.

  9. Effect of pretreatment on a platinized tin oxide catalyst used for low-temperature CO-oxidation

    NASA Technical Reports Server (NTRS)

    Drawdy, Jean E.; Hoflund, Gar B.; Gardner, Steven D.; Yngvadottir, Eva; Schryer, David R.

    1990-01-01

    A commercial platinized tin oxide catalyst used for low-temperature CO oxidation has been characterized using ion scattering spectroscopy (ISS), Auger electron spectroscopy (AES) and Electron Spectroscopy for Chemical Analysis (ESCA) before and after reduction in 40 Torr of CO for 1 hour at various temperatures from 75 to 175 C. The reduction results in loss of surface oxygen, formation of metallic tin, conversion of platinum oxides to Pt-O-Sn and Pt(OH)2 and a small amount of metallic Pt which alloys with the tin. These results should be useful in understanding how the pretreatment temperature affects the catalytic activity of platinized tin oxide toward CO oxidation.

  10. Assembly of Ring-Shaped Phosphorus within Carbon Nanotube Nanoreactors.

    PubMed

    Zhang, Jinying; Zhao, Dan; Xiao, Dingbin; Ma, Chuansheng; Du, Hongchu; Li, Xin; Zhang, Lihui; Huang, Jialiang; Huang, Hongyang; Jia, Chun-Lin; Tománek, David; Niu, Chunming

    2017-02-06

    A phosphorus allotrope that has not been observed so far, ring-shaped phosphorus consisting of alternate P 8 and P 2 structural units, has been assembled inside multi-walled carbon nanotube nanoreactors with inner diameters of 5-8 nm by a chemical vapor transport and reaction of red phosphorus at 500 °C. The ring-shaped nanostructures with surrounding graphene walls are stable under ambient conditions. The nanostructures were characterized by high-resolution transmission electron microscopy, scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, Raman scattering, attenuated total reflectance Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Diamond /111/ studied by electron energy loss spectroscopy in the characteristic loss region

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1982-01-01

    Unoccupied surface states on diamond (111) annealed at greater than 900 C are studied by electron energy loss spectroscopy with valence band excitation. A feature found at 2.1 eV loss energy is attributed to an excitation from occupied surface states into unoccupied surface states of energy within the bulk band gap. A surface band gap of approximately 1 eV is estimated. This result supports a previous suggestion for unoccupied band gap states based on core level energy loss spectroscopy. Using the valence band excitation energy loss spectrosocpy, it is also suggested that hydrogen is removed from the as-polished diamond surface by a Menzel-Gomer-Redhead mechanism.

  12. Pump-Probe Fragmentation Action Spectroscopy: A Powerful Tool to Unravel Light-Induced Processes in Molecular Photocatalysts.

    PubMed

    Imanbaew, Dimitri; Lang, Johannes; Gelin, Maxim F; Kaufhold, Simon; Pfeffer, Michael G; Rau, Sven; Riehn, Christoph

    2017-05-08

    We present a proof of concept that ultrafast dynamics combined with photochemical stability information of molecular photocatalysts can be acquired by electrospray ionization mass spectrometry combined with time-resolved femtosecond laser spectroscopy in an ion trap. This pump-probe "fragmentation action spectroscopy" gives straightforward access to information that usually requires high purity compounds and great experimental efforts. Results of gas-phase studies on the electronic dynamics of two supramolecular photocatalysts compare well to previous findings in solution and give further evidence for a directed electron transfer, a key process for photocatalytic hydrogen generation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Time-dependent Schrödinger equation for molecular core-hole dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picón, A.

    2017-02-01

    X-ray spectroscopy is an important tool for the investigation of matter. X rays primarily interact with inner-shell electrons, creating core (inner-shell) holes that will decay on the time scale of attoseconds to a few femtoseconds through electron relaxations involving the emission of a photon or an electron. Furthermore, the advent of femtosecond x-ray pulses expands x-ray spectroscopy to the time domain and will eventually allow the control of core-hole population on time scales comparable to core-vacancy lifetimes. For both cases, a theoretical approach that accounts for the x-ray interaction while the electron relaxations occur is required. We describe a time-dependentmore » framework, based on solving the time-dependent Schrödinger equation, that is suitable for describing the induced electron and nuclear dynamics.« less

  14. B-site cation order/disorder and their valence states in Ba3MnNb2O9 perovskite oxide

    NASA Astrophysics Data System (ADS)

    Xin, Yan; Huang, Qing; Shafieizadeh, Zahra; Zhou, Haidong

    2018-06-01

    Polycrystalline samples Ba3MnNb2O9 synthesized by solid state reaction and single crystal samples grown by optical floating zone have been characterized using scanning transmission electron microscopy and electron energy loss spectroscopy. Three types of B-site Mn and Nb ordering phase are observed: fully ordered 1Mn:2Nb; fully disordered; nano-sized 1Mn:1Nb ordered. No electronic structure change for crystals with different ordering/disordering. The Mn valence is determined to be 2+, and Nb valence is 5+. Oxygen 2p orbitals hybridize with Mn 3d and Nb 4d orbitals. Factors that affect the electron energy loss near edge structures of transition metal white-lines in electron energy loss spectroscopy are explicitly illustrated and discussed.

  15. The road not taken: Applications of fluorescence spectroscopy and electronic structure theory to systems of materials and biological relevance

    NASA Astrophysics Data System (ADS)

    Carlson, Philip Joseph

    Applications of Fluorescence Spectroscopy and Electronic Structure Theory to Systems of Materials and Biological Relevance. The photophysics of curcumin was studied in micelles and the solvation dynamics were probed. The high-energy ionic liquid HEATN was also studied using the fragment molecular orbital method. The solvation dynamics of the HEATN system were determined. This marks the first study of the solvation dynamics in a triazolium ionic liquid system.

  16. Modified Graphene with SnO2 Nanocomposites Using Thermal Decomposition Method and Sensing Behavior Towards NO2 Gas

    NASA Astrophysics Data System (ADS)

    Sharma, Vikram

    2017-11-01

    This is the first time the graphene sample has been functionalized with metal oxide nanoparticles by thermal decomposition process. In this paper, graphene has been synthesized from natural resources using flower petals as carbon feedstock by thermal exfoliation technique at temperatures 1300 °C and the synthesis of graphene-tin oxide (SnO2) nanocomposites has been done using chemical treatment followed by thermal decomposition method. The response versus time condition has been investigated for the fabricated sample. The electrical resistance w.r.t. temperature could be explained by the thermal generation of electron-hole pairs and carrier scattering by acoustic phonons. The structural, morphological and chemical composition studies of the nanocomposites were carried out by the Raman spectroscopy, x-ray diffraction spectroscopy, scanning electron microscopy (SEM), x-ray photoelectron spectroscopy and high-resolution transmission electron microscopy (HRTEM). The evidence of good-quality graphene is obtained from Raman spectroscopy studies. The SEM and HRTEM images have shown that SnO2 nanoparticles are well distributed in the multilayer electron transparent graphene films. The sensor response was found to lie between 8.25 and 9.36% at 500 ppm of nitrogen dioxide, and also resistance recovered quickly without any application of heat. We believe such chemical treatment of graphene could potentially be used to manufacture a new generation of low-power nano-NO2 sensors.

  17. Inherently-Forced Tensile Strain in Nanodiamond-Derived Onion-like Carbon: Consequences in Defect-Induced Electrochemical Activation

    PubMed Central

    Ko, Young-Jin; Cho, Jung-Min; Kim, Inho; Jeong, Doo Seok; Lee, Kyeong-Seok; Park, Jong-Keuk; Baik, Young-Joon; Choi, Heon-Jin; Lee, Seung-Cheol; Lee, Wook-Seong

    2016-01-01

    We analyzed the nanodiamond-derived onion-like carbon (OLC) as function of synthesis temperature (1000~1400 °C), by high-resolution electron microscopy, electron energy loss spectroscopy, visible-Raman spectroscopy, ultraviolet photoemission spectroscopy, impedance spectroscopy, cyclic voltammetry and differential pulse voltammetry. The temperature dependences of the obtained properties (averaged particle size, tensile strain, defect density, density of states, electron transfer kinetics, and electrochemical oxidation current) unanimously coincided: they initially increased and saturated at 1200 °C. It was attributed to the inherent tensile strains arising from (1) the volume expansion associated with the layer-wise diamond-to-graphite transformation of the core, which caused forced dilation of the outer shells during their thermal synthesis; (2) the extreme curvature of the shells. The former origin was dominant over the latter at the outermost shell, of which the relevant evolution in defect density, DOS and electron transfer kinetics determined the electrochemical performances. In detection of dopamine (DA), uric acid (UA) and ascorbic acid (AA) using the OLC as electrode, their oxidation peak currents were enhanced by factors of 15~60 with annealing temperature. Their limit of detection and the linear range of detection, in the post-treatment-free condition, were as excellent as those of the nano-carbon electrodes post-treated by Pt-decoration, N-doping, plasma, or polymer. PMID:27032957

  18. Nucleotide-Specific Contrast for DNA Sequencing by Electron Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mankos, Marian; Persson, Henrik H. J.; N’Diaye, Alpha T.

    DNA sequencing by imaging in an electron microscope is an approach that holds promise to deliver long reads with low error rates and without the need for amplification. Earlier work using transmission electron microscopes, which use high electron energies on the order of 100 keV, has shown that low contrast and radiation damage necessitates the use of heavy atom labeling of individual nucleotides, which increases the read error rates. Other prior work using scattering electrons with much lower energy has shown to suppress beam damage on DNA. Here we explore possibilities to increase contrast by employing two methods, X-ray photoelectronmore » and Auger electron spectroscopy. Using bulk DNA samples with monomers of each base, both methods are shown to provide contrast mechanisms that can distinguish individual nucleotides without labels. In conclusion, both spectroscopic techniques can be readily implemented in a low energy electron microscope, which may enable label-free DNA sequencing by direct imaging.« less

  19. Nucleotide-Specific Contrast for DNA Sequencing by Electron Spectroscopy

    DOE PAGES

    Mankos, Marian; Persson, Henrik H. J.; N’Diaye, Alpha T.; ...

    2016-05-05

    DNA sequencing by imaging in an electron microscope is an approach that holds promise to deliver long reads with low error rates and without the need for amplification. Earlier work using transmission electron microscopes, which use high electron energies on the order of 100 keV, has shown that low contrast and radiation damage necessitates the use of heavy atom labeling of individual nucleotides, which increases the read error rates. Other prior work using scattering electrons with much lower energy has shown to suppress beam damage on DNA. Here we explore possibilities to increase contrast by employing two methods, X-ray photoelectronmore » and Auger electron spectroscopy. Using bulk DNA samples with monomers of each base, both methods are shown to provide contrast mechanisms that can distinguish individual nucleotides without labels. In conclusion, both spectroscopic techniques can be readily implemented in a low energy electron microscope, which may enable label-free DNA sequencing by direct imaging.« less

  20. Ultrafast Photoinduced Symmetry-Breaking Charge Separation and Electron Sharing in Perylenediimide Molecular Triangles.

    PubMed

    Wu, Yilei; Young, Ryan M; Frasconi, Marco; Schneebeli, Severin T; Spenst, Peter; Gardner, Daniel M; Brown, Kristen E; Würthner, Frank; Stoddart, J Fraser; Wasielewski, Michael R

    2015-10-21

    We report on a visible-light-absorbing chiral molecular triangle composed of three covalently linked 1,6,7,12-tetra(phenoxy)perylene-3,4:9,10-bis(dicarboximide) (PDI) units. The rigid triangular architecture reduces the electronic coupling between the PDIs, so ultrafast symmetry-breaking charge separation is kinetically favored over intramolecular excimer formation, as revealed by femtosecond transient absorption spectroscopy. Photoexcitation of the PDI triangle dissolved in CH2Cl2 gives PDI(+•)-PDI(-•) in τCS = 12.0 ± 0.2 ps. Fast subsequent intramolecular electron/hole hopping can equilibrate the six possible energetically degenerate ion-pair states, as suggested by electron paramagnetic resonance/electron-nuclear double resonance spectroscopy, which shows that one-electron reduction of the PDI triangle results in complete electron sharing among the three PDIs. Charge recombination of PDI(+•)-PDI(-•) to the ground state occurs in τCR = 1.12 ± 0.01 ns with no evidence of triplet excited state formation.

  1. Femtosecond MeV Electron Energy-Loss Spectroscopy

    DOE PAGES

    Li, R. K.; Wang, X. J.

    2017-11-09

    Pump-probe electron energy-loss spectroscopy (EELS) with femtosecond temporal resolution will be a transformative research tool for studying nonequilibrium chemistry and electronic dynamics of matter. Here in this article, we propose a concept of femtosecond EELS utilizing mega-electron-volt electron beams from a radio-frequency (rf) photocathode source. The high acceleration gradient and high beam energy of the rf gun are critical to the generation of 10-fs electron beams, which enables an improvement of the temporal resolution by more than 1 order of magnitude beyond the state of the art. In our proposal, the “referencebeam technique” relaxes the energy stability requirement of themore » rf power source by roughly 2 orders of magnitude. The requirements for the electron-beam quality, photocathode, spectrometer, and detector are also discussed. Supported by particle-tracking simulations, we demonstrate the feasibility of achieving subelectron- volt energy resolution and approximately 10-fs temporal resolution with existing or near-future hardware performance.« less

  2. Femtosecond MeV Electron Energy-Loss Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, R. K.; Wang, X. J.

    Pump-probe electron energy-loss spectroscopy (EELS) with femtosecond temporal resolution will be a transformative research tool for studying nonequilibrium chemistry and electronic dynamics of matter. Here in this article, we propose a concept of femtosecond EELS utilizing mega-electron-volt electron beams from a radio-frequency (rf) photocathode source. The high acceleration gradient and high beam energy of the rf gun are critical to the generation of 10-fs electron beams, which enables an improvement of the temporal resolution by more than 1 order of magnitude beyond the state of the art. In our proposal, the “referencebeam technique” relaxes the energy stability requirement of themore » rf power source by roughly 2 orders of magnitude. The requirements for the electron-beam quality, photocathode, spectrometer, and detector are also discussed. Supported by particle-tracking simulations, we demonstrate the feasibility of achieving subelectron- volt energy resolution and approximately 10-fs temporal resolution with existing or near-future hardware performance.« less

  3. Terahertz time-domain magnetospectroscopy of a high-mobility two-dimensional electron gas.

    PubMed

    Wang, Xiangfeng; Hilton, David J; Ren, Lei; Mittleman, Daniel M; Kono, Junichiro; Reno, John L

    2007-07-01

    We have observed cyclotron resonance in a high-mobility GaAs/AlGaAs two-dimensional electron gas by using the techniques of terahertz time-domain spectroscopy combined with magnetic fields. From this, we calculate the real and imaginary parts of the diagonal elements of the magnetoconductivity tensor, which in turn allows us to extract the concentration, effective mass, and scattering time of the electrons in the sample. We demonstrate the utility of ultrafast terahertz spectroscopy, which can recover the true linewidth of cyclotron resonance in a high-mobility (>10(6) cm(2)V(-1)s(-1)) sample without being affected by the saturation effect.

  4. Analytical electron microscopy of Mg-SiO smokes - A comparison with infrared and XRD studies

    NASA Technical Reports Server (NTRS)

    Rietmeijer, F. J. M.; Nuth, J. A.; Mackinnon, I. D. R.

    1986-01-01

    Analytical electron microscopy conducted for Mg-SiO smokes (experimentally obtained from samples previously characterized by IR spectroscopy) indicates that the microcrystallinity content of unannealed smokes increases with increased annealing for up to 30 hr. The growth of forsterite microcrystallites in the initially nonstoichiometric smokes may give rise to the contemporaneous growth of the SiO polymorph tridymite and MgO; after 4 hr of annealing, these react to form enstatite. It is suggested that XRD analysis and IR spectroscopy should be conducted in conjunction with detailed analytical electron microscopy for the detection of emerging crystallinity in vapor-phase condensates.

  5. Doping of the step-edge Si chain: Ag on a Si(557)-Au surface

    NASA Astrophysics Data System (ADS)

    Krawiec, M.; Jałochowski, M.

    2010-11-01

    Structural and electronic properties of monatomic Ag chains on the Au-induced, highly ordered Si(557) surface are investigated by scanning tunneling microscopy (STM)/spectroscopy and first-principles density functional theory (DFT) calculations. The STM topography data show that a small amount of Ag (0.25 ML) very weakly modifies the one-dimensional structure induced by Au atoms. However, the bias-dependent STM topography and spectroscopy point to the importance of the electronic effects in this system, which are further corroborated by the DFT calculations. The obtained results suggest that Ag atoms act as electron donors leaving the geometry of the surface almost unchanged.

  6. Copper ESEEM and HYSCORE through ultra-wideband chirp EPR spectroscopy.

    PubMed

    Segawa, Takuya F; Doll, Andrin; Pribitzer, Stephan; Jeschke, Gunnar

    2015-07-28

    The main limitation of pulse electron paramagnetic resonance (EPR) spectroscopy is its narrow excitation bandwidth. Ultra-wideband (UWB) excitation with frequency-swept chirp pulses over several hundreds of megahertz overcomes this drawback. This allows to excite electron spin echo envelope modulation (ESEEM) from paramagnetic copper centers in crystals, whereas up to now, only ESEEM of ligand nuclei like protons or nitrogens at lower frequencies could be detected. ESEEM spectra are recorded as two-dimensional correlation experiments, since the full digitization of the electron spin echo provides an additional Fourier transform EPR dimension. Thus, UWB hyperfine-sublevel correlation experiments generate a novel three-dimensional EPR-correlated nuclear modulation spectrum.

  7. Employing NMR Spectroscopy To Evaluate Transmission of Electronic Effects in 4-Substituted Chalcones

    NASA Astrophysics Data System (ADS)

    Wachter-Jurcsak, Nanette; Zamani, Hossein

    1999-05-01

    Described is an organic synthesis experiment that demonstrates the electronic transmission by substituents. The effect of substitution at the para-position of the styryl ring of 1,3-diphenyl-2-propenones (chalcones) by typical electron-donating or -accepting groups can be observed by proton and carbon-13 NMR spectroscopy. A linear correlation is observed when the differences in chemical shift measurements for H are plotted against the corresponding Hammett substituent constant values. Good correlation between carbon-13 chemical shifts of the alpha carbon are also observed. The syntheses of the 4-substituted chalcones is presented as well as a brief discussion of the theory.

  8. Surface Diagnostics in Tribology Technology and Advanced Coatings Development

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1999-01-01

    This paper discusses the methodologies used for surface property measurement of thin films and coatings, lubricants, and materials in the field of tribology. Surface diagnostic techniques include scanning electron microscopy, transmission electron microscopy, atomic force microscopy, stylus profilometry, x-ray diffraction, electron diffraction, Raman spectroscopy, Rutherford backscattering, elastic recoil spectroscopy, and tribology examination. Each diagnostic technique provides specific measurement results in its own unique way. In due course it should be possible to coordinate the different pieces of information provided by these diagnostic techniques into a coherent self-consistent description of the surface properties. Examples are given on the nature and character of thin diamond films.

  9. Ultrafast core-loss spectroscopy in four-dimensional electron microscopy

    PubMed Central

    van der Veen, Renske M.; Penfold, Thomas J.; Zewail, Ahmed H.

    2015-01-01

    We demonstrate ultrafast core-electron energy-loss spectroscopy in four-dimensional electron microscopy as an element-specific probe of nanoscale dynamics. We apply it to the study of photoexcited graphite with femtosecond and nanosecond resolutions. The transient core-loss spectra, in combination with ab initio molecular dynamics simulations, reveal the elongation of the carbon-carbon bonds, even though the overall behavior is a contraction of the crystal lattice. A prompt energy-gap shrinkage is observed on the picosecond time scale, which is caused by local bond length elongation and the direct renormalization of band energies due to temperature-dependent electron–phonon interactions. PMID:26798793

  10. Investigation and Control of "Sphere-Like" Buckminsterfullerene C60 and "Disk-Like" Copper(II) Phthalocyanine

    NASA Astrophysics Data System (ADS)

    McAfee, Terry Richard

    Due to the growing global need for cheap, flexible, and portable electronics, numerous research groups from mechanical and electrical engineering, material science, chemistry, and physics have increasingly turned to organic electronics research over the last ˜5--10 years. Largely, the focus of researchers in this growing field have sought to obtain the next record holding device, allowing a heuristic approach of trial and error to become dominant focus of research rather than a fundamental understanding. Rather than working with the latest high performance organic semiconducting materials and film processing techniques, I have chosen to investigate and control the fundamental self-assembly interactions of organic photovoltaic thin films using simplified systems. Specifically, I focus on organic photovoltaic research using two of the oldest and well studies semiconducting materials, namely "sphere-like" electron donor material Buckminsterfullerene C60 and "disklike" electron acceptor material Copper(II) Phthalocyanine. I manufactured samples using the well-known technique of physical vapor deposition using a high vacuum chamber that I designed and built to accommodate my need of precise material deposition control, with codeposition capability. Films were characterized using microscopy and spectroscopy techniques locally at NCSU, including Atomic Force Microscopy, scanning tunneling microscopy, X-ray photoelectron spectroscopy, and Ultraviolet-visible spectroscopy, as well as at National Laboratory based synchrotron x-ray techniques, including Carbon and Nitrogen k-edge Total Electron Yield and Transmission Near Edge X-ray absorption fine structure spectroscopy, Carbon k-edge Resonant Soft x-ray Microscopy, Resonant Soft x-ray reflectivity, and Grazing Incidence Wide-Angle X-ray scattering.

  11. Recent progress of laser spectroscopy experiments on antiprotonic helium

    NASA Astrophysics Data System (ADS)

    Hori, Masaki

    2018-03-01

    The Atomic Spectroscopy and Collisions Using Slow Antiprotons (ASACUSA) collaboration is currently carrying out laser spectroscopy experiments on antiprotonic helium ? atoms at CERN's Antiproton Decelerator facility. Two-photon spectroscopic techniques have been employed to reduce the Doppler width of the measured ? resonance lines, and determine the atomic transition frequencies to a fractional precision of 2.3-5 parts in 109. More recently, single-photon spectroscopy of buffer-gas cooled ? has reached a similar precision. By comparing the results with three-body quantum electrodynamics calculations, the antiproton-to-electron mass ratio was determined as ?, which agrees with the known proton-to-electron mass ratio with a precision of 8×10-10. The high-quality antiproton beam provided by the future Extra Low Energy Antiproton Ring (ELENA) facility should enable further improvements in the experimental precision. This article is part of the Theo Murphy meeting issue `Antiproton physics in the ELENA era'.

  12. GaN@ZIF-8: selective formation of gallium nitride quantum dots inside a zinc methylimidazolate framework.

    PubMed

    Esken, Daniel; Turner, Stuart; Wiktor, Christian; Kalidindi, Suresh Babu; Van Tendeloo, Gustaaf; Fischer, Roland A

    2011-10-19

    The microporous zeolitic imidazolate framework [Zn(MeIM)(2); ZIF-8; MeIM = imidazolate-2-methyl] was quantitatively loaded with trimethylamine gallane [(CH(3))(3)NGaH(3)]. The obtained inclusion compound [(CH(3))(3)NGaH(3)]@ZIF-8 reveals three precursor molecules per host cavity. Treatment with ammonia selectively yields the caged cyclotrigallazane intermediate (H(2)GaNH(2))(3)@ZIF-8, and further annealing gives GaN@ZIF-8. This new composite material was characterized with FT-IR spectroscopy, solid-state NMR spectroscopy, powder X-ray diffraction, elemental analysis, (scanning) transmission electron microscopy combined with electron energy-loss spectroscopy, photoluminescence (PL) spectroscopy, and N(2) sorption measurements. The data give evidence for the presence of GaN nanoparticles (1-3 nm) embedded in the cavities of ZIF-8, including a blue-shift of the PL emission band caused by the quantum size effect.

  13. Spectroscopic and microscopic characterization of silver nanoparticles synthesized using Justicia adhatoda flower

    NASA Astrophysics Data System (ADS)

    Singh, Tej; Shekhawat, Dharmender Singh; Jyoti, Kumari

    2018-05-01

    The synthesis of silver nanoparticles (SNPs) by chemical and physical methods produce harmful products which may cause various environmental problems, thus, there is an increasing demand to use ecofriendly methods. Therefore, biosynthesis of SNPs using Justicia adhatoda flower extract is demonstrated in the present study. The biosynthesized SNPs were characterized by UV-visible spectroscopy, Fourier transform-infrared spectroscopy (FTIR), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and atomic force microscopy (AFM) analysis. The result of UV-visible spectroscopy peaked at 417 nm corresponding to the plasmon absorbance of SNPs. The TEM and SAED result reveals the crystalline nature of SNPs. FTIR spectroscopy used to identify the possible biomolecules responsible for the conversion of silver ions to SNPs. The study concluded that Justicia adhatoda flower extract act as an excellent reducing agent and the green synthesized SNPs are safer to the environment.

  14. Tunneling spectroscopy of Al/AlO{sub x}/Pb subjected to hydrostatic pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jun; Hou, Xing-Yuan; Guan, Tong

    2015-05-18

    We develop an experimental tool to investigate high-pressure electronic density of state by combining electron tunneling spectroscopy measurements with high-pressure technique. It is demonstrated that tunneling spectroscopy measurement on Al/AlO{sub x}/Pb junction is systematically subjected to hydrostatic pressure up to 2.2 GPa. Under such high pressure, the normal state junction resistance is sensitive to the applied pressure, reflecting the variation of band structure of the barrier material upon pressures. In superconducting state, the pressure dependence of the energy gap Δ{sub 0}, the gap ratio 2Δ{sub 0}/k{sub B}T{sub c}, and the phonon spectral energy is extracted and compared with those obtained inmore » the limited pressure range. Our experimental results show the accessibility and validity of high pressure tunneling spectroscopy, offering wealthy information about high pressure superconductivity.« less

  15. Occurrence of photoluminescence and onion like structures decorating graphene oxide with europium using sodium dodecyl sulfate surfactant

    NASA Astrophysics Data System (ADS)

    Cedeño, V. J.; Rangel, R.; Cervantes, J. L.; Lara, J.; Alvarado, J. J.; Galván, D. H.

    2017-07-01

    Graphene oxide decoration with europium was carried out using SDS (sodium dodecyl sulfate) as the surfactant. The reaction was performed in a microwave oven and subsequently underwent thermal treatment under hydrogen flow. The results found in the present work demonstrate that through the use of SDS surfactant aggregates of hemi-cylindrical and onion-like structures could be obtained; which propitiate an enhanced synergistic photoluminescence located at the red wavelength. On the other hand, after thermal treatment the aggregates disappear providing a good dispersion of europium, however a decrease in the photoluminescence signal is observed. The graphene oxide decorated with europium was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier infrared transform spectroscopy (FTIR), RAMAN spectroscopy, x-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) techniques, showing the characteristic features of graphene oxide and europium.

  16. Component analyses of urinary nanocrystallites of uric acid stone formers by combination of high-resolution transmission electron microscopy, fast Fourier transformation, energy dispersive X-ray spectroscopy, X-ray diffraction and Fourier transform infrared spectroscopy.

    PubMed

    Sun, Xin-Yuan; Xue, Jun-Fa; Xia, Zhi-Yue; Ouyang, Jian-Ming

    2015-06-01

    This study aimed to analyse the components of nanocrystallites in urines of patients with uric acid (UA) stones. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, high-resolution transmission electron microscopy (HRTEM), fast Fourier transformation (FFT) of HRTEM, and energy dispersive X-ray spectroscopy (EDS) were performed to analyse the components of these nanocrystallites. XRD and FFT showed that the main component of urinary nanocrystallites was UA, which contains a small amount of calcium oxalate monohydrate and phosphates. EDS showed the characteristic absorption peaks of C, O, Ca and P. The formation of UA stones was closely related to a large number of UA nanocrystallites in urine. A combination of HRTEM, FFT, EDS and XRD analyses could be performed accurately to analyse the components of urinary nanocrystallites.

  17. Synthesis and characterization of CdS-based ternary composite for enhanced visible light-driven photocatalysis

    NASA Astrophysics Data System (ADS)

    Singh, Arvind; Sinha, A. S. K.

    2018-09-01

    Active ternary graphite and alumina-supported cadmium sulphide (CdS) composite was synthesized by impregnation method followed by high-temperature solid-gas reaction and characterized by X-ray diffraction (XRD), photoluminescence spectroscopy (PL), diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) techniques. The ternary CdS-graphite-alumina composite exhibited superior catalytic activity compared with the binary CdS-alumina composite due to its better visible-light absorption and higher charge separation. The ternary composite has a bed-type structure. It permits a greater interaction at the interface due to intimate contact between CdS and graphite in the ternary composite. This composite has a highly efficient visible light-driven photocatalytic activity for sustainable hydrogen production. It is also capable of degrading organic dyes in wastewater.

  18. Enhancement of room temperature ferromagnetism in tin oxide nanocrystal using organic solvents

    NASA Astrophysics Data System (ADS)

    Sakthiraj, K.; Hema, M.; Balachandra Kumar, K.

    2017-10-01

    The effect of organic solvents (ethanol & ethylene glycol) on the room temperature ferromagnetism in nanocrystalline tin oxide has been studied. The samples were synthesized using sol-gel method with the mixture of water & organic liquid as solvent. It is found that pristine SnO2 nanocrystal contain two different types of paramagnetic centres over their surface:(i) surface chemisorbed oxygen species and (ii) Sn interstitial & oxygen vacancy defect pair. The magnetic moment induced in the as-prepared samples is mainly contributed by the alignment of local spin moments resulting from these defects. These surface defect states are highly activated by the usage of ethylene glycol solvent rather than ethylene in tin oxide nanostructure synthesis. Powder X-ray diffraction, transmission electron microscope imaging, energy dispersive spectrometry, Fourier transformed infrared spectroscopy, UV-vis absorption spectroscopy, photoluminescence spectroscopy, vibrating sample magnetometer measurement and electron spin resonance spectroscopy were employed to characterize the nanostructured tin oxide materials.

  19. Non-intercalative, deoxyribose binding of boric acid to calf thymus DNA.

    PubMed

    Ozdemir, Ayse; Gursaclı, Refiye Tekiner; Tekinay, Turgay

    2014-05-01

    The present study characterizes the effects of the boric acid binding on calf thymus DNA (ct-DNA) by spectroscopic and calorimetric methods. UV-Vis absorbance spectroscopy, circular dichroism (CD) spectroscopy, transmission electron microscopy (TEM), isothermal titration calorimetry (ITC), and Fourier transform infrared (FT-IR) spectroscopy were employed to characterize binding properties. Changes in the secondary structure of ct-DNA were determined by CD spectroscopy. Sizes and morphologies of boric acid-DNA complexes were determined by transmission electron microscopy (TEM). The kinetics of boric acid binding to calf thymus DNA (ct-DNA) was investigated by isothermal titration calorimetry (ITC). ITC results revealed that boric acid exhibits a moderate affinity to ct-DNA with a binding constant (K a) of 9.54 × 10(4) M(-1). FT-IR results revealed that boric acid binds to the deoxyribose sugar of DNA without disrupting the B-conformation at tested concentrations.

  20. Topochemical conversion of a dense metal–organic framework from a crystalline insulator to an amorphous semiconductor† †Electronic supplementary information (ESI) available: PXRD, impedance, TGA, IR, XPS, PDF, ESR, and CIF files. CCDC 1018776–1018778. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4sc03295k Click here for additional data file.

    PubMed Central

    Hamoudi, H.; Suga, T.; Bennett, T. D.; Cairns, A. B.

    2015-01-01

    The topochemical conversion of a dense, insulating metal–organic framework (MOF) into a semiconducting amorphous MOF is described. Treatment of single crystals of copper(i) chloride trithiocyanurate, CuICl(ttcH3) (ttcH3 = trithiocyanuric acid), 1, in aqueous ammonia solution yields monoliths of amorphous CuI 1.8(ttc)0.6(ttcH3)0.4, 3. The treatment changes the transparent orange crystals of 1 into shiny black monoliths of 3 with retention of morphology, and moreover increases the electrical conductivity from insulating to semiconducting (conductivity of 3 ranges from 4.2 × 10–11 S cm–1 at 20 °C to 7.6 × 10–9 S cm–1 at 140 °C; activation energy = 0.59 eV; optical band gap = 0.6 eV). The structure and properties of the amorphous conductor are fully characterized by AC impedance spectroscopy, X-ray photoelectron spectroscopy, X-ray pair distribution function analysis, infrared spectroscopy, diffuse reflectance spectroscopy, electron spin resonance spectroscopy, elemental analysis, thermogravimetric analysis, and theoretical calculations. PMID:29560235

  1. Fabrication of chloroform sensor based on hydrothermally prepared low-dimensional β-Fe 2O 3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Rahman, Mohammed M.; Jamal, A.; Khan, Sher Bahadar; Faisal, M.

    2011-10-01

    Hydrothermally prepared as-grown low-dimensional nano-particles (NPs) have been characterized using UV-vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and electron dispersion spectroscopy (EDS). The uniformity of the nano-material was executed by the scanning electron microscopy, where the single phase of the nano-crystalline β-Fe 2O 3 was characterized using XRD techniques. β-Fe 2O 3 nanoparticles fabricated glassy carbon electrode (GCE) have improved chloroform-sensing performances in terms of electrical response ( I- V technique) for detecting analyte in liquid phase. The analytical performances were investigated, which showed that the better sensitivity, stability, and reproducibility of the sensor improved significantly by using Fe 2O 3 NPs thin-film on GCE. The calibration plot was linear ( R = 0.9785) over the large range of 12.0 μM to 12.0 mM. The sensitivity was calculated as 2.1792 μA cm -2 mM -1 with a detection limit of 4.4 ± 0.10 μM in short response time (10.0 s).

  2. Analysis of dispersive interactions at polymer/TiAlN interfaces by means of dynamic force spectroscopy.

    PubMed

    Wiesing, M; de Los Arcos, T; Gebhard, M; Devi, A; Grundmeier, G

    2017-12-20

    The structural and electronic origins of the interactions between polycarbonate and sputter deposited TiAlN were analysed using a combined electron and force spectroscopic approach. Interaction forces were measured by means of dynamic force spectroscopy and the surface polarizability was analysed by X-ray photoelectron valence band spectroscopy. It could be shown that the adhesive interactions between polycarbonate and TiAlN are governed by van der Waals forces. Different surface cleansing and oxidizing treatments were investigated and the effect of the surface chemistry on the force interactions was analysed. Intense surface oxidation resulted in a decreased adhesion force by a factor of two due to the formation of a 2 nm thick Ti 0.21 Al 0.45 O surface oxide layer. The origin of the residual adhesion forces caused by the mixed Ti 0.21 Al 0.45 O surface oxide was clarified by considering the non-retarded Hamaker coefficients as calculated by Lifshitz theory, based on optical data from Reflection Electron Energy Loss Spectroscopy. This disclosed increased dispersion forces of Ti 0.21 Al 0.45 O due to the presence of Ti(iv) ions and related Ti 3d band optical transitions.

  3. Spontaneous grafting: a novel approach to graft diazonium cations on gold nanoparticles in aqueous medium and their self-assembly on electrodes.

    PubMed

    Kesavan, Srinivasan; John, S Abraham

    2014-08-15

    The spontaneous grafting of aminophenyl groups on gold nanoparticles (AuNPs) by reaction with in situ generated 4-aminophenyl diazonium cations (APD) in an aqueous medium was described. The spontaneous grafting was likely to proceed by transfer of electrons from AuNPs to the APD cations to form an aminophenyl radical and subsequent attachment with AuNPs. The aminophenyl (AP) functionalized gold nanoparticles (AP-AuNPs) were characterized by UV-visible spectroscopy, high resolution-transmission electron microscopy (HR-TEM), X-ray diffraction, FT-IR spectroscopy, X-ray photoelectron spectroscopy (XPS) and surface-enhanced Raman spectroscopy (SERS). The absence of characteristic vibrational bands corresponding to diazonium group in the FT-IR spectrum confirmed the reduction of the aminophenyl diazonium cations at the surface of AuNPs. The spontaneous attachment of AP on AuNPs was confirmed by XPS from the observed binding energy values for -NH2 at 399.4 eV and -N=N- at 400.2 eV. The SERS spectrum reveals the presence Au-C (437 cm(-1)) bond on AP-AuNPs. Further, the AP-AuNPs were self-assembled on GC/ITO electrode (AP-AuNPs modified electrode) with the aid of free amine groups present on the surface of AP-AuNPs via Michael's nucleophilic addition reaction. The AP-AuNPs modified electrode was characterized by cyclic voltammetry, impedance spectroscopy, UV-visible spectroscopy and scanning electron microscopy. Impedance studies show that the electron transfer reaction of [Fe(CN)6](3-/4-) was higher at the AP-AuNPs modified electrode (1.81×10(-4) cm s(-1)) than at bare (3.77×10(-5) cm s(-1)) GC electrode. Finally, the electrocatalytic activity of the AP-AuNPs modified electrode was demonstrated by studying the oxidation of dopamine (DA). Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Electronic Structure of a Self-Assembled Monolayer with Two Surface Anchors: 6-Mercaptopurine on Au(111).

    PubMed

    Fernández, Cynthia C; Pensa, Evangelina; Carro, Pilar; Salvarezza, Roberto; Williams, Federico J

    2018-05-22

    The electronic structure of aromatic and aliphatic thiols on Au(111) has been extensively studied in relation to possible applications in molecular electronics. In this work, the effect on the electronic structure of an additional anchor to the S-Au bond using 6-mercaptopurine as a model system has been investigated. Results from X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure spectroscopy, and density functional theory (DFT) confirm that this molecule adsorbs on Au(111) with S-Au and iminic N-Au bonds. Combined ultraviolet photoelectron spectroscopy and DFT data reveal that formation of the 6MP self-assembled monolayer generates a molecular dipole perpendicular to the surface, with negative charges residing at the metal/monolayer interface and positive charges at the monolayer/vacuum interface, which lowers the substrate work function. Scanning tunneling microscopy shows two surface molecular domains: a well-ordered rectangular lattice where molecules are tilted on average 30° with respect to the substrate and aligned 6MP islands where molecules are standing upright. Finally, we found a new electronic state located at -1.7 eV with respect to the Fermi level that corresponds to a localized π molecular state, while the state corresponding to the N-Au bond is hybridized with Au d electrons and stabilized at much lower energies (-3 eV).

  5. Delaminated graphene at silicon carbide facets: atomic scale imaging and spectroscopy.

    PubMed

    Nicotra, Giuseppe; Ramasse, Quentin M; Deretzis, Ioannis; La Magna, Antonino; Spinella, Corrado; Giannazzo, Filippo

    2013-04-23

    Atomic-resolution structural and spectroscopic characterization techniques (scanning transmission electron microscopy and electron energy loss spectroscopy) are combined with nanoscale electrical measurements (conductive atomic force microscopy) to study at the atomic scale the properties of graphene grown epitaxially through the controlled graphitization of a hexagonal SiC(0001) substrate by high temperature annealing. This growth technique is known to result in a pronounced electron-doping (∼10(13) cm(-2)) of graphene, which is thought to originate from an interface carbon buffer layer strongly bound to the substrate. The scanning transmission electron microscopy analysis, carried out at an energy below the knock-on threshold for carbon to ensure no damage is imparted to the film by the electron beam, demonstrates that the buffer layer present on the planar SiC(0001) face delaminates from it on the (112n) facets of SiC surface steps. In addition, electron energy loss spectroscopy reveals that the delaminated layer has a similar electronic configuration to purely sp2-hybridized graphene. These observations are used to explain the local increase of the graphene sheet resistance measured around the surface steps by conductive atomic force microscopy, which we suggest is due to significantly lower substrate-induced doping and a resonant scattering mechanism at the step regions. A first-principles-calibrated theoretical model is proposed to explain the structural instability of the buffer layer on the SiC facets and the resulting delamination.

  6. Polypeptides Based Molecular Electronics

    DTIC Science & Technology

    2008-10-06

    average of 0.82 nm, corresponding to the theoretical height of a MPTMS monolayer of 0.87nm. Fourier Transform Infrared Spectroscopy (FTIR) spectrum of 3... Infrared Spectroscopy (FTIR) of 3-Mercaptopropyl trimethoxysilane (MPTMS) layer on Si wafer Figure 23a. Topographical image of peptide on MPTMS...transform infrared spectroscopy . Peptide with COOH group is proven to attach to Aminopropyltrimethoxysilane (APTES) functionalized silicon substrate

  7. Temperature dependence of the hydrated electron's excited-state relaxation. II. Elucidating the relaxation mechanism through ultrafast transient absorption and stimulated emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Farr, Erik P.; Zho, Chen-Chen; Challa, Jagannadha R.; Schwartz, Benjamin J.

    2017-08-01

    The structure of the hydrated electron, particularly whether it exists primarily within a cavity or encompasses interior water molecules, has been the subject of much recent debate. In Paper I [C.-C. Zho et al., J. Chem. Phys. 147, 074503 (2017)], we found that mixed quantum/classical simulations with cavity and non-cavity pseudopotentials gave different predictions for the temperature dependence of the rate of the photoexcited hydrated electron's relaxation back to the ground state. In this paper, we measure the ultrafast transient absorption spectroscopy of the photoexcited hydrated electron as a function of temperature to confront the predictions of our simulations. The ultrafast spectroscopy clearly shows faster relaxation dynamics at higher temperatures. In particular, the transient absorption data show a clear excess bleach beyond that of the equilibrium hydrated electron's ground-state absorption that can only be explained by stimulated emission. This stimulated emission component, which is consistent with the experimentally known fluorescence spectrum of the hydrated electron, decreases in both amplitude and lifetime as the temperature is increased. We use a kinetic model to globally fit the temperature-dependent transient absorption data at multiple temperatures ranging from 0 to 45 °C. We find the room-temperature lifetime of the excited-state hydrated electron to be 137 ±40 fs, in close agreement with recent time-resolved photoelectron spectroscopy (TRPES) experiments and in strong support of the "non-adiabatic" picture of the hydrated electron's excited-state relaxation. Moreover, we find that the excited-state lifetime is strongly temperature dependent, changing by slightly more than a factor of two over the 45 °C temperature range explored. This temperature dependence of the lifetime, along with a faster rate of ground-state cooling with increasing bulk temperature, should be directly observable by future TRPES experiments. Our data also suggest that the red side of the hydrated electron's fluorescence spectrum should significantly decrease with increasing temperature. Overall, our results are not consistent with the nearly complete lack of temperature dependence predicted by traditional cavity models of the hydrated electron but instead agree qualitatively and nearly quantitatively with the temperature-dependent structural changes predicted by the non-cavity hydrated electron model.

  8. Adsorption of hydrogen chloride on microcrystalline silica. [solid rocket propellant exhaust

    NASA Technical Reports Server (NTRS)

    Kang, Y.; Wightman, J. P.

    1979-01-01

    The interaction of hydrogen chloride with quartz was studied to determine the extent to which silica can irreversibly remove hydrogen chloride from the atmosphere. Adsorption isotherms were measured at 30 C for hydrogen chloride on silica outgassed between 100 C and 400 C. Readsorption isotherms were also measured. The silica surface was characterized further by infrared spectroscopy, electron spectroscopy for chemical analysis, scanning electron microscopy, and immersional calorimetry. Ground debris samples obtained from the Kennedy Space Center, were likewise examined.

  9. Mössbauer spectroscopy of Basal Ganglia

    NASA Astrophysics Data System (ADS)

    Miglierini, Marcel; Lančok, Adriana; Kopáni, Martin; Boča, Roman

    2014-10-01

    Chemical states, structural arrangement, and magnetic features of iron deposits in biological tissue of Basal Ganglia are characterized. The methods of SQUID magnetometry and electron microscopy are employed. 57Fe Mössbauer spectroscopy is used as a principal method of investigation. Though electron microscopy has unveiled robust crystals (1-3 μm in size) of iron oxides, they are not manifested in the corresponding 57Fe Mössbauer spectra. The latter were acquired at 300 K and 4.2 K and resemble ferritin-like behavior.

  10. Nanoscale investigation of the degradation mechanism of a historical chrome yellow paint by quantitative electron energy loss spectroscopy mapping of chromium species.

    PubMed

    Tan, Haiyan; Tian, He; Verbeeck, Jo; Monico, Letizia; Janssens, Koen; Van Tendeloo, Gustaaf

    2013-10-18

    Getting the picture: The investigation of 100 year old chrome yellow paint by transmission electron microscopy and spectroscopy has led to the identification of four types of core-shell particles. This nanoscale investigation has allowed a mechanism to be proposed for the darkening of some bright yellow colors in Van Gogh's paintings (e.g. in Falling leaves (Les Alyscamps), 1888). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Synthesis and characterization of nickel oxide/graphene sheet/graphene ribbon composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavanya, J.; Gomathi, N., E-mail: sivakumar.gomathi@gmail.com

    2016-04-13

    A novel and simple hydrothermal synthesis of nickel oxide (NiO)/graphene sheets (GNS)/graphene ribbon (GR) hybrid material is reported for the first time. The crystalline property and surface morphology of NiO/GNS/GR (NiO/HG) hybrid material is characterized by X-ray diffraction, Raman spectroscopy and Transmission electron spectroscopy. The fast electron transfer of GNS/GR along with NiO contributes an excellent electrochemical performance in the field of non-enzymatic glucose sensor.

  12. Mössbauer spectroscopy of Basal Ganglia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miglierini, Marcel, E-mail: marcel.miglierini@stuba.sk; Lančok, Adriana; Kopáni, Martin

    2014-10-27

    Chemical states, structural arrangement, and magnetic features of iron deposits in biological tissue of Basal Ganglia are characterized. The methods of SQUID magnetometry and electron microscopy are employed. {sup 57}Fe Mössbauer spectroscopy is used as a principal method of investigation. Though electron microscopy has unveiled robust crystals (1-3 μm in size) of iron oxides, they are not manifested in the corresponding {sup 57}Fe Mössbauer spectra. The latter were acquired at 300 K and 4.2 K and resemble ferritin-like behavior.

  13. Spectroscopy of antiprotonic helium atoms and its contribution to the fundamental physical constants

    PubMed Central

    Hayano, Ryugo S.

    2010-01-01

    Antiprotonic helium atom, a metastable neutral system consisting of an antiproton, an electron and a helium nucleus, was serendipitously discovered, and has been studied at CERN’s antiproton decelerator facility. Its transition frequencies have recently been measured to nine digits of precision by laser spectroscopy. By comparing these experimental results with three-body QED calculations, the antiproton-to-electron massratio was determined as 1836.152674(5). This result contributed to the CODATA recommended values of the fundamental physical constants. PMID:20075605

  14. Carbon nanotube-DNA nanoarchitectures and electronic functionality.

    PubMed

    Wang, Xu; Liu, Fei; Andavan, G T Senthil; Jing, Xiaoye; Singh, Krishna; Yazdanpanah, Vahid R; Bruque, Nicolas; Pandey, Rajeev R; Lake, Roger; Ozkan, Mihrimah; Wang, Kang L; Ozkan, Cengiz S

    2006-11-01

    Biological molecules such as deoxyribonucleic acid (DNA) possess inherent recognition and self-assembly capabilities, and are attractive templates for constructing functional hierarchical material structures as building blocks for nanoelectronics. Here we report the assembly and electronic functionality of nanoarchitectures based on conjugates of single-walled carbon nanotubes (SWNTs) functionalized with carboxylic groups and single-stranded DNA (ssDNA) sequences possessing terminal amino groups on both ends, hybridized together through amide linkages by adopting a straightforward synthetic route. Morphological and chemical-functional characterization of the nanoarchitectures are investigated using scanning electron microscopy, transmission electron microscopy, atomic force microscopy, energy-dispersive X-ray spectroscopy, Raman spectroscopy, and Fourier-transform infrared spectroscopy. Electrical measurements (I-V characterization) of the nanoarchitectures demonstrate negative differential resistance in the presence of SWNT/ssDNA interfaces, which indicates a biomimetic route to fabricating resonant tunneling diodes. I-V characterization on platinum-metallized SWNT-ssDNA nanoarchitectures via salt reduction indicates modulation of their electrical properties, with effects ranging from those of a resonant tunneling diode to a resistor, depending on the amount of metallization. Electron transport through the nanoarchitectures has been analyzed by density functional theory calculations. Our studies illustrate the great promise of biomimetic assembly of functional nanosystems based on biotemplated materials and present new avenues toward exciting future opportunities in nanoelectronics and nanobiotechnology.

  15. Chemical bonding in aqueous hexacyano cobaltate from photon- and electron-detection perspectives

    PubMed Central

    Lalithambika, Sreeju Sreekantan Nair; Atak, Kaan; Seidel, Robert; Neubauer, Antje; Brandenburg, Tim; Xiao, Jie; Winter, Bernd; Aziz, Emad F.

    2017-01-01

    The electronic structure of the [Co(CN)6]3− complex dissolved in water is studied using X-ray spectroscopy techniques. By combining electron and photon detection methods from the solutions ionized or excited by soft X-rays we experimentally identify chemical bonding between the metal center and the CN ligand. Non-resonant photoelectron spectroscopy provides solute electron binding energies, and nitrogen 1 s and cobalt 2p resonant core-level photoelectron spectroscopy identifies overlap between metal and ligand orbitals. By probing resonances we are able to qualitatively determine the ligand versus metal character of the respective occupied and non-occupied orbitals, purely by experiment. For the same excitations we also detect the emitted X-rays, yielding the complementary resonant inelastic X-ray scattering spectra. For a quantitative interpretation of the spectra, we perform theoretical electronic-structure calculations. The latter provide both orbital energies and orbital character which are found to be in good agreement with experimental energies and with experimentally inferred orbital mixing. We also report calculated X-ray absorption spectra, which in conjunction with our orbital-structure analysis, enables us to quantify various bonding interactions with a particular focus on the water-solvent – ligand interaction and the strength of π-backbonding between metal and ligand. PMID:28098216

  16. Effect of intrinsic electronic defect states on the morphology and optoelectronic properties of Sn-rich SnS particles

    NASA Astrophysics Data System (ADS)

    Singh, Chetan C.; Panda, Emila

    2018-05-01

    A small variation in the elemental composition of a chemical compound can cause the formation of additional electronic defect states in the material, thereby altering the overall microstructure and thus induced properties. In this work, we observed chemical constitution-induced modification in the morphology and optoelectronic properties of SnS. To this end, SnS particles were prepared using the solution chemical route and were characterized using a wide range of experimental techniques, such as x-ray diffractometry, field emission scanning electron microscopy, high resolution transmission electron microscopy, energy dispersive spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS), UV-Vis spectrophotometry, and scanning tunneling spectroscopy (STS). All these SnS particles are found to be Sn-rich and p-type. However, distinctly different morphologies (i.e., flower-like and aggregated ones) are observed. These are then correlated with the electronic defect states, which are induced because of the presence of Sn vacancies, Sn antisites, and/or Sn interstitials. A combination of EDS, XPS, and STS data confirmed the presence of a higher concentration of Sn vacancies along with lower quantities of Sn interstitials and/or antisites in the SnS particles with flower-like morphologies giving rise to higher hole concentration, which subsequently leads to reduced transport, optical band gaps, and barrier heights.

  17. GaAs Spectrometer for Electron Spectroscopy at Europa

    NASA Astrophysics Data System (ADS)

    Lioliou, G.; Barnett, A. M.

    2016-12-01

    We propose a GaAs based electron spectrometer for a hypothetical future mission orbiting Europa. Previous observations at Europa's South Pole with the Hubble Space Telescope of hydrogen Lyman-α and oxygen OI 130.4 nm emissions were consistent with water vapor plumes [Roth et al., 2014, Science 343, 171]. Future observations and analysis of plumes on Europa could provide information about its subsurface structure and the distribution of liquid water within its icy shells [Rhoden at al. 2015, Icarus 253, 169]. In situ low energy (1keV - 100keV) electron spectroscopy along with UV imaging either in situ or with the Hubble Space Telescope Wide Field Camera 3 or similar would allow verification of the auroral observations being due to electron impact excitation of water vapor plumes. The proposed spectrometer includes a novel GaAs p+-i-n+ photodiode and a custom-made charge-sensitive preamplifier. The use of an early prototype GaAs detector for direct electron spectroscopy has already been demonstrated in ground based applications [Barnett et al., 2012, J. Instrum. 7, P09012]. Based on previous radiation hardness measurements of GaAs, the expected duration of the mission without degradation of the detector performance is estimated to be 4 months. Simulations and laboratory experiments characterising the detection performance of the proposed system are presented.

  18. High pressure and synchrotron radiation studies of solid state electronic instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pifer, J.H.; Croft, M.C.

    This report discusses Eu and General Valence Instabilities; Ce Problem: L{sub 3} Spectroscopy Emphasis; Bulk Property Emphasis; Transition Metal Compound Electronic Structure; Electronic Structure-Phonon Coupling Studies; High Temperature Superconductivity and Oxide Materials; and Novel Materials Collaboration with Chemistry.

  19. Time-resolved K α spectroscopy measurements of hot-electron equilibration dynamics in thin-foil solid targets: collisional and collective effects

    NASA Astrophysics Data System (ADS)

    Nilson, P. M.; Solodov, A. A.; Davies, J. R.; Theobald, W.; Mileham, C.; Stoeckl, C.; Begishev, I. A.; Zuegel, J. D.; Froula, D. H.; Betti, R.; Meyerhofer, D. D.

    2015-11-01

    Time-resolved K α spectroscopy measurements from high-intensity laser interactions with thin-foil solid targets are reviewed. Thin Cu foils were irradiated with 1-10 J, 1 ps pulses at focused intensities from 1018 to 1019 W cm-2. The experimental data show K α -emission pulse widths from 3 to 6 ps, increasing with laser intensity. The time-resolved K α -emission data are compared to a hot-electron transport and K α -production model that includes collisional electron-energy coupling, resistive heating, and electromagnetic field effects. The experimental data show good agreement with the model when a reduced ponderomotive scaling is used to describe the initial mean hot-electron energy over the relevant intensity range.

  20. Influence of electron irradiation on hydrothermally grown zinc oxide single crystals

    NASA Astrophysics Data System (ADS)

    Lu, L. W.; So, C. K.; Zhu, C. Y.; Gu, Q. L.; Li, C. J.; Fung, S.; Brauer, G.; Anwand, W.; Skorupa, W.; Ling, C. C.

    2008-09-01

    The resistivity of hydrothermally grown ZnO single crystals increased from ~103 Ω cm to ~106 Ω cm after 1.8 MeV electron irradiation with a fluence of ~1016 cm-2, and to ~109 Ω cm as the fluence increased to ~1018 cm-2. Defects in samples were studied by thermally stimulated current (TSC) spectroscopy and positron lifetime spectroscopy (PLS). After the electron irradiation with a fluence of 1018 cm-2, the normalized TSC signal increased by a factor of ~100. A Zn vacancy was also introduced by the electron irradiation, though with a concentration lower than expected. After annealing in air at 400 °C, the resistivity and the deep traps concentrations recovered to the levels of the as-grown sample, and the Zn vacancy was removed.

  1. The temperature-dependency of the optical band gap of ZnO measured by electron energy-loss spectroscopy in a scanning transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Granerød, Cecilie S.; Galeckas, Augustinas; Johansen, Klaus Magnus; Vines, Lasse; Prytz, Øystein

    2018-04-01

    The optical band gap of ZnO has been measured as a function of temperature using Electron Energy-Loss Spectroscopy (EELS) in a (Scanning) Transmission Electron Microscope ((S)TEM) from approximately 100 K up towards 1000 K. The band gap narrowing shows a close to linear dependency for temperatures above 250 K and is accurately described by Varshni, Bose-Einstein, Pässler and Manoogian-Woolley models. Additionally, the measured band gap is compared with both optical absorption measurements and photoluminescence data. STEM-EELS is here shown to be a viable technique to measure optical band gaps at elevated temperatures, with an available temperature range up to 1500 K and the benefit of superior spatial resolution.

  2. UV-Vis Action Spectroscopy Reveals a Conformational Collapse in Hydrogen-Rich Dinucleotide Cation Radicals.

    PubMed

    Korn, Joseph A; Urban, Jan; Dang, Andy; Nguyen, Huong T H; Tureček, František

    2017-09-07

    We report the generation of deoxyriboadenosine dinucleotide cation radicals by gas-phase electron transfer to dinucleotide dications and their noncovalent complexes with crown ether ligands. Stable dinucleotide cation radicals of a novel hydrogen-rich type were generated and characterized by tandem mass spectrometry and UV-vis photodissociation (UVPD) action spectroscopy. Electron structure theory analysis indicated that upon electron attachment the dinucleotide dications underwent a conformational collapse followed by intramolecular proton migrations between the nucleobases to give species whose calculated UV-vis absorption spectra matched the UVPD action spectra. Hydrogen-rich cation radicals generated from chimeric riboadenosine 5'-diesters gave UVPD action spectra that pointed to novel zwitterionic structures consisting of aromatic π-electron anion radicals intercalated between stacked positively charged adenine rings. Analogies with DNA ionization are discussed.

  3. Magnetic Interactions at the Nanoscale in Trilayer Titanates

    NASA Astrophysics Data System (ADS)

    Cao, Yanwei; Yang, Zhenzhong; Kareev, M.; Liu, Xiaoran; Meyers, D.; Middey, S.; Choudhury, D.; Shafer, P.; Guo, Jiandong; Freeland, J. W.; Arenholz, E.; Gu, Lin; Chakhalian, J.

    2016-02-01

    We report on the phase diagram of competing magnetic interactions at the nanoscale in engineered ultrathin trilayer heterostructures of LaTiO3 /SrTiO3/YTiO3 , in which the interfacial inversion symmetry is explicitly broken. Combined atomic layer resolved scanning transmission electron microscopy with electron energy loss spectroscopy and electrical transport have confirmed the formation of a spatially separated two-dimensional electron liquid and high density two-dimensional localized magnetic moments at the LaTiO3 /SrTiO3 and SrTiO3 /YTiO3 interfaces, respectively. Resonant soft x-ray linear dichroism spectroscopy has demonstrated the presence of orbital polarization of the conductive LaTiO3 /SrTiO3 and localized SrTiO3 /YTiO3 electrons. Our results provide a route with prospects for exploring new magnetic interfaces, designing a tunable two-dimensional d -electron Kondo lattice, and potential spin Hall applications.

  4. Atomic selectivity in dissociative electron attachment to dihalobenzenes.

    PubMed

    Kim, Namdoo; Sohn, Taeil; Lee, Sang Hak; Nandi, Dhananjay; Kim, Seong Keun

    2013-10-21

    We investigated electron attachment to three dihalobenzene molecules, bromochlorobenzene (BCB), bromoiodobenzene (BIB) and chloroiodobenzene (CIB), by molecular beam photoelectron spectroscopy. The most prominent product of electron attachment in the anion mass spectra was the atomic fragment of the less electronegative halogen of the two, i.e., Br(-) for BCB and I(-) for BIB and CIB. Photoelectron spectroscopy and ab initio calculations suggested that the approaching electron prefers to attack the less electronegative atom, a seemingly counterintuitive finding but consistent with the mass spectrometric result. For the iodine-containing species BIB and CIB, the photoelectron spectrum consists of bands from both the molecular anion and atomic I(-), the latter of which is produced by photodissociation of the former. Molecular orbital analysis revealed that a large degree of orbital energy reordering takes place upon electron attachment. These phenomena were shown to be readily explained by simple molecular orbital theory and the electronegativity of the halogen atoms.

  5. The Electronic Structure Signature of the Spin Cross-Over Transition of [Co(dpzca)2

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Mu, Sai; Liu, Yang; Luo, Jian; Zhang, Jian; N'Diaye, Alpha T.; Enders, Axel; Dowben, Peter A.

    2018-05-01

    The unoccupied electronic structure of the spin crossover molecule cobalt (II) N-(2-pyrazylcarbonyl)-2-pyrazinecarboxamide, [Co(dpzca)2] was investigated, using X-ray absorption spectroscopy (XAS) and compared with magnetometry (SQUID) measurements. The temperature dependence of the XAS and molecular magnetic susceptibility χmT are in general agreement for [Co(dpzca)2], and consistent with density functional theory (DFT). This agreement of magnetic susceptibility and X-ray absorption spectroscopy provides strong evidence that the changes in magnetic moment can be ascribed to changes in electronic structure. Calculations show the choice of Coulomb correlation energy U has a profound effect on the electronic structure of the low spin state, but has little influence on the electronic structure of the high spin state. In the temperature dependence of the XAS, there is also evidence of an X-ray induced excited state trapping for [Co(dpzca)2] at 15 K.

  6. Development of a miniature double-pass cylindrical mirror electron energy analyzer (DPCMA), and its application to Auger photoelectron coincidence spectroscopy (APECS)

    NASA Astrophysics Data System (ADS)

    Kobayashi, Eiichi; Seo, Junya; Nambu, Akira; Mase, Kazuhiko

    2007-09-01

    We have developed a miniature double-pass cylindrical mirror electron energy analyzer (DPCMA) with an outer diameter of 26 mm. The DPCMA consists of a shield for the electric field, inner and outer cylinders, two pinholes with a diameter of 2.0 mm, and an electron multiplier. By assembling the DPCMA in a coaxially symmetric mirror electron energy analyzer (ASMA) coaxially and confocally we developed an analyzer for Auger photoelectron coincidence spectroscopy (APECS). The performance was estimated by measuring the Si-LVV-Auger Si-1s-photoelectron coincidence spectra of clean Si(1 1 1). The electron-energy resolution of the DPCMA was estimated to be E/Δ E = 20. This value is better than that of the miniature single-pass CMA ( E/Δ E = 12) that was used in the previous APECS analyzer.

  7. Discovery of an unconventional charge density wave at the surface of K 0.9Mo 6O 17

    DOE PAGES

    Mou, Daixiang; Sapkota, Aashish; Kung, H. -H.; ...

    2016-05-13

    In this study, we use angle resolved photoemission spectroscopy, Raman spectroscopy, low energy electron diffraction, and x-ray scattering to reveal an unusual electronically mediated charge density wave (CDW) in K 0.9Mo 6O 17. Not only does K 0.9Mo 6O 17 lack signatures of electron-phonon coupling, but it also hosts an extraordinary surface CDW, with T S_CDW = 220 K nearly twice that of the bulk CDW, T B_CDW = 115 K. While the bulk CDW has a BCS-like gap of 12 meV, the surface gap is 10 times larger and well in the strong coupling regime. Strong coupling behavior combinedmore » with the absence of signatures of strong electron-phonon coupling indicates that the CDW is likely mediated by electronic interactions enhanced by low dimensionality.« less

  8. Influence of the electron-cation interaction on electron mobility in dye-sensitized ZnO and TiO2 nanocrystals: a study using ultrafast terahertz spectroscopy.

    PubMed

    Nemec, H; Rochford, J; Taratula, O; Galoppini, E; Kuzel, P; Polívka, T; Yartsev, A; Sundström, V

    2010-05-14

    Charge transport and recombination in nanostructured semiconductors are poorly understood key processes in dye-sensitized solar cells. We have employed time-resolved spectroscopies in the terahertz and visible spectral regions supplemented with Monte Carlo simulations to obtain unique information on these processes. Our results show that charge transport in the active solar cell material can be very different from that in nonsensitized semiconductors, due to strong electrostatic interaction between injected electrons and dye cations at the surface of the semiconductor nanoparticle. For ZnO, this leads to formation of an electron-cation complex which causes fast charge recombination and dramatically decreases the electron mobility even after the dissociation of the complex. Sensitized TiO2 does not suffer from this problem due to its high permittivity efficiently screening the charges.

  9. Measurement of He neutral temperature in detached plasmas using laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Aramaki, M.; Tsujihara, T.; Kajita, S.; Tanaka, H.; Ohno, N.

    2018-01-01

    The reduction of the heat load onto plasma-facing components by plasma detachment is an inevitable scheme in future nuclear fusion reactors. Since the control of the plasma and neutral temperatures is a key issue to the detached plasma generation, we have developed a laser absorption spectroscopy system for the metastable helium temperature measurements and used together with a previously developed laser Thomson scattering system for the electron temperature and density measurements. The thermal relaxation process between the neutral and the electron in the detached plasma generated in the linear plasma device, NAGDIS-II was studied. It is shown that the electron temperature gets close to the neutral temperature by increasing the electron density. On the other hand, the pressure dependence of electron and neutral temperatures shows the cooling effect by the neutrals. The possibility of the plasma fluctuation measurement using the fluctuation in the absorption signal is also shown.

  10. Nitrogen termination of single crystal (100) diamond surface by radio frequency N{sub 2} plasma process: An in-situ x-ray photoemission spectroscopy and secondary electron emission studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandran, Maneesh, E-mail: maneesh@tx.technion.ac.il, E-mail: choffman@tx.technion.ac.il; Shasha, Michal; Michaelson, Shaul

    2015-09-14

    In this letter, we report the electronic and chemical properties of nitrogen terminated (N-terminated) single crystal (100) diamond surface, which is a promising candidate for shallow NV{sup −} centers. N-termination is realized by an indirect RF nitrogen plasma process without inducing a large density of surface defects. Thermal stability and electronic property of N-terminated diamond surface are systematically investigated under well-controlled conditions by in-situ x-ray photoelectron spectroscopy and secondary electron emission. An increase in the low energy cut-off of the secondary electron energy distribution curve (EDC), with respect to a bare diamond surface, indicates a positive electron affinity of themore » N-terminated diamond. Exposure to atomic hydrogen results in reorganization of N-terminated diamond to H-terminated diamond, which exhibited a negative electron affinity surface. The change in intensity and spectral features of the secondary electron EDC of the N-terminated diamond is discussed.« less

  11. [application of the analytical transmission electron microscopy techniques for detection, identification and visualization of localization of nanoparticles of titanium and cerium oxides in mammalian cells].

    PubMed

    Shebanova, A S; Bogdanov, A G; Ismagulova, T T; Feofanov, A V; Semenyuk, P I; Muronets, V I; Erokhina, M V; Onishchenko, G E; Kirpichnikov, M P; Shaitan, K V

    2014-01-01

    This work represents the results of the study on applicability of the modern methods of analytical transmission electron microscopy for detection, identification and visualization of localization of nanoparticles of titanium and cerium oxides in A549 cell, human lung adenocarcinoma cell line. A comparative analysis of images of the nanoparticles in the cells obtained in the bright field mode of transmission electron microscopy, under dark-field scanning transmission electron microscopy and high-angle annular dark field scanning transmission electron was performed. For identification of nanoparticles in the cells the analytical techniques, energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy, were compared when used in the mode of obtaining energy spectrum from different particles and element mapping. It was shown that the method for electron tomography is applicable to confirm that nanoparticles are localized in the sample but not coated by contamination. The possibilities and fields of utilizing different techniques for analytical transmission electron microscopy for detection, visualization and identification of nanoparticles in the biological samples are discussed.

  12. Novel time-of-flight spectrometer for the analysis of positron annihilation induced Auger electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hugenschmidt, Christoph; Legl, Stefan; Physik-Department E21, Technische Universitaet Muenchen, James-Franck-Strasse, 85748 Garching

    2006-10-15

    Positron annihilation induced Auger-electron spectroscopy (PAES) has several advantages over conventional Auger-electron spectroscopy such as extremely high surface sensitivity and outstanding signal-to-noise ratio at the Auger-transition energy. In order to benefit from these prominent features a low-energy positron beam of high intensity is required for surface sensitive PAES studies. In addition, an electron energy analyzer is required, which efficiently detects the Auger electrons with acceptable energy resolution. For this reason a novel time-of-flight (TOF) spectrometer has been developed at the intense positron source NEPOMUC that allows PAES studies within short measurement time. This TOF-PAES setup combines a trochoidal filter andmore » a flight tube in a Faraday cage in order to achieve an improved energy resolution of about 1 eV at high electron energies up to E{approx_equal}1000 eV. The electron flight time is the time between the annihilation radiation at the sample and when the electron hits a microchannel plate detector at the end of the flight tube.« less

  13. Novel time-of-flight spectrometer for the analysis of positron annihilation induced Auger electrons

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, Christoph; Legl, Stefan

    2006-10-01

    Positron annihilation induced Auger-electron spectroscopy (PAES) has several advantages over conventional Auger-electron spectroscopy such as extremely high surface sensitivity and outstanding signal-to-noise ratio at the Auger-transition energy. In order to benefit from these prominent features a low-energy positron beam of high intensity is required for surface sensitive PAES studies. In addition, an electron energy analyzer is required, which efficiently detects the Auger electrons with acceptable energy resolution. For this reason a novel time-of-flight (TOF) spectrometer has been developed at the intense positron source NEPOMUC that allows PAES studies within short measurement time. This TOF-PAES setup combines a trochoidal filter and a flight tube in a Faraday cage in order to achieve an improved energy resolution of about 1eV at high electron energies up to E ≈1000eV. The electron flight time is the time between the annihilation radiation at the sample and when the electron hits a microchannel plate detector at the end of the flight tube.

  14. Simulating electron energy loss spectroscopy with the MNPBEM toolbox

    NASA Astrophysics Data System (ADS)

    Hohenester, Ulrich

    2014-03-01

    Within the MNPBEM toolbox, we show how to simulate electron energy loss spectroscopy (EELS) of plasmonic nanoparticles using a boundary element method approach. The methodology underlying our approach closely follows the concepts developed by García de Abajo and coworkers (Garcia de Abajo, 2010). We introduce two classes eelsret and eelsstat that allow in combination with our recently developed MNPBEM toolbox for a simple, robust, and efficient computation of EEL spectra and maps. The classes are accompanied by a number of demo programs for EELS simulation of metallic nanospheres, nanodisks, and nanotriangles, and for electron trajectories passing by or penetrating through the metallic nanoparticles. We also discuss how to compute electric fields induced by the electron beam and cathodoluminescence. Catalogue identifier: AEKJ_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKJ_v2_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 38886 No. of bytes in distributed program, including test data, etc.: 1222650 Distribution format: tar.gz Programming language: Matlab 7.11.0 (R2010b). Computer: Any which supports Matlab 7.11.0 (R2010b). Operating system: Any which supports Matlab 7.11.0 (R2010b). RAM:≥1 GB Classification: 18. Catalogue identifier of previous version: AEKJ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 183 (2012) 370 External routines: MESH2D available at www.mathworks.com Does the new version supersede the previous version?: Yes Nature of problem: Simulation of electron energy loss spectroscopy (EELS) for plasmonic nanoparticles. Solution method: Boundary element method using electromagnetic potentials. Reasons for new version: The new version of the toolbox includes two additional classes for the simulation of electron energy loss spectroscopy (EELS) of plasmonic nanoparticles, and corrects a few minor bugs and inconsistencies. Summary of revisions: New classes “eelsstat” and “eelsret” for the simulation of electron energy loss spectroscopy (EELS) of plasmonic nanoparticles have been added. A few minor errors in the implementation of dipole excitation have been corrected. Running time: Depending on surface discretization between seconds and hours.

  15. Electronic properties of bimetallic metal–organic frameworks (MOFs): Tailoring the density of electronic states through MOF modularity

    DOE PAGES

    Dolgopolova, Ekaterina A.; Brandt, Amy J.; Ejegbavwo, Otega A.; ...

    2017-03-18

    The development of porous well-defined hybrid materials (e.g., metal-organic frameworks or MOFs) will add a new dimension to a wide number of applications ranging from supercapacitors and electrodes to 'smart' membranes and thermoelectrics. From this perspective, the understanding and tailoring of the electronic properties of MOFs are key fundamental challenges that could unlock the full potential of these materials. In this work, we focused on the fundamental insights responsible for the electronic properties of three distinct classes of bimetallic systems, M x-yM' y-MOFs, M xM' y- MOFs, and M x(ligand-M' y)-MOFs, in which the second metal (M') incorporation occurs throughmore » (i) metal (M) replacement in the framework nodes (type I), (ii) metal node extension (type II), and (iii) metal coordination to the organic ligand (type III), respectively. We employed microwave conductivity, X-ray photoelectron spectroscopy, diffuse reflectance spectroscopy, powder X-ray diffraction, inductively coupled plasma atomic emission spectroscopy, pressed-pellet conductivity, and theoretical modeling to shed light on the key factors responsible for the tunability of MOF electronic structures. Experimental prescreening of MOFs was performed based on changes in the density of electronic states near the Fermi edge, which was used as a starting point for further selection of suitable MOFs. As a result, we demonstrated that the tailoring of MOF electronic properties could be performed as a function of metal node engineering, framework topology, and/or the presence of unsaturated metal sites while preserving framework porosity and structural integrity. Finally, these studies unveil the possible pathways for transforming the electronic properties of MOFs from insulating to semiconducting, as well as provide a blueprint for the development of hybrid porous materials with desirable electronic structures.« less

  16. Efficiency enhancement in dye sensitized solar cells using dual function mesoporous silica as scatterer and back recombination inhibitor

    NASA Astrophysics Data System (ADS)

    Tanvi; Mahajan, Aman; Bedi, R. K.; Kumar, Subodh; Saxena, Vibha; Aswal, D. K.

    2016-08-01

    In the present work, we report the usage of mesoporous silica for improving light harvesting as well as for suppression of back recombination without affecting the extent of dye loading on TiO2 films. Synthesized mesoporous SiO2 was characterized by X-ray photoelectron spectroscopy, X-ray diffraction, Brunauer Emmett and Teller measurement, Scanning electron microscopy and Transmission electron microscopy. DSSCs were fabricated by incorporating different wt% of mesoporous SiO2 in TiO2 paste. An improvement of 50% was observed for devices fabricated using 0.75 wt% of mesoporous SiO2. The mechanism behind the improvement was investigated using electrochemical impedance spectroscopy and UV-Vis spectroscopy.

  17. High Resolution Λ Hypernuclear Spectroscopy with Electron Beams

    NASA Astrophysics Data System (ADS)

    Gogami, T.; Achenbach, P.; Ahmidouch, A.; Albayrak, I.; Androic, D.; Asaturyan, A.; Asaturyan, R.; Ates, O.; Baturin, P.; Badui, R.; Boeglin, W.; Bono, J.; Brash, E.; Carter, P.; Chen, C.; Chiba, A.; Christy, E.; Danagoulian, S.; De Leo, R.; Doi, D.; Elaasar, M.; Ent, R.; Fujii, Y.; Fujita, M.; Furic, M.; Gabrielyan, M.; Gan, L.; Garibaldi, F.; Gaskell, D.; Gasparian, A.; Hashimoto, O.; Horn, T.; Hu, B.; Hungerford, Ed. V.; Jones, M.; Kanda, H.; Kaneta, M.; Kato, S.; Kawai, M.; Kawama, D.; Khanal, H.; Kohl, M.; Liyanage, A.; Luo, W.; Maeda, K.; Margaryan, A.; Markowitz, P.; Maruta, T.; Matsumura, A.; Maxwell, V.; Mkrtchyan, A.; Mkrtchyan, H.; Nagao, S.; Nakamura, S. N.; Narayan, A.; Neville, C.; Niculescu, G.; Niculescu, M. I.; Nunez, A.; Nuruzzaman; Okayasu, Y.; Petkovic, T.; Pochodzalla, J.; Qiu, X.; Reinhold, J.; Rodriguez, V. M.; Samanta, C.; Sawatzky, B.; Seva, T.; Shichijo, A.; Tadevosyan, V.; Tang, L.; Taniya, N.; Tsukada, K.; Veilleux, M.; Vulcan, W.; Wesselmann, F. R.; Wood, S. A.; Yamamoto, T.; Ya, L.; Ye, Z.; Yokota, K.; Yuan, L.; Zhamkochyan, S.; Zhu, L.

    JLab E05-115 which is an experiment for Λ hypernuclear spectroscopy with electron beams was carried out at Jefferson Lab (JLab) in 2009. In the experiment, Λ 7He, Λ 9Li, Λ 10Be, Λ 12B and Λ 52V were measured by new magnetic spectrometer systems (SPL+HES+HKS) which were necessary for spectroscopy with high energy resolution of sub-MeV (FWHM). This is the first attempt to measure a Λ hypernucleus with up to medium-heavy mass region by the (e,e' K + ) reaction, overcoming high rate and high multiplicity conditions due to electromagnetic background particles. An overview of the hypernuclear experiments at JLab Hall-C and preliminary binding energy spectrum of Λ 10Be are shown.

  18. Quantitative tunneling spectroscopy of nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    First, Phillip N; Whetten, Robert L; Schaaff, T Gregory

    2007-05-25

    The proposed goals of this collaborative work were to systematically characterize the electronic structure and dynamics of 3-dimensional metal and semiconducting nanocrystals using scanning tunneling microscopy/spectroscopy (STM/STS) and ballistic electron emission spectroscopy (BEES). This report describes progress in the spectroscopic work and in the development of methods for creating and characterizing gold nanocrystals. During the grant period, substantial effort also was devoted to the development of epitaxial graphene (EG), a very promising materials system with outstanding potential for nanometer-scale ballistic and coherent devices ("graphene" refers to one atomic layer of graphitic, sp2 -bonded carbon atoms [or more loosely, few layers]).more » Funding from this DOE grant was critical for the initial development of epitaxial graphene for nanoelectronics« less

  19. Laser spectroscopy of a halocarbocation in the gas phase: CH2I+.

    PubMed

    Tao, Chong; Mukarakate, Calvin; Reid, Scott A

    2006-07-26

    We report the first gas-phase observation of the electronic spectrum of a simple halocarbocation, CH2I+. The ion was generated rotationally cold (Trot approximately 20 K) using pulsed discharge methods and was detected via laser spectroscopy. The identity of the spectral carrier was confirmed by modeling the rotational contour observed in the excitation spectra and by comparison of ground state vibrational frequencies determined by single vibronic level emission spectroscopy with Density Functional Theory (DFT) predictions. The transition was assigned as 3A1 <-- X1A1. This initial detection of the electronic spectrum of a halocarbocation in the gas phase should open new avenues for study of the structure and reactivity of these important ions.

  20. Positron annihilation induced Auger electron emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, A.; Jibaly, M.; Lei, Chun

    1988-01-01

    We report on measurements of Auger electron emission from Cu and Fe due to core hole excitations produced by the removal of core electrons by matter-antimatter annihilation. Estimates are developed of the probability of positrons annihilating with a 3p electron in these materials. Several important advantages of Positron annihilation induced Auger Electron Spectroscopy (PAES) for surface analysis are suggested. 10 refs., 2 figs.

  1. Characterization of lipid oxidation process of beef during repeated freeze-thaw by electron spin resonance technology and Raman spectroscopy.

    PubMed

    Chen, Qingmin; Xie, Yunfei; Xi, Jinzhong; Guo, Yahui; Qian, He; Cheng, Yuliang; Chen, Yi; Yao, Weirong

    2018-03-15

    In this study, electron spin resonance (ESR) and Raman spectroscopy were applied to characterize lipid oxidation of beef during repeated freeze-thaw (RFT). Besides the conventional indexes including peroxide values (PV), thiobarbituric acid-reactive substances (TBARS) and acid values (AV) were evaluated, the radical and molecular structure changes were also measured by ESR and Raman spectroscopy. The results showed that PV, TBARS and AV were increased (P<0.05) after RFT. This suggested that lipid oxidation was occurred during RFT. With the increase of radical signal intensity, lower oxidation stability was presented by ESR. Raman intensity of ν(CC) stretching region (1655cm -1 ) was decreased during RFT. Furthermore, lower Raman intensity ratio of I 1655 /I 1442 , I 1655 /I 1745 that determine total unsaturation was also observed. Significant correlations (p<0.01) were obtained among conventional methods, ESR and Raman spectroscopy. Our result has proved that ESR and Raman spectroscopy showed great potential in characterizing lipid oxidation process of beef during RFT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. 57Fe Mössbauer spectroscopy and electron paramagnetic resonance studies of human liver ferritin, Ferrum Lek and Maltofer®

    NASA Astrophysics Data System (ADS)

    Alenkina, I. V.; Oshtrakh, M. I.; Klencsár, Z.; Kuzmann, E.; Chukin, A. V.; Semionkin, V. A.

    2014-09-01

    A human liver ferritin, commercial Ferrum Lek and Maltofer® samples were studied using Mössbauer spectroscopy and electron paramagnetic resonance. Two Mössbauer spectrometers have been used: (i) a high velocity resolution (4096 channels) at 90 and 295 K, (ii) and a low velocity resolution (250 channels) at 20 and 40 K. It is shown that the three studied materials have different superparamagnetic features at various temperatures. This may be caused by different magnetic anisotropy energy barriers, sizes (volume), structures and compositions of the iron cores. The electron paramagnetic resonance spectra of the ferritin, Ferrum Lek and Maltofer® were decomposed into multiple spectral components demonstrating the presence of minor ferro- or ferrimagnetic phases along with revealing marked differences among the studied substances. Mössbauer spectroscopy provides evidences on several components in the measured spectra which could be related to different regions, layers, nanocrystallites, etc. in the iron cores that coincides with heterogeneous and multiphase models for the ferritin iron cores.

  3. On the Electronic Structure of Cu Chlorophyllin and Its Breakdown Products: A Carbon K-Edge X-ray Absorption Spectroscopy Study.

    PubMed

    Witte, Katharina; Mantouvalou, Ioanna; Sánchez-de-Armas, Rocío; Lokstein, Heiko; Lebendig-Kuhla, Janina; Jonas, Adrian; Roth, Friedrich; Kanngießer, Birgit; Stiel, Holger

    2018-02-15

    Using near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, the carbon backbone of sodium copper chlorophyllin (SCC), a widely used chlorophyll derivative, and its breakdown products are analyzed to elucidate their electronic structure and physicochemical properties. Using various sample preparation methods and complementary spectroscopic methods (including UV/Vis, X-ray photoelectron spectroscopy), a comprehensive insight into the SCC breakdown process is presented. The experimental results are supported by density functional theory calculations, allowing a detailed assignment of characteristic NEXAFS features to specific C bonds. SCC can be seen as a model system for the large group of porphyrins; thus, this work provides a novel and detailed description of the electronic structure of the carbon backbone of those molecules and their breakdown products. The achieved results also promise prospective optical pump/X-ray probe investigations of dynamic processes in chlorophyll-containing photosynthetic complexes to be analyzed more precisely.

  4. Direct observation of multistep energy transfer in LHCII with fifth-order 3D electronic spectroscopy.

    PubMed

    Zhang, Zhengyang; Lambrev, Petar H; Wells, Kym L; Garab, Győző; Tan, Howe-Siang

    2015-07-31

    During photosynthesis, sunlight is efficiently captured by light-harvesting complexes, and the excitation energy is then funneled towards the reaction centre. These photosynthetic excitation energy transfer (EET) pathways are complex and proceed in a multistep fashion. Ultrafast two-dimensional electronic spectroscopy (2DES) is an important tool to study EET processes in photosynthetic complexes. However, the multistep EET processes can only be indirectly inferred by correlating different cross peaks from a series of 2DES spectra. Here we directly observe multistep EET processes in LHCII using ultrafast fifth-order three-dimensional electronic spectroscopy (3DES). We measure cross peaks in 3DES spectra of LHCII that directly indicate energy transfer from excitons in the chlorophyll b (Chl b) manifold to the low-energy level chlorophyll a (Chl a) via mid-level Chl a energy states. This new spectroscopic technique allows scientists to move a step towards mapping the complete complex EET processes in photosynthetic systems.

  5. Inexpensive electronics and software for photon statistics and correlation spectroscopy.

    PubMed

    Gamari, Benjamin D; Zhang, Dianwen; Buckman, Richard E; Milas, Peker; Denker, John S; Chen, Hui; Li, Hongmin; Goldner, Lori S

    2014-07-01

    Single-molecule-sensitive microscopy and spectroscopy are transforming biophysics and materials science laboratories. Techniques such as fluorescence correlation spectroscopy (FCS) and single-molecule sensitive fluorescence resonance energy transfer (FRET) are now commonly available in research laboratories but are as yet infrequently available in teaching laboratories. We describe inexpensive electronics and open-source software that bridges this gap, making state-of-the-art research capabilities accessible to undergraduates interested in biophysics. We include a discussion of the intensity correlation function relevant to FCS and how it can be determined from photon arrival times. We demonstrate the system with a measurement of the hydrodynamic radius of a protein using FCS that is suitable for the undergraduate teaching laboratory. The FPGA-based electronics, which are easy to construct, are suitable for more advanced measurements as well, and several applications are described. As implemented, the system has 8 ns timing resolution, can control up to four laser sources, and can collect information from as many as four photon-counting detectors.

  6. Inexpensive electronics and software for photon statistics and correlation spectroscopy

    PubMed Central

    Gamari, Benjamin D.; Zhang, Dianwen; Buckman, Richard E.; Milas, Peker; Denker, John S.; Chen, Hui; Li, Hongmin; Goldner, Lori S.

    2016-01-01

    Single-molecule-sensitive microscopy and spectroscopy are transforming biophysics and materials science laboratories. Techniques such as fluorescence correlation spectroscopy (FCS) and single-molecule sensitive fluorescence resonance energy transfer (FRET) are now commonly available in research laboratories but are as yet infrequently available in teaching laboratories. We describe inexpensive electronics and open-source software that bridges this gap, making state-of-the-art research capabilities accessible to undergraduates interested in biophysics. We include a discussion of the intensity correlation function relevant to FCS and how it can be determined from photon arrival times. We demonstrate the system with a measurement of the hydrodynamic radius of a protein using FCS that is suitable for the undergraduate teaching laboratory. The FPGA-based electronics, which are easy to construct, are suitable for more advanced measurements as well, and several applications are described. As implemented, the system has 8 ns timing resolution, can control up to four laser sources, and can collect information from as many as four photon-counting detectors. PMID:26924846

  7. Spectral methods for study of the G-protein-coupled receptor rhodopsin: I. Vibrational and electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Struts, A. V.; Barmasov, A. V.; Brown, M. F.

    2015-05-01

    Here we review the application of modern spectral methods for the study of G-protein-coupled receptors (GPCRs) using rhodopsin as a prototype. Because X-ray analysis gives us immobile snapshots of protein conformations, it is imperative to apply spectroscopic methods for elucidating their function: vibrational (Raman, FTIR), electronic (UV-visible absorption, fluorescence) spectroscopies, and magnetic resonance (electron paramagnetic resonance, EPR), and nuclear magnetic resonance (NMR). In the first of the two companion articles, we discuss the application of optical spectroscopy for studying rhodopsin in a membrane environment. Information is obtained regarding the time-ordered sequence of events in rhodopsin activation. Isomerization of the chromophore and deprotonation of the retinal Schiff base leads to a structural change of the protein involving the motion of helices H5 and H6 in a pH-dependent process. Information is obtained that is unavailable from X-ray crystallography, which can be combined with spectroscopic studies to achieve a more complete understanding of GPCR function.

  8. One- and two-dimensional pulse electron paramagnetic resonance spectroscopy: concepts and applications.

    PubMed

    Van Doorslaer, S; Schweiger, A

    2000-06-01

    During the last two decades, the possibilities of pulse electron paramagnetic resonance (EPR) and pulse electron nuclear double resonance (ENDOR) spectroscopy have increased tremendously. While at the beginning of the 1980s pulse-EPR and ENDOR applications were still a rarity, the techniques are now very frequently applied in chemistry, physics, materials science, biology and mineralogy. This is mainly due to the considerable efforts invested in the last few years on instrument development and pulse-sequence design. Pulse-EPR spectrometers are now commercially available, which enables many research groups to use these techniques. In this work, an overview of state-of-the-art pulse EPR and ENDOR spectroscopy is given. The rapid expansion of the field, however, does not allow us to give an exhaustive record of all the pulse methods introduced so far. After a brief and very qualitative description of the basic principles of pulse EPR, we discuss some of the experiments in more detail and illustrate the potential of the methods with a number of selected applications.

  9. Systematic investigation on Cadmium-incorporation in Li₂FeSiO₄/C cathode material for lithium-ion batteries.

    PubMed

    Zhang, Lu-Lu; Duan, Song; Yang, Xue-Lin; Liang, Gan; Huang, Yun-Hui; Cao, Xing-Zhong; Yang, Jing; Ni, Shi-Bing; Li, Ming

    2014-05-27

    Cadmium-incorporated Li2FeSiO4/C composites have been successfully synthesized by a solid-state reaction assisted with refluxing. The effect and mechanism of Cd-modification on the electrochemical performance of Li2FeSiO4/C were investigated in detail by X-ray powder diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, Raman spectra, transmission electron microscopy, positron annihilation lifetime spectroscopy and Doppler broadening spectrum, and electrochemical measurements. The results show that Cd not only exists in an amorphous state of CdO on the surface of LFS particles, but also enters into the crystal lattice of LFS. Positron annihilation lifetime spectroscopy and Doppler broadening spectrum analyses verify that Cd-incorporation increases the defect concentration and the electronic conductivity of LFS, thus improve the Li(+)-ion diffusion process. Furthermore, our electrochemical measurements verify that an appropriate amount of Cd-incorporation can achieve a satisfied electrochemical performance for LFS/C cathode material.

  10. Real-time imaging, spectroscopy, and structural investigation of cathodic plasma electrolytic oxidation of molybdenum

    NASA Astrophysics Data System (ADS)

    Stojadinović, Stevan; Tadić, Nenad; Šišović, Nikola M.; Vasilić, Rastko

    2015-06-01

    In this paper, the results of the investigation of cathodic plasma electrolytic oxidation (CPEO) of molybdenum at 160 V in a mixed solution of borax, water, and ethylene glycol are presented. Real-time imaging and optical emission spectroscopy were used for the characterization of the CPEO. During the process, vapor envelope is formed around the cathode and strong electric field within the envelope caused the generation of plasma discharges. The spectral line shape analysis of hydrogen Balmer line Hβ (486.13 nm) shows that plasma discharges are characterized by the electron number density of about 1.4 × 1021 m-3. The electron temperature of 15 000 K was estimated by measuring molybdenum atomic lines intensity. Surface morphology, chemical, and phase composition of coatings formed by CPEO were characterized by scanning electron microscopy with energy dispersive x-ray spectroscopy and x-ray diffraction. The elemental components of CPEO coatings are Mo and O and the predominant crystalline form is MoO3.

  11. Systematic investigation on Cadmium-incorporation in Li2FeSiO4/C cathode material for lithium-ion batteries

    PubMed Central

    Zhang, Lu-Lu; Duan, Song; Yang, Xue-Lin; Liang, Gan; Huang, Yun-Hui; Cao, Xing-Zhong; Yang, Jing; Ni, Shi-Bing; Li, Ming

    2014-01-01

    Cadmium-incorporated Li2FeSiO4/C composites have been successfully synthesized by a solid-state reaction assisted with refluxing. The effect and mechanism of Cd-modification on the electrochemical performance of Li2FeSiO4/C were investigated in detail by X-ray powder diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, Raman spectra, transmission electron microscopy, positron annihilation lifetime spectroscopy and Doppler broadening spectrum, and electrochemical measurements. The results show that Cd not only exists in an amorphous state of CdO on the surface of LFS particles, but also enters into the crystal lattice of LFS. Positron annihilation lifetime spectroscopy and Doppler broadening spectrum analyses verify that Cd-incorporation increases the defect concentration and the electronic conductivity of LFS, thus improve the Li+-ion diffusion process. Furthermore, our electrochemical measurements verify that an appropriate amount of Cd-incorporation can achieve a satisfied electrochemical performance for LFS/C cathode material. PMID:24860942

  12. High resolution rare-earth elements analyses of natural apatite and its application in geo-sciences: Combined micro-PIXE, quantitative CL spectroscopy and electron spin resonance analyses

    NASA Astrophysics Data System (ADS)

    Habermann, D.; Götte, T.; Meijer, J.; Stephan, A.; Richter, D. K.; Niklas, J. R.

    2000-03-01

    The rare-earth element (REE) distribution in natural apatite is analysed by micro-PIXE, cathodoluminescence (CL) microscopy and spectroscopy and electron spin resonance (ESR) spectroscopy. The micro-PIXE analyses of an apatite crystal from Cerro de Mercado (Mexico) and the summary of 20 analyses of six francolite (conodonts of Triassic age) samples indicate that most of the REEs are enriched in apatite and francolite comparative to average shale standard (NASC). The analyses of fossil francolite revealing the REE-distribution not to be in balance with the REE-distribution of seawater and fish bone debris. Strong inhomogenous lateral REE-distribution in fossil conodont material is shown by CL-mapping and most probably not being a vital effect. Therefore, the resulting REE-signal from fossil francolite is the sum of vital and post-mortem incorporation. The necessary charge compensation for the substitution of divalent Ca by trivalent REE being done by different kind of electron defects and defect ions.

  13. A novel method for the functionalization of aminoacids L-glycine, L-glutamic acid and L-arginine on maghemite/magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Bruno, A. J.; Correa, J. R.; Peláez-Abellán, E.; Urones-Garrote, E.

    2018-06-01

    Nanoparticles of maghemite/magnetite functionalized with L-glycine, L-glutamic acid and L-arginine were synthesized by a novel method. The novel procedure consists in an alternative of that reported by Massart for the precipitation of magnetite in which the aminoacid is added in the carboxylate form. The amounts of aminoacid in the initial molar concentrations were 35%, 45% and 65% with respect to the ferrophase. The obtained nanoparticles were characterized by several techniques: X-ray diffraction (XRD), Fourier transform IR spectroscopy (FT-IR), transmission electron microscopy (TEM), Electron energy-loss spectroscopy (EELS) and magnetometry. The IR spectroscopy confirmed that the selected aminoacids were functionalized on the surface of iron oxide. XRD and EELS confirm that iron oxide consists of a maghemite-magnetite intermediate phase with an average particle size about 6 nm, which was measured by transmission electron microscopy. The superparamagnetic character of the nanoparticles was evaluated by magnetometry.

  14. Effect of replacing Sn4+ ions by Zn2+ ions on structural, optical and magnetic properties of SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Selvi, E. Thamarai; Sundar, S. Meenakshi

    2017-05-01

    This paper highlights on the consequence of replacing tetravalent Sn4+ ions of the SnO2 by divalent Zn2+ ions on their structural, optical, and magnetic properties. Samples of Sn1- x Zn x O2 with x = 0, 0.01, 0.02, 0.03, and 0.04 were synthesized using microwave irradiated solvothermal process. The X-ray powder diffraction patterns reveal the rutile tetragonal phase of all doped SnO2 samples with no secondary phases. The transmission electron microscopy results show the formation of spherical nanoparticles of size 10-30 nm. Morphological changes were observed by scanning electron microscopy. The functional groups were investigated using Fourier transform infrared spectroscopy studies. Optical studies were carried by UV-Vis spectroscopy and fluorescence spectroscopy. Electron paramagnetic resonance was used to calculate the Lande splitting factor ` g'. The magnetic properties using vibrating sample magnetometer exhibit room temperature ferromagnetism for all the samples.

  15. Quantifying electronic band interactions in van der Waals materials using angle-resolved reflected-electron spectroscopy

    PubMed Central

    Jobst, Johannes; van der Torren, Alexander J. H.; Krasovskii, Eugene E.; Balgley, Jesse; Dean, Cory R.; Tromp, Rudolf M.; van der Molen, Sense Jan

    2016-01-01

    High electron mobility is one of graphene's key properties, exploited for applications and fundamental research alike. Highest mobility values are found in heterostructures of graphene and hexagonal boron nitride, which consequently are widely used. However, surprisingly little is known about the interaction between the electronic states of these layered systems. Rather pragmatically, it is assumed that these do not couple significantly. Here we study the unoccupied band structure of graphite, boron nitride and their heterostructures using angle-resolved reflected-electron spectroscopy. We demonstrate that graphene and boron nitride bands do not interact over a wide energy range, despite their very similar dispersions. The method we use can be generally applied to study interactions in van der Waals systems, that is, artificial stacks of layered materials. With this we can quantitatively understand the ‘chemistry of layers' by which novel materials are created via electronic coupling between the layers they are composed of. PMID:27897180

  16. Visualizing the non-equilibrium dynamics of photoinduced intramolecular electron transfer with femtosecond X-ray pulses

    PubMed Central

    Canton, Sophie E.; Kjær, Kasper S.; Vankó, György; van Driel, Tim B.; Adachi, Shin-ichi; Bordage, Amélie; Bressler, Christian; Chabera, Pavel; Christensen, Morten; Dohn, Asmus O.; Galler, Andreas; Gawelda, Wojciech; Gosztola, David; Haldrup, Kristoffer; Harlang, Tobias; Liu, Yizhu; Møller, Klaus B.; Németh, Zoltán; Nozawa, Shunsuke; Pápai, Mátyás; Sato, Tokushi; Sato, Takahiro; Suarez-Alcantara, Karina; Togashi, Tadashi; Tono, Kensuke; Uhlig, Jens; Vithanage, Dimali A.; Wärnmark, Kenneth; Yabashi, Makina; Zhang, Jianxin; Sundström, Villy; Nielsen, Martin M.

    2015-01-01

    Ultrafast photoinduced electron transfer preceding energy equilibration still poses many experimental and conceptual challenges to the optimization of photoconversion since an atomic-scale description has so far been beyond reach. Here we combine femtosecond transient optical absorption spectroscopy with ultrafast X-ray emission spectroscopy and diffuse X-ray scattering at the SACLA facility to track the non-equilibrated electronic and structural dynamics within a bimetallic donor–acceptor complex that contains an optically dark centre. Exploiting the 100-fold increase in temporal resolution as compared with storage ring facilities, these measurements constitute the first X-ray-based visualization of a non-equilibrated intramolecular electron transfer process over large interatomic distances. Experimental and theoretical results establish that mediation through electronically excited molecular states is a key mechanistic feature. The present study demonstrates the extensive potential of femtosecond X-ray techniques as diagnostics of non-adiabatic electron transfer processes in synthetic and biological systems, and some directions for future studies, are outlined. PMID:25727920

  17. Visualizing the non-equilibrium dynamics of photoinduced intramolecular electron transfer with femtosecond X-ray pulses

    DOE PAGES

    Canton, Sophie E.; Kjær, Kasper S.; Vankó, György; ...

    2015-03-02

    Ultrafast photoinduced electron transfer preceding energy equilibration still poses many experimental and conceptual challenges to the optimization of photoconversion since an atomic-scale description has so far been beyond reach. Here we combine femtosecond transient optical absorption spectroscopy with ultrafast X-ray emission spectroscopy and diffuse X-ray scattering at the SACLA facility to track the non-equilibrated electronic and structural dynamics within a bimetallic donor–acceptor complex that contains an optically dark centre. Exploiting the 100-fold increase in temporal resolution as compared with storage ring facilities, these measurements constitute the first X-ray-based visualization of a non-equilibrated intramolecular electron transfer process over large interatomic distances.more » Thus experimental and theoretical results establish that mediation through electronically excited molecular states is a key mechanistic feature. The present study demonstrates the extensive potential of femtosecond X-ray techniques as diagnostics of non-adiabatic electron transfer processes in synthetic and biological systems, and some directions for future studies, are outlined.« less

  18. Vibrationally resolved photoelectron spectroscopy of electronic excited states of DNA bases: application to the ã state of thymine cation.

    PubMed

    Hochlaf, Majdi; Pan, Yi; Lau, Kai-Chung; Majdi, Youssef; Poisson, Lionel; Garcia, Gustavo A; Nahon, Laurent; Al Mogren, Muneerah Mogren; Schwell, Martin

    2015-02-19

    For fully understanding the light-molecule interaction dynamics at short time scales, recent theoretical and experimental studies proved the importance of accurate characterizations not only of the ground (D0) but also of the electronic excited states (e.g., D1) of molecules. While ground state investigations are currently straightforward, those of electronic excited states are not. Here, we characterized the à electronic state of ionic thymine (T(+)) DNA base using explicitly correlated coupled cluster ab initio methods and state-of-the-art synchrotron-based electron/ion coincidence techniques. The experimental spectrum is composed of rich and long vibrational progressions corresponding to the population of the low frequency modes of T(+)(Ã). This work challenges previous numerous works carried out on DNA bases using common synchrotron and VUV-based photoelectron spectroscopies. We provide hence a powerful theoretical and experimental framework to study the electronic structure of ionized DNA bases that could be generalized to other medium-sized biologically relevant systems.

  19. Communication: Visualization and spectroscopy of defects induced by dehydrogenation in individual silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    Kislitsyn, Dmitry A.; Mills, Jon M.; Kocevski, Vancho; Chiu, Sheng-Kuei; DeBenedetti, William J. I.; Gervasi, Christian F.; Taber, Benjamen N.; Rosenfield, Ariel E.; Eriksson, Olle; Rusz, Ján; Goforth, Andrea M.; Nazin, George V.

    2016-06-01

    We present results of a scanning tunneling spectroscopy (STS) study of the impact of dehydrogenation on the electronic structures of hydrogen-passivated silicon nanocrystals (SiNCs) supported on the Au(111) surface. Gradual dehydrogenation is achieved by injecting high-energy electrons into individual SiNCs, which results, initially, in reduction of the electronic bandgap, and eventually produces midgap electronic states. We use theoretical calculations to show that the STS spectra of midgap states are consistent with the presence of silicon dangling bonds, which are found in different charge states. Our calculations also suggest that the observed initial reduction of the electronic bandgap is attributable to the SiNC surface reconstruction induced by conversion of surface dihydrides to monohydrides due to hydrogen desorption. Our results thus provide the first visualization of the SiNC electronic structure evolution induced by dehydrogenation and provide direct evidence for the existence of diverse dangling bond states on the SiNC surfaces.

  20. Ultrafast Solvation Dynamics and Vibrational Coherences of Halogenated Boron-Dipyrromethene Derivatives Revealed through Two-Dimensional Electronic Spectroscopy.

    PubMed

    Lee, Yumin; Das, Saptaparna; Malamakal, Roy M; Meloni, Stephen; Chenoweth, David M; Anna, Jessica M

    2017-10-18

    Boron-dipyrromethene (BODIPY) chromophores have a wide range of applications, spanning areas from biological imaging to solar energy conversion. Understanding the ultrafast dynamics of electronically excited BODIPY chromophores could lead to further advances in these areas. In this work, we characterize and compare the ultrafast dynamics of halogenated BODIPY chromophores through applying two-dimensional electronic spectroscopy (2DES). Through our studies, we demonstrate a new data analysis procedure for extracting the dynamic Stokes shift from 2DES spectra revealing an ultrafast solvent relaxation. In addition, we extract the frequency of the vibrational modes that are strongly coupled to the electronic excitation, and compare the results of structurally different BODIPY chromophores. We interpret our results with the aid of DFT calculations, finding that structural modifications lead to changes in the frequency, identity, and magnitude of Franck-Condon active vibrational modes. We attribute these changes to differences in the electron density of the electronic states of the structurally different BODIPY chromophores.

  1. Characterization of thin films on the nanometer scale by Auger electron spectroscopy and X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Powell, C. J.; Jablonski, A.; Werner, W. S. M.; Smekal, W.

    2005-01-01

    We describe two NIST databases that can be used to characterize thin films from Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) measurements. First, the NIST Electron Effective-Attenuation-Length Database provides values of effective attenuation lengths (EALs) for user-specified materials and measurement conditions. The EALs differ from the corresponding inelastic mean free paths on account of elastic-scattering of the signal electrons. The database supplies "practical" EALs that can be used to determine overlayer-film thicknesses. Practical EALs are plotted as a function of film thickness, and an average value is shown for a user-selected thickness. The average practical EAL can be utilized as the "lambda parameter" to obtain film thicknesses from simple equations in which the effects of elastic-scattering are neglected. A single average practical EAL can generally be employed for a useful range of film thicknesses and for electron emission angles of up to about 60°. For larger emission angles, the practical EAL should be found for the particular conditions. Second, we describe a new NIST database for the Simulation of Electron Spectra for Surface Analysis (SESSA) to be released in 2004. This database provides data for many parameters needed in quantitative AES and XPS (e.g., excitation cross-sections, electron-scattering cross-sections, lineshapes, fluorescence yields, and backscattering factors). Relevant data for a user-specified experiment are automatically retrieved by a small expert system. In addition, Auger electron and photoelectron spectra can be simulated for layered samples. The simulated spectra, for layer compositions and thicknesses specified by the user, can be compared with measured spectra. The layer compositions and thicknesses can then be adjusted to find maximum consistency between simulated and measured spectra, and thus, provide more detailed characterizations of multilayer thin-film materials. SESSA can also provide practical EALs, and we compare values provided by the NIST EAL database and SESSA for hafnium dioxide. Differences of up to 10% were found for film thicknesses less than 20 Å due to the use of different physical models in each database.

  2. Structure, Electronic Properties, and Electrochemical Behavior of a Boron-Doped Diamond/Quartz Optically Transparent Electrode.

    PubMed

    Wächter, Naihara; Munson, Catherine; Jarošová, Romana; Berkun, Isil; Hogan, Timothy; Rocha-Filho, Romeu C; Swain, Greg M

    2016-10-26

    The morphology, microstructure, chemistry, electronic properties, and electrochemical behavior of a boron-doped nanocrystalline diamond (BDD) thin film grown on quartz were evaluated. Diamond optically transparent electrodes (OTEs) are useful for transmission spectroelectrochemical measurements, offering excellent stability during anodic and cathodic polarization and exposure to a variety of chemical environments. We report on the characterization of a BDD OTE by atomic force microscopy, optical spectroscopy, Raman spectroscopic mapping, alternating-current Hall effect measurements, X-ray photoelectron spectroscopy, and electrochemical methods. The results reported herein provide the first comprehensive study of the relationship between the physical and chemical structure and electronic properties of a diamond OTE and the electrode's electrochemical activity.

  3. Self-assembled organic and fullerene monolayers characterisation by two-colour SFG spectroscopy: a pathway to meet doubly resonant SFG process

    NASA Astrophysics Data System (ADS)

    Humbert, C.; Caudano, Y.; Dreesen, L.; Sartenaer, Y.; Mani, A. A.; Silien, C.; Lemaire, J.-J.; Thiry, P. A.; Peremans, A.

    2004-10-01

    Two-colour sum-frequency generation (two-colour SFG) spectroscopy was used to probe both vibrational and electronic properties of 1-dodecanethiol/Ag(1 1 1), Au(1 1 1), and Pt(1 1 1), of 5-[ p-(6-mercaptohexoxy)-phenyl]-10,15,20-triphenylporphin/Pt(1 1 1), and of C 60/Ag(1 1 1). The role of the various physical parameters determining the sum-frequency generation (SFG) intensity equation is highlighted. The enhancement of the non-linear second order susceptibility in the aforementioned interfaces is explained in terms of metal interband transition, molecular electronic transition and of electron-phonon coupling, respectively.

  4. Mapping the plasmon response of Ag nanoislands on graphite at 100 nm resolution with scanning probe energy loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Murphy, Shane; Bauer, Karl; Sloan, Peter A.; Lawton, James J.; Tang, Lin; Palmer, Richard E.

    2015-12-01

    We demonstrate plasmon mapping of Ag nanostructures on graphite using scanning probe energy loss spectroscopy (SPELS) with a spatial resolution of 100 nm. In SPELS, an STM tip is used as a localized source of field-emitted electrons to probe the sample surface. The energy loss spectrum of the backscattered electrons is measured to provide a chemical signature of the surface under the tip. We acquire three images simultaneously with SPELS: i) constant-current field-emission images, which provide topographical information; ii) backscattered electron images, which display material contrast; and iii) SPELS images, where material-dependent features such as plasmons are mapped.

  5. Formation of gallium vacancies and their effects on the nanostructure of Pd/Ir/Au ohmic contact to p-type GaN.

    PubMed

    Kim, Kyong Nam; Kim, Tae Hyung; Seo, Jin Seok; Kim, Ki Seok; Bae, Jeong Woon; Yeom, Geun Young

    2013-12-01

    The properties of Pd/Ir/Au ohmic metallization on p-type GaN have been investigated. Contacts annealed at 400 degrees C in O2 atmosphere demonstrated excellent ohmic characteristics with a specific contact resistivity of 1.5 x 10(-5) Omega-cm2. This is attributed to the formation of Ga vacancies at the contact metal-semiconductor interfacial region due to the out-diffusion of Ga atoms. The out-diffusion of Ga atoms was confirmed by X-ray photoelectron spectroscopy depth profiles, high-resolution transmission electron microscopy, and electron energy loss spectroscopy using a scanning transmission electron microscope.

  6. Copper ESEEM and HYSCORE through ultra-wideband chirp EPR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segawa, Takuya F.; Doll, Andrin; Pribitzer, Stephan

    2015-07-28

    The main limitation of pulse electron paramagnetic resonance (EPR) spectroscopy is its narrow excitation bandwidth. Ultra-wideband (UWB) excitation with frequency-swept chirp pulses over several hundreds of megahertz overcomes this drawback. This allows to excite electron spin echo envelope modulation (ESEEM) from paramagnetic copper centers in crystals, whereas up to now, only ESEEM of ligand nuclei like protons or nitrogens at lower frequencies could be detected. ESEEM spectra are recorded as two-dimensional correlation experiments, since the full digitization of the electron spin echo provides an additional Fourier transform EPR dimension. Thus, UWB hyperfine-sublevel correlation experiments generate a novel three-dimensional EPR-correlated nuclearmore » modulation spectrum.« less

  7. Understanding individual defects in CdTe thin-film solar cells via STEM: From atomic structure to electrical activity

    DOE PAGES

    Li, Chen; Poplawsky, Jonathan; Yan, Yanfa; ...

    2017-07-01

    Here in this paper we review a systematic study of the structure-property correlations of a series of defects in CdTe solar cells. A variety of experimental methods, including aberration-corrected scanning transmission electron microscopy, electron energy loss spectroscopy, energy dispersive X-ray spectroscopy, and electron-beam-induced current have been combined with density-functional theory. The research traces the connections between the structures and electrical activities of individual defects including intra-grain partial dislocations, grain boundaries and the CdTe/CdS interface. The interpretations of the physical origin underlying the structure-property correlation provide insights that should further the development of future CdTe solar cells.

  8. A correlative approach to segmenting phases and ferrite morphologies in transformation-induced plasticity steel using electron back-scattering diffraction and energy dispersive X-ray spectroscopy.

    PubMed

    Gazder, Azdiar A; Al-Harbi, Fayez; Spanke, Hendrik Th; Mitchell, David R G; Pereloma, Elena V

    2014-12-01

    Using a combination of electron back-scattering diffraction and energy dispersive X-ray spectroscopy data, a segmentation procedure was developed to comprehensively distinguish austenite, martensite, polygonal ferrite, ferrite in granular bainite and bainitic ferrite laths in a thermo-mechanically processed low-Si, high-Al transformation-induced plasticity steel. The efficacy of the ferrite morphologies segmentation procedure was verified by transmission electron microscopy. The variation in carbon content between the ferrite in granular bainite and bainitic ferrite laths was explained on the basis of carbon partitioning during their growth. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Regioisomer-specific electron affinities and electronic structures of C 70 para-adducts at polar and equatorial positions with (bromo)benzyl radicals: photoelectron spectroscopy and theoretical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Gao-Lei; Li, Lei-Jiao; Li, Shu-Hui

    Negative ion photoelectron spectroscopy shows interesting regioisomer-specific electron affinities (EAs) of 2,5– and 7,23– para-adducts of C70 [(ArCH2)2C70] (Ar = Ph, o-, m-, and p-BrC6H4). Their EA values are larger than that of C70 by 5-150 meV with the 2,5– polar adducts’ EAs being higher than their corresponding 7,23– equatorial counterparts, exhibiting appreciable EA tunable ranges and regioisomer specificity. Density functional theory (DFT) calculations reproduce both the experimental EA values and EA trends very well.

  10. Controlled Synthesis of Atomically Layered Hexagonal Boron Nitride via Chemical Vapor Deposition.

    PubMed

    Liu, Juanjuan; Kutty, R Govindan; Liu, Zheng

    2016-11-29

    Hexagonal boron nitrite (h-BN) is an attractive material for many applications including electronics as a complement to graphene, anti-oxidation coatings, light emitters, etc. However, the synthesis of high-quality h-BN is still a great challenge. In this work, via controlled chemical vapor deposition, we demonstrate the synthesis of h-BN films with a controlled thickness down to atomic layers. The quality of as-grown h-BN is confirmed by complementary characterizations including high-resolution transition electron microscopy, atomic force microscopy, Raman spectroscopy and X-ray photo-electron spectroscopy. This work will pave the way for production of large-scale and high-quality h-BN and its applications as well.

  11. Photon-assisted electron energy loss spectroscopy and ultrafast imaging.

    PubMed

    Howie, Archie

    2009-08-01

    A variety of ways is described in which photons can be used not only for ultrafast electron microscopy but also to enormously widen the energy range of spatially-resolved electron spectroscopy. Periodic chains of femtosecond laser pulses are a particularly important and accurately timed source for single-shot imaging and diffraction as well as for several forms of pump-probe microscopy at even higher spatial resolution and sub-picosecond timing. Many exciting new fields are opened up for study by these developments. Ultrafast, single shot diffraction with intense pulses of X-rays supplemented by phase retrieval techniques may eventually offer a challenging alternative and purely photon-based route to dynamic imaging at high spatial resolution.

  12. Sliding of poly(vinyl chloride) on metals studied by Auger electron spectroscopy

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1974-01-01

    The sliding of polyvinyl chloride on nickel, iron and S-Monel has been studied by Auger electron spectroscopy. Polymer was not transferred to the metals, rather shear appeared to take place at the interface. The metal was progressively chlorinated as the polymer made multiple passes on the surface. The thickness of this chlorine film was the order of one atomic layer. Electron-induced desorption studies indicate that the chlorine is chemisorbed to the metal. These results are interpreted as evidence for mechanically induced and/or thermal degradation of the polymer during sliding. Degradation products of HCl and Cl2 which chemisorb to the metal are evolved near the interface.

  13. Understanding individual defects in CdTe thin-film solar cells via STEM: From atomic structure to electrical activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chen; Poplawsky, Jonathan; Yan, Yanfa

    Here in this paper we review a systematic study of the structure-property correlations of a series of defects in CdTe solar cells. A variety of experimental methods, including aberration-corrected scanning transmission electron microscopy, electron energy loss spectroscopy, energy dispersive X-ray spectroscopy, and electron-beam-induced current have been combined with density-functional theory. The research traces the connections between the structures and electrical activities of individual defects including intra-grain partial dislocations, grain boundaries and the CdTe/CdS interface. The interpretations of the physical origin underlying the structure-property correlation provide insights that should further the development of future CdTe solar cells.

  14. Effective reduction of p-nitrophenol by silver nanoparticle loaded on magnetic Fe3O4/ATO nano-composite

    NASA Astrophysics Data System (ADS)

    Karki, Hem Prakash; Ojha, Devi Prashad; Joshi, Mahesh Kumar; Kim, Han Joo

    2018-03-01

    A silver loaded hematite (Fe3O4) and antimony doped tin oxide (ATO) magnetic nano-composite (Ag-Fe3O4/ATO) was successfully synthesized by in situ one pot green and facile hydrothermal process. The formation of nano-composite, its structure, morphology, and stability were characterized by field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HRTEM), electron diffraction spectroscopy (EDS), elemental mapping by high resolution scanning transmission electron microscopy (STEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infra-red spectroscopy (FTIR). UV-vis spectroscopy was used to monitor the catalytic reduction of p-nitrophenol (PNP) into p-aminophenol (PAP) in presence of Ag-Fe3O4/ATO nano-composite with excess of sodium borohydride (NaBH4). The pseudo-first order kinetic equation could describe the reduction of p-nitrophenol with excess of NaBH4. For the first time, ATO surface was used for hydrothermal growth of silver and iron oxide magnetic nanoparticles. The in situ growth of these nanoparticles provided an effective bonding of components of the nano-composite over the surface of ATO nanoparticles. This nano-composite exhibited easy synthesis, high stability, cost effective and rapid separation using external magnet. The excellent catalytic and anti-bacterial activity of as-synthesized silver nano-composite makes it potential nano-catalyst for waste water treatment as well as biomedical application.

  15. Electron-transfer mediator for a NAD-glucose dehydrogenase-based glucose sensor.

    PubMed

    Kim, Dong-Min; Kim, Min-yeong; Reddy, Sanapalli S; Cho, Jaegeol; Cho, Chul-ho; Jung, Suntae; Shim, Yoon-Bo

    2013-12-03

    A new electron-transfer mediator, 5-[2,5-di (thiophen-2-yl)-1H-pyrrol-1-yl]-1,10-phenanthroline iron(III) chloride (FePhenTPy) oriented to the nicotinamide adenine dinucleotide-dependent-glucose dehydrogenase (NAD-GDH) system was synthesized through a Paal-Knorr condensation reaction. The structure of the mediator was confirmed by Fourier-transform infrared spectroscopy, proton and carbon nucler magnetic resonance spectroscopy, and mass spectroscopy, and its electron-transfer characteristic for a glucose sensor was investigated using voltammetry and impedance spectroscopy. A disposable amperometric glucose sensor with NAD-GDH was constructed with FePhenTPy as an electron-transfer mediator on a screen printed carbon electrode (SPCE) and its performance was evaluated, where the addition of reduces graphene oxide (RGO) to the mediator showed the enhanced sensor performance. The experimental parameters to affect the analytical performance and the stability of the proposed glucose sensor were optimized, and the sensor exhibited a dynamic range between 30 mg/dL and 600 mg/dL with the detection limit of 12.02 ± 0.6 mg/dL. In the real sample experiments, the interference effects by acetaminophen, ascorbic acid, dopamine, uric acid, caffeine, and other monosaccharides (fructose, lactose, mannose, and xylose) were completely avoided through coating the sensor surface with the Nafion film containing lead(IV) acetate. The reliability of proposed glucose sensor was evaluated by the determination of glucose in artificial blood and human whole blood samples.

  16. High density plasmas and new diagnostics: An overview (invited).

    PubMed

    Celona, L; Gammino, S; Mascali, D

    2016-02-01

    One of the limiting factors for the full understanding of Electron Cyclotron Resonance Ion Sources (ECRISs) fundamental mechanisms consists of few types of diagnostic tools so far available for such compact machines. Microwave-to-plasma coupling optimisation, new methods of density overboost provided by plasma wave generation, and magnetostatic field tailoring for generating a proper electron energy distribution function, suitable for optimal ion beams formation, require diagnostic tools spanning across the entire electromagnetic spectrum from microwave interferometry to X-ray spectroscopy; these methods are going to be implemented including high resolution and spatially resolved X-ray spectroscopy made by quasi-optical methods (pin-hole cameras). The ion confinement optimisation also requires a complete control of cold electrons displacement, which can be performed by optical emission spectroscopy. Several diagnostic tools have been recently developed at INFN-LNS, including "volume-integrated" X-ray spectroscopy in low energy domain (2-30 keV, by using silicon drift detectors) or high energy regime (>30 keV, by using high purity germanium detectors). For the direct detection of the spatially resolved spectral distribution of X-rays produced by the electronic motion, a "pin-hole camera" has been developed also taking profit from previous experiences in the ECRIS field. The paper will give an overview of INFN-LNS strategy in terms of new microwave-to-plasma coupling schemes and advanced diagnostics supporting the design of new ion sources and for optimizing the performances of the existing ones, with the goal of a microwave-absorption oriented design of future machines.

  17. Excited state X-ray absorption spectroscopy: Probing both electronic and structural dynamics

    NASA Astrophysics Data System (ADS)

    Neville, Simon P.; Averbukh, Vitali; Ruberti, Marco; Yun, Renjie; Patchkovskii, Serguei; Chergui, Majed; Stolow, Albert; Schuurman, Michael S.

    2016-10-01

    We investigate the sensitivity of X-ray absorption spectra, simulated using a general method, to properties of molecular excited states. Recently, Averbukh and co-workers [M. Ruberti et al., J. Chem. Phys. 140, 184107 (2014)] introduced an efficient and accurate L 2 method for the calculation of excited state valence photoionization cross-sections based on the application of Stieltjes imaging to the Lanczos pseudo-spectrum of the algebraic diagrammatic construction (ADC) representation of the electronic Hamiltonian. In this paper, we report an extension of this method to the calculation of excited state core photoionization cross-sections. We demonstrate that, at the ADC(2)x level of theory, ground state X-ray absorption spectra may be accurately reproduced, validating the method. Significantly, the calculated X-ray absorption spectra of the excited states are found to be sensitive to both geometric distortions (structural dynamics) and the electronic character (electronic dynamics) of the initial state, suggesting that core excitation spectroscopies will be useful probes of excited state non-adiabatic dynamics. We anticipate that the method presented here can be combined with ab initio molecular dynamics calculations to simulate the time-resolved X-ray spectroscopy of excited state molecular wavepacket dynamics.

  18. Application of MCD spectroscopy and TD-DFT to endohedral metallofullerenes for characterization of their electronic transitions.

    PubMed

    Yamada, Michio; Slanina, Zdenek; Mizorogi, Naomi; Muranaka, Atsuya; Maeda, Yutaka; Nagase, Shigeru; Akasaka, Takeshi; Kobayashi, Nagao

    2013-03-14

    We describe, for the first time, the application of magnetic circular dichroism (MCD) spectroscopy and time-dependent density functional theory (TD-DFT) calculations using B3LYP and M06-2X functionals to characterize the electronic transitions of endohedral metallofullerenes (EMFs). Results revealed that the electronic transitions of La@C(2v)-C(82), La(2)@I(h)-C(80), and Sc(3)N@I(h)-C(80) can be assigned using these techniques. Particularly, a difference in the electronic transitions between La(2)@I(h)-C(80) and Sc(3)N@I(h)-C(80), which is invisible in absorption spectra, was observed clearly in MCD spectra. The observed MCD bands agree well with the oscillator strengths calculated using the B3LYP functional. In addition, the MCD bands of La(2)@I(h)-C(80) were altered upon [5,6]-addition, demonstrating that the MCD spectroscopy is sensitive to chemical functionalization of EMFs, and that it is therefore powerful to distinguish [5,6]-adducts from pristine La(2)@I(h)-C(80), although no marked difference exists in their absorption spectra.

  19. New insight into the promoting role of process on the CeO₂-WO₃/TiO₂ catalyst for NO reduction with NH₃ at low-temperature.

    PubMed

    Zhang, Shule; Zhong, Qin; Shen, Yuge; Zhu, Li; Ding, Jie

    2015-06-15

    This study aimed at investigating the reason of high catalytic activity for CeO2-WO3/TiO2 catalyst from the aspects of WO3 interaction with other species and the NO oxidation process. Analysis by X-ray diffractometry, photoluminescence spectra, diffuse reflectance UV-visible, X-ray photoelectron spectroscopy, density functional theory calculations, electron paramagnetic resonance spectroscopy, temperature-programmed-desorption of NO and in situ diffuse reflectance infrared transform spectroscopy showed that WO3 could interact with CeO2 to improve the electron gaining capability of CeO2 species. In addition, WO3 species acted as electron donating groups to transfer the electrons to CeO2 species. The two aspects enhanced the formation of reduced CeO2 species to improve the formation of superoxide ions. Furthermore, the Ce species were the active sites for the NO adsorption and the superoxide ions over the catalyst needed oxidizing the adsorbed NO to improve the NO oxidation. This process was responsible for the high catalytic activity of CeO2-WO3/TiO2 catalyst. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Analysis of passivated A-286 stainless steel surfaces for mass spectrometer inlet systems by Auger electron and X-ray photoelectron spectroscopy and scanning electron microscopy

    DOE PAGES

    Ajo, Henry; Blankenship, Donnie; Clark, Elliot

    2014-07-25

    In this study, various commercially available surface treatments are being explored for use on stainless steel components in mass spectrometer inlet systems. Type A-286 stainless steel coupons, approximately 12.5 mm in diameter and 3 mm thick, were passivated with one of five different surface treatments; an untreated coupon served as a control. The surface and near-surface microstructure and chemistry of the coupons were investigated using sputter depth profiling using Auger electron spectroscopy, x-ray photoelectron spectroscopy, and scanning electron microscopy (SEM). All the surface treatments studied appeared to change the surface morphology dramatically, as evidenced by lack of tool marks onmore » the treated samples in SEM images. In terms of the passivation treatment, Vendors A-D appeared to have oxide layers that were very similar in thickness to each other (0.7–0.9 nm thick), as well as to the untreated samples (the untreated sample oxide layers appeared to be somewhat larger). Vendor E’s silicon coating appears to be on the order of 200 nm thick.« less

  1. Electron-Beam Atomic Spectroscopy for In Situ Measurements of Melt Composition for Refractory Metals: Analysis of Fundamental Physics and Plasma Models

    NASA Astrophysics Data System (ADS)

    Gasper, Paul Joseph; Apelian, Diran

    2015-04-01

    Electron-beam (EB) melting is used for the processing of refractory metals, such as Ta, Nb, Mo, and W. These metals have high value and are critical to many industries, including the semiconductor, aerospace, and nuclear industries. EB melting can also purify secondary feedstock, enabling the recovery and recycling of these materials. Currently, there is no method for measuring melt composition in situ during EB melting. Optical emission spectroscopy of the plasma generated by EB impact with vapor above the melt, a technique here termed electron-beam atomic spectroscopy, can be used to measure melt composition in situ, allowing for analysis of melt dynamics, facilitating improvement of EB melting processes and aiding recycling and recovery of these critical and high-value metals. This paper reviews the physics of the plasma generation by EB impact by characterizing the densities and energies of electrons, ions, and neutrals, and describing the interactions between them. Then several plasma models are introduced and their suitability to this application analyzed. Lastly, a potential method for calibration-free composition measurement is described and the challenges for implementation addressed.

  2. Fabrication of large area plasmonic nanoparticle grating structure on silver halide based transmission electron microscope film and its application as a surface enhanced Raman spectroscopy substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudheer,, E-mail: sudheer@rrcat.gov.in; Tiwari, P.; Singh, M. N.

    The plasmonic responses of silver nanoparticle grating structures of different periods made on silver halide based electron microscope film are investigated. Raster scan of the conventional scanning electron microscope (SEM) is used to carry out electron beam lithography for fabricating the plasmonic nanoparticle grating (PNG) structures. Morphological characterization of the PNG structures, carried out by the SEM and the atomic force microscope, indicates that the depth of the groove decreases with a decrease in the grating period. Elemental characterization performed by the energy dispersive spectroscopy and the x-ray diffraction shows the presence of nanoparticles of silver in the PNG grating.more » The optical characterization of the gratings shows that the localized surface plasmon resonance peak shifts from 366 to 378 nm and broadens with a decrease in grating period from 10 to 2.5 μm. The surface enhanced Raman spectroscopy of the Rhodamine-6G dye coated PNG structure shows the maximum enhancement by two orders of magnitude in comparison to the randomly distributed silver nanoparticles having similar size and shape as the PNG structure.« less

  3. Characterisation of nickel silicide thin films by spectroscopy and microscopy techniques.

    PubMed

    Bhaskaran, M; Sriram, S; Holland, A S; Evans, P J

    2009-01-01

    This article discusses the formation and detailed materials characterisation of nickel silicide thin films. Nickel silicide thin films have been formed by thermally reacting electron beam evaporated thin films of nickel with silicon. The nickel silicide thin films have been analysed using Auger electron spectroscopy (AES) depth profiles, secondary ion mass spectrometry (SIMS), and Rutherford backscattering spectroscopy (RBS). The AES depth profile shows a uniform NiSi film, with a composition of 49-50% nickel and 51-50% silicon. No oxygen contamination either on the surface or at the silicide-silicon interface was observed. The SIMS depth profile confirms the existence of a uniform film, with no traces of oxygen contamination. RBS results indicate a nickel silicide layer of 114 nm, with the simulated spectra in close agreement with the experimental data. Atomic force microscopy and transmission electron microscopy have been used to study the morphology of the nickel silicide thin films. The average grain size and average surface roughness of these films was found to be 30-50 and 0.67 nm, respectively. The film surface has also been studied using Kikuchi patterns obtained by electron backscatter detection.

  4. Graphene nanoplate-MnO2 composites for supercapacitors: a controllable oxidation approach

    NASA Astrophysics Data System (ADS)

    Huang, Huajie; Wang, Xin

    2011-08-01

    Graphene nanoplate-MnO2 composites have been synthesized by oxidising part of the carbon atoms in the framework of graphene nanoplates at ambient temperature. The composites were characterized by means of X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). It was found that the oxidation extent of the carbon atoms in the graphene framework in these composites was dependent on the reaction time, which also influenced their microstructure, morphology and electrochemical properties. Compared with MnO2 nanolamellas, the nanocomposite prepared with a reaction time of 3 h reveals better electrochemical properties as a supercapacitor electrode material.Graphene nanoplate-MnO2 composites have been synthesized by oxidising part of the carbon atoms in the framework of graphene nanoplates at ambient temperature. The composites were characterized by means of X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). It was found that the oxidation extent of the carbon atoms in the graphene framework in these composites was dependent on the reaction time, which also influenced their microstructure, morphology and electrochemical properties. Compared with MnO2 nanolamellas, the nanocomposite prepared with a reaction time of 3 h reveals better electrochemical properties as a supercapacitor electrode material. Electronic supplementary information (ESI) available: Fig. S1, AFM image (5 μm × 5 μm) of graphene nanoplate-MnO2 composite obtained at 3 h; Fig. S2, nitrogen adsorption/desorption isotherm of graphene nanoplate-MnO2 composite obtained at 3 h. See DOI: 10.1039/c1nr10229j

  5. 1300931

    NASA Image and Video Library

    2013-08-15

    OVERVIEW OF THE MATERIALS DIAGNOSTIC LABORATORY. THE NEAR END SHOWS THE SURFACE ANALYSIS INSTRUMENTS SUCH AS THE SECONDARY ION MASS SPECTROSCOPE (CLOSEST) AND THE TWO ELECTRON SPECTROSCOPY INSTRUMENTS, WHILE THE FAR END SHOWS THE NEW SCANNING ELECTRON MICROSCOPES

  6. Nanowire electron scattering spectroscopy

    NASA Technical Reports Server (NTRS)

    Hunt, Brian D. (Inventor); Bronikowski, Michael (Inventor); Wong, Eric W. (Inventor); von Allmen, Paul (Inventor); Oyafuso, Fabiano A. (Inventor)

    2009-01-01

    Methods and devices for spectroscopic identification of molecules using nanoscale wires are disclosed. According to one of the methods, nanoscale wires are provided, electrons are injected into the nanoscale wire; and inelastic electron scattering is measured via excitation of low-lying vibrational energy levels of molecules bound to the nanoscale wire.

  7. Ballistics-Electron-Microscopy and Spectroscopy of Metal/GaN Interfaces

    NASA Technical Reports Server (NTRS)

    Bell, L. D.; Smith, R. P.; McDermott, B. T.; Gertner, E. R.; Pittman, R.; Pierson, R. L.; Sullivan, G. J.

    1997-01-01

    BEEM spectroscopy and imaging have been applied to the Au/GaN interface. In contrast to previous BEEM measurements, spectra yield a Schottky barrier height of 1.04eV that agrees well with the highest values measured by conventional methods.

  8. Photoelectron imaging spectroscopy of MoC{sup −} and NbN{sup −} diatomic anions: A comparative study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Qing-Yu; Li, Zi-Yu; He, Sheng-Gui, E-mail: shengguihe@iccas.ac.cn, E-mail: chenh@iccas.ac.cn

    2015-04-28

    The isoeletronic diatomic MoC{sup −} and NbN{sup −} anions have been prepared by laser ablation and studied by photoelectron imaging spectroscopy combined with quantum chemistry calculations. The photoelectron spectra of NbN{sup −} can be very well assigned on the basis of literature reported optical spectroscopy of NbN. In contrast, the photoelectron spectra of MoC{sup −} are rather complex and the assignments suffered from the presence of many electronically hot bands and limited information from the reported optical spectroscopy of MoC. The electron affinities of NbN and MoC have been determined to be 1.450 ± 0.003 eV and 1.360  ±  0.003more » eV, respectively. The good resolution of the imaging spectroscopy provided a chance to resolve the Ω splittings of the X{sup 3}Σ{sup −} (Ω = 0 and 1) state of MoC and the X{sup 4}Σ{sup −} (Ω = 1/2 and 3/2) state of MoC{sup −} for the first time. The spin-orbit splittings of the X{sup 2}Δ state of NbN{sup −} and the a{sup 2}Δ state of MoC{sup −} were also determined. The similarities and differences between the electronic structures of the NbN and MoC systems were discussed.« less

  9. Facile green synthesis of fluorescent N-doped carbon dots from Actinidia deliciosa and their catalytic activity and cytotoxicity applications

    NASA Astrophysics Data System (ADS)

    Arul, Velusamy; Sethuraman, Mathur Gopalakrishnan

    2018-04-01

    Green synthesis of fluorescent nitrogen doped carbon dots (N-CDs) using Actinidia deliciosa (A. deliciosa) fruit extract as a carbon precursor and aqueous ammonia as a nitrogen dopant is reported here. The synthesized N-CDs were characterized by high resolution transmission electron microscopy (HR-TEM), energy dispersive spectroscopy (EDS), selected area electron diffraction (SAED), UV-Visible spectroscopy (UV-Vis), fluorescence spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The average size of the N-CDs was approximately 3.59 nm and the calculated inter layer distance was found to be 0.21 nm. Raman spectroscopy and SAED pattern revealed the graphitic nature of the synthesized N-CDs. The N-CDs were found to emit intense blue color at 405 nm under the excitation of 315 nm. The doping of nitrogen over the surface of the N-CDs was confirmed by EDS, FT-IR and XPS studies. The synthesized N-CDs were found to exhibit excellent catalytic activity in the reduction of Rhodamine-B using sodium borohydrate. The MTT assay was used to evaluate the cytotoxicity and biocompatibility of N-CDs towards L-929 and MCF-7 cells. From the results obtained, it was found that the N-CDs exhibit low cytotoxicity and superior biocompatibility on both L-929 and MCF-7 cells.

  10. Monitoring Ultrafast Chemical Dynamics by Time-Domain X-ray Photo- and Auger-Electron Spectroscopy.

    PubMed

    Gessner, Oliver; Gühr, Markus

    2016-01-19

    The directed flow of charge and energy is at the heart of all chemical processes. Extraordinary efforts are underway to monitor and understand the concerted motion of electrons and nuclei with ever increasing spatial and temporal sensitivity. The element specificity, chemical sensitivity, and temporal resolution of ultrafast X-ray spectroscopy techniques hold great promise to provide new insight into the fundamental interactions underlying chemical dynamics in systems ranging from isolated molecules to application-like devices. Here, we focus on the potential of ultrafast X-ray spectroscopy techniques based on the detection of photo- and Auger electrons to provide new fundamental insight into photochemical processes of systems with various degrees of complexity. Isolated nucleobases provide an excellent testing ground for our most fundamental understanding of intramolecular coupling between electrons and nuclei beyond the traditionally applied Born-Oppenheimer approximation. Ultrafast electronic relaxation dynamics enabled by the breakdown of this approximation is the major component of the nucleobase photoprotection mechanisms. Transient X-ray induced Auger electron spectroscopy on photoexcited thymine molecules provides atomic-site specific details of the extremely efficient coupling that converts potentially bond changing ultraviolet photon energy into benign heat. In particular, the time-dependent spectral shift of a specific Auger band is sensitive to the length of a single bond within the molecule. The X-ray induced Auger transients show evidence for an electronic transition out of the initially excited state within only ∼200 fs in contrast to theoretically predicted picosecond population trapping behind a reaction barrier. Photoinduced charge transfer dynamics between transition metal complexes and semiconductor nanostructures are of central importance for many emerging energy and climate relevant technologies. Numerous demonstrations of photovoltaic and photocatalytic activity have been performed based on the combination of strong light absorption in dye molecules with charge separation and transport in adjacent semiconductor nanostructures. However, a fundamental understanding of the enabling and limiting dynamics on critical atomic length- and time scales is often still lacking. Femtosecond time-resolved X-ray photoelectron spectroscopy is employed to gain a better understanding of a short-lived intermediate that may be linked to the unexpectedly limited performance of ZnO based dye-sensitized solar cells by delaying the generation of free charge carriers. The transient spectra strongly suggest that photoexcited dye molecules attached to ZnO nanocrystals inject their charges into the substrate within less than 1 ps but the electrons are then temporarily trapped at the surface of the semiconductor in direct vicinity of the injecting molecules. The experiments are extended to monitor the electronic response of the semiconductor substrate to the collective injection from a monolayer of dye molecules and the subsequent electron-ion recombination dynamics. The results indicate some qualitative similarities but quantitative differences between the recombination dynamics at molecule-semiconductor interfaces and previously studied bulk-surface electron-hole recombination dynamics in photoexcited semiconductors.

  11. Proton-impact ionization cross sections of adenine measured at 0.5 and 2.0 MeV by electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Iriki, Y.; Kikuchi, Y.; Imai, M.; Itoh, A.

    2011-11-01

    Double-differential ionization cross sections (DDCSs) of vapor-phase adenine molecules (C5H5N5) by 0.5- and 2.0-MeV proton impact have been measured by the electron spectroscopy method. Electrons ejected from adenine were analyzed by a 45∘ parallel-plate electrostatic spectrometer over an energy range of 1.0-1000 eV at emission angles from 15∘ to 165∘. Single-differential cross sections (SDCSs) and total ionization cross sections (TICSs) were also deduced. It was found from the Platzman plot, defined as SDCSs divided by the classical Rutherford knock-on cross sections per target electron, that the SDCSs at higher electron energies are proportional to the total number of valence electrons (50) of adenine, while those at low-energy electrons are highly enhanced due to dipole and higher-order interactions. The present results of TICS are in fairly good agreement with recent classical trajectory Monte Carlo calculations, and moreover, a simple analytical formula gives nearly equivalent cross sections in magnitude at the incident proton energies investigated.

  12. Local atomic and electronic structures of epitaxial strained LaCoO3 thin films

    NASA Astrophysics Data System (ADS)

    Sterbinsky, G. E.; Ryan, P. J.; Kim, J.-W.; Karapetrova, E.; Ma, J. X.; Shi, J.; Woicik, J. C.

    2012-01-01

    We have examined the atomic and electronic structures of perovskite lanthanum cobaltite (LaCoO3) thin films using Co K-edge x-ray absorption fine structure (XAFS) spectroscopy. Extended XAFS (EXAFS) demonstrates that a large difference between in-plane and out-of-plane Co-O bond lengths results from tetragonal distortion in highly strained films. The structural distortions are strongly coupled to the hybridization between atomic orbitals of the Co and O atoms, as shown by x-ray absorption near edge spectroscopy (XANES). Our results indicate that increased hybridization is not the cause of ferromagnetism in strained LaCoO3 films. Instead, we suggest that the strain-induced distortions of the oxygen octahedra increase the population of eg electrons and concurrently depopulate t2g electrons beyond a stabilization threshold for ferromagnetic order.

  13. Time-resolved K α spectroscopy measurements of hot-electron equilibration dynamics in thin-foil solid targets: Collisional and collective effects

    DOE PAGES

    Nilson, P. M.; Solodov, A. A.; Davies, J. R.; ...

    2015-09-25

    Time-resolved K α spectroscopy measurements from high-intensity laser interactions with thin-foil solid targets are reviewed. Thin Cu foils were irradiated with 1- to 10-J, 1-ps pulses at focused intensities from 10 18 to 10 19 W/cm 2. The experimental data show K α-emission pulse widths from 3 to 6 ps, increasing with laser intensity. The time-resolved K α-emission data are compared to a hot-electron transport and K α-production model that includes collisional electron-energy coupling, resistive heating, and electromagnetic field effects. The experimental data show good agreement with the model when a reduced ponderomotive scaling is used to describe the initialmore » mean hot-electron energy over the relevant intensity range.« less

  14. Synthesis of zirconia (ZrO2) nanowires via chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Baek, M. K.; Park, S. J.; Choi, D. J.

    2017-02-01

    Monoclinic zirconia nanowires were synthesized by chemical vapor deposition using ZrCl4 powder as a starting material at 1200 °C and 760 Torr. Graphite was employed as a substrate, and an Au thin film was pre-deposited on the graphite as a catalyst. The zirconia nanostructure morphology was observed through scanning electron microscopy and transmission electron microscopy. Based on X-ray diffraction, selected area electron diffraction, and Raman spectroscopy data, the resulting crystal structure was found to be single crystalline monoclinic zirconia. The homogeneous distributions of Zr, O and Au were studied by scanning transmission electron microscopy with energy dispersive X-ray spectroscopy mapping, and there was no metal droplet at the nanowire tips despite the use of an Au metal catalyst. This result is apart from that of conventional metal catalyzed nanowires.

  15. Degradation analysis of a Ni-based layered positive-electrode active material cycled at elevated temperatures studied by scanning transmission electron microscopy and electron energy-loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Kojima, Y.; Muto, S.; Tatsumi, K.; Kondo, H.; Oka, H.; Horibuchi, K.; Ukyo, Y.

    We investigate the local structural changes in a positive electrode of a lithium ion secondary battery (LiNi 0.8Co 0.15Al 0.05O 2 (NCA) as the active material) associated with charge-discharge cycling at elevated temperatures by scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS). STEM-EELS spectral imaging reveals the evolution of a NiO-like phase localized near the surface and grain boundary regions after many cycles. The amounts of capacity fading and resistance increase are discussed based on the results of the semiquantitative estimation of NiO-like and other product phases. We also identify the chemical state of lithium in the NiO-like phase substituting for Ni.

  16. Electronic structure of cobalt doped CdSe quantum dots using soft X-ray spectroscopy

    DOE PAGES

    Wright, Joshua T.; Su, Dong; van Buuren, Tony; ...

    2014-08-21

    Here, the electronic structure and magnetic properties of cobalt doped CdSe quantum dots (QDs) are studied using electron microscopy, soft X-ray spectroscopy, and magnetometry. Magnetometry measurements suggest these QDs are superparamagnetic, contrary to a spin-glass state observed in the bulk analogue. Electron microscopy shows well formed QDs, but with cobalt existing as doped into the QD and as unreacted species not contained in the QD. X-ray absorption measurements at the Co L3-edge suggest that changes in spectra features as a function of particle size can be described considering combination of a cobalt ion in a tetrahedral crystal field and anmore » octahedrally coordinated (impurity) phase. With decreasing particle sizes, the impurity phase increases, suggesting that small QDs can be difficult to dope.« less

  17. High-Resolution Two-Dimensional Optical Spectroscopy of Electron Spins

    NASA Astrophysics Data System (ADS)

    Salewski, M.; Poltavtsev, S. V.; Yugova, I. A.; Karczewski, G.; Wiater, M.; Wojtowicz, T.; Yakovlev, D. R.; Akimov, I. A.; Meier, T.; Bayer, M.

    2017-07-01

    Multidimensional coherent optical spectroscopy is one of the most powerful tools for investigating complex quantum mechanical systems. While it was conceived decades ago in magnetic resonance spectroscopy using microwaves and radio waves, it has recently been extended into the visible and UV spectral range. However, resolving MHz energy splittings with ultrashort laser pulses still remains a challenge. Here, we analyze two-dimensional Fourier spectra for resonant optical excitation of resident electrons to localized trions or donor-bound excitons in semiconductor nanostructures subject to a transverse magnetic field. Particular attention is devoted to Raman coherence spectra, which allow one to accurately evaluate tiny splittings of the electron ground state and to determine the relaxation times in the electron spin ensemble. A stimulated steplike Raman process induced by a sequence of two laser pulses creates a coherent superposition of the ground-state doublet which can be retrieved only optically because of selective excitation of the same subensemble with a third pulse. This provides the unique opportunity to distinguish between different complexes that are closely spaced in energy in an ensemble. The related experimental demonstration is based on photon-echo measurements in an n -type CdTe /(Cd ,Mg )Te quantum-well structure detected by a heterodyne technique. The difference in the sub-μ eV range between the Zeeman splittings of donor-bound electrons and electrons localized at potential fluctuations can be resolved even though the homogeneous linewidth of the optical transitions is larger by 2 orders of magnitude.

  18. Electronic structure description of the cis-MoOS unit in models for molybdenum hydroxylases.

    PubMed

    Doonan, Christian J; Rubie, Nick D; Peariso, Katrina; Harris, Hugh H; Knottenbelt, Sushilla Z; George, Graham N; Young, Charles G; Kirk, Martin L

    2008-01-09

    The molybdenum hydroxylases catalyze the oxidation of numerous aromatic heterocycles and simple organics and, unlike other hydroxylases, utilize water as the source of oxygen incorporated into the product. The electronic structures of the cis-MoOS units in CoCp2[TpiPrMoVOS(OPh)] and TpiPrMoVIOS(OPh) (TpiPr = hydrotris(3-isopropylpyrazol-1-yl)borate), new models for molybdenum hydroxylases, have been studied in detail using S K-edge X-ray absorption spectroscopy, vibrational spectroscopy, and detailed bonding calculations. The results show a highly delocalized Mo=S pi* LUMO redox orbital that is formally Mo(dxy) with approximately 35% sulfido ligand character. Vibrational spectroscopy has been used to quantitate Mo-Ssulfido bond order changes in the cis-MoOS units as a function of redox state. Results support a redox active molecular orbital that has a profound influence on MoOS bonding through changes to the relative electro/nucleophilicity of the terminal sulfido ligand accompanying oxidation state changes. The bonding description for these model cis-MoOS systems supports enzyme mechanisms that are under orbital control and dominantly influenced by the unique electronic structure of the cis-MoOS site. The electronic structure of the oxidized enzyme site is postulated to play a role in polarizing a substrate carbon center for nucleophilic attack by metal activated water and acting as an electron sink in the two-electron oxidation of substrates.

  19. Mussel-inspired functionalization of graphene for synthesizing Ag-polydopamine-graphene nanosheets as antibacterial materials

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Zhang, Jing; Zhang, Bailin; Tang, Jilin

    2012-12-01

    Mussels have been shown to attach to virtually all types of inorganic and organic surfaces via their adhesive proteins. The adhesive proteins secreted by mussels contain high concentrations of catechol and amine functional groups, which have similar functional groups with polydopamine (PDA). Inspired by mussels, a mild and environmentally friendly method was used to synthesize Ag nanoparticles (Ag NPs) on functionalized PDA-graphene nanosheets (PDA-GNS) with uniform and high dispersion. First, a uniform layer of PDA was coated on graphene oxide (GO) by polymerizing dopamine (DA) at room temperature. During the process GO was reduced by the DA. The PDA layer on the surface of GNS can be used as a nanoscale guide to form uniform Ag NPs on the surface of PDA-GNS. The obtained Ag-PDA-GNS hybrid materials are characterized by atomic force microscopy, transmission electron microscopy, UV-vis spectroscopy, Raman spectroscopy, X-ray photo-electron spectroscopy, X-ray diffraction, and thermal gravimetric analysis. The resultant Ag-PDA-GNS hybrid materials exhibited strong antibacterial properties to both Gram-negative and Gram-positive bacteria due to the synergistic effect of GNS and Ag NPs.Mussels have been shown to attach to virtually all types of inorganic and organic surfaces via their adhesive proteins. The adhesive proteins secreted by mussels contain high concentrations of catechol and amine functional groups, which have similar functional groups with polydopamine (PDA). Inspired by mussels, a mild and environmentally friendly method was used to synthesize Ag nanoparticles (Ag NPs) on functionalized PDA-graphene nanosheets (PDA-GNS) with uniform and high dispersion. First, a uniform layer of PDA was coated on graphene oxide (GO) by polymerizing dopamine (DA) at room temperature. During the process GO was reduced by the DA. The PDA layer on the surface of GNS can be used as a nanoscale guide to form uniform Ag NPs on the surface of PDA-GNS. The obtained Ag-PDA-GNS hybrid materials are characterized by atomic force microscopy, transmission electron microscopy, UV-vis spectroscopy, Raman spectroscopy, X-ray photo-electron spectroscopy, X-ray diffraction, and thermal gravimetric analysis. The resultant Ag-PDA-GNS hybrid materials exhibited strong antibacterial properties to both Gram-negative and Gram-positive bacteria due to the synergistic effect of GNS and Ag NPs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr32092d

  20. Development of broad bandwidth nonlinear spectroscopies for characterization of electronic states in materials systems

    NASA Astrophysics Data System (ADS)

    Mehlenbacher, Randy D.

    Carbon nanotubes are an interesting class of materials with many exceptional properties that make them appealing for optoelectronic devices. Their optical properties, particularly when cast in thin films, are not well understood. In this thesis, I describe the development of spectroscopic techniques for measuring energy and charge transport processes in thin films of semiconducting carbon nanotubes. Using transient absorption spectroscopy, I observe energy transport on two time scales in these films, with 20% of nanotubes transferring energy to smaller bandgap nanotubes within 300 fs. After 3 ps, 70% of the photoexcitation resides on small bandgap nanotubes. To study the complete landscape of energy transport in thin films of carbon nanotubes, I developed two dimensional white light spectroscopy (2D-WL). In 2D-WL spectroscopy, a broadband, white light supercontinuum is used to both excite and probe the sample. This technique has a bandwidth spanning > 500-1500 nm, a far broader bandwidth than previously reported in 2D electronic spectra. I take advantage of this large bandwidth to study the interactions and evolution of S1 and S2 excitons in a thin film of carbon nanotubes. I find that energy transfers between S1 excitons on a 2 ps time scale and occurs by a non-Forster energy transfer mechanism. In contrast, the energy in the S2 states redistributes on an ultrafast time scale, <100 fs, and undergoes autoionization producing free electrons and holes. I use 2D-WL spectroscopy to study the electronic states in thin films of bare, semiconducting carbon nanotubes. In these films, energy transfer occurs in <100 fs between bare carbon nanotubes and this energy transfer is between parallel nanotubes. By taking advantage of the laser pulse polarization for each interaction, I resolve otherwise difficult to observe couplings between electronic states. To facilitate data interpretation, the orientational response for isotropic two dimensional samples to polarized electric fields is developed. Using polarization control 2D-WL spectroscopy, I measure the coupling between nanotube S1 transitions and radial breathing modes. The doped tubes form trions with transition dipoles that are not parallel to the S1 transition and energy transfer from the S1 exciton to the trion occurs within 1 ps.

  1. Positron Annihilation Induced Auger and Gamma Spectroscopy of Catalytically Important Surfaces

    NASA Astrophysics Data System (ADS)

    Weiss, A. H.; Nadesalingam, M. P.; Sundaramoorthy, R.; Mukherjee, S.; Fazleev, N. G.

    2006-10-01

    The annihilation of positrons with core electrons results in unique signatures in the spectra of Auger-electron and annihilation-gamma rays that can be used to make clear chemical identification of atoms at the surface. Because positrons implanted at low energies are trapped with high efficiency in the image-correlation well where they are localized just outside the surface it is possible to use annihilation induced Auger and Gamma signals to probe the surfaces of solids with single atomic layer depth resolution. In this talk we will report recent applications of Positron Annihilation Induced Auger Electron Spectroscopy (PAES) and Auger-Gamma Coincidence Spectroscopy (AGCS) to the study of surface structure and surface chemistry. Our research has demonstrated that PAES spectra can provide new information regarding the composition of the top-most atomic layer. Applications of PAES to the study of catalytically important surfaces of oxides and wide band-gap semiconductors including TiO2, SiO2,Cu2O, and SiC will be presented. We conclude with a discussion of the use of Auger-Gamma and Gamma-Gamma coincidence spectroscopy for the study of surfaces at pressures closer to those found in practical chemical reactors. Research supported by the Welch Foundation Grant Number Y-1100.

  2. Electronic spectroscopy of diatomic molecules

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.

    1994-01-01

    This article provides an overview of the principal computational approaches and their accuracy for the study of electronic spectroscopy of diatomic molecules. We include a number of examples from our work that illustrate the range of application. We show how full configuration interaction benchmark calculations were instrumental in improving the understanding of the computational requirements for obtaining accurate results for diatomic spectroscopy. With this understanding it is now possible to compute radiative lifetimes accurate to within 10% for systems involving first- and second-row atoms. We consider the determination of the infrared vibrational transition probabilities for the ground states of SiO and NO, based on a globally accurate dipole moment function. We show how we were able to assign the a(sup "5)II state of CO as the upper state in the recently observed emission bands of CO in an Ar matrix. We next discuss the assignment of the photoelectron detachment spectra of NO and the alkali oxide negative ions. We then present several examples illustrating the state-of-the-art in determining radiative lifetimes for valence-valence and valence-Rydberg transitions. We next compare the molecular spectroscopy of the valence isoelectronic B2, Al2, and AlB molecules. The final examples consider systems involving transition metal atoms, which illustrate the difficulty in describing states with different numbers of d electrons.

  3. Deep levels in as-grown and electron-irradiated n-type GaN studied by deep level transient spectroscopy and minority carrier transient spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duc, Tran Thien; School of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi; Pozina, Galia

    2016-03-07

    Development of high performance GaN-based devices is strongly dependent on the possibility to control and understand defects in material. Important information about deep level defects is obtained by deep level transient spectroscopy and minority carrier transient spectroscopy on as-grown and electron irradiated n-type bulk GaN with low threading dislocation density produced by halide vapor phase epitaxy. One hole trap labelled H1 (E{sub V} + 0.34 eV) has been detected on as-grown GaN sample. After 2 MeV electron irradiation, the concentration of H1 increases and at fluences higher than 5 × 10{sup 14 }cm{sup −2}, a second hole trap labelled H2 is observed. Simultaneously, the concentration of twomore » electron traps, labelled T1 (E{sub C} – 0.12 eV) and T2 (E{sub C} – 0.23 eV), increases. By studying the increase of the defect concentration versus electron irradiation fluence, the introduction rate of T1 and T2 using 2 MeV- electrons was determined to be 7 × 10{sup −3 }cm{sup −1} and 0.9 cm{sup −1}, respectively. Due to the low introduction rate of T1, it is suggested that the defect is associated with a complex. The high introduction rate of trap H1 and T2 suggests that the defects are associated with primary intrinsic defects or complexes. Some deep levels previously observed in irradiated GaN layers with higher threading dislocation densities are not detected in present investigation. It is therefore suggested that the absent traps may be related to primary defects segregated around dislocations.« less

  4. Measurement of electron-ion relaxation in warm dense copper

    DOE PAGES

    Cho, B. I.; Ogitsu, T.; Engelhorn, K.; ...

    2016-01-06

    Experimental investigation of electron-ion coupling and electron heat capacity of copper in warm and dense states are presented. From time-resolved x-ray absorption spectroscopy, the temporal evolution of electron temperature is obtained for non-equilibrium warm dense copper heated by an intense femtosecond laser pulse. Electron heat capacity and electron-ion coupling are inferred from the initial electron temperature and its decrease over 10 ps. As a result, data are compared with various theoretical models.

  5. Structure of the Global Nanoscience and Nanotechnology Research Literature

    DTIC Science & Technology

    2006-01-01

    Transistors, Nature, 424 (6949): 654-657, 2003. Joannopoulos, JD, Meade, RD, Winn, JN, Photonic Crystals: Molding the Flow of Light, Princeton...1.27 Force Microscopy 40 0.10 0.00 Electron Spectroscopy 40 0.10 0.00 Rutherford backscattering spectrometry 38 0.10 0.00 flow cytometry 36 0.09...Backscattering Spectroscopy/Spectrometry • Flow Cytometry • Spectrophotometry (UV-Visible) • Deep Level Transient Spectroscopy • Inductively

  6. Probing organic field effect transistors in situ during operation using SFG.

    PubMed

    Ye, Hongke; Abu-Akeel, Ashraf; Huang, Jia; Katz, Howard E; Gracias, David H

    2006-05-24

    In this communication, we report results obtained using surface-sensitive IR+Visible Sum Frequency Generation (SFG) nonlinear optical spectroscopy on interfaces of organic field effect transistors during operation. We observe remarkable correlations between trends in the surface vibrational spectra and electrical properties of the transistor, with changes in gate voltage (VG). These results suggest that field effects on electronic conduction in thin film organic semiconductor devices are correlated to interfacial nonlinear optical characteristics and point to the possibility of using SFG spectroscopy to monitor electronic properties of OFETs.

  7. Confined states of individual type-II GaSb/GaAs quantum rings studied by cross-sectional scanning tunneling spectroscopy.

    PubMed

    Timm, Rainer; Eisele, Holger; Lenz, Andrea; Ivanova, Lena; Vossebürger, Vivien; Warming, Till; Bimberg, Dieter; Farrer, Ian; Ritchie, David A; Dähne, Mario

    2010-10-13

    Combined cross-sectional scanning tunneling microscopy and spectroscopy results reveal the interplay between the atomic structure of ring-shaped GaSb quantum dots in GaAs and the corresponding electronic properties. Hole confinement energies between 0.2 and 0.3 eV and a type-II conduction band offset of 0.1 eV are directly obtained from the data. Additionally, the hole occupancy of quantum dot states and spatially separated Coulomb-bound electron states are observed in the tunneling spectra.

  8. Synthesis and characterization of silver/diatomite nanocomposite by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Hanh, Truong Thi; Thu, Nguyen Thi; Quoc, Le Anh; Hien, Nguyen Quoc

    2017-10-01

    Silver nanoparticles (AgNPs) with diameter about 9 nm were deposited on diatomite by irradiation under electron beam of diatomite suspension containing 10 mM AgNO3 in 1% chitosan solution, at the dose of 20.2 kGy. The AgNPs/diatomite nanocomposite was characterized by UV-Vis spectroscopy, TEM image and energy dispersive X-ray spectroscopy (EDX). The antibacterial activity of the AgNPs/diatomite against E. coli and S. aureus was evaluated by reduction of bacterial colonies on spread plates and inhibition zone diameter on diffusion disks.

  9. Measurement of electron paramagnetic resonance using terahertz time-domain spectroscopy.

    PubMed

    Kozuki, Kohei; Nagashima, Takeshi; Hangyo, Masanori

    2011-12-05

    We present a frequency-domain electron spin resonance (ESR) measurement system using terahertz time-domain spectroscopy. A crossed polarizer technique is utilized to increase the sensitivity in detecting weak ESR signals of paramagnets caused by magnetic dipole transitions between magnetic sublevels. We demonstrate the measurements of ESR signal of paramagnetic copper(II) sulfate pentahydrate with uniaxial anisotropy of the g-factor under magnetic fields up to 10 T. The lineshape of the obtained ESR signals agrees well with the theoretical predictions for a powder sample with the uniaxial anisotropy.

  10. Principles of ESCA and applications to metal corrosion, coating and lubrication. [Electron Spectroscopy for Chemical Analysis

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.

    1978-01-01

    The principles of ESCA (electron spectroscopy for chemical analysis) are described by comparison with other spectroscopic techniques. The advantages and disadvantages of ESCA as compared to other surface sensitive analytical techniques are evaluated. The use of ESCA is illustrated by actual applications to oxidation of steel and Rene 41, the chemistry of lubricant additives on steel, and the composition of sputter deposited hard coatings. Finally, a bibliography of material that is useful for further study of ESCA is presented and commented upon.

  11. Femtosecond transient absorption, Raman, and electrochemistry studies of tetrasulfonated copper phthalocyanine in water solutions.

    PubMed

    Abramczyk, H; Brozek-Płuska, B; Kurczewski, K; Kurczewska, M; Szymczyk, I; Krzyczmonik, P; Błaszczyk, T; Scholl, H; Czajkowski, W

    2006-07-20

    Ultrafast time-resolved electronic spectra of the primary events induced in the copper tetrasulfonated phthalocyanine Cu(tsPc)4-) in aqueous solution has been measured by femtosecond pump-probe transient absorption spectroscopy. The primary events initiated by the absorption of a photon occurring within the femtosecond time scale are discussed on the basis of the electron transfer mechanism between the adjacent phthalocyanine rings proposed recently in our laboratory. The femtosecond transient absorption results are compared with the low temperature emission spectra obtained with Raman spectroscopy and the voltammetric curves.

  12. Comparative studies of structural, thermal, optical, and electrochemical properties of azines with different end groups with their azomethine analogues toward application in (opto)electronics.

    PubMed

    Sek, Danuta; Siwy, Mariola; Bijak, Katarzyna; Grucela-Zajac, Marzena; Malecki, Grzegorz; Smolarek, Karolina; Bujak, Lukasz; Mackowski, Sebastian; Schab-Balcerzak, Ewa

    2013-10-10

    Two series of azines and their azomethine analogues were prepared via condensation reaction of benzaldehyde, 2-hydroxybenzaldehyde, 4-pyridinecarboxaldehyde, 2-thiophenecarboxaldehyde, and 4-(diphenylamino)benzaldehyde with hydrazine monohydrate and 1,4-phenylenediamine, respectively. The structures of given compounds were characterized by FTIR, (1)H NMR, and (13)C NMR spectroscopy as well as elemental analysis. Optical, electrochemical, and thermal properties of all compounds were investigated by means of differential scanning calorimetry (DSC), UV-vis spectroscopy, stationary and time-resolved photoluminescence spectroscopy, and cycling voltammetry (CV). Additionally, the electronic properties, that is, orbital energies and resulting energy gap were calculated theoretically by density functional theory (DFT). Influence of chemical structure of the compounds on their properties was analyzed.

  13. Scanning tunnelling microscope for boron surface studies

    NASA Astrophysics Data System (ADS)

    Trenary, Michael

    1990-10-01

    The equipment purchased is to be used in an experimental study of the relationship between atomic structure and chemical reactivity for boron and carbon surfaces. This research is currently being supported by grant AFOSR-88-0111. A renewal proposal is currently pending with AFOSR to continue these studies. Carbon and boron are exceptionally stable, covalently bonded solids with highly unique crystal structures. The specific reactions to be studied are loosely related to the problems of oxidation and oxidation inhibition of carbon/carbon composites. The main experimental instrument to be used is a scanning tunneling microscope (STM) purchased under grant number AFSOR-89-0146. Other techniques to be used include Auger electron spectroscopy, X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), low energy electron diffraction (LEED), temperature programmed desorption (TPD) and scanning tunneling microscopy (STM).

  14. Process analysis of recycled thermoplasts from consumer electronics by laser-induced plasma spectroscopy.

    PubMed

    Fink, Herbert; Panne, Ulrich; Niessner, Reinhard

    2002-09-01

    An experimental setup for direct elemental analysis of recycled thermoplasts from consumer electronics by laser-induced plasma spectroscopy (LIPS, or laser-induced breakdown spectroscopy, LIBS) was realized. The combination of a echelle spectrograph, featuring a high resolution with a broad spectral coverage, with multivariate methods, such as PLS, PCR, and variable subset selection via a genetic algorithm, resulted in considerable improvements in selectivity and sensitivity for this complex matrix. With a normalization to carbon as internal standard, the limits of detection were in the ppm range. A preliminary pattern recognition study points to the possibility of polymer recognition via the line-rich echelle spectra. Several experiments at an extruder within a recycling plant demonstrated successfully the capability of LIPS for different kinds of routine on-line process analysis.

  15. Dual-comb spectroscopy of molecular electronic transitions in condensed phases

    NASA Astrophysics Data System (ADS)

    Cho, Byungmoon; Yoon, Tai Hyun; Cho, Minhaeng

    2018-03-01

    Dual-comb spectroscopy (DCS) utilizes two phase-locked optical frequency combs to allow scanless acquisition of spectra using only a single point detector. Although recent DCS measurements demonstrate rapid acquisition of absolutely calibrated spectral lines with unprecedented precision and accuracy, complex phase-locking schemes and multiple coherent averaging present significant challenges for widespread adoption of DCS. Here, we demonstrate Global Positioning System (GPS) disciplined DCS of a molecular electronic transition in solution at around 800 nm, where the absorption spectrum is recovered by using a single time-domain interferogram. We anticipate that this simplified dual-comb technique with absolute time interval measurement and ultrabroad bandwidth will allow adoption of DCS to tackle molecular dynamics investigation through its implementation in time-resolved nonlinear spectroscopic studies and coherent multidimensional spectroscopy of coupled chromophore systems.

  16. Evidence of an Improper Displacive Phase Transition in Cd2 Re2 O7 via Time-Resolved Coherent Phonon Spectroscopy

    NASA Astrophysics Data System (ADS)

    Harter, J. W.; Kennes, D. M.; Chu, H.; de la Torre, A.; Zhao, Z. Y.; Yan, J.-Q.; Mandrus, D. G.; Millis, A. J.; Hsieh, D.

    2018-01-01

    We have used a combination of ultrafast coherent phonon spectroscopy, ultrafast thermometry, and time-dependent Landau theory to study the inversion symmetry breaking phase transition at Tc=200 K in the strongly spin-orbit coupled correlated metal Cd2 Re2 O7 . We establish that the structural distortion at Tc is a secondary effect through the absence of any softening of its associated phonon mode, which supports a purely electronically driven mechanism. However, the phonon lifetime exhibits an anomalously strong temperature dependence that decreases linearly to zero near Tc. We show that this behavior naturally explains the spurious appearance of phonon softening in previous Raman spectroscopy experiments and should be a prevalent feature of correlated electron systems with linearly coupled order parameters.

  17. Structural, optical and photoelectric properties of sprayed CdS thin films

    NASA Astrophysics Data System (ADS)

    Chandel, Tarun; Dwivedi, Shailendra Kumar; Zaman, M. Burhanuz; Rajaram, P.

    2018-05-01

    In this study, CdS thin films were grown via a facile spray pyrolysis technique. The crystalline phase, morphological, compositional and optical properties of the CdS thin films have been studied using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and UV-vis absorption spectroscopy, respectively. XRD patterns show that the grown CdS films crystallized in the hexagonal structure. Scanning electron microscopy (SEM) study shows that the surfaces of the films are smooth and are uniformly covered with nanoparticles. EDAX results reveal that the grown films have good stochiometry. UV-vis spectroscopy shows that the grown films have transparency above 80% over the entire visible region. The photo-electric response of the CdS films grown on glass substrates has been observed.

  18. High pressure and synchrotron radiation studies of solid state electronic instabilities. Final technial report, May 1, 1984--April 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pifer, J.H.; Croft, M.C.

    This report discusses Eu and General Valence Instabilities; Ce Problem: L{sub 3} Spectroscopy Emphasis; Bulk Property Emphasis; Transition Metal Compound Electronic Structure; Electronic Structure-Phonon Coupling Studies; High Temperature Superconductivity and Oxide Materials; and Novel Materials Collaboration with Chemistry.

  19. Terahertz Time Domain Spectroscopy of Phonon-Depopulation Based Quantum Cascade Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rungsawang, R.; Dhillon, S. S.; Jukam, N.

    2011-12-23

    A 3.1 THz phonon depopulation-based quantum-cascade-laser is investigated using terahertz time domain spectroscopy. A gain of 25 cm{sup -1} and absorption features due to the lower laser level being populated from a parasitic electronic channel are highlighted.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wojciech, Blachucki

    This work treats of the high energy resolution off-resonant X-ray spectroscopy (HEROS) method of determining the density of unoccupied electronic states in the vicinity of the absorption edge. HEROS is an alternative to the existing X-ray absorption spectroscopy (XAS) methods and opens the way for new studies not achievable before.

  1. Lunar sample analysis

    NASA Technical Reports Server (NTRS)

    Housley, R. M.

    1978-01-01

    Flameless atomic abosrption, X-ray photoemission spectroscopy, ferromagnetic resonance, scanning electron microscopy, and Moessbauer spectroscopy were used to investigate the evolution of the lunar regolith, the transport of volatile trace metals, and the surface composition of lunar samples. The development of a model for lunar volcanic eruptions is also discussed.

  2. Growth of diamond by RF plasma-assisted chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Meyer, Duane E.; Ianno, Natale J.; Woollam, John A.; Swartzlander, A. B.; Nelson, A. J.

    1988-01-01

    A system has been designed and constructed to produce diamond particles by inductively coupled radio-frequency, plasma-assisted chemical vapor deposition. This is a low-pressure, low-temperature process used in an attempt to deposit diamond on substrates of glass, quartz, silicon, nickel, and boron nitride. Several deposition parameters have been varied including substrate temperature, gas concentration, gas pressure, total gas flow rate, RF input power, and deposition time. Analytical methods employed to determine composition and structure of the deposits include scanning electron microscopy, absorption spectroscopy, scanning Auger microprobe spectroscopy, and Raman spectroscopy. Analysis indicates that particles having a thin graphite surface, as well as diamond particles with no surface coatings, have been deposited. Deposits on quartz have exhibited optical bandgaps as high as 4.5 eV. Scanning electron microscopy analysis shows that particles are deposited on a pedestal which Auger spectroscopy indicates to be graphite. This is a phenomenon that has not been previously reported in the literature.

  3. High-Frequency Electron Paramagnetic Resonance Spectroscopy of Nitroxide-Functionalized Nanodiamonds in Aqueous Solution.

    PubMed

    Akiel, R D; Stepanov, V; Takahashi, S

    2017-06-01

    Nanodiamond (ND) is an attractive class of nanomaterial for fluorescent labeling, magnetic sensing of biological molecules, and targeted drug delivery. Many of those applications require tethering of target biological molecules on the ND surface. Even though many approaches have been developed to attach macromolecules to the ND surface, it remains challenging to characterize dynamics of tethered molecule. Here, we show high-frequency electron paramagnetic resonance (HF EPR) spectroscopy of nitroxide-functionalized NDs. Nitroxide radical is a commonly used spin label to investigate dynamics of biological molecules. In the investigation, we developed a sample holder to overcome water absorption of HF microwave. Then, we demonstrated HF EPR spectroscopy of nitroxide-functionalized NDs in aqueous solution and showed clear spectral distinction of ND and nitroxide EPR signals. Moreover, through EPR spectral analysis, we investigate dynamics of nitroxide radicals on the ND surface. The demonstration sheds light on the use of HF EPR spectroscopy to investigate biological molecule-functionalized nanoparticles.

  4. Highly Sensitive NiO Nanoparticle based Chlorine Gas Sensor

    NASA Astrophysics Data System (ADS)

    Arif, Mohd.; Sanger, Amit; Singh, Arun

    2018-03-01

    We have synthesized a chemiresistive sensor for chlorine (Cl2) gas in the range of 2-200 ppm based on nickel oxide (NiO) nanoparticles obtained by wet chemical synthesis. The nanoparticles were characterized by x-ray diffraction (XRD) analysis, field-emission scanning electron microscopy (FE-SEM), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, and photoluminescence (PL) spectroscopy. XRD spectra of the sensing layer revealed the cubic phase of NiO nanoparticles. The NiO nanoparticle size was calculated to be ˜ 21 nm using a Williamson-Hall plot. The bandgap of the NiO nanoparticles was found to be 3.13 eV using Tauc plots of the absorbance curve. Fast response time (12 s) and optimum recovery time (˜ 27 s) were observed for 10 ppm Cl2 gas at moderate temperature of 200°C. These results demonstrate the potential application of NiO nanoparticles for fabrication of highly sensitive and selective sensors for Cl2 gas.

  5. Probing interfacial characteristics of rubrene/pentacene and pentacene/rubrene bilayers with soft X-ray spectroscopy.

    PubMed

    Seo, J H; Pedersen, T M; Chang, G S; Moewes, A; Yoo, K-H; Cho, S J; Whang, C N

    2007-08-16

    The electronic structure of rubrene/pentacene and pentacene/rubrene bilayers has been investigated using soft X-ray absorption spectroscopy, resonant X-ray emission spectroscopy, and density-functional theory calculations. X-ray absorption and emission measurements reveal that it has been possible to alter the lowest unoccupied and the highest occupied molecular orbital states of rubrene in rubrene/pentacene bilayer. In the reverse case, one gets p* molecular orbital states originating from the pentacene layer. Resonant X-ray emission spectra suggest a reduction in the hole-transition probabilities for the pentacene/rubrene bilayer in comparison to reference pentacene layer. For the rubrenepentacene structure, the hole-transition probability shows an increase in comparison to the rubrene reference. We also determined the energy level alignment of the pentacene-rubrene interface by using X-ray and ultraviolet photoelectron spectroscopy. From these comparisons, it is found that the electronic structure of the pentacene-rubrene interface has a strong dependence on interface characteristics which depends on the order of the layers used.

  6. Improved electron transfer and plasmonic effect in dye-sensitized solar cells with bi-functional Nb-doped TiO2/Ag ternary nanostructures.

    PubMed

    Park, Jung Tae; Chi, Won Seok; Jeon, Harim; Kim, Jong Hak

    2014-03-07

    TiO2 nanoparticles are surface-modified via atom transfer radical polymerization (ATRP) with a hydrophilic poly(oxyethylene)methacrylate (POEM), which can coordinate to the Ag precursor, i.e. silver trifluoromethanesulfonate (AgCF3SO3). Following the reduction of Ag ions, a Nb2O5 doping process and calcination at 450 °C, bi-functional Nb-doped TiO2/Ag ternary nanostructures are generated. The resulting nanostructures are characterized by energy-filtering transmission electron microscopy (EF-TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy. The dye-sensitized solar cell (DSSC) based on the Nb-doped TiO2/Ag nanostructure photoanode with a polymerized ionic liquid (PIL) as the solid polymer electrolyte shows an overall energy conversion efficiency (η) of 6.9%, which is much higher than those of neat TiO2 (4.7%) and Nb-doped TiO2 (5.4%). The enhancement of η is mostly due to the increase of current density, attributed to the improved electron transfer properties including electron injection, collection, and plasmonic effects without the negative effects of charge recombination or problems with corrosion. These properties are supported by intensity modulated photocurrent/voltage spectroscopy (IMPS/IMVS) and incident photon-to-electron conversion efficiency (IPCE) measurements.

  7. Core level electron energy-loss spectra of minerals: pre-edge fine structures at the oxygen K-edge . Comment on ``Water in minerals detectable by electron energy-loss spectroscopy EELS'' by R. Wirth, Phys Chem Minerals (1997) 24:561-568

    NASA Astrophysics Data System (ADS)

    van Aken, P. A.; Liebscher, B.; Styrsa, V. J.

    In a recent paper entitled ``Water in minerals detectable by electron energy-loss spectroscopy EELS'' by R. Wirth, it has been claimed that OH-- and H2O-bearing minerals exhibit a characteristic peak in the ELNES spectra at about 528 eV prior to the onset of the O K-edge at 532 eV, which could be used for (semi-)quantitative determination of water- or OH-contents on a nanometer scale. It is shown here by parallel electron energy-loss spectroscopy (PEELS) recorded in a transmission electron microscope (TEM) that O K-pre-edge peaks with very high intensities may also exist in water-free compounds and minerals, in particular when they contain transition metals. These spectral features arise from covalent mixing of the metal and oxygen states, which introduces oxygen p character in unoccupied states of mainly metal character. The point is illustrated by the comparison of hematite (α-Fe2O3) and lepidocrocite (γ-FeOOH) O K-edge PEELS spectra which exhibit similar intensities of the pre-edge peak, despite of their grossly different OH- contents. As a consequence, the general validity of the method proposed by Wirth is questioned.

  8. Synthesis and Spectroscopy of Silver-Doped PbSe Quantum Dots

    DOE PAGES

    Kroupa, Daniel M.; Hughes, Barbara K.; Miller, Elisa M.; ...

    2017-06-25

    Electronic impurity doping of bulk semiconductors is an essential component of semiconductor science and technology. Yet there are only a handful of studies demonstrating control of electronic impurities in semiconductor nanocrystals. Here, we studied electronic impurity doping of colloidal PbSe quantum dots (QDs) using a postsynthetic cation exchange reaction in which Pb is exchanged for Ag. We found that varying the concentration of dopants exposed to the as-synthesized PbSe QDs controls the extent of exchange. The electronic impurity doped QDs exhibit the fundamental spectroscopic signatures associated with injecting a free charge carrier into a QD under equilibrium conditions, including amore » bleach of the first exciton transition and the appearance of a quantum-confined, low-energy intraband absorption feature. Photoelectron spectroscopy confirms that Ag acts as a p-type dopant for PbSe QDs and infrared spectroscopy is consistent with k • p calculations of the size-dependent intraband transition energy. We find that to bleach the first exciton transition by an average of 1 carrier per QD requires that approximately 10% of the Pb be replaced by Ag. Here, we hypothesize that the majority of incorporated Ag remains at the QD surface and does not interact with the core electronic states of the QD. Instead, the excess Ag at the surface promotes the incorporation of <1% Ag into the QD core where it causes p-type doping behavior.« less

  9. Biogenic hydroxysulfate green rust, a potential electron acceptor for SRB activity

    NASA Astrophysics Data System (ADS)

    Zegeye, Asfaw; Huguet, Lucie; Abdelmoula, Mustapha; Carteret, Cédric; Mullet, Martine; Jorand, Frédéric

    2007-11-01

    Microbiological reduction of a biogenic sulfated green rust (GR2(SO42-)), was examined using a sulfate reducing bacterium ( Desulfovibrio alaskensis). Experiments investigated whether GR2(SO42-) could serve as a sulfate source for D. alaskensis anaerobic respiration by analyzing mineral transformation. Batch experiments were conducted using lactate as the electron donor and biogenic GR2(SO42-) as the electron acceptor, at circumneutral pH in unbuffered medium. GR2(SO42-) transformation was monitored with time by X-ray diffraction (XRD), Transmission Mössbauer Spectroscopy (TMS), Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS), Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). The reduction of sulfate anions and the formation of iron sulfur mineral were clearly identified by XPS analyses. TMS showed the formation of additional mineral as green rust (GR) and vivianite. XRD analyses discriminated the type of the newly formed GR as GR1. The formed GR1 was GR1(CO32-) as indicated by DRIFTS analysis. Thus, the results presented in this study indicate that D. alaskensis cells were able to use GR2(SO42-) as an electron acceptor. GR1(CO32-), vivianite and an iron sulfur compound were formed as a result of GR2(SO42-) reduction by D. alaskensis. Hence, in environments where geochemical conditions promote biogenic GR2(SO42-) formation, this mineral could stimulate the anaerobic respiration of sulfate reducing bacteria.

  10. Optical Amplification of Spin Noise Spectroscopy via Homodyne Detection

    NASA Astrophysics Data System (ADS)

    Sterin, Pavel; Wiegand, Julia; Hübner, Jens; Oestreich, Michael

    2018-03-01

    Spin noise (SN) spectroscopy measurements on delicate semiconductor spin systems, like single (In,Ga)As quantum dots, are currently not limited by optical shot noise but rather by the electronic noise of the detection system. We report on a realization of homodyne SN spectroscopy enabling shot-noise-limited SN measurements. The proof-of-principle measurements on impurities in an isotopically enriched rubidium atom vapor show that homodyne SN spectroscopy can be utilized even in the low-frequency spectrum, which facilitates advanced semiconductor spin research like higher order SN measurements on spin qubits.

  11. Double-modulation spectroscopy of molecular ions - Eliminating the background in velocity-modulation spectroscopy

    NASA Technical Reports Server (NTRS)

    Lan, Guang; Tholl, Hans Dieter; Farley, John W.

    1991-01-01

    Velocity-modulation spectroscopy is an established technique for performing laser absorption spectroscopy of molecular ions in a discharge. However, such experiments are often plagued by a coherent background signal arising from emission from the discharge or from electronic pickup. Fluctuations in the background can obscure the desired signal. A simple technique using amplitude modulation of the laser and two lock-in amplifiers in series to detect the signal is demonstrated. The background and background fluctuations are thereby eliminated, facilitating the detection of molecular ions.

  12. Many particle spectroscopy of atoms, molecules, clusters and surfaces: international conference MPS-2016

    NASA Astrophysics Data System (ADS)

    Grum-Grzhimailo, Alexei N.; Popov, Yuri V.; Gryzlova, Elena V.; Solov'yov, Andrey V.

    2017-07-01

    The conference on Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces (MPS-2016) brought together near to a hundred scientists in the field of electronic, photonic, atomic and molecular collisions, and spectroscopy from around the world. We deliver an Editorial of a topical issue presenting original research results from some of the participants on both experimental and theoretical studies involving many particle spectroscopy of atoms, molecules, clusters and surfaces. Contribution to the Topical Issue "Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces", edited by A.N. Grum-Grzhimailo, E.V. Gryzlova, Yu.V. Popov, and A.V. Solov'yov.

  13. EELS from organic crystalline materials

    NASA Astrophysics Data System (ADS)

    Brydson, R.; Eddleston, M. D.; Jones, W.; Seabourne, C. R.; Hondow, N.

    2014-06-01

    We report the use of the electron energy loss spectroscopy (EELS) for providing light element chemical composition information from organic, crystalline pharmaceutical materials including theophylline and paracetamol and discuss how this type of data can complement transmission electron microscopy (TEM) imaging and electron diffraction when investigating polymorphism. We also discuss the potential for the extraction of bonding information using electron loss near-edge structure (ELNES).

  14. Nonadiabatic Dynamics May Be Probed through Electronic Coherence in Time-Resolved Photoelectron Spectroscopy.

    PubMed

    Bennett, Kochise; Kowalewski, Markus; Mukamel, Shaul

    2016-02-09

    We present a hierarchy of Fermi golden rules (FGRs) that incorporate strongly coupled electronic/nuclear dynamics in time-resolved photoelectron spectroscopy (TRPES) signals at different levels of theory. Expansion in the joint electronic and nuclear eigenbasis yields the numerically most challenging exact FGR (eFGR). The quasistatic Fermi Golden Rule (qsFGR) neglects nuclear motion during the photoionization process but takes into account electronic coherences as well as populations initially present in the pumped matter as well as those generated internally by coupling between electronic surfaces. The standard semiclassical Fermi Golden Rule (scFGR) neglects the electronic coherences and the nuclear kinetic energy during the ionizing pulse altogether, yielding the classical Condon approximation. The coherence contributions depend on the phase-profile of the ionizing field, allowing coherent control of TRPES signals. The photoelectron spectrum from model systems is simulated using these three levels of theory. The eFGR and the qsFGR show temporal oscillations originating from the electronic or vibrational coherences generated as the nuclear wave packet traverses a conical intersection. These oscillations, which are missed by the scFGR, directly reveal the time-evolving splitting between electronic states of the neutral molecule in the curve-crossing regime.

  15. Large area fabrication of plasmonic nanoparticle grating structure by conventional scanning electron microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudheer,, E-mail: sudheer@rrcat.gov.in; Tiwari, P.; Rai, V. N.

    Plasmonic nanoparticle grating (PNG) structure of different periods has been fabricated by electron beam lithography using silver halide based transmission electron microscope film as a substrate. Conventional scanning electron microscope is used as a fabrication tool for electron beam lithography. Optical microscope and energy dispersive spectroscopy (EDS) have been used for its morphological and elemental characterization. Optical characterization is performed by UV-Vis absorption spectroscopic technique.

  16. Rotationally resolved electronic spectroscopy study of the conformational space of 3-methoxyphenol

    NASA Astrophysics Data System (ADS)

    Wilke, Martin; Schneider, Michael; Wilke, Josefin; Ruiz-Santoyo, José Arturo; Campos-Amador, Jorge J.; González-Medina, M. Elena; Álvarez-Valtierra, Leonardo; Schmitt, Michael

    2017-07-01

    Conformational preferences are determined by (de-)stabilization effects like intramolecular hydrogen bonds or steric hindrance of adjacent substituents and thus, influence the stability and reactivity of the conformers. In the present contribution, we investigate the conformational landscape of 3-methoxyphenol using a combination of high resolution electronic spectroscopy and ab initio calculations. Three of the four possible conformational isomers were characterized in their electronic ground and lowest excited singlet states on the basis of their rotational constants and other molecular parameters. The absence of one conformer in molecular beam studies can be explained by its non-planar structure in the excited state, which leads to a vanishingly small Franck-Condon factor of the respective origin excitation.

  17. Combined experimental and ab initio study of the electronic structure of narrow-diameter single-wall carbon nanotubes with predominant (6,4),(6,5) chirality

    NASA Astrophysics Data System (ADS)

    de Blauwe, K.; Mowbray, D. J.; Miyata, Y.; Ayala, P.; Shiozawa, H.; Rubio, A.; Hoffmann, P.; Kataura, H.; Pichler, T.

    2010-09-01

    Narrow diameter tubes and especially (6,5) tubes with a diameter of 0.75 nm are currently one of the most studied carbon nanotubes because their unique optical and especially luminescence response makes them exceptionally suited for biomedical applications. Here we report on a detailed analysis of the electronic structure of nanotubes with (6,5) and (6,4) chiralities using a combined experimental and theoretical approach. From high-energy spectroscopy involving x-ray absorption and photoemission spectroscopy the detailed valence- and conduction-band response of these narrow diameter tubes is studied. The observed electronic structure is in sound agreement with state of the art ab initio calculations using density-functional theory.

  18. Synthesis, characterization, in vitro anti-proliferative and hemolytic activity of hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Palanivelu, R.; Ruban Kumar, A.

    2014-06-01

    Hydroxyapatite (Ca10(PO4)6(OH)2, HAP) nanoparticles are widely used in several biomedical applications due to its compositional similarities to bone mineral, excellent biocompatibility and bioactivity, osteoconductivity. In this present investigation, HAP nanoparticles synthesized by precipitation technique using calcium nitrate and di-ammonium phosphate. The crystalline nature and the functional group analysis are confirmed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Fourier transform Raman spectroscopy (FT-Raman) respectively. The morphological observations are ascertained from field emission electron scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). In vitro anti-proliferative and hemolytic activities are carried out on the synthesized HAP samples and the studies reveals that HAP have mild activity against erythrocytes.

  19. Low temperature grown photoconductive antennas for pulsed 1060 nm excitation: Influence of excess energy on the electron relaxation

    NASA Astrophysics Data System (ADS)

    Dietz, R. J. B.; Brahm, A.; Velauthapillai, A.; Wilms, A.; Lammers, C.; Globisch, B.; Koch, M.; Notni, G.; Tünnermann, A.; Göbel, T.; Schell, M.

    2015-01-01

    We investigate properties of MBE grown photoconductive terahertz (THz) antennas based on the InGaAs/InAlAs/InP material system aimed for an excitation wavelength of approx. 1060 nm. Therefore, we analyze several different approaches concerning growth parameters, layer and material compositions as well as doping. The carrier dynamics are probed via transient white-light pump-probe spectroscopy as well as THz Time Domain Spectroscopy (TDS) measurements. We find that the electron capture probability is reduced for higher electron energies. By adjusting the material band gap this can be resolved and lifetimes of 1.3 ps are obtained. These short lifetimes enable the detection of THz TDS spectra with a bandwidth exceeding 4 THz.

  20. Electron Spectroscopy for Chemical Analysis (ESCA) study of atmospheric particles

    NASA Technical Reports Server (NTRS)

    Dillard, J. G.; Seals, R. D.; Wightman, J. P.

    1979-01-01

    The results of analyses by ESCA (Electron Spectroscopy for Chemical Analysis) on several Nuclepore filters which were exposed during air pollution studies are presented along with correlative measurements by Neutron Activation Analysis and Scanning Electron Microscopy. Samples were exposed during air pollution studies at Norfolk, Virginia and the NASA Kennedy Space Center (KSC). It was demonstrated that with the ESCA technique it was possible to identify the chemical (bonding) state of elements contained in the atmospheric particulate matter collected on Nuclepore filters. Sulfur, nitrogen, mercury, chlorine, alkali, and alkaline earth metal species were identified in the Norfolk samples. ESCA binding energy data for aluminum indicated that three chemically different types of aluminum are present in the launch and background samples from NASA-KSC.

Top