NASA Astrophysics Data System (ADS)
Zhang, Chao; Yao, Hui; Nie, Yi-Hang; Liang, Jiu-Qing; Niu, Peng-Bin
2018-04-01
In this work, we study the generation of spin-current in a single-molecule magnet (SMM) tunnel junction with Coulomb interaction of transport electrons and external magnetic field. In the absence of field the spin-up and -down currents are symmetric with respect to the initial polarizations of molecule. The existence of magnetic field breaks the time-reversal symmetry, which leads to unsymmetrical spin currents of parallel and antiparallel polarizations. Both the amplitude and polarization direction of spin current can be controlled by the applied magnetic field. Particularly when the magnetic field increases to a certain value the spin-current with antiparallel polarization is reversed along with the magnetization reversal of the SMM. The two-electron occupation indeed enhances the transport current compared with the single-electron process. However the increase of Coulomb interaction results in the suppression of spin-current amplitude at the electron-hole symmetry point. We propose a scheme to compensate the suppression with the magnetic field.
Andreev, Pavel A
2015-03-01
The quantum hydrodynamic (QHD) model of charged spin-1/2 particles contains physical quantities defined for all particles of a species including particles with spin-up and with spin-down. Different populations of states with different spin directions are included in the spin density (the magnetization). In this paper I derive a QHD model, which separately describes spin-up electrons and spin-down electrons. Hence electrons with different projections of spins on the preferable direction are considered as two different species of particles. It is shown that the numbers of particles with different spin directions do not conserve. Hence the continuity equations contain sources of particles. These sources are caused by the interactions of the spins with the magnetic field. Terms of similar nature arise in the Euler equation. The z projection of the spin density is no longer an independent variable. It is proportional to the difference between the concentrations of the electrons with spin-up and the electrons with spin-down. The propagation of waves in the magnetized plasmas of degenerate electrons is considered. Two regimes for the ion dynamics, the motionless ions and the motion of the degenerate ions as the single species with no account of the spin dynamics, are considered. It is shown that this form of the QHD equations gives all solutions obtained from the traditional form of QHD equations with no distinction of spin-up and spin-down states. But it also reveals a soundlike solution called the spin-electron acoustic wave. Coincidence of most solutions is expected since this derivation was started with the same basic equation: the Pauli equation. Solutions arise due to the different Fermi pressures for the spin-up electrons and the spin-down electrons in the magnetic field. The results are applied to degenerate electron gas of paramagnetic and ferromagnetic metals in the external magnetic field. The dispersion of the spin-electron acoustic waves in the partially spin-polarized degenerate neutron matter are also considered.
NASA Astrophysics Data System (ADS)
Dieny, B.; Sousa, R.; Prejbeanu, L.
2007-04-01
Conventional electronics has in the past ignored the spin on the electron, however things began to change in 1988 with the discovery of giant magnetoresistance in metallic thin film stacks which led to the development of a new research area, so called spin-electronics. In the last 10 years, spin-electronics has achieved a number of breakthroughs from the point of view of both basic science and application. Materials research has led to several major discoveries: very large tunnel magnetoresistance effects in tunnel junctions with crystalline barriers due to a new spin-filtering mechanism associated with the spin-dependent symmetry of the electron wave functions new magnetic tunnelling barriers leading to spin-dependent tunnelling barrier heights and acting as spin-filters magnetic semiconductors with increasingly high ordering temperature. New phenomena have been predicted and observed: the possibility of acting on the magnetization of a magnetic nanostructure with a spin-polarized current. This effect, due to a transfer of angular momentum between the spin polarized conduction electrons and the local magnetization, can be viewed as the reciprocal of giant or tunnel magnetoresistance. It can be used to switch the magnetization of a magnetic nanostructure or to generate steady magnetic excitations in the system. the possibility of generating and manipulating spin current without charge current by creating non-equilibrium local accumulation of spin up or spin down electrons. The range of applications of spin electronics materials and phenomena is expanding: the first devices based on giant magnetoresistance were the magnetoresistive read-heads for computer disk drives. These heads, introduced in 1998 with current-in plane spin-valves, have evolved towards low resistance tunnel magnetoresistice heads in 2005. Besides magnetic recording technology, these very sensitive magnetoresistive sensors are finding applications in other areas, in particular in biology. magnetic tunnel junctions were introduced as memory elements in new types of non-volatile magnetic memories (MRAM). A first 4Mbit product was launched by Freescale in July 2006. Future generations of memories are being developed by academic groups or companies. the combination of magnetic elements with CMOS components opens a whole new paradigm in hybrid electronic components which can change the common conception of the architecture of complex electronic components with a much tighter integration of logic and memory. the steady magnetic excitations stimulated by spin-transfer might be used in a variety of microwave components provided the output power can be increased. Intense research and development efforts are being aimed at increasing this power by the synchronization of oscillators. The articles compiled in this special issue of Journal of Physics: Condensed Matter, devoted to spin electronics, review these recent developments. All the contributors are greatly acknowledged.
Seo, Dong-Kyun
2007-11-14
We present a theoretical scheme for a semiquantitative analysis of electronic structures of magnetic transition metal dimer complexes within spin density functional theory (DFT). Based on the spin polarization perturbational orbital theory [D.-K. Seo, J. Chem. Phys. 125, 154105 (2006)], explicit spin-dependent expressions of the spin orbital energies and coefficients are derived, which allows to understand how spin orbitals form and change their energies and shapes when two magnetic sites are coupled either ferromagnetically or antiferromagnetically. Upon employment of the concept of magnetic orbitals in the active-electron approximation, a general mathematical formula is obtained for the magnetic coupling constant J from the analytical expression for the electronic energy difference between low-spin broken-symmetry and high-spin states. The origin of the potential exchange and kinetic exchange terms based on the one-electron picture is also elucidated. In addition, we provide a general account of the DFT analysis of the magnetic exchange interactions in compounds for which the active-electron approximation is not appropriate.
Low temperature nano-spin filtering using a diluted magnetic semiconductor core-shell quantum dot
NASA Astrophysics Data System (ADS)
Chattopadhyay, Saikat; Sen, Pratima; Andrews, Joshep Thomas; Sen, Pranay Kumar
2014-07-01
The spin polarized electron transport properties and spin polarized tunneling current have been investigated analytically in a diluted magnetic semiconductor core-shell quantum dot in the presence of applied electric and magnetic fields. Assuming the electron wave function to satisfy WKB approximation, the electron energy eigenvalues have been calculated. The spin polarized tunneling current and the spin dependent tunneling coefficient are obtained by taking into account the exchange interaction and Zeeman splitting. Numerical estimates made for a specific diluted magnetic semiconductor, viz., Zn1-xMnxSe/ZnS core-shell quantum dot establishes the possibility of a nano-spin filter for a particular biasing voltage and applied magnetic field. Influence of applied voltage on spin polarized electron transport has been investigated in a CSQD.
Measurement of the magnetic interaction between two bound electrons of two separate ions.
Kotler, Shlomi; Akerman, Nitzan; Navon, Nir; Glickman, Yinnon; Ozeri, Roee
2014-06-19
Electrons have an intrinsic, indivisible, magnetic dipole aligned with their internal angular momentum (spin). The magnetic interaction between two electronic spins can therefore impose a change in their orientation. Similar dipolar magnetic interactions exist between other spin systems and have been studied experimentally. Examples include the interaction between an electron and its nucleus and the interaction between several multi-electron spin complexes. The challenge in observing such interactions for two electrons is twofold. First, at the atomic scale, where the coupling is relatively large, it is often dominated by the much larger Coulomb exchange counterpart. Second, on scales that are substantially larger than the atomic, the magnetic coupling is very weak and can be well below the ambient magnetic noise. Here we report the measurement of the magnetic interaction between the two ground-state spin-1/2 valence electrons of two (88)Sr(+) ions, co-trapped in an electric Paul trap. We varied the ion separation, d, between 2.18 and 2.76 micrometres and measured the electrons' weak, millihertz-scale, magnetic interaction as a function of distance, in the presence of magnetic noise that was six orders of magnitude larger than the magnetic fields the electrons apply on each other. The cooperative spin dynamics was kept coherent for 15 seconds, during which spin entanglement was generated, as verified by a negative measured value of -0.16 for the swap entanglement witness. The sensitivity necessary for this measurement was provided by restricting the spin evolution to a decoherence-free subspace that is immune to collective magnetic field noise. Our measurements show a d(-3.0(4)) distance dependence for the coupling, consistent with the inverse-cube law.
Generation of a spin-polarized electron beam by multipole magnetic fields.
Karimi, Ebrahim; Grillo, Vincenzo; Boyd, Robert W; Santamato, Enrico
2014-03-01
The propagation of an electron beam in the presence of transverse magnetic fields possessing integer topological charges is presented. The spin-magnetic interaction introduces a nonuniform spin precession of the electrons that gains a space-variant geometrical phase in the transverse plane proportional to the field's topological charge, whose handedness depends on the input electron's spin state. A combination of our proposed device with an electron orbital angular momentum sorter can be utilized as a spin-filter of electron beams in a mid-energy range. We examine these two different configurations of a partial spin-filter generator numerically. The results of this analysis could prove useful in the design of an improved electron microscope. Copyright © 2013 Elsevier B.V. All rights reserved.
Dynamic nuclear polarization in a magnetic resonance force microscope experiment.
Issac, Corinne E; Gleave, Christine M; Nasr, Paméla T; Nguyen, Hoang L; Curley, Elizabeth A; Yoder, Jonilyn L; Moore, Eric W; Chen, Lei; Marohn, John A
2016-04-07
We report achieving enhanced nuclear magnetization in a magnetic resonance force microscope experiment at 0.6 tesla and 4.2 kelvin using the dynamic nuclear polarization (DNP) effect. In our experiments a microwire coplanar waveguide delivered radiowaves to excite nuclear spins and microwaves to excite electron spins in a 250 nm thick nitroxide-doped polystyrene sample. Both electron and proton spin resonance were observed as a change in the mechanical resonance frequency of a nearby cantilever having a micron-scale nickel tip. NMR signal, not observable from Curie-law magnetization at 0.6 T, became observable when microwave irradiation was applied to saturate the electron spins. The resulting NMR signal's size, buildup time, dependence on microwave power, and dependence on irradiation frequency was consistent with a transfer of magnetization from electron spins to nuclear spins. Due to the presence of an inhomogeneous magnetic field introduced by the cantilever's magnetic tip, the electron spins in the sample were saturated in a microwave-resonant slice 10's of nm thick. The spatial distribution of the nuclear polarization enhancement factor ε was mapped by varying the frequency of the applied radiowaves. The observed enhancement factor was zero for spins in the center of the resonant slice, was ε = +10 to +20 for spins proximal to the magnet, and was ε = -10 to -20 for spins distal to the magnet. We show that this bipolar nuclear magnetization profile is consistent with cross-effect DNP in a ∼10(5) T m(-1) magnetic field gradient. Potential challenges associated with generating and using DNP-enhanced nuclear magnetization in a nanometer-resolution magnetic resonance imaging experiment are elucidated and discussed.
Electron-spin dynamics in Mn-doped GaAs using time-resolved magneto-optical techniques
NASA Astrophysics Data System (ADS)
Akimov, I. A.; Dzhioev, R. I.; Korenev, V. L.; Kusrayev, Yu. G.; Zhukov, E. A.; Yakovlev, D. R.; Bayer, M.
2009-08-01
We study the electron-spin dynamics in p -type GaAs doped with magnetic Mn acceptors by means of time-resolved pump-probe and photoluminescence techniques. Measurements in transverse magnetic fields show a long spin-relaxation time of 20 ns that can be uniquely related to electrons. Application of weak longitudinal magnetic fields above 100 mT extends the spin-relaxation times up to microseconds which is explained by suppression of the Bir-Aronov-Pikus spin relaxation for the electron on the Mn acceptor.
Control of Spin Wave Dynamics in Spatially Twisted Magnetic Structures
2017-06-27
realize high-performance spintronic and magnetic storage devices. 15. SUBJECT TERMS nano- electronics , spin, wave, magnetic, multi-functional, device 16... electronics has required us to develop high-performance and multi-functional electronic devices driven with extremely low power consumption...Spintronics”, simultaneously utilizing the charge and the spin of electrons , provides us with solutions to essential problems for semiconductor-based
Electron acceleration in quantum plasma with spin-up and spin-down exchange interaction
NASA Astrophysics Data System (ADS)
Kumar, Punit; Singh, Shiv; Ahmad, Nafees
2018-05-01
Electron acceleration by ponderomotive force of an intense circularly polarized laser pulse in high density magnetized quantum plasma with two different spin states embedded in external static magnetic field. The basic mechanism involves electron acceleration by axial gradient in the ponderomotive potential of laser. The effects of Bohm potential, fermi pressure and intrinsic spin of electron have been taken into account. A simple solution for ponderomotive electron acceleration has been established and effect of spin polarization is analyzed.
Optically programmable electron spin memory using semiconductor quantum dots.
Kroutvar, Miro; Ducommun, Yann; Heiss, Dominik; Bichler, Max; Schuh, Dieter; Abstreiter, Gerhard; Finley, Jonathan J
2004-11-04
The spin of a single electron subject to a static magnetic field provides a natural two-level system that is suitable for use as a quantum bit, the fundamental logical unit in a quantum computer. Semiconductor quantum dots fabricated by strain driven self-assembly are particularly attractive for the realization of spin quantum bits, as they can be controllably positioned, electronically coupled and embedded into active devices. It has been predicted that the atomic-like electronic structure of such quantum dots suppresses coupling of the spin to the solid-state quantum dot environment, thus protecting the 'spin' quantum information against decoherence. Here we demonstrate a single electron spin memory device in which the electron spin can be programmed by frequency selective optical excitation. We use the device to prepare single electron spins in semiconductor quantum dots with a well defined orientation, and directly measure the intrinsic spin flip time and its dependence on magnetic field. A very long spin lifetime is obtained, with a lower limit of about 20 milliseconds at a magnetic field of 4 tesla and at 1 kelvin.
Gueddida, Saber; Yan, Zeyin; Kibalin, Iurii; Voufack, Ariste Bolivard; Claiser, Nicolas; Souhassou, Mohamed; Lecomte, Claude; Gillon, Béatrice; Gillet, Jean-Michel
2018-04-28
In this paper, we propose a simple cluster model with limited basis sets to reproduce the unpaired electron distributions in a YTiO 3 ferromagnetic crystal. The spin-resolved one-electron-reduced density matrix is reconstructed simultaneously from theoretical magnetic structure factors and directional magnetic Compton profiles using our joint refinement algorithm. This algorithm is guided by the rescaling of basis functions and the adjustment of the spin population matrix. The resulting spin electron density in both position and momentum spaces from the joint refinement model is in agreement with theoretical and experimental results. Benefits brought from magnetic Compton profiles to the entire spin density matrix are illustrated. We studied the magnetic properties of the YTiO 3 crystal along the Ti-O 1 -Ti bonding. We found that the basis functions are mostly rescaled by means of magnetic Compton profiles, while the molecular occupation numbers are mainly modified by the magnetic structure factors.
Quantized spin-momentum transfer in atom-sized magnetic systems
NASA Astrophysics Data System (ADS)
Loth, Sebastian
2010-03-01
Our ability to quickly access the vast amounts of information linked in the internet is owed to the miniaturization of magnetic data storage. In modern disk drives the tunnel magnetoresistance effect (TMR) serves as sensitive reading mechanism for the nanoscopic magnetic bits [1]. At its core lies the ability to control the flow of electrons with a material's magnetization. The inverse effect, spin transfer torque (STT), allows one to influence a magnetic layer by high current densities of spin-polarized electrons and carries high hopes for applications in non-volatile magnetic memory [2]. We show that equivalent processes are active in quantum spin systems. We use a scanning tunneling microscope (STM) operating at low temperature and high magnetic field to address individual magnetic structures and probe their spin excitations by inelastic electron tunneling [3]. As model system we investigate transition metal atoms adsorbed to a copper nitride layer grown on a Cu crystal. The magnetic atoms on the surface possess well-defined spin states [4]. Transfer of one magnetic atom to the STM tip's apex creates spin-polarization in the probe tip. The combination of functionalized tip and surface adsorbed atom resembles a TMR structure where the magnetic layers now consist of one magnetic atom each. Spin-polarized current emitted from the probe tip not only senses the magnetic orientation of the atomic spin system, it efficiently transfers spin angular momentum and pumps the quantum spin system between the different spin states. This enables further exploration of the microscopic mechanisms for spin-relaxation and stability of quantum spin systems. [4pt] [1] Zhu and Park, Mater. Today 9, 36 (2006).[0pt] [2] Huai, AAPPS Bulletin 18, 33 (2008).[0pt] [3] Heinrich et al., Science 306, 466 (2004).[0pt] [4] Hirjibehedin et al., Science 317, 1199 (2007).
Terahertz spin current pulses controlled by magnetic heterostructures
NASA Astrophysics Data System (ADS)
Kampfrath, T.; Battiato, M.; Maldonado, P.; Eilers, G.; Nötzold, J.; Mährlein, S.; Zbarsky, V.; Freimuth, F.; Mokrousov, Y.; Blügel, S.; Wolf, M.; Radu, I.; Oppeneer, P. M.; Münzenberg, M.
2013-04-01
In spin-based electronics, information is encoded by the spin state of electron bunches. Processing this information requires the controlled transport of spin angular momentum through a solid, preferably at frequencies reaching the so far unexplored terahertz regime. Here, we demonstrate, by experiment and theory, that the temporal shape of femtosecond spin current bursts can be manipulated by using specifically designed magnetic heterostructures. A laser pulse is used to drive spins from a ferromagnetic iron thin film into a non-magnetic cap layer that has either low (ruthenium) or high (gold) electron mobility. The resulting transient spin current is detected by means of an ultrafast, contactless amperemeter based on the inverse spin Hall effect, which converts the spin flow into a terahertz electromagnetic pulse. We find that the ruthenium cap layer yields a considerably longer spin current pulse because electrons are injected into ruthenium d states, which have a much lower mobility than gold sp states. Thus, spin current pulses and the resulting terahertz transients can be shaped by tailoring magnetic heterostructures, which opens the door to engineering high-speed spintronic devices and, potentially, broadband terahertz emitters.
Rice, William D.; Liu, Wenyong; Baker, Thomas A.; ...
2015-11-23
Strong quantum confinement in semiconductors can compress the wavefunctions of band electrons and holes to nanometre-scale volumes, significantly enhancing interactions between themselves and individual dopants. In magnetically doped semiconductors, where paramagnetic dopants (such as Mn 2+, Co 2+ and so on) couple to band carriers via strong sp–d spin exchange, giant magneto-optical effects can therefore be realized in confined geometries using few or even single impurity spins. Importantly, however, thermodynamic spin fluctuations become increasingly relevant in this few-spin limit. In nanoscale volumes, the statistical √N fluctuations of N spins are expected to generate giant effective magnetic fields B eff, whichmore » should dramatically impact carrier spin dynamics, even in the absence of any applied field. In this paper, we directly and unambiguously reveal the large B eff that exist in Mn 2+-doped CdSe colloidal nanocrystals using ultrafast optical spectroscopy. At zero applied magnetic field, extremely rapid (300–600 GHz) spin precession of photoinjected electrons is observed, indicating B eff ~ 15-30 T for electrons. Precession frequencies exceed 2 THz in applied magnetic fields. Finally, these signals arise from electron precession about the random fields due to statistically incomplete cancellation of the embedded Mn 2+ moments, thereby revealing the initial coherent dynamics of magnetic polaron formation, and highlighting the importance of magnetization fluctuations on carrier spin dynamics in nanomaterials.« less
Resolving the role of femtosecond heated electrons in ultrafast spin dynamics.
Mendil, J; Nieves, P; Chubykalo-Fesenko, O; Walowski, J; Santos, T; Pisana, S; Münzenberg, M
2014-02-05
Magnetization manipulation is essential for basic research and applications. A fundamental question is, how fast can the magnetization be reversed in nanoscale magnetic storage media. When subject to an ultrafast laser pulse, the speed of the magnetization dynamics depends on the nature of the energy transfer pathway. The order of the spin system can be effectively influenced through spin-flip processes mediated by hot electrons. It has been predicted that as electrons drive spins into the regime close to almost total demagnetization, characterized by a loss of ferromagnetic correlations near criticality, a second slower demagnetization process takes place after the initial fast drop of magnetization. By studying FePt, we unravel the fundamental role of the electronic structure. As the ferromagnet Fe becomes more noble in the FePt compound, the electronic structure is changed and the density of states around the Fermi level is reduced, thereby driving the spin correlations into the limit of critical fluctuations. We demonstrate the impact of the electrons and the ferromagnetic interactions, which allows a general insight into the mechanisms of spin dynamics when the ferromagnetic state is highly excited, and identifies possible recording speed limits in heat-assisted magnetization reversal.
Loss, Daniel; Pedrocchi, Fabio L; Leggett, Anthony J
2011-09-02
We extend the Mermin-Wagner theorem to a system of lattice spins which are spin coupled to itinerant and interacting charge carriers. We use the Bogoliubov inequality to rigorously prove that neither (anti-) ferromagnetic nor helical long-range order is possible in one and two dimensions at any finite temperature. Our proof applies to a wide class of models including any form of electron-electron and single-electron interactions that are independent of spin. In the presence of Rashba or Dresselhaus spin-orbit interactions (SOI) magnetic order is not excluded and intimately connected to equilibrium spin currents. However, in the special case when Rashba and Dresselhaus SOIs are tuned to be equal, magnetic order is excluded again. This opens up a new possibility to control magnetism electrically.
Coherent electron-spin-resonance manipulation of three individual spins in a triple quantum dot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noiri, A.; Yoneda, J.; Nakajima, T.
2016-04-11
Quantum dot arrays provide a promising platform for quantum information processing. For universal quantum simulation and computation, one central issue is to demonstrate the exhaustive controllability of quantum states. Here, we report the addressable manipulation of three single electron spins in a triple quantum dot using a technique combining electron-spin-resonance and a micro-magnet. The micro-magnet makes the local Zeeman field difference between neighboring spins much larger than the nuclear field fluctuation, which ensures the addressable driving of electron-spin-resonance by shifting the resonance condition for each spin. We observe distinct coherent Rabi oscillations for three spins in a semiconductor triple quantummore » dot with up to 25 MHz spin rotation frequencies. This individual manipulation over three spins enables us to arbitrarily change the magnetic spin quantum number of the three spin system, and thus to operate a triple-dot device as a three-qubit system in combination with the existing technique of exchange operations among three spins.« less
Spin-polarized current injection induced magnetic reconstruction at oxide interface
Fang, F.; Yin, Y. W.; Li, Qi; ...
2017-01-04
Electrical manipulation of magnetism presents a promising way towards using the spin degree of freedom in very fast, low-power electronic devices. Though there has been tremendous progress in electrical control of magnetic properties using ferromagnetic (FM) nanostructures, an opportunity of manipulating antiferromagnetic (AFM) states should offer another route for creating a broad range of new enabling technologies. Here we selectively probe the interface magnetization of SrTiO 3/La 0.5Ca 0.5MnO 3/La 0.7Sr 0.3MnO 3 heterojunctions and discover a new spin-polarized current injection induced interface magnetoelectric (ME) effect. The accumulation of majority spins at the interface causes a sudden, reversible transition ofmore » the spin alignment of interfacial Mn ions from AFM to FM exchange-coupled, while the injection of minority electron spins alters the interface magnetization from C-type to A-type AFM state. In contrast, the bulk magnetization remains unchanged. We attribute the current-induced interface ME effect to modulations of the strong double-exchange interaction between conducting electron spins and local magnetic moments. As a result, the effect is robust and may serve as a viable route for electronic and spintronic applications.« less
Spin-polarized current injection induced magnetic reconstruction at oxide interface
NASA Astrophysics Data System (ADS)
Fang, F.; Yin, Y. W.; Li, Qi; Lüpke, G.
2017-01-01
Electrical manipulation of magnetism presents a promising way towards using the spin degree of freedom in very fast, low-power electronic devices. Though there has been tremendous progress in electrical control of magnetic properties using ferromagnetic (FM) nanostructures, an opportunity of manipulating antiferromagnetic (AFM) states should offer another route for creating a broad range of new enabling technologies. Here we selectively probe the interface magnetization of SrTiO3/La0.5Ca0.5MnO3/La0.7Sr0.3MnO3 heterojunctions and discover a new spin-polarized current injection induced interface magnetoelectric (ME) effect. The accumulation of majority spins at the interface causes a sudden, reversible transition of the spin alignment of interfacial Mn ions from AFM to FM exchange-coupled, while the injection of minority electron spins alters the interface magnetization from C-type to A-type AFM state. In contrast, the bulk magnetization remains unchanged. We attribute the current-induced interface ME effect to modulations of the strong double-exchange interaction between conducting electron spins and local magnetic moments. The effect is robust and may serve as a viable route for electronic and spintronic applications.
Quantum approach of mesoscopic magnet dynamics with spin transfer torque
NASA Astrophysics Data System (ADS)
Wang, Yong; Sham, L. J.
2013-05-01
We present a theory of magnetization dynamics driven by spin-polarized current in terms of the quantum master equation. In the spin coherent state representation, the master equation becomes a Fokker-Planck equation, which naturally includes the spin transfer and quantum fluctuation. The current electron scattering state is correlated to the magnet quantum states, giving rise to quantum correction to the electron transport properties in the usual semiclassical theory. In the large-spin limit, the magnetization dynamics is shown to obey the Hamilton-Jacobi equation or the Hamiltonian canonical equations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tatara, Gen, E-mail: gen.tatara@riken.jp; Nakabayashi, Noriyuki; Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397 Japan
2014-05-07
Emergent electromagnetic field which couples to electron's spin in ferromagnetic metals is theoretically studied. Rashba spin-orbit interaction induces spin electromagnetic field which is in the linear order in gradient of magnetization texture. The Rashba-induced effective electric and magnetic fields satisfy in the absence of spin relaxation the Maxwell's equations as in the charge-based electromagnetism. When spin relaxation is taken into account besides spin dynamics, a monopole current emerges generating spin motive force via the Faraday's induction law. The monopole is expected to play an important role in spin-charge conversion and in the integration of spintronics into electronics.
Classical relativistic model for spin dependence in a magnetized electron gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melrose, D. B.; Mushtaq, A.; TPPD, PINSTECH, P. O. Nilore Islamabad 44000
2011-05-15
The response of a cold electron gas is generalized to include the spin of the electron described by the relativistically correct quasiclassical Bargmann-Michel-Telegdi (BMT) equation. The magnetization of the electron gas is assumed to be along the background magnetic field B and the spin-dependent contribution to the response tensor is proportional to the magnitude of the magnetization. The dispersion equation is shown to be quadratic in the refractive index squared, and dispersion curves for the two wave modes are plotted for cases where the magnetic field associated with magnetization is comparable with B. Two intrinsically spin-dependent wave modes are identified:more » one bounded by two resonances and the other by two cutoffs. The counterpart of the z mode can escape without encountering a resonance or a cutoff.« less
Spin-resolved inelastic electron scattering by spin waves in noncollinear magnets
NASA Astrophysics Data System (ADS)
dos Santos, Flaviano José; dos Santos Dias, Manuel; Guimarães, Filipe Souza Mendes; Bouaziz, Juba; Lounis, Samir
2018-01-01
Topological noncollinear magnetic phases of matter are at the heart of many proposals for future information nanotechnology, with novel device concepts based on ultrathin films and nanowires. Their operation requires understanding and control of the underlying dynamics, including excitations such as spin waves. So far, no experimental technique has attempted to probe large wave-vector spin waves in noncollinear low-dimensional systems. In this paper, we explain how inelastic electron scattering, being suitable for investigations of surfaces and thin films, can detect the collective spin-excitation spectra of noncollinear magnets. To reveal the particularities of spin waves in such noncollinear samples, we propose the usage of spin-polarized electron-energy-loss spectroscopy augmented with a spin analyzer. With the spin analyzer detecting the polarization of the scattered electrons, four spin-dependent scattering channels are defined, which allow us to filter and select specific spin-wave modes. We take as examples a topological nontrivial skyrmion lattice, a spin-spiral phase, and the conventional ferromagnet. Then we demonstrate that, counterintuitively and in contrast to the ferromagnetic case, even non-spin-flip processes can generate spin waves in noncollinear substrates. The measured dispersion and lifetime of the excitation modes permit us to fingerprint the magnetic nature of the substrate.
Spin-orbit excitations and electronic structure of the putative Kitaev magnet α -RuCl3
NASA Astrophysics Data System (ADS)
Sandilands, Luke J.; Tian, Yao; Reijnders, Anjan A.; Kim, Heung-Sik; Plumb, K. W.; Kim, Young-June; Kee, Hae-Young; Burch, Kenneth S.
2016-02-01
Mott insulators with strong spin-orbit coupling have been proposed to host unconventional magnetic states, including the Kitaev quantum spin liquid. The 4 d system α -RuCl3 has recently come into view as a candidate Kitaev system, with evidence for unusual spin excitations in magnetic scattering experiments. We apply a combination of optical spectroscopy and Raman scattering to study the electronic structure of this material. Our measurements reveal a series of orbital excitations involving localized total angular momentum states of the Ru ion, implying that strong spin-orbit coupling and electron-electron interactions coexist in this material. Analysis of these features allows us to estimate the spin-orbit coupling strength, as well as other parameters describing the local electronic structure, revealing a well-defined hierarchy of energy scales within the Ru d states. By comparing our experimental results with density functional theory calculations, we also clarify the overall features of the optical response. Our results demonstrate that α -RuCl3 is an ideal material system to study spin-orbit coupled magnetism on the honeycomb lattice.
Ji, T T; Bu, N; Chen, F J; Tao, Y C; Wang, J
2016-04-14
For Entangled electron pairs superconducting spintronics, there exist two drawbacks in existing proposals of generating entangled electron pairs. One is that the two kinds of different spin entangled electron pairs mix with each other. And the other is a low efficiency of entanglement production. Herein, we report the spin entanglement state of the ferromagnetic insulator (FI)/s-wave superconductor/FI structure on a narrow quantum spin Hall insulator strip. It is shown that not only the high production of entangled electron pairs in wider energy range, but also the perfect spin filtering of entangled electron pairs in the context of no highly spin-polarized electrons, can be obtained. Moreover, the currents for the left and right leads in the antiferromagnetic alignment both can be zero, indicating 100% tunnelling magnetoresistance with highly magnetic storage efficiency. Therefore, the spin filtering for entangled electron pairs and magnetic storage with high efficiencies coexist in one setup. The results may be experimentally demonstrated by measuring the tunnelling conductance and the noise power.
NASA Astrophysics Data System (ADS)
Dehghan, E.; Sanavi Khoshnoud, D.; Naeimi, A. S.
2018-01-01
The spin-resolved electron transport through a triangular network of quantum nanorings is studied in the presence of Rashba spin-orbit interaction (RSOI) and a magnetic flux using quantum waveguide theory. This study illustrates that, by tuning Rashba constant, magnetic flux and incoming electron energy, the triangular network of quantum rings can act as a perfect logical spin-filtering with high efficiency. By changing in the energy of incoming electron, at a proper value of the Rashba constant and magnetic flux, a reverse in the direction of spin can take place in the triangular network of quantum nanorings. Furthermore, the triangular network of quantum nanorings can be designed as a device and shows several simultaneous spintronic properties such as spin-splitter and spin-inverter. This spin-splitting is dependent on the energy of the incoming electron. Additionally, different polarizations can be achieved in the two outgoing leads from an originally incoming spin state that simulates a Stern-Gerlach apparatus.
NASA Astrophysics Data System (ADS)
Del Sorbo, D.; Seipt, D.; Thomas, A. G. R.; Ridgers, C. P.
2018-06-01
It has recently been suggested that two counter-propagating, circularly polarized, ultra-intense lasers can induce a strong electron spin polarization at the magnetic node of the electromagnetic field that they setup (Del Sorbo et al 2017 Phys. Rev. A 96 043407). We confirm these results by considering a more sophisticated description that integrates over realistic trajectories. The electron dynamics is weakly affected by the variation of power radiated due to the spin polarization. The degree of spin polarization differs by approximately 5% if considering electrons initially at rest or already in a circular orbit. The instability of trajectories at the magnetic node induces a spin precession associated with the electron migration that establishes an upper temporal limit to the polarization of the electron population of about one laser period.
Insight into spin transport in oxide heterostructures from interface-resolved magnetic mapping
Bruno, F. Y.; Grisolia, M. N.; Visani, C.; ...
2015-02-17
At interfaces between complex oxides, electronic, orbital and magnetic reconstructions may produce states of matter absent from the materials involved, offering novel possibilities for electronic and spintronic devices. Here we show that magnetic reconstruction has a strong influence on the interfacial spin selectivity, a key parameter controlling spin transport in magnetic tunnel junctions. In epitaxial heterostructures combining layers of antiferromagnetic LaFeO 3 (LFO) and ferromagnetic La 0.7Sr 0.3MnO 3 (LSMO), we find that a net magnetic moment is induced in the first few unit planes of LFO near the interface with LSMO. Using X-ray photoemission electron microscopy, we show thatmore » the ferromagnetic domain structure of the manganite electrodes is imprinted into the antiferromagnetic tunnel barrier, endowing it with spin selectivity. Finally, we find that the spin arrangement resulting from coexisting ferromagnetic and antiferromagnetic interactions strongly influences the tunnel magnetoresistance of LSMO/LFO/LSMO junctions through competing spin-polarization and spin-filtering effects.« less
NASA Astrophysics Data System (ADS)
Čenčariková, Hana; Strečka, Jozef; Gendiar, Andrej
2018-04-01
An alternative model for a description of magnetization processes in coupled 2D spin-electron systems has been introduced and rigorously examined using the generalized decoration-iteration transformation and the corner transfer matrix renormalization group method. The model consists of localized Ising spins placed on nodal lattice sites and mobile electrons delocalized over the pairs of decorating sites. It takes into account a hopping term for mobile electrons, the Ising coupling between mobile electrons and localized spins as well as the Zeeman term acting on both types of particles. The ground-state and finite-temperature phase diagrams were established and comprehensively analyzed. It was found that the ground-state phase diagrams are very rich depending on the electron hopping and applied magnetic field. The diversity of magnetization curves can be related to intermediate magnetization plateaus, which may be continuously tuned through the density of mobile electrons. In addition, the existence of several types of reentrant phase transitions driven either by temperature or magnetic field was proven.
Magnetic edge states in Aharonov-Bohm graphene quantum rings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farghadan, R., E-mail: rfarghadan@kashanu.ac.ir; Heidari Semiromi, E.; Saffarzadeh, A.
2013-12-07
The effect of electron-electron interaction on the electronic structure of Aharonov-Bohm (AB) graphene quantum rings (GQRs) is explored theoretically using the single-band tight-binding Hamiltonian and the mean-field Hubbard model. The electronic states and magnetic properties of hexagonal, triangular, and circular GQRs with different sizes and zigzag edge terminations are studied. The results show that, although the AB oscillations in the all types of nanoring are affected by the interaction, the spin splitting in the AB oscillations strongly depends on the geometry and the size of graphene nanorings. We found that the total spin of hexagonal and circular rings is zeromore » and therefore, no spin splitting can be observed in the AB oscillations. However, the non-zero magnetization of the triangular rings breaks the degeneracy between spin-up and spin-down electrons, which produces spin-polarized AB oscillations.« less
Nature of magnetization and lateral spin-orbit interaction in gated semiconductor nanowires.
Karlsson, H; Yakimenko, I I; Berggren, K-F
2018-05-31
Semiconductor nanowires are interesting candidates for realization of spintronics devices. In this paper we study electronic states and effects of lateral spin-orbit coupling (LSOC) in a one-dimensional asymmetrically biased nanowire using the Hartree-Fock method with Dirac interaction. We have shown that spin polarization can be triggered by LSOC at finite source-drain bias,as a result of numerical noise representing a random magnetic field due to wiring or a random background magnetic field by Earth magnetic field, for instance. The electrons spontaneously arrange into spin rows in the wire due to electron interactions leading to a finite spin polarization. The direction of polarization is, however, random at zero source-drain bias. We have found that LSOC has an effect on orientation of spin rows only in the case when source-drain bias is applied.
Pulse Double-Resonance EPR Techniques for the Study of Metallobiomolecules.
Cox, Nicholas; Nalepa, Anna; Pandelia, Maria-Eirini; Lubitz, Wolfgang; Savitsky, Anton
2015-01-01
Electron paramagnetic resonance (EPR) spectroscopy exploits an intrinsic property of matter, namely the electron spin and its related magnetic moment. This can be oriented in a magnetic field and thus, in the classical limit, acts like a little bar magnet. Its moment will align either parallel or antiparallel to the field, giving rise to different energies (termed Zeeman splitting). Transitions between these two quantized states can be driven by incident microwave frequency radiation, analogous to NMR experiments, where radiofrequency radiation is used. However, the electron Zeeman interaction alone provides only limited information. Instead, much of the usefulness of EPR is derived from the fact that the electron spin also interacts with its local magnetic environment and thus can be used to probe structure via detection of nearby spins, e.g., NMR-active magnetic nuclei and/or other electron spin(s). The latter is exploited in spin labeling techniques, an exciting new area in the development of noncrystallographic protein structure determination. Although these interactions are often smaller than the linewidth of the EPR experiment, sophisticated pulse EPR methods allow their detection. A number of such techniques are well established today and can be broadly described as double-resonance methods, in which the electron spin is used as a reporter. Below we give a brief description of pulse EPR methods, particularly their implementation at higher magnetic fields, and how to best exploit them for studying metallobiomolecules. © 2015 Elsevier Inc. All rights reserved.
Low-temperature spin dynamics of a valence bond glass in Ba2YMoO6
NASA Astrophysics Data System (ADS)
de Vries, M. A.; Piatek, J. O.; Misek, M.; Lord, J. S.; Rønnow, H. M.; Bos, J.-W. G.
2013-04-01
We carried out ac magnetic susceptibility measurements and muon spin relaxation spectroscopy on the cubic double perovskite Ba2YMoO6, down to 50 mK. Below ∼1 K the muon relaxation is typical of a magnetic insulator with a spin-liquid type ground state, i.e. without broken symmetries or frozen moments. However, the ac susceptibility revealed a dilute-spin-glass-like transition below ∼1 K. Antiferromagnetically coupled Mo5+ 4d1 electrons in triply degenerate t2g orbitals are in this material arranged in a geometrically frustrated fcc lattice. Bulk magnetic susceptibility data has previously been interpreted in terms of a freezing to a heterogeneous state with non-magnetic sites where 4d1 electrons have paired in spin-singlets dimers, and residual unpaired Mo5+ 4d1 electron spins. Based on the magnetic heat capacity data it has been suggested that this heterogeneity is the result of kinetic constraints intrinsic to the physics of the pure system (possibly due to topological overprotection) leading to a self-induced glass of valence bonds between neighbouring 4d1 electrons. The muon spin relaxation (μSR) unambiguously points to a heterogeneous state with a static arrangement of unpaired electrons in a background of (valence bond) dimers between the majority of Mo5+ 4d electrons. The ac susceptibility data indicate that the residual magnetic moments freeze into a dilute-spin-glass-like state. This is in apparent contradiction with the muon-spin decoupling at 50 mK in fields up to 200 mT, which indicates that, remarkably, the time scale of the field fluctuations from the residual moments is ∼5 ns. Comparable behaviour has been observed in other geometrically frustrated magnets with spin-liquid-like behaviour and the implications of our observations on Ba2YMoO6 are discussed in this context.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocharian, Armen N.; Fernando, Gayanath W.; Fang, Kun
Rashba spin-orbit effects and electron correlations in the two-dimensional cylindrical lattices of square geometries are assessed using mesoscopic two-, three- and four-leg ladder structures. Here the electron transport properties are systematically calculated by including the spin-orbit coupling in tight binding and Hubbard models threaded by a magnetic flux. These results highlight important aspects of possible symmetry breaking mechanisms in square ladder geometries driven by the combined effect of a magnetic gauge field spin-orbit interaction and temperature. The observed persistent current, spin and charge polarizations in the presence of spin-orbit coupling are driven by separation of electron and hole charges andmore » opposite spins in real-space. The modeled spin-flip processes on the pairing mechanism induced by the spin-orbit coupling in assembled nanostructures (as arrays of clusters) engineered in various two-dimensional multi-leg structures provide an ideal playground for understanding spatial charge and spin density inhomogeneities leading to electron pairing and spontaneous phase separation instabilities in unconventional superconductors. Such studies also fall under the scope of current challenging problems in superconductivity and magnetism, topological insulators and spin dependent transport associated with numerous interfaces and heterostructures.« less
Magnetic tunnel spin injectors for spintronics
NASA Astrophysics Data System (ADS)
Wang, Roger
Research in spin-based electronics, or "spintronics", has a universal goal to develop applications for electron spin in a broad range of electronics and strives to produce low power nanoscale devices. Spin injection into semiconductors is an important initial step in the development of spintronic devices, with the goal to create a highly spin polarized population of electrons inside a semiconductor at room temperature for study, characterization, and manipulation. This dissertation investigates magnetic tunnel spin injectors that aim to meet the spin injection requirements needed for potential spintronic devices. Magnetism and spin are inherently related, and chapter 1 provides an introduction on magnetic tunneling and spintronics. Chapter 2 then describes the fabrication of the spin injector structures studied in this dissertation, and also illustrates the optical spin detection technique that correlates the measured electroluminescence polarization from quantum wells to the electron spin polarization inside the semiconductor. Chapter 3 reports the spin injection from the magnetic tunnel transistor (MTT) spin injector, which is capable of producing highly spin polarized tunneling currents by spin selective scattering in its multilayer structure. The MTT achieves ˜10% lower bound injected spin polarization in GaAs at 1.4 K. Chapter 4 reports the spin injection from CoFe-MgO(100) tunnel spin injectors, where spin dependent tunneling through MgO(100) produces highly spin polarized tunneling currents. These structures achieve lower bound spin polarizations exceeding 50% at 100 K and 30% in GaAs at 290 K. The CoFe-MgO spin injectors also demonstrate excellent thermal stability, maintaining high injection efficiencies even after exposure to temperatures of up to 400 C. Bias voltage and temperature dependent studies on these structures indicate a significant dependence of the electroluminescence polarization on the spin and carrier recombination lifetimes inside the semiconductor. Chapter 5 investigates these spin and carrier lifetime effects on the electroluminescence polarization using time resolved optical techniques. These studies suggest that a peak in the carrier lifetime with temperature is responsible for the nonmonotonic temperature dependence observed in the electroluminescence polarization, and that the initially injected spin polarization from CoFe-MgO spin injectors is a nearly temperature independent ˜70% from 10 K up to room temperature.
Spin resonance and spin fluctuations in a quantum wire
NASA Astrophysics Data System (ADS)
Pokrovsky, V. L.
2017-02-01
This is a review of theoretical works on spin resonance in a quantum wire associated with the spin-orbit interaction. We demonstrate that the spin-orbit induced internal "magnetic field" leads to a narrow spin-flip resonance at low temperatures in the absence of an applied magnetic field. An applied dc magnetic field perpendicular to and small compared with the spin-orbit field enhances the resonance absorption by several orders of magnitude. The component of applied field parallel to the spin-orbit field separates the resonance frequencies of right and left movers and enables a linearly polarized ac electric field to produce a dynamic magnetization as well as electric and spin currents. We start with a simple model of noninteracting electrons and then consider the interaction that is not weak in 1d electron system. We show that electron spin resonance in the spin-orbit field persists in the Luttinger liquid. The interaction produces an additional singularity (cusp) in the spin-flip channel associated with the plasma oscillation. As it was shown earlier by Starykh and his coworkers, the interacting 1d electron system in the external field with sufficiently large parallel component becomes unstable with respect to the appearance of a spin-density wave. This instability suppresses the spin resonance. The observation of the electron spin resonance in a thin wires requires low temperature and high intensity of electromagnetic field in the terahertz diapason. The experiment satisfying these two requirements is possible but rather difficult. An alternative approach that does not require strong ac field is to study two-time correlations of the total spin of the wire with an optical method developed by Crooker and coworkers. We developed theory of such correlations. We prove that the correlation of the total spin component parallel to the internal magnetic field is dominant in systems with the developed spin-density waves but it vanishes in Luttinger liquid. Thus, the measurement of spin correlations is a diagnostic tool to distinguish between the two states of electronic liquid in the quantum wire.
Magnetic order in a frustrated two-dimensional atom lattice at a semiconductor surface.
Li, Gang; Höpfner, Philipp; Schäfer, Jörg; Blumenstein, Christian; Meyer, Sebastian; Bostwick, Aaron; Rotenberg, Eli; Claessen, Ralph; Hanke, Werner
2013-01-01
Two-dimensional electron systems, as exploited for device applications, can lose their conducting properties because of local Coulomb repulsion, leading to a Mott-insulating state. In triangular geometries, any concomitant antiferromagnetic spin ordering can be prevented by geometric frustration, spurring speculations about 'melted' phases, known as spin liquid. Here we show that for a realization of a triangular electron system by epitaxial atom adsorption on a semiconductor, such spin disorder, however, does not appear. Our study compares the electron excitation spectra obtained from theoretical simulations of the correlated electron lattice with data from high-resolution photoemission. We find that an unusual row-wise antiferromagnetic spin alignment occurs that is reflected in the photoemission spectra as characteristic 'shadow bands' induced by the spin pattern. The magnetic order in a frustrated lattice of otherwise non-magnetic components emerges from longer-range electron hopping between the atoms. This finding can offer new ways of controlling magnetism on surfaces.
Determination of Flux-Gate Magnetometer Spin Axis Offsets with the Electron Drift Instrument
NASA Astrophysics Data System (ADS)
Plaschke, Ferdinand; Nakamura, Rumi; Giner, Lukas; Teubenbacher, Robert; Chutter, Mark; Leinweber, Hannes K.; Magnes, Werner
2014-05-01
Spin-stabilization of spacecraft enormously supports the in-flight calibration of onboard flux-gate magnetometers (FGMs): eight out of twelve calibration parameters can be determined by minimization of spin tone and harmonics in the calibrated magnetic field measurements. From the remaining four parameters, the spin axis offset is usually obtained by analyzing observations of Alfvénic fluctuations in the solar wind. If solar wind measurements are unavailable, other methods for spin axis offset determination need to be used. We present two alternative methods that are based on the comparison of FGM and electron drift instrument (EDI) data: (1) EDI measures the gyration periods of instrument-emitted electrons in the ambient magnetic field. They are inversely proportional to the magnetic field strength. Differences between FGM and EDI measured field strengths can be attributed to inaccuracies in spin axis offset, if the other calibration parameters are accurately known. (2) For EDI electrons to return to the spacecraft, they have to be sent out in perpendicular direction to the ambient magnetic field. Minimization of the variance of electron beam directions with respect to the FGM-determined magnetic field direction also yields an estimate of the spin axis offset. Prior to spin axis offset determination, systematic inaccuracies in EDI gyration period measurements and in the transformation of EDI beam directions into the FGM spin-aligned reference coordinate system have to be corrected. We show how this can be done by FGM/EDI data comparison, as well.
NASA Astrophysics Data System (ADS)
Čenčariková, Hana; Strečka, Jozef; Gendiar, Andrej; Tomašovičová, Natália
2018-05-01
An exhaustive ground-state analysis of extended two-dimensional (2D) correlated spin-electron model consisting of the Ising spins localized on nodal lattice sites and mobile electrons delocalized over pairs of decorating sites is performed within the framework of rigorous analytical calculations. The investigated model, defined on an arbitrary 2D doubly decorated lattice, takes into account the kinetic energy of mobile electrons, the nearest-neighbor Ising coupling between the localized spins and mobile electrons, the further-neighbor Ising coupling between the localized spins and the Zeeman energy. The ground-state phase diagrams are examined for a wide range of model parameters for both ferromagnetic as well as antiferromagnetic interaction between the nodal Ising spins and non-zero value of external magnetic field. It is found that non-zero values of further-neighbor interaction leads to a formation of new quantum states as a consequence of competition between all considered interaction terms. Moreover, the new quantum states are accompanied with different magnetic features and thus, several kinds of field-driven phase transitions are observed.
Electrical detection of proton-spin motion in a polymer device at room temperature
NASA Astrophysics Data System (ADS)
Boehme, Christoph
With the emergence of spintronics concepts based on organic semiconductors there has been renewed interest in the role of both, electron as well as nuclear spin states for the magneto-optoelectronic properties of these materials. In spite of decades of research on these molecular systems, there is still much need for an understanding of some of the fundamental properties of spin-controlled charge carrier transport and recombination processes. This presentation focuses on mechanisms that allow proton spin states to influence electronic transition rates in organic semiconductors. Remarkably, even at low-magnetic field conditions and room temperature, nuclear spin states with energy splittings orders of magnitude below thermal energies are able to influence observables like magnetoresistance and fluorescence. While proton spins couple to charge carrier spins via hyperfine interaction, there has been considerable debate about the nature of the electronic processes that are highly susceptible to these weak hyperfine fields. Here, experiments are presented which show how the magnetic resonant manipulation of electron and nuclear spin states in a π-conjugated polymer device causes changes of the device current. The experiments confirm the extraordinary sensitivity of electronic transitions to very weak magnetic field changes and underscore the potential significance of spin-selection rules for highly sensitive absolute magnetic fields sensor concepts. However, the relevance of these magnetic-field sensitive spin-dependent electron transitions is not just limited to semiconductor materials but also radical pair chemistry and even avian magnetoreceptors This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award #DE-SC0000909. The Utah NSF - MRSEC program #DMR 1121252 is acknowledged for instrumentation support.
Miniature Magnet for Electron Spin Resonance Experiments
ERIC Educational Resources Information Center
Rupp, L. W.; And Others
1976-01-01
Describes commercially available permanent magnets that have been incorporated in a compact and inexpensive structure providing both field sweep and modulation suitable for electron spin resonance at microwave frequencies. (MLH)
Cyanide-bridged decanuclear cobalt-iron cage.
Shiga, Takuya; Tetsuka, Tamaki; Sakai, Kanae; Sekine, Yoshihiro; Nihei, Masayuki; Newton, Graham N; Oshio, Hiroki
2014-06-16
A cyanide-bridged decanuclear [Co6Fe4] cluster was synthesized by a one-pot reaction, and the magnetic properties and electronic configuration were investigated. The complex displayed thermally controlled electron-transfer-coupled spin transition (ETCST) behavior between Co(III) low-spin-NC-Fe(II) low-spin and Co(II) high-spin-NC-Fe(III) low-spin states, as confirmed by single-crystal X-ray, magnetic, and Mössbauer analyses.
Intrinsic Magnetic Flux of the Electron's Orbital and Spin Motion
NASA Astrophysics Data System (ADS)
Wan, K. K.; Saglam, M.
2006-06-01
In analogy with the fact that there are magnetic moments associated respectively with the electron's orbital and spin motion in an atom we present several analyses on a proposal to introduce a concept of intrinsic magnetic flux associated with the electron's orbital and spin motion. It would be interesting to test or to demonstrate Faraday's and Lenz's laws of electromagnetic induction arising directly from the flux change due to transition of states in an atom and to examine applications of this concept of intrinsic flux.
NASA Astrophysics Data System (ADS)
Pramchu, Sittichain; Jaroenjittichai, Atchara Punya; Laosiritaworn, Yongyut
2018-03-01
In this work, density functional theory (DFT) was employed to investigate the effect of strain and interface on electronic structures and magnetic properties of L10-FePt/Ag heterojunction. Two possible interface structures of L10-FePt(001)/Ag(001), that is, interface between Fe and Ag layers (Fe/Ag) and between Pt and Ag layers (Pt/Ag), were inspected. It was found that Pt/Ag interface is more stable than Fe/Ag interface due to its lower formation energy. Further, under the lattice mismatch induced tensile strain, the enhancement of magnetism for both Fe/Ag and Pt/Ag interface structures has been found to have progressed, though the magnetic moments of "interfacial" Fe and Pt atoms have been found to have decreased. To explain this further, the local density of states (LDOS) analysis suggests that interaction between Fe (Pt) and Ag near Fe/Ag (Pt/Ag) interface leads to spin symmetry breaking of the Ag atom and hence induces magnetism magnitude. In contrast, the magnetic moments of interfacial Fe and Pt atoms reduce because of the increase in the electronic states near the Fermi level of the minority-spin electrons. In addition, the significant enhancements of the LDOS near the Fermi levels of the minority-spin electrons signify the boosting of the transport properties of the minority-spin electrons and hence the spin-dependent electron transport at this ferromagnet/metal interface. From this work, it is expected that this clarification of the interfacial magnetism may inspire new innovation on how to improve spin-dependent electron transport for enhancing the giant magnetoresistance (GMR) ratio of potential GMR-based spintronic devices.
New Possibilities for Magnetic Control of Chemical and Biochemical Reactions.
Buchachenko, Anatoly; Lawler, Ronald G
2017-04-18
Chemistry is controlled by Coulomb energy; magnetic energy is lower by many orders of magnitude and may be confidently ignored in the energy balance of chemical reactions. The situation becomes less clear, however, when reaction rates are considered. In this case, magnetic perturbations of nearly degenerate energy surface crossings may produce observable, and sometimes even dramatic, effects on reactions rates, product yields, and spectroscopic transitions. A case in point that has been studied for nearly five decades is electron spin-selective chemistry via the intermediacy of radical pairs. Magnetic fields, external (permanent or oscillating) and the internal magnetic fields of magnetic nuclei, have been shown to overcome electron spin selection rules for pairs of reactive paramagnetic intermediates, catalyzing or inhibiting chemical reaction pathways. The accelerating effects of magnetic stimulation may therefore be considered to be magnetic catalysis. This type of catalysis is most commonly observed for reactions of a relatively long-lived radical pair containing two weakly interacting electron spins formed by dissociation of molecules or by electron transfer. The pair may exist in singlet (total electron spin is zero) or triplet (total spin is unity) spin states. In virtually all cases, only the singlet state yields stable reaction products. Magnetic interactions with nuclear spins or applied fields may therefore affect the reactivity of radical pairs by changing the angular momentum of the pairs. Magnetic catalysis, first detected via its effect on spin state populations in nuclear and electron spin resonance, has been shown to function in a great variety of well-characterized reactions of organic free radicals. Considerably less well studied are examples suggesting that the basic mechanism may also explain magnetic effects that stimulate ATP synthesis, eliminating ATP deficiency in cardiac diseases, control cell proliferation, killing cancer cells, and control transcranial magnetic stimulation against cognitive deceases. Magnetic control has also been observed for some processes of importance in materials science and earth and environmental science and may play a role in animal navigation. In this Account, the radical pair mechanism is applied as a consistent explanation for several intriguing new magnetic phenomena. Specific examples include acceleration of solid state reactions of silicon by the magnetic isotope 29 Si, enrichment of 17 O during thermal decomposition of metal carbonates and magnetic effects on crystal plasticity. In each of these cases, the results are consistent with an initial one-electron transfer to generate a radical pair. Similar processes can account for mass-independent fractionation of isotopes of mercury, sulfur, germanium, tin, iron, and uranium in both naturally occurring samples and laboratory experiments. In the area of biochemistry, catalysis by magnetic isotopes has now been reported in several reactions of DNA and high energy phosphate. Possible medical applications of these observations are pointed out.
Magnetic moments induce strong phonon renormalization in FeSi.
Krannich, S; Sidis, Y; Lamago, D; Heid, R; Mignot, J-M; Löhneysen, H v; Ivanov, A; Steffens, P; Keller, T; Wang, L; Goering, E; Weber, F
2015-11-27
The interactions of electronic, spin and lattice degrees of freedom in solids result in complex phase diagrams, new emergent phenomena and technical applications. While electron-phonon coupling is well understood, and interactions between spin and electronic excitations are intensely investigated, only little is known about the dynamic interactions between spin and lattice excitations. Noncentrosymmetric FeSi is known to undergo with increasing temperature a crossover from insulating to metallic behaviour with concomitant magnetic fluctuations, and exhibits strongly temperature-dependent phonon energies. Here we show by detailed inelastic neutron-scattering measurements and ab initio calculations that the phonon renormalization in FeSi is linked to its unconventional magnetic properties. Electronic states mediating conventional electron-phonon coupling are only activated in the presence of strong magnetic fluctuations. Furthermore, phonons entailing strongly varying Fe-Fe distances are damped via dynamic coupling to the temperature-induced magnetic moments, highlighting FeSi as a material with direct spin-phonon coupling and multiple interaction paths.
Magnetic properties and energy-mapping analysis.
Xiang, Hongjun; Lee, Changhoon; Koo, Hyun-Joo; Gong, Xingao; Whangbo, Myung-Hwan
2013-01-28
The magnetic energy levels of a given magnetic solid are closely packed in energy because the interactions between magnetic ions are weak. Thus, in describing its magnetic properties, one needs to generate its magnetic energy spectrum by employing an appropriate spin Hamiltonian. In this review article we discuss how to determine and specify a necessary spin Hamiltonian in terms of first principles electronic structure calculations on the basis of energy-mapping analysis and briefly survey important concepts and phenomena that one encounters in reading the current literature on magnetic solids. Our discussion is given on a qualitative level from the perspective of magnetic energy levels and electronic structures. The spin Hamiltonian appropriate for a magnetic system should be based on its spin lattice, i.e., the repeat pattern of its strong magnetic bonds (strong spin exchange paths), which requires one to evaluate its Heisenberg spin exchanges on the basis of energy-mapping analysis. Other weaker energy terms such as Dzyaloshinskii-Moriya (DM) spin exchange and magnetocrystalline anisotropy energies, which a spin Hamiltonian must include in certain cases, can also be evaluated by performing energy-mapping analysis. We show that the spin orientation of a transition-metal magnetic ion can be easily explained by considering its split d-block levels as unperturbed states with the spin-orbit coupling (SOC) as perturbation, that the DM exchange between adjacent spin sites can become comparable in strength to the Heisenberg spin exchange when the two spin sites are not chemically equivalent, and that the DM interaction between rare-earth and transition-metal cations is governed largely by the magnetic orbitals of the rare-earth cation.
High Performance Nuclear Magnetic Resonance Imaging Using Magnetic Resonance Force Microscopy
2013-12-12
Micron- Size Ferromagnet . Physical Review Letters, 92(3) 037205 (2004) [22] A. Z. Genack and A. G. Redeld. Theory of nuclear spin diusion in a...perform spatially resolved scanned probe studies of spin dynamics in nanoscale ensembles of few electron spins of varying size . Our research culminated...perform spatially resolved scanned probe studies of spin dynamics in nanoscale ensembles of few electron spins of varying size . Our research culminated
Spin decoherence of InAs surface electrons by transition metal ions
NASA Astrophysics Data System (ADS)
Zhang, Yao; Soghomonian, V.; Heremans, J. J.
2018-04-01
Spin interactions between a two-dimensional electron system at the InAs surface and transition metal ions, Fe3 +, Co2 +, and Ni2 +, deposited on the InAs surface, are probed by antilocalization measurements. The spin-dependent quantum interference phenomena underlying the quantum transport phenomenon of antilocalization render the technique sensitive to the spin states of the transition metal ions on the surface. The experiments yield data on the magnitude and temperature dependence of the electrons' inelastic scattering rates, spin-orbit scattering rates, and magnetic spin-flip rates as influenced by Fe3 +, Co2 +, and Ni2 +. A high magnetic spin-flip rate is shown to mask the effects of spin-orbit interaction, while the spin-flip rate is shown to scale with the effective magnetic moment of the surface species. The spin-flip rates and their dependence on temperature yield information about the spin states of the transition metal ions at the surface, and in the case of Co2 + suggest either a spin transition or formation of a spin-glass system.
Optical Orientation of Mn2+ Ions in GaAs in Weak Longitudinal Magnetic Fields
NASA Astrophysics Data System (ADS)
Akimov, I. A.; Dzhioev, R. I.; Korenev, V. L.; Kusrayev, Yu. G.; Sapega, V. F.; Yakovlev, D. R.; Bayer, M.
2011-04-01
We report on optical orientation of Mn2+ ions in bulk GaAs subject to weak longitudinal magnetic fields (B≤100mT). A manganese spin polarization of 25% is directly evaluated by using spin-flip Raman scattering. The dynamical Mn2+ polarization occurs due to the s-d exchange interaction with optically oriented conduction band electrons. Time-resolved photoluminescence reveals a nontrivial electron spin dynamics, where the oriented Mn2+ ions tend to stabilize the electron spins.
Optical orientation of Mn2+ ions in GaAs in weak longitudinal magnetic fields.
Akimov, I A; Dzhioev, R I; Korenev, V L; Kusrayev, Yu G; Sapega, V F; Yakovlev, D R; Bayer, M
2011-04-08
We report on optical orientation of Mn2+ ions in bulk GaAs subject to weak longitudinal magnetic fields (B≤100 mT). A manganese spin polarization of 25% is directly evaluated by using spin-flip Raman scattering. The dynamical Mn2+ polarization occurs due to the s-d exchange interaction with optically oriented conduction band electrons. Time-resolved photoluminescence reveals a nontrivial electron spin dynamics, where the oriented Mn2+ ions tend to stabilize the electron spins.
Magnon-induced superconductivity in field-cooled spin-1/2 antiferromagnets
NASA Astrophysics Data System (ADS)
Karchev, Naoum
2017-12-01
If, during the preparation, an external magnetic field is applied upon cooling we say it has been field cooled. A novel mechanism for insulator-metal transition and superconductivity in field-cooled spin-1 /2 antiferromagnets on bcc lattice is discussed. Applying a magnetic field along the sublattice B magnetization, we change the magnetic and transport properties of the material. There is a critical value Hcr1. When the magnetic field is below the critical one H
Spin manipulation with magnetic semiconductor barriers.
Miao, Guo-Xing; Moodera, Jagadeesh S
2015-01-14
Magnetic semiconductors are a class of materials with special spin-filtering capabilities with magnetically tunable energy gaps. Many of these materials also possess another intrinsic property: indirect exchange interaction between the localized magnetic moments and the adjacent free electrons, which manifests as an extremely large effective magnetic field applying only on the spin degrees of freedom of the free electrons. Novel device concepts can be created by taking advantage of these properties. We discuss in the article the basic principles of these phenomena, and potential ways of applying them in constructing spintronic devices.
NASA Technical Reports Server (NTRS)
Ting, David Z.
2007-01-01
The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.
Rotatable spin-polarized electron source for inverse-photoemission experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stolwijk, S. D., E-mail: Sebastian.Stolwijk@wwu.de; Wortelen, H.; Schmidt, A. B.
2014-01-15
We present a ROtatable Spin-polarized Electron source (ROSE) for the use in spin- and angle-resolved inverse-photoemission (SR-IPE) experiments. A key feature of the ROSE is a variable direction of the transversal electron beam polarization. As a result, the inverse-photoemission experiment becomes sensitive to two orthogonal in-plane polarization directions, and, for nonnormal electron incidence, to the out-of-plane polarization component. We characterize the ROSE and test its performance on the basis of SR-IPE experiments. Measurements on magnetized Ni films on W(110) serve as a reference to demonstrate the variable spin sensitivity. Moreover, investigations of the unoccupied spin-dependent surface electronic structure of Tl/Si(111)more » highlight the capability to analyze complex phenomena like spin rotations in momentum space. Essentially, the ROSE opens the way to further studies on complex spin-dependent effects in the field of surface magnetism and spin-orbit interaction at surfaces.« less
NASA Astrophysics Data System (ADS)
Heremans, J. J.; Chen, Hong; Peters, J. A.; Goel, N.; Chung, S. J.; Santos, M. B.; van Roy, W.; Borghs, G.
2006-03-01
Spin-orbit interaction in semiconductor heterostructures can lead to various spin-dependent electronic transport effects without the presence of magnetic materials. Mesoscopic samples were fabricated on InSb/InAlSb and InAs/AlGaSb two-dimensional electron systems, where spin-orbit interaction is strong. In mesoscopic devices, the effects of spin-orbit interaction are not averaged out over the geometry, and lead to observable electronic properties. We experimentally demonstrate spin-split ballistic transport and the creation of fully spin-polarized electron beams using spin-dependent reflection geometries and transverse magnetic focusing geometries. Spin-dependent transport properties in the semiconductor materials are also investigated using antidot lattices. Spin-orbit interaction effects in high-mobility semiconductor devices may be utilized toward the design of novel spintronics implementations. We acknowledge NSF DMR-0094055 (JJH), DMR-0080054, DMR-0209371 (MBS).
Dzhioev, R I; Korenev, V L
2007-07-20
The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.
NASA Astrophysics Data System (ADS)
Dzhioev, R. I.; Korenev, V. L.
2007-07-01
The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.
Local light-induced magnetization using nanodots and chiral molecules.
Dor, Oren Ben; Morali, Noam; Yochelis, Shira; Baczewski, Lech Tomasz; Paltiel, Yossi
2014-11-12
With the increasing demand for miniaturization, nanostructures are likely to become the primary components of future integrated circuits. Different approaches are being pursued toward achieving efficient electronics, among which are spin electronics devices (spintronics). In principle, the application of spintronics should result in reducing the power consumption of electronic devices. Recently a new, promising, effective approach for spintronics has emerged, using spin selectivity in electron transport through chiral molecules. In this work, using chiral molecules and nanocrystals, we achieve local spin-based magnetization generated optically at ambient temperatures. Through the chiral layer, a spin torque can be transferred without permanent charge transfer from the nanocrystals to a thin ferromagnetic layer, creating local perpendicular magnetization. We used Hall sensor configuration and atomic force microscopy (AFM) to measure the induced local magnetization. At low temperatures, anomalous spin Hall effects were measured using a thin Ni layer. The results may lead to optically controlled spintronics logic devices that will enable low power consumption, high density, and cheap fabrication.
Dynamic spin polarization by orientation-dependent separation in a ferromagnet-semiconductor hybrid
NASA Astrophysics Data System (ADS)
Korenev, V. L.; Akimov, I. A.; Zaitsev, S. V.; Sapega, V. F.; Langer, L.; Yakovlev, D. R.; Danilov, Yu. A.; Bayer, M.
2012-07-01
Integration of magnetism into semiconductor electronics would facilitate an all-in-one-chip computer. Ferromagnet/bulk semiconductor hybrids have been, so far, mainly considered as key devices to read out the ferromagnetism by means of spin injection. Here we demonstrate that a Mn-based ferromagnetic layer acts as an orientation-dependent separator for carrier spins confined in a semiconductor quantum well that is set apart from the ferromagnet by a barrier only a few nanometers thick. By this spin-separation effect, a non-equilibrium electron-spin polarization is accumulated in the quantum well due to spin-dependent electron transfer to the ferromagnet. The significant advance of this hybrid design is that the excellent optical properties of the quantum well are maintained. This opens up the possibility of optical readout of the ferromagnet's magnetization and control of the non-equilibrium spin polarization in non-magnetic quantum wells.
Dynamic spin polarization by orientation-dependent separation in a ferromagnet-semiconductor hybrid.
Korenev, V L; Akimov, I A; Zaitsev, S V; Sapega, V F; Langer, L; Yakovlev, D R; Danilov, Yu A; Bayer, M
2012-07-17
Integration of magnetism into semiconductor electronics would facilitate an all-in-one-chip computer. Ferromagnet/bulk semiconductor hybrids have been, so far, mainly considered as key devices to read out the ferromagnetism by means of spin injection. Here we demonstrate that a Mn-based ferromagnetic layer acts as an orientation-dependent separator for carrier spins confined in a semiconductor quantum well that is set apart from the ferromagnet by a barrier only a few nanometers thick. By this spin-separation effect, a non-equilibrium electron-spin polarization is accumulated in the quantum well due to spin-dependent electron transfer to the ferromagnet. The significant advance of this hybrid design is that the excellent optical properties of the quantum well are maintained. This opens up the possibility of optical readout of the ferromagnet's magnetization and control of the non-equilibrium spin polarization in non-magnetic quantum wells.
Electric measurement and magnetic control of spin transport in InSb-based lateral spin devices
NASA Astrophysics Data System (ADS)
Viglin, N. A.; Ustinov, V. V.; Demokritov, S. O.; Shorikov, A. O.; Bebenin, N. G.; Tsvelikhovskaya, V. M.; Pavlov, T. N.; Patrakov, E. I.
2017-12-01
Electric injection and detection of spin-polarized electrons in InSb semiconductors have been realized in nonlocal experimental geometry using an InSb-based "lateral spin valve." The valve of the InSb /MgO /C o0.9F e0.1 composition has semiconductor/insulator/ferromagnet nanoheterojunctions in which the thickness of the InSb layer considerably exceeded the spin diffusion length of conduction electrons. The spin direction in spin diffusion current has been manipulated by a magnetic field under the Hanle effect conditions. The spin polarization of the electron gas has been registered using ferromagnetic C o0.9F e0.1 probes by measuring electrical potentials arising in the probes in accordance with the Johnson-Silsbee concept of the spin-charge coupling. The developed theory is valid at any degree of degeneracy of electron gas in a semiconductor. The spin relaxation time and spin diffusion length of conduction electrons in InSb have been determined, and the electron-spin polarization in InSb has been evaluated for electrons injected from C o0.9F e0.1 through an MgO tunnel barrier.
Orbital Magnetization of Quantum Spin Hall Insulator Nanoparticles.
Potasz, P; Fernández-Rossier, J
2015-09-09
Both spin and orbital degrees of freedom contribute to the magnetic moment of isolated atoms. However, when inserted in crystals, atomic orbital moments are quenched because of the lack of rotational symmetry that protects them when isolated. Thus, the dominant contribution to the magnetization of magnetic materials comes from electronic spin. Here we show that nanoislands of quantum spin Hall insulators can host robust orbital edge magnetism whenever their highest occupied Kramers doublet is singly occupied, upgrading the spin edge current into a charge current. The resulting orbital magnetization scales linearly with size, outweighing the spin contribution for islands of a few nm in size. This linear scaling is specific of the Dirac edge states and very different from Schrodinger electrons in quantum rings. By modeling Bi(111) flakes, whose edge states have been recently observed, we show that orbital magnetization is robust with respect to disorder, thermal agitation, shape of the island, and crystallographic direction of the edges, reflecting its topological protection.
Spin-current emission governed by nonlinear spin dynamics.
Tashiro, Takaharu; Matsuura, Saki; Nomura, Akiyo; Watanabe, Shun; Kang, Keehoon; Sirringhaus, Henning; Ando, Kazuya
2015-10-16
Coupling between conduction electrons and localized magnetization is responsible for a variety of phenomena in spintronic devices. This coupling enables to generate spin currents from dynamical magnetization. Due to the nonlinearity of magnetization dynamics, the spin-current emission through the dynamical spin-exchange coupling offers a route for nonlinear generation of spin currents. Here, we demonstrate spin-current emission governed by nonlinear magnetization dynamics in a metal/magnetic insulator bilayer. The spin-current emission from the magnetic insulator is probed by the inverse spin Hall effect, which demonstrates nontrivial temperature and excitation power dependences of the voltage generation. The experimental results reveal that nonlinear magnetization dynamics and enhanced spin-current emission due to magnon scatterings are triggered by decreasing temperature. This result illustrates the crucial role of the nonlinear magnon interactions in the spin-current emission driven by dynamical magnetization, or nonequilibrium magnons, from magnetic insulators.
Spin-current emission governed by nonlinear spin dynamics
Tashiro, Takaharu; Matsuura, Saki; Nomura, Akiyo; Watanabe, Shun; Kang, Keehoon; Sirringhaus, Henning; Ando, Kazuya
2015-01-01
Coupling between conduction electrons and localized magnetization is responsible for a variety of phenomena in spintronic devices. This coupling enables to generate spin currents from dynamical magnetization. Due to the nonlinearity of magnetization dynamics, the spin-current emission through the dynamical spin-exchange coupling offers a route for nonlinear generation of spin currents. Here, we demonstrate spin-current emission governed by nonlinear magnetization dynamics in a metal/magnetic insulator bilayer. The spin-current emission from the magnetic insulator is probed by the inverse spin Hall effect, which demonstrates nontrivial temperature and excitation power dependences of the voltage generation. The experimental results reveal that nonlinear magnetization dynamics and enhanced spin-current emission due to magnon scatterings are triggered by decreasing temperature. This result illustrates the crucial role of the nonlinear magnon interactions in the spin-current emission driven by dynamical magnetization, or nonequilibrium magnons, from magnetic insulators. PMID:26472712
Coherent spin transport through a 350 micron thick silicon wafer.
Huang, Biqin; Monsma, Douwe J; Appelbaum, Ian
2007-10-26
We use all-electrical methods to inject, transport, and detect spin-polarized electrons vertically through a 350-micron-thick undoped single-crystal silicon wafer. Spin precession measurements in a perpendicular magnetic field at different accelerating electric fields reveal high spin coherence with at least 13pi precession angles. The magnetic-field spacing of precession extrema are used to determine the injector-to-detector electron transit time. These transit time values are associated with output magnetocurrent changes (from in-plane spin-valve measurements), which are proportional to final spin polarization. Fitting the results to a simple exponential spin-decay model yields a conduction electron spin lifetime (T1) lower bound in silicon of over 500 ns at 60 K.
Discretization of the total magnetic field by the nuclear spin bath in fluorine-doped ZnSe.
Zhukov, E A; Kirstein, E; Kopteva, N E; Heisterkamp, F; Yugova, I A; Korenev, V L; Yakovlev, D R; Pawlis, A; Bayer, M; Greilich, A
2018-05-16
The coherent spin dynamics of fluorine donor-bound electrons in ZnSe induced by pulsed optical excitation is studied in a perpendicular applied magnetic field. The Larmor precession frequency serves as a measure for the total magnetic field exerted onto the electron spins and, surprisingly, does not increase linearly with the applied field, but shows a step-like behavior with pronounced plateaus, given by multiples of the laser repetition rate. This discretization occurs by a feedback mechanism in which the electron spins polarize the nuclear spins, which in turn generate a local Overhauser field adjusting the total magnetic field accordingly. Varying the optical excitation power, we can control the plateaus, in agreement with our theoretical model. From this model, we trace the observed discretization to the optically induced Stark field, which causes the dynamic nuclear polarization.
Absence of magnetic order in low-dimensional (RKKY) systems
NASA Astrophysics Data System (ADS)
Pedrocchi, Fabio; Leggett, Anthony; Loss, Daniel
2012-02-01
We extend the Mermin-Wagner theorem to a system of lattice spins which are spin-coupled to itinerant and interacting charge carriers. We use the Bogoliubov inequality to rigorously prove that neither (anti-) ferromagnetic nor helical long-range order is possible in one and two dimensions at any finite temperature. Our proof applies to a wide class of models including any form of electron-electron and single-electron interactions that are independent of spin. In the presence of Rashba or Dresselhaus spin-orbit interactions (SOI) magnetic order is not excluded and intimately connected to equilibrium spin currents. However, in the special case when Rashba and Dresselhaus SOIs are tuned to be equal, magnetic order is excluded again. This opens up a new possibility to control magnetism electrically. [4pt] References: D. Loss, F. L. Pedrocchi, and A. J. Leggett, Phys. Rev. Lett. 107, 107201 (2011).
Unconventional magnetisation texture in graphene/cobalt hybrids
Vu, A. D.; Coraux, J.; Chen, G.; ...
2016-04-26
Magnetic domain structure and spin-dependent reflectivity measurements on cobalt thin films intercalated at the graphene/Ir(111) interface are investigated using spin-polarised low-energy electron microscopy. We find that graphene-covered cobalt films have surprising magnetic properties. Vectorial imaging of magnetic domains reveals an unusually gradual thickness-dependent spin reorientation transition, in which magnetisation rotates from out-of-the-film plane to the in-plane direction by less than 10° per cobalt monolayer. During this transition, cobalt films have a meandering spin texture, characterised by a complex, three-dimensional, wavy magnetisation pattern. In addition, spectroscopy measurements suggest that the electronic band structure of the unoccupied states is essentially spin-independent alreadymore » a few electron-Volts above the vacuum level. These properties strikingly differ from those of pristine cobalt films and could open new prospects in surface magnetism.« less
NASA Astrophysics Data System (ADS)
Q, Mahmood; S, M. Alay-e.-Abbas; I, Mahmood; Mahmood, Asif; N, A. Noor
2016-04-01
The mechanical, electronic and magnetic properties of non-magnetic MgTe and ferro-magnetic (FM) Mg0.75 TM 0.25Te (TM = Fe, Co, Ni) in the zinc-blende phase are studied by ab-initio calculations for the first time. We use the generalized gradient approximation functional for computing the structural stability, and mechanical properties, while the modified Becke and Johnson local (spin) density approximation (mBJLDA) is utilized for determining the electronic and magnetic properties. By comparing the energies of non-magnetic and FM calculations, we find that the compounds are stable in the FM phase, which is confirmed by their structural stabilities in terms of enthalpy of formation. Detailed descriptions of elastic properties of Mg0.75 TM 0.25Te alloys in the FM phase are also presented. For electronic properties, the spin-polarized electronic band structures and density of states are computed, showing that these compounds are direct bandgap materials with strong hybridizations of TM 3d states and Te p states. Further, the ferromagnetism is discussed in terms of the Zener free electron model, RKKY model and double exchange model. The charge density contours in the (110) plane are calculated to study bonding properties. The spin exchange splitting and crystal field splitting energies are also calculated. The distribution of electron spin density is employed in computing the magnetic moments appearing at the magnetic sites (Fe, Co, Ni), as well as at the non-magnetic sites (Mg, Te). It is found that the p-d hybridization causes not only magnetic moments on the magnetic sites but also induces negligibly small magnetic moments at the non-magnetic sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru
2015-06-15
We discuss the complete theory of spin-1/2 electron-positron quantum plasmas, when electrons and positrons move with velocities mach smaller than the speed of light. We derive a set of two fluid quantum hydrodynamic equations consisting of the continuity, Euler, spin (magnetic moment) evolution equations for each species. We explicitly include the Coulomb, spin-spin, Darwin and annihilation interactions. The annihilation interaction is the main topic of the paper. We consider the contribution of the annihilation interaction in the quantum hydrodynamic equations and in the spectrum of waves in magnetized electron-positron plasmas. We consider the propagation of waves parallel and perpendicular tomore » an external magnetic field. We also consider the oblique propagation of longitudinal waves. We derive the set of quantum kinetic equations for electron-positron plasmas with the Darwin and annihilation interactions. We apply the kinetic theory to the linear wave behavior in absence of external fields. We calculate the contribution of the Darwin and annihilation interactions in the Landau damping of the Langmuir waves. We should mention that the annihilation interaction does not change number of particles in the system. It does not related to annihilation itself, but it exists as a result of interaction of an electron-positron pair via conversion of the pair into virtual photon. A pair of the non-linear Schrodinger equations for the electron-positron plasmas including the Darwin and annihilation interactions is derived. Existence of the conserving helicity in electron-positron quantum plasmas of spinning particles with the Darwin and annihilation interactions is demonstrated. We show that the annihilation interaction plays an important role in the quantum electron-positron plasmas giving the contribution of the same magnitude as the spin-spin interaction.« less
Tunnel based spin injection devices for semiconductor spintronics
NASA Astrophysics Data System (ADS)
Jiang, Xin
This dissertation summarizes the work on spin-dependent electron transport and spin injection in tunnel based spintronic devices. In particular, it focuses on a novel three terminal hot electron device combining ferromagnetic metals and semiconductors---the magnetic tunnel transistor (MTT). The MTT has extremely high magnetic field sensitivity and is a useful tool to explore spin-dependent electron transport in metals, semiconductors, and at their interfaces over a wide energy range. In Chap. 1, the basic concept and fabrication of the MTT are discussed. Two types of MTTs, with ferromagnetic single and spin-valve base layers, respectively, are introduced and compared. In the following chapters, the transport properties of the MTT are discussed in detail, including the spin-dependent hot electron attenuation lengths in CoFe and NiFe thin films on GaAs (Chap. 2), the bias voltage dependence of the magneto-current (Chap. 3), the giant magneto-current effect in MTTs with a spin-valve base (Chap. 4), and the influence of non-magnetic seed layers on magneto-electronic properties of MTTs with a Si collector (Chap. 5). Chap. 6 concentrates on electrical injection of spin-polarized electrons into semiconductors, which is an essential ingredient in semiconductor spintronics. Two types of spin injectors are discussed: an MTT injector and a CoFe/MgO tunnel injector. The spin polarization of the injected electron current is detected optically by measuring the circular polarization of electroluminescence from a quantum well light emitting diode. Using an MTT injector a spin polarization of ˜10% is found for injection electron energy of ˜2 eV at 1.4K. This moderate spin polarization is most likely limited by significant electron spin relaxation at high energy. Much higher spin injection efficiency is obtained by using a CoFe/MgO tunnel injector with spin polarization values of ˜50% at 100K. The temperature and bias dependence of the electroluminescence polarization provides insight into spin relaxation mechanisms within the semiconductor heterostructure.
Magnon Valve Effect between Two Magnetic Insulators.
Wu, H; Huang, L; Fang, C; Yang, B S; Wan, C H; Yu, G Q; Feng, J F; Wei, H X; Han, X F
2018-03-02
The key physics of the spin valve involves spin-polarized conduction electrons propagating between two magnetic layers such that the device conductance is controlled by the relative magnetization orientation of two magnetic layers. Here, we report the effect of a magnon valve which is made of two ferromagnetic insulators (YIG) separated by a nonmagnetic spacer layer (Au). When a thermal gradient is applied perpendicular to the layers, the inverse spin Hall voltage output detected by a Pt bar placed on top of the magnon valve depends on the relative orientation of the magnetization of two YIG layers, indicating the magnon current induced by the spin Seebeck effect at one layer affects the magnon current in the other layer separated by Au. We interpret the magnon valve effect by the angular momentum conversion and propagation between magnons in two YIG layers and conduction electrons in the Au layer. The temperature dependence of the magnon valve ratio shows approximately a power law, supporting the above magnon-electron spin conversion mechanism. This work opens a new class of valve structures beyond the conventional spin valves.
Magnon Valve Effect between Two Magnetic Insulators
NASA Astrophysics Data System (ADS)
Wu, H.; Huang, L.; Fang, C.; Yang, B. S.; Wan, C. H.; Yu, G. Q.; Feng, J. F.; Wei, H. X.; Han, X. F.
2018-03-01
The key physics of the spin valve involves spin-polarized conduction electrons propagating between two magnetic layers such that the device conductance is controlled by the relative magnetization orientation of two magnetic layers. Here, we report the effect of a magnon valve which is made of two ferromagnetic insulators (YIG) separated by a nonmagnetic spacer layer (Au). When a thermal gradient is applied perpendicular to the layers, the inverse spin Hall voltage output detected by a Pt bar placed on top of the magnon valve depends on the relative orientation of the magnetization of two YIG layers, indicating the magnon current induced by the spin Seebeck effect at one layer affects the magnon current in the other layer separated by Au. We interpret the magnon valve effect by the angular momentum conversion and propagation between magnons in two YIG layers and conduction electrons in the Au layer. The temperature dependence of the magnon valve ratio shows approximately a power law, supporting the above magnon-electron spin conversion mechanism. This work opens a new class of valve structures beyond the conventional spin valves.
Phonon induced magnetism in ionic materials
NASA Astrophysics Data System (ADS)
Restrepo, Oscar D.; Antolin, Nikolas; Jin, Hyungyu; Heremans, Joseph P.; Windl, Wolfgang
2014-03-01
Thermoelectric phenomena in magnetic materials create exciting possibilities in future spin caloritronic devices by manipulating spin information using heat. An accurate understanding of the spin-lattice interactions, i.e. the coupling between magnetic excitations (magnons) and lattice vibrations (phonons), holds the key to unraveling their underlying physics. We report ab initio frozen-phonon calculations of CsI that result in non-zero magnetization when the degeneracy between spin-up and spin-down electronic density of states is lifted for certain phonon displacement patterns. For those, the magnetization as a function of atomic displacement shows a sharp resonance due to the electronic states on the displaced Cs atoms, while the electrons on indium form a continuous background magnetization. We relate this resonance to the generation of a two-level system in the spin-polarized Cs partial density of states as a function of displacement, which we propose to be described by a simple resonant-susceptibility model. Current work extends these investigations to semiconductors such as InSb. ODR and WW are supported by the Center for Emergent Materials, an NSF MRSEC at OSU (Grant DMR-0820414).HJ and JPH are supported by AFOSR MURI Cryogenic Peltier Cooling, Contract #FA9550-10-1-0533.
NASA Astrophysics Data System (ADS)
Belykh, V. V.; Kavokin, K. V.; Yakovlev, D. R.; Bayer, M.
2017-12-01
The evolution of the electron spin dynamics as consequence of carrier delocalization in n -type GaAs is investigated by the recently developed extended pump-probe Kerr/Faraday rotation spectroscopy. We find that isolated electrons localized on donors demonstrate a prominent difference between the longitudinal and transverse spin relaxation rates in a magnetic field, which is almost absent in the metallic phase. The inhomogeneous transverse dephasing time T2* of the spin ensemble strongly increases upon electron delocalization as a result of motional narrowing that can be induced by increasing either the donor concentration or the temperature. An unexpected relation between T2* and the longitudinal spin relaxation time T1 is found, namely, that their product is about constant, as explained by the magnetic field effect on the spin diffusion. We observe a two-stage longitudinal spin relaxation, which suggests the establishment of spin temperature in the system of exchange-coupled donor-bound electrons.
NASA Astrophysics Data System (ADS)
Arnold, Thorsten; Siegmund, Marc; Pankratov, Oleg
2011-08-01
We apply exact-exchange spin-density functional theory in the Krieger-Li-Iafrate approximation to interacting electrons in quantum rings of different widths. The rings are threaded by a magnetic flux that induces a persistent current. A weak space and spin symmetry breaking potential is introduced to allow for localized solutions. As the electron-electron interaction strength described by the dimensionless parameter rS is increased, we observe—at a fixed spin magnetic moment—the subsequent transition of both spin sub-systems from the Fermi liquid to the Wigner crystal state. A dramatic signature of Wigner crystallization is that the persistent current drops sharply with increasing rS. We observe simultaneously the emergence of pronounced oscillations in the spin-resolved densities and in the electron localization functions indicating a spatial electron localization showing ferrimagnetic order after both spin sub-systems have undergone the Wigner crystallization. The critical rSc at the transition point is substantially smaller than in a fully spin-polarized system and decreases further with decreasing ring width. Relaxing the constraint of a fixed spin magnetic moment, we find that on increasing rS the stable phase changes from an unpolarized Fermi liquid to an antiferromagnetic Wigner crystal and finally to a fully polarized Fermi liquid.
Arnold, Thorsten; Siegmund, Marc; Pankratov, Oleg
2011-08-24
We apply exact-exchange spin-density functional theory in the Krieger-Li-Iafrate approximation to interacting electrons in quantum rings of different widths. The rings are threaded by a magnetic flux that induces a persistent current. A weak space and spin symmetry breaking potential is introduced to allow for localized solutions. As the electron-electron interaction strength described by the dimensionless parameter r(S) is increased, we observe-at a fixed spin magnetic moment-the subsequent transition of both spin sub-systems from the Fermi liquid to the Wigner crystal state. A dramatic signature of Wigner crystallization is that the persistent current drops sharply with increasing r(S). We observe simultaneously the emergence of pronounced oscillations in the spin-resolved densities and in the electron localization functions indicating a spatial electron localization showing ferrimagnetic order after both spin sub-systems have undergone the Wigner crystallization. The critical r(S)(c) at the transition point is substantially smaller than in a fully spin-polarized system and decreases further with decreasing ring width. Relaxing the constraint of a fixed spin magnetic moment, we find that on increasing r(S) the stable phase changes from an unpolarized Fermi liquid to an antiferromagnetic Wigner crystal and finally to a fully polarized Fermi liquid. © 2011 IOP Publishing Ltd
NASA Astrophysics Data System (ADS)
Heisterkamp, F.; Greilich, A.; Zhukov, E. A.; Kirstein, E.; Kazimierczuk, T.; Korenev, V. L.; Yugova, I. A.; Yakovlev, D. R.; Pawlis, A.; Bayer, M.
2015-12-01
Optically induced nuclear spin polarization in a fluorine-doped ZnSe epilayer is studied by time-resolved Kerr rotation using resonant excitation of donor-bound excitons. Excitation with helicity-modulated laser pulses results in a transverse nuclear spin polarization, which is detected as a change of the Larmor precession frequency of the donor-bound electron spins. The frequency shift in dependence on the transverse magnetic field exhibits a pronounced dispersion-like shape with resonances at the fields of nuclear magnetic resonance of the constituent zinc and selenium isotopes. It is studied as a function of external parameters, particularly of constant and radio frequency external magnetic fields. The width of the resonance and its shape indicate a strong spatial inhomogeneity of the nuclear spin polarization in the vicinity of a fluorine donor. A mechanism of optically induced nuclear spin polarization is suggested based on the concept of resonant nuclear spin cooling driven by the inhomogeneous Knight field of the donor-bound electron.
Spin Relaxation and Manipulation in Spin-orbit Qubits
NASA Astrophysics Data System (ADS)
Borhani, Massoud; Hu, Xuedong
2012-02-01
We derive a generalized form of the Electric Dipole Spin Resonance (EDSR) Hamiltonian in the presence of the spin-orbit interaction for single spins in an elliptic quantum dot (QD) subject to an arbitrary (in both direction and magnitude) applied magnetic field. We predict a nonlinear behavior of the Rabi frequency as a function of the magnetic field for sufficiently large Zeeman energies, and present a microscopic expression for the anisotropic electron g-tensor. Similarly, an EDSR Hamiltonian is devised for two spins confined in a double quantum dot (DQD). Finally, we calculate two-electron-spin relaxation rates due to phonon emission, for both in-plane and perpendicular magnetic fields. Our results have immediate applications to current EDSR experiments on nanowire QDs, g-factor optimization of confined carriers, and spin decay measurements in DQD spin-orbit qubits.
NASA Astrophysics Data System (ADS)
Shibata, Goro; Kitamura, Miho; Minohara, Makoto; Yoshimatsu, Kohei; Kadono, Toshiharu; Ishigami, Keisuke; Harano, Takayuki; Takahashi, Yukio; Sakamoto, Shoya; Nonaka, Yosuke; Ikeda, Keisuke; Chi, Zhendong; Furuse, Mitsuho; Fuchino, Shuichiro; Okano, Makoto; Fujihira, Jun-ichi; Uchida, Akira; Watanabe, Kazunori; Fujihira, Hideyuki; Fujihira, Seiichi; Tanaka, Arata; Kumigashira, Hiroshi; Koide, Tsuneharu; Fujimori, Atsushi
2018-01-01
Magnetic anisotropies of ferromagnetic thin films are induced by epitaxial strain from the substrate via strain-induced anisotropy in the orbital magnetic moment and that in the spatial distribution of spin-polarized electrons. However, the preferential orbital occupation in ferromagnetic metallic La1-xSrxMnO3 (LSMO) thin films studied by x-ray linear dichroism (XLD) has always been found out-of-plane for both tensile and compressive epitaxial strain and hence irrespective of the magnetic anisotropy. In order to resolve this mystery, we directly probed the preferential orbital occupation of spin-polarized electrons in LSMO thin films under strain by angle-dependent x-ray magnetic circular dichroism (XMCD). Anisotropy of the spin-density distribution was found to be in-plane for the tensile strain and out-of-plane for the compressive strain, consistent with the observed magnetic anisotropy. The ubiquitous out-of-plane preferential orbital occupation seen by XLD is attributed to the occupation of both spin-up and spin-down out-of-plane orbitals in the surface magnetic dead layer.
van Schooten, Kipp J.; Baird, Douglas L.; Limes, Mark E.; Lupton, John M.; Boehme, Christoph
2015-01-01
Weakly coupled electron spin pairs that experience weak spin–orbit interaction can control electronic transitions in molecular and solid-state systems. Known to determine radical pair reactions, they have been invoked to explain phenomena ranging from avian magnetoreception to spin-dependent charge-carrier recombination and transport. Spin pairs exhibit persistent spin coherence, allowing minute magnetic fields to perturb spin precession and thus recombination rates and photoreaction yields, giving rise to a range of magneto-optoelectronic effects in devices. Little is known, however, about interparticle magnetic interactions within such pairs. Here we present pulsed electrically detected electron spin resonance experiments on poly(styrene-sulfonate)-doped poly(3,4-ethylenedioxythiophene) (PEDOT:PSS) devices, which show how interparticle spin–spin interactions (magnetic-dipolar and spin-exchange) between charge-carrier spin pairs can be probed through the detuning of spin-Rabi oscillations. The deviation from uncoupled precession frequencies quantifies both the exchange (<30 neV) and dipolar (23.5±1.5 neV) interaction energies responsible for the pair's zero-field splitting, implying quantum mechanical entanglement of charge-carrier spins over distances of 2.1±0.1 nm. PMID:25868686
van Schooten, Kipp J.; Baird, Douglas L.; Limes, Mark E.; ...
2015-04-14
Here, weakly coupled electron spin pairs that experience weak spin–orbit interaction can control electronic transitions in molecular and solid-state systems. Known to determine radical pair reactions, they have been invoked to explain phenomena ranging from avian magnetoreception to spin-dependent charge-carrier recombination and transport. Spin pairs exhibit persistent spin coherence, allowing minute magnetic fields to perturb spin precession and thus recombination rates and photoreaction yields, giving rise to a range of magneto-optoelectronic effects in devices. Little is known, however, about interparticle magnetic interactions within such pairs. Here we present pulsed electrically detected electron spin resonance experiments on poly(styrene-sulfonate)-doped poly(3,4-ethylenedioxythiophene) (PEDOT:PSS) devices,more » which show how interparticle spin–spin interactions (magnetic-dipolar and spin-exchange) between charge-carrier spin pairs can be probed through the detuning of spin-Rabi oscillations. The deviation from uncoupled precession frequencies quantifies both the exchange (<30 neV) and dipolar (23.5±1.5 neV) interaction energies responsible for the pair’s zero-field splitting, implying quantum mechanical entanglement of charge-carrier spins over distances of 2.1±0.1 nm.« less
NASA Astrophysics Data System (ADS)
Dehghan, E.; Khoshnoud, D. Sanavi; Naeimi, A. S.
2018-06-01
Aim of this study is to investigate spin transportation in double quantum ring (DQR). We developed an array of DQR to measure the transmission coefficient and analyze the spin transportation through this system in the presence of Rashba spin-orbit interaction (RSOI) and magnetic flux estimated using S-matrix method. In this article, we compute the spin transport and spin-current characteristics numerically as functions of electron energy, angles between the leads, coupling constant of the leads, RSOI, and magnetic flux. Our results suggest that, for typical values of the magnetic flux (ϕ /ϕ0) and Rashba constant (αR), such system can demonstrates many spintronic properties. It is possible to design a new geometry of DQR by incoming electrons polarization in a way to optimize the system to work as a spin-filtering and spin-inverting nano-device with very high efficiency. The results prove that the spin current will strongly modulate with an increase in the magnetic flux and Rashba constant. Moreover it is shown that, when the lead coupling is weak, the perfect spin-inverter does not occur.
Atomic scale imaging of magnetic circular dichroism by achromatic electron microscopy.
Wang, Zechao; Tavabi, Amir H; Jin, Lei; Rusz, Ján; Tyutyunnikov, Dmitry; Jiang, Hanbo; Moritomo, Yutaka; Mayer, Joachim; Dunin-Borkowski, Rafal E; Yu, Rong; Zhu, Jing; Zhong, Xiaoyan
2018-03-01
In order to obtain a fundamental understanding of the interplay between charge, spin, orbital and lattice degrees of freedom in magnetic materials and to predict and control their physical properties 1-3 , experimental techniques are required that are capable of accessing local magnetic information with atomic-scale spatial resolution. Here, we show that a combination of electron energy-loss magnetic chiral dichroism 4 and chromatic-aberration-corrected transmission electron microscopy, which reduces the focal spread of inelastically scattered electrons by orders of magnitude when compared with the use of spherical aberration correction alone, can achieve atomic-scale imaging of magnetic circular dichroism and provide element-selective orbital and spin magnetic moments atomic plane by atomic plane. This unique capability, which we demonstrate for Sr 2 FeMoO 6 , opens the door to local atomic-level studies of spin configurations in a multitude of materials that exhibit different types of magnetic coupling, thereby contributing to a detailed understanding of the physical origins of magnetic properties of materials at the highest spatial resolution.
NASA Astrophysics Data System (ADS)
Yavari, H.; Mokhtari, M.; Bayervand, A.
2015-03-01
Based on Kubo's linear response formalism, temperature dependence of the spin-Hall conductivity of a two-dimensional impure (magnetic and nonmagnetic impurities) Rashba electron gas in the presence of electron-electron and electron-phonon interactions is analyzed theoretically. We will show that the temperature dependence of the spin-Hall conductivity is determined by the relaxation rates due to these interactions. At low temperature, the elastic lifetimes ( and are determined by magnetic and nonmagnetic impurity concentrations which are independent of the temperature, while the inelastic lifetimes ( and related to the electron-electron and electron-phonon interactions, decrease when the temperature increases. We will also show that since the spin-Hall conductivity is sensitive to temperature, we can distinguish the intrinsic and extrinsic contributions.
Electronic structure and quantum spin fluctuations at the magnetic phase transition in MnSi
NASA Astrophysics Data System (ADS)
Povzner, A. A.; Volkov, A. G.; Nogovitsyna, T. A.
2018-05-01
The effect of spin fluctuations on the heat capacity and homogeneous magnetic susceptibility of the chiral magnetic MnSi in the vicinity of magnetic transition has been investigated by using the free energy functional of the coupled electron and spin subsystems and taking into account the Dzyaloshinsky-Moriya interaction. For helical ferromagnetic ordering, we found that zero-point fluctuations of the spin density are large and comparable with fluctuations of the non-uniform magnetization. The amplitude of zero-point spin fluctuations shows a sharp decrease in the region of the magnetic phase transition. It is shown that sharp decrease of the amplitude of the quantum spin fluctuations results in the lambda-like maxima of the heat capacity and the homogeneous magnetic susceptibility. Above the temperature of the lambda anomaly, the spin correlation radius becomes less than the period of the helical structure and chiral fluctuations of the local magnetization appear. It is shown that formation of a "shoulder" on the temperature dependence of the heat capacity is due to disappearance of the local magnetization. Our finding allows to explain the experimentally observed features of the magnetic phase transition of MnSi as a result of the crossover of quantum and thermodynamic phase transitions.
Spin noise spectroscopy of donor-bound electrons in ZnO
NASA Astrophysics Data System (ADS)
Horn, H.; Balocchi, A.; Marie, X.; Bakin, A.; Waag, A.; Oestreich, M.; Hübner, J.
2013-01-01
We investigate the intrinsic spin dynamics of electrons bound to Al impurities in bulk ZnO by optical spin noise spectroscopy. Spin noise spectroscopy enables us to investigate the longitudinal and transverse spin relaxation time with respect to nuclear and external magnetic fields in a single spectrum. On one hand, the spin dynamic is dominated by the intrinsic hyperfine interaction with the nuclear spins of the naturally occurring 67Zn isotope. We measure a typical spin dephasing time of 23 ns, in agreement with the expected theoretical values. On the other hand, we measure a third, very high spin dephasing rate which is attributed to a high defect density of the investigated ZnO material. Measurements of the spin dynamics under the influence of transverse as well as longitudinal external magnetic fields unambiguously reveal the intriguing connections of the electron spin with its nuclear and structural environment.
NASA Astrophysics Data System (ADS)
Heisterkamp, F.; Zhukov, E. A.; Greilich, A.; Yakovlev, D. R.; Korenev, V. L.; Pawlis, A.; Bayer, M.
2015-06-01
The spin dynamics of strongly localized donor-bound electrons in fluorine-doped ZnSe epilayers is studied using pump-probe Kerr rotation techniques. A method exploiting the spin inertia is developed and used to measure the longitudinal spin relaxation time T1 in a wide range of magnetic fields, temperatures, and pump densities. The T1 time of the donor-bound electron spin of about 1.6 μ s remains nearly constant for external magnetic fields varied from zero up to 2.5 T (Faraday geometry) and in a temperature range 1.8-45 K. These findings impose severe restrictions on possible spin relaxation mechanisms. In our opinion they allow us to rule out scattering between free and donor-bound electrons, jumping of electrons between different donor centers, scattering between phonons and donor-bound electrons, and with less certainty charge fluctuations in the environment of the donors caused by the 1.5 ps pulsed laser excitation.
Will spin-relaxation times in molecular magnets permit quantum information processing?
NASA Astrophysics Data System (ADS)
Ardavan, Arzhang
2007-03-01
Certain computational tasks can be efficiently implemented using quantum logic, in which the information-carrying elements are permitted to exist in quantum superpositions. To achieve this in practice, a physical system that is suitable for embodying quantum bits (qubits) must be identified. Some proposed scenarios employ electron spins in the solid state, for example phosphorous donors in silicon, quantum dots, heterostructures and endohedral fullerenes, motivated by the long electron-spin relaxation times exhibited by these systems. An alternative electron-spin based proposal exploits the large number of quantum states and the non-degenerate transitions available in high spin molecular magnets. Although these advantages have stimulated vigorous research in molecular magnets, the key question of whether the intrinsic spin relaxation times are long enough has hitherto remained unaddressed. Using X-band pulsed electron spin resonance, we measure the intrinsic spin-lattice (T1) and phase coherence (T2) relaxation times in molecular nanomagnets for the first time. In Cr7M heterometallic wheels, with M = Ni and Mn, phase coherence relaxation is dominated by the coupling of the electron spin to protons within the molecule. In deuterated samples T2 reaches 3 μs at low temperatures, which is several orders of magnitude longer than the duration of spin manipulations, satisfying a prerequisite for the deployment of molecular nanomagnets in quantum information applications.
Pure spin polarized current through a full magnetic silicene junction
NASA Astrophysics Data System (ADS)
Lorestaniweiss, Zeinab; Rashidian, Zeinab
2018-06-01
Using the Landauer-Buttiker formula, we investigate electronic transport in silicene junction composed of ferromagnetic silicene. The direction of magnetization in the middle region may change in a plane perpendicular to the junction, whereas the magnetization direction keep fixed upward in silicene electrodes. We investigate how the various magnetization directions in the middle region affect the electronic transport. We demonstrate that conductance depends on the orientation of magnetizations in the middle region. It is found that by changing the direction of the magnetization in the middle region, a pure spin up current can be achieved. This achievement makes this full magnetic junction a good design for a full spin-up current polarizer.
Electrically-Generated Spin Polarization in Non-Magnetic Semiconductors
2016-03-31
resolved Faraday rotation data due to electron spin polarization from previous pump pulses was characterized, and an analytic solution for this phase...electron spin polarization was shown to produce nuclear hyperpolarization through dynamic nuclear polarization. Time-resolved Faraday rotation...Distribution approved for public release. 3 Figure 3. Total magnetic field measured using time-resolved Faraday rotation with the electrically
The Electronic Structure Signature of the Spin Cross-Over Transition of [Co(dpzca)2
NASA Astrophysics Data System (ADS)
Zhang, Xin; Mu, Sai; Liu, Yang; Luo, Jian; Zhang, Jian; N'Diaye, Alpha T.; Enders, Axel; Dowben, Peter A.
2018-05-01
The unoccupied electronic structure of the spin crossover molecule cobalt (II) N-(2-pyrazylcarbonyl)-2-pyrazinecarboxamide, [Co(dpzca)2] was investigated, using X-ray absorption spectroscopy (XAS) and compared with magnetometry (SQUID) measurements. The temperature dependence of the XAS and molecular magnetic susceptibility χmT are in general agreement for [Co(dpzca)2], and consistent with density functional theory (DFT). This agreement of magnetic susceptibility and X-ray absorption spectroscopy provides strong evidence that the changes in magnetic moment can be ascribed to changes in electronic structure. Calculations show the choice of Coulomb correlation energy U has a profound effect on the electronic structure of the low spin state, but has little influence on the electronic structure of the high spin state. In the temperature dependence of the XAS, there is also evidence of an X-ray induced excited state trapping for [Co(dpzca)2] at 15 K.
Nature of magnetization and lateral spin–orbit interaction in gated semiconductor nanowires
NASA Astrophysics Data System (ADS)
Karlsson, H.; Yakimenko, I. I.; Berggren, K.-F.
2018-05-01
Semiconductor nanowires are interesting candidates for realization of spintronics devices. In this paper we study electronic states and effects of lateral spin–orbit coupling (LSOC) in a one-dimensional asymmetrically biased nanowire using the Hartree–Fock method with Dirac interaction. We have shown that spin polarization can be triggered by LSOC at finite source-drain bias,as a result of numerical noise representing a random magnetic field due to wiring or a random background magnetic field by Earth magnetic field, for instance. The electrons spontaneously arrange into spin rows in the wire due to electron interactions leading to a finite spin polarization. The direction of polarization is, however, random at zero source-drain bias. We have found that LSOC has an effect on orientation of spin rows only in the case when source-drain bias is applied.
Magnetism of epitaxial Tb films on W(110) studied by spin-polarized low-energy electron microscopy
NASA Astrophysics Data System (ADS)
Prieto, J. E.; Chen, Gong; Schmid, A. K.; de la Figuera, J.
2016-11-01
Thin epitaxial films of Tb metal were grown on a clean W(110) substrate in ultrahigh vacuum and studied in situ by low-energy electron microscopy. Annealed films present magnetic contrast in spin-polarized low-energy electron microscopy. The energy dependence of the electron reflectivity was determined and a maximum value of its spin asymmetry of about 1% was measured. The magnetization direction of the Tb films is in-plane. Upon raising the temperature, no change in the domain distribution is observed, while the asymmetry in the electron reflectivity decreases when approaching the critical temperature, following a power law ˜(1-T /TC) β with a critical exponent β of 0.39.
Spin polarized electronic states and spin textures at the surface of oxygen-deficient SrTiO3
NASA Astrophysics Data System (ADS)
Jeschke, Harald O.; Altmeyer, Michaela; Rozenberg, Marcelo; Gabay, Marc; Valenti, Roser
We investigate the electronic structure and spin texture at the (001) surface of SrTiO3 in the presence of oxygen vacancies by means of ab initio density functional theory (DFT) calculations of slabs. Relativistic non-magnetic DFT calculations exhibit Rashba-like spin winding with a characteristic energy scale ~ 10 meV. However, when surface magnetism on the Ti ions is included, bands become spin-split with an energy difference ~ 100 meV at the Γ point. This energy scale is comparable to the observations in SARPES experiments performed on the two-dimensional electronic states confined near the (001) surface of SrTiO3. We find the spin polarized state to be the ground state of the system, and while magnetism tends to suppress the effects of the relativistic Rashba interaction, signatures of it are still clearly visible in terms of complex spin textures. We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft through grants SFB/TR 49 and FOR 1346.
NASA Astrophysics Data System (ADS)
Lunkenheimer, Peter; Müller, Jens; Krohns, Stephan; Schrettle, Florian; Loidl, Alois; Hartmann, Benedikt; Rommel, Robert; de Souza, Mariano; Hotta, Chisa; Schlueter, John A.; Lang, Michael
2012-09-01
Multiferroics, showing simultaneous ordering of electrical and magnetic degrees of freedom, are remarkable materials as seen from both the academic and technological points of view. A prominent mechanism of multiferroicity is the spin-driven ferroelectricity, often found in frustrated antiferromagnets with helical spin order. There, as for conventional ferroelectrics, the electrical dipoles arise from an off-centre displacement of ions. However, recently a different mechanism, namely purely electronic ferroelectricity, where charge order breaks inversion symmetry, has attracted considerable interest. Here we provide evidence for ferroelectricity, accompanied by antiferromagnetic spin order, in a two-dimensional organic charge-transfer salt, thus representing a new class of multiferroics. We propose a charge-order-driven mechanism leading to electronic ferroelectricity in this material. Quite unexpectedly for electronic ferroelectrics, dipolar and spin order arise nearly simultaneously. This can be ascribed to the loss of spin frustration induced by the ferroelectric ordering. Hence, here the spin order is driven by the ferroelectricity, in marked contrast to the spin-driven ferroelectricity in helical magnets.
Spin-orbit induced electronic spin separation in semiconductor nanostructures.
Kohda, Makoto; Nakamura, Shuji; Nishihara, Yoshitaka; Kobayashi, Kensuke; Ono, Teruo; Ohe, Jun-ichiro; Tokura, Yasuhiro; Mineno, Taiki; Nitta, Junsaku
2012-01-01
The demonstration of quantized spin splitting by Stern and Gerlach is one of the most important experiments in modern physics. Their discovery was the precursor of recent developments in spin-based technologies. Although electrical spin separation of charged particles is fundamental in spintronics, in non-uniform magnetic fields it has been difficult to separate the spin states of charged particles due to the Lorentz force, as well as to the insufficient and uncontrollable field gradients. Here we demonstrate electronic spin separation in a semiconductor nanostructure. To avoid the Lorentz force, which is inevitably induced when an external magnetic field is applied, we utilized the effective non-uniform magnetic field which originates from the Rashba spin-orbit interaction in an InGaAs-based heterostructure. Using a Stern-Gerlach-inspired mechanism, together with a quantum point contact, we obtained field gradients of 10(8) T m(-1) resulting in a highly polarized spin current.
Spin manipulation and relaxation in spin-orbit qubits
NASA Astrophysics Data System (ADS)
Borhani, Massoud; Hu, Xuedong
2012-03-01
We derive a generalized form of the electric dipole spin resonance (EDSR) Hamiltonian in the presence of the spin-orbit interaction for single spins in an elliptic quantum dot (QD) subject to an arbitrary (in both direction and magnitude) applied magnetic field. We predict a nonlinear behavior of the Rabi frequency as a function of the magnetic field for sufficiently large Zeeman energies, and present a microscopic expression for the anisotropic electron g tensor. Similarly, an EDSR Hamiltonian is devised for two spins confined in a double quantum dot (DQD), where coherent Rabi oscillations between the singlet and triplet states are induced by jittering the inter-dot distance at the resonance frequency. Finally, we calculate two-electron-spin relaxation rates due to phonon emission, for both in-plane and perpendicular magnetic fields. Our results have immediate applications to current EDSR experiments on nanowire QDs, g-factor optimization of confined carriers, and spin decay measurements in DQD spin-orbit qubits.
Phonon-drag magnetothermopower in Rashba spin-split two-dimensional electron systems.
Biswas, Tutul; Ghosh, Tarun Kanti
2013-10-16
We study the phonon-drag contribution to the thermoelectric power in a quasi-two-dimensional electron system confined in GaAs/AlGaAs heterostructure in the presence of both Rashba spin-orbit interaction and perpendicular magnetic field at very low temperature. It is observed that the peaks in the phonon-drag thermopower split into two when the Rashba spin-orbit coupling constant is strong. This splitting is a direct consequence of the Rashba spin-orbit interaction. We show the dependence of phonon-drag thermopower on both magnetic field and temperature numerically. A power-law dependence of phonon-drag magnetothermopower on the temperature in the Bloch-Gruneisen regime is found. We also extract the exponent of the temperature dependence of phonon-drag thermopower for different parameters like electron density, magnetic field, and the spin-orbit coupling constant.
Ben Dor, Oren; Yochelis, Shira; Radko, Anna; Vankayala, Kiran; Capua, Eyal; Capua, Amir; Yang, See-Hun; Baczewski, Lech Tomasz; Parkin, Stuart Stephen Papworth; Naaman, Ron; Paltiel, Yossi
2017-02-23
Ferromagnets are commonly magnetized by either external magnetic fields or spin polarized currents. The manipulation of magnetization by spin-current occurs through the spin-transfer-torque effect, which is applied, for example, in modern magnetoresistive random access memory. However, the current density required for the spin-transfer torque is of the order of 1 × 10 6 A·cm -2 , or about 1 × 10 25 electrons s -1 cm -2 . This relatively high current density significantly affects the devices' structure and performance. Here we demonstrate magnetization switching of ferromagnetic thin layers that is induced solely by adsorption of chiral molecules. In this case, about 10 13 electrons per cm 2 are sufficient to induce magnetization reversal. The direction of the magnetization depends on the handedness of the adsorbed chiral molecules. Local magnetization switching is achieved by adsorbing a chiral self-assembled molecular monolayer on a gold-coated ferromagnetic layer with perpendicular magnetic anisotropy. These results present a simple low-power magnetization mechanism when operating at ambient conditions.
Ben Dor, Oren; Yochelis, Shira; Radko, Anna; Vankayala, Kiran; Capua, Eyal; Capua, Amir; Yang, See-Hun; Baczewski, Lech Tomasz; Parkin, Stuart Stephen Papworth; Naaman, Ron; Paltiel, Yossi
2017-01-01
Ferromagnets are commonly magnetized by either external magnetic fields or spin polarized currents. The manipulation of magnetization by spin-current occurs through the spin-transfer-torque effect, which is applied, for example, in modern magnetoresistive random access memory. However, the current density required for the spin-transfer torque is of the order of 1 × 106 A·cm−2, or about 1 × 1025 electrons s−1 cm−2. This relatively high current density significantly affects the devices' structure and performance. Here we demonstrate magnetization switching of ferromagnetic thin layers that is induced solely by adsorption of chiral molecules. In this case, about 1013 electrons per cm2 are sufficient to induce magnetization reversal. The direction of the magnetization depends on the handedness of the adsorbed chiral molecules. Local magnetization switching is achieved by adsorbing a chiral self-assembled molecular monolayer on a gold-coated ferromagnetic layer with perpendicular magnetic anisotropy. These results present a simple low-power magnetization mechanism when operating at ambient conditions. PMID:28230054
Excitation of propagating spin waves by pure spin current
NASA Astrophysics Data System (ADS)
Demokritov, Sergej
Recently it was demonstrated that pure spin currents can be utilized to excite coherent magnetization dynamics, which enables development of novel magnetic nano-oscillators. Such oscillators do not require electric current flow through the active magnetic layer, which can help to reduce the Joule power dissipation and electromigration. In addition, this allows one to use insulating magnetic materials and provides an unprecedented geometric flexibility. The pure spin currents can be produced by using the spin-Hall effect (SHE). However, SHE devices have a number of shortcomings. In particular, efficient spin Hall materials exhibit a high resistivity, resulting in the shunting of the driving current through the active magnetic layer and a significant Joule heating. These shortcomings can be eliminated in devices that utilize spin current generated by the nonlocal spin-injection (NLSI) mechanism. Here we review our recent studies of excitation of magnetization dynamics and propagating spin waves by using NLSI. We show that NLSI devices exhibit highly-coherent dynamics resulting in the oscillation linewidth of a few MHz at room temperature. Thanks to the geometrical flexibility of the NLSI oscillators, one can utilize dipolar fields in magnetic nano-patterns to convert current-induced localized oscillations into propagating spin waves. The demonstrated systems exhibit efficient and controllable excitation and directional propagation of coherent spin waves characterized by a large decay length. The obtained results open new perspectives for the future-generation electronics using electron spin degree of freedom for transmission and processing of information on the nanoscale.
Mechanisms of relaxation and spin decoherence in nanomagnets
NASA Astrophysics Data System (ADS)
van Tol, Johan
Relaxation in spin systems is of great interest with respect to various possible applications like quantum information processing and storage, spintronics, and dynamic nuclear polarization (DNP). The implementation of high frequencies and fields is crucial in the study of systems with large zero-field splitting or large interactions, as for example molecular magnets and low dimensional magnetic materials. Here we will focus on the implementation of pulsed Electron Paramagnetic Resonance (ERP) at multiple frequencies of 10, 95, 120, 240, and 336 GHz, and the relaxation and decoherence processes as a function of magnetic field and temperature. Firstly, at higher frequencies the direct single-phonon spin-lattice relaxation (SLR) is considerably enhanced, and will more often than not be the dominant relaxation mechanism at low temperatures, and can be much faster than at lower fields and frequencies. In principle the measurement of the SLR rates as a function of the frequency provides a means to map the phonon density of states. Secondly, the high electron spin polarization at high fields has a strong influence on the spin fluctuations in relatively concentrated spin systems, and the contribution of the electron-electron dipolar interactions to the coherence rate can be partially quenched at low temperatures. This not only allows the study of relatively concentrated spin systems by pulsed EPR (as for example magnetic nanoparticles and molecular magnets), it enables the separation of the contribution of the fluctuations of the electron spin system from other decoherence mechanisms. Besides choice of temperature and field, several strategies in sample design, pulse sequences, or clock transitions can be employed to extend the coherence time in nanomagnets. A review will be given of the decoherence mechanisms with an attempt at a quantitative comparison of experimental rates with theory.
Quantum logic readout and cooling of a single dark electron spin
NASA Astrophysics Data System (ADS)
Shi, Fazhan; Zhang, Qi; Naydenov, Boris; Jelezko, Fedor; Du, Jiangfeng; Reinhard, Friedemann; Wrachtrup, Jörg
2013-05-01
We study a single dark N2 electron spin defect in diamond, which is magnetically coupled to a nearby nitrogen-vacancy (NV) center. We perform pulsed electron spin resonance on this single spin by mapping its state to the NV center spin and optically reading out the latter. Moreover, we show that the NV center's spin polarization can be transferred to the electron spin by combined two decoupling control-NOT gates. These two results allow us to extend the NV center's two key properties—optical spin polarization and detection—to any electron spin in its vicinity. This enables dark electron spins to be used as local quantum registers and engineerable memories.
Identical spin rotation effect and electron spin waves in quantum gas of atomic hydrogen
NASA Astrophysics Data System (ADS)
Lehtonen, L.; Vainio, O.; Ahokas, J.; Järvinen, J.; Novotny, S.; Sheludyakov, S.; Suominen, K.-A.; Vasiliev, S.; Khmelenko, V. V.; Lee, D. M.
2018-05-01
We present an experimental study of electron spin waves in atomic hydrogen gas compressed to high densities of ∼5 × 1018 cm‑3 at temperatures ranging from 0.26 to 0.6 K in the strong magnetic field of 4.6 T. Hydrogen gas is in a quantum regime when the thermal de-Broglie wavelength is much larger than the s-wave scattering length. In this regime the identical particle effects play a major role in atomic collisions and lead to the identical spin rotation effect (ISR). We observed a variety of spin wave modes caused by this effect with strong dependence on the magnetic potential caused by variations of the polarizing magnetic field. We demonstrate confinement of the ISR modes in the magnetic potential and manipulate their properties by changing the spatial profile of the magnetic field. We have found that at a high enough density of H gas the magnons accumulate in their ground state in the magnetic trap and exhibit long coherence, which has a profound effect on the electron spin resonance spectra. Such macroscopic accumulation of the ground state occurs at a certain critical density of hydrogen gas, where the chemical potential of the magnons becomes equal to the energy of their ground state in the trapping potential.
Electronic structure and magnetic properties of dilute U impurities in metals
NASA Astrophysics Data System (ADS)
Mohanta, S. K.; Cottenier, S.; Mishra, S. N.
2016-05-01
The electronic structure and magnetic moment of dilute U impurity in metallic hosts have been calculated from first principles. The calculations have been performed within local density approximation of the density functional theory using Augmented plane wave+local orbital (APW+lo) technique, taking account of spin-orbit coupling and Coulomb correlation through LDA+U approach. We present here our results for the local density of states, magnetic moment and hyperfine field calculated for an isolated U impurity embedded in hosts with sp-, d- and f-type conduction electrons. The results of our systematic study provide a comprehensive insight on the pressure dependence of 5f local magnetism in metallic systems. The unpolarized local density of states (LDOS), analyzed within the frame work of Stoner model suggest the occurrence of local moment for U in sp-elements, noble metals and f-block hosts like La, Ce, Lu and Th. In contrast, U is predicted to be nonmagnetic in most transition metal hosts except in Sc, Ti, Y, Zr, and Hf consistent with the results obtained from spin polarized calculation. The spin and orbital magnetic moments of U computed within the frame of LDA+U formalism show a scaling behavior with lattice compression. We have also computed the spin and orbital hyperfine fields and a detail analysis has been carried out. The host dependent trends for the magnetic moment, hyperfine field and 5f occupation reflect pressure induced change of electronic structure with U valency changing from 3+ to 4+ under lattice compression. In addition, we have made a detailed analysis of the impurity induced host spin polarization suggesting qualitatively different roles of f-band electrons on moment stability. The results presented in this work would be helpful towards understanding magnetism and spin fluctuation in U based alloys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dave, Mudra R., E-mail: mdave-phy@yahoo.co.in; Sharma, A. C.
2015-06-24
The structural, electronic and magnetic properties of free standing Au-Pd bimetallic atomic chain is studied using ab-initio method. It is found that electronic and magnetic properties of chains depend on position of atoms and number of atoms. Spin polarization factor for different atomic configuration of atomic chain is calculated predicting a half metallic behavior. It suggests a total spin polarised transport in these chains.
Noncollinear magnetic ordering in a frustrated magnet: Metallic regime and the role of frustration
NASA Astrophysics Data System (ADS)
Shahzad, Munir; Sengupta, Pinaki
2017-12-01
We explore the magnetic phases in a Kondo lattice model on the geometrically frustrated Shastry-Sutherland lattice at metallic electron densities, searching for noncollinear and noncoplanar spin textures. Motivated by experimental observations in many rare-earth-based frustrated metallic magnets, we treat the local moments as classical spins and set the coupling between the itinerant electrons and local moments as the largest energy scale in the problem. Our results show that a noncollinear flux state is stabilized over an extended range of Hamiltonian parameters. These spin states can be quenched efficiently by external fields like temperature and magnetic field as well as by varying the degree of frustration in the electronic itinerancy and exchange coupling between local moments. Interestingly, unlike insulating electron densities that we discussed in paper I of this sequence, a Dzyaloshinskii-Moriya interaction between the local moments is not essential for the emergence of their noncollinear ordering.
Electron transport through magnetic quantum point contacts
NASA Astrophysics Data System (ADS)
Day, Timothy Ellis
Spin-based electronics, or spintronics, has generated a great deal of interest as a possible next-generation integrated circuit technology. Recent experimental and theoretical work has shown that these devices could exhibit increased processing speed, decreased power consumption, and increased integration densities as compared with conventional semiconductor devices. The spintronic device that was designed, fabricated, and tested throughout the course of this work aimed to study the generation of spin-polarized currents in semiconductors using magnetic fringe fields. The device scheme relied on the Zeeman effect in combination with a quantum mechanical barrier to generate spin-polarized currents. The Zeeman effect was used to break the degeneracy of spin-up and spin-down electrons and the quantum mechanical potential to transmit one while rejecting the other. The design was dictated by the drive to maximize the strength of the magnetic fringe field and in turn maximize the energy separation of the two spin species. The device was fabricated using advanced techniques in semiconductor processing including electron beam lithography and DC magnetron sputtering. Measurements were performed in a 3He cryostat equipped with a superconducting magnet at temperatures below 300 mK. Preliminary characterization of the device revealed magnetoconductance oscillations produced by the effect of the transverse confining potential on the density of states and the mobility. Evidence of the effect of the magnetic fringe fields on the transport properties of electrons in the device were observed in multiple device measurements. An abrupt washout of the quantized conductance steps was observed over a minute range of the applied magnetic field. The washout was again observed as electrons were shifted closer to the magnetic gates. In addition, bias spectroscopy demonstrated that the washout occurred despite stronger electron confinement, as compared to a non-magnetic split-gate. Thus, the measurements indicated that conductance quantization breaks down in a non-uniform magnetic field, possibly due to changes to the stationary Landau states. It was also demonstrated that non-integer conductance plateaus at high source-drain bias are not caused by a macroscopic asymmetry in the potential drop.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorai, Prashun; Toberer, Eric S.; Stevanović, Vladan
Here, at room temperature and above, most magnetic materials adopt a spin-disordered (paramagnetic) state whose electronic properties can differ significantly from their low-temperature, spin-ordered counterparts. Yet computational searches for new functional materials usually assume some type of magnetic order. In the present work, we demonstrate a methodology to incorporate spin disorder in computational searches and predict the electronic properties of the paramagnetic phase. We implement this method in a high-throughput framework to assess the potential for thermoelectric performance of 1350 transition-metal sulfides and find that all magnetic systems we identify as promising in the spin-ordered ground state cease to bemore » promising in the paramagnetic phase due to disorder-induced deterioration of the charge carrier transport properties. We also identify promising non-magnetic candidates that do not suffer from these spin disorder effects. In addition to identifying promising materials, our results offer insights into the apparent scarcity of magnetic systems among known thermoelectrics and highlight the importance of including spin disorder in computational searches.« less
Correlation effect and magnetic moments in Cr2Te3
NASA Astrophysics Data System (ADS)
Youn, S. J.; Kwon, S. K.; Min, B. I.
2007-05-01
The electronic and magnetic structures of Cr2Te3 have been studied theoretically using the linearized muffin-tin orbitals band method. Experimental photoemission spectra and magnetic moments can be described better when the on-site Coulomb correlation U of Cr 3d electrons is considered using the local spin-density approximation+U method. The proper size of U is found to be U ˜1.7eV. The complex magnetic behaviors of Cr2Te3 come from the degeneracy of parallel and antiparallel alignments of CrI spin to CrII and CrIII spins.
Anisotropy of magnetic interactions and spin filter behavior in hexagonal (Ga,Mn)As nanoribbons
NASA Astrophysics Data System (ADS)
Nie, Ya; Lan, Mu; Zhang, Xi; Xiang, Gang
2017-09-01
The electronic and magnetic properties of Mn doped hexagonal GaAs nanoribbons ((Ga,Mn)As NRs) have been investigated using spin-polarized density functional theory (DFT), and the spin-resolved transport behaviors of (Ga,Mn)As NRs have also been studied with non-equilibrium Green function theory. The calculations show that every Mn dopant brings 4 Bohr magneton (μB) magnetic moment and the ground states of (Ga,Mn)As NRs are ferromagnetic (FM). The investigation of magnetic anisotropies shows that magnetic interactions are dependent on both the distribution directions of Mn atoms and the edge effect of the NRs. The studies of electronic structures and transport properties show that incorporation of Mn atom turns GaAs NR from semiconducting to half-metallic, which significantly enhances the spin-up conductivity and strongly weakens the spin-down conductivity, resulting in non-monatomic variations of spin-dependent conductivities. The nearly 100% spin polarization shown in (Ga,Mn)As NR may be used for low dimensional spin filters, even with as large a bias as 0.9 V. Also, (Ga,Mn)As NR can be used to generate a relatively stable spin-polarized current in a wide bias interval.
Adiabatic quantum computing with spin qubits hosted by molecules.
Yamamoto, Satoru; Nakazawa, Shigeaki; Sugisaki, Kenji; Sato, Kazunobu; Toyota, Kazuo; Shiomi, Daisuke; Takui, Takeji
2015-01-28
A molecular spin quantum computer (MSQC) requires electron spin qubits, which pulse-based electron spin/magnetic resonance (ESR/MR) techniques can afford to manipulate for implementing quantum gate operations in open shell molecular entities. Importantly, nuclear spins, which are topologically connected, particularly in organic molecular spin systems, are client qubits, while electron spins play a role of bus qubits. Here, we introduce the implementation for an adiabatic quantum algorithm, suggesting the possible utilization of molecular spins with optimized spin structures for MSQCs. We exemplify the utilization of an adiabatic factorization problem of 21, compared with the corresponding nuclear magnetic resonance (NMR) case. Two molecular spins are selected: one is a molecular spin composed of three exchange-coupled electrons as electron-only qubits and the other an electron-bus qubit with two client nuclear spin qubits. Their electronic spin structures are well characterized in terms of the quantum mechanical behaviour in the spin Hamiltonian. The implementation of adiabatic quantum computing/computation (AQC) has, for the first time, been achieved by establishing ESR/MR pulse sequences for effective spin Hamiltonians in a fully controlled manner of spin manipulation. The conquered pulse sequences have been compared with the NMR experiments and shown much faster CPU times corresponding to the interaction strength between the spins. Significant differences are shown in rotational operations and pulse intervals for ESR/MR operations. As a result, we suggest the advantages and possible utilization of the time-evolution based AQC approach for molecular spin quantum computers and molecular spin quantum simulators underlain by sophisticated ESR/MR pulsed spin technology.
A spin-orbital-entangled quantum liquid on a honeycomb lattice
NASA Astrophysics Data System (ADS)
Kitagawa, K.; Takayama, T.; Matsumoto, Y.; Kato, A.; Takano, R.; Kishimoto, Y.; Bette, S.; Dinnebier, R.; Jackeli, G.; Takagi, H.
2018-02-01
The honeycomb lattice is one of the simplest lattice structures. Electrons and spins on this simple lattice, however, often form exotic phases with non-trivial excitations. Massless Dirac fermions can emerge out of itinerant electrons, as demonstrated experimentally in graphene, and a topological quantum spin liquid with exotic quasiparticles can be realized in spin-1/2 magnets, as proposed theoretically in the Kitaev model. The quantum spin liquid is a long-sought exotic state of matter, in which interacting spins remain quantum-disordered without spontaneous symmetry breaking. The Kitaev model describes one example of a quantum spin liquid, and can be solved exactly by introducing two types of Majorana fermion. Realizing a Kitaev model in the laboratory, however, remains a challenge in materials science. Mott insulators with a honeycomb lattice of spin-orbital-entangled pseudospin-1/2 moments have been proposed, including the 5d-electron systems α-Na2IrO3 (ref. 5) and α-Li2IrO3 (ref. 6) and the 4d-electron system α-RuCl3 (ref. 7). However, these candidates were found to magnetically order rather than form a liquid at sufficiently low temperatures, owing to non-Kitaev interactions. Here we report a quantum-liquid state of pseudospin-1/2 moments in the 5d-electron honeycomb compound H3LiIr2O6. This iridate does not display magnetic ordering down to 0.05 kelvin, despite an interaction energy of about 100 kelvin. We observe signatures of low-energy fermionic excitations that originate from a small number of spin defects in the nuclear-magnetic-resonance relaxation and the specific heat. We therefore conclude that H3LiIr2O6 is a quantum spin liquid. This result opens the door to finding exotic quasiparticles in a strongly spin-orbit-coupled 5d-electron transition-metal oxide.
Effect of electron spin-spin interaction on level crossings and spin flips in a spin-triplet system
NASA Astrophysics Data System (ADS)
Jia, Wei; Hu, Fang-Qi; Wu, Ning; Zhao, Qing
2017-12-01
We study level crossings and spin flips in a system consisting of a spin-1 (an electron spin triplet) coupled to a nuclear spin of arbitrary size K , in the presence of a uniform magnetic field and the electron spin-spin interaction within the triplet. Through an analytical diagonalization based on the SU (3 ) Lie algebra, we find that the electron spin-spin interaction not only removes the curious degeneracy which appears in the absence of the interaction, but also produces some level anticrossings (LACs) for strong interactions. The real-time dynamics of the system shows that periodic spin flips occur at the LACs for arbitrary K , which might provide an option for nuclear or electron spin polarization.
Compact vacuum tubes with GaAs(Cs,O) photocathodes for studying spin-dependent phenomena
NASA Astrophysics Data System (ADS)
Alperovich, V. L.; Orlov, D. A.; Grishaev, V. G.; Kosolobov, S. N.; Jaroshevich, A. S.; Scheibler, H. E.; Terekhov, A. S.
2009-08-01
Compact proximity focused vacuum tubes with GaAs(Cs,O) photocathodes are used for experimental studying spindependent phenomena. Firstly, spin-dependent emission of optically oriented electrons from p-GaAs(Cs,O) into vacuum in a magnetic field normal to the surface was observed in a nonmagnetic vacuum diode. This phenomenon is explained by the jump in the electron g-factor at the semiconductor-vacuum interface. Due to this jump, the effective electron affinity on the semiconductor surface depends on the mutual direction of optically oriented electron spins and the magnetic field, resulting in the spin-dependent photoemission. It is demonstrated that the observed effect can be used for the determination of spin diffusion length in semiconductors. Secondly, we developed a prototype of a new spin filter, which consists of a vacuum tube with GaAs(Cs,O) photocathode and a nickel-covered venetian blind dynode. Preliminary results on spin-dependent reflection of electrons from the oxidized polycrystal nickel layer are presented.
Search for exotic spin-dependent interactions with a spin-exchange relaxation-free magnetometer
Chu, Pinghan; Kim, Young Jin; Savukov, Igor Mykhaylovich
2016-08-15
We propose a novel experimental approach to explore exotic spin-dependent interactions using a spin-exchange relaxation-free (SERF) magnetometer, the most sensitive noncryogenic magnetic-field sensor. This approach studies the interactions between optically polarized electron spins located inside a vapor cell of the SERF magnetometer and unpolarized or polarized particles of external solid-state objects. The coupling of spin-dependent interactions to the polarized electron spins of the magnetometer induces the tilt of the electron spins, which can be detected with high sensitivity by a probe laser beam similarly as an external magnetic field. Lastly, we estimate that by moving unpolarized or polarized objects nextmore » to the SERF Rb vapor cell, the experimental limit to the spin-dependent interactions can be significantly improved over existing experiments, and new limits on the coupling strengths can be set in the interaction range below 10 –2 m.« less
Dyakonov-Perel Effect on Spin Dephasing in n-Type GaAs
NASA Technical Reports Server (NTRS)
Ning, C. Z.; Wu, M. W.
2003-01-01
A paper presents a study of the contribution of the Dyakonov-Perel (DP) effect to spin dephasing in electron-donor-doped bulk GaAs in the presence of an applied steady, moderate magnetic field perpendicular to the growth axis of the GaAs crystal. (The DP effect is an electron-wave-vector-dependent spin-state splitting of the conduction band, caused by a spin/orbit interaction in a crystal without an inversion center.) The applicable Bloch equations of kinetics were constructed to include terms accounting for longitudinal optical and acoustic phonon scattering as well as impurity scattering. The contributions of the aforementioned scattering mechanisms to spin-dephasing time in the presence of DP effect were examined by solving the equations numerically. Spin-dephasing time was obtained from the temporal evolution of the incoherently summed spin coherence. Effects of temperature, impurity level, magnetic field, and electron density on spin-dephasing time were investigated. Spin-dephasing time was found to increase with increasing magnetic field. Contrary to predictions of previous simplified treatments of the DP effect, spin-dephasing time was found to increase with temperature in the presence of impurity scattering. These results were found to agree qualitatively with results of recent experiments.
Magnetic field effects in hybrid perovskite devices
NASA Astrophysics Data System (ADS)
Zhang, C.; Sun, D.; Sheng, C.-X.; Zhai, Y. X.; Mielczarek, K.; Zakhidov, A.; Vardeny, Z. V.
2015-05-01
Magnetic field effects have been a successful tool for studying carrier dynamics in organic semiconductors as the weak spin-orbit coupling in these materials gives rise to long spin relaxation times. As the spin-orbit coupling is strong in organic-inorganic hybrid perovskites, which are promising materials for photovoltaic and light-emitting applications, magnetic field effects are expected to be negligible in these optoelectronic devices. We measured significant magneto-photocurrent, magneto-electroluminescence and magneto-photoluminescence responses in hybrid perovskite devices and thin films, where the amplitude and shape are correlated to each other through the electron-hole lifetime, which depends on the perovskite film morphology. We attribute these responses to magnetic-field-induced spin-mixing of the photogenerated electron-hole pairs with different g-factors--the Δg model. We validate this model by measuring large Δg (~ 0.65) using field-induced circularly polarized photoluminescence, and electron-hole pair lifetime using picosecond pump-probe spectroscopy.
Electron-nuclear coherent spin oscillations probed by spin-dependent recombination
NASA Astrophysics Data System (ADS)
Azaizia, S.; Carrère, H.; Sandoval-Santana, J. C.; Ibarra-Sierra, V. G.; Kalevich, V. K.; Ivchenko, E. L.; Bakaleinikov, L. A.; Marie, X.; Amand, T.; Kunold, A.; Balocchi, A.
2018-04-01
We demonstrate the triggering and detection of coherent electron-nuclear spin oscillations related to the hyperfine interaction in Ga deep paramagnetic centers in GaAsN by band-to-band photoluminescence without an external magnetic field. In contrast to other point defects such as Cr4 + in SiC, Ce3 + in yttrium aluminum garnet crystals, nitrogen-vacancy centers in diamond, and P atoms in silicon, the bound-electron spin in Ga centers is not directly coupled to the electromagnetic field via the spin-orbit interaction. However, this apparent drawback can be turned into an advantage by exploiting the spin-selective capture of conduction band electrons to the Ga centers. On the basis of a pump-probe photoluminescence experiment we measure directly in the temporal domain the hyperfine constant of an electron coupled to a gallium defect in GaAsN by tracing the dynamical behavior of the conduction electron spin-dependent recombination to the defect site. The hyperfine constants and the relative abundance of the nuclei isotopes involved can be determined without the need of an electron spin resonance technique and in the absence of any magnetic field. Information on the nuclear and electron spin relaxation damping parameters can also be estimated from the oscillation amplitude decay and the long-time-delay behavior.
Tunneling Statistics for Analysis of Spin-Readout Fidelity
NASA Astrophysics Data System (ADS)
Gorman, S. K.; He, Y.; House, M. G.; Keizer, J. G.; Keith, D.; Fricke, L.; Hile, S. J.; Broome, M. A.; Simmons, M. Y.
2017-09-01
We investigate spin and charge dynamics of a quantum dot of phosphorus atoms coupled to a radio-frequency single-electron transistor (SET) using full counting statistics. We show how the magnetic field plays a role in determining the bunching or antibunching tunneling statistics of the donor dot and SET system. Using the counting statistics, we show how to determine the lowest magnetic field where spin readout is possible. We then show how such a measurement can be used to investigate and optimize single-electron spin-readout fidelity.
NASA Astrophysics Data System (ADS)
Rodriguez, Alvar; Singh, Simranjeet; Haque, Firoze; Del Barco, Enrique; Nguyen, Tu; Christou, George
2012-02-01
Dependence of magnetic field and electronic transport of Mn4 Single-molecule magnet in a Single-Electron Transistor A. Rodriguez, S. Singh, F. Haque and E. del Barco Department of Physics, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816 USA T. Nguyen and G. Christou Department of Chemistry, University of Florida, Gainesville, Florida 32611 USA Abstract We have performed single-electron transport measurements on a series of Mn-based low-nuclearity single-molecule magnets (SMM) observing Coulomb blockade. SMMs with well isolated and low ground spin states, i.e. S = 9/2 (Mn4) and S = 6 (Mn3) were chosen for these studies, such that the ground spin multiplet does not mix with levels of other excited spin states for the magnetic fields (H = 0-8 T) employed in the experiments. Different functionalization groups were employed to change the mechanical, geometrical and transport characteristics of the molecules when deposited from liquid solution on the transistors. Electromigration-broken three-terminal single-electron transistors were used. Results obtained at temperatures down to 240 mK and in the presence of high magnetic fields will be shown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J.T.; Tang, F.; Brown, W.D.
1998-12-20
The authors present a theoretical model for calculating the spin-dependent cross section of the scattering of electrons by a magnetic layer system. The model demonstrates that the cross sections of the scattering are different for spin up and spin down electrons. The model assumes that the electrical resistivity in a conductor is proportional to the scattering cross section of the electron in it. It is believed to support the two channel mechanism in interpreting magneto-resistance (MR). Based on the model without considering the scattering due to the interfacial roughness and the spin flipping scattering, the authors have established a relationshipmore » between MR and the square of the magnetic moment in the bulk sample without considering the scattering due to the interfacial roughness and the spin flipping scattering. It can also qualitatively explain the MR difference between the current in plane (CIP) and current perpendicular to the plane (CPP) configurations. The predictions by the model agree well with the experimental findings.« less
Electron spin relaxation in two polymorphic structures of GaN
NASA Astrophysics Data System (ADS)
Kang, Nam Lyong
2015-03-01
The relaxation process of electron spin in systems of electrons interacting with piezoelectric deformation phonons that are mediated through spin-orbit interactions was interpreted from a microscopic point of view using the formula for the electron spin relaxation times derived by a projection-reduction method. The electron spin relaxation times in two polymorphic structures of GaN were calculated. The piezoelectric material constant for the wurtzite structure obtained by a comparison with a previously reported experimental result was {{P}pe}=1.5 × {{10}29} eV {{m}-1}. The temperature and magnetic field dependence of the relaxation times for both wurtzite and zinc-blende structures were similar, but the relaxation times in zinc-blende GaN were smaller and decreased more rapidly with increasing temperature and magnetic field than that in wurtzite GaN. This study also showed that the electron spin relaxation for wurtzite GaN at low density could be explained by the Elliot-Yafet process but not for zinc-blende GaN in the metallic regime.
Thurber, Kent R; Tycko, Robert
2012-08-28
We present theoretical calculations of dynamic nuclear polarization (DNP) due to the cross effect in nuclear magnetic resonance under magic-angle spinning (MAS). Using a three-spin model (two electrons and one nucleus), cross effect DNP with MAS for electron spins with a large g-anisotropy can be seen as a series of spin transitions at avoided crossings of the energy levels, with varying degrees of adiabaticity. If the electron spin-lattice relaxation time T(1e) is large relative to the MAS rotation period, the cross effect can happen as two separate events: (i) partial saturation of one electron spin by the applied microwaves as one electron spin resonance (ESR) frequency crosses the microwave frequency and (ii) flip of all three spins, when the difference of the two ESR frequencies crosses the nuclear frequency, which transfers polarization to the nuclear spin if the two electron spins have different polarizations. In addition, adiabatic level crossings at which the two ESR frequencies become equal serve to maintain non-uniform saturation across the ESR line. We present analytical results based on the Landau-Zener theory of adiabatic transitions, as well as numerical quantum mechanical calculations for the evolution of the time-dependent three-spin system. These calculations provide insight into the dependence of cross effect DNP on various experimental parameters, including MAS frequency, microwave field strength, spin relaxation rates, hyperfine and electron-electron dipole coupling strengths, and the nature of the biradical dopants.
Thermoelectricity in transition metal compounds: The role of spin disorder
Gorai, Prashun; Toberer, Eric S.; Stevanović, Vladan
2016-11-01
Here, at room temperature and above, most magnetic materials adopt a spin-disordered (paramagnetic) state whose electronic properties can differ significantly from their low-temperature, spin-ordered counterparts. Yet computational searches for new functional materials usually assume some type of magnetic order. In the present work, we demonstrate a methodology to incorporate spin disorder in computational searches and predict the electronic properties of the paramagnetic phase. We implement this method in a high-throughput framework to assess the potential for thermoelectric performance of 1350 transition-metal sulfides and find that all magnetic systems we identify as promising in the spin-ordered ground state cease to bemore » promising in the paramagnetic phase due to disorder-induced deterioration of the charge carrier transport properties. We also identify promising non-magnetic candidates that do not suffer from these spin disorder effects. In addition to identifying promising materials, our results offer insights into the apparent scarcity of magnetic systems among known thermoelectrics and highlight the importance of including spin disorder in computational searches.« less
Wierzbicki, Michał; Barnaś, Józef; Swirkowicz, Renata
2015-12-09
The effects of electron-electron and spin-orbit interactions on the ground-state magnetic configuration and on the corresponding thermoelectric and spin thermoelectric properties in zigzag nanoribbons of two-dimensional hexagonal crystals are analysed theoretically. The thermoelectric properties of quasi-stable magnetic states are also considered. Of particular interest is the influence of Coulomb and spin-orbit interactions on the topological edge states and on the transition between the topological insulator and conventional gap insulator states. It is shown that the interplay of both interactions also has a significant impact on the transport and thermoelectric characteristics of the nanoribbons. The spin-orbit interaction also determines the in-plane magnetic easy axis. The thermoelectric properties of nanoribbons with in-plane magnetic moments are compared to those of nanoribbons with edge magnetic moments oriented perpendicularly to their plane. Nanoribbons with ferromagnetic alignment of the edge moments are shown to reveal spin thermoelectricity in addition to the conventional one.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P [Los Alamos, NM; Chernobrod, Boris M [Los Alamos, NM
2010-06-29
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P.; Chernobrod, Boris M.
2009-11-10
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of impaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P.; Chernobrod, Boris M.
2007-12-11
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P [Los Alamos, NM; Chernobrod, Boris M [Los Alamos, NM
2010-07-13
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P [Los Alamos, NM; Chernobrod, Boris M [Los Alamos, NM
2009-10-27
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Magnetic nano-oscillator driven by pure spin current.
Demidov, Vladislav E; Urazhdin, Sergei; Ulrichs, Henning; Tiberkevich, Vasyl; Slavin, Andrei; Baither, Dietmar; Schmitz, Guido; Demokritov, Sergej O
2012-12-01
With the advent of pure-spin-current sources, spin-based electronic (spintronic) devices no longer require electrical charge transfer, opening new possibilities for both conducting and insulating spintronic systems. Pure spin currents have been used to suppress noise caused by thermal fluctuations in magnetic nanodevices, amplify propagating magnetization waves, and to reduce the dynamic damping in magnetic films. However, generation of coherent auto-oscillations by pure spin currents has not been achieved so far. Here we demonstrate the generation of single-mode coherent auto-oscillations in a device that combines local injection of a pure spin current with enhanced spin-wave radiation losses. Counterintuitively, radiation losses enable excitation of auto-oscillation, suppressing the nonlinear processes that prevent auto-oscillation by redistributing the energy between different modes. Our devices exhibit auto-oscillations at moderate current densities, at a microwave frequency tunable over a wide range. These findings suggest a new route for the implementation of nanoscale microwave sources for next-generation integrated electronics.
Revealing the correlation between real-space structure and chiral magnetic order at the atomic scale
NASA Astrophysics Data System (ADS)
Hauptmann, Nadine; Dupé, Melanie; Hung, Tzu-Chao; Lemmens, Alexander K.; Wegner, Daniel; Dupé, Bertrand; Khajetoorians, Alexander A.
2018-03-01
We image simultaneously the geometric, the electronic, and the magnetic structures of a buckled iron bilayer film that exhibits chiral magnetic order. We achieve this by combining spin-polarized scanning tunneling microscopy and magnetic exchange force microscopy (SPEX) to independently characterize the geometric as well as the electronic and magnetic structures of nonflat surfaces. This new SPEX imaging technique reveals the geometric height corrugation of the reconstruction lines resulting from strong strain relaxation in the bilayer, enabling the decomposition of the real-space from the electronic structure at the atomic level and the correlation with the resultant spin-spiral ground state. By additionally utilizing adatom manipulation, we reveal the chiral magnetic ground state of portions of the unit cell that were not previously imaged with spin-polarized scanning tunneling microscopy alone. Using density functional theory, we investigate the structural and electronic properties of the reconstructed bilayer and identify the favorable stoichiometry regime in agreement with our experimental result.
General magnetic transition dipole moments for electron paramagnetic resonance.
Nehrkorn, Joscha; Schnegg, Alexander; Holldack, Karsten; Stoll, Stefan
2015-01-09
We present general expressions for the magnetic transition rates in electron paramagnetic resonance (EPR) experiments of anisotropic spin systems in the solid state. The expressions apply to general spin centers and arbitrary excitation geometry (Voigt, Faraday, and intermediate). They work for linear and circular polarized as well as unpolarized excitation, and for crystals and powders. The expressions are based on the concept of the (complex) magnetic transition dipole moment vector. Using the new theory, we determine the parities of ground and excited spin states of high-spin (S=5/2) Fe(III) in hemin from the polarization dependence of experimental EPR line intensities.
NASA Astrophysics Data System (ADS)
Nakamura, R.; Plaschke, F.; Teubenbacher, R.; Giner, L.; Baumjohann, W.; Magnes, W.; Steller, M.; Torbert, R. B.; Vaith, H.; Chutter, M.; Fornaçon, K.-H.; Glassmeier, K.-H.; Carr, C.
2013-07-01
We compare the magnetic field data obtained from the Flux-Gate Magnetometer (FGM) and the magnetic field data deduced from the gyration time of electrons measured by the Electron Drift Instrument (EDI) onboard Cluster to determine the spin axis offset of the FGM measurements. Data are used from orbits with their apogees in the magnetotail, when the magnetic field magnitude was between about 20 nT and 500 nT. Offset determination with the EDI-FGM comparison method is of particular interest for these orbits, because no data from solar wind are available in such orbits to apply the usual calibration methods using the Alfvén waves. In this paper, we examine the effects of the different measurement conditions, such as direction of the magnetic field relative to the spin plane and field magnitude in determining the FGM spin-axis offset, and also take into account the time-of-flight offset of the EDI measurements. It is shown that the method works best when the magnetic field magnitude is less than about 128 nT and when the magnetic field is aligned near the spin-axis direction. A remaining spin-axis offset of about 0.4 ~ 0.6 nT was observed between July and October 2003. Using multi-point multi-instrument measurements by Cluster we further demonstrate the importance of the accurate determination of the spin-axis offset when estimating the magnetic field gradient.
NASA Astrophysics Data System (ADS)
Nakamura, R.; Plaschke, F.; Teubenbacher, R.; Giner, L.; Baumjohann, W.; Magnes, W.; Steller, M.; Torbert, R. B.; Vaith, H.; Chutter, M.; Fornaçon, K.-H.; Glassmeier, K.-H.; Carr, C.
2014-01-01
We compare the magnetic field data obtained from the flux-gate magnetometer (FGM) and the magnetic field data deduced from the gyration time of electrons measured by the electron drift instrument (EDI) onboard Cluster to determine the spin-axis offset of the FGM measurements. Data are used from orbits with their apogees in the magnetotail, when the magnetic field magnitude was between about 20 and 500 nT. Offset determination with the EDI-FGM comparison method is of particular interest for these orbits, because no data from solar wind are available in such orbits to apply the usual calibration methods using the Alfvén waves. In this paper, we examine the effects of the different measurement conditions, such as direction of the magnetic field relative to the spin plane and field magnitude in determining the FGM spin-axis offset, and also take into account the time-of-flight offset of the EDI measurements. It is shown that the method works best when the magnetic field magnitude is less than about 128 nT and when the magnetic field is aligned near the spin-axis direction. A remaining spin-axis offset of about 0.4 ∼ 0.6 nT was observed for Cluster 1 between July and October 2003. Using multipoint multi-instrument measurements by Cluster we further demonstrate the importance of the accurate determination of the spin-axis offset when estimating the magnetic field gradient.
NASA Astrophysics Data System (ADS)
John, Sajeev; Golubentsev, Andrey
1995-01-01
It is suggested that an interacting many-electron system in a two-dimensional lattice may condense into a topological magnetic state distinct from any discussed previously. This condensate exhibits local spin-1/2 magnetic moments on the lattice sites but is composed of a Slater determinant of single-electron wave functions which exist in an orthogonal sector of the electronic Hilbert space from the sector describing traditional spin-density-wave or spiral magnetic states. These one-electron spinor wave functions have the distinguishing property that they are antiperiodic along a closed path encircling any elementary plaquette of the lattice. This corresponds to a 2π rotation of the internal coordinate frame of the electron as it encircles the plaquette. The possibility of spinor wave functions with spatial antiperiodicity is a direct consequence of the two-valuedness of the internal electronic wave function defined on the space of Euler angles describing its spin. This internal space is the topologically, doubly-connected, group manifold of SO(3). Formally, these antiperiodic wave functions may be described by passing a flux which couples to spin (rather than charge) through each of the elementary plaquettes of the lattice. When applied to the two-dimensional Hubbard model with one electron per site, this new topological magnetic state exhibits a relativistic spectrum for charged, quasiparticle excitations with a suppressed one-electron density of states at the Fermi level. For a topological antiferromagnet on a square lattice, with the standard Hartree-Fock, spin-density-wave decoupling of the on-site Hubbard interaction, there is an exact mapping of the low-energy one-electron excitation spectrum to a relativistic Dirac continuum field theory. In this field theory, the Dirac mass gap is precisely the Mott-Hubbard charge gap and the continuum field variable is an eight-component Dirac spinor describing the components of physical electron-spin amplitude on each of the four sites of the elementary plaquette in the original Hubbard model. Within this continuum model we derive explicitly the existence of hedgehog Skyrmion textures as local minima of the classical magnetic energy. These magnetic solitons carry a topological winding number μ associated with the vortex rotation of the background magnetic moment field by a phase angle 2πμ along a path encircling the soliton. Such solitons also carry a spin flux of μπ through the plaquette on which they are centered. The μ=1 hedgehog Skyrmion describes a local transition from the topological (antiperiodic) sector of the one-electron Hilbert space to the nontopological sector. We derive from first principles the existence of deep level localized electronic states within the Mott-Hubbard charge gap for the μ=1 and 2 solitons. The spectrum of localized states is symmetric about E=0 and each subgap electronic level can be occupied by a pair of electrons in which one electron resides primarily on one sublattice and the second electron on the other sublattice. It is suggested that flux-carrying solitons and the subgap electronic structure which they induce are important in understanding the physical behavior of doped Mott insulators.
Optical pumping of electron and nuclear spin in a negatively-charged quantum dot
NASA Astrophysics Data System (ADS)
Bracker, Allan; Gershoni, David; Korenev, Vladimir
2005-03-01
We report optical pumping of electron and nuclear spins in an individual negatively-charged quantum dot. With a bias-controlled heterostructure, we inject one electron into the quantum dot. Intense laser excitation produces negative photoluminescence polarization, which is easily erased by the Hanle effect, demonstrating optical pumping of a long-lived resident electron. The electron spin lifetime is consistent with the influence of nuclear spin fluctuations. Measuring the Overhauser effect in high magnetic fields, we observe a high degree of nuclear spin polarization, which is closely correlated to electron spin pumping.
Spin-orbit coupling and electric-dipole spin resonance in a nanowire double quantum dot.
Liu, Zhi-Hai; Li, Rui; Hu, Xuedong; You, J Q
2018-02-02
We study the electric-dipole transitions for a single electron in a double quantum dot located in a semiconductor nanowire. Enabled by spin-orbit coupling (SOC), electric-dipole spin resonance (EDSR) for such an electron can be generated via two mechanisms: the SOC-induced intradot pseudospin states mixing and the interdot spin-flipped tunneling. The EDSR frequency and strength are determined by these mechanisms together. For both mechanisms the electric-dipole transition rates are strongly dependent on the external magnetic field. Their competition can be revealed by increasing the magnetic field and/or the interdot distance for the double dot. To clarify whether the strong SOC significantly impact the electron state coherence, we also calculate relaxations from excited levels via phonon emission. We show that spin-flip relaxations can be effectively suppressed by the phonon bottleneck effect even at relatively low magnetic fields because of the very large g-factor of strong SOC materials such as InSb.
NASA Astrophysics Data System (ADS)
Yao, Jian-Guo; Peng, Guang-Xiong
2004-11-01
The electronic structure and the magnetic properties of the non-pure organic ferromagnetic compound MnCu(pbaOH)(H2O)3 with pbaOH = 2-hydroxy-1, 3-propylenebis (oxamato) are studied by using the density-functional theory with local-spin-density approximation. The density of states, total energy, and the spin magnetic moment are calculated. The calculations reveal that the compound MnCu(pbaOH)(H20)3 has a stable metal-ferromagnetic ground state, and the spin magnetic moment per molecule is 2.208 μB, and the spin magnetic moment is mainly from Mn ion and Cu ion. An antiferromagnetic order is expected and the antiferromagnetic exchange interaction of d-electrons of Cu and Mn passes through the antiferromagnetic interaction between the adjacent C, O, and N atoms along the path linking the atoms Cu and Mn. The project supported by National Natural Science Foundation of China under Grant No. 10375074 and Hubei Automotive Industries Institute Foundation under Grant No. QY2002-16
Magnetic gating of a 2D topological insulator
NASA Astrophysics Data System (ADS)
Dang, Xiaoqian; Burton, J. D.; Tsymbal, Evgeny Y.
2016-09-01
Deterministic control of transport properties through manipulation of spin states is one of the paradigms of spintronics. Topological insulators offer a new playground for exploring interesting spin-dependent phenomena. Here, we consider a ferromagnetic ‘gate’ representing a magnetic adatom coupled to the topologically protected edge state of a two-dimensional (2D) topological insulator to modulate the electron transmission of the edge state. Due to the locked spin and wave vector of the transport electrons the transmission across the magnetic gate depends on the mutual orientation of the adatom magnetic moment and the current. If the Fermi energy matches an exchange-split bound state of the adatom, the electron transmission can be blocked due to the full back scattering of the incident wave. This antiresonance behavior is controlled by the adatom magnetic moment orientation so that the transmission of the edge state can be changed from 1 to 0. Expanding this consideration to a ferromagnetic gate representing a 1D chain of atoms shows a possibility to control the spin-dependent current of a strip of a 2D topological insulator by magnetization orientation of the ferromagnetic gate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brook, David J. R.; Fleming, Connor; Chung, Dorothy
A single electron reduction of an iron bis(verdazyl) complex results in a large change in spin multiplicity resulting from a combination of spin crossover and exceptionally strong ferromagnetic exchange.
Brook, David J. R.; Fleming, Connor; Chung, Dorothy; ...
2018-01-01
A single electron reduction of an iron bis(verdazyl) complex results in a large change in spin multiplicity resulting from a combination of spin crossover and exceptionally strong ferromagnetic exchange.
Spin-dependent tunneling recombination in heterostructures with a magnetic layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denisov, K. S., E-mail: denisokonstantin@gmail.com; Rozhansky, I. V.; Averkiev, N. S.
We propose a mechanism for the generation of spin polarization in semiconductor heterostructures with a quantum well and a magnetic impurity layer spatially separated from it. The spin polarization of carriers in a quantum well originates from spin-dependent tunneling recombination at impurity states in the magnetic layer, which is accompanied by a fast linear increase in the degree of circular polarization of photoluminescence from the quantum well. Two situations are theoretically considered. In the first case, resonant tunneling to the spin-split sublevels of the impurity center occurs and spin polarization is caused by different populations of resonance levels in themore » quantum well for opposite spin projections. In the second, nonresonant case, the spin-split impurity level lies above the occupied states of electrons in the quantum well and plays the role of an intermediate state in the two-stage coherent spin-dependent recombination of an electron from the quantum well and a hole in the impurity layer. The developed theory allows us to explain both qualitatively and quantitatively the kinetics of photoexcited electrons in experiments with photoluminescence with time resolution in Mn-doped InGaAs heterostructures.« less
Extending the electron spin coherence time of atomic hydrogen by dynamical decoupling.
Mitrikas, George; Efthimiadou, Eleni K; Kordas, George
2014-02-14
We study the electron spin decoherence of encapsulated atomic hydrogen in octasilsesquioxane cages induced by the (1)H and (29)Si nuclear spin bath. By applying the Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence we significantly suppress the low-frequency noise due to nuclear spin flip-flops up to the point where a maximum T2 = 56 μs is observed. Moreover, dynamical decoupling with the CPMG sequence reveals the existence of two other sources of decoherence: first, a classical magnetic field noise imposed by the (1)H nuclear spins of the cage organic substituents, which can be described by a virtual fluctuating magnetic field with the proton Larmor frequency, and second, decoherence due to anisotropic hyperfine coupling between the electron and the inner (29)Si spins of the cage.
Spin–orbit induced electronic spin separation in semiconductor nanostructures
Kohda, Makoto; Nakamura, Shuji; Nishihara, Yoshitaka; Kobayashi, Kensuke; Ono, Teruo; Ohe, Jun-ichiro; Tokura, Yasuhiro; Mineno, Taiki; Nitta, Junsaku
2012-01-01
The demonstration of quantized spin splitting by Stern and Gerlach is one of the most important experiments in modern physics. Their discovery was the precursor of recent developments in spin-based technologies. Although electrical spin separation of charged particles is fundamental in spintronics, in non-uniform magnetic fields it has been difficult to separate the spin states of charged particles due to the Lorentz force, as well as to the insufficient and uncontrollable field gradients. Here we demonstrate electronic spin separation in a semiconductor nanostructure. To avoid the Lorentz force, which is inevitably induced when an external magnetic field is applied, we utilized the effective non-uniform magnetic field which originates from the Rashba spin–orbit interaction in an InGaAs-based heterostructure. Using a Stern–Gerlach-inspired mechanism, together with a quantum point contact, we obtained field gradients of 108 T m−1 resulting in a highly polarized spin current. PMID:23011136
Magnetic defects in chemically converted graphene nanoribbons: electron spin resonance investigation
NASA Astrophysics Data System (ADS)
Singamaneni, Srinivasa Rao; Stesmans, Andre; van Tol, Johan; Kosynkin, D. V.; Tour, James M.
2014-04-01
Electronic spin transport properties of graphene nanoribbons (GNRs) are influenced by the presence of adatoms, adsorbates and edge functionalization. To improve the understanding of the factors that influence the spin properties of GNRs, local (element) spin-sensitive techniques such as electron spin resonance (ESR) spectroscopy are important for spintronics applications. Here, we present results of multi-frequency continuous wave (CW), pulse and hyperfine sublevel correlation (HYSCORE) ESR spectroscopy measurements performed on oxidatively unzipped graphene nanoribbons (GNRs), which were subsequently chemically converted (CCGNRs) with hydrazine. ESR spectra at 336 GHz reveal an isotropic ESR signal from the CCGNRs, of which the temperature dependence of its line width indicates the presence of localized unpaired electronic states. Upon functionalization of CCGNRs with 4-nitrobenzene diazonium tetrafluoroborate, the ESR signal is found to be 2 times narrower than that of pristine ribbons. NH3 adsorption/desorption on CCGNRs is shown to narrow the signal, while retaining the signal intensity and g value. The electron spin-spin relaxation process at 10 K is found to be characterized by slow (163 ns) and fast (39 ns) components. HYSCORE ESR data demonstrate the explicit presence of protons and 13C atoms. With the provided identification of intrinsic point magnetic defects such as proton and 13C has been reported, which are roadblocks to spin travel in graphene-based materials, this work could help in advancing the present fundamental understanding on the edge-spin (or magnetic)-based transport properties of CCGNRs.
Electron spin polarization by isospin ordering in correlated two-layer quantum Hall systems.
Tiemann, L; Wegscheider, W; Hauser, M
2015-05-01
Enhancement of the electron spin polarization in a correlated two-layer, two-dimensional electron system at a total Landau level filling factor of 1 is reported. Using resistively detected nuclear magnetic resonance, we demonstrate that the electron spin polarization of two closely spaced two-dimensional electron systems becomes maximized when interlayer Coulomb correlations establish spontaneous isospin ferromagnetic order. This correlation-driven polarization dominates over the spin polarizations of competing single-layer fractional quantum Hall states under electron density imbalances.
Spin coherence and dephasing of localized electrons in monolayer MoS 2
Yang, Luyi; Chen, Weibing; McCreary, Kathleen M.; ...
2015-11-10
Here, we report a systematic study of coherent spin precession and spin dephasing in electron-doped monolayer MoS 2. Using time-resolved Kerr rotation spectroscopy and applied in-plane magnetic fields, a nanosecond time scale Larmor spin precession signal commensurate with g-factor |g 0| ≃ 1.86 is observed in several different MoS 2 samples grown by chemical vapor deposition. The dephasing rate of this oscillatory signal increases linearly with magnetic field, suggesting that the coherence arises from a subensemble of localized electron spins having an inhomogeneously broadened distribution of g-factors, g 0 + Δg. In contrast to g 0, Δg is sample-dependent andmore » ranges from 0.042 to 0.115.« less
Resonant spin Hall effect in two dimensional electron gas
NASA Astrophysics Data System (ADS)
Shen, Shun-Qing
2005-03-01
Remarkable phenomena have been observed in 2DEG over last two decades, most notably, the discovery of integer and fractional quantum Hall effect. The study of spin transport provides a good opportunity to explore spin physics in two-dimensional electron gas (2DEG) with spin-orbit coupling and other interaction. It is already known that the spin-orbit coupling leads to a zero-field spin splitting, and competes with the Zeeman spin splitting if the system is subjected to a magnetic field perpendicular to the plane of 2DEG. The result can be detected as beating of the Shubnikov-de Haas oscillation. Very recently the speaker and his collaborators studied transport properties of a two-dimensional electron system with Rashba spin-orbit coupling in a perpendicular magnetic field. The spin-orbit coupling competes with the Zeeman splitting to generate additional degeneracies between different Landau levels at certain magnetic fields. It is predicted theoretically that this degeneracy, if occurring at the Fermi level, gives rise to a resonant spin Hall conductance, whose height is divergent as 1/T and whose weight is divergent as -lnT at low temperatures. The charge Hall conductance changes by 2e^2/h instead of e^2/h as the magnetic field changes through the resonant point. The speaker will address the resonance condition, symmetries in the spin-orbit coupling, the singularity of magnetic susceptibility, nonlinear electric field effect, the edge effect and the disorder effect due to impurities. This work was supported by the Research Grants Council of Hong Kong under Grant No.: HKU 7088/01P. *S. Q. Shen, M. Ma, X. C. Xie, and F. C. Zhang, Phys. Rev. Lett. 92, 256603 (2004) *S. Q. Shen, Y. J. Bao, M. Ma, X. C. Xie, and F. C. Zhang, cond-mat/0410169
Park, Hyun Soon; Yu, Xiuzhen; Aizawa, Shinji; Tanigaki, Toshiaki; Akashi, Tetsuya; Takahashi, Yoshio; Matsuda, Tsuyoshi; Kanazawa, Naoya; Onose, Yoshinori; Shindo, Daisuke; Tonomura, Akira; Tokura, Yoshinori
2014-05-01
Skyrmions are nanoscale spin textures that are viewed as promising candidates as information carriers in future spintronic devices. Skyrmions have been observed using neutron scattering and microscopy techniques. Real-space imaging using electrons is a straightforward way to interpret spin configurations by detecting the phase shifts due to electromagnetic fields. Here, we report the first observation by electron holography of the magnetic flux and the three-dimensional spin configuration of a skyrmion lattice in Fe(0.5)Co(0.5)Si thin samples. The magnetic flux inside and outside a skyrmion was directly visualized and the handedness of the magnetic flux flow was found to be dependent on the direction of the applied magnetic field. The electron phase shifts φ in the helical and skyrmion phases were determined using samples with a stepped thickness t (from 55 nm to 510 nm), revealing a linear relationship (φ = 0.00173 t). The phase measurements were used to estimate the three-dimensional structures of both the helical and skyrmion phases, demonstrating that electron holography is a useful tool for studying complex magnetic structures and for three-dimensional, real-space mapping of magnetic fields.
NASA Astrophysics Data System (ADS)
Gräfenstein, Jürgen; Cremer, Dieter
2004-12-01
For the first time, the nuclear magnetic resonance (NMR) spin-spin coupling mechanism is decomposed into one-electron and electron-electron interaction contributions to demonstrate that spin-information transport between different orbitals is not exclusively an electron-exchange phenomenon. This is done using coupled perturbed density-functional theory in conjunction with the recently developed J-OC-PSP [=J-OC-OC-PSP: Decomposition of J into orbital contributions using orbital currents and partial spin polarization)] method. One-orbital contributions comprise Ramsey response and self-exchange effects and the two-orbital contributions describe first-order delocalization and steric exchange. The two-orbital effects can be characterized as external orbital, echo, and spin transport contributions. A relationship of these electronic effects to zeroth-order orbital theory is demonstrated and their sign and magnitude predicted using simple models and graphical representations of first order orbitals. In the case of methane the two NMR spin-spin coupling constants result from totally different Fermi contact coupling mechanisms. 1J(C,H) is the result of the Ramsey response and the self-exchange of the bond orbital diminished by external first-order delocalization external one-orbital effects whereas 2J(H,H) spin-spin coupling is almost exclusively mitigated by a two-orbital steric exchange effect. From this analysis, a series of prediction can be made how geometrical deformations, electron lone pairs, and substituent effects lead to a change in the values of 1J(C,H) and 2J(H,H), respectively, for hydrocarbons.
Electronic and Magnetic Properties of Ni-Doped Zinc-Blende ZnO: A First-Principles Study.
Xue, Suqin; Zhang, Fuchun; Zhang, Shuili; Wang, Xiaoyang; Shao, Tingting
2018-04-26
The electronic structure, band structure, density of state, and magnetic properties of Ni-doped zinc-blende (ZB) ZnO are studied by using the first-principles method based on the spin-polarized density-functional theory. The calculated results show that Ni atoms can induce a stable ferromagnetic (FM) ground state in Ni-doped ZB ZnO. The magnetic moments mainly originate from the unpaired Ni 3 d orbitals, and the O 2 p orbitals contribute a little to the magnetic moments. The magnetic moment of a supercell including a single Ni atom is 0.79 μ B . The electronic structure shows that Ni-doped ZB ZnO is a half-metallic FM material. The strong spin-orbit coupling appears near the Fermi level and shows obvious asymmetry for spin-up and spin-down density of state, which indicates a significant hybrid effects from the Ni 3 d and O 2 p states. However, the coupling of the anti-ferromagnetic (AFM) state show metallic characteristic, the spin-up and spin-down energy levels pass through the Fermi surface. The magnetic moment of a single Ni atom is 0.74 μ B . Moreover, the results show that the Ni 3 d and O 2 p states have a strong p - d hybridization effect near the Fermi level and obtain a high stability. The above theoretical results demonstrate that Ni-doped zinc blende ZnO can be considered as a potential half-metal FM material and dilute magnetic semiconductors.
Gate control of quantum dot-based electron spin-orbit qubits
NASA Astrophysics Data System (ADS)
Wu, Shudong; Cheng, Liwen; Yu, Huaguang; Wang, Qiang
2018-07-01
We investigate theoretically the coherent spin dynamics of gate control of quantum dot-based electron spin-orbit qubits subjected to a tilted magnetic field under electric-dipole spin resonance (EDSR). Our results reveal that Rabi oscillation of qubit states can be manipulated electrically based on rapid gate control of SOC strength. The Rabi frequency is strongly dependent on the gate-induced electric field, the strength and orientation of the applied magnetic field. There are two major EDSR mechanisms. One arises from electric field-induced spin-orbit hybridization, and the other arises from magnetic field-induced energy-level crossing. The SOC introduced by the gate-induced electric field allows AC electric fields to drive coherent Rabi oscillations between spin-up and -down states. After the crossing of the energy-levels with the magnetic field, the spin-transfer crossing results in Rabi oscillation irrespective of whether or not the external electric field is present. The spin-orbit qubit is transferred into the orbit qubit. Rabi oscillation is anisotropic and periodic with respect to the tilted and in-plane orientation of the magnetic field originating from the interplay of the SOC, orbital, and Zeeman effects. The strong electrically-controlled SOC strength suggests the possibility for scalable applications of gate-controllable spin-orbit qubits.
Effect of the magnetic dipole interaction on a spin-1 system
NASA Astrophysics Data System (ADS)
Hu, Fangqi; Jia, Wei; Zhao, Qing
2018-05-01
We consider a hybrid system composed of a spin-1 triplet coupled to a nuclear spin. We study the effect of the axisymmetric and the quadrupole term of the magnetic dipole interaction between the two electrons forming the triplet on the energy spectrum in a static magnetic field. The energy spectrum obtained by directly diagonalizing the Hamiltonian of the system shows that these two terms not only remove the special crossings that appear in the absence of the magnetic dipole interaction, but also produce new (avoided) crossings by lifting the relevant levels. Specially, the gaps between the avoided crossing levels increase with the strength of the quadrupole term. In order to accurately illustrate these effects, we present the results for the discriminant and von Neumann entropy of one electron interacting with the rest of the whole system. Finally, by numerically solving the time-dependent Schrödinger equations of the system, we discover that the polarization oscillation of electron and nuclear spin is in-phase and the total average longitudinal spin is not conserved at location of avoided crossing, but the two results are opposite beyond that.
NASA Astrophysics Data System (ADS)
Poszwa, A.
2018-05-01
We investigate quantum decoherence of spin states caused by Rashba spin-orbit (SO) coupling for an electron confined to a planar quantum dot (QD) in the presence of a magnetic field (B). The Schrödinger equation has been solved in a frame of second-order perturbation theory. The relationship between the von Neumann (vN) entropy and the spin polarization is obtained. The relation is explicitly demonstrated for the InSb semiconductor QD.
Electron spin relaxation in carbon nanotubes: Dyakonov-Perel mechanism
NASA Astrophysics Data System (ADS)
Semenov, Yuriy; Zavada, John; Kim, Ki Wook
2010-03-01
The long standing problem of unaccountable short spin relaxation in carbon nanotubes (CNT) meets a disclosure in terms of curvature-mediated spin-orbital interaction that leads to spin fluctuating precession analogous to Dyakonov-Perel mechanism. Strong anisotropy imposed by arbitrary directed magnetic field has been taken into account in terms of extended Bloch equations. Especially, stationary spin current through CNT can be controlled by spin-flip processes with relaxation time as less as 150 ps, the rate of transversal polarization (i.e. decoherence) runs up to 1/(70 ps) at room temperature while spin interference of the electrons related to different valleys can be responsible for shorter spin dephasing. Dependencies of spin-relaxation parameters on magnetic field strength and orientation, CNT curvature and chirality have been analyzed.
Thersleff, Thomas; Rusz, Jan; Rubino, Stefano; Hjörvarsson, Björgvin; Ito, Yasuo; J Zaluzec, Nestor; Leifer, Klaus
2015-08-17
Understanding the ramifications of reduced crystalline symmetry on magnetic behavior is a critical step in improving our understanding of nanoscale and interfacial magnetism. However, investigations of such effects are often controversial largely due to the challenges inherent in directly correlating nanoscale stoichiometry and structure to magnetic behavior. Here, we describe how to use Transmission Electron Microscope (TEM) to obtain Electron Magnetic Circular Dichroism (EMCD) signals as a function of scattering angle to locally probe the magnetic behavior of thin oxide layers grown on an Fe (1 1 0) surface. Experiments and simulations both reveal a strong dependence of the magnetic orbital to spin ratio on its scattering vector in reciprocal space. We exploit this variation to extract the magnetic properties of the oxide cladding layer, showing that it locally may exhibit an enhanced orbital to spin moment ratio. This finding is supported here by both spatially and angularly resolved EMCD measurements, opening up the way for compelling investigations into how magnetic properties are affected by nanoscale features.
Spin splitting generated in a Y-shaped semiconductor nanostructure with a quantum point contact
NASA Astrophysics Data System (ADS)
Wójcik, P.; Adamowski, J.; Wołoszyn, M.; Spisak, B. J.
2015-07-01
We have studied the spin splitting of the current in the Y-shaped semiconductor nanostructure with a quantum point contact (QPC) in a perpendicular magnetic field. Our calculations show that the appropriate tuning of the QPC potential and the external magnetic field leads to an almost perfect separation of the spin-polarized currents: electrons with opposite spins flow out through different output branches. The spin splitting results from the joint effect of the QPC, the spin Zeeman splitting, and the electron transport through the edge states formed in the nanowire at the sufficiently high magnetic field. The Y-shaped nanostructure can be used to split the unpolarized current into two spin currents with opposite spins as well as to detect the flow of the spin current. We have found that the separation of the spin currents is only slightly affected by the Rashba spin-orbit coupling. The spin-splitter device is an analogue of the optical device—the birefractive crystal that splits the unpolarized light into two beams with perpendicular polarizations. In the magnetic-field range, in which the current is carried through the edges states, the spin splitting is robust against the spin-independent scattering. This feature opens up a possibility of the application of the Y-shaped nanostructure as a non-ballistic spin-splitter device in spintronics.
Spin splitting generated in a Y-shaped semiconductor nanostructure with a quantum point contact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wójcik, P., E-mail: pawel.wojcik@fis.agh.edu.pl; Adamowski, J., E-mail: janusz.adamowski@fis.agh.edu.pl; Wołoszyn, M.
2015-07-07
We have studied the spin splitting of the current in the Y-shaped semiconductor nanostructure with a quantum point contact (QPC) in a perpendicular magnetic field. Our calculations show that the appropriate tuning of the QPC potential and the external magnetic field leads to an almost perfect separation of the spin-polarized currents: electrons with opposite spins flow out through different output branches. The spin splitting results from the joint effect of the QPC, the spin Zeeman splitting, and the electron transport through the edge states formed in the nanowire at the sufficiently high magnetic field. The Y-shaped nanostructure can be usedmore » to split the unpolarized current into two spin currents with opposite spins as well as to detect the flow of the spin current. We have found that the separation of the spin currents is only slightly affected by the Rashba spin-orbit coupling. The spin-splitter device is an analogue of the optical device—the birefractive crystal that splits the unpolarized light into two beams with perpendicular polarizations. In the magnetic-field range, in which the current is carried through the edges states, the spin splitting is robust against the spin-independent scattering. This feature opens up a possibility of the application of the Y-shaped nanostructure as a non-ballistic spin-splitter device in spintronics.« less
NASA Astrophysics Data System (ADS)
Eyni, Zahra; Mohammadpour, Hakimeh
2017-12-01
Current modulation and rectification is an important subject of electronics as well as spintronics. In this paper, an efficient rectifying mesoscopic device is introduced. The device is a two terminal device on the 2D plane of electron gas. The lateral contacts are half-metal ferromagnetic with antiparallel magnetizations and the central channel region is taken as ferromagnetic or normal in the presence of an applied magnetic field. The device functionality is based on the modification of spin-current by tuning the strength of the magnetic field or equivalently by the exchange coupling of the channel to the substrate. The result is that the (spin-) current depends on the polarity of the bias voltage. Converting an alternating bias voltage to direct current is the main achievement of this model device with an additional profit of rectified spin-current. We analyze the results in terms of the spin-dependent barrier in the channel. Detecting the strength of the magnetic field by spin polarization is also suggested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chida, K.; Yamauchi, Y.; Arakawa, T.
2013-12-04
We performed the resistively-detected nuclear magnetic resonance (RDNMR) to study the electron spin polarization in the non-equilibrium quantum Hall regime. By measuring the Knight shift, we derive source-drain bias voltage dependence of the electron spin polarization in quantum wires. The electron spin polarization shows minimum value around the threshold voltage of the dynamic nuclear polarization.
Spin-polarized scanning tunneling microscopy with quantitative insights into magnetic probes
NASA Astrophysics Data System (ADS)
Phark, Soo-hyon; Sander, Dirk
2017-04-01
Spin-polarized scanning tunneling microscopy and spectroscopy (spin-STM/S) have been successfully applied to magnetic characterizations of individual nanostructures. Spin-STM/S is often performed in magnetic fields of up to some Tesla, which may strongly influence the tip state. In spite of the pivotal role of the tip in spin-STM/S, the contribution of the tip to the differential conductance d I/d V signal in an external field has rarely been investigated in detail. In this review, an advanced analysis of spin-STM/S data measured on magnetic nanoislands, which relies on a quantitative magnetic characterization of tips, is discussed. Taking advantage of the uniaxial out-of-plane magnetic anisotropy of Co bilayer nanoisland on Cu(111), in-field spin-STM on this system has enabled a quantitative determination, and thereby, a categorization of the magnetic states of the tips. The resulting in-depth and conclusive analysis of magnetic characterization of the tip opens new venues for a clear-cut sub-nanometer scale spin ordering and spin-dependent electronic structure of the non-collinear magnetic state in bilayer high Fe nanoislands on Cu(111).
Tuning the electrical and optical anisotropy of a monolayer black phosphorus magnetic superlattice
NASA Astrophysics Data System (ADS)
Li, X. J.; Yu, J. H.; Luo, K.; Wu, Z. H.; Yang, W.
2018-04-01
We investigate theoretically the effects of modulated periodic perpendicular magnetic fields on the electronic states and optical absorption spectrum in monolayer black phosphorus (phosphorene). We demonstrate that different phosphorene magnetic superlattice (PMS) orientations can give rise to distinct energy spectra, i.e. tuning the intrinsic electronic anisotropy. Rashba spin-orbit coupling (RSOC) develops a spin-splitting energy dispersion in this phosphorene magnetic superlattice. Anisotropic momentum-dependent carrier distributions along/perpendicular to the magnetic strips are demonstrated. The manipulations of these exotic electronic properties by tuning superlattice geometry, magnetic field and the RSOC term are addressed systematically. Accordingly, we find bright-to-dark transitions in the ground-state electron-hole pair transition rate spectrum and the PMS orientation-dependent anisotropic optical absorption spectrum. This feature offers us a practical way of modulating the electronic anisotropy in phosphorene by magnetic superlattice configurations and detecting this modulation capability by using an optical technique.
Robust techniques for polarization and detection of nuclear spin ensembles
NASA Astrophysics Data System (ADS)
Scheuer, Jochen; Schwartz, Ilai; Müller, Samuel; Chen, Qiong; Dhand, Ish; Plenio, Martin B.; Naydenov, Boris; Jelezko, Fedor
2017-11-01
Highly sensitive nuclear spin detection is crucial in many scientific areas including nuclear magnetic resonance spectroscopy, magnetic resonance imaging (MRI), and quantum computing. The tiny thermal nuclear spin polarization represents a major obstacle towards this goal which may be overcome by dynamic nuclear spin polarization (DNP) methods. The latter often rely on the transfer of the thermally polarized electron spins to nearby nuclear spins, which is limited by the Boltzmann distribution of the former. Here we utilize microwave dressed states to transfer the high (>92 % ) nonequilibrium electron spin polarization of a single nitrogen-vacancy center (NV) induced by short laser pulses to the surrounding 13C carbon nuclear spins. The NV is repeatedly repolarized optically, thus providing an effectively infinite polarization reservoir. A saturation of the polarization of the nearby nuclear spins is achieved, which is confirmed by the decay of the polarization transfer signal and shows an excellent agreement with theoretical simulations. Hereby we introduce the polarization readout by polarization inversion method as a quantitative magnetization measure of the nuclear spin bath, which allows us to observe by ensemble averaging macroscopically hidden polarization dynamics like Landau-Zener-Stückelberg oscillations. Moreover, we show that using the integrated solid effect both for single- and double-quantum transitions nuclear spin polarization can be achieved even when the static magnetic field is not aligned along the NV's crystal axis. This opens a path for the application of our DNP technique to spins in and outside of nanodiamonds, enabling their application as MRI tracers. Furthermore, the methods reported here can be applied to other solid state systems where a central electron spin is coupled to a nuclear spin bath, e.g., phosphor donors in silicon and color centers in silicon carbide.
Electron spin control and spin-libration coupling of a levitated nanodiamond
NASA Astrophysics Data System (ADS)
Hoang, Thai; Ma, Yue; Ahn, Jonghoon; Bang, Jaehoon; Robicheaux, Francis; Gong, Ming; Yin, Zhang-Qi; Li, Tongcang
2017-04-01
Hybrid spin-mechanical systems have great potentials in sensing, macroscopic quantum mechanics, and quantum information science. Recently, we optically levitated a nanodiamond and demonstrated electron spin control of its built-in nitrogen-vacancy (NV) centers in vacuum. We also observed the libration (torsional vibration) of a nanodiamond trapped by a linearly polarized laser beam in vacuum. We propose to achieve strong coupling between the electron spin of a NV center and the libration of a levitated nanodiamond with a uniform magnetic field. With a uniform magnetic field, multiple spins can couple to the torsional vibration at the same time. We propose to use this strong coupling to realize the Lipkin-Meshkov-Glick (LMG) model and generate rotational superposition states. This work is supported by the National Science Foundation under Grant No. 1555035-PHY.
NASA Astrophysics Data System (ADS)
Fathalian, Ali; Jalilian, Jaafar; Shahidi, Sahar
2011-11-01
The electronic and magnetic properties for a single Fe atom chain wrapped in armchair (n,n) boron nitride nanotubes (BNNTs) ( 4≤n≤6) are investigated through the density functional theory. By increasing the nanotube diameter, the magnetic moments, total magnetic moments and spin polarization of Fe@(n,n) systems are increased. We have calculated the majority and minority density of states (DOS) of armchair Fe@(6,6) BNNT. Our results show that the magnetic moment of the system come mostly from the Fe atom chain. The magnetic moment on an Fe atom, the total magnetic moment and spin polarization decrease by increasing the axial separation of the Fe atom chain for the Fe@(6,6) system. The Fe@(6,6) BNNT can be used in the magnetic nanodevices because of higher magnetic moment and spin polarization.
Thersleff, Thomas; Rusz, Jan; Rubino, Stefano; ...
2015-08-17
Understanding the ramifications of reduced crystalline symmetry on magnetic behavior is a critical step in improving our understanding of nanoscale and interfacial magnetism. However, investigations of such effects are often controversial largely due to the challenges inherent in directly correlating nanoscale stoichiometry and structure to magnetic behavior. Here, we describe how to use Transmission Electron Microscope (TEM) to obtain Electron Magnetic Circular Dichroism (EMCD) signals as a function of scattering angle to locally probe the magnetic behavior of thin oxide layers grown on an Fe (1 1 0) surface. Experiments and simulations both reveal a strong dependence of the magneticmore » orbital to spin ratio on its scattering vector in reciprocal space. We exploit this variation to extract the magnetic properties of the oxide cladding layer, showing that it locally may exhibit an enhanced orbital to spin moment ratio. This finding is supported here by both spatially and angularly resolved EMCD measurements, opening up the way for compelling investigations into how magnetic properties are affected by nanoscale features.« less
Prediction of Spin-Polarization Effects in Quantum Wire Transport
NASA Astrophysics Data System (ADS)
Fasol, Gerhard; Sakaki, Hiroyuki
1994-01-01
We predict a new effect for transport in quantum wires: spontaneous spin polarization. Most work on transport in mesoscopic devices has assumed a model of non interacting, spin-free electrons. We introduce spin, electron pair scattering and microscopic crystal properties into the design of mesoscopic devices. The new spin polarization effect results from the fact that in a single mode quantum wire, electron and hole bands still have two spin subbands. In general, these two spin subbands are expected to be split even in zero magnetic field. At sufficiently low temperatures the electron pair scattering rates for one spin subband ( e.g., the spin-down) can be much larger than for the other spin subband. This effect can be used for an active spin polarizer device: hot electrons in one subband ( e.g., `spin up') pass with weak pair scattering, while electrons in the opposite subband ( e.g., `spin down'), have high probability of scattering into the `spin-up' subband, resulting in spin polarization of a hot electron beam.
Slater Insulator in Iridate Perovskites with Strong Spin-Orbit Coupling.
Cui, Q; Cheng, J-G; Fan, W; Taylor, A E; Calder, S; McGuire, M A; Yan, J-Q; Meyers, D; Li, X; Cai, Y Q; Jiao, Y Y; Choi, Y; Haskel, D; Gotou, H; Uwatoko, Y; Chakhalian, J; Christianson, A D; Yunoki, S; Goodenough, J B; Zhou, J-S
2016-10-21
The perovskite SrIrO_{3} is an exotic narrow-band metal owing to a confluence of the strengths of the spin-orbit coupling (SOC) and the electron-electron correlations. It has been proposed that topological and magnetic insulating phases can be achieved by tuning the SOC, Hubbard interactions, and/or lattice symmetry. Here, we report that the substitution of nonmagnetic, isovalent Sn^{4+} for Ir^{4+} in the SrIr_{1-x}Sn_{x}O_{3} perovskites synthesized under high pressure leads to a metal-insulator transition to an antiferromagnetic (AF) phase at T_{N}≥225 K. The continuous change of the cell volume as detected by x-ray diffraction and the λ-shape transition of the specific heat on cooling through T_{N} demonstrate that the metal-insulator transition is of second order. Neutron powder diffraction results indicate that the Sn substitution enlarges an octahedral-site distortion that reduces the SOC relative to the spin-spin exchange interaction and results in the type-G AF spin ordering below T_{N}. Measurement of high-temperature magnetic susceptibility shows the evolution of magnetic coupling in the paramagnetic phase typical of weak itinerant-electron magnetism in the Sn-substituted samples. A reduced structural symmetry in the magnetically ordered phase leads to an electron gap opening at the Brillouin zone boundary below T_{N} in the same way as proposed by Slater.
Coffey, David; Diez-Ferrer, José Luis; Serrate, David; Ciria, Miguel; Fuente, César de la; Arnaudas, José Ignacio
2015-01-01
High-density magnetic storage or quantum computing could be achieved using small magnets with large magnetic anisotropy, a requirement that rare-earth iron alloys fulfill in bulk. This compelling property demands a thorough investigation of the magnetism in low dimensional rare-earth iron structures. Here, we report on the magnetic coupling between 4f single atoms and a 3d magnetic nanoisland. Thulium and lutetium adatoms deposited on iron monolayer islands pseudomorphically grown on W(110) have been investigated at low temperature with scanning tunneling microscopy and spectroscopy. The spin-polarized current indicates that both kind of adatoms have in-plane magnetic moments, which couple antiferromagnetically with their underlying iron islands. Our first-principles calculations explain the observed behavior, predicting an antiparallel coupling of the induced 5d electrons magnetic moment of the lanthanides with the 3d magnetic moment of iron, as well as their in-plane orientation, and pointing to a non-contribution of 4f electrons to the spin-polarized tunneling processes in rare earths. PMID:26333417
NASA Astrophysics Data System (ADS)
Zhou, Yun-Qing; Wang, Rui-Qiang; Sheng, L.; Wang, Baigeng; Xing, D. Y.
2008-10-01
The evolution-operator approach is applied to studying photon-electron-pumping effects on a quantum dot connected to two magnetic leads in the presence of both via-dot and over-dot tunneling channels. It is found that a microwave field applied to the quantum dot may give rise to charge and spin pumpings at zero-bias voltage for asymmetric magnetic junctions. More interestingly, a pure spin current can be pumped for symmetric magnetic junctions in the antiparallel magnetization configuration, providing an idea for the design of spin batteries.
Control of electron spin and orbital resonances in quantum dots through spin-orbit interactions
NASA Astrophysics Data System (ADS)
Stano, Peter; Fabian, Jaroslav
2008-01-01
The influence of a resonant oscillating electromagnetic field on a single electron in coupled lateral quantum dots in the presence of phonon-induced relaxation and decoherence is investigated. Using symmetry arguments, it is shown that the spin and orbital resonances can be efficiently controlled by spin-orbit interactions. The control is possible due to the strong sensitivity of the Rabi frequency to the dot configuration (the orientation of the dot and the applied static magnetic field); the sensitivity is a result of the anisotropy of the spin-orbit interactions. The so-called easy passage configuration is shown to be particularly suitable for a magnetic manipulation of spin qubits, ensuring long spin relaxation times and protecting the spin qubits from electric field disturbances accompanying on-chip manipulations.
Unusual negative permeability of single magnetic nanowire excited by the spin transfer torque effect
NASA Astrophysics Data System (ADS)
Han, Mangui; Zhou, Wu
2018-07-01
Due to the effect of spin transfer torque, negative imaginary parts of permeability (μ″ < 0) are reported in a ferromagnetic nanowire. It is found that negative μ″ values are resulted from the interaction of spin polarized conduction electrons with the spatially non-uniform distributed magnetic moments at both ends of nanowires. The results are well explained from the effect of spin transfer torque on the precession of magnetization under the excitation of both the pulsed magnetic field and static electric field.
Low Temperature Specific Heat in Lightly Mn-Substituted Electron-Doped SrTiO3
NASA Astrophysics Data System (ADS)
Okuda, Tetsuji; Hata, Hiroto; Eto, Takahiro; Sobaru, Shogo; Oda, Ryosuke; Noda, Masaaki; Kuwahara, Hideki
2017-08-01
We found large changes in the low-temperature specific heat (low-T C) in the lightly Mn-substituted electron-doped perovskites Sr0.95La0.05Ti1-yMnzO3 with y = 0.02 and 0.04 by applying magnetic fields up to 9 T. The changes in the low-T C are qualitatively well explained by the Schottky specific heat (CSch) of localized spins of the Mn 3d electrons in weak internal magnetic fields via itinerant electrons. However, the actual numbers of localized spins estimated from CSch are about 30% smaller than the expected values. Part of the localized spins of the Mn 3d electrons may disappear due to Kondo coupling with the itinerant electrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Subrata; Vijay, Amrendra, E-mail: avijay@iitm.ac.in
Using a second-quantized many-electron Hamiltonian, we obtain (a) an effective Hamiltonian suitable for materials whose electronic properties are governed by a set of strongly correlated bands in a narrow energy range and (b) an effective spin-only Hamiltonian for magnetic materials. The present Hamiltonians faithfully include phonon and spin-related interactions as well as the external fields to study the electromagnetic response properties of complex materials and they, in appropriate limits, reduce to the model Hamiltonians due to Hubbard and Heisenberg. With the Hamiltonian for narrow-band strongly correlated materials, we show that the spin-orbit interaction provides a mechanism for metal-insulator transition, whichmore » is distinct from the Mott-Hubbard (driven by the electron correlation) and the Anderson mechanism (driven by the disorder). Next, with the spin-only Hamiltonian, we demonstrate the spin-orbit interaction to be a reason for the existence of antiferromagnetic phase in materials which are characterized by a positive isotropic spin-exchange energy. This is distinct from the Néel-VanVleck-Anderson paradigm which posits a negative spin-exchange for the existence of antiferromagnetism. We also find that the Néel temperature increases as the absolute value of the spin-orbit coupling increases.« less
Electron spin dynamics and optical orientation of Mn2+ ions in GaAs
NASA Astrophysics Data System (ADS)
Akimov, I. A.; Dzhioev, R. I.; Korenev, V. L.; Kusrayev, Yu. G.; Sapega, V. F.; Yakovlev, D. R.; Bayer, M.
2013-04-01
We present an overview of spin-related phenomena in GaAs doped with low concentration of Mn-acceptors (below 1018 cm-3). We use the combination of different experimental techniques such as spin-flip Raman scattering and time-resolved photoluminescence. This allows to evaluate the time evolution of both electron and Mn spins. We show that optical orientation of Mn ions is possible under application of weak magnetic field, which is required to suppress the manganese spin relaxation. The optically oriented Mn2+ ions maintain the spin and return part of the polarization back to the electron spin system providing a long-lived electron spin memory. This leads to a bunch of spectacular effects such as non-exponential electron spin decay and spin precession in the effective exchange fields.
Optical spin orientation of minority holes in a modulation-doped GaAs/(Ga,Al)As quantum well
NASA Astrophysics Data System (ADS)
Koudinov, A. V.; Dzhioev, R. I.; Korenev, V. L.; Sapega, V. F.; Kusrayev, Yu. G.
2016-04-01
The optical spin orientation effect in a GaAs/(Ga,Al)As quantum well containing a high-mobility two-dimensional electron gas was found to be due to spin-polarized minority carriers, the holes. The observed oscillations of both the intensity and polarization of the photoluminescence in a magnetic field are well described in a model whose main elements are resonant absorption of the exciting light by the Landau levels and mixing of the heavy- and light-hole subbands. After subtraction of these effects, the observed influence of magnetic fields on the spin polarization can be well interpreted by a standard approach of the optical orientation method. The spin relaxation of holes is controlled by the Dyakonov-Perel' mechanism. Deceleration of the spin relaxation by the magnetic field occurs through the Ivchenko mechanism—due to the cyclotron motion of holes. Mobility of holes was found to be two orders of magnitude smaller than that of electrons, being determined by the scattering of holes by the electron gas.
NASA Astrophysics Data System (ADS)
Gálisová, Lucia; Jakubczyk, Dorota
2017-01-01
Ground-state and magnetocaloric properties of a double-tetrahedral chain, in which nodal lattice sites occupied by the localized Ising spins regularly alternate with triangular clusters half filled with mobile electrons, are exactly investigated by using the transfer-matrix method in combination with the construction of the Nth tensor power of the discrete Fourier transformation. It is shown that the ground state of the model is formed by two non-chiral phases with the zero residual entropy and two chiral phases with the finite residual entropy S = NkB ln 2. Depending on the character of the exchange interaction between the localized Ising spins and mobile electrons, one or three magnetization plateaus can be observed in the magnetization process. Their heights basically depend on the values of Landé g-factors of the Ising spins and mobile electrons. It is also evidenced that the system exhibits both the conventional and inverse magnetocaloric effect depending on values of the applied magnetic field and temperature.
NASA Astrophysics Data System (ADS)
Kc, Santosh; McGuire, Michael A.; Cooper, Valentino R.
The crystallographic, electronic and magnetic properties of layered CrCl3were investigated using density functional theory. We use the newly developed spin van der Waals density functional (svdW-DF) in order to explore the atomic, electronic and magnetic structure. Our results indicate that treatment of the long-range interlayer forces with the svdW-DF improves the accuracy of crystal structure predictions. The cleavage energy was estimated to be 0.29 J/m2 suggesting that CrCl3 should be cleavable using standard mechanical exfoliation techniques. The inclusion of spin in the non-local vdW-DF allows us to directly probe the coupling between the magnetic structure and lattice degrees of freedom. An understanding of the link between electronic, magnetic and structural properties can be useful for novel device applications such as magnetoelectric devices, spin transistors, and 2D magnet. Research was sponsored by the US DOE, Office of Science, BES, MSED and Early Career Research Programs and used resources at NERSC.
NASA Astrophysics Data System (ADS)
Mahfouzi, Farzad; Kioussis, Nicholas
Gilbert damping in metallic ferromagnets is mainly governed by the exchange coupling between the electrons and the magnetic degree of freedom, where the time dependent evolution of the magnetization leads to the excitation of electrons and loss of energy as a result of flow of spin and charge currents. However, it turns out that when the magnetization evolves slowly in time, in the presence of spin-orbit interaction (SOI), the resonant electronic excitations has a major contribution to the damping which leads to infinite result in ballistic regime. In this work we consider the inelastic spin-flip scattering of electrons from the magnetic moments and show that in the presence of SOI it leads to the relaxation of the excited electrons. We show that in the case of clean crystal systems such scattering leads to a linear dependence of the Gilbert on the SOI strength and in the limit of diffusive systems we get the Gilbert damping expression obtained from Kambersky's Fermi breathing approach. This research was supported by NSF-PREM Grant No. DMR-1205734
Imaging Magnetic Vortices Dynamics Using Lorentz Electron Microscopy with GHz Excitations
NASA Astrophysics Data System (ADS)
Zhu, Yimei
2015-03-01
Magnetic vortices in thin films are naturally formed spiral spin configurations with a core polarization pointing out of the film plane. They typically represent ground states with high structural and thermal stability as well as four different chirality-polarity combinations, offering great promise in the development of spin-based devices. For applications to spin oscillators, non-volatile memory and logic devices, the fundamental understanding and precise control of vortex excitations and dynamic switching behavior are essential. The compact dimensionality and fast spin dynamics set grand challenges for direct imaging technologies. Recently, we have developed a unique method to directly visualize the dynamic magnetic vortex motion using advanced Lorentz electron microscopy combined with GHz electronic excitations. It enables us to map the orbit of a magnetic vortex core in a permalloy square with <5nm resolution and to reveal subtle changes of the gyrotropic motion as the vortex is driven through resonance. Further, in multilayer spin-valve disks, we probed the strongly coupled coaxial vortex motion in the dipolar- and indirect exchange-coupled regimes and unraveled the underlying coherence and modality. Our approach is complementary to X-ray magnetic circular dichroism and is of general interest to the magnetism community as it paves a way to study fundamental spin phenomena with unprecedented resolution and accuracy. Collaborations with S.D. Pollard, J.F. Pulecio, D.A. Arena and K.S. Buchanan are acknowledged. Work supported by DOE-BES, Material Sciences and Engineering Division, under Contract No. DE-AC02-98CH10886.
Orbital-exchange and fractional quantum number excitations in an f-electron metal Yb 2Pt 2Pb
L. S. Wu; Zaliznyak, I. A.; Gannon, W. J.; ...
2016-06-03
Exotic quantum states and fractionalized magnetic excitations, such as spinons in one-dimensional chains, are generally expected to occur in 3d transition metal systems with spin 1/2. Our neutron-scattering experiments on the 4f-electron metal Yb 2Pt 2Pb overturn this conventional wisdom. We observe broad magnetic continuum dispersing in only one direction, which indicates that the underlying elementary excitations are spinons carrying fractional spin-1/2. These spinons are the emergent quantum dynamics of the anisotropic, orbital-dominated Yb moments. Owing to their unusual origin, only longitudinal spin fluctuations are measurable, whereas the transverse excitations such as spin waves are virtually invisible to magnetic neutronmore » scattering. Furthermore, the proliferation of these orbital-spinons strips the electrons of their orbital identity, resulting in charge-orbital separation.« less
Unique spin-polarized transmission effects in a QD ring structure
NASA Astrophysics Data System (ADS)
Hedin, Eric; Joe, Yong
2010-10-01
Spintronics is an emerging field in which the spin of the electron is used for switching purposes and to communicate information. In order to obtain spin-polarized electron transmission, the Zeeman effect is employed to produce spin-split energy states in quantum dots which are embedded in the arms of a mesoscopic Aharonov-Bohm (AB) ring heterostructure. The Zeeman splitting of the QD energy levels can be induced by a parallel magnetic field, or by a perpendicular field which also produces AB-effects. The combination of these effects on the transmission resonances of the structure is studied analytically and several parameter regimes are identified which produce a high degree of spin-polarized output. Contour and line plots of the weighted spin polarization as a function of electron energy and magnetic field are presented to visualize the degree of spin-polarization. Taking advantage of these unique parameter regimes shows the potential promise of such devices for producing spin-polarized currents.
NASA Astrophysics Data System (ADS)
Gálisová, Lucia
2017-11-01
The double-tetrahedral chain in a longitudinal magnetic field, whose nodal lattice sites occupied by the localized Ising spins regularly alternate with triangular plaquettes with the dynamics described by the Hubbard model, is rigorously investigated. It is demonstrated that the uniform change of electron concentration controlled by the chemical potential in a combination with the competition between model parameters and the external magnetic field leads to the formation of one chiral and seven nonchiral phases at the absolute zero temperature. Rational plateaux at one-third and one-half of the saturation magnetization can also be identified in the low-temperature magnetization curves. On the other hand, the gradual electron doping results in 11 different ground-state regions that distinguish from each other by the evolution of the electron distribution during this process. Several doping-dependent magnetization plateaux are observed in the magnetization process as a result of the continuous change of electron content in the model.
Scanned-probe detection of electron spin resonance from a nitroxide spin probe
Moore, Eric W.; Lee, SangGap; Hickman, Steven A.; Wright, Sarah J.; Harrell, Lee E.; Borbat, Peter P.; Freed, Jack H.; Marohn, John A.
2009-01-01
We report an approach that extends the applicability of ultrasensitive force-gradient detection of magnetic resonance to samples with spin-lattice relaxation times (T 1) as short as a single cantilever period. To demonstrate the generality of the approach, which relies on detecting either cantilever frequency or phase, we used it to detect electron spin resonance from a T 1 = 1 ms nitroxide spin probe in a thin film at 4.2 K and 0.6 T. By using a custom-fabricated cantilever with a 4 μm-diameter nickel tip, we achieve a magnetic resonance sensitivity of 400 Bohr magnetons in a 1 Hz bandwidth. A theory is presented that quantitatively predicts both the lineshape and the magnitude of the observed cantilever frequency shift as a function of field and cantilever-sample separation. Good agreement was found between nitroxide T 1 's measured mechanically and inductively, indicating that the cantilever magnet is not an appreciable source of spin-lattice relaxation here. We suggest that the new approach has a number of advantages that make it well suited to push magnetic resonance detection and imaging of nitroxide spin labels in an individual macromolecule to single-spin sensitivity. PMID:20018707
Detection of single electron spin resonance in a double quantum dota)
NASA Astrophysics Data System (ADS)
Koppens, F. H. L.; Buizert, C.; Vink, I. T.; Nowack, K. C.; Meunier, T.; Kouwenhoven, L. P.; Vandersypen, L. M. K.
2007-04-01
Spin-dependent transport measurements through a double quantum dot are a valuable tool for detecting both the coherent evolution of the spin state of a single electron, as well as the hybridization of two-electron spin states. In this article, we discuss a model that describes the transport cycle in this regime, including the effects of an oscillating magnetic field (causing electron spin resonance) and the effective nuclear fields on the spin states in the two dots. We numerically calculate the current flow due to the induced spin flips via electron spin resonance, and we study the detector efficiency for a range of parameters. The experimental data are compared with the model and we find a reasonable agreement.
NASA Astrophysics Data System (ADS)
Cygorek, M.; Axt, V. M.
2015-08-01
Starting from a quantum kinetic theory for the spin dynamics in diluted magnetic semiconductors, we derive simplified equations that effectively describe the spin transfer between carriers and magnetic impurities for an arbitrary initial impurity magnetization. Taking the Markov limit of these effective equations, we obtain good quantitative agreement with the full quantum kinetic theory for the spin dynamics in bulk systems at high magnetic doping. In contrast, the standard rate description where the carrier-dopant interaction is treated according to Fermi’s golden rule, which involves the assumption of a short memory as well as a perturbative argument, has been shown previously to fail if the impurity magnetization is non-zero. The Markov limit of the effective equations is derived, assuming only a short memory, while higher order terms are still accounted for. These higher order terms represent the precession of the carrier-dopant correlations in the effective magnetic field due to the impurity spins. Numerical calculations show that the Markov limit of our effective equations reproduces the results of the full quantum kinetic theory very well. Furthermore, this limit allows for analytical solutions and for a physically transparent interpretation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Dongsheng; Zhu, Jing, E-mail: jzhu@mail.tsinghua.edu.cn; Ma, Li
2015-07-27
Transport efficiency of pure spin current across the ferromagnetic films adjacent with a nonmagnetic metal is strongly dependent on the spin mixing conductance, which is very sensitive to atomic-level interface conditions. Here, by the means of advanced electron microscopy techniques, atomic structure, electronic structure, and magnetic properties at Y{sub 3}Fe{sub 5}O{sub 12} (YIG)/Pt interface are detailed characterized to correlate the microstructure and magnetic properties with interfacial transport properties. It is found that the order-disorder structure transformation at the interface is accompanied with oxygen deficiency, thus the reduced iron valence and the break of magnetic atom-O-magnetic atom bridges, which is responsiblemore » for superexchange interaction and magnetic order. It is also found that the magnetic moment of interfacial iron ions is decreased. The disorder interfacial layer with suppressed magnetism finally contributes to the declined spin transport efficiency. Our results provide the knowledge to control and manipulate the interfacial structure and properties in order to obtain higher spin transport efficiency.« less
Ultrafast Magnetization of a Dense Molecular Gas with an Optical Centrifuge.
Milner, A A; Korobenko, A; Milner, V
2017-06-16
Strong laser-induced magnetization of oxygen gas at room temperature and atmospheric pressure is achieved experimentally on the subnanosecond time scale. The method is based on controlling the electronic spin of paramagnetic molecules by means of manipulating their rotation with an optical centrifuge. Spin-rotational coupling results in a high degree of spin polarization on the order of one Bohr magneton per centrifuged molecule. Owing to the nonresonant interaction with the laser pulses, the demonstrated technique is applicable to a broad class of paramagnetic rotors. Executed in a high-density gas, it may offer an efficient way of generating macroscopic magnetic fields remotely (as shown in this work) and producing a large amount of spin-polarized electrons.
Ultrafast Magnetization of a Dense Molecular Gas with an Optical Centrifuge
NASA Astrophysics Data System (ADS)
Milner, A. A.; Korobenko, A.; Milner, V.
2017-06-01
Strong laser-induced magnetization of oxygen gas at room temperature and atmospheric pressure is achieved experimentally on the subnanosecond time scale. The method is based on controlling the electronic spin of paramagnetic molecules by means of manipulating their rotation with an optical centrifuge. Spin-rotational coupling results in a high degree of spin polarization on the order of one Bohr magneton per centrifuged molecule. Owing to the nonresonant interaction with the laser pulses, the demonstrated technique is applicable to a broad class of paramagnetic rotors. Executed in a high-density gas, it may offer an efficient way of generating macroscopic magnetic fields remotely (as shown in this work) and producing a large amount of spin-polarized electrons.
Using magnons to probe spintronic materials properties
NASA Astrophysics Data System (ADS)
McMichael, Robert
2012-02-01
For many spin-based electronic devices, from the read sensors in modern hard disk drives to future spintronic logic concepts, the device physics originates in spin polarized currents in ferromagnetic metals. In this talk, I will describe a novel ``Spin Wave Doppler'' method that uses the interaction of spin waves with spin-polarized currents to determine the spin drift velocity and the spin current polarization [1]. Owing to differences between the band structures of majority-spin and minority-spin electrons, the electrical current also carries an angular momentum current and magnetic moment current. Passing these coupled currents though a magnetic wire changes the linear excitations of the magnetization, i.e spin waves. Interestingly, the excitations can be described as drifting ``downstream'' with the electron flow. We measure this drift velocity by monitoring the spin-wave-mediated transmission between pairs of periodically patterned antennas on magnetic wires as a function of current density in the wire. The transmission frequency resonance shifts by 2πδf = vk where the drift velocity v is proportional to both the current density and the current polarization P. I will discuss measurements of the spin polarization of the current in Ni80Fe20 [2], and novel alloys (CoFe)1-xGax [3] and (Ni80Fe20)1-xGdx [4]. [4pt] [1] V. Vlaminck and M. Bailleul, Science, 322, 410 (2008) [0pt] [2] M. Zhu, C. L. Dennis, and R. D. McMichael, Phys. Rev. B, 81, 140407 (2010). [0pt] [3] M. Zhu, B. D. Soe, R. D. McMichael, M. J. Carey, S. Maat, and J. R. Childress, Appl. Phys. Lett., 98, 072510 (2011). [0pt] [4] R. L. Thomas, M. Zhu, C. L. Dennis, V. Misra and R. D. McMichael, J. Appl. Phys., 110, 033902 (2011).
Nanoscale imaging of magnetization reversal driven by spin-orbit torque
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, Ian; Chen, P. J.; Gopman, Daniel B.
We use scanning electron microscopy with polarization analysis to image deterministic, spin-orbit torque-driven magnetization reversal of in-plane magnetized CoFeB rectangles in zero applied magnetic field. The spin-orbit torque is generated by running a current through heavy metal microstrips, either Pt or Ta, upon which the CoFeB rectangles are deposited. We image the CoFeB magnetization before and after a current pulse to see the effect of spin-orbit torque on the magnetic nanostructure. The observed changes in magnetic structure can be complex, deviating significantly from a simple macrospin approximation, especially in larger elements. Overall, however, the directions of the magnetization reversal inmore » the Pt and Ta devices are opposite, consistent with the opposite signs of the spin Hall angles of these materials. Lastly, our results elucidate the effects of current density, geometry, and magnetic domain structure on magnetization switching driven by spin-orbit torque.« less
Nanoscale imaging of magnetization reversal driven by spin-orbit torque
Gilbert, Ian; Chen, P. J.; Gopman, Daniel B.; ...
2016-09-23
We use scanning electron microscopy with polarization analysis to image deterministic, spin-orbit torque-driven magnetization reversal of in-plane magnetized CoFeB rectangles in zero applied magnetic field. The spin-orbit torque is generated by running a current through heavy metal microstrips, either Pt or Ta, upon which the CoFeB rectangles are deposited. We image the CoFeB magnetization before and after a current pulse to see the effect of spin-orbit torque on the magnetic nanostructure. The observed changes in magnetic structure can be complex, deviating significantly from a simple macrospin approximation, especially in larger elements. Overall, however, the directions of the magnetization reversal inmore » the Pt and Ta devices are opposite, consistent with the opposite signs of the spin Hall angles of these materials. Lastly, our results elucidate the effects of current density, geometry, and magnetic domain structure on magnetization switching driven by spin-orbit torque.« less
Observation of two-orbital spin-exchange interactions with ultracold SU(N)-symmetric fermions
NASA Astrophysics Data System (ADS)
Scazza, F.; Hofrichter, C.; Höfer, M.; de Groot, P. C.; Bloch, I.; Fölling, S.
2014-10-01
Spin-exchanging interactions govern the properties of strongly correlated electron systems such as many magnetic materials. When orbital degrees of freedom are present, spin exchange between different orbitals often dominates, leading to the Kondo effect, heavy fermion behaviour or magnetic ordering. Ultracold ytterbium or alkaline-earth ensembles have attracted much recent interest as model systems for these effects, with two (meta-) stable electronic configurations representing independent orbitals. We report the observation of spin-exchanging contact interactions in a two-orbital SU(N)-symmetric quantum gas realized with fermionic 173Yb. We find strong inter-orbital spin exchange by spectroscopic characterization of all interaction channels and demonstrate SU(N = 6) symmetry within our measurement precision. The spin-exchange process is also directly observed through the dynamic equilibration of spin imbalances between ensembles in separate orbitals. The realization of an SU(N)-symmetric two-orbital Hubbard Hamiltonian opens the route to quantum simulations with extended symmetries and with orbital magnetic interactions, such as the Kondo lattice model.
Kharel, P.; Herran, J.; Lukashev, P.; ...
2016-12-19
Recent discovery of a new class of materials, spin-gapless semiconductors (SGS), has attracted considerable attention in the last few years, primarily due to potential applications in the emerging field of spin-based electronics (spintronics). Here, we investigate structural, electronic, and magnetic properties of one potential SGS compound, MnCrVAl, using various experimental and theoretical techniques. Our calculations show that this material exhibits ≈ 0.5 eV band gap for the majority-spin states, while for the minority-spin it is nearly gapless. The calculated magnetic moment for the completely ordered structure is 2.9 μB/f.u., which is different from our experimentally measured value of almost zero.more » Here, this discrepancy is explained by the structural disorder. In particular, A2 type disorder, where Mn or Cr atoms exchange their positions with Al atoms, results in induced antiferromagnetic exchange coupling, which, at a certain level of disorder, effectively reduces the total magnetic moment to zero. This is consistent with our x-ray diffraction measurements which indicate the presence of A2 disorder in all of our samples. In addition, we also show that B2 disorder does not result in antiferromagnetic exchange coupling and therefore does not significantly reduce the total magnetic moment.« less
Magnetic-field-induced effects in the electronic structure of itinerant d- and f-metal systems
NASA Astrophysics Data System (ADS)
Grechnev, G. E.
2009-08-01
A paramagnetic response of transition metals and itinerant d- and f-metal compounds in an external magnetic field is studied by employing ab initio full-potential LMTO method in the framework of the local spin density approximation. Within this method the anisotropy of the magnetic susceptibility in hexagonal close-packed transition metals is evaluated for the first time. This anisotropy is owing to the orbital Van Vleck-like paramagnetic susceptibility, which is revealed to be substantial in transition-metal systems due to hybridization effects in the electronic structure. It is demonstrated that compounds TiCo, Ni3Al, YCo2, CeCo2, YNi5, LaNi5, and CeNi5 are strong paramagnets close to the quantum critical point. For these systems the Stoner approximation underestimates the spin susceptibility, whereas the calculated field-induced spin moments provide a good description of the large paramagnetic susceptibilities and magnetovolume effects. It is revealed that an itinerant description of hybridized f electrons produces magnetic properties of the compounds CeCo2, CeNi5, UAl3, UGa3, USi3, and UGe3 in close agreement with experiment. In the uranium compounds UX3 the strong spin-orbit coupling together with hybridization effects give rise to peculiar magnetic states in which the field-induced spin moments are antiparallel to the external field, and the magnetic response is dominated by the orbital contribution.
NASA Astrophysics Data System (ADS)
Debus, J.; Maksimov, A. A.; Dunker, D.; Yakovlev, D. R.; Tartakovskii, I. I.; Waag, A.; Bayer, M.
2010-08-01
The magnetization dynamics of the Mn spin system in an undoped (Zn,Mn)Se/BeTe type-II quantum well was studied by a time-resolved pump-probe photoluminescence technique. The Mn spin temperature was evaluated from the giant Zeeman shift of the exciton line in an external magnetic field of 3 T. The relaxation dynamics of the Mn spin temperature to the equilibrium temperature of the phonon bath after the pump-laser-pulse heating can be accelerated by the presence of free electrons. These electrons, generated by a control laser pulse, mediate the spin and energy transfer from the Mn spin system to the lattice and bypass the relatively slow direct spin-lattice relaxation of the Mn ions.
NASA Astrophysics Data System (ADS)
Sakhraoui, T.; Said, M.
2017-12-01
The electronic, magnetic and transport properties of oxygen or magnesium vacancies at the FeRh/MgO/FeRh (0 0 1) magnetic tunnel junction are studied within first principles. Configurations with one O or Mg vacancy per C(2 × 2) surface unit cell, which is located in the MgO interfacial layers, are investigated. We observed that the O and Mg vacancies defect have a very little influence on the magnetic state of the spacer. Very interestingly, the Fe atoms exhibit an enhanced magnetic moment in the case of Mg-vacancy, this latter was found to decrease in the case of O-vacancy. The variations in the spin polarization and magnetic moment values for Fe and Rh atoms at the interface were found to be larger in presence of Mg vacancy. An analysis of the charge densities of our systems was also performed; large variations in the Mg-vacancy system were observed. This affects more the t2g states of the interfacial Fe atom. Moreover, we present an ab initio calculated transmission and I-V characteristics for FeRh/MgO/FeRh (0 0 1) magnetic tunnel junction and we compare results to those of O and Mg-vacancy at the interface using the TRANSIESTA code, which combines the DFT electronic structure calculations with the non-equilibrium Green function formalism (NEGF) for transport properties. The results show that the zero-bias minority spin transmission is much larger than the majority spin transmission for all structures. In all systems and for all magnetic configurations, minority spin currents are higher than majority spin ones, this means that transport properties are, mainly, determined by minority spin channel.
Voltage-selective bidirectional polarization and coherent rotation of nuclear spins in quantum dots.
Takahashi, R; Kono, K; Tarucha, S; Ono, K
2011-07-08
We propose and demonstrate that the nuclear spins of the host lattice in GaAs double quantum dots can be polarized in either of two opposite directions, parallel or antiparallel to an external magnetic field. The direction is selected by adjusting the dc voltage. This nuclear polarization manifests itself by repeated controlled electron-nuclear spin scattering in the Pauli spin-blockade state. Polarized nuclei are also controlled by means of nuclear magnetic resonance. This Letter confirms that the nuclear spins in quantum dots are long-lived quantum states with a coherence time of up to 1 ms, and may be a promising resource for quantum-information processing such as quantum memories for electron spin qubits.
NASA Astrophysics Data System (ADS)
Zhang, Hongguang; Wang, Jianhua; Xie, Liang; Fu, Dexiang; Guo, Yanyan; Li, Yongtao
2017-11-01
We report the crystal and electronic structures and magnetic properties of non-magnetic Y3+ ion doped SmCrO3 crystals. Structural distortion and electronic structure variation are caused by cation disorder due to Y doping. Although the spin moment of Sm3+ is diluted by nonmagnetic Y ions, spin reorientation continues to exist, and the temperature-dependent magnetization reversal effect and the spontaneous exchange bias effect under zero field cooling are simultaneously induced below Neel temperature. Significantly, the method of doping promotes the achievement of temperature dependent tunable switching of magnetization and sign of a spontaneous exchange bias from positive to negative. Our work provides more tunable ways to the sign reversal of magnetization and exchange bias, which have potential application in designing magnetic random access memory devices, thermomagnetic switches and spin-valve devices.
Spin power and efficiency in an Aharnov-Bohm ring with an embedded magnetic impurity quantum dot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xi; Guo, Yong, E-mail: guoy66@tsinghua.edu.cn; Collaborative Innovation Center of Quantum Matter, Beijing
2015-05-11
Spin thermoelectric effects in an Aharnov-Bohm ring with a magnetic impurity quantum dot (QD) are theoretically investigated by using the nonequilibrium Green's function method. It is found that due to the exchange coupling between the impurity and the electrons in QD, spin output power, and efficiency can be significant and be further modulated by the gate voltage. The spin thermoelectric effect can be modulated effectively by adjusting the Rashba spin-orbit interaction (RSOI) and the magnetic flux. The spin power and efficiency show zigzag oscillations, and thus spin thermoelectric effect can be switched by adjusting the magnetic flux phase factor andmore » RSOI ones. In addition, the spin efficiency can be significantly enhanced by the coexistence of the RSOI and the magnetic flux, and the maximal value of normalized spin efficiency η{sub max}/η{sub C} = 0.35 is obtained. Our results show that such a QD ring device may be used as a manipulative spin thermoelectric generator.« less
Sacramento, P D; Dugaev, V K; Vieira, V R; Araújo, M A N
2010-01-20
The insertion of magnetic impurities in a conventional superconductor leads to various effects. In this work we show that the electron density is affected by the spins (considered as classical) both locally and globally. The charge accumulation is solved self-consistently. This affects the transport properties along magnetic domain walls. Also, we show that superconductivity is more robust if the spin locations are not random but correlated. © 2010 IOP Publishing Ltd
Electrical manipulation of dynamic magnetic impurity and spin texture of helical Dirac fermions
NASA Astrophysics Data System (ADS)
Wang, Rui-Qiang; Zhong, Min; Zheng, Shi-Han; Yang, Mou; Wang, Guang-Hui
2016-05-01
We have theoretically investigated the spin inelastic scattering of helical electrons off a high-spin nanomagnet absorbed on a topological surface. The nanomagnet is treated as a dynamic quantum spin and driven by the spin transfer torque effect. We proposed a mechanism to electrically manipulate the spin texture of helical Dirac fermions rather than by an external magnetic field. By tuning the bias voltage and the direction of impurity magnetization, we present rich patterns of spin texture, from which important fingerprints exclusively associated with the spin helical feature are obtained. Furthermore, it is found that the nonmagnetic potential can create the resonance state in the spin density with different physics as the previously reported resonance of charge density.
Magnetic dimers and trimers in the disordered S =3/2 spin system BaTi1/2Mn1/2O3
NASA Astrophysics Data System (ADS)
Garcia, F. A.; Kaneko, U. F.; Granado, E.; Sichelschmidt, J.; Hölzel, M.; Duque, J. G. S.; Nunes, C. A. J.; Amaral, R. P.; Marques-Ferreira, P.; Lora-Serrano, R.
2015-06-01
We report a structural-magnetic investigation by x-ray absorption spectroscopy (XAS), neutron diffraction, dc susceptibility (χdc), and electron spin resonance (ESR) of the 12R-type perovskite BaTi1/2Mn1/2O3 . Our structural analysis by neutron diffraction supports the existence of structural trimers with chemically disordered occupancy of Mn4+ and Ti4+ ions, with the valence of the Mn ions confirmed by the XAS measurements. The magnetic properties are explored by combining dc-susceptibility and X -band (9.4 GHz) electron spin resonance, both in the temperature interval of 2 ≤T ≤1000 K. A scenario is presented under which the magnetism is explained by considering magnetic dimers and trimers, with exchange constants Ja/kB=200 (2 ) K and Jb/kB=130 (10 ) K, and orphan spins. Thus, BaTi1/2Mn1/2O3 is proposed as a rare case of an intrinsically disordered S =3/2 spin gap system with a frustrated ground state.
Dovetail Rotor Construction For Permanent-Magnet Motors
NASA Technical Reports Server (NTRS)
Kintz, Lawrence J., Jr.; Puskas, William J.
1988-01-01
New way of mounting magnets in permanent-magnet, electronically commutated, brushless dc motors. Magnets wedge shaped, tapering toward center of rotor. Oppositely tapered pole pieces, electron-beam welded to rotor hub, retain magnets against centrifugal force generated by spinning rotor. To avoid excessively long electron-beam welds, pole pieces assembled in segments rather than single long bars.
Spin-orbit-driven magnetic structure and excitation in the 5d pyrochlore Cd 2Os 2O 7
Calder, Stuart A; Vale, James G.; Bogdanov, Nikolay; ...
2016-06-07
Here, much consideration has been given to the role of spin-orbit coupling (SOC) in 5d oxides, particularly on the formation of novel electronic states and manifested metal-insulator transitions (MITs). SOC plays a dominant role in 5d 5 iridates (Ir 4+), undergoing MITs both concurrent (pyrochlores) and separated (perovskites) from the onset of magnetic order. However, the role of SOC for other 5d configurations is less clear. For example, 5d 3 (Os 5+) systems are expected to have an orbital singlet with reduced effective SOC. The pyrochlore Cd 2Os 2O 7 nonetheless exhibits a MIT entwined with magnetic order phenomenologically similarmore » to pyrochlore iridates. Here, we resolve the magnetic structure in Cd 2Os 2O 7 with neutron diffraction and then via resonant inelastic X-ray scattering determine the salient electronic and magnetic energy scales controlling the MIT. In particular, SOC plays a subtle role in creating the electronic ground state but drives the magnetic order and emergence of a multiple spin-flip magnetic excitation.« less
Isotropic transmission of magnon spin information without a magnetic field.
Haldar, Arabinda; Tian, Chang; Adeyeye, Adekunle Olusola
2017-07-01
Spin-wave devices (SWD), which use collective excitations of electronic spins as a carrier of information, are rapidly emerging as potential candidates for post-semiconductor non-charge-based technology. Isotropic in-plane propagating coherent spin waves (magnons), which require magnetization to be out of plane, is desirable in an SWD. However, because of lack of availability of low-damping perpendicular magnetic material, a usually well-known in-plane ferrimagnet yttrium iron garnet (YIG) is used with a large out-of-plane bias magnetic field, which tends to hinder the benefits of isotropic spin waves. We experimentally demonstrate an SWD that eliminates the requirement of external magnetic field to obtain perpendicular magnetization in an otherwise in-plane ferromagnet, Ni 80 Fe 20 or permalloy (Py), a typical choice for spin-wave microconduits. Perpendicular anisotropy in Py, as established by magnetic hysteresis measurements, was induced by the exchange-coupled Co/Pd multilayer. Isotropic propagation of magnon spin information has been experimentally shown in microconduits with three channels patterned at arbitrary angles.
Isotropic transmission of magnon spin information without a magnetic field
Haldar, Arabinda; Tian, Chang; Adeyeye, Adekunle Olusola
2017-01-01
Spin-wave devices (SWD), which use collective excitations of electronic spins as a carrier of information, are rapidly emerging as potential candidates for post-semiconductor non-charge-based technology. Isotropic in-plane propagating coherent spin waves (magnons), which require magnetization to be out of plane, is desirable in an SWD. However, because of lack of availability of low-damping perpendicular magnetic material, a usually well-known in-plane ferrimagnet yttrium iron garnet (YIG) is used with a large out-of-plane bias magnetic field, which tends to hinder the benefits of isotropic spin waves. We experimentally demonstrate an SWD that eliminates the requirement of external magnetic field to obtain perpendicular magnetization in an otherwise in-plane ferromagnet, Ni80Fe20 or permalloy (Py), a typical choice for spin-wave microconduits. Perpendicular anisotropy in Py, as established by magnetic hysteresis measurements, was induced by the exchange-coupled Co/Pd multilayer. Isotropic propagation of magnon spin information has been experimentally shown in microconduits with three channels patterned at arbitrary angles. PMID:28776033
Magnetic stripes and skyrmions with helicity reversals.
Yu, Xiuzhen; Mostovoy, Maxim; Tokunaga, Yusuke; Zhang, Weizhu; Kimoto, Koji; Matsui, Yoshio; Kaneko, Yoshio; Nagaosa, Naoto; Tokura, Yoshinori
2012-06-05
It was recently realized that topological spin textures do not merely have mathematical beauty but can also give rise to unique functionalities of magnetic materials. An example is the skyrmion--a nano-sized bundle of noncoplanar spins--that by virtue of its nontrivial topology acts as a flux of magnetic field on spin-polarized electrons. Lorentz transmission electron microscopy recently emerged as a powerful tool for direct visualization of skyrmions in noncentrosymmetric helimagnets. Topologically, skyrmions are equivalent to magnetic bubbles (cylindrical domains) in ferromagnetic thin films, which were extensively explored in the 1970s for data storage applications. In this study we use Lorentz microscopy to image magnetic domain patterns in the prototypical magnetic oxide-M-type hexaferrite with a hint of scandium. Surprisingly, we find that the magnetic bubbles and stripes in the hexaferrite have a much more complex structure than the skyrmions and spirals in helimagnets, which we associate with the new degree of freedom--helicity (or vector spin chirality) describing the direction of spin rotation across the domain walls. We observe numerous random reversals of helicity in the stripe domain state. Random helicity of cylindrical domain walls coexists with the positional order of magnetic bubbles in a triangular lattice. Most unexpectedly, we observe regular helicity reversals inside skyrmions with an unusual multiple-ring structure.
Slater insulator in iridate perovskites with strong spin-orbit coupling
Cui, Q.; Cheng, J. -G.; Fan, W.; ...
2016-10-20
The perovskite SrIrO 3 is an exotic narrow-band metal owing to a confluence of the strengths of the spin-orbit coupling (SOC) and the electron-electron correlations. It has been proposed that topological and magnetic insulating phases can be achieved by tuning the SOC, Hubbard interactions, and/or lattice symmetry. Here, we report that the substitution of nonmagnetic, isovalent Sn 4+ for Ir 4+ in the SrIr 1–xSn xO 3 perovskites synthesized under high pressure leads to a metal-insulator transition to an antiferromagnetic (AF) phase at T N ≥ 225 K. The continuous change of the cell volume as detected by x-ray diffractionmore » and the λ-shape transition of the specific heat on cooling through T N demonstrate that the metal-insulator transition is of second order. Neutron powder diffraction results indicate that the Sn substitution enlarges an octahedral-site distortion that reduces the SOC relative to the spin-spin exchange interaction and results in the type- G AF spin ordering below T N. Measurement of high-temperature magnetic susceptibility shows the evolution of magnetic coupling in the paramagnetic phase typical of weak itinerant-electron magnetism in the Sn-substituted samples. Furthermore, a reduced structural symmetry in the magnetically ordered phase leads to an electron gap opening at the Brillouin zone boundary below T N in the same way as proposed by Slater.« less
Electric-field-induced interferometric resonance of a one-dimensional spin-orbit-coupled electron
Fan, Jingtao; Chen, Yuansen; Chen, Gang; Xiao, Liantuan; Jia, Suotang; Nori, Franco
2016-01-01
The efficient control of electron spins is of crucial importance for spintronics, quantum metrology, and quantum information processing. We theoretically formulate an electric mechanism to probe the electron spin dynamics, by focusing on a one-dimensional spin-orbit-coupled nanowire quantum dot. Owing to the existence of spin-orbit coupling and a pulsed electric field, different spin-orbit states are shown to interfere with each other, generating intriguing interference-resonant patterns. We also reveal that an in-plane magnetic field does not affect the interval of any neighboring resonant peaks, but contributes a weak shift of each peak, which is sensitive to the direction of the magnetic field. We find that this proposed external-field-controlled scheme should be regarded as a new type of quantum-dot-based interferometry. This interferometry has potential applications in precise measurements of relevant experimental parameters, such as the Rashba and Dresselhaus spin-orbit-coupling strengths, as well as the Landé factor. PMID:27966598
Room-Temperature Spin-Orbit Torque Switching Induced by a Topological Insulator
NASA Astrophysics Data System (ADS)
Han, Jiahao; Richardella, A.; Siddiqui, Saima A.; Finley, Joseph; Samarth, N.; Liu, Luqiao
2017-08-01
The strongly spin-momentum coupled electronic states in topological insulators (TI) have been extensively pursued to realize efficient magnetic switching. However, previous studies show a large discrepancy of the charge-spin conversion efficiency. Moreover, current-induced magnetic switching with TI can only be observed at cryogenic temperatures. We report spin-orbit torque switching in a TI-ferrimagnet heterostructure with perpendicular magnetic anisotropy at room temperature. The obtained effective spin Hall angle of TI is substantially larger than the previously studied heavy metals. Our results demonstrate robust charge-spin conversion in TI and provide a direct avenue towards applicable TI-based spintronic devices.
Tunable magnetism of 3d transition metal doped BiFeO3
NASA Astrophysics Data System (ADS)
Lu, S.; Li, C.; Zhao, Y. F.; Gong, Y. Y.; Niu, L. Y.; Liu, X. J.; Wang, T.
2017-10-01
Electronic polarization or bond relaxation can effectively alter the electronic and magnetic behavior of materials by doping impurity atom. For this aim, the thermodynamic, electronic and magnetic performances of cubic BiFeO3 have been modulated by the 3d transition metal (TM) dopants (Sc, Ti, V, Cr, Mn, Co, Ni, Cu and Zn) based on the density functional theory. Results show that the doped specimen with low impurity concentration is more stable than that with high impurity concentration. The Mulliken charge values and spin magnetic moments of TM element are making major changes, while those of all host atoms are making any major changes. Especially, it is the linear relation between the spin magnetic moments of TM dopants and the total magnetic moment of doped specimens; thus, the variations of total magnetic moment of doped specimens are decided by the spin magnetic moments of TM dopants, thought the total magnetic moments of doped specimens mainly come from Fe atom and TM dopants. Besides, as double TM atoms substitution the Fe atoms, the Sc-, Ti-, Mn-, Co- and Zn-doped specimens show AFM state, while the V-, Cr-, Ni- and Cu-doped specimens show FM state.
Hyperfine interaction and its effects on spin dynamics in organic solids
NASA Astrophysics Data System (ADS)
Yu, Z. G.; Ding, Feizhi; Wang, Haobin
2013-05-01
Hyperfine interaction (HFI) and spin-orbit coupling are two major sources that affect electron spin dynamics. Here we present a systematic study of the HFI and its role in organic spintronic applications. For electron spin dynamics in disordered π-conjugated organics, the HFI can be characterized by an effective magnetic field whose modular square is a weighted sum of contact and dipolar contributions. We determine the effective HFI fields of some common π-conjugated organics studied in the literature via first-principles calculations. Most of them are found to be less than 2 mT. While the H atoms are the major source of the HFI in organics containing only the C and H atoms, many organics contain other nuclear spins, such as Al and N in tris-(8-hydroxyquinoline) aluminum, that contribute to the total HFI. Consequently, the deuteration effect on the HFI in the latter may be much weaker than in the former. The HFI gives rise to multiple resonance peaks in electron spin resonance. In disordered organic solids, these individual resonances are unresolved, leading to a broad peak whose width is proportional to the effective HFI field. As electrons hop among adjacent organic molecules, they experience a randomly varying local HFI field, inducing electron spin relaxation and diffusion. This is analyzed rigorously based on master equations. Electron spin relaxation undergoes a crossover along the ratio between the electron hopping rate η¯ and the Larmor frequency Ω of the HFI field. The spin relaxation rate increases (decreases) with η¯ when η¯≪Ω (η¯≫Ω). A coherent beating of electron spin at Ω is possible when the external field is small compared to the HFI. In this regime, the magnetic field is found to enhance the spin relaxation.
NASA Astrophysics Data System (ADS)
Payne, A.; Ambal, K.; Boehme, C.; Williams, C. C.
2015-05-01
A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single-electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy system noise. The results show that the approach could provide single-spin measurement of electrically isolated qubit states with atomic spatial resolution at room temperature.
Field tuning the g factor in InAs nanowire double quantum dots.
Schroer, M D; Petersson, K D; Jung, M; Petta, J R
2011-10-21
We study the effects of magnetic and electric fields on the g factors of spins confined in a two-electron InAs nanowire double quantum dot. Spin sensitive measurements are performed by monitoring the leakage current in the Pauli blockade regime. Rotations of single spins are driven using electric-dipole spin resonance. The g factors are extracted from the spin resonance condition as a function of the magnetic field direction, allowing determination of the full g tensor. Electric and magnetic field tuning can be used to maximize the g-factor difference and in some cases altogether quench the electric-dipole spin resonance response, allowing selective single spin control. © 2011 American Physical Society
Magnetic resonance force microscopy of paramagnetic electron spins at millikelvin temperatures.
Vinante, A; Wijts, G; Usenko, O; Schinkelshoek, L; Oosterkamp, T H
2011-12-06
Magnetic resonance force microscopy (MRFM) is a powerful technique to detect a small number of spins that relies on force detection by an ultrasoft magnetically tipped cantilever and selective magnetic resonance manipulation of the spins. MRFM would greatly benefit from ultralow temperature operation, because of lower thermomechanical noise and increased thermal spin polarization. Here we demonstrate MRFM operation at temperatures as low as 30 mK, thanks to a recently developed superconducting quantum interference device (SQUID)-based cantilever detection technique, which avoids cantilever overheating. In our experiment, we detect dangling bond paramagnetic centres on a silicon surface down to millikelvin temperatures. Fluctuations of such defects are supposedly linked to 1/f magnetic noise and decoherence in SQUIDs, as well as in several superconducting and single spin qubits. We find evidence that spin diffusion has a key role in the low-temperature spin dynamics.
Spin-orbit torques from interfacial spin-orbit coupling for various interfaces
NASA Astrophysics Data System (ADS)
Kim, Kyoung-Whan; Lee, Kyung-Jin; Sinova, Jairo; Lee, Hyun-Woo; Stiles, M. D.
2017-09-01
We use a perturbative approach to study the effects of interfacial spin-orbit coupling in magnetic multilayers by treating the two-dimensional Rashba model in a fully three-dimensional description of electron transport near an interface. This formalism provides a compact analytic expression for current-induced spin-orbit torques in terms of unperturbed scattering coefficients, allowing computation of spin-orbit torques for various contexts, by simply substituting scattering coefficients into the formulas. It applies to calculations of spin-orbit torques for magnetic bilayers with bulk magnetism, those with interface magnetism, a normal-metal/ferromagnetic insulator junction, and a topological insulator/ferromagnet junction. It predicts a dampinglike component of spin-orbit torque that is distinct from any intrinsic contribution or those that arise from particular spin relaxation mechanisms. We discuss the effects of proximity-induced magnetism and insertion of an additional layer and provide formulas for in-plane current, which is induced by a perpendicular bias, anisotropic magnetoresistance, and spin memory loss in the same formalism.
Spin-orbit torques from interfacial spin-orbit coupling for various interfaces.
Kim, Kyoung-Whan; Lee, Kyung-Jin; Sinova, Jairo; Lee, Hyun-Woo; Stiles, M D
2017-09-01
We use a perturbative approach to study the effects of interfacial spin-orbit coupling in magnetic multilayers by treating the two-dimensional Rashba model in a fully three-dimensional description of electron transport near an interface. This formalism provides a compact analytic expression for current-induced spin-orbit torques in terms of unperturbed scattering coefficients, allowing computation of spin-orbit torques for various contexts, by simply substituting scattering coefficients into the formulas. It applies to calculations of spin-orbit torques for magnetic bilayers with bulk magnetism, those with interface magnetism, a normal metal/ferromagnetic insulator junction, and a topological insulator/ferromagnet junction. It predicts a dampinglike component of spin-orbit torque that is distinct from any intrinsic contribution or those that arise from particular spin relaxation mechanisms. We discuss the effects of proximity-induced magnetism and insertion of an additional layer and provide formulas for in-plane current, which is induced by a perpendicular bias, anisotropic magnetoresistance, and spin memory loss in the same formalism.
Spin-orbit torques from interfacial spin-orbit coupling for various interfaces
Kim, Kyoung-Whan; Lee, Kyung-Jin; Sinova, Jairo; Lee, Hyun-Woo; Stiles, M. D.
2017-01-01
We use a perturbative approach to study the effects of interfacial spin-orbit coupling in magnetic multilayers by treating the two-dimensional Rashba model in a fully three-dimensional description of electron transport near an interface. This formalism provides a compact analytic expression for current-induced spin-orbit torques in terms of unperturbed scattering coefficients, allowing computation of spin-orbit torques for various contexts, by simply substituting scattering coefficients into the formulas. It applies to calculations of spin-orbit torques for magnetic bilayers with bulk magnetism, those with interface magnetism, a normal metal/ferromagnetic insulator junction, and a topological insulator/ferromagnet junction. It predicts a dampinglike component of spin-orbit torque that is distinct from any intrinsic contribution or those that arise from particular spin relaxation mechanisms. We discuss the effects of proximity-induced magnetism and insertion of an additional layer and provide formulas for in-plane current, which is induced by a perpendicular bias, anisotropic magnetoresistance, and spin memory loss in the same formalism. PMID:29333523
Spin-polarized electron emitter: Mn-doped GaN nanotubes and their arrays
NASA Astrophysics Data System (ADS)
Hao, Shaogang; Zhou, Gang; Wu, Jian; Duan, Wenhui; Gu, Bing-Lin
2004-03-01
The influences from the doping magnetic atom, Mn, on the geometry, electronic properties, and spin-polarization characteristics are demonstrated for open armchair gallium nitrogen (GaN) nanotubes and arrays by use of the first-principles calculations. The interaction between dangling bonds of Ga (Mn) and N atoms at the open-end promotes the self-close of the tube mouth and formation of a more stable open semicone top. Primarily owing to hybridization of Mn 3d and N 2p orbitals, one Mn atom introduces several impurity energy levels into the original energy gap, and the calculated magnetic moment is 4μB. The electron spin polarizations in the field emission are theoretically evaluated. We suggest that armchair open GaN nanotube arrays doped with a finite number of magnetic atoms may have application potential as the electron source of spintronic devices in the future.
Unconventional magnetism in the layered oxide LaSrRhO4
NASA Astrophysics Data System (ADS)
Furuta, Noriyasu; Asai, Shinichiro; Igarashi, Taichi; Okazaki, Ryuji; Yasui, Yukio; Terasaki, Ichiro; Ikeda, Masami; Fujita, Takahito; Hagiwara, Masayuki; Kobayashi, Kensuke; Kumai, Reiji; Nakao, Hironori; Murakami, Youichi
2014-10-01
We have prepared polycrystalline samples of LaSrRh1-xGaxO4 and LaSr1-xCaxRhO4, and have measured the x-ray diffraction, resistivity, Seebeck coefficient, magnetization, and electron spin resonance in order to evaluate their electronic states. The energy gap evaluated from the resistivity and the Seebeck coefficient systematically changes with the Ga concentration, and suggests that the system changes from a small polaron insulator to a band insulator. We find that all the samples show Curie-Weiss-like susceptibility with a small Weiss temperature of the order of 1 K, which is seriously incompatible with the collective wisdom that a trivalent rhodium ion is nonmagnetic. We have determined the g factor to be g =2.3 from the electron spin resonance, and the spin number to be S =1 from the magnetization-field curves by fitting with a modified Brillouin function. The fraction of the S =1 spins is 2%-5%, which depends on the degree of disorder in the La/Sr/Ca site, which implies that disorder near the apical oxygen is related to the magnetism of this system. A possible origin for the magnetic Rh3+ ions is discussed.
Electrical Manipulation of Donor Spin Qubits in Silicon and Germanium
NASA Astrophysics Data System (ADS)
Sigillito, Anthony James
Many proposals for quantum information devices rely on electronic or nuclear spins in semiconductors because of their long coherence times and compatibility with industrial fabrication processes. One of the most notable qubits is the electron spin bound to phosphorus donors in silicon, which offers coherence times exceeding seconds at low temperatures. These donors are naturally isolated from their environments to the extent that silicon has been coined a "semiconductor vacuum". While this makes for ultra-coherent qubits, it is difficult to couple two remote donors so quantum information proposals rely on high density arrays of qubits. Here, single qubit addressability becomes an issue. Ideally one would address individual qubits using electric fields which can be easily confined. Typically these schemes rely on tuning a donor spin qubit onto and off of resonance with a magnetic driving field. In this thesis, we measure the electrical tunability of phosphorus donors in silicon and use the extracted parameters to estimate the effects of electric-field noise on qubit coherence times. Our measurements show that donor ionization may set in before electron spins can be sufficiently tuned. We therefore explore two alternative options for qubit addressability. First, we demonstrate that nuclear spin qubits can be directly driven using electric fields instead of magnetic fields and show that this approach offers several advantages over magnetically driven spin resonance. In particular, spin transitions can occur at half the spin resonance frequency and double quantum transitions (magnetic-dipole forbidden) can occur. In a second approach to realizing tunable qubits in semiconductors, we explore the option of replacing silicon with germanium. We first measure the coherence and relaxation times for shallow donor spin qubits in natural and isotopically enriched germanium. We find that in isotopically enriched material, coherence times can exceed 1 ms and are limited by a single-phonon T1 process. At lower frequencies or lower temperatures the qubit coherence times should substantially increase. Finally, we measure the electric field tunability of donors in germanium and find a four order-of-magnitude enhancement in the spin-orbit Stark shift and confirm that the donors should be tunable by at least 4 times the electron spin ensemble linewidth (in isotopically enriched material). Germanium should therefore also be more sensitive to electrically driven nuclear magnetic resonance. Based on these results germanium is a promising alternative to silicon for spin qubits.
Electronic structure and microscopic model of V(2)GeO(4)F(2)-a quantum spin system with S = 1.
Rahaman, Badiur; Saha-Dasgupta, T
2007-07-25
We present first-principles density functional calculations and downfolding studies of the electronic and magnetic properties of the oxide-fluoride quantum spin system V(2)GeO(4)F(2). We discuss explicitly the nature of the exchange paths and provide quantitative estimates of magnetic exchange couplings. A microscopic modelling based on analysis of the electronic structure of this systems puts it in the interesting class of weakly coupled alternating chain S = 1 systems. Based on the microscopic model, we make inferrences about its spin excitation spectra, which needs to be tested by rigorous experimental study.
Mesoscopic Magnetic Resonance Spectroscopy with a Remote Spin Sensor
NASA Astrophysics Data System (ADS)
Xie, Tianyu; Shi, Fazhan; Chen, Sanyou; Guo, Maosen; Chen, Yisheng; Zhang, Yixing; Yang, Yu; Gao, Xingyu; Kong, Xi; Wang, Pengfei; Tateishi, Kenichiro; Uesaka, Tomohiro; Wang, Ya; Zhang, Bo; Du, Jiangfeng
2018-06-01
Quantum sensing based on nitrogen-vacancy (N -V ) centers in diamond has been developed as a powerful tool for microscopic magnetic resonance. However, the reported sensor-to-sample distance is limited within tens of nanometers resulting from the cubic decrease of the signal of spin fluctuation with the increasing distance. Here we extend the sensing distance to tens of micrometers by detecting spin polarization rather than spin fluctuation. We detect the mesoscopic magnetic resonance spectra of polarized electrons of a pentacene-doped crystal, measure its two typical decay times, and observe the optically enhanced spin polarization. This work paves the way for the N -V -based mesoscopic magnetic resonance spectroscopy and imaging at ambient conditions.
Generalized description of few-electron quantum dots at zero and nonzero magnetic fields
NASA Astrophysics Data System (ADS)
Ciftja, Orion
2007-01-01
We introduce a generalized ground state variational wavefunction for parabolically confined two-dimensional quantum dots that equally applies to both cases of weak (or zero) and strong magnetic field. The wavefunction has a Laughlin-like form in the limit of infinite magnetic field, but transforms into a Jastrow-Slater wavefunction at zero magnetic field. At intermediate magnetic fields (where a fraction of electrons is spin-reversed) it resembles Halperin's spin-reversed wavefunction for the fractional quantum Hall effect. The properties of this variational wavefunction are illustrated for the case of two-dimensional quantum dot helium (a system of two interacting electrons in a parabolic confinement potential) where we find the description to be an excellent representation of the true ground state for the whole range of magnetic fields.
Magnetic field tunability of spin polarized excitations in a high temperature magnet
NASA Astrophysics Data System (ADS)
Holinsworth, Brian; Sims, Hunter; Cherian, Judy; Mazumdar, Dipanjan; Harms, Nathan; Chapman, Brandon; Gupta, Arun; McGill, Steve; Musfeldt, Janice
Magnetic semiconductors are at the heart of modern device physics because they naturally provide a non-zero magnetic moment below the ordering temperature, spin-dependent band gap, and spin polarization that originates from exchange-coupled magnetization or an applied field creating a spin-split band structure. Strongly correlated spinel ferrites are amongst the most noteworthy contenders for semiconductor spintronics. NiFe2O4, in particular, displays spin-filtering, linear magnetoresistance, and wide application in the microwave regime. To unravel the spin-charge interaction in NiFe2O4, we bring together magnetic circular dichroism, photoconductivity, and prior optical absorption with complementary first principles calculations. Analysis uncovers a metamagnetic transition modifying electronic structure in the minority channel below the majority channel gap, exchange splittings emerging from spin-split bands, anisotropy of excitons surrounding the indirect gap, and magnetic-field dependent photoconductivity. These findings open the door for the creation and control of spin-polarized excitations from minority channel charge charge transfer in NiFe2O4 and other members of the spinel ferrite family.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Sheng; Zhang, Hong; Fang, Jian-cheng, E-mail: fangjiancheng@buaa.edu.cn
2016-04-14
An ingenious approach to acquire the absolute magnetization fields produced by polarized atoms has been presented in this paper. The method was based on detection of spin precession signal of the hyperpolarized helium-3 with ultra-sensitive atomic magnetometer of potassium by referring to time-domain analysis. At first, dynamic responses of the mixed spin ensembles in the presence of variant external magnetic fields have been analyzed by referring to the Bloch equation. Subsequently, the relevant equipment was established to achieve the functions of hyperpolarizing helium-3 and detecting the precession of spin-polarized noble gas. By analyzing the transient response of the magnetometer inmore » time domain, we obtained the relevant damping ratio and natural frequency. When the value of damping ratio reached the maximum value of 0.0917, the combined atomic magnetometer was in equilibrium. We draw a conclusion from the steady response: the magnetization fields of the polarized electrons and the hyperpolarized nuclei were corresponding 16.12 nT and 90.74 nT. Under this situation, the nuclear magnetization field could offset disturbing magnetic fields perpendicular to the orientation of the electronic polarization, and it preserved the electronic spin staying in a stable axis. Therefore, the combined magnetometer was particularly attractive for inertial measurements.« less
Role of motive forces for the spin torque transfer for nano-structures
NASA Astrophysics Data System (ADS)
Barnes, Stewart
2009-03-01
Despite an announced imminent commercial realization of spin transfer random access memory (SPRAM) the current theory evolved from that of Slonczewski [1,2] does not conserve energy. Barnes and Maekawa [3] have shown, in order correct this defect, forces which originate from the spin rather than the charge of an electron must be accounted for, this leading to the concept of spin-motive-forces (smf) which must appear in Faraday's law and which significantly modifies the theory for spin-valves and domain wall devices [4]. A multi-channel theory in which these smf's redirect the spin currents will be described. In nano-structures it is now well known that the Kondo effect is reflected by conductance peaks. In essence, the spin degrees of freedom are used to enhance conduction. In a system with nano-magnets and a Coulomb blockade [5] the similar spin channels can be the only means of effective conduction. This results in a smf which lasts for minutes and an enormous magneto-resistance [5]. This implies the possibility of ``single electron memory'' in which the magnetic state is switched by a single electron. [4pt] [1] J. C. Slonczewski, Current-Driven Excitation of Magnetic Multilayers J. Magn. Magn. Mater. 159, L1 (1996). [0pt] [2] Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, and B. I. Halperin, Nonlocal magnetization dynamics in ferromagnetic heterostructures, Rev. Mod. Phys. 77, 1375 (2005). [0pt] [3] S. E. Barnes and S. Maekawa, Generalization of Faraday's Law to Include Nonconservative Spin Forces Phys. Rev. Lett. 98, 246601 (2007); S. E. Barnes and S. Maekawa, Currents induced by domain wall motion in thin ferromagnetic wires. arXiv:cond-mat/ 0410021v1 (2004). [0pt] [4] S. E., Barnes, Spin motive forces, measurement, and spin-valves. J. Magn. Magn. Mat. 310, 2035-2037 (2007); S. E. Barnes, J. Ieda. J and S. Maekawa, Magnetic memory and current amplification devices using moving domain walls. Appl. Phys. Lett. 89, 122507 (2006). [0pt] [5] Pham-Nam Hai, Byung-Ho Yu, Shinobu Ohya, Masaaki Tanaka, Stewart E. Barnes and Sadamichi Maekawa, Electromotive force and huge magnetoresistance in magnetic tunnel junctions. Submitted Nature, August, (2008).
He, Wei; Zhu, Tao; Zhang, Xiang-Qun; Yang, Hai-Tao; Cheng, Zhao-Hua
2013-10-07
The laser-induced ultrafast demagnetization of CoFeB/MgO/CoFeB magnetic tunneling junction is exploited by time-resolved magneto-optical Kerr effect (TRMOKE) for both the parallel state (P state) and the antiparallel state (AP state) of the magnetizations between two magnetic layers. It was observed that the demagnetization time is shorter and the magnitude of demagnetization is larger in the AP state than those in the P state. These behaviors are attributed to the ultrafast spin transfer between two CoFeB layers via the tunneling of hot electrons through the MgO barrier. Our observation indicates that ultrafast demagnetization can be engineered by the hot electrons tunneling current. It opens the door to manipulate the ultrafast spin current in magnetic tunneling junctions.
Electrically Driving Donor Spin Qubits in Silicon Using Photonic Bandgap Resonators
NASA Astrophysics Data System (ADS)
Sigillito, A. J.; Tyryshkin, A. M.; Lyon, S. A.
In conventional experiments, donor nuclear spin qubits in silicon are driven using radiofrequency (RF) magnetic fields. However, magnetic fields are difficult to confine at the nanoscale, which poses major issues for individually addressable qubits and device scalability. Ideally one could drive spin qubits using RF electric fields, which are easy to confine, but spins do not naturally have electric dipole transitions. In this talk, we present a new method for electrically controlling nuclear spin qubits in silicon by modulating the hyperfine interaction between the nuclear spin qubit and the donor-bound electron. By fabricating planar superconducting photonic bandgap resonators, we are able to use pulsed electron-nuclear double resonance (ENDOR) techniques to selectively probe both electrically and magnetically driven transitions for 31P and 75As nuclear spin qubits. The electrically driven spin resonance mechanism allows qubits to be driven at either their transition frequency, or at one-half their transition frequency, thus reducing bandwidth requirements for future quantum devices. Moreover, this form of control allows for higher qubit densities and lower power requirements compared to magnetically driven schemes. In our proof-of-principle experiments we demonstrate electrically driven Rabi frequencies of approximately 50 kHz for widely spaced (10 μm) gates which should be extendable to MHz for nanoscale devices.
NASA Astrophysics Data System (ADS)
Puttisong, Y.; Wang, X. J.; Buyanova, I. A.; Chen, W. M.
2013-03-01
The effect of hyperfine interaction (HFI) on the recently discovered room-temperature defect-enabled spin-filtering effect in GaNAs alloys is investigated both experimentally and theoretically based on a spin Hamiltonian analysis. We provide direct experimental evidence that the HFI between the electron and nuclear spin of the central Ga atom of the spin-filtering defect, namely, the Gai interstitials, causes strong mixing of the electron spin states of the defect, thereby degrading the efficiency of the spin-filtering effect. We also show that the HFI-induced spin mixing can be suppressed by an application of a longitudinal magnetic field such that the electronic Zeeman interaction overcomes the HFI, leading to well-defined electron spin states beneficial to the spin-filtering effect. The results provide a guideline for further optimization of the defect-engineered spin-filtering effect.
Current driven dynamics of magnetic domain walls in permalloy nanowires
NASA Astrophysics Data System (ADS)
Hayashi, Masamitsu
The significant advances in micro-fabrication techniques opened the door to access interesting properties in solid state physics. With regard to magnetic materials, geometrical confinement of magnetic structures alters the defining parameters that govern magnetism. For example, development of single domain nano-pillars made from magnetic multilayers led to the discovery of electrical current controlled magnetization switching, which revealed the existence of spin transfer torque. Magnetic domain walls (DWs) are boundaries in magnetic materials that divide regions with distinct magnetization directions. DWs play an important role in the magnetization reversal processes of both bulk and thin film magnetic materials. The motion of DW is conventionally controlled by magnetic fields. Recently, it has been proposed that spin polarized current passed across the DW can also control the motion of DWs. Current in most magnetic materials is spin-polarized, due to spin-dependent scattering of the electrons, and thus can deliver spin angular momentum to the DW, providing a "spin transfer" torque on the DW which leads to DW motion. In addition, owing to the development of micro-fabrication techniques, geometrical confinement of magnetic materials enables creation and manipulation of a "single" DW in magnetic nanostructures. New paradigms for DW-based devices are made possible by the direct manipulation of DWs using spin polarized electrical current via spin transfer torque. This dissertation covers research on current induced DW motion in magnetic nanowires. Fascinating effects arising from the interplay between DWs with spin polarized current will be revealed.
Spin-transfer torque in spin filter tunnel junctions
NASA Astrophysics Data System (ADS)
Ortiz Pauyac, Christian; Kalitsov, Alan; Manchon, Aurelien; Chshiev, Mairbek
2014-12-01
Spin-transfer torque in a class of magnetic tunnel junctions with noncollinear magnetizations, referred to as spin filter tunnel junctions, is studied within the tight-binding model using the nonequilibrium Green's function technique within Keldysh formalism. These junctions consist of one ferromagnet (FM) adjacent to a magnetic insulator (MI) or two FM separated by a MI. We find that the presence of the magnetic insulator dramatically enhances the magnitude of the spin-torque components compared to conventional magnetic tunnel junctions. The fieldlike torque is driven by the spin-dependent reflection at the MI/FM interface, which results in a small reduction of its amplitude when an insulating spacer (S) is inserted to decouple MI and FM layers. Meanwhile, the dampinglike torque is dominated by the tunneling electrons that experience the lowest barrier height. We propose a device of the form FM/(S)/MI/(S)/FM that takes advantage of these characteristics and allows for tuning the spin-torque magnitudes over a wide range just by rotation of the magnetization of the insulating layer.
Temperature dependence of spin-orbit torques in W/CoFeB bilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skowroński, Witold, E-mail: skowron@agh.edu.pl; Cecot, Monika; Kanak, Jarosław
We report on the temperature variation of spin-orbit torques in perpendicularly magnetized W/CoFeB bilayers. Harmonic Hall voltage measurements in perpendicularly magnetized CoFeB reveal increased longitudinal and transverse effective magnetic field components at low temperatures. The damping-like spin-orbit torque reaches an efficiency of 0.55 at 19 K. Scanning transmission electron microscopy and X-ray reflectivity measurements indicate that considerable interface mixing between W and CoFeB may be responsible for strong spin-orbit interactions.
Electronic structure and magnetic properties of the strong-rung spin-1 ladder compound Rb3Ni2(NO3)7
NASA Astrophysics Data System (ADS)
Pchelkina, Z. V.; Mazurenko, V. V.; Volkova, O. S.; Deeva, E. B.; Morozov, I. V.; Shutov, V. V.; Troyanov, S. I.; Werner, J.; Koo, C.; Klingeler, R.; Vasiliev, A. N.
2018-04-01
Rb3Ni2(NO3)7 was obtained by crystallization from anhydrous nitric acid solution of rubidium nitrate and nickel nitrate hexahydrate. The crystal structure determined on single crystals implies isolated spin-1 two-leg ladders of Ni2 + ions connected by (NO3)- groups as basic elements. Magnetic susceptibility, specific heat in magnetic fields up to 9 T, magnetization, and high-frequency electron spin resonance studies performed on powder samples show the absence of long-range magnetic order at T ≥2 K. Electronic structure calculations and the detailed analysis of the experimental data enable quantitative estimates of the relevant parameters of the S =1 ladders in Rb3Ni2(NO3)7 . The rung coupling J1=10.16 K, the leg coupling J2=1.5 K, and the Ising-type anisotropy |A |=8.6 K are obtained. The scenario of a valence-bond solidlike quantum ground state realized in the two-leg Ni2 + ladders is further corroborated by model simulations of the magnetic susceptibility.
Spin-state blockade in Te6+-substituted electron-doped LaCoO3
NASA Astrophysics Data System (ADS)
Tomiyasu, Keisuke; Koyama, Shun-Ichi; Watahiki, Masanori; Sato, Mika; Nishihara, Kazuki; Onodera, Mitsugi; Iwasa, Kazuaki; Nojima, Tsutomu; Yamasaki, Yuuichi; Nakao, Hironori; Murakami, Youichi
2015-03-01
Perovskite-type LaCoO3 (Co3+: d6) is a rare inorganic material with sensitive and characteristic responses among low, intermediate, and high spin states. For example, in insulating nonmagnetic low-spin states below about 20 K, light hole doping (Ni substitution) induces much larger magnetization than expected; over net 10μB/hole (5μB/Ni) for 1μB/hole (1μB/Ni), in which the nearly isolated dopants locally change the surrounding Co low-spin states to magnetic ones and form spin molecules with larger total spin. Further, the former is isotropic, whereas the latter exhibits characteristic anisotropy probably because of Jahn-Teller distortion. In contrast, for electron doping, relatively insensitive spin-state responses were reported, as in LaCo(Ti4+) O3, but are not clarified, and are somewhat controversial. Here, we present macroscopic measurement data of another electron-doped system LaCo(Te6+) O3 and discuss the spin-state responses. This study was financially supported by Grants-in-Aid for Young Scientists (B) (No. 22740209 and 26800174) from the MEXT of Japan.
Nanoscale magnetic imaging with a single nitrogen-vacancy center in diamond
NASA Astrophysics Data System (ADS)
Hong, Sungkun
Magnetic imaging has been playing central roles not only in fundamental sciences but also in engineering and industry. Their numerous applications can be found in various areas, ranging from chemical analysis and biomedical imaging to magnetic data storage technology. An outstanding problem is to develop new magnetic imaging techniques with improved spatial resolutions down to nanoscale, while maintaining their magnetic sensitivities. For instance, if detecting individual electron or nuclear spins with nanomter spatial resolution is possible, it would allow for direct imaging of chemical structures of complex molecules, which then could bring termendous impacts on biological sciences. While realization of such nanoscale magnetic imaging still remains challenging, nitrogen-vacancy (NV) defects in diamond have recently considered as promising magnetic field sensors, as their electron spins show exceptionally long coherence even at room temperature. This thesis presents experimental progress in realizing a nanoscale magnetic imaging apparatus with a single nitrogen-vacancy (NV) color center diamond. We first fabricated diamond nanopillar devices hosting single NV centers at their ends, and incorporated them to a custom-built atomic force microscope (AFM). Our devices showed unprecedented combination of magnetic field sensitivity and spatial resolution for scanning NV systems. We then used these devices to magnetically image a single isolated electronic spin with nanometer resolution, for the first time under ambient condition. We also extended our study to improve and generalize the application of the scanning NV magnetometer we developed. We first introduced magnetic field gradients from a strongly magnetized tip, and demonstrated that the spatial resolution can be further improved by spectrally distinguishing identical spins at different locations. In addition, we developed a method to synchronize the periodic motion of an AFM tip and pulsed microwave sequences controlling an NV spin. This scheme enabled employment of 'AC magnetic field sensing scheme' in imaging samples with static and spatially varying magnetizations.
Physics of lateral triple quantum-dot molecules with controlled electron numbers.
Hsieh, Chang-Yu; Shim, Yun-Pil; Korkusinski, Marek; Hawrylak, Pawel
2012-11-01
We review the recent progress in theory and experiments with lateral triple quantum dots with controlled electron numbers down to one electron in each dot. The theory covers electronic and spin properties as a function of topology, number of electrons, gate voltage and external magnetic field. The orbital Hund's rules and Nagaoka ferromagnetism, magnetic frustration and chirality, interplay of quantum interference and electron-electron interactions and geometrical phases are described and related to charging and transport spectroscopy. Fabrication techniques and recent experiments are covered, as well as potential applications of triple quantum-dot molecule in coherent control, spin manipulation and quantum computation.
Design and building of new spin polarized Positron Annihilation Induced Auger Electron Spectrometer
NASA Astrophysics Data System (ADS)
Lim, Zheng Hui; Mishler, Michael; Joglekar, Prasad; Shastry, Karthik; Koymen, Ali; Sharma, Suresh; Weiss, Alexander
2014-03-01
We propose to develop a next generation high flux variable energy spin-polarized position beam facility for materials studies. This new system will have a higher efficiency than our current system, and it will also be the first in the world to combine spin polarization with a time of flight Positron Annihilation induced Auger Electron Spectroscopy (PAES). The spin polarized positrons are electromagnetically guided towards the sample with an axial magnetic field and perpendicular electric fields. These incident positrons get annihilated at the surface of the sample creating two gamma rays and auger electrons via Auger transitions. These signals are useful in characterizing material surface, surface magnetization, and energy sharing in valence band. This new spectrometer, which is currently under construction, will be a next generation positron system. NSF.
Disordered dimer state in electron-doped Sr 3 Ir 2 O 7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, Tom; Dally, Rebecca; Upton, Mary
2016-09-06
Spin excitations are explored in the electron-doped spin-orbit Mott insulator (Sr 1-xLa x) 3Ir 2O 7. As this bilayer square lattice system is doped into the metallic regime, long-range antiferromagnetism vanishes, yet a spectrum of gapped spin excitation remains. Excitation lifetimes are strongly damped with increasing carrier concentration, and the energy-integrated spectral weight becomes nearly momentum independent as static spin order is suppressed. Local magnetic moments, absent in the parent system, grow in metallic samples and approach values consistent with one J=12 impurity per electron doped. Our combined data suggest that the magnetic spectra of metallic (Sr 1-xLa x) 3Irmore » 2O 7 are best described by excitations out of a disordered dimer state.« less
NASA Astrophysics Data System (ADS)
Mokhtari, P.; Rezaei, G.; Zamani, A.
2017-06-01
In this paper, electronic structure of a two dimensional elliptic quantum dot under the influence of external electric and magnetic fields are studied in the presence of Rashba and Dresselhaus spin-orbit interactions. This investigation is done computationally and to do this, at first, the effective Hamiltonian of the system by considering the spin-orbit coupling is demonstrated in the presence of applied electric and magnetic fields and afterwards the Schrödinger equation is solved using the finite difference approach. Utilizing finite element method, eigenvalues and eigenstates of the system are calculated and the effect of the external fields, the size of the dot as well as the strength of Rashba spin-orbit interaction are studied. Our results indicate that, Spin-orbit interactions, external fields and the dot size have a great influence on the electronic structure of the system.
NASA Astrophysics Data System (ADS)
El-Kelany, Kh. E.; Ravoux, C.; Desmarais, J. K.; Cortona, P.; Pan, Y.; Tse, J. S.; Erba, A.
2018-06-01
Lanthanide sesquioxides are strongly correlated materials characterized by highly localized unpaired electrons in the f band. Theoretical descriptions based on standard density functional theory (DFT) formulations are known to be unable to correctly describe their peculiar electronic and magnetic features. In this study, electronic and magnetic properties of the first four lanthanide sesquioxides in the series are characterized through a reliable description of spin localization as ensured by hybrid functionals of the DFT, which include a fraction of nonlocal Fock exchange. Because of the high localization of the f electrons, multiple metastable electronic configurations are possible for their ground state depending on the specific partial occupation of the f orbitals: the most stable configuration is here found and characterized for all systems. Magnetic ordering is explicitly investigated, and the higher stability of an antiferromagnetic configuration with respect to the ferromagnetic one is predicted. The critical role of the fraction of exchange on the description of their electronic properties (notably, on spin localization and on the electronic band gap) is addressed. In particular, a recently proposed theoretical approach based on a self-consistent definition—through the material dielectric response—of the optimal fraction of exchange in hybrid functionals is applied to these strongly correlated materials.
Yugova, I A; Sokolova, A A; Yakovlev, D R; Greilich, A; Reuter, D; Wieck, A D; Bayer, M
2009-04-24
Pulsed optical excitation of the negatively charged trion has been used to generate electron spin coherence in an n-doped (In,Ga)As/GaAs quantum well. The coherence is monitored by resonant spin amplification detected at times exceeding the trion lifetime by 2 orders of magnitude. Still, even then signatures of the hole spin dynamics in the trion complex are imprinted in the signal leading to an unusual batlike shape of the magnetic field dispersion of spin amplification. From this shape information about the spin relaxation of both electrons and holes can be derived.
Electron doping evolution of the magnetic excitations in NaFe 1-xCo xAs
Carr, Scott V.; Zhang, Chenglin; Song, Yu; ...
2016-06-13
We use time-of-flight (TOF) inelastic neutron scattering (INS) spectroscopy to investigate the doping dependence of magnetic excitations across the phase diagram of NaFe 1-xCo xAs with x = 0, 0.0175, 0.0215, 0.05, and 0.11. The effect of electron-doping by partially substituting Fe by Co is to form resonances that couple with superconductivity, broaden and suppress low energy (E 80 meV) spin excitations compared with spin waves in undoped NaFeAs. However, high energy (E > 80 meV) spin excitations are weakly Co-doping dependent. Integration of the local spin dynamic susceptibility "(!) of NaFe 1-xCo xAs reveals a total fluctuating moment ofmore » 3.6 μ2 B/Fe and a small but systematic reduction with electron doping. The presence of a large spin gap in the Cooverdoped nonsuperconducting NaFe0.89Co0.11As suggests that Fermi surface nesting is responsible for low-energy spin excitations. These results parallel Ni-doping evolution of spin excitations in BaFe 2-xNi xAs 2, confirming the notion that low-energy spin excitations coupling with itinerant electrons are important for superconductivity, while weakly doping dependent high-energy spin excitations result from localized moments.« less
Boundary conditions and formation of pure spin currents in magnetic field
NASA Astrophysics Data System (ADS)
Eliashvili, Merab; Tsitsishvili, George
2017-09-01
Schrödinger equation for an electron confined to a two-dimensional strip is considered in the presence of homogeneous orthogonal magnetic field. Since the system has edges, the eigenvalue problem is supplied by the boundary conditions (BC) aimed in preventing the leakage of matter away across the edges. In the case of spinless electrons the Dirichlet and Neumann BC are considered. The Dirichlet BC result in the existence of charge carrying edge states. For the Neumann BC each separate edge comprises two counterflow sub-currents which precisely cancel out each other provided the system is populated by electrons up to certain Fermi level. Cancelation of electric current is a good starting point for developing the spin-effects. In this scope we reconsider the problem for a spinning electron with Rashba coupling. The Neumann BC are replaced by Robin BC. Again, the two counterflow electric sub-currents cancel out each other for a separate edge, while the spin current survives thus modeling what is known as pure spin current - spin flow without charge flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laguna-Marco, M. A.; Kayser, P.; Alonso, J. A.
2015-06-01
Element- and orbital-selective x-ray absorption and magnetic circular dichroism measurements are carried out to probe the electronic structure and magnetism of Ir 5d electronic states in double perovskite Sr2MIrO6 (M = Mg, Ca, Sc, Ti, Ni, Fe, Zn, In) and La2NiIrO6 compounds. All the studied systems present a significant influence of spin-orbit interactions in the electronic ground state. In addition, we find that the Ir 5d local magnetic moment shows different character depending on the oxidation state despite the net magnetization being similar for all the compounds. Ir carries an orbital contribution comparable to the spin contribution for Ir4+ (5d(5))more » and Ir5+ (5d(4)) oxides, whereas the orbital contribution is quenched for Ir6+ (5d(3)) samples. Incorporation of a magnetic 3d atom allows getting insight into the magnetic coupling between 5d and 3d transition metals. Together with previous susceptibility and neutron diffractionmeasurements, the results indicate that Ir carries a significant local magnetic moment even in samples without a 3d metal. The size of the (small) net magnetization of these compounds is a result of predominant antiferromagnetic interactions between local moments coupled with structural details of each perovskite structure« less
The role of spin–rotation coupling in the non-exponential decay of hydrogen-like heavy ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambiase, Gaetano, E-mail: lambiase@sa.infn.it; INFN, Sezione di Napoli; International Institute for Advanced Scientific Studies, 89019 Vietri sul Mare
2013-05-15
Recent experiments carried out at the storage ring of GSI in Darmstadt reveal an unexpected oscillation in the orbital electron capture and subsequent decay of hydrogen-like {sup 140}Pr{sup 58+}, {sup 142}Pm{sup 60+} and {sup 122}I{sup 52+}. The modulations have periods of 7.069(8) s, 7.10(22) s and 6.1 s respectively in the laboratory frame and are superimposed on the expected exponential decays. In this paper we propose a semiclassical model in which the observed modulations arise from the coupling of rotation to the spins of electron and nucleus. We show that the modulations are connected to quantum beats and to themore » effect of the Thomas precession on the spins of bound electron and nucleus, the magnetic moment precessions of electron and nucleus and their cyclotron frequencies. We also show that the spin–spin coupling of electron and nucleus, though dominant relative to the magnetic moment coupling of electron and nucleus with the storage ring magnetic field, does not contribute to the modulation because these terms average out during the time of flight of the ions, or cancel out. The model also predicts that the anomaly cannot be observed if the motion of the ions is rectilinear, or if the ions are stopped in a target (decay of neutral atoms in solid environments). It also supports the notion that no modulation occurs for the β{sup +}-decay branch. -- Highlights: ► Spin precession of the spin of nucleus and electron in storage ring. ► Coupling of rotation to the spin of electron and nucleus. ► Modulation in the decay probability of the heavy ions induced by quantum beats. ► Comparison with experimental data.« less
Atomic-scale sensing of the magnetic dipolar field from single atoms
NASA Astrophysics Data System (ADS)
Choi, Taeyoung; Paul, William; Rolf-Pissarczyk, Steffen; MacDonald, Andrew J.; Natterer, Fabian D.; Yang, Kai; Willke, Philip; Lutz, Christopher P.; Heinrich, Andreas J.
2017-05-01
Spin resonance provides the high-energy resolution needed to determine biological and material structures by sensing weak magnetic interactions. In recent years, there have been notable achievements in detecting and coherently controlling individual atomic-scale spin centres for sensitive local magnetometry. However, positioning the spin sensor and characterizing spin-spin interactions with sub-nanometre precision have remained outstanding challenges. Here, we use individual Fe atoms as an electron spin resonance (ESR) sensor in a scanning tunnelling microscope to measure the magnetic field emanating from nearby spins with atomic-scale precision. On artificially built assemblies of magnetic atoms (Fe and Co) on a magnesium oxide surface, we measure that the interaction energy between the ESR sensor and an adatom shows an inverse-cube distance dependence (r-3.01±0.04). This demonstrates that the atoms are predominantly coupled by the magnetic dipole-dipole interaction, which, according to our observations, dominates for atom separations greater than 1 nm. This dipolar sensor can determine the magnetic moments of individual adatoms with high accuracy. The achieved atomic-scale spatial resolution in remote sensing of spins may ultimately allow the structural imaging of individual magnetic molecules, nanostructures and spin-labelled biomolecules.
NASA Astrophysics Data System (ADS)
Dalgleish, Hugh; Kirczenow, George
2004-03-01
Metal/Molecule/Metal junction systems forming molecular wires are currently the focus of intense study. Recently, spin-dependent electron transport in molecular wires with magnetic Ni electrodes has been studied theoretically, and spin-valve effects have been predicted.* Here we explore theoretically another magnetic molecular wire system, namely, ferromagnetic Fe nano-contacts bridged with 1,4-benzene-dithiolate (BDT). We estimate the essential structural and electronic parameters for this system based on ab initio density functional calculations (DFT) for some simple model systems involving thiol groups and Fe clusters as well as semi-empirical considerations and the known electronic structure of bulk Fe. We then use Lippmann-Schwinger and Green's function techniques together with the Landauer formalism to study spin-dependent transport. *E. G. Emberly and G. Kirczenow, Chem. Phys. 281, 311 (2002); R. Pati, L. Senapati, P.M. Ajayan and S.K. Nayak, Phys. Rev. B68, 100407 (2003).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Q.; Cheng, J. -G.; Fan, W.
The perovskite (Pv) SrIrO 3 is an exotic narrow-band metal owing to a confluence of the strengths of the spin-orbit coupling (SOC) and the electron-electron correlations. It has been proposed that topological and magnetic insulating phases can be achieved by tuning the SOC, Hubbard interactions, and/or lattice symmetry. Here, we report that the substitution of nonmagnetic, isovalent Sn 4+ for Ir 4+ in the SrIr 1-xSn xO 3 perovskites synthesized under high pressure leads to a metal-insulator transition to an antiferromagnetic phase at TN ≥ 225 K. The continuous change of the cell volume as detected by X-ray diffraction andmore » the l-shape transition of the specific heat on cooling through TN demonstrate that the metal-insulator transition is of second-order. Neutron powder diffraction results indicate that the Sn substitution enlarges an octahedral-site distortion that reduces the SOC relative to the spin-spin exchange interaction and results in the type-G AF spin ordering below TN. Measurement of high-temperature magnetic susceptibility shows the evolution of magnetic coupling in the paramagnetic phase typical of weak itinerant-electron magnetism in the Sn-substituted samples. A reduced structural symmetry in the magnetically ordered phase leads to an electron gap opening at the Brillouin zone boundary below TN in the same way as proposed by Slater.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Q.; Cheng, J. -G.; Fan, W.
The perovskite SrIrO 3 is an exotic narrow-band metal owing to a confluence of the strengths of the spin-orbit coupling (SOC) and the electron-electron correlations. It has been proposed that topological and magnetic insulating phases can be achieved by tuning the SOC, Hubbard interactions, and/or lattice symmetry. Here, we report that the substitution of nonmagnetic, isovalent Sn 4+ for Ir 4+ in the SrIr 1–xSn xO 3 perovskites synthesized under high pressure leads to a metal-insulator transition to an antiferromagnetic (AF) phase at T N ≥ 225 K. The continuous change of the cell volume as detected by x-ray diffractionmore » and the λ-shape transition of the specific heat on cooling through T N demonstrate that the metal-insulator transition is of second order. Neutron powder diffraction results indicate that the Sn substitution enlarges an octahedral-site distortion that reduces the SOC relative to the spin-spin exchange interaction and results in the type- G AF spin ordering below T N. Measurement of high-temperature magnetic susceptibility shows the evolution of magnetic coupling in the paramagnetic phase typical of weak itinerant-electron magnetism in the Sn-substituted samples. Furthermore, a reduced structural symmetry in the magnetically ordered phase leads to an electron gap opening at the Brillouin zone boundary below T N in the same way as proposed by Slater.« less
Dynamic spin filtering at the Co/Alq3 interface mediated by weakly coupled second layer molecules.
Droghetti, Andrea; Thielen, Philip; Rungger, Ivan; Haag, Norman; Großmann, Nicolas; Stöckl, Johannes; Stadtmüller, Benjamin; Aeschlimann, Martin; Sanvito, Stefano; Cinchetti, Mirko
2016-08-31
Spin filtering at organic-metal interfaces is often determined by the details of the interaction between the organic molecules and the inorganic magnets used as electrodes. Here we demonstrate a spin-filtering mechanism based on the dynamical spin relaxation of the long-living interface states formed by the magnet and weakly physisorbed molecules. We investigate the case of Alq3 on Co and, by combining two-photon photoemission experiments with electronic structure theory, show that the observed long-time spin-dependent electron dynamics is driven by molecules in the second organic layer. The interface states formed by physisorbed molecules are not spin-split, but acquire a spin-dependent lifetime, that is the result of dynamical spin-relaxation driven by the interaction with the Co substrate. Such spin-filtering mechanism has an important role in the injection of spin-polarized carriers across the interface and their successive hopping diffusion into successive molecular layers of molecular spintronics devices.
Dynamic spin filtering at the Co/Alq3 interface mediated by weakly coupled second layer molecules
Droghetti, Andrea; Thielen, Philip; Rungger, Ivan; Haag, Norman; Großmann, Nicolas; Stöckl, Johannes; Stadtmüller, Benjamin; Aeschlimann, Martin; Sanvito, Stefano; Cinchetti, Mirko
2016-01-01
Spin filtering at organic-metal interfaces is often determined by the details of the interaction between the organic molecules and the inorganic magnets used as electrodes. Here we demonstrate a spin-filtering mechanism based on the dynamical spin relaxation of the long-living interface states formed by the magnet and weakly physisorbed molecules. We investigate the case of Alq3 on Co and, by combining two-photon photoemission experiments with electronic structure theory, show that the observed long-time spin-dependent electron dynamics is driven by molecules in the second organic layer. The interface states formed by physisorbed molecules are not spin-split, but acquire a spin-dependent lifetime, that is the result of dynamical spin-relaxation driven by the interaction with the Co substrate. Such spin-filtering mechanism has an important role in the injection of spin-polarized carriers across the interface and their successive hopping diffusion into successive molecular layers of molecular spintronics devices. PMID:27578395
Dynamic spin filtering at the Co/Alq3 interface mediated by weakly coupled second layer molecules
NASA Astrophysics Data System (ADS)
Droghetti, Andrea; Thielen, Philip; Rungger, Ivan; Haag, Norman; Großmann, Nicolas; Stöckl, Johannes; Stadtmüller, Benjamin; Aeschlimann, Martin; Sanvito, Stefano; Cinchetti, Mirko
2016-08-01
Spin filtering at organic-metal interfaces is often determined by the details of the interaction between the organic molecules and the inorganic magnets used as electrodes. Here we demonstrate a spin-filtering mechanism based on the dynamical spin relaxation of the long-living interface states formed by the magnet and weakly physisorbed molecules. We investigate the case of Alq3 on Co and, by combining two-photon photoemission experiments with electronic structure theory, show that the observed long-time spin-dependent electron dynamics is driven by molecules in the second organic layer. The interface states formed by physisorbed molecules are not spin-split, but acquire a spin-dependent lifetime, that is the result of dynamical spin-relaxation driven by the interaction with the Co substrate. Such spin-filtering mechanism has an important role in the injection of spin-polarized carriers across the interface and their successive hopping diffusion into successive molecular layers of molecular spintronics devices.
Ensemble Density Functional Approach to the Quantum Hall Effect
NASA Astrophysics Data System (ADS)
Heinonen, O.
1997-03-01
The fractional quantum Hall effect (FQHE) occurs in a two-dimensional electron gas of density n when a strong magnetic field perpendicular to the plane of the electron gas takes on certain strengths B(n). At these magnetic field strengths the system is incompressible, i.e., there is a finite cost in energy for creating charge density fluctuations in the bulk. Even so the boundary of the electron gas supports gapless modes of density waves. The bulk energy gap arises because of the strong electron-electron interactions. There are very good models for infinite homogeneous systems and for the gapless excitations of the boundary of the electron gas. But in order to explain experiments on quantum Hall systems, including Hall bars and quantum dots, new approaches are needed which can accurately describe inhomogeneous systems, including Landau level mixing and the spin degree of freedom. One possibility is an ensemble density functional theory approach that we have developed.(O. Heinonen, M.I. Lubin, and M.D. Johnson, Phys. Rev. Lett. 75), 4110 (1995)(O. Heinonen, M.I. Lubin, and M.D. Johnson, Int. J. Quant. Chem, December 1996) We have applied this to study edge reconstructions of spin-polarized quantum dots. The results for a six-electron test case are in excellent agreement with numerical diagonalizations. For larger systems, compressible and incompressible strips appear as the magnetic field is increased from the region in which a dot forms a compact so-called maximum density droplet. We have recently included spin degree of freedom to study the stability of a maximum density droplet, and charge-spin textures in inhomogeneous systems. As an example, when the Zeeman coupling is decreased, we find that the maximum density droplet develops a spin-structured edge instability. This implies that the spin degree of freedom may play a significant role in the study of edge modes at low or moderate magnetic fields.
Fermi-Edge Singularity of Spin-Polarized Electrons
NASA Astrophysics Data System (ADS)
Plochocka-Polack, P.; Groshaus, J. G.; Rappaport, M.; Umansky, V.; Gallais, Y.; Pinczuk, A.; Bar-Joseph, I.
2007-05-01
We study the absorption spectrum of a two-dimensional electron gas (2DEG) in a magnetic field. We find that at low temperatures, when the 2DEG is spin polarized, the absorption spectra, which correspond to the creation of spin up or spin down electrons, differ in magnitude, linewidth, and filling factor dependence. We show that these differences can be explained as resulting from the creation of a Mahan exciton in one case, and of a power law Fermi-edge singularity in the other.
Magnetic and metal-insulator transitions in coupled spin-fermion systems
Mondaini, R.; Paiva, T.; Scalettar, R. T.
2014-10-14
We use quantum Monte Carlo to determine the magnetic and transport properties of coupled square lattice spin and fermionic planes as a model for a metal-insulator interface. Specifically, layers of Ising spins with an intra-layer exchange constant J interact with the electronic spins of several adjoining metallic sheets via a coupling JH. When the chemical potential cuts across the band center, that is, at half-filling, the Neel temperature of antiferromagnetic (J > 0) Ising spins is enhanced by the coupling to the metal, while in the ferromagnetic case (J < 0) the metallic degrees of freedom reduce the ordering temperature.more » In the former case, a gap opens in the fermionic spectrum, driving insulating behavior, and the electron spins also order. This induced antiferromagnetism penetrates more weakly as the distance from the interface increases, and also exhibits a non-monotonic dependence on JH. For doped lattices an interesting charge disproportionation occurs where electrons move to the interface layer to maintain half-filling there.« less
NASA Astrophysics Data System (ADS)
Makinistian, Leonardo; Albanesi, Eduardo A.
2013-06-01
We present ab initio calculations of magnetoelectronic and transport properties of the interface of hcp Cobalt (001) and the intrinsic narrow-gap semiconductor germanium selenide (GeSe). Using a norm-conserving pseudopotentials scheme within DFT, we first model the interface with a supercell approach and focus on the spin-resolved densities of states and the magnetic moment (spin and orbital components) at the different atomic layers that form the device. We also report a series of cuts (perpendicular to the plane of the heterojunction) of the electronic and spin densities showing a slight magnetization of the first layers of the semiconductor. Finally, we model the device with a different scheme: using semiinfinite electrodes connected to the heterojunction. These latter calculations are based upon a nonequilibrium Green's function approach that allows us to explore the spin-resolved electronic transport under a bias voltage (spin-resolved I-V curves), revealing features of potential applicability in spintronics.
NASA Astrophysics Data System (ADS)
Kavand, Marzieh; Baird, Douglas; van Schooten, Kipp; Malissa, Hans; Lupton, John M.; Boehme, Christoph
2016-08-01
Spin-dependent processes play a crucial role in organic electronic devices. Spin coherence can give rise to spin mixing due to a number of processes such as hyperfine coupling, and leads to a range of magnetic field effects. However, it is not straightforward to differentiate between pure single-carrier spin-dependent transport processes which control the current and therefore the electroluminescence, and spin-dependent electron-hole recombination which determines the electroluminescence yield and in turn modulates the current. We therefore investigate the correlation between the dynamics of spin-dependent electric current and spin-dependent electroluminescence in two derivatives of the conjugated polymer poly(phenylene-vinylene) using simultaneously measured pulsed electrically detected (pEDMR) and optically detected (pODMR) magnetic resonance spectroscopy. This experimental approach requires careful analysis of the transient response functions under optical and electrical detection. At room temperature and under bipolar charge-carrier injection conditions, a correlation of the pEDMR and the pODMR signals is observed, consistent with the hypothesis that the recombination currents involve spin-dependent electronic transitions. This observation is inconsistent with the hypothesis that these signals are caused by spin-dependent charge-carrier transport. These results therefore provide no evidence that supports earlier claims that spin-dependent transport plays a role for room-temperature magnetoresistance effects. At low temperatures, however, the correlation between pEDMR and pODMR is weakened, demonstrating that more than one spin-dependent process influences the optoelectronic materials' properties. This conclusion is consistent with prior studies of half-field resonances that were attributed to spin-dependent triplet exciton recombination, which becomes significant at low temperatures when the triplet lifetime increases.
Controlled enhancement of spin-current emission by three-magnon splitting.
Kurebayashi, Hidekazu; Dzyapko, Oleksandr; Demidov, Vladislav E; Fang, Dong; Ferguson, A J; Demokritov, Sergej O
2011-07-03
Spin currents--the flow of angular momentum without the simultaneous transfer of electrical charge--play an enabling role in the field of spintronics. Unlike the charge current, the spin current is not a conservative quantity within the conduction carrier system. This is due to the presence of the spin-orbit interaction that couples the spin of the carriers to angular momentum in the lattice. This spin-lattice coupling acts also as the source of damping in magnetic materials, where the precessing magnetic moment experiences a torque towards its equilibrium orientation; the excess angular momentum in the magnetic subsystem flows into the lattice. Here we show that this flow can be reversed by the three-magnon splitting process and experimentally achieve the enhancement of the spin current emitted by the interacting spin waves. This mechanism triggers angular momentum transfer from the lattice to the magnetic subsystem and modifies the spin-current emission. The finding illustrates the importance of magnon-magnon interactions for developing spin-current based electronics.
NASA Astrophysics Data System (ADS)
Eichhorn, T. R.; van den Brandt, B.; Hautle, P.; Henstra, A.; Wenckebach, W. Th.
2014-07-01
In dynamic nuclear polarisation (DNP), also called hyperpolarisation, a small amount of unpaired electron spins is added to the sample containing the nuclear spins, and the polarisation of these unpaired electron spins is transferred to the nuclear spins by means of a microwave field. Traditional DNP polarises the electron spin of stable paramagnetic centres by cooling down to low temperature and applying a strong magnetic field. Then weak continuous wave microwave fields are used to induce the polarisation transfer. Complicated cryogenic equipment and strong magnets can be avoided using short-lived photo-excited triplet states that are strongly aligned in the optical excitation process. However, a much faster transfer of the electron spin polarisation is needed and pulsed DNP methods like nuclear orientation via electron spin locking (NOVEL) and the integrated solid effect (ISE) are used. To describe the polarisation transfer with the strong microwave fields in NOVEL and ISE, the usual perturbation methods cannot be used anymore. In the previous paper, we presented a theoretical approach to calculate the polarisation transfer in ISE. In the present paper, the theory is applied to the system naphthalene-h8 doped with pentacene-d14 yielding the photo-excited triplet states and compared with experimental results.
First-principles study of the giant magnetic anisotropy energy in bulk Na4IrO4
NASA Astrophysics Data System (ADS)
Wang, Di; Tang, Feng; Du, Yongping; Wan, Xiangang
2017-11-01
In 5 d transition-metal oxides, novel properties arise from the interplay of electron correlations and spin-orbit interactions. Na4IrO4 , where the 5 d transition-metal Ir atom occupies the center of the square-planar coordination environment, has attracted research interest. Based on density functional theory, we present a comprehensive investigation of electronic and magnetic properties of Na4IrO4 . We propose the magnetic ground-state configuration, and find that the magnetic easy axis is perpendicular to the IrO4 plane. The magnetic anisotropy energy (MAE) of Na4IrO4 is found to be giant. We estimate the magnetic parameters in the generalized symmetry-allowed spin model, and find that the next-nearest-neighbor exchange interaction J2 is much larger than other intersite exchange interactions and results in the magnetic ground-state configuration. The numerical results reveal that the anisotropy of interatomic spin-exchange interaction is quite small and the huge MAE comes from the single-ion anisotropy. This compound has a large spin gap but very narrow spin-wave dispersion, due to the large single-ion anisotropy and quite small intersite exchange couplings. We clarify that these remarkable magnetic features are originated from its highly isolated and low-symmetry IrO4 moiety. We also explore the possibility to further enhance the MAE.
NASA Astrophysics Data System (ADS)
Shahzad, Munir; Sengupta, Pinaki
2017-08-01
We study the Shastry-Sutherland Kondo lattice model with additional Dzyaloshinskii-Moriya (DM) interactions, exploring the possible magnetic phases in its multi-dimensional parameter space. Treating the local moments as classical spins and using a variational ansatz, we identify the parameter ranges over which various common magnetic orderings are potentially stabilized. Our results reveal that the competing interactions result in a heightened susceptibility towards a wide range of spin configurations including longitudinal ferromagnetic and antiferromagnetic order, coplanar flux configurations and most interestingly, multiple non-coplanar configurations including a novel canted-flux state as the different Hamiltonian parameters like electron density, interaction strengths and degree of frustration are varied. The non-coplanar and non-collinear magnetic ordering of localized spins behave like emergent electromagnetic fields and drive unusual transport and electronic phenomena.
Structural, electronic and magnetic properties of metal thiophosphate InPS4
NASA Astrophysics Data System (ADS)
Rajpoot, Priyanka; Nayak, Vikas; Kumari, Meena; Yadav, Priya; Nautiyal, Shashank; Verma, U. P.
2017-05-01
The non-centrosymmetric crystal, InPS4, has been investigated by means of density functional theory (DFT). In this paper we have calculated the structural parameters, electronic band structures, density of states plot and magnetic properties using full potential linearized augmented plane wave (FP-LAPW) method. The exchange correlation has been solved employing the generalised gradient approximation due to Perdew-Burke-Ernzerhof. The calculations are performed both without spin as well as spin polarized. The results show that InPS4 is an indirect band gap semiconductor with (N-Г) energy gap of 2.32eV (without spin) and 1.86eV in spin up and down channels.The obtained lattice parameters and energy gap agree well with the experimental results. Our reported magnetic moment results show that the property of InPS4is nonmagnetic.
Spin tuning of electron-doped metal-phthalocyanine layers.
Stepanow, Sebastian; Lodi Rizzini, Alberto; Krull, Cornelius; Kavich, Jerald; Cezar, Julio C; Yakhou-Harris, Flora; Sheverdyaeva, Polina M; Moras, Paolo; Carbone, Carlo; Ceballos, Gustavo; Mugarza, Aitor; Gambardella, Pietro
2014-04-09
The spin state of organic-based magnets at interfaces is to a great extent determined by the organic environment and the nature of the spin-carrying metal center, which is further subject to modifications by the adsorbate-substrate coupling. Direct chemical doping offers an additional route for tailoring the electronic and magnetic characteristics of molecular magnets. Here we present a systematic investigation of the effects of alkali metal doping on the charge state and crystal field of 3d metal ions in Cu, Ni, Fe, and Mn phthalocyanine (Pc) monolayers adsorbed on Ag. Combined X-ray absorption spectroscopy and ligand field multiplet calculations show that Cu(II), Ni(II), and Fe(II) ions reduce to Cu(I), Ni(I), and Fe(I) upon alkali metal adsorption, whereas Mn maintains its formal oxidation state. The strength of the crystal field at the Ni, Fe, and Mn sites is strongly reduced upon doping. The combined effect of these changes is that the magnetic moment of high- and low-spin ions such as Cu and Ni can be entirely turned off or on, respectively, whereas the magnetic configuration of MnPc can be changed from intermediate (3/2) to high (5/2) spin. In the case of FePc a 10-fold increase of the orbital magnetic moment accompanies charge transfer and a transition to a high-spin state.
Spin Currents and Spin Orbit Torques in Ferromagnets and Antiferromagnets
NASA Astrophysics Data System (ADS)
Hung, Yu-Ming
This thesis focuses on the interactions of spin currents and materials with magnetic order, e.g., ferromagnetic and antiferromagnetic thin films. The spin current is generated in two ways. First by spin-polarized conduction-electrons associated with the spin Hall effect in heavy metals (HMs) and, second, by exciting spin-waves in ferrimagnetic insulators using a microwave frequency magnetic field. A conduction-electron spin current can be generated by spin-orbit coupling in a heavy non-magnetic metal and transfer its spin angular momentum to a ferromagnet, providing a means of reversing the magnetization of perpendicularly magnetized ultrathin films with currents that flow in the plane of the layers. The torques on the magnetization are known as spin-orbit torques (SOT). In the first part of my thesis project I investigated and contrasted the quasistatic (slowly swept current) and pulsed current-induced switching characteristics of micrometer scale Hall crosses consisting of very thin (<1 nm) perpendicularly magnetized CoFeB layers on beta-Ta. While complete magnetization reversal occurs at a threshold current density in the quasistatic case, pulses with short duration (≤10 ns) and larger amplitude (≃10 times the quasistatic threshold current) lead to only partial magnetization reversal and domain formation. The partial reversal is associated with the limited time for reversed domain expansion during the pulse. The second part of my thesis project studies and considers applications of SOT-driven domain wall (DW) motion in a perpendicularly magnetized ultrathin ferromagnet sandwiched between a heavy metal and an oxide. My experiment results demonstrate that the DW motion can be explained by a combination of the spin Hall effect, which generates a SOT, and Dzyaloshinskii-Moriya interaction, which stabilizes chiral Neel-type DW. Based on SOT-driven DW motion and magnetic coupling between electrically isolated ferromagnetic elements, I proposed a new type of spin logic devices. I then demonstrate the device operation by using micromagnetic modeling which involves studying the magnetic coupling induced by fringe fields from chiral DWs in perpendicularly magnetized nanowires. The last part of my thesis project reports spin transport and spin-Hall magnetoresistance (SMR) in yttrium iron garnet Y3Fe5O 12 (YIG)/NiO/Pt trilayers with varied NiO thickness. To characterize the spin transport through NiO we excite ferromagnetic resonance in YIG with a microwave frequency magnetic field and detect the voltage associated with the inverse spin-Hall effect (ISHE) in the Pt layer. The ISHE signal is found to decay exponentially with the NiO thickness with a characteristic decay length of 3.9 nm. However, in contrast to the ISHE response, as the NiO thickness increases the SMR signal goes towards zero abruptly at a NiO thickness of 4 nm, highlighting the different length scales associated with the spin-transport in NiO and SMR in such trilayers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru; Kuz’menkov, L.S., E-mail: lsk@phys.msu.ru
We consider quantum plasmas of electrons and motionless ions. We describe separate evolution of spin-up and spin-down electrons. We present corresponding set of quantum hydrodynamic equations. We assume that plasmas are placed in an uniform external magnetic field. We account different occupation of spin-up and spin-down quantum states in equilibrium degenerate plasmas. This effect is included via equations of state for pressure of each species of electrons. We study oblique propagation of longitudinal waves. We show that instead of two well-known waves (the Langmuir wave and the Trivelpiece–Gould wave), plasmas reveal four wave solutions. New solutions exist due to bothmore » the separate consideration of spin-up and spin-down electrons and different occupation of spin-up and spin-down quantum states in equilibrium state of degenerate plasmas.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumoto, Munehisa; Akai, Hisazumi; Doi, Shotaro
2016-06-07
A classical spin model derived ab initio for rare-earth-based permanent magnet compounds is presented. Our target compound, NdFe{sub 12}N, is a material that goes beyond today's champion magnet compound Nd{sub 2}Fe{sub 14}B in its intrinsic magnetic properties with a simpler crystal structure. Calculated temperature dependence of the magnetization and the anisotropy field agrees with the latest experimental results in the leading order. Having put the realistic observables under our numerical control, we propose that engineering 5d-electron-mediated indirect exchange coupling between 4f-electrons in Nd and 3d-electrons from Fe would most critically help enhance the material's utility over the operation-temperature range.
Park, Hyun Soon; Hirata, Kei; Yanagisawa, Keiichi; Ishida, Yoichi; Matsuda, Tsuyoshi; Shindo, Daisuke; Tonomura, Akira
2012-12-07
Nanostructured magnetic materials play an important role in increasing miniaturized devices. For the studies of their magnetic properties and behaviors, nanoscale imaging of magnetic field is indispensible. Here, using electron holography, the magnetization distribution of a TMR spin valve head of commercial design is investigated without and with a magnetic field applied. Characterized is the magnetic flux distribution in complex hetero-nanostructures by averaging the phase images and separating their component magnetic vectors and electric potentials. The magnetic flux densities of the NiFe (shield and 5 nm-free layers) and the CoPt (20 nm-bias layer) are estimated to be 1.0 T and 0.9 T, respectively. The changes in the magnetization distribution of the shield, bias, and free layers are visualized in situ for an applied field of 14 kOe. This study demonstrates the promise of electron holography for characterizing the magnetic properties of hetero-interfaces, nanostructures, and catalysts. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrical control of flying spin precession in chiral 1D edge states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakajima, Takashi; Komiyama, Susumu; Lin, Kuan-Ting
2013-12-04
Electrical control and detection of spin precession are experimentally demonstrated by using spin-resolved edge states in the integer quantum Hall regime. Spin precession is triggered at a corner of a biased metal gate, where electron orbital motion makes a sharp turn leading to a nonadiabatic change in the effective magnetic field via spin-orbit interaction. The phase of precession is controlled by the group velocity of edge-state electrons tuned by gate bias voltage: Spin-FET-like coherent control of spin precession is thus realized by all-electrical means.
Evolution of ferromagnetism in two-dimensional electron gas of LaTiO3/SrTiO3
NASA Astrophysics Data System (ADS)
Wen, Fangdi; Cao, Yanwei; Liu, Xiaoran; Pal, B.; Middey, S.; Kareev, M.; Chakhalian, J.
2018-03-01
Understanding, creating, and manipulating spin polarization of two-dimensional electron gases at complex oxide interfaces present an experimental challenge. For example, despite almost a decade long research effort, the microscopic origin of ferromagnetism in LaAlO3/SrTiO3 heterojunctions is still an open question. Here, by using a prototypical two-dimensional electron gas (2DEG) which emerges at the interface between band insulator SrTiO3 and antiferromagnetic Mott insulator LaTiO3, the experiment reveals the evidence for magnetic phase separation in a hole-doped Ti d1 t2g system, resulting in spin-polarized 2DEG. The details of electronic and magnetic properties of the 2DEG were investigated by temperature-dependent d.c. transport, angle-dependent X-ray photoemission spectroscopy, and temperature-dependent magnetoresistance. The observation of clear hysteresis in magnetotransport at low magnetic fields implies spin-polarization from magnetic islands in the hole rich LaTiO3 near the interface. These findings emphasize the role of magnetic instabilities in doped Mott insulators, thus providing another path for designing all-oxide structures relevant to spintronic applications.
NASA Astrophysics Data System (ADS)
Peters, John Archibald
While charge transport in a two-dimensional electron system (2DES) is fairly well understood, many open experimental and theoretical questions related to the spin of electrons remain. The standard 2DES embedded in Alx Ga1-xAs/GaAs heterostructures is most likely not the optimal candidate for such investigations, since spin effects as well as spin-orbit interactions are small perturbations compared to other effects. This has brought InSb- and InAs-based material systems into focus due to the possibility of large spin-orbit interactions. By utilizing elastic scattering off a lithographic barrier, we investigate the consequence of spin on different electron trajectories observed in InSb and InAs quantum wells. We focus on the physical properties of spin-dependent reflection in a 2DES and we present experimental results demonstrating a method to create spin-polarized beams of ballistic electrons in the presence of a lateral potential barrier. Spatial separation of electron spins using cyclotron motion in a weak magnetic is also achieved via transverse magnetic focusing. We also explore electrostatic gating effects in InSb/InAlSb heterostructures and demonstrate the effective use of polymethylglutarimide (PMGI) as a gate dielectric for InSb. The dependence on temperature and on front gate voltage of mobility and density are also examined, revealing a strong dependence of mobility on density. As regards front gate action, there is saturation in the density once it reaches a limiting value. Further, we investigate antidot lattices patterned on InSb/InAlSb and InAs/AlGaSb heterostructures. At higher magnetic fields, ballistic commensurability features are displayed while at smaller magnetic fields localization and quantized oscillatory phenomena appear, with marked differences between InSb and InAs. Interesting localization behavior is exhibited in InSb, with the strength of the localization peak decreasing exponentially with temperature between 0.4 K and 50 K. InAs on the other hand show a strikingly modified antilocalization behavior, with small-period oscillations in magnetic field superposed. We also observe Altshuler-Aronov-Spivak oscillations in InSb and InAs antidot lattices and extract the phase and spin coherence lengths in InAs. Our experimental results are discussed in the light of localization and anti localization as probes of disorder and of spin dephasing mechanisms, modified by the artificial potential of the antidot lattice.
NASA Astrophysics Data System (ADS)
Evans, Emrys W.; Kattnig, Daniel R.; Henbest, Kevin B.; Hore, P. J.; Mackenzie, Stuart R.; Timmel, Christiane R.
2016-08-01
Even though the interaction of a <1 mT magnetic field with an electron spin is less than a millionth of the thermal energy at room temperature (kBT), it still can have a profound effect on the quantum yields of radical pair reactions. We present a study of the effects of sub-millitesla magnetic fields on the photoreaction of flavin mononucleotide with ascorbic acid. Direct control of the reaction pathway is achieved by varying the rate of electron transfer from ascorbic acid to the photo-excited flavin. At pH 7.0, we verify the theoretical prediction that, apart from a sign change, the form of the magnetic field effect is independent of the initial spin configuration of the radical pair. The data agree well with model calculations based on a Green's function approach that allows multinuclear spin systems to be treated including the diffusive motion of the radicals, their spin-selective recombination reactions, and the effects of the inter-radical exchange interaction. The protonation states of the radicals are uniquely determined from the form of the magnetic field-dependence. At pH 3.0, the effects of two chemically distinct radical pair complexes combine to produce a pronounced response to ˜500 μT magnetic fields. These findings are relevant to the magnetic responses of cryptochromes (flavin-containing proteins proposed as magnetoreceptors in birds) and may aid the evaluation of effects of weak magnetic fields on other biologically relevant electron transfer processes.
Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates.
Banerjee-Ghosh, Koyel; Ben Dor, Oren; Tassinari, Francesco; Capua, Eyal; Yochelis, Shira; Capua, Amir; Yang, See-Hun; Parkin, Stuart S P; Sarkar, Soumyajit; Kronik, Leeor; Baczewski, Lech Tomasz; Naaman, Ron; Paltiel, Yossi
2018-06-22
It is commonly assumed that recognition and discrimination of chirality, both in nature and in artificial systems, depend solely on spatial effects. However, recent studies have suggested that charge redistribution in chiral molecules manifests an enantiospecific preference in electron spin orientation. We therefore reasoned that the induced spin polarization may affect enantiorecognition through exchange interactions. Here we show experimentally that the interaction of chiral molecules with a perpendicularly magnetized substrate is enantiospecific. Thus, one enantiomer adsorbs preferentially when the magnetic dipole is pointing up, whereas the other adsorbs faster for the opposite alignment of the magnetization. The interaction is not controlled by the magnetic field per se, but rather by the electron spin orientations, and opens prospects for a distinct approach to enantiomeric separations. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Spin Dependent Transport Properties of Metallic and Semiconducting Nanostructures
NASA Astrophysics Data System (ADS)
Sapkota, Keshab R.
Present computing and communication devices rely on two different classes of technologies; information processing devices are based on electrical charge transport in semiconducting materials while information storage devices are based on orientation of electron spins in magnetic materials. A realization of a hybrid-type device that is based on charge as well as spin properties of electrons would perform both of these actions thereby enhancing computation power to many folds and reducing power consumptions. This dissertation focuses on the fabrication of such spin-devices based on metallic and semiconducting nanostructures which can utilize spin as well as charge properties of electrons. A simplified design of the spin-device consists of a spin injector, a semiconducting or metallic channel, and a spin detector. The channel is the carrier of the spin signal from the injector to the detector and therefore plays a crucial role in the manipulation of spin properties in the device. In this work, nanostructures like nanowires and nanostripes are used to function the channel in the spin-device. Methods like electrospinning, hydrothermal, and wet chemical were used to synthesize nanowires while physical vapor deposition followed by heat treatment in controlled environment was used to synthesis nanostripes. Spin-devices fabrication of the synthesized nanostructures were carried out by electron beam lithography process. The details of synthesis of nanostructures, device fabrication procedures and measurement techniques will be discussed in the thesis. We have successfully fabricated the spin-devices of tellurium nanowire, indium nanostripe, and indium oxide nanostripe and studied their spin transport properties for the first time. These spin-devices show large spin relaxation length compared to normal metals like copper and offer potentials for the future technologies. Further, Heusler alloys nanowires like nanowires of Co 2FeAl were synthesized and studied for electrical transport properties since such systems are halfmetallic in nature and promise the possibilities of spin injection and detection. The study was extended to dilute magnetic semiconducting nanowire system of Cd1-xMnxTe which possess both magnetic and semiconducting properties. In summary, the studies made in this thesis will offer a new understanding of spin transport behavior for future technology.
Cascade of Magnetic Field Induced Spin Transitions in LaCoO3
NASA Astrophysics Data System (ADS)
Altarawneh, M. M.; Chern, G.-W.; Harrison, N.; Batista, C. D.; Uchida, A.; Jaime, M.; Rickel, D. G.; Crooker, S. A.; Mielke, C. H.; Betts, J. B.; Mitchell, J. F.; Hoch, M. J. R.
2012-07-01
We present magnetization and magnetostriction studies of LaCoO3 in magnetic fields approaching 100 T. In contrast with expectations from single-ion models, the data reveal two distinct first-order transitions and well-defined magnetization plateaus. The magnetization at the higher plateau is only about half the saturation value expected for spin-1 Co3+ ions. These findings strongly suggest collective behavior induced by interactions between different electronic configurations of Co3+ ions. We propose a model that predicts crystalline spin textures and a cascade of four magnetic phase transitions at high fields, of which the first two account for the experimental data.
NASA Astrophysics Data System (ADS)
Edwards, Devin T.; Takahashi, Susumu; Sherwin, Mark S.; Han, Songi
2012-10-01
At 8.5 T, the polarization of an ensemble of electron spins is essentially 100% at 2 K, and decreases to 30% at 20 K. The strong temperature dependence of the electron spin polarization between 2 and 20 K leads to the phenomenon of spin bath quenching: temporal fluctuations of the dipolar magnetic fields associated with the energy-conserving spin "flip-flop" process are quenched as the temperature of the spin bath is lowered to the point of nearly complete spin polarization. This work uses pulsed electron paramagnetic resonance (EPR) at 240 GHz to investigate the effects of spin bath quenching on the phase memory times (TM) of randomly-distributed ensembles of nitroxide molecules below 20 K at 8.5 T. For a given electron spin concentration, a characteristic, dipolar flip-flop rate (W) is extracted by fitting the temperature dependence of TM to a simple model of decoherence driven by the spin flip-flop process. In frozen solutions of 4-Amino-TEMPO, a stable nitroxide radical in a deuterated water-glass, a calibration is used to quantify average spin-spin distances as large as r¯=6.6 nm from the dipolar flip-flop rate. For longer distances, nuclear spin fluctuations, which are not frozen out, begin to dominate over the electron spin flip-flop processes, placing an effective ceiling on this method for nitroxide molecules. For a bulk solution with a three-dimensional distribution of nitroxide molecules at concentration n, we find W∝n∝1/r, which is consistent with magnetic dipolar spin interactions. Alternatively, we observe W∝n for nitroxides tethered to a quasi two-dimensional surface of large (Ø ˜ 200 nm), unilamellar, lipid vesicles, demonstrating that the quantification of spin bath quenching can also be used to discern the geometry of molecular assembly or organization.
NASA Astrophysics Data System (ADS)
Michalak, Ł.; Canali, C. M.; Pederson, M. R.; Paulsson, M.; Benza, V. G.
2010-01-01
We consider tunneling transport through a Mn12 molecular magnet using spin density functional theory. A tractable methodology for constructing many-body wave functions from Kohn-Sham orbitals allows for the determination of spin-dependent matrix elements for use in transport calculations. The tunneling conductance at finite bias is characterized by peaks representing transitions between spin multiplets, separated by an energy on the order of the magnetic anisotropy. The energy splitting of the spin multiplets and the spatial part of their many-body wave functions, describing the orbital degrees of freedom of the excess charge, strongly affect the electronic transport, and can lead to negative differential conductance.
Michalak, Ł; Canali, C M; Pederson, M R; Paulsson, M; Benza, V G
2010-01-08
We consider tunneling transport through a Mn12 molecular magnet using spin density functional theory. A tractable methodology for constructing many-body wave functions from Kohn-Sham orbitals allows for the determination of spin-dependent matrix elements for use in transport calculations. The tunneling conductance at finite bias is characterized by peaks representing transitions between spin multiplets, separated by an energy on the order of the magnetic anisotropy. The energy splitting of the spin multiplets and the spatial part of their many-body wave functions, describing the orbital degrees of freedom of the excess charge, strongly affect the electronic transport, and can lead to negative differential conductance.
CONDUCTION ELECTRON-MAGNETIC ION INTERACTION IN RARE EARTHS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, G.S.; Legvold, S.
1958-11-01
The proposal is maade that there is an additional effective electron- electron interaction in the rare earths which results from the conduction electron-magnetic ion exchange. The strength of the net electron-electron interaction should tnen be expected to be a function of spin as well as solute concentrations. (W.D.M.)
Reexamination of Spin Transport Through a DOUBLE-δ Magnetic Barrier with Spin-Orbit Interactions
NASA Astrophysics Data System (ADS)
Bi, Caihua; Zhai, Feng
We revisit the properties of spin transport through a semiconductor 2DEG system subjected to the modulation of both a ferromagnetic metal (FM) stripe on top and the Rashba and Dresselhaus spin-orbit interactions (SOIs). The FM stripe has a magnetization along the transporting direction and generates an inhomogeneous magnetic field in the 2DEG plane which is taken as a double-δ shape. It is found that the spin polarization of this system generated from a spin-unpolarized injection can be remarkable only within a low Fermi energy region and is not more than 30% for the parameters available in current experiments. In this energy region, both the magnitude and the orientation of the spin polarization can be tuned by the Rashba strength, the Dresselhaus strength, and the magnetic field strength. The magnetization reversal of the FM stripe cannot result in a change of the conductance, but can rotate the orientation of the spin polarization. The results are in contrast to those in [ J. Phys.: Condens. Matter 15 (2003) L31] where a pure spin state for incident electrons is artificially assumed.
NASA Astrophysics Data System (ADS)
Panda, J.; Maji, Nilay; Nath, T. K.
2017-05-01
The room temperature spin injection and detection in non magnetic p-Si semiconductor have been studied in details in our CoFe2O4 (CFO)/MgO/p-Si heterojunction. The 3-terminal tunnel contacts have been made on the device for transport measurements. The electrical transport properties have been investigated at different isothermal conditions in the temperature range of 10-300 K. The spin accumulation in non magnetic p-Si semiconductor has been observed at different bias current under the applied magnetic field parallel to the film plane in the temperature range of 40-300 K. We have observed a giant spin accumulation in p-Si semiconductor using MgO/CFO tunnel contact. The Hanley effect is used to control the reduction of spin accumulation by applying magnetic field perpendicular to the carrier spin in the p-Si. The accumulated spin signal decays as a function of applied magnetic field for fixed bias current. These results will enable utilization of the spin degree of freedom in complementary Si devices and its further development.
Designing magnetic droplet soliton nucleation employing spin polarizer
NASA Astrophysics Data System (ADS)
Mohseni, Morteza; Mohseni, Majid
2018-04-01
We show by means of micromagnetic simulations that spin polarizer in nano-contact (NC) spin torque oscillators as the representative of the fixed layer in an orthogonal pseudo-spin valve can be employed to design and to control magnetic droplet soliton nucleation and dynamics. We found that using a tilted spin polarizer layer decreases the droplet nucleation time which is more suitable for high speed applications. However, a tilted spin polarizer increases the nucleation current and decreases the frequency stability of the droplet. Additionally, by driving the magnetization inhomogenously at the NC region, it is found that a tilted spin polarizer reduces the precession angle of the droplet and through an interplay with the Oersted field of the DC current, it breaks the spatial symmetry of the droplet profile. Our findings explore fundamental insight into nano-scale magnetic droplet soliton dynamics with potential tunability parameters for future microwave electronics.
Miura, Tomoaki; Fujiwara, Dai; Akiyama, Kimio; Horikoshi, Takafumi; Suzuki, Shuichi; Kozaki, Masatoshi; Okada, Keiji; Ikoma, Tadaaki
2017-02-02
Dynamics of the photogenerated charge-separated (CS) state is studied for a newly synthesized molecular triad, in which the donor (D) dimethoxytriphenylamine, 1,3-bis(2-pyridylimino)isoindolate platinum (BPIPt), and the acceptor (A) naphthaldiimide are linked with a triethynylbenzene unit (BPIPt-DA). Photoexcitation of BPIPt gives rise to generation of a long-lived (∼4 μs) CS state BPIPt-D + A - , of which the lifetime is considerably increased by an applied magnetic field of 270 mT. The positive magnetic field effect (MFE) is in contrast to the negative MFE for the reference DA molecule, which indicates successful switching of the initial spin state of the CS state from singlet to triplet. Simulations of the MFE and time-resolved electron paramagnetic resonance show that spin-selective charge recombination and spin relaxation are unaffected by attachment of BPIPt. The minimum impact of heavy atom substitution on the electronic and magnetic properties has been realized by the small electronic coupling mediated by the rigid meta-triethynylbenzene.
Broadband electron spin resonance at low frequency without resonant cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Z.; Suh, B.; Corti, M.
2008-04-09
We have developed a nonconventional broadband electron spin resonance (ESR) spectrometer operating continuously in the frequency range from 0.5 to 9 GHz. Dual antenna structure and the microwave absorbing environment differentiate the setup from the conventional one and enable broadband operation with any combination of frequency or magnetic field modulation and frequency or magnetic field sweeping. Its performance has been tested with the measurements on a 1,1-diphenyl-2-picrylhydrazyl (DPPH) sample and with the measurements on the single molecular magnet, V6, in solid state at low temperature.
Investigating electron spin resonance spectroscopy of a spin-½ compound in a home-built spectrometer
NASA Astrophysics Data System (ADS)
Sarkar, Jit; Roy, Subhadip; Singh, Jitendra Kumar; Singh, Sourabh; Chakraborty, Tanmoy; Mitra, Chiranjib
2018-05-01
In this work we report electron spin resonance (ESR) measurements performed on NH4CuPO4.H2O, a Heisenberg spin ½ dimer compound. We carried out the experiments both at room temperature and at 78 K, which are well above the antiferromagnetic ordering temperature of the system where the paramagnetic spins have a dominant role in determining its magnetic behavior. We performed the measurements in a home built custom designed continuous wave electron spin resonance (CW-ESR) spectrometer. By analyzing the experimental data, we were able to quantify the Landé g-factor and the ESR line-width of the sample.
NASA Astrophysics Data System (ADS)
Partovi-Azar, P.; Panahian Jand, S.; Kaghazchi, P.
2018-01-01
Edge termination of graphene nanoribbons is a key factor in determination of their physical and chemical properties. Here, we focus on nitrogen-terminated zigzag graphene nanoribbons resembling polyacrylonitrile-based carbon nanofibers (CNFs) which are widely studied in energy research. In particular, we investigate magnetic, electronic, and transport properties of these CNFs as functions of their widths using density-functional theory calculations together with the nonequilibrium Green's function method. We report on metallic behavior of all the CNFs considered in this study and demonstrate that the narrow CNFs show finite magnetic moments. The spin-polarized electronic states in these fibers exhibit similar spin configurations on both edges and result in spin-dependent transport channels in the narrow CNFs. We show that the partially filled nitrogen dangling-bond bands are mainly responsible for the ferromagnetic spin ordering in the narrow samples. However, the magnetic moment becomes vanishingly small in the case of wide CNFs where the dangling-bond bands fall below the Fermi level and graphenelike transport properties arising from the π orbitals are recovered. The magnetic properties of the CNFs as well as their stability have also been discussed in the presence of water molecules and the hexagonal boron nitride substrate.
NASA Astrophysics Data System (ADS)
Heinzmann, U.; Helmstedt, A.; Dohmeier, N.; Müller, N.; Gryzia, A.; Brechling, A.; Hoeke, V.; Krickemeyer, E.; Glaser, T.; Fonin, M.; Bouvron, S.; Leicht, P.; Tietze, T.; Goering, E.; Kuepper, K.
2014-04-01
It is demonstrated that local magnetic moments of single molecule magnets (SMM) normally studied by XMCD at very low temperatures and high magnetic fields can be measured by means of spin-resolved electron emission in the paramagnetic phase at room temperature by use of circularly polarized radiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romanov, N. G., E-mail: nikolai.romanov@mail.ioffe.ru; Tolmachev, D. O.; Gurin, A. S.
2015-06-29
A giant magnetic field effect on spin-dependent recombination of the radiation-induced defects has been found in cerium doped gadolinium based garnet crystals and ceramics, promising materials for scintillator applications. A sharp and strong increase in the afterglow intensity stimulated by external magnetic field and an evidence of the magnetic field memory have been discovered. The effect was ascribed to huge Gd-induced internal magnetic fields, which suppress the recombination, and cross-relaxation with Gd{sup 3+} ions leading to reorientation of the spins of the electron and hole centers. Thus, the spin system of radiation-induced defects in gadolinium garnet based scintillator materials wasmore » shown to accumulate significant energy which can be released in external magnetic fields.« less
Nuclear conversion theory: molecular hydrogen in non-magnetic insulators
NASA Astrophysics Data System (ADS)
Ilisca, Ernest; Ghiglieno, Filippo
2016-09-01
The hydrogen conversion patterns on non-magnetic solids sensitively depend upon the degree of singlet/triplet mixing in the intermediates of the catalytic reaction. Three main `symmetry-breaking' interactions are brought together. In a typical channel, the electron spin-orbit (SO) couplings introduce some magnetic excitations in the non-magnetic solid ground state. The electron spin is exchanged with a molecular one by the electric molecule-solid electron repulsion, mixing the bonding and antibonding states and affecting the molecule rotation. Finally, the magnetic hyperfine contact transfers the electron spin angular momentum to the nuclei. Two families of channels are considered and a simple criterion based on the SO coupling strength is proposed to select the most efficient one. The denoted `electronic' conversion path involves an emission of excitons that propagate and disintegrate in the bulk. In the other denoted `nuclear', the excited electron states are transients of a loop, and the electron system returns to its fundamental ground state. The described model enlarges previous studies by extending the electron basis to charge-transfer states and `continui' of band states, and focuses on the broadening of the antibonding molecular excited state by the solid conduction band that provides efficient tunnelling paths for the hydrogen conversion. After working out the general conversion algebra, the conversion rates of hydrogen on insulating and semiconductor solids are related to a few molecule-solid parameters (gap width, ionization and affinity potentials) and compared with experimental measures.
Electronic spin polarization in the Majorana bound state in one-dimensional wires
NASA Astrophysics Data System (ADS)
Val'kov, V. V.; Aksenov, S. V.
2017-10-01
We have studied the effect of magnetic field and disorder on the electronic z-spin polarization at the ends of the one-dimensional wire with strong Rashba spin-orbit coupling deposited on an s-wave superconductor. It was shown that in the topologically nontrivial phase the polarization as well as the energy of the Majorana bound state oscillate as a function of the magnetic field. Despite being substantially nonzero in the low transversal and longitudinal fields the polarization at one of the wire's ends is significantly suppressed at a certain range of the magnitudes and angles of the canted magnetic field. Thus, in this case the polarization cannot be regarded as a local order parameter. However, the sum of the absolute values of the polarization at both ends remains significantly nonzero. It was demonstrated that Anderson disorder does not seriously affect observed properties but leads to the appearance of the additional areas with weak spin polarization at the high magnetic fields.
Theory of atomistic simulation of spin-transfer torque in nanomagnets
NASA Astrophysics Data System (ADS)
Tay, Tiamhock; Sham, L. J.
2013-05-01
In spin-transfer torque (STT) for technological applications, the miniaturization of the magnet may reach the stage of requiring a fully quantum-mechanical treatment. We present an STT theory which uses the quantum macrospin ground and excited (magnon) states of the nanomagnet. This allows for energy and angular momentum exchanges between the current electron and the nano-magnet. We develop a method of magnetization dynamics simulation which captures the heating effect on the magnet by the spin-polarized current and the temperature dependence in STT. We also discuss the magnetostatics effect on magnon scattering for ferromagnetic relaxation in a thin film. Our work demonstrates a realistic step towards simulation of quantum spin-transfer torque physics in nanoscale magnets.
Strong competition between orbital ordering and itinerancy in a frustrated spinel vanadate
Ma, Jie; Lee, Jun Hee; Hahn, Steven E.; ...
2015-01-26
In this study, the crossover from localized to itinerant electron regimes in the geometrically frustrated spinel system Mn 1-xCo xV 2O 4 is explored by neutron-scattering measurements, first-principles calculations, and spin models. At low Co doping, the orbital ordering (OO) of the localized V 3+ spins suppresses magnetic frustration by triggering a tetragonal distortion. At high Co doping levels, however, electronic itinerancy melts the OO and lessens the structural and magnetic anisotropies, thus increasing the amount of geometric frustration for the V-site pyrochlore lattice. Contrary to the predicted paramagentism induced by chemical pressure, the measured noncollinear spin states in themore » Co-rich region of the phase diagram provide a unique platform where localized spins and electronic itinerancy compete in a geometrically frustrated spinel.« less
Three-Dimensional Non-Fermi-Liquid Behavior from One-Dimensional Quantum Critical Local Moments
NASA Astrophysics Data System (ADS)
Classen, Laura; Zaliznyak, Igor; Tsvelik, Alexei M.
2018-04-01
We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three-dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb2 Pt2 Pb , a metal where itinerant electrons coexist with localized moments of Yb ions which can be described in terms of effective S =1 /2 spins with a dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the two interacting subsystems. We characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasilinear temperature dependence.
NASA Astrophysics Data System (ADS)
Lingos, P. C.; Wang, J.; Perakis, I. E.
2015-05-01
Femtosecond (fs) coherent control of collective order parameters is important for nonequilibrium phase dynamics in correlated materials. Here, we propose such control of ferromagnetic order based on using nonadiabatic optical manipulation of electron-hole (e -h ) photoexcitations to create fs carrier-spin pulses with controllable direction and time profile. These spin pulses are generated due to the time-reversal symmetry breaking arising from nonperturbative spin-orbit and magnetic exchange couplings of coherent photocarriers. By tuning the nonthermal populations of exchange-split, spin-orbit-coupled semiconductor band states, we can excite fs spin-orbit torques that control complex magnetization pathways between multiple magnetic memory states. We calculate the laser-induced fs magnetic anisotropy in the time domain by using density matrix equations of motion rather than the quasiequilibrium free energy. By comparing to pump-probe experiments, we identify a "sudden" out-of-plane magnetization canting displaying fs magnetic hysteresis, which agrees with switchings measured by the static Hall magnetoresistivity. This fs transverse spin-canting switches direction with magnetic state and laser frequency, which distinguishes it from the longitudinal nonlinear optical and demagnetization effects. We propose that sequences of clockwise or counterclockwise fs spin-orbit torques, photoexcited by shaping two-color laser-pulse sequences analogous to multidimensional nuclear magnetic resonance (NMR) spectroscopy, can be used to timely suppress or enhance magnetic ringing and switching rotation in magnetic memories.
NASA Astrophysics Data System (ADS)
Suzuki, T. T.; Sakai, O.
2017-04-01
Surface magnetism is analyzed by spin-dependent He+-ion neutralization (the Auger neutralization) in the vicinity of a surface using an electron spin-polarized low-energy He+-ion beam [spin-polarized ion scattering spectroscopy (SP-ISS)]. Recently, spin-orbit coupling (SOC) has been found to act as another mechanism of spin-dependent low-energy He+-ion scattering. Thus, it is crucial for surface magnetism analyses by SP-ISS to separate those two mechanisms. In the present study, we investigated the spin-induced asymmetry in scattering of low-energy He+ ions on ultrathin Au and Sn films as well as the oxygen adsorbate on a magnetized-Fe(100) surface where these two mechanisms may coexist. We found that the Fe surface magnetism immediately disappeared with the growth of those overlayers. On the other hand, we observed no induced spin polarization in the Au and Sn thin films even in the very initial stage of the growth. We also observed that the spin asymmetry of the O adsorbate was induced by the magnetism of the underlying Fe substrate. The present study demonstrates that the two mechanisms of the spin-asymmetric He+-ion scattering (the ion neutralization and SOC) can be separated by an azimuthal-angle-resolved SP-ISS measurement.
NASA Astrophysics Data System (ADS)
Li, Dongde; Wu, Di; Zhang, Xiaojiao; Zeng, Bowen; Li, Mingjun; Duan, Haiming; Yang, Bingchu; Long, Mengqiu
2018-05-01
The spin-dependent electronic transport properties of M(dcdmp)2 (M = Cu, Au, Co, Ni; dcdmp = 2,3-dicyano-5,6-dimercaptopyrazyne) molecular devices based on zigzag graphene nanoribbon (ZGNR) electrodes were investigated by density functional theory combined nonequilibrium Green's function method (DFT-NEGF). Our results show that the spin-dependent transport properties of the M(dcdmp)2 molecular devices can be controlled by the spin configurations of the ZGNR electrodes, and the central 3d-transition metal atom can introduce a larger magnetism than that of the nonferrous metal one. Moreover, the perfect spin filtering effect, negative differential resistance, rectifying effect and magnetic resistance phenomena can be observed in our proposed M(dcdmp)2 molecular devices.
NASA Astrophysics Data System (ADS)
Perea, J. Darío; Mejía-Salazar, J. R.; Porras-Montenegro, N.
2011-12-01
Nowadays the spin-related phenomena have attracted great attention for the possible spintronic and optoelectronic applications. The manipulation of the Landé g factor by means of the control of the electron confinement, applied magnetic field and hydrostatic pressure offers the possibility of having a wide range of ways to control single qubit operation and to have pure spin states to guarantee that no losses occur when the electron spins transport information. In this work we have performed a theoretical study of the quantum confinement (geometrical and barrier potential confinements) and growth direction applied magnetic field effects on the conduction-electron effective Landé g factor in GaAs-(Ga,Al)As double quantum wells. Our calculations of the Landé g factor are performed by using the Ogg-McCombe effective Hamiltonian, which includes non-parabolicity and anisotropy effects for the conduction-band electrons. Our theoretical results are given as function of the central barrier widths for different values of the applied magnetic fields. We have found that in this type of heterostructure the geometrical confinement commands the behavior of the electron effective Landé g factor as compared to the effect of the applied magnetic field. Present theoretical reports are in very good agreement with previous experimental and theoretical results.
NASA Astrophysics Data System (ADS)
Craco, L.
2017-10-01
Using density functional dynamical mean-field theory (DFDMFT) we address the problem of antiferromagnetic spin ordering in isotropically superstrained graphene. It is shown that the interplay between strain-induced one-particle band narrowing and sizable on-site electron-electron interactions naturally stabilizes a magnetic phase with orbital-selective spin-polarized p -band electronic states. While an antiferromagnetic phase with strong local moments arises in the pz orbitals, the px ,y bands reveal a metallic state with quenched sublattice magnetization. We next investigate the possibility of superconductivity to emerge in this selective magnetoelectronic state. Our theory is expected to be an important step to understanding the next generation of flexible electronics made of Mott localized carbon-based materials as well as the ability of superstrained graphene to host coexisting superconductivity and magnetism at low temperatures.
Manipulation of a Nuclear Spin by a Magnetic Domain Wall in a Quantum Hall Ferromagnet.
Korkusinski, M; Hawrylak, P; Liu, H W; Hirayama, Y
2017-03-06
The manipulation of a nuclear spin by an electron spin requires the energy to flip the electron spin to be vanishingly small. This can be realized in a many electron system with degenerate ground states of opposite spin polarization in different Landau levels. We present here a microscopic theory of a domain wall between spin unpolarized and spin polarized quantum Hall ferromagnet states at filling factor two with the Zeeman energy comparable to the cyclotron energy. We determine the energies and many-body wave functions of the electronic quantum Hall droplet with up to N = 80 electrons as a function of the total spin, angular momentum, cyclotron and Zeeman energies from the spin singlet ν = 2 phase, through an intermediate polarization state exhibiting a domain wall to the fully spin-polarized phase involving the lowest and the second Landau levels. We demonstrate that the energy needed to flip one electron spin in a domain wall becomes comparable to the energy needed to flip the nuclear spin. The orthogonality of orbital electronic states is overcome by the many-electron character of the domain - the movement of the domain wall relative to the position of the nuclear spin enables the manipulation of the nuclear spin by electrical means.
Manipulation of a Nuclear Spin by a Magnetic Domain Wall in a Quantum Hall Ferromagnet
Korkusinski, M.; Hawrylak, P.; Liu, H. W.; Hirayama, Y.
2017-01-01
The manipulation of a nuclear spin by an electron spin requires the energy to flip the electron spin to be vanishingly small. This can be realized in a many electron system with degenerate ground states of opposite spin polarization in different Landau levels. We present here a microscopic theory of a domain wall between spin unpolarized and spin polarized quantum Hall ferromagnet states at filling factor two with the Zeeman energy comparable to the cyclotron energy. We determine the energies and many-body wave functions of the electronic quantum Hall droplet with up to N = 80 electrons as a function of the total spin, angular momentum, cyclotron and Zeeman energies from the spin singlet ν = 2 phase, through an intermediate polarization state exhibiting a domain wall to the fully spin-polarized phase involving the lowest and the second Landau levels. We demonstrate that the energy needed to flip one electron spin in a domain wall becomes comparable to the energy needed to flip the nuclear spin. The orthogonality of orbital electronic states is overcome by the many-electron character of the domain - the movement of the domain wall relative to the position of the nuclear spin enables the manipulation of the nuclear spin by electrical means. PMID:28262758
NASA Astrophysics Data System (ADS)
Ma, Yue; Hoang, Thai M.; Gong, Ming; Li, Tongcang; Yin, Zhang-qi
2017-08-01
Hybrid spin-mechanical systems have great potential in sensing, macroscopic quantum mechanics, and quantum information science. In order to induce strong coupling between an electron spin and the center-of-mass motion of a mechanical oscillator, a large magnetic gradient usually is required, which is difficult to achieve. Here we show that strong coupling between the electron spin of a nitrogen-vacancy (NV) center and the torsional vibration of an optically levitated nanodiamond can be achieved in a uniform magnetic field. Thanks to the uniform magnetic field, multiple spins can strongly couple to the torsional vibration at the same time. We propose utilizing this coupling mechanism to realize the Lipkin-Meshkov-Glick (LMG) model by an ensemble of NV centers in a levitated nanodiamond. The quantum phase transition in the LMG model and finite number effects can be observed with this system. We also propose generating torsional superposition states and realizing torsional matter-wave interferometry with spin-torsional coupling.
A Crystal Field Approach to Orbitally Degenerate SMMs: Beyond the Spin-Only Hamiltonian
NASA Astrophysics Data System (ADS)
Bhaskaran, Lakshmi; Marriott, Katie; Murrie, Mark; Hill, Stephen
Single-Molecule Magnets (SMMs) with large magnetization reversal barriers are promising candidates for high-density information storage. Recently, a large uniaxial magnetic anisotropy was observed for a mononuclear trigonal bipyramidal (TBP) [NiIICl3(Me-abco)2] SMM. High-field EPR studies analyzed on the basis of a spin-only Hamiltonian give ¦D¦>400 cm-1, which is close to the spin-orbit coupling parameter λ = 668 cm-1 for NiII, suggesting an orbitally degenerate ground state. The spin-only description is ineffective in this limit, necessitating the development of a model that includes the orbital moment. Here we describe a phenomenological approach that takes into account a full description of crystal field, electron-electron repulsion and spin-orbit coupling effects on the ground state of a NiII ion in a TBP coordination geometry. The model is in good agreement with the high-field EPR experiments, validating its use for spectroscopic studies of orbitally degenerate molecular nanomagnets. This work was supported by the NSF (DMR-1309463).
Strong spin-photon coupling in silicon
NASA Astrophysics Data System (ADS)
Samkharadze, N.; Zheng, G.; Kalhor, N.; Brousse, D.; Sammak, A.; Mendes, U. C.; Blais, A.; Scappucci, G.; Vandersypen, L. M. K.
2018-03-01
Long coherence times of single spins in silicon quantum dots make these systems highly attractive for quantum computation, but how to scale up spin qubit systems remains an open question. As a first step to address this issue, we demonstrate the strong coupling of a single electron spin and a single microwave photon. The electron spin is trapped in a silicon double quantum dot, and the microwave photon is stored in an on-chip high-impedance superconducting resonator. The electric field component of the cavity photon couples directly to the charge dipole of the electron in the double dot, and indirectly to the electron spin, through a strong local magnetic field gradient from a nearby micromagnet. Our results provide a route to realizing large networks of quantum dot–based spin qubit registers.
Electronic structure and weak itinerant magnetism in metallic Y 2 Ni 7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, David J.
2015-11-03
We describe a density functional study of the electronic structure and magnetism of Y₂Ni₇. The results show itinerant magnetism very similar to that in the weak itinerant ferromagnet Ni₃Al. The electropositive Y atoms in Y₂Ni₇ donate charge to the Ni host mostly in the form of s electrons. The non-spin-polarized state shows a high density of states at the Fermi level, N (E F), due to flat bands. This leads to a ferromagnetic instability. However, there are also several much more dispersive bands crossing E(F), which should promote the conductivity. Spin fluctuation effects appear to be comparable to or weakermore » than Ni₃Al, based on comparison with experimental data. Y₂Ni₇ provides a uniaxial analog to cubic Ni₃Al, for studying weak itinerant ferromagnetism, suggesting detailed measurements of its low temperature physical properties and spin fluctuations, as well as experiments under pressure.« less
Spin Transparent Siberian Snake And Spin Rotator With Solenoids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koop, I. A.; Otboyev, A. V.; Shatunov, P. Yu.
2007-06-13
For intermediate energies of electrons and protons it happens that it is more convenient to construct Siberian snakes and spin rotators using solenoidal fields. Strong coupling caused by the solenoids is suppressed by a number of skew and normal quadrupole magnets. More complicate problem of the spin transparency of such devices also can be solved. This paper gives two examples: spin rotator for electron ring in the eRHIC project and Siberian snake for proton (antiproton) storage ring HESR, which cover whole machines working energy region.
A transverse separate-spin-evolution streaming instability
NASA Astrophysics Data System (ADS)
Iqbal, Z.; Andreev, Pavel A.; Murtaza, G.
2018-05-01
By using the separate spin evolution quantum hydrodynamical model, the instability of transverse mode due to electron streaming in a partially spin polarized magnetized degenerate plasma is studied. The electron spin polarization gives birth to a new spin-dependent wave (i.e., separate spin evolution streaming driven ordinary wave) in the real wave spectrum. It is shown that the spin polarization and streaming speed significantly affect the frequency of this new mode. Analyzing growth rate, it is found that the electron spin effects reduce the growth rate and shift the threshold of instability as well as its termination point towards higher values. Additionally, how the other parameters like electron streaming and Fermi pressure influence the growth rate is also investigated. Current study can help towards better understanding of the existence of new waves and streaming instability in the astrophysical plasmas.
Akiba, K; Kanasugi, S; Yuge, T; Nagase, K; Hirayama, Y
2015-07-10
We study nuclear spin polarization in the quantum Hall regime through the optically pumped electron spin polarization in the lowest Landau level. The nuclear spin polarization is measured as a nuclear magnetic field B(N) by means of the sensitive resistive detection. We find the dependence of B(N) on the filling factor nonmonotonic. The comprehensive measurements of B(N) with the help of the circularly polarized photoluminescence measurements indicate the participation of the photoexcited complexes, i.e., the exciton and trion (charged exciton), in nuclear spin polarization. On the basis of a novel estimation method of the equilibrium electron spin polarization, we analyze the experimental data and conclude that the filling factor dependence of B(N) is understood by the effect of electron spin polarization through excitons and trions.
NASA Astrophysics Data System (ADS)
Tolmachev, D. O.; Gurin, A. S.; Uspenskaya, Yu. A.; Asatryan, G. R.; Badalyan, A. G.; Romanov, N. G.; Petrosyan, A. G.; Baranov, P. G.; Wieczorek, H.; Ronda, C.
2017-06-01
Paramagnetic Ce3 +optical emitters have been studied by means of optically detected magnetic resonance (ODMR) via Ce3 + spin-dependent emission in cerium-doped garnet crystals which were both gadolinium free and contain gadolinium in a concentration from the lowest (0.1%) to 100%, i.e., to the superparamagnetic state. It has been shown that the intensity of photoluminescence excited by circularly polarized light into Ce3 + absorption bands can be used for selective monitoring the population of the Ce3 + ground-state spin sublevels. Direct evidence of the cross-relaxation effects in garnet crystals containing two electron spin systems, i.e., the simplest one of Ce3 + ions with the effective spin S =1/2 and the system of Gd3 + ions with the maximum spin S =7/2 , has been demonstrated. Magnetic resonance of Gd3 + has been found by monitoring Ce3 + emission in cerium-doped garnet crystals with gadolinium concentrations of 0.1 at. %, 4%-8%, and 100%, which implies the impact of the Gd3 + spin polarization on the optical properties of Ce3 +. Strong internal magnetic fields in superparamagnetic crystals were shown to modify the processes of recombination between UV-radiation-induced electron and hole centers that lead to the recombination-induced Ce3 + emission. Observation of spikes and subsequent decay in the cross-relaxation-induced ODMR signals under pulsed microwave excitation is suggested to be an informative method to investigate transient processes in the many-spin system of Ce3 +, Gd3 +, and electron and hole radiation-induced centers.
Current-induced damping of nanosized quantum moments in the presence of spin-orbit interaction
NASA Astrophysics Data System (ADS)
Mahfouzi, Farzad; Kioussis, Nicholas
2017-05-01
Motivated by the need to understand current-induced magnetization dynamics at the nanoscale, we have developed a formalism, within the framework of Keldysh Green function approach, to study the current-induced dynamics of a ferromagnetic (FM) nanoisland overlayer on a spin-orbit-coupling (SOC) Rashba plane. In contrast to the commonly employed classical micromagnetic LLG simulations the magnetic moments of the FM are treated quantum mechanically. We obtain the density matrix of the whole system consisting of conduction electrons entangled with the local magnetic moments and calculate the effective damping rate of the FM. We investigate two opposite limiting regimes of FM dynamics: (1) The precessional regime where the magnetic anisotropy energy (MAE) and precessional frequency are smaller than the exchange interactions and (2) the local spin-flip regime where the MAE and precessional frequency are comparable to the exchange interactions. In the former case, we show that due to the finite size of the FM domain, the "Gilbert damping" does not diverge in the ballistic electron transport regime, in sharp contrast to Kambersky's breathing Fermi surface theory for damping in metallic FMs. In the latter case, we show that above a critical bias the excited conduction electrons can switch the local spin moments resulting in demagnetization and reversal of the magnetization. Furthermore, our calculations show that the bias-induced antidamping efficiency in the local spin-flip regime is much higher than that in the rotational excitation regime.
NASA Astrophysics Data System (ADS)
Tokumoto, T.; Brooks, J. S.; Oshima, Y.; Choi, E. S.; Brunel, L. C.; Akutsu, H.; Kaihatsu, T.; Yamada, J.; van Tol, J.
2008-04-01
Electron spin resonance reveals the spin behavior of conduction (π) and localized (d) electrons in β-(BDA-TTP)2MCl4 (M=Fe, Ga). Both the Ga3+(S=0) and Fe3+(S=5/2) compounds exhibit a metal-insulator transition at 113 K with the simultaneous formation of a spin-singlet ground state in the π electron system of the donor molecules. The behavior is consistent with charge ordering in β-(BDA-TTP)2MCl4 at the metal-insulator transition. At 5 K, the Fe3+ compound orders antiferromagnetically, even though the π electrons, which normally would facilitate magnetic exchange, are localized nonmagnetic singlets.
Nuclear spin nanomagnet in an optically excited quantum dot.
Korenev, V L
2007-12-21
Linearly polarized light tuned slightly below the optical transition of the negatively charged exciton (trion) in a single quantum dot causes the spontaneous nuclear spin polarization (self-polarization) at a level close to 100%. The effective magnetic field of spin-polarized nuclei shifts the optical transition energy close to resonance with photon energy. The resonantly enhanced Overhauser effect sustains the stability of the nuclear self-polarization even in the absence of spin polarization of the quantum dot electron. As a result the optically selected single quantum dot represents a tiny magnet with the ferromagnetic ordering of nuclear spins-the nuclear spin nanomagnet.
Dzyaloshinskii-Moriya interaction in the presence of Rashba and Dresselhaus spin-orbit coupling
NASA Astrophysics Data System (ADS)
Valizadeh, Mohammad M.; Satpathy, S.
2018-03-01
Chiral order in magnetic structures is currently an area of considerable interest and leads to skyrmion structures and domain walls with certain chirality. The chiral structure originates from the Dzyaloshinskii-Moriya interaction caused by broken inversion symmetry and the spin-orbit interaction. In addition to the Rashba or Dresselhaus interactions, there may also exist substantial spin polarization in magnetic thin films. Here, we study the exchange interaction between two localized magnetic moments in the spin-polarized electron gas with both Rashba and Dresselhaus spin-orbit interaction present. Analytical expressions are found in certain limits in addition to what is known in the literature. The stability of the Bloch and Néel domain walls in magnetic thin films is discussed in light of our results.
Controlling Spin Coherence with Semiconductor Nanostructures
NASA Astrophysics Data System (ADS)
Awschalom, David D.
We present two emerging opportunities for manipulating and communicating coherent spin states in semiconductors. First, we show that semiconductor microcavities offer unique means of controlling light-matter interactions in confined geometries, resulting in a wide range of applications in optical communications and inspiring proposals for quantum information processing and computational schemes. Studies of spin dynamics in microcavities — a new and promising research field — have revealed novel effects such as polarization beats, stimulated spin scattering, and giant Faraday rotation. Here, we study the electron spin dynamics in optically-pumped GaAs microdisk lasers with quantum wells and interface-fluctuation quantum dots in the active region. In particular, we examine how the electron spin dynamics are modified by the stimulated emission in the disks, and observe an enhancement of the spin coherence time when the optical excitation is in resonance with a high quality (Q ~ 5000) lasing mode.1 This resonant enhancement, contrary to expectations from the observed trend in the carrier recombination time, is then manipulated by altering the cavity design and dimensions. In analogy to devices based on excitonic coherence, this ability to engineer coherent interactions between electron spins and photons may provide novel pathways towards spin dependent quantum optoelectronics. In a second example, the nitrogen-vacancy (N-V) center in diamond has garnered interest as a room-temperature solid-state system not only for exploring electronic and nuclear spin phenomena but also as a candidate for spin-based quantum information processing. Spin coherence times of up to 50 microseconds have been reported for ensembles of N-V centers and a two-qubit gate utilizing the electron spin of a N-V center and the nuclear spin of a nearby C-13 atom has been demonstrated. Here, we present experiments using angle-resolved magneto-photoluminescence microscopy to investigate anisotropic spin interactions of single N-V centers in diamond at room temperature.2 Negative peaks in the photoluminescence intensity are observed as a function of both magnetic field magnitude and angle, and can be explained by coherent spin precession and anisotropic relaxation at spin-level anticrossings. Additionally, precise field alignment with the symmetry axis of a single N-V center reveals the resonant magnetic dipolar coupling of a single "bright" electron spin of an N-V center to small numbers of "dark" spins of nitrogen defects in its immediate vicinity, which are otherwise undetected by photoluminescence. Most recently, we are exploring the possibility of utilizing this magnetic dipole coupling between bright and dark spins to couple two spatially separated single N-V center spins by means of intermediate nitrogen spins. Note from Publisher: This article contains the abstract only.
Single-ion 4f element magnetism: an ab-initio look at Ln(COT)2(-).
Gendron, Frédéric; Pritchard, Benjamin; Bolvin, Hélène; Autschbach, Jochen
2015-12-14
The electron densities associated with the Ln 4f shell, and spin and orbital magnetizations ('magnetic moment densities'), are investigated for the Ln(COT)2(-) series. The densities are obtained from ab-initio calculations including spin-orbit coupling. For Ln = Ce, Pr the magnetizations are also derived from crystal field models and shown to agree with the ab-initio results. Analysis of magnetizations from ab-initio calculations may be useful in assisting research on single molecule magnets.
Lock-in of a Chiral Soliton Lattice by Itinerant Electrons
NASA Astrophysics Data System (ADS)
Okumura, Shun; Kato, Yasuyuki; Motome, Yukitoshi
2018-03-01
Chiral magnets often show intriguing magnetic and transport properties associated with their peculiar spin textures. A typical example is a chiral soliton lattice, which is found in monoaxial chiral magnets, such as CrNb3S6 and Yb(Ni1-xCux)3Al9 in an external magnetic field perpendicular to the chiral axis. Here, we theoretically investigate the electronic and magnetic properties in the chiral soliton lattice by a minimal itinerant electron model. Using variational calculations, we find that the period of the chiral soliton lattice can be locked at particular values dictated by the Fermi wave number, in stark contrast to spin-only models. We discuss this behavior caused by the spin-charge coupling as a possible mechanism for the lock-in discovered in Yb(Ni1-xCux)3Al9 [T. Matsumura et al.,
Room-temperature electron spin amplifier based on Ga(In)NAs alloys.
Puttisong, Yuttapoom; Buyanova, Irina A; Ptak, Aaron J; Tu, Charles W; Geelhaar, Lutz; Riechert, Henning; Chen, Weimin M
2013-02-06
The first experimental demonstration of a spin amplifier at room temperature is presented. An efficient, defect-enabled spin amplifier based on a non-magnetic semiconductor, Ga(In)NAs, is proposed and demonstrated, with a large spin gain (up to 2700% at zero field) for conduction electrons and a high cut-off frequency of up to 1 GHz. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Akaki, Mitsuru; Yoshizawa, Daichi; Okutani, Akira; Kida, Takanori; Romhányi, Judit; Penc, Karlo; Hagiwara, Masayuki
2017-12-01
Exotic spin-multipolar ordering in spin transition metal insulators has so far eluded unambiguous experimental observation. A less studied, but perhaps more feasible fingerprint of multipole character emerges in the excitation spectrum in the form of quadrupolar transitions. Such multipolar excitations are desirable as they can be manipulated with the use of light or electric field and can be captured by means of conventional experimental techniques. Here we study single crystals of multiferroic Sr2CoGe2O7 and observe a two-magnon spin excitation appearing above the saturation magnetic field in electron spin resonance (ESR) spectra. Our analysis of the selection rules reveals that this spin excitation mode does not couple to the magnetic component of the light, but it is excited by the electric field only, in full agreement with the theoretical calculations. Due to the nearly isotropic nature of Sr2CoGe2O7 , we identify this excitation as a purely spin-quadrupolar two-magnon mode.
Electric field controlled spin interference in a system with Rashba spin-orbit coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciftja, Orion, E-mail: ogciftja@pvamu.edu
There have been intense research efforts over the last years focused on understanding the Rashba spin-orbit coupling effect from the perspective of possible spintronics applications. An important component of this line of research is aimed at control and manipulation of electron’s spin degrees of freedom in semiconductor quantum dot devices. A promising way to achieve this goal is to make use of the tunable Rashba effect that relies on the spin-orbit interaction in a two-dimensional electron system embedded in a host semiconducting material that lacks inversion-symmetry. This way, the Rashba spin-orbit coupling effect may potentially lead to fabrication of amore » new generation of spintronic devices where control of spin, thus magnetic properties, is achieved via an electric field and not a magnetic field. In this work we investigate theoretically the electron’s spin interference and accumulation process in a Rashba spin-orbit coupled system consisting of a pair of two-dimensional semiconductor quantum dots connected to each other via two conducting semi-circular channels. The strength of the confinement energy on the quantum dots is tuned by gate potentials that allow “leakage” of electrons from one dot to another. While going through the conducting channels, the electrons are spin-orbit coupled to a microscopically generated electric field applied perpendicular to the two-dimensional system. We show that interference of spin wave functions of electrons travelling through the two channels gives rise to interference/conductance patterns that lead to the observation of the geometric Berry’s phase. Achieving a predictable and measurable observation of Berry’s phase allows one to control the spin dynamics of the electrons. It is demonstrated that this system allows use of a microscopically generated electric field to control Berry’s phase, thus, enables one to tune the spin-dependent interference pattern and spintronic properties with no need for injection of spin-polarized electrons.« less
Spin-Dependent Transport through Chiral Molecules Studied by Spin-Dependent Electrochemistry
2016-01-01
Conspectus Molecular spintronics (spin + electronics), which aims to exploit both the spin degree of freedom and the electron charge in molecular devices, has recently received massive attention. Our recent experiments on molecular spintronics employ chiral molecules which have the unexpected property of acting as spin filters, by way of an effect we call “chiral-induced spin selectivity” (CISS). In this Account, we discuss new types of spin-dependent electrochemistry measurements and their use to probe the spin-dependent charge transport properties of nonmagnetic chiral conductive polymers and biomolecules, such as oligopeptides, L/D cysteine, cytochrome c, bacteriorhodopsin (bR), and oligopeptide-CdSe nanoparticles (NPs) hybrid structures. Spin-dependent electrochemical measurements were carried out by employing ferromagnetic electrodes modified with chiral molecules used as the working electrode. Redox probes were used either in solution or when directly attached to the ferromagnetic electrodes. During the electrochemical measurements, the ferromagnetic electrode was magnetized either with its magnetic moment pointing “UP” or “DOWN” using a permanent magnet (H = 0.5 T), placed underneath the chemically modified ferromagnetic electrodes. The spin polarization of the current was found to be in the range of 5–30%, even in the case of small chiral molecules. Chiral films of the l- and d-cysteine tethered with a redox-active dye, toludin blue O, show spin polarizarion that depends on the chirality. Because the nickel electrodes are susceptible to corrosion, we explored the effect of coating them with a thin gold overlayer. The effect of the gold layer on the spin polarization of the electrons ejected from the electrode was investigated. In addition, the role of the structure of the protein on the spin selective transport was also studied as a function of bias voltage and the effect of protein denaturation was revealed. In addition to “dark” measurements, we also describe photoelectrochemical measurements in which light is used to affect the spin selective electron transport through the chiral molecules. We describe how the excitation of a chromophore (such as CdSe nanoparticles), which is attached to a chiral working electrode, can flip the preferred spin orientation of the photocurrent, when measured under the identical conditions. Thus, chirality-induced spin polarization, when combined with light and magnetic field effects, opens new avenues for the study of the spin transport properties of chiral molecules and biomolecules and for creating new types of spintronic devices in which light and molecular chirality provide new functions and properties. PMID:27797176
Probing Electron Spin Resonance in Monolayer Graphene
NASA Astrophysics Data System (ADS)
Lyon, T. J.; Sichau, J.; Dorn, A.; Centeno, A.; Pesquera, A.; Zurutuza, A.; Blick, R. H.
2017-08-01
The precise value of the g factor in graphene is of fundamental interest for all spin-related properties and their application. We investigate monolayer graphene on a Si /SiO2 substrate by resistively detected electron spin resonance. Surprisingly, the magnetic moment and corresponding g factor of 1.952 ±0.002 is insensitive to charge carrier type, concentration, and mobility.
NASA Astrophysics Data System (ADS)
Wang, Zaijun; Ren, Zhongzhou; Dong, Tiekuang; Xu, Chang
2014-08-01
The ground-state spins and parities of the odd-A phosphorus isotopes 25-47P are studied with the relativistic mean-field (RMF) model and relativistic elastic magnetic electron-scattering theory (REMES). Results of the RMF model with the NL-SH, TM2, and NL3 parameters show that the 2s1/2 and 1d3/2 proton level inversion may occur for the neutron-rich isotopes 37-47P, and, consequently, the possible spin-parity values of 37-47P may be 3/2+, which, except for P47, differs from those given by the NUBASE2012 nuclear data table by Audi et al. Calculations of the elastic magnetic electron scattering of 37-47P with the single valence proton in the 2s1/2 and 1d3/2 state show that the form factors have significant differences. The results imply that elastic magnetic electron scattering can be a possible way to study the 2s1/2 and 1d3/2 level inversion and the spin-parity values of 37-47P. The results can also provide new tests as to what extent the RMF model, along with its various parameter sets, is valid for describing the nuclear structures. In addition, the contributions of the upper and lower components of the Dirac four-spinors to the form factors and the isotopic shifts of the magnetic form factors are discussed.
Spin-motive Force Induced by Domain Wall Dynamics in the Antiferromagnetic Spin Valve
NASA Astrophysics Data System (ADS)
Sugano, Ryoko; Ichimura, Masahiko; Takahashi, Saburo; Maekawa, Sadamichi; Crest Collaboration
2014-03-01
In spite of no net magnetization in antiferromagnetic (AF) textures, the local magnetic properties (Neel magnetization) can be manipulated in a similar fashion to ferromagnetic (F) ones. It is expected that, even in AF metals, spin transfer torques (STTs) lead to the domain wall (DW) motion and that the DW motion induces spin-motive force (SMF). In order to study the Neel magnetization dynamics and the resultant SMF, we treat the nano-structured F1/AF/F2 junction. The F1 and F2 leads behave as a spin current injector and a detector, respectively. Each F lead is fixed in the different magnetization direction. Torsions (DW in AF) are introduced reflecting the fixed magnetization of two F leads. We simulated the STT-induced Neel magnetization dynamics with the injecting current from F1 to F2 and evaluate induced SMF. Based on the adiabatic electron dynamics in the AF texture, Langevin simulations are performed at finite temperature. This research was supported by JST, CREST, Japan.
Dynamical Negative Differential Resistance in Antiferromagnetically Coupled Few-Atom Spin Chains
NASA Astrophysics Data System (ADS)
Rolf-Pissarczyk, Steffen; Yan, Shichao; Malavolti, Luigi; Burgess, Jacob A. J.; McMurtrie, Gregory; Loth, Sebastian
2017-11-01
We present the appearance of negative differential resistance (NDR) in spin-dependent electron transport through a few-atom spin chain. A chain of three antiferromagnetically coupled Fe atoms (Fe trimer) was positioned on a Cu2 N /Cu (100 ) surface and contacted with the spin-polarized tip of a scanning tunneling microscope, thus coupling the Fe trimer to one nonmagnetic and one magnetic lead. Pronounced NDR appears at the low bias of 7 mV, where inelastic electron tunneling dynamically locks the atomic spin in a long-lived excited state. This causes a rapid increase of the magnetoresistance between the spin-polarized tip and Fe trimer and quenches elastic tunneling. By varying the coupling strength between the tip and Fe trimer, we find that in this transport regime the dynamic locking of the Fe trimer competes with magnetic exchange interaction, which statically forces the Fe trimer into its high-magnetoresistance state and removes the NDR.
Efficient spin-current injection in single-molecule magnet junctions
NASA Astrophysics Data System (ADS)
Xie, Haiqing; Xu, Fuming; Jiao, Hujun; Wang, Qiang; Liang, J.-Q.
2018-01-01
We study theoretically spin transport through a single-molecule magnet (SMM) in the sequential and cotunneling regimes, where the SMM is weakly coupled to one ferromagnetic and one normal-metallic leads. By a master-equation approach, it is found that the spin polarization injected from the ferromagnetic lead is amplified and highly polarized spin-current can be generated, due to the exchange coupling between the transport electron and the anisotropic spin of the SMM. Moreover, the spin-current polarization can be tuned by the gate or bias voltage, and thus an efficient spin injection device based on the SMM is proposed in molecular spintronics.
Control of single-spin magnetic anisotropy by exchange coupling
NASA Astrophysics Data System (ADS)
Oberg, Jenny C.; Calvo, M. Reyes; Delgado, Fernando; Moro-Lagares, María; Serrate, David; Jacob, David; Fernández-Rossier, Joaquín; Hirjibehedin, Cyrus F.
2014-01-01
The properties of quantum systems interacting with their environment, commonly called open quantum systems, can be affected strongly by this interaction. Although this can lead to unwanted consequences, such as causing decoherence in qubits used for quantum computation, it can also be exploited as a probe of the environment. For example, magnetic resonance imaging is based on the dependence of the spin relaxation times of protons in water molecules in a host's tissue. Here we show that the excitation energy of a single spin, which is determined by magnetocrystalline anisotropy and controls its stability and suitability for use in magnetic data-storage devices, can be modified by varying the exchange coupling of the spin to a nearby conductive electrode. Using scanning tunnelling microscopy and spectroscopy, we observe variations up to a factor of two of the spin excitation energies of individual atoms as the strength of the spin's coupling to the surrounding electronic bath changes. These observations, combined with calculations, show that exchange coupling can strongly modify the magnetic anisotropy. This system is thus one of the few open quantum systems in which the energy levels, and not just the excited-state lifetimes, can be renormalized controllably. Furthermore, we demonstrate that the magnetocrystalline anisotropy, a property normally determined by the local structure around a spin, can be tuned electronically. These effects may play a significant role in the development of spintronic devices in which an individual magnetic atom or molecule is coupled to conducting leads.
Magnetic field dependence of the current flowing in the spin-coated chlorophyll thin films
NASA Astrophysics Data System (ADS)
Aji, J. R. P.; Kusumandari; Purnama, B.
2018-03-01
The magnetic dependence of the current flowing in the spin coated chlorophyll films on a patterned Cu PCB substrate has been presented. Chlorophyll was isolated from Spirulina sp and deposited by spin coated methods. The reducing of current by the change of magnetic field (magneto conductance effect) was performed by inducing the magnetic field parallel to the inplane of film at room temp. The magnetoconductance ratio decreases as the increase of voltage. It was indicated that the origin of carrier charge in chlorophyll films should be different with the carrier charge injection (electron).
NASA Astrophysics Data System (ADS)
Mašlejová, Anna; Boča, Roman; Dlháň, L.'ubor; Herchel, Radovan
2004-05-01
The zero-field splitting in nickel(II) complexes was modeled by considering all relevant operators (electron repulsion, crystal-field, spin-orbit coupling, orbital-Zeeman, and spin-Zeeman) in the complete basis set spanned by d n-atomic terms. D-values between weak and strong crystal field limits were evaluated from the crystal-field multiplets as well as using the spin Hamiltonian formalism. Importance of the anisotropic orbital reduction factors is discussed and exemplified by D/hc=-22 cm-1 as subtracted from magnetic data for [Ni(imidazole) 4(acetate) 2] complex.
Magnetic order at a single-crystal surface in the diffuse-scattering theory
NASA Astrophysics Data System (ADS)
Zasada, I.
2003-06-01
A theoretical description of incoherent spin-dependent multiple scattering of electrons at a magnetically disordered single-crystal surface is reported. A formalism in which the spin operators specify the magnetic state of a surface atom is used for the description of magnetic order at the surface. The theory is based upon the concepts used in multiple scattering spin-dependent diffuse LEED theory (DSPLEED) theory. In the present considerations, this theory is extended to the case of magnetic materials by using the time-independent Dirac equation with an effective magnetic field. Thus, an expression for incoherent spin-dependent intensity for magnetic material is obtained. It depends on the Fourier transform on the surface lattice of the spin-pair correlation function and, as a consequence, on the magnetic properties of the surface. The equations for the description of magnetization and various correlation functions in the frame of effective field theory are derived and the results of the numerical calculations are presented for the particular case of Ni(1 0 0) surface. The spin-orbit induced and exchange asymmetries are calculated. It is found that the magnetic DSPLEED is sensitive to the properties of the surface characterized by the spin-pair correlation functions. Thus, it is demonstrated that the magnetic DSPLEED can be an effective method in the investigation of critical behaviour of magnetic surfaces.
Self-consistent electronic structure of disordered Fe/sub 0. 65/Ni/sub 0. 35/
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.D.; Pinski, F.J.; Stocks, G.M.
1985-04-15
We present the results of the first ab initio calculation of the electronic structure of the disordered alloy Fe/sub 0.65/Ni/sub 0.35/. The calculation is based on the multiple-scattering coherent-potential approach (KKR-CPA) and is fully self-consistent and spin polarized. Magnetic effects are included within local-spin-density functional theory using the exchange-correlation function of Vosko--Wilk--Nusair. The most striking feature of the calculation is that electrons of different spins experience different degrees of disorder. The minority spin electrons see a very large disorder, whereas the majority spin electrons see little disorder. Consequently, the minority spin density of states is smooth compared to the verymore » structured majority spin density of states. This difference is due to a subtle balance between exchange splitting and charge neutrality.« less
Self-consistent electronic structure of disordered Fe/sub 0/ /sub 65/Ni/sub 0/ /sub 35/
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.D.; Pinski, F.J.; Stocks, G.M.
1984-01-01
We present the results of the first ab-initio calculation of the electronic structure of a disordered Fe/sub 0/ /sub 65/Ni/sub 0/ /sub 35/ alloy. The calculation is based on the multiple-scattering coherent-potential approach (KKR-CPA) and is fully self-consistent and spin-polarized. Magnetic effects are included within local-spin-density functional theory using the exchange-correlation function of Vosko-Wilk-Nusair. The most striking feature of the calculation is that electrons of different spins experience different degrees of disorder. The minority spin electrons see a very large disorder; whereas, the majority spin electrons see little disorder. Consequently, the minority spin density of states is smooth compared tomore » the very structured majority spin density of states. This difference is due to a subtle balance between exchange-splitting and charge neutrality. 15 references, 2 figures.« less
Spin model for nontrivial types of magnetic order in inverse-perovskite antiferromagnets
NASA Astrophysics Data System (ADS)
Mochizuki, Masahito; Kobayashi, Masaya; Okabe, Reoya; Yamamoto, Daisuke
2018-02-01
Nontrivial magnetic orders in the inverse-perovskite manganese nitrides are theoretically studied by constructing a classical spin model describing the magnetic anisotropy and frustrated exchange interactions inherent in specific crystal and electronic structures of these materials. With a replica-exchange Monte Carlo technique, a theoretical analysis of this model reproduces the experimentally observed triangular Γ5 g and Γ4 g spin-ordered patterns and the systematic evolution of magnetic orders. Our Rapid Communication solves a 40-year-old problem of nontrivial magnetism for the inverse-perovskite manganese nitrides and provides a firm basis for clarifying the magnetism-driven negative thermal expansion phenomenon discovered in this class of materials.
Improper magnetic ferroelectricity of nearly pure electronic nature in helicoidal spiral CaMn7O12
NASA Astrophysics Data System (ADS)
Lim, Jin Soo; Saldana-Greco, Diomedes; Rappe, Andrew M.
2018-01-01
Helicoidal magnetic order breaks inversion symmetry in quadruple perovskite CaMn7O12 , generating one of the largest spin-induced ferroelectric polarizations measured to date. Here, the microscopic origin of the polarization, including exchange interactions, coupling to the spin helicity, and charge density redistribution, is explored via first-principles calculations. The B -site Mn4 + (Mn3) spin adopts a noncentrosymmetric configuration, stabilized not only by spin-orbit coupling (SOC), but also by the fully anisotropic Hubbard J parameter in the absence of SOC, to break inversion symmetry and generate polarization. Berry phase computed polarization (Pelec=2169 μ C /m2 ) exhibits nearly pure electronic behavior, with negligible Mn displacements (≈0.7 m Å ). Orbital-resolved density of states shows that p -d orbital mixing is microscopically driven by nonrelativistic exchange striction within the commensurate ionic structure. Persistent electronic polarization induced by helical spin order in the nearly inversion-symmetric ionic crystal lattice suggests opportunities for ultrafast magnetoelectric response.
NASA Astrophysics Data System (ADS)
Gabrielse, Gerald
2011-05-01
The electron magnetic moment in Bohr magnetons has been measured to a precision of 3 parts in 1013. This measurement, with quantum electrodynamics (AED) theory, provides the most precise value of the fine structure constant. This measurement, with a value of the fine structure from other measurements, also tests QED and sets a limit on the internal structure of the electron. A one-electron quantum cyclotron is at the heart of the measurement -- an electron suspended in a magnetic field and cooled enough that its lowest cyclotron and spin quantum states can be deduced with quantum nondemolition (QND) measurements. A cylindrical Penning trap cavity inhibits spontaneous emission and feedback methods make the electron excite and sustain its own motion for detection. A new apparatus is being commissioned in pursuit of more precise measurements. Adapted methods are promising for observing a proton spin flip, which should make it possible to compare the antiproton and proton magnetic moments a million times more accurately than is currently possible.
Magnetic properties of checkerboard lattice: a Monte Carlo study
NASA Astrophysics Data System (ADS)
Jabar, A.; Masrour, R.; Hamedoun, M.; Benyoussef, A.
2017-12-01
The magnetic properties of ferrimagnetic mixed-spin Ising model in the checkerboard lattice are studied using Monte Carlo simulations. The variation of total magnetization and magnetic susceptibility with the crystal field has been established. We have obtained a transition from an order to a disordered phase in some critical value of the physical variables. The reduced transition temperature is obtained for different exchange interactions. The magnetic hysteresis cycles have been established. The multiples hysteresis cycle in checkerboard lattice are obtained. The multiples hysteresis cycle have been established. The ferrimagnetic mixed-spin Ising model in checkerboard lattice is very interesting from the experimental point of view. The mixed spins system have many technological applications such as in domain opto-electronics, memory, nanomedicine and nano-biological systems. The obtained results show that that crystal field induce long-range spin-spin correlations even bellow the reduced transition temperature.
Spin doping using transition metal phthalocyanine molecules
Atxabal, A.; Ribeiro, M.; Parui, S.; Urreta, L.; Sagasta, E.; Sun, X.; Llopis, R.; Casanova, F.; Hueso, L. E.
2016-01-01
Molecular spins have become key enablers for exploring magnetic interactions, quantum information processes and many-body effects in metals. Metal-organic molecules, in particular, let the spin state of the core metal ion to be modified according to its organic environment, allowing localized magnetic moments to emerge as functional entities with radically different properties from its simple atomic counterparts. Here, using and preserving the integrity of transition metal phthalocyanine high-spin complexes, we demonstrate the magnetic doping of gold thin films, effectively creating a new ground state. We demonstrate it by electrical transport measurements that are sensitive to the scattering of itinerant electrons with magnetic impurities, such as Kondo effect and weak antilocalization. Our work expands in a simple and powerful way the classes of materials that can be used as magnetic dopants, opening a new channel to couple the wide range of molecular properties with spin phenomena at a functional scale. PMID:27941810
NASA Astrophysics Data System (ADS)
Ebert, H.; Vernes, A.; Banhart, J.
1999-11-01
It has been shown recently, for a number of various magnetic disordered alloy systems, that the spin-orbit coupling (SOC) may have an important influence on the isotropic residual resistivity and that it is the primary source of the galvano-magnetic properties spontaneous magnetoresistance anisotropy (SMA) and anomalous Hall resistivity (AHR). Here it is demonstrated that—in contrast to many other spin-orbit induced phenomena—all these findings stem from the part of the spin-orbit coupling that gives rise to a mixing of the two spin sub-systems. In line with this result it is shown that inclusion of a current dependent potential within a calculation of the underlying electronic structure hardly affects the transport properties if the corresponding magnetic vector potential does not lead to a mixing of the spin sub-systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, Emrys W.; Henbest, Kevin B.; Timmel, Christiane R., E-mail: christiane.timmel@chem.ox.ac.uk, E-mail: stuart.mackenzie@chem.ox.ac.uk
Even though the interaction of a <1 mT magnetic field with an electron spin is less than a millionth of the thermal energy at room temperature (k{sub B}T), it still can have a profound effect on the quantum yields of radical pair reactions. We present a study of the effects of sub-millitesla magnetic fields on the photoreaction of flavin mononucleotide with ascorbic acid. Direct control of the reaction pathway is achieved by varying the rate of electron transfer from ascorbic acid to the photo-excited flavin. At pH 7.0, we verify the theoretical prediction that, apart from a sign change, themore » form of the magnetic field effect is independent of the initial spin configuration of the radical pair. The data agree well with model calculations based on a Green’s function approach that allows multinuclear spin systems to be treated including the diffusive motion of the radicals, their spin-selective recombination reactions, and the effects of the inter-radical exchange interaction. The protonation states of the radicals are uniquely determined from the form of the magnetic field-dependence. At pH 3.0, the effects of two chemically distinct radical pair complexes combine to produce a pronounced response to ∼500 μT magnetic fields. These findings are relevant to the magnetic responses of cryptochromes (flavin-containing proteins proposed as magnetoreceptors in birds) and may aid the evaluation of effects of weak magnetic fields on other biologically relevant electron transfer processes.« less
Extraordinary SEAWs under influence of the spin-spin interaction and the quantum Bohm potential
NASA Astrophysics Data System (ADS)
Andreev, Pavel A.
2018-06-01
The separate spin evolution (SSE) of electrons causes the existence of the spin-electron acoustic wave. Extraordinary spin-electron acoustic waves (SEAWs) propagating perpendicular to the external magnetic field have a large contribution of the transverse electric field. Its spectrum has been studied in the quasi-classical limit at the consideration of the separate spin evolution. The spin-spin interaction and the quantum Bohm potential give contribution in the spectrum extraordinary SEAWs. This contribution is studied in this paper. Moreover, it is demonstrated that the spin-spin interaction leads to the existence of the extraordinary SEAWs if the SSE is neglected. It has been found that the SSE causes the instability of the extraordinary SEAW at the large wavelengths, but the quantum Bohm potential leads to the full stabilization of the spectrum.
Spin-dependent delay time in ferromagnet/insulator/ferromagnet heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, ZhengWei; Zheng Shi, De; Lv, HouXiang
2014-07-07
We study theoretically spin-dependent group delay and dwell time in ferromagnet/insulator/ferromagnet (FM/I/FM) heterostructure. The results indicate that, when the electrons with different spin orientations tunnel through the FM/I/FM junction, the spin-up process and the spin-down process are separated on the time scales. As the self-interference delay has the spin-dependent features, the variations of spin-dependent dwell-time and spin-dependent group-delay time with the structure parameters appear different features, especially, in low incident energy range. These different features show up as that the group delay times for the spin-up electrons are always longer than those for spin-down electrons when the barrier height ormore » incident energy increase. In contrast, the dwell times for the spin-up electrons are longer (shorter) than those for spin-down electrons when the barrier heights (the incident energy) are under a certain value. When the barrier heights (the incident energy) exceed a certain value, the dwell times for the spin-up electrons turn out to be shorter (longer) than those for spin-down electrons. In addition, the group delay time and the dwell time for spin-up and down electrons also relies on the comparative direction of magnetization in two FM layers and tends to saturation with the thickness of the barrier.« less
NASA Astrophysics Data System (ADS)
Poltavtsev, S. V.; Langer, L.; Yugova, I. A.; Salewski, M.; Kapitonov, Y. V.; Yakovlev, D. R.; Karczewski, G.; Wojtowicz, T.; Akimov, I. A.; Bayer, M.
2016-10-01
We use spontaneous (two-pulse) and stimulated (three-pulse) photon echoes for studying the coherent evolution of optically excited ensemble of trions which are localized in semiconductor CdTe/CdMgTe quantum well. Application of transverse magnetic field leads to the Larmor precession of the resident electron spins, which shuffles optically induced polarization between optically accessible and inaccessible states. This results in several spectacular phenomena. First, magnetic field induces oscillations of spontaneous photon echo amplitude. Second, in three-pulse excitation scheme, the photon echo decay is extended by several orders of magnitude. In this study, short-lived optical excitation which is created by the first pulse is coherently transferred into a long-lived electron spin state using the second optical pulse. This coherent spin state of electron ensemble persists much longer than any optical excitation in the system, preserving information on initial optical field, which can be retrieved as a photon echo by means of third optical pulse.
Electron doping a kagome spin liquid
Kelly, Z. A.; Gallagher, M. J.; McQueen, T. M.
2016-10-13
Herbertsmithite, ZnCu 3(OH) 6Cl 2, is a two-dimensional kagome lattice realization of a spin liquid, with evidence for fractionalized excitations and a gapped ground state. Such a quantum spin liquid has been proposed to underlie high-temperature superconductivity and is predicted to produce a wealth of new states, including a Dirac metal at 1/3 electron doping. Here, we report the topochemical synthesis of electron-doped ZnLi xCu 3(OH) 6Cl 2 from x=0 to x=1.8 (3/5 per Cu 2+). Contrary to expectations, no metallicity or superconductivity is induced. Instead, we find a systematic suppression of magnetic behavior across the phase diagram. Lastly, ourmore » results demonstrate that significant theoretical work is needed to understand and predict the role of doping in magnetically frustrated narrow band insulators, particularly the interplay between local structural disorder and tendency toward electron localization, and pave the way for future studies of doped spin liquids.« less
Three-Dimensional Non-Fermi-Liquid Behavior from One-Dimensional Quantum Critical Local Moments
Classen, Laura; Zaliznyak, Igor; Tsvelik, Alexei M.
2018-04-10
We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb 2Pt 2Pb, a metal where itinerant electrons coexist with localized moments of Yb-ions which can be described in terms of effective S = 1/2 spins with dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the twomore » interacting subsystems. Lastly, we characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasi linear temperature dependence.« less
Three-Dimensional Non-Fermi-Liquid Behavior from One-Dimensional Quantum Critical Local Moments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Classen, Laura; Zaliznyak, Igor; Tsvelik, Alexei M.
We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb 2Pt 2Pb, a metal where itinerant electrons coexist with localized moments of Yb-ions which can be described in terms of effective S = 1/2 spins with dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the twomore » interacting subsystems. Lastly, we characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasi linear temperature dependence.« less
Spin structure of electron subbands in (110)-grown quantum wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nestoklon, M. O.; Tarasenko, S. A.; Jancu, J.-M.
We present the theory of fine structure of electron states in symmetric and asymmetric zinc-blende-type quantum wells with the (110) crystallographic orientation. By combining the symmetry analysis, sp{sup 3}d{sup 5}s* tight-binding method, and envelope-function approach we obtain quantitative description of in-plane wave vector, well width and applied electric field dependencies of the zero-magnetic-field spin splitting of electron subbands and extract spin-orbit-coupling parameters.
Julius Edgar Lilienfeld Prize Talk: Quantum spintronics: abandoning perfection for new technologies
NASA Astrophysics Data System (ADS)
Awschalom, David D.
2015-03-01
There is a growing interest in exploiting the quantum properties of electronic and nuclear spins for the manipulation and storage of information in the solid state. Such schemes offer qualitatively new scientific and technological opportunities by leveraging elements of standard electronics to precisely control coherent interactions between electrons, nuclei, and electromagnetic fields. We provide an overview of the field, including a discussion of temporally- and spatially-resolved magneto-optical measurements designed for probing local moment dynamics in electrically and magnetically doped semiconductor nanostructures. These early studies provided a surprising proof-of-concept that quantum spin states can be created and controlled with high-speed optoelectronic techniques. However, as electronic structures approach the atomic scale, small amounts of disorder begin to have outsized negative effects. An intriguing solution to this conundrum is emerging from recent efforts to embrace semiconductor defects themselves as a route towards quantum machines. Individual defects in carbon-based materials possess an electronic spin state that can be employed as a solid state quantum bit at and above room temperature. Developments at the frontier of this field include gigahertz coherent control, nanofabricated spin arrays, nuclear spin quantum memories, and nanometer-scale sensing. We will describe advances towards quantum information processing driven by both physics and materials science to explore electronic, photonic, and magnetic control of spin. Work supported by the AFOSR, ARO, DARPA, NSF, and ONR.
NASA Astrophysics Data System (ADS)
Wang, Zi-Wu; Li, Shu-Shen
2012-07-01
We investigate the spin-flip relaxation in quantum dots using a non-radiation transition approach based on the descriptions for the electron-phonon deformation potential and Fröhlich interaction in the Pavlov-Firsov spin-phonon Hamiltonian. We give the comparisons of the electron relaxations with and without spin-flip assisted by one and two-phonon processes. Calculations are performed for the dependence of the relaxation time on the external magnetic field, the temperature and the energy separation between the Zeeman sublevels of the ground and first-excited state. We find that the electron relaxation time of the spin-flip process is more longer by three orders of magnitudes than that of no spin-flip process.
Aspects of Dzyaloshinskii-Moriya Interaction in Two Dimensional Magnetic Structures
NASA Astrophysics Data System (ADS)
Kundu, Anirban
Research on topologically protected chiral magnetic structures such as magnetic domain walls (DWs) and skyrmions, have gained extensive interest because of their possible applications in magnetic data storage industries. The recently observed chiral DW structures in ultrathin ferromagnetic lms with perpendicular magnetic anisotropy has been attributed to the presence of a strong Dzyaloshinskii-Moriya interaction (DMI). In this thesis, the DMI mediated by the conduction electrons in two dimensional magnetic systems such as magnetic thin lms or at the interfaces between two magnetic materials has been studied. I calculate the Ruderman-Kittel- Kasuya-Yosida (RKKY) type indirect exchange coupling between two magnetic moments at nite temperature using the free electron band. At high temperature, the coupling strength decays with distance faster than the coupling at zero temperature but the period of oscillation remains same. However, the free electron band alone could not produce DMI. In the next step, I show addition of Rashba spin-orbit coupling (RSOC) with the spin-polarized conduction electron band produces the DMI between two magnetic ions. The essential feature of this DMI is: the coupling strength increases with the strength of RSOC, but decreases signi cantly with the Heisenberg exchange coupling. The DMI calculated with this model well explains the possibility of preferred Neel or Bloch DW structures with specifc chirality. In addition: I study switching of magnetization with ultrafast laser pulse by inverse Faraday e ect (IFE) where an optically induced non-equilibrium orbital momentum generates an e ective magnetic eld via spin-orbit coupling for magnetization switching. I calculate the magnitude of induced orbital moment for the generic itinerant band and show that magnitude is not large enough to make the switching by a single pulse, however, switching could be possible if multiple pulses are applied to the material.
NASA Astrophysics Data System (ADS)
Du, Jiangtao; Dong, Shengjie; Zhou, Baozeng; Zhao, Hui; Feng, Liefeng
2017-04-01
The reports previously issued predominantly paid attention to the d-block magnetic elements δ-doped digital magnetic materials. In this work, GaN δ-doped with non-magnetic main group s-block elements K and Ca as digital magnetic heterostructures were purposed and explored theoretically. We found that K- and Ca-embedded GaN digital alloys exhibit spin-gapless and half-metallic ferromagnetic characteristics, respectively. All compounds obey the Slater-Pauling rule with diverse electronic and magnetic properties. For these digital ferromagnetic heterostructures, spin polarization occurs in nitrogen within a confined space around the δ-doped layer, demonstrating a hole-mediated two-dimensional magnetic phenomenon.
Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications
NASA Astrophysics Data System (ADS)
Dieny, B.; Chshiev, M.
2017-04-01
Spin electronics is a rapidly expanding field stimulated by a strong synergy between breakthrough basic research discoveries and industrial applications in the fields of magnetic recording, magnetic field sensors, nonvolatile memories [magnetic random access memories (MRAM) and especially spin-transfer-torque MRAM (STT-MRAM)]. In addition to the discovery of several physical phenomena (giant magnetoresistance, tunnel magnetoresistance, spin-transfer torque, spin-orbit torque, spin Hall effect, spin Seebeck effect, etc.), outstanding progress has been made on the growth and nanopatterning of magnetic multilayered films and nanostructures in which these phenomena are observed. Magnetic anisotropy is usually observed in materials that have large spin-orbit interactions. However, in 2002 perpendicular magnetic anisotropy (PMA) was discovered to exist at magnetic metal/oxide interfaces [for instance Co (Fe )/alumina ]. Surprisingly, this PMA is observed in systems where spin-orbit interactions are quite weak, but its amplitude is remarkably large—comparable to that measured at Co /Pt interfaces, a reference for large interfacial anisotropy (anisotropy˜1.4 erg /cm2=1.4 mJ /m2 ). Actually, this PMA was found to be very common at magnetic metal/oxide interfaces since it has been observed with a large variety of amorphous or crystalline oxides, including AlOx, MgO, TaOx, HfOx, etc. This PMA is thought to be the result of electronic hybridization between the oxygen and the magnetic transition metal orbit across the interface, a hypothesis supported by ab initio calculations. Interest in this phenomenon was sparked in 2010 when it was demonstrated that the PMA at magnetic transition metal/oxide interfaces could be used to build out-of-plane magnetized magnetic tunnel junctions for STT-MRAM cells. In these systems, the PMA at the CoFeB /MgO interface can be used to simultaneously obtain good memory retention, thanks to the large PMA amplitude, and a low write current, thanks to a relatively weak Gilbert damping. These two requirements for memories tend to be difficult to reconcile since they rely on the same spin-orbit coupling. PMA-based approaches have now become ubiquitous in the designs for perpendicular STT-MRAM, and major microelectronics companies are actively working on their development with the first goal of addressing embedded FLASH and static random access memory-type of applications. Scalability of STT-MRAM devices based on this interfacial PMA is expected to soon exceed the 20-nm nodes. Several very active new fields of research also rely on interfacial PMA at magnetic metal/oxide interfaces, including spin-orbit torques associated with Rashba or spin Hall effects, record high speed domain wall propagation in buffer/magnetic metal/oxide-based magnetic wires, and voltage-based control of anisotropy. This review deals with PMA at magnetic metal/oxide interfaces from its discovery, by examining the diversity of systems in which it has been observed and the physicochemical methods through which the key roles played by the electronic hybridization at the metal/oxide interface were elucidated. The physical origins of the phenomenon are also covered and how these are supported by ab initio calculations is dealt with. Finally, some examples of applications of this interfacial PMA in STT-MRAM are listed along with the various emerging research topics taking advantage of this PMA.
Nonlocal spin-confinement of electrons in graphene with proximity exchange interaction
NASA Astrophysics Data System (ADS)
Ang, Yee Sin; Liang, Shi-Jun; Ooi, Kelvin J. A.; Zhang, Chao; Ma, Zhongshui; Ang, Lay Kee
In graphene-magnetic-insulator hybrid structure such as graphene-Europium-oxide (EuO-G), proximity induced exchange interaction opens up a spin-dependent bandgap and spin splitting in the Dirac band. We study the bound state formation in a hetero-interface composed of EuO-G. We theoretically predict a remarkable nonlocal spin-confinement effect in EuO-G and show that spin-polarized quasi-1D electron interface state can be generated in a magnetic-field-free channel. Quasiparticle transport mediated by the interface state can be efficiently controlled by the channel width and electrostatic gating. Our results suggest a pathway to further reduce the dimensionality of graphene quasiparticles from 2D to 1D, thus offering an exciting graphene-based platform for the search of exotic 1D physics and spintronic applications.
Spin manipulation and spin-lattice interaction in magnetic colloidal quantum dots
NASA Astrophysics Data System (ADS)
Moro, Fabrizio; Turyanska, Lyudmila; Granwehr, Josef; Patanè, Amalia
2014-11-01
We report on the spin-lattice interaction and coherent manipulation of electron spins in Mn-doped colloidal PbS quantum dots (QDs) by electron spin resonance. We show that the phase memory time,TM , is limited by Mn-Mn dipolar interactions, hyperfine interactions of the protons (1H) on the QD capping ligands with Mn ions in their proximity (<1 nm), and surface phonons originating from thermal fluctuations of the capping ligands. In the low Mn concentration limit and at low temperature, we achieve a long phase memory time constant TM˜0.9 μ s , thus enabling the observation of Rabi oscillations. Our findings suggest routes to the rational design of magnetic colloidal QDs with phase memory times exceeding the current limits of relevance for the implementation of QDs as qubits in quantum information processing.
NASA Astrophysics Data System (ADS)
Chekhovich, Evgeny A.
2017-06-01
Dynamics of nuclear spin decoherence and nuclear spin flip-flops in self-assembled InGaAs/GaAs quantum dots are studied experimentally using optically detected nuclear magnetic resonance (NMR). Nuclear spin-echo decay times are found to be in the range 1-4 ms. This is a factor of ~3 longer than in strain-free GaAs/AlGaAs structures and is shown to result from strain-induced quadrupolar effects that suppress nuclear spin flip-flops. The correlation times of the flip-flops are examined using a novel frequency-comb NMR technique and are found to exceed 1 s, a factor of ~1000 longer than in strain-free structures. These findings complement recent studies of electron spin coherence and reveal the paradoxical dual role of the quadrupolar effects in self-assembled quantum dots: large increase of the nuclear spin bath coherence and at the same time significant reduction of the electron spin-qubit coherence. Approaches to increasing electron spin coherence are discussed. In particular the nanohole filled GaAs/AlGaAs quantum dots are an attractive option: while their optical quality matches the self-assembled dots the quadrupolar effects measured in NMR spectra are a factor of 1000 smaller.
Room temperature ferromagnetism in Fe-doped semiconductor ZrS2 single crystals
NASA Astrophysics Data System (ADS)
Muhammad, Zahir; Lv, Haifeng; Wu, Chuanqiang; Habib, Muhammad; Rehman, Zia ur; Khan, Rashid; Chen, Shuangming; Wu, Xiaojun; Song, Li
2018-04-01
Two dimensional (2D) layered magnetic materials have obtained much attention due to their intriguing properties with a potential application in the field of spintronics. Herein, room-temperature ferromagnetism with 0.2 emu g‑1 magnetic moment is realized in Fe-doped ZrS2 single crystals of millimeter size, in comparison with diamagnetic behaviour in ZrS2. The electron paramagnetic resonance spectroscopy reveals that 5.2wt% Fe-doping ZrS2 crystal exhibit high spin value of g-factor about 3.57 at room temperature also confirmed this evidence, due to the unpaired electrons created by doped Fe atoms. First principle static electronic and magnetic calculations further confirm the increased stability of long range ferromagnetic ordering and enhanced magnetic moment in Fe-doped ZrS2, originating from the Fe spin polarized electron near the Fermi level.
Electron spin resonance study of CuGa1-xMnxSe2 magnetic semiconducting compounds
NASA Astrophysics Data System (ADS)
Fermin, José R.; Nava, Alexander; Durante-Rincón, C. A.; Castro, Jaime; Silva, Pedro J.
2013-02-01
We report on the magnetic properties of the diluted magnetic semiconductor CuGa1-xMnxSe2. For this, Electron spin resonance (ESR) experiments in the temperature range 70 K
Chiral magnetism of magnetic adatoms generated by Rashba electrons
NASA Astrophysics Data System (ADS)
Bouaziz, Juba; dos Santos Dias, Manuel; Ziane, Abdelhamid; Benakki, Mouloud; Blügel, Stefan; Lounis, Samir
2017-02-01
We investigate long-range chiral magnetic interactions among adatoms mediated by surface states spin-splitted by spin-orbit coupling. Using the Rashba model, the tensor of exchange interactions is extracted wherein a thepseudo-dipolar interaction is found, in addition to the usual isotropic exchange interaction and the Dzyaloshinskii-Moriya interaction. We find that, despite the latter interaction, collinear magnetic states can still be stabilized by the pseudo-dipolar interaction. The interadatom distance controls the strength of these terms, which we exploit to design chiral magnetism in Fe nanostructures deposited on a Au(111) surface. We demonstrate that these magnetic interactions are related to superpositions of the out-of-plane and in-plane components of the skyrmionic magnetic waves induced by the adatoms in the surrounding electron gas. We show that, even if the interatomic distance is large, the size and shape of the nanostructures dramatically impacts on the strength of the magnetic interactions, thereby affecting the magnetic ground state. We also derive an appealing connection between the isotropic exchange interaction and the Dzyaloshinskii-Moriya interaction, which relates the latter to the first-order change of the former with respect to spin-orbit coupling. This implies that the chirality defined by the direction of the Dzyaloshinskii-Moriya vector is driven by the variation of the isotropic exchange interaction due to the spin-orbit interaction.
NASA Astrophysics Data System (ADS)
Zhang, Yue; Zhang, Zhizhong; Wang, Lezhi; Nan, Jiang; Zheng, Zhenyi; Li, Xiang; Wong, Kin; Wang, Yu; Klein, Jacques-Olivier; Khalili Amiri, Pedram; Zhang, Youguang; Wang, Kang L.; Zhao, Weisheng
2017-07-01
Beyond memory and storage, future logic applications put forward higher requirements for electronic devices. All spin logic devices (ASLDs) have drawn exceptional interest as they utilize pure spin current instead of charge current, which could promise ultra-low power consumption. However, relatively low efficiencies of spin injection, transport, and detection actually impede high-speed magnetization switching and challenge perspectives of ASLD. In this work, we study partial spin absorption induced magnetization switching in asymmetrical ASLD at the mesoscopic scale, in which the injector and detector have the nano-fabrication compatible device size (>100 nm) and their contact areas are different. The enlarged contact area of the detector is conducive to the spin current absorption, and the contact resistance difference between the injector and the detector can decrease the spin current backflow. Rigorous spin circuit modeling and micromagnetic simulations have been carried out to analyze the electrical and magnetic features. The results show that, at the fabrication-oriented technology scale, the ferromagnetic layer can hardly be switched by geometrically partial spin current absorption. The voltage-controlled magnetic anisotropy (VCMA) effect has been applied on the detector to accelerate the magnetization switching by modulating magnetic anisotropy of the ferromagnetic layer. With a relatively high VCMA coefficient measured experimentally, a voltage of 1.68 V can assist the whole magnetization switching within 2.8 ns. This analysis and improving approach will be of significance for future low-power, high-speed logic applications.
Synthesis and magnetic properties of single-crystalline Na2-xMn8O16 nanorods
2011-01-01
The synthesis of single-crystalline hollandite-type manganese oxides Na2-xMn8O16 nanorods by a simple molten salt method is reported for the first time. The nanorods were characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and a superconducting quantum interference device magnetometer. The magnetic measurements indicated that the nanorods showed spin glass behavior and exchange bias effect at low temperatures. The low-temperature magnetic behaviors can be explained by the uncompensated spins on the surface of the nanorods. PMID:21711626
Effects on the magnetic and optical properties of Co-doped ZnO at different electronic states
NASA Astrophysics Data System (ADS)
Huo, Qingyu; Xu, Zhenchao; Qu, Linfeng
2017-12-01
Both blue and red shifts in the absorption spectrum of Co-doped ZnO have been reported at a similar concentration range of doped Co. Moreover, the sources of magnetism of Co-doped ZnO are controversial. To solve these problems, the geometry optimization and energy of different Co-doped ZnO systems were calculated at the states of electron spin polarization and nonspin polarization by adopting plane-wave ultra-soft pseudopotential technology based on density function theory. At the state of electron nonspin polarization, the total energies increased as the concentration of Co-doped increased. The doped systems also became unstable. The formation energies increased and doping became difficult. Furthermore, the band gaps widened and the absorption spectrum exhibited a blue shift. The band gaps were corrected by local-density approximation + U at the state of electron spin polarization. The magnetic moments of the doped systems weakened as the concentration of doped Co increased. The magnetic moments were derived from the coupling effects of sp-d. The band gaps narrowed and the absorption spectrum exhibited a red shift. The inconsistencies of the band gaps and absorption spectrum at the states of electron spin polarization and nonspin polarization were first discovered in this research, and the sources of Co-doped ZnO magnetism were also reinterpreted.
Ab initio study of Fe{sub 2}MnZ (Al, Si, Ge) Heusler alloy using GGA approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Vivek Kumar, E-mail: vivek.jain129@gmail.com; Jain, Vishal, E-mail: vivek.jain129@gmail.com; Lakshmi, N., E-mail: vivek.jain129@gmail.com
Density functional theory based on FP-LAPW method used to investigate the electronic structure of Fe{sub 2}MnZ, shows that the total spin magnetic moment shows a trend consistent with the Slater–Pauling curve. The Fe and Mn magnetic moment depend on choice of Z element although the magnetic moment of Z element is negative and less than 0.1 μ{sub B}. Spin polarization calculations evidence 100% spin polarization for Fe{sub 2}MnSi. Fe{sub 2}MnAl and Fe{sub 2}MnGe show metallic behavior with 93%, 98% spin polarization.
Kumar, Anup; Capua, Eyal; Fontanesi, Claudio; Carmieli, Raanan; Naaman, Ron
2018-04-24
Spin-polarized electrons are injected from an electrochemical cell through a chiral self-assembled organic monolayer into a AlGaN/GaN device in which a shallow two-dimensional electron gas (2DEG) layer is formed. The injection is monitored by a microwave signal that indicates a coherent spin lifetime that exceeds 10 ms at room temperature. The signal was found to be magnetic field independent; however, it depends on the current of the injected electrons, on the length of the chiral molecules, and on the existence of 2DEG.
Graphene-ferromagnet interfaces: hybridization, magnetization and charge transfer.
Abtew, Tesfaye; Shih, Bi-Ching; Banerjee, Sarbajit; Zhang, Peihong
2013-03-07
Electronic and magnetic properties of graphene-ferromagnet interfaces are investigated using first-principles electronic structure methods in which a single layer graphene is adsorbed on Ni(111) and Co(111) surfaces. Due to the symmetry matching and orbital overlap, the hybridization between graphene pπ and Ni (or Co) d(z(2)) states is very strong. This pd hybridization, which is both spin and k dependent, greatly affects the electronic and magnetic properties of the interface, resulting in a significantly reduced (by about 20% for Ni and 10% for Co) local magnetic moment of the top ferromagnetic layer at the interface and an induced spin polarization on the graphene layer. The calculated induced magnetic moment on the graphene layer agrees well with a recent experiment. In addition, a substantial charge transfer across the graphene-ferromagnet interfaces is observed. We also investigate the effects of thickness of the ferromagnet slab on the calculated electronic and magnetic properties of the interface. The strength of the pd hybridization and the thickness-dependent interfacial properties may be exploited to design structures with desirable magnetic and transport properties for spintronic applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Atsushi, E-mail: suzuki@mat.usp.ac.j; Iguchi, Motoi; Oku, Takeo
2010-04-15
Influence of chemical substitution in the Fe{sup II} spin crossover complex on magnetic properties in emulsion polymerization of trifluoroethylmethacrylate using poly(vinyl alcohol) as a protective colloid was investigated near its high spin/low spin (HS/LS) phase transition. The obvious bi-stability of the HS/LS phase transition was considered by the identification of multiple spin states between the quintet (S=2) states to single state (S=0) across the excited triplet state (S=1). Magnetic parameters of gradual shifts of anisotropy g-tensor supported by the molecular distortion of the spin crossover complex would arise from a Jahn-Teller effect regarding ligand field theory on the basis ofmore » a B3LYP density functional theory using electron spin resonance (ESR) spectrum and X-ray powder diffraction. - Graphical abstract: AFM surface image of the emulsion particles with the spin crossover complex.« less
Persistent spin helix manipulation by optical doping of a CdTe quantum well
NASA Astrophysics Data System (ADS)
Passmann, F.; Anghel, S.; Tischler, T.; Poshakinskiy, A. V.; Tarasenko, S. A.; Karczewski, G.; Wojtowicz, T.; Bristow, A. D.; Betz, M.
2018-05-01
Time-resolved Kerr-rotation microscopy explores the influence of optical doping on the persistent spin helix in a [001]-grown CdTe quantum well at cryogenic temperatures. Electron spin-diffusion dynamics reveal a momentum-dependent effective magnetic field providing SU(2) spin-rotation symmetry, consistent with kinetic theory. The Dresselhaus and Rashba spin-orbit coupling parameters are extracted independently from rotating the spin helix with external magnetic fields applied parallel and perpendicular to the effective magnetic field. Most importantly, a nonuniform spatiotemporal precession pattern is observed. The kinetic-theory framework of spin diffusion allows for modeling of this finding by incorporating the photocarrier density into the Rashba (α) and the Dresselhaus (β3) parameters. Corresponding calculations are further validated by an excitation-density-dependent measurement. This work shows universality of the persistent spin helix by its observation in a II-VI compound and the ability to fine-tune it by optical doping.
Non-equilibrium magnetic interactions in strongly correlated systems
NASA Astrophysics Data System (ADS)
Secchi, A.; Brener, S.; Lichtenstein, A. I.; Katsnelson, M. I.
2013-06-01
We formulate a low-energy theory for the magnetic interactions between electrons in the multi-band Hubbard model under non-equilibrium conditions determined by an external time-dependent electric field which simulates laser-induced spin dynamics. We derive expressions for dynamical exchange parameters in terms of non-equilibrium electronic Green functions and self-energies, which can be computed, e.g., with the methods of time-dependent dynamical mean-field theory. Moreover, we find that a correct description of the system requires, in addition to exchange, a new kind of magnetic interaction, that we name twist exchange, which formally resembles Dzyaloshinskii-Moriya coupling, but is not due to spin-orbit, and is actually due to an effective three-spin interaction. Our theory allows the evaluation of the related time-dependent parameters as well.
X-ray Emission Spectroscopy in Magnetic 3d-Transition Metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iota, V; Park, J; Baer, B
2003-11-18
The application of high pressure affects the band structure and magnetic interactions in solids by modifying nearest-neighbor distances and interatomic potentials. While all materials experience electronic changes with increasing pressure, spin polarized, strongly electron correlated materials are expected to undergo the most dramatic transformations. In such materials, (d and f-electron metals and compounds), applied pressure reduces the strength of on-site correlations, leading to increased electron delocalization and, eventually, to loss of its magnetism. In this ongoing project, we study the electronic and magnetic properties of Group VIII, 3d (Fe, Co and Ni) magnetic transition metals and their compounds at highmore » pressures. The high-pressure properties of magnetic 3d-transition metals and compounds have been studied extensively over the years, because of iron being a major constituent of the Earth's core and its relevance to the planetary modeling to understand the chemical composition, internal structure, and geomagnetism. However, the fundamental scientific interest in the high-pressure properties of magnetic 3d-electron systems extends well beyond the geophysical applications to include the electron correlation-driven physics. The role of magnetic interactions in the stabilization of the ''non-standard'' ambient pressure structures of Fe, Co and Ni is still incompletely understood. Theoretical studies have predicted (and high pressure experiments are beginning to show) strong correlations between the electronic structure and phase stability in these materials. The phase diagrams of magnetic 3d systems reflect a delicate balance between spin interactions and structural configuration. At ambient conditions, the crystal structures of {alpha}-Fe(bcc) and {var_epsilon}-Co(hcp) phases depart from the standard sequence (hcp {yields} bcc{yields} hcp {yields} fcc), as observed in all other non-magnetic transition metals with increasing the d-band occupancy, and are different from those of their 4d- and 5d-counter parts. This anomalous behavior has been interpreted in terms of the spin-polarized d-band altering the d-band occupancy [1]. At high pressures, however, the d-valence band is expected to broaden resulting in a suppression or even a complete loss of magnetism. Experimentally, ferromagnetic {alpha}(bcc)-Fe has been confirmed to transform to non-magnetic {var_epsilon}-Fe (hcp) at 10 GPa [2,3]. Recently, we have also observed a similar transition in Co from ferromagnetic {alpha}(hcp)-Co to likely nonmagnetic {beta}(fcc)-Co at 105 GPa[4]. A similar structural phase transition is expected in Ni, probably in the second-order fcc-fcc transition. However, there has been no directly measured change in magnetism associated with the structural phase transition in Co, nor has yet been confirmed such an iso-structural phase transition in Ni. Similar electronic transitions have been proposed in these 3d-transition metal oxides (FeO, CoO and NiO) from high spin (magnetic) to low spin (nonmagnetic) states [5]. In each of these systems, the magnetic transition is accompanied by a first-order structural transition involving large volume collapse (10% in FeO, for example). So far, there have been no electronic measurements under pressure confirming these significant theoretical predictions, although the predicted pressures for the volume collapse transitions are within the experimental pressure range (80-200GPa).« less
Towards sub-nanometer real-space observation of spin and orbital magnetism at the Fe/MgO interface
Thersleff, Thomas; Muto, Shunsuke; Werwiński, Mirosław; Spiegelberg, Jakob; Kvashnin, Yaroslav; Hjӧrvarsson, Björgvin; Eriksson, Olle; Rusz, Ján; Leifer, Klaus
2017-01-01
While the performance of magnetic tunnel junctions based on metal/oxide interfaces is determined by hybridization, charge transfer, and magnetic properties at the interface, there are currently only limited experimental techniques with sufficient spatial resolution to directly observe these effects simultaneously in real-space. In this letter, we demonstrate an experimental method based on Electron Magnetic Circular Dichroism (EMCD) that will allow researchers to simultaneously map magnetic transitions and valency in real-space over interfacial cross-sections with sub-nanometer spatial resolution. We apply this method to an Fe/MgO bilayer system, observing a significant enhancement in the orbital to spin moment ratio that is strongly localized to the interfacial region. Through the use of first-principles calculations, multivariate statistical analysis, and Electron Energy-Loss Spectroscopy (EELS), we explore the extent to which this enhancement can be attributed to emergent magnetism due to structural confinement at the interface. We conclude that this method has the potential to directly visualize spin and orbital moments at buried interfaces in magnetic systems with unprecedented spatial resolution. PMID:28338011
Towards sub-nanometer real-space observation of spin and orbital magnetism at the Fe/MgO interface
NASA Astrophysics Data System (ADS)
Thersleff, Thomas; Muto, Shunsuke; Werwiński, Mirosław; Spiegelberg, Jakob; Kvashnin, Yaroslav; Hjӧrvarsson, Björgvin; Eriksson, Olle; Rusz, Ján; Leifer, Klaus
2017-03-01
While the performance of magnetic tunnel junctions based on metal/oxide interfaces is determined by hybridization, charge transfer, and magnetic properties at the interface, there are currently only limited experimental techniques with sufficient spatial resolution to directly observe these effects simultaneously in real-space. In this letter, we demonstrate an experimental method based on Electron Magnetic Circular Dichroism (EMCD) that will allow researchers to simultaneously map magnetic transitions and valency in real-space over interfacial cross-sections with sub-nanometer spatial resolution. We apply this method to an Fe/MgO bilayer system, observing a significant enhancement in the orbital to spin moment ratio that is strongly localized to the interfacial region. Through the use of first-principles calculations, multivariate statistical analysis, and Electron Energy-Loss Spectroscopy (EELS), we explore the extent to which this enhancement can be attributed to emergent magnetism due to structural confinement at the interface. We conclude that this method has the potential to directly visualize spin and orbital moments at buried interfaces in magnetic systems with unprecedented spatial resolution.
Spin-interaction effects for ultralong-range Rydberg molecules in a magnetic field
NASA Astrophysics Data System (ADS)
Hummel, Frederic; Fey, Christian; Schmelcher, Peter
2018-04-01
We investigate the fine and spin structure of ultralong-range Rydberg molecules exposed to a homogeneous magnetic field. Each molecule consists of a 87Rb Rydberg atom the outer electron of which interacts via spin-dependent s - and p -wave scattering with a polarizable 87Rb ground-state atom. Our model includes also the hyperfine structure of the ground-state atom as well as spin-orbit couplings of the Rydberg and ground-state atom. We focus on d -Rydberg states and principal quantum numbers n in the vicinity of 40. The electronic structure and vibrational states are determined in the framework of the Born-Oppenheimer approximation for varying field strengths ranging from a few up to hundred Gauss. The results show that the interplay between the scattering interactions and the spin couplings gives rise to a large variety of molecular states in different spin configurations as well as in different spatial arrangements that can be tuned by the magnetic field. This includes relatively regularly shaped energy surfaces in a regime where the Zeeman splitting is large compared to the scattering interaction but small compared to the Rydberg fine structure, as well as more complex structures for both weaker and stronger fields. We quantify the impact of spin couplings by comparing the extended theory to a spin-independent model.
Electronic States and Persistent Currents in Nanowire Quantum Ring
NASA Astrophysics Data System (ADS)
Kokurin, I. A.
2018-04-01
The new model of a quantum ring (QR) defined inside a nanowire (NW) is proposed. The one-particle Hamiltonian for electron in [111]-oriented NW QR is constructed taking into account both Rashba and Dresselhaus spin-orbit coupling (SOC). The energy levels as a function of magnetic field are found using the exact numerical diagonalization. The persistent currents (both charge and spin) are calculated. The specificity of SOC and arising anticrossings in energy spectrum lead to unusual features in persistent current behavior. The variation of magnetic field or carrier concentration by means of gate can lead to pure spin persistent current with the charge current being zero.
Polymers for electronics and spintronics.
Bujak, Piotr; Kulszewicz-Bajer, Irena; Zagorska, Malgorzata; Maurel, Vincent; Wielgus, Ireneusz; Pron, Adam
2013-12-07
This critical review is devoted to semiconducting and high spin polymers which are of great scientific interest in view of further development of the organic electronics and the emerging organic spintronic fields. Diversified synthetic strategies are discussed in detail leading to high molecular mass compounds showing appropriate redox (ionization potential (IP), electron affinity (EA)), electronic (charge carrier mobility, conductivity), optoelectronic (electroluminescence, photoconductivity) and magnetic (magnetization, ferromagnetic spin interactions) properties and used as active components of devices such as n- and p-channel field effect transistors, ambipolar light emitting transistors, light emitting diodes, photovoltaic cells, photodiodes, magnetic photoswitches, etc. Solution processing procedures developed with the goal of depositing highly ordered and oriented films of these polymers are also described. This is completed by the description of principal methods that are used for characterizing these macromolecular compounds both in solution and in the solid state. These involve various spectroscopic methods (UV-vis-NIR, UPS, pulse EPR), electrochemistry and spectroelectrochemistry, magnetic measurements (SQUID), and structural and morphological investigations (X-ray diffraction, STM, AFM). Finally, four classes of polymers are discussed in detail with special emphasis on the results obtained in the past three years: (i) high IP, (ii) high |EA|, (iii) low band gap and (iv) high spin ones.
Mardis, Kristy L.; Webb, J.; Holloway, Tarita; ...
2015-12-03
Organic photovoltaic (OPV) devices are a promising alternative energy source. Attempts to improve their performance have focused on the optimization of electron-donating polymers, while electron-accepting fullerenes have received less attention. Here, we report an electronic structure study of the widely used soluble fullerene derivatives PC61BM and PC71BM in their singly reduced state, that are generated in the polymer:fullerene blends upon light-induced charge separation. Density functional theory (DFT) calculations characterize the electronic structures of the fullerene radical anions through spin density distributions and magnetic resonance parameters. The good agreement of the calculated magnetic resonance parameters with those determined experimentally by advancedmore » electron paramagnetic resonance (EPR) allows the validation of the DFT calculations. Thus, for the first time, the complete set of magnetic resonance parameters including directions of the principal g-tensor axes were determined. For both molecules, no spin density is present on the PCBM side chain, and the axis of the largest g-value lies along the PCBM molecular axis. While the spin density distribution is largely uniform for PC61BM, it is not evenly distributed for PC71BM.« less
Direct Observation of Quantum Coherence in Single-Molecule Magnets
NASA Astrophysics Data System (ADS)
Schlegel, C.; van Slageren, J.; Manoli, M.; Brechin, E. K.; Dressel, M.
2008-10-01
Direct evidence of quantum coherence in a single-molecule magnet in a frozen solution is reported with coherence times as long as T2=630±30ns. We can strongly increase the coherence time by modifying the matrix in which the single-molecule magnets are embedded. The electron spins are coupled to the proton nuclear spins of both the molecule itself and, interestingly, also to those of the solvent. The clear observation of Rabi oscillations indicates that we can manipulate the spin coherently, an essential prerequisite for performing quantum computations.
Investigation of magnetism in aluminum-doped silicon carbide nanotubes
NASA Astrophysics Data System (ADS)
Behzad, Somayeh; Chegel, Raad
2013-11-01
The effect of aluminum doping on the structural, electronic and magnetic properties of (8,0) silicon carbide nanotube (SiCNT) is investigated using spin-polarized density functional theory. It is found from the calculation of the formation energies that aluminum substitution for silicon atom is preferred. Our results show that the magnetization depends on the substitutional site, aluminum substitution at silicon site does not introduce any spin-polarization, whereas the aluminum substitution for carbon atom yields a spin polarized, almost dispersionless π band within the original band gap.
Quantum decoherence dynamics of divacancy spins in silicon carbide
Seo, Hosung; Falk, Abram L.; Klimov, Paul V.; ...
2016-09-29
Long coherence times are key to the performance of quantum bits (qubits). Here, we experimentally and theoretically show that the Hahn-echo coherence time of electron spins associated with divacancy defects in 4H-SiC reaches 1.3 ms, one of the longest Hahn-echo coherence times of an electron spin in a naturally isotopic crystal. Using a first-principles microscopic quantum-bath model, we find that two factors determine the unusually robust coherence. First, in the presence of moderate magnetic fields (30mT and above), the 29Si and 13C paramagnetic nuclear spin baths are decoupled. In addition, because SiC is a binary crystal, homo-nuclear spin pairs aremore » both diluted and forbidden from forming strongly coupled, nearest-neighbour spin pairs. Longer neighbour distances result in fewer nuclear spin flip-flops, a less fluctuating intra-crystalline magnetic environment, and thus a longer coherence time. Lastly, our results point to polyatomic crystals as promising hosts for coherent qubits in the solid state.« less
Quantum decoherence dynamics of divacancy spins in silicon carbide.
Seo, Hosung; Falk, Abram L; Klimov, Paul V; Miao, Kevin C; Galli, Giulia; Awschalom, David D
2016-09-29
Long coherence times are key to the performance of quantum bits (qubits). Here, we experimentally and theoretically show that the Hahn-echo coherence time of electron spins associated with divacancy defects in 4H-SiC reaches 1.3 ms, one of the longest Hahn-echo coherence times of an electron spin in a naturally isotopic crystal. Using a first-principles microscopic quantum-bath model, we find that two factors determine the unusually robust coherence. First, in the presence of moderate magnetic fields (30 mT and above), the 29 Si and 13 C paramagnetic nuclear spin baths are decoupled. In addition, because SiC is a binary crystal, homo-nuclear spin pairs are both diluted and forbidden from forming strongly coupled, nearest-neighbour spin pairs. Longer neighbour distances result in fewer nuclear spin flip-flops, a less fluctuating intra-crystalline magnetic environment, and thus a longer coherence time. Our results point to polyatomic crystals as promising hosts for coherent qubits in the solid state.
NASA Astrophysics Data System (ADS)
Pohlit, Merlin; Stockem, Irina; Porrati, Fabrizio; Huth, Michael; Schröder, Christian; Müller, Jens
2016-10-01
We study the magnetization dynamics of a spin ice cluster which is a building block of an artificial square spin ice fabricated by focused electron-beam-induced deposition both experimentally and theoretically. The spin ice cluster is composed of twelve interacting Co nanoislands grown directly on top of a high-resolution micro-Hall sensor. By employing micromagnetic simulations and a macrospin model, we calculate the magnetization and the experimentally investigated stray field emanating from a single nanoisland. The parameters determined from a comparison with the experimental hysteresis loop are used to derive an effective single-dipole macrospin model that allows us to investigate the dynamics of the spin ice cluster. Our model reproduces the experimentally observed non-deterministic sequences in the magnetization curves as well as the distinct temperature dependence of the hysteresis loop.
Electrical detection of nuclear spin-echo signals in an electron spin injection system
NASA Astrophysics Data System (ADS)
Lin, Zhichao; Rasly, Mahmoud; Uemura, Tetsuya
2017-06-01
We demonstrated spin echoes of nuclear spins in a spin injection device with a highly polarized spin source by nuclear magnetic resonance (NMR). Efficient spin injection into GaAs from a half-metallic spin source of Co2MnSi enabled efficient dynamic nuclear polarization (DNP) and sensitive detection of NMR signals even at a low magnetic field of ˜0.1 T and a relatively high temperature of 4.2 K. The intrinsic coherence time T2 of 69Ga nuclear spins was evaluated from the spin-echo signals. The relation between T2 and the decay time of the Rabi oscillation suggests that the inhomogeneous effects in our system are not obvious. This study provides an all-electrical NMR system for nuclear-spin-based qubits.
NASA Astrophysics Data System (ADS)
Song, Dongsheng; Li, Zi-An; Caron, Jan; Kovács, András; Tian, Huanfang; Jin, Chiming; Du, Haifeng; Tian, Mingliang; Li, Jianqi; Zhu, Jing; Dunin-Borkowski, Rafal E.
2018-04-01
Whereas theoretical investigations have revealed the significant influence of magnetic surface and edge states on Skyrmonic spin texture in chiral magnets, experimental studies of such chiral states remain elusive. Here, we study chiral edge states in an FeGe nanostripe experimentally using off-axis electron holography. Our results reveal the magnetic-field-driven formation of chiral edge states and their penetration lengths at 95 and 240 K. We determine values of saturation magnetization MS by analyzing the projected in-plane magnetization distributions of helices and Skyrmions. Values of MS inferred for Skyrmions are lower by a few percent than those for helices. We attribute this difference to the presence of chiral surface states, which are predicted theoretically in a three-dimensional Skyrmion model. Our experiments provide direct quantitative measurements of magnetic chiral boundary states and highlight the applicability of state-of-the-art electron holography for the study of complex spin textures in nanostructures.
Synthesis, characterization, and modeling of new molecule-based magnets
NASA Astrophysics Data System (ADS)
Olson, Christopher Samuel
The chemical bond and its role as a mediator of magnetic exchange interaction remains an important aspect in the study of magnetic insulators and semiconductors. The M[TCNE] (M = transition metal, TCNE = tetracyanoethylene) class of organic-based magnets has attracted considerable interest since V II[TCNE]x (x ˜ 2) exhibits one of the highest critical temperatures for its class -- Tc ˜ 400 K -- in addition to highly spin-polarized conduction and valance bands (Eg ˜ 0.5 eV), thus foreseeing potential spintronic application. The magneto-structural factors underlying this exceptional behavior remain elusive, however, due to the amorphous nature of the material. To address this, a novel synthetic route was utilized to produce new polycrystalline M[TCNE] solids (whose crystal structures have been resolved) with varying transition metal centers (Ni, Mn, Fe) and lattice dimensionality (2D-3D), exhibiting a wide range of Tc (40-170 K). Spectroscopic and magnetometric studies were performed and demonstrate that in 2D [M II(TCNE)(NCMe)2]X structures (M = Ni, Mn, Fe; X = diamagnetic anion), strong ligand-to-metal transfer of electron density from the organic TCNE radical plays a significant role in the formation of magnetic exchange pathways, while single-ion anisotropy strongly influences the critical temperature and below-Tc spin disorder for magnets in this material class. Additionally, using quantum-computational modeling, magnetic spin-density transfer trends, spin-polarized electronic structures, and electronic exchange coupling constants have been identified and interpreted in terms of 3d-orbital filling and dimensionality of magnetic interaction. These findings offer new perspectives on the stabilization of magnetic order in M[TCNE] solids.
NASA Astrophysics Data System (ADS)
Bakkari, Karim; Fersi, Riadh; Kebir Hlil, El; Bessais, Lotfi; Thabet Mliki, Najeh
2018-03-01
First-principle calculations combining density functional theory and the full-potential linearized augmented plane wave (FP-LAPW) method are performed to investigate the electronic and magnetic structure of Pr2Co7 in its two polymorphic forms, (2:7 H) and (2:7 R), for the first time. This type of calculation was also performed for PrCo5 and PrCo2 intermetallics. We have computed the valence density of states separately for spin-up and spin-down states in order to investigate the electronic band structure. This is governed by the strong contribution of the partial DOS of 3d-Co bands compared to the partial DOS of the 4f-Pr bands. Such a high ferromagnetic state is discussed in terms of the strong spin polarization observed in the total DOS. The magnetic moments carried by the Co and Pr atoms located in several sites for all compounds are computed. These results mainly indicate that cobalt atoms make a dominant contribution to the magnetic moments. The notable difference in the atomic moments of Pr and Co atoms between different structural slabs is explained in terms of the magnetic characteristics of the PrCo2 and PrCo5 compounds and the local chemical environments of the Pr and Co atoms in different structural slabs of Pr2Co7. From spin-polarized calculations we have simulated the 3d and 4f band population to estimate the local magnetic moments. These results are in accordance with the magnetic moments calculated using the FP-LAPW method. In addition, the exchange interactions J ij are calculated and used as input for M(T) simulations. Involving the data obtained from the electronic structure calculations, the appropriate Padé Table is applied to simulate the magnetization M(T) and to estimate the mean-field Curie temperature. We report a fairly good agreement between the ab initio calculation of magnetization and Curie temperature with the experimental data.
Magnetic excitations in the spin-1/2 triangular-lattice antiferromagnet Cs 2CuBr 4
Zvyagin, S. A.; Ozerov, M.; Kamenskyi, D.; ...
2015-11-27
We present on high- field electron spin resonance (ESR) studies of magnetic excitations in the spin- 1/2 triangular-lattice antiferromagnet Cs 2CuBr 4. Frequency- field diagrams of ESR excitations are measured for different orientations of magnetic fields up to 25 T. We show that the substantial zero- field energy gap, Δ ≈ 9.5 K, observed in the low-temperature excitation spectrum of Cs 2CuBr 4 [Zvyagin et al:, Phys. Rev. Lett. 112, 077206 (2014)], is present well above T N. Noticeably, the transition into the long-range magnetically ordered phase does not significantly affect the size of the gap, suggesting that even belowmore » T N the high-energy spin dynamics in Cs 2CuBr 4 is determined by short-range-order spin correlations. The experimental data are compared with results of model spin-wave-theory calculations for spin-1/2 triangle-lattice antiferromagnet.« less
Perpendicular reading of single confined magnetic skyrmions
Crum, Dax M.; Bouhassoune, Mohammed; Bouaziz, Juba; Schweflinghaus, Benedikt; Blügel, Stefan; Lounis, Samir
2015-01-01
Thin-film sub-5 nm magnetic skyrmions constitute an ultimate scaling alternative for future digital data storage. Skyrmions are robust noncollinear spin textures that can be moved and manipulated by small electrical currents. Here we show here a technique to detect isolated nanoskyrmions with a current perpendicular-to-plane geometry, which has immediate implications for device concepts. We explore the physics behind such a mechanism by studying the atomistic electronic structure of the magnetic quasiparticles. We investigate from first principles how the isolated skyrmion local-density-of-states which tunnels into the vacuum, when compared with the ferromagnetic background, is modified by the site-dependent spin mixing of electronic states with different relative canting angles. Local transport properties are sensitive to this effect, as we report an atomistic conductance anisotropy of up to ∼20% for magnetic skyrmions in Pd/Fe/Ir(111) thin films. In single skyrmions, engineering this spin-mixing magnetoresistance could possibly be incorporated in future magnetic storage technologies. PMID:26471957
NASA Astrophysics Data System (ADS)
Clevenson, Hannah; Chen, Edward; Dolde, Florian; Teale, Carson; Englund, Dirk; Braje, Danielle
2016-05-01
We report on detailed studies of electronic and nuclear spin states in the diamond nitrogen vacancy (NV) center under moderate transverse magnetic fields. We numerically predict and experimentally verify a previously unobserved NV ground state hyperfine anti-crossing occurring at magnetic bias fields as low as tens of Gauss - two orders of magnitude lower than previously reported hyperfine anti-crossings at ~ 510 G and ~ 1000 G axial magnetic fields. We then discuss how this regime can be optimized for magnetometry and other sensing applications and propose a method for how the nitrogen-vacancy ground state Hamiltonian can be manipulated by small transverse magnetic fields to polarize the nuclear spin state. Acknowlegement: The Lincoln Laboratory portion of this work is sponsored by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the United States Government.
NASA Astrophysics Data System (ADS)
Ueda, Shigenori; Iwasaki, Yoh; Ushioda, Sukekatsu
2003-10-01
The magnetic domain structures of Fe thin films on two-dimensionally arranged land-and-groove structures have been studied by spin-polarized secondary electron microscopy (SP-SEM) under an applied dc field. The coercive force on the land area was found to be higher than that on the groove area under magnetization reversal. The surface roughness measured by atomic force microscopy (AFM) was greater on the land area than on the groove area. The roughness-induced high-coercivity on the land prevented the reversed magnetic domain on the groove from spreading over the land in the initial magnetization reversal. This result indicates that surface roughness is an important factor in domain size control of thin magnetic films.
NASA Astrophysics Data System (ADS)
Zając, Magdalena; Rudowicz, Czesław; Ohta, Hitoshi; Sakurai, Takahiro
2018-03-01
Utilizing the package MSH/VBA, based on the microscopic spin Hamiltonian (MSH) approach, spectroscopic and magnetic properties of Fe2+ (3d6; S = 2) ions at (nearly) orthorhombic sites in Fe(NH4)2(SO4)2·6H2O (FASH) are modeled. The zero-field splitting (ZFS) parameters and the Zeeman electronic (Ze) factors are predicted for wide ranges of values of the microscopic parameters, i.e. the spin-orbit (λ), spin-spin (ρ) coupling constants, and the crystal-field (ligand-field) energy levels (Δi) within the 5D multiplet. This enables to consider the dependence of the ZFS parameters bkq (in the Stevens notation), or the conventional ones (e.g., D and E), and the Zeeman factors gi on λ, ρ, and Δi. By matching the theoretical SH parameters and the experimental ones measured by electron magnetic resonance (EMR), the values of λ, ρ, and Δi best describing Fe2+ ions in FASH are determined. The novel aspect is prediction of the fourth-rank ZFS parameters and the ρ(spin-spin)-related contributions, not considered in previous studies. The higher-order contributions to the second- and fourth-rank ZFSPs are found significant. The MSH predictions provide guidance for high-magnetic field and high-frequency EMR (HMF-EMR) measurements and enable assessment of suitability of FASH for application as high-pressure probes for HMF-EMR studies. The method employed here and the present results may be also useful for other structurally related Fe2+ (S = 2) systems.
NASA Astrophysics Data System (ADS)
Kholmetskii, A. L.; Missevitch, O. V.; Yarman, T.
2017-09-01
We carry out the classical analysis of spin-orbit coupling in hydrogen-like atoms, using the modern expressions for the force and energy of an electric/magnetic dipole in an electromagnetic field. We disclose a novel physical meaning of this effect and show that for a laboratory observer the energy of spin-orbit interaction is represented solely by the mechanical energy of the spinning electron (considered as a gyroscope) due to the Thomas precession of its spin. Concurrently we disclose some errors in the old and new publications on this subject.
Nuclear Spin Nanomagnet in an Optically Excited Quantum Dot
NASA Astrophysics Data System (ADS)
Korenev, V. L.
2007-12-01
Linearly polarized light tuned slightly below the optical transition of the negatively charged exciton (trion) in a single quantum dot causes the spontaneous nuclear spin polarization (self-polarization) at a level close to 100%. The effective magnetic field of spin-polarized nuclei shifts the optical transition energy close to resonance with photon energy. The resonantly enhanced Overhauser effect sustains the stability of the nuclear self-polarization even in the absence of spin polarization of the quantum dot electron. As a result the optically selected single quantum dot represents a tiny magnet with the ferromagnetic ordering of nuclear spins—the nuclear spin nanomagnet.
Spin coherence in a Mn3 single-molecule magnet
NASA Astrophysics Data System (ADS)
Abeywardana, Chathuranga; Mowson, Andrew M.; Christou, George; Takahashi, Susumu
2016-01-01
Spin coherence in single crystals of the spin S = 6 single-molecule magnet (SMM) [Mn3O(O2CEt)3(mpko)3]+ (abbreviated Mn3) has been investigated using 230 GHz electron paramagnetic resonance spectroscopy. Coherence in Mn3 was uncovered by significantly suppressing dipolar contribution to the decoherence with complete spin polarization of Mn3 SMMs. The temperature dependence of spin decoherence time (T2) revealed that the dipolar decoherence is the dominant source of decoherence in Mn3 and T2 can be extended up to 267 ns by quenching the dipolar decoherence.
Sensing the quantum behaviour of magnetic nanoparticles by electron magnetic resonance.
Fittipaldi, M; Mercatelli, R; Sottini, S; Ceci, P; Falvo, E; Gatteschi, D
2016-02-07
We have investigated Magnetic Nanoparticles (MNPs) of spinel type iron oxide (of approximately 8 nm) mineralized in the internal cavity of the bioreactor ferritin nanocage. In particular, we have used Electron Magnetic Resonance, EMR, spectroscopy and taken advantage of the capacity of the protein shells to control the size of the MNPs. EMR measurements in perpendicular and parallel configurations have been recorded at various temperatures. A model based on the giant spin is used to interpret the experimental results. The analysis indicates that the observed quantum behaviour has to be ascribed to the whole MNP and that the thermal population of excited spin states has a strong influence in the EMR behaviour of MNPs.
Optical probe of Heisenberg-Kitaev magnetism in α -RuCl3
NASA Astrophysics Data System (ADS)
Sandilands, Luke J.; Sohn, C. H.; Park, H. J.; Kim, So Yeun; Kim, K. W.; Sears, Jennifer A.; Kim, Young-June; Noh, Tae Won
2016-11-01
We report a temperature-dependent optical spectroscopic study of the Heisenberg-Kitaev magnet α -RuCl3 . Our measurements reveal anomalies in the optical response near the magnetic ordering temperature. At higher temperatures, we observe a redistribution of spectral weight over a broad energy range that is associated with nearest-neighbor spin-spin correlations. This finding is consistent with highly frustrated magnetic interactions and in agreement with theoretical expectations for this class of material. The optical data also reveal significant electron-hole interaction effects, including a bound excitonic state. These results demonstrate a clear coupling between charge and spin degrees of freedom and provide insight into the properties of thermally disordered Heisenberg-Kitaev magnets.
The role of spinning electrons in paramagnetic phenomena
NASA Technical Reports Server (NTRS)
Bose, D. M.
1986-01-01
An attempt is made to explain paramagnetic phenomena without assuming the orientation of a molecule or ion in a magnetic field. Only the spin angular momentum is assumed to be responsible. A derivative of the Gurie-Langevin law and the magnetic moments of ions are given as a function of the number of electrons in an inner, incomplete shell. An explanation of Gerlach's experiments with iron and nickel vapors is attempted. An explanation of magnetomechanical experiments with ferromagne elements is given.
NASA Astrophysics Data System (ADS)
Zhang, Hongrui; Yan, Xi; Zhang, Hui; Wang, Fei; Gu, Youdi; Ning, Xingkun; Khan, Tahira; Li, Rui; Chen, Yuansha; Liu, Wei; Wang, Shufang; Shen, Baogen; Sun, Jirong
2018-04-01
Spin-polarized two-dimensional electron gas (2DEG) at the interface of two insulating perovskite oxides has been a focus of intensive studies in recent years. So far all attempts to construct magnetic 2DEG are based on the selection of an appropriate buffer layer or cap layer in SrTi O3 -based heterostructures, and the magnetic effect thus produced on 2DEG is indirect and weak. Here, we fabricated the 2DEG based on Fe-doped SrTi O3 that is superparamagnetic rather than diamagnetic like SrTi O3 . In addition to good metallicity, considerable Kondo effect, and negative magnetoresistance, the most striking observation of the present work is the occurrence of the anomalous Hall effect up to room temperature. This is transport evidence for the existence of spin-polarized 2DEG at high temperatures. As suggested by the monotonic increase of Curie temperature with carrier density, the magnetic exchange between magnetic ions could be mediated by the itinerant electrons of the 2DEG. The present work opens an avenue for the exploration of spin-polarized 2DEG.
Spin dependent transport and spin transfer in nanoconstrictions and current confined nanomagnets
NASA Astrophysics Data System (ADS)
Ozatay, Ozhan
In this thesis, I have employed point contact spectroscopy to determine the nature of electron transport across constrained domain walls in a ferromagnetic nanocontact and to uncover the relationship between ballisticity of electron transport and domain wall magnetoresistance. In the range of hole sizes studied (from 10 to 3 nm) the resulting magnetoresistance was found to be less than 0.5% and one that increases with decreasing contact size. I have used point contacts as local probes, to study the spin dependent transport across Ferromagnet/Normal Metal/Ferromagnet(FM/NM/FM) trilayers as well as the consequences of localized spin polarized current injection into a nano magnet on spin angular momentum transfer and high frequency magnetization dynamics. I have demonstrated that absolute values for spin transfer switching critical currents are reduced in this new geometry as compared to uniform current injection. I have also performed micromagnetic simulations to determine the evolution of magnetization under the application of magnetic fields and currents to gain more insights into experimental results. I have used Scanning Transmission Electron Microscopy (STEM), X-Ray Photoemission Spectroscopy (XPS) and Electron Energy Loss Spectroscopy (EELS) techniques to characterize the interfacial mixing and oxygen diffusion in the metallic multilayers of interest. I have shown that the Ta/CuOx bilayer structure provides a smooth substrate by improving interfacial roughness due to grain boundary diffusion of oxygen and reaction with Ta that fills in the grain boundary gaps in Cu. Analysis of the Py/AlOx interface proved a strong oxidation passivation on the Py surface by Al coating accompanied by Fe segregation into the alumina. I have utilized the characterization results to design a new nanomagnet whose sidewalls are protected from adventitious sidewall oxide layers and yields improved device performance. The oxide layers that naturally develop at the sidewalls of Py nanomagnets cause an enhancement in magnetic damping especially for temperatures below the blocking temperature of the AFM layer (≤40K). Studies with pillars protected by Al coating and ones with more NiO coating (˜2.5 nm) shed light onto the role of surface oxides in determining temperature dependent behaviour of both spin torque and field driven switching characteristics.
Tunneling measurement of quantum spin oscillations
NASA Astrophysics Data System (ADS)
Bulaevskii, L. N.; Hruška, M.; Ortiz, G.
2003-09-01
We consider the problem of tunneling between two leads via a localized spin 1/2 or any other microscopic system (e.g., a quantum dot) which can be modeled by a two-level Hamiltonian. We assume that a constant magnetic field B0 acts on the spin, that electrons in the leads are in a voltage driven thermal equilibrium, and that the tunneling electrons are coupled to the spin through exchange and spin-orbit interactions. Using the nonequilibrium Keldysh formalism we find the dependence of the spin-spin and current-current correlation functions on the applied voltage between leads V, temperature T, B0, and on the degree and orientation mα of spin polarization of the electrons in the right (α=R) and left (α=L) leads. We show the following (a) The spin-spin correlation function exhibits a peak at the Larmor frequency, ωL, corresponding to the effective magnetic field B acting upon the spin as determined by B0 and the exchange field induced by tunneling of spin-polarized electrons. (b) If the mα’s are not parallel to B the second-order derivative of the average tunneling current I(V) with respect to V is proportional to the spectral density of the spin-spin correlation function, i.e., exhibits a peak at the voltage V=ħωL/e. (c) In the same situation when V>B the current-current correlation function exhibits a peak at the same frequency. (d) The signal-to-noise (shot-noise) ratio R for this peak reaches a maximum value of order unity, R⩽4, at large V when the spin is decoupled from the environment and the electrons in both leads are fully polarized in the direction perpendicular to B. (e) R≪1 if the electrons are weakly polarized, or if they are polarized in a direction close to B0, or if the spin interacts with the environment stronger than with the tunneling electrons. Our results of a full quantum-mechanical treatment of the tunneling-via-spin model when V≫B are in agreement with those previously obtained in the quasiclassical approach. We discuss also the experimental results observed using scanning tunneling microscopy dynamic probes of the localized spin.
Enhancement of the giant magnetoresistance in spin valves via oxides formed from magnetic layers
NASA Astrophysics Data System (ADS)
Gillies, M. F.; Kuiper, A. E. T.
2000-11-01
An enhancement of the giant magnetoresistance effect is investigated in spin valves where oxide layers, which are formed from magnetic layers, are incorporated in the structure. Information about Co-Fe based nanooxide layer (NOL) is obtained via x-ray photoelectron spectroscopy and Rutherford backscattering spectrometry. Cross-section transmission electron microscopy is also used to explore the effect of an NOL on the polycrystalline structure of the spin valve.
Concept for room temperature single-spin tunneling force microscopy with atomic spatial resolution
NASA Astrophysics Data System (ADS)
Payne, Adam
A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy (AFM) system noise. The results show that the approach could provide single-spin measurement of electrically isolated defect states with atomic spatial resolution at room temperature.
NASA Astrophysics Data System (ADS)
Heinzmann, U.; Gryzia, A.; Helmstedt, A.; Dohmeier, N.; Predatsch, H.; Brechling, A.; Müller, N.; Sacher, M.; Hoeke, V.; Krickemeyer, E.; Glaser, T.; Bouvron, S.; Fonin, M.; Neumann, M.
2012-11-01
The ionic single-molecule-magnet [MnIII6CrIII]3 with corresponding three counterions has been deposited on different surfaces and studied with respect to its structure and its electronic and magnetic properties. This is the first time that spin polarization of photoelectrons ejected by means of circularly polarized synchrotron radiation has been measured in a single-molecule-magnet.
NASA Astrophysics Data System (ADS)
Goudarzi, H.; Khezerlou, M.; Ebadzadeh, S. F.
2018-03-01
We study the influence of magnetic exchange field (MEF) on the chirality of Andreev resonant state (ARS) appearing at the relating monolayer MoS2 ferromagnet/superconductor interface, in which the induced pairing order parameter is chiral p-wave symmetry. Transmission of low-energy Dirac-like electron (hole) quasiparticles through a ferromagnet/superconductor (F/S) interface is considered based on Dirac-Bogoliubov-de Gennes Hamiltonian and, of course, Andreev reflection process. The magnetic exchange field of a ferromagnetic section on top of ML-MDS may affect the electron (hole) excitations for spin-up and spin-down electrons, differently. We find the chirality symmetry of ARS to be conserved in the absence of MEF, whereas it is broken in the presence of MEF. Tuning the MEF enables one to control either electrical properties (such as band gap, SOC and etc.) or spin-polarized transport. The resulting normal conductance is found to be more sensitive to the magnitude of MEF and doping regime of F region. Unconventional spin-triplet p-wave symmetry features the zero-bias conductance, which strongly depends on p-doping level of F region in the relating NFS junction. A sharp conductance switching in zero is achieved in the absence of SOC.
Castellano, María; Ruiz-García, Rafael; Cano, Joan; Ferrando-Soria, Jesús; Pardo, Emilio; Fortea-Pérez, Francisco R; Stiriba, Salah-Eddine; Julve, Miguel; Lloret, Francesc
2015-03-17
Metallosupramolecular complexes constitute an important advance in the emerging fields of molecular spintronics and quantum computation and a useful platform in the development of active components of spintronic circuits and quantum computers for applications in information processing and storage. The external control of chemical reactivity (electro- and photochemical) and physical properties (electronic and magnetic) in metallosupramolecular complexes is a current challenge in supramolecular coordination chemistry, which lies at the interface of several other supramolecular disciplines, including electro-, photo-, and magnetochemistry. The specific control of current flow or spin delocalization through a molecular assembly in response to one or many input signals leads to the concept of developing a molecule-based spintronics that can be viewed as a potential alternative to the classical molecule-based electronics. A great variety of factors can influence over these electronically or magnetically coupled, metallosupramolecular complexes in a reversible manner, electronic or photonic external stimuli being the most promising ones. The response ability of the metal centers and/or the organic bridging ligands to the application of an electric field or light irradiation, together with the geometrical features that allow the precise positioning in space of substituent groups, make these metal-organic systems particularly suitable to build highly integrated molecular spintronic circuits. In this Account, we describe the chemistry and physics of dinuclear copper(II) metallacyclophanes with oxamato-containing dinucleating ligands featuring redox- and photoactive aromatic spacers. Our recent works on dicopper(II) metallacyclophanes and earlier ones on related organic cyclophanes are now compared in a critical manner. Special focus is placed on the ligand design as well as in the combination of experimental and computational methods to demonstrate the multifunctionality nature of these metallosupramolecular complexes. This new class of oxamato-based dicopper(II) metallacyclophanes affords an excellent synthetic and theoretical set of models for both chemical and physical fundamental studies on redox- and photo-triggered, long-distance electron exchange phenomena, which are two major topics in molecular magnetism and molecular electronics. Apart from their use as ground tests for the fundamental research on the relative importance of the spin delocalization and spin polarization mechanisms of the electron exchange interaction through extended π-conjugated aromatic ligands in polymetallic complexes, oxamato-based dicopper(II) metallacyclophanes possessing spin-containing electro- and chromophores at the metal and/or the ligand counterparts emerge as potentially active (magnetic and electronic) molecular components to build a metal-based spintronic circuit. They are thus unique examples of multifunctional magnetic complexes to get single-molecule spintronic devices by controlling and allowing the spin communication, when serving as molecular magnetic couplers and wires, or by exhibiting bistable spin behavior, when acting as molecular magnetic rectifiers and switches. Oxamato-based dicopper(II) metallacyclophanes also emerge as potential candidates for the study of coherent electron transport through single molecules, both experimentally and theoretically. The results presented herein, which are a first step in the metallosupramolecular approach to molecular spintronics, intend to attract the attention of physicists and materials scientists with a large expertice in the manipulation and measurement of single-molecule electron transport properties, as well as in the processing and addressing of molecules on different supports.
Cooling a magnetic nanoisland by spin-polarized currents.
Brüggemann, J; Weiss, S; Nalbach, P; Thorwart, M
2014-08-15
We investigate cooling of a vibrational mode of a magnetic quantum dot by a spin-polarized tunneling charge current exploiting the magnetomechanical coupling. The spin-polarized current polarizes the magnetic nanoisland, thereby lowering its magnetic energy. At the same time, Ohmic heating increases the vibrational energy. A small magnetomechanical coupling then permits us to remove energy from the vibrational motion and cooling is possible. We find a reduction of the vibrational energy below 50% of its equilibrium value. The lowest vibration temperature is achieved for a weak electron-vibration coupling and a comparable magnetomechanical coupling. The cooling rate increases at first with the magnetomechanical coupling and then saturates.
NASA Astrophysics Data System (ADS)
Bhowmik, R. N.; Venkata Siva, K.; Ranganathan, R.; Mazumdar, Chandan
2017-06-01
The samples of Ga-doped Cr2O3 have been prepared using chemical co-precipitation route. X-ray diffraction pattern and Raman spectra have indicated rhombohedral crystal structure with space group R 3 bar C. Magnetic measurements indicated diluted antiferromagnetic (AFM) spin order in Ga-doped α-Cr2O3 and ferrimagnetic ordering of spins at about 50-60 K is confirmed from the analysis of the temperature dependence of dc magnetization and ac susceptibility data. Apart from magnetic dilution effect, the samples have shown superparamagnetic behavior below 50 K due to frustrated surface spins of the nano-sized grains. The samples have shown non-linear electronic properties. The current-voltage (I-V) characteristics of the Ga-doped α-Cr2O3 samples are remarkably different from α-Cr2O3 sample. The bi-stable electronic states and negative differential resistance are some of the unique non-linear electronic properties that the I-V curves of Ga-doped samples have exhibited. Optical study revealed three electronic transitions in the samples associated with band gap energy at about 2.67-2.81 eV, 1.91-2.11 eV, 1.28-1.35 eV, respectively. The results indicated multi-level electronic structure in Ga-doped α-Cr2O3 system.
Ultrafast imprinting of topologically protected magnetic textures via pulsed electrons
Schaffer, A. F.; Durr, H. A.; Berakdar, J.
2017-07-17
Short electron pulses are demonstrated to trigger and control magnetic excitations, even at low electron current densities. We show that the tangential magnetic field surrounding a picosecond electron pulse can imprint topologically protected magnetic textures such as skyrmions in a sample with a residual Dzyaloshinskii-Moriya spin-orbital coupling. Characteristics of the created excitations such as the topological charge can be steered via the duration and the strength of the electron pulses. Here, the study points to a possible way for a spatiotemporally controlled generation of skyrmionic excitations.
Mixing of t2 g-eg orbitals in 4 d and 5 d transition metal oxides
NASA Astrophysics Data System (ADS)
Stamokostas, Georgios L.; Fiete, Gregory A.
2018-02-01
Using exact diagonalization, we study the spin-orbit coupling and interaction-induced mixing between t2 g and egd -orbital states in a cubic crystalline environment, as commonly occurs in transition metal oxides. We make a direct comparison with the widely used t2 g-only or eg-only models, depending on electronic filling. We consider all electron fillings of the d shell and compute the total magnetic moment, the spin, the occupancy of each orbital, and the effective spin-orbit coupling strength (renormalized through interaction effects) in terms of the bare interaction parameters, spin-orbit coupling, and crystal-field splitting, focusing on the parameter ranges relevant to 4 d and 5 d transition metal oxides. In various limits, we provide perturbative results consistent with our numerical calculations. We find that the t2 g-eg mixing can be large, with up to 20% occupation of orbitals that are nominally "empty," which has experimental implications for the interpretation of the branching ratio in experiments, and can impact the effective local moment Hamiltonian used to study magnetic phases and magnetic excitations in transition metal oxides. Our results can aid the theoretical interpretation of experiments on these materials, which often fall in a regime of intermediate coupling with respect to electron-electron interactions.
π-electron S = ½ quantum spin-liquid state in an ionic polyaromatic hydrocarbon
NASA Astrophysics Data System (ADS)
Takabayashi, Yasuhiro; Menelaou, Melita; Tamura, Hiroyuki; Takemori, Nayuta; Koretsune, Takashi; Štefančič, Aleš; Klupp, Gyöngyi; Buurma, A. Johan C.; Nomura, Yusuke; Arita, Ryotaro; Arčon, Denis; Rosseinsky, Matthew J.; Prassides, Kosmas
2017-07-01
Molecular solids with cooperative electronic properties based purely on π electrons from carbon atoms offer a fertile ground in the search for exotic states of matter, including unconventional superconductivity and quantum magnetism. The field was ignited by reports of high-temperature superconductivity in materials obtained by the reaction of alkali metals with polyaromatic hydrocarbons, such as phenanthrene and picene, but the composition and structure of any compound in this family remained unknown. Here we isolate the binary caesium salts of phenanthrene, Cs(C14H10) and Cs2(C14H10), to show that they are multiorbital strongly correlated Mott insulators. Whereas Cs2(C14H10) is diamagnetic because of orbital polarization, Cs(C14H10) is a Heisenberg antiferromagnet with a gapped spin-liquid state that emerges from the coupled highly frustrated Δ-chain magnetic topology of the alternating-exchange spiral tubes of S = ½ (C14H10)•- radical anions. The absence of long-range magnetic order down to 1.8 K (T/J ≈ 0.02 J is the dominant exchange constant) renders the compound an excellent candidate for a spin-½ quantum-spin liquid (QSL) that arises purely from carbon π electrons.
NASA Astrophysics Data System (ADS)
Karashtin, E. A.; Fraerman, A. A.
2018-04-01
We report a theoretical study of the second harmonic generation in a noncollinearly magnetized conductive medium with equilibrium spin current. The hydrodynamic model is used to unravel the mechanism of a novel effect of the double frequency signal generation that is attributed to the spin current. According to our calculations, this second harmonic response appears due to the ‘non-adiabatic’ spin polarization of the conduction electrons induced by the oscillations in the non-uniform magnetization forced by the electric field of the electromagnetic wave. Together with the linear velocity response this leads to the generation of the double frequency spin current. This spin current is converted to the electric current via the inverse spin Hall effect, and the double-frequency electric current emits the second harmonic radiation. Possible experiment for detection of the new second harmonic effect is proposed.
Landau-Zener-Stückelberg-Majorana Interferometry of a Single Hole
NASA Astrophysics Data System (ADS)
Bogan, Alex; Studenikin, Sergei; Korkusinski, Marek; Gaudreau, Louis; Zawadzki, Piotr; Sachrajda, Andy S.; Tracy, Lisa; Reno, John; Hargett, Terry
2018-05-01
We perform Landau-Zener-Stückelberg-Majorana (LZSM) spectroscopy on a system with strong spin-orbit interaction (SOI), realized as a single hole confined in a gated double quantum dot. Analogous to electron systems, at a magnetic field B =0 and high modulation frequencies, we observe photon-assisted tunneling between dots, which smoothly evolves into the typical LZSM funnel-shaped interference pattern as the frequency is decreased. In contrast to electrons, the SOI enables an additional, efficient spin-flip interdot tunneling channel, introducing a distinct interference pattern at finite B . Magnetotransport spectra at low-frequency LZSM driving show the two channels to be equally coherent. High-frequency LZSM driving reveals complex photon-assisted tunneling pathways, both spin conserving and spin flip, which form closed loops at critical magnetic fields. In one such loop, an arbitrary hole spin state is inverted, opening the way toward its all-electrical manipulation.
Controlling entangled spin-orbit coupling of 5 d states with interfacial heterostructure engineering
Kim, J. -W.; Choi, Y.; Chun, S. H.; ...
2018-03-26
Here, the combination of strong electron correlations in 3d transition metal oxides and spin-orbit interactions in the 5d counterpart can give rise to exotic electronic and magnetic properties. Here, the nature of emerging phenomena at the interface between SrIrO 3 (SIO) and La 2/3Sr 1/3MnO 3 (LSMO) is presented. Nominally, SIO with strong spin-orbit interaction is metallic and nonmagnetic on the verge of a metal-insulator transition, whereas LSMO is metallic and ferromagnetic with itinerant character and high spin polarization. In the 1:1 LSMO/SIO superlattice, we observe ferromagnetic Mn moments with an insulating behavior, accompanied by antiferromagnetic ordering in SIO. Element-resolvedmore » x-ray magnetic circular dichroism proves that there is a weak net ferromagnetic Ir moment aligned antiparallel to the Mn counterpart. The branching ratio shows the formation of molecular-orbitals between the Mn and Ir layers modifying the Ir 5d electronic configuration through the mixture of t 2g and e g states, resulting in a deviation from J eff = ½. This result demonstrates a pathway to manipulate the spin-orbit entanglement in 5d states with 2-dimensional 3d spin-polarized electrons through heterostructure design.« less
Controlling entangled spin-orbit coupling of 5 d states with interfacial heterostructure engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, J. -W.; Choi, Y.; Chun, S. H.
Here, the combination of strong electron correlations in 3d transition metal oxides and spin-orbit interactions in the 5d counterpart can give rise to exotic electronic and magnetic properties. Here, the nature of emerging phenomena at the interface between SrIrO 3 (SIO) and La 2/3Sr 1/3MnO 3 (LSMO) is presented. Nominally, SIO with strong spin-orbit interaction is metallic and nonmagnetic on the verge of a metal-insulator transition, whereas LSMO is metallic and ferromagnetic with itinerant character and high spin polarization. In the 1:1 LSMO/SIO superlattice, we observe ferromagnetic Mn moments with an insulating behavior, accompanied by antiferromagnetic ordering in SIO. Element-resolvedmore » x-ray magnetic circular dichroism proves that there is a weak net ferromagnetic Ir moment aligned antiparallel to the Mn counterpart. The branching ratio shows the formation of molecular-orbitals between the Mn and Ir layers modifying the Ir 5d electronic configuration through the mixture of t 2g and e g states, resulting in a deviation from J eff = ½. This result demonstrates a pathway to manipulate the spin-orbit entanglement in 5d states with 2-dimensional 3d spin-polarized electrons through heterostructure design.« less
Controlling entangled spin-orbit coupling of 5 d states with interfacial heterostructure engineering
NASA Astrophysics Data System (ADS)
Kim, J.-W.; Choi, Y.; Chun, S. H.; Haskel, D.; Yi, D.; Ramesh, R.; Liu, J.; Ryan, P. J.
2018-03-01
The combination of strong electron correlations in 3 d transition-metal oxides and spin-orbit interactions in the 5 d counterpart can give rise to exotic electronic and magnetic properties. Here, the nature of emerging phenomena at the interface between SrIr O3 (SIO) and L a2 /3S r1 /3Mn O3 (LSMO) is presented. Nominally, SIO with strong spin-orbit interaction is metallic and nonmagnetic on the verge of a metal-insulator transition, whereas LSMO is metallic and ferromagnetic with itinerant character and high spin polarization. In the 1:1 LSMO/SIO superlattice, we observe ferromagnetic Mn moments with an insulating behavior, accompanied by antiferromagnetic ordering in SIO. Element-resolved x-ray magnetic circular dichroism proves that there is a weak net ferromagnetic Ir moment aligned antiparallel to the Mn counterpart. The branching ratio shows the formation of molecular orbitals between the Mn and Ir layers modifying the Ir 5 d electronic configuration through the mixture of t2 g and eg states, resulting in a deviation from Jeff=1 /2 . This result demonstrates a pathway to manipulate the spin-orbit entanglement in 5 d states with two-dimensional 3 d spin-polarized electrons through heterostructure design.
Unidirectional spin density wave state in metallic (Sr 1-xLax) 2IrO 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xiang; Schmehr, Julian L.; Islam, Zahirul
Materials that exhibit both strong spin–orbit coupling and electron correlation effects are predicted to host numerous new electronic states. One prominent example is the J eff = 1/2 Mott state in Sr 2IrO 4, where introducing carriers is predicted to manifest high temperature superconductivity analogous to the S=1/2 Mott state of La 2CuO 4. While bulk super- conductivity currently remains elusive, anomalous quasiparticle behaviors paralleling those in the cuprates such as pseudogap formation and the formation of a d-wave gap are observed upon electron-doping Sr 2IrO 4. Here we establish a magnetic parallel between electron-doped Sr 2IrO 4 and hole-dopedmore » La 2CuO 4 by unveiling a spin density wave state in electron-doped Sr 2IrO 4. Our magnetic resonant X-ray scattering data reveal the presence of an incom- mensurate magnetic state reminiscent of the diagonal spin density wave state observed in the monolayer cuprate (La 1-xSr x) 2CuO 4. This link supports the conjecture that the quenched Mott phases in electron-doped Sr 2IrO 4 and hole-doped La 2CuO 4 support common competing electronic phases.« less
Oblique propagation of E.M. wave in magnetized quantum plasma with two different spin states
NASA Astrophysics Data System (ADS)
Kumar, Punit; Ahmad, Nafees; Singh, Shiv
2018-05-01
The dispersion relation for the oblique propagation of electromagnetic wave in high density homogeneous quantum plasma is established. The growth rate has been evaluated. The difference in the concentration of spin-up and spin-down electrons have taken in to account and effects of spin polarization is analyzed.
Physics and application of persistent spin helix state in semiconductor heterostructures
NASA Astrophysics Data System (ADS)
Kohda, Makoto; Salis, Gian
2017-07-01
In order to utilize the spin degree of freedom in semiconductors, control of spin states and transfer of the spin information are fundamental requirements for future spintronic devices and quantum computing. Spin orbit (SO) interaction generates an effective magnetic field for moving electrons and enables spin generation, spin manipulation and spin detection without using external magnetic field and magnetic materials. However, spin relaxation also takes place due to a momentum dependent SO-induced effective magnetic field. As a result, SO interaction is considered to be a double-edged sword facilitating spin control but preventing spin transport over long distances. The persistent spin helix (PSH) state solves this problem since uniaxial alignment of the SO field with SU(2) symmetry enables the suppression of spin relaxation while spin precession can still be controlled. Consequently, understanding the PSH becomes an important step towards future spintronic technologies for classical and quantum applications. Here, we review recent progress of PSH in semiconductor heterostructures and its device application. Fundamental physics of SO interaction and the conditions of a PSH state in semiconductor heterostructures are discussed. We introduce experimental techniques to observe a PSH and explain both optical and electrical measurements for detecting a long spin relaxation time and the formation of a helical spin texture. After emphasizing the bulk Dresselhaus SO coefficient γ, the application of PSH states for spin transistors and logic circuits are discussed.
Quenching of dynamic nuclear polarization by spin-orbit coupling in GaAs quantum dots.
Nichol, John M; Harvey, Shannon P; Shulman, Michael D; Pal, Arijeet; Umansky, Vladimir; Rashba, Emmanuel I; Halperin, Bertrand I; Yacoby, Amir
2015-07-17
The central-spin problem is a widely studied model of quantum decoherence. Dynamic nuclear polarization occurs in central-spin systems when electronic angular momentum is transferred to nuclear spins and is exploited in quantum information processing for coherent spin manipulation. However, the mechanisms limiting this process remain only partially understood. Here we show that spin-orbit coupling can quench dynamic nuclear polarization in a GaAs quantum dot, because spin conservation is violated in the electron-nuclear system, despite weak spin-orbit coupling in GaAs. Using Landau-Zener sweeps to measure static and dynamic properties of the electron spin-flip probability, we observe that the size of the spin-orbit and hyperfine interactions depends on the magnitude and direction of applied magnetic field. We find that dynamic nuclear polarization is quenched when the spin-orbit contribution exceeds the hyperfine, in agreement with a theoretical model. Our results shed light on the surprisingly strong effect of spin-orbit coupling in central-spin systems.
Mn Impurity in Bulk GaAs Crystals
NASA Astrophysics Data System (ADS)
Pawłowski, M.; Piersa, M.; Wołoś, A.; Palczewska, M.; Strzelecka, G.; Hruban, A.; Gosk, J.; Kamińska, M.; Twardowski, A.
2006-11-01
Magnetic and electron transport properties of GaAs:Mn crystals grown by Czochralski method were studied. Electron spin resonance showed the presence of Mn acceptor A in two charge states: singly ionized A- in the form of Mn2+(d5), and neutral A0 in the form of Mn2+(d5) plus a bound hole (h). It was possible to determine the relative concentration of both types of centers from intensity of the corresponding electron spin resonance lines. Magnetization measured as a function of magnetic field (up to 6 T) in the temperature range of 2-300 K revealed overall paramagnetic behavior of the samples. Effective spin was found to be about 1.5 value, which was consistent with the presence of two types of Mn configurations. In most of the studied samples the dominance of Mn2+(d5)+h configuration was established and it increased after annealing of native donors. The total value of Mn content was obtained from fitting of magnetization curves with the use of parameters obtained from electron spin resonance. In electron transport, two mechanisms of conductivity were observed: valence band transport dominated above 70 K, and hopping conductivity within Mn impurity band at lower temperatures. From the analysis of the hopping conductivity and using the obtained values of the total Mn content, the effective radius of Mn acceptor in GaAs was estimated as a = 11 ± 3 Å.
Anomalous spin Josephson effect
NASA Astrophysics Data System (ADS)
Wang, Mei-Juan; Wang, Jun; Hao, Lei; Liu, Jun-Feng
2016-10-01
We report a theoretical study on the spin Josephson effect arising from the exchange coupling of the two ferromagnets (Fs), which are deposited on a two-dimensional (2D) time-reversal-invariant topological insulator. An anomalous spin supercurrent Js z˜sin(α +α0) is found to flow in between the two Fs and the ground state of the system is not limited to the magnetically collinear configuration (α =n π ,n is an integer) but determined by a controllable angle α0, where α is the crossed angle between the two F magnetizations. The angle α0 is the dynamic phase of the electrons traveling in between the two Fs and can be controlled electrically by a gate voltage. This anomalous spin Josephson effect, similar to the conventional φ0 superconductor junction, originates from the definite electron chirality of the helical edge states in the 2D topological insulator. These results indicate that the magnetic coupling in a topological system is different from the usual one in conventional materials.
Electron-Spin Filters Based on the Rashba Effect
NASA Technical Reports Server (NTRS)
Ting, David Z.-Y.; Cartoixa, Xavier; McGill, Thomas C.; Moon, Jeong S.; Chow, David H.; Schulman, Joel N.; Smith, Darryl L.
2004-01-01
Semiconductor electron-spin filters of a proposed type would be based on the Rashba effect, which is described briefly below. Electron-spin filters more precisely, sources of spin-polarized electron currents have been sought for research on, and development of, the emerging technological discipline of spintronics (spin-based electronics). There have been a number of successful demonstrations of injection of spin-polarized electrons from diluted magnetic semiconductors and from ferromagnetic metals into nonmagnetic semiconductors. In contrast, a device according to the proposal would be made from nonmagnetic semiconductor materials and would function without an applied magnetic field. The Rashba effect, named after one of its discoverers, is an energy splitting, of what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. The present proposal evolved from recent theoretical studies that suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling. Accordingly, a device according to the proposal would be denoted an asymmetric resonant interband tunneling diode [a-RITD]. An a-RITD could be implemented in a variety of forms, the form favored in the proposal being a double-barrier heterostructure containing an asymmetric quantum well. It is envisioned that a-RITDs would be designed and fabricated in the InAs/GaSb/AlSb material system for several reasons: Heterostructures in this material system are strong candidates for pronounced Rashba spin splitting because InAs and GaSb exhibit large spin-orbit interactions and because both InAs and GaSb would be available for the construction of highly asymmetric quantum wells. This mate-rial system affords a variety of energy-band alignments that can be exploited to obtain resonant tunneling and other desired effects. The no-common-atom InAs/GaSb and InAs/AlSb interfaces would present opportunities for engineering interface potentials for optimizing Rashba spin splitting.
Nuclear Spin relaxation mediated by Fermi-edge electrons in n-type GaAs
NASA Astrophysics Data System (ADS)
Kotur, M.; Dzhioev, R. I.; Kavokin, K. V.; Korenev, V. L.; Namozov, B. R.; Pak, P. E.; Kusrayev, Yu. G.
2014-03-01
A method based on the optical orientation technique was developed to measure the nuclear-spin lattice relaxation time T 1 in semiconductors. It was applied to bulk n-type GaAs, where T 1 was measured after switching off the optical excitation in magnetic fields from 400 to 1200 G at low (< 30 K) temperatures. The spin-lattice relaxation of nuclei in the studied sample with n D = 9 × 1016 cm-3 was found to be determined by hyperfine scattering of itinerant electrons (Korringa mechanism) which predicts invariability of T 1 with the change in magnetic field and linear dependence of the relaxation rate on temperature. This result extends the experimentally verified applicability of the Korringa relaxation law in degenerate semiconductors, previously studied in strong magnetic fields (several Tesla), to the moderate field range.
Half-metallicity in the ferrimagnet [MnII(enH)(H2O)][CrIII(CN)6]·H2O: Ab initio study
NASA Astrophysics Data System (ADS)
Li, N.; Yao, K. L.; Zhong, G. H.; Ching, W. Y.
2013-03-01
The density-functional theory (DFT) within the full potential linearized augmented plane wave (FPLAPW) method is applied to study the two-dimensional achiral soft ferrimagnet [MnII(enH)(H2O)][CrIII(CN)6]·H2O. The phase stability, electronic structure, magnetic and conducting properties are investigated. Our results reveal that the compound has a stable ferrimagnetic ground state in good agreement with the experiment. From the spin density distribution, the spin magnetic moment of the compound is mainly from Cr3+ and Mn2+ ions with small contributions from the oxygen, nitrogen and carbon ions. The calculated electronic band structure predicts the compound to be a half-metal with the spin magnetic moment of 1.000 μB per molecule.
Electron spin resonance of nitrogen-vacancy centers in optically trapped nanodiamonds
Horowitz, Viva R.; Alemán, Benjamín J.; Christle, David J.; Cleland, Andrew N.; Awschalom, David D.
2012-01-01
Using an optical tweezers apparatus, we demonstrate three-dimensional control of nanodiamonds in solution with simultaneous readout of ground-state electron-spin resonance (ESR) transitions in an ensemble of diamond nitrogen-vacancy color centers. Despite the motion and random orientation of nitrogen-vacancy centers suspended in the optical trap, we observe distinct peaks in the measured ESR spectra qualitatively similar to the same measurement in bulk. Accounting for the random dynamics, we model the ESR spectra observed in an externally applied magnetic field to enable dc magnetometry in solution. We estimate the dc magnetic field sensitivity based on variations in ESR line shapes to be approximately . This technique may provide a pathway for spin-based magnetic, electric, and thermal sensing in fluidic environments and biophysical systems inaccessible to existing scanning probe techniques. PMID:22869706
NASA Astrophysics Data System (ADS)
Hase, Masashi; Ebukuro, Yuta; Kuroe, Haruhiko; Matsumoto, Masashige; Matsuo, Akira; Kindo, Koichi; Hester, James R.; Sato, Taku J.; Yamazaki, Hiroki
2017-04-01
We measured magnetization, specific heat, electron spin resonance, neutron diffraction, and inelastic neutron scattering of CrVMoO7 powder. An antiferromagnetically ordered state appears below TN=26.5 ±0.8 K. We consider that the probable spin model for CrVMoO7 is an interacting antiferromagnetic spin-3/2 dimer model. We evaluated the intradimer interaction J to be 25 ±1 K and the effective interdimer interaction Jeff to be 8.8 ±1 K. CrVMoO7 is a rare spin dimer compound that shows an antiferromagnetically ordered state at atmospheric pressure and zero magnetic field. The magnitude of ordered moments is 0.73 (2 ) μB . It is much smaller than a classical value ˜3 μB . Longitudinal-mode magnetic excitations may be observable in single crystalline CrVMoO7.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pohlit, Merlin, E-mail: pohlit@physik.uni-frankfurt.de; Porrati, Fabrizio; Huth, Michael
We study the magnetization dynamics of a spin ice cluster which is a building block of an artificial square spin ice fabricated by focused electron-beam-induced deposition both experimentally and theoretically. The spin ice cluster is composed of twelve interacting Co nanoislands grown directly on top of a high-resolution micro-Hall sensor. By employing micromagnetic simulations and a macrospin model, we calculate the magnetization and the experimentally investigated stray field emanating from a single nanoisland. The parameters determined from a comparison with the experimental hysteresis loop are used to derive an effective single-dipole macrospin model that allows us to investigate the dynamicsmore » of the spin ice cluster. Our model reproduces the experimentally observed non-deterministic sequences in the magnetization curves as well as the distinct temperature dependence of the hysteresis loop.« less
Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic
NASA Astrophysics Data System (ADS)
Lovchinsky, I.; Sushkov, A. O.; Urbach, E.; de Leon, N. P.; Choi, S.; De Greve, K.; Evans, R.; Gertner, R.; Bersin, E.; Müller, C.; McGuinness, L.; Jelezko, F.; Walsworth, R. L.; Park, H.; Lukin, M. D.
2016-02-01
Nuclear magnetic resonance spectroscopy is a powerful tool for the structural analysis of organic compounds and biomolecules but typically requires macroscopic sample quantities. We use a sensor, which consists of two quantum bits corresponding to an electronic spin and an ancillary nuclear spin, to demonstrate room temperature magnetic resonance detection and spectroscopy of multiple nuclear species within individual ubiquitin proteins attached to the diamond surface. Using quantum logic to improve readout fidelity and a surface-treatment technique to extend the spin coherence time of shallow nitrogen-vacancy centers, we demonstrate magnetic field sensitivity sufficient to detect individual proton spins within 1 second of integration. This gain in sensitivity enables high-confidence detection of individual proteins and allows us to observe spectral features that reveal information about their chemical composition.
Emergent Electromagnetism in Bilayer Graphene
NASA Astrophysics Data System (ADS)
Winkler, Roland; Zülicke, Ulrich
2013-03-01
Recently atomically flat layers of carbon known as graphene have become the rising star in spintronics as their electrons carry not only the ordinary spin degree of freedom, but they also have a pseudospin degree of freedom tied to the electrons' orbital motion which could enable new routes for spintronics. Here we focus on bilayer graphene (BLG). Using group theory we have established a complete description of how electrons in BLG interact with electric and magnetic fields. We show that electrons in BLG experience an unusual type of matter-field interactions where magnetic and electric fields are virtually equivalent: every coupling of an electron's degrees of freedom to a magnetic field is matched by an analogous coupling of the same degrees of freedom to an electric field. This counter-intuitive duality of matter-field interactions allows novel ways to create and manipulate spin and pseudo-spin polarizations via external fields that are not available in other materials. See arXiv:1206.4761. This work was supported by Marsden Fund contract no. VUW0719, administered by the Royal Society of New Zealand. Work at Argonne was supported by DOE BES under Contract No. DE-AC02-06CH11357.
Martínez-Velarte, M. Carmen; Kretz, Bernhard; Moro-Lagares, Maria; ...
2017-06-13
Here, we show that the chemical inhomogeneity in ternary three-dimensional topological insulators preserves the topological spin texture of their surface states against a net surface magnetization. The spin texture is that of a Dirac cone with helical spin structure in the reciprocal space, which gives rise to spin-polarized and dissipation-less charge currents. Thanks to the nontrivial topology of the bulk electronic structure, this spin texture is robust against most types of surface defects. However, magnetic perturbations break the time-reversal symmetry, enabling magnetic scattering and loss of spin coherence of the charge carriers. This intrinsic incompatibility precludes the design of magnetoelectronicmore » devices based on the coupling between magnetic materials and topological surface states. We demonstrate that the magnetization coming from individual Co atoms deposited on the surface can disrupt the spin coherence of the carriers in the archetypal topological insulator Bi 2Te 3, while in Bi 2Se 2Te the spin texture remains unperturbed. This is concluded from the observation of elastic backscattering events in quasiparticle interference patterns obtained by scanning tunneling spectroscopy. The mechanism responsible for the protection is investigated by energy resolved spectroscopy and ab initio calculations, and it is ascribed to the distorted adsorption geometry of localized magnetic moments due to Se–Te disorder, which suppresses the Co hybridization with the surface states.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martínez-Velarte, M. Carmen; Kretz, Bernhard; Moro-Lagares, Maria
Here, we show that the chemical inhomogeneity in ternary three-dimensional topological insulators preserves the topological spin texture of their surface states against a net surface magnetization. The spin texture is that of a Dirac cone with helical spin structure in the reciprocal space, which gives rise to spin-polarized and dissipation-less charge currents. Thanks to the nontrivial topology of the bulk electronic structure, this spin texture is robust against most types of surface defects. However, magnetic perturbations break the time-reversal symmetry, enabling magnetic scattering and loss of spin coherence of the charge carriers. This intrinsic incompatibility precludes the design of magnetoelectronicmore » devices based on the coupling between magnetic materials and topological surface states. We demonstrate that the magnetization coming from individual Co atoms deposited on the surface can disrupt the spin coherence of the carriers in the archetypal topological insulator Bi 2Te 3, while in Bi 2Se 2Te the spin texture remains unperturbed. This is concluded from the observation of elastic backscattering events in quasiparticle interference patterns obtained by scanning tunneling spectroscopy. The mechanism responsible for the protection is investigated by energy resolved spectroscopy and ab initio calculations, and it is ascribed to the distorted adsorption geometry of localized magnetic moments due to Se–Te disorder, which suppresses the Co hybridization with the surface states.« less
Low-dimensional quantum magnetism in Cu (NCS) 2: A molecular framework material
NASA Astrophysics Data System (ADS)
Cliffe, Matthew J.; Lee, Jeongjae; Paddison, Joseph A. M.; Schott, Sam; Mukherjee, Paromita; Gaultois, Michael W.; Manuel, Pascal; Sirringhaus, Henning; Dutton, Siân E.; Grey, Clare P.
2018-04-01
Low-dimensional magnetic materials with spin-1/2 moments can host a range of exotic magnetic phenomena due to the intrinsic importance of quantum fluctuations to their behavior. Here, we report the structure, magnetic structure, and magnetic properties of copper ii thiocyanate, Cu(NCS ) 2, a one-dimensional coordination polymer which displays low-dimensional quantum magnetism. Magnetic susceptibility, electron paramagnetic resonance spectroscopy, 13C magic-angle spinning nuclear magnetic resonance spectroscopy, and density functional theory investigations indicate that Cu(NCS ) 2 behaves as a two-dimensional array of weakly coupled antiferromagnetic spin chains [J2=133 (1 ) K , α =J1/J2=0.08 ] . Powder neutron-diffraction measurements confirm that Cu(NCS ) 2 orders as a commensurate antiferromagnet below TN=12 K , with a strongly reduced ordered moment (0.3 μB ) due to quantum fluctuations.
Asymmetric magnetic proximity effect in a Pd/Co/Pd trilayer system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dong -Ok; Song, Kyung Mee; Choi, Yongseong
In spintronic devices consisting of ferromagnetic/nonmagnetic systems, the ferromagnet-induced magnetic moment in the adjacent nonmagnetic material significantly influences the spin transport properties. In this study, such magnetic proximity effect in a Pd/Co/Pd trilayer system is investigated by x-ray magnetic circular dichroism and x-ray resonant magnetic reflectivity, which enables magnetic characterizations with element and depth resolution. We observe that the total Pd magnetic moments induced at the top Co/Pd interface are significantly larger than the Pd moments at the bottom Pd/Co interface, whereas transmission electron microscopy and reflectivity analysis indicate the two interfaces are nearly identical structurally. Furthermore, such asymmetry inmore » magnetic proximity effects could be important for understanding spin transport characteristics in ferromagnetic/nonmagnetic systems and its potential application to spin devices.« less
Asymmetric magnetic proximity effect in a Pd/Co/Pd trilayer system
Kim, Dong -Ok; Song, Kyung Mee; Choi, Yongseong; ...
2016-05-06
In spintronic devices consisting of ferromagnetic/nonmagnetic systems, the ferromagnet-induced magnetic moment in the adjacent nonmagnetic material significantly influences the spin transport properties. In this study, such magnetic proximity effect in a Pd/Co/Pd trilayer system is investigated by x-ray magnetic circular dichroism and x-ray resonant magnetic reflectivity, which enables magnetic characterizations with element and depth resolution. We observe that the total Pd magnetic moments induced at the top Co/Pd interface are significantly larger than the Pd moments at the bottom Pd/Co interface, whereas transmission electron microscopy and reflectivity analysis indicate the two interfaces are nearly identical structurally. Furthermore, such asymmetry inmore » magnetic proximity effects could be important for understanding spin transport characteristics in ferromagnetic/nonmagnetic systems and its potential application to spin devices.« less
Implementation of Magnetic Dipole Interaction in the Planewave-Basis Approach for Slab Systems
NASA Astrophysics Data System (ADS)
Oda, Tatsuki; Obata, Masao
2018-06-01
We implemented the magnetic dipole interaction (MDI) in a first-principles planewave-basis electronic structure calculation based on spin density functional theory. This implementation, employing the two-dimensional Ewald summation, enables us to obtain the total magnetic anisotropy energy of slab materials with contributions originating from both spin-orbit and magnetic dipole-dipole couplings on the same footing. The implementation was demonstrated using an iron square lattice. The result indicates that the magnetic anisotropy of the MDI is much less than that obtained from the atomic magnetic moment model due to the prolate quadrupole component of the spin magnetic moment density. We discuss the reduction in the anisotropy of the MDI in the case of modulation of the quadrupole component and the effect of magnetic field arising from the MDI on atomic scale.
Electronic and magnetic properties of magnetoelectric compound Ca2CoSi2O7: An ab initio study
NASA Astrophysics Data System (ADS)
Chakraborty, Jayita
2018-05-01
The detailed first principle density functional theory calculations are carried out to investigate the electronic and magnetic properties of magnetoelectric compound Ca2CoSi2O7. The magnetic properties of this system are analyzed by calculating various hopping integrals as well as exchange interactions and deriving the relevant spin Hamiltonian. The dominant exchange path is visualized with Wannier functions plotting. Only intra planer nearest neighbor exchange interaction is strong in this system. The magnetocrystalline anisotropy is calculated for this system, and the results of the calculation reveal that the spin quantization axis lies in the ab plane.
Electronic nature of the lock-in magnetic transition in Ce X Al4Si2
NASA Astrophysics Data System (ADS)
Gunasekera, J.; Harriger, L.; Dahal, A.; Maurya, A.; Heitmann, T.; Disseler, S. M.; Thamizhavel, A.; Dhar, S.; Singh, D. J.; Singh, D. K.
2016-04-01
We have investigated the underlying magnetism in newly discovered single crystal Kondo lattices Ce X Al4Si2 , where X = Rh, Ir. We show that the compound undergoes an incommensurate-to-commensurate magnetic transition at Tc=9.19 K (10.75 K in Ir). The spin correlation in the incommensurate phase is described by a spin density wave configuration of Ce ions, which locks in to the long-range antiferromagnetic order at T =Tc. The analysis of the experimental data, combined with the calculation of the electronic properties, suggests the role of the Fermi surface nesting as the primary mechanism behind this phenomenon.
NASA Astrophysics Data System (ADS)
Bae, Seongtae
Since giant magnetoresistance (GMR) and tunneling magnetoresistance (TMR) spinvalve effects were developed for the last two decades after discovered, world wide researches on applying these effects for various kinds of solid state active devices has provided a strong impact on challenging new functional micro-magnetoelectronic devices. In particular, recently developed nano-structured magnetic spin-valve thin film materials for spin-electronic devices are now considered as building blocks of state-of-the-art electronic engineering. This research has been concentrated on developing and designing magneto-electronic solid state devices with high thermal and electrical stability using an alpha-Fe 2O3 and NiO oxide anti-ferromagnetic exchange biased GMR bottom spin-valves (BSV), NiFe/Cu/Co and NiFe/Cu/CoFe based closed-flux metallic pseudo spin-valves, and PtMn exchange biased TMR spin-valves. The category covering this research is divided into four main research steps. First is to investigate exchange bias coupling characteristics of alpha-Fe2 O3 and NiO oxide Anti-ferromagnetic materials (AF)/Ferromagnetic (F) layer systems for optimizing exchange biased BSV and to study magnetic properties of various kinds of magnetic thin films including single through multi-layered structures for the fundamental research on NiFe/Cu/Co and NiFe/Cu/CoFe closed-flux metallic pseudo spin-valves. Second is to develop and improve new kinds of BSVs and closed-flux metallic spinvalves by controlling process parameters in terms of crystalline orientation texture of AF and F layers, interfacial surface roughness, grain size (its size distribution), chemical composition, and kinetics of sputtering film growth. Third is to design, to fabricate, and to investigate the magnetic and electrical properties of magneto-electronic devices as well as their applications such as GMR magnetoresistive random access memory (MRAM), GMR read head, TMR read head, and new kinds of GMR solid state devices, which can be promisingly substituted for current microelectronic devices. Finally, the last is to focus on studying electrical reliability of GMR read sensor and GMR MRAM cell in terms of electromigration-induced failures of various kinds of magnetic thin films, which are currently used in GMR spin-valve materials, and is to investigate the effects of current (or voltage) induced dielectric breakdown in aluminum oxide tunnel barrier under various testing conditions on the electrical stability of real TMR read sensors.
Cold denaturation induces inversion of dipole and spin transfer in chiral peptide monolayers
Eckshtain-Levi, Meital; Capua, Eyal; Refaely-Abramson, Sivan; Sarkar, Soumyajit; Gavrilov, Yulian; Mathew, Shinto P.; Paltiel, Yossi; Levy, Yaakov; Kronik, Leeor; Naaman, Ron
2016-01-01
Chirality-induced spin selectivity is a recently-discovered effect, which results in spin selectivity for electrons transmitted through chiral peptide monolayers. Here, we use this spin selectivity to probe the organization of self-assembled α-helix peptide monolayers and examine the relation between structural and spin transfer phenomena. We show that the α-helix structure of oligopeptides based on alanine and aminoisobutyric acid is transformed to a more linear one upon cooling. This process is similar to the known cold denaturation in peptides, but here the self-assembled monolayer plays the role of the solvent. The structural change results in a flip in the direction of the electrical dipole moment of the adsorbed molecules. The dipole flip is accompanied by a concomitant change in the spin that is preferred in electron transfer through the molecules, observed via a new solid-state hybrid organic–inorganic device that is based on the Hall effect, but operates with no external magnetic field or magnetic material. PMID:26916536
Quantum dust magnetosonic waves with spin and exchange correlation effects
NASA Astrophysics Data System (ADS)
Maroof, R.; Mushtaq, A.; Qamar, A.
2016-01-01
Dust magnetosonic waves are studied in degenerate dusty plasmas with spin and exchange correlation effects. Using the fluid equations of magnetoplasma with quantum corrections due to the Bohm potential, temperature degeneracy, spin magnetization energy, and exchange correlation, a generalized dispersion relation is derived. Spin effects are incorporated via spin force and macroscopic spin magnetization current. The exchange-correlation potentials are used, based on the adiabatic local-density approximation, and can be described as a function of the electron density. For three different values of angle, the dispersion relation is reduced to three different modes under the low frequency magnetohydrodynamic assumptions. It is found that the effects of quantum corrections in the presence of dust concentration significantly modify the dispersive properties of these modes. The results are useful for understanding numerous collective phenomena in quantum plasmas, such as those in compact astrophysical objects (e.g., the cores of white dwarf stars and giant planets) and in plasma-assisted nanotechnology (e.g., quantum diodes, quantum free-electron lasers, etc.).
Cold denaturation induces inversion of dipole and spin transfer in chiral peptide monolayers
NASA Astrophysics Data System (ADS)
Eckshtain-Levi, Meital; Capua, Eyal; Refaely-Abramson, Sivan; Sarkar, Soumyajit; Gavrilov, Yulian; Mathew, Shinto P.; Paltiel, Yossi; Levy, Yaakov; Kronik, Leeor; Naaman, Ron
2016-02-01
Chirality-induced spin selectivity is a recently-discovered effect, which results in spin selectivity for electrons transmitted through chiral peptide monolayers. Here, we use this spin selectivity to probe the organization of self-assembled α-helix peptide monolayers and examine the relation between structural and spin transfer phenomena. We show that the α-helix structure of oligopeptides based on alanine and aminoisobutyric acid is transformed to a more linear one upon cooling. This process is similar to the known cold denaturation in peptides, but here the self-assembled monolayer plays the role of the solvent. The structural change results in a flip in the direction of the electrical dipole moment of the adsorbed molecules. The dipole flip is accompanied by a concomitant change in the spin that is preferred in electron transfer through the molecules, observed via a new solid-state hybrid organic-inorganic device that is based on the Hall effect, but operates with no external magnetic field or magnetic material.
MBE Growth of Ferromagnetic Metal/Compound Semiconductor Heterostructures for Spintronics
Palmstrom, Chris [University of California, Santa Barbara, California, United States
2017-12-09
Electrical transport and spin-dependent transport across ferromagnet/semiconductor contacts is crucial in the realization of spintronic devices. Interfacial reactions, the formation of non-magnetic interlayers, and conductivity mismatch have been attributed to low spin injection efficiency. MBE has been used to grow epitaxial ferromagnetic metal/GA(1-x)AL(x)As heterostructures with the aim of controlling the interfacial structural, electronic, and magnetic properties. In situ, STM, XPS, RHEED and LEED, and ex situ XRD, RBS, TEM, magnetotransport, and magnetic characterization have been used to develop ferromagnetic elemental and metallic compound/compound semiconductor tunneling contacts for spin injection. The efficiency of the spin polarized current injected from the ferromagnetic contact has been determined by measuring the electroluminescence polarization of the light emitted from/GA(1-x)AL(x)As light-emitting diodes as a function of applied magnetic field and temperature. Interfacial reactions during MBE growth and post-growth anneal, as well as the semiconductor device band structure, were found to have a dramatic influence on the measured spin injection, including sign reversal. Lateral spin-transport devices with epitaxial ferromagnetic metal source and drain tunnel barrier contacts have been fabricated with the demonstration of electrical detection and the bias dependence of spin-polarized electron injection and accumulation at the contacts. This talk emphasizes the progress and achievements in the epitaxial growth of a number of ferromagnetic compounds/III-V semiconductor heterostructures and the progress towards spintronic devices.
Observation of magnetic excitons in LaCoO3
NASA Astrophysics Data System (ADS)
Giblin, S. R.; Terry, I.; Clark, S. J.; Prokscha, T.; Prabhakaran, D.; Boothroyd, A. T.; Wu, J.; Leighton, C.
2005-06-01
An impurity-driven magnetic phase transition has been investigated in LaCoO3 at temperatures below that of the thermally induced spin state transition of the Co3+ ion. We have discovered a saturating component of the magnetisation, which we attribute to previously unobserved interactions between magnetic excitons. These conclusions are confirmed by muon spin spectroscopy which indicates an ordering temperature of 50 K in both the transverse and zero-field configurations. Low-energy muon measurements demonstrate that the magnetic behaviour is independent of implantation energy and hence a property of the bulk of the material. The magnetic exciton formation is attributed to the interaction between electrons bound at oxygen vacancies and neighbouring cobalt ions, and is proposed as the precursor to the magneto-electronic phase separation recently observed in doped lanthanum cobaltite.
Dimensionality-strain phase diagram of strontium iridates
NASA Astrophysics Data System (ADS)
Kim, Bongjae; Liu, Peitao; Franchini, Cesare
2017-03-01
The competition between spin-orbit coupling, bandwidth (W ), and electron-electron interaction (U ) makes iridates highly susceptible to small external perturbations, which can trigger the onset of novel types of electronic and magnetic states. Here we employ first principles calculations based on density functional theory and on the constrained random phase approximation to study how dimensionality and strain affect the strength of U and W in (SrIrO3)m/(SrTiO3) superlattices. The result is a phase diagram explaining two different types of controllable magnetic and electronic transitions, spin-flop and insulator-to-metal, connected with the disruption of the Jeff=1 /2 state which cannot be understood within a simplified local picture.
Electronic and magnetic properties of SnS2 monolayer doped with non-magnetic elements
NASA Astrophysics Data System (ADS)
Xiao, Wen-Zhi; Xiao, Gang; Rong, Qing-Yan; Wang, Ling-Ling
2018-05-01
We performed a systematic study of the electronic structures and magnetic properties of SnS2 monolayer doped with non-magnetic elements in groups IA, IIA and IIIA based on the first-principles methods. The doped systems exhibit half-metallic and metallic natures depending on the doping elements. The formation of magnetic moment is attributable to the cooperative effect of the Hund's rule coupling and hole concentration. The spin polarization can be stabilized and enhanced through confining the delocalized impurity states by biaxial tensile strain in hole-doped SnS2 monolayer. Both the double-exchange and p-p exchange mechanisms are simultaneously responsible for the ferromagnetic ground state in those hole-doped materials. Our results demonstrate that spin polarization can be induced and controlled in SnS2 monolayers by non-magnetic doping and tensile strain.
Influence of the nuclear Zeeman effect on mode locking in pulsed semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Beugeling, Wouter; Uhrig, Götz S.; Anders, Frithjof B.
2017-09-01
The coherence of the electron spin in a semiconductor quantum dot is strongly enhanced by mode locking through nuclear focusing, where the synchronization of the electron spin to periodic pulsing is slowly transferred to the nuclear spins of the semiconductor material, mediated by the hyperfine interaction between these. The external magnetic field that drives the Larmor oscillations of the electron spin also subjects the nuclear spins to a Zeeman-like coupling, albeit a much weaker one. For typical magnetic fields used in experiments, the energy scale of the nuclear Zeeman effect is comparable to that of the hyperfine interaction, so that it is not negligible. In this work, we analyze the influence of the nuclear Zeeman effect on mode locking quantitatively. Within a perturbative framework, we calculate the Overhauser-field distribution after a prolonged period of pulsing. We find that the nuclear Zeeman effect can exchange resonant and nonresonant frequencies. We distinguish between models with a single type and with multiple types of nuclei. For the latter case, the positions of the resonances depend on the individual g factors, rather than on the average value.
Probing the spin-orbit Mott state in Sr3Ir2O7 by electron doping
NASA Astrophysics Data System (ADS)
Hogan, Thomas C.
Iridium-based members of the Ruddlesden-Popper family of oxide compounds are characterized by a unique combination of energetically comparable effects: crystal-field splitting, spin-orbit coupling, and electron-electron interactions are all present, and the combine to produce a Jeff = 1/2 ground state. In the bilayer member of this series, Sr3Ir2O7, this state manifests as electrically insulating, with unpaired Ir4+ spins aligned along the long axis of the unit cell to produce a G-type antiferromagnet with an ordered moment of 0.36 uB. In this work, this Mott state is destabilized by electron doping via La3+ substitution on the Sr-site to produce (Sr1-x Lax)3Ir2O7. The introduction of carriers initially causes nano-scale phase-separated regions to develop before driving a global insulator-to-metal transition at x=0.04. Coinciding with this transition is the disappearance of evidence of magnetic order in the system in either bulk magnetization or magnetic scattering experiments. The doping also enhances a structural order parameter observed in the parent compound at forbidden reciprocal lattice vectors. A more complete structural solution is proposed to account for this previously unresolved distortion, and also offers an explanation as to the anomalous net ferromagnetism seen prior in bulk measurements. Finally, spin dynamics are probed via a resonant x-ray technique to reveal evidence of spin-dimer-like behavior dominated by inter-plane interactions. This result supports a bond-operator treatment of the interaction Hamiltonian, and also explains the doping dependence of high temperature magnetic susceptibility.
Electron tunneling transport across heterojunctions between europium sulfide and indium arsenide
NASA Astrophysics Data System (ADS)
Kallaher, Raymond L.
This dissertation presents research done on utilizing the ferromagnetic semiconductor europium sulfide (EuS) to inject spin polarized electrons into the non-magnetic semiconductor indium arsenide (InAs). There is great interest in expanding the functionality of modern day electronic circuits by creating devices that depend not only on the flow of charge in the device, but also on the transport of spin through the device. Within this mindset, there is a concerted effort to establish an efficient means of injecting and detecting spin polarized electrons in a two dimensional electron system (2DES) as the first step in developing a spin based field effect transistor. Thus, the research presented in this thesis has focused on the feasibility of using EuS, in direct electrical contact with InAs, as a spin injecting electrode into an InAs 2DES. Doped EuS is a concentrated ferromagnetic semiconductor, whose conduction band undergoes a giant Zeeman splitting when the material becomes ferromagnetic. The concomitant difference in energy between the spin-up and spin-down energy bands makes the itinerant electrons in EuS highly spin polarized. Thus, in principle, EuS is a good candidate to be used as an injector of spin polarized electrons into non-magnetic materials. In addition, the ability to adjust the conductivity of EuS by varying the doping level in the material makes EuS particularly suited for injecting spins into non-magnetic semiconductors and 2DES. For this research, thin films of EuS have been grown via e-beam evaporation of EuS powder. This growth technique produces EuS films that are sulfur deficient; these sulfur vacancies act as intrinsic electron donors and the resulting EuS films behave like heavily doped ferromagnetic semiconductors. The growth parameters and deposition procedures were varied and optimized in order to fabricate films that have minimal crystalline defects. Various properties and characteristics of these EuS films were measured and compared to those characteristics found in previous reported work on doped EuS crystals. In particular, the magnetic switching behavior of individual micro-fabricated EuS structures was investigated to determine what types of spintronic devices EuS is best suited for. These studies found that the crystalline anisotropy of EuS dominates the switching behavior in EuS thin film structures with minimum feature sizes greater than ˜5 mum. This, in conjunction with the relatively high resistance of junctions between EuS and semiconductors, restricts the use of two tandem EuS electrodes in all semiconductor spintronic devices that require independently switching ferromagnetic electrodes. Spin transport studies in InAs 2DES are particularly interesting because of the heterostructure's high electron mobility and tunable spin-orbit interactions. Detailed measurements of the electrical transport characteristics across the heterojunction formed between EuS and InAs were taken in order to investigate the spin transport characteristics across the junction. These measurements show that the electrical transport across the heterojunction, below the ferromagnetic transition temperature, is directly related to the magnetization of the EuS layer and thus the transport is dominated by the spin-dependent Schottky barrier formed in EuS. Using a simple theory developed for these junctions, the magnitude of the change in barrier height---half the Zeeman splitting of the conduction band in EuS---as found to be ˜0.22 eV. The electrical transport measurements of the heterojunction between EuS and InAs at temperatures well above the ferromagnetic transition temperature of EuS shows that there are at least two separate scattering mechanisms in these junctions. As expected, critical scattering is the dominate scattering mechanism in the strongly paramagnetic regime; however, unexpectedly, the data show that critical scattering is not the dominate mechanism at temperatures greater than ˜100 K. The high temperature electrical transport measurements of the EuS/InAs heterojunction, in conjunction with low temperature zero-bias conductance measurements on junctions between EuS and gold (Au), suggest that there exists an interfacial layer in series with the magnetic Schottky barrier in these EuS junctions. This interfacial layer is modeled and explained as resulting from a rather high concentration of defects at the interface between EuS and the counter electrode.
Magnetism in S = 1 / 2 Double Perovskites with Strong Spin-Orbit Interactions
NASA Astrophysics Data System (ADS)
Ishizuka, Hiroaki; Balents, Leon
2015-03-01
Motivated by recent studies on heavy-element double-perovskite (DP) compounds, we theoretically studied spin models on a FCC lattice with anisotropic interactions. In these systems, competition/cooperation of spin, orbital, and the lattice degrees of freedoms in the presence of the strong-spin orbit coupling is of particular interest. In a previous theoretical study, the magnetic phase diagrams of DP compounds with 5d1 electron configuration was studied using a model with four-fold degenerated single-ion state. On the other hand, a recent experiment on a DP material, Ba2Na2OsO6, reported that the compound is likely to be an effective S = 1 / 2 magnet. Inspired by the experimental observation, we considered spin models with symmetry-allowed anisotropic nearest-neighbor interactions. By a combination of various analytical and numerical techniques, we present the magnetic phase diagram of the model and the effect of thermal and quantum fluctuations. In particular, we show that fluctuations induce < 110 > anisotropy of magnetic moments. We also discuss a possible ``nematic'' phase driven by spin-phonon couplings.
NASA Astrophysics Data System (ADS)
Chatterji, T.; Stunault, A.; Brown, P. J.
2018-02-01
We have determined the temperature evolution of the spin and orbital moments in the zero-magnetization ferromagnet Sm1 -xGdxAl2 (x = 0.024) by combining polarized and unpolarized single crystal neutron diffraction data. The sensitivity of the polarized neutron technique has allowed the moment values to be determined with a precision of ≈0.1 μB . Our results clearly demonstrate that, when magnetized by a field of 8 T, the spin and orbital moments in Sm1 -xGdxAl2 are oppositely directed, so that the net magnetization is very small. Below 60 K the contributions from spin and orbital motions are both about 2 μB , with that due to orbital motion being slightly larger than that due to spin. Between 60 and 65 K the contributions of each to the magnetization fall rapidly and change sign at Tcomp ≈67 K , above which the aligned moments recover but with the orbital magnetization still slightly higher than the spin one. These results imply that above Tcomp the small resultant magnetization of the Sm3 + ion is oppositely directed to the magnetizing field. It is suggested that this anomaly is due to polarization of conduction electron spin associated with the doping Gd3 + ions.
Spin Seebeck effect in a metal-single-molecule-magnet-metal junction
NASA Astrophysics Data System (ADS)
Niu, Pengbin; Liu, Lixiang; Su, Xiaoqiang; Dong, Lijuan; Luo, Hong-Gang
2018-01-01
We investigate the nonlinear regime of temperature-driven spin-related currents through a single molecular magnet (SMM), which is connected with two metal electrodes. Under a large spin approximation, the SMM is simplified to a natural two-channel model possessing spin-opposite configuration and Coulomb interaction. We find that in temperature-driven case the system can generate spin-polarized currents. More interestingly, at electron-hole symmetry point, the competition of the two channels induces a temperature-driven pure spin current. This device demonstrates that temperature-driven SMM junction shows some results different from the usual quantum dot model, which may be useful in the future design of thermal-based molecular spintronic devices.
Analysis of the transient response of nuclear spins in GaAs with/without nuclear magnetic resonance
NASA Astrophysics Data System (ADS)
Rasly, Mahmoud; Lin, Zhichao; Yamamoto, Masafumi; Uemura, Tetsuya
2016-05-01
As an alternative to studying the steady-state responses of nuclear spins in solid state systems, working within a transient-state framework can reveal interesting phenomena. The response of nuclear spins in GaAs to a changing magnetic field was analyzed based on the time evolution of nuclear spin temperature. Simulation results well reproduced our experimental results for the transient oblique Hanle signals observed in an all-electrical spin injection device. The analysis showed that the so called dynamic nuclear polarization can be treated as a cooling tool for the nuclear spins: It works as a provider to exchange spin angular momentum between polarized electron spins and nuclear spins through the hyperfine interaction, leading to an increase in the nuclear polarization. In addition, a time-delay of the nuclear spin temperature with a fast sweep of the external magnetic field produces a possible transient state for the nuclear spin polarization. On the other hand, the nuclear magnetic resonance acts as a heating tool for a nuclear spin system. This causes the nuclear spin temperature to jump to infinity: i.e., the average nuclear spins along with the nuclear field vanish at resonant fields of 75As, 69Ga and 71Ga, showing an interesting step-dip structure in the oblique Hanle signals. These analyses provide a quantitative understanding of nuclear spin dynamics in semiconductors for application in future computation processing.
Deo, Vincent; Zhang, Yao; Soghomonian, Victoria; ...
2015-03-30
Quantum interference is used to measure the spin interactions between an InAs surface electron system and the iron center in the biomolecule hemin in nanometer proximity in a bio-organic/semiconductor device structure. The interference quantifies the influence of hemin on the spin decoherence properties of the surface electrons. The decoherence times of the electrons serve to characterize the biomolecule, in an electronic complement to the use of spin decoherence times in magnetic resonance. Hemin, prototypical for the heme group in hemoglobin, is used to demonstrate the method, as a representative biomolecule where the spin state of a metal ion affects biologicalmore » functions. The electronic determination of spin decoherence properties relies on the quantum correction of antilocalization, a result of quantum interference in the electron system. Spin-flip scattering is found to increase with temperature due to hemin, signifying a spin exchange between the iron center and the electrons, thus implying interactions between a biomolecule and a solid-state system in the hemin/InAs hybrid structure. The results also indicate the feasibility of artificial bioinspired materials using tunable carrier systems to mediate interactions between biological entities.« less
Li, Yang; Ngo, Anh T.; DiLullo, Andrew; ...
2017-10-16
An unusually large spin-coupling of almost 100% is found in vertically stacked molecular hetrostructures composed of cobalt-porphyrin based magnetic molecules adsorbed on semiconducting armchair graphene nanoribbon on a Au(111) surface. Although the graphene nanoribbons are electronically decoupled from the gold substrate due to their band gaps and weak adsorption, they enable spin coupling between the magnetic moment of the molecule and the electrons from the substrate exhibiting a Kondo resonance. Surprisingly, the Kondo temperatures corresponding to three adsorption sites of the molecules on Au(111) surface are reproduced on the molecules adsorb on the graphene nanoribbons although the molecules are locatedmore » 7.5 Å away from the surface. This finding suggests that the molecules on graphene nanoribbons experience almost the same environment for spin-electron interactions as the ones directly adsorb on Au(111). This puzzling effect is further confirmed by density functional theory calculations that reveal no spin electron interactions if the molecule is left at the same height from the Au(111) surface without the graphene nanoribbon in between.« less
Terenzi, Camilla; Bouguet-Bonnet, Sabine; Canet, Daniel
2015-05-07
We report that at ambient temperature and with 100% enriched para-hydrogen (p-H2) dissolved in organic solvents, paramagnetic spin catalysis of para → ortho hydrogen conversion is accompanied at the onset by a negative ortho-hydrogen (o-H2) proton NMR signal. This novel finding indicates an electron spin polarization transfer, and we show here that this can only occur if the H2 molecule is dissociated upon its transient adsorption by the paramagnetic catalyst. Following desorption, o-H2 is created until the thermodynamic equilibrium is reached. A simple theory confirms that in the presence of a static magnetic field, the hyperfine coupling between unpaired electrons and nuclear spins is responsible for the observed polarization transfer. Owing to the negative electron gyromagnetic ratio, this explains the experimental results and ascertains an as yet unexplored mechanism for para → ortho conversion. Finally, we show that the recovery of o-H2 magnetization toward equilibrium can be simply modeled, leading to the para → ortho conversion rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yang; Ngo, Anh T.; DiLullo, Andrew
An unusually large spin-coupling of almost 100% is found in vertically stacked molecular hetrostructures composed of cobalt-porphyrin based magnetic molecules adsorbed on semiconducting armchair graphene nanoribbon on a Au(111) surface. Although the graphene nanoribbons are electronically decoupled from the gold substrate due to their band gaps and weak adsorption, they enable spin coupling between the magnetic moment of the molecule and the electrons from the substrate exhibiting a Kondo resonance. Surprisingly, the Kondo temperatures corresponding to three adsorption sites of the molecules on Au(111) surface are reproduced on the molecules adsorb on the graphene nanoribbons although the molecules are locatedmore » 7.5 Å away from the surface. This finding suggests that the molecules on graphene nanoribbons experience almost the same environment for spin-electron interactions as the ones directly adsorb on Au(111). This puzzling effect is further confirmed by density functional theory calculations that reveal no spin electron interactions if the molecule is left at the same height from the Au(111) surface without the graphene nanoribbon in between.« less
Zuo, S L; Zhang, Y; Peng, L C; Zhao, X; Li, R; Li, H; Xiong, J F; He, M; Zhao, T Y; Sun, J R; Hu, F X; Shen, B G
2018-02-01
The evolution of topological magnetic domains microscopically correlates the dynamic behavior of memory units in spintronic application. Nanometric bubbles with variation of spin configurations have been directly observed in a centrosymmetric hexagonal magnet (Mn 0.5 Ni 0.5 ) 65 (Ga 1-y Y y ) 35 (y = 0.01) using Lorentz transmission electron microscopy. Magnetic bubbles instead of biskyrmions are generated due to the enhancement of quality factor Q caused by the substitution of rare-earth element Y. Furthermore, the bubble density and diversified spin configurations are systematically manipulated via combining the electric current with perpendicular magnetic fields. The magnetic bubble lattice at zero field is achieved after the optimized manipulation.
Car, B; Veissier, L; Louchet-Chauvet, A; Le Gouët, J-L; Chanelière, T
2018-05-11
In Er^{3+}:Y_{2}SiO_{5}, we demonstrate the selective optical addressing of the ^{89}Y^{3+} nuclear spins through their superhyperfine coupling with the Er^{3+} electronic spins possessing large Landé g factors. We experimentally probe the electron-nuclear spin mixing with photon echo techniques and validate our model. The site-selective optical addressing of the Y^{3+} nuclear spins is designed by adjusting the magnetic field strength and orientation. This constitutes an important step towards the realization of long-lived solid-state qubits optically addressed by telecom photons.
NASA Astrophysics Data System (ADS)
Car, B.; Veissier, L.; Louchet-Chauvet, A.; Le Gouët, J.-L.; Chanelière, T.
2018-05-01
In Er3 +:Y2SiO5 , we demonstrate the selective optical addressing of the
A perfect spin filtering device through Mach-Zehnder interferometry in a GaAs/AlGaAs electron gas
NASA Astrophysics Data System (ADS)
López, Alexander; Medina, Ernesto; Bolívar, Nelson; Berche, Bertrand
2010-03-01
A spin filtering device based on quantum spin interference is addressed, for use with a two-dimensional GaAs/AlGaAs electron gas that has both Rashba and Dresselhaus spin-orbit (SO) couplings and an applied external magnetic field. We propose an experimentally feasible electronic Mach-Zehnder interferometer and derive a map, in parameter space, that determines perfect spin filtering conditions. We find two broad spin filtering regimes: one where filtering is achieved in the original incoming quantization basis, that takes advantage of the purely non-Abelian nature of the spin rotations; and another where one needs a tilted preferential axis in order to observe the polarized output spinor. Both solutions apply for arbitrary incoming electron polarization and energy, and are only limited in output amplitude by the randomness of the incoming spinor state. Including a full account of the beam splitter and mirror effects on spin yields solutions only for the tilted basis, but encompasses a broad range of filtering conditions.
A perfect spin filtering device through Mach-Zehnder interferometry in a GaAs/AlGaAs electron gas.
López, Alexander; Medina, Ernesto; Bolívar, Nelson; Berche, Bertrand
2010-03-24
A spin filtering device based on quantum spin interference is addressed, for use with a two-dimensional GaAs/AlGaAs electron gas that has both Rashba and Dresselhaus spin-orbit (SO) couplings and an applied external magnetic field. We propose an experimentally feasible electronic Mach-Zehnder interferometer and derive a map, in parameter space, that determines perfect spin filtering conditions. We find two broad spin filtering regimes: one where filtering is achieved in the original incoming quantization basis, that takes advantage of the purely non-Abelian nature of the spin rotations; and another where one needs a tilted preferential axis in order to observe the polarized output spinor. Both solutions apply for arbitrary incoming electron polarization and energy, and are only limited in output amplitude by the randomness of the incoming spinor state. Including a full account of the beam splitter and mirror effects on spin yields solutions only for the tilted basis, but encompasses a broad range of filtering conditions.
Wan, Weishi; Yu, Lei; Zhu, Lin; Yang, Xiaodong; Wei, Zheng; Liu, Jefferson Zhe; Feng, Jun; Kunze, Kai; Schaff, Oliver; Tromp, Ruud; Tang, Wen-Xin
2017-03-01
We describe the design and commissioning of a novel aberration-corrected low energy electron microscope (AC-LEEM). A third magnetic prism array (MPA) is added to the standard AC-LEEM with two prism arrays, allowing the incorporation of an ultrafast spin-polarized electron source alongside the standard cold field emission electron source, without degrading spatial resolution. The high degree of symmetries of the AC-LEEM are utilized while we design the electron optics of the ultrafast spin-polarized electron source, so as to minimize the deleterious effect of time broadening, while maintaining full control of electron spin. A spatial resolution of 2nm and temporal resolution of 10ps (ps) are expected in the future time resolved aberration-corrected spin-polarized LEEM (TR-AC-SPLEEM). The commissioning of the three-prism AC-LEEM has been successfully finished with the cold field emission source, with a spatial resolution below 2nm. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lazzeretti, Paolo
2018-04-01
It is shown that nonsymmetric second-rank current density tensors, related to the current densities induced by magnetic fields and nuclear magnetic dipole moments, are fundamental properties of a molecule. Together with magnetizability, nuclear magnetic shielding, and nuclear spin-spin coupling, they completely characterize its response to magnetic perturbations. Gauge invariance, resolution into isotropic, deviatoric, and antisymmetric parts, and contributions of current density tensors to magnetic properties are discussed. The components of the second-rank tensor properties are rationalized via relationships explicitly connecting them to the direction of the induced current density vectors and to the components of the current density tensors. The contribution of the deviatoric part to the average value of magnetizability, nuclear shielding, and nuclear spin-spin coupling, uniquely determined by the antisymmetric part of current density tensors, vanishes identically. The physical meaning of isotropic and anisotropic invariants of current density tensors has been investigated, and the connection between anisotropy magnitude and electron delocalization has been discussed.
Spiral magnetic order and pressure-induced superconductivity in transition metal compounds.
Wang, Yishu; Feng, Yejun; Cheng, J-G; Wu, W; Luo, J L; Rosenbaum, T F
2016-10-06
Magnetic and superconducting ground states can compete, cooperate and coexist. MnP provides a compelling and potentially generalizable example of a material where superconductivity and magnetism may be intertwined. Using a synchrotron-based non-resonant X-ray magnetic diffraction technique, we reveal a spiral spin order in MnP and trace its pressure evolution towards superconducting order via measurements in a diamond anvil cell. Judging from the magnetostriction, ordered moments vanish at the quantum phase transition as pressure increases the electron kinetic energy. Spins remain local in the disordered phase, and the promotion of superconductivity is likely to emerge from an enhanced coupling to residual spiral spin fluctuations and their concomitant suppression of phonon-mediated superconductivity. As the pitch of the spiral order varies across the 3d transition metal compounds in the MnP family, the magnetic ground state switches between antiferromagnet and ferromagnet, providing an additional tuning parameter in probing spin-fluctuation-induced superconductivity.
Finger-gate manipulated quantum transport in Dirac materials
NASA Astrophysics Data System (ADS)
Kleftogiannis, Ioannis; Tang, Chi-Shung; Cheng, Shun-Jen
2015-05-01
We investigate the quantum transport properties of multichannel nanoribbons made of materials described by the Dirac equation, under an in-plane magnetic field. In the low energy regime, positive and negative finger-gate potentials allow the electrons to make intra-subband transitions via hole-like or electron-like quasibound states (QBS), respectively, resulting in dips in the conductance. In the high energy regime, double dip structures in the conductance are found, attributed to spin-flip or spin-nonflip inter-subband transitions through the QBSs. Inverting the finger-gate polarity offers the possibility to manipulate the spin polarized electronic transport to achieve a controlled spin-switch.
Spin-orbit driven magnetic insulating state with J eff=1/2 character in a 4d oxide
Calder, S.; Li, Ling; Okamoto, Satoshi; ...
2015-11-30
The unusual magnetic and electronic ground states of 5d iridates has been shown to be driven by intrinsically enhanced spin-orbit coupling (SOC). The influence of appreciable but reduced SOC in creating the manifested magnetic insulating states in 4d oxides is less clear, with one hurdle being the existence of such compounds. Here we present experimental and theoretical results on Sr 4RhO 6 that reveal SOC dominated behavior. Neutron measurements show the octahedra are both spatially separated and locally ideal, making the electronic ground state susceptible to alterations by SOC. Magnetic ordering is observed with a similar structure to an analogousmore » J eff=1/2 Mott iridate. We consider the underlying role of SOC in this rhodate with density functional theory and x-ray absorption spectroscopy and find a magnetic insulating ground state with J eff =1/2 character.The unusual magnetic and electronic ground states of 5d iridates have been shown to be driven by intrinsically enhanced spin-orbit coupling (SOC). The influence of appreciable but reduced SOC in creating the manifested magnetic insulating states in 4d oxides is less clear, with one hurdle being the existence of such compounds. Here, we present experimental and theoretical results on Sr 4RhO 6 that reveal SOC dominated behavior. Neutron measurements show the octahedra are both spatially separated and locally ideal, making the electronic ground state susceptible to alterations by SOC. Magnetic ordering is observed with a similar structure to an analogous J eff=1/2 Mott iridate. We consider the underlying role of SOC in this rhodate with density functional theory and x-ray absorption spectroscopy, and find a magnetic insulating ground state with J eff=12 character.« less
NASA Astrophysics Data System (ADS)
Monir, M. El Amine.; Baltache, H.; Murtaza, G.; Khenata, R.; Ahmed, Waleed K.; Bouhemadou, A.; Omran, S. Bin; Seddik, T.
2015-01-01
Based on first principles spin-polarized density functional theory, the structural, elastic electronic and magnetic properties of Zn1-xVxSe (for x=0.25, 0.50, 0.75) in zinc blende structure have been studied. The investigation was done using the full-potential augmented plane wave method as implemented in WIEN2k code. The exchange-correlation potential was treated with the generalized gradient approximation PBE-GGA for the structural and elastic properties. Moreover, the PBE-GGA+U approximation (where U is the Hubbard correlation terms) is employed to treat the "d" electrons properly. A comparative study between the band structures, electronic structures, total and partial densities of states and local moments calculated within both GGA and GGA+U schemes is presented. The analysis of spin-polarized band structure and density of states shows the half-metallic ferromagnetic character and are also used to determine s(p)-d exchange constants N0α (conduction band) and N0β (valence band) due to Se(4p)-V(3d) hybridization. It has been clearly evidence that the magnetic moment of V is reduced from its free space change value of 3 μB and the minor atomic magnetic moment on Zn and Se are generated.
Electronic, Magnetic and Optical Properties of 2D Metal Nanolayers: A DFT Study
NASA Astrophysics Data System (ADS)
Bhuyan, Prabal Dev; Gupta, Sanjeev K.; Singh, Deobrat; Sonvane, Yogesh; Gajjar, P. N.
2018-03-01
In the recent work, we have investigated the structural, electronic, magnetic and optical properties of graphene-like hexagonal monolayers and multilayers (up to five layers) of 3d-transition metals Fe, Co and Ni based on spin-polarized density functional theory. Here, we have taken two types of pattern namely AA-stacking and AB-stacking for the calculations. The binding energy calculations show that the AA-type configuration is energetically more stable. The calculated binding energies of Fe, Co and Ni-bilayer monolayer are - 3.24, - 2.53 and - 1.94 eV, respectively. The electronic band structures show metallic behavior for all the systems and each configurations of Fe, Co and Ni-atoms. While, the quantum ballistic conductances of these metallic systems are found to be higher for pentalayer than other layered systems. The density of states confirms the ferromagnetic behavior of monolayers and multilayers of Fe and Co having negative spin polarizations. We have also calculated frequency dependent complex dielectric function, electronic energy loss spectrum and reflectance spectrum of monolayer to pentalayer metallic systems. The ferromagnetic material shows different permittivity tensor (ɛ), which is due to high spin magnetic moment for n-layered Fe and Co two-dimensional (2D) nanolayers. The theoretical investigation suggests that the electronic, magnetic and optical properties of 3d-transition metal nanolayers offers great promise for their use in spintronics nanodevices and magneto-optical nanodevices applications.
Enamullah, .; Johnson, D. D.; Suresh, K. G.; ...
2016-11-07
Heusler compounds offer potential as spintronic devices due to their spin polarization and half-metallicity properties, where electron spin-majority (minority) manifold exhibits states (band gap) at the electronic chemical potential, yielding full spin polarization in a single manifold. Yet, Heuslers often exhibit intrinsic disorder that degrades its half-metallicity and spin polarization. Using density-functional theory, we analyze the electronic and magnetic properties of equiatomic Heusler (L2 1) CoMnCrAl and CoFeCrGe alloys for effects of hydrostatic pressure and intrinsic disorder (thermal antisites, binary swaps, and vacancies). Under pressure, CoMnCrAl undergoes a metallic transition, while half-metallicity in CoFeCrGe is retained for a limited range.more » Antisite disorder between Cr-Al pair in CoMnCrAl alloy is energetically the most favorable, and retains half-metallic character in Cr-excess regime. However, Co-deficient samples in both alloys undergo a transition from half-metallic to metallic, with a discontinuity in the saturation magnetization. For binary swaps, configurations that compete with the ground state are identified and show no loss of half-metallicity; however, the minority-spin band gap and magnetic moments vary depending on the atoms swapped. For single binary swaps, there is a significant energy cost in CoMnCrAl but with no loss of half-metallicity. Although a few configurations in CoFeCrGe energetically compete with the ground state, the minority-spin band gap and magnetic moments vary depending on the atoms swapped. Furthermore, this information should help in controlling these potential spintronic materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enamullah, .; Johnson, D. D.; Suresh, K. G.
Heusler compounds offer potential as spintronic devices due to their spin polarization and half-metallicity properties, where electron spin-majority (minority) manifold exhibits states (band gap) at the electronic chemical potential, yielding full spin polarization in a single manifold. Yet, Heuslers often exhibit intrinsic disorder that degrades its half-metallicity and spin polarization. Using density-functional theory, we analyze the electronic and magnetic properties of equiatomic Heusler (L2 1) CoMnCrAl and CoFeCrGe alloys for effects of hydrostatic pressure and intrinsic disorder (thermal antisites, binary swaps, and vacancies). Under pressure, CoMnCrAl undergoes a metallic transition, while half-metallicity in CoFeCrGe is retained for a limited range.more » Antisite disorder between Cr-Al pair in CoMnCrAl alloy is energetically the most favorable, and retains half-metallic character in Cr-excess regime. However, Co-deficient samples in both alloys undergo a transition from half-metallic to metallic, with a discontinuity in the saturation magnetization. For binary swaps, configurations that compete with the ground state are identified and show no loss of half-metallicity; however, the minority-spin band gap and magnetic moments vary depending on the atoms swapped. For single binary swaps, there is a significant energy cost in CoMnCrAl but with no loss of half-metallicity. Although a few configurations in CoFeCrGe energetically compete with the ground state, the minority-spin band gap and magnetic moments vary depending on the atoms swapped. Furthermore, this information should help in controlling these potential spintronic materials.« less
A Quantum Dot with Spin-Orbit Interaction--Analytical Solution
ERIC Educational Resources Information Center
Basu, B.; Roy, B.
2009-01-01
The practical applicability of a semiconductor quantum dot with spin-orbit interaction gives an impetus to study analytical solutions to one- and two-electron quantum dots with or without a magnetic field.
Spin correlations in quantum wires
NASA Astrophysics Data System (ADS)
Sun, Chen; Pokrovsky, Valery L.
2015-04-01
We consider theoretically spin correlations in a one-dimensional quantum wire with Rashba-Dresselhaus spin-orbit interaction (RDI). The correlations of noninteracting electrons display electron spin resonance at a frequency proportional to the RDI coupling. Interacting electrons, upon varying the direction of the external magnetic field, transit from the state of Luttinger liquid (LL) to the spin-density wave (SDW) state. We show that the two-time total-spin correlations of these states are significantly different. In the LL, the projection of total spin to the direction of the RDI-induced field is conserved and the corresponding correlator is equal to zero. The correlators of two components perpendicular to the RDI field display a sharp electron-spin resonance driven by the RDI-induced intrinsic field. In contrast, in the SDW state, the longitudinal projection of spin dominates, whereas the transverse components are suppressed. This prediction indicates a simple way for an experimental diagnostic of the SDW in a quantum wire. We point out that the Luttinger model does not respect the spin conservation since it assumes the infinite Fermi sea. We propose a proper cutoff to correct this failure.
Electronic structure and magnetic properties of quaternary Heusler alloy Co2CrGa1-xGex (x=0-1)
NASA Astrophysics Data System (ADS)
Seema, K.; Kumar, Ranjan
2015-03-01
The electronic structure of Co-based quaternary Heusler compounds Co2CrGa1-xGex (x=0.00, 0.25, 0.50, 0.75, 1.00) are calculated by first-principles density functional theory. The substitution of Ga by Ge leads to increase in the number of valence electrons. With increasing concentration of Ge, lattice constant decreases linearly whereas bulk modulus and total magnetic moment increases. This shows that the magnetic properties of the compound are dependent on electron concentration of main group element. The calculations show that the alloys with x=0.00, 0.25, 0.50 are not true half-metallic materials whereas alloy with x=0.75, 1.00 exhibit 100% spin polarization at the Fermi level. It shows that the Fermi level can be shifted within the energy-gap to achieve 100% spin polarization. The effect of volumetric and tetragonal strain on magnetic properties is also studied.
Scanning nuclear resonance imaging of a hyperfine-coupled quantum Hall system.
Hashimoto, Katsushi; Tomimatsu, Toru; Sato, Ken; Hirayama, Yoshiro
2018-06-07
Nuclear resonance (NR) is widely used to detect and characterise nuclear spin polarisation and conduction electron spin polarisation coupled by a hyperfine interaction. While the macroscopic aspects of such hyperfine-coupled systems have been addressed in most relevant studies, the essential role of local variation in both types of spin polarisation has been indicated in 2D semiconductor systems. In this study, we apply a recently developed local and highly sensitive NR based on a scanning probe to a hyperfine-coupled quantum Hall (QH) system in a 2D electron gas subject to a strong magnetic field. We succeed in imaging the NR intensity and Knight shift, uncovering the spatial distribution of both the nuclear and electron spin polarisation. The results reveal the microscopic origin of the nonequilibrium QH phenomena, and highlight the potential use of our technique in microscopic studies on various electron spin systems as well as their correlations with nuclear spins.
Dodin, Dmitry V; Ivanov, Anatoly I; Burshtein, Anatoly I
2013-03-28
The magnetic field effect on the fluorescence of the photoexcited electron acceptor, (1)A∗, and the exciplex, (1)[D(+δ)A(-δ)] formed at contact of (1)A∗ with an electron donor (1)D, is theoretically explored in the framework of Integral Encounter Theory. It is assumed that the excited fluorophore is equilibrated with the exciplex that reversibly dissociates into the radical-ion pair. The magnetic field sensitive stage is the spin conversion in the resulting geminate radical-ion pair, (1, 3)[D(+)...A(-)] that proceeds due to hyperfine interaction. We confirm our earlier conclusion (obtained with a rate description of spin conversion) that in the model with a single nucleus spin 1/2 the magnitude of the Magnetic Field Effect (MFE) also vanishes in the opposite limits of low and high dielectric permittivity of the solvent. Moreover, it is shown that MFE being positive at small hyperfine interaction A, first increases with A but approaching the maximum starts to decrease and even changes the sign.
NASA Astrophysics Data System (ADS)
Zhang, Y. J.; Liu, Z. H.; Liu, G. D.; Ma, X. Q.; Cheng, Z. X.
2018-03-01
Compensated ferrimagnets, due to their zero net magnetization and potential for large spin-polarization, have been attracting more and more attention in the field of spintronics. We demonstrate potential candidate materials among the inverse Heusler compounds Ti2VZ (Z = P, As, Sb, Bi) by first principles calculations. It is found that these compounds with 18 valence electrons per unit cell have zero net magnetic moment with compensated sublattice magnetization, as anticipated by a variant of Slater-Pauling rule of Mt = NV - 18, where Mt is the total spin magnetic moment per formula unit and NV is the number of valence electrons per formula unit, and show semiconducting behavior in both spin channels with a moderate exchange splitting, as with ordinary ferromagnetic semiconductors. Furthermore, the fully compensated ferrimagnetism and semiconductivity are rather robust over a wide range of lattice contraction and expansion. Due to the above distinct advantages, these compounds will be promising candidates for spintronic applications.
Effect of structural defects on electronic and magnetic properties of ZrS2 monolayer
NASA Astrophysics Data System (ADS)
Wang, Haiyang; Zhao, Xu; Gao, Yonghui; Wang, Tianxing; Wei, Shuyi
2018-04-01
We aimed at ten configurations of vacancy defects and used the first-principles methods based on density functional theory to research electronic and magnetic properties of ZrS2 monolayer. Results show that the system of two-zirconium vacancy (V2zr) and one Zr atom + one S atom vacancy (V1Zr+1S) can induce to total spin magnetic moment of 0.245μB and 0.196μB, respectively. In addition, three and six S atoms vacancy can induce corresponding system to manifest spin magnetic moment of 0.728μB and 3.311μB, respectively. In S atom vacancy defects, vacancy defects can transform the system from semiconductor to metal, several of the Zr atoms and adjacent S atoms display antiferromagnetism coupling in three apart S atom vacancy defects. Vacancy defects can make the intrisic monolayer ZrS2 transform semiconductor into metal. These results are important for the achievement of spin devices based on ZrS2 semiconductor.
NASA Astrophysics Data System (ADS)
Weber, A. P.; Caruso, A. N.; Vescovo, E.; Ali, Md. E.; Tarafder, K.; Janjua, S. Z.; Sadowski, J. T.; Oppeneer, P. M.
2013-05-01
The spin-polarized electronic structure of iron octaethylporphyrin (FeOEP) molecules adsorbed on a pristine and on a c(2×2) oxygen-reconstructed Co(100) surface has been analyzed by means of spin-polarized photoemission spectroscopy (SPPES) and first-principles density functional theory with the on-site Coulomb repulsion U term (DFT+U) calculations with and without Van der Waals corrections. The aim is to examine the magnetic exchange mechanism between the FeOEP molecules and the Co(100) substrate in the presence or absence of the oxygen mediator. The results demonstrate that the magnetic coupling from the ferromagnetic substrate to the adsorbed FeOEP molecules is ferromagnetic, whereas, the coupling is antiferromagnetic for the FeOEP on the c(2×2)O/Co(100) system. Spin-resolved partial densities of states extracted from ab initio DFT+U modeling are in fairly good comparison with the electronic spectral densities seen in angle-integrated SPPES energy dispersion curves for submonolayer coverages of FeOEP. Through combined analysis of these spectra and theoretical results, we determine that hybridization of 2p orbitals of N and O with Co 3d orbitals facilitates indirect magnetic exchange interactions between Fe and Co, whereas, a direct Fe-Co interaction involving the Fe dz2 orbital is also found for FeOEP on Co. It is observed through SPPES that the spin polarization of the photoemission-visible molecular overlayers decreases to zero as coverage is increased beyond the submonolayer regime, indicating that only interfacial magnetic coupling is at work. Microspot low-energy electron diffraction and low-energy electron microscopy were performed to characterize the physical order of the molecular coverage, revealing that FeOEP structural domains are orders of magnitude greater in size on c(2×2)O/Co(100) than on clean Co(100), which coincides with reduced scattering from the disorder and sharper features seen in SPPES.
Fractional and hidden magnetic excitations in f-electron metal Yb2Pt2Pb
NASA Astrophysics Data System (ADS)
Zaliznyak, Igor
Quantum states with fractionalized excitations such as spinons in one-dimensional chains are commonly viewed as belonging to the domain of S=1/2 spin systems. However, recent experiments on the quantum antiferromagnet Yb2Pt2Pb, part of a large family of R2T2X (R=rare earth, T=transition metal, X=main group) materials spectacularly disqualify this opinion. The results show that spinons can also emerge in an f-electron system with strong spin-orbit coupling, where magnetism is mainly associated with large and anisotropic orbital moment. Here, the competition of several high-energy interactions Coulomb repulsion, spin-orbit coupling, crystal field, and the peculiar crystal structure, which combines low dimensionality and geometrical frustration, lead to the emergence, at low energy, of an effective spin-1/2, purely quantum Hamiltonian. Consequently, it produces unusual spin-liquid states and fractional excitations enabled by the inherently quantum mechanical nature of the moments. The emergent quantum spins bear the unique birthmark of their unusual origin in that they only lead to measurable longitudinal magnetic fluctuations, while the transverse excitations such as spin waves remain invisible to scattering experiments. Similarlyhidden would be transverse magnetic ordering, although it would have visible excitations. The rich magnetic phase diagram of Yb2Pt2Pb is suggestive of the existence of hidden-order phases, while the recent experiments indeed reveal the dark magnon, a hidden excitation in the saturated ferromagnetic (FM) phase of Yb2Pt2Pb. Unlike copper-based spin-1/2 chains, where the magnon in the FM state accounts for the full spectral weight of the zero-field spinon continuum, in the spin-orbital chains in Yb2Pt2Pb it is 100 times, or more weaker. It thus presents an example of dark magnon matter\\x9D, whose Hamiltonian is that of the effective spin-1/2 chain, but whose coupling to magnetic field, the physical probe at our disposal, is vanishingly small. The work was supported by the Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-SC00112704, and by by NSF-DMR-1310008.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kononov, A.; Egorov, S. V.; Kvon, Z. D.
We experimentally investigate spin-polarized electron transport between a permalloy ferromagnet and the edge of a two-dimensional electron system with band inversion, realized in a narrow, 8 nm wide, HgTe quantum well. In zero magnetic field, we observe strong asymmetry of the edge potential distribution with respect to the ferromagnetic ground lead. This result indicates that the helical edge channel, specific for the structures with band inversion even at the conductive bulk, is strongly coupled to the ferromagnetic side contact, possibly due to the effects of proximity magnetization. This allows selective and spin-sensitive contacting of helical edge states.
Slow spin relaxation induced by magnetic field in [NdCo(bpdo)(H2O)4(CN)6]⋅3H2O.
Vrábel, P; Orendáč, M; Orendáčová, A; Čižmár, E; Tarasenko, R; Zvyagin, S; Wosnitza, J; Prokleška, J; Sechovský, V; Pavlík, V; Gao, S
2013-05-08
We report on a comprehensive investigation of the magnetic properties of [NdCo(bpdo)(H2O)4(CN)6]⋅3H2O (bpdo=4, 4'-bipyridine-N,N'-dioxide) by use of electron paramagnetic resonance, magnetization, specific heat and susceptibility measurements. The studied material was identified as a magnet with an effective spin S = 1/2 and a weak exchange interaction J/kB = 25 mK. The ac susceptibility studies conducted at audio frequencies and at temperatures from 1.8 to 9 K revealed that the application of a static magnetic field induces a slow spin relaxation. It is suggested that the relaxation in the magnetic field appears due to an Orbach-like process between the two lowest doublet energy states of the magnetic Nd(3+) ion. The appearance of the slow relaxation in a magnetic field cannot be associated with a resonant phonon trapping. The obtained results suggest that the relaxation is influenced by nuclear spin driven quantum tunnelling which is suppressed by external magnetic field.
NASA Astrophysics Data System (ADS)
Raghuvanshi, Nimisha; Singh, Avinash
2010-10-01
Spin waves in the (0, π) and (0, π, π) ordered spin-density-wave (SDW) states of the t-t' Hubbard model are investigated at finite doping. In the presence of small t', these composite ferro-antiferromagnetic (F-AF) states are found to be strongly stabilized at finite hole doping due to enhanced carrier-induced ferromagnetic spin couplings as in metallic ferromagnets. Anisotropic spin-wave velocities, a spin-wave energy scale of around 200 meV, reduced magnetic moment and rapid suppression of magnetic order with electron doping x (corresponding to F substitution of O atoms in LaO1 - xFxFeAs or Ni substitution of Fe atoms in BaFe2 - xNixAs2) obtained in this model are in agreement with observed magnetic properties of doped iron pnictides.
Optical hyperpolarization of 13C nuclear spins in nanodiamond ensembles
NASA Astrophysics Data System (ADS)
Chen, Q.; Schwarz, I.; Jelezko, F.; Retzker, A.; Plenio, M. B.
2015-11-01
Dynamical nuclear polarization holds the key for orders of magnitude enhancements of nuclear magnetic resonance signals which, in turn, would enable a wide range of novel applications in biomedical sciences. However, current implementations of DNP require cryogenic temperatures and long times for achieving high polarization. Here we propose and analyze in detail protocols that can achieve rapid hyperpolarization of 13C nuclear spins in randomly oriented ensembles of nanodiamonds at room temperature. Our protocols exploit a combination of optical polarization of electron spins in nitrogen-vacancy centers and the transfer of this polarization to 13C nuclei by means of microwave control to overcome the severe challenges that are posed by the random orientation of the nanodiamonds and their nitrogen-vacancy centers. Specifically, these random orientations result in exceedingly large energy variations of the electron spin levels that render the polarization and coherent control of the nitrogen-vacancy center electron spins as well as the control of their coherent interaction with the surrounding 13C nuclear spins highly inefficient. We address these challenges by a combination of an off-resonant microwave double resonance scheme in conjunction with a realization of the integrated solid effect which, together with adiabatic rotations of external magnetic fields or rotations of nanodiamonds, leads to a protocol that achieves high levels of hyperpolarization of the entire nuclear-spin bath in a randomly oriented ensemble of nanodiamonds even at room temperature. This hyperpolarization together with the long nuclear-spin polarization lifetimes in nanodiamonds and the relatively high density of 13C nuclei has the potential to result in a major signal enhancement in 13C nuclear magnetic resonance imaging and suggests functionalized and hyperpolarized nanodiamonds as a unique probe for molecular imaging both in vitro and in vivo.
Immense Magnetic Response of Exciplex Light Emission due to Correlated Spin-Charge Dynamics
NASA Astrophysics Data System (ADS)
Wang, Yifei; Sahin-Tiras, Kevser; Harmon, Nicholas J.; Wohlgenannt, Markus; Flatté, Michael E.
2016-01-01
As carriers slowly move through a disordered energy landscape in organic semiconductors, tiny spatial variations in spin dynamics relieve spin blocking at transport bottlenecks or in the electron-hole recombination process that produces light. Large room-temperature magnetic-field effects (MFEs) ensue in the conductivity and luminescence. Sources of variable spin dynamics generate much larger MFEs if their spatial structure is correlated on the nanoscale with the energetic sites governing conductivity or luminescence such as in coevaporated organic blends within which the electron resides on one molecule and the hole on the other (an exciplex). Here, we show that exciplex recombination in blends exhibiting thermally activated delayed fluorescence produces MFEs in excess of 60% at room temperature. In addition, effects greater than 4000% can be achieved by tuning the device's current-voltage response curve by device conditioning. Both of these immense MFEs are the largest reported values for their device type at room temperature. Our theory traces this MFE and its unusual temperature dependence to changes in spin mixing between triplet exciplexes and light-emitting singlet exciplexes. In contrast, spin mixing of excitons is energetically suppressed, and thus spin mixing produces comparatively weaker MFEs in materials emitting light from excitons by affecting the precursor pairs. Demonstration of immense MFEs in common organic blends provides a flexible and inexpensive pathway towards magnetic functionality and field sensitivity in current organic devices without patterning the constituent materials on the nanoscale. Magnetic fields increase the power efficiency of unconditioned devices by 30% at room temperature, also showing that magnetic fields may increase the efficiency of the thermally activated delayed fluorescence process.
Immense Magnetic Response of Exciplex Light Emission due to Correlated Spin-Charge Dynamics
Wang, Yifei; Sahin-Tiras, Kevser; Harmon, Nicholas J.; ...
2016-02-05
As carriers slowly move through a disordered energy landscape in organic semiconductors, tiny spatial variations in spin dynamics relieve spin blocking at transport bottlenecks or in the electron-hole recombination process that produces light. Large room-temperature magnetic-field effects (MFEs) ensue in the conductivity and luminescence. Sources of variable spin dynamics generate much larger MFEs if their spatial structure is correlated on the nanoscale with the energetic sites governing conductivity or luminescence such as in coevaporated organic blends within which the electron resides on one molecule and the hole on the other (an exciplex). Here, we show that exciplex recombination in blendsmore » exhibiting thermally activated delayed fluorescence produces MFEs in excess of 60% at room temperature. In addition, effects greater than 4000% can be achieved by tuning the device’s current-voltage response curve by device conditioning. Both of these immense MFEs are the largest reported values for their device type at room temperature. Our theory traces this MFE and its unusual temperature dependence to changes in spin mixing between triplet exciplexes and light-emitting singlet exciplexes. In contrast, spin mixing of excitons is energetically suppressed, and thus spin mixing produces comparatively weaker MFEs in materials emitting light from excitons by affecting the precursor pairs. Demonstration of immense MFEs in common organic blends provides a flexible and inexpensive pathway towards magnetic functionality and field sensitivity in current organic devices without patterning the constituent materials on the nanoscale. In conclusion, magnetic fields increase the power efficiency of unconditioned devices by 30% at room temperature, also showing that magnetic fields may increase the efficiency of the thermally activated delayed fluorescence process.« less
Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond
NASA Astrophysics Data System (ADS)
Casola, Francesco; van der Sar, Toeno; Yacoby, Amir
2018-01-01
The magnetic fields generated by spins and currents provide a unique window into the physics of correlated-electron materials and devices. First proposed only a decade ago, magnetometry based on the electron spin of nitrogen-vacancy (NV) defects in diamond is emerging as a platform that is excellently suited for probing condensed matter systems; it can be operated from cryogenic temperatures to above room temperature, has a dynamic range spanning from direct current to gigahertz and allows sensor-sample distances as small as a few nanometres. As such, NV magnetometry provides access to static and dynamic magnetic and electronic phenomena with nanoscale spatial resolution. Pioneering work has focused on proof-of-principle demonstrations of its nanoscale imaging resolution and magnetic field sensitivity. Now, experiments are starting to probe the correlated-electron physics of magnets and superconductors and to explore the current distributions in low-dimensional materials. In this Review, we discuss the application of NV magnetometry to the exploration of condensed matter physics, focusing on its use to study static and dynamic magnetic textures and static and dynamic current distributions.
Tunable magnetic coupling in Mn-doped monolayer MoS2 under lattice strain
NASA Astrophysics Data System (ADS)
Miao, Yaping; Huang, Yuhong; Bao, Hongwei; Xu, Kewei; Ma, Fei; Chu, Paul K.
2018-05-01
First-principles calculations are conducted to study the electronic and magnetic states of Mn-doped monolayer MoS2 under lattice strain. Mn-doped MoS2 exhibits half-metallic and ferromagnetic (FM) characteristics in which the majority spin channel exhibits metallic features but there is a bandgap in the minority spin channel. The FM state and the total magnetic moment of 1 µ B are always maintained for the larger supercells of monolayer MoS2 with only one doped Mn, no matter under tensile or compressive strain. Furthermore, the FM state will be enhanced by the tensile strain if two Mo atoms are substituted by Mn atoms in the monolayer MoS2. The magnetic moment increases up to 0.50 µ B per unit cell at a tensile strain of 7%. However, the Mn-doped MoS2 changes to metallic and antiferromagnetic under compressive strain. The spin polarization of Mn 3d orbitals disappears gradually with increasing compressive strain, and the superexchange interaction between Mn atoms increases gradually. The results suggest that the electronic and magnetic properties of Mn-doped monolayer MoS2 can be effectively modulated by strain engineering providing insight into application to electronic and spintronic devices.
NASA Astrophysics Data System (ADS)
Helmstedt, Andreas; Müller, Norbert; Gryzia, Aaron; Dohmeier, Niklas; Brechling, Armin; Sacher, Marc D.; Heinzmann, Ulrich; Hoeke, Veronika; Krickemeyer, Erich; Glaser, Thorsten; Bouvron, Samuel; Fonin, Mikhail; Neumann, Manfred
2011-07-01
Properties of the manganese-based single-molecule magnet [\\mathbf {Mn}^{\\mathbf {I}\\mathbf {I}\\mathbf {I}}_{\\mathbf {6}} \\mathbf {Cr}^{\\mathbf {I}\\mathbf {I}\\mathbf {I}}]^{\\mathbf {3} \\boldsymbol {+}} are studied. It contains six MnIII ions arranged in two bowl-shaped trinuclear triplesalen building blocks linked by a hexacyanochromate and exhibits a large spin ground state of St = 21/2. The dominant structures in the electron emission spectra of [\\mathbf {Mn}^{\\mathbf {I}\\mathbf {I}\\mathbf {I}}_{\\mathbf {6}}\\mathbf {Cr}^{\\mathbf {I}\\mathbf {I}\\mathbf {I}}]^{\\mathbf {3} \\boldsymbol {+}} resonantly excited at the L3-edge are the L3M2, 3M2, 3, L3M2, 3V and L3VV Auger emission groups following the decay of the primary p3/2 core hole state. Significant differences of the Auger spectra from intact and degraded [\\mathbf {Mn}^{\\mathbf {I}\\mathbf {I}\\mathbf {I}}_{\\mathbf {6}}\\mathbf {Cr}^{\\mathbf {I}\\mathbf {I}\\mathbf {I}}]^{\\mathbf {3} \\boldsymbol {+}} show up. First measurements of the electron spin polarization in the L3M2, 3V and L3VV Auger emission peaks from the manganese constituents in [\\mathbf {Mn}^{\\mathbf {I}\\mathbf {I}\\mathbf {I}}_{\\mathbf {6}} \\mathbf {Cr}^{\\mathbf {I}\\mathbf {I}\\mathbf {I}}]^{\\mathbf {3} \\boldsymbol {+}} resonantly excited at the L3-edge near 640 eV by circularly polarized synchrotron radiation are reported. In addition spin resolved Auger electron spectra of the reference substances MnO, Mn2O3 and MnII(acetate)2·4H2O are given. The applicability of spin resolved electron spectroscopy for characterizing magnetic states of constituent atoms compared to magnetic circular dichroism (MCD) is verified: the spin polarization obtained from MnII(acetate)2·4H2O at room temperature in the paramagnetic state compares to the MCD asymmetry revealed for a star-shaped molecule with a Mn4IIO6 core at 5 K in an external magnetic field of 5 T.
Anisotropy of Spin Fluctuations in a Tetragonal Heavy Fermion Antiferromagnet CeRhAl 4 Si 2
Sakai, H.; Hattori, T.; Tokunaga, Y.; ...
2017-06-01
An antiferromagnetic (AFM) Kondo lattice compound CeRhAl 4Si 2, which exhibits successive AFM transitions at T N1=14 K and T N2=9 K in zero external field, has been microscopically investigated by means of 27Al nuclear magnetic resonance (NMR) technique. In the high temperature range, magnetic excitations of 4f electrons can be well explained by isotropic localized spin fluctuations. Below ~50 K, it begins to show a characteristic anisotropy of spin fluctuations, which suggests a competition between spin fluctuations and nesting instability in this system.
NASA Astrophysics Data System (ADS)
Li, Shiqi; Sarachik, Myriam
We compare the resistivity of the dilute, strongly-interacting 2D electron system in the insulating phase of a silicon MOSFET for unpolarized electrons in the absence of magnetic field and in the presence of an in-plane magnetic field sufficient to fully polarize the electrons. In both cases the resistivity obeys Efros-Shklovskii variable range hopping ρ (T) =ρ0exp [(TES / T) 1 / 2 ] , with TES and 1 /ρ0 mapping onto each other provided one applies a shift reported earlier of the critical density nc with magnetic field: the transport properties of the insulator are the same for unpolarized and fully polarized electron spins. Interestingly, the parameters TES and 1 /ρ0 =σ0 are consistent with critical behavior approaching a metal-insulator transition. This work was supported by the National Science Foundation Grant DMR-1309008 and the Binational Science Foundation Grant 2012210.
NASA Astrophysics Data System (ADS)
Dhar, S.; Brandt, O.; Trampert, A.; Friedland, K. J.; Sun, Y. J.; Ploog, K. H.
2003-04-01
We present a detailed study of the magnetic properties of (Ga,Mn)N layers grown directly on 4H-SiC substrates by reactive molecular-beam epitaxy. X-ray diffraction and transmission electron microscopy demonstrates that homogeneous (Ga,Mn)N alloys of high crystal quality can be synthesized by this growth method up to a Mn-content of 10 12 %. Using a variety of magnetization experiments (temperature-dependent dc magnetization, isothermal remanent magnetization, frequency and field dependent ac susceptibility), we demonstrate that insulating (Ga,Mn)N alloys represent a Heisenberg spin-glass with a spin-freezing temperature around 4.5 K. We discuss the origins of this spin-glass characteristics in terms of the deep-acceptor nature of Mn in GaN and the resulting insulating character of this compound.
Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic.
Lovchinsky, I; Sushkov, A O; Urbach, E; de Leon, N P; Choi, S; De Greve, K; Evans, R; Gertner, R; Bersin, E; Müller, C; McGuinness, L; Jelezko, F; Walsworth, R L; Park, H; Lukin, M D
2016-02-19
Nuclear magnetic resonance spectroscopy is a powerful tool for the structural analysis of organic compounds and biomolecules but typically requires macroscopic sample quantities. We use a sensor, which consists of two quantum bits corresponding to an electronic spin and an ancillary nuclear spin, to demonstrate room temperature magnetic resonance detection and spectroscopy of multiple nuclear species within individual ubiquitin proteins attached to the diamond surface. Using quantum logic to improve readout fidelity and a surface-treatment technique to extend the spin coherence time of shallow nitrogen-vacancy centers, we demonstrate magnetic field sensitivity sufficient to detect individual proton spins within 1 second of integration. This gain in sensitivity enables high-confidence detection of individual proteins and allows us to observe spectral features that reveal information about their chemical composition. Copyright © 2016, American Association for the Advancement of Science.
Magnetic impurities in conducting oxides. II. (Sr1-xLax)(Ru1-xCox)O3 system
NASA Astrophysics Data System (ADS)
Mamchik, A.; Dmowski, W.; Egami, T.; Chen, I.-Wei
2004-09-01
The perovskite solid solution between ferromagnetic SrRuO3 and antiferromagnetic LaCoO3 is studied and its structural, electronic,and magnetic properties are compared with (Sr1-xLax)(Ru1-xFex)O3 . The lower 3d energy levels of Co3+ cause a local charge transfer from 4dRu4+ , a reaction that has the novel feature of being sensitive to the local atomic structure such as cation order. Despite such a complication, Co , like Fe , spin-polarizes the itinerant electrons in SrRuO3 to form a large local magnetic moment that is switchable at high fields. In the spin glass regime when Anderson localization dominates, a large negative magnetoresistance emerges as a result of spin polarization of mobile electronic carriers that occupy states beyond the mobility edge. A phenomenological model predicting an inverse relation between magnetoresistance and saturation magnetization is proposed to explain the composition dependence of magnetoresistance for both (Sr1-xLax)(Ru1-xCOx)O3 and (Sr1-xLax)(Ru1-xFex)O3 systems.
Electron theory of fast and ultrafast dissipative magnetization dynamics.
Fähnle, M; Illg, C
2011-12-14
For metallic magnets we review the experimental and electron-theoretical investigations of fast magnetization dynamics (on a timescale of ns to 100 ps) and of laser-pulse-induced ultrafast dynamics (few hundred fs). It is argued that for both situations the dominant contributions to the dissipative part of the dynamics arise from the excitation of electron-hole pairs and from the subsequent relaxation of these pairs by spin-dependent scattering processes, which transfer angular momentum to the lattice. By effective field theories (generalized breathing and bubbling Fermi-surface models) it is shown that the Gilbert equation of motion, which is often used to describe the fast dissipative magnetization dynamics, must be extended in several aspects. The basic assumptions of the Elliott-Yafet theory, which is often used to describe the ultrafast spin relaxation after laser-pulse irradiation, are discussed very critically. However, it is shown that for Ni this theory probably yields a value for the spin-relaxation time T(1) in good agreement with the experimental value. A relation between the quantity α characterizing the damping of the fast dynamics in simple situations and the time T(1) is derived. © 2011 IOP Publishing Ltd
Nuclear Spin Locking and Extended Two-Electron Spin Decoherence Time in an InAs Quantum Dot Molecule
NASA Astrophysics Data System (ADS)
Chow, Colin; Ross, Aaron; Steel, Duncan; Sham, L. J.; Bracker, Allan; Gammon, Daniel
2015-03-01
The spin eigenstates for two electrons confined in a self-assembled InAs quantum dot molecule (QDM) consist of the spin singlet state, S, with J = 0 and the triplet states T-, T0 and T+, with J = 1. When a transverse magnetic field (Voigt geometry) is applied, the two-electron system can be initialized to the different states with appropriate laser excitation. Under the excitation of a weak probe laser, non-Lorentzian lineshapes are obtained when the system is initialized to either T- or T+, where T- results in a ``resonance locking'' lineshape while T+ gives a ``resonance avoiding '' lineshape: two different manifestations of hysteresis showing the importance of memory in the system. These observations signify dynamic nuclear spin polarization (DNSP) arising from a feedback mechanism involving hyperfine interaction between lattice nuclei and delocalized electron spins, and Overhauser shift due to nuclear spin polarization. Using pump configurations that generate coherent population trapping, the isolation of the electron spin from the optical excitation shows the stabilization of the nuclear spin ensemble. The dark-state lineshape measures the lengthened electron spin decoherence time, from 1 ns to 1 μs. Our detailed spectra highlight the potential of QDM for realizing a two-qubit gate. This work is supported by NSF, ARO, AFOSR, DARPA, and ONR.
The Consequences of Spin-Orbit Coupling on the 5d3 Electronic Configuration
NASA Astrophysics Data System (ADS)
Christianson, A. D.
The impact of spin-orbit coupling on collective properties of matter is of considerable interest. The most intensively investigated materials in this regard are Iridium-based transition metal oxides which exhibit a host of interesting ground states that originate from a 5d5 Jeff = 1/2 electronic configuration. Moving beyond the Jeff = 1/2 paradigm to other electronic configurations where spin-orbit coupling plays a prominent role is a key objective of ongoing research. Here we focus on several Osmium-based transition metal oxides such as NaOsO3, Cd2Os2O7, Ca3LiOsO6, Sr2ScOsO6, Ba2YOsO6, and Sr2FeOsO6, which are nominally in the 5d3 electronic configuration. Within the LS coupling picture and a strong octahedral crystal field, the 5d3 configuration is expected to be an orbital singlet and spin-orbit effects should be minimal. Nevertheless, our neutron and x-ray scattering investigations of these materials as well as investigations by other groups show dramatic effects of spin-orbit coupling including reduced moment magnetic order, enhanced spin-phonon coupling, and large spin gaps. In particular, the anisotropy induced by spin-orbit coupling tips the balance of the frustrated interactions and drives the selection of particular magnetic ground states. To understand the mechanism driving the spin-orbit effects, we have explored the ground state t2g manifold with resonant inelastic x-ray scattering and observe a spectrum inexplicable by an LS coupling picture. On the other hand, an intermediate coupling approach reveals that the ground state wave function is a J =3/2 configuration which answers the question of how strong spin-orbit coupling effects arise in 5d3 systems.
Electronic origins of the magnetic phase transitions in zinc-blende Mn chalcogenides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, S.; Zunger, A.
1993-09-01
Precise first-principles spin-polarized total-energy and band-structure calculations have been performed for the zinc-blende Mn chalcogenides with the use of the local-spin-density (LSD) approach. We find that the LSD is capable of identifying the correct magnetic-ground-state structure, but it overestimates the ordering temperature [ital T][sub [ital N
Tuning magnetic exchange interactions in crystalline thin films of substituted Cobalt Phthalocyanine
NASA Astrophysics Data System (ADS)
Rawat, Naveen; Manning, Lane; Hua, Kim-Ngan; Headrick, Randall; Bishop, Michael; McGill, Stephen; Waterman, Rory; Furis, Madalina
Magnetic exchange interactions in diluted organometallic crystalline thin film alloys of Phthalocyanines (Pcs) made of a organo-soluble derivatives of Cobalt Pc and metal-free (H2Pc) molecule and is investigated. To this end, we synthesized a organosoluble CoPc and successfully employed a novel solution-based pen-writing deposition technique to fabricate long range ordered thin films of mixtures of different ratios ranging from 1:1 to 10:1 H2Pc:CoPc. Our previous magnetic circular dichroism (MCD) results on the parent CoPc crystalline thin films identified different electronic states mediating exchange interactions and indirect exchange interaction competing with superexchange interaction. This understanding of spin-dependent exchange interaction between delocalized π-electrons with unpaired d spins along with the excitonic delocalization character enabled the further tuning of these interactions by essentially varying the spatial distance between the spins. Furthermore, high magnetic field (B < 25 T) MCD and magneto-photoluminescence show evidence of spin-polarized band-edge excitons in the same materials. This work was possible due to support by the National Science Foundation, Division of Materials Research MRI, CAREER and EPM program Awards: DMR-0722451, DMR-0821268, DMR-1307017 and DMR-1056589, DMR-1229217.
NASA Astrophysics Data System (ADS)
Bano, Amreen; Gaur, N. K.
2018-04-01
In this paper, we have investigated the electronic band structure, magnetic state, chemical bonding and phonon properties of intermetallic compound ScNiBi (SNB) under the effect of strain using first-principles calculations. Our results showed that at 0% strain, SNB appears to be semiconducting with 0.22 eV energy gap. As the amount of strain increases over the system, the energy gap disappears and metallic character with ionic bonding appears. Covalent bonding at 0% lattice strain is observed between Bi-6p and Ni-3{d}{z2} orbitals with small contribution of Sc-3d states, with increasing strain, this bonding becomes ionic as SNB becomes a metal. From density of states (DoS), similar occupancy of energy states in the same energy range is observed in both spin channels, i.e. spin up and spin down. Hence, no spin polarization is found. From magnetic susceptibility as a function of temperature, we conclude that magnetic state of SNB is paramagnetic. Also, from phonon dispersion curves, we find that with increasing lattice strain, the frequency gap between acoustic phonon branches and optical phonon branches reduced and instability with negative frequencies at Γ are observed.