Science.gov

Sample records for electron temperature gradient

  1. Electron heat transport down steep temperature gradients

    SciTech Connect

    Matte, J.P.; Virmont, J.

    1982-12-27

    Electron heat transport is studied by numerically solving the Fokker-Planck equation, with a spherical harmonic representation of the distribution function. The first two terms (f/sub 0/, f/sub 1/) suffice, even in steep temperature gradients. Deviations from the Spitzer-Haerm law appear for lambda/L/sub T/ ((mean free path)/(temperature gradient length))> or approx. =0.01, as a result of non-Maxwellian f/sub 0/. For lambda/L/sub T/> or approx. =1, the heat flux is (1/3) of the free-streaming value. In intermediate cases, a harmonic law describes well the hottest part of the plasma.

  2. Density Gradient Stabilization of Electron Temperature Gradient Driven Turbulence in a Spherical Tokamak

    SciTech Connect

    Ren, Y; Mazzucato, E; Guttenfelder, W; Bell, R E; Domier, C W; LeBlanc, B P; Lee, K C; Luhmann Jr, N C; Smith, D R

    2011-03-21

    In this letter we report the first clear experimental observation of density gradient stabilization of electron temperature gradient driven turbulence in a fusion plasma. It is observed that longer wavelength modes, k⊥ρs ≤10, are most stabilized by density gradient, and the stabilization is accompanied by about a factor of two decrease in the plasma effective thermal diffusivity.

  3. Electron heat transport in a steep temperature gradient

    SciTech Connect

    Rogers, J.H.; De Groot, J.S.; Abou-Assaleh, Z.; Matte, J.P.; Johnston, T.W.; Rosen, M.D.

    1989-04-01

    Temporal and spatial measurements of electron heat transport are made in the University of California Davis AURORA device (J. H. Rogers, Ph.D. dissertation, University of California, Davis, 1987). In AURORA, a microwave pulse heats a region of underdense, collisional, plasma (n/n/sub cr/ approx. <1, where n/sub cr/ = 1.8 x 10/sup 10/ cm/sup -3/ is the critical density, T/sub e//sub 0/ approx. =0.15 eV, and the electron scattering mean free path lambda/sub perpendicular/approx. >2 cm). In this region, strong thermal heating (T/sub c/ approx. <0.7 eV) as well as suprathermal heating (T/sub h/approx. =3 eV) is observed. The strong heating results in a steep temperature gradient that violates the approximations of classical heat diffusion theory (L/sub T//lambda/sub perpendicular/approx. >3 for thermal electrons, where L/sub T/ = T/sub c/(partialT/sub c//partialz)/sup -1/ is the cold electron temperature scale length. The time evolution of the electron temperature profile is measured using Langmuir probes. The measured relaxation of the temperature gradient after the microwave pulse is compared to calculations using the Fokker--Planck International code (Phys. Rev. Lett. 49, 1936 (1982)) and the multigroup, flux-limited, target design code LASNEX (Comm. Plasma Phys. 2, 51 (1975)). The electron distribution function at the end of the microwave pulse is used as initial conditions for both codes. The Fokker--Planck calculations are found to agree very well with the measurements.

  4. Characterizing Electron Temperature Gradient Turbulence Via Numerical Simulation

    SciTech Connect

    Nevins, W M; Candy, J; Cowley, S; Dannert, T; Dimits, A; Dorland, W; Estrada-Mila, C; Hammett, G W; Jenko, F; Pueschel, M J; Shumaker, D E

    2006-05-22

    Numerical simulations of electron temperature gradient (ETG) turbulence are presented which characterize the ETG fluctuation spectrum, establish limits to the validity of the adiabatic ion model often employed in studying ETG turbulence, and support the tentative conclusion that plasmaoperating regimes exist in which ETG turbulence produces sufficient electron heat transport to be experimentally relevant. We resolve prior controversies regarding simulation techniques and convergence by benchmarking simulations of ETG turbulence from four microturbulence codes, demonstrating agreement on the electron heat flux, correlation functions, fluctuation intensity, and rms flow shear at fixed simulation cross section and resolution in the plane perpendicular to the magnetic field. Excellent convergence of both continuum and particle-in-cell codes with time step and velocity-space resolution is demonstrated, while numerical issues relating to perpendicular (to the magnetic field) simulation dimensions and resolution are discussed. A parameter scan in the magnetic shear, s, demonstrates that the adiabatic ion model is valid at small values of s (s < 0.4 for the parameters used in this scan) but breaks down at higher magnetic shear. A proper treatment employing gyrokinetic ions reveals a steady increase in the electron heat transport with increasing magnetic shear, reaching electron heat transport rates consistent with analyses of experimental tokamak discharges.

  5. Electron temperature gradient driven instability in the tokamak boundary plasma

    SciTech Connect

    Xu, X.Q.; Rosenbluth, M.N.; Diamond, P.H.

    1992-12-15

    A general method is developed for calculating boundary plasma fluctuations across a magnetic separatrix in a tokamak with a divertor or a limiter. The slab model, which assumes a periodic plasma in the edge reaching the divertor or limiter plate in the scrape-off layer(SOL), should provide a good estimate, if the radial extent of the fluctuation quantities across the separatrix to the edge is small compared to that given by finite particle banana orbit. The Laplace transform is used for solving the initial value problem. The electron temperature gradient(ETG) driven instability is found to grow like t{sup {minus}1/2}e{sup {gamma}mt}.

  6. Control of electron temperature and space potential gradients by superposition of thermionic electrons on electron cyclotron resonance plasmas.

    PubMed

    Moon, Chanho; Kaneko, Toshiro; Tamura, Shuichi; Hatakeyama, Rikizo

    2010-05-01

    An electron temperature gradient (ETG) is formed perpendicular to the magnetic field lines by superimposing low-temperature thermionic electrons emitted from a tungsten hot plate upon high-temperature electrons of an electron cyclotron resonance plasma, which pass through two different-shaped mesh grids. The radial profile of the plasma space potential can be controlled independent of the ETG by changing the bias voltages of the hot plate.

  7. Turbulent electron transport in edge pedestal by electron temperature gradient turbulence

    SciTech Connect

    Singh, R.; Jhang, Hogun; Diamond, P. H.

    2013-11-15

    We present a model for turbulent electron thermal transport at the edge pedestal in high (H)-mode plasmas based on electron temperature gradient (ETG) turbulence. A quasi-linear analysis of electrostatic toroidal ETG modes shows that both turbulent electron thermal diffusivity and hyper-resistivity exhibits the Ohkawa scaling in which the radial correlation length of turbulence becomes the order of electron skin depth. Combination of the Ohkawa scales and the plasma current dependence results in a novel confinement scaling inside the pedestal region. It is also shown that ETG turbulence induces a thermoelectric pinch, which may accelerate the density pedestal formation.

  8. Electron temperature critical gradient and transport stiffness in DIII-D

    NASA Astrophysics Data System (ADS)

    Smith, S. P.; Petty, C. C.; White, A. E.; Holland, C.; Bravenec, R.; Austin, M. E.; Zeng, L.; Meneghini, O.

    2015-08-01

    In a continuing effort to validate turbulent transport models, the electron energy flux has been probed as a function of electron temperature gradient on the DIII-D tokamak. In the scan of gradient, a critical electron temperature gradient has been found in the electron heat fluxes and stiffness at various radii in L-mode plasmas. The TGLF reduced turbulent transport model (Staebler et al 2007 Phys. Plasmas 14 055909) and full gyrokinetic GYRO model (Candy and Waltz 2003 J. Comput. Phys. 186 545) recover the general trend of increasing electron energy flux with increasing electron temperature gradient scale length, but they do not predict the absolute level of transport at all radii and gradients. Comparing the experimental observations of incremental (heat pulse) diffusivity and stiffness to the models’ reveals that TGLF reproduces the trends in increasing diffusivity and stiffness with increasing electron temperature gradient scale length with a critical gradient behavior. The critical gradient of TGLF is found to have a dependence on q95, contrary to the independence of the experimental critical gradient from q95.

  9. Probing plasma turbulence by modulating the electron temperature gradient

    SciTech Connect

    DeBoo, J. C.; Petty, C. C.; Holland, C.; Rhodes, T. L.; Schmitz, L.; Wang, G.; Doyle, E. J.; Hillesheim, J.; Peebles, W. A.; Zeng, L.; White, A. E.; Austin, M. E.; Yan, Z.

    2010-05-15

    The local value of a/L{sub Te}, a turbulence drive term, was modulated with electron cyclotron heating in L-mode discharges on DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] and the density and electron temperature fluctuations in low, intermediate, and high-k regimes were measured and compared with nonlinear gyrokinetic turbulence simulations using the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)]. The local drive term at rhoapprox0.6 was reduced by up to 50%, which produced comparable reductions in electron temperature fluctuations at low-k. At intermediate k, k{sub t}hetaapprox4 cm{sup -1} and k{sub t}hetarho{sub s}approx0.8, a very interesting and unexpected result was observed where density fluctuations increased by up to 10% when the local drive term was decreased by 50%. Initial comparisons of simulations from GYRO with the thermal diffusivity from power balance analysis and measured turbulence response are reported. Simulations for the case with the lowest drive term are challenging as they are near the marginal value of a/L{sub Te} for trapped electron mode activity.

  10. Regulation of electron temperature gradient turbulence by zonal flows driven by trapped electron modes

    SciTech Connect

    Asahi, Y. Tsutsui, H.; Tsuji-Iio, S.; Ishizawa, A.; Watanabe, T.-H.

    2014-05-15

    Turbulent transport caused by electron temperature gradient (ETG) modes was investigated by means of gyrokinetic simulations. It was found that the ETG turbulence can be regulated by meso-scale zonal flows driven by trapped electron modes (TEMs), which are excited with much smaller growth rates than those of ETG modes. The zonal flows of which radial wavelengths are in between the ion and the electron banana widths are not shielded by trapped ions nor electrons, and hence they are effectively driven by the TEMs. It was also shown that an E × B shearing rate of the TEM-driven zonal flows is larger than or comparable to the growth rates of long-wavelength ETG modes and TEMs, which make a main contribution to the turbulent transport before excitation of the zonal flows.

  11. Temperature gradient scale length measurement: A high accuracy application of electron cyclotron emission without calibration

    NASA Astrophysics Data System (ADS)

    Houshmandyar, S.; Yang, Z. J.; Phillips, P. E.; Rowan, W. L.; Hubbard, A. E.; Rice, J. E.; Hughes, J. W.; Wolfe, S. M.

    2016-11-01

    Calibration is a crucial procedure in electron temperature (Te) inference from a typical electron cyclotron emission (ECE) diagnostic on tokamaks. Although the calibration provides an important multiplying factor for an individual ECE channel, the parameter ΔTe/Te is independent of any calibration. Since an ECE channel measures the cyclotron emission for a particular flux surface, a non-perturbing change in toroidal magnetic field changes the view of that channel. Hence the calibration-free parameter is a measure of Te gradient. BT-jog technique is presented here which employs the parameter and the raw ECE signals for direct measurement of electron temperature gradient scale length.

  12. Verification of Gyrokinetic (delta)f Simulations of Electron Temperature Gradient Turbulence

    SciTech Connect

    Nevins, W M; Parker, S E; Chen, Y; Candy, J; Dimits, A; Dorland, W; Hammett, G W; Jenko, F

    2007-05-07

    The GEM gyrokinetic {delta}f simulation code [Chen, 2003] [Chen, 2007] is shown to reproduce electron temperature gradient turbulence at the benchmark operating point established in previous work [Nevins, 2006]. The electron thermal transport is within 10% of the expected value, while the turbulent fluctuation spectrum is shown to have the expected intensity and two-point correlation function.

  13. Experimental observation of electron-temperature-gradient turbulence in a laboratory plasma.

    PubMed

    Mattoo, S K; Singh, S K; Awasthi, L M; Singh, R; Kaw, P K

    2012-06-22

    We report the observation of electron-temperature-gradient (ETG) driven turbulence in the laboratory plasma of a large volume plasma device. The removal of unutilized primary ionizing and nonthermal electrons from uniform density plasma and the imposition and control of the gradient in the electron temperature (T[Symbol: see text] T(e)) are all achieved by placing a large (2 m diameter) magnetic electron energy filter in the middle of the device. In the dressed plasma, the observed ETG turbulence in the lower hybrid range of frequencies ν = (1-80 kHz) is characterized by a broadband with a power law. The mean wave number k perpendicular ρ(e) = (0.1-0.2) satisfies the condition k perpendicular ρ(e) ≤ 1, where ρ(e) is the electron Larmor radius.

  14. Study of Turbulent Fluctuations Driven by the Electron Temperature Gradient in the National Spherical Torus Experiment

    SciTech Connect

    Mazzucato, E.; Bell, R. E.; Ethier, S.; Hosea, J. C.; Kaye, S. M.; LeBlanc, B. P.; Lee, W. W.; Ryan, P. M.; Smith, D. R.; Wang, W. X.; Wilson, J. R.

    2009-03-26

    Various theories and numerical simulations support the conjecture that the ubiquitous problem of anomalous electron transport in tokamaks may arise from a short-scale turbulence driven by the electron temperature gradient. To check whether this turbulence is present in plasmas of the National Spherical Torus Experiment (NSTX), measurements of turbulent fluctuations were performed with coherent scattering of electromagnetic waves. Results from plasmas heated by high harmonic fast waves (HHFW) show the existence of density fluctuations in the range of wave numbers k⊥ρe=0.1-0.4, corresponding to a turbulence scale length of the order of the collisionless skin depth. Experimental observations and agreement with numerical results from the linear gyro-kinetic GS2 code indicate that the observed turbulence is driven by the electron temperature gradient. These turbulent fluctuations were not observed at the location of an internal transport barrier driven by a negative magnetic shear.

  15. Verification of gyrokinetic {delta}f simulations of electron temperature gradient turbulence

    SciTech Connect

    Nevins, W. M.; Parker, S. E.; Chen, Y.; Candy, J.; Dimits, A.; Dorland, W.; Hammett, G. W.; Jenko, F.

    2007-08-15

    The GEM gyrokinetic {delta}f simulation code [Y. Chen and S. Parker, J. Comput. Phys. 189, 463 (2003); and ibid.220, 839 (2007)] is shown to reproduce electron temperature gradient turbulence at the benchmark operating point established in previous work [W. M. Nevins, J. Candy, S. Cowley, T. Dannert, A. Dimits, W. Dorland, C. Estrada-Mila, G. W. Hammett, F. Jenko, M. J. Pueschel, and D. E. Shumaker, Phys. Plasmas 13, 122306 (2006)]. The electron thermal transport is within 10% of the expected value, while the turbulent fluctuation spectrum is shown to have the expected intensity and two-point correlation function.

  16. Finite Larmor radius effects on the coupled trapped electron and ion temperature gradient modes

    SciTech Connect

    Sandberg, I.; Isliker, H.; Pavlenko, V. P.

    2007-09-15

    The properties of the coupled trapped electron and toroidal ion temperature gradient modes are investigated using the standard reactive fluid model and taking rigorously into account the effects attributed to the ion polarization drift and to the drifts associated with the lowest-order finite ion Larmor radius effects. In the flat density regime, where the coupling between the modes is relatively weak, the properties of the unstable modes are slightly modified through these effects. For the peak density regions, where the coupling of the modes is rather strong, these second-order drifts determine the spectra of the unstable modes near the marginal conditions.

  17. Wave-particle interaction and the nonlinear saturation of the electron temperature gradient mode

    NASA Astrophysics Data System (ADS)

    Vadlamani, Srinath; Parker, Scott E.; Chen, Yang; Howard, James E.

    2004-11-01

    It has been proposed that the electron temperature gradient (ETG) driven turbulence is responsible for experimentally relevant electron thermal transport in tokamak plasmas. Significant transport levels are possible by the creation of radially elongated vortices or ``streamers" [1,2], which are sustained by the nonlinear saturation of the instability and are not susceptible to shear flow destruction, as is the case with the ion temperature gradient (ITG) mode. We present a dynamical system to explore the dependence of saturation level due to E × B and E_\\| motion, as well as the effect of radial elongation. With this model, we can predict the nonlinear saturation level of the ETG streamers. We compare our theoretical predictions with a 2D shear-less slab gyrokinetic electron code that includes the E_\\| nonlinearity. [1]F. Jenko, W. Dorland, M Kotschenreuther, and B.N. Rogers, Phys. Plasmas 7, 1904 (2000). [2]C. Holland, and P.H. Diamond, Phys. Plasmas 9, 3857 (2002). [3]W. M. Manheimer, Phys. Fluids 14, 579 (1971). [4]R. A. Smith, John A. Krommes, and W. W. Lee, Phys. Fluids 28, 1069 (1985).

  18. Temperature Gradient in Hall Thrusters

    SciTech Connect

    D. Staack; Y. Raitses; N.J. Fisch

    2003-11-24

    Plasma potentials and electron temperatures were deduced from emissive and cold floating probe measurements in a 2 kW Hall thruster, operated in the discharge voltage range of 200-400 V. An almost linear dependence of the electron temperature on the plasma potential was observed in the acceleration region of the thruster both inside and outside the thruster. This result calls into question whether secondary electron emission from the ceramic channel walls plays a significant role in electron energy balance. The proportionality factor between the axial electron temperature gradient and the electric field is significantly smaller than might be expected by models employing Ohmic heating of electrons.

  19. Effects of parallel dynamics on vortex structures in electron temperature gradient driven turbulence

    SciTech Connect

    Nakata, M.; Watanabe, T.-H.; Sugama, H.; Horton, W.

    2011-01-15

    Vortex structures and related heat transport properties in slab electron temperature gradient (ETG) driven turbulence are comprehensively investigated by means of nonlinear gyrokinetic Vlasov simulations, with the aim of elucidating the underlying physical mechanisms of the transition from turbulent to coherent states. Numerical results show three different types of vortex structures, i.e., coherent vortex streets accompanied with the transport reduction, turbulent vortices with steady transport, and a zonal-flow-dominated state, depending on the relative magnitude of the parallel compression to the diamagnetic drift. In particular, the formation of coherent vortex streets is correlated with the strong generation of zonal flows for the cases with weak parallel compression, even though the maximum growth rate of linear ETG modes is relatively large. The zonal flow generation in the ETG turbulence is investigated by the modulational instability analysis with a truncated fluid model, where the parallel dynamics such as acoustic modes for electrons is incorporated. The modulational instability for zonal flows is found to be stabilized by the effect of the finite parallel compression. The theoretical analysis qualitatively agrees with secondary growth of zonal flows found in the slab ETG turbulence simulations, where the transition of vortex structures is observed.

  20. Ion scale nonlinear interaction triggered by disparate scale electron temperature gradient mode

    NASA Astrophysics Data System (ADS)

    Moon, Chanho; Kobayashi, Tatsuya; Itoh, Kimitaka; Hatakeyama, Rikizo; Kaneko, Toshiro

    2015-05-01

    We have observed that the disparate scale nonlinear interactions between the high-frequency (˜0.4 MHz) electron temperature gradient (ETG) mode and the ion-scale low-frequency fluctuations (˜kHz) were enhanced when the amplitude of the ETG mode exceeded a certain threshold. The dynamics of nonlinear coupling between the ETG mode and the drift wave (DW) mode has already been reported [C. Moon, T. Kaneko, and R. Hatakeyama, Phys. Rev. Lett. (2013)]. Here, we have newly observed that another low-frequency fluctuation with f ≃ 3.6 kHz, i.e., the flute mode, was enhanced, corresponding to the saturation of the DW mode growth. Specifically, the bicoherence between the flute mode and the DW mode reaches a significant level when the ∇Te/Te strength exceeded 0.54 cm-1. Thus, it is shown that the ETG mode energy was transferred to the DW mode, and then the energy was ultimately transferred to the flute mode, which was triggered by the disparate scale nonlinear interactions between the ETG and ion-scale low-frequency modes.

  1. Ion scale nonlinear interaction triggered by disparate scale electron temperature gradient mode

    SciTech Connect

    Moon, Chanho; Kobayashi, Tatsuya; Itoh, Kimitaka; Hatakeyama, Rikizo; Kaneko, Toshiro

    2015-05-15

    We have observed that the disparate scale nonlinear interactions between the high-frequency (∼0.4 MHz) electron temperature gradient (ETG) mode and the ion-scale low-frequency fluctuations (∼kHz) were enhanced when the amplitude of the ETG mode exceeded a certain threshold. The dynamics of nonlinear coupling between the ETG mode and the drift wave (DW) mode has already been reported [C. Moon, T. Kaneko, and R. Hatakeyama, Phys. Rev. Lett. (2013)]. Here, we have newly observed that another low-frequency fluctuation with f ≃ 3.6 kHz, i.e., the flute mode, was enhanced, corresponding to the saturation of the DW mode growth. Specifically, the bicoherence between the flute mode and the DW mode reaches a significant level when the ∇T{sub e}/T{sub e} strength exceeded 0.54 cm{sup −1}. Thus, it is shown that the ETG mode energy was transferred to the DW mode, and then the energy was ultimately transferred to the flute mode, which was triggered by the disparate scale nonlinear interactions between the ETG and ion-scale low-frequency modes.

  2. The effects of nonthermal electron distributions on ion-temperature-gradient driven drift-wave instabilities in electron-ion plasma

    SciTech Connect

    Batool, Nazia; Masood, W.; Mirza, Arshad M.

    2012-08-15

    The effects of nonthermal electron distributions on electrostatic ion-temperature-gradient (ITG) driven drift-wave instabilities in the presence of equilibrium density, temperature, and magnetic field gradients are investigated here. By using Braginskii's transport equations for ions and Cairns as well as Kappa distribution for electrons, the coupled mode equations are derived. The modified ITG driven modes are derived, and it is found both analytically as well as numerically that the nonthermal distribution of electrons significantly modify the real frequencies as well as the growth rate of the ITG driven drift wave instability. The growth rate of ion-temperature-gradient driven instability is found to be maximum for Cairns, intermediate for Kappa, and minimum for the Maxwellian distributed electron case. The results of present investigation might be helpful to understand several wave phenomena in space and laboratory plasmas in the presence of nonthermal electrons.

  3. Studies on Mixed Slab-Toroidal Electron Temperature Gradient Mode Instabilities in the Columbia Linear Machine

    NASA Astrophysics Data System (ADS)

    Balbaky, Abed

    This thesis investigates the behavior of electron temperature gradient (ETG) driven instabilities in the Columbia Linear Machine (CLM). Building on prior work in CLM, the primary goal of this research is to produce, identify, and illuminate the basic physics of these instabilities, and explore the behavior of these instabilities under the presence of trapping and curved magnetic field lines. The first part of this thesis is focused on studying the saturated ETG mode, and the general behavior of the mode under varying levels of magnetic curvature. Measuring ETG modes can be problematic since they have large real frequencies, fast growth rates (~MHz) and small spatial scales, but carefully designed probe diagnostics can overcome these limits. In order to produce curved magnetic field lines, we modified CLM to operate with an internal movable mirror coil. We determined the temperature and density profiles under varying curvature, and measured changes in the mode structure and frequency. We found small changes in the azimuthal/poloidal structure and frequency, characterized by an increase in the m-number (mslab˜10-13 and Deltam˜1), along with small changes in the axial/toroidal structure (k∥∥, curvature < k∥∥, slab) and frequency (ocurvature < oslab). We also present one of the first experimental scaling of ETG mode amplitude as a function of curvature. Our key finding was a that overall levels of saturated ETG mode amplitude had a modest increase (˜1.5x) which is slightly larger than existing theory and simulations would predict, and that the power density and amplitude of individual mode peaks can increase more dramatically (˜2-3x amplitude). The second part of this thesis studies the radial transport for saturated ETG modes in CLM. ETG modes are believed to be a significant source of anomalous electron energy transport in plasmas, and a better understanding of these modes and the transport they drive across magnetic field lines is of particular interest

  4. Stabilization of lower hybrid drift modes by finite parallel wavenumber and electron temperature gradients in field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Farengo, R.; Guzdar, P. N.; Lee, Y. C.

    1989-08-01

    The effect of finite parallel wavenumber and electron temperature gradients on the lower hybrid drift instability is studied in the parameter regime corresponding to the TRX-2 device [Fusion Technol. 9, 48 (1986)]. Perturbations in the electrostatic potential and all three components of the vector potential are considered and finite beta electron orbit modifications are included. The electron temperature gradient decreases the growth rate of the instability but, for kz=0, unstable modes exist for ηe(=T'en0/Ten0)>6. Since finite kz effects completely stabilize the mode at small values of kz/ky(≂5×10-3), magnetic shear could be responsible for stabilizing the lower hybrid drift instability in field-reversed configurations.

  5. Effect of entropy on anomalous transport in electron-temperature-gradient-modes

    SciTech Connect

    Yaqub Khan, M.; Iqbal, J.; Ul Haq, A.

    2014-05-15

    Due to the interconnection of entropy with temperature and density of plasma, it would be interesting to investigate plasma related phenomena with respect to entropy. By employing Braginskii transport equations, it is proved that entropy is proportional to a function of potential and distribution function of entropy is re-defined, ∇S–drift in obtained. New dispersion relation is derived; it is found that the anomalous transport depends on the gradient of the entropy.

  6. Short-Scale Turbulent Fluctuations Driven by the Electron-Temperature Gradient in the National Spherical Torus Experiment

    SciTech Connect

    Mazzucato, E.; Smith, D. R.; Bell, R. E.; Kaye, S.; Davis, W.; Hosea, J.; LeBlanc, B; Wilson, J. R.; Ryan, Philip Michael; Domier, C. W.; Luhmann, N. C.; Yuh, H.; Lee, W.; Park, H.

    2008-01-01

    Measurements with coherent scattering of electromagnetic waves in plasmas of the National Spherical Torus Experiment indicate the existence of turbulent fluctuations in the range of wave numbers k?e 0:1 0:4, corresponding to a turbulence scale length nearly equal to the collisionless skin depth. Experimental observations and agreement with numerical results from a linear gyrokinetic stability code support the conjecture that the observed turbulence is driven by the electron-temperature gradient.

  7. Electron temperature gradient mode instability and stationary vortices with elliptic and circular boundary conditions in non-Maxwellian plasmas

    SciTech Connect

    Haque, Q.; Zakir, U.; Qamar, A.

    2015-12-15

    Linear and nonlinear dynamics of electron temperature gradient mode along with parallel electron dynamics is investigated by considering hydrodynamic electrons and non-Maxwellian ions. It is noticed that the growth rate of η{sub e}-mode driven linear instability decreases by increasing the value of spectral index and increases by reducing the ion/electron temperature ratio along the magnetic field lines. The eigen mode dispersion relation is also found in the ballooning mode limit. Stationary solutions in the form of dipolar vortices are obtained for both circular and elliptic boundary conditions. It is shown that the dynamics of both circular and elliptic vortices changes with the inclusion of inhomogeneity and non-Maxwellian effects.

  8. Effects of radial electric field on suppression of electron-temperature-gradient mode through multiscale nonlinear interactions

    NASA Astrophysics Data System (ADS)

    Moon, Chanho; Kaneko, Toshiro; Itoh, Kimitaka; Ida, Katsumi; Kobayashi, Tatsuya; Inagaki, Shigeru; Itoh, Sanae-I.; Hatakeyama, Rikizo

    2016-11-01

    Turbulence in fluids and plasmas is ubiquitous in Nature and in the laboratory. Contrary to the importance of the ‘scale-free’ nature of cascade in neutral fluid turbulence, the turbulence in plasma is characterised by dynamics of distinct length scales. The cross-scale interactions can be highly non-symmetric so as to generate the plasma turbulence structures. Here we report that the system of hyper-fine electron-temperature-gradient (ETG) fluctuations and microscopic drift-wave (DW) fluctuations is strongly influenced by the sign of the gradient of the radial electric field through multiscale nonlinear interactions. The selective suppression effects by radial electric field inhomogeneity on DW mode induce a new route to modify ETG mode. This suppression mechanism shows disparity with respect to the sign of the radial electric field inhomogeneity, which can be driven by turbulence, so that it could be a new source for symmetry breaking in the turbulence structure formation in plasmas.

  9. Probing temperature gradients within the GaN buffer layer of AlGaN/GaN high electron mobility transistors with Raman thermography

    SciTech Connect

    Hodges, C. Pomeroy, J.; Kuball, M.

    2014-02-14

    We demonstrate the ability of confocal Raman thermography using a spatial filter and azimuthal polarization to probe vertical temperature gradients within the GaN buffer layer of operating AlGaN/GaN high electron mobility transistors. Temperature gradients in the GaN layer are measured by using offset focal planes to minimize the contribution from different regions of the GaN buffer. The measured temperature gradient is in good agreement with a thermal simulation treating the GaN thermal conductivity as homogeneous throughout the layer and including a low thermal conductivity nucleation layer to model the heat flow between the buffer and substrate.

  10. Oxidation in a temperature gradient

    SciTech Connect

    Holcomb, Gordon R.; Covino, Bernard S., Jr.; Russell, James H.

    2001-01-01

    The effects of a temperature gradient and heat flux on point defect diffusion in protective oxide scales were examined. Irreversible thermodynamics were used to expand Fick's first law of diffusion to include a heat flux term--a Soret effect. Oxidation kinetics were developed for the oxidation of cobalt and for nickel doped with chromium. Research in progress is described to verify the effects of a heat flux by oxidizing pure cobalt in a temperature gradient above 800 C, and comparing the kinetics to isothermal oxidation. The tests are being carried out in the new high temperature gaseous corrosion and corrosion/erosion facility at the Albany Research Center.

  11. Corrosion in a temperature gradient

    SciTech Connect

    Covino, Bernard S., Jr.; Holcomb, Gordon R.; Cramer, Stephen D.; Bullard, Sophie J.; Ziomek-Moroz, Margaret; White, M.L.

    2003-01-01

    High temperature corrosion limits the operation of equipment used in the Power Generation Industry. Some of the more destructive corrosive attack occurs on the surfaces of heat exchangers, boilers, and turbines where the alloys are subjected to large temperature gradients that cause a high heat flux through the accumulated ash, the corrosion product, and the alloy. Most current and past corrosion research has, however, been conducted under isothermal conditions. Research on the thermal-gradient-affected corrosion of various metals and alloys is currently being studied at the Albany Research Center’s SECERF (Severe Environment Corrosion and Erosion Research Facility) laboratory. The purpose of this research is to verify theoretical models of heat flux effects on corrosion and to quantify the differences between isothermal and thermal gradient corrosion effects. The effect of a temperature gradient and the resulting heat flux on corrosion of alloys with protective oxide scales is being examined by studying point defect diffusion and corrosion rates. Fick’s first law of diffusion was expanded, using irreversible thermodynamics, to include a heat flux term – a Soret effect. Oxide growth rates are being measured for the high temperature corrosion of cobalt at a metal surface temperature of 900ºC. Corrosion rates are also being determined for the high temperature corrosion of carbon steel boiler tubes in a simulated waste combustion environment consisting of O2, CO2, N2, and water vapor. Tests are being conducted both isothermally and in the presence of a temperature gradient to verify the effects of a heat flux and to compare to isothermal oxidation.

  12. Electron profile stiffness and critical gradient studies

    NASA Astrophysics Data System (ADS)

    DeBoo, J. C.; Petty, C. C.; White, A. E.; Burrell, K. H.; Doyle, E. J.; Hillesheim, J. C.; Holland, C.; McKee, G. R.; Rhodes, T. L.; Schmitz, L.; Smith, S. P.; Wang, G.; Zeng, L.

    2012-08-01

    Electron profile stiffness was studied in DIII-D L-mode discharges by systematically varying the heat flux in a narrow region with electron cyclotron heating and measuring the local change produced in ∇Te. Electron stiffness was found to slowly increase with toroidal rotation velocity. A critical inverse temperature gradient scale length 1/LC ˜ 3 m-1 was identified at ρ =0.6 and found to be independent of rotation. Both the heat pulse diffusivity and the power balance diffusivity, the latter determined by integrating the measured dependence of the heat pulse diffusivity on -∇Te, were fit reasonably well by a model containing a critical inverse temperature gradient scale length and varying linearly with 1/LT above the threshold.

  13. Electron profile stiffness and critical gradient studies

    SciTech Connect

    DeBoo, J. C.; Petty, C. C.; Burrell, K. H.; Smith, S. P.; White, A. E.; Doyle, E. J.; Hillesheim, J. C.; Rhodes, T. L.; Schmitz, L.; Wang, G.; Zeng, L.; Holland, C.; McKee, G. R.

    2012-08-15

    Electron profile stiffness was studied in DIII-D L-mode discharges by systematically varying the heat flux in a narrow region with electron cyclotron heating and measuring the local change produced in {nabla}T{sub e}. Electron stiffness was found to slowly increase with toroidal rotation velocity. A critical inverse temperature gradient scale length 1/L{sub C} {approx} 3 m{sup -1} was identified at {rho}=0.6 and found to be independent of rotation. Both the heat pulse diffusivity and the power balance diffusivity, the latter determined by integrating the measured dependence of the heat pulse diffusivity on -{nabla}T{sub e}, were fit reasonably well by a model containing a critical inverse temperature gradient scale length and varying linearly with 1/L{sub T} above the threshold.

  14. Non-Maxwellian velocity distribution functions associated with steep temperature gradients in the solar transition region. Paper 1: Estimate of the electron velocity distribution functions

    NASA Technical Reports Server (NTRS)

    Roussel-Dupre, R.

    1979-01-01

    It was shown that, in the presence of the steep temperature gradients characteristic of EUV models of the solar transition region, the electron and proton velocity distribution functions are non-Maxwellian and are characterized by high energy tails. The magnitude of these tails are estimated for a model of the transition region and the heat flux is calculated at a maximum of 30 percent greater than predicted by collision-dominated theory.

  15. Electron transfer across a thermal gradient.

    PubMed

    Craven, Galen T; Nitzan, Abraham

    2016-08-23

    Charge transfer is a fundamental process that underlies a multitude of phenomena in chemistry and biology. Recent advances in observing and manipulating charge and heat transport at the nanoscale, and recently developed techniques for monitoring temperature at high temporal and spatial resolution, imply the need for considering electron transfer across thermal gradients. Here, a theory is developed for the rate of electron transfer and the associated heat transport between donor-acceptor pairs located at sites of different temperatures. To this end, through application of a generalized multidimensional transition state theory, the traditional Arrhenius picture of activation energy as a single point on a free energy surface is replaced with a bithermal property that is derived from statistical weighting over all configurations where the reactant and product states are equienergetic. The flow of energy associated with the electron transfer process is also examined, leading to relations between the rate of heat exchange among the donor and acceptor sites as functions of the temperature difference and the electronic driving bias. In particular, we find that an open electron transfer channel contributes to enhanced heat transport between sites even when they are in electronic equilibrium. The presented results provide a unified theory for charge transport and the associated heat conduction between sites at different temperatures. PMID:27450086

  16. Sound beam manipulation based on temperature gradients

    NASA Astrophysics Data System (ADS)

    Qian, Feng; Quan, Li; Liu, Xiaozhou; Gong, Xiufen

    2015-10-01

    Previous research with temperature gradients has shown the feasibility of controlling airborne sound propagation. Here, we present a temperature gradients based airborne sound manipulation schemes: a cylindrical acoustic omnidirectional absorber (AOA). The proposed AOA has high absorption performance which can almost completely absorb the incident wave. Geometric acoustics is used to obtain the refractive index distributions with different radii, which is then utilized to deduce the desired temperature gradients. Since resonant units are not applied in the scheme, its working bandwidth is expected to be broadband. The scheme is temperature-tuned and easy to realize, which is of potential interest to fields such as noise control or acoustic cloaking.

  17. Sound beam manipulation based on temperature gradients

    SciTech Connect

    Qian, Feng; Quan, Li; Liu, Xiaozhou Gong, Xiufen

    2015-10-28

    Previous research with temperature gradients has shown the feasibility of controlling airborne sound propagation. Here, we present a temperature gradients based airborne sound manipulation schemes: a cylindrical acoustic omnidirectional absorber (AOA). The proposed AOA has high absorption performance which can almost completely absorb the incident wave. Geometric acoustics is used to obtain the refractive index distributions with different radii, which is then utilized to deduce the desired temperature gradients. Since resonant units are not applied in the scheme, its working bandwidth is expected to be broadband. The scheme is temperature-tuned and easy to realize, which is of potential interest to fields such as noise control or acoustic cloaking.

  18. The study of the transition regime between slab and mixed slab-toroidal electron temperature gradient modes in a basic experiment

    NASA Astrophysics Data System (ADS)

    Balbaky, Abed; Sokolov, Vladimir; Sen, Amiya K.

    2015-05-01

    Electron temperature gradient (ETG) modes are suspected sources of anomalous electron thermal transport in magnetically confined plasmas as in tokamaks. Prior work in the Columbia Linear Machine (CLM) has been able to produce and identify slab ETG modes in a slab geometry [Wei et al., Phys. Plasmas 17, 042108 (2010)]. Now by modifying CLM to introduce curvature to the confining axial magnetic field, we have excited mixed slab-toroidal modes. Linear theory predicts a transition between slab and toroidal ETG modes when /k ∥ R c k y ρ ˜ 1 [J. Kim and W. Horton, Phys. Fluids B 3, 1167 (1991)]. We observe changes in the mode amplitude for levels of curvature Rc - 1 ≪ /k ∥ , s l a b k ⊥ ρ , which may be explained by reductions in k ∥ in the transition from slab to mixed slab-toroidal modes, as also predicted by theory. We present mode amplitude scaling as a function of magnetic field curvature. Over the range of curvature available in CLM experimentally we find a modest increase in saturated ETG potential fluctuations (˜1.5×), and a substantial increase in the power density of individual mode peaks (˜4-5×).

  19. Magnetoelectrets prepared by using temperature gradient method

    NASA Astrophysics Data System (ADS)

    Ojha, Pragya; Qureshi, M. S.; Malik, M. M.

    2015-05-01

    A novel Temperature Gradient method for preparation of magnetoelectret is proposed. Non uniform magnetic field and temperature gradient are expected to be the main cause for the formation of magnetoelectrets (MEs). Being bad conductors of heat, during their formation, there is a possibility for the existence of a temperature gradient along the dielectric electrode interface. In this condition, the motion of, molecules and charge carriers are dependent on Temperature Gradient in a preferred direction. To increase this temperature gradient on both sides of the sample novel method for the preparation of MEs is developed for the first time. For this method the special sample holders are designed in our laboratory. MEs are prepared in such a way that one surface is cooled and the other is heated, during the process. With the help of XRD analysis using Type-E orientation pattern and surface charge studies on magnetoelectrets, the two main causes Non uniform magnetic field and temperature gradient for the formation of magnetoelectrets (MEs), are authenticated experimentally.

  20. HOT PRESSING WITH A TEMPERATURE GRADIENT

    DOEpatents

    Hausner, H.H.

    1958-05-20

    A method is described for producing powder metal compacts with a high length to width ratio, which are of substantially uniform density. The process consists in arranging a heating coil around the die and providing a temperature gradient along the length of the die with the highest temperature at the point of the compact farthest away from the ram or plunger.

  1. Program predicts reservoir temperature and geothermal gradient

    SciTech Connect

    Kutasov, I.M.

    1992-06-01

    This paper reports that a Fortran computer program has been developed to determine static formation temperatures (SFT) and geothermal gradient (GG). A minimum of input data (only two shut-in temperature logs) is required to obtain the values of SFT and GG. Modeling of primary oil production and designing enhanced oil recovery (EOR) projects requires knowing the undisturbed (static) reservoir temperature. Furthermore, the bottom hole circulating temperature (BHCT) is an important factor affecting a cement's thickening time, rheological properties, compressive strength, development, and set time. To estimate the values of BHCT, the geothermal gradient should be determined with accuracy. Recently we obtained an approximate analytical solution which describes the shut-in temperature behavior.

  2. Thermoelectrically cooled temperature-gradient apparatus for comparative cell and virus temperature studies.

    PubMed

    Clark, H F; Kaminski, F; Karzon, D T

    1970-05-01

    Establishment of a near-linear temperature gradient in an incubator has been accomplished by the application of heat to one terminus of a conducting body, normally a metal bar, and the removal of heat from the other terminus of the conducting body. Such incubators have been complex and unwieldy because of the need for mechanical refrigeration. We have described a simplified temperature gradient incubator which uses thermoelectric module cooling coupled with electric heating. Along the gradient, 20 stations in two parallel rows of 10, each accommodating a 30-ml plastic cell culture flask, were continually monitored by an electronic thermometer, and the temperatures were recorded. By manipulation of two simple potentiometer controls, any temperature gradient between 0 and 50 C could be obtained. Minor deviations which occurred between theoretically perfect and obtained temperature gradients were reproducible and readily measured. The gradient incubator was particularly applicable to (i) simultaneously studying a given biological activity over the entire temperature range supporting the growth of a given cell, virus, or microorganism, or (ii) precisely defining the upper or lower temperature limits of a biological system by 10-point determinations. Preliminary experiments have demonstrated the usefulness of the apparatus in characterizing the temperature limits for growth in vitro of cells of reptilian cell lines. The gradient incubator was also successfully utilized for the characterization of the effect of temperature on the efficiency of plating of amphibian viruses and possible temperature variants of those viruses. PMID:4987201

  3. Voltammetry under a Controlled Temperature Gradient

    PubMed Central

    Krejci, Jan; Sajdlova, Zuzana; Krejci, Jan; Marvanek, Tomas

    2010-01-01

    Electrochemical measurements are generally done under isothermal conditions. Here we report on the application of a controlled temperature gradient between the working electrode surface and the solution. Using electrochemical sensors prepared on ceramic materials with extremely high specific heat conductivity, the temperature gradient between the electrode and solution was applied here as a second driving force. This application of the Soret phenomenon increases the mass transfer in the Nernst layer and enables more accurate control of the electrode response enhancement by a combination of diffusion and thermal diffusion. We have thus studied the effect of Soret phenomenon by cyclic voltammetry measurements in ferro/ferricyanide. The time dependence of sensor response disappears when applying the Soret phenomenon, and the complicated shape of the cyclic voltammogram is replaced by a simple exponential curve. We have derived the Cotrell-Soret equation describing the steady-state response with an applied temperature difference. PMID:22163578

  4. Stabilization of electron-scale turbulence by electron density gradient in national spherical torus experiment

    NASA Astrophysics Data System (ADS)

    Ruiz Ruiz, J.; Ren, Y.; Guttenfelder, W.; White, A. E.; Kaye, S. M.; Leblanc, B. P.; Mazzucato, E.; Lee, K. C.; Domier, C. W.; Smith, D. R.; Yuh, H.

    2015-12-01

    Theory and experiments have shown that electron temperature gradient (ETG) turbulence on the electron gyro-scale, kρe ≲ 1, can be responsible for anomalous electron thermal transport in NSTX. Electron scale (high-k) turbulence is diagnosed in NSTX with a high-k microwave scattering system [D. R. Smith et al., Rev. Sci. Instrum. 79, 123501 (2008)]. Here we report on stabilization effects of the electron density gradient on electron-scale density fluctuations in a set of neutral beam injection heated H-mode plasmas. We found that the absence of high-k density fluctuations from measurements is correlated with large equilibrium density gradient, which is shown to be consistent with linear stabilization of ETG modes due to the density gradient using the analytical ETG linear threshold in F. Jenko et al. [Phys. Plasmas 8, 4096 (2001)] and linear gyrokinetic simulations with GS2 [M. Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1995)]. We also found that the observed power of electron-scale turbulence (when it exists) is anti-correlated with the equilibrium density gradient, suggesting density gradient as a nonlinear stabilizing mechanism. Higher density gradients give rise to lower values of the plasma frame frequency, calculated based on the Doppler shift of the measured density fluctuations. Linear gyrokinetic simulations show that higher values of the electron density gradient reduce the value of the real frequency, in agreement with experimental observation. Nonlinear electron-scale gyrokinetic simulations show that high electron density gradient reduces electron heat flux and stiffness, and increases the ETG nonlinear threshold, consistent with experimental observations.

  5. Stabilization of electron-scale turbulence by electron density gradient in national spherical torus experiment

    SciTech Connect

    Ruiz Ruiz, J.; White, A. E.; Ren, Y.; Guttenfelder, W.; Kaye, S. M.; Leblanc, B. P.; Mazzucato, E.; Lee, K. C.; Domier, C. W.; Smith, D. R.; Yuh, H.

    2015-12-15

    Theory and experiments have shown that electron temperature gradient (ETG) turbulence on the electron gyro-scale, k{sub ⊥}ρ{sub e} ≲ 1, can be responsible for anomalous electron thermal transport in NSTX. Electron scale (high-k) turbulence is diagnosed in NSTX with a high-k microwave scattering system [D. R. Smith et al., Rev. Sci. Instrum. 79, 123501 (2008)]. Here we report on stabilization effects of the electron density gradient on electron-scale density fluctuations in a set of neutral beam injection heated H-mode plasmas. We found that the absence of high-k density fluctuations from measurements is correlated with large equilibrium density gradient, which is shown to be consistent with linear stabilization of ETG modes due to the density gradient using the analytical ETG linear threshold in F. Jenko et al. [Phys. Plasmas 8, 4096 (2001)] and linear gyrokinetic simulations with GS2 [M. Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1995)]. We also found that the observed power of electron-scale turbulence (when it exists) is anti-correlated with the equilibrium density gradient, suggesting density gradient as a nonlinear stabilizing mechanism. Higher density gradients give rise to lower values of the plasma frame frequency, calculated based on the Doppler shift of the measured density fluctuations. Linear gyrokinetic simulations show that higher values of the electron density gradient reduce the value of the real frequency, in agreement with experimental observation. Nonlinear electron-scale gyrokinetic simulations show that high electron density gradient reduces electron heat flux and stiffness, and increases the ETG nonlinear threshold, consistent with experimental observations.

  6. Temperature Gradient Field Theory of Nucleation

    NASA Astrophysics Data System (ADS)

    Das, S.; Ain, W. Q.; Azhari, A.; Prasada Rao, A. K.

    2016-02-01

    According to the proposed theory, ceramic particles present in molten metal, lose heat at a slower rate than the metallic liquid during cooling. Such condition results in the formation of a spherical thermal gradient field (TGF) around each particle. Hence, the interstitials (low temperature) of such TGFs are the regions to reach the nucleation temperature first, owing to low energy barrier than the liquid-particle interface (higher temperature). Analytics also indicate that the nucleation rate is higher at the TGF interstitials, than at the liquid-particle interface. Such TGF network results in simultaneous nucleation throughout the system, resulting in grain refinement.

  7. Spatial temperature gradients guide axonal outgrowth.

    PubMed

    Black, Bryan; Vishwakarma, Vivek; Dhakal, Kamal; Bhattarai, Samik; Pradhan, Prabhakar; Jain, Ankur; Kim, Young-Tae; Mohanty, Samarendra

    2016-01-01

    Formation of neural networks during development and regeneration after injury depends on accuracy of axonal pathfinding, which is primarily believed to be influenced by chemical cues. Recently, there is growing evidence that physical cues can play crucial role in axonal guidance. However, detailed mechanism involved in such guidance cues is lacking. By using weakly-focused near-infrared continuous wave (CW) laser microbeam in the path of an advancing axon, we discovered that the beam acts as a repulsive guidance cue. Here, we report that this highly-effective at-a-distance guidance is the result of a temperature field produced by the near-infrared laser light absorption. Since light absorption by extracellular medium increases when the laser wavelength was red shifted, the threshold laser power for reliable guidance was significantly lower in the near-infrared as compared to the visible spectrum. The spatial temperature gradient caused by the near-infrared laser beam at-a-distance was found to activate temperature-sensitive membrane receptors, resulting in an influx of calcium. The repulsive guidance effect was significantly reduced when extracellular calcium was depleted or in the presence of TRPV1-antagonist. Further, direct heating using micro-heater confirmed that the axonal guidance is caused by shallow temperature-gradient, eliminating the role of any non-photothermal effects. PMID:27460512

  8. Spatial temperature gradients guide axonal outgrowth

    NASA Astrophysics Data System (ADS)

    Black, Bryan; Vishwakarma, Vivek; Dhakal, Kamal; Bhattarai, Samik; Pradhan, Prabhakar; Jain, Ankur; Kim, Young-Tae; Mohanty, Samarendra

    2016-07-01

    Formation of neural networks during development and regeneration after injury depends on accuracy of axonal pathfinding, which is primarily believed to be influenced by chemical cues. Recently, there is growing evidence that physical cues can play crucial role in axonal guidance. However, detailed mechanism involved in such guidance cues is lacking. By using weakly-focused near-infrared continuous wave (CW) laser microbeam in the path of an advancing axon, we discovered that the beam acts as a repulsive guidance cue. Here, we report that this highly-effective at-a-distance guidance is the result of a temperature field produced by the near-infrared laser light absorption. Since light absorption by extracellular medium increases when the laser wavelength was red shifted, the threshold laser power for reliable guidance was significantly lower in the near-infrared as compared to the visible spectrum. The spatial temperature gradient caused by the near-infrared laser beam at-a-distance was found to activate temperature-sensitive membrane receptors, resulting in an influx of calcium. The repulsive guidance effect was significantly reduced when extracellular calcium was depleted or in the presence of TRPV1-antagonist. Further, direct heating using micro-heater confirmed that the axonal guidance is caused by shallow temperature-gradient, eliminating the role of any non-photothermal effects.

  9. Spatial temperature gradients guide axonal outgrowth

    PubMed Central

    Black, Bryan; Vishwakarma, Vivek; Dhakal, Kamal; Bhattarai, Samik; Pradhan, Prabhakar; Jain, Ankur; Kim, Young-tae; Mohanty, Samarendra

    2016-01-01

    Formation of neural networks during development and regeneration after injury depends on accuracy of axonal pathfinding, which is primarily believed to be influenced by chemical cues. Recently, there is growing evidence that physical cues can play crucial role in axonal guidance. However, detailed mechanism involved in such guidance cues is lacking. By using weakly-focused near-infrared continuous wave (CW) laser microbeam in the path of an advancing axon, we discovered that the beam acts as a repulsive guidance cue. Here, we report that this highly-effective at-a-distance guidance is the result of a temperature field produced by the near-infrared laser light absorption. Since light absorption by extracellular medium increases when the laser wavelength was red shifted, the threshold laser power for reliable guidance was significantly lower in the near-infrared as compared to the visible spectrum. The spatial temperature gradient caused by the near-infrared laser beam at-a-distance was found to activate temperature-sensitive membrane receptors, resulting in an influx of calcium. The repulsive guidance effect was significantly reduced when extracellular calcium was depleted or in the presence of TRPV1-antagonist. Further, direct heating using micro-heater confirmed that the axonal guidance is caused by shallow temperature-gradient, eliminating the role of any non-photothermal effects. PMID:27460512

  10. Ion-temperature-gradient driven modes in very dense magnetoplasmas

    NASA Astrophysics Data System (ADS)

    Mirza, Arshad M.; Shukla, P. K.

    2008-02-01

    By employing the quantum magnetohydrodynamic-Poisson model, a general dispersion relation for low-frequency electrostatic ion-temperature-gradient (ITG) modes in a very dense Fermi plasma is derived. The growth rate is found to be higher in the presence of ion-temperature gradients and electron corrections due to quantum fluctuations. Two new ITG driven modes in the Fermi plasma are found. These ITG modes are associated with an electron density response that differs from the Boltzmann law. It is expected that newly found ITG modes can play an important role in anomalous cross-field ion energy transport in the next-generation laser-solid density plasma experiments as well as in dense astrophysical bodies (e.g., neutron stars and the interior of white dwarfs).

  11. Role of neutral gas in scrape-off layer of tokamak plasma in the presence of finite electron temperature and its gradient

    NASA Astrophysics Data System (ADS)

    Bisai, N.; Kaw, P. K.

    2016-09-01

    The role of neutral gas molecules in the Scrape-off Layer (SOL) region of tokamak plasma is important as it is expected to modify the plasma turbulence. Two-dimensional model has been used that consists of electron continuity, molecular ion continuity, quasi-neutrality, electron energy, and neutral molecular gas continuity equations in the presence of electron impact molecular ionizations and other non-ionizing collisions. The growth rate obtained from these equations has been presented using linear theory. It is observed that the growth rate increases with the neutral gas ionization coefficients. The nonlinear equations are solved numerically in the presence and absence of the neutral gas molecules. Radial profiles of plasma density, electron temperature, and electric field have been obtained. It is found that the neutral gas reduces electric fields. More significant reduction of the poloidal electric field has been found by the neutral gas. Time series obtained from the numerical data has been analyzed. A strong decrease in fluctuation of the plasma density, electron temperature, and potential has been found at the outer region the SOL plasma in the presence of the gas molecules.

  12. Effect of Temperature Gradient on Thick Film Selective Emitter Emittance

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Good, Brian S.; Clark, Eric B.; Chen, Zheng

    1997-01-01

    A temperature gradient across a thick (greater than or equal to .1 mm) film selective emitter will produce a significant reduction in the spectral emittance from the no temperature gradient case. Thick film selective emitters of rare earth doped host materials such as yttrium-aluminum-garnet (YAG) are examples where temperature gradient effects are important. In this paper a model is developed for the spectral emittance assuming a linear temperature gradient across the film. Results of the model indicate that temperature gradients will result in reductions the order of 20% or more in the spectral emittance.

  13. Dynamic separation of macromolecules under temperature gradient

    NASA Astrophysics Data System (ADS)

    Maeda, Yusuke; Buguin, Axel; Libchaber, Albert

    2011-03-01

    Thermophoresis is a motion of suspensions in a fluid that are subjected to a temperature gradient. Although its effect is widely studied in case of single solute in water, little is known about how the mixture of different solutes is affected. We heated water with an infrared laser by ΔTmax = 5C and ∇ T = 0.25C/um to induce thermophoresis of polyethylene glycol (PEG) and DNA. PEG is depleted from the hot region and results in a stationary gradient of its high volume fraction ϕ . Under this high concentration of PEG, DNA of small concentration is submitted to thermophoresis and osmotic pressure difference. The DNA shows regime of depletion, ring-like localization and accumulation as the volume fraction of PEG increases. As the osmotic force depends on the size of trapped solutes, DNA of different size accumulates at different regions. Depending whether the DNA size is below or above 5kbp a different scaling of position versus DNA size is observed. Thermal separation is a general phenomenon. It applies also to RNA and microbeads. YTM is supported by JSPS fellowship and M.Josee-H.Kravis fellowship from the Rockefeller University.

  14. Observation of temperature-gradient-induced magnetization

    PubMed Central

    Hou, Dazhi; Qiu, Zhiyong; Iguchi, R.; Sato, K.; Vehstedt, E. K.; Uchida, K.; Bauer, G. E. W.; Saitoh, E.

    2016-01-01

    Applying magnetic fields has been the method of choice to magnetize non-magnetic materials, but they are difficult to focus. The magneto-electric effect and voltage-induced magnetization generate magnetization by applied electric fields, but only in special compounds or heterostructures. Here we demonstrate that a simple metal such as gold can be magnetized by a temperature gradient or magnetic resonance when in contact with a magnetic insulator by observing an anomalous Hall-like effect, which directly proves the breakdown of time-reversal symmetry. Such Hall measurements give experimental access to the spectral spin Hall conductance of the host metal, which is closely related to other spin caloritronics phenomena such as the spin Nernst effect and serves as a reference for theoretical calculation. PMID:27457185

  15. Observation of temperature-gradient-induced magnetization

    NASA Astrophysics Data System (ADS)

    Hou, Dazhi; Qiu, Zhiyong; Iguchi, R.; Sato, K.; Vehstedt, E. K.; Uchida, K.; Bauer, G. E. W.; Saitoh, E.

    2016-07-01

    Applying magnetic fields has been the method of choice to magnetize non-magnetic materials, but they are difficult to focus. The magneto-electric effect and voltage-induced magnetization generate magnetization by applied electric fields, but only in special compounds or heterostructures. Here we demonstrate that a simple metal such as gold can be magnetized by a temperature gradient or magnetic resonance when in contact with a magnetic insulator by observing an anomalous Hall-like effect, which directly proves the breakdown of time-reversal symmetry. Such Hall measurements give experimental access to the spectral spin Hall conductance of the host metal, which is closely related to other spin caloritronics phenomena such as the spin Nernst effect and serves as a reference for theoretical calculation.

  16. Effect of trapped electrons on soliton propagation in a plasma having a density gradient

    NASA Astrophysics Data System (ADS)

    Aziz, Farah; Stroth, Ulrich

    2009-03-01

    A Korteweg-deVries equation with an additional term due to the density gradient is obtained using reductive perturbation technique in an unmagnetized plasma having a density gradient, finite temperature ions, and two-temperature nonisothermal (trapped) electrons. This equation is solved to get the solitary wave solution using sine-cosine method. The phase velocity, soliton amplitude, and width are examined under the effect of electron and ion temperatures and their concentrations. The effect of ion (electron) temperature is found to be more significant in the presence of larger (smaller) number of trapped electrons in the plasma.

  17. Effect of trapped electrons on soliton propagation in a plasma having a density gradient

    SciTech Connect

    Aziz, Farah; Stroth, Ulrich

    2009-03-15

    A Korteweg-deVries equation with an additional term due to the density gradient is obtained using reductive perturbation technique in an unmagnetized plasma having a density gradient, finite temperature ions, and two-temperature nonisothermal (trapped) electrons. This equation is solved to get the solitary wave solution using sine-cosine method. The phase velocity, soliton amplitude, and width are examined under the effect of electron and ion temperatures and their concentrations. The effect of ion (electron) temperature is found to be more significant in the presence of larger (smaller) number of trapped electrons in the plasma.

  18. Lower hybrid drift instability with temperature gradient in a perpendicular shock wave

    NASA Technical Reports Server (NTRS)

    Zhou, Y. M.; Wong, H. K.; Wu, C. S.

    1983-01-01

    Finite beta effects and an electron temperature gradient are included in the present study of the perpendicular bow shock geometry's lower hybrid instability, where the flute mode that is stable at the shock for constant electron temperature is destabilized in the case of a sufficiently great temperature gradient. Numerical solutions are given for cases in which the ion distribution is either drifting Maxwellian or consists of two Maxwellians, to represent the effect of reflected ions at the shock. A discussion is presented of the implications of results obtained for ion and electron heating and electron acceleration at the bow shock.

  19. 9519 biotite granodiorite reacted in a temperature gradient

    SciTech Connect

    Charles, R.W.; Bayhurst, G.K.

    1980-10-01

    A biotite granodiorite from the Fenton Hill Hot Dry Rock (HDR) geothermal system was reacted in a controlled temperature gradient with initially distilled water for 60d. Polished rock prisms were located in the gradient at 72, 119, 161, 209, 270, and 310/sup 0/C. Scanning electron microscope and microprobe analyses show the appearance of secondary phases: Ca-montmorillonite at 72/sup 0/C and 119/sup 0/C; zeolite, either stilbite or heulandite, at 161/sup 0/C; and another zeolite, thomsonite, at higher temperatures. Solution analyses show a steady state equilibrium exists between solution and overgrowths after about 2 weeks of reaction. The chemographic relations for the system are explored in some detail indicating the divariant assemblages may be placed in a reasonable sequence in intensive variable space. These relations predict high and low temperature effects not directly observed experimentally as well as relevant univariant equilibria. Solution chemistry indicates the Na-Ca-K geothermometer more adequately predicts temperature in this system than does the silica geothermometer.

  20. High-temperature electronics

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Seng, Gary T.

    1990-01-01

    To meet the needs of the aerospace propulsion and space power communities, the high temperature electronics program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. This program supports a major element of the Center's mission - to perform basic and developmental research aimed at improving aerospace propulsion systems. Research is focused on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of SiC devices.

  1. Thermoacoustic mixture separation with an axial temperature gradient

    SciTech Connect

    Geller, Drew W; Swift, Gregory A

    2008-01-01

    The theory of thermoacoustic mixture separation is extended to include the effect of a nonzero axial temperature gradient. The analysis yields a new term in the second-order mole flux that is proportional to the temperature gradient and to the square of the volumetric velocity and is independent of the phasing of the wave. Because of this new term, thermoacoustic separation stops at a critical temperature gradient and changes direction above that gradient. For a traveling wave, this gradient is somewhat higher than that predicted by a simple four-step model. An experiment tests the theory for temperature gradients from 0 to 416 K/m in 50-50 He-Ar mixtures.

  2. Ion temperature gradient driven turbulence with strong trapped ion resonance

    SciTech Connect

    Kosuga, Y.; Itoh, S.-I.; Diamond, P. H.; Itoh, K.; Lesur, M.

    2014-10-15

    A theory to describe basic characterization of ion temperature gradient driven turbulence with strong trapped ion resonance is presented. The role of trapped ion granulations, clusters of trapped ions correlated by precession resonance, is the focus. Microscopically, the presence of trapped ion granulations leads to a sharp (logarithmic) divergence of two point phase space density correlation at small scales. Macroscopically, trapped ion granulations excite potential fluctuations that do not satisfy dispersion relation and so broaden frequency spectrum. The line width from emission due only to trapped ion granulations is calculated. The result shows that the line width depends on ion free energy and electron dissipation, which implies that non-adiabatic electrons are essential to recover non-trivial dynamics of trapped ion granulations. Relevant testable predictions are summarized.

  3. Temperature gradients drive mechanical energy gradients in the flight muscle of Manduca sexta.

    PubMed

    George, N T; Sponberg, S; Daniel, T L

    2012-02-01

    A temperature gradient throughout the dominant flight muscle (dorsolongitudinal muscle, DLM(1)) of the hawkmoth Manduca sexta, together with temperature-dependent muscle contractile rates, demonstrates that significant spatial variation in power production is possible within a single muscle. Using in situ work-loop analyses under varying muscle temperatures and phases of activation, we show that regional differences in muscle temperature will induce a spatial gradient in the mechanical power output throughout the DLM(1). Indeed, we note that this power gradient spans from positive to negative values across the predicted temperature range. Warm ventral subunits produce positive power at their in vivo operating temperatures, and therefore act as motors. Concurrently, as muscle temperature decreases dorsally, the subunits produce approximately zero mechanical power output, acting as an elastic energy storage source, and negative power output, behaving as a damper. Adjusting the phase of activation further influences the temperature sensitivity of power output, significantly affecting the mechanical power output gradient that is expressed. Additionally, the separate subregions of the DLM(1) did not appear to employ significant physiological compensation for the temperature-induced differences in power output. Thus, although the components of a muscle are commonly thought to operate uniformly, a significant within-muscle temperature gradient has the potential to induce a mechanical power gradient, whereby subunits within a muscle operate with separate and distinct functional roles.

  4. Effect of temperature gradient of EBI of image intensifier

    SciTech Connect

    Chen, Q.

    1994-12-31

    In this paper the authors give the experiments for the measurement of EBI of an image intensifier with the change of temperature gradient of it. At the same time, the authors give the curves of EBI versus the different temperature gradients. The paper shows the causes for EBI of an image intensifier with the change of temperature gradient. The paper concluded, from the calculations and experiments, that there is need for the waiting measurement time for us to minimize the measuremental difference of EBI caused by temperature gradient. It is also indicated that the paper provides some scientific basis for improving possibly detecting objective performance of low light level night vision system in field if they adopt the scheme for the effect of temperature gradient on EBI of an image intensifier.

  5. Directional Bleb Formation in Spherical Cells under Temperature Gradient

    PubMed Central

    Oyama, Kotaro; Arai, Tomomi; Isaka, Akira; Sekiguchi, Taku; Itoh, Hideki; Seto, Yusuke; Miyazaki, Makito; Itabashi, Takeshi; Ohki, Takashi; Suzuki, Madoka; Ishiwata, Shin'ichi

    2015-01-01

    Living cells sense absolute temperature and temporal changes in temperature using biological thermosensors such as ion channels. Here, we reveal, to our knowledge, a novel mechanism of sensing spatial temperature gradients within single cells. Spherical mitotic cells form directional membrane extensions (polar blebs) under sharp temperature gradients (≥∼0.065°C μm−1; 1.3°C temperature difference within a cell), which are created by local heating with a focused 1455-nm laser beam under an optical microscope. On the other hand, multiple nondirectional blebs are formed under gradual temperature gradients or uniform heating. During heating, the distribution of actomyosin complexes becomes inhomogeneous due to a break in the symmetry of its contractile force, highlighting the role of the actomyosin complex as a sensor of local temperature gradients. PMID:26200871

  6. Moving-Gradient Furnace With Constant-Temperature Cold Zone

    NASA Technical Reports Server (NTRS)

    Gernert, Nelson J.; Shaubach, Robert M.

    1993-01-01

    Outer heat pipe helps in controlling temperature of cold zone of furnace. Part of heat-pipe furnace that includes cold zone surrounded by another heat pipe equipped with heater at one end and water cooling coil at other end. Temperature of heat pipe maintained at desired constant value by controlling water cooling. Serves as constant-temperature heat source or heat sink, as needed, for gradient of temperature as gradient region moved along furnace. Proposed moving-gradient heat-pipe furnace used in terrestrial or spaceborne experiments on directional solidification in growth of crystals.

  7. Temperature gradients and clear-air turbulence probabilities

    NASA Technical Reports Server (NTRS)

    Bender, M. A.; Panofsky, H. A.; Peslen, C. A.

    1976-01-01

    In order to forecast clear-air turbulence (CAT) in jet aircraft flights, a study was conducted in which the data from a special-purpose instrument aboard a Boeing 747 jet airliner were compared with satellite-derived radiance gradients, conventional temperature gradients from analyzed maps, and temperature gradients obtained from a total air temperature sensor on the plane. The advantage of making use of satellite-derived data is that they are available worldwide without the need for radiosonde observations, which are scarce in many parts of the world. Major conclusions are that CAT probabilities are significantly higher over mountains than flat terrain, and that satellite radiance gradients appear to discriminate between CAT and no CAT better than conventional temperature gradients over flat lands, whereas the reverse is true over mountains, the differences between the two techniques being not large over mountains.

  8. Subsurface temperatures and geothermal gradients on the North Slope, Alaska

    USGS Publications Warehouse

    Collett, Timothy S.; Bird, Kenneth J.; Magoon, Leslie B.

    1989-01-01

    Geothermal gradients as interpreted from a series of high-resolution stabilized well-bore-temperature surveys from 46 North Slope, Alaska, wells vary laterally and vertically throughout the near-surface sediment (0-2,000 m). The data from these surveys have been used in conjunction with depths of ice-bearing permafrost, as interpreted from 102 well logs, to project geothermal gradients within and below the ice-bearing permafrost sequence. The geothermal gradients calculated from the projected temperature profiles are similar to the geothermal gradients measured in the temperature surveys. Measured and projected geothermal gradients in the ice-bearing permafrost sequence range from 1.5??C/100m in the Prudhoe Bay area to 5.1??C/100m in the National Petroleum Reserve in Alaska (NPRA).

  9. Microwave-induced adjustable nonlinear temperature gradients in microfluidic devices

    NASA Astrophysics Data System (ADS)

    Shah, Jayna J.; Geist, Jon; Gaitan, Michael

    2010-10-01

    We describe on-chip microwave generation of spatial temperature gradients in a polymeric microfluidic device that includes an integrated microstrip transmission line. The transmission line was fabricated photolithographically on commercially available adhesive copper tape. The fluid temperature during microwave heating was measured by observing the temperature-dependent fluorescence intensity of a dye solution in the microchannel. Large interference effects, which were produced by superposition of a sinusoidal and two exponential temperature distributions, were measured at 12 GHz and 19 GHz. Temperature extremes of 31 °C and 53 °C at the minimum and maximum of the sinusoid were established within 1 s. The sinusoid also produced a quasilinear temperature gradient along a 2 mm distance with a slope of 7.3 °C mm-1. This technique has the potential to benefit many biological, chemical and physical applications requiring rapid temperature gradients.

  10. Surface Tension Gradients Induced by Temperature: The Thermal Marangoni Effect

    ERIC Educational Resources Information Center

    Gugliotti, Marcos; Baptisto, Mauricio S.; Politi, Mario J.

    2004-01-01

    Surface tensions gradients were generated in a thin liquid film because of the local increase in temperature, for demonstration purposes. This is performed using a simple experiment and allows different alternatives for heat generation to be used.

  11. The temperature gradient in the solar nebula.

    PubMed

    Lewis, J S

    1974-11-01

    The available compositional data on planets and satellites can be used to place stringent limits on the thermal environment in the solar nebula. The densities of the terrestrial planets, Ceres and Vesta, the Galilean satellites, and Titan; the atmospheric compositions of several of these bodies; and geochemical and geophysical data on the earth combine to define a strong dependence of formation temperature on heliocentric distance. The pressure and temperature dependences of the condensation process are separable in the sense that the variation of the deduced formation temperatures with heliocentric distance is insensitive to even very diverse assumptions regarding the pressure profile in the nebula. It is impossible to reconcile the available compositional data with any model in which the formation temperatures of these bodies are determined by radiative equilibrium with the sun, regardless of the sun's luminosity. Rather, the data support Cameron's hypothesis of a dense, convective solar nebula, opaque to solar radiation, with an adiabatic temperature-pressure profile.

  12. Vacuum membrane distillation by microchip with temperature gradient.

    PubMed

    Zhang, Yaopeng; Kato, Shinji; Anazawa, Takanori

    2010-04-01

    A multilayered microchip (25 x 95 mm) used for vacuum distillation is designed, fabricated and tested by rectification of a water-methanol mixture. The polymer chip employs a cooling channel to generate a temperature gradient along a distillation channel below, which is separated into a channel (72 microm deep) for liquid phase and a channel (72 microm deep) for vapor phase by an incorporated microporous poly(tetrafluoroethylene) (PTFE) membrane. The temperature gradient is controlled by adjusting hotplate temperature and flow rate of cooling water to make the temperatures in the stripping section higher than the increasing boiling points of the water-enriched liquids and the temperatures in the rectifying section lower than the decreasing dew points of the methanol-enriched vapors. The effects of temperature gradient, feed composition, feed flow rate and membrane pore size on the micro distillation are also investigated. A theoretical plate number up to 1.8 is achieved at the optimum conditions. PMID:20300677

  13. Material Gradients in Stretchable Substrates toward Integrated Electronic Functionality.

    PubMed

    Naserifar, Naser; LeDuc, Philip R; Fedder, Gary K

    2016-05-01

    The approach toward a stretchable electronic substrate employs multiple soft polymer layers patterned around silicon chips, which act as surrogates for conventional electronics chips, to create a controllable stiffness gradient. Adding just one intermediate polymer layer results in a six-fold increase in the strain failure threshold enabling the substrate to be stretched to over twice its length before delamination occurs. PMID:26989814

  14. Temperature Gradients Induce Phase Separation in a Miscible Polymer Solution

    NASA Astrophysics Data System (ADS)

    Kumaki, Jiro; Hashimoto, Takeji; Granick, Steve

    1996-09-01

    Phase separation occurred up to 20 °C above the coexistence temperature in a polymer solution (polystyrene-polybutadiene-dioctylphthalate) to which small temperature gradients ( ~2 °C) were applied. Before convection began, spinodal-like patterns with characteristic spacing that grew in proportion to time elapsed persisted for times up to hours. The cause appears to be thermally driven concentration gradients normal to the surface, large enough to induce phase separation parallel to the surface, although temperatures throughout the mixture exceeded the thermodynamic coexistence temperature.

  15. The temperature gradient in the solar nebula

    NASA Technical Reports Server (NTRS)

    Lewis, J. S.

    1974-01-01

    The available compositional data on planets and satellites can be used to place stringent limits on the thermal environment in the solar nebula. The densities of the terrestrial planets, Ceres and Vesta, the Galilean satellites, and Titan; the atmospheric compositions of several of these bodies; and geochemical and geophysical data on the earth combine to define a strong dependence of formation temperature on heliocentric distance. It is impossible to reconcile the available compositional data with any model in which the formation temperatures of these bodies are determined by radiative equilibrium with the sun, regardless of the sun's luminosity. Rather, the data support Cameron's hypothesis of a dense, convective solar nebula, opaque to solar radiation, with an adiabatic temperature-pressure profile.

  16. Convective flows in enclosures with vertical temperature or concentration gradients

    NASA Technical Reports Server (NTRS)

    Wang, L. W.; Chai, A. T.; Sun, D. J.

    1988-01-01

    The transport process in the fluid phase during the growth of a crystal has a profound influence on the structure and quality of the solid phase. In vertical growth techniques the fluid phase is often subjected to vertical temperature and concentration gradients. The main objective is to obtain more experimental data on convective flows in enclosures with vertical temperature or concentration gradients. Among actual crystal systems the parameters vary widely. The parametric ranges studied for mass transfer are mainly dictated by the electrochemical system employed to impose concentration gradients. Temperature or concentration difference are maintained between two horizontal end walls. The other walls are kept insulated. Experimental measurements and observations were made of the heat transfer or mass transfer, flow patterns, and the mean and fluctuating temperature distribution. The method used to visualize the flow pattern in the thermal cases is an electrochemical pH-indicator method. Laser shadowgraphs are employed to visualize flow patterns in the solutal cases.

  17. Broadband acoustic omnidirectional absorber based on temperature gradients

    NASA Astrophysics Data System (ADS)

    Qian, Feng; Zhao, Ping; Quan, Li; Liu, Xiaozhou; Gong, Xiufen

    2014-08-01

    Previous research into acoustic omnidirectional absorber (AOA) has shown the feasibility of forming acoustic black hole to guide the incident wave into the central absorptive cavity. However, major restrictions to practical applications exist due to complexity of designing metamaterials and unchangeable working states. Here, we propose two cylindrical, two-dimensional AOA schemes based on temperature gradients for airborne applications. One scheme with accurately designed temperature gradients has a better absorption performance which can almost completely absorb the incident wave, while the other one with a simplified configuration has low complexity which makes it much easier to realize. Geometric acoustics is used to obtain the refractive index distributions with different radii, which is then utilized to deduce the desired temperature gradients. Both schemes are temperature-tuned with broad working bandwidth.

  18. Gradient Limitations in Room Temperature and Superconducting Acceleration Structures

    SciTech Connect

    Solyak, N. A.

    2009-01-22

    Accelerating gradient is a key parameter of the accelerating structure in large linac facilities, like future Linear Collider. In room temperature accelerating structures the gradient is limited mostly by breakdown phenomena, caused by high surface electric fields or pulse surface heating. High power processing is a necessary procedure to clean surface and improve the gradient. In the best tested X-band structures the achieved gradient is exceed 100 MV/m in of {approx}200 ns pulses for breakdown rate of {approx}10{sup -7}. Gradient limit depends on number of factors and no one theory which can explain all sets of experimental results and predict gradient in new accelerating structure. In paper we briefly overview the recent experimental results of breakdown studies, progress in understanding of gradient limitations and scaling laws. Although superconducting rf technology has been adopted throughout the world for ILC, it has frequently been difficult to reach the predicted performance in these structures due to a number of factors: multipactoring, field emission, Q-slope, thermal breakdown. In paper we are discussing all these phenomena and the ways to increase accelerating gradient in SC cavity, which are a part of worldwide R and D program.

  19. Gradient limitations in room temperature and superconducting acceleration structures

    SciTech Connect

    Solyak, N.A.; /Fermilab

    2008-10-01

    Accelerating gradient is a key parameter of the accelerating structure in large linac facilities, like future Linear Collider. In room temperature accelerating structures the gradient is limited mostly by breakdown phenomena, caused by high surface electric fields or pulse surface heating. High power processing is a necessary procedure to clean surface and improve the gradient. In the best tested X-band structures the achieved gradient is exceed 100 MV/m in of {approx}200 ns pulses for breakdown rate of {approx} 10{sup -7}. Gradient limit depends on number of factors and no one theory which can explain all sets of experimental results and predict gradient in new accelerating structure. In paper we briefly overview the recent experimental results of breakdown studies, progress in understanding of gradient limitations and scaling laws. Although superconducting rf technology has been adopted throughout the world for ILC, it has frequently been difficult to reach the predicted performance in these structures due to a number of factors: multipactoring, field emission, Q-slope, thermal breakdown. In paper we are discussing all these phenomena and the ways to increase accelerating gradient in SC cavity, which are a part of worldwide R&D program.

  20. An Expression for the Temperature Gradient in Chaotic Fields

    SciTech Connect

    S.R. Hudson

    2008-12-22

    A coordinate system adapted to the invariant structures of chaotic magnetic fields is constructed. The coordinates are based on a set of ghost-surfaces, defined via an action-gradient flow between the minimax and minimizing periodic orbits. The construction of the chaotic coordinates allows an expression describing the temperature gradient across a chaotic magnetic field to be derived. The results are in close agreement with a numerical calculation.

  1. Multispecies Density and Temperature Gradient Dependence of Quasilinear Particle and Energy Fluxes

    SciTech Connect

    G. Rewoldt; R.V. Budny; W.M. Tang

    2004-08-09

    The variations of the normalized quasilinear particle and energy fluxes with artificial changes in the density and temperature gradients, as well as the variations of the linear growth rates and real frequencies, for ion temperature gradient and trapped-electron modes, are calculated. The quasilinear fluxes are normalized to the total energy flux, summed over all species. Here, realistic cases for tokamaks and spherical torii are considered which have two impurity species. For situations where there are substantial changes in the normalized fluxes, the ''diffusive approximation,'' in which the normalized fluxes are taken to be linear in the gradients, is seen to be inaccurate. Even in the case of small artificial changes in density or temperature gradients, changes in the fluxes of different species (''off-diagonal'') generally are significant, or even dominant, compared to those for the same species (''diagonal'').

  2. Temperature Trapping: Energy-Free Maintenance of Constant Temperatures as Ambient Temperature Gradients Change.

    PubMed

    Shen, Xiangying; Li, Ying; Jiang, Chaoran; Huang, Jiping

    2016-07-29

    It is crucial to maintain constant temperatures in an energy-efficient way. Here we establish a temperature-trapping theory for asymmetric phase-transition materials with thermally responsive thermal conductivities. Then we theoretically introduce and experimentally demonstrate a concept of an energy-free thermostat within ambient temperature gradients. The thermostat is capable of self-maintaining a desired constant temperature without the need of consuming energy even though the environmental temperature gradient varies in a large range. As a model application of the concept, we design and show a different type of thermal cloak that has a constant temperature inside its central region in spite of the changing ambient temperature gradient, which is in sharp contrast to all the existing thermal cloaks. This work has relevance to energy-saving heat preservation, and it provides guidance both for manipulating heat flow without energy consumption and for designing new metamaterials with temperature-responsive or field-responsive parameters in many disciplines such as thermotics, optics, electromagnetics, acoustics, mechanics, electrics, and magnetism. PMID:27517778

  3. Temperature Trapping: Energy-Free Maintenance of Constant Temperatures as Ambient Temperature Gradients Change

    NASA Astrophysics Data System (ADS)

    Shen, Xiangying; Li, Ying; Jiang, Chaoran; Huang, Jiping

    2016-07-01

    It is crucial to maintain constant temperatures in an energy-efficient way. Here we establish a temperature-trapping theory for asymmetric phase-transition materials with thermally responsive thermal conductivities. Then we theoretically introduce and experimentally demonstrate a concept of an energy-free thermostat within ambient temperature gradients. The thermostat is capable of self-maintaining a desired constant temperature without the need of consuming energy even though the environmental temperature gradient varies in a large range. As a model application of the concept, we design and show a different type of thermal cloak that has a constant temperature inside its central region in spite of the changing ambient temperature gradient, which is in sharp contrast to all the existing thermal cloaks. This work has relevance to energy-saving heat preservation, and it provides guidance both for manipulating heat flow without energy consumption and for designing new metamaterials with temperature-responsive or field-responsive parameters in many disciplines such as thermotics, optics, electromagnetics, acoustics, mechanics, electrics, and magnetism.

  4. Rock alteration in an experimentally imposed temperature gradient

    SciTech Connect

    Charles, R.W.

    1980-01-01

    Rock alteration in a dynamic (circulating) hydrothermal system can be applied to any geologic system with mobile fluids. Some examples are geothermal energy extraction, ore mineral extraction, and radioactive waste isolation. While isothermal systems yield important results, polythermal (i.e., temperature gradient) systems more closely model reactions of fluid moving through a rock reservoir. The above examples will generally involve temperature gradients across the rock reservoir. A controlled temperature gradient circulation system was developed to help define these rock-fluid reactions. Six fine grained prisms are placed along the axis of a 113 cm pressure vessel. The prisms are at 72, 119, 161, 209, 270, and 310{degrees}C under flow conditions of 4 cc/min. at 1/3 kbar total pressure. In this experiment a granodiorite was reacted with initially distilled water.

  5. Critically balanced ion temperature gradient turbulence in fusion plasmas.

    PubMed

    Barnes, M; Parra, F I; Schekochihin, A A

    2011-09-01

    Scaling laws for ion temperature gradient driven turbulence in magnetized toroidal plasmas are derived and compared with direct numerical simulations. Predicted dependences of turbulence fluctuation amplitudes, spatial scales, and resulting heat fluxes on temperature gradient and magnetic field line pitch are found to agree with numerical results in both the driving and inertial ranges. Evidence is provided to support the critical balance conjecture that parallel streaming and nonlinear perpendicular decorrelation times are comparable at all spatial scales, leading to a scaling relationship between parallel and perpendicular spatial scales. This indicates that even strongly magnetized plasma turbulence is intrinsically three dimensional. PMID:22026680

  6. Critically Balanced Ion Temperature Gradient Turbulence in Fusion Plasmas

    SciTech Connect

    Barnes, M.

    2011-09-09

    Scaling laws for ion temperature gradient driven turbulence in magnetized toroidal plasmas are derived and compared with direct numerical simulations. Predicted dependences of turbulence fluctuation amplitudes, spatial scales, and resulting heat fluxes on temperature gradient and magnetic field line pitch are found to agree with numerical results in both the driving and inertial ranges. Evidence is provided to support the critical balance conjecture that parallel streaming and nonlinear perpendicular decorrelation times are comparable at all spatial scales, leading to a scaling relationship between parallel and perpendicular spatial scales. This indicates that even strongly magnetized plasma turbulence is intrinsically three dimensional.

  7. An Enhanced Nonlinear Critical Gradient for Electron Turbulent Transport due to Reversed Magnetic Shear

    SciTech Connect

    Peterson, J. L.; Hammet, G. W.; Mikkelsen, D. R.; Yuh, H. Y.; Candy, J.; Guttenfelder, W.; Kaye, S. M.; LeBlanc, B.

    2011-05-11

    The first nonlinear gyrokinetic simulations of electron internal transport barriers (e-ITBs) in the National Spherical Torus Experiment show that reversed magnetic shear can suppress thermal transport by increasing the nonlinear critical gradient for electron-temperature-gradient-driven turbulence to three times its linear critical value. An interesting feature of this turbulence is non- linearly driven off-midplane radial streamers. This work reinforces the experimental observation that magnetic shear is likely an effective way of triggering and sustaining e-ITBs in magnetic fusion devices.

  8. Effects of Spatial Gradients on Electron Runaway Acceleration

    NASA Technical Reports Server (NTRS)

    MacNeice, Peter; Ljepojevic, N. N.

    1996-01-01

    The runaway process is known to accelerate electrons in many laboratory plasmas and has been suggested as an acceleration mechanism in some astrophysical plasmas, including solar flares. Current calculations of the electron velocity distributions resulting from the runaway process are greatly restricted because they impose spatial homogeneity on the distribution. We have computed runaway distributions which include consistent development of spatial gradients in the energetic tail. Our solution for the electron velocity distribution is presented as a function of distance along a finite length acceleration region, and is compared with the equivalent distribution for the infinitely long homogenous system (i.e., no spatial gradients), as considered in the existing literature. All these results are for the weak field regime. We also discuss the severe restrictiveness of this weak field assumption.

  9. Gyrokinetic particle simulation of ion temperature gradient drift instabilities

    SciTech Connect

    Lee, W.W.; Tang, W.M.

    1987-04-01

    Ion temperature gradient drift instabilities have been investigated using gyrokinetic particle simulation techniques for the purpose of identifying the mechanisms responsible for their nonlinear saturation as well as the associated anomalous transport. For simplicity, the simulation has been carried out in a shear-free slab geometry, where the background pressure gradient is held fixed in time to represent quasistatic profiles typical of tokamak discharges. It is found that the nonlinearly generated zero-frequency responses for the ion parallel momentum and pressure are the dominant mechanisms giving rise to saturation. This is supported by the excellent agreement between the simulation results and those obtained from mode coupling calculations.

  10. Electron Bernstein wave electron temperature profile diagnostic

    SciTech Connect

    G. Taylor; P. Efthimion; B. Jones; T. Munsat; J. Spaleta; J. Hosea; R. Kaita; R. Majeski; J. Menard

    2000-07-20

    Electron cyclotron emission (ECE) has been employed as a standard electron temperature profile diagnostic on many tokamaks and stellarators, but most magnetically confined plasma devices cannot take advantage of standard ECE diagnostics to measure temperature. They are either overdense, operating at high density relative to the magnetic field (e.g. where the plasma frequency is much greater than the electron cyclotron frequency, as in a spherical torus) or they have insufficient density and temperature to reach the blackbody condition. Electron Bernstein waves (EBWs) are electrostatic waves that can propagate in overdense plasmas and have a high optical thickness at the electron cyclotron resonance layers, as a result of their large perpendicular wavenumber. This paper reports on measurements of EBW emission on the CDX-U spherical torus, where B{sub o} {approximately} 2 kG, {approximately}10{sup 13} cm{sup {minus}3} and T{sub e} {approx} to 10 -- 200 eV. Results are presented for electromagnetic measurements of EBW emission, mode-converted near the plasma edge. The EBW emission was absolutely calibrated and compared to the electron temperature profile measured by a multi-point Thomson scattering diagnostic. Depending on the plasma conditions, the mode converted EBW radiation temperature was found to be less than or equal to T{sub e} and the emission source was determined to be radially localized at the electron cyclotron resonance layer. A Langmuir triple probe and a 140 GHz interferometer were employed to measure changes in edge density profile in the vicinity of the upper hybrid resonance, where the mode conversion of the EBWs is expected to occur. Initial results suggest EBW emission and EBW heating are viable concepts for overdense plasmas.

  11. Effect of wind and temperature gradients on received acoustic energy

    NASA Technical Reports Server (NTRS)

    Brienzo, Richard K.

    1990-01-01

    The effect of refraction due to wind and temperature gradients on energy received from low flying aircraft is examined. A series of helicopter and jet flyby's were recorded with a microphone array on two separate days, each with distinctly different meteorological conditions. Energy in the 100 to 200 Hertz band is shown as a function of aircraft range from the array, and compared with the output of the Fast Field Program.

  12. Moving-Temperature-Gradient Heat-Pipe Furnace Element

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Lehoczky, Sandor L.; Gernert, Nelson J.

    1993-01-01

    In improved apparatus, ampoule of material directionally solidified mounted in central hole of annular heat pipe, at suitable axial position between heated and cooled ends. Heated end held in fixed position in single-element furnace; other end left in ambient air or else actively cooled. Gradient of temperature made to move along heat pipe by changing pressure of noncondensable gas. In comparison with prior crystal-growing apparatuses, this one simpler, smaller, and more efficient.

  13. Salinity gradient power: influences of temperature and nanopore size.

    PubMed

    Tseng, Shiojenn; Li, Yu-Ming; Lin, Chih-Yuan; Hsu, Jyh-Ping

    2016-01-28

    Salinity gradient power is a promising, challenging, and readily available renewable energy. Among various methods for harvesting this clean energy, nanofluidic reverse electrodialysis (NRED) is of great potential. Since ionic transport depends highly on the temperature, so is the efficiency of the associated power generated. Here, we conduct a theoretical analysis on the influences of temperature and nanopore size on NRED, focusing on the temperature and nanopore size. The results gathered reveal that the maximum power increases with increasing temperature, but the conversion efficiency depends weakly on temperature. In general, the smaller the nanopore radius or the longer the nanopore, the better the ion selectivity. These results provide desirable and necessary information for improving the performance of NRED as well as designing relevant units in renewable energy plants.

  14. Salinity gradient power: influences of temperature and nanopore size

    NASA Astrophysics Data System (ADS)

    Tseng, Shiojenn; Li, Yu-Ming; Lin, Chih-Yuan; Hsu, Jyh-Ping

    2016-01-01

    Salinity gradient power is a promising, challenging, and readily available renewable energy. Among various methods for harvesting this clean energy, nanofluidic reverse electrodialysis (NRED) is of great potential. Since ionic transport depends highly on the temperature, so is the efficiency of the associated power generated. Here, we conduct a theoretical analysis on the influences of temperature and nanopore size on NRED, focusing on the temperature and nanopore size. The results gathered reveal that the maximum power increases with increasing temperature, but the conversion efficiency depends weakly on temperature. In general, the smaller the nanopore radius or the longer the nanopore, the better the ion selectivity. These results provide desirable and necessary information for improving the performance of NRED as well as designing relevant units in renewable energy plants.

  15. Effects of predation risk across a latitudinal temperature gradient.

    PubMed

    Matassa, Catherine M; Trussell, Geoffrey C

    2015-03-01

    The nonconsumptive effects (NCEs) of predators on prey behavior and physiology can influence the structure and function of ecological communities. However, the strength of NCEs should depend on the physiological and environmental contexts in which prey must choose between food and safety. For ectotherms, temperature effects on metabolism and foraging rates may shape these choices, thereby altering NCE strength. We examined NCEs in a rocky intertidal food chain across a latitudinal sea surface temperature gradient within the Gulf of Maine. The NCEs of green crabs (Carcinus maenas) on the foraging, growth, and growth efficiency of prey snails (Nucella lapillus) were consistent across a broad (~8.5 °C) temperature range, even though snails that were transplanted south consumed twice as many mussels (Mytilus edulis) and grew twice as much as snails that were transplanted north. The positive effects of warmer temperatures in the south allowed snails under high risk to perform similarly to or better than snails under low risk at cooler temperatures. Our results suggest that for prey populations residing at temperatures below their thermal optimum, the positive effects of future warming may offset the negative effects of predation risk. Such effects may be favorable to prey populations facing increased predation rates due to warmer temperatures associated with climate change. Attention to the direct and indirect effects of temperature on species interactions should improve our ability to predict the effects of climate change on ecological communities. PMID:25433694

  16. Ion temperature gradient turbulence in helical and axisymmetric RFP plasmas

    SciTech Connect

    Predebon, I.; Xanthopoulos, P.

    2015-05-15

    Turbulence induced by the ion temperature gradient (ITG) is investigated in the helical and axisymmetric plasma states of a reversed field pinch device by means of gyrokinetic calculations. The two magnetic configurations are systematically compared, both linearly and nonlinearly, in order to evaluate the impact of the geometry on the instability and its ensuing transport, as well as on the production of zonal flows. Despite its enhanced confinement, the high-current helical state demonstrates a lower ITG stability threshold compared to the axisymmetric state, and ITG turbulence is expected to become an important contributor to the total heat transport.

  17. Acoustic disturbances in a gas with an axial temperature gradient

    NASA Astrophysics Data System (ADS)

    Lariononv, V. M.

    2016-01-01

    Linear analysis acoustic disturbances in one-dimensional gas flow with a longitudinal gradient of the sound speed provided. Known wave equation for the acoustic velocity is used. In the case of linear distribution of the sound speed in the hot part of the flow equation has an exact analytic solution. This allows to define the expression describing the propagation acoustic disturbances in a gas with varying mean temperature and density. The results can be used to calculate the resonance frequencies of the gas oscillations in the laboratory and industrial combustors.

  18. Temperature Coefficient of Secondary Electron Emission: A Novel Thermal Metrology

    NASA Astrophysics Data System (ADS)

    Khan, Md. Imran; Lubner, Sean Daniel; Ogletree, David Frank; Wong, Ed; Dames, Chris

    State of the art nanoscale temperature mapping techniques include Scanning Thermal Microscopy (SThM) and optical thermoreflectance, though these have the challenges of requiring sample contact and being diffraction limited, respectively. Near field scanning optical microscopy (NSOM) can beat the diffraction limit but still cannot measure temperature at 10s of nanometer resolution. SEM is well known for topographic imaging but has not been previously used for thermal mapping. Past literature suggested that secondary electron yields might have a small temperature dependence due to electron-phonon scattering and/or temperature dependence of work function. We previously measured the temperature coefficient of secondary electron emission of several group IV and III-V semiconductors and found it to range from around 100 to 1000 ppm/K. Here, we utilize this to map a spatial temperature gradient in an SEM image. We implement a double-heater structure to produce a temperature gradient along the plane of a substrate. The primary electron beam is scanned across the sample's surface while the emitted (secondary plus backscattered) electron current and net absorbed sample currents are simultaneously recorded. The results demonstrate the ability to map a spatial temperature gradient.

  19. Non-Maxwellian velocity distribution functions associated with steep temperature gradients in the solar transition region. Paper 2: The effect of non-Maxwellian electron distribution functions on ionization equilibrium calculations for carbon, nitrogen and oxygen

    NASA Technical Reports Server (NTRS)

    Roussel-Dupre, R.

    1979-01-01

    Non-Maxwellian electron velocity distribution functions, previously computed for Dupree's model of the solar transition region are used to calculate ionization rates for ions of carbon, nitrogen, and oxygen. Ionization equilibrium populations for these ions are then computed and compared with similar calculations assuming Maxwellian distribution functions for the electrons. The results show that the ion populations change (compared to the values computed with a Maxwellian) in some cases by several orders of magnitude depending on the ion and its temperature of formation.

  20. 43 CFR 3252.13 - How long may I collect information from my temperature gradient well?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false How long may I collect information from my temperature gradient well? 3252.13 Section 3252.13 Public Lands: Interior Regulations Relating to Public Lands... temperature gradient well? You may collect information from your temperature gradient well for as long as...

  1. 43 CFR 3252.13 - How long may I collect information from my temperature gradient well?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false How long may I collect information from my temperature gradient well? 3252.13 Section 3252.13 Public Lands: Interior Regulations Relating to Public Lands... temperature gradient well? You may collect information from your temperature gradient well for as long as...

  2. 43 CFR 3252.14 - How must I complete a temperature gradient well?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false How must I complete a temperature gradient... LEASING Conducting Exploration Operations § 3252.14 How must I complete a temperature gradient well? Complete temperature gradient wells to allow for proper abandonment, and to prevent interzonal migration...

  3. 43 CFR 3252.14 - How must I complete a temperature gradient well?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false How must I complete a temperature gradient... LEASING Conducting Exploration Operations § 3252.14 How must I complete a temperature gradient well? Complete temperature gradient wells to allow for proper abandonment, and to prevent interzonal migration...

  4. 43 CFR 3252.13 - How long may I collect information from my temperature gradient well?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false How long may I collect information from my temperature gradient well? 3252.13 Section 3252.13 Public Lands: Interior Regulations Relating to Public Lands... temperature gradient well? You may collect information from your temperature gradient well for as long as...

  5. 43 CFR 3252.14 - How must I complete a temperature gradient well?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false How must I complete a temperature gradient... LEASING Conducting Exploration Operations § 3252.14 How must I complete a temperature gradient well? Complete temperature gradient wells to allow for proper abandonment, and to prevent interzonal migration...

  6. 43 CFR 3252.14 - How must I complete a temperature gradient well?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false How must I complete a temperature gradient... LEASING Conducting Exploration Operations § 3252.14 How must I complete a temperature gradient well? Complete temperature gradient wells to allow for proper abandonment, and to prevent interzonal migration...

  7. 43 CFR 3252.13 - How long may I collect information from my temperature gradient well?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false How long may I collect information from my temperature gradient well? 3252.13 Section 3252.13 Public Lands: Interior Regulations Relating to Public Lands... temperature gradient well? You may collect information from your temperature gradient well for as long as...

  8. Local Glass Transition Temperature Gradients Near Polymer-Polymer Interfaces

    NASA Astrophysics Data System (ADS)

    Baglay, Roman; Roth, Connie

    2015-03-01

    For decades the glass transition in confined systems has been studied with the hopes of uncovering the governing length scales that impact these dynamics. However, understanding length scales of local gradients in glass transition temperature (Tg) near a free surface have been hampered by limitations of how to treat the enhanced mobility at the free surface theoretically. We have previously reported on the local Tg in multilayer structures made from high molecular weight polystyrene (PS) and poly(n-butyl methacrylate) (PnBMA), a weakly immiscible system with a ~ 7 nm interfacial width. Using ultrathin (10-15 nm) pyrene-labeled layers inserted into the multilayer structure at different positions (z) from the glassy-rubbery interface, we were able to map the local Tg(z) profile across this glassy-rubbery interface with temperature-dependent fluorescence intensity measurements. Our work revealed an asymmetric local mobility gradient propagating hundreds of nanometers away from the glassy-rubbery PS-PnBMA interface into the glassy PS and rubbery PnBMA sides before bulk Tgs were recovered far from the interface. Here we extend these measurements to investigate how the local Tg(z) profile in PS varies when in contact with a variety of immiscible polymers whose Tgs vary between +90 K to -80 K relative to the Tg of PS, so-called hard vs soft confinement.

  9. Acoustical power amplification and damping by temperature gradients.

    PubMed

    Biwa, Tetsushi; Komatsu, Ryo; Yazaki, Taichi

    2011-01-01

    Ceperley proposed a concept of a traveling wave heat engine ["A pistonless Stirling engine-The traveling wave heat engine," J. Acoust. Soc. Am. 66, 1508-1513 (1979).] that provided a starting point of thermoacoustics today. This paper verifies experimentally his idea through observation of amplification and strong damping of a plane acoustic traveling wave as it passes through axial temperature gradients. The acoustic power gain is shown to obey a universal curve specified by a dimensionless parameter ωτα; ω is the angular frequency and τα is the relaxation time for the gas to thermally equilibrate with channel walls. As an application of his idea, a three-stage acoustic power amplifier is developed, which attains the gain up to 10 with a moderate temperature ratio of 2.3. PMID:21302995

  10. Acoustical power amplification and damping by temperature gradients.

    PubMed

    Biwa, Tetsushi; Komatsu, Ryo; Yazaki, Taichi

    2011-01-01

    Ceperley proposed a concept of a traveling wave heat engine ["A pistonless Stirling engine-The traveling wave heat engine," J. Acoust. Soc. Am. 66, 1508-1513 (1979).] that provided a starting point of thermoacoustics today. This paper verifies experimentally his idea through observation of amplification and strong damping of a plane acoustic traveling wave as it passes through axial temperature gradients. The acoustic power gain is shown to obey a universal curve specified by a dimensionless parameter ωτα; ω is the angular frequency and τα is the relaxation time for the gas to thermally equilibrate with channel walls. As an application of his idea, a three-stage acoustic power amplifier is developed, which attains the gain up to 10 with a moderate temperature ratio of 2.3.

  11. Role of density gradient driven trapped electron mode turbulence in the H-mode inner core with electron heating

    NASA Astrophysics Data System (ADS)

    Ernst, D. R.; Burrell, K. H.; Guttenfelder, W.; Rhodes, T. L.; Dimits, A. M.; Bravenec, R.; Grierson, B. A.; Holland, C.; Lohr, J.; Marinoni, A.; McKee, G. R.; Petty, C. C.; Rost, J. C.; Schmitz, L.; Wang, G.; Zemedkun, S.; Zeng, L.

    2016-05-01

    A series of DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] low torque quiescent H-mode experiments show that density gradient driven trapped electron mode (DGTEM) turbulence dominates the inner core of H-mode plasmas during strong electron cyclotron heating (ECH). Adding 3.4 MW ECH doubles Te/Ti from 0.5 to 1.0, which halves the linear DGTEM critical density gradient, locally reducing density peaking, while transport in all channels displays extreme stiffness in the density gradient. This suggests that fusion α-heating may degrade inner core confinement in H-mode plasmas with moderate density peaking and low collisionality, with equal electron and ion temperatures, key conditions expected in burning plasmas. Gyrokinetic simulations using GYRO [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] (and GENE [Jenko et al., Phys. Plasmas 7, 1904 (2000)]) closely match not only particle, energy, and momentum fluxes but also density fluctuation spectra from Doppler backscattering (DBS), with and without ECH. Inner core DBS density fluctuations display discrete frequencies with adjacent toroidal mode numbers, which we identify as DGTEMs. GS2 [Dorland et al., Phys. Rev. Lett. 85, 5579 (2000)] predictions show the DGTEM can be suppressed, to avoid degradation with electron heating, by broadening the current density profile to attain q0>qmin>1 .

  12. Modelling of drift wave turbulence with a finite ion temperature gradient

    SciTech Connect

    Hamaguchi, S.; Horton, W.

    1990-10-01

    With the use of consistent orderings in {var epsilon} = {rho}{sub s}/a and {delta} = k{sub {perpendicular}}{rho}{sub s} model equations are derived for the drift instabilities from the electrostatic two-fluid equations. The electrical resistivity {eta} included in the system allows the dynamics of both the collisional drift wave instability ({eta} {ne} 0) and the collisionless ion temperature gradient driven instability ({eta} = 0). The model equations used extensively in earlier nonlinear studies are obtained as appropriate limits of the model equations derived in the present work. The effects of sheared velocity flows in the equilibrium plasma and electron temperature fluctuations are also discussed. 14 refs.

  13. Demonstrating the Temperature Gradient Impact on Grain Growth in UO2 Using the Phase Field Method

    SciTech Connect

    Michael R Tonks; Yongfeng Zhang; Xianming Bai; Paul C Millett

    2014-01-01

    Grain boundaries (GBs) are driven to migrate up a temperature gradient. In this work, we use a phase field (PF) model to investigate the impact of temperature gradients on normal grain growth. GB motion in 2D UO2 polycrystals is predicted under increasing temperature gradients. We find that the temperature gradient does not significantly impact the average grain growth behavior, because the curvature driving force is dominant. However, it does cause significant local migration of the individual grains. In addition, the change in the GB mobility due to the temperature gradient results in larger grains in the hot portion of the polycrystal.

  14. A sandwich-designed temperature-gradient incubator for studies of microbial temperature responses.

    PubMed

    Elsgaard, Lars; Jørgensen, Leif Wagner

    2002-03-01

    A temperature-gradient incubator (TGI) is described, which produces a thermal gradient over 34 aluminium modules (15x30x5 cm) intersected by 2-mm layers of partly insulating graphite foil (SigraFlex Universal). The new, sandwich-designed TGI has 30 rows of six replicate sample wells for incubation of 28-ml test tubes. An electric plate heats one end of the TGI, and the other end is cooled by thermoelectric Peltier elements in combination with a liquid cooling system. The TGI is equipped with 24 calibrated Pt-100 temperature sensors and insulated by polyurethane plates. A PC-operated SCADA (Supervisory Control And Data Acquisition) software (Genesis 4.20) is applied for temperature control using three advanced control loops. The precision of the TGI temperature measurements was better than +/-0.12 degrees C, and for a 0-40 degrees C gradient, the temperature at the six replicate sample wells varied less than +/-0.04 degrees C. Temperatures measured in incubated water samples closely matched the TGI temperatures, which showed a linear relationship to the sample row number. During operation for 8 days with a gradient of 0-40 degrees C, the temperature at the cold end was stable within +/-0.02 degrees C, while the temperatures at the middle and the warm end were stable within +/-0.08 degrees C (n=2370). Using the new TGI, it was shown that the fine-scale (1 degrees C) temperature dependence of S(o) oxidation rates in agricultural soil (0-29 degrees C) could be described by the Arrhenius relationship. The apparent activation energy (E(a)) for S(o) oxidation was 79 kJ mol(-1), which corresponded to a temperature coefficient (Q(10)) of 3.1. These data demonstrated that oxidation of S(o) in soil is strongly temperature-dependent. In conclusion, the new TGI allowed a detailed study of microbial temperature responses as it produced a precise, stable, and certifiable temperature gradient by the new and combined use of sandwich-design, thermoelectric cooling, and advanced

  15. Effects of Temperature Gradients and Heat Fluxes on High-Temperature Oxidation

    SciTech Connect

    Holcomb, G.R.

    2008-04-01

    The effects of a temperature gradient and heat flux on point defect diffusion in protective oxide scales were examined. Irreversible thermodynamics were used to expand Fick’s first law of diffusion to include a heat-flux term—a Soret effect. Oxidation kinetics were developed for the oxidation of cobalt and of nickel doped with chromium. Research is described to verify the effects of a heat flux by oxidizing pure cobalt in a temperature gradient at 900 °C, and comparing the kinetics to isothermal oxidation. No evidence of a heat flux effect was found.

  16. Coherent structures in ion temperature gradient turbulence-zonal flow

    SciTech Connect

    Singh, Rameswar; Singh, R.; Kaw, P.; Gürcan, Ö. D.; Diamond, P. H.

    2014-10-15

    Nonlinear stationary structure formation in the coupled ion temperature gradient (ITG)-zonal flow system is investigated. The ITG turbulence is described by a wave-kinetic equation for the action density of the ITG mode, and the longer scale zonal mode is described by a dynamic equation for the m = n = 0 component of the potential. Two populations of trapped and untrapped drift wave trajectories are shown to exist in a moving frame of reference. This novel effect leads to the formation of nonlinear stationary structures. It is shown that the ITG turbulence can self-consistently sustain coherent, radially propagating modulation envelope structures such as solitons, shocks, and nonlinear wave trains.

  17. Numerical Simulation of Transient Liquid Phase Bonding under Temperature Gradient

    NASA Astrophysics Data System (ADS)

    Ghobadi Bigvand, Arian

    Transient Liquid Phase bonding under Temperature Gradient (TG-TLP bonding) is a relatively new process of TLP diffusion bonding family for joining difficult-to-weld aerospace materials. Earlier studies have suggested that in contrast to the conventional TLP bonding process, liquid state diffusion drives joint solidification in TG-TLP bonding process. In the present work, a mass conservative numerical model that considers asymmetry in joint solidification is developed using finite element method to properly study the TG-TLP bonding process. The numerical results, which are experimentally verified, show that unlike what has been previously reported, solid state diffusion plays a major role in controlling the solidification behavior during TG-TLP bonding process. The newly developed model provides a vital tool for further elucidation of the TG-TLP bonding process.

  18. Quasi-steady temperature gradient metamorphism in idealized, dry snow

    SciTech Connect

    Christon, M. . Methods Development Group); Burns, P.J. . Dept. of Mechanical Engineering); Sommerfeld, R.A. )

    1994-03-01

    A three-dimensional model for heat and mass transport in microscale ice lattices of dry snow is formulated consistent with conservation laws and solid-vapor interface constraints. A finite element model that employs continuous mesh deformation is developed, and calculation of the effective diffusion rates in snow, metamorphosing under a temperature gradient, is performed. Results of the research provide basic insight into the movement of heat and water vapor in seasonal snowcovers. Agreement between the numerical results and measured data of effective thermal conductivity is excellent. The enhancement to the water vapor diffusion rate in snow is bracketed in the range of 1.05--2.0 times that of water vapor in dry air.

  19. Fluid simulations of toroidal ion temperature gradient turbulence

    SciTech Connect

    Sandberg, I.; Isliker, H.; Pavlenko, V.P.; Hizanidis, K.; Vlahos, L.

    2006-02-15

    The evolution of the toroidal ion temperature gradient mode instability is numerically studied by using the equations based on the standard reactive fluid model. The long-term dynamics of the instability are investigated using random-phase, small-amplitude fluctuations for initial conditions. The main events during the evolution of the instability that lead to the formation of large-scale coherent structures are described and the role of the dominant nonlinearities is clarified. The polarization drift nonlinearity leads to the inverse energy cascade while the convective ion heat nonlinearity is responsible for the saturation of the instability. Finally, the sensitivity of the saturated state to the initial plasma conditions is examined.

  20. Collisional model of quasilinear transport driven by toroidal electrostatic ion temperature gradient modes

    SciTech Connect

    Pusztai, I.; Fueloep, T.; Candy, J.; Hastie, R. J.

    2009-07-15

    The stability of ion temperature gradient (ITG) modes and the quasilinear fluxes driven by them are analyzed in weakly collisional tokamak plasmas using a semianalytical model based on an approximate solution of the gyrokinetic equation, where collisions are modeled by a Lorentz operator. Although the frequencies and growth rates of ITG modes far from threshold are only very weakly sensitive to the collisionality, the a/L{sub Ti} threshold for stability is affected significantly by electron-ion collisions. The decrease in collisionality destabilizes the ITG mode driving an inward particle flux, which leads to the steepening of the density profile. Closed analytical expressions for the electron and ion density and temperature responses have been derived without expansion in the smallness of the magnetic drift frequencies. The results have been compared with gyrokinetic simulations with GYRO and illustrated by showing the scalings of the eigenvalues and quasilinear fluxes with collisionality, temperature scale length, and magnetic shear.

  1. Temperature effects on fish production across a natural thermal gradient.

    PubMed

    O'Gorman, Eoin J; Ólafsson, Ólafur P; Demars, Benoît O L; Friberg, Nikolai; Guðbergsson, Guðni; Hannesdóttir, Elísabet R; Jackson, Michelle C; Johansson, Liselotte S; McLaughlin, Órla B; Ólafsson, Jón S; Woodward, Guy; Gíslason, Gísli M

    2016-09-01

    Global warming is widely predicted to reduce the biomass production of top predators, or even result in species loss. Several exceptions to this expectation have been identified, however, and it is vital that we understand the underlying mechanisms if we are to improve our ability to predict future trends. Here, we used a natural warming experiment in Iceland and quantitative theoretical predictions to investigate the success of brown trout as top predators across a stream temperature gradient (4-25 °C). Brown trout are at the northern limit of their geographic distribution in this system, with ambient stream temperatures below their optimum for maximal growth, and above it in the warmest streams. A five-month mark-recapture study revealed that population abundance, biomass, growth rate, and production of trout all increased with stream temperature. We identified two mechanisms that contributed to these responses: (1) trout became more selective in their diet as stream temperature increased, feeding higher in the food web and increasing in trophic position; and (2) trophic transfer through the food web was more efficient in the warmer streams. We found little evidence to support a third potential mechanism: that external subsidies would play a more important role in the diet of trout with increasing stream temperature. Resource availability was also amplified through the trophic levels with warming, as predicted by metabolic theory in nutrient-replete systems. These results highlight circumstances in which top predators can thrive in warmer environments and contribute to our knowledge of warming impacts on natural communities and ecosystem functioning. PMID:26936833

  2. The radial gradients and collisional properties of solar wind electrons

    NASA Technical Reports Server (NTRS)

    Gilvie, K. W.; Scudder, J. D.

    1977-01-01

    The plasma instrument on Mariner 10 carried out measurements of electron density and temperature in the interplanetary medium between heliocentric distances of 0.85 and 0.45 AU. Due to the stable coronal configuration and low solar activity during the period of observation, the radial variations of these quantities could be obtained. The power-law exponent of the core temperature was measured to be -0.3 + or - 0.04, and the halo temperature was found to be almost independent of heliocentric distance. The exponent of the power law for the density variation was 2.5 + or - 0.2 and the extrapolated value at 1 AU was consistent with measured values during the same period. Calculations of the core electron self-collision time, and the core-halo equipartition time were made as a function of radial distance. These measurements indicate a macroscale picture of a Coulomb-collisional core and a collisionless isothermal halo. Extrapolating back to the sun, core and halo temperatures become equal at a radial distance of approx. 2-15 radii.

  3. Dust Eruptions on Mars by Temperature Gradient Induced Forces

    NASA Astrophysics Data System (ADS)

    Kelling, Thorben; Wurm, G.; Reiss, D.; Kocifaj, M.; Klacka, J.; Teiser, J.

    2009-09-01

    Dust lifting processes on Mars are an active field of investigation. Explanations for dust phenomena even on high elevations on Mars have to be found. In general, wind stress is supposed to be the main lifting process but on average wind velocities are too low. We found, that temperature induced forces are capable of procuring dust ejections and even massive dust eruptions from a dust bed. A Mars soil simulant (JSC Mars 1A) was placed within a vacuum chamber which was evacuated to typical martian pressures of some mbar and particle ejections and eruptions were observed. Several different temperature gradient dependend lifting processes are at work. While e.g. photophoretic and thermophoretic forces only result in minor particle ejections, Knudsen Compressor effects cause continuous and major eruptions. These eruptions are even enhanced if a transition from illumination to no illumination occurs. We argue that the massive transition eruptions may be the dominant dust lifting process for e.g. dust devils. Moving dust devils, which are optically thick, induce a fast transition from light to shadow for the underlying dust bed. Even for lower initial radiation intensities, this will result in particle eruptions. As long as the wind eddy exists, dust devils on Mars may be self sustained even at low pressures or high altitudes. This work recieved support by the DFG and DAAD.

  4. Temperature Gradient Reconstructions from the Eastern Equatorial Pacific Cold Tongue

    NASA Astrophysics Data System (ADS)

    Ford, H. L.; Ravelo, C.; Hovan, S. A.

    2009-12-01

    Sea surface temperature (SST) reconstructions from the Western and Eastern Equatorial Pacific (WEP and EEP) indicate the Equatorial Pacific was in a permanent El Niño-like state during the early Pliocene. Specifically, SST in the WEP was nearly the same as today, while SST in the EEP cold tongue region was 2-3 °C warmer than today. Climatic transitions recorded in the EEP are of particular interest due to the region’s sensitivity to changes in upwelling and thermocline depth, and due to its role in the global ocean heat balance. However, not much is known about the evolution of the EEP cold tongue. This study aims to reconstruct the east-west and north-south gradients within the EEP using new SST and sub-surface temperature records from ODP Sites 848, 849, and 853 and published paleoceanographic records from the EEP to examine the temporal and spatial evolution of the EEP cold tongue from the Pliocene to Recent. Mg/Ca analyses on Globigerinoides sacculifer and Globorotalia tumida and alkenone analyses have been made to reconstruct east-west and north-south SST and thermocline depth, respectively. Currently, G. tumida Mg/Ca records have been generated for Sites 848 (most southern) and 853 (most northern) and G. sacculifer Mg/Ca and alkenone records have been generated for Site 848. This study compares new data to published data to achieve exceptional spatial coverage of the EEP cold tongue. Comparison of SST data to reconstructions of thermocline temperatures, paleoproductivity, and wind field strength will provide insight into the underlying causes of changes in the intensity and spatial extent of the cold tongue. Understanding these causes will aid in explaining the transition from the permanent El Niño-like state to modern conditions as climate cooled through the Pliocene.

  5. Fast wave stabilization/destabilization of ion temperature gradient drift waves in a tokamak plasma

    NASA Astrophysics Data System (ADS)

    Panwar, Anuraj; Ryu, Chang-Mo

    2015-11-01

    A kinetic description is developed for the stabilization/destabilization of ion temperature gradient drift waves by a large amplitude whistler wave. Parametric coupling of a whistler wave with the low frequency drift waves can yields whistler sidebands of their sum and difference frequencies. The whistler pump and sidebands can exert a ponderomotive force on electrons and modify the eigen-frequency of drift waves. This coupling process can lead to the stabilization/destabilization of drift waves, depending on the wave numbers of the interacting waves as well as the whistler pump power. The effectiveness of obliquely propagating whistler pump is also examined.

  6. Porous cobalt spheres for high temperature gradient magnetically assisted fluidized beds

    SciTech Connect

    Atwater, James E.; Akse, James R.; Jovanovic, Goran N.; Wheeler, Richard R.; Sornchamni, Thana

    2003-02-20

    Porous metallic cobalt spheres have been prepared as high temperature capable media for employment in gradient magnetically assisted fluidization and filtration technologies. Cobalt impregnated alginate beads are first formed by extrusion of an aqueous suspension of Co{sub 3}O{sub 4} into a Co(II) chloride solution. The organic polymer is thermally decomposed yielding cobalt oxide spheres, followed by reduction to the metallic state, and densification. Cobalt beads have been produced with porosities ranging between 10 and 50%, depending upon sintering conditions. The product media have been characterized by scanning electron microscopy (SEM), nitrogen adsorption porosimetry, and vibrating sample magnetometry.

  7. Porous cobalt spheres for high temperature gradient magnetically assisted fluidized beds

    NASA Technical Reports Server (NTRS)

    Atwater, James E.; Akse, James R.; Jovanovic, Goran N.; Wheeler, Richard R Jr; Sornchamni, Thana

    2003-01-01

    Porous metallic cobalt spheres have been prepared as high temperature capable media for employment in gradient magnetically assisted fluidization and filtration technologies. Cobalt impregnated alginate beads are first formed by extrusion of an aqueous suspension of Co3O4 into a Co(II) chloride solution. The organic polymer is thermally decomposed yielding cobalt oxide spheres, followed by reduction to the metallic state, and densification. Cobalt beads have been produced with porosities ranging between 10 and 50%, depending upon sintering conditions. The product media have been characterized by scanning electron microscopy (SEM), nitrogen adsorption porosimetry, and vibrating sample magnetometry. c2003 Elsevier Science Ltd. All rights reserved.

  8. Nonlinear Upshift of Trapped Electron Mode Critical Density Gradient: Simulation and Experiment

    NASA Astrophysics Data System (ADS)

    Ernst, D. R.

    2012-10-01

    A new nonlinear critical density gradient for pure trapped electron mode (TEM) turbulence increases strongly with collisionality, saturating at several times the linear threshold. The nonlinear TEM threshold appears to limit the density gradient in new experiments subjecting Alcator C-Mod internal transport barriers to modulated radio-frequency heating. Gyrokinetic simulations show the nonlinear upshift of the TEM critical density gradient is associated with long-lived zonal flow dominated states [1]. This introduces a strong temperature dependence that allows external RF heating to control TEM turbulent transport. During pulsed on-axis heating of ITB discharges, core electron temperature modulations of 50% were produced. Bursts of line-integrated density fluctuations, observed on phase contrast imaging, closely follow modulations of core electron temperature inside the ITB foot. Multiple edge fluctuation measurements show the edge response to modulated heating is out of phase with the core response. A new limit cycle stability diagram shows the density gradient appears to be clamped during on-axis heating by the nonlinear TEM critical density gradient, rather than by the much lower linear threshold. Fluctuation wavelength spectra will be quantitatively compared with nonlinear TRINITY/GS2 gyrokinetic transport simulations, using an improved synthetic diagnostic. In related work, we are implementing the first gyrokinetic exact linearized Fokker Planck collision operator [2]. Initial results show short wavelength TEMs are fully stabilized by finite-gyroradius collisional effects for realistic collisionalities. The nonlinear TEM threshold and its collisionality dependence may impact predictions of density peaking based on quasilinear theory, which excludes zonal flows.[4pt] In collaboration with M. Churchill, A. Dominguez, C. L. Fiore, Y. Podpaly, M. L. Reinke, J. Rice, J. L. Terry, N. Tsujii, M. A. Barnes, I. Bespamyatnov, R. Granetz, M. Greenwald, A. Hubbard, J. W

  9. Tightly linked zonal and meridional sea surface temperature gradients over the past five million years

    NASA Astrophysics Data System (ADS)

    Fedorov, Alexey V.; Burls, Natalie J.; Lawrence, Kira T.; Peterson, Laura C.

    2015-12-01

    The climate of the tropics and surrounding regions is defined by pronounced zonal (east-west) and meridional (equator to mid-latitudes) gradients in sea surface temperature. These gradients control zonal and meridional atmospheric circulations, and thus the Earth’s climate. Global cooling over the past five million years, since the early Pliocene epoch, was accompanied by the gradual strengthening of these temperature gradients. Here we use records from the Atlantic and Pacific oceans, including a new alkenone palaeotemperature record from the South Pacific, to reconstruct changes in zonal and meridional sea surface temperature gradients since the Pliocene, and assess their connection using a comprehensive climate model. We find that the reconstructed zonal and meridional temperature gradients vary coherently over this time frame, showing a one-to-one relationship between their changes. In our model simulations, we systematically reduce the meridional sea surface temperature gradient by modifying the latitudinal distribution of cloud albedo or atmospheric CO2 concentration. The simulated zonal temperature gradient in the equatorial Pacific adjusts proportionally. These experiments and idealized modelling indicate that the meridional temperature gradient controls upper-ocean stratification in the tropics, which in turn controls the zonal gradient along the equator, as well as heat export from the tropical oceans. We conclude that this tight linkage between the two sea surface temperature gradients posits a fundamental constraint on both past and future climates.

  10. 43 CFR 3252.12 - How deep may I drill a temperature gradient well?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false How deep may I drill a temperature... RESOURCE LEASING Conducting Exploration Operations § 3252.12 How deep may I drill a temperature gradient well? (a) You may drill a temperature gradient well to any depth that we approve in your...

  11. 43 CFR 3252.12 - How deep may I drill a temperature gradient well?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false How deep may I drill a temperature... RESOURCE LEASING Conducting Exploration Operations § 3252.12 How deep may I drill a temperature gradient well? (a) You may drill a temperature gradient well to any depth that we approve in your...

  12. 43 CFR 3252.12 - How deep may I drill a temperature gradient well?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false How deep may I drill a temperature... RESOURCE LEASING Conducting Exploration Operations § 3252.12 How deep may I drill a temperature gradient well? (a) You may drill a temperature gradient well to any depth that we approve in your...

  13. 43 CFR 3252.12 - How deep may I drill a temperature gradient well?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false How deep may I drill a temperature... RESOURCE LEASING Conducting Exploration Operations § 3252.12 How deep may I drill a temperature gradient well? (a) You may drill a temperature gradient well to any depth that we approve in your...

  14. Heat transport in steep temperature gradients. I - Small flaring solar loops

    NASA Technical Reports Server (NTRS)

    Smith, D. F.

    1986-01-01

    Results on nonlocal heat transport which properly takes into account the presence of fast electrons with mean free paths much longer than the temperature scale height L are reviewed. In terms of the mean free path for the slow bulk electrons, lambda(s), the nonlocal effects are important whenever lambda(s)/L greater than 0.001, with the following consequences. The heat flux in the hot part of the gradient is reduced relative to the Spitzer-Haerm value q(SH) which does not take into account the heat carried away by the fast electrons. The heat flux in the cold part of the gradient is enhanced relative to the value q(SH) which does not take into account the heat deposited by the fast electrons. These quite general results, which should have several applications in astrophysics, are applied to the problem of thermal hard X-ray burst models. It is shown that heat is not bottled up as effectively as in some past models, and temperatures achieved for realistic energy input rates are consequently not as high. As a result such sources can be effective only in the soft part (10-30 keV) of the hard X-ray range for energy input rates up to 6,400 ergs/cu cm s. The analysis is based on a fluid model and does not consider the X-ray signature of fast electrons which escape to distances far beyond the conduction fronts formed. It is shown that such electrons could at most be effective in the soft part of the hard X-ray range.

  15. Body temperature and behavior of tree shrews and flying squirrels in a thermal gradient.

    PubMed

    Refinetti, R

    1998-02-15

    The daily rhythms of body temperature, temperature selection, and locomotor activity of tree shrews and flying squirrels were studied in a thermal gradient. In accordance with previous observations in other mammalian species, the rhythm of temperature selection was found to be 180 degrees out of phase with the body temperature rhythm in both species. Comparison of the amplitude of the body temperature rhythm in the presence and absence of the ambient temperature gradient indicated that behavioral temperature selection reduces the amplitude of the body temperature rhythm. This provides support for the hypothesis that the homeostatic control of body temperature opposes-rather than facilitates-the circadian oscillation in body temperature. PMID:9523893

  16. Ion-temperature-gradient sensitivity of the hydrodynamic instability caused by shear in the magnetic-field-aligned plasma flow

    SciTech Connect

    Mikhailenko, V. V.; Mikhailenko, V. S.; Lee, Hae June; Koepke, M. E.

    2014-07-15

    The cross-magnetic-field (i.e., perpendicular) profile of ion temperature and the perpendicular profile of the magnetic-field-aligned (parallel) plasma flow are sometimes inhomogeneous for space and laboratory plasma. Instability caused either by a gradient in the ion-temperature profile or by shear in the parallel flow has been discussed extensively in the literature. In this paper, (1) hydrodynamic plasma stability is investigated, (2) real and imaginary frequency are quantified over a range of the shear parameter, the normalized wavenumber, and the ratio of density-gradient and ion-temperature-gradient scale lengths, and (3) the role of inverse Landau damping is illustrated for the case of combined ion-temperature gradient and parallel-flow shear. We find that increasing the ion-temperature gradient reduces the instability threshold for the hydrodynamic parallel-flow shear instability, also known as the parallel Kelvin-Helmholtz instability or the D'Angelo instability. We also find that a kinetic instability arises from the coupled, reinforcing action of both free-energy sources. For the case of comparable electron and ion temperature, we illustrate analytically the transition of the D'Angelo instability to the kinetic instability as (a) the shear parameter, (b) the normalized wavenumber, and (c) the ratio of density-gradient and ion-temperature-gradient scale lengths are varied and we attribute the changes in stability to changes in the amount of inverse ion Landau damping. We show that near a normalized wavenumber k{sub ⊥}ρ{sub i} of order unity (i) the real and imaginary values of frequency become comparable and (ii) the imaginary frequency, i.e., the growth rate, peaks.

  17. Density gradient free electron collisionally excited x-ray laser

    DOEpatents

    Campbell, E.M.; Rosen, M.D.

    1984-11-29

    An operational x-ray laser is provided that amplifies 3p-3s transition x-ray radiation along an approximately linear path. The x-ray laser is driven by a high power optical laser. The driving line focused optical laser beam illuminates a free-standing thin foil that may be associated with a substrate for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the x-ray laser gain medium. The x-ray laser may be driven by more than one optical laser beam. The x-ray laser has been successfully demonstrated to function in a series of experimental tests.

  18. Density gradient free electron collisionally excited X-ray laser

    DOEpatents

    Campbell, Edward M.; Rosen, Mordecai D.

    1989-01-01

    An operational X-ray laser (30) is provided that amplifies 3p-3s transition X-ray radiation along an approximately linear path. The X-ray laser (30) is driven by a high power optical laser. The driving line focused optical laser beam (32) illuminates a free-standing thin foil (34) that may be associated with a substrate (36) for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the X-ray laser gain medium. The X-ray laser (30) may be driven by more than one optical laser beam (32, 44). The X-ray laser (30) has been successfully demonstrated to function in a series of experimental tests.

  19. Temperature Gradients on the Cell Wall in the Critical Viscosity Experiment

    NASA Technical Reports Server (NTRS)

    Berg, Robert F.; Moldover, Michael R.

    1993-01-01

    Because of the diverging susceptibility delta rho/delta Tau near the liquid-vapor critical point, temperature gradients must be kept small to maintain adequate sample homogeneity. In our Science Requirements Document we paid particular attention to radial density gradients caused by equilibration of the xenon sample. Axial density gradients were addressed through the requirement that the cell's copper wall have a gradient less than 22 microK/m. This report re-examines the cell wall's temperature distribution in more detail by estimating all known significant contributions to temperature differences on the cell's wall.

  20. Microscale gradients and their role in electron-transfer mechanisms in biofilms

    PubMed Central

    Beyenal, Haluk; Babauta, Jerome T.

    2014-01-01

    The chemical and electrochemical gradients in biofilms play a critical role in electron-transfer processes between cells and a solid electron acceptor. Most of the time, electron-transfer processes have been investigated in the bulk phase, for a biofilm electrode or for an isolated component of a biofilm. Currently, the knowledge of chemical and electrochemical gradients in living biofilms respiring on a solid surface is limited. We believe the chemical and electrochemical gradients are critical for explaining electron-transfer mechanisms. The bulk conditions, an isolated part of a biofilm or a single cell cannot be used to explain electron-transfer mechanisms in biofilm systems. In addition, microscale gradients explain how the reactor configuration plays a critical role in electron-transfer processes. PMID:23176474

  1. 43 CFR 3252.16 - How must I abandon a temperature gradient well?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false How must I abandon a temperature gradient well? 3252.16 Section 3252.16 Public Lands: Interior Regulations Relating to Public Lands (Continued... LEASING Conducting Exploration Operations § 3252.16 How must I abandon a temperature gradient well?...

  2. 43 CFR 3252.15 - When must I abandon a temperature gradient well?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false When must I abandon a temperature gradient well? 3252.15 Section 3252.15 Public Lands: Interior Regulations Relating to Public Lands (Continued... LEASING Conducting Exploration Operations § 3252.15 When must I abandon a temperature gradient well?...

  3. 43 CFR 3252.16 - How must I abandon a temperature gradient well?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false How must I abandon a temperature gradient well? 3252.16 Section 3252.16 Public Lands: Interior Regulations Relating to Public Lands (Continued... LEASING Conducting Exploration Operations § 3252.16 How must I abandon a temperature gradient well?...

  4. 43 CFR 3252.15 - When must I abandon a temperature gradient well?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false When must I abandon a temperature gradient well? 3252.15 Section 3252.15 Public Lands: Interior Regulations Relating to Public Lands (Continued... LEASING Conducting Exploration Operations § 3252.15 When must I abandon a temperature gradient well?...

  5. 43 CFR 3252.15 - When must I abandon a temperature gradient well?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false When must I abandon a temperature gradient well? 3252.15 Section 3252.15 Public Lands: Interior Regulations Relating to Public Lands (Continued... LEASING Conducting Exploration Operations § 3252.15 When must I abandon a temperature gradient well?...

  6. 43 CFR 3252.16 - How must I abandon a temperature gradient well?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false How must I abandon a temperature gradient well? 3252.16 Section 3252.16 Public Lands: Interior Regulations Relating to Public Lands (Continued... LEASING Conducting Exploration Operations § 3252.16 How must I abandon a temperature gradient well?...

  7. 43 CFR 3252.16 - How must I abandon a temperature gradient well?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false How must I abandon a temperature gradient well? 3252.16 Section 3252.16 Public Lands: Interior Regulations Relating to Public Lands (Continued... LEASING Conducting Exploration Operations § 3252.16 How must I abandon a temperature gradient well?...

  8. 43 CFR 3252.15 - When must I abandon a temperature gradient well?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false When must I abandon a temperature gradient well? 3252.15 Section 3252.15 Public Lands: Interior Regulations Relating to Public Lands (Continued... LEASING Conducting Exploration Operations § 3252.15 When must I abandon a temperature gradient well?...

  9. Determination of surface normal temperature gradients using thermographic phosphors and filtered Rayleigh scattering

    NASA Astrophysics Data System (ADS)

    Brübach, J.; Zetterberg, J.; Omrane, A.; Li, Z. S.; Aldén, M.; Dreizler, A.

    2006-09-01

    Wall temperature as well as the temperature distribution within or close-by the boundary layer of an electrically heated axisymmetric jet impinging on a flat plate were monitored to deduce wall-normal temperature gradients. The radial surface temperature profile of the plate was determined by coating it with thermographic phosphors (TPs), materials whose phosphorescence decay time is dependent on their temperature. The TP was excited electronically by a frequency-tripled Nd:YAG laser (355 nm) and the temporal decay of the phosphorescence intensity was measured zero-dimensionally by a photomultiplier tube. In this case the 659-nm emission line of Mg3F2GeO4:Mn was monitored. The non-intrusive measurement of gas temperatures near the surface was performed two-dimensionally by filtered Rayleigh scattering (FRS). A tunable frequency-tripled single-longitudinal-mode alexandrite laser beam at 254 nm was formed into a light sheet pointing parallel to the surface. The scattered light was imaged through a very narrow linewidth atomic mercury filter onto an intensified charged coupled device (ICCD). The elastic stray light from surfaces was strongly suppressed, whereas Doppler-broadened light was detected. Thermographic phosphors proved to be reliable for the measurement of surface temperatures. Dependent on the specific experimental conditions, problems appeared with signals interfering with the FRS radiation close-by the surface. Results and challenges of this approach are discussed.

  10. Study of near scrape-off layer (SOL) temperature and density gradient lengths with Thomson scattering

    NASA Astrophysics Data System (ADS)

    Sun, H. J.; Wolfrum, E.; Eich, T.; Kurzan, B.; Potzel, S.; Stroth, U.; the ASDEX Upgrade Team

    2015-12-01

    Improvements to the Thomson scattering diagnostic have enabled the study of near scrape-off layer (SOL) decay lengths in the 2014 ASDEX Upgrade experimental campaign. A database of H-mode discharges has been studied using a two-line fit method for the core and log-linear fit for the near SOL region under both attached and detached divertor conditions. SOL electron temperature {{T}e} profiles have been found to have a radial exponential decay distribution which does not vary poloidally, consistent with the two-point model. In attached H-mode regimes, a log-linear regression shows that the SOL upstream dataset has the same main parametric dependencies as the scaling inferred from downstream Infrared camera measurements. A simple collisional relation from two-point model is found to best relate the upstream decay lengths and downstream divertor power widths. The SOL {{T}e} gradient length appears to be independent of {{T}e} pedestal parameters, but may correlate with the pedestal electron pressure parameters. Both the pedestal and SOL density and temperature scale lengths are linearly correlated with an almost constant gradient ratio, {ηe} . The smaller gradient ratio {ηe} and the fact that the Spitzer-Härm model is more valid, agrees with the studied plasma lying in the collisional regime. A transition to flat SOL ne profiles, previously reported for L-mode plasmas in many machines, has been observed in AUG detatched H-mode regimes. When the flattening of density profile happens in H-mode detached plasmas, the broadening of near SOL {{T}e} decay length {λ{{Te,u}}} also appears which may be good news for future machines.

  11. A microfluidic platform for studying the effects of small temperature gradients in an incubator environment

    PubMed Central

    Das, Sarit K.; Chung, Seok; Zervantonakis, Ioannis; Atnafu, Joseph; Kamm, Roger D.

    2008-01-01

    Studies on the effects of variations in temperature and mild temperature gradients on cells, gels, and scaffolds are important from the viewpoint of biological function. Small differences in temperature are known to elicit significant variations in cell behavior and individual protein reactivity. For the study of thermal effects and gradients in vitro, it is important to develop microfluidic platforms which are capable of controlling temperature gradients in an environment which mimics the range of physiological conditions. In the present paper, such a microfluidic thermal gradient system (μTGS) system is proposed which can create and maintain a thermal gradient throughout a cell-seeded gel matrix using the hot and cold water supply integrated in the system in the form of a countercurrent heat exchanger. It is found that a uniform temperature gradient can be created and maintained in the device even inside a high temperature and high humidity environment of an incubator. With the help of a hot and cold circuit controlled from outside the incubator the temperature gradient can be regulated. A numerical simulation of the device demonstrates the thermal feature of the chip. Cell viability and activity under a thermal gradient are examined by placing human breast cancer cells in the device. PMID:19693373

  12. Electron decoherence at low temperatures

    NASA Astrophysics Data System (ADS)

    Mohanty, Pritiraj

    2001-03-01

    Electron decoherence is fundamental to condensed matter physics. Our understanding of metals and insulators in the Fermi-liquid framework relies entirely on a diverging decoherence rate 1/τ_φ at low temperatures, which is expected to vanish at T=0. However, recent experiments find that 1/τ_φ saturates at low temperatures [1-2]. We review these measurements on a variety of mesoscopic systems (in 0D, 1D, 2D and 3D) as well as the control experiments used to check for various artifacts [1-3]. We emphasize the connection between the temperature-independent decoherence rate and persistent current in normal metals [4]. We briefly discuss decoherence induced by dynamic defects or two-level systems [5,6], including its relevance--or lack thereof---to the experiments on metallic wires [2]. Saturation of decohrence rate is argued to be present in---and relevant to---the following phenomena: metal-insulator transition in 2D [7,8], superconductor-insulator transition in 2D [9], quantum-Hall-insulator transition [10], transport through superconductor/normal-metal hybrid junctions [11], normal-state resistivity of high Tc superconductors [12], persistent current in normal metals [4], and energy relaxation in normal metals [13]. [1] P. Mohanty, Physica B 280, 446 (2000). [2] P. Mohanty, E.M.Q. Jariwala, R. Webb, PRL 78, 3366 (1997); PRB 55, R13542 (1997). [3] P. Mohanty, R. Webb, PRL 84, 4481 (2000). [4] P. Mohanty, Ann. Phys. 8, 549 (1999). [5] P. Mohanty, M.L. Roukes (to be published). [6] K. Ahn, P. Mohanty, cond-mat/ 0011139. [7] S. Kravchenko et al. PRB 50, 8039 (1994). [8] G. Brunthaler, A. Prinz, G. Bauer, V. Pudalov, cond-mat/0007230. [9] A. Kapitulnik, N. Mason, S. Kivelson, S. Chakravarty, cond-mat/0008005. [10] D. Shahar, D. Tsui, M. Shayegan, J. Cunningham, E. Shimsoni, S. Sondhi, SSC. 102, 817 (1997). [11] A. Vaknin, A. Frydman, Z. Ovadyahu, PRB 61, 13037 (2000). [12] P. Fournier et al., PRB 62, R11993 (2000). [13] A. Gougam, F. Pierre, H. Pothier, D. Esteve, N

  13. Temperature Gradient Approach for Rapidly Assessing Sensor Binding Kinetics and Thermodynamics.

    PubMed

    Wagner, Caleb E; Macedo, Lucyano J A; Opdahl, Aric

    2015-08-01

    We report a highly resolved approach for quantitatively measuring the temperature dependence of molecular binding in a sensor format. The method is based on surface plasmon resonance (SPR) imaging measurements made across a spatial temperature gradient. Simultaneous recording of sensor response over the range of temperatures spanned by the gradient avoids many of the complications that arise in the analysis of SPR measurements where temperature is varied. In addition to simplifying quantitative analysis of binding interactions, the method allows the temperature dependence of binding to be monitored as a function of time, and provides a straightforward route for calibrating how temperature varies across the gradient. Using DNA hybridization as an example, we show how the gradient approach can be used to measure the temperature dependence of binding kinetics and thermodynamics (e.g., melt/denaturation profile) in a single experiment.

  14. Temperature logging of groundwater in bedrock wells for geothermal gradient characterization in New Hampshire, 2012

    USGS Publications Warehouse

    Degnan, James; Barker, Gregory; Olson, Neil; Wilder, Leland

    2012-01-01

    Maximum groundwater temperatures at the bottom of the logs were between 11.7 and 17.3 degrees Celsius. Geothermal gradients were generally higher than typically reported for other water wells in the United States. Some of the high gradients were associated with high natural gamma emissions. Groundwater flow was discernible in 5 of the 10 wells studied but only obscured the portion of the geothermal gradient signal where groundwater actually flowed through the well. Temperature gradients varied by mapped bedrock type but can also vary by differences in mineralogy or rock type within the wells.

  15. Acoustic response of a rectangular waveguide with a strong transverse temperature gradient

    NASA Technical Reports Server (NTRS)

    Zorumski, William E.

    1989-01-01

    An acoustic wave equation was developed for a perfect gas with spatially-variable temperature. The strong-gradient wave equation was used to analyze the response of a rectangular wave guide containing a thermally-stratified gas. It was assumed that the temperature gradient is constant, representing one-dimensional heat transfer with a constant coefficient of conductivity. The analysis of the waveguide shows that the resonant frequencies of the waveguide are shifted away from the values that would be expected from the average temperature of the waveguide. For small gradients, the frequency shift is proportional to the square of the gradient. The factor of proportionality is a quadratic function of the natural frequency of the waveguide with uniform temperature. An experiment is designed to verify the essential features of the strong-gradient theory.

  16. Parallel implementation of electronic structure energy, gradient, and Hessian calculations.

    PubMed

    Lotrich, V; Flocke, N; Ponton, M; Yau, A D; Perera, A; Deumens, E; Bartlett, R J

    2008-05-21

    ACES III is a newly written program in which the computationally demanding components of the computational chemistry code ACES II [J. F. Stanton et al., Int. J. Quantum Chem. 526, 879 (1992); [ACES II program system, University of Florida, 1994] have been redesigned and implemented in parallel. The high-level algorithms include Hartree-Fock (HF) self-consistent field (SCF), second-order many-body perturbation theory [MBPT(2)] energy, gradient, and Hessian, and coupled cluster singles, doubles, and perturbative triples [CCSD(T)] energy and gradient. For SCF, MBPT(2), and CCSD(T), both restricted HF and unrestricted HF reference wave functions are available. For MBPT(2) gradients and Hessians, a restricted open-shell HF reference is also supported. The methods are programed in a special language designed for the parallelization project. The language is called super instruction assembly language (SIAL). The design uses an extreme form of object-oriented programing. All compute intensive operations, such as tensor contractions and diagonalizations, all communication operations, and all input-output operations are handled by a parallel program written in C and FORTRAN 77. This parallel program, called the super instruction processor (SIP), interprets and executes the SIAL program. By separating the algorithmic complexity (in SIAL) from the complexities of execution on computer hardware (in SIP), a software system is created that allows for very effective optimization and tuning on different hardware architectures with quite manageable effort. PMID:18500853

  17. Parallel implementation of electronic structure energy, gradient, and Hessian calculations

    NASA Astrophysics Data System (ADS)

    Lotrich, V.; Flocke, N.; Ponton, M.; Yau, A. D.; Perera, A.; Deumens, E.; Bartlett, R. J.

    2008-05-01

    ACES III is a newly written program in which the computationally demanding components of the computational chemistry code ACES II [J. F. Stanton et al., Int. J. Quantum Chem. 526, 879 (1992); [ACES II program system, University of Florida, 1994] have been redesigned and implemented in parallel. The high-level algorithms include Hartree-Fock (HF) self-consistent field (SCF), second-order many-body perturbation theory [MBPT(2)] energy, gradient, and Hessian, and coupled cluster singles, doubles, and perturbative triples [CCSD(T)] energy and gradient. For SCF, MBPT(2), and CCSD(T), both restricted HF and unrestricted HF reference wave functions are available. For MBPT(2) gradients and Hessians, a restricted open-shell HF reference is also supported. The methods are programed in a special language designed for the parallelization project. The language is called super instruction assembly language (SIAL). The design uses an extreme form of object-oriented programing. All compute intensive operations, such as tensor contractions and diagonalizations, all communication operations, and all input-output operations are handled by a parallel program written in C and FORTRAN 77. This parallel program, called the super instruction processor (SIP), interprets and executes the SIAL program. By separating the algorithmic complexity (in SIAL) from the complexities of execution on computer hardware (in SIP), a software system is created that allows for very effective optimization and tuning on different hardware architectures with quite manageable effort.

  18. Ion temperature profile simulation of JT-60 and TFTR plasmas with ion temperature gradient mode transport models

    NASA Astrophysics Data System (ADS)

    Shirai, H.; Hirayama, T.; Koide, Y.; Yoshida, H.; Naito, O.; Sato, M.; Fukuda, T.; Sugie, T.; Azumi, M.; Mikkelsen, D. R.; Scott, S. D.; Grek, B.; Hill, K. W.; Johnson, D. W.; Mansfield, D. K.; Park, H. K.; Stratton, B. C.; Synakowski, E. J.; Taylor, G.; Towner, H. H.

    1994-05-01

    Ion temperature profiles of neutral beam heated plasmas in JT-60 and TFTR have been simulated using models of ion thermal diffusivity, χi, based on ion temperature gradient mode (ηi mode) turbulence and drift wave turbulence (trapped electron mode and circulating electron mode). The ion temperature profiles measured by charge exchange recombination spectroscopy are compared to predicted Ti profiles calculated from three theoretical models for ion heat transport by Dominguez and Waltz (1987), Lee and Diamond (1986), and Romanelli (1989). All three χi models can reproduce the measured Ti profile over a wide range of parameters in JT-60 L mode plasmas, except for two 1 MA limiter cases. With the use of transport models, which were adjusted to fit JT-60 plasmas, it was found that the Dominguez and Waltz and Romanelli models agree with measured Ti, profiles in TFTR L mode discharges in the region a/4 < r < a/2. The observed central peaking of Ti near the magnetic axis of TFTR L mode plasmas cannot be reproduced. It was found that the Lee and Diamond model does not fit me data as well. The χi models studied cannot consistently reproduce the measured Ti in the peripheral region of either JT-60 or TFTR plasmas. In the high ion temperature (high Ti) plasmas of JT-60 and supershot plasmas of TFTR, the predicted Ti profiles are much broader than the measured profile. In supershot plasmas, the measured central ion temperature greatly exceeds the predicted temperature, although there is reasonable agreement near the edge

  19. Effect of RF Gradient upon the Performance of the Wisconsin SRF Electron Gun

    SciTech Connect

    Bosch, Robert; Legg, Robert A.

    2013-12-01

    The performance of the Wisconsin 200-MHz SRF electron gun is simulated for several values of the RF gradient. Bunches with charge of 200 pC are modeled for the case where emittance compensation is completed during post-acceleration to 85 MeV in a TESLA module. We first perform simulations in which the initial bunch radius is optimal for the design gradient of 41 MV/m. We then optimize the radius as a function of RF gradient to improve the performance for low gradients.

  20. Characterization of thermotropism in primary roots of maize: dependence on temperature and temperature gradient, and interaction with gravitropism

    NASA Technical Reports Server (NTRS)

    Poff, K. L.

    1991-01-01

    Thermotropism in primary roots of Zea mays L. was studied with respect to gradient strength (degrees C cm-1), temperature of exposure within a gradient, pre-treatment temperature, and gravitropic stimulation. The magnitude of the response decreased with gradient strength. Maximum thermotropism was independent of gradient strength and pre-treatment temperature. The range of temperature for positive and negative thermotropism did not change with pre-treatment temperature. However, the exact range of temperatures for positive and negative thermotropism varied with gradient strengths. In general, temperatures of exposure lower than 25 degrees C resulted in positive tropic responses while temperatures of exposure of 39 degrees C or more resulted in negative tropic responses. Thermotropism was shown to modify and reverse the normal gravitropic curvature of a horizontal root when thermal gradients were applied opposite the 1 g vector. It is concluded that root thermotropism is a consequence of thermal sensing and that the curvature of the primary root results from the interaction of the thermal and gravitational sensing systems.

  1. Characterization of thermotropism in primary roots of maize: dependence on temperature and temperature gradient, and interaction with gravitropism.

    PubMed

    Fortin M-C; Poff, K L

    1991-01-01

    Thermotropism in primary roots of Zea mays L. was studied with respect to gradient strength (degrees C cm-1), temperature of exposure within a gradient, pre-treatment temperature, and gravitropic stimulation. The magnitude of the response decreased with gradient strength. Maximum thermotropism was independent of gradient strength and pre-treatment temperature. The range of temperature for positive and negative thermotropism did not change with pre-treatment temperature. However, the exact range of temperatures for positive and negative thermotropism varied with gradient strengths. In general, temperatures of exposure lower than 25 degrees C resulted in positive tropic responses while temperatures of exposure of 39 degrees C or more resulted in negative tropic responses. Thermotropism was shown to modify and reverse the normal gravitropic curvature of a horizontal root when thermal gradients were applied opposite the 1 g vector. It is concluded that root thermotropism is a consequence of thermal sensing and that the curvature of the primary root results from the interaction of the thermal and gravitational sensing systems.

  2. Characterization of thermotropism in primary roots of maize: Dependence on temperature and temperature gradient, and interaction with gravitropism.

    PubMed

    Fortin, M C; Poff, K L

    1991-06-01

    Thermotropism in primary roots of Zea mays L. was studied with respect to gradient strength (°C · cm(--1)), temperature of exposure within a gradient, pre-treatment temperature, and gravitropic stimulation. The magnitude of the response decreased with gradient strength. Maximum thermotropism was independent of gradient strength and pre-treatment temperature. The range of temperature for positive and negative thermotropism did not change with pre-treatment temperature. However, the exact range of temperatures for positive and negative thermotropism varied with gradient strengths. In general, temperatures of exposure lower than 25° C resulted in positive tropic responses while temperatures of exposure of 39° C or more resulted in negative tropic responses. Thermotropism was shown to modify and reverse the normal gravitropic curvature of a horizontal root when thermal gradients were applied opposite the 1 · g vector. It is concluded that root thermotropism is a consequence of thermal sensing and that the curvature of the primary root results from the interaction of the thermal and gravitational sensing systems.

  3. Gradient-driven flux-tube simulations of ion temperature gradient turbulence close to the non-linear threshold

    NASA Astrophysics Data System (ADS)

    Peeters, A. G.; Rath, F.; Buchholz, R.; Camenen, Y.; Candy, J.; Casson, F. J.; Grosshauser, S. R.; Hornsby, W. A.; Strintzi, D.; Weikl, A.

    2016-08-01

    It is shown that Ion Temperature Gradient turbulence close to the threshold exhibits a long time behaviour, with smaller heat fluxes at later times. This reduction is connected with the slow growth of long wave length zonal flows, and consequently, the numerical dissipation on these flows must be sufficiently small. Close to the nonlinear threshold for turbulence generation, a relatively small dissipation can maintain a turbulent state with a sizeable heat flux, through the damping of the zonal flow. Lowering the dissipation causes the turbulence, for temperature gradients close to the threshold, to be subdued. The heat flux then does not go smoothly to zero when the threshold is approached from above. Rather, a finite minimum heat flux is obtained below which no fully developed turbulent state exists. The threshold value of the temperature gradient length at which this finite heat flux is obtained is up to 30% larger compared with the threshold value obtained by extrapolating the heat flux to zero, and the cyclone base case is found to be nonlinearly stable. Transport is subdued when a fully developed staircase structure in the E × B shearing rate forms. Just above the threshold, an incomplete staircase develops, and transport is mediated by avalanche structures which propagate through the marginally stable regions.

  4. Polymer crystallization in a temperature gradient field with controlled crystal growth rate

    NASA Technical Reports Server (NTRS)

    Hansen, D.; Taskar, A. N.; Casale, O.

    1971-01-01

    A method is described for studying the influence of a temperature gradient on the crystallization of quiescent polymer melts. The apparatus used consists of two brass plates with embedded electrical resistance heaters and cooling coils. The crystallizations experiments were conducted by placing polymer specimens between the paltes, and manually adjusting heaters and cooling fluids for temperature control. Linear polyethylene, isotactic polyprophylene, and a high density polyethylene were used. It is concluded that the role of a temperature gradient in producing oriented crystallization is in producing conditions which lead the spherulitic growth pattern to proceed primarily in one direction. Steep gradients diminish the penetration of supercooling and favors oriented growth.

  5. Kinetic resonance damping rate of the toroidal ion temperature gradient mode

    SciTech Connect

    Kim, J.Y.; Kishimoto, Y.; Horton, W.; Tajima, T.

    1993-09-01

    The linear damping rates of the toroidal ion temperature gradient ({eta}{sub i}) mode due to the toroidal resonance are calculated in the local kinetic limit. The well-known Landau contour method is generalized to treat the analytic continuation problem of the guiding center dispersion function in the toroidal resonance system where the resonance occurs from both the magnetic {Delta}B-curvature drift and the parallel ion transit drift. A detailed numerical analysis is presented for the dependence of the damping rate of the toroidal {eta}{sub i} mode on various parameters such as {var_epsilon}{sub n}, {kappa}{sub y}, and the trapped electron fraction. In addition, a consideration is presented on the decay problem of the ballistic response by the phase mixing in the toroidal system, which is directly related to the present damping problem of the wave normal modes by the toroidal resonance.

  6. Electron temperature differences and double layers

    NASA Technical Reports Server (NTRS)

    Chan, C.; Hershkowitz, N.; Lonngren, K. E.

    1983-01-01

    Electron temperature differences across plasma double layers are studied experimentally. It is shown that the temperature differences across a double layer can be varied and are not a result of thermalization of the bump-on-tail distribution. The implications of these results for electron thermal energy transport in laser-pellet and tandem-mirror experiments are also discussed.

  7. Continuous gradient temperature Raman spectroscopy of oleic and linoleic acids from -100 to 50°C

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gradient Temperature Raman spectroscopy (GTRS) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur near and at phase transitions. Herein we apply GTRS and DS...

  8. Gradient temperature Raman spectroscopy identifies flexible sites in proline and alanine peptides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Continuous thermo dynamic Raman spectroscopy (TDRS) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur just prior to phase transitions. Herein we apply TDRS...

  9. Metamorphism during temperature gradient with undersaturated advective airflow in a snow sample

    NASA Astrophysics Data System (ADS)

    Ebner, Pirmin Philipp; Schneebeli, Martin; Steinfeld, Aldo

    2016-04-01

    Snow at or close to the surface commonly undergoes temperature gradient metamorphism under advective flow, which alters its microstructure and physical properties. Time-lapse X-ray microtomography is applied to investigate the structural dynamics of temperature gradient snow metamorphism exposed to an advective airflow in controlled laboratory conditions. Cold saturated air at the inlet was blown into the snow samples and warmed up while flowing across the sample with a temperature gradient of around 50 K m-1. Changes of the porous ice structure were observed at mid-height of the snow sample. Sublimation occurred due to the slight undersaturation of the incoming air into the warmer ice matrix. Diffusion of water vapor opposite to the direction of the temperature gradient counteracted the mass transport of advection. Therefore, the total net ice change was negligible leading to a constant porosity profile. However, the strong recrystallization of water molecules in snow may impact its isotopic or chemical content.

  10. Using the column wall itself as resistive heater for fast temperature gradients in liquid chromatography.

    PubMed

    De Pauw, Ruben; Pursch, Matthias; Desmet, Gert

    2015-11-13

    A new system is proposed for applying fast temperature gradients in liquid chromatography. It consists of a 0.7 mm × 150 mm fused-silica column coated with a 50 μm Nickel-layer, which is connecting with a power source and a temperature control system to perform fast and reproducible temperature gradients using the column wall itself as a resistive heater. Applying a current of 4A and passive cooling results in a maximal heating and cooling rate of, respectively, 71 and -21 °C/min. Multi-segment temperature gradients were superimposed on mobile phase gradients to enhance the selectivity for three sets of mixtures (pharmaceutical compounds, a highly complex mixture and an insecticide sample). This resulted in a higher peak count or better selectivities for the various mixtures.

  11. Novel materials enable a low-cost temperature-light gradient incubator for microbial studies.

    PubMed

    Wolfe, Gordon V; Reeder, William H H; Ervin, Bryan

    2014-02-01

    We describe the construction of temperature-light gradient incubator with a novel material: a thermally-conductive graphite foam that is lightweight, chemically resistant, economically competitive with metal, and much cheaper to fabricate. We combined this material with a variable-intensity LED light array to construct a low-cost light-temperature gradient incubator, and demonstrate its use for studies of microbial growth, enrichment, and isolation.

  12. Atmospheric study relating to pad lift-off and entry landing. [effects of midlatitude temperature gradients

    NASA Technical Reports Server (NTRS)

    King, R. L.

    1977-01-01

    A relationship between the atmospheric general circulation and geophysical hydrodynamic experiments was sought by attempting to find a relationship between wave number and temperature gradient at mid-latitudes at 500 mb. To this end data were gathered from four winter seasons and analyzed. The statistical analysis failed to provide convincing support for the hypothesis of a direct relationship between wave number and temperature gradient, although an indication that the transient waves may be so related was noted.

  13. Effect of temperature gradient on the optical quality of mercurous chloride crystals

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Davies, D. K.; Gottlieb, M.; Henningsen, T.; Mazelsky, R.

    1989-01-01

    Single crystals of mercurous chloride were grown at temperature gradients of 8, 11 and 17 K/cm by the physical vapor transport method. The optical quality of these crystals was evaluated by measuring bulk scattering and inhomogeneity of refractive index by birefringence interferometry. It was observed that a high temperature gradient at the solid-vapor interface induced thermal stresses and crystals showed higher scattering and irregular fringes.

  14. Effect of re-heating on the hot electron temperature

    SciTech Connect

    Estabrook, K.; Rosen, M.

    1980-06-17

    Resonant absorption is the direct conversion of the transverse laser light to longitudinal electron plasma waves (epw) at the critical density (10/sup 21/ (1.06 ..mu..m/lambda/sub 0/)/sup 2/ cm/sup -3/). The oscillating longitudinal electric field of the epw heats the electrons by accelerating them down the density gradient to a temperature of approximately 21T/sub e//sup 0/ /sup 25/ ((I(W/cm/sup 2/)/10/sup 16/)(lambda/sub 0//1.06 ..mu..m)/sup 2/)/sup 0/ /sup 4/. This section extends the previous work by studying the effects of magnetic fields and collisions (albedo) which return the heated electrons for further heating. A magnetic field increases their temperature and collisions do not.

  15. Director alignment relative to the temperature gradient in nematic liquid crystals studied by molecular dynamics simulation.

    PubMed

    Sarman, Sten; Laaksonen, Aatto

    2014-07-28

    The director alignment relative to the temperature gradient in nematic liquid crystal model systems consisting of soft oblate or prolate ellipsoids of revolution has been studied by molecular dynamics simulation. The temperature gradient is maintained by thermostating different parts of the system at different temperatures by using a Gaussian thermostat. It is found that the director of the prolate ellipsoids aligns perpendicularly to the temperature gradient whereas the director of the oblate ellipsoids aligns parallel to this gradient. When the director is oriented in between the parallel and perpendicular orientations a torque is exerted forcing the director to the parallel or perpendicular orientation. Because of symmetry restrictions there is no linear dependence of the torque being a pseudovector on the temperature gradient being a polar vector in an axially symmetric system such as a nematic liquid crystal. The lowest possible order of this dependence is quadratic. Thus the torque is very weak when the temperature gradient is small, which may explain why this orientation phenomenon is hard to observe experimentally. In both cases the director attains the orientation that minimises the irreversible entropy production.

  16. Comparison between kinetic-ballooning-mode-driven turbulence and ion-temperature-gradient-driven turbulence

    SciTech Connect

    Maeyama, S. Nakata, M.; Miyato, N.; Yagi, M.; Ishizawa, A.; Watanabe, T.-H.; Idomura, Y.

    2014-05-15

    Electromagnetic turbulence driven by kinetic ballooning modes (KBMs) in high-β plasma is investigated based on the local gyrokinetic model. Analysis of turbulent fluxes, norms, and phases of fluctuations shows that KBM turbulence gives narrower spectra and smaller phase factors than those in ion-temperature-gradient (ITG)-driven turbulence. This leads to the smaller transport fluxes in KBM turbulence than those in ITG turbulence even when they have similar linear growth rates. From the analysis of the entropy balance relation, it is found that the entropy transfer from ions to electrons through the field-particle interactions mainly drives electron perturbations, which creates radial twisted modes by rapid parallel motions of electrons in a sheared magnetic geometry. The nonlinear coupling between the dominant unstable mode and its twisted modes is important for the saturation of KBM turbulence, in contrast to the importance of zonal flow shearing in ITG turbulence. The coupling depends on the flux-tube domain with the one-poloidal-turn parallel length and on the torus periodicity constraint.

  17. Simultaneous measurement of core electron temperature and density fluctuations during electron cyclotron heating on DIII-D

    SciTech Connect

    White, A. E.; Schmitz, L.; Peebles, W. A.; Rhodes, T. L.; Carter, T. A.; McKee, G. R.; Shafer, M. W.; Staebler, G. M.; Burrell, K. H.; DeBoo, J. C.; Prater, R.

    2010-02-15

    New measurements show that long-wavelength (k{sub t}hetarho{sub s}<0.5) electron temperature fluctuations can play an important role in determining electron thermal transport in low-confinement mode (L-mode) tokamak plasmas. In neutral beam-heated L-mode tokamak plasmas, electron thermal transport and the amplitude of long-wavelength electron temperature fluctuations both increase in cases where local electron cyclotron heating (ECH) is used to modify the plasma profiles. In contrast, the amplitude of simultaneously measured long-wavelength density fluctuations does not significantly increase. Linear stability analysis indicates that the ratio of the trapped electron mode (TEM) to ion temperature gradient (ITG) mode growth rates increases in the cases with ECH. The increased importance of the TEM drive relative to the ITG mode drive in the cases with ECH may be associated with the increases in electron thermal transport and electron temperature fluctuations.

  18. A novel, high gradient, laser modulated, pulsed electron gun

    SciTech Connect

    Batchelor, K.; Dudnikov, V.; Farrell, J.P.; Srinivasan-Rao, T.; Smedley, J.

    1998-09-01

    This paper describes a high current, fast pulsed, laser excited, electron gun to operate at energies between 1 and 5 MeV. The authors present the design of the high voltage pulse generator, and the laser system, the experimental results obtained with copper cathode in fields > 1 GV/m and diode geometry optimized for the highest brightness using computer simulations. This electron source will generate an electron beam of brightness approaching 10{sup 16} A/m{sup 2} rad{sup 2}, which is 2 orders of magnitude greater than the present level of 10{sup 14} A/m{sup 2} rad{sup 2}, a parameter highly sought after for future linear colliders and short wavelength FELs. It will also be used to study properties of materials in the presence of high fields such as dark current emission and high voltage breakdown characteristics that will provide information critical to the development of high frequency accelerating structures. In addition, Bremsstrahlung radiation from these ultra short relativistic electrons, is expected to be an efficient source of x-ray photons for imaging transient effects in biological samples, microlithography and micromachining. These excellent beam qualities will be augmented for the first time by the simplicity and compactness of the device resulting in an efficient, affordable product with superior performance and unique capabilities.

  19. High temperature electronic gain device

    DOEpatents

    McCormick, J. Byron; Depp, Steven W.; Hamilton, Douglas J.; Kerwin, William J.

    1979-01-01

    An integrated thermionic device suitable for use in high temperature, high radiation environments. Cathode and control electrodes are deposited on a first substrate facing an anode on a second substrate. The substrates are sealed to a refractory wall and evacuated to form an integrated triode vacuum tube.

  20. Interaction between neoclassical effects and ion temperature gradient turbulence in gradient- and flux-driven gyrokinetic simulations

    NASA Astrophysics Data System (ADS)

    Oberparleiter, M.; Jenko, F.; Told, D.; Doerk, H.; Görler, T.

    2016-04-01

    Neoclassical and turbulent transport in tokamaks has been studied extensively over the past decades, but their possible interaction remains largely an open question. The two are only truly independent if the length scales governing each of them are sufficiently separate, i.e., if the ratio ρ* between ion gyroradius and the pressure gradient scale length is small. This is not the case in particularly interesting regions such as transport barriers. Global simulations of a collisional ion-temperature-gradient-driven microturbulence performed with the nonlinear global gyrokinetic code Gene are presented. In particular, comparisons are made between systems with and without neoclassical effects. In fixed-gradient simulations, the modified radial electric field is shown to alter the zonal flow pattern such that a significant increase in turbulent transport is observed for ρ*≳1 /300 . Furthermore, the dependency of the flux on the collisionality changes. In simulations with fixed power input, we find that the presence of neoclassical effects decreases the frequency and amplitude of intermittent turbulent transport bursts (avalanches) and thus plays an important role for the self-organisation behaviour.

  1. Results of temperature gradient and heat flow in Santiam Pass Area, Oregon, Volume 1

    SciTech Connect

    Cox, B.L.; Gardner, M.C.; Koenig, J.B.

    1981-08-01

    The conclusions of this report are: (1) There is a weakly defined thermal anomaly within the area examined by temperature-gradient holes in the Santiam Pass area. This is a relict anomaly showing differences in permeability between the High Cascades and Western Cascades areas, more than a fundamental difference in shallow crustal temperatures. (2) The anomaly as defined by the 60 F isotherms at 400 feet follows a north-south trend immediately westward of the Cascade axis in the boundary region. It is clear that all holes spudded into High Cascades rocks result in isothermal and reversal gradients. Holes spudded in Western Cascades rocks result in positive gradients. (3) Cold groundwater flow influences and masks temperature gradients in the High Cascades to a depth of at least 700 feet, especially eastward from the major north-south trending faults. Pleistocene and Holocene rocks are very permeable aquifers. (4) Shallow gradient drilling in the lowlands westward of the faults provides more interpretable information than shallow drilling in the cold-water recharge zones. Topographic and climatological effects can be filtered out of the temperature gradient results. (5) The thermal anomaly seems to have 2 centers: one in the Belknap-Foley area, and one northward in the Sand Mountain area. The anomalies may or may not be connected along a north-south trend. (6) A geothermal effect is seen in holes downslope of the Western-High Cascade boundary. Mixing with cold waters is a powerful influence on temperature gradient data. (7) The temperature-gradient program has not yet examined and defined the geothermal resources potential of the area eastward of the Western Cascades-High Cascades boundary. Holes to 1500-2000 feet in depth are required to penetrate the high permeability-cold groundwater regime. (8) Drilling conditions are unfavorable. There are very few accessible level drill sites. Seasonal access problems and environmental restrictions together with frequent lost

  2. High temperature power electronics for space

    NASA Technical Reports Server (NTRS)

    Hammoud, Ahmad N.; Baumann, Eric D.; Myers, Ira T.; Overton, Eric

    1991-01-01

    A high temperature electronics program at NASA Lewis Research Center focuses on dielectric and insulating materials research, development and testing of high temperature power components, and integration of the developed components and devices into a demonstrable 200 C power system, such as inverter. An overview of the program and a description of the in-house high temperature facilities along with experimental data obtained on high temperature materials are presented.

  3. Sign of inverse spin Hall voltages generated by ferromagnetic resonance and temperature gradients in yttrium iron garnet platinum bilayers

    NASA Astrophysics Data System (ADS)

    Schreier, Michael; Bauer, Gerrit E. W.; Vasyuchka, Vitaliy I.; Flipse, Joost; Uchida, Ken-ichi; Lotze, Johannes; Lauer, Viktor; Chumak, Andrii V.; Serga, Alexander A.; Daimon, Shunsuke; Kikkawa, Takashi; Saitoh, Eiji; van Wees, Bart J.; Hillebrands, Burkard; Gross, Rudolf; Goennenwein, Sebastian T. B.

    2015-01-01

    We carried out a concerted effort to determine the absolute sign of the inverse spin Hall effect voltage generated by spin currents injected into a normal metal. We focus on yttrium iron garnet (YIG)∣platinum bilayers at room temperature, generating spin currents by microwaves and temperature gradients. We find consistent results for different samples and measurement setups that agree with theory. We suggest a right-hand-rule to define a positive spin Hall angle corresponding to the voltage expected for the simple case of scattering of free electrons from repulsive Coulomb charges.

  4. Muscle temperature gradients in humans during cold water immersion hypothermia and rewarming

    SciTech Connect

    Bristow, G.K.; Giesbrecht, G.G. Univ. of Calgary, Alberta )

    1991-03-11

    Muscle temperature gradients have not been measured in hypothermic man. Thigh and calf muscle temperatures were measured by indwelling multisensor thermocouples (deep (D) 4.5 cm, and superficial (S) 1.5 cm beneath the skin) on five healthy male subjects immersed in 8C water for 70 minutes on two occasions. Measurements continued during 55 minutes of rewarming by two methods; either treadmill exercise (EX) or shivering (SH). Esophageal temperature (T{sub es}) was also measured. Prior to immersion, deep thigh and calf temperatures were 36.1 and 34.8C respectively and temperature gradients were similar in both thigh and calf. At the end of cooling deep thigh temperature fell 3.0C and the gradient increased to 8.1C. Corresponding values for the calf were 10.3 and 6.4C respectively. Both rewarming methods were terminated at a T{sub es} of 35.7C. EX and SH caused similar changes in thigh temperatures; deep temperature increased 2.1 and 1.9C and gradients decreased to 2.7 and 2.6C respectively. However, an increase in deep calf temperature during EX was absent during SH. During cooling, muscle blood flow would appear to be better maintained in the thigh than the calf. Thigh blood flow increases similarly during EX and SH. However, in calf, blood flow increases during EX but not SH.

  5. Flat meridional temperature gradient in the early Eocene in the subsurface rather than surface ocean

    NASA Astrophysics Data System (ADS)

    Ho, Sze Ling; Laepple, Thomas

    2016-08-01

    The early Eocene (49-55 million years ago) is a time interval characterized by elevated surface temperatures and atmospheric CO2 (refs ,), and a flatter-than-present latitudinal surface temperature gradient. The multi-proxy-derived flat temperature gradient has been a challenge to reproduce in model simulations, especially the subtropical warmth at the high-latitude surface oceans, inferred from the archaeal lipid-based palaeothermometry, . Here we revisit the interpretation by analysing a global collection of multi-proxy temperature estimates from sediment cores spanning millennia to millions of years. Comparing the variability between proxy types, we demonstrate that the present interpretation overestimates the magnitude of past climate changes on all timescales. We attribute this to an inappropriate calibration, which reflects subsurface ocean but is calibrated to the sea surface, where the latitudinal temperature gradient is steeper. Recalibrating the proxy to the temperatures of subsurface ocean, where the signal is probably formed, yields colder -temperatures and latitudinal gradient consistent with standard climate model simulations of the Eocene climate, invalidating the apparent, extremely warm polar sea surface temperatures. We conclude that there is a need to reinterpret -inferred marine temperature records in the literature, especially for reconstructions of past warm climates that rely heavily on this proxy as reflecting subsurface ocean.

  6. Eco-evolutionary community dynamics: covariation between diversity and invasibility across temperature gradients.

    PubMed

    Stegen, James C; Enquist, Brian J; Ferrière, Régis

    2012-10-01

    Understanding biodiversity gradients is a long-standing challenge, and progress requires theory unifying ecology and evolution. Here, we unify concepts related to the speed of evolution, the influence of species richness on diversification, and niche-based coexistence. We focus on the dynamics, through evolutionary time, of community invasibility and species richness across a broad thermal gradient. In our framework, the evolution of body size influences the ecological structure and dynamics of a trophic network, and organismal metabolism ties temperature to eco-evolutionary processes. The framework distinguishes ecological invasibility (governed by ecological interactions) from evolutionary invasibility (governed by local ecology and constraints imposed by small phenotypic effects of mutation). The model yields four primary predictions: (1) ecological invasibility declines through time and with increasing temperature; (2) average evolutionary invasibility across communities increases and then decreases through time as the richness-temperature gradient flattens; (3) in the early stages of diversification, richness and evolutionary invasibility both increase with increasing temperature; and (4) at equilibrium, richness does not vary with temperature, yet evolutionary invasibility decreases with increasing temperature. These predictions emerge from the "evolutionary-speed" hypothesis, which attempts to account for latitudinal species richness gradients by invoking faster biological rates in warmer, tropical regions. The model contrasts with predictions from other richness-gradient hypotheses, such as "niche conservatism" and "species energy." Empirically testing our model's predictions should help distinguish among these hypotheses. PMID:22976016

  7. Dynamic microscale temperature gradient in a gold nanorod solution measured by diffraction-limited nanothermometry

    SciTech Connect

    Li, Chengmingyue; Gan, Xiaosong; Li, Xiangping; Gu, Min

    2015-09-21

    We quantify the dynamic microscale temperature gradient in a gold nanorod solution using quantum-dot-based microscopic fluorescence nanothermometry. By incorporating CdSe quantum dots into the solution as a nanothermometer, precise temperature mapping with diffraction-limited spatial resolution and sub-degree temperature resolution is achieved. The acquired data on heat generation and dissipation show an excellent agreement with theoretical simulations. This work reveals an effective approach for noninvasive temperature regulation with localized nanoheaters in microfluidic environment.

  8. Thermoelectric Energy Harvesting from Transient Ambient Temperature Gradients

    NASA Astrophysics Data System (ADS)

    Moser, André; Erd, Metin; Kostic, Milos; Cobry, Keith; Kroener, Michael; Woias, Peter

    2012-06-01

    We examine a thermoelectric harvester that converts electrical energy from the naturally occurring temperature difference between ambient air and large thermal storage capacitors such as building walls or the soil. For maximum power output, the harvester design is implemented in two steps: source matching of the thermal and electrical interfaces to the energy source (system level) followed by load matching of the generator to these interfaces (subsystem level). Therefore, we measure thermal source properties such as the temperature difference, the air velocity, and the cutoff frequency in two application scenarios (road tunnel and office building). We extend a stationary model of the harvester into the time domain to account for transient behavior of the source. Based on the model and the source measurements, we perform the source and load matching. The resulting harvester consists of a pin fin heat sink with a thermal resistance of 6.2 K/W and a cutoff frequency 2.5 times greater than that of the source, a thermoelectric generator, and a DC/DC step-up converter starting at a total temperature difference of only Δ T = 1.2 K. In a final road tunnel field test, this optimized harvester converts 70 mJ of electrical energy per day without any direct solar irradiation. The energy provided by the harvester enables 415 data transmissions from a wireless sensor node per day.

  9. Vertically transmitted symbiont reduces host fitness along temperature gradient.

    PubMed

    Dusi, E; Krenek, S; Schrallhammer, M; Sachse, R; Rauch, G; Kaltz, O; Berendonk, T U

    2014-04-01

    Parasites with exclusive vertical transmission from host parent to offspring are an evolutionary puzzle. With parasite fitness entirely linked to host reproduction, any fitness cost for infected hosts risks their selective elimination. Environmental conditions likely influence parasite impact and thereby the success of purely vertical transmission strategies. We tested for temperature-dependent virulence of Caedibacter taeniospiralis, a vertically transmitted bacterial symbiont of the protozoan Paramecium tetraurelia. We compared growth of infected and cured host populations at five temperatures (16–32 °C). Infection reduced host density at all temperatures, with a peak of −30% at 28 °C. These patterns were largely consistent across five infected Paramecium strains. Similar to Wolbachia symbionts, C. taeniospiralis may compensate fitness costs by conferring to the host a ‘killer trait’, targeting uninfected competitors. Considerable loss of infection at 32 °C suggests that killer efficacy is not universal and that limited heat tolerance restricts the conditions for persistence of C. taeniospiralis. PMID:24779056

  10. Multiple-Point Temperature Gradient Algorithm for Ring Laser Gyroscope Bias Compensation.

    PubMed

    Li, Geng; Zhang, Pengfei; Wei, Guo; Xie, Yuanping; Yu, Xudong; Long, Xingwu

    2015-11-30

    To further improve ring laser gyroscope (RLG) bias stability, a multiple-point temperature gradient algorithm is proposed for RLG bias compensation in this paper. Based on the multiple-point temperature measurement system, a complete thermo-image of the RLG block is developed. Combined with the multiple-point temperature gradients between different points of the RLG block, the particle swarm optimization algorithm is used to tune the support vector machine (SVM) parameters, and an optimized design for selecting the thermometer locations is also discussed. The experimental results validate the superiority of the introduced method and enhance the precision and generalizability in the RLG bias compensation model.

  11. Phase-field modeling of temperature gradient driven pore migration coupling with thermal conduction

    SciTech Connect

    Liangzhe Zhang; Michael R Tonks; Paul C Millett; Yongfeng Zhang; Karthikeyan Chockalingam; Bulent Biner

    2012-04-01

    Pore migration in a temperature gradient (Soret effect) is investigated by a phase-field model coupled with a heat transfer calculation. Pore migration is observed towards the high temperature domain with velocities that agree with analytical solution. Due to the low thermal conductivity of the pores, the temperature gradient across individual pores is increased, which in turn, accelerates the pore migration. In particular, for pores filled with xenon and helium, the pore velocities are increased by a factor of 2.2 and 2.1, respectively. A quantitative equation is then derived to predict the influence of the low thermal conductivity of pores.

  12. Origin of Temperature Gradient in Nonequilibrium Steady States in Weakly Coupled Quantum Spin Systems

    NASA Astrophysics Data System (ADS)

    Ishida, Toyohiko; Sugita, Ayumu

    2016-07-01

    We study nonequilibrium steady states (NESSs) in quantum spin-1/2 chains in contact with two heat baths at different temperatures. We consider the weak-coupling limit both for spin-spin coupling in the system and for system-bath coupling. This setting allows us to treat NESSs with a nonzero temperature gradient analytically. We develop a perturbation theory for this weak-coupling situation and show a simple condition for the existence of nonzero temperature gradient. This condition is independent of the integrability of the system.

  13. Multiple-Point Temperature Gradient Algorithm for Ring Laser Gyroscope Bias Compensation

    PubMed Central

    Li, Geng; Zhang, Pengfei; Wei, Guo; Xie, Yuanping; Yu, Xudong; Long, Xingwu

    2015-01-01

    To further improve ring laser gyroscope (RLG) bias stability, a multiple-point temperature gradient algorithm is proposed for RLG bias compensation in this paper. Based on the multiple-point temperature measurement system, a complete thermo-image of the RLG block is developed. Combined with the multiple-point temperature gradients between different points of the RLG block, the particle swarm optimization algorithm is used to tune the support vector machine (SVM) parameters, and an optimized design for selecting the thermometer locations is also discussed. The experimental results validate the superiority of the introduced method and enhance the precision and generalizability in the RLG bias compensation model. PMID:26633401

  14. Multiple-Point Temperature Gradient Algorithm for Ring Laser Gyroscope Bias Compensation.

    PubMed

    Li, Geng; Zhang, Pengfei; Wei, Guo; Xie, Yuanping; Yu, Xudong; Long, Xingwu

    2015-01-01

    To further improve ring laser gyroscope (RLG) bias stability, a multiple-point temperature gradient algorithm is proposed for RLG bias compensation in this paper. Based on the multiple-point temperature measurement system, a complete thermo-image of the RLG block is developed. Combined with the multiple-point temperature gradients between different points of the RLG block, the particle swarm optimization algorithm is used to tune the support vector machine (SVM) parameters, and an optimized design for selecting the thermometer locations is also discussed. The experimental results validate the superiority of the introduced method and enhance the precision and generalizability in the RLG bias compensation model. PMID:26633401

  15. A Simple Temperature Gradient Apparatus To Determine Thermal Preference in "Daphnia."

    ERIC Educational Resources Information Center

    Fenske, Christiane; McCauley, Robert

    2002-01-01

    Explores the dominant factor controlling the distribution of Daphnia. Describes components of a temperature gradient apparatus that can be assembled from materials readily obtainable in the laboratory and hardware stores. Investigates whether the mean depth of Daphnia is determined by temperature. (KHR)

  16. TEMPERATURE SELECTION BY HATCHLING AND YEARLING FLORIDA RED-BELLIED TURTLES (PSEUDEMYS NELSONI) IN THERMAL GRADIENTS

    EPA Science Inventory

    We tested hatchling and yearling Florida red-bellied turtles (Pseudemys nelsoni) in laboratory thermal gradient chambers to determine if they would prefer particular temperatures. Most 1995 hatchlings selected the highest temperature zone of 27degrees C (Test 1) and 30 degrees ...

  17. Vertical gradient in soil temperature stimulates development and increases biomass accumulation in barley.

    PubMed

    Füllner, K; Temperton, V M; Rascher, U; Jahnke, S; Rist, R; Schurr, U; Kuhn, A J

    2012-05-01

    We have detailed knowledge from controlled environment studies on the influence of root temperature on plant performance, growth and morphology. However, in all studies root temperature was kept spatially uniform, which motivated us to test whether a vertical gradient in soil temperature affected development and biomass production. Roots of barley seedlings were exposed to three uniform temperature treatments (10, 15 or 20°C) or to a vertical gradient (20-10°C from top to bottom). Substantial differences in plant performance, biomass production and root architecture occurred in the 30-day-old plants. Shoot and root biomass of plants exposed to vertical temperature gradient increased by 144 respectively, 297%, compared with plants grown at uniform root temperature of 20°C. Additionally the root system was concentrated in the upper 10cm of the soil substrate (98% of total root biomass) in contrast to plants grown at uniform soil temperature of 20°C (86% of total root biomass). N and C concentrations in plant roots grown in the gradient were significantly lower than under uniform growth conditions. These results are important for the transferability of 'normal' greenhouse experiments where generally soil temperature is not controlled or monitored and open a new path to better understand and experimentally assess root-shoot interactions.

  18. Do Lehmann cholesteric droplets subjected to a temperature gradient rotate as rigid bodies?

    PubMed

    Poy, Guilhem; Oswald, Patrick

    2016-03-01

    We performed a Fluorescence Recovery After Photobleaching (FRAP) experiment during the Lehmann rotation of cholesteric droplets in thermodynamic coexistence with the isotropic liquid and subjected to a temperature gradient. By creating and tracking bleached spots near the surface of banded droplets (in which the cholesteric helix is perpendicular to the gradient) and concentric circle droplets oriented by an electric field (in which the helix is parallel to the gradient), we found that neither type of droplet rotates as a solid. This result shows that the texture rotation is mainly due to the local director rotation.

  19. Temperature gradient effects on vapor diffusion in partially-saturated porous media

    SciTech Connect

    Webb, S.W.

    1999-07-01

    Vapor diffusion in porous media in the presence of its own liquid may be enhanced due to pore-scale processes, such as condensation and evaporation across isolated liquid islands. Webb and Ho (1997) developed one-and two-dimensional mechanistic pore-scale models of these processes in an ideal porous medium. For isothermal and isobaric boundary conditions with a concentration gradient, the vapor diffusion rate was significantly enhanced by these liquid island processes compared to a dry porous media. The influence of a temperature gradient on the enhanced vapor diffusion rate is considered in this paper. The two-dimensional pore network model which is used in the present study is shown. For partially-saturated conditions, a liquid island is introduced into the top center pore. Boundary conditions on the left and right sides of the model are specified to give the desired concentration and temperature gradients. Vapor condenses on one side of the liquid island and evaporates off the other side due to local vapor pressure lowering caused by the interface curvature, even without a temperature gradient. Rather than acting as an impediment to vapor diffusion, the liquid island actually enhances the vapor diffusion rate. The enhancement of the vapor diffusion rate can be significant depending on the liquid saturation. Vapor diffusion is enhanced by up to 40% for this single liquid island compared to a dry porous medium; enhancement factors of up to an order of magnitude have been calculated for other conditions by Webb and Ho (1997). The dominant effect on the enhancement factor is the concentration gradient; the influence of the temperature gradient is smaller. The significance of these results, which need to be confirmed by experiments, is that the dominant model of enhanced vapor diffusion (EVD) by Philip and deVries (1957) predicts that temperature gradients must exist for EVD to occur. If there is no temperature gradient, there is no enhancement. The present results

  20. Temperature-gradient and heat-flow data, Panther Canyon, Nevada

    SciTech Connect

    Fisher, Marci A.; Gardner, Murray C.

    1981-07-01

    A series of six shallow temperature-gradient holes were drilled for Sunoco Energy Development Company in Panther Canyon, Pershing County, Nevada during the period March 24 through June 15, 1981. A proposed intermediate-depth gradient hole was spud but abandoned after encountering unresolvable drilling problems. The locations of these holes are shown on figure 1. This report summarizes the results of the Panther Canyon project.

  1. Curvature and temperature gradient driven instabilities in tokomak edge plasmas with SOL

    SciTech Connect

    Novakovskii, S.V.; Guzdar, P.N.; Drake, J.F.; Liu, C.S.

    1996-12-31

    Curvature driven resistive ballooning modes (RBM) as well as the electron temperature gradient (ETG) modes have been investigated in the tokomak edge region and the SOL, with the help of the numerical code {open_quotes}2D-BALLOON{close_quotes}. This is an initial value code, which determines the stability properties and estimates the quasi-linear transport for given density, temperature, the magnetic and electric field profiles, taking into account the SOL geometry as well as a closed flux region. The results related to the following issues will be presented: (1) Comparative analysis of the ETG and the RBM instabilities in the SOL and their influence on the transport in the edge region (inside the Last Closed Magnetic Surface). (2) The influence of the effective Debye sheath current. (3) Different poloidal positions of the toroidal limiter and their effect on the instabilities. Other aspects of the edge plasma turbulence, such as finite {beta} effects, flow-shear of the poloidal rotation etc. will also be discussed.

  2. Range-wide latitudinal and elevational temperature gradients for the world's terrestrial birds: implications under global climate change.

    PubMed

    La Sorte, Frank A; Butchart, Stuart H M; Jetz, Walter; Böhning-Gaese, Katrin

    2014-01-01

    Species' geographical distributions are tracking latitudinal and elevational surface temperature gradients under global climate change. To evaluate the opportunities to track these gradients across space, we provide a first baseline assessment of the steepness of these gradients for the world's terrestrial birds. Within the breeding ranges of 9,014 bird species, we characterized the spatial gradients in temperature along latitude and elevation for all and a subset of bird species, respectively. We summarized these temperature gradients globally for threatened and non-threatened species and determined how their steepness varied based on species' geography (range size, shape, and orientation) and projected changes in temperature under climate change. Elevational temperature gradients were steepest for species in Africa, western North and South America, and central Asia and shallowest in Australasia, insular IndoMalaya, and the Neotropical lowlands. Latitudinal temperature gradients were steepest for extratropical species, especially in the Northern Hemisphere. Threatened species had shallower elevational gradients whereas latitudinal gradients differed little between threatened and non-threatened species. The strength of elevational gradients was positively correlated with projected changes in temperature. For latitudinal gradients, this relationship only held for extratropical species. The strength of latitudinal gradients was better predicted by species' geography, but primarily for extratropical species. Our findings suggest threatened species are associated with shallower elevational temperature gradients, whereas steep latitudinal gradients are most prevalent outside the tropics where fewer bird species occur year-round. Future modeling and mitigation efforts would benefit from the development of finer grain distributional data to ascertain how these gradients are structured within species' ranges, how and why these gradients vary among species, and the capacity

  3. High-gradient acceleration of electrons in a plasma loaded wiggler

    SciTech Connect

    Maroli, C.; Petrillo, V.

    1995-12-31

    The interaction of an electron beam with a transverse electromagnetic field and an electrostatic wave in a plasma loaded wiggler is described by means of system of self-consistent nonlinear equations. We demonstrate that the system is able to sustain resonantly high-amplitude electrostatic waves with phase velocity c, which gives rise to high gradient acceleration of the electron beam. Both gradient and saturation value of the average gamma factor of the beam increase considerably with increasing magnetic field of the wiggler and plasma density.

  4. Migration of liquid phase from the primary/peritectic interface in a temperature gradient

    NASA Astrophysics Data System (ADS)

    Peng, Peng; Li, XinZhong; Su, YanQing; Guo, JingJie

    2016-07-01

    The migration of the liquid droplets from the primary α/peritectic β interface at the peritectic temperature TP has been observed and analyzed in a Sn-Ni peritectic alloy. During the isothermal annealing stage of the interrupted directional solidification, a concentration gradient is established across the liquid droplets along the direction of the temperature gradient due to the temperature gradient zone melting. Simultaneous remelting/resolidification at the top/bottom of the liquid droplets by this concentration gradient have been confirmed to lead to migration of these droplets towards higher temperatures. The dependence of the migration distance of the liquid droplets on isothermal annealing time has been well predicted. Furthermore, since the lengths of the liquid droplet are not uniform along the direction of the temperature gradient, the remelting/resolidification rates which are dependent on the local morphology of liquid droplet are different at different local positions of the liquid droplets. It has been demonstrated that the morphology of the liquid droplet was also influenced by the morphologies of the liquid phase themselves. Therefore, the morphology of the liquid droplet itself changes from spherical to some kinds of irregular shapes during its migration.

  5. Influence of the Latitudinal Temperature Gradient on Soil Dust Concentration and Deposition in Greenland

    NASA Technical Reports Server (NTRS)

    Tegen, Ina; Rind, David

    2000-01-01

    To investigate the effects of changes in the latitudinal temperature gradient and the global mean temperature on dust concentration in the Northern Hemisphere, experiments with the GISS GCM (Goddard Institute for Space Studies General Circulation Model) are performed. The dust concentration over Greenland is calculated from sources in central and eastern Asia, which are integrated on-line in the model. The results show that an increase in the latitudinal temperature gradient increases both the Asian dust source strength and the concentration over Greenland. The source increase is the result of increased surface winds, and to a minor extent, the increase in Greenland dust is also associated with increased northward transport. Cooling the climate in addition to this increased gradient leads to a decrease in precipitation scavenging, which helps produce a further (slight) increase in Greenland dust in this experiment. Reducing the latitudinal gradient reduces the surface wind and hence the dust source, with a subsequent reduction in Greenland dust concentrations. Warming the climate in addition to this reduced gradient leads to a further reduction in Greenland dust due to enhanced precipitation scavenging. These results can be used to evaluate the relationship of Greenland ice core temperature changes to changes in the latitudinal and global temperatures.

  6. Influence of the Latitudinal Temperature Gradient on Soil Dust Concentration and Deposition in Greenland

    NASA Technical Reports Server (NTRS)

    Tegen, Ina; Rind, David

    2000-01-01

    To investigate the effects of changes in the latitudinal temperature gradient and the global mean temperature on dust concentration in the Northern Hemisphere, experiments with the Goddard Institute for Space Studies General Circulation Model (GISS GCM) are performed. The dust concentration over Greenland is calculated from sources in central and eastern Asia, which are integrated on-line in the model. The results show that an increase in the latitudinal temperature gradient increases both the Asian dust source strength and the concentration over Greenland. The source increase is the result of increased surface winds, and to a minor extent, the increase in Greenland dust is also associated with increased northward transport. Cooling the climate in addition to this increased gradient leads to a decrease in precipitation scavenging, which helps produce a further (slight) increase in Greenland dust in this experiment. Reducing the latitudinal gradient reduces the surface wind and hence the dust source, with a subsequent reduction in Greenland dust concentrations. Warming the climate in addition to this reduced gradient leads to a further reduction in Greenland dust due to enhanced precipitation scavenging. These results can be used to evaluate the relationship of Greenland ice core temperature changes to changes in the latitudinal and global temperatures.

  7. Electron Beam Freeform Fabrication of Titanium Alloy Gradient Structures

    NASA Technical Reports Server (NTRS)

    Brice, Craig A.; Newman, John A.; Bird, Richard Keith; Shenoy, Ravi N.; Baughman, James M.; Gupta, Vipul K.

    2014-01-01

    Historically, the structural optimization of aerospace components has been done through geometric methods. A monolithic material is chosen based on the best compromise between the competing design limiting criteria. Then the structure is geometrically optimized to give the best overall performance using the single material chosen. Functionally graded materials offer the potential to further improve structural efficiency by allowing the material composition and/or microstructural features to spatially vary within a single structure. Thus, local properties could be tailored to the local design limiting criteria. Additive manufacturing techniques enable the fabrication of such graded materials and structures. This paper presents the results of a graded material study using two titanium alloys processed using electron beam freeform fabrication, an additive manufacturing process. The results show that the two alloys uniformly mix at various ratios and the resultant static tensile properties of the mixed alloys behave according to rule-of-mixtures. Additionally, the crack growth behavior across an abrupt change from one alloy to the other shows no discontinuity and the crack smoothly transitions from one crack growth regime into another.

  8. Deep Trek High Temperature Electronics Project

    SciTech Connect

    Bruce Ohme

    2007-07-31

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  9. Thermoregulatory behavior and temperature gradient perception in a juvenile fish (Poecilia reticulata).

    PubMed

    Williams, E E; Brauer, R W

    1987-06-01

    The thermoregulatory behavior of guppies in a temperature gradient was studied under conditions offering one degree of locomotor freedom, in which displacement of the fish was coupled to a change of occupied temperature, and two degrees of locomotor freedom, in which the added dimension allowed for thermally neutral movement, thus uncoupling any obligatory link between displacement and temperature change. More animals failed to thermoregulate in the second than in the first geometrical system (32% vs. 7%); however, the means of the temperature preferenda (Tp) were the same in both gradient configurations and the frequency distributions along the temperature axis were indistinguishable. In both geometrical systems, mean swimming speed along the temperature axis showed well-defined minima coinciding with the Tp. It was shown that the mean components of movement with respect to the thermal and thermally neutral axes both showed minima at Tp. Further analyses of the actual behavior confirm that in the vicinity of Tp the movements of the fish show little dependence on direction. The analyses thus suggest that thermoregulatory movements are not adjusted in response to movement-generated directional information derived from the temperature gradient. The primary determinant of thermoregulatory behavior in fish may require a more complex awareness of the thermal arrangement of the environment than can be furnished by the instantaneous perception of the local gradient structure.

  10. Seasonal evolution of snow permeability under equi-temperature and temperature-gradient conditions

    NASA Astrophysics Data System (ADS)

    Domine, F.; Morin, S.; Brun, E.; Lafaysse, M.; Carmagnola, C. M.

    2013-12-01

    The permeability (K) of snow to air flow affects the transfer of energy, water vapor and chemical species between the snow and the atmosphere. Yet today little is known about the temporal evolution of snow permeability as a function of metamorphic regime. Furthermore, our ability to simulate snow permeability over the seasonal evolution of a snowpack has not been tested. Here we have measured the evolution of snow permeability in a subarctic snowpack subject to high temperature-gradient (TG) metamorphism. We have also measured the evolution of the same snowpack deposited over tables so that it evolved in the equi-temperature (ET) regime. Permeability varies in the range 31 × 10-10 (ET regime) to 650 × 10-10 m2 (TG regime). Permeability increases over time in TG conditions and decreases under ET conditions. Using measurements of density ρ and of specific surface area (SSA), from which the equivalent sphere radius r is determined, we show that the equation linking SSA, density ρ and permeability, K = 3.0 r2 e(-0.013 ρ) (with K in m2, r in m and ρ in kg m-3) obtained in a previous study adequately predicts permeability values. The detailed snowpack model Crocus is used to simulate the physical properties of the TG and ET snowpacks. For the most part, all variables are well reproduced. Simulated permeabilities are up to a factor of two greater than measurements for depth hoar layers, which we attribute to snow microstructure and its aerodynamic properties. Finally, the large difference in permeabilities between ET and TG metamorphic regimes will impact atmosphere-snow energy and mass exchanges. These effects deserve consideration in predicting the effect of climate change on snow properties and snow-atmosphere interactions.

  11. Influence of Temperature Gradients on Leaf Water Potential 1

    PubMed Central

    Wiebe, Herman H.; Prosser, Rex J.

    1977-01-01

    Water potential was monitored at nine locations along single maize (Zea mays L.) leaf blades with aluminum block in situ thermocouple hygrometers. Water potential showed a continuous decrease toward the tip, with a 2- to 4-bar difference between leaf base and tip under both moist and dry soil conditions. The water potential difference between the soil and the leaf base was about 4 bars. Water potentials decreased during the day and during a drying cycle, and increased at night and after irrigation. Heating a band of a leaf to 40 C or cooling it to 7 C had no influence on the water potential of the affected portion when this was corrected for hygrometer output over standard calibrating solutions at the respective temperatures. Heating or cooling a portion of a leaf had neither short nor long term effects on water potential of more distal leaf portions continuously monitored by hygrometers in dew point readout. Water potential fluctuated with an amplitude of about 1.5 bars and an irregular period of 10 to 30 minutes. Measurements with silver foil in situ psychrometers gave similar results. PMID:16659828

  12. Influence of temperature gradients on leaf water potential.

    PubMed

    Wiebe, H H; Prosser, R J

    1977-02-01

    Water potential was monitored at nine locations along single maize (Zea mays L.) leaf blades with aluminum block in situ thermocouple hygrometers. Water potential showed a continuous decrease toward the tip, with a 2- to 4-bar difference between leaf base and tip under both moist and dry soil conditions. The water potential difference between the soil and the leaf base was about 4 bars. Water potentials decreased during the day and during a drying cycle, and increased at night and after irrigation. Heating a band of a leaf to 40 C or cooling it to 7 C had no influence on the water potential of the affected portion when this was corrected for hygrometer output over standard calibrating solutions at the respective temperatures. Heating or cooling a portion of a leaf had neither short nor long term effects on water potential of more distal leaf portions continuously monitored by hygrometers in dew point readout. Water potential fluctuated with an amplitude of about 1.5 bars and an irregular period of 10 to 30 minutes. Measurements with silver foil in situ psychrometers gave similar results.

  13. Influence of temperature gradients on leaf water potential.

    PubMed

    Wiebe, H H; Prosser, R J

    1977-02-01

    Water potential was monitored at nine locations along single maize (Zea mays L.) leaf blades with aluminum block in situ thermocouple hygrometers. Water potential showed a continuous decrease toward the tip, with a 2- to 4-bar difference between leaf base and tip under both moist and dry soil conditions. The water potential difference between the soil and the leaf base was about 4 bars. Water potentials decreased during the day and during a drying cycle, and increased at night and after irrigation. Heating a band of a leaf to 40 C or cooling it to 7 C had no influence on the water potential of the affected portion when this was corrected for hygrometer output over standard calibrating solutions at the respective temperatures. Heating or cooling a portion of a leaf had neither short nor long term effects on water potential of more distal leaf portions continuously monitored by hygrometers in dew point readout. Water potential fluctuated with an amplitude of about 1.5 bars and an irregular period of 10 to 30 minutes. Measurements with silver foil in situ psychrometers gave similar results. PMID:16659828

  14. Marangoni waves in a two-layer film under the action of an inclined temperature gradient

    NASA Astrophysics Data System (ADS)

    Nepomnyashchy, A. A.; Simanovskii, I. B.

    2014-08-01

    The development of the longwave deformational instability of a thermocapillary flow in a two-layer film under the action of an inclined temperature gradient is studied in the framework of the lubrication approximation. The stability boundaries with respect to different oscillatory modes are calculated by means of the linear stability theory. In a contradistinction to the case of a vertical temperature gradient, these boundaries strongly depend on the direction of the wave propagation. Numerical simulations of spatially periodic nonlinear regimes are fulfilled. It is shown that because of the anisotropy of the problem, the most typical kind of patterns is a traveling wave. For small inclination of the temperature gradient, temporally quasiperiodic waves are observed. A number of new three-dimensional traveling wave planforms is revealed.

  15. Finite ballooning angle effects on ion temperature gradient driven mode in gyrokinetic flux tube simulations

    SciTech Connect

    Singh, Rameswar; Brunner, S.; Ganesh, R.; Jenko, F.

    2014-03-15

    This paper presents effects of finite ballooning angles on linear ion temperature gradient (ITG) driven mode and associated heat and momentum flux in Gyrokinetic flux tube simulation GENE. It is found that zero ballooning angle is not always the one at which the linear growth rate is maximum. The ITG mode acquires a short wavelength (SW) branch (k{sub ⊥}ρ{sub i} > 1) when growth rates maximized over all ballooning angles are considered. However, the SW branch disappears on reducing temperature gradient showing characteristics of zero ballooning angle SWITG in case of extremely high temperature gradient. Associated heat flux is even with respect to ballooning angle and maximizes at nonzero ballooning angle while the parallel momentum flux is odd with respect to the ballooning angle.

  16. Temperature Gradient Measurements by Using Thermoelectric Effect in CNTs-Silicone Adhesive Composite

    PubMed Central

    Chani, Muhammad Tariq Saeed; Karimov, Kh. S.; Asiri, Abdullah M.; Ahmed, Nisar; Bashir, Muhammad Mehran; Khan, Sher Bahadar; Rub, Malik Abdul; Azum, Naved

    2014-01-01

    This work presents the fabrication and investigation of thermoelectric cells based on composite of carbon nanotubes (CNT) and silicone adhesive. The composite contains CNT and silicon adhesive 1∶1 by weight. The current-voltage characteristics and dependences of voltage, current and Seebeck coefficient on the temperature gradient of cell were studied. It was observed that with increase in temperature gradient the open circuit voltage, short circuit current and the Seebeck coefficient of the cells increase. Approximately 7 times increase in temperature gradient increases the open circuit voltage and short circuit current up to 40 and 5 times, respectively. The simulation of experimental results is also carried out; the simulated results are well matched with experimental results. PMID:24748375

  17. Evolution of the Specific Surface Area of Snow in a High Temperature Gradient Metamorphism

    NASA Astrophysics Data System (ADS)

    Wang, X.; Baker, I.

    2014-12-01

    The structural evolution of low-density snow under a high temperature gradient over a short period usually takes place in the surface layers during diurnal recrystallization or on a clear, cold night. To relate snow microstructures with their thermal properties, we combined X-ray computed microtomography (micro-CT) observations with numerical simulations. Different types of snow were tested over a large range of TGs (100 K m-1- 500 K m-1). The Specific Surface Area (SSA) was used to characterize the temperature gradient metamorphism (TGM). The magnitude of the temperature gradient and the initial snow type both influence the evolution of SSA. The SSA evolution under TGM was dominated by grain growth and the formation of complex surfaces. Fresh snow experienced a logarithmic decrease of SSA with time, a feature been observed previously by others [Calonne et al., 2014; Schneebeli and Sokratov, 2004; Taillandier et al., 2007]. However, for initial rounded and connected snow structures, the SSA will increase during TGM. Understanding the SSA increase is important in order to predict the enhanced uptake of chemical species by snow or increase in snow albedo. Calonne, N., F. Flin, C. Geindreau, B. Lesaffre, and S. Rolland du Roscoat (2014), Study of a temperature gradient metamorphism of snow from 3-D images: time evolution of microstructures, physical properties and their associated anisotropy, The Cryosphere Discussions, 8, 1407-1451, doi:10.5194/tcd-8-1407-2014. Schneebeli, M., and S. A. Sokratov (2004), Tomography of temperature gradient metamorphism of snow and associated changes in heat conductivity, Hydrological Processes, 18(18), 3655-3665, doi:10.1002/hyp.5800. Taillandier, A. S., F. Domine, W. R. Simpson, M. Sturm, and T. A. Douglas (2007), Rate of decrease of the specific surface area of dry snow: Isothermal and temperature gradient conditions, Journal of Geophysical Research: Earth Surface (2003-2012), 112(F3), doi: 10.1029/2006JF000514.

  18. Chirped-Pulse Inverse Free Electron Laser: A Tabletop, High-Gradient Vacuum Laser Accelerator

    SciTech Connect

    Hartemann, F V; Troha, A L; Baldis, H A

    2001-03-05

    The inverse free-electron laser (IFEL) interaction is studied both theoretically and numerically in the case where the drive laser intensity approaches the relativistic regime, and the pulse duration is only a few optical cycles long. We show that by using an ultrashort, ultrahigh-intensity drive laser pulse, the IFEL interaction bandwidth and accelerating gradient are increased considerably, thus yielding large energy gains. Using a chirped pulse and negative dispersion focusing optics allows one to take further advantage of the laser optical bandwidth and produce a chromatic line focus maximizing the gradient. The combination of these novel ideas results in a compact vacuum laser accelerator capable of accelerating picosecond electron bunches with a high gradient (GeV/m) and very low energy spread. A computer code which takes into account the three-dimensional nature of the interaction is currently in development and results are expected this Spring.

  19. Precession electron diffraction assisted orientation mapping of gradient nanostructure in a Ni-based superalloy

    NASA Astrophysics Data System (ADS)

    Feng, Z. Q.; Chen, Y. X.; Wu, G. L.; Yang, Y. Q.

    2015-08-01

    Surface mechanical grinding of a Ni-based superalloy can introduce a gradient microstructure in the surface layer with a grain size from nanoscale to microscale. In-depth investigation of the crystal orientation distribution of the surface nanostructured layer is more often, however, not an easy work by using the scanning electron microscope (SEM) based electron backscatter diffraction (EBSD) method due to its sensitivity to lattice distortions and spatial resolution limitation. Here we use a newly developed precession electron diffraction (PED) technique coupled with transmission electron microscopy (TEM) to investigate the microstructural and crystallographic characteristics of the surface gradient nanostructure, with particular emphasis on the topmost nanocrystalline layer. A strong shear texture and a minor Copper texture were identified according to orientation analyses of the 1.6 pm thick near-surface nanocrystalline layer. The PED technique is proved to be practical for two dimensional orientation mapping of severely deformed microstructures at the nanoscale.

  20. Comparison of Experimentally Measured Temperature Gradient and Finite-Element-Method Simulations for Two Continuously Cast Bloom Heating Strategies

    NASA Astrophysics Data System (ADS)

    Kvíčala, M.; Frydrýšek, K.; Štamborská, M.

    2015-03-01

    This paper deals with the comparison of experimentally measured temperature gradients and finite-element-method (FEM) simulations of two heating strategies that were used for continuously cast bloom soaking. The temperature gradient between the bloom surface and center was measured by two thermocouples incorporated directly into the bloom. Scanning electron microscopy equipped by energy dispersive X-ray spectroscopy analysis, hot tensile tests, and interdendritic solidification software was used for modeling of steel thermophysical properties with respect to the alloying-elements macrosegregation. The model of the bloom was programmed in the Fortran language. The FEM software MARC/MENTAT 2012 was used for simulation of two heating strategies (plane strain formulation). The first heating model was fitted to the commonly used heating strategy when internal defects grew above the critical limit. The second heating model was a newly proposed strategy that consisted of slower heating up to 1073 K when the first warming-through period occurred. The FEM simulations included determinations of the temperature gradient, the equivalent of stress, the equivalent of elastic strain, the equivalent of plastic strain, and the equivalent of total strain. The simulation results were in good agreement with experimental observations. The new heating strategy based on the FEM simulations led to significantly lower occurrence of internal defects in hot-rolled billets that are used for cylinder production.

  1. Pore and grain boundary migration under a temperature gradient: A phase-field model study

    DOE PAGESBeta

    Biner, S. B.

    2016-03-16

    In this study, the collective migration behavior of pores and grain boundaries under a temperature gradient is studied for simple single crystal, bi-crystal and polycrystal configurations with a phase-field model formulism. For simulation of the microstructure of solids, composed of pores and grain boundaries, the results indicate that not only the volume fraction of pores, but also its spatial partitioning between the grain boundary junctions and the grain boundary segments appears to be important. In addition to various physical properties, the evolution kinetics, under given temperature gradients, will be strongly influenced with the initial morphology of a poly-crystalline microstructure.

  2. Plasma size and power scaling of ion temperature gradient driven turbulence

    SciTech Connect

    Idomura, Yasuhiro; Nakata, Motoki

    2014-02-15

    The transport scaling with respect to plasma size and heating power is studied for ion temperature gradient driven turbulence using a fixed-flux full-f gyrokinetic Eulerian code. It is found that when heating power is scaled with plasma size, the ion heat diffusivity increases with plasma size in a local limit regime, where fixed-gradient δf simulations predict a gyro-Bohm scaling. In the local limit regime, the transport scaling is strongly affected by the stiffness of ion temperature profiles, which is related to the power degradation of confinement.

  3. Temperature measurement systems in wearable electronics

    NASA Astrophysics Data System (ADS)

    Walczak, S.; Gołebiowski, J.

    2014-08-01

    The aim of this paper is to present the concept of temperature measurement system, adapted to wearable electronics applications. Temperature is one of the most commonly monitored factor in smart textiles, especially in sportswear, medical and rescue products. Depending on the application, measured temperature could be used as an initial value of alert, heating, lifesaving or analysis system. The concept of the temperature measurement multi-point system, which consists of flexible screen-printed resistive sensors, placed on the T-shirt connected with the central unit and the power supply is elaborated in the paper.

  4. Low-Temperature Power Electronics Program

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Dickman, John E.; Hammoud, Ahmad; Gerber, Scott

    1997-01-01

    Many space and some terrestrial applications would benefit from the availability of low-temperature electronics. Exploration missions to the outer planets, Earth-orbiting and deep-space probes, and communications satellites are examples of space applications which operate in low-temperature environments. Space probes deployed near Pluto must operate in temperatures as low as -229 C. Figure 1 depicts the average temperature of a space probe warmed by the sun for various locations throughout the solar system. Terrestrial applications where components and systems must operate in low-temperature environments include cryogenic instrumentation, superconducting magnetic energy storage, magnetic levitation transportation system, and arctic exploration. The development of electrical power systems capable of extremely low-temperature operation represents a key element of some advanced space power systems. The Low-Temperature Power Electronics Program at NASA Lewis Research Center focuses on the design, fabrication, and characterization of low-temperature power systems and the development of supporting technologies for low-temperature operations such as dielectric and insulating materials, power components, optoelectronic components, and packaging and integration of devices, components, and systems.

  5. Evolution of the specific surface area of snow during high-temperature gradient metamorphism

    NASA Astrophysics Data System (ADS)

    Wang, Xuan; Baker, Ian

    2014-12-01

    The structural evolution of low-density snow under a high-temperature gradient over a short period usually takes place in the surface layers on clear, cold nights. In this paper, X-ray computed microtomography (microCT) was combined with numerical simulations to investigate the temperature gradient metamorphism (TGM) on different types of snow. Precipitation particles (PP), small rounded particles (RGsr), and large rounded particles (RGlr) were each observed in high-temperature gradients (100-500 K m-1) at a mean temperature of -4°C. The specific surface area (SSA) was used to characterize the TGM, which were influenced by both the magnitude of the temperature gradient and the initial snow structures. PP samples experienced a logarithmic decrease of SSA with time, and the depth hoar structures created under high TGM (500 K m-1) have higher SSA compared to those under lower TGM. Unlike previous observations, for initial rounded and connected structures, like RGlr samples, the SSA increased during TGM. Simulated normal vapor flux distributions for different snow types were used to help understand the structural evolution under TGM. Understanding the SSA increase is important in order to predict the enhanced uptake of chemical species by snow or increase in snow albedo.

  6. Electron Bernstein wave electron temperature profile diagnostic (invited)

    SciTech Connect

    Taylor, G.; Efthimion, P.; Jones, B.; Munsat, T.; Spaleta, J.; Hosea, J.; Kaita, R.; Majeski, R.; Menard, J.

    2001-01-01

    Electron cyclotron emission (ECE) has been employed as a standard electron temperature profile diagnostic on many tokamaks and stellarators, but most magnetically confined plasma devices cannot take advantage of standard ECE diagnostics to measure temperature. They are either ''overdense,'' operating at high density relative to the magnetic field (e.g., {omega}{sub pe}>>{Omega}{sub ce} in a spherical torus) or they have insufficient density and temperature to reach the blackbody condition ({tau}>2). Electron Bernstein waves (EBWs) are electrostatic waves that can propagate in overdense plasmas and have a high optical thickness at the electron cyclotron resonance layers as a result of their large k{sub perp}. In this article we report on measurements of EBW emission on the CDX-U spherical torus, where B{sub 0}{approx}2kG, {approx}10{sup 13}cm{sup -3} and T{sub e}{approx}10--200eV. Results are presented for electromagnetic measurements of EBW emission, mode converted near the plasma edge. The EBW emission was absolutely calibrated and compared to the electron temperature profile measured by a multipoint Thomson scattering diagnostic. Depending on the plasma conditions, the mode-converted EBW radiation temperature was found to be {<=}T{sub e} and the emission source was determined to be radially localized at the electron cyclotron resonance layer. A Langmuir triple probe and a 140 GHz interferometer were employed to measure changes in the edge density profile in the vicinity of the upper hybrid resonance where the mode conversion of the EBWs is expected to occur. Initial results suggest EBW emission and EBW heating are viable concepts for plasmas where {omega}{sub pe}>>{Omega}{sub ce}.

  7. Electron Acceleration by Cascading Reconnection in the Solar Corona. I. Magnetic Gradient and Curvature Drift Effects

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Büchner, J.; Bárta, M.; Gan, W.; Liu, S.

    2015-12-01

    We investigate the electron acceleration by magnetic gradient and curvature drift effects in cascading magnetic reconnection of a coronal current sheet via a test particle method in the framework of the guiding center approximation. After several Alfvén transit times, most of the electrons injected at the current sheet are still trapped in the magnetic islands. A small fraction of the injected electrons precipitate into the chromosphere. The acceleration of trapped electrons is dominated by the magnetic curvature drifts, which change the parallel momentum of the electron, and appears to be more efficient than the acceleration of precipitating electrons, which is dominated by the perpendicular momentum change caused by the magnetic gradient drifts. With the resulting trapped energetic electron distribution, the corresponding hard X-ray (HXR) radiation spectra are calculated using an optically thin Bremsstrahlung model. Trapped electrons may explain flare loop top HXR emission as well as the observed bright spots along current sheets trailing coronal mass ejections. The asymmetry of precipitating electrons with respect to the polarity inversion line may contribute to the observed asymmetry of footpoint emission.

  8. ELECTRON ACCELERATION BY CASCADING RECONNECTION IN THE SOLAR CORONA. I. MAGNETIC GRADIENT AND CURVATURE DRIFT EFFECTS

    SciTech Connect

    Zhou, X.; Büchner, J.; Bárta, M.; Gan, W.; Liu, S.

    2015-12-10

    We investigate the electron acceleration by magnetic gradient and curvature drift effects in cascading magnetic reconnection of a coronal current sheet via a test particle method in the framework of the guiding center approximation. After several Alfvén transit times, most of the electrons injected at the current sheet are still trapped in the magnetic islands. A small fraction of the injected electrons precipitate into the chromosphere. The acceleration of trapped electrons is dominated by the magnetic curvature drifts, which change the parallel momentum of the electron, and appears to be more efficient than the acceleration of precipitating electrons, which is dominated by the perpendicular momentum change caused by the magnetic gradient drifts. With the resulting trapped energetic electron distribution, the corresponding hard X-ray (HXR) radiation spectra are calculated using an optically thin Bremsstrahlung model. Trapped electrons may explain flare loop top HXR emission as well as the observed bright spots along current sheets trailing coronal mass ejections. The asymmetry of precipitating electrons with respect to the polarity inversion line may contribute to the observed asymmetry of footpoint emission.

  9. Evolving ecological networks and the emergence of biodiversity patterns across temperature gradients.

    PubMed

    Stegen, James C; Ferriere, Regis; Enquist, Brian J

    2012-03-22

    In ectothermic organisms, it is hypothesized that metabolic rates mediate influences of temperature on the ecological and evolutionary processes governing biodiversity. However, it is unclear how and to what extent the influence of temperature on metabolism scales up to shape large-scale diversity patterns. In order to clarify the roles of temperature and metabolism, new theory is needed. Here, we establish such theory and model eco-evolutionary dynamics of trophic networks along a broad temperature gradient. In the model temperature can influence, via metabolism, resource supply, consumers' vital rates and mutation rate. Mutation causes heritable variation in consumer body size, which diversifies and governs consumer function in the ecological network. The model predicts diversity to increase with temperature if resource supply is temperature-dependent, whereas temperature-dependent consumer vital rates cause diversity to decrease with increasing temperature. When combining both thermal dependencies, a unimodal temperature-diversity pattern evolves, which is reinforced by temperature-dependent mutation rate. Studying coexistence criteria for two consumers showed that these outcomes are owing to temperature effects on mutual invasibility and facilitation. Our theory shows how and why metabolism can influence diversity, generates predictions useful for understanding biodiversity gradients and represents an extendable framework that could include factors such as colonization history and niche conservatism.

  10. Electronics for Low Temperature Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik

    2007-01-01

    Exploration missions to outer planets and deep space require spacecraft, probes, and on-board data and communication systems to operate reliably and efficiently under severe harsh conditions. On-board electronics, in particular those in direct exposures to the space environment without any shielding or protection, will encounter extreme low temperature and thermal cycling in their service cycle in most of NASA s upcoming exploration missions. For example, Venus atmosphere, Jupiter atmosphere, Moon surface, Pluto orbiter, Mars, comets, Titan, Europa, and James Webb Space Telescope all involve low-temperature surroundings. Therefore, electronics for space exploration missions need to be designed for operation under such environmental conditions. There are ongoing efforts at the NASA Glenn Research Center (GRC) to establish a database on the operation and reliability of electronic devices and circuits under extreme temperature operation for space applications. This work is being performed under the Extreme Temperature Electronics Program with collaboration and support of the NASA Electronic Parts and Packaging (NEPP) Program. The results of these investigations will be used to establish safe operating areas and to identify degradation and failure modes, and the information will be disseminated to mission planners and system designers for use as tools for proper part selection and in risk mitigation. An overview of this program along with experimental data will be presented.

  11. The Conference on High Temperature Electronics

    NASA Technical Reports Server (NTRS)

    Hamilton, D. J.; Mccormick, J. B.; Kerwin, W. J.; Narud, J. A.

    1981-01-01

    The status of and directions for high temperature electronics research and development were evaluated. Major objectives were to (1) identify common user needs; (2) put into perspective the directions for future work; and (3) address the problem of bringing to practical fruition the results of these efforts. More than half of the presentations dealt with materials and devices, rather than circuits and systems. Conference session titles and an example of a paper presented in each session are (1) User requirements: High temperature electronics applications in space explorations; (2) Devices: Passive components for high temperature operation; (3) Circuits and systems: Process characteristics and design methods for a 300 degree QUAD or AMP; and (4) Packaging: Presently available energy supply for high temperature environment.

  12. Large local temperature gradient induced by surface plasmon heating of periodic metal structure

    NASA Astrophysics Data System (ADS)

    Shimada, Ryoko; Sakai, Hitomi

    Mixtures of several gas or solution having different concentration can be separated by the gradient of temperature. This is the so-called Soret effect. This phenomenon is quite important for chemical reaction and material condensation/separation. For activating large Soret effect, it would be useful to focus on the surface plasmon heating (SPH) of metal nanostructures that interact with light. In this work, a local temperate gradient was created with the aid of SPH achieved for periodic silver structures in a mesoscopic length scale fabricated by a nanosphere lithography method. Excitation of this periodic structure (by blue laser, for example) could create a localized periodic temperature gradient, as large as ~1,000 K/ μm, as suggested from preliminary heat-transfer calculation. Experimental and theoretical results will be presented on site

  13. Organic-matter decomposition along a temperature gradient in a forested headwater stream

    SciTech Connect

    Griffiths, Natalie A.; Tiegs, Scott D.

    2016-01-01

    Here, we used a natural temperature gradient in Walker Branch, a spring-fed forested stream in eastern Tennessee, USA, to examine the influence of temperature on organic-matter decomposition. These upstream sites are warmer than downstream sites in winter and are cooler than downstream sites in summer. We used a cotton-strip assay to examine breakdown of a substrate of uniform quality (95% cellulose) along the temperature gradient monthly for 2 y and litter bags to examine the interactive effects of leaf-litter quality (labile red maple [Acer rubrum] and tulip poplar [Liriodendron tulipifera], and less labile white oak [Quercus alba]), invertebrates, and temperature on breakdown rates along the downstream temperature gradient for 90 d in winter. Cotton-strip tensile loss and leaf-litter breakdown rates were highly variable. Tensile-loss rates likely were driven by a combination of daily and diel temperature, discharge, streamwater nutrients that varied seasonally and spatially along the temperature gradient. Leaf litter breakdown rates tended to be faster in warmer upstream sites (red maple = 0.0452/d, tulip poplar = 0.0376/d, white oak = 0.0142/d) and slower in cooler downstream sites (red maple = 0.0312/d, tulip poplar = 0.0236/d, white oak = 0.0107/d), and breakdown rates were positively correlated with total invertebrate density. Furthermore, temperature sensitivity of decomposition was similar among the 3 litter types. These results highlight the high degree of spatial and temporal heterogeneity that can exist for ecosystem processes and their drivers. Quantifying this heterogeneity is important when scaling functional metrics to stream and watershed scales and for understanding how organic-matter processing will respond to the warmer streamwater temperatures expected as a result of global climate change.

  14. Electron Temperature Modification in Gas Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Godyak, Valery

    2011-10-01

    In gas discharge plasma with a Maxwellian electron energy distribution function (EEDF), the ionization balance results in the electron temperature Te being solely a function of the product of gas pressure p and plasma characteristic size d, Te = Te(pd), independently on plasma density and electron heating mechanism. This common feature of gas discharge plasma takes place in self-sustained discharges where ionization is locally coupled with electron heating, usually in a uniform heating electric field. At such condition, there is no room for electron temperature change at fixed pd. Variety of non-equilibrium phenomena observed in self-organized dc and rf discharge structures, and in relaxation process therein suggests the way to EEDF and Te modification. At such conditions, the electron heating can be separated (in space or/and in time) from the ionization. Few examples of such discharge structures in well know stationary dc and rf discharges and in plasma transient processes, leading to considerable mean electron energy reduction, will be considered in the presentation together with abbreviated review of existing methods and experimental results on EEDF control in laboratory plasmas. This work was supported in part by the DOE OFES (Contract No DE-SC0001939).

  15. Does vertical temperature gradient of the atmosphere matter for El Niño development?

    NASA Astrophysics Data System (ADS)

    Hu, Zeng-Zhen; Huang, Bohua; Tseng, Yu-heng; Wang, Wanqiu; Kumar, Arun; Zhu, Jieshun; Jha, Bhaskar

    2016-05-01

    In this work, we examine the connection of vertical temperature gradient of the tropospheric atmosphere along the equator with El Niño-Southern Oscillation (ENSO) and the possible impact of the long-term change of the gradient. It is suggested that when the temperature anomalies in the lower troposphere are relatively warmer (cooler) than in the upper troposphere, the atmosphere is less (more) stable and favors an El Niño (a La Niña) event to develop. ENSO evolutions in 1997-1998 and 2014-2015 events are good examples of this relationship. They started from similar ocean anomaly states in the springs of 1997 and 2014, but developed into an extreme El Niño in 1997-1998 and a borderline El Niño in 2014-2015. That may be partially due to differences in the evolutions of the vertical temperature anomaly gradient in troposphere. Thus, in addition to the significant atmospheric response to ENSO, the preconditioning of vertical gradient of the tropospheric temperature due to internal atmospheric processes to some extent may play an active role in affecting ENSO evolution. The long-term trend with more pronounced warming in the upper troposphere than in the lower troposphere causes a reduction in the vertical temperature gradient in the troposphere. Moreover, unlike almost homogenous warm anomalies in the upper troposphere, the lower troposphere shows remarkable regional features along the equator during 1979-2014, with cold anomaly trends over the central and eastern Pacific Ocean associated with the so-called hiatus and some warm anomalies on its two sides in the east and west. This vertical and zonal distribution of the air temperature trends in the troposphere over the Pacific Ocean is consistent with the convection suppression over the central Pacific since 2000, implying a weakening of atmosphere and ocean coupling.

  16. The effect of electron thermal conduction on plasma pressure gradient during reconnection of magnetic field lines

    SciTech Connect

    Chu, T.K.

    1987-12-01

    The interplay of electron cross-field thermal conduction and the reconnection of magnetic field lines around an m = 1 magnetic island prior to a sawtooth crash can generate a large pressure gradient in a boundary layer adjacent to the reconnecting surface, leading to an enhanced gradient of poloidal beta to satisfy the threshold condition for ideal MHD modes. This narrow boundary layer and the short onset time of a sawtooth crash can be supported by fine-grained turbulent processes in a tokamak plasma. 11 refs.

  17. Unidirectional movement of an actin filament taking advantage of temperature gradients.

    PubMed

    Kawaguchi, Tomoaki; Honda, Hajime

    2007-01-01

    An actin filament with heat acceptors attached to its Cys374 residue in each actin monomer could move unidirectionally even under heat pulsation alone, while in the total absence of both ATP and myosin. The prime driver for the movement was temperature gradients operating between locally heated portions on an actin filament and its cooler surroundings. In this report, we investigated how the mitigation of the temperature gradients induces a unidirectional movement of an actin filament. We then observed the transversal fluctuations of the filament in response to heat pulsation and their transition into longitudinally unidirectional movement. The transition was significantly accelerated when Cys374 and Lys336 were simultaneously excited within an actin monomer. These results suggest that the mitigation of the temperature gradients within each actin monomer first went through the energy transformation to transversal fluctuations of the filament, and then followed by the transformation further down to longitudinal movements of the filament. The faster mitigation of temperature gradients within actin monomer helps build up the transition from the transversal to longitudinal movements of the filament by coordinating the interaction between the neighboring monomers. PMID:17030086

  18. Effects of solid-propellant temperature gradients on the internal ballistics of the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Sforzini, R. H.; Foster, W. A., Jr.; Shackelford, B. W., Jr.

    1978-01-01

    The internal ballistic effects of combined radial and circumferential grain temperature gradients are evaluated theoretically for the Space Shuttle solid rocket motors (SRMs). A simplified approach is devised for representing with closed-form mathematical expressions the temperature distribution resulting from the anticipated thermal history prior to launch. The internal ballistic effects of the gradients are established by use of a mathematical model which permits the propellant burning rate to vary circumferentially. Comparative results are presented for uniform and axisymmetric temperature distributions and the anticipated gradients based on an earlier two-dimensional analysis of the center SRM segment. The thrust imbalance potential of the booster stage is also assessed based on the difference in the thermal loading of the individual SRMs of the motor pair which may be encountered in both summer and winter environments at the launch site. Results indicate that grain temperature gradients could cause the thrust imbalance to be approximately 10% higher in the Space Shuttle than the imbalance caused by SRM manufacturing and propellant physical property variability alone.

  19. The effect of low ancient greenhouse climate temperature gradients on the ocean's overturning circulation

    NASA Astrophysics Data System (ADS)

    Sijp, Willem P.; England, Matthew H.

    2016-02-01

    We examine whether the reduced meridional temperature gradients of past greenhouse climates might have reduced oceanic overturning, leading to a more quiescent subsurface ocean. A substantial reduction of the pole-to-Equator temperature difference is achieved in a coupled climate model via an altered radiative balance in the atmosphere. Contrary to expectations, we find that the meridional overturning circulation and deep ocean kinetic energy remain relatively unaffected. Reducing the wind strength also has remarkably little effect on the overturning. Instead, overturning strength depends on deep ocean density gradients, which remain relatively unaffected by the surface changes, despite an overall decrease in ocean density. Ocean poleward heat transport is significantly reduced only in the Northern Hemisphere, as now the circulation operates across a reduced temperature gradient, suggesting a sensitivity of Northern Hemisphere heat transport in greenhouse climates to the overturning circulation. These results indicate that climate models of the greenhouse climate during the Cretaceous and early Paleogene may yield a reasonable overturning circulation, despite failing to fully reproduce the extremely reduced temperature gradients of those time periods.

  20. Homochirality beyond grinding: deracemizing chiral crystals by temperature gradient under boiling.

    PubMed

    Viedma, Cristóbal; Cintas, Pedro

    2011-12-28

    A single-chirality solid phase can be obtained in boiling solutions containing a racemic mixture of left- and right-handed enantiomorphous crystals due to dissolution-crystallization cycles induced by a temperature gradient. This phenomenon provides further insights into asymmetric amplification mechanisms under presumably prebiotic conditions.

  1. Effect of cockpit temperature gradients on the validity of single-point measurements.

    PubMed

    Allan, J R; Belyavin, A J; Higenbottam, C; Nunneley, S A; Stribley, R F

    1979-07-01

    Dry bulb temperature was measured at six sites throughout seven sorties in F4E aircraft in a study of vertical and lateral cockpit temperature gradients designed to determine the validity of single-point measurements. The results show that both vertical and lateral gradients exist in F4E aircraft and that single-point measurements of Tdb close to the right shoulder show a bias of up to 4 degrees C in relation to mean cockpit dry bulb temperature derived from measurements at five sites. This bias may be removed by using the predictive relationships developed in this study. The relationship between black globe and dry bulb temperatures is also given for F4E aircraft flown in warm, sunny conditions.

  2. Gyrokinetic simulation on the effect of radio frequency waves on ion-temperature-gradient-driven modes

    NASA Astrophysics Data System (ADS)

    Imadera, K.; Kishimoto, Y.; Sen, S.; Vahala, G.

    2016-02-01

    The ion-temperature-driven modes are studied in the presence of radio frequency waves by the use of the Gyro-Kinetic simulation Code. It is shown that the radio frequency waves through the ponderomotive force can stabilise the ion-temperature-gradient instabilities and contrary to the usual belief no radio frequency wave-induced flow generation hypothesis is required. This might be a major way to create a transport barrier in the fusion energy generation.

  3. Organic-matter decomposition along a temperature gradient in a forested headwater stream

    DOE PAGESBeta

    Griffiths, Natalie A.; Tiegs, Scott D.

    2016-01-01

    Here, we used a natural temperature gradient in Walker Branch, a spring-fed forested stream in eastern Tennessee, USA, to examine the influence of temperature on organic-matter decomposition. These upstream sites are warmer than downstream sites in winter and are cooler than downstream sites in summer. We used a cotton-strip assay to examine breakdown of a substrate of uniform quality (95% cellulose) along the temperature gradient monthly for 2 y and litter bags to examine the interactive effects of leaf-litter quality (labile red maple [Acer rubrum] and tulip poplar [Liriodendron tulipifera], and less labile white oak [Quercus alba]), invertebrates, and temperaturemore » on breakdown rates along the downstream temperature gradient for 90 d in winter. Cotton-strip tensile loss and leaf-litter breakdown rates were highly variable. Tensile-loss rates likely were driven by a combination of daily and diel temperature, discharge, streamwater nutrients that varied seasonally and spatially along the temperature gradient. Leaf litter breakdown rates tended to be faster in warmer upstream sites (red maple = 0.0452/d, tulip poplar = 0.0376/d, white oak = 0.0142/d) and slower in cooler downstream sites (red maple = 0.0312/d, tulip poplar = 0.0236/d, white oak = 0.0107/d), and breakdown rates were positively correlated with total invertebrate density. Furthermore, temperature sensitivity of decomposition was similar among the 3 litter types. These results highlight the high degree of spatial and temporal heterogeneity that can exist for ecosystem processes and their drivers. Quantifying this heterogeneity is important when scaling functional metrics to stream and watershed scales and for understanding how organic-matter processing will respond to the warmer streamwater temperatures expected as a result of global climate change.« less

  4. Controlled simulation of optical turbulence in a temperature gradient air chamber

    NASA Astrophysics Data System (ADS)

    Toselli, Italo; Wang, Fei; Korotkova, Olga

    2016-05-01

    Atmospheric turbulence simulator is built and characterized for in-lab optical wave propagation with controlled strength of the refractive-index fluctuations. The temperature gradients are generated by a sequence of heat guns with controlled individual strengths. The temperature structure functions are measured in two directions transverse to propagation path with the help of a thermocouple array and used for evaluation of the corresponding refractive-index structure functions of optical turbulence.

  5. Pancreatic islet purification using bovine serum albumin: the importance of density gradient temperature and osmolality.

    PubMed

    Chadwick, D R; Robertson, G S; Toomey, P; Contractor, H; Rose, S; James, R F; Bell, P R; London, N J

    1993-01-01

    Euro-Ficoll and bovine serum albumin (BSA) are two of the most commonly used density gradient media for the purification of pancreatic islets. Euro-Ficoll is based upon Euro-Collins, a cold storage medium, and must, therefore, be used at 4 degrees C. The ionic composition of BSA, however, is likely to contribute to hypothermic cellular swelling, and this may influence the efficiency of islet purification using this medium at 4 degrees C. Experience in this laboratory also suggested that batch-to-batch variation in islet purity using BSA was related to differences in BSA osmolality. The aim of this study was to assess the effect of gradient medium temperature and osmolality on the purification of human and porcine islets using BSA. Pancreata were collagenase-digested, and islets were purified on continuous linear density gradients of BSA. The distribution of insulin and amylase in each gradient was assayed, and used to calculate the median density of islets and exocrine tissue, and the efficiency of islet purification (% amylase contamination at a fixed insulin yield), using: 1) gradient osmolalities of 300, 400, and 500 mOsm/kg H2O (seven porcine pancreata), and 2) gradients at 4 degrees C and at 22 degrees C (eight human and seven porcine pancreata). Increase in density gradient osmolality produced increases in porcine exocrine tissue density which exceeded changes in islet density, resulting in improved islet purity, maximal at a BSA osmolality of 400 mOsm/kg H2O. For human pancreata there was no significant change in pancreatic tissue densities nor islet purity with temperature.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:7512874

  6. Pioneer 10 observation of the solar wind proton temperature heliocentric gradient

    NASA Technical Reports Server (NTRS)

    Mihalov, J. D.; Wolfe, J. H.

    1978-01-01

    Solar wind isotropic proton temperatures as measured out to 12.2 AU heliocentric distance by the Ames plasma analyzer aboard Pioneer 10 are presented as consecutive averages over three Carrington solar rotations and discussed. The weighted least-squares fit of average temperature to heliocentric radial distance, R, yields the power law R sup -.52. These average proton temperatures are not correlated as well with Pioneer 10's heliocentric radial distance (-.85) as are the corresponding average Zurich sunspot numbers R sub z (-.95). Consequently, it is difficult to isolate the spatial gradient in the Pioneer 10 solar wind proton temperatures using that data alone.

  7. The impact of summer rainfall on the temperature gradient along the United States-Mexico border

    NASA Technical Reports Server (NTRS)

    Balling, Robert C., Jr.

    1989-01-01

    The international border running through the Sonoran Desert in southern Arizona and northern Sonora is marked by a sharp discontinuity in albedo and grass cover. The observed differences in surface properties are a result of long-term, severe overgrazing of the Mexican lands. Recently, investigators have shown the Mexican side of the border to have higher surface and air temperatures when compared to adjacent areas in the United State. The differences in temperatures appear to be more associated with differential evapotranspiration rates than with albedo changes along the border. In this study, the impact of summer rainfall on the observed seasonal and daily gradient in maximum temperature is examined. On a seasonal time scale, the temperature gradient increases with higher moisture levels, probably due to a vegetative response on the United States' side of the border; at the daily level, the gradient in maximum temperature decreases after a rain event as evaporation rates equalize between the countries. The results suggest that temperature differences between vegetated and overgrazed landscapes in arid areas are highly dependent upon the amount of moisture available for evapotranspiration.

  8. Far-from-equilibrium growth of thin films in a temperature gradient.

    PubMed

    Candia, Julián; Albano, Ezequiel V

    2011-11-01

    The irreversible growth of thin films under far-from-equilibrium conditions is studied in (2+1)-dimensional strip geometries. Across one of the transverse directions, a temperature gradient is applied by thermal baths at fixed temperatures between T(1) and T(2), where T(1)temperature of the system in contact with an homogeneous thermal bath. By using standard finite-size scaling methods, we characterized a continuous order-disorder phase transition driven by the thermal bath gradient with critical temperature T(c)=0.84(2) and critical exponents ν=1.53(6), γ=2.54(11), and β=0.26(8), which belong to a different universality class from that of films grown in an homogeneous bath. Furthermore, the effects of the temperature gradient are analyzed by means of a bond model that captures the growth dynamics. The interplay of geometry and thermal bath asymmetries leads to growth bond flux asymmetries and the onset of transverse ordering effects that explain qualitatively the shift in the critical temperature.

  9. Thermal management of low temperature electronics

    NASA Astrophysics Data System (ADS)

    Chow, Louis C.; Sehmbey, Maninder S.; Mahefkey, Tom

    1995-01-01

    Operation of electronics at liquid nitrogen temperature is a very attractive possibility. High temperature superconducting circuits operating at liquid nitrogen temperature (LNT) have great potential in supercomputers and in the medical field. The limitations of superconducting switches in handling high power levels can be overcome by employing hybrid circuits where MOSFET switches are used in conjunction with superconducting elements. These hybrid circuits can be employed advantageously in many applications; for example, high-voltage power conversion, and superconducting-brushless-ac motors for locomotives. However, the thermal management of LNT electronics is an issue that has to be addressed. In this paper, two thermal management techniques, direct immersion cooling, and high-heat-flux spray cooling are discussed. Immersion cooling can handle relatively low heat flux levels (100 kW/m2) while spray cooling is capable of very high heat flux removal (over 1000 kW/m2).

  10. SECONDARY ELECTRON TRAJECTORIES IN HIGH-GRADIENT VACUUM INSULATORS WITH FAST HIGH-VOLTAGE PULSES

    SciTech Connect

    Chen, Y; Blackfield, D; Nelson, S D; Poole, B

    2010-04-21

    Vacuum insulators composed of alternating layers of metal and dielectric, known as high-gradient insulators (HGIs), have been shown to withstand higher electric fields than conventional insulators. Primary or secondary electrons (emitted from the insulator surface) can be deflected by magnetic fields from external sources, the high-current electron beam, the conduction current in the transmission line, or the displacement current in the insulator. These electrons are deflected either toward or away from the insulator surface and this affects the performance of the vacuum insulator. This paper shows the effects of displacement current from short voltage pulses on the performance of high gradient insulators. Generally, vacuum insulator failure is due to surface flashover, initiated by electrons emitted from a triple junction. These electrons strike the insulator surface thus producing secondary electrons, and can lead to a subsequent electron cascade along the surface. The displacement current in the insulator can deflect electrons either toward or away from the insulator surface, and affects the performance of the vacuum insulator when the insulator is subjected to a fast high-voltage pulse. Vacuum insulators composed of alternating layers of metal and dielectric, known as high-gradient insulators (HGIs), have been shown to withstand higher electric fields than conventional insulators. HGIs, being tolerant of the direct view of high-current electron and ion beams, and having desirable RF properties for accelerators, are a key enabling technology for the dielectric-wall accelerators (DWA) being developed at Lawrence Livermore National Laboratory (LLNL). Characteristically, insulator surface breakdown thresholds go up as the applied voltage pulse width decreases. To attain the highest accelerating gradient in the DWA, short accelerating voltage pulses are only applied locally, along the HGI accelerator tube, in sync with the charged particle bunch, and the effects of

  11. The low temperature electrochemical growth of iron, nickel and other metallic single crystals from halide eutectic fluxes in a temperature gradient

    NASA Astrophysics Data System (ADS)

    Chareev, Dmitriy A.

    2015-11-01

    Single crystals of metallic Fe, Ni, Co, Cr, Al, Cu, Ag, Au, Pd, Pt and a few alloys were grown using the AlCl3/KCl and CsCl/NaCl/KCl fluxes for Men+ transport and an inert metallic wire for electron transport in a permanent temperature gradient from 350-600 °C that produced single crystalline samples with dimensions of approximately 2×2×2 mm3. Energy dispersive X-ray spectroscopy established crystal formation of pure metals.

  12. Renormalized theory of ion temperature gradient instability of the magnetic-field-aligned plasma shear flow with hot ions

    NASA Astrophysics Data System (ADS)

    Mikhailenko, V. V.; Mikhailenko, V. S.; Lee, Hae June

    2015-10-01

    The developed kinetic theory for the stability of a magnetic-field-aligned (parallel) shear flow with inhomogeneous ion temperature [Mikhailenko et al., Phys. Plasmas 21, 072117 (2014)] predicted that a kinetic instability arises from the coupled reinforcing action of the flow velocity shear and ion temperature gradient in the cases where comparable ion and electron temperatures exist. In the present paper, the nonlinear theory was developed for the instability caused by the combined effects of ion-temperature-gradient and shear-flow (ITG-SF). The level of the electrostatic turbulence is determined for the saturation state of the instability on the basis of the nonlinear dispersion equation, which accounts for a nonlinear scattering of ions by the developed turbulence in a sheared flow. The renormalized quasilinear equation for the ion distribution function, which accounts for the turbulent scattering of ions by ITG-SF driven turbulence, was derived and employed for the estimation of the turbulent ion viscosity, the anomalous ion thermal conductivity, and anomalous ion heating rate at the saturation state of the instability.

  13. Renormalized theory of ion temperature gradient instability of the magnetic-field-aligned plasma shear flow with hot ions

    SciTech Connect

    Mikhailenko, V. V. Mikhailenko, V. S.; Lee, Hae June

    2015-10-15

    The developed kinetic theory for the stability of a magnetic-field-aligned (parallel) shear flow with inhomogeneous ion temperature [Mikhailenko et al., Phys. Plasmas 21, 072117 (2014)] predicted that a kinetic instability arises from the coupled reinforcing action of the flow velocity shear and ion temperature gradient in the cases where comparable ion and electron temperatures exist. In the present paper, the nonlinear theory was developed for the instability caused by the combined effects of ion-temperature-gradient and shear-flow (ITG–SF). The level of the electrostatic turbulence is determined for the saturation state of the instability on the basis of the nonlinear dispersion equation, which accounts for a nonlinear scattering of ions by the developed turbulence in a sheared flow. The renormalized quasilinear equation for the ion distribution function, which accounts for the turbulent scattering of ions by ITG–SF driven turbulence, was derived and employed for the estimation of the turbulent ion viscosity, the anomalous ion thermal conductivity, and anomalous ion heating rate at the saturation state of the instability.

  14. Fluid simulation of tokamak ion temperature gradient turbulence with zonal flow closure model

    NASA Astrophysics Data System (ADS)

    Yamagishi, Osamu; Sugama, Hideo

    2016-03-01

    Nonlinear fluid simulation of turbulence driven by ion temperature gradient modes in the tokamak fluxtube configuration is performed by combining two different closure models. One model is a gyrofluid model by Beer and Hammett [Phys. Plasmas 3, 4046 (1996)], and the other is a closure model to reproduce the kinetic zonal flow response [Sugama et al., Phys. Plasmas 14, 022502 (2007)]. By including the zonal flow closure, generation of zonal flows, significant reduction in energy transport, reproduction of the gyrokinetic transport level, and nonlinear upshift on the critical value of gradient scale length are observed.

  15. New insights in a 2-D hard disk system under a temperature gradient

    NASA Astrophysics Data System (ADS)

    del Pozo, J. J.; Pérez-Espigares, C.; Hurtado, P. I.; Garrido, P. L.

    2011-03-01

    Hard Disks system is a paradicmatic model well suited, numericaly, to test new approaches to nonequi-librium fenomena, being also easy and fast to simulate due to efficient event driven algorithms present in the literature. In this poster we study several properties of the model under a temperature gradient on the stationary regime. In this situation the sistem has well defined gradients in temperatures and densities allowing us to calculate experimentaly the thermal conductivity. We found this result compatible with the Enskog expresion even for large gradients. We also check that Henderson's state equation, although is an expresion derived under equilibrium conditions, is valid in our system for a wide range of temperatures gradients. We explain this fact showing that the system reach a local thermal equilibrium. Finaly we focus on the role of fluctuations of the energy current finding good agreement with the, recently introduced, Isometric Fluctuation Relation (IFR). We conclude that IFR also stands in our system, although it was formulated from a much simpler case.

  16. NMR and pulsed field gradient NMR approach of water sorption properties in Nafion at low temperature.

    PubMed

    Guillermo, Armel; Gebel, Gérard; Mendil-Jakani, Hakima; Pinton, Eric

    2009-05-14

    The water uptake and the water self-diffusion coefficient were measured in Nafion membranes at subzero temperatures. NMR spectroscopy was used to precisely quantify the actual concentration of water in membranes as a function of the temperature and their hydration rates at room temperature. We find that below 273 K the water concentration decreases with temperature to reach, at around 220 K, a limit value independent of the initial concentration. This regime is observed if the concentration at room temperature is higher than 10%. Below this concentration no membrane deswelling was observed. The water self-diffusion coefficient, measured by pulsed field gradient NMR in function of the temperature, is determined by the actual concentration C(T) whatever the concentration at room temperature. The concentration variation is attributed to a decrease in the relative humidity RH(T) of the water vapor surrounding the membrane induced by the simultaneous presence of supercooled water inside the membrane and ice outside the membrane.

  17. Evaluation of Temperature Gradient in Advanced Automated Directional Solidification Furnace (AADSF) by Numerical Simulation

    NASA Technical Reports Server (NTRS)

    Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.

    1996-01-01

    A numerical model of heat transfer using combined conduction, radiation and convection in AADSF was used to evaluate temperature gradients in the vicinity of the crystal/melt interface for variety of hot and cold zone set point temperatures specifically for the growth of mercury cadmium telluride (MCT). Reverse usage of hot and cold zones was simulated to aid the choice of proper orientation of crystal/melt interface regarding residual acceleration vector without actual change of furnace location on board the orbiter. It appears that an additional booster heater will be extremely helpful to ensure desired temperature gradient when hot and cold zones are reversed. Further efforts are required to investigate advantages/disadvantages of symmetrical furnace design (i.e. with similar length of hot and cold zones).

  18. New Electron Temperature Diagnostic for Low Temperature Plasmas

    NASA Astrophysics Data System (ADS)

    Boivin, Robert; Loch, Stuart

    2004-11-01

    A new line ratio diagnostic design to measure electron temperature in plasma is presented. Unlike previous diagnostics, this new technique features emission lines originating from levels with different principal quantum numbers. A significant advantage of this approach is that the line ratio varies considerably with temperature in the 1 to 20 eV range. Another advantage is that both transitions are optically thin even for plasma density up to 1 E 14 cm-3. The drawbacks are: a large difference in the line intensities and the significant difference in wavelength. The event of high sensitivity CCD camera combine with precise calibration can to a large extent minimize these latest two issues. The diagnostic is tested on the ASTRAL (Auburn Steady sTate Research fAciLity) helicon plasma source. ASTRAL is a 2.3 m long helicon source designed to investigate basic plasma and space plasma processes. The device produces plasmas with the following typical parameters ne = 1 E9 to 1 E13 cm-3, Te = 2 to 20 eV and Ti = 0.03 to 0.3 eV. A series of 8 large coils produce an axial magnetic field up to 1.2 kGauss. Operating pressure varies from 0.1 to 100 mTorr. A water cooled fractional helix antenna is used to introduce RF power up to 2 kwatt through a standard matching circuit. The line ratio temperatures are measured by means of a 0.33 m McPherson Criss-Cross Scanning monochromator instrumented with a SPH5 Apogee CCD camera. The line ratio temperatures are compared to electron temperatures measured by a rf compensated Langmuir Probe. To validate the diagnostic, a new collisional radiative model that makes use of the latest excitation cross-section values is presented. The model is also used to predict the potential range of this new diagnostic both in terms of electron temperature and plasma density.

  19. Thermal Design to Meet Stringent Temperature Gradient/Stability Requirements of SWIFT BAT Detectors

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2000-01-01

    The Burst Alert Telescope (BAT) is an instrument on the National Aeronautics and Space Administration (NASA) SWIFT spacecraft. It is designed to detect gamma ray burst over a broad region of the sky and quickly align the telescopes on the spacecraft to the gamma ray source. The thermal requirements for the BAT detector arrays are very stringent. The maximum allowable temperature gradient of the 256 cadmium zinc telluride (CZT) detectors is PC. Also, the maximum allowable rate of temperature change of the ASICs of the 256 Detector Modules (DMs) is PC on any time scale. The total power dissipation of the DMs and Block Command & Data Handling (BCDH) is 180 W. This paper presents a thermal design that uses constant conductance heat pipes (CCHPs) to minimize the temperature gradient of the DMs, and loop heat pipes (LHPs) to transport the waste heat to the radiator. The LHPs vary the effective thermal conductance from the DMs to the radiator to minimize heater power to meet the heater power budget, and to improve the temperature stability. The DMs are cold biased, and active heater control is used to meet the temperature gradient and stability requirements.

  20. Melting analysis on microbeads in rapid temperature-gradient inside microchannels for single nucleotide polymorphisms detection.

    PubMed

    Li, Kan-Chien; Ding, Shih-Torng; Lin, En-Chung; Wang, Lon Alex; Lu, Yen-Wen

    2014-11-01

    A continuous-flow microchip with a temperature gradient in microchannels was utilized to demonstrate spatial melting analysis on microbeads for clinical Single Nucleotide Polymorphisms (SNPs) genotyping on animal genomic DNA. The chip had embedded heaters and thermometers, which created a rapid and yet stable temperature gradient between 60 °C and 85 °C in a short distance as the detection region. The microbeads, which served as mobile supports carrying the target DNA and fluorescent dye, were transported across the temperature gradient. As the surrounding temperature increased, the fluorescence signals of the microbeads decayed with this relationship being acquired as the melting curve. Fast DNA denaturation, as a result of the improved heat transfer and thermal stability due to scaling, was also confirmed. Further, each individual microbead could potentially bear different sequences and pass through the detection region, one by one, for a series of melting analysis, with multiplex, high-throughput capability being possible. A prototype was tested with target DNA samples in different genotypes (i.e., wild and mutant types) with a SNP location from Landrace sows. The melting temperatures were obtained and compared to the ones using a traditional tube-based approach. The results showed similar levels of SNP discrimination, validating our proposed technique for scanning homozygotes and heterozygotes to distinguish single base changes for disease research, drug development, medical diagnostics, agriculture, and animal production.

  1. Coral record of southeast Indian Ocean marine heatwaves with intensified Western Pacific temperature gradient

    NASA Astrophysics Data System (ADS)

    Zinke, J.; Hoell, A.; Lough, J. M.; Feng, M.; Kuret, A. J.; Clarke, H.; Ricca, V.; Rankenburg, K.; McCulloch, M. T.

    2015-10-01

    Increasing intensity of marine heatwaves has caused widespread mass coral bleaching events, threatening the integrity and functional diversity of coral reefs. Here we demonstrate the role of inter-ocean coupling in amplifying thermal stress on reefs in the poorly studied southeast Indian Ocean (SEIO), through a robust 215-year (1795-2010) geochemical coral proxy sea surface temperature (SST) record. We show that marine heatwaves affecting the SEIO are linked to the behaviour of the Western Pacific Warm Pool on decadal to centennial timescales, and are most pronounced when an anomalously strong zonal SST gradient between the western and central Pacific co-occurs with strong La Niña's. This SST gradient forces large-scale changes in heat flux that exacerbate SEIO heatwaves. Better understanding of the zonal SST gradient in the Western Pacific is expected to improve projections of the frequency of extreme SEIO heatwaves and their ecological impacts on the important coral reef ecosystems off Western Australia.

  2. Coral record of southeast Indian Ocean marine heatwaves with intensified Western Pacific temperature gradient.

    PubMed

    Zinke, J; Hoell, A; Lough, J M; Feng, M; Kuret, A J; Clarke, H; Ricca, V; Rankenburg, K; McCulloch, M T

    2015-10-23

    Increasing intensity of marine heatwaves has caused widespread mass coral bleaching events, threatening the integrity and functional diversity of coral reefs. Here we demonstrate the role of inter-ocean coupling in amplifying thermal stress on reefs in the poorly studied southeast Indian Ocean (SEIO), through a robust 215-year (1795-2010) geochemical coral proxy sea surface temperature (SST) record. We show that marine heatwaves affecting the SEIO are linked to the behaviour of the Western Pacific Warm Pool on decadal to centennial timescales, and are most pronounced when an anomalously strong zonal SST gradient between the western and central Pacific co-occurs with strong La Niña's. This SST gradient forces large-scale changes in heat flux that exacerbate SEIO heatwaves. Better understanding of the zonal SST gradient in the Western Pacific is expected to improve projections of the frequency of extreme SEIO heatwaves and their ecological impacts on the important coral reef ecosystems off Western Australia.

  3. Electron anions and the glass transition temperature.

    PubMed

    Johnson, Lewis E; Sushko, Peter V; Tomota, Yudai; Hosono, Hideo

    2016-09-01

    Properties of glasses are typically controlled by judicious selection of the glass-forming and glass-modifying constituents. Through an experimental and computational study of the crystalline, molten, and amorphous [Ca12Al14O32](2+) ⋅ (e(-))2, we demonstrate that electron anions in this system behave as glass modifiers that strongly affect solidification dynamics, the glass transition temperature, and spectroscopic properties of the resultant amorphous material. The concentration of such electron anions is a consequential control parameter: It invokes materials evolution pathways and properties not available in conventional glasses, which opens a unique avenue in rational materials design. PMID:27559083

  4. Effects of bunch density gradient in high-gain free-electron lasers.

    SciTech Connect

    Huang, Z.; Kim, K.-J.

    1999-09-01

    The authors investigate effects of the bunch density gradient in self-amplified spontaneous emission (SASE), including the role of coherent spontaneous emission (CSE) in the evolution of the free-electron laser (FEL) process. In the exponential gain regime, the authors solve the coupled Maxwell-Vlasov equations and extend the linear theory to a bunched beam with energy spread. A time-dependent, nonlinear simulation algorithm is used to study the CSE effect and the nonlinear evolution of the radiation pulse.

  5. Influence of petroleum deposit geometry on local gradient of electron acceptors and microbial catabolic potential.

    PubMed

    Singh, Gargi; Pruden, Amy; Widdowson, Mark A

    2012-06-01

    A field survey was conducted following the Deepwater Horizon blowout and it was noted that resulting coastal petroleum deposits possessed distinct geometries, ranging from small tar balls to expansive horizontal oil sheets. A subsequent laboratory study evaluated the effect of oil deposit geometry on localized gradients of electron acceptors and microbial community composition, factors that are critical to accurately estimating biodegradation rates. One-dimensional top-flow sand columns with 12-h simulated tidal cycles compared two contrasting geometries (isolated tar "balls" versus horizontal "sheets") relative to an oil-free control. Significant differences in the effluent dissolved oxygen and sulfate concentrations were noted among the columns, indicating presence of anaerobic zones in the oiled columns, particularly in the sheet condition. Furthermore, quantification of genetic markers of terminal electron acceptor and catabolic processes via quantitative polymerase chain reaction of dsrA (sulfate-reduction), mcrA (methanogenesis), and cat23 (oxygenation of aromatics) genes in column cores suggested more extensive anaerobic conditions induced by the sheet relative to the ball geometry. Denaturing gradient gel electrophoresis similarly revealed that distinct gradients of bacterial communities established in response to the different geometries. Thus, petroleum deposit geometry impacts local dominant electron acceptor conditions and may be a key factor for advancing attenuation models and prioritizing cleanup. PMID:22574781

  6. Out-of-Equilibrium Heating of Electron Liquid: Fermionic and Bosonic Temperatures

    NASA Astrophysics Data System (ADS)

    Petković, A.; Chtchelkatchev, N. M.; Baturina, T. I.; Vinokur, V. M.

    2010-10-01

    We investigate out-of-the equilibrium properties of the electron liquid in a two-dimensional disordered superconductor subject to the electric bias and temperature gradient. We calculate kinetic coefficients and Nyquist noise, and find that they are characterized by distinct effective temperatures: Te, characterizing single-particle excitations, TCp, describing the Cooper pairs, and Teh, corresponding to electron-hole or dipole excitations. Varying the ratio between the electric j and thermal jth currents and boundary conditions one can heat different kinds of excitations tuning their corresponding temperatures. We propose the experiment to determine these effective temperatures.

  7. Electron temperatures and densities in the Venus ionosphere - Pioneer Venus orbiter electron temperature probe results

    NASA Technical Reports Server (NTRS)

    Brace, L. H.; Theis, R. F.; Krehbiel, J. P.; Nagy, A. F.; Donahue, T. M.; Mcelroy, M. B.; Pedersen, A.

    1979-01-01

    The Pioneer Venus orbiter electron temperature probe was used to obtain altitude profiles of electron temperature and density in the ionosphere of Venus. Elevated temperatures at times of low solar wind flux might indicate support for a certain model. According to this model, less than 5% of the solar wind energy is deposited at the ionopause and is conducted downward through an unmagnetized ionosphere to the region below 200 km where electron cooling to the neutral atmosphere proceeds rapidly. The patterns of electron temperatures and densities at higher solar wind fluxes are considered, the variability of the ionopause height in the late afternoon is noted, and the role of an induced magnetic barrier in the neighborhood of the ionopause is discussed.

  8. Gradient CdSe/CdS Quantum Dots with Room Temperature Biexciton Unity Quantum Yield.

    PubMed

    Nasilowski, Michel; Spinicelli, Piernicola; Patriarche, Gilles; Dubertret, Benoît

    2015-06-10

    Auger recombination is a major limitation for the fluorescent emission of quantum dots (QDs). It is the main source of QDs fluorescence blinking at the single-particle level. At high-power excitation, when several charge carriers are formed inside a QD, Auger becomes more efficient and severely decreases the quantum yield (QY) of multiexcitons. This limits the efficiency and the use of colloidal QDs in applications where intense light output is required. Here, we present a new generation of thick-shell CdSe/CdS QDs with dimensions >40 nm and a composition gradient between the core and the shell that exhibits 100% QY for the emission of both the monoexciton and the biexciton in air and at room temperature for all the QDs we have observed. The fluorescence emission of these QDs is perfectly Poissonian at the single-particle level at different excitation levels and temperatures, from 30 to 300 K. In these QDs, the emission of high-order (>2) multiexcitons is quite efficient, and we observe white light emission at the single-QD level when high excitation power is used. These gradient thick shell QDs confirm the suppression of Auger recombination in gradient core/shell structures and help further establish the colloidal QDs with a gradient shell as a very stable source of light even under high excitation.

  9. Gradient CdSe/CdS Quantum Dots with Room Temperature Biexciton Unity Quantum Yield.

    PubMed

    Nasilowski, Michel; Spinicelli, Piernicola; Patriarche, Gilles; Dubertret, Benoît

    2015-06-10

    Auger recombination is a major limitation for the fluorescent emission of quantum dots (QDs). It is the main source of QDs fluorescence blinking at the single-particle level. At high-power excitation, when several charge carriers are formed inside a QD, Auger becomes more efficient and severely decreases the quantum yield (QY) of multiexcitons. This limits the efficiency and the use of colloidal QDs in applications where intense light output is required. Here, we present a new generation of thick-shell CdSe/CdS QDs with dimensions >40 nm and a composition gradient between the core and the shell that exhibits 100% QY for the emission of both the monoexciton and the biexciton in air and at room temperature for all the QDs we have observed. The fluorescence emission of these QDs is perfectly Poissonian at the single-particle level at different excitation levels and temperatures, from 30 to 300 K. In these QDs, the emission of high-order (>2) multiexcitons is quite efficient, and we observe white light emission at the single-QD level when high excitation power is used. These gradient thick shell QDs confirm the suppression of Auger recombination in gradient core/shell structures and help further establish the colloidal QDs with a gradient shell as a very stable source of light even under high excitation. PMID:25990468

  10. Measuring the Electron Temperature in the Corona

    NASA Technical Reports Server (NTRS)

    Davila, Joseph; SaintCyr, Orville C.; Reginald, Nelson

    2008-01-01

    We report on an experiment to demonstrate the feasibility of a new method to obtain the electron temperature and flow speed in the solar corona by observing the visible Kcoronal spectrum during the total solar eclipse on 29 March 2006 in Libya. Results show that this new method is indeed feasible, giving electron temperatures and speeds of 1.10 $\\pm$ 0.05 MK, 103.0 $\\pm$ 92.0 $kmsA{-l}$; 0.98 $\\pm$ 0.12 MK, 0.0 + 10.0 $kmsA{-1)s; 0.70 $\\pm$ 0.08 MK, 0.0 + 10.0 $kmsA{-l)$ at l.l{\\it R)$ {\\odot}$ in the solar north, east and west, respectively, and 0.93 $\\pm$ 0.12 MK, 0.0 + 10.0 $kmsA{-l}$ at 1.2{\\it R}$ {\\odot}$ in the solar east. This new technique could be easily used from a space-based platform in a coronagraph to produce two dimensional maps of the electron temperature and bulk flow speed at the base of the solar wind useful for the study of heliospheric structure and space weather.

  11. [The temperature and temperature gradients distribution in the rabbit body thermophysical model with evaporation of moisture from its surface].

    PubMed

    Rumiantsev, G V

    2004-04-01

    On created in laboratory heat-physical model of a rabbit body reflecting basic heat-physical parameters of the body such as: weight, size of a relative surface, heat absorption and heat conduction, heat capacity etc., a change of radial distribution of temperature and size was found across a superficial layer of evaporation of water from its surface, that simulates sweating, with various ratio of environmental temperature and capacity of electrical heater simulating heat production in animal. The experiments have shown that with evaporation of moisture from a surface of model in all investigated cases, there is an increase of superficial layer of body of a temperature gradient and simultaneous decrease of temperature of a model inside and on the surface. It seems that, with evaporation of a moisture from a surface of a body, the size of a temperature gradient in a thin superficial layer dependent in our experiments on capacity for heat production and environmental temperature, is increased and can be used in a live organism for definition of change in general heat content of the body with the purpose of maintenance of its thermal balance with environment. PMID:15296069

  12. What causes cooling water temperature gradients in a forested stream reach?

    NASA Astrophysics Data System (ADS)

    Garner, G.; Malcolm, I. A.; Sadler, J. P.; Hannah, D. M.

    2014-12-01

    Previous studies have suggested that shading by riparian vegetation may reduce maximum water temperatures and provide refugia for temperature-sensitive aquatic organisms. Longitudinal cooling gradients have been observed during the daytime for stream reaches shaded by coniferous trees downstream of clear cuts or deciduous woodland downstream of open moorland. However, little is known about the energy exchange processes that drive such gradients, especially in semi-natural woodland contexts without confounding cool groundwater inflows. To address this gap, this study quantified and modelled variability in stream temperature and heat fluxes along an upland reach of the Girnock Burn (a tributary of the Aberdeenshire Dee, Scotland) where riparian land use transitions from open moorland to semi-natural, predominantly deciduous woodland. Observations were made along a 1050 m reach using a spatially distributed network of 10 water temperature data loggers, 3 automatic weather stations and 211 hemispherical photographs that were used to estimate incoming solar radiation. These data parameterised a high-resolution energy flux model incorporating flow routing, which predicted spatio-temporal variability in stream temperature. Variability in stream temperature was controlled largely by energy fluxes at the water-column-atmosphere interface. Net energy gains occurred along the reach, predominantly during daylight hours, and heat exchange across the bed-water-column interface accounted for <1% of the net energy budget. For periods when daytime net radiation gains were high (under clear skies), differences between water temperature observations increased in the streamwise direction; a maximum instantaneous difference of 2.5 °C was observed between the upstream reach boundary and 1050 m downstream. Furthermore, daily maximum water temperature at 1050 m downstream was ≤1 °C cooler than at the upstream reach boundary and lagged by >1 h. Temperature gradients were not generated

  13. Correlation between excitation temperature and electron temperature with two groups of electron energy distributions

    SciTech Connect

    Park, Hoyong; Choe, Wonho; You, S. J.

    2010-10-15

    The relationship between the electron excitation temperature (T{sub exc}) determined by optical emission spectroscopy and the electron temperature (T{sub e}) using a rf-compensated Langmuir probe was investigated in argon capacitively coupled plasmas. In the experiment performed at the gas pressure range of 30 mTorr to 1 Torr and the rf power range of 5-37 W, the electron energy probability function (EEPF) obtained from the probe current versus voltage characteristic curve showed two energy groups of electrons. The measured EEPF demonstrated that the electron energy distribution changed from Druyvesteyn to single Maxwellian as the discharge current was increased and from bi-Maxwellian to Druyvesteyn as the pressure was increased. As a result, T{sub exc} showed a tendency identical to that of T{sub e} of the high energy part of electrons as pressure and rf power were varied. This suggests that electron temperature can be determined from the measured T{sub exc} through a calibration experiment by which the ratio between electron and excitation temperatures is measured.

  14. Overcoming Zn segregation in CdZnTe with the temperature gradient annealing

    NASA Astrophysics Data System (ADS)

    Kim, K.; Bolotnikov, A. E.; Camarda, G. S.; Hossain, A.; James, R. B.

    2016-05-01

    The availability of large volume crystals with the same energy gap in melt-grown CdZnTe (CZT) is restricted due to the Zn segregation in CdTe hosts. We observed the migration of Zn in the solid phase along the positive temperature gradient direction both in situ and post-growth temperature gradient annealing (TGA) of CZT. Diffusivity of Zn obtained from the in situ TGA was approximately 10-5 cm2/s order and completely different mechanism with that of post-growth. The CZT ingots obtained through in situ TGA have uniform Zn and resistivity of 1010 Ω cm orders. The CZT detectors fabricated from in situ TGA applied ingots exhibit 10% of energy resolution for 59.5 keV peak of 241Am.

  15. Nonlinear diffusion-wave equation for a gas in a regenerator subject to temperature gradient

    NASA Astrophysics Data System (ADS)

    Sugimoto, N.

    2015-10-01

    This paper derives an approximate equation for propagation of nonlinear thermoacoustic waves in a gas-filled, circular pore subject to temperature gradient. The pore radius is assumed to be much smaller than a thickness of thermoviscous diffusion layer, and the narrow-tube approximation is used in the sense that a typical axial length associated with temperature gradient is much longer than the radius. Introducing three small parameters, one being the ratio of the pore radius to the thickness of thermoviscous diffusion layer, another the ratio of a typical speed of thermoacoustic waves to an adiabatic sound speed and the other the ratio of a typical magnitude of pressure disturbance to a uniform pressure in a quiescent state, a system of fluid dynamical equations for an ideal gas is reduced asymptotically to a nonlinear diffusion-wave equation by using boundary conditions on a pore wall. Discussion on a temporal mean of an excess pressure due to periodic oscillations is included.

  16. The effect of small temperature gradients on flow in a continuous flow electrophoresis chamber

    NASA Technical Reports Server (NTRS)

    Rhodes, P. H.; Snyder, R. S.

    1982-01-01

    Continuous flow electrophoresis employs an electric field to separate biological cells suspended in a flowing liquid buffer solution. Good separations based on differences in electrophoretic mobility are obtained only when a unidirectional flow is maintained. The desired flow has a parabolic structure in the narrow dimension of the chamber and is uniform acros the width, except near the edges where the no-slip condition prevails. However, because of buoyancy, very small laterall or axial temperature gradients deform the flow significantly. The results of experiments conducted with a specially instrumented chamber show the origin and structure of the buoyancy-driven perturbations. It is found that very small temperature gradients can disturb the flow significantly, as was predicted by earlier theoretical work.

  17. Neutron radiography of a static density gradient of 3He gas at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Wichmann, G.; Antognini, A.; Eggenberger, A.; Kirch, K.; Piegsa, F. M.; Soler, U.; Stahn, J.; Taqqu, D.

    2016-04-01

    We demonstrate a stationary helium gas density gradient which is needed for a proposed novel low-energy μ+ beam line. In a closed system with constant pressure the corresponding density gradient is only a function of the temperature. In a neutron radiography experiment two gas cells with different geometries were filled with 3He gas at constant pressures of about 10 mbar. Temperatures in the range from 6 K to 40 K were applied and density distributions with a maximum to minimum density ratio of larger than 3 were realized. The distribution was investigated employing the strongly neutron absorbing isotope 3He. A simple one-dimensional approach derived from Fourier's law describes the obtained gas density with a deviation < 2 %.

  18. The Transition to Collisionless Ion-temperature-gradient-driven Plasma Turbulence: A Dynamical Systems Approach

    SciTech Connect

    R.A. Kolesnikov; J.A. Krommes

    2004-10-21

    The transition to collisionless ion-temperature-gradient-driven plasma turbulence is considered by applying dynamical systems theory to a model with ten degrees of freedom. Study of a four-dimensional center manifold predicts a ''Dimits shift'' of the threshold for turbulence due to the excitation of zonal flows and establishes the exact value of that shift in terms of physical parameters. For insight into fundamental physical mechanisms, the method provides a viable alternative to large simulations.

  19. Investigating the Thermophysical Properties of the Ice-Snow Interface Under a Controlled Temperature Gradient

    NASA Astrophysics Data System (ADS)

    Hammonds, Kevin; Lieb-Lappen, Ross; Baker, Ian; Wang, Xuan; Courville, Zoe

    2015-04-01

    Of critical importance for avalanche forecasting, is the ability to draw meaningful conclusions from a handful of field observations. To this end, it is common for avalanche forecasters to not only have to rely on these sparse data, but also to use their own intuitive understanding of how these observations are correlated with the complex physical processes that produce mechanical instabilities within a snowpack. One such example of this is the long-held notion that kinetic snow metamorphism does not occur at bulk temperature gradients of less than -10°C/m. Although this may be true for the homogeneous case, it has become a point of contention as to whether or not this guideline should be applied to the more representative case of a heavily stratified and anisotropic snowpack. As an idealized case for our initial laboratory investigations, we have studied how an artificially created ice layer or "lens" would affect the thermophysical state of the snow layers adjacent to the ice lens and the ice lens itself, while being held under a controlled temperature gradient. Our findings have shown, via in-situ micro-thermocouple measurements, that a super-temperature gradient many times greater than the imposed bulk temperature gradient can exist within a millimeter above and below the surface of the ice lens. Furthermore, microstructural analysis via time-lapse X-ray Micro-Computed Tomography and environmental SEM imaging has been performed. Results from this analysis show new ice crystal growth and kinetic snow metamorphism occurring simultaneously on or near the ice lens itself with the connectivity density at the ice-snow interface increasing markedly more below the ice lens than above.

  20. Experimental investigation on circumferential and axial temperature gradient over fuel channel under LOCA

    NASA Astrophysics Data System (ADS)

    Yadav, Ashwini Kumar; kumar, Ravi; Gupta, Akhilesh; Chatterjee, Barun; Mukhopadhyay, Deb; Lele, H. G.

    2014-06-01

    In a nuclear reactor temperature rises drastically in fuel channels under loss of coolant accident due to failure of primary heat transportation system. Present investigation has been carried out to capture circumferential and axial temperature gradients during fully and partially voiding conditions in a fuel channel using 19 pin fuel element simulator. A series of experiments were carried out by supplying power to outer, middle and center rods of 19 pin fuel simulator in ratio of 1.4:1.1:1. The temperature at upper periphery of pressure tube (PT) was slightly higher than at bottom due to increase in local equivalent thermal conductivity from top to bottom of PT. To simulate fully voided conditions PT was pressurized at 2.0 MPa pressure with 17.5 kW power injection. Ballooning initiated from center and then propagates towards the ends and hence axial temperature difference has been observed along the length of PT. For asymmetric heating, upper eight rods of fuel simulator were activated and temperature difference up-to 250 °C has been observed from top to bottom periphery of PT. Such situation creates steep circumferential temperature gradient over PT and could lead to breaching of PT under high pressure.

  1. Finite element study of plate buckling induced by spatial temperature gradients

    SciTech Connect

    Thornton, E.A.; Kolenski, J.D.; Marino, R.P.

    1993-01-01

    Finite element analyses of thermal buckling of thin metallic plates with prescribed spatial temperature distributions are described. Thermally induced compressive membrane stresses and transverse plate displacement imperfections initiate plates buckling. A finite element formulation based on von Karman plate theory is presented. The resulting nonlinear equations are solved for incremental temperature increases by Newton-Raphson iteration. The computational method is used to investigate the buckling response of rectangular plates with steady and unsteady spatially varying temperature distributions. The role of initial plate imperfections and temperature distributions on the nonlinear response of plate displacements and stresses is described. The relatively high levels of stress induced by spatial temperature gradients should be considered carefully in the postbuckling design of panels for aerospace vehicles subjected to combined mechanical and thermal loads. 31 refs.

  2. Use of vertical temperature gradients for prediction of tidal flat sediment characteristics

    NASA Astrophysics Data System (ADS)

    Miselis, Jennifer L.; Holland, K. Todd; Reed, Allen H.; Abelev, Andrei

    2012-03-01

    Sediment characteristics largely govern tidal flat morphologic evolution; however, conventional methods of investigating spatial variability in lithology on tidal flats are difficult to employ in these highly dynamic regions. In response, a series of laboratory experiments was designed to investigate the use of temperature diffusion toward sediment characterization. A vertical thermistor array was used to quantify temperature gradients in simulated tidal flat sediments of varying compositions. Thermal conductivity estimates derived from these arrays were similar to measurements from a standard heated needle probe, which substantiates the thermistor methodology. While the thermal diffusivities of dry homogeneous sediments were similar, diffusivities for saturated homogeneous sediments ranged approximately one order of magnitude. The thermal diffusivity of saturated sand was five times the thermal diffusivity of saturated kaolin and more than eight times the thermal diffusivity of saturated bentonite. This suggests that vertical temperature gradients can be used for distinguishing homogeneous saturated sands from homogeneous saturated clays and perhaps even between homogeneous saturated clay types. However, experiments with more realistic tidal flat mixtures were less discriminating. Relationships between thermal diffusivity and percent fines for saturated mixtures varied depending upon clay composition, indicating that clay hydration and/or water content controls thermal gradients. Furthermore, existing models for the bulk conductivity of sediment mixtures were improved only through the use of calibrated estimates of homogeneous end-member conductivity and water content values. Our findings suggest that remotely sensed observations of water content and thermal diffusivity could only be used to qualitatively estimate tidal flat sediment characteristics.

  3. Morning Martian Atmospheric Temperature Gradients and Fluctuations Observed by Mars Pathfinder

    NASA Technical Reports Server (NTRS)

    Mihalov, John D.; Haberle, R. M.; Murphy, J. R.; Seiff, A.; Wilson, G. R.

    1999-01-01

    We have studied the most prominent atmospheric temperature fluctuations observed during Martian mornings by Mars Pathfinder and have concluded, based on comparisons with wind directions, that they appear to be a result of atmospheric heating associated with the Lander spacecraft. Also, we have examined the morning surface layer temperature lapse rates, which are found to decrease as autumn approaches at the Pathfinder location, and which have mean (and median) values as large as 7.3 K/m in the earlier portions of the Pathfinder landed mission. It is plausible that brief isolated periods with gradients twice as steep are associated with atmospheric heating adjacent to Lander air bag material. In addition, we have calculated the gradient with height of the structure function obtained with Mars Pathfinder, for Mars' atmospheric temperatures measured within about 1.3 m from the surface, assuming a power law dependence, and have found that these gradients superficially resemble those reported for the upper region of the terrestrial stable boundary layer.

  4. Use of vertical temperature gradients for prediction of tidal flat sediment characteristics

    USGS Publications Warehouse

    Miselis, Jennifer L.; Holland, K. Todd; Reed, Allen H.; Abelev, Andrei

    2012-01-01

    Sediment characteristics largely govern tidal flat morphologic evolution; however, conventional methods of investigating spatial variability in lithology on tidal flats are difficult to employ in these highly dynamic regions. In response, a series of laboratory experiments was designed to investigate the use of temperature diffusion toward sediment characterization. A vertical thermistor array was used to quantify temperature gradients in simulated tidal flat sediments of varying compositions. Thermal conductivity estimates derived from these arrays were similar to measurements from a standard heated needle probe, which substantiates the thermistor methodology. While the thermal diffusivities of dry homogeneous sediments were similar, diffusivities for saturated homogeneous sediments ranged approximately one order of magnitude. The thermal diffusivity of saturated sand was five times the thermal diffusivity of saturated kaolin and more than eight times the thermal diffusivity of saturated bentonite. This suggests that vertical temperature gradients can be used for distinguishing homogeneous saturated sands from homogeneous saturated clays and perhaps even between homogeneous saturated clay types. However, experiments with more realistic tidal flat mixtures were less discriminating. Relationships between thermal diffusivity and percent fines for saturated mixtures varied depending upon clay composition, indicating that clay hydration and/or water content controls thermal gradients. Furthermore, existing models for the bulk conductivity of sediment mixtures were improved only through the use of calibrated estimates of homogeneous end-member conductivity and water content values. Our findings suggest that remotely sensed observations of water content and thermal diffusivity could only be used to qualitatively estimate tidal flat sediment characteristics.

  5. Tomography-based observation of sublimation and snow metamorphism under temperature gradient and advective flow

    NASA Astrophysics Data System (ADS)

    Ebner, P. P.; Schneebeli, M.; Steinfeld, A.

    2015-09-01

    Snow at or close to the surface commonly undergoes temperature gradient metamorphism under advective flow, which alters its microstructure and physical properties. Time-lapse X-ray micro-tomography is applied to investigate the structural dynamics of temperature gradient snow metamorphism exposed to an advective airflow in controlled laboratory conditions. The sublimation of water vapor for saturated air flowing across the snow sample was experimentally determined via variations of the porous ice structure. The results showed that the exothermic gas-to-solid phase change is favorable vis-a-vis the endothermic solid-to-gas phase change, thus leading to more ice deposition than ice sublimation. Sublimation has a marked effect on the structural change of the ice matrix but diffusion of water vapor in the direction of the temperature gradient counteracted the mass transport of advection. Therefore, the total net ice change was negligible leading to a constant porosity profile. However, the strong reposition process of water molecules on the ice grains is relevant for atmospheric chemistry.

  6. The effect of a vertical temperature gradient in the lithosphere on seismic and tectonic waves

    NASA Astrophysics Data System (ADS)

    Birger, B. I.

    2008-09-01

    A linear analysis of the stability of the lithosphere considered as a viscoelastic layer with an equilibrium vertical gradient of temperature is carried out. The problem is solved with a complete system of linearized equations of a continuous medium represented in the dimensionless form and containing a set of dimensionless parameters that determine thermomechanical properties of the lithosphere. As a result of the stability analysis, decrements are found that give the time dependence of perturbations and correspond to high-frequency seismic waves and low-frequency tectonic waves. The frequency and velocity of seismic waves are determined by the elasticity and inertial properties of the lithosphere, and their attenuation, by viscous properties of the lithosphere. The temperature gradient existing in the lithosphere influences seismic waves very weakly. On the contrary, the pattern of tectonic waves is controlled by the temperature gradient and viscous properties, while the effect of elastic and inertial properties on these waves is negligibly small. The stability of a viscoelastic lithosphere is examined using such rheological models as the Maxwell, standard linear, and Andrade media (the frequency of tectonic waves is zero in the Maxwell medium).

  7. A study of self organized criticality in ion temperature gradient mode driven gyrokinetic turbulence

    SciTech Connect

    Mavridis, M.; Isliker, H.; Vlahos, L.; Görler, T.; Jenko, F.; Told, D.

    2014-10-15

    An investigation on the characteristics of self organized criticality (Soc) in ITG mode driven turbulence is made, with the use of various statistical tools (histograms, power spectra, Hurst exponents estimated with the rescaled range analysis, and the structure function method). For this purpose, local non-linear gyrokinetic simulations of the cyclone base case scenario are performed with the GENE software package. Although most authors concentrate on global simulations, which seem to be a better choice for such an investigation, we use local simulations in an attempt to study the locally underlying mechanisms of Soc. We also study the structural properties of radially extended structures, with several tools (fractal dimension estimate, cluster analysis, and two dimensional autocorrelation function), in order to explore whether they can be characterized as avalanches. We find that, for large enough driving temperature gradients, the local simulations exhibit most of the features of Soc, with the exception of the probability distribution of observables, which show a tail, yet they are not of power-law form. The radial structures have the same radial extent at all temperature gradients examined; radial motion (transport) though appears only at large temperature gradients, in which case the radial structures can be interpreted as avalanches.

  8. Measurement of temperature gradient in a heated liquid cylinder using rainbow refractometry assisted with infrared thermometry

    NASA Astrophysics Data System (ADS)

    Song, Feihu; Xu, Chuanlong; Wang, Shimin; Li, Zhenfeng

    2016-12-01

    In a heated liquid cylinder, a temperature gradient exists between the hotter surface and the colder core. Measurement of the temperature gradient is very important for the in-depth investigation into the mechanism and optimized control of the heat transfer process. Rainbow refractometry has been attempted to achieve the measurement since several years ago. Yet there is no effective inversion algorithm without predicting refractive index profiles based on experience. In the paper, an improved rainbow refractometry assisted with infrared thermometry was proposed to measure the diameter and the inside temperature gradient of a heated liquid cylinder. The inversion algorithm was designed based on the nonlinear least square method and an optimization process. To evaluate the feasibility of the proposed method, numerical simulations and experiments were carried out. The results of the numerical simulation showed that the relative error of the inversion diameter was about 1%, and the error of the refractive index was less than 6×10-4 at all the radial locations. In the experimental research, t rainbows reconstructed with the reversion parameters were all similar to the corresponding captured ones.

  9. The coherent gradient sensor for film curvature measurements at cryogenic temperature.

    PubMed

    Liu, Cong; Zhang, Xingyi; Zhou, Jun; Zhou, Youhe; Feng, Xue

    2013-11-01

    Coherent Gradient Sensor (CGS) system is presented for measurement of curvatures and nonuniform curvatures changes in film-substrate systems at cryogenic temperature. The influences of the interface of refrigerator and itself on the interferograms which are accounting for the temperature effect are successfully eliminated. Based on the measurement technique, the thermal stresses (including the radial stress, circumferential stress and shear stress) of superconducting YBCO thin-film are obtained by the extended Stoney's formula during the heating process from 30K to 150K. Take the superconducting YBCO thin film as an example, the thermal stresses of which are gained successfully.

  10. Perspectives on high temperature superconducting electronics

    NASA Technical Reports Server (NTRS)

    Venkatesan, T.

    1990-01-01

    The major challenges in making high temperature superconducting (HTSC) electronics viable are predominantly materials problems. Unlike their predecessors the metal oxide-based superconductors are integratable with other advanced technologies such as opto-electronics and micro-electronics. The materials problems to be addressed relate to the epitaxial growth of high quality films, highly oriented films on non-lattice matched substrates, heterostructures with atomically sharp interfaces of junctions and other novel devices, and the processing of these films with negligible deterioration of the superconducting properties. These issues are illustrated with results based on films prepared in-situ by a pulsed laser deposition process. Films with zero-transition temperatures of 90 K and critical current densities of 5 x 10(exp 6) A/sq cm at 77 K have been prepared by this technique. Ultra-thin films, less than 100 A show T(sub c) is greater than 80 K, supporting the idea of two-dimensional transport in these materials. By the use of appropriate buffer layers, films with T(sub c) of 87 K and J(sub c) of 6 x 10(exp 4) A/sq cm were fabricated on silicon substrates. Submicron structures with J(sub c) is greater than 2 x 10(exp 7) at 10 K were fabricated. Results on nonlinear switching elements, IR detectors, and microwave studies will be briefly summarized.

  11. Perspectives on high temperature superconducting electronics

    NASA Technical Reports Server (NTRS)

    Venkatesan, T.

    1991-01-01

    The major challenges in making high temperature superconducting (HTSC) electronics viable are predominantly materials problems. Unlike their predecessors, the metal oxide-based superconductors are integratable with other advanced technologies such as opto-electronics and micro-electronics. The materials problems to be addressed relate to the epitaxial growth of high quality films, highly oriented films on non-lattice matched substrates, heterostructures with atomically sharp interfaces of junctions and other novel devices, and the processing of these films with negligible deterioration of the superconducting properties. These issues are illustrated with results based on films prepared in-situ by a pulsed laser deposition process. Films with zero-transition temperatures of 90 K and critical current densities of 5 x 10(exp 6) A/sq cm at 77 K have been prepared by this technique. Ultra-thin films, less than 100 A show T(sub c) is greater than 80 K, supporting the idea of two-dimensional transport in these materials. By the use of appropriate buffer layers, films with T(sub c) of 87 K and J(sub c) of 6 x 10(exp 4) A/sq cm were fabricated on silicon substrates. Submicron structures with J(sub c) is greater than 2 x 10(exp 7) at 10 K were fabricated. Results on nonlinear switching elements, IR detectors, and microwave studies will be briefly summarized.

  12. EHW Approach to Temperature Compensation of Electronics

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian

    2004-01-01

    Efforts are under way to apply the concept of evolvable hardware (EHW) to compensate for variations, with temperature, in the operational characteristics of electronic circuits. To maintain the required functionality of a given circuit at a temperature above or below the nominal operating temperature for which the circuit was originally designed, a new circuit would be evolved; moreover, to obtain the required functionality over a very wide temperature range, there would be evolved a number of circuits, each of which would satisfy the performance requirements over a small part of the total temperature range. The basic concepts and some specific implementations of EHW were described in a number of previous NASA Tech Briefs articles, namely, "Reconfigurable Arrays of Transistors for Evolvable Hardware" (NPO-20078), Vol. 25, No. 2 (February 2001), page 36; Evolutionary Automated Synthesis of Electronic Circuits (NPO- 20535), Vol. 26, No. 7 (July 2002), page 37; "Designing Reconfigurable Antennas Through Hardware Evolution" (NPO-20666), Vol. 26, No. 7 (July 2002), page 38; "Morphing in Evolutionary Synthesis of Electronic Circuits" (NPO-20837), Vol. 26, No. 8 (August 2002), page 31; "Mixtrinsic Evolutionary Synthesis of Electronic Circuits" (NPO-20773) Vol. 26, No. 8 (August 2002), page 32; and "Synthesis of Fuzzy-Logic Circuits in Evolvable Hardware" (NPO-21095) Vol. 26, No. 11 (November 2002), page 38. To recapitulate from the cited prior articles: EHW is characterized as evolutionary in a quasi-genetic sense. The essence of EHW is to construct and test a sequence of populations of circuits that function as incrementally better solutions of a given design problem through the selective, repetitive connection and/or disconnection of capacitors, transistors, amplifiers, inverters, and/or other circuit building blocks. The connection and disconnection can be effected by use of field-programmable transistor arrays (FPTAs). The evolution is guided by a search

  13. Regional-scale directional changes in abundance of tree species along a temperature gradient in Japan.

    PubMed

    Suzuki, Satoshi N; Ishihara, Masae I; Hidaka, Amane

    2015-09-01

    Climate changes are assumed to shift the ranges of tree species and forest biomes. Such range shifts result from changes in abundances of tree species or functional types. Owing to global warming, the abundance of a tree species or functional type is expected to increase near the colder edge of its range and decrease near the warmer edge. This study examined directional changes in abundance and demographic parameters of forest trees along a temperature gradient, as well as a successional gradient, in Japan. Changes in the relative abundance of each of four functional types (evergreen broad-leaved, deciduous broad-leaved, evergreen temperate conifer, and evergreen boreal conifer) and the demography of each species (recruitment rate, mortality, and population growth rate) were analyzed in 39 permanent forest plots across the Japanese archipelago. Directional changes in the relative abundance of functional types were detected along the temperature gradient. Relative abundance of evergreen broad-leaved trees increased near their colder range boundaries, especially in secondary forests, coinciding with the decrease in deciduous broad-leaved trees. Similarly, relative abundance of deciduous broad-leaved trees increased near their colder range boundaries, coinciding with the decrease in boreal conifers. These functional-type-level changes were mainly due to higher recruitment rates and partly to the lower mortality of individual species at colder sites. This is the first report to show that tree species abundances in temperate forests are changing directionally along a temperature gradient, which might be due to current or past climate changes as well as recovery from past disturbances.

  14. Regional-scale directional changes in abundance of tree species along a temperature gradient in Japan.

    PubMed

    Suzuki, Satoshi N; Ishihara, Masae I; Hidaka, Amane

    2015-09-01

    Climate changes are assumed to shift the ranges of tree species and forest biomes. Such range shifts result from changes in abundances of tree species or functional types. Owing to global warming, the abundance of a tree species or functional type is expected to increase near the colder edge of its range and decrease near the warmer edge. This study examined directional changes in abundance and demographic parameters of forest trees along a temperature gradient, as well as a successional gradient, in Japan. Changes in the relative abundance of each of four functional types (evergreen broad-leaved, deciduous broad-leaved, evergreen temperate conifer, and evergreen boreal conifer) and the demography of each species (recruitment rate, mortality, and population growth rate) were analyzed in 39 permanent forest plots across the Japanese archipelago. Directional changes in the relative abundance of functional types were detected along the temperature gradient. Relative abundance of evergreen broad-leaved trees increased near their colder range boundaries, especially in secondary forests, coinciding with the decrease in deciduous broad-leaved trees. Similarly, relative abundance of deciduous broad-leaved trees increased near their colder range boundaries, coinciding with the decrease in boreal conifers. These functional-type-level changes were mainly due to higher recruitment rates and partly to the lower mortality of individual species at colder sites. This is the first report to show that tree species abundances in temperate forests are changing directionally along a temperature gradient, which might be due to current or past climate changes as well as recovery from past disturbances. PMID:25712048

  15. Radial gradients of phase space density in the inner electron radiation

    NASA Astrophysics Data System (ADS)

    Kim, Kyung-Chan; Shprits, Yuri

    2012-12-01

    While the outer radiation belt (3.5 < L < 8.0) is highly variable with respect to geomagnetic activity, the inner radiation belt (1.2 < L< 2.0) is relatively stable. Less attention has been paid to the inner electron belt in recent years. It has been generally accepted that the equilibrium structure of radiation belt electrons is explained by the slow inward radial diffusion from a source in the outer belt and losses by Coulomb collision and wave-particle interaction. In this study, we examine this well accepted theory using the radial profiles of the phase space density (PSD), inferred from in situ measurements made by three different satellites: S3-3, CRRES, and POLAR. Our results show that electron PSD in the inner electron belt has a clear prominent local peak and negative radial gradient in the outer portion of the inner zone, i.e., decreasing PSD with increasingL-value. A likely explanation for the peaks in PSD is acceleration due to energy diffusion produced by lightning-generated and anthropogenic whistlers. These results indicate that either additional local acceleration mechanism is responsible for the formation of the inner electron belt or inner electron belt is formed by sporadic injections of electrons into the inner zone. The currently well accepted model of slow diffusion and losses will be further examined by the upcoming Radiation Belt Storm Probes (RBSP) mission.

  16. Effect of Strain Rate and Temperature Gradient on Warm Formability of Aluminum Alloy Sheet

    NASA Astrophysics Data System (ADS)

    Bagheriasl, R.; Ghavam, K.; Worswick, M. J.

    2011-08-01

    The effect of temperature gradient and forming speed on warm formability of aluminum alloy sheet has been studied using a coupled thermal mechanical finite element model of cup deep drawing. A user-defined material model was developed using the Bergstrom temperature and strain-rate dependant hardening model and Barlat YLD2000 anisotropic yield surface, which was implemented within LS-DYNA. The stress-strain curves for AA3003 at elevated temperatures and different strain rates were used to fit the Bergstrom hardening parameters. The anisotropy parameters were considered to be non-temperature dependant. The numerical model was validated against experiments from previous work and was found to accurately predict punch force for warm deep drawing. Increases in forming speed are shown to have a negative effect on formability. It is concluded that non-isothermal warm forming can be used to improve the formability of aluminum alloy sheet.

  17. Surface temperatures and temperature gradient features of the US Gulf Coast waters

    NASA Technical Reports Server (NTRS)

    Huh, O. K.; Rouse, L. J., Jr.; Smith, G. W.

    1977-01-01

    Satellite thermal infrared data on the Gulf of Mexico show that a seasonal cycle exists in the horizontal surface temperature structure. In the fall, the surface temperatures of both coastal and deep waters are nearly uniform. With the onset of winter, atmospheric cold fronts, which are accompanied by dry, low temperature air and strong winds, draw heat from the sea. A band of cooler water forming on the inner shelf expands, until a thermal front develops seaward along the shelf break between the cold shelf waters and the warmer deep waters of the Gulf. Digital analysis of the satellite data was carried out in an interactive mode using a minicomputer and software. A time series of temperature profiles illustrates the temporal and spatial changes in the sea-surface temperature field.

  18. Pioneer Venus orbiter electron temperature probe

    NASA Technical Reports Server (NTRS)

    Brace, Larry H.

    1994-01-01

    This document lists the scientific accomplishments of the Orbiter Electron Temperature Probe (OETP) group. The OETP instrument was fabricated in 1976, integrated into the PVO spacecraft in 1977, and placed in orbit about Venus in December 1978. The instrument operated flawlessly for nearly 14 years until PVO was lost as it entered the Venusian atmosphere in October 1992. The OETP group worked closely with other PVO investigators to examine the Venus ionosphere and its interactions with the solar wind. After the mission was completed we continued to work with the scientist selected for the Venus Data Analysis Program (VDAP), and this is currently leading to additional publications.

  19. Chemical reactions accompanying fluid flow through granite held in a temperature gradient

    USGS Publications Warehouse

    Moore, Diane E.; Morrow, C.A.; Byerlee, J.D.

    1983-01-01

    Distilled water was passed at a low rate down a temperature gradient through cylinders of Barre and Westerly Granite. Temperatures ranged from 80-100??C at the outer edges of the cylinders to 250-300??C in central, drilled holes which housed the heating coils. The measured permeabilities of the granite cylinders decreased by as much as two orders of magnitude in experiments of 1-3 weeks' duration. The amount of permeability decrease varied directly with temperature and inversely with the rate of fluid flow. The compositions of the fluids discharged from the granites were functions of temperature and flow rate as well as mineral composition, with dissolved silica concentrations showing trends different from those of the other analyzed species. Fluids from experiments run at higher temperatures but at much lower initial rates of fluid flow had higher concentrations of most ions but substantially lower dissolved silica contents. In contrast, an increase in temperature at similar rates of fluid flow resulted in higher silica concentrations. In the experiments, the distilled water acquired enough dissolved materials at high temperatures to become supersaturated with respect to several minerals at the low-temperature edges of the cylinders. Some of this material, particularly silica, was deposited along grain boundaries and microfractures, causing the observed permeability decreases. The very low rates of fluid flow in some high-temperature experiments significantly increased the rates of SiO2 precipitation and reduced dissolved silica concentrations relative to other species in the discharged fluids. ?? 1983.

  20. Characterization of small thermal structures in RFX-mod electron temperature profiles

    NASA Astrophysics Data System (ADS)

    Fassina, A.; Gobbin, M.; Spagnolo, S.; Franz, P.; Terranova, D.

    2016-05-01

    In the RFX-mod reverse field pinch (RFP) experiment, electron temperature profiles often feature structures and fluctuations at fine scale. The present work aims at characterizing their occurrence and their localization, in particular by linking them to underlying tearing modes magnetic islands. The confinement characteristics are discussed, identifying analogies with respect to high scale T e structures. Finally, high frequency magnetic activity (i.e. microtearing instabilities) is confirmed to be closely correlated to the presence and proximity of temperature gradients.

  1. Circulatory osmotic desalination driven by a mild temperature gradient based on lower critical solution temperature (LCST) phase transition materials.

    PubMed

    Mok, Yeongbong; Nakayama, Daichi; Noh, Minwoo; Jang, Sangmok; Kim, Taeho; Lee, Yan

    2013-11-28

    Abrupt changes in effective concentration and osmotic pressure of lower critical solution temperature (LCST) mixtures facilitate the design of a continuous desalination method driven by a mild temperature gradient. We propose a prototype desalination system by circulating LCST mixtures between low and high temperature (low T and high T) units. Water molecules could be drawn from a high-salt solution to the LCST mixture through a semipermeable membrane at a temperature lower than the phase transition temperature, at which the effective osmotic pressure of the LCST mixture is higher than the high-salt solution. After transfer of water to the high T unit where the LCST mixture is phase-separated, the water-rich phase could release the drawn water into a well-diluted solution through the second membrane due to the significant decrease in effective concentration. The solute-rich phase could be recovered in the low T unit via a circulation process. The molar mass, phase transition temperature, and aqueous solubility of the LCST solute could be tuneable for the circulatory osmotic desalination system in which drawing, transfer, release of water, and the separation and recovery of the solutes could proceed simultaneously. Development of a practical desalination system that draws water molecules directly from seawater and produces low-salt water with high purity by mild temperature gradients, possibly induced by sunlight or waste heat, could be attainable by a careful design of the molecular structure and combination of the circulatory desalination systems based on low- and high-molar-mass LCST draw solutes.

  2. Flow observation in two immiscible liquid layers subject to a horizontal temperature gradient

    NASA Astrophysics Data System (ADS)

    Someya, Satoshi; Munakata, Tetsuo; Nishio, Masahiro; Okamoto, Koji; Madarame, Haruki

    2002-02-01

    Marangoni convection, driven by an interfacial instability due to a surface tension gradient, has become a significant problem in the crystal growth on the ground or in a microgravity environment. To suppress and control the convection is important for material processing. Especially in the crystal growth by liquid encapsulated czochralski or liquid encapsulated floating zone technique, in which the melt is encapsulated with an immiscible medium, Marangoni convection can occur on the liquid-liquid interface and on the gas-liquid free surface. In the present paper, experiments were carried out with a double liquid layer of silicone oil and fluorinert both in an open-boat system and in an enclosed system. Flow in a cavity subject to a horizontal temperature gradient was observed. An interactive flow near the interface was measured by using particle image velocimetry technique. The measured flow field seemed to agree sufficiently with the numerical prediction.

  3. Generalized gradient approximation for the exchange-correlation hole of a many-electron system

    SciTech Connect

    Perdew, J.P.; Burke, K.; Wang, Y.

    1996-12-01

    We construct a generalized gradient approximation (GGA) for the density {ital n}{sub xc}({ital r},{ital r}+{ital u}) at position {ital r}+{ital u} of the exchange-correlation hole surrounding an electron at {ital r}, or more precisely for its system and spherical average {l_angle}{ital n}{sub xc}({ital u}){r_angle}=(4{pi}){sup {minus}1}{integral}{ital d}{Omega}{sub {ital u}}{ital N}{sup {minus}1}{integral}{ital d}{sup 3}{ital r} {ital n}({ital r}){ital n}{sub xc}({ital r},{ital r}+{ital u}). Starting from the second-order density gradient expansion, which involves the local spin densities {ital n}{sub {up_arrow}}({ital r}),{ital n}{sub {down_arrow}}({ital r}) and their gradients {nabla}{ital n}{sub {up_arrow}}({ital r}),{nabla}{ital n}{sub {down_arrow}}({ital r}), we cut off the spurious large-{ital u} contributions to restore those exact conditions on the hole that the local spin density (LSD) approximation respects. Our GGA hole recovers the Perdew-Wang 1991 and Perdew-Burke-Ernzerhof GGA{close_quote}s for the exchange-correlation energy, which therefore respect the same powerful hole constraints as LSD. When applied to real systems, our hole model provides a more detailed test of these energy functionals, and also predicts the observable electron-electron structure factor. {copyright} {ital 1996 The American Physical Society.}

  4. Directional solidification of C8-BTBT films induced by temperature gradients and its application for transistors

    NASA Astrophysics Data System (ADS)

    Fujieda, Ichiro; Iizuka, Naoki; Onishi, Yosuke

    2015-03-01

    Because charge transport in a single crystal is anisotropic in nature, directional growth of single crystals would enhance device performance and reduce its variation among devices. For an organic thin film, a method based on a temperature gradient would offer advantages in throughput and cleanliness. In experiments, a temperature gradient was established in a spin-coated film of 2,7-dioctyl [1]benzothieno[3,2-b]benzothiophene (C8-BTBT) by two methods. First, a sample was placed on a metal plate bridging two heat stages. When one of the heat stages was cooled, the material started to solidify from the colder region. The melt-solid interface proceeded along the temperature gradient. Cracks were formed perpendicular to the solidification direction. Second, a line-shaped region on the film was continuously exposed to the light from a halogen lamp. After the heat stage was cooled, cracks similar to the first experiment were observed, indicating that the melt-solid interface moved laterally. We fabricated top-contact, bottom-gate transistors with these films. Despite the cracks, field-effect mobility of the transistors fabricated with these films was close to 6 cm2 /Vs and 4 cm2 /Vs in the first and second experiment, respectively. Elimination of cracks would improve charge transport and reduce performance variation among devices. It should be noted that the intense light from the halogen lamp did not damage the C8-BTBT films. The vast knowledge on laser annealing is now available for directional growth of this type of materials. The associated cost would be much smaller because an organic thin film melts at a low temperature.

  5. Steady-state hollow electron temperature profiles in the Rijnhuizen Tokamak Project

    SciTech Connect

    Hogeweij, G.M.; Oomens, A.A.; Barth, C.J.; Beurskens, M.N.; Chu, C.C.; van Gelder, J.F.; Lok, J.; Lopes Cardozo, N.J.; Pijper, F.J.; Polman, R.W.; Rommers, J.H.

    1996-01-01

    In the Rijnhuizen Tokamak Project steady-state hollow electron temperature ({ital T}{sub {ital e}}) profiles have been sustained with strong off-axis electron cyclotron heating, creating a region of reversed magnetic shear. In this region the effective electron thermal diffusivity ({chi}{sub {ital e}}{sup {ital pb}}) is close to neoclassical in high density plasmas. For medium density, {chi}{sub {ital e}}{sup {ital pb}} is lower than neoclassical and may even be negative, indicating that off-diagonal elements in the transport matrix drive an electron heat flux up the {ital T}{sub {ital e}} gradient. {copyright} {ital 1996 The American Physical Society.}

  6. Plasma gradient controlled injection and postacceleration of high quality electron bunches

    SciTech Connect

    Geddes, Cameron G.R.; Nakamura, Kei; Plateau, Guillaume R.; Toth, Csaba; Cormier-Michel, Estelle; Esarey, Eric; Schroeder, Carl B.; Cary, John R.; Leemans, Wim P.; Bruhwiler, D.L.

    2008-10-15

    Plasma density gradients in a gas jet were used to control the wake phase velocity and trapping threshold in a laser wakefield accelerator, producing stable electron bunches with longitudinal and transverse momentum spreads more than 10 times lower than in previous experiments (0.17 and 0.02 MeV=c FWHM, respectively) and with central momenta of 0.76 +- 0.02 MeV=c. Transition radiation measurements combined with simulations indicated that the bunches can be used as a wakefieldaccelerator injector to produce stable beams with 0.2 MeV=c-class momentum spread at high energies.

  7. Plasma density gradient injection of low absolute momentum spread electron bunches

    SciTech Connect

    Geddes, C.G.R.; Nakamura, K.; Plateau, G.R.; Toth, Cs.; Cormier-Michel, E.; Esarey, E.; Schroeder, C.B.; Cary, J.R.; Leemans, W.P.

    2007-12-22

    Plasma density gradients in a gas jet were used to control the wake phase velocity and trapping threshold in a laser wakefield accelerator, producing stable electron bunches with longitudinal and transverse momentum spreads more than ten times lower than in previous experiments (0.17 and 0.02 MeV/c FWHM, respectively) and with central momenta of 0.76 +- 0.02 MeV/c. Transition radiation measurements combined with simulations indicated that the bunches can be used as a wakefield accelerator injector to produce stable beams with 0.2 MeV/c-class momentum spread at high energies.

  8. Temperatures and interval geothermal-gradient determinations from wells in National Petroleum Reserve in Alaska

    USGS Publications Warehouse

    Blanchard, D.C.; Tailleur, I.L.

    1982-01-01

    Temperature and related records from 28 wells in the National Petroleum Reserve in Alaska (NPRA) although somewhat constrained from accuracy by data gathering methods, extrapolate to undisturbed formation temperatures at specific depths below permafrost, and lead to calculated geothermal gradients between these depths. Tabulation of the results show that extrapolated undisturbed temperatures range from a minimum of 98?F (37?C) at 4,000 feet (1,220 m) to a maximum of 420?F (216?C) at 20,260 feet (6,177 m) and that geothermal gradients range from 0.34?F/100' (6?C/km) between 4,470 feet to 7,975 feet (Lisburne (1) and 3.15?F/100? (57?C/km) between 6,830 feet to 7,940 feet (Drew Point #1). Essential information needed for extrapolations consists of: time-sequential 'bottom-hole' temperatures during wire-line logging of intermediate and deep intervals of the bore hole; the times that circulating drilling fluids had disturbed the formations; and the subsequent times that non-circulating drilling fluids had been in contact with the formation. In several wells presumed near direct measures of rock temperatures recorded from formation fluids recovered by drill stem tests (DST) across thin (approx. 10-20 foot) intervals are made available. We believe that the results approach actual values close enough to serve as approximations of the thermal regimes in appropriate future investigations. Continuous temperature logs obtained at the start and end of final logging operations, conductivity measurements, and relatively long-term measurements of the recovery from disturbance at shallow depths in many of the wells will permit refinements of our values and provide determination of temperatures at other depths.

  9. DNA mutation detection with chip-based temperature gradient capillary electrophoresis using a slantwise radiative heating system.

    PubMed

    Zhang, Hui-Dan; Zhou, Jing; Xu, Zhang-Run; Song, Jin; Dai, Jing; Fang, Jin; Fang, Zhao-Lun

    2007-09-01

    A simple and robust chip-based temperature gradient capillary electrophoresis (TGCE) system was developed for DNA mutation/single-nucleotide polymorphism (SNP) analysis using a radiative heating system. Reproducible, stable and uniform temperature gradients were established along a 3 cm length of the electrophoretic separation channel using a single thermostated aluminium heater plate. The heater was slightly slanted relative to the plane of the glass chip at 0.2-1.3 degrees by inserting thin spacers between the plate and chip at one end to produce differences in radiative heating that created the temperature gradient. On-chip TGCE analyses of 4 mutant DNA model samples amplified from plasmid templates, each containing a single base substitution, with a wide range of melting temperatures, showed that mutations were successfully detected under a wide temperature gradient of 10 degrees C and within a short gradient region of about 3 cm (3.3 degrees C cm(-1) gradient). The radiative heating system was able to establish stable spatial temperature gradients along short microfluidic separation channels using simple peripheral equipment and manipulation while ensuring good resolution for detecting a wide range of mutations. Effectiveness of the system was demonstrated by the successful detection of K-ras gene mutations in 6 colon cancer cell lines.

  10. Extraction of espresso coffee by using gradient of temperature. Effect on physicochemical and sensorial characteristics of espresso.

    PubMed

    Salamanca, C Alejandra; Fiol, Núria; González, Carlos; Saez, Marc; Villaescusa, Isabel

    2017-01-01

    Espresso extraction is generally carried out at a fixed temperature within the range 85-95°C. In this work the extraction of the espressos was made in a new generation coffee machine that enables temperature profiling of the brewing water. The effect of using gradient of temperature to brew espressos on physicochemical and sensorial characteristics of the beverage has been investigated. Three different extraction temperature profiles were tested: updrawn gradient (88-93°C), downdrawn gradient (93-88°C) and fixed temperature (90°C). The coffee species investigated were Robusta, Arabica natural and Washed Arabica. Results proved that the use of gradient temperature for brewing espressos allows increasing or decreasing the extraction of some chemical compounds from coffee grounds. Moreover an appropriate gradient of temperature can highlight or hide some sensorial attributes. In conclusion, the possibility of programming gradient of temperature in the coffee machines recently introduced in the market opens new expectations in the field of espresso brewing.

  11. Extraction of espresso coffee by using gradient of temperature. Effect on physicochemical and sensorial characteristics of espresso.

    PubMed

    Salamanca, C Alejandra; Fiol, Núria; González, Carlos; Saez, Marc; Villaescusa, Isabel

    2017-01-01

    Espresso extraction is generally carried out at a fixed temperature within the range 85-95°C. In this work the extraction of the espressos was made in a new generation coffee machine that enables temperature profiling of the brewing water. The effect of using gradient of temperature to brew espressos on physicochemical and sensorial characteristics of the beverage has been investigated. Three different extraction temperature profiles were tested: updrawn gradient (88-93°C), downdrawn gradient (93-88°C) and fixed temperature (90°C). The coffee species investigated were Robusta, Arabica natural and Washed Arabica. Results proved that the use of gradient temperature for brewing espressos allows increasing or decreasing the extraction of some chemical compounds from coffee grounds. Moreover an appropriate gradient of temperature can highlight or hide some sensorial attributes. In conclusion, the possibility of programming gradient of temperature in the coffee machines recently introduced in the market opens new expectations in the field of espresso brewing. PMID:27507518

  12. A summary of high-temperature electronics research and development

    SciTech Connect

    Thome, F.V.; King, D.B.

    1991-10-18

    Current and future needs in automative, aircraft, space, military, and well logging industries require operation of electronics at higher temperatures than today's accepted limit of 395 K. Without the availability of high-temperature electronics, many systems must operate under derated conditions or must accept severe mass penalties required by coolant systems to maintain electronic temperatures below critical levels. This paper presents ongoing research and development in the electronics community to bring high-temperature electronics to commercial realization. Much of this work was recently reviewed at the First International High-Temperature Electronics Conference held 16--20 June 1991 in Albuquerque, New Mexico. 4 refs., 1 tab.

  13. [The temperature and temperature gradient distribution in the thermophysical model of the rabbit body subjected internal and external changes of temperature].

    PubMed

    Rumiantsev, G V

    2002-03-01

    In a laboratory heat-physical model of the rabbit reflecting basic heat-physical parameters of animal body (weight, heat absorption and heat production, size of a relative surface, capacity heat-production etc.), the changes of radial distribution of temperature and size of a cross superficial temperature gradient of the body were investigated with various parities (ratio) of environmental temperature and size of capacity heat production imitated by an electrical heater. Superficial layer of the body dependent from capacity heat production and environmental temperature can serve for definition of general heat content changes in the body for maintaining its thermal balance within the environment.

  14. [The temperature and temperature gradient distribution in the thermophysical model of the rabbit body subjected internal and external changes of temperature].

    PubMed

    Rumiantsev, G V

    2002-03-01

    In a laboratory heat-physical model of the rabbit reflecting basic heat-physical parameters of animal body (weight, heat absorption and heat production, size of a relative surface, capacity heat-production etc.), the changes of radial distribution of temperature and size of a cross superficial temperature gradient of the body were investigated with various parities (ratio) of environmental temperature and size of capacity heat production imitated by an electrical heater. Superficial layer of the body dependent from capacity heat production and environmental temperature can serve for definition of general heat content changes in the body for maintaining its thermal balance within the environment. PMID:12013736

  15. Stability threshold of ion temperature gradient driven mode in reversed field pinch plasmas

    SciTech Connect

    Guo, S. C.

    2008-12-15

    For the first time in the reversed field pinch (RFP) configuration, the stability threshold of the ion temperature gradient driven (ITG) mode is studied by linear gyrokinetic theory. In comparison with tokamaks, the RFP configuration has a shorter connection length and stronger magnetic curvature drift. These effects result in a stronger instability driving mechanism and a larger growth rate in the fluid limit. However, the kinetic theory shows that the temperature slopes required for the excitation of ITG instability are much steeper than the tokamak ones. This is because the effect of Landau damping also becomes stronger due to the shorter connection length, which is dominant and ultimately determines the stability threshold. The required temperature slope for the instability may only be found in the very edge of the plasma and/or near the border of the dominant magnetic island during the quasi-single helicity state of discharge.

  16. Electron temperature measurements in mid-latitude sporadic E layers

    NASA Technical Reports Server (NTRS)

    Schutz, S. R.; Smith, L. G.

    1976-01-01

    By using rocket-borne Langmuir probes, electron temperature profiles have been obtained in five mid-latitude sporadic E layers. The data show the electron temperature within the layers to be lower than the electron temperature at the adjacent altitudes. This is consistent with the layers' being maintained by a vertical redistribution of ionization. The magnitude of the observed electron temperature variation is, however, larger than expected.

  17. Forest soil respiration reflects plant productivity across a temperature gradient in the Alps.

    PubMed

    Caprez, Riccarda; Niklaus, Pascal A; Körner, Christian

    2012-12-01

    Soil respiration (R (s)) plays a key role in any consideration of ecosystem carbon (C) balance. Based on the well-known temperature response of respiration in plant tissue and microbes, R (s) is often assumed to increase in a warmer climate. Yet, we assume that substrate availability (labile C input) is the dominant influence on R (s) rather than temperature. We present an analysis of NPP components and concurrent R (s) in temperate deciduous forests across an elevational gradient in Switzerland corresponding to a 6 K difference in mean annual temperature and a considerable difference in the length of the growing season (174 vs. 262 days). The sum of the short-lived NPP fractions ("canopy leaf litter," "understory litter," and "fine root litter") did not differ across this thermal gradient (+6 % from cold to warm sites, n.s.), irrespective of the fact that estimated annual forest wood production was more than twice as high at low compared to high elevations (largely explained by the length of the growing season). Cumulative annual R (s) did not differ significantly between elevations (836 ± 5 g C m(-2) a(-1) and 933 ± 40 g C m(-2) a(-1) at cold and warm sites, +12 %). Annual soil CO(2) release thus largely reflected the input of labile C and not temperature, despite the fact that R (s) showed the well-known short-term temperature response within each site. However, at any given temperature, R (s) was lower at the warm sites (downregulation). These results caution against assuming strong positive effects of climatic warming on R (s), but support a close substrate relatedness of R (s). PMID:22684867

  18. Forest soil respiration reflects plant productivity across a temperature gradient in the Alps.

    PubMed

    Caprez, Riccarda; Niklaus, Pascal A; Körner, Christian

    2012-12-01

    Soil respiration (R (s)) plays a key role in any consideration of ecosystem carbon (C) balance. Based on the well-known temperature response of respiration in plant tissue and microbes, R (s) is often assumed to increase in a warmer climate. Yet, we assume that substrate availability (labile C input) is the dominant influence on R (s) rather than temperature. We present an analysis of NPP components and concurrent R (s) in temperate deciduous forests across an elevational gradient in Switzerland corresponding to a 6 K difference in mean annual temperature and a considerable difference in the length of the growing season (174 vs. 262 days). The sum of the short-lived NPP fractions ("canopy leaf litter," "understory litter," and "fine root litter") did not differ across this thermal gradient (+6 % from cold to warm sites, n.s.), irrespective of the fact that estimated annual forest wood production was more than twice as high at low compared to high elevations (largely explained by the length of the growing season). Cumulative annual R (s) did not differ significantly between elevations (836 ± 5 g C m(-2) a(-1) and 933 ± 40 g C m(-2) a(-1) at cold and warm sites, +12 %). Annual soil CO(2) release thus largely reflected the input of labile C and not temperature, despite the fact that R (s) showed the well-known short-term temperature response within each site. However, at any given temperature, R (s) was lower at the warm sites (downregulation). These results caution against assuming strong positive effects of climatic warming on R (s), but support a close substrate relatedness of R (s).

  19. Day-night Temperature Gradients and Atmospheric Collapse on Synchronously Rotating Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Koll, D. D. B.; Abbot, D. S.

    2015-12-01

    Terrestrial exoplanets orbiting small host stars are abundant and are also the most promising observational targets for finding life outside our Solar system. Due to their close-in orbits, these planets experience significant tidal interactions with their host stars and will tend to evolve towards spin-orbit resonances or synchronous rotation (=tidally locked). Synchronous rotation has a number of interesting implications for habitability, including the potential for atmospheric collapse on the night side if the surface temperature drops below the condensation point of the gases in the atmosphere. To understand the habitability of synchronously rotating planets, it is therefore important to work out a theory of their temperature and wind structure. Many of these planets will be rotating slowly enough that the well-known weak-temperature-gradient theory holds in the free atmosphere, but even for these planets this theory does not constrain the maximum surface temperature gradient, the planets' thermal phase curve signature, or the threshold for atmospheric collapse. Here we study tidally locked planets using theory and a large array of simulations in a global climate model (GCM) with grey radiative transfer and a full boundary layer scheme. We derive a theory for surface temperatures and atmospheric circulation on synchronously rotating planets that allows us to predict the night-side surface temperature and determine whether atmospheric collapse will occur. We find that atmospheric collapse is sensitive to both the ratio of the Rossby radius to the planetary radius and the ratio of the surface drag timescale to the radiative cooling timescale.

  20. Effect of fast mold surface temperature evolution on iPP part morphology gradients

    NASA Astrophysics Data System (ADS)

    Liparoti, Sara; Sorrentino, Andrea; Guzman, Gustavo; Cakmak, Mukerrem; Titomanlio, Giuseppe

    2016-03-01

    The control of mold surface temperature is an important factor that affects the sample surface morphology as well as the structural gradients (orientation crystal size, and type) as well as cooling stresses. The frozen layer thickness formed during the filling stage also has a very significant effect on the flow resistance and thus on the resulting pressure drop and flow length in thin wall parts. The possibility to have a hot mold during filling and a quick cooling soon afterward is a significant process enhancement particularly for specialized applications such as micro injection molding and for the reproduction of micro structured surfaces. Up to now, several methods (electromagnetic, infrared, hot vapor fleshing etc,) were tried to achieve fast temperature evolution of the mold. Unfortunately, all these methods require a complex balance between thermal and mechanical problems, equipment cost, energy consumption, safety, molding cycle time and part quality achievable. In this work, a thin electrical resistance was designed and used to generate a fast and confined temperature variation on mold surface (by joule effect). Since the whole temperature evolution can take place in a few seconds, one can couple the advantages of a high surface temperature during filling with the advantages of a low mold temperature, fast cooling and low heating dissipation. Some experiments were performed with a commercial iPP resin. The effects of the surface temperature and of the heating time (under constant electric power) on surface finishing and on the final morphology (thickness and structure of the different layers) are explored and discussed.

  1. Longitudinal spin current induced by a temperature gradient in a ferromagnetic insulator

    NASA Astrophysics Data System (ADS)

    Etesami, S. R.; Chotorlishvili, L.; Sukhov, A.; Berakdar, J.

    2014-07-01

    Based on the solution of the stochastic Landau-Lifshitz-Gilbert equation discretized for a ferromagnetic chain subject to a uniform temperature gradient, we present a detailed numerical study of the spin dynamics with a particular focus on finite-size effects. We calculate and analyze the net longitudinal spin current for various temperature gradients, chain lengths, and external static magnetic fields. In addition, we model an interface formed by a nonuniformly magnetized finite-size ferromagnetic insulator and a normal metal and inspect the effects of enhanced Gilbert damping on the formation of the space-dependent spin current within the chain. One aim of this study is the inspection of the spin-Seebeck effect beyond the linear response regime. We find that within our model the microscopic mechanism of the spin-Seebeck current is the magnon accumulation effect quantified in terms of the exchange spin torque. According to our results, this effect drives the spin-Seebeck current even in the absence of a deviation between the magnon and phonon temperature profiles. The influence of the dipole-dipole interaction and domain formation on the spin current is exposed and discussed. Our theoretical findings are in line with the recently observed experimental results by Agrawal et al. [Phys. Rev. Lett. 109, 107204 (2012), 10.1103/PhysRevLett.109.107204].

  2. The effect of magnetic islands on Ion Temperature Gradient turbulence driven transport

    SciTech Connect

    Hill, P.; Hariri, F.; Ottaviani, M.

    2015-04-15

    In this work, we address the question of the influence of magnetic islands on the perpendicular transport due to steady-state ITG turbulence on the energy transport time scale. We demonstrate that turbulence can cross the separatrix and enhance the perpendicular transport across magnetic islands. As the perpendicular transport in the interior of the island sets the critical island size needed for growth of neoclassical tearing modes, this increased transport leads to a critical island size larger than that predicted from considering collisional conductivities, but smaller than that using anomalous effective conductivities. We find that on Bohm time scales, the turbulence is able to re-establish the temperature gradient across the island for islands widths w ≲ λ{sub turb}, the turbulence correlation length. The reduction in the island flattening is estimated by comparison with simulations retaining only the perpendicular temperature and no turbulence. At intermediate island widths, comparable to λ{sub turb}, turbulence is able to maintain finite temperature gradients across the island.

  3. A multi-decade history of soil carbon turnover along a temperature gradient

    SciTech Connect

    Townsend, A.R.; Trumbore, S.E.; Vitousek, P.M. Univ. of California, Irvine )

    1993-06-01

    We used an altitudinal gradient on the northeast flank of Mauna Kea Volcano, island of Hawaii to examine the effects of temperature on soil carbon turnover and stabilization. The gradient consists of C[sub 3] rainforest in parallel to C[sub 4] pastures converted from this forest several decades ago. Sites with little variation in rainfall or vegetation type were chosen on volcanic ash soils of similar ages. We obtained [delta][sup 13]C and [Delta][sup 14]C values for bulk soils and [delta][sup 13]C values for CO[sub 2] evolved in the field and from microbial fumigations. We constructed an isotope dilution model that uses the isotope data along with data on net primary productivity and total soil carbon to estimate relative pool sizes of highly recalcitrant [open quotes]passive[close quotes] and more labile [open quotes]non-passive[close quotes] soil carbon. Results of this model show that decomposition rates for carbon turning over at annual to decadal time scales increase with increasing temperature in a linear to saturating fashion. This response differs from the exponential relationships reported in numerous studies of litter decomposition and/or soil respiration. If soil carbon turnover as a whole is not an exponential function of temperature, then soils would be far less likely to be a net source of atmospheric CO[sub 2] in a warmer climate.

  4. Gradient ascent pulse engineering approach to CNOT gates in donor electron spin quantum computing

    SciTech Connect

    Tsai, D.-B.; Goan, H.-S.

    2008-11-07

    In this paper, we demonstrate how gradient ascent pulse engineering (GRAPE) optimal control methods can be implemented on donor electron spin qubits in semiconductors with an architecture complementary to the original Kane's proposal. We focus on the high fidelity controlled-NOT (CNOT) gate and we explicitly find the digitized control sequences for a controlled-NOT gate by optimizing its fidelity using the effective, reduced donor electron spin Hamiltonian with external controls over the hyperfine A and exchange J interactions. We then simulate the CNOT-gate sequence with the full spin Hamiltonian and find that it has an error of 10{sup -6} that is below the error threshold of 10{sup -4} required for fault-tolerant quantum computation. Also the CNOT gate operation time of 100 ns is 3 times faster than 297 ns of the proposed global control scheme.

  5. Microbial Diversity in Coastal Subsurface Sediments: a Cultivation Approach Using Various Electron Acceptors and Substrate Gradients

    PubMed Central

    Köpke, Beate; Wilms, Reinhard; Engelen, Bert; Cypionka, Heribert; Sass, Henrik

    2005-01-01

    Microbial communities in coastal subsurface sediments are scarcely investigated and have escaped attention so far. But since they are likely to play an important role in biogeochemical cycles, knowledge of their composition and ecological adaptations is important. Microbial communities in tidal sediments were investigated along the geochemical gradients from the surface down to a depth of 5.5 m. Most-probable-number (MPN) series were prepared with a variety of different carbon substrates, each at a low concentration, in combination with different electron acceptors such as iron and manganese oxides. These achieved remarkably high cultivation efficiencies (up to 23% of the total cell counts) along the upper 200 cm. In the deeper sediment layers, MPN counts dropped significantly. Parallel to the liquid enrichment cultures in the MPN series, gradient cultures with embedded sediment subcores were prepared as an additional enrichment approach. In total, 112 pure cultures were isolated; they could be grouped into 53 different operational taxonomic units (OTU). The isolates belonged to the Proteobacteria, “Bacteroidetes,” “Fusobacteria,” Actinobacteria, and “Firmicutes.” Each cultivation approach yielded a specific set of isolates that in general were restricted to this single isolation procedure. Analysis of the enrichment cultures by PCR and denaturing gradient gel electrophoresis revealed an even higher diversity in the primary enrichments that was only partially reflected by the culture collection. The majority of the isolates grew well under anoxic conditions, by fermentation, or by anaerobic respiration with nitrate, sulfate, ferrihydrite, or manganese oxides as electron acceptors. PMID:16332756

  6. Coral record of southeast Indian Ocean marine heatwaves with intensified Western Pacific temperature gradient.

    PubMed

    Zinke, J; Hoell, A; Lough, J M; Feng, M; Kuret, A J; Clarke, H; Ricca, V; Rankenburg, K; McCulloch, M T

    2015-01-01

    Increasing intensity of marine heatwaves has caused widespread mass coral bleaching events, threatening the integrity and functional diversity of coral reefs. Here we demonstrate the role of inter-ocean coupling in amplifying thermal stress on reefs in the poorly studied southeast Indian Ocean (SEIO), through a robust 215-year (1795-2010) geochemical coral proxy sea surface temperature (SST) record. We show that marine heatwaves affecting the SEIO are linked to the behaviour of the Western Pacific Warm Pool on decadal to centennial timescales, and are most pronounced when an anomalously strong zonal SST gradient between the western and central Pacific co-occurs with strong La Niña's. This SST gradient forces large-scale changes in heat flux that exacerbate SEIO heatwaves. Better understanding of the zonal SST gradient in the Western Pacific is expected to improve projections of the frequency of extreme SEIO heatwaves and their ecological impacts on the important coral reef ecosystems off Western Australia. PMID:26493738

  7. Coral record of southeast Indian Ocean marine heatwaves with intensified Western Pacific temperature gradient

    PubMed Central

    Zinke, J.; Hoell, A.; Lough, J. M.; Feng, M.; Kuret, A. J.; Clarke, H.; Ricca, V.; Rankenburg, K.; McCulloch, M. T.

    2015-01-01

    Increasing intensity of marine heatwaves has caused widespread mass coral bleaching events, threatening the integrity and functional diversity of coral reefs. Here we demonstrate the role of inter-ocean coupling in amplifying thermal stress on reefs in the poorly studied southeast Indian Ocean (SEIO), through a robust 215-year (1795–2010) geochemical coral proxy sea surface temperature (SST) record. We show that marine heatwaves affecting the SEIO are linked to the behaviour of the Western Pacific Warm Pool on decadal to centennial timescales, and are most pronounced when an anomalously strong zonal SST gradient between the western and central Pacific co-occurs with strong La Niña's. This SST gradient forces large-scale changes in heat flux that exacerbate SEIO heatwaves. Better understanding of the zonal SST gradient in the Western Pacific is expected to improve projections of the frequency of extreme SEIO heatwaves and their ecological impacts on the important coral reef ecosystems off Western Australia. PMID:26493738

  8. Stresses and deformations in composite tubes due to a circumferential temperature gradient

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Cooper, D. E.

    1986-01-01

    A linear elasticity solution for determining the response of composite tubes subjected to a circumferential temperature gradient is presented. Numerical examples are used to show that, in a single layer tube, fiber orientation strongly influences response. When the fibers are aligned axially, all stress components in the tube are small. When the fibers are aligned circumferentially, the hoop stress becomes large. This difference in behavior is due to the large difference between the radial and circumferential coefficients of thermal expansion when the fibers are oriented circumferentially. In multilayer tubes, stresses are quite high and just two constants characterize the overall bending and axial deformations of the tubes.

  9. Comparisons of theoretically predicted transport from ion temperature gradient instabilities to L-mode tokamak experiments

    SciTech Connect

    Kotschenreuther, M.; Wong, H.V.; Lyster, P.L.; Berk, H.L.; Denton, R.; Miner, W.H.; Valanju, P.

    1991-12-01

    The theoretical transport from kinetic micro-instabilities driven by ion temperature gradients is a sheared slab is compared to experimentally inferred transport in L-mode tokamaks. Low noise gyrokinetic simulation techniques are used to obtain the ion thermal transport coefficient X. This X is much smaller than in experiments, and so cannot explain L-mode confinement. Previous predictions based on fluid models gave much greater X than experiments. Linear and nonlinear comparisons with the fluid model show that it greatly overestimates transport for experimental parameters. In addition, disagreements among previous analytic and simulation calculations of X in the fluid model are reconciled.

  10. Quantification and control of the spatiotemporal gradients of air speed and air temperature in an incubator.

    PubMed

    Van Brecht, A; Aerts, J M; Degraeve, P; Berckmans, D

    2003-11-01

    Around the optimal incubator air temperature only small spatiotemporal deviations are allowed. However, air speed and air temperature are not uniformly distributed in the total volume of the incubator due to obstruction of the eggs and egg trays. The objectives of this research were (1) to quantify the spatiotemporal gradients in temperature and velocity and (2) to develop and validate a control algorithm to increase the uniformity in temperature during the entire incubation process. To improve the uniformity of air temperature, the airflow pattern and the air quality need to be controlled more optimally. These data show that the air temperature between the eggs at a certain position in a large incubator is the result of (1) the mean air temperature of the incubator; (2) the exchange of heat between the egg and its micro-environment, which is affected by the air speed at that certain position; (3) the time-variable heat production of the embryo; and (4) the heat influx or efflux as a result from the movement of hot or cold air in the incubator toward that position, which is affected by the airflow pattern. This implies that the airflow pattern needs to be controlled in a more optimal way. To maximize the uniformity of air temperature, an active and adaptive control of the three-dimensional (3-D) airflow pattern has been developed and tested. It was found to improve the spatiotemporal temperature distribution. The chance of having a temperature reading in the interval from 37.5 to 38.1 degrees C increased by 3% compared to normal operating conditions.

  11. Understanding High Temperature Gradients in the Buckman Well Field, Santa Fe County, New Mexico

    NASA Astrophysics Data System (ADS)

    Folsom, M.; Gulvin, C. J.; Tamakloe, F. M.; Yauk, K.; Kelley, S.; Frost, J.; Jiracek, G. R.

    2014-12-01

    We propose a conceptual model to explain elevated thermal gradients, localized laterally over a few 100 m, discovered during the SAGE program in 2013 and confirmed in 2014 at the Buckman water well field in the Española Basin of north central New Mexico. The anomalous gradients of temperature with depth, dT/dz, exceed 70 ºC/km and are found in three shallow (< 100 m-deep) USGS monitoring wells close to the Rio Grande. A temperature increase of only 3 - 4 ºC at ~100 m depth would elevate the regional temperature value enough to yield the anomalous dT/dz values in the upper ~100 m. The coincidence of a 25 km2 region of InSAR-confirmed subsidence with the locally anomalous dT/dz region suggests a way to achieve a higher temperature at ~ 100 m depth. The mechanism is an isothermal release of warmer water from ~ 200 m depth along a fissure or reactivated fault. A fourth well, 290 m away, has a temperature gradient of only 33ºC/km in the upper 100 m and a distinctly different geochemical profile, suggesting aquifer compartmentalization and possible faulting close to the anomaly. In 2001 a 800 m-long surface scarp with up to 0.2 m offset appeared 2 km to the east in response to over-pumping that depressed the groundwater table by over 100 m. Such drawdown is expected to have 2 - 5 m of compaction with attendant movement along faults or fissures. This could allow groundwater to be released upward isothermally until encountering an unbreached aquitard where it would establish an elevated thermal boundary. Besides the local thermal anomaly, we have temperature-logged deeper water wells in the area. These and other measurements have been used to construct cross-sections of isotherms across the Española Basin along the groundwater flow units (GFUs). This allows comparison of the local thermal anomaly with classic, regional, basin hydrological models. For example, the fully-screened Skillet well, 2.3 km from the anomaly, shows a classic concave down dT/dz form indicating

  12. Transitions in Convection of a Low Prandtl Number Fluid Driven by a Horizontal Temperature Gradient

    NASA Astrophysics Data System (ADS)

    Hung, Ming-Cheng

    The transitions in convection of a low Prandtl number fluid (mercury) contained in enclosed rectangular cavities driven by horizontal temperature gradients were investigated. These cavities have insulating top, bottom and side boundaries. The other two end walls are highly conducting. The temperatures on the conducting walls were varied to control the temperature gradient inside. Both the temperature and the velocity of the fluid inside the cavity were measured. A traversing system allowed the probe position to be changed with the cavity always sealed. The temperature gradient, controlled by a computer, was ramped very slowly. At every 0.2 or 0.12 degree the ramping was held and a data file of several hours was taken. The Prandtl number of the fluid was varied from 0.025 to 0.035 by changing the average temperature. The cavity size effect on the transitions was investigated. The primary (large) cavity had aspect ratio (length:height:width) of 17.8:1:17.8 (height = 0.9 cm). The other cavities for size effect investigation were shorter and narrower. Fourier transform was used to analyze the time series. Phase portraits were constructed in 3d using time delay method and correlation dimensions were computed for some trajectories. For the large cavity, the observed onset of the longitudinal oscillatory state at Grashof number Gr = 18490 was far above the predicted value of 10610 for an infinite long cavity (height/length = 0). At low Grashof numbers, the flow was time independent. As Gr was increased, it changed to a noisy state with a periodic component and then became purely chaotic. Finally the longitudinal oscillatory state appeared with two frequencies and noise. The longitudinal oscillatory state was observed to be a standing wave with a wavelength of about 3 cm. The critical Gr was affected by the cavity width and length. The narrower the cavity, the more stable the flow. The critical Gr for oscillation decreased as the length was increased. An unusual

  13. Diagnosis of gas temperature, electron temperature, and electron density in helium atmospheric pressure plasma jet

    SciTech Connect

    Chang Zhengshi; Zhang Guanjun; Shao Xianjun; Zhang Zenghui

    2012-07-15

    The optical emission spectra of helium atmospheric pressure plasma jet (APPJ) are captured with a three grating spectrometer. The grating primary spectrum covers the whole wavelength range from 200 nm to 900 nm, with the overlapped grating secondary spectrum appearing from 500 nm to 900 nm, which has a higher resolution than that of the grating primary spectrum. So the grating secondary spectrum of OH (A{sup 2}{Sigma} {sup +}({upsilon} Prime = 0) {yields} X{sup 2}{Pi}({upsilon} Double-Prime = 0)) is employed to calculate the gas temperature (T{sub g}) of helium APPJ. Moreover, the electron temperature (T{sub e}) is deduced from the Maxwellian electron energy distribution combining with T{sub g}, and the electron density (n{sub e}) is extracted from the plasma absorbed power. The results are helpful for understanding the physical property of APPJs.

  14. The effects of temperature gradient and growth rate on the morphology and fatigue properties of MAR-M246(Hf)

    NASA Technical Reports Server (NTRS)

    Schmidt, D. D.; Alter, W. S.; Hamilton, W. D.; Parr, R. A.

    1989-01-01

    MAR-M246(Hf) is a nickel based superalloy used in the turbopump blades of the Space Shuttle main engines. The effects are considered of temperature gradient (G) and growth rate (R) on the microstructure and fatigue properties of this superalloy. The primary dendrite arm spacings were found to be inversely proportional to both temperature gradient and growth rate. Carbide and gamma - gamma prime morphology trends were related to G/R ratios. Weibull analysis of fatigue results shows the characteristic life to be larger by a factor of 10 for the low gradient/fast rate pairing of G and R, while the reliability (beta) was lower.

  15. The effects of temperature gradient and growth rate on the morphology and fatigue properties of MAR-M246(Hf)

    SciTech Connect

    Schmidt, D.D.; Alter, W.S.; Hamilton, W.D.; Parr, R.A.

    1989-08-01

    MAR-M246(Hf) is a nickel based superalloy used in the turbopump blades of the Space Shuttle main engines. The effects are considered of temperature gradient (G) and growth rate (R) on the microstructure and fatigue properties of this superalloy. The primary dendrite arm spacings were found to be inversely proportional to both temperature gradient and growth rate. Carbide and gamma - gamma prime morphology trends were related to G/R ratios. Weibull analysis of fatigue results shows the characteristic life to be larger by a factor of 10 for the low gradient/fast rate pairing of G and R, while the reliability (beta) was lower.

  16. Long-term continuous observation of vertical gradient of water temperature on the deep seafloor

    NASA Astrophysics Data System (ADS)

    Suzuki, S.; Hino, R.; Ito, Y.; Kubota, T.; Inazu, D.

    2015-12-01

    We have conducted ocean bottom pressure observations near the Japan Trench and the Kuril Trench using self-pop-up type instruments to detect seafloor vertical displacement accompanied by slip events along the plate boundary faults. Recently, we have started similar observation campaigns in the Hikurangi subduction zone, off the North Island of New Zealand since 2013. As a result of the observations, we have observed an uplift of 5 m due to the 2011 Tohoku-Oki earthquake (Ito et al., 2011) and transient crustal deformations accompanied by slow slip events preceding the earthquake (Ito et al., 2013). Precision thermometer, usually used for temperature compensation of the pressure readings, occasionally recorded strange temperature changes related to occurrence of submarine earthquakes or tsunamis. Arai et al. (2013) interpreted noticeable temperature changes observed after the 2011 Tohoku-Oki earthquake and interpreted it as the result of the turbidity current induced by massive tsunami. Inazu et al. (2015) pointed out a possibility that the temperature disturbance recorded just after the Tohoku-Oki earthquake above the large coseismic slip zone was due to the discharged of submarine groundwater associated with the earthquake. In order to describe these strange temperature signals more quantitatively, we started trial observations allowing investigation of water temperature field on the deep seafloor. In this study, we installed two precision temperature loggers top and bottom of the ocean bottom pressure recorders, with ~ 60 cm in height, to measure vertical gradients of seawater temperature as well as the ocean bottom pressures. Here, we report about 1-year continuous records retrieved from the Japan Trench and off New Zealand. During the observation off New Zealand, an evident slow slip event was identified by the onshore geodetic observations near the locations of our seafloor pressure-temperature monitoring. We are now exploring possible thermal and pressure

  17. Increased temperatures negatively affect Juniperus communis seeds: evidence from transplant experiments along a latitudinal gradient.

    PubMed

    Gruwez, R; De Frenne, P; Vander Mijnsbrugge, K; Vangansbeke, P; Verheyen, K

    2016-05-01

    With a distribution range that covers most of the Northern hemisphere, common juniper (Juniperus communis) has one of the largest ranges of all vascular plant species. In several regions in Europe, however, populations are decreasing in size and number due to failing recruitment. One of the main causes for this failure is low seed viability. Observational evidence suggests that this is partly induced by climate warming, but our mechanistic understanding of this effect remains incomplete. Here, we experimentally assess the influence of temperature on two key developmental phases during sexual reproduction, i.e. gametogenesis and fertilisation (seed phase two, SP2) and embryo development (seed phase three, SP3). Along a latitudinal gradient from southern France to central Sweden, we installed a transplant experiment with shrubs originating from Belgium, a region with unusually low juniper seed viability. Seeds of both seed phases were sampled during three consecutive years, and seed viability assessed. Warming temperatures negatively affected the seed viability of both SP2 and SP3 seeds along the latitudinal gradient. Interestingly, the effect on embryo development (SP3) only occurred in the third year, i.e. when the gametogenesis and fertilisation also took place in warmer conditions. We found strong indications that this negative influence mostly acts via disrupting growth of the pollen tube, the development of the female gametophyte and fertilisation (SP2). This, in turn, can lead to failing embryo development, for example, due to nutritional problems. Our results confirm that climate warming can negatively affect seed viability of juniper.

  18. Analysis of Curved Sandwich Panels Subjected to Combined Temperature Gradient and Mechanical Loads

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Starnes, James H., Jr.; Peters, Jeanne M.

    1998-01-01

    The results of a detailed study of the nonlinear response of curved sandwich panels with composite face sheets and subjected to a temperature gradient through-the-thickness combined with mechanical loadings are presented. The analysis is based on a first-order shear-deformation Sanders-Budiansky type theory with the effects of large displacements, moderate rotations, transverse shear deformation and laminated anisotropic material behavior included. A mixed formulation is used with the fundamental unknowns consisting of the generalized displacements and the stress resultants of the panel. The nonlinear displacements, strain energy, principal strains, transverse shear stresses, transverse shear strain energy density, and their hierarchical sensitivity coefficients are evaluated. The hierarchical sensitivity coefficients measure the sensitivity of the nonlinear response to variations in the panel parameters, the effective properties of the face sheet layers and the core, and the micromechanical parameters. Numerical results are presented for cylindrical panels subjected to combined pressure loading, edge shortening or extension, edge shear and a temperature gradient through the thickness. The results show the effects of variations in the loading and the panel aspect ratio, on the nonlinear response and its sensitivity to changes in the various panel, effective layer and micromechanical parameters.

  19. Regime diagrams and characteristics of flame patterns in radial microchannels with temperature gradients

    SciTech Connect

    Fan, Aiwu; Minaev, Sergey; Kumar, Sudarshan; Liu, Wei; Maruta, Kaoru

    2008-05-15

    Comprehensive regime diagrams of flame pattern formation in radial microchannels with temperature gradients were drawn based on experimental findings. A premixed methane-air mixture was introduced at the center of microchannels formed by two parallel circular quartz plates that were heated with an external porous burner to create a positive temperature gradient condition in the direction of flow. Combustion behavior in those microchannels at channel widths of 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 mm were experimentally investigated. Regime diagrams of various stable and unstable flame patterns were obtained, confirming that the flame pattern is a strong function of mixture equivalence ratio, inlet mixture velocity, and channel width. Furthermore, some combustion characteristics, such as the rotating frequency of the single pelton-like flame and the triple flame, the radius of the stable circular flame front, and comparison between the major combustion products of the single and double pelton-like flames, were also investigated. (author)

  20. Investigation of photospheric temperature gradient variations using limb darkening measurements and simulations

    NASA Astrophysics Data System (ADS)

    Criscuoli, Serena; Foukal, Peter V.

    2016-05-01

    The temperature stratifications of magnetic elements and unmagnetized plasma are different, so that changes of the facular and network filling factor over the cycle modify the average temperature gradient in the photosphere.Such variations have been suggested to explain irradiance measurements obtained by the SIM spectrometers in he visible and infrared spectral ranges. On the other hand, limb darkening measurements show no dependence upon activity level. We investigate the sensitivity of limb darkening to changes in network area filling factor using a 3-D MHD model of the magnetized photosphere. We find that the expected limb darkening change due to the measured 11- yr variation in filling factor lies outside the formal 99% confidence limit of the limb darkening measurements. This poses important constraints for observational validation of 3D-MHD simulations.

  1. Synthesis of chalcogenide and pnictide crystals in salt melts using a steady-state temperature gradient

    NASA Astrophysics Data System (ADS)

    Chareev, D. A.; Volkova, O. S.; Geringer, N. V.; Koshelev, A. V.; Nekrasov, A. N.; Osadchii, V. O.; Osadchii, E. G.; Filimonova, O. N.

    2016-07-01

    Some examples of growing crystals of metals, alloys, chalcogenides, and pnictides in melts of halides of alkali metals and aluminum at a steady-state temperature gradient are described. Transport media are chosen to be salt melts of eutectic composition with the participation of LiCl, NaCl, KCl, RbCl, CsCl, AlCl3, AlBr3, KBr, and KI in a temperature range of 850-150°C. Some crystals have been synthesized only using a conducting contour. This technique of crystal growth is similar to the electrochemical method. In some cases, to exclude mutual influence, some elements have been isolated and forced to migrate to the crystal growth region through independent channels. As a result, crystals of desired quality have been obtained using no special equipment and with sizes sufficient for study under laboratory conditions.

  2. Transient temperature response of functionally gradient material subjected to partial stepwise heating

    SciTech Connect

    Makino, Atsushi; Araki, Nobuyuki; Kitajima, Hidetoshi; Ohashi, Kentaro

    1996-01-01

    Functionally gradient materials (FGMs) with distributed properties have attracted special interests as advanced heat-shielding/structural materials in future space applications. The objective of the present study is to derive an analytical solution of the temperature response in a multilayer-type FGM, the front surface of which is subjected to partial, stepwise heating. Heat losses from the front, rear, and side surfaces are also considered. The Laplace transform has been used to obtain the analytical solution. This solution is expected to elucidate the dependence of the temperature response on the various parameters, such as thermophysical properties and heat losses. It is also expected to reduce the calculation time to obtain thermal stress and/or strain in large-scale numerical calculations. Appropriateness of this solution has also been demonstrated by comparing the present results and the experimental results obtained by the National Aerospace Laboratory, Japan.

  3. A Mathematical Model for Predicting Moisture Flow in an Unsaturated Soil Under Hydraulic and Temperature Gradients

    NASA Astrophysics Data System (ADS)

    Dakshanamurthy, V.; Fredlund, D. G.

    1981-06-01

    A theoretical model is presented to predict the moisture flow in an unsaturated soil as the result of hydraulic and temperature gradients. A partial differential heat flow equation (for above-freezing conditions) and the two partial differential transient flow equations (one for the water phase and the other for the air phase), are derived in this paper and solved using a finite difference technique. Darcy's law is used to describe the flow in the water phase, while Pick's law is used for the air phase. The constitutive equations proposed by Fredlund and Morgenstern are used to define the volume change of an unsaturated soil. The simultaneous solution of the partial differential equations gives the temperature, the pore water pressure, and the pore air pressure distribution with space and time in an unsaturated soil. The pressure changes can, in turn, be used to compute the quantity of moisture flow.

  4. Variable but persistent coexistence of Prochlorococcus ecotypes along temperature gradients in the ocean's surface mixed layer.

    PubMed

    Chandler, Jeremy W; Lin, Yajuan; Gainer, P Jackson; Post, Anton F; Johnson, Zackary I; Zinser, Erik R

    2016-04-01

    The vast majority of the phytoplankton communities in surface mixed layer of the oligotrophic ocean are numerically dominated by one of two ecotypes of Prochlorococcus, eMIT9312 or eMED4. In this study, we surveyed large latitudinal transects in the Atlantic and Pacific Ocean to determine if these ecotypes discretely partition the surface mixed layer niche, or if populations exist as a continuum along key environmental gradients, particularly temperature. Transitions of dominance occurred at approximately 19-21°C, with the eMED4 ecotype dominating the colder, and eMIT9312 ecotype dominating the warmer regions. Within these zones of regional dominance, however, the minority ecotype was not competed to extinction. Rather, a robust log-linear relationship between ecotype ratio and temperature characterized this stabilized coexistence: for every 2.5°C increase in temperature, the eMIT9312:eMED4 ratio increased by an order of magnitude. This relationship was observed in both quantitative polymerase chain reaction and in pyrosequencing assays. Water column stratification also contributed to the ecotype ratio along the basin-scale transects, but to a lesser extent. Finally, instances where the ratio of the eMED4 and eMIT9312 abundances did not correlate well with temperature were identified. Such occurrences are likely due to changes in water temperatures outpacing changes in community structure.

  5. Estimation of in-situ thermal conductivities from temperature gradient measurements

    SciTech Connect

    Hoang, V.T.

    1980-12-01

    A mathematical model has been developed to study the effect of variable thermal conductivity of the formations, and the wellbore characteristics, on the fluid temperature behavior inside the wellbore during injection or production and after shut-in. During the injection or production period the wellbore fluid temperature is controlled mainly by the fluid flow rate and the heat lost from the fluid to the formation. During the shut-in period, the fluid temperature is strongly affected by differences in the formation thermal conductivities. Based on the results of the present analysis, two methods for estimating in-situ thermal conductivity were derived. First, the line source concept is extended to estimate values of the formation thermal conductivities utilizing the fluid temperature record during the transient period of injection or production and shut-in. The second method is applied when a well is under thermal equilibrium conditions. Values of the formation thermal conductivities can also be estimated by using a continuous temperature gradient log and by measuring the thermal conductivity of the formation at a few selected wellbore locations.

  6. Assessing the temperature sensitivity of soil carbon decomposition along a geo-climatic gradient in Chile

    NASA Astrophysics Data System (ADS)

    Doetterl, Sebastian; Munoz, Cristina; Boeckx, Pascal; Zagal Venegas, Erick

    2016-04-01

    Grasslands are recognized for having a high C sequestration potential and to play an important role in the development of sustainable agriculture in a warming world. Soil organic carbon (SOC) decomposition, and the resultant CO2 emissions, can have a significant impact on atmospheric CO2 levels. However, at a global scale, the temperature sensitivity of C decomposition is not addressed spatially explicit and, hence, introduces large uncertainty into global assessments of future C release from soils. Furthermore, temperature sensitivity is not only a question of climatic and biochemical recalcitrance of SOC, but also crucially dependent on the soil environment in which decomposition takes place. Hence, it is crucial to study SOC decomposition across a large variety of environmental conditions in order to improve the prediction of long-term impacts of global warming on SOC storage. Chile provides one of the best natural laboratories in the world to assess the links between soils, climate and carbon dynamics as both climate and mineralogical parameters show large variability. Here, we show the first results from a one-year temperature sensitive incubation study on soil samples from 37 grassland sites across a 4000km North-South gradient in Chile. Incubation was performed at 5 different temperature levels and we analyze the variability of temperature sensitivity of decomposition in relation to C input quality, soil geochemistry and climatic conditions at the sampling sites.

  7. Temperature gradients in equilibrium: Small microcanonical systems in an external field.

    PubMed

    Salazar, Alberto; Larralde, Hernán; Leyvraz, François

    2014-11-01

    We consider the statistical mechanics of a small gaseous system subject to a constant external field. As is well known, in the canonical ensemble, that the system (i) obeys a barometric formula for the density profile, and (ii) the kinetic temperature is independent of height, even when the system is small. We show here that in the microcanonical ensemble the kinetic temperature of the particles affected by the field is not constant with height, but that rather, generally speaking, it decreases with a gradient of order 1/N. Even more, if we have a mixture of two species, one which is influenced by the field and the other which is not, we find that the two species' kinetic temperatures are generally different, even at the same height. These facts are shown in detail by studying a simple mechanical model: a Lorentz Gas where particles and spinning disks interact and the particles are subjected to a constant external force. In the microcanonical ensemble, the kinetic temperature of the particles is indeed found to vary with height; the disks' kinetic temperature, on the other hand, is height-independent, and thus, differs from that of the particles with which they interact. PMID:25493759

  8. A Theoretical and Experimental Investigation of the Influence of Temperature Gradients on the Deformation and Burst Speeds of Rotating Disks

    NASA Technical Reports Server (NTRS)

    Wilterdink, P I; Holms, A G; Manson, S S

    1952-01-01

    The purposes of this investigation were to evaluate the influence of temperature gradients and to test the validity of a recently developed method of calculating plastic flow in disks by comparing the calculated results with experimental observations. Short-time spin tests on parallel-sided, 10-inch-diameter disks were conducted under conditions that subject the disks to a range of temperatures from 70 to 1440 F. The agreement between the theoretical and experimental results was good over the range of temperature conditions investigated. Temperature gradients produced little reduction in the burst speed of the disks which had a high ductility..

  9. Linking altitudinal gradients and temperature responses of plant phenology in the Bavarian Alps.

    PubMed

    Cornelius, C; Estrella, N; Franz, H; Menzel, A

    2013-01-01

    Global climate change influences ecosystems across the world. Alpine plant communities have already experienced serious impacts, and will continue to do so as climate change continues. The aim of our study was to determine the sensitivity of woody and herbaceous species to shifts in temperature along an altitudinal gradient. Since 1994, park rangers have been making phenological observations at 24 sites from 680 to 1425 m a.s.l. Each year 21 plant species were observed once or twice weekly from March to July; with a main focus on flowering and leaf unfolding. Our study showed a very high degree of dependence of phenophases and species on inter-annual temperature variation and altitude. Averaged over all species and phenophases, there was a delay of 3.8 days with every 100 m increase in altitude and, across all elevations, an advance of phenophases of 6 days per 1 °C increase in temperature. Temperature lapse rates assessed indirectly by phenology, as the quotient of altitudinal to temperature response coefficients, were higher than directly calculated from March to July mean temperatures, most likely due to snow effects. Furthermore, a significant difference in sensitivity to temperature change was found between growth forms (herbs versus trees). Sensitivity was less pronounced in events occurring later in the season. Our results show that species reactions will differ in magnitude during global warming. Consequently, impacts of shifts in the timing of phenological events on plant migration and plant-pollinator interactions due to rising temperatures should be considered at the species level.

  10. Non-modal theory of the kinetic ion temperature gradient driven instability of plasma shear flows across the magnetic field

    NASA Astrophysics Data System (ADS)

    Mikhailenko, V. V.; Mikhailenko, V. S.; Lee, Hae June

    2016-06-01

    The temporal evolution of the kinetic ion temperature gradient driven instability and of the related anomalous transport of the ion thermal energy of plasma shear flow across the magnetic field is investigated analytically. This instability develops in a steady plasma due to the inverse ion Landau damping and has the growth rate of the order of the frequency when the ion temperature is equal to or above the electron temperature. The investigation is performed employing the non-modal methodology of the shearing modes which are the waves that have a static spatial structure in the frame of the background flow. The solution of the governing linear integral equation for the perturbed potential displays that the instability experiences the non-modal temporal evolution in the shearing flow during which the unstable perturbation becomes very different from a canonical modal form. It transforms into the non-modal structure with vanishing frequency and growth rate with time. The obtained solution of the nonlinear integral equation, which accounts for the random scattering of the angle of the ion gyro-motion due to the interaction of ions with ensemble of shearing waves, reveals similar but accelerated process of the transformations of the perturbations into the zero frequency structures. It was obtained that in the shear flow the anomalous ion thermal conductivity decays with time. It is a strictly non-modal effect, which originates from the temporal evolution of the shearing modes turbulence.

  11. A general strategy for performing temperature-programming in high performance liquid chromatography--further improvements in the accuracy of retention time predictions of segmented temperature gradients.

    PubMed

    Wiese, Steffen; Teutenberg, Thorsten; Schmidt, Torsten C

    2012-01-27

    In the present work it is shown that the linear elution strength (LES) model which was adapted from temperature-programming gas chromatography (GC) can also be employed for systematic method development in high-temperature liquid chromatography (HT-HPLC). The ability to predict isothermal retention times based on temperature-gradient as well as isothermal input data was investigated. For a small temperature interval of ΔT=40°C, both approaches result in very similar predictions. Average relative errors of predicted retention times of 2.7% and 1.9% were observed for simulations based on isothermal and temperature-gradient measurements, respectively. Concurrently, it was investigated whether the accuracy of retention time predictions of segmented temperature gradients can be further improved by temperature dependent calculation of the parameter S(T) of the LES relationship. It was found that the accuracy of retention time predictions of multi-step temperature gradients can be improved to around 1.5%, if S(T) was also calculated temperature dependent. The adjusted experimental design making use of four temperature-gradient measurements was applied for systematic method development of selected food additives by high-temperature liquid chromatography. Method development was performed within a temperature interval from 40°C to 180°C using water as mobile phase. Two separation methods were established where selected food additives were baseline separated. In addition, a good agreement between simulation and experiment was observed, because an average relative error of predicted retention times of complex segmented temperature gradients less than 5% was observed. Finally, a schedule of recommendations to assist the practitioner during systematic method development in high-temperature liquid chromatography was established.

  12. High Potential Gradient of ZnO Varistors Prepared by Y2O3-DOPING and Low-Temperature Sintering

    NASA Astrophysics Data System (ADS)

    Ke, Lei; Jiang, Dong-Mei; Wang, Chun-Xia; Ma, Xue-Ming

    A high potential gradient of ZnO varistors were fabricated by Y2O3-doping and low-temperature sintering. The value of the potential gradient increased to 2460.5 V/mm with the Y2O3 content of 0.08 mol% and the sintering temperature of 800°C. The effects of Y2O3-doping and sintering temperature on the electrical properties of ZnO varistors were investigated. Under the given experimental conditions, additive Y2O3 exists in the form of Y2O3 phase after sintering at 800°C. High-energy ball-milling in the early period of the experiment induced the grain refinement and realized the sintering formation at the lower temperature of 800°C. Both Y2O3-doping and low-temperature sintering restrained the ZnO grain growth and increased the potential gradient.

  13. Electric dipole moment planning with a resurrected BNL Alternating Gradient Synchrotron electron analog ring

    NASA Astrophysics Data System (ADS)

    Talman, Richard M.; Talman, John D.

    2015-07-01

    There has been much recent interest in directly measuring the electric dipole moments (EDM) of the proton and the electron, because of their possible importance in the present day observed matter/antimatter imbalance in the Universe. Such a measurement will require storing a polarized beam of "frozen spin" particles, 15 MeV electrons or 230 MeV protons, in an all-electric storage ring. Only one such relativistic electric accelerator has ever been built—the 10 MeV "electron analog" ring at Brookhaven National Laboratory in 1954; it can also be referred to as the "AGS analog" ring to make clear it was a prototype for the Alternating Gradient Synchrotron (AGS) proton ring under construction at that time at BNL. (Its purpose was to investigate nonlinear resonances as well as passage through "transition" with the newly invented alternating gradient proton ring design.) By chance this electron ring, long since dismantled and its engineering drawings disappeared, would have been appropriate both for measuring the electron EDM and to serve as an inexpensive prototype for the arguably more promising, but 10 times more expensive, proton EDM measurement. Today it is cheaper yet to "resurrect" the electron analog ring by simulating its performance computationally. This is one purpose for the present paper. Most existing accelerator simulation codes cannot be used for this purpose because they implicitly assume magnetic bending. The new ual/eteapot code, described in detail in an accompanying paper, has been developed for modeling storage ring performance, including spin evolution, in electric rings. Illustrating its use, comparing its predictions with the old observations, and describing new expectations concerning spin evolution and code performance, are other goals of the paper. To set up some of these calculations has required a kind of "archeological physics" to reconstitute the detailed electron analog lattice design from a 1991 retrospective report by Plotkin as well

  14. Plasma gradient controlled injection and postacceleration of high quality electron bunches

    SciTech Connect

    Geddes, C. G. R.; Cormier-Michel, E.; Nakamura, K.; Schroeder, C. B.; Toth, Cs.; Esarey, E.; Plateau, G. R.; Bruhwiler, D. L.; Cary, J. R.; Leemans, W. P.

    2009-01-22

    Plasma density gradient control of wake phase velocity and trapping threshold in a laser wakefield accelerator produced electron bunches with absolute longitudinal and transverse momentum spreads more than ten times lower than in previous experiments (0.17 and 0.02 MeV/c FWHM, respectively) and with central momenta of 0.76{+-}0.02 MeV/c, stable over a week of operation. Simulations validated against diagnostics show that use of such bunches as a wakefield accelerator injector can produce stable beams with 0.2 MeV/c-class momentum spread at high energies. Preservation of bunch momentum spread requires high simulation momentum accuracy, and related self-trapped simulations showed that high order particle weight effectively suppresses simulation momentum errors allowing design of low emittance stages.

  15. Viscous effects on the Rayleigh-Taylor instability with background temperature gradient

    NASA Astrophysics Data System (ADS)

    Gerashchenko, S.; Livescu, D.

    2016-07-01

    The growth rate of the compressible Rayleigh-Taylor instability is studied in the presence of a background temperature gradient, Θ, using a normal mode analysis. The effect of Θ variation is examined for three interface types corresponding to the combinations of the viscous properties of the fluids (inviscid-inviscid, viscous-viscous, and viscous-inviscid) at different Atwood numbers, At, and when at least one of the fluids' viscosity is non-zero, as a function of the Grashof number. For the general case, the resulting ordinary differential equations are solved numerically; however, dispersion relations for the growth rate are presented for several limiting cases. An analytical solution is found for the inviscid-inviscid interface and the corresponding dispersion equation for the growth rate is obtained in the limit of large Θ. For the viscous-inviscid case, a dispersion relation is derived in the incompressible limit and Θ = 0. Compared to Θ = 0 case, the role of Θ < 0 (hotter light fluid) is destabilizing and becomes stabilizing when Θ > 0 (colder light fluid). The most pronounced effect of Θ ≠ 0 is found at low At and/or at large perturbation wavelengths relative to the domain size for all interface types. On the other hand, at small perturbation wavelengths relative to the domain size, the growth rate for the Θ < 0 case exceeds the infinite domain incompressible constant density result. The results are applied to two practical examples, using sets of parameters relevant to Inertial Confinement Fusion coasting stage and solar corona plumes. The role of viscosity on the growth rate reduction is discussed together with highlighting the range of wavenumbers most affected by viscosity. The viscous effects further increase in the presence of background temperature gradient, when the viscosity is temperature dependent.

  16. UTILITY OF THE WEAK TEMPERATURE GRADIENT APPROXIMATION FOR EARTH-LIKE TIDALLY LOCKED EXOPLANETS

    SciTech Connect

    Mills, Sean M.; Abbot, Dorian S.

    2013-09-10

    Planets in M dwarf stars' habitable zones are likely to be tidally locked with orbital periods of the order of tens of days. This means that the effects of rotation on atmospheric dynamics will be relatively weak, which requires small horizontal temperature gradients above the boundary layer of terrestrial atmospheres. An analytically solvable and dynamically consistent model for planetary climate with only three free parameters can be constructed by making the weak temperature gradient (WTG) approximation, which assumes temperatures are horizontally uniform aloft. The extreme numerical efficiency of a WTG model compared to a three-dimensional general circulation model (GCM) makes it an optimal tool for Monte Carlo fits to observables over parameter space. Additionally, such low-order models are critical for developing physical intuition and coupling atmospheric dynamics to models of other components of planetary climate. The objective of this paper is to determine whether a WTG model provides an adequate approximation of the effect of atmospheric dynamics on quantities likely to be observed over the next decade. To do this, we first tune a WTG model to GCM output for an Earth-like tidally locked planet with a dry, 1 bar atmosphere, then generate and compare the expected phase curves of both models. We find that differences between the two models would be extremely difficult to detect from phase curves using the James Webb Space Telescope. This result demonstrates the usefulness of the WTG approximation when used in conjunction with GCMs as part of a modeling hierarchy to understand the climate of remote planets.

  17. Viscous effects on the Rayleigh-Taylor instability with background temperature gradient

    DOE PAGESBeta

    Gerashchenko, Sergiy; Livescu, Daniel

    2016-07-28

    Here we studied the growth rate of the compressible Rayleigh-Taylor instability in the presence of a background temperature gradient, Θ, using a normal mode analysis. The effect of Θ variation is examined for three interface types corresponding to the combinations of the viscous properties of the fluids (inviscid-inviscid, viscous-viscous, and viscous-inviscid) at different Atwood numbers, At, and when at least one of the fluids' viscosity is non-zero, as a function of the Grashof number. For the general case, the resulting ordinary differential equations are solved numerically; however, dispersion relations for the growth rate are presented for several limiting cases. Anmore » analytical solution is found for the inviscid-inviscid interface and the corresponding dispersion equation for the growth rate is obtained in the limit of large Θ. For the viscous-inviscid case, a dispersion relation is derived in the incompressible limit and Θ=0. Compared to Θ=0 case, the role of Θ<0 (hotter light fluid) is destabilizing and becomes stabilizing when Θ>0 (colder light fluid). The most pronounced effect of Θ ≠ 0 is found at low At and/or at large perturbation wavelengths relative to the domain size for all interface types. On the other hand, at small perturbation wavelengths relative to the domain size, the growth rate for the Θ<0 case exceeds the infinite domain incompressible constant density result. The results are applied to two practical examples, using sets of parameters relevant to Inertial Confinement Fusion coasting stage and solar corona plumes. The role of viscosity on the growth rate reduction is discussed together with highlighting the range of wavenumbers most affected by viscosity. The viscous effects further increase in the presence of background temperature gradient, when the viscosity is temperature dependent.« less

  18. Intensification of the meridional temperature gradient in the Great Barrier Reef following the Last Glacial Maximum.

    PubMed

    Felis, Thomas; McGregor, Helen V; Linsley, Braddock K; Tudhope, Alexander W; Gagan, Michael K; Suzuki, Atsushi; Inoue, Mayuri; Thomas, Alexander L; Esat, Tezer M; Thompson, William G; Tiwari, Manish; Potts, Donald C; Mudelsee, Manfred; Yokoyama, Yusuke; Webster, Jody M

    2014-06-17

    Tropical south-western Pacific temperatures are of vital importance to the Great Barrier Reef (GBR), but the role of sea surface temperatures (SSTs) in the growth of the GBR since the Last Glacial Maximum remains largely unknown. Here we present records of Sr/Ca and δ(18)O for Last Glacial Maximum and deglacial corals that show a considerably steeper meridional SST gradient than the present day in the central GBR. We find a 1-2 °C larger temperature decrease between 17° and 20°S about 20,000 to 13,000 years ago. The result is best explained by the northward expansion of cooler subtropical waters due to a weakening of the South Pacific gyre and East Australian Current. Our findings indicate that the GBR experienced substantial meridional temperature change during the last deglaciation, and serve to explain anomalous deglacial drying of northeastern Australia. Overall, the GBR developed through significant SST change and may be more resilient than previously thought.

  19. Intensification of the meridional temperature gradient in the Great Barrier Reef following the Last Glacial Maximum.

    PubMed

    Felis, Thomas; McGregor, Helen V; Linsley, Braddock K; Tudhope, Alexander W; Gagan, Michael K; Suzuki, Atsushi; Inoue, Mayuri; Thomas, Alexander L; Esat, Tezer M; Thompson, William G; Tiwari, Manish; Potts, Donald C; Mudelsee, Manfred; Yokoyama, Yusuke; Webster, Jody M

    2014-01-01

    Tropical south-western Pacific temperatures are of vital importance to the Great Barrier Reef (GBR), but the role of sea surface temperatures (SSTs) in the growth of the GBR since the Last Glacial Maximum remains largely unknown. Here we present records of Sr/Ca and δ(18)O for Last Glacial Maximum and deglacial corals that show a considerably steeper meridional SST gradient than the present day in the central GBR. We find a 1-2 °C larger temperature decrease between 17° and 20°S about 20,000 to 13,000 years ago. The result is best explained by the northward expansion of cooler subtropical waters due to a weakening of the South Pacific gyre and East Australian Current. Our findings indicate that the GBR experienced substantial meridional temperature change during the last deglaciation, and serve to explain anomalous deglacial drying of northeastern Australia. Overall, the GBR developed through significant SST change and may be more resilient than previously thought. PMID:24937320

  20. Zone recrystallization of gallium arsenide with discrete zones in a temperature gradient

    SciTech Connect

    Efremova, N.P.; Popov, V.P.

    1987-07-01

    A laboratory procedure for zone recrystallization with a temperature gradient is developed for gallium arsenide, using discrete zones, which permit linear and point zones 20-200 /sup +/m in diameter to move stably in the temperature range 820-1050/sup 0/C. The dependences of the rate of movement of the discrete zones on their thickness and temperatures are determined, which are explained by theories for systems with volatile components. The dislocation density in the recrystallized regions is not higher than in the substrate. Current-voltage characteristics of the p-n junctions, formed on the boundary of the channels with the starting materials, have high parameters. A gallium zone enables purifying the material effectively from tin (by 2-3 orders of magnitude) and to create structures which have the Gunn effect. Doping with silicon from a linear zone gives rise to the possibility of forming multilayer structures due to poorly defined dependence of the inversion temperature of the conductivity type on the crystal orientation of the growing surface.

  1. Intensification of the meridional temperature gradient in the Great Barrier Reef following the Last Glacial Maximum

    PubMed Central

    Felis, Thomas; McGregor, Helen V.; Linsley, Braddock K.; Tudhope, Alexander W.; Gagan, Michael K.; Suzuki, Atsushi; Inoue, Mayuri; Thomas, Alexander L.; Esat, Tezer M.; Thompson, William G.; Tiwari, Manish; Potts, Donald C.; Mudelsee, Manfred; Yokoyama, Yusuke; Webster, Jody M.

    2014-01-01

    Tropical south-western Pacific temperatures are of vital importance to the Great Barrier Reef (GBR), but the role of sea surface temperatures (SSTs) in the growth of the GBR since the Last Glacial Maximum remains largely unknown. Here we present records of Sr/Ca and δ18O for Last Glacial Maximum and deglacial corals that show a considerably steeper meridional SST gradient than the present day in the central GBR. We find a 1–2 °C larger temperature decrease between 17° and 20°S about 20,000 to 13,000 years ago. The result is best explained by the northward expansion of cooler subtropical waters due to a weakening of the South Pacific gyre and East Australian Current. Our findings indicate that the GBR experienced substantial meridional temperature change during the last deglaciation, and serve to explain anomalous deglacial drying of northeastern Australia. Overall, the GBR developed through significant SST change and may be more resilient than previously thought. PMID:24937320

  2. Computerized optimization of flows and temperature gradient in flow modulated comprehensive two-dimensional gas chromatography.

    PubMed

    Májek, Pavel; Krupčík, Ján; Gorovenko, Roman; Špánik, Ivan; Sandra, Pat; Armstrong, Daniel W

    2014-07-01

    Informational entropy and syentropy percent were used to optimize the flows in the first (1D) and in the second (2D) dimension ((1)Fm and (2)Fm, respectively) as well as the temperature program rate (r) for the flow modulated GC×GC-FID separation of C6-C12 aromatic hydrocarbons in a low boiling petrochemical sample. The separations were performed on a column series consisting of a 25m×0.25mm i.d.×0.2μm df of the polar ionic liquid SLB-IL 100 (1,9-di(3-vinylimidazolium)nonane bis(trifluoromethylsulfonyl)imide) in the first dimension and 5m×0.25mm i.d.×0.25μm df apolar HP-5MS (5% phenyl-95% methylpolysiloxane) in the second dimension. A dependence of a distribution of individual aromatic hydrocarbons in the 2D retention plane on the carrier gas flows ((1)Fm, and (2)Fm,) and temperature gradient (r) was examined in this study. It was found that informational entropy and synentropy percent are advantageous criteria to characterize the distribution of peaks in the 2D retention plane. Maximum informational entropy and synentropy percents correspond to the maximum distribution of C6-C12 aromatic hydrocarbons in the corresponding 2D retention plane gained by the given separation using optimized values of individual carrier gas column volume flows and the temperature rate at the temperature programmed GC×GC separations.

  3. Autoignition: Modes of reaction front propagation evolving from hot spots with defined temperature gradients

    NASA Astrophysics Data System (ADS)

    Kassoy, David R.

    2014-11-01

    An asymptotic mathematical model, based on the compressible reactive, conservation equations, including transport terms and an arbitrary energy source, is used to quantify the thermo-mechanical consequences of an imposed temperature gradient, ΔT/ l. The mathematical model explains the physics of the gradient system in terms of the local conduction time l2/(kappa), where kappa is the characteristic thermal diffusivity, the local acoustic time l/a0, where a0 is the characteristic acoustic time scale, the characteristic time scale of energy deposition from the source, tds, and the characteristic energy deposition into and through the gradient region on that time scale. The primary objectives are to predict the magnitude of the induced gas motion and determine when and if transport effects are important. The methodology, related to that in several earlier studies [1--5], can be used to distinguish between detonation and deflagration initiation as well as spontaneous reaction wave propagation. This analysis will help to explain the somewhat enigmatic results in Refs. 6-8. 1,2. Clarke, J.F, Kassoy, D.R. and Riley, N. (1984) Proc. Roy. Soc. A393, 309-351; 3. Kassoy, D.R. (2010), J. Eng Math, 68, 249-262. Kassoy, D.R. (2013), CTM, 18, 101-116. Kassoy, D.R. (2014), AIAA J., doi10.2514, /1J052807. Zeldovich, Y.B. (1980), Combust. Flame, 39, 211-214. Gu, X.J., Emerson, D.R., Bradley, D. (2003), Comb. Flame, 133, 63-74. Sankaran, R., Hong, G. Hawkes, E.R. Chen J. H., (2005) Proc. Combustion Inst., 30, 875-882.

  4. Lateral Temperature-Gradient Method for High-Throughput Characterization of Material Processing by Millisecond Laser Annealing.

    PubMed

    Bell, Robert T; Jacobs, Alan G; Sorg, Victoria C; Jung, Byungki; Hill, Megan O; Treml, Benjamin E; Thompson, Michael O

    2016-09-12

    A high-throughput method for characterizing the temperature dependence of material properties following microsecond to millisecond thermal annealing, exploiting the temperature gradients created by a lateral gradient laser spike anneal (lgLSA), is presented. Laser scans generate spatial thermal gradients of up to 5 °C/μm with peak temperatures ranging from ambient to in excess of 1400 °C, limited only by laser power and materials thermal limits. Discrete spatial property measurements across the temperature gradient are then equivalent to independent measurements after varying temperature anneals. Accurate temperature calibrations, essential to quantitative analysis, are critical and methods for both peak temperature and spatial/temporal temperature profile characterization are presented. These include absolute temperature calibrations based on melting and thermal decomposition, and time-resolved profiles measured using platinum thermistors. A variety of spatially resolved measurement probes, ranging from point-like continuous profiling to large area sampling, are discussed. Examples from annealing of III-V semiconductors, CdSe quantum dots, low-κ dielectrics, and block copolymers are included to demonstrate the flexibility, high throughput, and precision of this technique. PMID:27385487

  5. A reduced core to skin temperature gradient, not a critical core temperature, affects aerobic capacity in the heat.

    PubMed

    Cuddy, John S; Hailes, Walter S; Ruby, Brent C

    2014-07-01

    The purpose of this study was to determine the impact of the core to skin temperature gradient during incremental running to volitional fatigue across varying environmental conditions. A secondary aim was to determine if a "critical" core temperature would dictate volitional fatigue during running in the heat. 60 participants (n=49 male, n=11 female; 24±5 yrs, 177±11 cm, 75±13 kg) completed the study. Participants were uniformly stratified into a specific exercise temperature group (18 °C, 26 °C, 34 °C, or 42 °C) based on a 3-mile run performance. Participants were equipped with core and chest skin temperature sensors and a heart rate monitor, entered an environmental chamber (18 °C, 26 °C, 34 °C, or 42 °C), and rested in the seated position for 10 min before performing a walk/run to volitional exhaustion. Initial treadmill speed was 3.2 km h(-1) with a 0% grade. Every 3 min, starting with speed, speed and grade increased in an alternating pattern (speed increased by 0.805 km h(-1), grade increased by 0.5%). Time to volitional fatigue was longer for the 18 °C and 26 °C group compared to the 42 °C group, (58.1±9.3 and 62.6±6.5 min vs. 51.3±8.3 min, respectively, p<0.05). At the half-way point and finish, the core to skin gradient for the 18 °C and 26 °C groups was larger compared to 42 °C group (halfway: 2.6±0.7 and 2.0±0.6 vs. 1.3±0.5 for the 18 °C, 26 °C and 42 °C groups, respectively; finish: 3.3±0.7 and 3.5±1.1 vs. 2.1±0.9 for the 26 °C, 34 °C, and 42 °C groups, respectively, p<0.05). Sweat rate was lower in the 18 °C group compared to the 26 °C, 34 °C, and 42 °C groups, 3.6±1.3 vs. 7.2±3.0, 7.1±2.0, and 7.6±1.7 g m(-2) min(-1), respectively, p<0.05. There were no group differences in core temperature and heart rate response during the exercise trials. The current data demonstrate a 13% and 22% longer run time to exhaustion for the 18 °C and 26 °C group, respectively, compared to the 42 °C group despite no differences

  6. A reduced core to skin temperature gradient, not a critical core temperature, affects aerobic capacity in the heat.

    PubMed

    Cuddy, John S; Hailes, Walter S; Ruby, Brent C

    2014-07-01

    The purpose of this study was to determine the impact of the core to skin temperature gradient during incremental running to volitional fatigue across varying environmental conditions. A secondary aim was to determine if a "critical" core temperature would dictate volitional fatigue during running in the heat. 60 participants (n=49 male, n=11 female; 24±5 yrs, 177±11 cm, 75±13 kg) completed the study. Participants were uniformly stratified into a specific exercise temperature group (18 °C, 26 °C, 34 °C, or 42 °C) based on a 3-mile run performance. Participants were equipped with core and chest skin temperature sensors and a heart rate monitor, entered an environmental chamber (18 °C, 26 °C, 34 °C, or 42 °C), and rested in the seated position for 10 min before performing a walk/run to volitional exhaustion. Initial treadmill speed was 3.2 km h(-1) with a 0% grade. Every 3 min, starting with speed, speed and grade increased in an alternating pattern (speed increased by 0.805 km h(-1), grade increased by 0.5%). Time to volitional fatigue was longer for the 18 °C and 26 °C group compared to the 42 °C group, (58.1±9.3 and 62.6±6.5 min vs. 51.3±8.3 min, respectively, p<0.05). At the half-way point and finish, the core to skin gradient for the 18 °C and 26 °C groups was larger compared to 42 °C group (halfway: 2.6±0.7 and 2.0±0.6 vs. 1.3±0.5 for the 18 °C, 26 °C and 42 °C groups, respectively; finish: 3.3±0.7 and 3.5±1.1 vs. 2.1±0.9 for the 26 °C, 34 °C, and 42 °C groups, respectively, p<0.05). Sweat rate was lower in the 18 °C group compared to the 26 °C, 34 °C, and 42 °C groups, 3.6±1.3 vs. 7.2±3.0, 7.1±2.0, and 7.6±1.7 g m(-2) min(-1), respectively, p<0.05. There were no group differences in core temperature and heart rate response during the exercise trials. The current data demonstrate a 13% and 22% longer run time to exhaustion for the 18 °C and 26 °C group, respectively, compared to the 42 °C group despite no differences

  7. Oxygen Isotopes Reveal Attenuation in Latitudinal Ocean Temperature Gradient during the Permian Icehouse to Hothouse Transition

    NASA Astrophysics Data System (ADS)

    Shultis, A. I.; Frank, T. D.; Fielding, C. R.

    2011-12-01

    To assess changes in paleolatitudinal temperature gradient in the Permian ocean system during the demise of the Late Paleozoic Ice Age (LPIA), we analyzed the oxygen isotope composition of high latitude brachiopod and bivalve shells and compared them to published low latitude isotope records. We selected brachiopods and Eurydesma bivalves of Early to Middle Permian age that lie along a transect extending from temperate paleolatitudes in Queensland to polar paleolatitudes in Tasmania. Using cathodoluminescence (CL) microscopy and elemental analyses, diagenically altered samples were separated from well-preserved samples for isotopic analysis. Samples that were nonluminescent were prepared for elemental screening, and brachiopod and bivalve samples that passed both CL and trace element screening methods were analyzed for oxygen and carbon isotopes. The δ18O values reveal a long-term decrease in the paleolatitudinal temperature gradient from Early Permian (Sakmarian) and late Middle Permian (Capitanian), which parallels the trend in climate associated with the demise of LPIA. Transient decreases from glacial to non-glacial epochs are also evident. The δ18O values from well-preserved samples are as high as 0.1% during glacial epoch P2 (287-280 Ma: late Sakmarian to mid-Artinskian) and drop to -3.0% in the nonglacial interval between P2 and glacial epoch P3 (273-268 Ma: late Kungurian to latest Roadian). High-latitude δ18O values then rise to -1.5% during P3 and drop to -3.8% during the subsequent nonglacial interval. Low latitude δ18O values from the literature are as high as -2.3% during the P2 and drop to -2.9% in the nonglacial interval between P2 and the P3. δ18O values then rise to -1.6% during P3. Low latitude δ18O values drop to -4.4% between P3 and P4 and rise again to -2.4% during the P4 glacial epoch (267-260 Ma: late Wordian to late Capitanian). This comparison of high and low latitude δ18O suggests that meridional sea surface temperature gradients

  8. Temperature gradients due to adiabatic plasma expansion in a magnetic nozzle

    NASA Astrophysics Data System (ADS)

    Sheehan, J. P.; Longmier, B. W.; Bering, E. A.; Olsen, C. S.; Squire, J. P.; Ballenger, M. G.; Carter, M. D.; Cassady, L. D.; Díaz, F. R. Chang; Glover, T. W.; Ilin, A. V.

    2014-08-01

    A mechanism for ambipolar ion acceleration in a magnetic nozzle is proposed. The plasma is adiabatic (i.e., does not exchange energy with its surroundings) in the diverging section of a magnetic nozzle so any energy lost by the electrons must be transferred to the ions via the electric field. Fluid theory indicates that the change in plasma potential is proportional to the change in average electron energy. These predictions were compared to measurements in the VX-200 experiment which has conditions conducive to ambipolar ion acceleration. A planar Langmuir probe was used to measure the plasma potential, electron density, and electron temperature for a range of mass flow rates and power levels. Axial profiles of those parameters were also measured, showing consistency with the adiabatic ambipolar fluid theory.

  9. Effects of population density and chemical environment on the behavior of Escherichia coli in shallow temperature gradients

    NASA Astrophysics Data System (ADS)

    Demir, Mahmut; Douarche, Carine; Yoney, Anna; Libchaber, Albert; Salman, Hanna

    2011-12-01

    In shallow temperature gradients, changes in temperature that bacteria experience occur over long time scales. Therefore, slow processes such as adaptation, metabolism, chemical secretion and even gene expression become important. Since these are cellular processes, the cell density is an important parameter that affects the bacteria's response. We find that there are four density regimes with distinct behaviors. At low cell density, bacteria do not cause changes in their chemical environment; however, their response to the temperature gradient is strongly influenced by it. In the intermediate cell-density regime, the consumption of nutrients becomes significant and induces a gradient of nutrients opposing the temperature gradient due to higher consumption rate at the high temperature. This causes the bacteria to drift toward low temperature. In the high cell-density regime, interactions among bacteria due to secretion of an attractant lead to a strong local accumulation of bacteria. This together with the gradient of nutrients, resulted from the differential consumption rate, creates a fast propagating pulse of bacterial density. These observations are a result of classical nonlinear population dynamics. At extremely high cell density, a change in the physiological state of the bacteria is observed. The bacteria, at the individual level, become cold seeking. This appears initially as a result of a change in the methylation level of the two most abundant sensing receptors, Tsr and Tar. It is further enforced at an even higher cell density by a change in the expression level of these receptors.

  10. A SPATIALLY RESOLVED VERTICAL TEMPERATURE GRADIENT IN THE HD 163296 DISK

    SciTech Connect

    Rosenfeld, Katherine A.; Andrews, Sean M.; Wilner, David J.; Qi, Chunhua; Hughes, A. Meredith

    2013-09-01

    We analyze sensitive, sub-arcsecond resolution ALMA science verification observations of CO emission lines in the protoplanetary disk hosted by the young, isolated Ae star HD 163296. The observed spatial morphology of the {sup 12}CO J = 3-2 emission line is asymmetric across the major axis of the disk; the {sup 12}CO J = 2-1 line features a much less pronounced, but similar, asymmetry. The J = 2-1 emission from {sup 12}CO and its main isotopologues have no resolved spatial asymmetry. We associate this behavior with the direct signature of a vertical temperature gradient and layered molecular structure in the disk. This is demonstrated using both toy models and more sophisticated calculations assuming non-local thermodynamic equilibrium conditions. A model disk structure is developed to reproduce both the distinctive spatial morphology of the {sup 12}CO J = 3-2 line as well as the J = 2-1 emission from the CO isotopologues assuming relative abundances consistent with the interstellar medium. This model disk structure has {tau} = 1 emitting surfaces for the {sup 12}CO emission lines that make an angle of {approx}15 Degree-Sign with respect to the disk midplane. Furthermore, we show that the spatial and spectral sensitivity of these data can distinguish between models that have sub-Keplerian gas velocities due to the vertical extent of the disk and its associated radial pressure gradient (a fractional difference in the bulk gas velocity field of {approx}> 5%)

  11. On axial temperature gradients due to large pressure drops in dense fluid chromatography.

    PubMed

    Colgate, Sam O; Berger, Terry A

    2015-03-13

    The effect of energy degradation (Degradation is the creation of net entropy resulting from irreversibility.) accompanying pressure drops across chromatographic columns is examined with regard to explaining axial temperature gradients in both high performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC). The observed effects of warming and cooling can be explained equally well in the language of thermodynamics or fluid dynamics. The necessary equivalence of these treatments is reviewed here to show the legitimacy of using whichever one supports the simpler determination of features of interest. The determination of temperature profiles in columns by direct application of the laws of thermodynamics is somewhat simpler than applying them indirectly by solving the Navier-Stokes (NS) equations. Both disciplines show that the preferred strategy for minimizing the reduction in peak quality caused by temperature gradients is to operate columns as nearly adiabatically as possible (i.e. as Joule-Thomson expansions). This useful fact, however, is not widely familiar or appreciated in the chromatography community due to some misunderstanding of the meaning of certain terms and expressions used in these disciplines. In fluid dynamics, the terms "resistive heating" or "frictional heating" have been widely used as synonyms for the dissipation function, Φ, in the NS energy equation. These terms have been widely used by chromatographers as well, but often misinterpreted as due to friction between the mobile phase and the column packing, when in fact Φ describes the increase in entropy of the system (dissipation, ∫TdSuniv>0) due to the irreversible decompression of the mobile phase. Two distinctly different contributions to the irreversibility are identified; (1) ΔSext, viscous dissipation of work done by the external surroundings driving the flow (the pump) contributing to its warming, and (2) ΔSint, entropy change accompanying decompression of

  12. Temperature Regimes Impact Coral Assemblages along Environmental Gradients on Lagoonal Reefs in Belize

    PubMed Central

    Townsend, Joseph E.; Courtney, Travis A.; Aichelman, Hannah E.; Davies, Sarah W.; Lima, Fernando P.; Castillo, Karl D.

    2016-01-01

    Coral reefs are increasingly threatened by global and local anthropogenic stressors such as rising seawater temperature, nutrient enrichment, sedimentation, and overfishing. Although many studies have investigated the impacts of local and global stressors on coral reefs, we still do not fully understand how these stressors influence coral community structure, particularly across environmental gradients on a reef system. Here, we investigate coral community composition across three different temperature and productivity regimes along a nearshore-offshore gradient on lagoonal reefs of the Belize Mesoamerican Barrier Reef System (MBRS). A novel metric was developed using ultra-high-resolution satellite-derived estimates of sea surface temperatures (SST) to classify reefs as exposed to low (lowTP), moderate (modTP), or high (highTP) temperature parameters over 10 years (2003 to 2012). Coral species richness, abundance, diversity, density, and percent cover were lower at highTP sites relative to lowTP and modTP sites, but these coral community traits did not differ significantly between lowTP and modTP sites. Analysis of coral life history strategies revealed that highTP sites were dominated by hardy stress-tolerant and fast-growing weedy coral species, while lowTP and modTP sites consisted of competitive, generalist, weedy, and stress-tolerant coral species. Satellite-derived estimates of Chlorophyll-a (chl-a) were obtained for 13-years (2003–2015) as a proxy for primary production. Chl-a concentrations were highest at highTP sites, medial at modTP sites, and lowest at lowTP sites. Notably, thermal parameters correlated better with coral community traits between site types than productivity, suggesting that temperature (specifically number of days above the thermal bleaching threshold) played a greater role in defining coral community structure than productivity on the MBRS. Dominance of weedy and stress-tolerant genera at highTP sites suggests that corals utilizing

  13. Temperature Regimes Impact Coral Assemblages along Environmental Gradients on Lagoonal Reefs in Belize.

    PubMed

    Baumann, Justin H; Townsend, Joseph E; Courtney, Travis A; Aichelman, Hannah E; Davies, Sarah W; Lima, Fernando P; Castillo, Karl D

    2016-01-01

    Coral reefs are increasingly threatened by global and local anthropogenic stressors such as rising seawater temperature, nutrient enrichment, sedimentation, and overfishing. Although many studies have investigated the impacts of local and global stressors on coral reefs, we still do not fully understand how these stressors influence coral community structure, particularly across environmental gradients on a reef system. Here, we investigate coral community composition across three different temperature and productivity regimes along a nearshore-offshore gradient on lagoonal reefs of the Belize Mesoamerican Barrier Reef System (MBRS). A novel metric was developed using ultra-high-resolution satellite-derived estimates of sea surface temperatures (SST) to classify reefs as exposed to low (lowTP), moderate (modTP), or high (highTP) temperature parameters over 10 years (2003 to 2012). Coral species richness, abundance, diversity, density, and percent cover were lower at highTP sites relative to lowTP and modTP sites, but these coral community traits did not differ significantly between lowTP and modTP sites. Analysis of coral life history strategies revealed that highTP sites were dominated by hardy stress-tolerant and fast-growing weedy coral species, while lowTP and modTP sites consisted of competitive, generalist, weedy, and stress-tolerant coral species. Satellite-derived estimates of Chlorophyll-a (chl-a) were obtained for 13-years (2003-2015) as a proxy for primary production. Chl-a concentrations were highest at highTP sites, medial at modTP sites, and lowest at lowTP sites. Notably, thermal parameters correlated better with coral community traits between site types than productivity, suggesting that temperature (specifically number of days above the thermal bleaching threshold) played a greater role in defining coral community structure than productivity on the MBRS. Dominance of weedy and stress-tolerant genera at highTP sites suggests that corals utilizing

  14. Temperature Regimes Impact Coral Assemblages along Environmental Gradients on Lagoonal Reefs in Belize.

    PubMed

    Baumann, Justin H; Townsend, Joseph E; Courtney, Travis A; Aichelman, Hannah E; Davies, Sarah W; Lima, Fernando P; Castillo, Karl D

    2016-01-01

    Coral reefs are increasingly threatened by global and local anthropogenic stressors such as rising seawater temperature, nutrient enrichment, sedimentation, and overfishing. Although many studies have investigated the impacts of local and global stressors on coral reefs, we still do not fully understand how these stressors influence coral community structure, particularly across environmental gradients on a reef system. Here, we investigate coral community composition across three different temperature and productivity regimes along a nearshore-offshore gradient on lagoonal reefs of the Belize Mesoamerican Barrier Reef System (MBRS). A novel metric was developed using ultra-high-resolution satellite-derived estimates of sea surface temperatures (SST) to classify reefs as exposed to low (lowTP), moderate (modTP), or high (highTP) temperature parameters over 10 years (2003 to 2012). Coral species richness, abundance, diversity, density, and percent cover were lower at highTP sites relative to lowTP and modTP sites, but these coral community traits did not differ significantly between lowTP and modTP sites. Analysis of coral life history strategies revealed that highTP sites were dominated by hardy stress-tolerant and fast-growing weedy coral species, while lowTP and modTP sites consisted of competitive, generalist, weedy, and stress-tolerant coral species. Satellite-derived estimates of Chlorophyll-a (chl-a) were obtained for 13-years (2003-2015) as a proxy for primary production. Chl-a concentrations were highest at highTP sites, medial at modTP sites, and lowest at lowTP sites. Notably, thermal parameters correlated better with coral community traits between site types than productivity, suggesting that temperature (specifically number of days above the thermal bleaching threshold) played a greater role in defining coral community structure than productivity on the MBRS. Dominance of weedy and stress-tolerant genera at highTP sites suggests that corals utilizing

  15. A circular equilibrium model for local gyrokinetic simulations of ion temperature gradient fluctuations in reversed field pinches

    SciTech Connect

    Tangri, Varun; Terry, P. W.; Waltz, R. E.

    2011-05-15

    A simple large-aspect-ratio (R{sub 0}/r) circular equilibrium model is developed for low-beta reversed field pinch (RFP) geometry. The model is suitable for treating small scale instability and turbulent transport driven by ion temperature gradient (ITG) and related electron drift modes in gyrokinetic simulations. The equilibrium model is an RFP generalization of the common tokamak s-{alpha} model to small safety factor (q), where the poloidal field dominates the toroidal field. The model accommodates the RFP toroidal field reversal (where q vanishes) by generalizing the cylindrical force-free Bessel function model (BFM) [J. B. Taylor, Phys. Rev. Lett. 33, 1139 (1974)] to toroidal geometry. The global equilibrium can be described in terms of the RFP field reversal and pinch parameters [F,{Theta}]. This new toroidal Bessel function model (TBFM) has been incorporated into the gyrokinetic code GYRO [J. Candy and R. E. Waltz, J.Comput. Phys. 186, 545 (2003)] and used here to explore local electrostatic ITG adiabatic electron instability rates for typical low-q RFP parameters.

  16. A circular equilibrium model for local gyrokinetic simulations of ion temperature gradient fluctuations in reversed field pinches

    NASA Astrophysics Data System (ADS)

    Tangri, Varun; Terry, P. W.; Waltz, R. E.

    2011-05-01

    A simple large-aspect-ratio (R0/r) circular equilibrium model is developed for low-beta reversed field pinch (RFP) geometry. The model is suitable for treating small scale instability and turbulent transport driven by ion temperature gradient (ITG) and related electron drift modes in gyrokinetic simulations. The equilibrium model is an RFP generalization of the common tokamak s-α model to small safety factor (q), where the poloidal field dominates the toroidal field. The model accommodates the RFP toroidal field reversal (where q vanishes) by generalizing the cylindrical force-free Bessel function model (BFM) [J. B. Taylor, Phys. Rev. Lett. 33, 1139 (1974)] to toroidal geometry. The global equilibrium can be described in terms of the RFP field reversal and pinch parameters [F ,Θ]. This new toroidal Bessel function model (TBFM) has been incorporated into the gyrokinetic code GYRO [J. Candy and R. E. Waltz, J.Comput. Phys. 186, 545 (2003)] and used here to explore local electrostatic ITG adiabatic electron instability rates for typical low-q RFP parameters.

  17. Multi-water-bag models of ion temperature gradient instability in cylindrical geometry

    SciTech Connect

    Coulette, David; Besse, Nicolas

    2013-05-15

    Ion temperature gradient instabilities play a major role in the understanding of anomalous transport in core fusion plasmas. In the considered cylindrical geometry, ion dynamics is described using a drift-kinetic multi-water-bag model for the parallel velocity dependency of the ion distribution function. In a first stage, global linear stability analysis is performed. From the obtained normal modes, parametric dependencies of the main spectral characteristics of the instability are then examined. Comparison of the multi-water-bag results with a reference continuous Maxwellian case allows us to evaluate the effects of discrete parallel velocity sampling induced by the Multi-Water-Bag model. Differences between the global model and local models considered in previous works are discussed. Using results from linear, quasilinear, and nonlinear numerical simulations, an analysis of the first stage saturation dynamics of the instability is proposed, where the divergence between the three models is examined.

  18. Bifurcation Theory of the Transition to Collisionless Ion-temperature-gradient-driven Plasma Turbulence

    SciTech Connect

    Kolesnikov, R.A.; Krommes, J.A.

    2005-09-22

    The collisionless limit of the transition to ion-temperature-gradient-driven plasma turbulence is considered with a dynamical-systems approach. The importance of systematic analysis for understanding the differences in the bifurcations and dynamics of linearly damped and undamped systems is emphasized. A model with ten degrees of freedom is studied as a concrete example. A four-dimensional center manifold (CM) is analyzed, and fixed points of its dynamics are identified and used to predict a ''Dimits shift'' of the threshold for turbulence due to the excitation of zonal flows. The exact value of that shift in terms of physical parameters is established for the model; the effects of higher-order truncations on the dynamics are noted. Multiple-scale analysis of the CM equations is used to discuss possible effects of modulational instability on scenarios for the transition to turbulence in both collisional and collisionless cases.

  19. Sintering Characteristics of Multilayered Thermal Barrier Coatings Under Thermal Gradient and Isothermal High Temperature Annealing Conditions

    NASA Technical Reports Server (NTRS)

    Rai, Amarendra K.; Schmitt, Michael P.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.

    2014-01-01

    Pyrochlore oxides have most of the relevant attributes for use as next generation thermal barrier coatings such as phase stability, low sintering kinetics and low thermal conductivity. One of the issues with the pyrochlore oxides is their lower toughness and therefore higher erosion rate compared to the current state-of-the-art TBC material, yttria (6 to 8 wt%) stabilized zirconia (YSZ). In this work, sintering characteristics were investigated for novel multilayered coating consisted of alternating layers of pyrochlore oxide viz Gd2Zr2O7 and t' low k (rare earth oxide doped YSZ). Thermal gradient and isothermal high temperature (1316 C) annealing conditions were used to investigate sintering and cracking in these coatings. The results are then compared with that of relevant monolayered coatings and a baseline YSZ coating.

  20. Increased temperatures negatively affect Juniperus communis seeds: evidence from transplant experiments along a latitudinal gradient.

    PubMed

    Gruwez, R; De Frenne, P; Vander Mijnsbrugge, K; Vangansbeke, P; Verheyen, K

    2016-05-01

    With a distribution range that covers most of the Northern hemisphere, common juniper (Juniperus communis) has one of the largest ranges of all vascular plant species. In several regions in Europe, however, populations are decreasing in size and number due to failing recruitment. One of the main causes for this failure is low seed viability. Observational evidence suggests that this is partly induced by climate warming, but our mechanistic understanding of this effect remains incomplete. Here, we experimentally assess the influence of temperature on two key developmental phases during sexual reproduction, i.e. gametogenesis and fertilisation (seed phase two, SP2) and embryo development (seed phase three, SP3). Along a latitudinal gradient from southern France to central Sweden, we installed a transplant experiment with shrubs originating from Belgium, a region with unusually low juniper seed viability. Seeds of both seed phases were sampled during three consecutive years, and seed viability assessed. Warming temperatures negatively affected the seed viability of both SP2 and SP3 seeds along the latitudinal gradient. Interestingly, the effect on embryo development (SP3) only occurred in the third year, i.e. when the gametogenesis and fertilisation also took place in warmer conditions. We found strong indications that this negative influence mostly acts via disrupting growth of the pollen tube, the development of the female gametophyte and fertilisation (SP2). This, in turn, can lead to failing embryo development, for example, due to nutritional problems. Our results confirm that climate warming can negatively affect seed viability of juniper. PMID:26465806

  1. A self-organized criticality model for ion temperature gradient mode driven turbulence in confined plasma

    SciTech Connect

    Isliker, H.; Pisokas, Th.; Vlahos, L.; Strintzi, D.

    2010-08-15

    A new self-organized criticality (SOC) model is introduced in the form of a cellular automaton (CA) for ion temperature gradient (ITG) mode driven turbulence in fusion plasmas. Main characteristics of the model are that it is constructed in terms of the actual physical variable, the ion temperature, and that the temporal evolution of the CA, which necessarily is in the form of rules, mimics actual physical processes as they are considered to be active in the system, i.e., a heating process and a local diffusive process that sets on if a threshold in the normalized ITG R/L{sub T} is exceeded. The model reaches the SOC state and yields ion temperature profiles of exponential shape, which exhibit very high stiffness, in that they basically are independent of the loading pattern applied. This implies that there is anomalous heat transport present in the system, despite the fact that diffusion at the local level is imposed to be of a normal kind. The distributions of the heat fluxes in the system and of the heat out-fluxes are of power-law shape. The basic properties of the model are in good qualitative agreement with experimental results.

  2. Redox systematics of a magma ocean with variable pressure-temperature gradients and composition.

    PubMed

    Righter, K; Ghiorso, M S

    2012-07-24

    Oxygen fugacity in metal-bearing systems controls some fundamental aspects of the geochemistry of the early Earth, such as the FeO and siderophile trace element content of the mantle, volatile species that influence atmospheric composition, and conditions for organic compounds synthesis. Redox and metal-silicate equilibria in the early Earth are sensitive to oxygen fugacity (fO(2)), yet are poorly constrained in modeling and experimentation. High pressure and temperature experimentation and modeling in metal-silicate systems usually employs an approximation approach for estimating fO(2) that is based on the ratio of Fe and FeO [called "ΔIW (ratio)" hereafter]. We present a new approach that utilizes free energy and activity modeling of the equilibrium: Fe + SiO(2) + O(2) = Fe(2)SiO(4) to calculate absolute fO(2) and relative to the iron-wüstite (IW) buffer at pressure and temperature [ΔIW (P,T)]. This equilibrium is considered across a wide range of pressures and temperatures, including up to the liquidus temperature of peridotite (4,000 K at 50 GPa). Application of ΔIW (ratio) to metal-silicate experiments can be three or four orders of magnitude different from ΔIW (P,T) values calculated using free energy and activity modeling. We will also use this approach to consider the variation in oxygen fugacity in a magma ocean scenario for various thermal structures for the early Earth: hot liquidus gradient, 100 °C below the liquidus, hot and cool adiabatic gradients, and a cool subsolidus adiabat. The results are used to assess the effect of increasing P and T, changing silicate composition during accretion, and related to current models for accretion and core formation in the Earth. The fO(2) in a deep magma ocean scenario may become lower relative to the IW buffer at hotter and deeper conditions, which could include metal entrainment scenarios. Therefore, fO(2) may evolve from high to low fO(2) during Earth (and other differentiated bodies) accretion. Any

  3. Redox systematics of a magma ocean with variable pressure-temperature gradients and composition

    PubMed Central

    Righter, K.; Ghiorso, M. S.

    2012-01-01

    Oxygen fugacity in metal-bearing systems controls some fundamental aspects of the geochemistry of the early Earth, such as the FeO and siderophile trace element content of the mantle, volatile species that influence atmospheric composition, and conditions for organic compounds synthesis. Redox and metal-silicate equilibria in the early Earth are sensitive to oxygen fugacity (fO2), yet are poorly constrained in modeling and experimentation. High pressure and temperature experimentation and modeling in metal-silicate systems usually employs an approximation approach for estimating fO2 that is based on the ratio of Fe and FeO [called “ΔIW (ratio)” hereafter]. We present a new approach that utilizes free energy and activity modeling of the equilibrium: Fe + SiO2 + O2 = Fe2SiO4 to calculate absolute fO2 and relative to the iron-wüstite (IW) buffer at pressure and temperature [ΔIW (P,T)]. This equilibrium is considered across a wide range of pressures and temperatures, including up to the liquidus temperature of peridotite (4,000 K at 50 GPa). Application of ΔIW (ratio) to metal-silicate experiments can be three or four orders of magnitude different from ΔIW (P,T) values calculated using free energy and activity modeling. We will also use this approach to consider the variation in oxygen fugacity in a magma ocean scenario for various thermal structures for the early Earth: hot liquidus gradient, 100 °C below the liquidus, hot and cool adiabatic gradients, and a cool subsolidus adiabat. The results are used to assess the effect of increasing P and T, changing silicate composition during accretion, and related to current models for accretion and core formation in the Earth. The fO2 in a deep magma ocean scenario may become lower relative to the IW buffer at hotter and deeper conditions, which could include metal entrainment scenarios. Therefore, fO2 may evolve from high to low fO2 during Earth (and other differentiated bodies) accretion. Any modeling of

  4. Redox systematics of a magma ocean with variable pressure-temperature gradients and composition.

    PubMed

    Righter, K; Ghiorso, M S

    2012-07-24

    Oxygen fugacity in metal-bearing systems controls some fundamental aspects of the geochemistry of the early Earth, such as the FeO and siderophile trace element content of the mantle, volatile species that influence atmospheric composition, and conditions for organic compounds synthesis. Redox and metal-silicate equilibria in the early Earth are sensitive to oxygen fugacity (fO(2)), yet are poorly constrained in modeling and experimentation. High pressure and temperature experimentation and modeling in metal-silicate systems usually employs an approximation approach for estimating fO(2) that is based on the ratio of Fe and FeO [called "ΔIW (ratio)" hereafter]. We present a new approach that utilizes free energy and activity modeling of the equilibrium: Fe + SiO(2) + O(2) = Fe(2)SiO(4) to calculate absolute fO(2) and relative to the iron-wüstite (IW) buffer at pressure and temperature [ΔIW (P,T)]. This equilibrium is considered across a wide range of pressures and temperatures, including up to the liquidus temperature of peridotite (4,000 K at 50 GPa). Application of ΔIW (ratio) to metal-silicate experiments can be three or four orders of magnitude different from ΔIW (P,T) values calculated using free energy and activity modeling. We will also use this approach to consider the variation in oxygen fugacity in a magma ocean scenario for various thermal structures for the early Earth: hot liquidus gradient, 100 °C below the liquidus, hot and cool adiabatic gradients, and a cool subsolidus adiabat. The results are used to assess the effect of increasing P and T, changing silicate composition during accretion, and related to current models for accretion and core formation in the Earth. The fO(2) in a deep magma ocean scenario may become lower relative to the IW buffer at hotter and deeper conditions, which could include metal entrainment scenarios. Therefore, fO(2) may evolve from high to low fO(2) during Earth (and other differentiated bodies) accretion. Any

  5. On the formation of sharp gradients in electron density resulting from an ice-plasma feedback instabilities in the polar summer mesosphere

    NASA Astrophysics Data System (ADS)

    Yee, J.; Bahcivan, H.

    2014-12-01

    temperature. As a result, the mesospheric temperature gradients may be responsible for vertically localized and horizontally extended meter-scale electron density ledges as has been detected by numerous in-situ sounding rockets and inferred from radar specular echoes.

  6. Temperature gradients in the Cepheus B molecular cloud - a multi-line analysis

    NASA Astrophysics Data System (ADS)

    Deiss, B. M.; Beuther, H.; Kramer, C.

    The Cepheus B molecular cloud is a prime candidate to study the effect of sequential star formation on molecular clouds: it is located at the edge of an H ii region (S155) and an OB association (Cepheus OB3), and it comprises a hot-core region with an embedded compact H ii region and NIR cluster suggesting on-going star formation. The bulk of the cloud, however, appears to be in a 'calm' state where star formation has not (yet) started. We conducted on-the-fly maps of the (2-1) and (3-2) low-J transitions of the CO isotopomers 12CO, 13CO, and C18O (Beuther et al. 1999, to appear in A&A); the observations were carried out with the 3 m KOSMA submillimeter telescope at Gornergrat, Switzerland (Kramer et al. 1998, SPIE, Conf.Proc., Kona, Vol 3350). We present line ratio maps as well as spectra at selected positions, where the latter sample regions of Cepheus B each having different physical conditions. The line ratio distribution is a measure for the variation of the excitation conditions. Adopting an escape probability integration scheme the data can be fitted reasonably treating each of the CO isotopomers seperately. From that we derive differing kinetic temperatures at each of the projected positions. This strongly indicates a temperature gradient along the line-of-sight since different isotopomers trace different layers of the cloud due to their differing optical depths. The temperature difference between the cooler inner parts of the cloud and the cloud's 'surface' amounts up to 40 K. We also found a lateral west-to-east 'surface' temperature decrease from 70 K at the hot-core region down to 40 K.

  7. Effects of electron temperature anisotropy on proton mirror instability evolution

    NASA Astrophysics Data System (ADS)

    Ahmadi, Narges; Germaschewski, Kai; Raeder, Joachim

    2016-06-01

    Proton mirror modes are large amplitude nonpropagating structures frequently observed in the magnetosheath. It has been suggested that electron temperature anisotropy can enhance the proton mirror instability growth rate while leaving the proton cyclotron instability largely unaffected, therefore causing the proton mirror instability to dominate the proton cyclotron instability in Earth's magnetosheath. Here we use particle-in-cell simulations to investigate the electron temperature anisotropy effects on proton mirror instability evolution. Contrary to the hypothesis, electron temperature anisotropy leads to excitement of the electron whistler instability. Our results show that the electron whistler instability grows much faster than the proton mirror instability and quickly consumes the electron-free energy so that there is no electron temperature anisotropy left to significantly impact the evolution of the proton mirror instability.

  8. Investigation of microstructure and V-defect formation inInxGa1-xN/GaN MQW grown using temperature-gradient MOCVD

    SciTech Connect

    Johnson, M.C.; Liliental-Weber, Z.; Zakharov, D.N.; McCready,D.E.; Jorgenson, R.J.; Wu, J.; Shan, W.; Bourret-Courchesne, E.D.

    2004-11-19

    Temperature-gradient Metalorganic Chemical Vapor Deposition was used to deposit In{sub x}Ga{sub 1-x}N/GaN multiple quantum well structures with a concentration gradient of indium across the wafer. These multiple quantum well structures were deposited on low defect density (2 x 10{sup 8} cm{sup -2}) GaN template layers for investigation of microstructural properties and V-defect (pinhole) formation. Room temperature photoluminescence and photomodulated transmission were used for optical characterization which show a systematic decrease in emission energy for a decrease in growth temperature. Triple-axis X-ray diffraction, scanning electron microscopy and cross-section transmission electron microscopy were used to obtain microstructural properties of different regions across the wafer. Results show that there is a decrease in crystal quality and an increase in V-defect formation with increasing indium concentration. A direct correlation was found between V-defect density and growth temperature due to increased strain and indium segregation for increasing indium concentration.

  9. Convective response to changes in the thermodynamic environment in idealized weak temperature gradient simulations

    NASA Astrophysics Data System (ADS)

    Sessions, Sharon L.; Herman, Michael J.; Sentić, Stipo

    2015-06-01

    We investigate the response of convection to idealized perturbations in the thermodynamic environment in simulations which parameterize the large-scale circulations using the weak temperature gradient (WTG) approximation. The perturbations include a combination of modifying the environmental moisture and atmospheric stability via imposing anomalies in reference moisture and temperature profiles. We find that changes in atmospheric stability strongly influence the character of convection by drastically modifying the vertical motion profile, whereas changes to atmospheric moisture modulate the intensity of precipitation produced by the convection, but do not qualitatively change the shape of the vertical motion profile. An important question is how does horizontal moisture advection into the domain affect convection? We test several different parameterizations of this process; these include lateral entrainment by circulations induced by enforcing WTG, a moisture relaxation which parameterizes the advection of moisture by large-scale nondivergent circulations, and control simulations in which both of these mechanisms are turned off so horizontal advection is assumed negligible compared to vertical advection. Interestingly, the most significant differences resulting from the choice of horizontal moisture advection scheme appear in environmental conditions which suppress-rather than support-the development of deep tropical convection. In this case, lateral entrainment related to WTG circulations is the only parameterization which results in extreme drying of the troposphere in environments which suppress convection. Consequently, this is the only parameterization which permits multiple equilibria—dry or precipitating steady states—in convection.

  10. Cycling Performance of a Columnar-Structured Complex Perovskite in a Temperature Gradient Test

    NASA Astrophysics Data System (ADS)

    Schlegel, N.; Sebold, D.; Sohn, Y. J.; Mauer, G.; Vaßen, R.

    2015-10-01

    To increase the efficiency of turbines for the power generation and the aircraft industry, advanced thermal barrier coatings (TBCs) are required. They need to be long-term stable at temperatures higher than 1200 °C. Nowadays, yttria partially stabilized zirconia (YSZ) is applied as standard TBC material. But its long-term application at temperatures higher than 1200 °C leads to detrimental phase changes and sintering effects. Therefore, new materials have to be investigated, for example, complex perovskites. They provide high melting points, high thermal expansion coefficients and thermal conductivities of approx. 2.0 W/(m K). In this work, the complex perovskite La(Al1/4Mg1/2Ta1/4)O3 (LAMT) was investigated. It was deposited by the suspension plasma spraying (SPS) process, resulting in a columnar microstructure of the coating. The coatings were tested in thermal cycling gradient tests and they show excellent results, even though some phase decomposition was found.

  11. The doubled CO2 climate - Impact of the sea surface temperature gradient

    NASA Technical Reports Server (NTRS)

    Rind, David

    1987-01-01

    The Goddard Institute for Space Studies (GISS) GCM of Hansen et al. (1983) was run, with 4 deg x 5 deg resolution, with doubled CO2 and two sets of sea surface temperature gradient distributions. One set was derived from the equilibrium doubled CO2 run of the 8 deg x 10 deg GISS GCM, with minimal high latitude amplification. The other set resembled closely the GFDL model results, with greater amplification. Both experiments had the same global mean surface air temperature change. The two experiments were often found to produce substantially different climate characteristics. With reduced high latitude amplification (set one), and thus, more equatorial warming, there was a greater increase in specific humidity and the greenhouse capacity of the atmosphere, resulting in a warmer atmosphere in general. Features such as the low-latitude precipitation, Hadley cell intensity, jet stream magnitude, and atmospheric energy transports all increased in comparison with the control run. In contrast, these features all decreased in the experiment with greater high latitude amplification (set two).

  12. Temperature sensitivity and enzymatic mechanisms of soil organic matter decomposition along an altitudinal gradient on Mount Kilimanjaro.

    PubMed

    Blagodatskaya, Еvgenia; Blagodatsky, Sergey; Khomyakov, Nikita; Myachina, Olga; Kuzyakov, Yakov

    2016-01-01

    Short-term acceleration of soil organic matter decomposition by increasing temperature conflicts with the thermal adaptation observed in long-term studies. Here we used the altitudinal gradient on Mt. Kilimanjaro to demonstrate the mechanisms of thermal adaptation of extra- and intracellular enzymes that hydrolyze cellulose, chitin and phytate and oxidize monomers ((14)C-glucose) in warm- and cold-climate soils. We revealed that no response of decomposition rate to temperature occurs because of a cancelling effect consisting in an increase in half-saturation constants (Km), which counteracts the increase in maximal reaction rates (Vmax with temperature). We used the parameters of enzyme kinetics to predict thresholds of substrate concentration (Scrit) below which decomposition rates will be insensitive to global warming. Increasing values of Scrit, and hence stronger canceling effects with increasing altitude on Mt. Kilimanjaro, explained the thermal adaptation of polymer decomposition. The reduction of the temperature sensitivity of Vmax along the altitudinal gradient contributed to thermal adaptation of both polymer and monomer degradation. Extrapolating the altitudinal gradient to the large-scale latitudinal gradient, these results show that the soils of cold climates with stronger and more frequent temperature variation are less sensitive to global warming than soils adapted to high temperatures.

  13. Temperature sensitivity and enzymatic mechanisms of soil organic matter decomposition along an altitudinal gradient on Mount Kilimanjaro

    PubMed Central

    Blagodatskaya, Еvgenia; Blagodatsky, Sergey; Khomyakov, Nikita; Myachina, Olga; Kuzyakov, Yakov

    2016-01-01

    Short-term acceleration of soil organic matter decomposition by increasing temperature conflicts with the thermal adaptation observed in long-term studies. Here we used the altitudinal gradient on Mt. Kilimanjaro to demonstrate the mechanisms of thermal adaptation of extra- and intracellular enzymes that hydrolyze cellulose, chitin and phytate and oxidize monomers (14C-glucose) in warm- and cold-climate soils. We revealed that no response of decomposition rate to temperature occurs because of a cancelling effect consisting in an increase in half-saturation constants (Km), which counteracts the increase in maximal reaction rates (Vmax with temperature). We used the parameters of enzyme kinetics to predict thresholds of substrate concentration (Scrit) below which decomposition rates will be insensitive to global warming. Increasing values of Scrit, and hence stronger canceling effects with increasing altitude on Mt. Kilimanjaro, explained the thermal adaptation of polymer decomposition. The reduction of the temperature sensitivity of Vmax along the altitudinal gradient contributed to thermal adaptation of both polymer and monomer degradation. Extrapolating the altitudinal gradient to the large-scale latitudinal gradient, these results show that the soils of cold climates with stronger and more frequent temperature variation are less sensitive to global warming than soils adapted to high temperatures. PMID:26924084

  14. Temperature sensitivity and enzymatic mechanisms of soil organic matter decomposition along an altitudinal gradient on Mount Kilimanjaro.

    PubMed

    Blagodatskaya, Еvgenia; Blagodatsky, Sergey; Khomyakov, Nikita; Myachina, Olga; Kuzyakov, Yakov

    2016-01-01

    Short-term acceleration of soil organic matter decomposition by increasing temperature conflicts with the thermal adaptation observed in long-term studies. Here we used the altitudinal gradient on Mt. Kilimanjaro to demonstrate the mechanisms of thermal adaptation of extra- and intracellular enzymes that hydrolyze cellulose, chitin and phytate and oxidize monomers ((14)C-glucose) in warm- and cold-climate soils. We revealed that no response of decomposition rate to temperature occurs because of a cancelling effect consisting in an increase in half-saturation constants (Km), which counteracts the increase in maximal reaction rates (Vmax with temperature). We used the parameters of enzyme kinetics to predict thresholds of substrate concentration (Scrit) below which decomposition rates will be insensitive to global warming. Increasing values of Scrit, and hence stronger canceling effects with increasing altitude on Mt. Kilimanjaro, explained the thermal adaptation of polymer decomposition. The reduction of the temperature sensitivity of Vmax along the altitudinal gradient contributed to thermal adaptation of both polymer and monomer degradation. Extrapolating the altitudinal gradient to the large-scale latitudinal gradient, these results show that the soils of cold climates with stronger and more frequent temperature variation are less sensitive to global warming than soils adapted to high temperatures. PMID:26924084

  15. Low-temperature bonding of temperature-resistant electronic connections

    NASA Technical Reports Server (NTRS)

    Peluso, R. F.

    1971-01-01

    Bonding of flat metal surfaces utilizes low temperature melting intermediate material, pulse heating, and pressure application to produce strong, electrically conductive bond resistant to melting at temperatures well above melting point of intermediate material. Little or no intermediate material remains at the interface.

  16. Two dimensional electron cyclotron emission imaging study of electron temperature profiles and fluctuations in Tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Deng, Bihe

    An innovative plasma diagnostic technique, electron cyclotron emission imaging (ECEI), was successfully developed and implemented on the TEXT-U and RTP tokamaks for the study of plasma electron temperature profiles and fluctuations. Due to the high spatial and temporal resolution of this new diagnostic, plasma filamentation was observed during high power electron cyclotron resonance heating (ECRH) in TEXT-U, and was identified as multiple rotating magnetic islands. In RTP, under special plasma conditions, evidence for magnetic bubbling was first observed, which is characterized by the flattening of the electron temperature and pressure profiles over a small annular region of about 1-2 cm extent near the q = 2 surface. More important results arose from the detailed study of the broadband plasma turbulence in TEXT-U and RTP. With the first measurements of poloidal wavenumbers and dispersion relations, turbulent Te fluctuations in the confinement region of TEXT-U plasmas were identified as electron drift wave turbulence. The fluctuation amplitude is found to follow the mixing length scaling, and the fluctuation-induced conducted- heat flux can account for the observed anomalous energy transport in TEXT-U. In RTP, detailed ECEI study of broadband Te fluctuations has shown that many characteristics of the observed fluctuations are consistent with the predictions of toroidal ηi mode theory. These include the global dependence of the fluctuation frequency and amplitude on the plasma density and current. The measured isotope and impurity scalings quantitatively match the predictions of toroidal ηi mode theory. The ECEI measurements in combination with ECRH modification of T e profiles argue against the Te gradients serving as the driving force of the turbulence. With the detailed 2- D measurements of the fluctuation distribution over the plasma minor cross-section, large scale, coherent structures similar to the eigenmode structures predicted by toroidal ηi mode theory

  17. Effect of temperature gradient on simultaneously experimental determination of thermal expansion coefficients and elastic modulus of thin film materials

    NASA Astrophysics Data System (ADS)

    Chen, Tei-Chen; Lin, Wen-Jong; Chen, Dao-Long

    2004-10-01

    Some specific experimental methods to simultaneously determine the thermal expansion coefficients αF and biaxial elastic modulus EF/(1-νF) of thin film materials have been reported recently. In these methods, the deflections or the curvature change of the thin films, deposited on two different types of circular disks with known material properties, generally can be measured with a variety of optical techniques. The temperature-dependent deflection behaviors of thin films are then obtained by heating the samples in the range from room temperature to a slightly higher temperature level at which the physical properties and microstructures of thin film materials still remain unchanged. By using the relations between stress, deflection, and temperature, the physical properties of thin films can be finally calculated by using the slopes of two lines in the stress versus temperature plot. These relations, however, are formulated under the condition of uniform temperature rise. If the heating processes of samples are conducted in the condition that there exists a small steady-state temperature gradient along the thickness of samples due to the effect of natural heat convection on the upper surface of thin film, the formulation mentioned above shall be modified. It is found that the deflection of sample induced by the small temperature gradient along the thickness due to natural heat convection is very significant and comparable to that induced by uniform temperature rise. Consequently, if the effect of this temperature gradient is carelessly disregarded in physical modeling, a significantly different value of elastic modulus may be misleadingly obtained. Some cases are exemplified and illustrated to show the influence of temperature gradient on the evaluation of material properties.

  18. Method for local temperature measurement in a nanoreactor for in situ high-resolution electron microscopy.

    PubMed

    Vendelbo, S B; Kooyman, P J; Creemer, J F; Morana, B; Mele, L; Dona, P; Nelissen, B J; Helveg, S

    2013-10-01

    In situ high-resolution transmission electron microscopy (TEM) of solids under reactive gas conditions can be facilitated by microelectromechanical system devices called nanoreactors. These nanoreactors are windowed cells containing nanoliter volumes of gas at ambient pressures and elevated temperatures. However, due to the high spatial confinement of the reaction environment, traditional methods for measuring process parameters, such as the local temperature, are difficult to apply. To address this issue, we devise an electron energy loss spectroscopy (EELS) method that probes the local temperature of the reaction volume under inspection by the electron beam. The local gas density, as measured using quantitative EELS, is combined with the inherent relation between gas density and temperature, as described by the ideal gas law, to obtain the local temperature. Using this method we determined the temperature gradient in a nanoreactor in situ, while the average, global temperature was monitored by a traditional measurement of the electrical resistivity of the heater. The local gas temperatures had a maximum of 56 °C deviation from the global heater values under the applied conditions. The local temperatures, obtained with the proposed method, are in good agreement with predictions from an analytical model. PMID:23831940

  19. Visualization of turbulent wedges under favorable pressure gradients using shear-sensitive and temperature-sensitive liquid crystals.

    PubMed

    Chong, Tze-Pei; Zhong, Shan; Hodson, Howard P

    2002-10-01

    Turbulent wedges induced by a three-dimensional surface roughness placed on a flat plate were studied using both shear sensitive and temperature sensitive liquid crystals, respectively denoted by SSLC and TSLC. The experiments were carried out at a free-stream velocity of 28 m/sec at three different favorable pressure gradients. The purpose of this investigation was to examine the spreading angles of the turbulent wedges, as indicated by their associated surface shear stresses and heat transfer characteristics, and to obtain more insight about the behavior of transitional momentum and thermal boundary layers when a streamwise pressure gradient exists. It was shown that under a zero pressure gradient the spreading angles indicated by the two types of liquid crystals are the same, but the difference increases as the level of the favorable pressure gradient increases. The result from the present study is important for modelling the transition of thermal boundary layers over gas turbine blades. PMID:12496003

  20. Ion and electron temperatures in the topside ionosphere

    NASA Technical Reports Server (NTRS)

    Munninghoff, D. E.

    1979-01-01

    Experimental and theoretical ion and electron temperatures in the topside ionosphere were investigated. Experimental results came from an analysis of incoherent scatter data taken at Arecibo, Puerto Rico. Consideration of the energy balance equations gave the theoretical ion and electron temperatures.

  1. MHD thermosolutal marangoni convection heat and mass transport of power law fluid driven by temperature and concentration gradient

    NASA Astrophysics Data System (ADS)

    Jiao, Chengru; Zheng, Liancun; Ma, Lianxi

    2015-08-01

    This paper studies the magnetohydrodynamic (MHD) thermosolutal Marangoni convection heat and mass transfer of power-law fluids driven by a power law temperature and a power law concentration which is assumed that the surface tension varies linearly with both the temperature and concentration. Heat and mass transfer constitutive equation is proposed based on N-diffusion proposed by Philip and the abnormal convection-diffusion model proposed by Pascal in which we assume that the heat diffusion depends non-linearly on both the temperature and the temperature gradient and the mass diffusion depends non-linearly on both the concentration and the concentration gradient with modified Fourier heat conduction for power law fluid. The governing equations are reduced to nonlinear ordinary differential equations by using suitable similarity transformations. Approximate analytical solution is obtained using homotopy analytical method (HAM). The transport characteristics of velocity, temperature and concentration fields are analyzed in detail.

  2. Oak-insect herbivore interactions along a temperature and precipitation gradient

    NASA Astrophysics Data System (ADS)

    Leckey, Erin H.; Smith, Dena M.; Nufio, César R.; Fornash, Katherine F.

    2014-11-01

    The interactions between herbivorous insects and their host plants are expected to be influenced by changing climates. Modern oaks provide an excellent system to examine this assumption because their interactions with herbivores occur over broad climatic and spatial scales, they vary in their defensive and nutritional investment in leaves by being deciduous or evergreen, and their insect herbivores range from generalists to highly specialized feeders. In this study, we surveyed leaf-litter samples of four oak species along an elevation gradient, from coastal northern California, USA, to the upper montane woodlands of the Sierra Nevada, to examine the relationship between climatic factors (mean annual temperature and precipitation) and oak herbivory levels at multiple scales; across all oak species pooled, between evergreen and deciduous species and within species. Overall, temperature and precipitation did not appear to have a significant effect on most measures of total herbivore damage (percent leaves damaged per tree, percent leaf area removed and average number of feeding damage marks per leaf) and the strongest predictor of herbivore damage overall was the identity of the host species. However, increases in precipitation were correlated with an increase in the actual leaf area removed, and specialized insects, such as those that make leaf mines and galls, were the most sensitive to differences in precipitation levels. This suggests that the effects of changing climate on some plant-insect interactions is less likely to result in broad scale increases in damage with increasing temperatures or changing precipitation levels, but is rather more likely to be dependent on the type of herbivore (specialist vs. generalist) and the scale (species vs. community) over which the effect is examined.

  3. Gradient-based high precision alignment of cryo-electron subtomograms

    PubMed Central

    Xu, Min; Alber, Frank

    2014-01-01

    Whole cell cryo-electron tomography emerges as an important component for structural system biology approaches. It allows the localization and structural characterization of macromolecular complexes in near living conditions. However, the method is hampered by low resolution, missing data and low signal-to-noise ratio (SNR). To overcome some of these difficulties one can align and average a large set of subtomograms. Existing alignment methods are mostly based on an exhaustive scanning and sampling of all but discrete relative rotations and translations of one subtomogram with respect to the other. In this paper, we propose a gradient-guided alignment method based on two subtomogram similarity measures. We also propose a stochastic parallel optimization that increases significantly the efficiency for the simultaneous refinement of a set of alignment candidates. Results on simulated data of model complexes and experimental structures of protein complexes show that even for highly distorted subtomograms and with only a small number of very sparsely distributed initial alignment seeds, our method can accurately recover true transformations with a significantly higher precision than scanning based alignment methods. PMID:25068871

  4. Low-temperature electron microscopy: techniques and protocols.

    PubMed

    Fleck, Roland A

    2015-01-01

    Low-temperature electron microscopy endeavors to provide "solidification of a biological specimen by cooling with the aim of minimal displacement of its components through the use of low temperature as a physical fixation strategy" (Steinbrecht and Zierold, Cryotechniques in biological electron microscopy. Springer-Verlag, Berlin, p 293, 1987). The intention is to maintain confidence that the tissue observed retains the morphology and dimensions of the living material while also ensuring soluble cellular components are not displaced. As applied to both scanning and transmission electron microscopy, cryo-electron microscopy is a strategy whereby the application of low-temperature techniques are used to reduce or remove processing artifacts which are commonly encountered in more conventional room temperature electron microscopy techniques which rely heavily on chemical fixation and heavy metal staining. Often, cryo-electron microscopy allows direct observation of specimens, which have not been stained or chemically fixed.

  5. Determining electron temperature and density in a hydrogen microwave plasma

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.; Farhat, Samir; Gicquel, Alix; Hassouni, Khaled; Lefebvre, Michel

    1993-01-01

    A three-temperature thermo-chemical model is developed for analyzing the chemical composition and energy states of a hydrogen microwave plasma used for studying diamond deposition. The chemical and energy exchange rate coefficients are determined from cross section data, assuming Maxwellian velocity distributions for electrons. The model is reduced to a zero-dimensional problem to solve for the electron temperature and ion mole fraction, using measured vibrational and rotational temperatures. The calculations indicate that the electron temperature may be determined to within a few percent error even though the uncertainty in dissociation fraction is many times larger.

  6. First high-temperature electronics products survey 2005.

    SciTech Connect

    Normann, Randy Allen

    2006-04-01

    On April 4-5, 2005, a High-Temperature Electronics Products Workshop was held. This workshop engaged a number of governmental and private industry organizations sharing a common interest in the development of commercially available, high-temperature electronics. One of the outcomes of this meeting was an agreement to conduct an industry survey of high-temperature applications. This report covers the basic results of this survey.

  7. Rocket measurements of electron temperature in the E region

    NASA Technical Reports Server (NTRS)

    Zimmerman, R. K., Jr.; Smith, L. G.

    1980-01-01

    The rocket borne equipment, experimental method, and data reduction techniques used in the measurement of electron temperature in the E region are fully described. Electron temperature profiles from one daytime equatorial flight and two nighttime midlatitude flights are discussed. The last of these three flights, Nike Apache 14.533, showed elevated E region temperatures which are interpreted as the heating effect of a stable auroral red arc.

  8. The temperature gradient-forming device, an accessory unit for normal light microscopes to study the biology of hyperthermophilic microorganisms.

    PubMed

    Mora, Maximilian; Bellack, Annett; Ugele, Matthias; Hopf, Johann; Wirth, Reinhard

    2014-08-01

    To date, the behavior of hyperthermophilic microorganisms in their biotope has been studied only to a limited degree; this is especially true for motility. One reason for this lack of knowledge is the requirement for high-temperature microscopy-combined, in most cases, with the need for observations under strictly anaerobic conditions-for such studies. We have developed a custom-made, low-budget device that, for the first time, allows analyses in temperature gradients up to 40°C over a distance of just 2 cm (a biotope-relevant distance) with heating rates up to ∼5°C/s. Our temperature gradient-forming device can convert any upright light microscope into one that works at temperatures as high as 110°C. Data obtained by use of this apparatus show how very well hyperthermophiles are adapted to their biotope: they can react within seconds to elevated temperatures by starting motility-even after 9 months of storage in the cold. Using the temperature gradient-forming device, we determined the temperature ranges for swimming, and the swimming speeds, of 15 selected species of the genus Thermococcus within a few months, related these findings to the presence of cell surface appendages, and obtained the first evidence for thermotaxis in Archaea.

  9. Dynamics of ion temperature gradient turbulence and transport with a static magnetic island

    NASA Astrophysics Data System (ADS)

    Izacard, Olivier; Holland, Christopher; James, Spencer D.; Brennan, Dylan P.

    2016-02-01

    Understanding the interaction mechanisms between large-scale magnetohydrodynamic instabilities and small-scale drift-wave microturbulence is essential for predicting and optimizing the performance of magnetic confinement based fusion energy experiments. We report progress on understanding these interactions using both analytic theory and numerical simulations performed with the BOUT++ [Dudson et al., Comput. Phys. Commun. 180, 1467 (2009)] framework. This work focuses upon the dynamics of the ion temperature gradient instability in the presence of a background static magnetic island, using a weakly electromagnetic two-dimensional five-field fluid model. It is found that the island width must exceed a threshold size (comparable with the turbulent correlation length in the no-island limit) to significantly impact the turbulence dynamics, with the primary impact being an increase in turbulent fluctuation and heat flux amplitudes. The turbulent radial ion energy flux is shown to localize near the X-point, but does so asymmetrically in the poloidal dimension. An effective turbulent resistivity which acts upon the island outer layer is also calculated and shown to always be significantly (10×-100×) greater than the collisional resistivity used in the simulations.

  10. Shear flow instabilities induced by trapped ion modes in collisionless temperature gradient turbulence

    SciTech Connect

    Palermo, F.; Garbet, X.; Cartier-Michaud, T.; Ghendrih, P.; Grandgirard, V.; Sarazin, Y.; Ghizzo, A.

    2015-04-15

    One important issue in turbulence self-organization is the interplay between the Kelvin–Helmholtz (KH) instability and streamers and/or zonal flows. This question has been debated for a long time. The effects of the KH instability and its position in the sequence of events between streamers, turbulence, and zonal flows have been investigated with a reduced gyro-bounce averaged kinetic code devoted to study the primary ion temperature gradient (ITG) instability linked to trapped ion modes (TIM). In toroidal geometry, the specific dynamics of TIM linked to trapped particles becomes important when the frequency of ITG modes falls below the ion bounce frequency, allowing one to average on both the cyclotron and bounce motion fast time scales. This reduction of the number of degrees of freedom leads to a strong reduction of computer resources (memory and computation time). Bounce-averaged gyrokinetic code can be considered as a toy model able to describe basic structures of turbulent transport in tokamak devices. In particular, by means of this code, we have observed that the energy injected in the system by the TIM instability is exchanged between streamers and zonal flows by means of KH vortices that grow along these structures in the nonlinear phase. The energy transfer occurs throughout the relaxation phase of the streamer growth leading to a modification of the KH modes and to the generation of the zonal flows.

  11. The 1983 Temperature Gradient and Heat Flow Drilling Project for the State of Washington

    SciTech Connect

    Korosec, Michael A.

    1983-11-01

    During the Summer of 1983, the Washington Division of Geology and Earth Resources carried out a three-hole drilling program to collect temperature gradient and heat flow information near potential geothermal resource target areas. The project was part of the state-coupled US Department of Energy Geothermal Program. Richardson Well Drilling of Tacoma, Washington was subcontracted through the State to perform the work. The general locations of the project areas are shown in figure 1. The first hole, DNR 83-1, was located within the Green River valley northwest of Mount St. Helens. This site is near the Green River Soda Springs and along the projection of the Mount St. Helens--Elk Lake seismic zone. The other two holes were drilled near Mount Baker. Hole DNR 83-3 was sited about 1/4 km west of the Baker Hot Springs, 10.5 km east of Mount Baker, while hole DNR 83-5 was located along Rocky Creek in the Sulphur Creek Valley. The Rocky Creek hole is about 10 km south-southwest of the peak. Two other holes, DNR 83-2 and DNR 83-4, were located on the north side of the Sulphur Creek Valley. Both holes were abandoned at early stages of drilling because of deep overburden and severe caving problems. The sites were apparently located atop old landslide deposits.

  12. 1983 temperature gradient and heat flow drilling project for the State of Washington

    SciTech Connect

    Korosec, M.A.

    1983-11-01

    During the Summer of 1983, a three-hole drilling program was carried out to collect temperature gradient and heat flow information near potential geothermal resource target areas. The general locations of the project areas are shown. The first hole, DNR 83-1, was located within the Green River valley northwest of Mount St. Helens. This site is near the Green River Soda Springs and along the projection of the Mount St. Helens - Elk Lake seismic zone. The other two holes were drilled near Mount Baker. Hole DNR 83-3 was sited about 1/4 km west of the Baker Hot Springs, 10.5 km east of Mount Baker, while hole DNR 83-5 was located along Rocky Creek in the Sulphur Creek Valley. The Rocky Creek hole is about 10 km south-southwest of the peak. Two other holes, DNR 83-2 and DNR 83-4, were located on the north side of the Sulphur Creek Valley. Both holes were abandoned at early stages of drilling because of deep overburden and severe caving problems. The sites were apparently located atop old landslide deposits.

  13. The role of radiation in organizing convection in weak temperature gradient simulations

    NASA Astrophysics Data System (ADS)

    Sessions, Sharon L.; Sentić, Stipo; Herman, Michael J.

    2016-03-01

    Using a cloud system resolving model with the large scale parameterized by the weak temperature gradient approximation, we investigated the influence of interactive versus noninteractive radiation on the characteristics of convection and convective organization. The characteristics of convecting environments are insensitive to whether radiation is interactive compared to when it is not. This is not the case for nonconvecting environments; interactive radiative cooling profiles show strong cooling at the top of the boundary layer which induces a boundary layer circulation that ultimately exports moist entropy (or analogously moist static energy) from dry domains. This upgradient transport is associated with a negative gross moist stability, and it is analogous to boundary layer circulations in radiative convective equilibrium simulations of convective self-aggregation. This only occurs when radiation cools interactively. Whether radiation is static or interactive also affects the existence of multiple equilibria-steady states which either support precipitating convection or which remain completely dry depending on the initial moisture profile. Interactive radiation drastically increases the range of parameters which permit multiple equilibria compared to static radiation; this is consistent with the observation that self-aggregation in radiative-convective equilibrium simulations is more readily attained with interactive radiation. However, the existence of multiple equilibria in absence of interactive radiation suggests that other mechanisms may result in organization.

  14. Bioinspired large-scale aligned porous materials assembled with dual temperature gradients

    PubMed Central

    Bai, Hao; Chen, Yuan; Delattre, Benjamin; Tomsia, Antoni P.; Ritchie, Robert O.

    2015-01-01

    Natural materials, such as bone, teeth, shells, and wood, exhibit outstanding properties despite being porous and made of weak constituents. Frequently, they represent a source of inspiration to design strong, tough, and lightweight materials. Although many techniques have been introduced to create such structures, a long-range order of the porosity as well as a precise control of the final architecture remain difficult to achieve. These limitations severely hinder the scale-up fabrication of layered structures aimed for larger applications. We report on a bidirectional freezing technique to successfully assemble ceramic particles into scaffolds with large-scale aligned, lamellar, porous, nacre-like structure and long-range order at the centimeter scale. This is achieved by modifying the cold finger with a polydimethylsiloxane (PDMS) wedge to control the nucleation and growth of ice crystals under dual temperature gradients. Our approach could provide an effective way of manufacturing novel bioinspired structural materials, in particular advanced materials such as composites, where a higher level of control over the structure is required. PMID:26824062

  15. Minimal model for transport barrier dynamics based on ion-temperature-gradient turbulence

    NASA Astrophysics Data System (ADS)

    Hu, G.; Horton, W.

    1997-09-01

    Low-order mode coupling equations are derived to describe recent computer simulations of the toroidal ion-temperature-gradient turbulent convection with steady and pulsating sheared mass flows in the transport barrier zone. The three convective transport states are identified with the tokamak confinement regimes called low mode (L-mode), high mode (H-mode), and barrier localized modes (BLMs) when the transport barrier is in the core plasma. The L-mode limit cycle is analytically derived and a bifurcation diagram showing L to H and H to BLM transitions in confinement is constructed numerically. Markovian closure procedures are sought to further reduce the dimensionality of the nonlinear system. First an exact expression is given for the energy transfer rate from the fluctuations to the sheared mass flow through the triplet velocity correlation function. Then the time scale expansion required to derive the Markovian closure formula is given. Markovian closure formulas form the basis for the thermodynamic-like L-H bifurcation models.

  16. Untangling interactions: do temperature and habitat fragmentation gradients simultaneously impact biotic relationships?

    PubMed

    Lakeman-Fraser, Poppy; Ewers, Robert M

    2014-07-22

    Gaining insight into the impact of anthropogenic change on ecosystems requires investigation into interdependencies between multiple drivers of ecological change and multiple biotic responses. Global environmental change drivers can act simultaneously to impact the abundance and diversity of biota, but few studies have also measured the impact across trophic levels. We firstly investigated whether climate (using temperature differences across a latitudinal gradient as a surrogate) interacts with habitat fragmentation (measured according to fragment area and distance to habitat edges) to impact a New Zealand tri-trophic food chain (plant, herbivore and natural enemy). Secondly, we examined how these interactions might differentially impact both the density and biotic processes of species at each of the three trophic levels. We found evidence to suggest that these drivers act non-additively across trophic levels. The nature of these interactions however varied: location synergistically interacted with fragmentation measures to exacerbate the detrimental effects on consumer density; and antagonistically interacted to ameliorate the impact on plant density and on the interactions between trophic levels (herbivory and parasitoid attack rate). Our findings indicate that the ecological consequences of multiple global change drivers are strongly interactive and vary according to the trophic level studied and whether density or ecological processes are investigated. PMID:24898374

  17. Geometric stabilization of the electrostatic ion-temperature-gradient driven instability. I. Nearly axisymmetric systems

    NASA Astrophysics Data System (ADS)

    Zocco, A.; Plunk, G. G.; Xanthopoulos, P.; Helander, P.

    2016-08-01

    The effects of a non-axisymmetric (3D) equilibrium magnetic field on the linear ion-temperature-gradient (ITG) driven mode are investigated. We consider the strongly driven, toroidal branch of the instability in a global (on the magnetic surface) setting. Previous studies have focused on particular features of non-axisymmetric systems, such as strong local shear or magnetic ripple, that introduce inhomogeneity in the coordinate along the magnetic field. In contrast, here we include non-axisymmetry explicitly via the dependence of the magnetic drift on the field line label α, i.e., across the magnetic field, but within the magnetic flux surface. We consider the limit where this variation occurs on a scale much larger than that of the ITG mode, and also the case where these scales are similar. Close to axisymmetry, we find that an averaging effect of the magnetic drift on the flux surface causes global (on the surface) stabilization, as compared to the most unstable local mode. In the absence of scale separation, we find destabilization is also possible, but only if a particular resonance occurs between the magnetic drift and the mode, and finite Larmor radius effects are neglected. We discuss the relative importance of surface global effects and known radially global effects.

  18. Bioinspired large-scale aligned porous materials assembled with dual temperature gradients.

    PubMed

    Bai, Hao; Chen, Yuan; Delattre, Benjamin; Tomsia, Antoni P; Ritchie, Robert O

    2015-12-01

    Natural materials, such as bone, teeth, shells, and wood, exhibit outstanding properties despite being porous and made of weak constituents. Frequently, they represent a source of inspiration to design strong, tough, and lightweight materials. Although many techniques have been introduced to create such structures, a long-range order of the porosity as well as a precise control of the final architecture remain difficult to achieve. These limitations severely hinder the scale-up fabrication of layered structures aimed for larger applications. We report on a bidirectional freezing technique to successfully assemble ceramic particles into scaffolds with large-scale aligned, lamellar, porous, nacre-like structure and long-range order at the centimeter scale. This is achieved by modifying the cold finger with a polydimethylsiloxane (PDMS) wedge to control the nucleation and growth of ice crystals under dual temperature gradients. Our approach could provide an effective way of manufacturing novel bioinspired structural materials, in particular advanced materials such as composites, where a higher level of control over the structure is required. PMID:26824062

  19. Rocket-borne measurements of electron temperature and density with the Electron Retarding Potential Analyzer instrument

    NASA Astrophysics Data System (ADS)

    Cohen, I. J.; Widholm, M.; Lessard, M. R.; Riley, P.; Heavisides, J.; Moen, J. I.; Clausen, L. B. N.; Bekkeng, T. A.

    2016-07-01

    Determining electron temperature in the ionosphere is a fundamentally important measurement for space science. Obtaining measurements of electron temperatures at high altitudes (>700 km) is difficult because of limitations on ground-based radar and classic spacecraft instrumentation. In light of these limitations, the rocket-borne Electron Retarding Potential Analyzer (ERPA) was developed to allow for accurate in situ measurement of ionospheric electron temperature with a simple and low-resource instrument. The compact ERPA, a traditional retarding potential analyzer with multiple baffle collimators, allows for a straightforward calculation of electron temperature. Since its first mission in 2004, it has amassed significant flight heritage and obtained data used in multiple studies investigating a myriad of phenomena related to magnetosphere-ionosphere coupling. In addition to highlighting the scientific contributions of the ERPA instrument, this paper outlines its theory and operation, the methodology used to obtain electron temperature measurements, and a comparative study suggesting that the ERPA can also provide electron density measurements.

  20. Electron density and electron temperature measurement in a bi-Maxwellian electron distribution using a derivative method of Langmuir probes

    SciTech Connect

    Choi, Ikjin; Chung, ChinWook; Youn Moon, Se

    2013-08-15

    In plasma diagnostics with a single Langmuir probe, the electron temperature T{sub e} is usually obtained from the slope of the logarithm of the electron current or from the electron energy probability functions of current (I)-voltage (V) curve. Recently, Chen [F. F. Chen, Phys. Plasmas 8, 3029 (2001)] suggested a derivative analysis method to obtain T{sub e} by the ratio between the probe current and the derivative of the probe current at a plasma potential where the ion current becomes zero. Based on this method, electron temperatures and electron densities were measured and compared with those from the electron energy distribution function (EEDF) measurement in Maxwellian and bi-Maxwellian electron distribution conditions. In a bi-Maxwellian electron distribution, we found the electron temperature T{sub e} obtained from the method is always lower than the effective temperatures T{sub eff} derived from EEDFs. The theoretical analysis for this is presented.

  1. Electron density and electron temperature measurement in a bi-Maxwellian electron distribution using a derivative method of Langmuir probes

    NASA Astrophysics Data System (ADS)

    Choi, Ikjin; Chung, ChinWook; Youn Moon, Se

    2013-08-01

    In plasma diagnostics with a single Langmuir probe, the electron temperature Te is usually obtained from the slope of the logarithm of the electron current or from the electron energy probability functions of current (I)-voltage (V) curve. Recently, Chen [F. F. Chen, Phys. Plasmas 8, 3029 (2001)] suggested a derivative analysis method to obtain Te by the ratio between the probe current and the derivative of the probe current at a plasma potential where the ion current becomes zero. Based on this method, electron temperatures and electron densities were measured and compared with those from the electron energy distribution function (EEDF) measurement in Maxwellian and bi-Maxwellian electron distribution conditions. In a bi-Maxwellian electron distribution, we found the electron temperature Te obtained from the method is always lower than the effective temperatures Teff derived from EEDFs. The theoretical analysis for this is presented.

  2. Energy-filtered cold electron transport at room temperature

    PubMed Central

    Bhadrachalam, Pradeep; Subramanian, Ramkumar; Ray, Vishva; Ma, Liang-Chieh; Wang, Weichao; Kim, Jiyoung; Cho, Kyeongjae; Koh, Seong Jin

    2014-01-01

    Fermi-Dirac electron thermal excitation is an intrinsic phenomenon that limits functionality of various electron systems. Efforts to manipulate electron thermal excitation have been successful when the entire system is cooled to cryogenic temperatures, typically <1 K. Here we show that electron thermal excitation can be effectively suppressed at room temperature, and energy-suppressed electrons, whose energy distribution corresponds to an effective electron temperature of ~45 K, can be transported throughout device components without external cooling. This is accomplished using a discrete level of a quantum well, which filters out thermally excited electrons and permits only energy-suppressed electrons to participate in electron transport. The quantum well (~2 nm of Cr2O3) is formed between source (Cr) and tunnelling barrier (SiO2) in a double-barrier-tunnelling-junction structure having a quantum dot as the central island. Cold electron transport is detected from extremely narrow differential conductance peaks in electron tunnelling through CdSe quantum dots, with full widths at half maximum of only ~15 mV at room temperature. PMID:25204839

  3. Using skin temperature gradients or skin heat flux measurements to determine thresholds of vasoconstriction and vasodilatation.

    PubMed

    House, James R; Tipton, Michael J

    2002-11-01

    Forearm-fingertip skin temperature differentials (T(sk-diff)) are used to indicate vasomotor tone, vasoconstriction defined as having occurred when T(sk-diff)> or =4 degrees C (Sessler et al. 1987, 1988a, b). This study was conducted to determine whether T(sk-diff) or finger pad heat flux (HF) can be used to predict when vasoconstriction and vasodilatation occur. Seven subjects (one female) sat in water at [mean (SD)] 40.7 (0.8) degrees C until their core temperature (T(c)) increased by 1 degrees C, ensuring vasodilatation. The water was then cooled [at a rate of 0.6 (0.1) degrees C x min(-1)] until T(c) fell to 0.5 degrees C below pretesting values, causing vasoconstriction. Subjects were then rewarmed in water [41.2 (1.0) degrees C]. Skin blood flow (SkBF) was measured using laser Doppler flowmetry (LDF) on the left second finger pad [immersed in water at 10.4 (1.4) degrees C as part of another experiment], and infrared plethysmography on the third finger pad of both hands. T(sk-diff) and HF were measured on the right upper limb, which remained in air. When vasodilated, the subjects had a stable T(sk-diff) and HF. During cooling, rapid-onset vasoconstriction occurred coincidental with large gradient changes in HF and T(sk-diff) (inflection points). In two subjects the original vasoconstriction definition (T(sk-diff)> or =4 degrees C) was not attained, in the other five this was achieved 31-51 min after vasoconstriction. During rewarming, the T(sk-diff) and HF inflection points less accurately reflected the onset of vasodilatation, although with one exception they were within 5 min of the LDF changes. We conclude that T(sk-diff) and HF inflection points predict vasoconstriction accurately, and better than T(sk-diff)> or =4 degrees C.

  4. Continuous gradient temperature Raman spectroscopy of n-6 DPA and DHA from -100 C to 20°C

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the great unanswered questions with respect to biological science in general is the absolute necessity of DHA in fast signal processing tissues. N-6 DPA, with just one less diene, group, is fairly abundant in terrestrial food chains yet cannot substitute for DHA. Gradient Temperature Raman sp...

  5. Assessment of plasma impedance probe for measuring electron density and collision frequency in a plasma with spatial and temporal gradients

    NASA Astrophysics Data System (ADS)

    Hopkins, Mark A.; King, Lyon B.

    2014-05-01

    Numerical simulations and experimental measurements were combined to determine the ability of a plasma impedance probe (PIP) to measure plasma density and electron collision frequency in a plasma containing spatial gradients as well as time-varying oscillations in the plasma density. A PIP is sensitive to collision frequency through the width of the parallel resonance in the Re[Z]-vs.-frequency characteristic, while also being sensitive to electron density through the zero-crossing of the Im[Z]-vs.-frequency characteristic at parallel resonance. Simulations of the probe characteristic in a linear plasma gradient indicated that the broadening of Re[Z] due to the spatial gradient obscured the broadening due to electron collision frequency, preventing a quantitative measurement of the absolute collision frequency for gradients considered in this study. Simulation results also showed that the PIP is sensitive to relative changes in electron collision frequency in a spatial density gradient, but a second broadening effect due to time-varying oscillations made collision frequency measurements impossible. The time-varying oscillations had the effect of causing multiple zero-crossings in Im[Z] at parallel resonance. Results of experiments and simulations indicated that the lowest-frequency zero-crossing represented the lowest plasma density in the oscillations and the highest-frequency zero-crossing represented the highest plasma density in the oscillations, thus the PIP probe was found to be an effective tool to measure both the average plasma density as well as the maximum and minimum densities due to temporal oscillations.

  6. Assessment of plasma impedance probe for measuring electron density and collision frequency in a plasma with spatial and temporal gradients

    SciTech Connect

    Hopkins, Mark A. King, Lyon B.

    2014-05-15

    Numerical simulations and experimental measurements were combined to determine the ability of a plasma impedance probe (PIP) to measure plasma density and electron collision frequency in a plasma containing spatial gradients as well as time-varying oscillations in the plasma density. A PIP is sensitive to collision frequency through the width of the parallel resonance in the Re[Z]-vs.-frequency characteristic, while also being sensitive to electron density through the zero-crossing of the Im[Z]-vs.-frequency characteristic at parallel resonance. Simulations of the probe characteristic in a linear plasma gradient indicated that the broadening of Re[Z] due to the spatial gradient obscured the broadening due to electron collision frequency, preventing a quantitative measurement of the absolute collision frequency for gradients considered in this study. Simulation results also showed that the PIP is sensitive to relative changes in electron collision frequency in a spatial density gradient, but a second broadening effect due to time-varying oscillations made collision frequency measurements impossible. The time-varying oscillations had the effect of causing multiple zero-crossings in Im[Z] at parallel resonance. Results of experiments and simulations indicated that the lowest-frequency zero-crossing represented the lowest plasma density in the oscillations and the highest-frequency zero-crossing represented the highest plasma density in the oscillations, thus the PIP probe was found to be an effective tool to measure both the average plasma density as well as the maximum and minimum densities due to temporal oscillations.

  7. Impacts of light and temperature on shoot branching gradient and expression of strigolactone synthesis and signalling genes in rose.

    PubMed

    Djennane, Samia; Hibrand-Saint Oyant, Laurence; Kawamura, Koji; Lalanne, David; Laffaire, Michel; Thouroude, Tatiana; Chalain, Séverine; Sakr, Soulaiman; Boumaza, Rachid; Foucher, Fabrice; Leduc, Nathalie

    2014-03-01

    Light and temperature are two environmental factors that deeply affect bud outgrowth. However, little is known about their impact on the bud burst gradient along a stem and their interactions with the molecular mechanisms of bud burst control. We investigated this question in two acrotonic rose cultivars. We demonstrated that the darkening of distal buds or exposure to cold (5 °C) prior to transfer to mild temperatures (20 °C) both repress acrotony, allowing the burst of quiescent medial and proximal buds. We sequenced the strigolactone pathway MAX-homologous genes in rose and studied their expression in buds and internodes along the stem. Only expressions of RwMAX1, RwMAX2 and RwMAX4 were detected. Darkening of the distal part of the shoot triggered a strong increase of RwMAX2 expression in darkened buds and bark-phloem samples, whereas it suppressed the acropetal gradient of the expression of RwMAX1 observed in stems fully exposed to light. Cold treatment induced an acropetal gradient of expression of RwMAX1 in internodes and of RwMAX2 in buds along the stem. Our results suggest that the bud burst gradient along the stem cannot be explained by a gradient of expression of RwMAX genes but rather by their local level of expression at each individual position.

  8. Impacts of light and temperature on shoot branching gradient and expression of strigolactone synthesis and signalling genes in rose.

    PubMed

    Djennane, Samia; Hibrand-Saint Oyant, Laurence; Kawamura, Koji; Lalanne, David; Laffaire, Michel; Thouroude, Tatiana; Chalain, Séverine; Sakr, Soulaiman; Boumaza, Rachid; Foucher, Fabrice; Leduc, Nathalie

    2014-03-01

    Light and temperature are two environmental factors that deeply affect bud outgrowth. However, little is known about their impact on the bud burst gradient along a stem and their interactions with the molecular mechanisms of bud burst control. We investigated this question in two acrotonic rose cultivars. We demonstrated that the darkening of distal buds or exposure to cold (5 °C) prior to transfer to mild temperatures (20 °C) both repress acrotony, allowing the burst of quiescent medial and proximal buds. We sequenced the strigolactone pathway MAX-homologous genes in rose and studied their expression in buds and internodes along the stem. Only expressions of RwMAX1, RwMAX2 and RwMAX4 were detected. Darkening of the distal part of the shoot triggered a strong increase of RwMAX2 expression in darkened buds and bark-phloem samples, whereas it suppressed the acropetal gradient of the expression of RwMAX1 observed in stems fully exposed to light. Cold treatment induced an acropetal gradient of expression of RwMAX1 in internodes and of RwMAX2 in buds along the stem. Our results suggest that the bud burst gradient along the stem cannot be explained by a gradient of expression of RwMAX genes but rather by their local level of expression at each individual position. PMID:23992149

  9. Spatial and temporal variations in mango colour, acidity, and sweetness in relation to temperature and ethylene gradients within the fruit.

    PubMed

    Nordey, Thibault; Léchaudel, Mathieu; Génard, Michel; Joas, Jacques

    2014-11-01

    Managing fruit quality is complex because many different attributes have to be taken into account, which are themselves subjected to spatial and temporal variations. Heterogeneous fruit quality has been assumed to be partly related to temperature and maturity gradients within the fruit. To test this assumption, we measured the spatial variability of certain mango fruit quality traits: colour of the peel and of the flesh, and sourness and sweetness, at different stages of fruit maturity using destructive methods as well as vis-NIR reflectance. The spatial variability of mango quality traits was compared to internal variations in thermal time, simulated by a physical model, and to internal variations in maturity, using ethylene content as an indicator. All the fruit quality indicators analysed showed significant spatial and temporal variations, regardless of the measurement method used. The heterogeneity of internal fruit quality traits was not correlated with the marked internal temperature gradient we modelled. However, variations in ethylene content revealed a strong internal maturity gradient which was correlated with the spatial variations in measured mango quality traits. Nonetheless, alone, the internal maturity gradient did not explain the variability of fruit quality traits, suggesting that other factors, such as gas, abscisic acid and water gradients, are also involved. PMID:25151123

  10. Comparative electron temperature measurements of Thomson scattering and electron cyclotron emission diagnostics in TCABR plasmas

    SciTech Connect

    Alonso, M. P.; Figueiredo, A. C. A.; Berni, L. A.; Machida, M.

    2010-10-15

    We present the first simultaneous measurements of the Thomson scattering and electron cyclotron emission radiometer diagnostics performed at TCABR tokamak with Alfven wave heating. The Thomson scattering diagnostic is an upgraded version of the one previously installed at the ISTTOK tokamak, while the electron cyclotron emission radiometer employs a heterodyne sweeping radiometer. For purely Ohmic discharges, the electron temperature measurements from both diagnostics are in good agreement. Additional Alfven wave heating does not affect the capability of the Thomson scattering diagnostic to measure the instantaneous electron temperature, whereas measurements from the electron cyclotron emission radiometer become underestimates of the actual temperature values.

  11. Temperature enhancement of secondary electron emission from hydrogenated diamond films

    SciTech Connect

    Stacey, A.; Prawer, S.; Rubanov, S.; Akhvlediani, R.; Michaelson, Sh.; Hoffman, A.

    2009-09-15

    The effect of temperature on the stability of the secondary electron emission (SEE) yield from approx100-nm-thick continuous diamond films is reported. At room temperature, the SEE yield was found to decay as a function of electron irradiation dose. The SEE yield is observed to increase significantly upon heating of the diamond surface. Furthermore, by employing moderate temperatures, the decay of the SEE yield observed at room temperature is inhibited, showing a nearly constant yield with electron dose at 200 deg. C. The results are explained in terms of the temperature dependence of the electron beam-induced hydrogen desorption from the diamond surface and surface band bending. These findings demonstrate that the longevity of diamond films in practical applications of SEE can be increased by moderate heating.

  12. Electron-temperature dependence of dissociative recombination of electrons with N2/+/.N2 dimer ions

    NASA Technical Reports Server (NTRS)

    Whitaker, M.; Biondi, M. A.; Johnsen, R.

    1981-01-01

    The variation with electron temperature of the dissociative recombination of electrons with N2(+).N2 dimer ions is investigated in light of the importance of such ions in the lower ionosphere and in laser plasmas. Dissociative recombination coefficients were determined by means of a microwave afterglow mass spectrometer technique for electron temperatures from 300-5600 K and an ion and neutral temperature of 300 K. The recombination coefficient is found to be proportional to the -0.41 power of the electron temperature in this range, similar to that observed for the CO(+).CO dimer ion and consistent with the expected energy dependence for a fast dissociative process.

  13. Temperature and diet effects on omnivorous fish performance: Implications for the latitudinal diversity gradient in herbivorous fishes

    USGS Publications Warehouse

    Behrens, M.D.; Lafferty, K.D.

    2007-01-01

    Herbivorous fishes show a clear latitudinal diversity gradient, making up a larger proportion of the fish species in a community in tropical waters than in temperate waters. One proposed mechanism that could drive this gradient is a physiological constraint due to temperature. One prediction based on this mechanism is that if herbivorous fishes could shift their diet to animal material, they would be better able to grow, survive, and reproduce in cold waters. We tested this prediction on the omnivore Girella nigricans under different temperature and diet regimes using RNA-DNA ratios as an indicator of performance. Fish had increased performance (100%) at low temperatures (12??C) when their diet was supplemented with animal material. In contrast, at higher temperatures (17, 22, and 27??C) fish showed no differences between diets. This indicates that omnivorous fishes could increase their performance at low temperatures by consuming more animal matter. This study supports the hypothesis that a relative increase in the nutritional value of plant material at warmer temperatures could drive the latitudinal diversity gradient in herbivorous fishes. ?? 2007 NRC.

  14. High temperature electronics and instrumentation seminar proceedings

    SciTech Connect

    Veneruso, A.F.; Arnold, C.; Simpson, R.S.

    1980-05-01

    This seminar was tailored to address the needs of the borehole logging industry and to stimulate the development and application of this technology, for logging geothermal, hot oil and gas, and steam injection wells. The technical sessions covered the following topics: hybrid circuits, electronic devices, transducers, cables and connectors, materials, mechanical tools and thermal protection. Thirty-eight papers are included. Separate entries were prepared for each one. (MHR)

  15. Direct Measurements of Oxygen Gradients in Spheroid Culture System Using Electron Parametric Resonance Oximetry

    PubMed Central

    Langan, Laura M.; Dodd, Nicholas J. F.; Owen, Stewart F.; Purcell, Wendy M.; Jackson, Simon K.; Jha, Awadhesh N.

    2016-01-01

    Advanced in vitro culture from tissues of different origin includes three-dimensional (3D) organoid micro structures that may mimic conditions in vivo. One example of simple 3D culture is spheroids; ball shaped structures typically used as liver and tumour models. Oxygen is critically important in physiological processes, but is difficult to quantify in 3D culture: and the question arises, how small does a spheroid have to be to have minimal micro-environment formation? This question is of particular importance in the growing field of 3D based models for toxicological assessment. Here, we describe a simple non-invasive approach modified for the quantitative measurement and subsequent evaluation of oxygen gradients in spheroids developed from a non-malignant fish cell line (i.e. RTG-2 cells) using Electron Paramagnetic Resonance (EPR) oximetry. Sonication of the paramagnetic probe Lithium phthalocyanine (LiPc) allows for incorporation of probe particulates into spheroid during its formation. Spectra signal strength after incorporation of probe into spheroid indicated that a volume of 20 μl of probe (stock solution: 0.10 mg/mL) is sufficient to provide a strong spectra across a range of spheroid sizes. The addition of non-toxic probes (that do not produce or consume oxygen) report on oxygen diffusion throughout the spheroid as a function of size. We provide evidence supporting the use of this model over a range of initial cell seeding densities and spheroid sizes with the production of oxygen distribution as a function of these parameters. In our spheroid model, lower cell seeding densities (∼2,500 cells/spheroid) and absolute size (118±32 μm) allow control of factors such as pre-existing stresses (e.g. ∼ 2% normoxic/hypoxic interface) for more accurate measurement of treatment response. The applied methodology provides an elegant, widely applicable approach to directly characterize spheroid (and other organoid) cultures in biomedical and toxicological

  16. On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics

    NASA Technical Reports Server (NTRS)

    Lindzen, Richard S.; Nigam, Sumant

    1987-01-01

    The potential contribution of the SST gradient-driven flow to the low-level (p not less than 700 mb) convergence over tropical oceans is determined using a simple one-layer model of the trade cumulus boundary layer wherein surface temperature gradients are mixed vertically (consistent with the ECMWF analyzed data). The influence of the layers above 700 mb is intentionally suppressed. The results of the study demonstrate the importance of taking account of the fact that cumulonimbus convection takes a small but finite time to adjust to low-level convergence. Failure to consider this effect leads to unreasonably large equatorial convergence.

  17. Both experimental study and numerical modelling of the effect of temperature gradient on CO2 injection

    NASA Astrophysics Data System (ADS)

    Corvisier, J.; Lagneau, V.; Jobard, E.; Sterpenich, J.; Pironon, J.

    2010-12-01

    to a more important carbonates dissolution, thus to increases of CO2 fugacity and consequently of the global pressure. Furthermore, the calcium content tends to be greater in this cold-dissolution zone then Ca diffuses towards the hotter zone locally and it implies calcite precipitation. As evidence of this phenomenon, plugs, related to massive calcite precipitation, are observed in these regions and newly crystallized calcite can be seen on SEM images. In order to clearly understand the reasons of the observed behaviour, numerical computations performed with the reaction-transport code HYTEC have to be run. Several scenarios can thus be simulated to check various assumptions. Firstly, different initial repartitions of the CO2 can be tested: in some kind of reservoir in the cold/injection zone or everywhere in the autoclave (due to high initial pressure gradient). Secondly, the competition between the implied processes, their respective kinetics and their temperature dependance can be assessed too: thermodynamics and/or kinetics of chemical reactions and transport kinetics (diffusion). Modeling becomes then of great help to interpret the experimental results and even to better design the evolution of the experimental set-up.

  18. Control of Hydrogen Photoproduction by the Proton Gradient Generated by Cyclic Electron Flow in Chlamydomonas reinhardtii[W

    PubMed Central

    Tolleter, Dimitri; Ghysels, Bart; Alric, Jean; Petroutsos, Dimitris; Tolstygina, Irina; Krawietz, Danuta; Happe, Thomas; Auroy, Pascaline; Adriano, Jean-Marc; Beyly, Audrey; Cuiné, Stéphan; Plet, Julie; Reiter, Ilja M.; Genty, Bernard; Cournac, Laurent; Hippler, Michael; Peltier, Gilles

    2011-01-01

    Hydrogen photoproduction by eukaryotic microalgae results from a connection between the photosynthetic electron transport chain and a plastidial hydrogenase. Algal H2 production is a transitory phenomenon under most natural conditions, often viewed as a safety valve protecting the photosynthetic electron transport chain from overreduction. From the colony screening of an insertion mutant library of the unicellular green alga Chlamydomonas reinhardtii based on the analysis of dark-light chlorophyll fluorescence transients, we isolated a mutant impaired in cyclic electron flow around photosystem I (CEF) due to a defect in the Proton Gradient Regulation Like1 (PGRL1) protein. Under aerobiosis, nonphotochemical quenching of fluorescence (NPQ) is strongly decreased in pgrl1. Under anaerobiosis, H2 photoproduction is strongly enhanced in the pgrl1 mutant, both during short-term and long-term measurements (in conditions of sulfur deprivation). Based on the light dependence of NPQ and hydrogen production, as well as on the enhanced hydrogen production observed in the wild-type strain in the presence of the uncoupling agent carbonyl cyanide p-trifluoromethoxyphenylhydrazone, we conclude that the proton gradient generated by CEF provokes a strong inhibition of electron supply to the hydrogenase in the wild-type strain, which is released in the pgrl1 mutant. Regulation of the trans-thylakoidal proton gradient by monitoring pgrl1 expression opens new perspectives toward reprogramming the cellular metabolism of microalgae for enhanced H2 production. PMID:21764992

  19. L-band scintillations and calibrated total electron content gradients over Brazil during the last solar maximum

    NASA Astrophysics Data System (ADS)

    Cesaroni, Claudio; Spogli, Luca; Alfonsi, Lucilla; De Franceschi, Giorgiana; Ciraolo, Luigi; Francisco Galera Monico, Joao; Scotto, Carlo; Romano, Vincenzo; Aquino, Marcio; Bougard, Bruno

    2015-12-01

    This work presents a contribution to the understanding of the ionospheric triggering of L-band scintillation in the region over São Paulo state in Brazil, under high solar activity. In particular, a climatological analysis of Global Navigation Satellite Systems (GNSS) data acquired in 2012 is presented to highlight the relationship between intensity and variability of the total electron content (TEC) gradients and the occurrence of ionospheric scintillation. The analysis is based on the GNSS data acquired by a dense distribution of receivers and exploits the integration of a dedicated TEC calibration technique into the Ground Based Scintillation Climatology (GBSC), previously developed at the Istituto Nazionale di Geofisica e Vulcanologia. Such integration enables representing the local ionospheric features through climatological maps of calibrated TEC and TEC gradients and of amplitude scintillation occurrence. The disentanglement of the contribution to the TEC variations due to zonal and meridional gradients conveys insight into the relation between the scintillation occurrence and the morphology of the TEC variability. The importance of the information provided by the TEC gradients variability and the role of the meridional TEC gradients in driving scintillation are critically described.

  20. Steady-state nonequilibrium temperature gradients in hydrogen gas-metal systems: challenging the second law of thermodynamics

    NASA Astrophysics Data System (ADS)

    Sheehan, D. P.; Garamella, J. T.; Mallin, D. J.; Sheehan, W. F.

    2012-11-01

    Differences in gas reaction rates between disparate surfaces have been proposed as a means to achieve steady-state pressure and temperature gradients within a single blackbody cavity, thereby challenging the second law of thermodynamics (Sheehan 1998 Phys. Rev. E 57 6660; Sheehan 2001 Phys. Lett. A 280 185; Capek and Sheehan 2005 Challenges to the Second Law of Thermodynamics (Theory and Experiment) (Fundamental Theories of Physics Series vol 146) (Dordrecht: Springer)). This paper reports on laboratory tests of this hypothesis; specifically, molecular hydrogen is found to dissociate preferentially on rhenium surfaces versus tungsten at identical elevated temperatures and reduced pressures (T ⩽ 2100 K {\\cal P} \\leqslant 30\\,{ {Torr}} ). Steady-state nonequilibrium H/H2 ratios over the surfaces suggest that temperature gradients could be maintained under blackbody cavity conditions. Preliminary results from bimetallic blackbody cavity experiments are discussed.

  1. High temperature electronic excitation and ionization rates in gases

    NASA Technical Reports Server (NTRS)

    Hansen, Frederick

    1991-01-01

    The relaxation times for electronic excitation due to electron bombardment of atoms was found to be quite short, so that electron kinetic temperature (T sub e) and the electron excitation temperature (T asterisk) should equilibrate quickly whenever electrons are present. However, once equilibrium has been achieved, further energy to the excited electronic states and to the kinetic energy of free electrons must be fed in by collisions with heavy particles that cause vibrational and electronic state transitions. The rate coefficients for excitation of electronic states produced by heavy particle collision have not been well known. However, a relatively simple semi-classical theory has been developed here which is analytic up to the final integration over a Boltzmann distribution of collision energies; this integral can then be evaluated numerically by quadrature. Once the rate coefficients have been determined, the relaxation of electronic excitation energy can be evaluated and compared with the relaxation rates of vibrational excitation. Then the relative importance of these two factors, electronic excitation and vibrational excitation by heavy particle collision, on the transfer of energy to free electron motion, can be assessed.

  2. The influence of ocean surface temperature gradient and continentality on the Walker circulation. II - Prescribed global changes

    NASA Technical Reports Server (NTRS)

    Stone, P. H.; Chervin, R. M.

    1984-01-01

    The series of experiments presently used to investigate the mechanisms responsible for forcing the global Walker circulation features worldwide changes in ocean surface temperatures (OSTs), topography, and/or continents. The primary factor affecting circulation is noted to be the global distribution of continents and oceans; while OST gradients are also important, topography emerges as comparatively unimportant. Continentality and OST gradients force the model atmosphere through the introduction of zonal variations in surface heating. The vertical motions to which they give rise yield moisture convergence and condensation variations which reinforce vertical motions. The forcing by OST gradients is partly nonlocal, and the atmospheric response is effected by continentality. In all cases, vertical motion zonal variations correlate with precipitation.

  3. Investigation of the effects of pressure gradient, temperature and wall temperature ratio on the stagnation point heat transfer for circular cylinders and gas turbine vanes

    NASA Technical Reports Server (NTRS)

    Nagamatsu, H. T.; Duffy, R. E.

    1984-01-01

    Low and high pressure shock tubes were designed and constructed for the purpose of obtaining heat transfer data over a temperature range of 390 to 2500 K, pressures of 0.3 to 42 atm, and Mach numbers of 0.15 to 1.5 with and without pressure gradient. A square test section with adjustable top and bottom walls was constructed to produce the favorable and adverse pressure gradient over the flat plate with heat gages. A water cooled gas turbine nozzle cascade which is attached to the high pressure shock tube was obtained to measuse the heat flux over pressure and suction surfaces. Thin-film platinum heat gages with a response time of a few microseconds were developed and used to measure the heat flux for laminar, transition, and turbulent boundary layers. The laminar boundary heat flux on the shock tube wall agreed with Mirel's flat plate theory. Stagnation point heat transfer for circular cylinders at low temperature compared with the theoretical prediction, but for a gas temperature of 922 K the heat fluxes were higher than the predicted values. Preliminary flat plate heat transfer data were measured for laminar, transition, and turbulent boundary layers with and without pressure gradients for free-stream temperatures of 350 to 2575 K and flow Mach numbers of 0.11 to 1.9. The experimental heat flux data were correlated with the laminar and turbulent theories and the agreement was good at low temperatures which was not the case for higher temperatures.

  4. 100 eV electron temperatures in the Maryland centrifugal experiment observed using electron Bernstein emission

    SciTech Connect

    Reid, R. R.; Romero-Talamás, C. A.; Young, W. C.; Ellis, R. F.; Hassam, A. B.

    2014-06-15

    Thermal electron Bernstein emission has been observed at the second harmonic of the electron cyclotron frequency at the mid-plane of the Maryland Centrifugal eXperiment. The emission is received in the X-mode polarization and coupled to the Bernstein wave by the B-X mode conversion process. The average B-X coupling efficiency is approximately 20%. The observed emission indicates thermal electron temperatures an excess of 100 eV in the core of the rotating plasma. The measured electron temperature is consistent with recent ion temperature measurements and indicates that the total energy confinement time exceeds 500 μs.

  5. 2-D Imaging of Electron Temperature in Tokamak Plasmas

    SciTech Connect

    T. Munsat; E. Mazzucato; H. Park; C.W. Domier; M. Johnson; N.C. Luhmann Jr.; J. Wang; Z. Xia; I.G.J. Classen; A.J.H. Donne; M.J. van de Pol

    2004-07-08

    By taking advantage of recent developments in millimeter wave imaging technology, an Electron Cyclotron Emission Imaging (ECEI) instrument, capable of simultaneously measuring 128 channels of localized electron temperature over a 2-D map in the poloidal plane, has been developed for the TEXTOR tokamak. Data from the new instrument, detailing the MHD activity associated with a sawtooth crash, is presented.

  6. Sea-surface temperature gradients across blue whale and sea turtle foraging trajectories off the Baja California Peninsula, Mexico

    NASA Astrophysics Data System (ADS)

    Etnoyer, Peter; Canny, David; Mate, Bruce R.; Morgan, Lance E.; Ortega-Ortiz, Joel G.; Nichols, Wallace J.

    2006-02-01

    Sea-surface temperature (SST) fronts are integral to pelagic ecology in the North Pacific Ocean, so it is necessary to understand their character and distribution, and the way these features influence the behavior of endangered and highly migratory species. Here, telemetry data from sixteen satellite-tagged blue whales ( Balaenoptera musculus) and sea turtles ( Caretta caretta, Chelonia mydas, and Lepidochelys olivacea) are employed to characterize 'biologically relevant' SST fronts off Baja California Sur. High residence times are used to identify presumed foraging areas, and SST gradients are calculated across advanced very high resolution radiometer (AVHRR) images of these regions. The resulting values are compared to classic definitions of SST fronts in the oceanographic literature. We find subtle changes in surface temperature (between 0.01 and 0.10 °C/km) across the foraging trajectories, near the lowest end of the oceanographic scale (between 0.03 and 0.3 °C/km), suggesting that edge-detection algorithms using gradient thresholds >0.10 °C/km may overlook pelagic habitats in tropical waters. We use this information to sensitize our edge-detection algorithm, and to identify persistent concentrations of subtle SST fronts in the Northeast Pacific Ocean between 2002 and 2004. The lower-gradient threshold increases the number of fronts detected, revealing more potential habitats in different places than we find with a higher-gradient threshold. This is the expected result, but it confirms that pelagic habitat can be overlooked, and that the temperature gradient parameter is an important one.

  7. EFFECT OF SOLENOID FIELD ERRORS ON ELECTRON BEAM TEMPERATURES IN THE RHIC ELECTRON COOLER.

    SciTech Connect

    MONTAG,C.KEWISCH,J.

    2003-05-12

    As part of a future upgrade to the Relativistic Heavy Ion Collider (RHIC), electron cooling is foreseen to decrease ion beam emittances. Within the electron cooling section, the ''hot'' ion beam is immersed in a ''cold'' electron beam. The cooling effect is further enhanced by a solenoid field in the cooling section, which forces the electrons to spiral around the field lines with a (Larmor) radius of 10 micrometers, reducing the effective transverse temperature by orders of magnitude. Studies of the effect of solenoid field errors on electron beam temperatures are reported.

  8. The effect of temperature and pH gradients on Lactobacillus rhamnosus gene expression of stress-related genes.

    PubMed

    Wallenius, Janne; Uuksulainen, Tuomas; Salonen, Kalle; Rautio, Jari; Eerikäinen, Tero

    2011-11-01

    In this study, Lactobacillus rhamnosus, a renowned probiotic, was cultivated in fluctuating environment. Base gradients caused by a pH control in an industrial process and temperature gradients caused by uneven heating were simulated with a scale-down method. A pH gradient was created in a plug flow reactor (PFR). Expression of pH stress-related genes (atpA, aldB, cfa, groEL, hrcA and pstS) were studied as a relative gene expression study using ldhD as a reference gene. Expression measurements were carried out with the TRAC method. The responses of groEL, hrcA and atpA genes to temperature and pH changes were observed. The expression of phosphate uptake system-related pstS gene was induced almost linearly in the chemostat cultivation experiments when the base gradient in the PFR was increased. Correlations between the results from gene expression studies and freeze stability or acid stress survival were studied. However, by measuring the expression of these genes, we were not able to predict eventual freeze stability or survival from the acid stress test.

  9. F region electron temperature signatures of the plasmapause based on Dynamics Explorer 1 and 2 measurements

    NASA Technical Reports Server (NTRS)

    Brace, L. H.; Hoegy, W. R.; Chappel, C. R.; Chandler, M. O.; Comfort, R. H.; Horwitz, J. L.

    1988-01-01

    A large DE 1 and 2 database covering all local times is used to explore the relationship between electron temperature (Te) signatures in the F region and plamaspheric density structures. The quiet time Te signature remains in the vicinity of 60 deg invariant latitude at all local times, while the plasmapause is found to bulge to about 60 deg at 1500 LT. The plasmasphere in the bulge region is shown to exhibit an internal feature in the vicinity of 60 deg which takes the form of a sharp H(+) gradient. It is suggested that the light-ion gradient may represent a recently created sharp boundary between an old plasmasphere and a new plasmasphere. The present Te characteristics are consisent with plasmasphere depletion and refilling time constants.

  10. Compact X-ray Free Electron Laser from a Laser-plasma Accelerator using a Transverse Gradient Undulator

    SciTech Connect

    Huang, Zhirong; Ding, Yuantao; Schroeder, Carl B.; /LBL, Berkeley

    2012-09-13

    Compact laser-plasma accelerators can produce high energy electron beams with low emittance, high peak current but a rather large energy spread. The large energy spread hinders the potential applications for coherent FEL radiation generation. In this paper, we discuss a method to compensate the effects of beam energy spread by introducing a transverse field variation into the FEL undulator. Such a transverse gradient undulator together with a properly dispersed beam can greatly reduce the effects of electron energy spread and jitter on FEL performance. We present theoretical analysis and numerical simulations for SASE and seeded extreme ultraviolet and soft x-ray FELs based on laser plasma accelerators.

  11. Electronic Components and Circuits for Extreme Temperature Environments

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Dickman, John E.; Gerber, Scott

    2003-01-01

    Planetary exploration missions and deep space probes require electrical power management and control systems that are capable of efficient and reliable operation in very low temperature environments. Presently, spacecraft operating in the cold environment of deep space carry a large number of radioisotope heating units in order to maintain the surrounding temperature of the on-board electronics at approximately 20 C. Electronics capable of operation at cryogenic temperatures will not only tolerate the hostile environment of deep space but also reduce system size and weight by eliminating or reducing the radioisotope heating units and their associate structures; thereby reducing system development as well as launch costs. In addition, power electronic circuits designed for operation at low temperatures are expected to result in more efficient systems than those at room temperature. This improvement results from better behavior and tolerance in the electrical and thermal properties of semiconductor and dielectric materials at low temperatures. The Low Temperature Electronics Program at the NASA Glenn Research Center focuses on research and development of electrical components, circuits, and systems suitable for applications in the aerospace environment and deep space exploration missions. Research is being conducted on devices and systems for reliable use down to cryogenic temperatures. Some of the commercial-off-the-shelf as well as developed components that are being characterized include switching devices, resistors, magnetics, and capacitors. Semiconductor devices and integrated circuits including digital-to-analog and analog-to-digital converters, DC/DC converters, operational amplifiers, and oscillators are also being investigated for potential use in low temperature applications. An overview of the NASA Glenn Research Center Low Temperature Electronic Program will be presented in this paper. A description of the low temperature test facilities along with

  12. High-Temperature Electronics: A Role for Wide Bandgap Semiconductors?

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Okojie, Robert S.; Chen, Liang-Yu

    2002-01-01

    It is increasingly recognized that semiconductor based electronics that can function at ambient temperatures higher than 150 C without external cooling could greatly benefit a variety of important applications, especially-in the automotive, aerospace, and energy production industries. The fact that wide bandgap semiconductors are capable of electronic functionality at much higher temperatures than silicon has partially fueled their development, particularly in the case of SiC. It appears unlikely that wide bandgap semiconductor devices will find much use in low-power transistor applications until the ambient temperature exceeds approximately 300 C, as commercially available silicon and silicon-on-insulator technologies are already satisfying requirements for digital and analog very large scale integrated circuits in this temperature range. However, practical operation of silicon power devices at ambient temperatures above 200 C appears problematic, as self-heating at higher power levels results in high internal junction temperatures and leakages. Thus, most electronic subsystems that simultaneously require high-temperature and high-power operation will necessarily be realized using wide bandgap devices, once the technology for realizing these devices become sufficiently developed that they become widely available. Technological challenges impeding the realization of beneficial wide bandgap high ambient temperature electronics, including material growth, contacts, and packaging, are briefly discussed.

  13. Development of Electronics for Low Temperature Space Missions

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Dickman, John E.; Gerber, Scott; Overton, Eric

    2000-01-01

    The operation of electronic systems at cryogenic temperatures is anticipated for many future NASA space missions such as deep space probes and planetary surface exploration. For example, an unheated interplanetary probe launched to explore the rings of Saturn would reach an average temperature near Saturn of about -183 C. In addition to surviving the deep space harsh environment, electronics capable of low temperature operation would contribute to improving circuit performance, increasing system efficiency, and reducing payload development and launch costs. Terrestrial applications where components and systems must operate in low temperature environments include cryogenic instrumentation, superconducting magnetic energy storage, magnetic levitation transportation system, and arctic exploration. An on-going research and development program on low temperature electronics at the NASA Glenn Research Center focuses on the development of efficient power systems capable of surviving and exploiting the advantages of low temperature environments. Inhouse efforts include the design, fabrication, and characterization of low temperature power systems and the development of supporting technologies for low temperature operations, such as dielectric and insulating materials, semiconductor devices, passive power components, opto-electronic devices, as well as packaging and integration of the developed components into prototype flight hardware.

  14. Multiproxy reconstruction of tropical Pacific Holocene temperature gradients and water column structure

    NASA Astrophysics Data System (ADS)

    Arbuszewski, J. A.; Oppo, D.; Huang, K.; Dubois, N.; Galy, V.; Mohtadi, M.; Herbert, T.; Rosenthal, Y.; Linsley, B. K.

    2012-12-01

    consider records from organic (sterol abundances) and inorganic proxies (Mg/Ca and δ18O of 3 planktonic foraminiferal species, % G. bulloides) to reconstruct zonal tropical Pacific (sub)surface temperature and stratification gradients over the Holocene. A benefit of using this approach is that it enables us to combine the strengths of each individual proxy to derive more robust records. We will compare our records with published paleoproxy and model studies in the Pacific and Indo-Pacific regions. Armed with this information, we aim to better understand mean state changes in the tropical Pacific over the Holocene. 1 Ropelewski, C. F. & Halpert, M. S. Monthly Weather Review 115, 1606-1626 (1987). 2 Collins, M. et al. Nature Geoscience 3, doi: 10.1038/NGEO1868 (2010). 3 Koutavas, A., Lynch-Steiglitz, J., Marchitto, T. & Sachs, J. Science 297, 226-230 (2002). 4 Moy, C. M., Seltzer, G. O., Rodbell, D. T. & Anderson, D. M. Nature 420, 162-165 (2002). 5 Conroy, J. L., Overpeck, J. T., Cole, J. E., Shanahan, T. M. & Steinitz-Kannan, M. Quaternary Science Reviews 27, 1166-1180 (2008). 6 Makou, M. C., Eglinton, T. I., Oppo, D. W. & Hughen, K. A. Geology 38, 43-46 (2010). 7 Karnauskas, K., Smerdon, J., Seager, R. & Gonzalez-Rouco, J. Journal of Climate, doi: 10.1178/JCLI-D-1111-00421.00421 (2012 (in press)). 8 Clement, A., Seager, R. & Cane, M. Paleoceanography 14, 441-456 (2000).

  15. Local temperature of out-of-equilibrium quantum electron systems

    NASA Astrophysics Data System (ADS)

    Meair, J.; Bergfield, J. P.; Stafford, C. A.; Jacquod, Ph.

    2014-07-01

    We show how the local temperature of out-of-equilibrium, quantum electron systems can be consistently defined with the help of an external voltage and temperature probe. We determine sufficient conditions under which the temperature measured by the probe (i) is independent of details of the system-probe coupling, (ii) is equal to the temperature obtained from an independent current-noise measurement, (iii) satisfies the transitivity condition expressed by the zeroth law of thermodynamics, and (iv) is consistent with Carnot's theorem. This local temperature therefore characterizes the system in the common sense of equilibrium thermodynamics, but remains well defined even in out-of-equilibrium situations with no local equilibrium.

  16. Interaction of an ultrarelativistic electron bunch train with a W-band accelerating structure: High power and high gradient

    DOE PAGESBeta

    Wang, D.; Antipov, S.; Jing, C.; Power, J. G.; Conde, M.; Wisniewski, E.; Liu, W.; Qiu, J.; Ha, G.; Dolgashev, V.; et al

    2016-02-05

    Electron beam interaction with high frequency structures (beyond microwave regime) has a great impact on future high energy frontier machines. We report on the generation of multimegawatt pulsed rf power at 91 GHz in a planar metallic accelerating structure driven by an ultrarelativistic electron bunch train. This slow-wave wakefield device can also be used for high gradient acceleration of electrons with a stable rf phase and amplitude which are controlled by manipulation of the bunch train. To achieve precise control of the rf pulse properties, a two-beam wakefield interferometry method was developed in which the rf pulse, due to themore » interference of the wakefields from the two bunches, was measured as a function of bunch separation. As a result, measurements of the energy change of a trailing electron bunch as a function of the bunch separation confirmed the interferometry method.« less

  17. Interaction of an Ultrarelativistic Electron Bunch Train with a W-Band Accelerating Structure: High Power and High Gradient.

    PubMed

    Wang, D; Antipov, S; Jing, C; Power, J G; Conde, M; Wisniewski, E; Liu, W; Qiu, J; Ha, G; Dolgashev, V; Tang, C; Gai, W

    2016-02-01

    Electron beam interaction with high frequency structures (beyond microwave regime) has a great impact on future high energy frontier machines. We report on the generation of multimegawatt pulsed rf power at 91 GHz in a planar metallic accelerating structure driven by an ultrarelativistic electron bunch train. This slow-wave wakefield device can also be used for high gradient acceleration of electrons with a stable rf phase and amplitude which are controlled by manipulation of the bunch train. To achieve precise control of the rf pulse properties, a two-beam wakefield interferometry method was developed in which the rf pulse, due to the interference of the wakefields from the two bunches, was measured as a function of bunch separation. Measurements of the energy change of a trailing electron bunch as a function of the bunch separation confirmed the interferometry method. PMID:26894715

  18. A computational study of multiple surface-directed phase separation in polymer blends under a temperature gradient

    NASA Astrophysics Data System (ADS)

    Tabatabaieyazdi, Mohammad; Chan, Philip K.; Wu, Jiangning

    2015-10-01

    The surface-directed phase separation (SDPS) phenomena of a model binary polymer blend quenched into the unstable region of its binary symmetric upper critical solution temperature phase diagram is numerically investigated using a mathematical model composed of the nonlinear Cahn-Hilliard (CH) theory for phase separation along with the Flory-Huggins-de Gennes (FHdG) free energy functional. The SDPS occurs in a square domain with a linear temperature gradient along the horizontal direction and with all sides having short range surface potential h 1. The effects of different quench depth, diffusion coefficient, surface potential, and temperature gradient were studied numerically. The numerical results indicate that there is a simultaneous competition between the four surfaces in attracting the preferred polymer. The side with a higher surface potential would win the competition against the side with a lower surface attraction in the case of a uniform quench. The numerical results also indicated a later transition time for higher values of h 1. As surface potential increased, the transition time from complete wetting to partial wetting occurred at a later time on the surface. The impact of different temperature gradient ΔT*/Δx* values on the surface enrichment rate with fixed temperature {{T}1}* at one surface and higher temperature {{T}2}* at the opposite surface was studied for the first time within a multiple surface potential set up. The results showed that higher values of ΔT*/Δx* increased the growth rate of the preferred polymer on the surface adding to the thickness of the wetting layer. The transition time from complete wetting to partial wetting occurred slightly later at the lower temperature side.

  19. The influence of ocean surface temperature gradient and continentality on the Walker circulation. I - Prescribed tropical changes

    NASA Technical Reports Server (NTRS)

    Chervin, R. M.; Druyan, L. M.

    1984-01-01

    A coarse mesh global climate model has been developed to assess ocean surface temperature (OST) gradient and continentality influences on the Walker circulation, which is characterized in the zonal plane by three pairs of clockwise and counterclockwise cells in the troposphere. The model response exhibits statistically significant changes in the intensity of the various cells and branches with small shifts in the east-west extent. The overall structure in the zonal plane for experiments with the coldest and with mean temperatures, however, remained unchanged. In an experiment involving the replacement of the South American continent by an ocean with OSTs linearly interpolated from the eastern Pacific to the western Atlantic, a dramatic change took place in the structure of the Walker circulation. It is concluded that both continentality and OST gradient are important Walker circulation forcing mechanisms.

  20. Three-dimensional analysis of thermo-mechanically rotating cholesteric liquid crystal droplets under a temperature gradient

    NASA Astrophysics Data System (ADS)

    Yamamoto, T.; Kuroda, M.; Sano, M.

    2015-02-01

    We studied the rotational motion of cholesteric liquid crystal droplets under a temperature gradient (the Lehmann effect). We found that different surface treatments, planar and homeotropic anchoring, provided three types of droplets with different textures and geometries. The rotational velocity of these droplets depends differently on their size. Determining the three-dimensional structures of these droplets by the fluorescence confocal polarizing microscopy, we propose a phenomenological equation to explain the rotational behavior of these droplets. This result shows that the description by the Ericksen-Leslie theory should be valid in the bulk of the droplet, but we need to take into account the surface torque induced by temperature gradient to fully understand the Lehmann effect.

  1. Dissociative electron attachment to HBr: A temperature effect

    SciTech Connect

    Fedor, J.; Cingel, M.; Skalny, J. D.; Scheier, P.; Maerk, T. D.; Cizek, M.; Kolorenc, P.; Horacek, J.

    2007-02-15

    The effects of rovibrational temperature on dissociative electron attachment to hydrogen bromide has been investigated from the experimental and theoretical point of view. Theoretical calculations based on the nonlocal resonance model predict a strong temperature effect on the Br{sup -} fragment ion yield due to population of higher vibrational and rotational states. A crossed beam experimental setup consisting of a temperature controlled effusive molecular beam and a trochoidal electron monochromator has been used to confirm this prediction. The high degree of agreement between experiment and theory indicates the validity of the theoretical model and its underlying physical picture.

  2. Continuous gas discharge plasma with 200 K electron temperature

    SciTech Connect

    Dickson, Shannon; Robertson, Scott

    2010-03-15

    A very cold and collisional hot-filament discharge plasma is created in a vacuum chamber with an inner wall cooled by liquid nitrogen. The inner chamber (16.5 cm diameterx30 cm) has two negatively biased tungsten filaments for plasma generation and a Langmuir probe on axis for diagnostic measurements. With the wall at 140 K, 0.5-16 mA filament emission, and 1.6 mTorr carbon monoxide as the working gas, probe data give electron temperatures of 17-28 meV (197-325 K) with corresponding densities of 10{sup 8}-10{sup 9} cm{sup -3}. With He, Ar, H{sub 2}, and N{sub 2} at 140 K, the electron temperatures are >500 K. The lower electron temperature with CO is attributed to the asymmetric CO molecule having a larger cross section for electron excitation of rotational modes as a consequence of its dipole moment.

  3. Differences in the Temperature Sensitivity of Soil Organic Carbon Decomposition in a Semi-Arid Ecosystem across an Elevational Gradient

    NASA Astrophysics Data System (ADS)

    Delvinne, H.; Flores, A. N.; Benner, S. G.; Feris, K. P.; De Graaff, M. A.

    2015-12-01

    Semi-arid ecosystems are a significant component of the global carbon (C) cycle as they store approximately 20% of global soil C. Yet, projected increases in mean annual temperatures might alter the amount of soil organic C (SOC) currently stored in these ecosystems. Uncertainties about the temperature sensitivity of SOC decomposition have hindered accurate predictions of C cycle feedbacks to climate change. This study aims to elucidate how the temperature sensitivity of SOC decomposition varies along an elevational (1000m) and climatic (i.e. mean annual temperature and precipitation) gradient. The study sites are located at Reynolds Creek Critical Zone Observatory in Owyhee Mountains of Idaho, USA. We conducted stratified random sampling of soil up to 0-5cm across sagebrush canopy and inter-canopy areas at four elevations. We hypothesized decomposition of SOC pools at lower elevations to have greater temperature sensitivity (more CO2 respired per unit C) compared to upper due to the quality of C that is inherently more temperature sensitive. To assess the temperature sensitivity of SOC decomposition, we used aerobic laboratory incubations (n=40) across a temperature gradient ((15, 20, 25, 30) oC) at constant soil moisture (60% water holding capacity) for 120 days and measured CO2 respired. Cumulative CO2 respired increased with increasing incubation temperature. Cumulative CO2 respired also increased with elevation as upper elevations support greater amounts of C. However, when normalized by SOC, we found that the temperature response of CO2 respiration was greater in soils derived from lower than higher elevations (p<0.05). These results indicate that the response of SOC decomposition to elevated temperatures differs strongly across the landscape in semi-arid ecosystems.

  4. Direct numerical simulation of Taylor-Couette flow subjected to a radial temperature gradient

    NASA Astrophysics Data System (ADS)

    Teng, Hao; Liu, Nansheng; Lu, Xiyun; Khomami, Bamin

    2015-12-01

    Direct numerical simulations have been performed to study the Taylor-Couette (TC) flow between two rotating, coaxial cylinders in the presence of a radial temperature gradient. Specifically, the influence of the buoyant force and the outer cylinder rotation on the turbulent TC flow system with the radius ratio η = 0.912 was examined. For the co-rotating TC flows with Rei (inner cylinder) =1000 and Reo (outer cylinder) =100, a transition pathway to highly turbulent flows is realized by increasing σ, a parameter signifying the ratio of buoyant to inertial force. This nonlinear flow transition involves four intriguing states that emerge in sequence as chaotic wavy vortex flow for σ = 0, wavy interpenetrating spiral flows for σ = 0.02 and 0.05, intermittent turbulent spirals for σ = 0.1 and 0.2, and turbulent spirals for σ = 0.4. Overall, the fluid motion changes from a centrifugally driven flow regime characterized by large-scale wavy Taylor vortices (TVs) to a buoyancy-dominated flow regime characterized by small-scale turbulent vortices. Commensurate changes in turbulence statistics and heat transfer are seen as a result of the weakening of large-scale TV circulations and enhancement of turbulent motions. Additionally, the influence of variation of the outer cylinder rotation, -500 < Reo < 500 in presence of buoyancy (σ = 0.1) with Rei = 1000, has been considered. Specifically, it is demonstrated that this variation strongly influences the azimuthal and axial mean flows with a weaker influence on the fluctuating fluid motions. Of special interest, here are the turbulent dynamics near the outer wall where a marked decrease of turbulence intensity and a sign inversion of the Reynolds stress Rrz are observed for the strongly counter-rotating regimes (Reo = - 300 and -500). To this end, it has been shown that the underlying flow physics for this drastic modification are associated with the modification of the correlation between the radial and axial fluctuating

  5. Direct numerical simulation of Taylor-Couette flow subjected to a radial temperature gradient

    SciTech Connect

    Teng, Hao; Liu, Nansheng Lu, Xiyun; Khomami, Bamin

    2015-12-15

    Direct numerical simulations have been performed to study the Taylor-Couette (TC) flow between two rotating, coaxial cylinders in the presence of a radial temperature gradient. Specifically, the influence of the buoyant force and the outer cylinder rotation on the turbulent TC flow system with the radius ratio η = 0.912 was examined. For the co-rotating TC flows with Re{sub i} (inner cylinder) =1000 and Re{sub o} (outer cylinder) =100, a transition pathway to highly turbulent flows is realized by increasing σ, a parameter signifying the ratio of buoyant to inertial force. This nonlinear flow transition involves four intriguing states that emerge in sequence as chaotic wavy vortex flow for σ = 0, wavy interpenetrating spiral flows for σ = 0.02 and 0.05, intermittent turbulent spirals for σ = 0.1 and 0.2, and turbulent spirals for σ = 0.4. Overall, the fluid motion changes from a centrifugally driven flow regime characterized by large-scale wavy Taylor vortices (TVs) to a buoyancy-dominated flow regime characterized by small-scale turbulent vortices. Commensurate changes in turbulence statistics and heat transfer are seen as a result of the weakening of large-scale TV circulations and enhancement of turbulent motions. Additionally, the influence of variation of the outer cylinder rotation, −500 < Re{sub o} < 500 in presence of buoyancy (σ = 0.1) with Re{sub i} = 1000, has been considered. Specifically, it is demonstrated that this variation strongly influences the azimuthal and axial mean flows with a weaker influence on the fluctuating fluid motions. Of special interest, here are the turbulent dynamics near the outer wall where a marked decrease of turbulence intensity and a sign inversion of the Reynolds stress R{sub rz} are observed for the strongly counter-rotating regimes (Re{sub o} = − 300 and −500). To this end, it has been shown that the underlying flow physics for this drastic modification are associated with the modification of the correlation

  6. Electronics for Low-Temperature Space Operation Being Evaluated

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2001-01-01

    Electronic components and systems capable of low-temperature operation are needed for many future NASA missions where it is desirable to have smaller, lighter, and cheaper (unheated) spacecraft. These missions include Mars (-20 to -120 C) orbiters, landers, and rovers; Europa (-150 C) oceanic exploratory probes and instrumentation; Saturn (-183 C) and Pluto (-229 C) interplanetary probes. At the present, most electronic equipment can operate down to only -55 C. It would be very desirable to have electronic components that expand the operating temperature range down to -233 C. The successful development of these low-temperature components will eventually allow space probes and onboard electronics to operate in very cold environments (out as far as the planet Pluto). As a result, radioisotope heating units, which are used presently to keep space electronics near room temperature, will be reduced in number or eliminated. The new cold electronics will make spacecraft design and operation simpler, more flexible, more reliable, lighter, and cheaper. Researchers at the NASA Glenn Research Center are evaluating potential commercial off-the- shelf devices and are developing new electronic components that will tolerate operation at low temperatures down to -233 C. This work is being carried out mainly inhouse and also through university grants and commercial contracts. The components include analog-to-digital converters, semiconductor switches, capacitors, dielectric and packaging material, and batteries. For example, the effect of low temperature on the capacitance of three different types of capacitors is shown in the graph. Using these advanced components, system products will be developed, including dc/dc converters, battery charge/discharge management systems, digital control electronics, transducers, and sensor instrumentation.

  7. Influence of the temperature gradient in blubber on the bioaccumulation of persistent lipophilic organic chemicals in seals.

    PubMed

    Czub, Gertje; McLachlan, Michael S

    2007-08-01

    Seals constitute an important link in food webs of the Arctic environment and are an important vector of persistent lipophilic organic pollutants to top predators (e.g., polar bears) and humans. Two fugacity-based, non-steady state, mechanistic lifetime models were assembled to explore the influence of the temperature gradient in the insulating blubber on the distribution and bioaccumulation of persistent lipophilic organic pollutants in seals. The behavior of a two-compartment model that distinguishes between the gastrointestinal tract and the seal itself was compared with a three-compartment model, in which a separate blubber compartment was implemented with a temperature gradient through the insulation layer. In both models, equilibrium partitioning between the animal's tissues, blood, and milk was assumed. The models were parameterized for ringed seals (Phoca hispida) and evaluated using field data for bioaccumulation of polychlorinated biphenyls in this species. The two-compartment model resulted in predicted concentrations below reported field data. This was in particular the case for females, for which the elimination of the contaminants via milk was overpredicted by up to one order of magnitude. The three-compartment model with its consideration of the temperature gradient in blubber yielded predictions that were much more consistent with the field data. It also predicted a fractionation of polychlorinated biphenyl congeners between different blubber layers, as well as between blubber and blood or milk, which was in good qualitative agreement with observations reported in the literature. This work indicates that the temperature gradient in the blubber has an impact on the bioaccumulation of persistent lipophilic organic pollutants in seals and in marine mammals in general.

  8. Chemical and isotopic fractionation of wet andesite in a temperature gradient: Experiments and models suggesting a new mechanism of magma differentiation

    NASA Astrophysics Data System (ADS)

    Huang, F.; Lundstrom, C. C.; Glessner, J.; Ianno, A.; Boudreau, A.; Li, J.; Ferré, E. C.; Marshak, S.; DeFrates, J.

    2009-02-01

    Piston-cylinder experiments were conducted to investigate the behavior of partially molten wet andesite held within an imposed temperature gradient at 0.5 GPa. In one experiment, homogenous andesite powder (USGS rock standard AGV-1) with 4 wt.% H 2O was sealed in a double capsule assembly for 66 days. The temperature at one end of this charge was held at 950 °C, and the temperature at the other end was kept at 350 °C. During the experiment, thermal migration (i.e., diffusion in a thermal gradient) took place, and the andesite underwent compositional and mineralogical differentiation. The run product can be broadly divided into three portions: (1) the top third, at the hot end, contained 100% melt; (2) the middle-third contained crystalline phases plus progressively less melt; and (3) the bottom third, at the cold end, consisted of a fine-grained, almost entirely crystalline solid of granitic composition. Bulk major- and trace-element compositions change down temperature gradient, reflecting the systematic change in modal mineralogy. These changes mimic differentiation trends produced by fractional crystallization. The change in composition throughout the run product indicates that a fully connected hydrous silicate melt existed throughout the charge, even in the crystalline, cold bottom region. Electron Backscatter Diffraction analysis of the run product indicates that no preferred crystallographic orientation of minerals developed in the run product. However, a significant anisotropy of magnetic susceptibility was observed, suggesting that new crystals of magnetite were elongated in the direction of the thermal gradient. Further, petrographic observation reveals alignment of hornblende parallel to the thermal gradient. Finally, the upper half of the run product shows large systematic variations in Fe-Mg isotopic composition reflecting thermal diffusion, with the hot end systematically enriched in light isotopes. The overall δ 56Fe IRMM-14 and δ 26Mg DSM-3

  9. Eocene high-latitude temperature gradients over time and space based on d18O values of fossil shark teeth

    NASA Astrophysics Data System (ADS)

    Zeichner, S. S.; Kim, S.; Colman, A. S.

    2015-12-01

    Early-Mid Eocene (56.0-33.9Mya) is characterized by a temperate Antarctic climate and shallower latitudinal temperature gradients than those in present day. The warmer waters off the coast of the Antarctic Peninsula provided suitable habitats for taxa (i.e., sharks) that live today at lower latitudes. Stable isotope analysis of Eocene shark teeth provides a proxy to understand high latitude temperature gradients. However, shark ecology, in particular migration and occupation of tidal versus pelagic habitats, must be considered in the interpretation of stable isotope data. In this study, we analyze d18OPO4 values from the enameloid of Striatolamia (synonymized with Carcharias) shark teeth from the La Meseta formation (Seymour Island, Antarctica) to estimate paleotemperature in Early-Mid Eocene Antarctica, and assess the impact of ecology versus environmental signals on d18OPO4 values. We compare the ranges and offsets between our measured shark tooth d18OPO4 and published bivalve d18OCO3 values to test whether shark teeth record signals of migration across latitudinal temperature gradients, or instead reflect seasonal and long-term temporal variation across La Meseta stratigraphic units.

  10. How important are internal temperature gradients in french straws during freezing of bovine sperm in nitrogen vapor?

    PubMed

    Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J

    2013-01-01

    The subject of present work was to predict internal temperature gradients developed during freezing of bovine sperm diluted in extender, packaged in 0.5 ml French plastic straws and suspended in static liquid nitrogen vapor at -100 degree C. For this purpose, a mathematical heat transfer model previously developed to predict freezing times (phase change was considered) of semen/extender packaged in straw was extended to predict internal temperature gradients during the cooling/freezing process. Results showed maximum temperature differences between the centre and the periphery of semen/extender "liquid" column was 1.5 degree C for an external heat transfer coefficient, h = 15 W per (m(2) K), and only 0.5 degree C for h = 5 W per (m(2) K). It is concluded that if a thermocouple wire were inserted in a 0.5 ml plastic straw to monitor the freezing process in nitrogen vapor, its radial position would have little importance since expected internal gradients may be safely neglected. This finding facilitates the interpretation of freezing rates in 0.5 ml plastic straws immersed in nitrogen vapor over liquid nitrogen, a widely used method for cryopreservation of bovine spermatozoa.

  11. Effect of fast drifting electrons on electron temperature measurement with a triple Langmuir probe

    NASA Astrophysics Data System (ADS)

    Biswas, Subir; Chowdhury, Satyajit; Palivela, Yaswanth; Pal, Rabindranath

    2015-08-01

    Triple Langmuir Probe (TLP) is a widely used diagnostics for instantaneous measurement of electron temperature and density in low temperature laboratory plasmas as well as in edge region of fusion plasma devices. Presence of a moderately energetic flowing electron component, constituting only a small fraction of the bulk electrons, is also a generally observed scenario in plasma devices, where plasmas are produced by electron impact ionization of neutrals. A theoretical analysis of its effect on interpretation of the TLP data for bulk electron temperature measurement is presented here assuming electron velocity distribution is not deviating substantially from a Maxwellian. The study predicts conventional expression from standard TLP theory to give overestimated value of bulk electron temperature. Correction factor is significant and largely depends on population density, temperature, and energy of the fast component. Experimental verification of theoretical results is obtained in the magnetized plasma linear experimental device of Saha Institute of Nuclear Physics where plasma is produced by an electron cyclotron resonance method and known to have a fast flowing electron component.

  12. Effect of fast drifting electrons on electron temperature measurement with a triple Langmuir probe

    SciTech Connect

    Biswas, Subir Chowdhury, Satyajit; Pal, Rabindranath

    2015-08-14

    Triple Langmuir Probe (TLP) is a widely used diagnostics for instantaneous measurement of electron temperature and density in low temperature laboratory plasmas as well as in edge region of fusion plasma devices. Presence of a moderately energetic flowing electron component, constituting only a small fraction of the bulk electrons, is also a generally observed scenario in plasma devices, where plasmas are produced by electron impact ionization of neutrals. A theoretical analysis of its effect on interpretation of the TLP data for bulk electron temperature measurement is presented here assuming electron velocity distribution is not deviating substantially from a Maxwellian. The study predicts conventional expression from standard TLP theory to give overestimated value of bulk electron temperature. Correction factor is significant and largely depends on population density, temperature, and energy of the fast component. Experimental verification of theoretical results is obtained in the magnetized plasma linear experimental device of Saha Institute of Nuclear Physics where plasma is produced by an electron cyclotron resonance method and known to have a fast flowing electron component.

  13. High-Temperature Gas Sensor Array (Electronic Nose) Demonstrated

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2002-01-01

    The ability to measure emissions from aeronautic engines and in commercial applications such as automotive emission control and chemical process monitoring is a necessary first step if one is going to actively control those emissions. One single sensor will not give all the information necessary to determine the chemical composition of a high-temperature, harsh environment. Rather, an array of gas sensor arrays--in effect, a high-temperature electronic "nose"--is necessary to characterize the chemical constituents of a diverse, high-temperature environment, such as an emissions stream. The signals produced by this nose could be analyzed to determine the constituents of the emission stream. Although commercial electronic noses for near-room temperature applications exist, they often depend significantly on lower temperature materials or only one sensor type. A separate development effort necessary for a high-temperature electronic nose is being undertaken by the NASA Glenn Research Center, Case Western Reserve University, Ohio State University, and Makel Engineering, Inc. The sensors are specially designed for hightemperature environments. A first-generation high-temperature electronic nose has been demonstrated on a modified automotive engine. This nose sensor array was composed of sensors designed for hightemperature environments fabricated using microelectromechanical-systems- (MEMS-) based technology. The array included a tin-oxide-based sensor doped for nitrogen oxide (NOx) sensitivity, a SiC-based hydrocarbon (CxHy) sensor, and an oxygen sensor (O2). These sensors operate on different principles--resistor, diode, and electrochemical cell, respectively--and each sensor has very different responses to the individual gases in the environment. A picture showing the sensor head for the array is shown in the photograph on the left and the sensors installed in the engine are shown in the photograph on the right. Electronics are interfaced with the sensors for

  14. Electronic phase diagram of high-temperature copper oxide superconductors

    PubMed Central

    Chatterjee, Utpal; Ai, Dingfei; Zhao, Junjing; Rosenkranz, Stephan; Kaminski, Adam; Raffy, Helene; Li, Zhizhong; Kadowaki, Kazuo; Randeria, Mohit; Norman, Michael R.; Campuzano, J. C.

    2011-01-01

    In order to understand the origin of high-temperature superconductivity in copper oxides, we must understand the normal state from which it emerges. Here, we examine the evolution of the normal state electronic excitations with temperature and carrier concentration in Bi2Sr2CaCu2O8+δ using angle-resolved photoemission. In contrast to conventional superconductors, where there is a single temperature scale Tc separating the normal from the superconducting state, the high-temperature superconductors exhibit two additional temperature scales. One is the pseudogap scale T∗, below which electronic excitations exhibit an energy gap. The second is the coherence scale Tcoh, below which sharp spectral features appear due to increased lifetime of the excitations. We find that T∗ and Tcoh are strongly doping dependent and cross each other near optimal doping. Thus the highest superconducting Tc emerges from an unusual normal state that is characterized by coherent excitations with an energy gap. PMID:21606341

  15. Electronic Components for use in Extreme Temperature Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    Electrical power management and control systems designed for use in planetary exploration missions and deep space probes require electronics that are capable of efficient and reliable operation under extreme temperature conditions. Space-based infra-red satellites, all-electric ships, jet engines, electromagnetic launchers, magnetic levitation transport systems, and power facilities are also typical examples where the electronics are expected to be exposed to harsh temperatures and to operate under severe thermal swings. Most commercial-off-the-shelf (COTS) devices are not designed to function under such extreme conditions and, therefore, new parts must be developed or the conventional devices need to be modified. For example, spacecraft operating in the cold environment of deep space carry a large number of radioisotope heating units in order to maintain the surrounding temperature of the on-board electronics at approximately 20 C. At the other end, built-in radiators and coolers render the operation of electronics possible under hot conditions. These thermal measures lead to design complexity, affect development costs, and increase size and weight. Electronics capable of operation at extreme temperatures, thus, will not only tolerate the hostile operational environment, but also make the overall system efficient, more reliable, and less expensive. The Extreme Temperature Electronics Program at the NASA Glenn Research Center focuses on research and development of electronics suitable for applications in the aerospace environment and deep space exploration missions. Research is being conducted on devices, including COTS parts, for potential use under extreme temperatures. These components include semiconductor switching devices, passive devices, DC/DC converters, operational amplifiers, and oscillators. An overview of the program will be presented along with some experimental findings.

  16. Temperature Calibration for In Situ Environmental Transmission Electron Microscopy Experiments

    PubMed Central

    Winterstein, JP; Lin, PA; Sharma, R

    2016-01-01

    In situ environmental transmission electron microscopy (ETEM) experiments require specimen heating holders to study material behavior in gaseous environments at elevated temperatures. In order to extract meaningful kinetic parameters, such as activation energies, it is essential to have a direct and accurate measurement of local sample temperature. This is particularly important if the sample temperature might fluctuate, for example when room temperature gases are introduced to the sample area. Using selected-area diffraction (SAD) in an ETEM, the lattice parameter of Ag nanoparticles was measured as a function of the temperature and pressure of hydrogen gas to provide a calibration of the local sample temperature. SAD permits measurement of temperature to an accuracy of ± 30 °C using Ag lattice expansion. Gas introduction can cause sample cooling of several hundred degrees celsius for gas pressures achievable in the ETEM. PMID:26441334

  17. Large-scale spatial variability of riverbed temperature gradients in Snake River fall Chinook salmon spawning areas

    SciTech Connect

    Hanrahan, Timothy P.

    2007-02-01

    In the Snake River basin of the Pacific northwestern United States, hydroelectric dam operations are often based on the predicted emergence timing of salmon fry from the riverbed. The spatial variability and complexity of surface water and riverbed temperature gradients results in emergence timing predictions that are likely to have large errors. The objectives of this study were to quantify the thermal heterogeneity between the river and riverbed in fall Chinook salmon spawning areas and to determine the effects of thermal heterogeneity on fall Chinook salmon emergence timing. This study quantified river and riverbed temperatures at 15 fall Chinook salmon spawning sites distributed in two reaches throughout 160 km of the Snake River in Hells Canyon, Idaho, USA, during three different water years. Temperatures were measured during the fall Chinook salmon incubation period with self-contained data loggers placed in the river and at three different depths below the riverbed surface. At all sites temperature increased with depth into the riverbed, including significant differences (p<0.05) in mean water temperature of up to 3.8°C between the river and the riverbed among all the sites. During each of the three water years studied, river and riverbed temperatures varied significantly among all the study sites, among the study sites within each reach, and between sites located in the two reaches. Considerable variability in riverbed temperatures among the sites resulted in fall Chinook salmon emergence timing estimates that varied by as much as 55 days, depending on the source of temperature data used for the estimate. Monitoring of riverbed temperature gradients at a range of spatial scales throughout the Snake River would provide better information for managing hydroelectric dam operations, and would aid in the design and interpretation of future empirical research into the ecological significance of physical riverine processes.

  18. Experimental measurements of the SP response to concentration and temperature gradients in sandstones with application to subsurface geophysical monitoring

    NASA Astrophysics Data System (ADS)

    Leinov, E.; Jackson, M. D.

    2014-09-01

    Exclusion-diffusion potentials arising from temperature gradients are widely neglected in self-potential (SP) surveys, despite the ubiquitous presence of temperature gradients in subsurface settings such as volcanoes and hot springs, geothermal fields, and oil reservoirs during production via water or steam injection. Likewise, with the exception of borehole SP logging, exclusion-diffusion potentials arising from concentration gradients are also neglected or, at best, it is assumed that the diffusion potential dominates. To better interpret these SP sources requires well-constrained measurements of the various coupling terms. We report measurements of thermoelectric and electrochemical exclusion-diffusion potentials across sandstones saturated with NaCl brine and find that electrode effects can dominate the measured voltage. After correcting for these, we find that Hittorf transport numbers are the same within experimental error regardless of whether ion transport occurs in response to temperature or concentration gradients over the range of NaCl concentration investigated that is typical of natural systems. Diffusion potentials dominate only if the pore throat radius is more than approximately 4000 times larger than the diffuse layer thickness. In fine-grained sandstones with small pore throat diameter, this condition is likely to be met only if the saturating brine is of relatively high salinity; thus, in many cases of interest to earth scientists, exclusion-diffusion potentials will comprise significant contributions from both ionic diffusion through, and ionic exclusion from, the pore space of the rock. However, in coarse-grained sandstones, or sandstones saturated with high-salinity brine, exclusion-diffusion potentials can be described using end-member models in which ionic exclusion is neglected. Exclusion-diffusion potentials in sandstones depend upon pore size and salinity in a complex way: they may be positive, negative, or zero depending upon sandstone

  19. Latitudinal temperature gradient during the Cretaceous Upper Campanian-Middle Maastrichtian: δ 18O record of continental vertebrates

    NASA Astrophysics Data System (ADS)

    Amiot, Romain; Lécuyer, Christophe; Buffetaut, Eric; Fluteau, Frédéric; Legendre, Serge; Martineau, François

    2004-09-01

    Latitudinal variations in model biogenic apatite δ18O values were calculated using fractionation equations of vertebrates and weighted rainfall δ18O values along with mean annual air temperatures provided by IAEA-WMO meteorological stations. The reference equation obtained was used to compute a continental temperature gradient for the Late Campanian-Middle Maastrichtian interval by using published and new δ18O values of phosphate from vertebrates. Samples are mainly tooth enamel from crocodilians and dinosaurs that lived at paleolatitudes ranging from 83-9+4°N (Alaska) to 32±3°S (Madagascar). The temperature gradient was less steep (0.4±0.1 °C/°latitude) than the present-day one (0.6 °C/°latitude) with temperatures that decreased from about 30 °C near the equator to about -5 °C at the poles. Above 30° of paleolatitude, air temperatures were higher than at present. The validity of these results is discussed by comparison with climatic criteria inferred from paleontological, paleobotanical and sedimentological data. The latitudinal distribution of oxygen isotope compositions of continental vertebrates is potentially a powerful tool for quantifying Mesozoic terrestrial climates.

  20. Characterization of an urban-rural CO 2 /temperature gradient and associated changes in initial plant productivity during secondary succession

    SciTech Connect

    Ziska, L. H.; Bunce, J. A.; Goins, E. W.

    2004-05-01

    To examine the impact of climate change on vegetative productivity, we exposed fallow agricultural soil to an in situ temperature and CO2 gradient between urban, suburban and rural areas in 2002. Along the gradient, average daytime CO2 concentration increased by 21% and maximum (daytime) and minimum (nighttime) daily temperatures increased by 1.6 and 3.3°C, respectively in an urban relative to a rural location. Consistent location differences in soil temperature were also ascertained. No other consistent differences in meteorological variables (e.g. wind speed, humidity, PAR, tropospheric ozone) as a function of urbanization were documented. The urban-induced environmental changes that were observed were consistent with most short-term (~50 year) global change scenarios regarding CO2 concentration and air temperature. Productivity, determined as final above-ground biomass, and maximum plant height were positively affected by daytime and soil temperatures as well as enhanced [CO2], increasing 60 and 115% for the suburban and urban sites, respectively, relative to the rural site. While long-term data are needed, these initial results suggest that urban environments may act as a reasonable surrogate for investigating future climatic change in vegetative communities.

  1. Mangrove expansion and contraction at a poleward range limit: Climate extremes and land-ocean temperature gradients

    USGS Publications Warehouse

    Osland, Michael J.; Day, Richard H.; Hall, Courtney T.; Brumfield, Marisa D; Dugas, Jason; Jones, William R.

    2016-01-01

    Within the context of climate change, there is a pressing need to better understand the ecological implications of changes in the frequency and intensity of climate extremes. Along subtropical coasts, less frequent and warmer freeze events are expected to permit freeze-sensitive mangrove forests to expand poleward and displace freeze-tolerant salt marshes. Here, our aim was to better understand the drivers of poleward mangrove migration by quantifying spatiotemporal patterns in mangrove range expansion and contraction across land-ocean temperature gradients. Our work was conducted in a freeze-sensitive mangrove-marsh transition zone that spans a land-ocean temperature gradient in one of the world's most wetland-rich regions (Mississippi River Deltaic Plain; Louisiana, USA). We used historical air temperature data (1893-2014), alternative future climate scenarios, and coastal wetland coverage data (1978-2011) to investigate spatiotemporal fluctuations and climate-wetland linkages. Our analyses indicate that changes in mangrove coverage have been controlled primarily by extreme freeze events (i.e., air temperatures below a threshold zone of -6.3 to -7.6 °C). We expect that in the past 121 years, mangrove range expansion and contraction has occurred across land-ocean temperature gradients. Mangrove resistance, resilience, and dominance were all highest in areas closer to the ocean where temperature extremes were buffered by large expanses of water and saturated soil. Under climate change, these areas will likely serve as local hotspots for mangrove dispersal, growth, range expansion, and displacement of salt marsh. Collectively, our results show that the frequency and intensity of freeze events across land-ocean temperature gradients greatly influences spatiotemporal patterns of range expansion and contraction of freeze-sensitive mangroves. We expect that, along subtropical coasts, similar processes govern the distribution and abundance of other freeze

  2. Electron temperature and density measurements of laser induced germanium plasma

    NASA Astrophysics Data System (ADS)

    Shakeel, Hira; Arshad, Saboohi; Haq, S. U.; Nadeem, Ali

    2016-05-01

    The germanium plasma produced by the fundamental harmonics (1064 nm) of Nd:YAG laser in single and double pulse configurations have been studied spectroscopically. The plasma is characterized by measuring the electron temperature using the Boltzmann plot method for neutral and ionized species and electron number density as a function of laser irradiance, ambient pressure, and distance from the target surface. It is observed that the plasma parameters have an increasing trend with laser irradiance (9-33 GW/cm2) and with ambient pressure (8-250 mbar). However, a decreasing trend is observed along the plume length up to 4.5 mm. The electron temperature and electron number density are also determined using a double pulse configuration, and their behavior at fixed energy ratio and different interpulse delays is discussed.

  3. Linear gyrokinetic calculations of toroidal momentum transport in a tokamak due to the ion temperature gradient mode

    SciTech Connect

    Peeters, A.G.; Angioni, C.

    2005-07-15

    It is shown from a symmetry in the gyrokinetic equation that for up-down symmetric tokamak equilibria and for u{sub {phi}}>>{rho}{upsilon}{sub thi}/r (where u{sub {phi}} is the toroidal velocity, {upsilon}{sub thi} is the thermal ion velocity, {rho} is the Larmor radius, and r is the radius of the flux surface), the transport of parallel momentum can be written as the sum of a diffusive and a pinch contribution with no off-diagonal terms due to temperature and pressure gradients. The measured parallel velocity gradient in ASDEX Upgrade [O. Gruber, H.-S. Bosch, S. Guenter et al., Nucl. Fusion 39, 1321 (1999)] is insufficient to drive the parallel velocity shear instability. The parallel velocity is then transported by the ion temperature gradient mode. The diffusive contribution to the transport flux is investigated using a linear gyrokinetic approach, and it is found that the diffusion coefficient for parallel velocity transport divided by the ion heat conductivity coefficient is close to 1, and only weakly dependent on plasma parameters.

  4. Seasonal variations in the subauroral electron temperature enhancement

    SciTech Connect

    Fok, M.C.; Kozyra, J.U.; Warren, M.F. ); Brace, L.H. )

    1991-06-01

    The subauroral nightside electron temperature peak is one of the phenomena showing the response of the subauroral ionosphere to the influx of magnetic storm energy in the vicinity of the plasmapause. A statistical study of the seasonal variations of the subauroral electron temperature enhancement was undertaken using data from the Langmuir probe experiment on the DE 2 satellite throughout most of the mission (1981-1982). In the winter hemisphere the nighttime background electron temperature is the highest and the magnitude of the peak T{sub e} responds most weakly to the geomagnetic activity. This behavior can be explained by seasonal trends in the nighttime downward heat flux due to conjugate photoelectrons. Moreover, model results indicate that a factor of {approximately}3 increase in heat inflow during equinox relative to solstice is required to raise the electron temperature to a given level. This is a consequence of the higher electron densities at the T{sub e} peak near equinox. The T{sub e} peak occurs on field lines which thread the outer plasmasphere in the vicinity of the plasmapause and thus can be used as a tracer of the plasmapause position. Correlating the position of the T{sub e} peak with K{sub p} (the highest value of 3-hour K{sub p} in the preceding 12 hours) indicates a trend toward a more expanded quiet time plasmasphere and one which is more easily compressed by magnetic storms at equinox than during the solstice period.

  5. High-temperature electronics applications in space exploration

    NASA Technical Reports Server (NTRS)

    Jurgens, R. F.

    1982-01-01

    One of the most exciting applications of high-temperature electronics is related to the exploration of the planet Venus. On this planet the atmospheric temperatures range from about 170 K at elevations of 100 km to a searing 730 K near the surface. Mechanisms for exploring the atmosphere might include balloons, airplanes, surface landers, and surface-launched probes. Balloons, for example, could fly in the region from 20 (320 C at 22 bars) to 60 km (-20 C at 0.2 bar). Suitable balloon fabrics presently exclude excursions to lower altitudes; however, adequate electronic systems could survive to 325 C. Small airplanes would require more sophisticated electronics for guidance and control. Long life surface landers would most likely be developed first, as these could be used to measure long-term variations in weather. Ranging transponders would be important for ephemeris development, measurement of spin state, and studies of general relativity. Surface temperatures of 460 C and pressures of 90 bars present a challenge to the developers of such instruments. Other space applications for high-temperature electronics include transponders for the surface of Mercury, near solar drag-free orbiters, and deep atmospheric penetrators for Jupiter and Saturn. Each of these has its own particular problems with respect to instrumentation adequate to meet the desired scientific goals. This paper is primarily concerned with defining possible mission applications, the required electronic systems, and the approaches that are currently being studied for their development.

  6. The characteristic electronic structure needed for high-temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Pyper, N. C.; Edwards, P. P.

    1991-01-01

    It is shown that the magnon mechanism proposed by Goddard and co-workers to explain high-temperature superconductivity in oxidized cuprates can also account for such superconductivity in both oxidized barium bismuthate and the electron superconductors based on neodynium cuprate. The specific and characteristic electronic structure required for the operation of the magnon mechanism naturally accounts for why only a small number of basic types of high-temperature superconductors are currently known. This mechanism can readily explain the effects of doping cuprate superconductors with both magnetic and non-magnetic ions.

  7. Wide-Temperature Electronics for Thermal Control of Nanosats

    NASA Technical Reports Server (NTRS)

    Dickman, John Ellis; Gerber, Scott

    2000-01-01

    This document represents a presentation which examines the wide and low-temperature electronics required for NanoSatellites. In the past, larger spacecraft used Radioisotope Heating Units (RHU's). The advantage of the use of these electronics is that they could eliminate or reduce the requirement for RHU's, reduce system weight and simplify spacecraft design by eliminating containment/support structures for RHU's. The Glenn Research Center's Wide/Low Temperature Power Electronics Program supports the development of power systems capable of reliable, efficient operation over wide and low temperature ranges. Included charts review the successes and failures of various electronic devices, the IRF541 HEXFET, The NE76118n-Channel GaAS MESFET, the Lithium Carbon Monofluoride Primary Battery, and a COTS DC-DC converter. The preliminary result of wide/low temperature testing of CTS and custom parts and power circuit indicate that through careful selection of components and technologies it is possible to design and build power circuits which operate from room temperature to near 100K.

  8. Time-resolving electron temperature diagnostic for ALCATOR C

    NASA Astrophysics Data System (ADS)

    Fairfax, S. A.

    1984-05-01

    A diagnostic that provides time-resolved central electron temperatures was designed, built, and tested on the ALCATOR C Tokamak. The diagnostic uses an array of fixed-wavelength X-ray crystal monochromators to sample the X-ray continuum and determine the absolute electron temperature. The resolution and central energy of each channel were chosen to exclude any contributions from impurity line radiation. The need for such a diagnostic tool, the design methodology, and the results with typical ALCATOR C plasmas are described. Sawtooth (m = 1) temperature oscillations were observed after pellet fueling of the plasma. This is the first time that such oscillations were observed with an X-ray temperature diagnostic.

  9. On the nonlinear stability of a quasi-two-dimensional drift kinetic model for ion temperature gradient turbulence

    SciTech Connect

    Plunk, G. G.

    2015-04-15

    We study a quasi-two-dimensional electrostatic drift kinetic system as a model for near-marginal ion temperature gradient driven turbulence. A proof is given for the nonlinear stability of this system under conditions of linear stability. This proof is achieved using a transformation that diagonalizes the linear dynamics and also commutes with nonlinear E × B advection. For the case when linear instability is present, a corollary is found that forbids nonlinear energy transfer between appropriately defined sets of stable and unstable modes. It is speculated that this may explain the preservation of linear eigenmodes in nonlinear gyrokinetic simulations. Based on this property, a dimensionally reduced (∞×∞→1) system is derived that may be useful for understanding dynamics around the critical gradient of Dimits.

  10. Losses of leaf area owing to herbivory and early senescence in three tree species along a winter temperature gradient

    NASA Astrophysics Data System (ADS)

    González-Zurdo, P.; Escudero, A.; Nuñez, R.; Mediavilla, S.

    2016-03-01

    In temperate climates, evergreen leaves have to survive throughout low temperature winter periods. Freezing and chilling injuries can lead to accelerated senescence of part of the leaf surface, which contributes to a reduction of the lifespan of the photosynthetic machinery and of leaf lifetime carbon gain. Low temperatures are also associated with changes in foliar chemistry and morphology that affect consumption by herbivores. Therefore, the severity of foliar area losses caused by accelerated senescence and herbivory can change along winter temperature gradients. The aim of this study is to analyse such responses in the leaves of three evergreen species (Quercus ilex, Q. suber and Pinus pinaster) along a climatic gradient. The leaves of all three species presented increased leaf mass per area (LMA) and higher concentrations of structural carbohydrates in cooler areas. Only the two oak species showed visible symptoms of damage caused by herbivory, this being less intense at the coldest sites. The leaves of all three species presented chlorotic and necrotic spots that increased in size with leaf age. The foliar surface affected by chlorosis and necrosis was larger at the sites with the coldest winters. Therefore, the effects of the winter cold on the lifespan of the photosynthetic machinery were contradictory: losses of leaf area due to accelerated senescence increased, but there was a decrease in losses caused by herbivory. The final consequences for carbon assimilation strongly depend on the exact timing of the appearance of the damage resulting from low temperature and grazing by herbivores.

  11. Growth and Demography of the Solitary Scleractinian Coral Leptopsammia pruvoti along a Sea Surface Temperature Gradient in the Mediterranean Sea

    PubMed Central

    Caroselli, Erik; Zaccanti, Francesco; Mattioli, Guido; Falini, Giuseppe; Levy, Oren; Dubinsky, Zvy; Goffredo, Stefano

    2012-01-01

    The demographic traits of the solitary azooxanthellate scleractinian Leptopsammia pruvoti were determined in six populations on a sea surface temperature (SST) gradient along the western Italian coasts. This is the first investigation of the growth and demography characteristics of an azooxanthellate scleractinian along a natural SST gradient. Growth rate was homogeneous across all populations, which spanned 7 degrees of latitude. Population age structures differed between populations, but none of the considered demographic parameters correlated with SST, indicating possible effects of local environmental conditions. Compared to another Mediterranean solitary scleractinian, Balanophyllia europaea, zooxanthellate and whose growth, demography and calcification have been studied in the same sites, L. pruvoti seems more tolerant to temperature increase. The higher tolerance of L. pruvoti, relative to B. europaea, may rely on the absence of symbionts, and thus the lack of an inhibition of host physiological processes by the heat-stressed zooxanthellae. However, the comparison between the two species must be taken cautiously, due to the likely temperature differences between the two sampling depths. Increasing research effort on determining the effects of temperature on the poorly studied azooxanthellate scleractinians may shed light on the possible species assemblage shifts that are likely to occur during the current century as a consequence of global climatic change. PMID:22675495

  12. Optimizing the temperature compensation of an electronic pressure measurement system

    SciTech Connect

    Maxey, L.C.; Blalock, T.V.

    1990-08-01

    In an effort to minimize temperature sensitivity, the pressure measurement channels in the sensor/electronics modules of a high-resolution multiplexed pressure measurement system were analyzed. The pressure sensor (a silicon diaphragm strain gage) was known to have two temperature-dependent parameters. Component testing revealed that the current source driving the pressure sensor was also temperature sensitive. Although the transducer manufacturer supplies empirically selected temperature compensation resistors with each transducer, it was determined that the temperature sensitivity compensation could be optimized for this application by changing one of these resistors. By modifying the value of the sensitivity compensation resistor to optimize performance in this application, the temperature sensitivity of the pressure measurement channels was reduced by more than 60%.

  13. A prospective observational study of the association between cabin and outside air temperature, and patient temperature gradient during helicopter transport in New South Wales.

    PubMed

    Miller, M; Richmond, C; Ware, S; Habig, K; Burns, B

    2016-05-01

    The prevalence of hypothermia in patients following helicopter transport varies widely. Low outside air temperature has been identified as a risk factor. Modern helicopters are insulated and have heating; therefore outside temperature may be unimportant if cabin heat is maintained. We sought to describe the association between outside air, cabin and patient temperature, and having the cabin temperature in the thermoneutral zone (18-36°C) in our helicopter-transported patients. We conducted a prospective observational study over one year. Patient temperature was measured on loading and engines off. Cabin and outside air temperature were recorded for the same time periods for each patient, as well as in-flight. Previously identified risk factors were recorded. Complete data was obtained for 133 patients. Patients' temperature increased by a median of 0.15°C (P=0.013). There was no association between outside air temperature or cabin temperature and patient temperature gradient. The best predictor of patient temperature on landing was patient temperature on loading (R2=0.86) and was not improved significantly when other risk factors were added (P=0.63). Thirty-five percent of patients were hypothermic on loading, including those transferred from district hospitals. No patient loaded normothermic became hypothermic when the cabin temperature was in the thermoneutral zone (P=0.04). A large proportion of patients in our sample were hypothermic at the referring hospital. The best predictor of patient temperature on landing is patient temperature on loading. This has implications for studies that fail to account for pre-flight temperature. PMID:27246941

  14. A prospective observational study of the association between cabin and outside air temperature, and patient temperature gradient during helicopter transport in New South Wales.

    PubMed

    Miller, M; Richmond, C; Ware, S; Habig, K; Burns, B

    2016-05-01

    The prevalence of hypothermia in patients following helicopter transport varies widely. Low outside air temperature has been identified as a risk factor. Modern helicopters are insulated and have heating; therefore outside temperature may be unimportant if cabin heat is maintained. We sought to describe the association between outside air, cabin and patient temperature, and having the cabin temperature in the thermoneutral zone (18-36°C) in our helicopter-transported patients. We conducted a prospective observational study over one year. Patient temperature was measured on loading and engines off. Cabin and outside air temperature were recorded for the same time periods for each patient, as well as in-flight. Previously identified risk factors were recorded. Complete data was obtained for 133 patients. Patients' temperature increased by a median of 0.15°C (P=0.013). There was no association between outside air temperature or cabin temperature and patient temperature gradient. The best predictor of patient temperature on landing was patient temperature on loading (R2=0.86) and was not improved significantly when other risk factors were added (P=0.63). Thirty-five percent of patients were hypothermic on loading, including those transferred from district hospitals. No patient loaded normothermic became hypothermic when the cabin temperature was in the thermoneutral zone (P=0.04). A large proportion of patients in our sample were hypothermic at the referring hospital. The best predictor of patient temperature on landing is patient temperature on loading. This has implications for studies that fail to account for pre-flight temperature.

  15. A benchmark study of electronic excitation energies, transition moments, and excited-state energy gradients on the nicotine molecule

    SciTech Connect

    Egidi, Franco Segado, Mireia; Barone, Vincenzo; Koch, Henrik; Cappelli, Chiara

    2014-12-14

    In this work, we report a comparative study of computed excitation energies, oscillator strengths, and excited-state energy gradients of (S)-nicotine, chosen as a test case, using multireference methods, coupled cluster singles and doubles, and methods based on time-dependent density functional theory. This system was chosen because its apparent simplicity hides a complex electronic structure, as several different types of valence excitations are possible, including n-π{sup *}, π-π{sup *}, and charge-transfer states, and in order to simulate its spectrum it is necessary to describe all of them consistently well by the chosen method.

  16. A benchmark study of electronic excitation energies, transition moments, and excited-state energy gradients on the nicotine molecule

    NASA Astrophysics Data System (ADS)

    Egidi, Franco; Segado, Mireia; Koch, Henrik; Cappelli, Chiara; Barone, Vincenzo

    2014-12-01

    In this work, we report a comparative study of computed excitation energies, oscillator strengths, and excited-state energy gradients of (S)-nicotine, chosen as a test case, using multireference methods, coupled cluster singles and doubles, and methods based on time-dependent density functional theory. This system was chosen because its apparent simplicity hides a complex electronic structure, as several different types of valence excitations are possible, including n-π*, π-π*, and charge-transfer states, and in order to simulate its spectrum it is necessary to describe all of them consistently well by the chosen method.

  17. Effects of electron temperature and electron flow on O-X conversion

    SciTech Connect

    Jia, Guo-Zhang; Gao, Zhe; Zhao, Ai-Hui

    2013-10-15

    Effects of electron temperature and electron flow on Ordinary-Extraordinary (O-X) conversion in the range of electron cyclotron frequency are investigated. The modified optimal parallel refraction index, N{sub zc}, and the conversion coefficient are obtained analytically from the kinetic dispersion relation. The presence of finite electron temperature shifts the O-X conversion layer towards a region of lower density and increases the value of N{sub zc}; while the effect of electron flow depends on its direction with respect to the parallel wave vector. When the electron flow is along the parallel wave vector, N{sub zc} will be increased and the effects of finite electron temperature and finite electron flow accumulate. As a result, a more oblique incidence angle is required for efficient O-X conversion. For typical Tokamak plasmas, the efficiency of O-X conversion will decrease without the consideration of the two effects. When the electron flow is in the direction opposite to the parallel wave vector, the two effects compete, even cancel each other.

  18. Effects of electron temperature and electron flow on O-X conversion

    NASA Astrophysics Data System (ADS)

    Jia, Guo-Zhang; Gao, Zhe; Zhao, Ai-Hui

    2013-10-01

    Effects of electron temperature and electron flow on Ordinary-Extraordinary (O-X) conversion in the range of electron cyclotron frequency are investigated. The modified optimal parallel refraction index, Nzc, and the conversion coefficient are obtained analytically from the kinetic dispersion relation. The presence of finite electron temperature shifts the O-X conversion layer towards a region of lower density and increases the value of Nzc; while the effect of electron flow depends on its direction with respect to the parallel wave vector. When the electron flow is along the parallel wave vector, Nzc will be increased and the effects of finite electron temperature and finite electron flow accumulate. As a result, a more oblique incidence angle is required for efficient O-X conversion. For typical Tokamak plasmas, the efficiency of O-X conversion will decrease without the consideration of the two effects. When the electron flow is in the direction opposite to the parallel wave vector, the two effects compete, even cancel each other.

  19. Time-resolved electron density and electron temperature measurements in nanosecond pulse discharges in helium

    NASA Astrophysics Data System (ADS)

    Roettgen, A.; Shkurenkov, I.; Simeni Simeni, M.; Petrishchev, V.; Adamovich, I. V.; Lempert, W. R.

    2016-10-01

    Thomson scattering is used to study temporal evolution of electron density and electron temperature in nanosecond pulse discharges in helium sustained in two different configurations, (i) diffuse filament discharge between two spherical electrodes, and (ii) surface discharge over plane quartz surface. In the diffuse filament discharge, the experimental results are compared with the predictions of a 2D plasma fluid model. Electron densities are put on an absolute scale using pure rotational Raman spectra in nitrogen, taken without the plasma, for calibration. In the diffuse filament discharge, electron density and electron temperature increase rapidly after breakdown, peaking at n e  ≈  3.5 · 1015 cm-3 and T e  ≈  4.0 eV. After the primary discharge pulse, both electron density and electron temperature decrease (to n e ~ 1014 cm-3 over ~1 µs and to T e ~ 0.5 eV over ~200 ns), with a brief transient rise produced by the secondary discharge pulse. At the present conditions, the dominant recombination mechanism is dissociative recombination of electrons with molecular ions, \\text{He}2+ . In the afterglow, the electron temperature does not relax to gas temperature, due to superelastic collisions. Electron energy distribution functions (EEDFs) inferred from the Thomson scattering spectra are nearly Maxwellian, which is expected at high ionization fractions, when the shape of EEDF is controlled primarily by electron-electron collisions. The kinetic model predictions agree well with the temporal trends detected in the experiment, although peak electron temperature and electron density are overpredicted. Heavy species temperature predicted during the discharge and the early afterglow remains low and does not exceed T  =  400 K, due to relatively slow quenching of metastable He* atoms in two-body and three-body processes. In the surface discharge, peak electron density and electron temperature are n e  ≈  3 · 1014 cm3 and T e

  20. SLAB symmetric dielectric micron scale structures for high gradient electron acceleration.

    SciTech Connect

    Rosenzweig, J. B.; Schoessow, P. V.

    1999-06-12

    A class of planar microstructure is proposed which provide high accelerating gradients when excited by an infrared laser pulse. These structures consist of parallel dielectric slabs separated by a vacuum gap; the dielectric or the outer surface coating are spatially modulated at the laser wavelength along the beam direction so as to support a standing wave accelerating field. We have developed numerical and analytic models of the accelerating mode fields in the structure. We show an optimized coupling scheme such that this mode is excited resonantly with a large quality factor. The status of planned experiments on fabricating and measuring these planar structures will be described.