Li, Xiaomin; Liu, Liang; Liu, Tongxu; Yuan, Tian; Zhang, Wei; Li, Fangbai; Zhou, Shungui; Li, Yongtao
2013-06-01
Quinone groups in exogenous electron shuttles can accelerate extracellular electron transfer (EET) from bacteria to insoluble terminal electron acceptors, such as Fe(III) oxides and electrodes, which are important in biogeochemical redox processes and microbial electricity generation. However, the relationship between quinone-mediated EET performance and electron-shuttling properties of the quinones remains incompletely characterized. This study investigates the effects of a series of synthetic quinones (SQs) on goethite reduction and current generation by a fermenting bacterium Klebsiella pneumoniae L17. In addition, the voltammetric behavior and electron transfer capacities (ETCs) of SQ, including electron accepting (EAC) and donating (EDC) capacities, is also examined using electrochemical methods. The results showed that SQ can significantly increase both the Fe(III) reduction rates and current outputs of L17. Each tested SQ reversibly accepted and donated electrons as indicated by the cyclic voltammograms. The EAC and EDC results showed that Carmine and Alizarin had low relative capacities of electron transfer, whereas 9,10-anthraquinone-2,6-disulfonic acid (AQDS), 2-hydroxy-1,4-naphthoquinone (2-HNQ), and 5-hydroxy-1,4-naphthoquinone (5-HNQ) showed stronger relative ETC, and 9,10-anthraquinone-2-carboxylic acid (AQC) and 9,10-anthraquinone-2-sulfonic acid (AQS) had high relative ETC. Enhancement of microbial goethite reduction kinetics and current outputs by SQ had a good linear relationship with their ETC, indicating that the effectiveness of quinone-mediated EET may be strongly dependent on the ETC of the quinones. Therefore, the presence of quinone compounds and fermenting microorganisms may increase the diversity of microbial populations that contribute to element transformation in natural environments. Moreover, ETC determination of different SQ would help to evaluate their performance for microbial EET under anoxic conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mesh-structured N-doped graphene@Sb2Se3 hybrids as an anode for large capacity sodium-ion batteries.
Zhao, Wenxi; Li, Chang Ming
2017-02-15
A mesh-structured N-doped graphene@Sb 2 Se 3 (NGS) hybrid was one-pot prepared to realize N-doping, nanostructuring and hybridization for a sodium-ion battery anode to deliver much larger reversible specific capacity, faster interfacial electron transfer rate, better ionic and electronic transport, higher rate performance and longer cycle life stability in comparison to the plain Sb 2 Se 3 one. The better performance is ascribed to the unique intertwined porous mash-like structure associated with a strong synergistic effect of N-doped graphene for dramatic improvement of electronic and ionic conductivity by the unique porous structure, the specific capacity of graphene from N doping and fast interfacial electron transfer rate by N-doping induced surface effect and the structure-shortening insertion/desertion pathway of Na + . The detail electrochemical process on the NGS electrode is proposed and analyzed in terms of the experimental results. Copyright © 2016 Elsevier Inc. All rights reserved.
Rapid electron transfer by the carbon matrix in natural pyrogenic carbon
Sun, Tianran; Levin, Barnaby D. A.; Guzman, Juan J. L.; Enders, Akio; Muller, David A.; Angenent, Largus T.; Lehmann, Johannes
2017-01-01
Surface functional groups constitute major electroactive components in pyrogenic carbon. However, the electrochemical properties of pyrogenic carbon matrices and the kinetic preference of functional groups or carbon matrices for electron transfer remain unknown. Here we show that environmentally relevant pyrogenic carbon with average H/C and O/C ratios of less than 0.35 and 0.09 can directly transfer electrons more than three times faster than the charging and discharging cycles of surface functional groups and have a 1.5 V potential range for biogeochemical reactions that invoke electron transfer processes. Surface functional groups contribute to the overall electron flux of pyrogenic carbon to a lesser extent with greater pyrolysis temperature due to lower charging and discharging capacities, although the charging and discharging kinetics remain unchanged. This study could spur the development of a new generation of biogeochemical electron flux models that focus on the bacteria–carbon–mineral conductive network. PMID:28361882
Role of Humic-Bound Iron as an Electron Transfer Agent in Dissimilatory Fe(III) Reduction
Lovley, Derek R.; Blunt-Harris, Elizabeth L.
1999-01-01
The dissimilatory Fe(III) reducer Geobacter metallireducens reduced Fe(III) bound in humic substances, but the concentrations of Fe(III) in a wide range of highly purified humic substances were too low to account for a significant portion of the electron-accepting capacities of the humic substances. Furthermore, once reduced, the iron in humic substances could not transfer electrons to Fe(III) oxide. These results suggest that other electron-accepting moieties in humic substances, such as quinones, are the important electron-accepting and shuttling agents under Fe(III)-reducing conditions. PMID:10473447
Influence of Humic Acid Complexation with Metal Ions on Extracellular Electron Transfer Activity.
Zhou, Shungui; Chen, Shanshan; Yuan, Yong; Lu, Qin
2015-11-23
Humic acids (HAs) can act as electron shuttles and mediate biogeochemical cycles, thereby influencing the transformation of nutrients and environmental pollutants. HAs commonly complex with metals in the environment, but few studies have focused on how these metals affect the roles of HAs in extracellular electron transfer (EET). In this study, HA-metal (HA-M) complexes (HA-Fe, HA-Cu, and HA-Al) were prepared and characterized. The electron shuttle capacities of HA-M complexes were experimentally evaluated through microbial Fe(III) reduction, biocurrent generation, and microbial azoreduction. The results show that the electron shuttle capacities of HAs were enhanced after complexation with Fe but were weakened when using Cu or Al. Density functional theory calculations were performed to explore the structural geometry of the HA-M complexes and revealed the best binding sites of the HAs to metals and the varied charge transfer rate constants (k). The EET activity of the HA-M complexes were in the order HA-Fe > HA-Cu > HA-Al. These findings have important implications for biogeochemical redox processes given the ubiquitous nature of both HAs and various metals in the environment.
Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates.
Morita, Masahiko; Malvankar, Nikhil S; Franks, Ashley E; Summers, Zarath M; Giloteaux, Ludovic; Rotaru, Amelia E; Rotaru, Camelia; Lovley, Derek R
2011-01-01
Mechanisms for electron transfer within microbial aggregates derived from an upflow anaerobic sludge blanket reactor converting brewery waste to methane were investigated in order to better understand the function of methanogenic consortia. The aggregates were electrically conductive, with conductivities 3-fold higher than the conductivities previously reported for dual-species aggregates of Geobacter species in which the two species appeared to exchange electrons via interspecies electron transfer. The temperature dependence response of the aggregate conductance was characteristic of the organic metallic-like conductance previously described for the conductive pili of Geobacter sulfurreducens and was inconsistent with electron conduction through minerals. Studies in which aggregates were incubated with high concentrations of potential electron donors demonstrated that the aggregates had no significant capacity for conversion of hydrogen to methane. The aggregates converted formate to methane but at rates too low to account for the rates at which that the aggregates syntrophically metabolized ethanol, an important component of the reactor influent. Geobacter species comprised 25% of 16S rRNA gene sequences recovered from the aggregates, suggesting that Geobacter species may have contributed to some but probably not all of the aggregate conductivity. Microorganisms most closely related to the acetate-utilizing Methanosaeta concilii accounted for more than 90% of the sequences that could be assigned to methane producers, consistent with the poor capacity for hydrogen and formate utilization. These results demonstrate for the first time that methanogenic wastewater aggregates can be electrically conductive and suggest that direct interspecies electron transfer could be an important mechanism for electron exchange in some methanogenic systems.
MnO2-graphene nanosheets wrapped mesoporous carbon/sulfur composite for lithium-sulfur batteries
NASA Astrophysics Data System (ADS)
Li, Zhengzheng
2018-02-01
MnO2-graphene nanosheets wrapped mesoporous carbon/sulfur (MGN@MC/S) composite is successfully synthesized derived from metal-organic frameworks and investigated as cathode for lithium-ion batteries. Used as cathode, MGN@MC/S composite possesses electronic conductivity network for redox electron transfer and strong chemical bonding to lithium polysulfides, which enables low capacity loss to be achieved. MGN@MC/S cathodes exhibit high reversible capacity of 1475 mA h g-1 at 0.1 C and an ultra-low capacity fading of 0.042% per cycle at 1 C over 450 cycles.
Hoben, John P.; Lubner, Carolyn E.; Ratzloff, Michael W.; ...
2017-06-14
Flavin-based electron transfer bifurcation is emerging as a fundamental and powerful mechanism for conservation and deployment of electrochemical energy in enzymatic systems. In this process, a pair of electrons is acquired at intermediate reduction potential (i.e. intermediate reducing power) and each electron is passed to a different acceptor, one with lower and the other with higher reducing power, leading to 'bifurcation'. It is believed that a strongly reducing semiquinone species is essential for this process, and it is expected that this species should be kinetically short-lived. We now demonstrate that presence of a short-lived anionic flavin semiquinone (ASQ) is notmore » sufficient to infer existence of bifurcating activity, although such a species may be necessary for the process. We have used transient absorption spectroscopy to compare the rates and mechanisms of decay of ASQ generated photochemically in bifurcating NADH-dependent ferredoxin-NADP + oxidoreductase and the non-bifurcating flavoproteins nitroreductase, NADH oxidase and flavodoxin. We found that different mechanisms dominate ASQ decay in the different protein environments, producing lifetimes ranging over two orders of magnitude. Capacity for electron transfer among redox cofactors vs. charge recombination with nearby donors can explain the range of ASQ lifetimes we observe. In conclusion, our results support a model wherein efficient electron propagation can explain the short lifetime of the ASQ of bifurcating NADH-dependent ferredoxin-NADP + oxidoreductase I, and can be an indication of capacity for electron bifurcation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoben, John P.; Lubner, Carolyn E.; Ratzloff, Michael W.
Flavin-based electron transfer bifurcation is emerging as a fundamental and powerful mechanism for conservation and deployment of electrochemical energy in enzymatic systems. In this process, a pair of electrons is acquired at intermediate reduction potential (i.e. intermediate reducing power) and each electron is passed to a different acceptor, one with lower and the other with higher reducing power, leading to 'bifurcation'. It is believed that a strongly reducing semiquinone species is essential for this process, and it is expected that this species should be kinetically short-lived. We now demonstrate that presence of a short-lived anionic flavin semiquinone (ASQ) is notmore » sufficient to infer existence of bifurcating activity, although such a species may be necessary for the process. We have used transient absorption spectroscopy to compare the rates and mechanisms of decay of ASQ generated photochemically in bifurcating NADH-dependent ferredoxin-NADP + oxidoreductase and the non-bifurcating flavoproteins nitroreductase, NADH oxidase and flavodoxin. We found that different mechanisms dominate ASQ decay in the different protein environments, producing lifetimes ranging over two orders of magnitude. Capacity for electron transfer among redox cofactors vs. charge recombination with nearby donors can explain the range of ASQ lifetimes we observe. In conclusion, our results support a model wherein efficient electron propagation can explain the short lifetime of the ASQ of bifurcating NADH-dependent ferredoxin-NADP + oxidoreductase I, and can be an indication of capacity for electron bifurcation.« less
Hoben, John P; Lubner, Carolyn E; Ratzloff, Michael W; Schut, Gerrit J; Nguyen, Diep M N; Hempel, Karl W; Adams, Michael W W; King, Paul W; Miller, Anne-Frances
2017-08-25
Flavin-based electron transfer bifurcation is emerging as a fundamental and powerful mechanism for conservation and deployment of electrochemical energy in enzymatic systems. In this process, a pair of electrons is acquired at intermediate reduction potential ( i.e. intermediate reducing power), and each electron is passed to a different acceptor, one with lower and the other with higher reducing power, leading to "bifurcation." It is believed that a strongly reducing semiquinone species is essential for this process, and it is expected that this species should be kinetically short-lived. We now demonstrate that the presence of a short-lived anionic flavin semiquinone (ASQ) is not sufficient to infer the existence of bifurcating activity, although such a species may be necessary for the process. We have used transient absorption spectroscopy to compare the rates and mechanisms of decay of ASQ generated photochemically in bifurcating NADH-dependent ferredoxin-NADP + oxidoreductase and the non-bifurcating flavoproteins nitroreductase, NADH oxidase, and flavodoxin. We found that different mechanisms dominate ASQ decay in the different protein environments, producing lifetimes ranging over 2 orders of magnitude. Capacity for electron transfer among redox cofactors versus charge recombination with nearby donors can explain the range of ASQ lifetimes that we observe. Our results support a model wherein efficient electron propagation can explain the short lifetime of the ASQ of bifurcating NADH-dependent ferredoxin-NADP + oxidoreductase I and can be an indication of capacity for electron bifurcation.
NASA Astrophysics Data System (ADS)
Ji, Pengfei; Zhang, Yuwen
2016-03-01
On the basis of ab initio quantum mechanics (QM) calculation, the obtained electron heat capacity is implemented into energy equation of electron subsystem in two temperature model (TTM). Upon laser irradiation on the copper film, energy transfer from the electron subsystem to the lattice subsystem is modeled by including the electron-phonon coupling factor in molecular dynamics (MD) and TTM coupled simulation. The results show temperature and thermal melting difference between the QM-MD-TTM integrated simulation and pure MD-TTM coupled simulation. The successful construction of the QM-MD-TTM integrated simulation provides a general way that is accessible to other metals in laser heating.
Zhu, Nan; Zheng, Kaibo; Karki, Khadga J.; Abdellah, Mohamed; Zhu, Qiushi; Carlson, Stefan; Haase, Dörthe; Žídek, Karel; Ulstrup, Jens; Canton, Sophie E.; Pullerits, Tõnu; Chi, Qijin
2015-01-01
Quantum dots (QDs) and graphene are both promising materials for the development of new-generation optoelectronic devices. Towards this end, synergic assembly of these two building blocks is a key step but remains a challenge. Here, we show a one-step strategy for organizing QDs in a graphene matrix via interfacial self-assembly, leading to the formation of sandwiched hybrid QD-graphene nanofilms. We have explored structural features, electron transfer kinetics and photocurrent generation capacity of such hybrid nanofilms using a wide variety of advanced techniques. Graphene nanosheets interlink QDs and significantly improve electronic coupling, resulting in fast electron transfer from photoexcited QDs to graphene with a rate constant of 1.3 × 109 s−1. Efficient electron transfer dramatically enhances photocurrent generation in a liquid-junction QD-sensitized solar cell where the hybrid nanofilm acts as a photoanode. We thereby demonstrate a cost-effective method to construct large-area QD-graphene hybrid nanofilms with straightforward scale-up potential for optoelectronic applications. PMID:25996307
NASA Astrophysics Data System (ADS)
Zhu, Nan; Zheng, Kaibo; Karki, Khadga J.; Abdellah, Mohamed; Zhu, Qiushi; Carlson, Stefan; Haase, Dörthe; Žídek, Karel; Ulstrup, Jens; Canton, Sophie E.; Pullerits, Tõnu; Chi, Qijin
2015-05-01
Quantum dots (QDs) and graphene are both promising materials for the development of new-generation optoelectronic devices. Towards this end, synergic assembly of these two building blocks is a key step but remains a challenge. Here, we show a one-step strategy for organizing QDs in a graphene matrix via interfacial self-assembly, leading to the formation of sandwiched hybrid QD-graphene nanofilms. We have explored structural features, electron transfer kinetics and photocurrent generation capacity of such hybrid nanofilms using a wide variety of advanced techniques. Graphene nanosheets interlink QDs and significantly improve electronic coupling, resulting in fast electron transfer from photoexcited QDs to graphene with a rate constant of 1.3 × 109 s-1. Efficient electron transfer dramatically enhances photocurrent generation in a liquid-junction QD-sensitized solar cell where the hybrid nanofilm acts as a photoanode. We thereby demonstrate a cost-effective method to construct large-area QD-graphene hybrid nanofilms with straightforward scale-up potential for optoelectronic applications.
New free radicals to measure antiradical capacity: a theoretical study.
León-Carmona, Jorge Rafael; Martínez, Ana; Galano, Annia
2014-08-28
A new family of free radicals, that are soluble in water and stable at all pH values, were recently synthesized and used to assess the antiradical capacity of several polyphenols. In the present work, density functional calculations were used to investigate the single electron transfer reactions between these new free radicals and polyphenols in aqueous solution. The quantification of the antiradical capacity is a challenge, particularly for polyphenols, since they become unstable under experimental conditions. It was found that the electron transfer from polyphenols to the newly developed free radicals can be used to assess the efficiency of this kind of compound for preventing oxidative stress. Since one of the free radicals can be deprotonated under experimental conditions, this newly synthesized radical can help distinguish more clearly between different antiradical compounds with similar antioxidant capacity by modifying the pH in the experiments. The results reported here are in good agreement with the available experimental data and allowed making recommendations about possible experimental conditions in the design of antioxidant assays using the investigated radicals.
Vanlerberghe, G C; McIntosh, L
1992-09-01
Suspension cells of NT1 tobacco (Nicotiana tabacum L. cv bright yellow) have been used to study the effect of growth temperature on the CN-resistant, salicylhydroxamic acid-sensitive alternative pathway of respiration. Mitochondria isolated from cells maintained at 30 degrees C had a low capacity to oxidize succinate via the alternative pathway, whereas mitochondria isolated from cells 24 h after transfer to 18 degrees C displayed, on average, a 5-fold increase in this capacity (from 7 to 32 nanoatoms oxygen per milligram protein per minute). This represented an increase in alternative pathway capacity from 18 to 45% of the total capacity of electron transport. This increased capacity was lost upon transfer of cells back to 30 degrees C. A monoclonal antibody to the terminal oxidase of the alternative pathway (the alternative oxidase) from Sauromatum guttatum (T.E. Elthon, R.L. Nickels, L. McIntosh [1989] Plant Physiology 89: 1311-1317) recognized a 35-kilodalton mitochondrial protein in tobacco. There was an excellent correlation between the capacity of the alternative path in isolated tobacco mitochondria and the levels of this 35-kilodalton alternative oxidase protein. Cycloheximide could inhibit both the increased level of the 35-kilodalton alternative oxidase protein and the increased alternative pathway capacity normally seen upon transfer to 18 degrees C. We conclude that transfer of tobacco cells to the lower temperature increases the capacity of the alternative pathway due, at least in part, to de novo synthesis of the 35-kilodalton alternative oxidase protein.
Guimarães Drummond E Silva, Fernanda; Miralles, Beatriz; Hernández-Ledesma, Blanca; Amigo, Lourdes; Iglesias, Amadeu Hoshi; Reyes Reyes, Felix Guillermo; Netto, Flavia Maria
2017-02-01
The impact of the naturally present phenolic compounds and/or proteins on the antioxidant capacity of flaxseed products (phenolic fraction, protein concentrates, and hydrolysates) before and after simulated gastrointestinal digestion was studied. For that, whole and phenolic reduced products were assessed. Four glycosylated phenolic compounds (secoisolariciresinol and ferulic, p-coumaric, and caffeic acids) were identified in flaxseed products. Phenolic fraction exerts the highest antioxidant capacity that increased by alkaline hydrolysis and by simulated gastrointestinal digestion. The action of Alcalase and digestive enzymes resulted in an increase of the antioxidant capacity of whole and phenolic reduced products. Principal component analysis showed that proteinaceous samples act as antioxidant is by H + transfer, while those samples containing phenolic compounds exert their effects by both electron donation and H + transfer mechanisms. Protein/peptide-phenolic complexation, confirmed by fluorescence spectra, exerted a positive effect on the antioxidant capacity, mainly in protein concentrates.
Vanlerberghe, Greg C.; McIntosh, Lee
1992-01-01
Suspension cells of NT1 tobacco (Nicotiana tabacum L. cv bright yellow) have been used to study the effect of growth temperature on the CN-resistant, salicylhydroxamic acid-sensitive alternative pathway of respiration. Mitochondria isolated from cells maintained at 30°C had a low capacity to oxidize succinate via the alternative pathway, whereas mitochondria isolated from cells 24 h after transfer to 18°C displayed, on average, a 5-fold increase in this capacity (from 7 to 32 nanoatoms oxygen per milligram protein per minute). This represented an increase in alternative pathway capacity from 18 to 45% of the total capacity of electron transport. This increased capacity was lost upon transfer of cells back to 30°C. A monoclonal antibody to the terminal oxidase of the alternative pathway (the alternative oxidase) from Sauromatum guttatum (T.E. Elthon, R.L. Nickels, L. McIntosh [1989] Plant Physiology 89: 1311-1317) recognized a 35-kilodalton mitochondrial protein in tobacco. There was an excellent correlation between the capacity of the alternative path in isolated tobacco mitochondria and the levels of this 35-kilodalton alternative oxidase protein. Cycloheximide could inhibit both the increased level of the 35-kilodalton alternative oxidase protein and the increased alternative pathway capacity normally seen upon transfer to 18°C. We conclude that transfer of tobacco cells to the lower temperature increases the capacity of the alternative pathway due, at least in part, to de novo synthesis of the 35-kilodalton alternative oxidase protein. Images Figure 3 Figure 4 PMID:16652932
Yu, Linpeng; Yuan, Yong; Tang, Jia; Wang, Yueqiang; Zhou, Shungui
2015-01-01
The reductive dechlorination of pentachlorophenol (PCP) by Geobacter sulfurreducens in the presence of different biochars was investigated to understand how biochars affect the bioreduction of environmental contaminants. The results indicated that biochars significantly accelerate electron transfer from cells to PCP, thus enhancing reductive dechlorination. The promotion effects of biochar (as high as 24-fold) in this process depend on its electron exchange capacity (EEC) and electrical conductivity (EC). A kinetic model revealed that the surface redox-active moieties (RAMs) and EC of biochar (900 °C) contributed to 56% and 41% of the biodegradation rate, respectively. This work demonstrates that biochars are efficient electron mediators for the dechlorination of PCP and that both the EC and RAMs of biochars play important roles in the electron transfer process. PMID:26592958
Gao, Yang; Hassett, Daniel J.; Choi, Seokheun
2017-01-01
Electrogenicity, or bacterial electron transfer capacity, is an important application which offers environmentally sustainable advances in the fields of biofuels, wastewater treatment, bioremediation, desalination, and biosensing. Significant boosts in this technology can be achieved with the growth of synthetic biology that manipulates microbial electron transfer pathways, thereby potentially significantly improving their electrogenic potential. There is currently a need for a high-throughput, rapid, and highly sensitive test array to evaluate the electrogenic properties of newly discovered and/or genetically engineered bacterial species. In this work, we report a single-sheet, paper-based electrofluidic (incorporating both electronic and fluidic structure) screening platform for rapid, sensitive, and potentially high-throughput characterization of bacterial electrogenicity. This novel screening array uses (i) a commercially available wax printer for hydrophobic wax patterning on a single sheet of paper and (ii) water-dispersed electrically conducting polymer mixture, poly(3,4-ethylenedioxythiophene):polystyrene sulfonate, for full integration of electronic and fluidic components into the paper substrate. The engineered 3-D, microporous, hydrophilic, and conductive paper structure provides a large surface area for efficient electron transfer. This results in rapid and sensitive power assessment of electrogenic bacteria from a microliter sample volume. We validated the effectiveness of the sensor array using hypothesis-driven genetically modified Pseudomonas aeruginosa mutant strains. Within 20 min, we observed that the sensor platform successfully measured the electricity-generating capacities of five isogenic mutants of P. aeruginosa while distinguishing their differences from genetically unmodified bacteria. PMID:28798914
Room Temperature Deposition Processes Mediated By Ultrafast Photo-Excited Hot Electrons
2014-01-30
mechanical through resonant energy transfer. The average electron temperature (Tel) during τ2 evolves as energy is lost through optical and acoustic ...through ballistic collisions and acoustic phonons. The large difference in heat capacities between electrons and the substrate leads to negligible...temperature pyrometer indicated only a ~30oC temperature gradient between the thermocouple location and the topside of the sample which faced the
Direct Interspecies Electron Transfer in Anaerobic Digestion: A Review.
Dubé, Charles-David; Guiot, Serge R
2015-01-01
Direct interspecies electrons transfer (DIET) is a syntrophic metabolism in which free electrons flow from one cell to another without being shuttled by reduced molecules such as molecular hydrogen or formate. As more and more microorganisms show a capacity for electron exchange, either to export or import them, it becomes obvious that DIET is a syntrophic metabolism that is much more present in nature than previously thought. This article reviews literature related to DIET, specifically in reference to anaerobic digestion. Anaerobic granular sludge, a biofilm, is a specialized microenvironment where syntrophic bacterial and archaeal organisms grow together in close proximity. Exoelectrogenic bacteria degrading organic substrates or intermediates need an electron sink and electrotrophic methanogens represent perfect partners to assimilate those electrons and produce methane. The granule extracellular polymeric substances by making the biofilm matrix more conductive, play a role as electrons carrier in DIET.
Nickel hydroxide positive electrode for alkaline rechargeable battery
Young, Kwo; Wang, Lixin; Mays, William; Reichman, Benjamin; Chao-Ian, Hu; Wong, Diana; Nei, Jean
2018-04-03
Certain nickel hydroxide active cathode materials for use in alkaline rechargeable batteries are capable of transferring >1.3 electrons per Ni atom under reversible electrochemical conditions. The specific capacity of the nickel hydroxide active materials is for example .gtoreq.325 mAh/g. The cathode active materials exhibit an additional discharge plateau near 0.8 V vs. a metal hydride (MH) anode. Ni in an oxidation state of less than 2, such as Ni.sup.1+, is able to participate in electrochemical reactions when using the present cathode active materials. It is possible that up to 2.3 electrons, up to 2.5 electrons or more may be transferred per Ni atom under electrochemical conditions.
Nickel hydroxide positive electrode for alkaline rechargeable battery
Young, Kwo; Wang, Lixin; Mays, William; Reichman, Benjamin; Chao-Ian, Hu; Wong, Diana; Nei, Jean
2018-02-20
Certain nickel hydroxide active cathode materials for use in alkaline rechargeable batteries are capable of transferring >1.3 electrons per Ni atom under reversible electrochemical conditions. The specific capacity of the nickel hydroxide active materials is for example .gtoreq.325 mAh/g. The cathode active materials exhibit an additional discharge plateau near 0.8 V vs. a metal hydride (MH) anode. Ni in an oxidation state of less than 2, such as Ni.sup.1+, is able to participate in electrochemical reactions when using the present cathode active materials. It is possible that up to 2.3 electrons, up to 2.5 electrons or more may be transferred per Ni atom under electrochemical conditions.
Scalable transfer of vertical graphene nanosheets for flexible supercapacitor applications
NASA Astrophysics Data System (ADS)
Sahoo, Gopinath; Ghosh, Subrata; Polaki, S. R.; Mathews, Tom; Kamruddin, M.
2017-10-01
Vertical graphene nanosheets (VGN) are the material of choice for application in next-generation electronic devices. The growing demand for VGN-based flexible devices for the electronics industry brings in restriction on VGN growth temperature. The difficulty associated with the direct growth of VGN on flexible substrates can be overcome by adopting an effective strategy of transferring the well-grown VGN onto arbitrary flexible substrates through a soft chemistry route. In the present study, we report an inexpensive and scalable technique for the polymer-free transfer of VGN onto arbitrary substrates without disrupting its morphology, structure, and properties. After transfer, the morphology, chemical structure, and electrical properties are analyzed by scanning electron microscopy, Raman spectroscopy, x-ray photoelectron spectroscopy, and four-probe resistive methods, respectively. The wetting properties are studied from the water contact angle measurements. The observed results indicate the retention of morphology, surface chemistry, structure, and electronic properties. Furthermore, the storage capacity of the transferred VGN-based binder-free and current collector-free flexible symmetric supercapacitor device is studied. A very low sheet resistance of 670 Ω/□ and excellent supercapacitance of 158 μF cm-2 with 86% retention after 10 000 cycles show the prospect of the damage-free VGN transfer approach for the fabrication of flexible nanoelectronic devices.
Lemieux, Hélène; Blier, Pierre U; Gnaiger, Erich
2017-06-06
Fuel substrate supply and oxidative phosphorylation are key determinants of muscle performance. Numerous studies of mammalian mitochondria are carried out (i) with substrate supply that limits electron flow, and (ii) far below physiological temperature. To analyze potentially implicated biases, we studied mitochondrial respiratory control in permeabilized mouse myocardial fibers using high-resolution respirometry. The capacity of oxidative phosphorylation at 37 °C was nearly two-fold higher when fueled by physiological substrate combinations reconstituting tricarboxylic acid cycle function, compared with electron flow measured separately through NADH to Complex I or succinate to Complex II. The relative contribution of the NADH pathway to physiological respiratory capacity increased with a decrease in temperature from 37 to 25 °C. The apparent excess capacity of cytochrome c oxidase above physiological pathway capacity increased sharply under hypothermia due to limitation by NADH-linked dehydrogenases. This mechanism of mitochondrial respiratory control in the hypothermic mammalian heart is comparable to the pattern in ectotherm species, pointing towards NADH-linked mt-matrix dehydrogenases and the phosphorylation system rather than electron transfer complexes as the primary drivers of thermal sensitivity at low temperature. Delineating the link between stress and remodeling of oxidative phosphorylation is important for understanding metabolic perturbations in disease evolution and cardiac protection.
Shewanella secretes flavins that mediate extracellular electron transfer
Marsili, Enrico; Baron, Daniel B.; Shikhare, Indraneel D.; Coursolle, Dan; Gralnick, Jeffrey A.; Bond, Daniel R.
2008-01-01
Bacteria able to transfer electrons to metals are key agents in biogeochemical metal cycling, subsurface bioremediation, and corrosion processes. More recently, these bacteria have gained attention as the transfer of electrons from the cell surface to conductive materials can be used in multiple applications. In this work, we adapted electrochemical techniques to probe intact biofilms of Shewanella oneidensis MR-1 and Shewanella sp. MR-4 grown by using a poised electrode as an electron acceptor. This approach detected redox-active molecules within biofilms, which were involved in electron transfer to the electrode. A combination of methods identified a mixture of riboflavin and riboflavin-5′-phosphate in supernatants from biofilm reactors, with riboflavin representing the dominant component during sustained incubations (>72 h). Removal of riboflavin from biofilms reduced the rate of electron transfer to electrodes by >70%, consistent with a role as a soluble redox shuttle carrying electrons from the cell surface to external acceptors. Differential pulse voltammetry and cyclic voltammetry revealed a layer of flavins adsorbed to electrodes, even after soluble components were removed, especially in older biofilms. Riboflavin adsorbed quickly to other surfaces of geochemical interest, such as Fe(III) and Mn(IV) oxy(hydr)oxides. This in situ demonstration of flavin production, and sequestration at surfaces, requires the paradigm of soluble redox shuttles in geochemistry to be adjusted to include binding and modification of surfaces. Moreover, the known ability of isoalloxazine rings to act as metal chelators, along with their electron shuttling capacity, suggests that extracellular respiration of minerals by Shewanella is more complex than originally conceived. PMID:18316736
Zhang, Di; Liu, Yixiang; Chu, Le; Wei, Ying; Wang, Dan; Cai, Shengbao; Zhou, Feng; Ji, Baoping
2013-02-28
Various radical-scavenging activities (RSA) assessment assays are based on discrete mechanisms and on using different radical sources. Few studies have analyzed the structural significance of flavonoids in their peroxyl radical activities in the oxygen radical absorbance capacity (ORAC) assay. In this study, the RSA of 13 flavonoids in two ORAC assays with different probes (fluorescein and pyrogallol red) were investigated. Neither O-H bond dissociation enthalpy nor ionization potential values of flavonoids correlated with ORAC values. The proton affinity (PA) and electron transfer enthalpy (ETE) values, which were obtained via the sequential proton-loss electron-transfer mechanism, were significantly associated with the ORAC(pyrogallol Red) and ORAC(fluorescein) assays, respectively. Thus, PA represented the kinetic aspect of RSA, whereas ETE reflected the RSA extent. The PA values and the most acidic sites of flavonoids were affected by intramolecular electronic interactions, H-bonding, 3-hydroxyl group in the C ring, and conjugation systems. The stability of the deprotonated flavonoid determined the ETE value. Apart from the PA and ETE values in the first oxidation step of flavonoids, the PA and ETE values in the second oxidation step also affected the ORAC values of flavonoids.
Tan, Wenbing; Xi, Beidou; Wang, Guoan; Jiang, Jie; He, Xiaosong; Mao, Xuhui; Gao, Rutai; Huang, Caihong; Zhang, Hui; Li, Dan; Jia, Yufu; Yuan, Ying; Zhao, Xinyu
2017-03-21
The electron transfer capacities (ETCs) of soil humic substances (HSs) are linked to the type and abundance of redox-active functional moieties in their structure. Natural temperature can affect the chemical structure of natural organic matter by regulating their oxidative transformation and degradation in soil. However, it is unclear if there is a direct correlation between ETC of soil HS and mean annual temperature. In this study, we assess the response of the electron-accepting and -donating capacities (EAC and EDC) of soil HSs to temperature by analyzing HSs extracted from soil set along glacial-interglacial cycles through loess-palaeosol sequences and along natural temperature gradients through latitude and altitude transects. We show that the EAC and EDC of soil HSs increase and decrease, respectively, with increasing temperature. Increased temperature facilitates the prevalence of oxidative degradation and transformation of HS in soils, thus potentially promoting the preferentially oxidative degradation of phenol moieties of HS or the oxidative transformation of electron-donating phenol moieties to electron-accepting quinone moieties in the HS structure. Consequently, the EAC and EDC of HSs in soil increase and decrease, respectively. The results of this study could help to understand biogeochemical processes, wherein the redox functionality of soil organic matter is involved in the context of increasing temperature.
Touriño, Sonia; Lizárraga, Daneida; Carreras, Anna; Lorenzo, Sonia; Ugartondo, Vanessa; Mitjans, Montserrat; Vinardell, María Pilar; Juliá, Luis; Cascante, Marta; Torres, Josep Lluís
2008-03-01
Witch hazel ( Hammamelis virginiana) bark is a rich source of both condensed and hydrolizable oligomeric tannins. From a polyphenolic extract soluble in both ethyl acetate and water, we have generated fractions rich in pyrogallol-containing polyphenols (proanthocyanidins, gallotannins, and gallates). The mixtures were highly active as free radical scavengers against ABTS, DPPH (hydrogen donation and electron transfer), and HNTTM (electron transfer). They were also able to reduce the newly introduced TNPTM radical, meaning that they included some highly reactive components. Witch hazel phenolics protected red blood cells from free radical-induced hemolysis and were mildly cytotoxic to 3T3 fibroblasts and HaCat keratinocytes. They also inhibited the proliferation of tumoral SK-Mel 28 melanoma cells at lower concentrations than grape and pine procyanidins. The high content in pyrogallol moieties may be behind the effect of witch hazel phenolics on skin cells. Because the most cytotoxic and antiproliferative mixtures were also the most efficient as electron transfer agents, we hypothesize that the final putative antioxidant effect of polyphenols may be in part attributed to the stimulation of defense systems by mild prooxidant challenges provided by reactive oxygen species generated through redox cycling.
Bruck, Andrea M; Yin, Jiefu; Tong, Xiao; Takeuchi, Esther S; Takeuchi, Kenneth J; Szczepura, Lisa F; Marschilok, Amy C
2018-05-07
The cluster-based material Re 6 Se 8 Cl 2 is a two-dimensional ternary material with cluster-cluster bonding across the a and b axes capable of multiple electron transfer accompanied by ion insertion across the c axis. The Li/Re 6 Se 8 Cl 2 system showed reversible electron transfer from 1 to 3 electron equivalents (ee) at high current densities (88 mA/g). Upon cycling to 4 ee, there was evidence of capacity degradation over 50 cycles associated with the formation of an organic solid-electrolyte interface (between 1.45 and 1 V vs Li/Li + ). This investigation highlights the ability of cluster-based materials with two-dimensional cluster bonding to be used in applications such as energy storage, showing structural stability and high rate capability.
Richter, Hanno; Lanthier, Martin; Nevin, Kelly P; Lovley, Derek R
2007-08-01
The ability of Pelobacter carbinolicus to oxidize electron donors with electron transfer to the anodes of microbial fuel cells was evaluated because microorganisms closely related to Pelobacter species are generally abundant on the anodes of microbial fuel cells harvesting electricity from aquatic sediments. P. carbinolicus could not produce current in a microbial fuel cell with electron donors which support Fe(III) oxide reduction by this organism. Current was produced using a coculture of P. carbinolicus and Geobacter sulfurreducens with ethanol as the fuel. Ethanol consumption was associated with the transitory accumulation of acetate and hydrogen. G. sulfurreducens alone could not metabolize ethanol, suggesting that P. carbinolicus grew in the fuel cell by converting ethanol to hydrogen and acetate, which G. sulfurreducens oxidized with electron transfer to the anode. Up to 83% of the electrons available in ethanol were recovered as electricity and in the metabolic intermediate acetate. Hydrogen consumption by G. sulfurreducens was important for ethanol metabolism by P. carbinolicus. Confocal microscopy and analysis of 16S rRNA genes revealed that half of the cells growing on the anode surface were P. carbinolicus, but there was a nearly equal number of planktonic cells of P. carbinolicus. In contrast, G. sulfurreducens was primarily attached to the anode. P. carbinolicus represents the first Fe(III) oxide-reducing microorganism found to be unable to produce current in a microbial fuel cell, providing the first suggestion that the mechanisms for extracellular electron transfer to Fe(III) oxides and fuel cell anodes may be different.
Electron trapping data storage system and applications
NASA Technical Reports Server (NTRS)
Brower, Daniel; Earman, Allen; Chaffin, M. H.
1993-01-01
The advent of digital information storage and retrieval has led to explosive growth in data transmission techniques, data compression alternatives, and the need for high capacity random access data storage. Advances in data storage technologies are limiting the utilization of digitally based systems. New storage technologies will be required which can provide higher data capacities and faster transfer rates in a more compact format. Magnetic disk/tape and current optical data storage technologies do not provide these higher performance requirements for all digital data applications. A new technology developed at the Optex Corporation out-performs all other existing data storage technologies. The Electron Trapping Optical Memory (ETOM) media is capable of storing as much as 14 gigabytes of uncompressed data on a single, double-sided 54 inch disk with a data transfer rate of up to 12 megabits per second. The disk is removable, compact, lightweight, environmentally stable, and robust. Since the Write/Read/Erase (W/R/E) processes are carried out 100 percent photonically, no heating of the recording media is required. Therefore, the storage media suffers no deleterious effects from repeated Write/Read/Erase cycling.
Insights into the redox components of dissolved organic matters during stabilization process.
Yuan, Ying; Xi, Bei-Dou; He, Xiao-Song; Ma, Yan; Zhang, Hui; Li, Dan; Zhao, Xin-Yu
2018-05-01
The changes of dissolved organic matter (DOM) components during stabilization process play significant effects on its redox properties but are little reported. Composting is a stabilization process of DOM, during which both the components and electron transfer capacities (ETCs) of DOM change. The redox components within compost-derived DOM during the stabilization process are investigated in this study. The results show that compost-derived DOM contained protein-like, fulvic-like, and humic-like components. The protein-like component decreases during composting, whereas the fulvic- and humic-like components increase during the process. The electron-donating capacity (EDC), electron-accepting capacity (EAC), and ETC of compost-derived DOM all increase during composting but their correlations with the components presented significant difference. The humic-like components were the main functional component responsible for both EDC and ETC, whereas the protein- and fluvic-like components show negative effects with the EAC, EDC, and ETC, suggesting that the components within DOM have specific redox properties during the stabilization process. These findings are very meaningful for better understanding the geochemical behaviors of DOM in the environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Q.S.; Barkovskii, A.L.; Adriaens, P.
1999-11-01
The susceptibility of dioxins to dissolved organic carbon (DOC)-mediated dechlorination reactions was investigated using 1,2,3,4,6,7,9-heptachlorodibenzo-p-dioxin (HpCDD), Aldrich humic acid (AHA), and polymaleic acid (PMA) as model compounds. The dechlorination yields were on the order of 4--20% which, when normalized to phenolic acidity, was comparable to yields observed in the presence of the humic constituents catechol and resorcinol. Based on the ratio of dechlorination yields as a function of phenolic acidity and electron transfer capacity, differences in electron transfer efficiency to dioxins are likely combined effects of specific interactions with the functional groups and nonspecific hydrophobic interactions. Hexa- and pentaCDD homologuesmore » were dominant in all incubations, and diCDD constituted the final product of dechlorination. The rates of appearance of lesser chlorinated products were similar to those observed in sediment systems and followed thermodynamic considerations as they decreased with a decrease in level of chlorination. Generally, both absolute and phenolic acidity-normalized rate constants for AHA-mediated reactions were up to 2-fold higher than those effected by PMA. These results indicate that the electron shuttling capacity of sediment DOC may significantly affect the fate of dioxins, in part through dechlorination reactions.« less
NASA Astrophysics Data System (ADS)
Kang, Jin-Gu; Ko, Young-Dae; Park, Jae-Gwan; Kim, Dong-Wan
2008-10-01
Transition metal oxides have been suggested as innovative, high-energy electrode materials for lithium-ion batteries because their electrochemical conversion reactions can transfer two to six electrons. However, nano-sized transition metal oxides, especially Co3O4, exhibit drastic capacity decay during discharge/charge cycling, which hinders their practical use in lithium-ion batteries. Herein, we prepared nano-sized Co3O4 with high crystallinity using a simple citrate-gel method and used electrochemical impedance spectroscopy method to examine the origin for the drastic capacity fading observed in the nano-sized Co3O4 anode system. During cycling, AC impedance responses were collected at the first discharged state and at every subsequent tenth discharged state until the 100th cycle. By examining the separable relaxation time of each electrochemical reaction and the goodness-of-fit results, a direct relation between the charge transfer process and cycling performance was clearly observed.
Carreras, Anna; Mateos-Martín, María Luisa; Velázquez-Palenzuela, Amado; Brillas, Enric; Sánchez-Tena, Susana; Cascante, Marta; Juliá, Luis; Torres, Josep Lluís
2012-02-22
Plant polyphenols may be free radical scavengers or generators, depending on their nature and concentration. This dual effect, mediated by electron transfer reactions, may contribute to their influence on cell viability. This study used two stable radicals (tris(2,3,5,6-tetrachloro-4-nitrophenyl)methyl (TNPTM) and tris(2,4,6-trichloro-3,5-dinitrophenyl)methyl (HNTTM)) sensitive only to electron transfer reduction reactions to monitor the redox properties of polyphenols (punicalagin and catechins) that contain phenolic hydroxyls with different reducing capacities. The use of the two radicals reveals that punicalagin's substructures consisting of gallate esters linked together by carbon-carbon (C-C) bonds are more reactive than simple gallates and less reactive than the pyrogallol moiety of green tea catechins. The most reactive hydroxyls, detected by TNPTM, are present in the compounds that affect HT-29 cell viability the most. TNPTM reacts with C-C-linked gallates and pyrogallol and provides a convenient way to detect potentially beneficial polyphenols from natural sources.
Cobamide-mediated enzymatic reductive dehalogenation via long-range electron transfer
Kunze, Cindy; Bommer, Martin; Hagen, Wilfred R.; Uksa, Marie; Dobbek, Holger; Schubert, Torsten; Diekert, Gabriele
2017-01-01
The capacity of metal-containing porphyrinoids to mediate reductive dehalogenation is implemented in cobamide-containing reductive dehalogenases (RDases), which serve as terminal reductases in organohalide-respiring microbes. RDases allow for the exploitation of halogenated compounds as electron acceptors. Their reaction mechanism is under debate. Here we report on substrate–enzyme interactions in a tetrachloroethene RDase (PceA) that also converts aryl halides. The shape of PceA’s highly apolar active site directs binding of bromophenols at some distance from the cobalt and with the hydroxyl substituent towards the metal. A close cobalt–substrate interaction is not observed by electron paramagnetic resonance spectroscopy. Nonetheless, a halogen substituent para to the hydroxyl group is reductively eliminated and the path of the leaving halide is traced in the structure. Based on these findings, an enzymatic mechanism relying on a long-range electron transfer is concluded, which is without parallel in vitamin B12-dependent biochemistry and represents an effective mode of RDase catalysis. PMID:28671181
Cobamide-mediated enzymatic reductive dehalogenation via long-range electron transfer.
Kunze, Cindy; Bommer, Martin; Hagen, Wilfred R; Uksa, Marie; Dobbek, Holger; Schubert, Torsten; Diekert, Gabriele
2017-07-03
The capacity of metal-containing porphyrinoids to mediate reductive dehalogenation is implemented in cobamide-containing reductive dehalogenases (RDases), which serve as terminal reductases in organohalide-respiring microbes. RDases allow for the exploitation of halogenated compounds as electron acceptors. Their reaction mechanism is under debate. Here we report on substrate-enzyme interactions in a tetrachloroethene RDase (PceA) that also converts aryl halides. The shape of PceA's highly apolar active site directs binding of bromophenols at some distance from the cobalt and with the hydroxyl substituent towards the metal. A close cobalt-substrate interaction is not observed by electron paramagnetic resonance spectroscopy. Nonetheless, a halogen substituent para to the hydroxyl group is reductively eliminated and the path of the leaving halide is traced in the structure. Based on these findings, an enzymatic mechanism relying on a long-range electron transfer is concluded, which is without parallel in vitamin B 12 -dependent biochemistry and represents an effective mode of RDase catalysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Praveena, R.; Sadasivam, K.
Synthetic antioxidants such as butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) are found to be toxic, hence non-carcinogenic naturally occurring radical scavengers especially flavonoids have gained considerable importance in the past two decades. In the present investigation, the radical scavenging activity of C-glycosyl flavonoids is evaluated using theoretical approach which could broaden its scope in therapeutic applications. Gas and solvent phase studies of structural and molecular characteristics of C-glycosyl flavonoid, isovitexin is investigated through hydrogen atom transfer mechanism (HAT), Electron transfer-proton transfer (ET–PT) and Sequential proton loss electron transfer (SPLET) by Density functional theory (DFT) using hybrid parameters. The computedmore » values of the adiabatic ionization potential, electron affinity, hardness, softness, electronegativity and electrophilic index indicate that isovitexin possess good radical scavenging activity. The behavior of different –OH groups in polyphenolic compounds is assessed by considering electronic effects of the neighbouring groups and the overall geometry of molecule which in turn helps in analyzing the antioxidant capacity of the polyphenolic molecule. The studies indicate that the H–atom abstraction from 4’–OH site is preferred during the radical scavenging process. From Mulliken spin density analysis and FMOs, B–ring is found to be more delocalized center and capable of electron donation. Comparison of antioxidant activity of vitexin and isovitexin leads to the conclusion that isovitexin acts as a better radical scavenger. This is an evidence for the importance of position of glucose unit in the flavonoid.« less
Li, Houfen; Yu, Hongtao; Quan, Xie; Chen, Shuo; Zhang, Yaobin
2016-01-27
Z-scheme photocatalytic system shows superiority in degradation of refractory pollutants and water splitting due to the high redox capacities caused by its unique charge transfer behaviors. As a key component of Z-scheme system, the electron mediator plays an important role in charge carrier migration. According to the energy band theory, we believe the interfacial energy band bendings facilitate the electron transfer via Z-scheme mechanism when the Fermi level of electron mediator is between the Fermi levels of Photosystem II (PS II) and Photosystem I (PS I), whereas charge transfer is inhibited in other cases as energy band barriers would form at the semiconductor-metal interfaces. Here, this inference was verified by the increased hydroxyl radical generation and improved photocurrent on WO3-Cu-gC3N4 (with the desired Fermi level structure), which were not observed on either WO3-Ag-gC3N4 or WO3-Au-gC3N4. Finally, photocatalytic degradation rate of 4-nonylphenol on WO3-Cu-gC3N4 was proved to be as high as 11.6 times than that of WO3-gC3N4, further demonstrating the necessity of a suitable electron mediator in Z-scheme system. This study provides scientific basis for rational construction of Z-scheme photocatalytic system.
NASA Astrophysics Data System (ADS)
Stuart, Jessica F.
The primary focus of this work has been to develop high-energy capacity batteries capable of undergoing multiple electron charge transfer redox reactions to address the growing demand for improved electrical energy storage systems that can be applied to a range of applications. As the levels of carbon dioxide (CO2) increase in the Earth's atmosphere, the effects on climate change become increasingly apparent. According to the Energy Information Administration (EIA), the U.S. electric power sector is responsible for the release of 2,039 million metric tons of CO2 annually, equating to 39% of total U.S. energy-related CO2 emissions. Both nationally and abroad, there are numerous issues associated with the generation and use of electricity aside from the overwhelming dependence on fossil fuels and the subsequent carbon emissions, including reliability of the grid and the utilization of renewable energies. Renewable energy makes up a relatively small portion of total energy contributions worldwide, accounting for only 13% of the 3,955 billion kilowatt-hours of electricity produced each year, as reported by the EIA. As the demand to reduce our dependence on fossils fuels and transition to renewable energy sources increases, cost effective large-scale electrical energy storage must be established for renewable energy to become a sustainable option for the future. A high capacity energy storage system capable of leveling the intermittent nature of energy sources such as solar, wind, and water into the electric grid and provide electricity at times of high demand will facilitate this transition. In 2008, the Licht Group presented the highest volumetric energy capacity battery, the vanadium diboride (VB2) air battery, exceedingly proficient in transferring eleven electrons per molecule. This body of work focuses on new developments to this early battery such as fundamentally understanding the net discharge mechanism of the system, evaluation of the properties and performance of nanoscopic anodic materials in addition to the previously developed macroscopic system, as well as the exploration of a high-energy capacity TiB 2/VB2 composite anode. However, the greatest challenge to this room temperature VB2 primary battery is to develop a means to electrochemically recharge the anodic material (how to reinsert the eleven electrons per molecule that are removed during the battery's discharge). Rechargeable batteries, such as the new molten air battery presented in this thesis, offer a high intrinsic capacity mode for energy storage and overcome problems such as the need for higher energy capacity, cost-effective batteries for a range of electronic, transportation, and large-scale power storage devices. Molten air batteries presented and discussed in this work are viable systems that provide a means to electrochemically recharge the VB2-air battery and deliver large-scale energy storage due to their scalability, location flexibility, construction from readily available resources, and offer increased energy storage capacity for the electric grid. One example is the VB2 molten air battery, which discharges according to: VB 2 + 11/4 O2 → 1/ 2 V2O5 + B2O3 (1). Previously, our group has shown that carbon dioxide can be captured from atmospheric air concentrations at solar efficiencies as high as 50%, and that carbon dioxide emissions associated with the production of several commodities can be electrochemically avoided in by the Solar Thermal Electrochemical Process (STEP). Utilizing this process, the carbon molten air battery relies on carbon dioxide directly from the air: Charging: CO2 (g) → C (solid) + O2 (g) (2) Discharging: C (solid) + O2 (g) → CO2 (g) (3). More specifically, in a molten carbonate electrolyte containing added oxide, such as lithium carbonate with lithium oxide, the four-electron charging reaction, Equation 2, approaches 100% faradic efficiency and can be described as the following two equations: O2- (dissolved) + CO2 (g) → CO 32- (molten) (2a) CO32- (molten) ?→ C (solid) + O2 (g) + O2- (dissolved) (2b). Thus, powered by the oxidation of carbon formed directly from the CO 2 in our earth's atmosphere, the carbon molten air battery is a viable system to provide large-scale energy storage. These batteries are rechargeable and have amongst the highest intrinsic battery storage capacities available. The electron charge transfer chemistry is demonstrated through three examples. These examples utilize iron, carbon, and vanadium diboride as reactive materials, each containing intrinsic volumetric energy capacities of 10,000 Wh/L for Fe to Fe (III), 19,000 Wh/L for C to CO2, and 27,000 Wh/L for VB2 to B2O3 and V2O 5, compared to 6,200 Wh/L for the lithium air battery.
Regenerable Cu-intercalated MnO2 layered cathode for highly cyclable energy dense batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Gautam G.; Gallaway, Joshua W.; Turney, Damon E.
2017-03-06
Manganese dioxide cathodes are inexpensive and have high theoretical capacity (based on two electrons) of 617 mAh g-1, making them attractive for low-cost, energy-dense batteries. They are used in non-rechargeable batteries with anodes like zinc. Only ~10% of the theoretical capacity is currently accessible in rechargeable alkaline systems. Attempts to access the full capacity using additives have been unsuccessful. We report a class of Bi-birnessite (a layered manganese oxide polymorph mixed with bismuth oxide (Bi2O3)) cathodes intercalated with Cu2+ that deliver near-full two-electron capacity reversibly for >6,000 cycles. The key to rechargeability lies in exploiting the redox potentials of Cumore » to reversibly intercalate into the Bi-birnessite-layered structure during its dissolution and precipitation process for stabilizing and enhancing its charge transfer characteristics. This process holds promise for other applications like catalysis and intercalation of metal ions into layered structures. A large prismatic rechargeable Zn-birnessite cell delivering ~140 Wh l-1 is shown.« less
Qin, Hejie; Li, Jinxiang; Yang, Hongyi; Pan, Bingcai; Zhang, Weiming; Guan, Xiaohong
2017-05-02
Although the electron selectivity (ES) of zerovalent iron (ZVI) for target contaminant and its utilization ratio (UR) decide the removal capacity of ZVI, little effort has been made to improve them. Taking selenate [Se(VI)] as a target contaminant, this study investigated the coupled influence of aeration gas and Fe(II) on the ES and UR of ZVI. Oxygen was necessary for effective removal of Se(VI) by ZVI without Fe(II) addition. Due to the application of 1.0 mM Fe(II), the ES of ZVI was increased from 3.2-3.6% to 6.2-6.8% and the UR of ZVI was improved by 5.0-19.4% under aerobic conditions, which resulted in a 100-180% increase in the Se(VI) removal capacity by ZVI. Se(VI) reduction by Fe 0 was a heterogeneous redox reaction, and the enrichment of Se(VI) on ZVI surface was the first step of electron transfer from Fe 0 core to Se(VI). Oxygen promoted the generation of iron (hydr)oxides, which facilitated the enrichment of Se(VI) on the ZVI particle surface. Therefore, the high oxygen fraction (25-50%) in the purging gas resulted in only a slight decrease in the ES of ZVI. Fe(II) addition resulted in a pH drop and promoted the generation of lepidocrocite and magnetite, which benefited Se(VI) adsorption and the following electron transfer from underlying Fe 0 to surface-located Se(VI).
Zhang, Xueqin; Guo, Kun; Shen, Dongsheng; Feng, Huajun; Wang, Meizhen; Zhou, Yuyang; Jia, Yufeng; Liang, Yuxiang; Zhou, Mengjiao
2017-08-01
Rather than the conventional concept of viewing conductive carbon black (CB) to be chemically inert in microbial electrochemical cells (MECs), here we confirmed the redox activity of CB for its feasibility as an electron sink in the microbial battery (MB). Acting as the cathode of a MB, the solid-state CB electrode showed the highest electron capacity equivalent of 18.58 ± 0.46 C/g for the unsintered one and the lowest capacity of 2.29 ± 0.48 C/g for the one sintered under 100% N 2 atmosphere. The capacity vibrations of CBs were strongly in coincidence with the abundances of C=O moiety caused by different pretreatments and it implied one plausible mechanism based on CB's surface functionality for its electron capturing. Once subjected to electron saturation, CB could be completely regenerated by different strategies in terms of electrochemical discharging or donating electrons to biologically-catalyzed nitrate reduction. Surface characterization also revealed that CB's regeneration fully depended on the reversible shift of C=O moiety, further confirming the functionality-based mechanism for CB's feasibility as the role of MB's cathode. Moreover, resilience tests demonstrated that CB cathode was robust for the multi-cycles charging-discharging operations. These results imply that CB is a promising alternative material for the solid-state cathode in MBs.
Discharging a Li-S battery with ultra-high sulphur content cathode using a redox mediator.
Kim, Kwi Ryong; Lee, Kug-Seung; Ahn, Chi-Yeong; Yu, Seung-Ho; Sung, Yung-Eun
2016-08-30
Lithium-sulphur batteries are under intense research due to the high specific capacity and low cost. However, several problems limit their commercialization. One of them is the insulating nature of sulphur, which necessitates a large amount of conductive agent and binder in the cathode, reducing the effective sulphur load as well as the energy density. Here we introduce a redox mediator, cobaltocene, which acts as an electron transfer agent between the conductive surface and the polysulphides in the electrolyte. We confirmed that cobaltocene could effectively convert polysulphides to Li2S using scanning electron microscope, X-ray absorption near-edge structure and in-situ X-ray diffraction studies. This redox mediator enabled excellent electrochemical performance in a cathode with ultra-high sulphur content (80 wt%). It delivered 400 mAh g(-1)cathode capacity after 50 cycles, which is equivalent to 800 mAh g(-1)S in a typical cathode with 50 wt% sulphur. Furthermore, the volumetric capacity was also dramatically improved.
NASA Astrophysics Data System (ADS)
Navas, Javier; Sánchez-Coronilla, Antonio; Martín, Elisa I.; Gómez-Villarejo, Roberto; Teruel, Miriam; Gallardo, Juan Jesús; Aguilar, Teresa; Alcántara, Rodrigo; Fernández-Lorenzo, Concha; Martín-Calleja, Joaquín
2017-04-01
In this work, nanofluids were prepared using commercial Cu nanoparticles and a commercial high temperature-heat transfer Fluid (eutectic mixture of diphenyl oxide and biphenyl) as the base fluid, which is used in concentrating solar power (CSP) plants. Different properties such as density, viscosity, heat capacity and thermal conductivity were characterized. Nanofluids showed enhanced heat transfer efficiency. In detail, the incorporation of Cu nanoparticles led to an increase of the heat capacity up to 14%. Also, thermal conductivity was increased up to 13%. Finally, the performance of the nanofluids prepared increased up to 11% according to the Dittus-Boelter correlation. On the other hand, equilibrium molecular dynamics simulation was used to model the experimental nanofluid system studied. Thermodynamic properties such as heat capacity and thermal conductivity were calculated and the results were compared with experimental data. The analysis of the radial function distributions (RDFs) and the inspection of the spatial distribution functions (SDFs) indicate the important role that plays the metal-oxygen interaction in the system. Dynamic properties such as the diffusion coefficients of base fluid and nanofluid were computed according to Einstein relation by computing the mean square displacement (MSD). Supplementary online material is available in electronic form at http://www.epjap.org
Giannakoudakis, Dimitrios A; Bandosz, Teresa J
2014-12-15
Zinc hydroxide/graphite oxide/AuNPs composites with various levels of complexity were synthesized using an in situ precipitation method. Then they were used as H2S adsorbents in visible light. The materials' surfaces were characterized before and after H2S adsorption by various physical and chemical methods (XRD, FTIR, thermal analysis, potentiometric titration, adsorption of nitrogen and SEM/EDX). Significant differences in surface features and synergistic effects were found depending on the materials' composition. Addition of graphite oxide and the deposition of gold nanoparticles resulted in a marked increase in the adsorption capacity in comparison with that on the zinc hydroxide and zinc hydroxide/AuNP. Addition of AuNPs to zinc hydroxide led to a crystalline ZnO/AuNP composite while the zinc hydroxide/graphite oxide/AuNP composite was amorphous. The ZnOH/GO/AuNPs composite exhibited the greatest H2S adsorption capacity due to the increased number of OH terminal groups and the conductive properties of GO that facilitated the electron transfer and consequently the formation of superoxide ions promoting oxidation of hydrogen sulfide. AuNPs present in the composite increased the conductivity, helped with electron transfer to oxygen, and prevented the fast recombination of the electrons and holes. Copyright © 2014 Elsevier Inc. All rights reserved.
Fang, B; Zhang, M; Ge, K S; Xing, H Z; Ren, F Z
2018-06-01
Previous studies have demonstrated that the anti-tumor α-lactalbumin-oleic acid complex (α-LA-OA) may target the glycolysis of tumor cells. However, few data are available regarding the effects of α-LA-OA on energy metabolism. In this study, we measured glycolysis and mitochondrial functions in HeLa cells in response to α-LA-OA using the XF flux analyzer (Seahorse Bioscience, North Billerica, MA). The gene expression of enzymes involved in glycolysis, tricarboxylic acid cycle, electron transfer chain, and ATP synthesis were also evaluated. Our results show that α-LA-OA significantly enhanced the basal glycolysis and glycolytic capacity. Mitochondrial oxidative phosphorylation, including the basal respiration, maximal respiration, spare respiratory capacity and ATP production were also improved in response to α-LA-OA. The enhanced mitochondrial functions maybe partly due to the increased capacity of utilizing fatty acids and glutamine as the substrate. However, the gene expressions of pyruvate kinase M2, lactate dehydrogenase A, aconitate hydratase, and isocitrate dehydrogenase 1 were inhibited, suggesting an insufficient ability for the glycolysis process and the tricarboxylic acid cycle. The increased expression of acetyl-coenzyme A acyltransferase 2, a central enzyme involved in the β-oxidation of fatty acids, would enhance the unbalance due to the decreased expression of electron transfer flavoprotein β subunit, which acts as the electron acceptor. These results indicated that α-LA-OA may induce oxidative stress due to conditions in which the ATP production is exceeding the energy demand. Our results may help clarify the mechanism of apoptosis induced by reactive oxygen species and mitochondrial destruction. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
dos Santos, A B; Traverse, J; Cervantes, F J; van Lier, J B
2005-01-05
The effect of temperature, hydraulic retention time (HRT) and the redox mediator anthraquinone-2,6-disulfonate (AQDS), on electron transfer and subsequent color removal from textile wastewater was assessed in mesophilic and thermophilic anaerobic bioreactors. The results clearly show that compared with mesophilic anaerobic treatment, thermophilic treatment at 55 degrees C is an effective approach for increasing the electron transfer capacity in bioreactors, and thus improving the decolorization rates. Furthermore, similar color removals were found at 55 degrees C between the AQDS-free and AQDS-supplemented reactors, whereas a significant difference (up to 3.6-fold) on decolorization rates occurred at 30 degrees C. For instance, at an HRT of 2.5 h and in the absence of AQDS, the color removal was 5.3-fold higher at 55 degrees C compared with 30 degrees C. The impact of a mix of mediators with different redox potentials on the decolorization rate was investigated with both industrial textile wastewater and the azo dye Reactive Red 2 (RR2). Color removal of RR2 in the presence of anthraquinone-2-sulfonate (AQS) (standard redox potential E(0)' of -225 mV) was 3.8-fold and 2.3-fold higher at 30 degrees C and 55 degrees C, respectively, than the values found in the absence of AQS. Furthermore, when the mediators 1,4-benzoquinone (BQ) (E(0)' of +280 mV), and AQS were incubated together, there was no improvement on the decolorization rates compared with the bottles solely supplemented with AQS. Results imply that the use of mixed redox mediators with positive and negative E(0)' under anaerobic conditions is not an efficient approach to improve color removal in textile wastewaters. (c) 2004 Wiley Periodicals, Inc.
Aerobic metabolism underlies complexity and capacity
Koch, Lauren G; Britton, Steven L
2008-01-01
The evolution of biological complexity beyond single-celled organisms was linked temporally with the development of an oxygen atmosphere. Functionally, this linkage can be attributed to oxygen ranking high in both abundance and electronegativity amongst the stable elements of the universe. That is, reduction of oxygen provides for close to the largest possible transfer of energy for each electron transfer reaction. This suggests the general hypothesis that the steep thermodynamic gradient of an oxygen environment was permissive for the development of multicellular complexity. A corollary of this hypothesis is that aerobic metabolism underwrites complex biological function mechanistically at all levels of organization. The strong contemporary functional association of aerobic metabolism with both physical capacity and health is presumably a product of the integral role of oxygen in our evolutionary history. Here we provide arguments from thermodynamics, evolution, metabolic network analysis, clinical observations and animal models that are in accord with the centrality of oxygen in biology. PMID:17947307
NASA Astrophysics Data System (ADS)
Yao, Bin; Ding, Zhaojun; Zhang, Jianxin; Feng, Xiaoyu; Yin, Longwei
2014-08-01
The severe capacity decay of LiFePO4 at low temperatures (≤0 °C) limits its wide applications as cathode materials for energy storage batteries. Creating comprehensive carbon network between particles with improved electronic conductivity is a well known solution to this problem. Here, a novel structured LiFePO4/C composite was prepared by a facile solid state route, in which nanosized LiFePO4 spheres were encapsulated by in-situ graphitized carbon cages. With the enhancement in electronic conductivity (2.15e-1 S cm-1), the composite presented excellent rate performance at room temperature and remarkable capacity retention at -40 °C, with charge transfer resistance much lower than commercial LiFePO4.
Metal-functionalized silicene for efficient hydrogen storage.
Hussain, Tanveer; Chakraborty, Sudip; Ahuja, Rajeev
2013-10-21
First-principles calculations based on density functional theory are used to investigate the electronic structure along with the stability, bonding mechanism, band gap, and charge transfer of metal-functionalized silicene to envisage its hydrogen-storage capacity. Various metal atoms including Li, Na, K, Be, Mg, and Ca are doped into the most stable configuration of silicene. The corresponding binding energies and charge-transfer mechanisms are discussed from the perspective of hydrogen-storage compatibility. The Li and Na metal dopants are found to be ideally suitable, not only for strong metal-to-substrate binding and uniform distribution over the substrate, but also for the high-capacity storage of hydrogen. The stabilities of both Li- and Na-functionalized silicene are also confirmed through molecular dynamics simulations. It is found that both of the alkali metals, Li(+) and Na(+), can adsorb five hydrogen molecules, attaining reasonably high storage capacities of 7.75 and 6.9 wt %, respectively, with average adsorption energies within the range suitable for practical hydrogen-storage applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Differential Electrochemical Conductance Imaging at the Nanoscale.
López-Martínez, Montserrat; Artés, Juan Manuel; Sarasso, Veronica; Carminati, Marco; Díez-Pérez, Ismael; Sanz, Fausto; Gorostiza, Pau
2017-09-01
Electron transfer in proteins is essential in crucial biological processes. Although the fundamental aspects of biological electron transfer are well characterized, currently there are no experimental tools to determine the atomic-scale electronic pathways in redox proteins, and thus to fully understand their outstanding efficiency and environmental adaptability. This knowledge is also required to design and optimize biomolecular electronic devices. In order to measure the local conductance of an electrode surface immersed in an electrolyte, this study builds upon the current-potential spectroscopic capacity of electrochemical scanning tunneling microscopy, by adding an alternating current modulation technique. With this setup, spatially resolved, differential electrochemical conductance images under bipotentiostatic control are recorded. Differential electrochemical conductance imaging allows visualizing the reversible oxidation of an iron electrode in borate buffer and individual azurin proteins immobilized on atomically flat gold surfaces. In particular, this method reveals submolecular regions with high conductance within the protein. The direct observation of nanoscale conduction pathways in redox proteins and complexes enables important advances in biochemistry and bionanotechnology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Nemec, Patrik; Malcho, Milan
2018-06-01
This work deal with experimental measurement and calculation cooling efficiency of the cooling device working with a heat pipe technology. The referred device in the article is cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description, working principle and construction of cooling device. The main factor affected the dissipation of high heat flux from electronic elements through the cooling device to the surrounding is condenser construction, its capacity and option of heat removal. Experimental part describe the measuring method cooling efficiency of the cooling device depending on ambient temperature in range -20 to 40°C and at heat load of electronic components 750 W. Measured results are compared with results calculation based on physical phenomena of boiling, condensation and natural convection heat transfer.
Ermakova, Maria; Huokko, Tuomas; Richaud, Pierre; Bersanini, Luca; Howe, Christopher J; Lea-Smith, David J; Peltier, Gilles; Allahverdiyeva, Yagut
2016-06-01
Various oxygen-utilizing electron sinks, including the soluble flavodiiron proteins (Flv1/3), and the membrane-localized respiratory terminal oxidases (RTOs), cytochrome c oxidase (Cox) and cytochrome bd quinol oxidase (Cyd), are present in the photosynthetic electron transfer chain of Synechocystis sp. PCC 6803. However, the role of individual RTOs and their relative importance compared with other electron sinks are poorly understood, particularly under light. Via membrane inlet mass spectrometry gas exchange, chlorophyll a fluorescence, P700 analysis, and inhibitor treatment of the wild type and various mutants deficient in RTOs, Flv1/3, and photosystem I, we investigated the contribution of these complexes to the alleviation of excess electrons in the photosynthetic chain. To our knowledge, for the first time, we demonstrated the activity of Cyd in oxygen uptake under light, although it was detected only upon inhibition of electron transfer at the cytochrome b6f site and in ∆flv1/3 under fluctuating light conditions, where linear electron transfer was drastically inhibited due to impaired photosystem I activity. Cox is mostly responsible for dark respiration and competes with P700 for electrons under high light. Only the ∆cox/cyd double mutant, but not single mutants, demonstrated a highly reduced plastoquinone pool in darkness and impaired gross oxygen evolution under light, indicating that thylakoid-based RTOs are able to compensate partially for each other. Thus, both electron sinks contribute to the alleviation of excess electrons under illumination: RTOs continue to function under light, operating on slower time ranges and on a limited scale, whereas Flv1/3 responds rapidly as a light-induced component and has greater capacity. © 2016 American Society of Plant Biologists. All Rights Reserved.
Liu, Wen; Cai, Zhengqing; Zhao, Xiao; Wang, Ting; Li, Fan; Zhao, Dongye
2016-10-18
We report a novel composite material, referred to as activated charcoal supported titanate nanotubes (TNTs@AC), for highly efficient adsorption and photodegradation of a representative polycyclic aromatic hydrocarbon (PAH), phenanthrene. TNTs@AC was prepared through a one-step hydrothermal method, and is composed of an activated charcoal core and a shell of carbon-coated titanate nanotubes. TNTs@AC offered a maximum Langmuir adsorption capacity of 12.1 mg/g for phenanthrene (a model PAH), which is ∼11 times higher than the parent activated charcoal. Phenanthrene was rapidly concentrated onto TNTs@AC, and subsequently completely photodegraded under UV light within 2 h. The photoregenerated TNTs@AC can then be reused for another adsorption-photodegradation cycle without significant capacity or activity loss. TNTs@AC performed well over a wide range of pH, ionic strength, and dissolved organic matter. Mechanistically, the enhanced adsorption capacity is attributed to the formation of carbon-coated ink-bottle pores of the titanate nanotubes, which are conducive to capillary condensation; in addition, the modified microcarbon facilitates transfer of excited electrons, thereby inhibiting recombination of the electron-hole pairs, resulting in high photocatalytic activity. The combined high adsorption capacity, photocatalytic activity, and regenerability/reusability merit TNTs@AC a very attractive material for concentrating and degrading a host of micropollutants in the environment.
Makino, Amane; Sakashita, Hiroshi; Hidema, Jun; Mae, Tadahiko; Ojima, Kunihiko; Osmond, Barry
1992-01-01
The amounts of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), total chlorophyll (Chl), and total leaf nitrogen were measured in fully expanded, young leaves of wheat (Triticum aestivum L.), rice (Oryza sativa L.), spinach (Spinacia oleracea L.), bean (Phaseolus vulgaris L.), and pea (Pisum sativum L.). In addition, the activities of whole-chain electron transport and carbonic anhydrase were measured. All plants were grown hydroponically at different nitrogen concentrations. Although a greater than proportional increase in Rubisco content relative to leaf nitrogen content and Chl was found with increasing nitrogen supply for rice, spinach, bean, and pea, the ratio of Rubisco to total leaf nitrogen or Chl in wheat was essentially independent of nitrogen treatment. In addition, the ratio of Rubisco to electron transport activities remained constant only in wheat. Nevertheless, gas-exchange analysis showed that the in vivo balance between the capacities of Rubisco and electron transport in wheat, rice, and spinach remained almost constant, irrespective of nitrogen treatment. The in vitro carbonic anhydrase activity in wheat was very low and strongly responsive to increasing nitrogen content. Such a response was not found for the other C3 plants examined, which had 10- to 30-fold higher carbonic anhydrase activity than wheat at any leaf-nitrogen content. These distinctive responses of carbonic anhydrase activity in wheat were discussed in relation to CO2-transfer resistance and the in vivo balance between the capacities of Rubisco and electron transport. PMID:16653191
Shear transfer capacity of reinforced concrete exposed to fire
NASA Astrophysics Data System (ADS)
Ahmad, Subhan; Bhargava, Pradeep; Chourasia, Ajay
2018-04-01
Shear transfer capacity of reinforced concrete elements is a function of concrete compressive strength and reinforcement yield strength. Exposure of concrete and steel to elevated temperature reduces their mechanical properties resulting in reduced shear transfer capacity of RC elements. The objective of present study is to find the effect of elevated temperature on shear transfer capacity of reinforced concrete. For this purpose pushoff specimens were casted using normal strength concrete. After curing, specimens were heated to 250°C and 500°C in an electric furnace. Cooled specimens were tested for shear transfer capacity in a universal testing machine. It was found that shear transfer capacity and stiffness (slope of load-slip curve) were reduced when the specimens were heated to 250°C and 500°C. Load level for the initiation of crack slip was found to be decreased as the temperature was increased. A simple analytical approach is also proposed to predict the shear transfer capacity of reinforced concrete after elevated temperature.
Mechanisms for Fe(III) oxide reduction in sedimentary environments
Nevin, Kelly P.; Lovely, Derek R.
2002-01-01
Although it was previously considered that Fe(III)-reducing microorganisms must come into direct contact with Fe(III) oxides in order to reduce them, recent studies have suggested that electron-shuttling compounds and/or Fe(III) chelators, either naturally present or produced by the Fe(III)-reducing microorganisms themselves, may alleviate the need for the Fe(III) reducers to establish direct contact with Fe(III) oxides. Studies with Shewanella alga strain BrY and Fe(III) oxides sequestered within microporous beads demonstrated for the first time that this organism releases a compound(s) that permits electron transfer to Fe(III) oxides which the organism cannot directly contact. Furthermore, as much as 450 w M dissolved Fe(III) was detected in cultures of S. alga growing in Fe(III) oxide medium, suggesting that this organism releases compounds that can solublize Fe(III) from Fe(III) oxide. These results contrast with previous studies, which demonstrated that Geobacter metallireducens does not produce electron-shuttles or Fe(III) chelators. Some freshwater aquatic sediments and groundwaters contained compounds, which could act as electron shuttles by accepting electrons from G. metallireducens and then transferring the electrons to Fe(III). However, other samples lacked significant electron-shuttling capacity. Spectroscopic studies indicated that the electron-shuttling capacity of the waters was not only associated with the presence of humic substances, but water extracts of walnut, oak, and maple leaves contained electron-shuttling compounds did not appear to be humic substances. Porewater from a freshwater aquatic sediment and groundwater from a petroleum-contaminated aquifer contained dissolved Fe(III) (4-16 w M), suggesting that soluble Fe(III) may be available as an electron acceptor in some sedimentary environments. These results demonstrate that in order to accurately model the mechanisms for Fe(III) reduction in sedimentary environments it will be necessary to have information on the concentrations of electron-shuttling compounds and possibly Fe(III) ligands. Furthermore, as it is now apparent that different genera of Fe(III)-reducing microorganisms may reduce Fe(III) via different mechanisms, knowledge of which Fe(III)-reducing microorganisms predominate in the environment of interest is essential in order to model this process appropriately.
Zhang, Wei; Bock, David C.; Pelliccione, Christopher J.; ...
2016-03-08
Metal oxides, such as Fe 3O 4, hold promise for future battery applications due to their abundance, low cost, and opportunity for high lithium storage capacity. In order to better understand the mechanisms of multiple-electron transfer reactions leading to high capacity in Fe 3O 4, a comprehensive investigation on local ionic transport and ordering is made by probing site occupancies of anions (O 2–) and cations (Li +, Fe 3+/Fe 2+) using multiple synchrotron X-ray and electron-beam techniques, in combination with ab-initio calculations. Results from this study provide the first experimental evidence that the cubic-close-packed (ccp) O-anion array in Femore » 3O 4 is sustained throughout the lithiation and delithiation processes, thereby enabling multiple lithium intercalation and conversion reactions. Cation displacement/reordering occurs within the ccp O-anion framework, which leads to a series of phase transformations, starting from the inverse spinel phase and turning into intermediate rock-salt-like phases (Li xFe 3O 4; 0 < x < 2), then into a cation-segregated phase (Li 2O•FeO), and finally converting into metallic Fe and Li 2O. Subsequent delithiation and lithiation processes involve interconversion between metallic Fe and FeO-like phases. Lastly, these results may offer new insights into the structure-determined ionic transport and electrochemical reactions in metal oxides, and those of other compounds sharing a ccp anion framework, reminiscent of magnetite.« less
NASA Astrophysics Data System (ADS)
Loeblein, Manuela; Bruno, Annalisa; Loh, G. C.; Bolker, Asaf; Saguy, Cecile; Antila, Liisa; Tsang, Siu Hon; Teo, Edwin Hang Tong
2017-10-01
Dye-sensitized solar cells (DSSCs) offer an optimal trade-off between conversion-efficiency and low-cost fabrication. However, since all its electrodes need to fulfill stringent work-function requirements, its materials have remained unchanged since DSSC's first report early-90s. Here we describe a new material, oxidized-three-dimensional-graphene (o-3D-C), with a band gap of 0.2 eV and suitable electronic band-structure as alternative metal-free material for DSSCs-anodes. o-3D-C/dye-complex has a strong chemical bonding via carboxylic-group chemisorption with full saturation after 12 sec at capacity of ∼450 mg/g (600x faster and 7x higher than optimized metal surfaces). Furthermore, fluorescence quenching of life-time by 28-35% was measured demonstrating charge-transfer from dye to o-3D-C.
Applications of biochar in redox-mediated reactions.
Yuan, Yong; Bolan, Nanthi; Prévoteau, Antonin; Vithanage, Meththika; Biswas, Jayanta Kumar; Ok, Yong Sik; Wang, Hailong
2017-12-01
Biochar is chemically more reduced and reactive than the original feedstock biomass. Graphite regions, functional groups, and redox-active metals in biochar contribute to its redox characteristics. While the functional groups such as phenolic species in biochar are the main electron donating moieties (i.e., reducers), the quinones and polycondensed aromatic functional groups are the components accepting electrons (oxidants). The redox capacity of biochar depends on feedstock properties and pyrolysis conditions. This paper aims to review and summarize the various synthesis techniques for biochars and the methods for probing their redox characteristics. We review the abiotic and microbial applications of biochars as electron donors, electron acceptors, or electron shuttles for pollutant degradation, metal(loid)s (im)mobilization, nutrient transformation, and discuss the underlying mechanisms. Furthermore, knowledge gaps that exist in the exploration and differentiation of the electron transfer mechanisms involving biochars are also identified. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kazak, Lawrence; Chouchani, Edward T; Stavrovskaya, Irina G; Lu, Gina Z; Jedrychowski, Mark P; Egan, Daniel F; Kumari, Manju; Kong, Xingxing; Erickson, Brian K; Szpyt, John; Rosen, Evan D; Murphy, Michael P; Kristal, Bruce S; Gygi, Steven P; Spiegelman, Bruce M
2017-07-25
Brown adipose tissue (BAT) mitochondria exhibit high oxidative capacity and abundant expression of both electron transport chain components and uncoupling protein 1 (UCP1). UCP1 dissipates the mitochondrial proton motive force (Δp) generated by the respiratory chain and increases thermogenesis. Here we find that in mice genetically lacking UCP1, cold-induced activation of metabolism triggers innate immune signaling and markers of cell death in BAT. Moreover, global proteomic analysis reveals that this cascade induced by UCP1 deletion is associated with a dramatic reduction in electron transport chain abundance. UCP1-deficient BAT mitochondria exhibit reduced mitochondrial calcium buffering capacity and are highly sensitive to mitochondrial permeability transition induced by reactive oxygen species (ROS) and calcium overload. This dysfunction depends on ROS production by reverse electron transport through mitochondrial complex I, and can be rescued by inhibition of electron transfer through complex I or pharmacologic depletion of ROS levels. Our findings indicate that the interscapular BAT of Ucp1 knockout mice exhibits mitochondrial disruptions that extend well beyond the deletion of UCP1 itself. This finding should be carefully considered when using this mouse model to examine the role of UCP1 in physiology.
NASA Astrophysics Data System (ADS)
Gu, Yuan; Ying, Kang; Shen, Dongsheng; Huang, Lijie; Ying, Xianbin; Huang, Haoqian; Cheng, Kun; Chen, Jiazheng; Zhou, Yuyang; Chen, Ting; Feng, Huajun
2017-12-01
Titanium is under consideration as a potential stable bio-anode because of its high conductivity, suitable mechanical properties, and electrochemical inertness in the operating potential window of bio-electrochemical systems; however, its application is limited by its poor electron-transfer capacity with electroactive bacteria and weak ability to form biofilms on its hydrophobic surface. This study reports an effective and low-cost way to convert a hydrophobic titanium alloy surface into a hydrophilic surface that can be used as a bio-electrode with higher electron-transfer rates. Pyrolytic gas of sewage sludge is used to modify the titanium alloy. The current generation, anodic biofilm formation surface, and hydrophobicity are systematically investigated by comparing bare electrodes with three modified electrodes. Maximum current density (15.80 A/m2), achieved using a modified electrode, is 316-fold higher than that of the bare titanium alloy electrode (0.05 A/m2) and that achieved by titanium alloy electrodes modified by other methods (12.70 A/m2). The pyrolytic gas-modified titanium alloy electrode can be used as a high-performance and scalable bio-anode for bio-electrochemical systems because of its high electron-transfer rates, hydrophilic nature, and ability to achieve high current density.
The electron donating capacity of biochar is dramatically underestimated
Prévoteau, Antonin; Ronsse, Frederik; Cid, Inés; Boeckx, Pascal; Rabaey, Korneel
2016-01-01
Biochars have gathered considerable interest for agronomic and engineering applications. In addition to their high sorption ability, biochars have been shown to accept or donate considerable amounts of electrons to/from their environment via abiotic or microbial processes. Here, we measured the electron accepting (EAC) and electron donating (EDC) capacities of wood-based biochars pyrolyzed at three different highest treatment temperatures (HTTs: 400, 500, 600 °C) via hydrodynamic electrochemical techniques using a rotating disc electrode. EACs and EDCs varied with HTT in accordance with a previous report with a maximal EAC at 500 °C (0.4 mmol(e−).gchar−1) and a large decrease of EDC with HTT. However, while we monitored similar EAC values than in the preceding study, we show that the EDCs have been underestimated by at least 1 order of magnitude, up to 7 mmol(e−).gchar−1 for a HTT of 400 °C. We attribute this existing underestimation to unnoticed slow kinetics of electron transfer from biochars to the dissolved redox mediators used in the monitoring. The EDC of other soil organic constituents such as humic substances may also have been underestimated. These results imply that the redox properties of biochars may have a much bigger impact on soil biogeochemical processes than previously conjectured. PMID:27628746
NASA Astrophysics Data System (ADS)
Sander, Michael; Getzinger, Gordon; Walpen, Nicolas
2017-04-01
Peat organic matter contains redox-active functional groups that can accept and/or donate electrons from and to biotic and abiotic reaction partners present in peatlands. Several studies have provided evidence that electron accepting quinone moieties in the peat organic matter may act as terminal electron acceptors for anaerobic microbial respiration. This respiration pathway may competitively suppress methanogenesis and thereby lead to excess carbon dioxide to methane formation in peatlands. Electron donating phenolic moieties in peat organic matter have long been considered to inhibit microbial and enzymatic activities in peatlands, thereby contributing to carbon stabilization and accumulation in these systems. Phenols are expected to be comparatively stable in anoxic parts of the peats as phenoloxidases, a class of enzymes capable of oxidatively degrading phenols, require molecular oxygen as co-substrate. Despite the general recognition of the importance of redox-active moieties in peat organic matter, the abundance, redox properties and reactivities of these moieties remain poorly studied and understood, in large part due to analytical challenges. This contribution will, in a first part, summarize recent advances in our research group on the analytical chemistry of redox-active moieties in peat organic matter. We will show how mediated electrochemical analysis can be used to quantify the capacities of electron accepting and donating moieties in both dissolved and particulate peat organic matter. We will link these capacities to the physicochemical properties of peat organic matter and provide evidence for quinones and phenols as major electron accepting and donating moieties, respectively. The second part of this contribution will highlight how these electroanalytical techniques can be utilized to advance a more fundamental understanding of electron transfer processes involving peat organic matter. These processes include the redox cycling (i.e., repeated reduction and re-oxidation) of peat organic matter under alternating anoxic-oxic conditions as well as the oxidation of phenolic moieties in peat organic matter by phenol oxidases in the presence of molecular oxygen. Overall, this contribution will attempt to link molecular-level insights into the redox properties of peat organic matter to larger scale redox processes that are important to carbon cycling in peatlands.
Cheng, Yuan-Yuan; Li, Bing-Bing; Li, Dao-Bo; Chen, Jie-Jie; Li, Wen-Wei; Tong, Zhong-Hua; Wu, Chao; Yu, Han-Qing
2013-01-01
The dissimilatory metal reducing bacterium Shewanella oneidensis MR-1, known for its capacity of reducing iron and manganese oxides, has great environmental impacts. The iron oxides reducing process is affected by the coexistence of alternative electron acceptors in the environment, while investigation into it is limited so far. In this work, the impact of dimethyl sulphoxide (DMSO), a ubiquitous chemical in marine environment, on the reduction of hydrous ferric oxide (HFO) by S. oneidensis MR-1 was investigated. Results show that DMSO promoted HFO reduction by both wild type and ΔdmsE, but had no effect on the HFO reduction by ΔdmsB, indicating that such a promotion was dependent on the DMSO respiration. With the DMSO dosing, the levels of extracellular flavins and omcA expression were significantly increased in WT and further increased in ΔdmsE. Bioelectrochemical analysis show that DMSO also promoted the extracellular electron transfer of WT and ΔdmsE. These results demonstrate that DMSO could stimulate the HFO reduction through metabolic and genetic regulation in S. oneidensis MR-1, rather than compete for electrons with HFO. This may provide a potential respiratory pathway to enhance the microbial electron flows for environmental and engineering applications. PMID:24244312
Environmental Redox Potential and Redox Capacity Concepts Using a Simple Polarographic Experiment
NASA Astrophysics Data System (ADS)
Pidello, Alejandro
2003-01-01
The redox status of a system may be analyzed in terms of the redox potential (redox intensity component) and the size of the pool of electrons able to be transferred (redox capacity component). In single chemical systems, both terms are thermodynamically related by means of the Nernst equation, the classical redox equilibrium equation. Consequently, either the redox potential measurement or the redox capacity may be used without distinction to define the redox characteristics of these systems. However, in natural environments, which are a complex mixture of compounds undergoing redox reactions in several stages of nonequilibrium, it is difficult to establish the relationships linking redox potential and redox capacity. In this situation, as suggested by various authors, the complementary use of intensity and capacity measurements improves the characterization of the redox status of these systems. The aim of this laboratory experiment is to enable undergraduate students of applied biology (agronomy, veterinary or environmental sciences) to distinguish clearly between redox potential and redox capacity concepts through concrete results obtained in complex natural system such as soil, and to discuss the ecological significance of both concepts.
Ultrashort Pulse (USP) Laser-Matter Interactions
2013-03-05
spectroscopy • Frequency/time transfer • High-capacity comms • Coherent LIDAR • Optical clocks • Calibration Material Science ultrashort, high...Laboratory 41 Laser -driven x-rays generation (0.1 – 10 MeV) • Scattering from a 300 MeV electron beam can Doppler shift a 1-eV energy laser ...1 Integrity Service Excellence Ultrashort Pulse (USP) Laser – Matter Interactions 5 MAR 2013 Dr. Riq Parra Program Officer AFOSR/RTB
The Thermal Evaluation of Air-Cooled Electronic Equipment
1952-09-01
of Unit with Case-Envelope Heat Exchanger 233 VII-7 Storking Plot for Evaluation of Case Heat Transfer of Unit with Integrated or Separate... wing . 1. Case Cooled by Free Convection and Radiation Equipment of this type which depends on the natural heat dissipative capacity of the outer...described application, a tightly-fitting spring- clip is placed around the component, such as a tube, with the two thermocouple lead wires spot-welded
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruiyi, Li; Tengyuan, Chen; Beibei, Sun
Graphical abstract: We developed a new Novel lithium titanate-graphene nanohybrid containing two graphene conductive frameworks. The unique architecture creates fast electron transfer and rapid mass transport of electrolyte. The hybrid electrode provides excellent electrochemical performances for lithium-ion batteries, including high specific capacity, outstanding rate capability and intriguing cycling stability. - Highlights: • We reported a new LTO-graphene nanohybrid containing two graphene conductive frameworks. • One graphene framework greatly improves the electrical conductivity of LTO crystal. • Another graphene framework enhances electrical conductivity of between LTO crystals and electrolyte transport. • The unique architecture creates big tap density, ultrafast electron transfermore » and rapid mass transport. • The hybrid electrode provides excellent electrochemical performance for lithium-ion batteries. - ABSTRACT: The paper reported the synthesis of lithium titanate(LTO)-graphene hybrid containing two graphene conductive frameworks (G@LTO@G). Tetrabutyl titanate and graphene were dispersed in tertbutanol and heated to reflux state by microwave irradiation. Followed by adding lithium acetate to produce LTO precursor/graphene (p-LTO/G). The resulting p-LTO/G offers homogeneous morphology and ultra small size. All graphene sheets were buried in the spherical agglomerates composed of primitive particles through the second agglomeration. The p-LTO/G was calcined to LTO@graphene (LTO@G). To obtain G@LTO@G, the LTO@G was further hybridized with graphene. The as-prepared G@LTO@G shows well-defined three-dimensional structure and hierarchical porous distribution. Its unique architecture creates big tap density, fast electron transfer and rapid electrolyte transport. As a result, the G@LTO@G provides high specific capacity (175.2 mA h g{sup −1} and 293.5 mA cm{sup −3}), outstanding rate capability (155.7 mAh g{sup −1} at 10C) and intriguing cycling stability (97.2% capacity retention at 5C after 1000 cycles)« less
Miniaturized Stretchable and High-Rate Linear Supercapacitors
NASA Astrophysics Data System (ADS)
Zhu, Wenjun; Zhang, Yang; Zhou, Xiaoshuang; Xu, Jiang; Liu, Zunfeng; Yuan, Ningyi; Ding, Jianning
2017-07-01
Linear stretchable supercapacitors have attracted much attention because they are well suited to applications in the rapidly expanding field of wearable electronics. However, poor conductivity of the electrode material, which limits the transfer of electrons in the axial direction of the linear supercapacitors, leads to a serious loss of capacity at high rates. To solve this problem, we use gold nanoparticles to decorate aligned multiwall carbon nanotube to fabricate stretchable linear electrodes. Furthermore, we have developed fine stretchable linear supercapacitors, which exhibited an extremely high elasticity up to 400% strain with a high capacitance of about 8.7 F g-1 at the discharge current of 1 A g-1.
Miniaturized Stretchable and High-Rate Linear Supercapacitors.
Zhu, Wenjun; Zhang, Yang; Zhou, Xiaoshuang; Xu, Jiang; Liu, Zunfeng; Yuan, Ningyi; Ding, Jianning
2017-12-01
Linear stretchable supercapacitors have attracted much attention because they are well suited to applications in the rapidly expanding field of wearable electronics. However, poor conductivity of the electrode material, which limits the transfer of electrons in the axial direction of the linear supercapacitors, leads to a serious loss of capacity at high rates. To solve this problem, we use gold nanoparticles to decorate aligned multiwall carbon nanotube to fabricate stretchable linear electrodes. Furthermore, we have developed fine stretchable linear supercapacitors, which exhibited an extremely high elasticity up to 400% strain with a high capacitance of about 8.7 F g -1 at the discharge current of 1 A g -1 .
27 CFR 478.40a - Transfer and possession of large capacity ammunition feeding devices.
Code of Federal Regulations, 2014 CFR
2014-04-01
... large capacity ammunition feeding devices. 478.40a Section 478.40a Alcohol, Tobacco Products, and... AMMUNITION COMMERCE IN FIREARMS AND AMMUNITION Administrative and Miscellaneous Provisions § 478.40a Transfer and possession of large capacity ammunition feeding devices. (a) Prohibition. No person shall transfer...
27 CFR 478.40a - Transfer and possession of large capacity ammunition feeding devices.
Code of Federal Regulations, 2012 CFR
2012-04-01
... large capacity ammunition feeding devices. 478.40a Section 478.40a Alcohol, Tobacco Products, and... AMMUNITION COMMERCE IN FIREARMS AND AMMUNITION Administrative and Miscellaneous Provisions § 478.40a Transfer and possession of large capacity ammunition feeding devices. (a) Prohibition. No person shall transfer...
27 CFR 478.40a - Transfer and possession of large capacity ammunition feeding devices.
Code of Federal Regulations, 2010 CFR
2010-04-01
... large capacity ammunition feeding devices. 478.40a Section 478.40a Alcohol, Tobacco Products, and... AMMUNITION COMMERCE IN FIREARMS AND AMMUNITION Administrative and Miscellaneous Provisions § 478.40a Transfer and possession of large capacity ammunition feeding devices. (a) Prohibition. No person shall transfer...
27 CFR 478.40a - Transfer and possession of large capacity ammunition feeding devices.
Code of Federal Regulations, 2011 CFR
2011-04-01
... large capacity ammunition feeding devices. 478.40a Section 478.40a Alcohol, Tobacco Products, and... AMMUNITION COMMERCE IN FIREARMS AND AMMUNITION Administrative and Miscellaneous Provisions § 478.40a Transfer and possession of large capacity ammunition feeding devices. (a) Prohibition. No person shall transfer...
27 CFR 478.40a - Transfer and possession of large capacity ammunition feeding devices.
Code of Federal Regulations, 2013 CFR
2013-04-01
... large capacity ammunition feeding devices. 478.40a Section 478.40a Alcohol, Tobacco Products, and... AMMUNITION COMMERCE IN FIREARMS AND AMMUNITION Administrative and Miscellaneous Provisions § 478.40a Transfer and possession of large capacity ammunition feeding devices. (a) Prohibition. No person shall transfer...
van Schaardenburgh, Michel; Wohlwend, Martin; Rognmo, Øivind; Mattsson, Erney J R
2017-06-07
Exercise of patients with intermittent claudication improves walking performance. Exercise does not usually increase blood flow, but seems to increase muscle mitochondrial enzyme activities. Although exercise is beneficial in most patients, it might be harmful in some. The mitochondrial response to exercise might therefore differ between patients. Our hypothesis was that changes in walking performance relate to changes in mitochondrial function after 8 weeks of exercise. At a subgroup level, negative responders decrease and positive responders increase mitochondrial capacity. Two types of exercise were studied, calf raising and walking (n = 28). We wanted to see whether there were negative and positive responders, independent of type of exercise. Measurements of walking performance, peripheral hemodynamics, mitochondrial respiration and content (citrate synthase activity) were obtained on each patient before and after the intervention period. Multiple linear regression was used to test whether changes in peak walking time relate to mitochondrial function. Subgroups of negative (n = 8) and positive responders (n = 8) were defined as those that either decreased or increased peak walking time following exercise. Paired t test and analysis of covariance was used to test changes within and between subgroups. Changes in peak walking time were related to changes in mitochondrial respiration supported by electron transferring flavoprotein (ETF + CI) P (p = 0.004), complex I (CI + ETF) P (p = 0.003), complex I + complex II (CI + CII + ETF) P (p = 0.037) and OXPHOS coupling efficiency (p = 0.046) in the whole group. Negative responders had more advanced peripheral arterial disease. Mitochondrial respiration supported by electron transferring flavoprotein (ETF + CI) P (p = 0.0013), complex I (CI + ETF) P (p = 0.0005), complex I + complex II (CI + CII + ETF) P (p = 0.011) and electron transfer system capacity (CI + CII + ETF) E (p = 0.021) and OXPHOS coupling efficiency decreased in negative responders (p = 0.0007) after exercise. Positive responders increased citrate synthase activity (p = 0.010). Changes in walking performance seem to relate to changes in mitochondrial function after exercise. Negative responders have more advanced peripheral arterial disease and decrease, while positive responders increase mitochondrial capacity. Trial registration ClinicalTrials.gov ID: NCT023110256.
Zhao, Xinyu; He, Xiaosong; Xi, Beidou; Gao, Rutai; Tan, Wenbing; Zhang, Hui; Huang, Caihong; Li, Dan; Li, Meng
2017-12-01
Humic substance (HS) could be utilized by humus-reducing microorganisms (HRMs) as the terminal acceptors. Meanwhile, the reduction of HS can support the microbial growth. This process would greatly affect the redox conversion of inorganic and organic pollutants. However, whether the redox properties of HS lined with HRMs community during composting still remain unclear. This study aimed to assess the relationships between the redox capability of HS [i.e. humic acids (HA) and fulvic acids (FA)] and HRMs during composting. The results showed that the changing patterns of electron accepting capacity and electron donating capacity of HS were diverse during seven composting. Electron transfer capacities (ETC) of HA was significantly correlated with the functional groups (i.e. alkyl C, O-alkyl C, aryl C, carboxylic C, aromatic C), aromaticity and molecular weight of HA. Aromatic C, phenols, aryl C, carboxylic C, aromaticity and molecular weight of HS were the main structuralfeatures associated with the ETC of FA. Ten key genera of HRMs were found significantly determine these redox-active functional groups of HS during composting, thus influencing the ETC of HS in composts. In addition, a regulating method was suggested to enhance the ETC of HS during composting based on the relationships between the key HRMs and redox-active functional groups as well as environmental variables. Copyright © 2017 Elsevier Ltd. All rights reserved.
Akhtar, Parveen; Zhang, Cheng; Liu, Zhengtang; Tan, Howe-Siang; Lambrev, Petar H
2018-03-01
Photosystem I is a robust and highly efficient biological solar engine. Its capacity to utilize virtually every absorbed photon's energy in a photochemical reaction generates great interest in the kinetics and mechanisms of excitation energy transfer and charge separation. In this work, we have employed room-temperature coherent two-dimensional electronic spectroscopy and time-resolved fluorescence spectroscopy to follow exciton equilibration and excitation trapping in intact Photosystem I complexes as well as core complexes isolated from Pisum sativum. We performed two-dimensional electronic spectroscopy measurements with low excitation pulse energies to record excited-state kinetics free from singlet-singlet annihilation. Global lifetime analysis resolved energy transfer and trapping lifetimes closely matches the time-correlated single-photon counting data. Exciton energy equilibration in the core antenna occurred on a timescale of 0.5 ps. We further observed spectral equilibration component in the core complex with a 3-4 ps lifetime between the bulk Chl states and a state absorbing at 700 nm. Trapping in the core complex occurred with a 20 ps lifetime, which in the supercomplex split into two lifetimes, 16 ps and 67-75 ps. The experimental data could be modelled with two alternative models resulting in equally good fits-a transfer-to-trap-limited model and a trap-limited model. However, the former model is only possible if the 3-4 ps component is ascribed to equilibration with a "red" core antenna pool absorbing at 700 nm. Conversely, if these low-energy states are identified with the P 700 reaction centre, the transfer-to-trap-model is ruled out in favour of a trap-limited model.
NASA Astrophysics Data System (ADS)
Sanad, M. M. S.; Rashad, M. M.; Powers, K.
2015-02-01
Mesoporous TiO2 nanoparticles have been synthesized via facile hydrolytic hydrothermal technique without incorporation any template. The precious metallic nanoparticles; Ag, Pt and Pd have been embedded between the anatase particles using in situ reduction step. The structural properties of the as-synthesized samples were investigated by X-ray diffraction, transmission electron microscopic and N2 adsorption-desorption isotherm ( S BET). The electrochemical studies for the as-prepared anode materials including, cyclic voltammetry and electrochemical impedance spectroscopy indicated a significant improvement in the electronic conductivity of the lithium-TiO2 cells. Therefore, the charge-discharge rates were noticeably promoted as a result of the enhancement of Li-ion diffusion and charge transfer. The cycling results of Pd-TiO2 revealed a marvelous improvement in both charge and discharge capacities by 89.4 and 88 % after 10 cycles at C/5 rate. Generally, all the as-prepared TiO2 nanocomposites showed enhanced specific capacity, cycling stability and rate capability compared to the pure TiO2, providing a promising behavior for use as anodes in lithium ion batteries (LIBs).
Effect of MWCNT on prepared cathode material (Li2Mn(x)Fe(1-x)SiO4) for energy storage applications
NASA Astrophysics Data System (ADS)
Agnihotri, Shruti; Rattan, Sangeeta; Sharma, A. L.
2016-05-01
The electrode material Li2MnFeSiO4 was successfully synthesized by standard sol-gel method and further modified with multiwalled carbon nano tube (MWCNT) to achieve better electrochemical properties. Our strategy helps us to improve the performance and storage capacity as compared with the bared material. This novel composite structure constructs an efficient cation (Li+) and electron channel which significantly enhance the Li+ ion diffusion coefficient and reduced charge transfer resistance. Hence leads to high conductivity and specific capacity. Characterization technique like Field emission scanning electron microscopy (FESEM) has been used to confirm its morphology, structure and particle size which comes out to be of the order of ˜20 to 30 nm. Lesser particle size reveals better electrochemical properties. Electrical conductivity (˜10-5 Scm-1) of MWCNT doped oxide cathode materials was recorded using ac impedance spectroscopy technique which reflects tenfold increment when compared with pure oxide cathode materials. Cyclic voltametery analysis has been done to calculate specific capacity and potential window of materials with and without CNTs. The results obtained from different techniques are well correlated and suitable for energy storage applications.
ZIF-8 Cooperating in TiN/Ti/Si Nanorods as Efficient Anodes in Micro-Lithium-Ion-Batteries.
Yu, Yingjian; Yue, Chuang; Lin, Xionggui; Sun, Shibo; Gu, Jinping; He, Xu; Zhang, Chuanhui; Lin, Wei; Lin, Donghai; Liao, Xinli; Xu, Binbin; Wu, Suntao; Zheng, Mingsen; Li, Jing; Kang, Junyong; Lin, Liwei
2016-02-17
Zeolite imidazolate framework-8 (ZIF-8) nanoparticles embedded in TiN/Ti/Si nanorod (NR) arrays without pyrolysis have shown increased energy storage capacity as anodes for lithium ion batteries (LIBs). A high capacity of 1650 μAh cm(-2) has been achieved in this ZIF-8 composited multilayered electrode, which is ∼100 times higher than the plain electrodes made of only silicon NR. According to the electrochemical impedance spectroscopy (EIS) and (1)H nuclear magnetic resonance (NMR) characterizations, the improved diffusion of lithium ions in ZIF-8 and boosted electron/Li(+) transfer by the ZIF-8/TiN/Ti multilayer coating are proposed to be responsible for the enhanced energy storage ability. The first-principles calculations further indicate the favorable accessibility of lithium with appropriate size to diffuse in the open pores of ZIF-8. This work broadens the application of ZIF-8 to silicon-based LIBs electrodes without the pyrolysis and provides design guidelines for other metal-organic frameworks/Si composite electrodes.
Electrooxidation of morin hydrate at a Pt electrode studied by cyclic voltammetry.
Masek, Anna; Chrzescijanska, Ewa; Zaborski, Marian
2014-04-01
The process and the kinetics of the electrochemical oxidation of morin in an anhydrous electrolyte have been investigated using cyclic and differential pulse voltammetry. The oxidation mechanism proceeds in sequential steps related to the hydroxyl groups in the three aromatic rings. The oxidation of the 2',4'dihydroxy moiety at the B ring of morin occurs first, at very low positive potentials, and is a one-electron, one-proton irreversible reaction. The rate constant, electron transfer coefficient and diffusion coefficients involved in the electrochemical oxidation of morin were determined. The influence of the deprotonation of the ring B hydroxyl moiety is related to the electron/proton donating capacity of morin and to its radical scavenging antioxidant activity. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kazak, Lawrence; Chouchani, Edward T.; Stavrovskaya, Irina G.; Lu, Gina Z.; Jedrychowski, Mark P.; Egan, Daniel F.; Kumari, Manju; Kong, Xingxing; Erickson, Brian K.; Szpyt, John; Rosen, Evan D.; Murphy, Michael P.; Kristal, Bruce S.; Gygi, Steven P.; Spiegelman, Bruce M.
2017-01-01
Brown adipose tissue (BAT) mitochondria exhibit high oxidative capacity and abundant expression of both electron transport chain components and uncoupling protein 1 (UCP1). UCP1 dissipates the mitochondrial proton motive force (Δp) generated by the respiratory chain and increases thermogenesis. Here we find that in mice genetically lacking UCP1, cold-induced activation of metabolism triggers innate immune signaling and markers of cell death in BAT. Moreover, global proteomic analysis reveals that this cascade induced by UCP1 deletion is associated with a dramatic reduction in electron transport chain abundance. UCP1-deficient BAT mitochondria exhibit reduced mitochondrial calcium buffering capacity and are highly sensitive to mitochondrial permeability transition induced by reactive oxygen species (ROS) and calcium overload. This dysfunction depends on ROS production by reverse electron transport through mitochondrial complex I, and can be rescued by inhibition of electron transfer through complex I or pharmacologic depletion of ROS levels. Our findings indicate that the interscapular BAT of Ucp1 knockout mice exhibits mitochondrial disruptions that extend well beyond the deletion of UCP1 itself. This finding should be carefully considered when using this mouse model to examine the role of UCP1 in physiology. PMID:28630339
[New electronic data carriers in Bosnia-Herzegovina].
Masić, I; Pandza, H; Knezević, Z; Toromanović, S
1999-01-01
Bosnia and Herzegovina has been developing new Health Care System based on Electronic Registration Card. Developing countries proceeded from the manual and semiautomatic method of medical data processing to the new method of entering, storage, transfer, searching and protection of data using electronic equipment. Currently, many European countries have developed a Medical Card Based Electronic Information System. Both technologies offer the advantages and disadvantages. Three types of electronic card are currently in use: Hybrid Card, Smart Card and Laser Card. Hybrid Card offers characteristics of both Smart Card and Laser Card. The differences among these cards, such as a capacity, total price, price per byte, security system are discussed here. The dilemma is, which card should be used as a data carrier. The Electronic Family Registration Card is a question of strategic interest for B&H, but also a big investment. We should avoid the errors of other countries that have been developing card-based system. In this article we present all mentioned cards and compare advantages and disadvantages of different technologies.
Highly Conductive In-SnO2/RGO Nano-Heterostructures with Improved Lithium-Ion Battery Performance
NASA Astrophysics Data System (ADS)
Liu, Ying; Palmieri, Alessandro; He, Junkai; Meng, Yongtao; Beauregard, Nicole; Suib, Steven L.; Mustain, William E.
2016-05-01
The increasing demand of emerging technologies for high energy density electrochemical storage has led many researchers to look for alternative anode materials to graphite. The most promising conversion and alloying materials do not yet possess acceptable cycle life or rate capability. In this work, we use tin oxide, SnO2, as a representative anode material to explore the influence of graphene incorporation and In-doping to increase the electronic conductivity and concomitantly improve capacity retention and cycle life. It was found that the incorporation of In into SnO2 reduces the charge transfer resistance during cycling, prolonging life. It is also hypothesized that the increased conductivity allows the tin oxide conversion and alloying reactions to both be reversible, leading to very high capacity near 1200 mAh/g. Finally, the electrodes show excellent rate capability with a capacity of over 200 mAh/g at 10C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Deli; Yu, Yingchao; He, Huan
2015-02-24
We have developed a template-free procedure to synthesize Co3O4 hollow-structured nanoparticles on a Vulcan XC-72 carbon support. The material was synthesized via an impregnation–reduction method followed by air oxidation. In contrast to spherical particles, the hollow-structured Co3O4 nanoparticles exhibited excellent lithium storage capacity, rate capability, and cycling stability when used as the anode material in lithium-ion batteries. Electrochemical testing showed that the hollow-structured Co3O4 particles delivered a stable reversible capacity of about 880 mAh/g (near the theoretical capacity of 890 mAh/g) at a current density of 50 mA/g after 50 cycles. The superior electrochemical performance is attributed to its uniquemore » hollow structure, which combines nano- and microscale properties that facilitate electron transfer and enhance structural robustness.« less
Modeling and Performance Simulation of the Mass Storage Network Environment
NASA Technical Reports Server (NTRS)
Kim, Chan M.; Sang, Janche
2000-01-01
This paper describes the application of modeling and simulation in evaluating and predicting the performance of the mass storage network environment. Network traffic is generated to mimic the realistic pattern of file transfer, electronic mail, and web browsing. The behavior and performance of the mass storage network and a typical client-server Local Area Network (LAN) are investigated by modeling and simulation. Performance characteristics in throughput and delay demonstrate the important role of modeling and simulation in network engineering and capacity planning.
Bock, David C.; Marschilok, Amy C.; Takeuchi, Kenneth J.; ...
2017-11-20
Here, magnetite is a conversion anode material displaying multi-electron transfer during lithiation and delithiation. The solid electrolyte interphase (SEI) on magnetite, Fe 3O 4, electrodes for lithium ion batteries was deliberately modified through the use of fluoroethylene carbonate (FEC) electrolyte additive, improving both capacity retention and rate capability. Analysis showed reduction of FEC at higher voltage compared to non-fluorinated solvents with formation of a modified lithium flouride containing electrode surface.
Neuron-Inspired Fe3O4/Conductive Carbon Filament Network for High-Speed and Stable Lithium Storage.
Hao, Shu-Meng; Li, Qian-Jie; Qu, Jin; An, Fei; Zhang, Yu-Jiao; Yu, Zhong-Zhen
2018-05-17
Construction of a continuous conductance network with high electron-transfer rate is extremely important for high-performance energy storage. Owing to the highly efficient mass transport and information transmission, neurons are exactly a perfect model for electron transport, inspiring us to design a neuron-like reaction network for high-performance lithium-ion batteries (LIBs) with Fe 3 O 4 as an example. The reactive cores (Fe 3 O 4 ) are protected by carbon shells and linked by carbon filaments, constituting an integrated conductance network. Thus, once the reaction starts, the electrons released from every Fe 3 O 4 cores are capable of being transferred rapidly through the whole network directly to the external circuit, endowing the nanocomposite with tremendous rate performance and ultralong cycle life. After 1000 cycles at current densities as high as 1 and 2 A g -1 , charge capacities of the as-synthesized nanocomposite maintain 971 and 715 mA h g -1 , respectively, much higher than those of reported Fe 3 O 4 -based anode materials. The Fe 3 O 4 -based conductive network provides a new idea for future developments of high-rate-performance LIBs.
Liang, Liying; Liu, Haimei; Yang, Wensheng
2013-02-07
The improvement of the electrochemical properties of electrode materials with large capacity and good capacity retention is becoming an important task in the field of lithium ion batteries (LIBs). We designed a function-oriented hybrid material consisting of silver vanadium oxide (β-AgVO(3)) nanowires modified with uniform Ag nanoparticles and multi-walled carbon nanotubes (CNTs) as a high-performance cathode material for LIBs. The Ag nanoparticles which precipitated automatically in the synthetic process act as a bridge between the β-AgVO(3) nanowires and CNTs, creating a self-bridged network structure. The Ag particles at the junction of the nanowires and CNTs facilitate electron transport from the CNTs to the nanowires, and thereby improve the electrical conductivity of the β-AgVO(3) nanowires and the composite. Moreover, the self-bridged network is hierarchically porous with a high surface area. When used as a cathode material, this composite electrode reveals high discharge capacities, excellent rate capability, and good cycling stability. The improved performance of the composite arises from its unique nanosized β-AgVO(3) nanowires with short diffusion pathway for lithium ions, efficient electron collection and transfer in the presence of Ag nanoparticles, together with excellent electrical conductivity of CNTs.
Kongkanand, Anusorn; Kamat, Prashant V
2007-08-01
The use of single wall carbon nanotubes (SWCNTs) as conduits for transporting electrons in a photoelectrochemical solar cell and electronic devices requires better understanding of their electron-accepting properties. When in contact with photoirradiated TiO(2) nanoparticles, SWCNTs accept and store electrons. The Fermi level equilibration with photoirradiated TiO(2) particles indicates storage of up to 1 electron per 32 carbon atoms in the SWCNT. The stored electrons are readily discharged on demand upon addition of electron acceptors such as thiazine and oxazine dyes (reduction potential less negative than that of the SWCNT conduction band) to the TiO(2)-SWCNT suspension. The stepwise electron transfer from photoirradiated TiO(2) nanoparticles --> SWCNT --> redox couple has enabled us to probe the electron equilibration process and determine the apparent Fermi level of the TiO(2)-SWCNT system. A positive shift in apparent Fermi level (20-30 mV) indicates the ability of SWCNTs to undergo charge equilibration with photoirradiated TiO(2) particles. The dependence of discharge capacity on the reduction potential of the dye redox couple is compared for TiO(2) and TiO(2)-SWCNT systems under equilibration conditions.
NASA Astrophysics Data System (ADS)
Arsawan, I. W. E.; Sanjaya, I. B.; Putra, I. K. M.; Sukarta, I. W.
2018-01-01
This study aims to examine the relationship between motivation and knowledge transfer to the subsidiaries performance and test the role of absorptive capacity as a moderating variable. The research uses quantitative design through questionnaires distribution with 5 Likert scales. The population frame is five-star hotel in Bali province, Indonesia which amounted to 63 units, the sample of research using proportional random sampling is 54 units and determined the distribution of questionnaires to 162 subsidiaries as the unit of analysis. The research model was built using the structural equation model and analyzed with smart pls- 3 software. The findings of the study revealed that subsidiaries motivation a significant effect on knowledge transfer, knowledge transfer a significant effect on subsidiaries performance, motivation a significant effect on subsidiaries performance and absorptive capacity moderated the relationship between knowledge transfer and subsidiaries performance. These findings suggest that subsidiaries and process of knowledge transfer through absorptive capacity play an important role, and that they have some impact on the subsidiaries performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Sookyung; Li, Xiaolin; Zheng, Jianming
With the ever increasing demands on Li-ion batteries with higher energy densities, alternative anode with higher reversible capacity is required to replace the conventional graphite anode. Here, we demonstrate a cost-effective hydrothermal-carbonization approach to prepare the hard carbon coated nano-Si/graphite (HC-nSi/G) composite as a high performance anode for Li-ion batteries. In this hierarchical structured composite, the hard carbon coating layer not only provides an efficient pathway for electron transfer, but also alleviates the volume variation of silicon during charge/discharge processes. The HC-nSi/G composite electrode shows excellent electrochemical performances including a high specific capacity of 878.6 mAh g-1 based on themore » total weight of composite, good rate performance and a decent cycling stability, which is promising for practical applications.« less
The Role of Teams, Culture, and Capacity in the Transfer of Organizational Practices
ERIC Educational Resources Information Center
Lucas, Leyland M.
2010-01-01
Purpose: Transferring organizational practices requires an understanding not only of what is being transferred but also of what is needed to ensure that the transfer is successful. In line with this thinking, the purpose of this study is to examine three factors that are crucial parts of this mechanism: use of teams, culture, and capacity.…
12 CFR 1005.14 - Electronic fund transfer service provider not holding consumer's account.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 12 Banks and Banking 8 2012-01-01 2012-01-01 false Electronic fund transfer service provider not... PROTECTION ELECTRONIC FUND TRANSFERS (REGULATION E) § 1005.14 Electronic fund transfer service provider not holding consumer's account. (a) Provider of electronic fund transfer service. A person that provides an...
12 CFR 1005.14 - Electronic fund transfer service provider not holding consumer's account.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 12 Banks and Banking 8 2013-01-01 2013-01-01 false Electronic fund transfer service provider not... PROTECTION ELECTRONIC FUND TRANSFERS (REGULATION E) General § 1005.14 Electronic fund transfer service provider not holding consumer's account. (a) Provider of electronic fund transfer service. A person that...
12 CFR 1005.14 - Electronic fund transfer service provider not holding consumer's account.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 12 Banks and Banking 8 2014-01-01 2014-01-01 false Electronic fund transfer service provider not... PROTECTION ELECTRONIC FUND TRANSFERS (REGULATION E) General § 1005.14 Electronic fund transfer service provider not holding consumer's account. (a) Provider of electronic fund transfer service. A person that...
Ye, Jianchao C.; Ong, Mitchell T.; Heo, Tae Wook; ...
2015-11-05
Atomic hydrogen exists ubiquitously in graphene materials made by chemical methods. Yet determining the effect of hydrogen on the electrochemical performance of graphene remains a significant challenge. Here we report the experimental observations of high rate capacity in hydrogen-treated 3-dimensional (3D) graphene nanofoam electrodes for lithium ion batteries. Structural and electronic characterization suggests that defect sites and hydrogen play synergistic roles in disrupting sp 2 graphene to facilitate fast lithium transport and reversible surface binding, as evidenced by the fast charge-transfer kinetics and increased capacitive contribution in hydrogen-treated 3D graphene. In concert with experiments, multiscale calculations reveal that defect complexesmore » in graphene are prerequisite for low-temperature hydrogenation, and that the hydrogenation of defective or functionalized sites at strained domain boundaries plays a beneficial role in improving rate capacity by opening gaps to facilitate easier Li penetration. Additional reversible capacity is provided by enhanced lithium binding near hydrogen-terminated edge sites. Furthermore, these findings provide qualitative insights in helping the design of graphene-based materials for high-power electrodes.« less
Ye, Jianchao; Ong, Mitchell T.; Heo, Tae Wook; Campbell, Patrick G.; Worsley, Marcus A.; Liu, Yuanyue; Shin, Swanee J.; Charnvanichborikarn, Supakit; Matthews, Manyalibo J.; Bagge-Hansen, Michael; Lee, Jonathan R.I.; Wood, Brandon C.; Wang, Y. Morris
2015-01-01
Atomic hydrogen exists ubiquitously in graphene materials made by chemical methods. Yet determining the effect of hydrogen on the electrochemical performance of graphene remains a significant challenge. Here we report the experimental observations of high rate capacity in hydrogen-treated 3-dimensional (3D) graphene nanofoam electrodes for lithium ion batteries. Structural and electronic characterization suggests that defect sites and hydrogen play synergistic roles in disrupting sp2 graphene to facilitate fast lithium transport and reversible surface binding, as evidenced by the fast charge-transfer kinetics and increased capacitive contribution in hydrogen-treated 3D graphene. In concert with experiments, multiscale calculations reveal that defect complexes in graphene are prerequisite for low-temperature hydrogenation, and that the hydrogenation of defective or functionalized sites at strained domain boundaries plays a beneficial role in improving rate capacity by opening gaps to facilitate easier Li penetration. Additional reversible capacity is provided by enhanced lithium binding near hydrogen-terminated edge sites. These findings provide qualitative insights in helping the design of graphene-based materials for high-power electrodes. PMID:26536830
75 FR 66046 - Capacity Transfers on Intrastate Natural Gas Pipelines
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-27
...] Capacity Transfers on Intrastate Natural Gas Pipelines October 21, 2010. AGENCY: Federal Energy Regulatory... comments on whether and how holders of firm capacity on intrastate natural gas pipelines providing interstate transportation and storage services under section 311 of the Natural Gas Policy Act of 1978 and...
Li, Wenyue; Tang, Yongbing; Kang, Wenpei; Zhang, Zhenyu; Yang, Xia; Zhu, Yu; Zhang, Wenjun; Lee, Chun-Sing
2015-03-18
Due to its high theoretical capacity and low lithium insertion voltage plateau, silicon has been considered one of the most promising anodes for high energy and high power density lithium ion batteries (LIBs). However, its rapid capacity degradation, mainly caused by huge volume changes during lithium insertion/extraction processes, remains a significant challenge to its practical application. Engineering Si anodes with abundant free spaces and stabilizing them by incorporating carbon materials has been found to be effective to address the above problems. Using sodium chloride (NaCl) as a template, bubble sheet-like carbon film supported core-shell Si/C composites are prepared for the first time by a facile magnesium thermal reduction/glucose carbonization process. The capacity retention achieves up to 93.6% (about 1018 mAh g(-1)) after 200 cycles at 1 A g(-1). The good performance is attributed to synergistic effects of the conductive carbon film and the hollow structure of the core-shell nanospheres, which provide an ideal conductive matrix and buffer spaces for respectively electron transfer and Si expansion during lithiation process. This unique structure decreases the charge transfer resistance and suppresses the cracking/pulverization of Si, leading to the enhanced cycling performance of bubble sheet-like composite. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Antioxidant, phenolic and antifungal profiles of Acanthus mollis (Acanthaceae).
Jara, Carlos; Leyton, Miguel; Osorio, Mauricio; Silva, Viviana; Fleming, Francisco; Paz, Marilyn; Madrid, Alejandro; Mellado, Marco
2017-10-01
Acanthus mollis is used as ornamental and medicinal plant. The ethnopharmacology reports indicate that extracts have anti-inflammatory activity. Phytoconstituents profile was evaluated by estimating the content of anthraquinones, flavonoids and phenols. In addition, the antioxidant activity was evaluated using four methods: Hydrogen atoms transfer (TRAP, ORAC and DPPH assays), and single electron transfer (FRAP assay). Finally, antifungal activity was determined by the M27-A2 test. The results shown that ethanol extracts have the highest concentration of phenols, anthraquinones and flavonoids. Total antioxidant capacity, extracts of ethyl acetate and ethanol are those with the highest activity, which correlates strongly with the presence of phenols. The antifungal activity measured in various strains of Candida is concentrated in ethyl acetate extracts of flower and leaf ethanol, a phenomenon may be related to antioxidant activity.
Perinatal transport: problems in neonatal intensive care capacity.
Gill, A B; Bottomley, L; Chatfield, S; Wood, C
2004-05-01
To assess the quantity and nature of transfers within the Yorkshire perinatal service, with the aim of identifying suitable outcome measures for the assessment of future service improvements. Collection of data on perinatal transfers from all neonatal and maternity units located in the Yorkshire region of the United Kingdom from May to November 2000. Expectant mothers (in utero transfers) and neonates (ex utero transfers). None Quantification of in utero and ex utero transfers; the reasons for and resources required to support transfers; the nature of each transfer (acute, specialist, non-acute, into or out of region). In the period studied, there were 800 transfers (337 in utero; 463 ex utero); 306 transfers were "acute" (80% of transfers in utero), 214 because of specialist need, and 280 "non-acute". Some 37% of capacity transfers occurred from the two level 3 units in the region. Of 254 transfers out of the 14 neonatal units for intensive care, 44 (17.3%) were transferred to hospitals outside the normal neonatal commissioning boundaries. The study highlights a continuing apparent lack of capacity within the neonatal service in the Yorkshire region, resulting in considerable numbers of neonatal and maternal transfers.
Calzavara, A K; Rocha, J S; Lourenço, G; Sanada, K; Medri, C; Bianchini, E; Pimenta, J A; Stolf-Moreira, R; Oliveira, H C
2017-09-01
The re-composition of deforested environments requires the prior acclimation of seedlings to full sun in nurseries. Seedlings can overcome excess light either through the acclimation of pre-existing fully expanded leaves or through the development of new leaves that are acclimated to the new light environment. Here, we compared the acclimation capacity of mature (MatL, fully expanded at the time of transfer) and newly expanded (NewL, expanded after the light shift) leaves of Guazuma ulmifolia Lam. (Malvaceae) seedlings to high light. The seedlings were initially grown under shade and then transferred to full sunlight. MatL and NewL were used for chlorophyll fluorescence and gas exchange analyses, pigment extraction and morpho-anatomical measurements. After the transfer of seedlings to full sun, the MatL persisted and acclimated to some extent to the new light condition, since they underwent alterations in some morpho-physiological traits and maintained a functional electron transport chain and positive net photosynthesis rate. However, long-term exposure to high light led to chronic photoinhibition in MatL, which could be related to the limited plasticity of leaf morpho-anatomical attributes. However, the NewL showed a high capacity to use the absorbed energy in photochemistry and dissipate excess energy harmlessly, attributes that were favoured by the high structural plasticity exhibited by these leaves. Both the maintenance of mature, photosynthetically active leaves and the production of new leaves with a high capacity to cope with excess energy were important for acclimation of G. ulmifolia seedlings. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.
Using information theory to assess the communicative capacity of circulating microRNA.
Finn, Nnenna A; Searles, Charles D
2013-10-11
The discovery of extracellular microRNAs (miRNAs) and their transport modalities (i.e., microparticles, exosomes, proteins and lipoproteins) has sparked theories regarding their role in intercellular communication. Here, we assessed the information transfer capacity of different miRNA transport modalities in human serum by utilizing basic principles of information theory. Zipf Statistics were calculated for each of the miRNA transport modalities identified in human serum. Our analyses revealed that miRNA-mediated information transfer is redundant, as evidenced by negative Zipf's Statistics with magnitudes greater than one. In healthy subjects, the potential communicative capacity of miRNA in complex with circulating proteins was significantly lower than that of miRNA encapsulated in circulating microparticles and exosomes. Moreover, the presence of coronary heart disease significantly lowered the communicative capacity of all circulating miRNA transport modalities. To assess the internal organization of circulating miRNA signals, Shannon's zero- and first-order entropies were calculated. Microparticles (MPs) exhibited the lowest Shannon entropic slope, indicating a relatively high capacity for information transfer. Furthermore, compared to the other miRNA transport modalities, MPs appeared to be the most efficient at transferring miRNA to cultured endothelial cells. Taken together, these findings suggest that although all transport modalities have the capacity for miRNA-based information transfer, MPs may be the simplest and most robust way to achieve miRNA-based signal transduction in sera. This study presents a novel method for analyzing the quantitative capacity of miRNA-mediated information transfer while providing insight into the communicative characteristics of distinct circulating miRNA transport modalities. Published by Elsevier Inc.
Guo, Yuanyuan; Zeng, Xiaoqiao; Zhang, Yu; Dai, Zhengfei; Fan, Haosen; Huang, Ying; Zhang, Weina; Zhang, Hua; Lu, Jun; Huo, Fengwei; Yan, Qingyu
2017-05-24
Three-dimensional nanoporous carbon frameworks encapsulated Sn nanoparticles (Sn@3D-NPC) are developed by a facile method as an improved lithium ion battery anode. The Sn@3D-NPC delivers a reversible capacity of 740 mAh g -1 after 200 cycles at a current density of 200 mA g -1 , corresponding to a capacity retention of 85% (against the second capacity) and high rate capability (300 mAh g -1 at 5 A g -1 ). Compared to the Sn nanoparticles (SnNPs), such improvements are attributed to the 3D porous and conductive framework. The whole structure can provide not only the high electrical conductivity that facilities the electron transfer but also the elasticity that will suppress the volume expansion and aggregation of SnNPs during the charge and discharge process. This work opens a new application of metal-organic frameworks in energy storage.
Quantum tunneling resonant electron transfer process in Lorentzian plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Woo-Pyo; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791
The quantum tunneling resonant electron transfer process between a positive ion and a neutral atom collision is investigated in nonthermal generalized Lorentzian plasmas. The result shows that the nonthermal effect enhances the resonant electron transfer cross section in Lorentzian plasmas. It is found that the nonthermal effect on the classical resonant electron transfer cross section is more significant than that on the quantum tunneling resonant charge transfer cross section. It is shown that the nonthermal effect on the resonant electron transfer cross section decreases with an increase of the Debye length. In addition, the nonthermal effect on the quantum tunnelingmore » resonant electron transfer cross section decreases with increasing collision energy. The variation of nonthermal and plasma shielding effects on the quantum tunneling resonant electron transfer process is also discussed.« less
Ultrafast direct electron transfer at organic semiconductor and metal interfaces.
Xiang, Bo; Li, Yingmin; Pham, C Huy; Paesani, Francesco; Xiong, Wei
2017-11-01
The ability to control direct electron transfer can facilitate the development of new molecular electronics, light-harvesting materials, and photocatalysis. However, control of direct electron transfer has been rarely reported, and the molecular conformation-electron dynamics relationships remain unclear. We describe direct electron transfer at buried interfaces between an organic polymer semiconductor film and a gold substrate by observing the first dynamical electric field-induced vibrational sum frequency generation (VSFG). In transient electric field-induced VSFG measurements on this system, we observe dynamical responses (<150 fs) that depend on photon energy and polarization, demonstrating that electrons are directly transferred from the Fermi level of gold to the lowest unoccupied molecular orbital of organic semiconductor. Transient spectra further reveal that, although the interfaces are prepared without deliberate alignment control, a subensemble of surface molecules can adopt conformations for direct electron transfer. Density functional theory calculations support the experimental results and ascribe the observed electron transfer to a flat-lying polymer configuration in which electronic orbitals are found to be delocalized across the interface. The present observation of direct electron transfer at complex interfaces and the insights gained into the relationship between molecular conformations and electron dynamics will have implications for implementing novel direct electron transfer in energy materials.
Fapetu, Segun; Keshavarz, Taj; Clements, Mark; Kyazze, Godfrey
2016-09-01
To investigate the contribution of direct electron transfer mechanisms to electricity production in microbial fuel cells by physically retaining Shewanella oneidensis cells close to or away from the anode electrode. A maximum power output of 114 ± 6 mWm(-2) was obtained when cells were retained close to the anode using a dialysis membrane. This was 3.5 times more than when the cells were separated away from the anode. Without the membrane the maximum power output was 129 ± 6 mWm(-2). The direct mechanisms of electron transfer contributed significantly to overall electron transfer from S. oneidensis to electrodes, a result that was corroborated by another experiment where S. oneidensis cells were entrapped in alginate gels. S. oneidensis transfers electrons primarily by direct electron transfer as opposed to mediated electron transfer.
Li, Qian; Xu, Manjuan; Wang, Gaojun; Chen, Rong; Qiao, Wei; Wang, Xiaochang
2018-02-01
Batch experiments were conducted using biochar (BC) to promote stable and efficient methane production from thermophilic co-digestion of food waste (FW) and waste activated sludge (WAS) at feedstock/seed sludge (F/S) ratios of 0.25, 0.75, 1.5, 2.25, and 3. The results showed that the presence of BC dramatically shortened the lag time of methane production and increased the methane production rate with increased organic loading. The higher buffer capacity and large specific surface area of BC promoted microorganism growth and adaption to VFAs accumulation. Additionally, the electron exchange in syntrophic oxidation of butyrate and acetate as intermediate products was significantly facilitated by BC possibly due to the selective succession of bacteria and methanogens which may have participated in direct interspecies electron transfer, in contrast with the control group with low-efficient electron ferried between syntrophic oxidizers and methanogens using hydrogen as the electron carrier. Copyright © 2017 Elsevier Ltd. All rights reserved.
Suppression of BRCA2 by Mutant Mitochondrial DNA in Prostate Cancer
2011-05-01
Briefly, the electron transfer activities of complex I/III (NADH dehydrogenase/cytochrome bc1 complex: catalyzes the electron transfer from NADH to...ferricytochrome c) and complex II/III (succinate dehydrogenase/cytochrome bc1 complex: catalyzes the electron transfer from succinate to ferricytochrome...The electron transfer activity of complex IV (cytochrome c oxidase: catalyzes the final step of the respiratory chain by transferring electrons from
Electrochemical Measurement of Electron Transfer Kinetics by Shewanella oneidensis MR-1*
Baron, Daniel; LaBelle, Edward; Coursolle, Dan; Gralnick, Jeffrey A.; Bond, Daniel R.
2009-01-01
Shewanella oneidensis strain MR-1 can respire using carbon electrodes and metal oxyhydroxides as electron acceptors, requiring mechanisms for transferring electrons from the cell interior to surfaces located beyond the cell. Although purified outer membrane cytochromes will reduce both electrodes and metals, S. oneidensis also secretes flavins, which accelerate electron transfer to metals and electrodes. We developed techniques for detecting direct electron transfer by intact cells, using turnover and single turnover voltammetry. Metabolically active cells attached to graphite electrodes produced thin (submonolayer) films that demonstrated both catalytic and reversible electron transfer in the presence and absence of flavins. In the absence of soluble flavins, electron transfer occurred in a broad potential window centered at ∼0 V (versus standard hydrogen electrode), and was altered in single (ΔomcA, ΔmtrC) and double deletion (ΔomcA/ΔmtrC) mutants of outer membrane cytochromes. The addition of soluble flavins at physiological concentrations significantly accelerated electron transfer and allowed catalytic electron transfer to occur at lower applied potentials (−0.2 V). Scan rate analysis indicated that rate constants for direct electron transfer were slower than those reported for pure cytochromes (∼1 s−1). These observations indicated that anodic current in the higher (>0 V) window is due to activation of a direct transfer mechanism, whereas electron transfer at lower potentials is enabled by flavins. The electrochemical dissection of these activities in living cells into two systems with characteristic midpoint potentials and kinetic behaviors explains prior observations and demonstrates the complementary nature of S. oneidensis electron transfer strategies. PMID:19661057
Zhao, Jing; Wang, Mei; Fu, Aiyun; Yang, Hongfang; Bu, Yuxiang
2015-08-03
We present an ab initio molecular dynamics (AIMD) simulation study into the transfer dynamics of an excess electron from its cavity-shaped hydrated electron state to a hydrated nucleobase (NB)-bound state. In contrast to the traditional view that electron localization at NBs (G/A/C/T), which is the first step for electron-induced DNA damage, is related only to dry or prehydrated electrons, and a fully hydrated electron no longer transfers to NBs, our AIMD simulations indicate that a fully hydrated electron can still transfer to NBs. We monitored the transfer dynamics of fully hydrated electrons towards hydrated NBs in aqueous solutions by using AIMD simulations and found that due to solution-structure fluctuation and attraction of NBs, a fully hydrated electron can transfer to a NB gradually over time. Concurrently, the hydrated electron cavity gradually reorganizes, distorts, and even breaks. The transfer could be completed in about 120-200 fs in four aqueous NB solutions, depending on the electron-binding ability of hydrated NBs and the structural fluctuation of the solution. The transferring electron resides in the π*-type lowest unoccupied molecular orbital of the NB, which leads to a hydrated NB anion. Clearly, the observed transfer of hydrated electrons can be attributed to the strong electron-binding ability of hydrated NBs over the hydrated electron cavity, which is the driving force, and the transfer dynamics is structure-fluctuation controlled. This work provides new insights into the evolution dynamics of hydrated electrons and provides some helpful information for understanding the DNA-damage mechanism in solution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jones, Matthew; Talfournier, Francois; Bobrov, Anton; Grossmann, J Günter; Vekshin, Nikolai; Sutcliffe, Michael J; Scrutton, Nigel S
2002-03-08
The trimethylamine dehydrogenase-electron transferring flavoprotein (TMADH.ETF) electron transfer complex has been studied by fluorescence and absorption spectroscopies. These studies indicate that a series of conformational changes occur during the assembly of the TMADH.ETF electron transfer complex and that the kinetics of assembly observed with mutant TMADH (Y442F/L/G) or ETF (alpha R237A) complexes are much slower than are the corresponding rates of electron transfer in these complexes. This suggests that electron transfer does not occur in the thermodynamically most favorable state (which takes too long to form), but that one or more metastable states (which are formed more rapidly) are competent in transferring electrons from TMADH to ETF. Additionally, fluorescence spectroscopy studies of the TMADH.ETF complex indicate that ETF undergoes a stable conformational change (termed structural imprinting) when it interacts transiently with TMADH to form a second, distinct, structural form. The mutant complexes compromise imprinting of ETF, indicating a dependence on the native interactions present in the wild-type complex. The imprinted form of semiquinone ETF exhibits an enhanced rate of electron transfer to the artificial electron acceptor, ferricenium. Overall molecular conformations as probed by small-angle x-ray scattering studies are indistinguishable for imprinted and non-imprinted ETF, suggesting that changes in structure likely involve confined reorganizations within the vicinity of the FAD. Our results indicate a series of conformational events occur during the assembly of the TMADH.ETF electron transfer complex, and that the properties of electron transfer proteins can be affected lastingly by transient interaction with their physiological redox partners. This may have significant implications for our understanding of biological electron transfer reactions in vivo, because ETF encounters TMADH at all times in the cell. Our studies suggest that caution needs to be exercised in extrapolating the properties of in vitro interprotein electron transfer reactions to those occurring in vivo.
31 CFR 208.3 - Payment by electronic funds transfer.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 31 Money and Finance:Treasury 2 2011-07-01 2011-07-01 false Payment by electronic funds transfer... DISBURSEMENTS § 208.3 Payment by electronic funds transfer. Subject to § 208.4, and notwithstanding any other... electronic funds transfer. ...
48 CFR 18.124 - Electronic funds transfer.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Electronic funds transfer. 18.124 Section 18.124 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION... Electronic funds transfer. Electronic funds transfer payments may be waived for acquisitions to support...
48 CFR 18.124 - Electronic funds transfer.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Electronic funds transfer. 18.124 Section 18.124 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION... Electronic funds transfer. Electronic funds transfer payments may be waived for acquisitions to support...
31 CFR 208.3 - Payment by electronic funds transfer.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 31 Money and Finance:Treasury 2 2012-07-01 2012-07-01 false Payment by electronic funds transfer... DISBURSEMENTS § 208.3 Payment by electronic funds transfer. Subject to § 208.4, and notwithstanding any other... electronic funds transfer. ...
48 CFR 18.123 - Electronic funds transfer.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Electronic funds transfer. 18.123 Section 18.123 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION... Electronic funds transfer. Electronic funds transfer payments may be waived for acquisitions to support...
48 CFR 18.124 - Electronic funds transfer.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Electronic funds transfer. 18.124 Section 18.124 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION... Electronic funds transfer. Electronic funds transfer payments may be waived for acquisitions to support...
48 CFR 18.124 - Electronic funds transfer.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Electronic funds transfer. 18.124 Section 18.124 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION... Electronic funds transfer. Electronic funds transfer payments may be waived for acquisitions to support...
NASA Astrophysics Data System (ADS)
Criss, Everett M.; Hofmeister, Anne M.
2017-06-01
From femtosecond spectroscopy (fs-spectroscopy) of metals, electrons and phonons reequilibrate nearly independently, which contrasts with models of heat transfer at ordinary temperatures (T > 100 K). These electronic transfer models only agree with thermal conductivity (k) data at a single temperature, but do not agree with thermal diffusivity (D) data. To address the discrepancies, which are important to problems in solid state physics, we separately measured electronic (ele) and phononic (lat) components of D in many metals and alloys over ˜290-1100 K by varying measurement duration and sample length in laser-flash experiments. These mechanisms produce distinct diffusive responses in temperature versus time acquisitions because carrier speeds (u) and heat capacities (C) differ greatly. Electronic transport of heat only operates for a brief time after heat is applied because u is high. High Dele is associated with moderate T, long lengths, low electrical resistivity, and loss of ferromagnetism. Relationships of Dele and Dlat with physical properties support our assignments. Although kele reaches ˜20 × klat near 470 K, it is transient. Combining previous data on u with each D provides mean free paths and lifetimes that are consistent with ˜298 K fs-spectroscopy, and new values at high T. Our findings are consistent with nearly-free electrons absorbing and transmitting a small fraction of the incoming heat, whereas phonons absorb and transmit the majority. We model time-dependent, parallel heat transfer under adiabatic conditions which is one-dimensional in solids, as required by thermodynamic law. For noninteracting mechanisms, k≅ΣCikiΣCi/(ΣCi2). For metals, this reduces to k = klat above ˜20 K, consistent with our measurements, and shows that Meissner’s equation (k≅klat + kele) is invalid above ˜20 K. For one mechanism with multiple, interacting carriers, k≅ΣCiki/(ΣCi). Thus, certain dynamic behaviors of electrons and phonons in metals have been misunderstood. Implications for theoretical models and technological advancements are briefly discussed.
Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles
Tvrdy, Kevin; Frantsuzov, Pavel A.; Kamat, Prashant V.
2011-01-01
Quantum dot-metal oxide junctions are an integral part of next-generation solar cells, light emitting diodes, and nanostructured electronic arrays. Here we present a comprehensive examination of electron transfer at these junctions, using a series of CdSe quantum dot donors (sizes 2.8, 3.3, 4.0, and 4.2 nm in diameter) and metal oxide nanoparticle acceptors (SnO2, TiO2, and ZnO). Apparent electron transfer rate constants showed strong dependence on change in system free energy, exhibiting a sharp rise at small driving forces followed by a modest rise further away from the characteristic reorganization energy. The observed trend mimics the predicted behavior of electron transfer from a single quantum state to a continuum of electron accepting states, such as those present in the conduction band of a metal oxide nanoparticle. In contrast with dye-sensitized metal oxide electron transfer studies, our systems did not exhibit unthermalized hot-electron injection due to relatively large ratios of electron cooling rate to electron transfer rate. To investigate the implications of these findings in photovoltaic cells, quantum dot-metal oxide working electrodes were constructed in an identical fashion to the films used for the electron transfer portion of the study. Interestingly, the films which exhibited the fastest electron transfer rates (SnO2) were not the same as those which showed the highest photocurrent (TiO2). These findings suggest that, in addition to electron transfer at the quantum dot-metal oxide interface, other electron transfer reactions play key roles in the determination of overall device efficiency. PMID:21149685
Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles.
Tvrdy, Kevin; Frantsuzov, Pavel A; Kamat, Prashant V
2011-01-04
Quantum dot-metal oxide junctions are an integral part of next-generation solar cells, light emitting diodes, and nanostructured electronic arrays. Here we present a comprehensive examination of electron transfer at these junctions, using a series of CdSe quantum dot donors (sizes 2.8, 3.3, 4.0, and 4.2 nm in diameter) and metal oxide nanoparticle acceptors (SnO(2), TiO(2), and ZnO). Apparent electron transfer rate constants showed strong dependence on change in system free energy, exhibiting a sharp rise at small driving forces followed by a modest rise further away from the characteristic reorganization energy. The observed trend mimics the predicted behavior of electron transfer from a single quantum state to a continuum of electron accepting states, such as those present in the conduction band of a metal oxide nanoparticle. In contrast with dye-sensitized metal oxide electron transfer studies, our systems did not exhibit unthermalized hot-electron injection due to relatively large ratios of electron cooling rate to electron transfer rate. To investigate the implications of these findings in photovoltaic cells, quantum dot-metal oxide working electrodes were constructed in an identical fashion to the films used for the electron transfer portion of the study. Interestingly, the films which exhibited the fastest electron transfer rates (SnO(2)) were not the same as those which showed the highest photocurrent (TiO(2)). These findings suggest that, in addition to electron transfer at the quantum dot-metal oxide interface, other electron transfer reactions play key roles in the determination of overall device efficiency.
ERIC Educational Resources Information Center
Kuiken, Janna; van der Sijde, Peter
2011-01-01
The process of knowledge transfer has been extensively studied in the context of a variety of theoretical considerations. In this paper the authors adopt a communication theory perspective and focus on capacity for dissemination. Many studies assume that universities are able to disseminate and commercialize their knowledge (and technology).…
Modular electron transfer circuits for synthetic biology
Agapakis, Christina M
2010-01-01
Electron transfer is central to a wide range of essential metabolic pathways, from photosynthesis to fermentation. The evolutionary diversity and conservation of proteins that transfer electrons makes these pathways a valuable platform for engineered metabolic circuits in synthetic biology. Rational engineering of electron transfer pathways containing hydrogenases has the potential to lead to industrial scale production of hydrogen as an alternative source of clean fuel and experimental assays for understanding the complex interactions of multiple electron transfer proteins in vivo. We designed and implemented a synthetic hydrogen metabolism circuit in Escherichia coli that creates an electron transfer pathway both orthogonal to and integrated within existing metabolism. The design of such modular electron transfer circuits allows for facile characterization of in vivo system parameters with applications toward further engineering for alternative energy production. PMID:21468209
Hill, Bruce C; Andrews, Diann
2012-06-01
SCO (synthesis of cytochrome c oxidase) proteins are involved in the assembly of the respiratory chain enzyme cytochrome c oxidase acting to assist in the assembly of the Cu(A) center contained within subunit II of the oxidase complex. The Cu(A) center receives electrons from the reductive substrate ferrocytochrome c, and passes them on to the cytochrome a center. Cytochrome a feeds electrons to the oxygen reaction site composed of cytochrome a(3) and Cu(B). Cu(A) consists of two copper ions positioned within bonding distance and ligated by two histidine side chains, one methionine, a backbone carbonyl and two bridging cysteine residues. The complex structure and redox capacity of Cu(A) present a potential assembly challenge. SCO proteins are members of the thioredoxin family which led to the early suggestion of a disulfide exchange function for SCO in Cu(A) assembly, whereas the copper binding capacity of the Bacillus subtilis version of SCO (i.e., BsSCO) suggests a direct role for SCO proteins in copper transfer. We have characterized redox and copper exchange properties of apo- and metalated-BsSCO. The release of copper (II) from its complex with BsSCO is best achieved by reducing it to Cu(I). We propose a mechanism involving both disulfide and copper exchange between BsSCO and the apo-Cu(A) site. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes. Copyright © 2011 Elsevier B.V. All rights reserved.
Boehme, Simon C; Walvis, T Ardaan; Infante, Ivan; Grozema, Ferdinand C; Vanmaekelbergh, Daniël; Siebbeles, Laurens D A; Houtepen, Arjan J
2014-07-22
Understanding and controlling charge transfer between different kinds of colloidal quantum dots (QDs) is important for devices such as light-emitting diodes and solar cells and for thermoelectric applications. Here we study photoinduced electron transfer between CdTe and CdSe QDs in a QD film. We find that very efficient electron trapping in CdTe QDs obstructs electron transfer to CdSe QDs under most conditions. Only the use of thiol ligands results in somewhat slower electron trapping; in this case the competition between trapping and electron transfer results in a small fraction of electrons being transferred to CdSe. However, we demonstrate that electron trapping can be controlled and even avoided altogether by using the unique combination of electrochemistry and transient absorption spectroscopy. When the Fermi level is raised electrochemically, traps are filled with electrons and electron transfer from CdTe to CdSe QDs occurs with unity efficiency. These results show the great importance of knowing and controlling the Fermi level in QD films and open up the possibility of studying the density of trap states in QD films as well as the systematic investigation of the intrinsic electron transfer rates in donor-acceptor films.
Hot-electron transfer in quantum-dot heterojunction films.
Grimaldi, Gianluca; Crisp, Ryan W; Ten Brinck, Stephanie; Zapata, Felipe; van Ouwendorp, Michiko; Renaud, Nicolas; Kirkwood, Nicholas; Evers, Wiel H; Kinge, Sachin; Infante, Ivan; Siebbeles, Laurens D A; Houtepen, Arjan J
2018-06-13
Thermalization losses limit the photon-to-power conversion of solar cells at the high-energy side of the solar spectrum, as electrons quickly lose their energy relaxing to the band edge. Hot-electron transfer could reduce these losses. Here, we demonstrate fast and efficient hot-electron transfer between lead selenide and cadmium selenide quantum dots assembled in a quantum-dot heterojunction solid. In this system, the energy structure of the absorber material and of the electron extracting material can be easily tuned via a variation of quantum-dot size, allowing us to tailor the energetics of the transfer process for device applications. The efficiency of the transfer process increases with excitation energy as a result of the more favorable competition between hot-electron transfer and electron cooling. The experimental picture is supported by time-domain density functional theory calculations, showing that electron density is transferred from lead selenide to cadmium selenide quantum dots on the sub-picosecond timescale.
NASA Astrophysics Data System (ADS)
Lai, Yan-Qing; Xu, Ming; Zhang, Zhi-An; Gao, Chun-Hui; Wang, Peng; Yu, Zi-Yang
2016-03-01
LiNi0.8Co0.15Al0.05O2 (NCA) is one of the most promising cathode material for lithium-ion batteries (LIBs) in electric vehicles, which is successfully adopted in Tesla. However, the dissolution of the cation into the electrolyte is still a one of the major challenges (fading capacity and poor cyclability, etc.) presented in pristine NCA. Herein, a homogeneous nanoscale ZnO film is directly sputtered on the surface of NCA electrode via the magnetron sputtering (MS). This ZnO film is evidenced by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The results clearly demonstrate that ZnO film is fully and uniformly covered on the NCA electrodes. After 90 cycles at 1.0C, the optimized MS-2min coated NCA electrode delivers much higher discharge capacity with 169 mAh g-1 than that of the pristine NCA electrode with 127 mAh g-1. In addition, the discharge capacity also reaches 166 mAh g-1 at 3.0C, as compared to that of 125 mAh g-1 for the pristine electrode. The improved electrochemical performance can be ascribed to the superiority of the MS ZnO film that reduce charge transfer resistance and protect the NCA electrode from cation dissolution.
Electron-transfer oxidation properties of DNA bases and DNA oligomers.
Fukuzumi, Shunichi; Miyao, Hiroshi; Ohkubo, Kei; Suenobu, Tomoyoshi
2005-04-21
Kinetics for the thermal and photoinduced electron-transfer oxidation of a series of DNA bases with various oxidants having the known one-electron reduction potentials (E(red)) in an aqueous solution at 298 K were examined, and the resulting electron-transfer rate constants (k(et)) were evaluated in light of the free energy relationship of electron transfer to determine the one-electron oxidation potentials (E(ox)) of DNA bases and the intrinsic barrier of the electron transfer. Although the E(ox) value of GMP at pH 7 is the lowest (1.07 V vs SCE) among the four DNA bases, the highest E(ox) value (CMP) is only 0.19 V higher than that of GMP. The selective oxidation of GMP in the thermal electron-transfer oxidation of GMP results from a significant decrease in the pH dependent oxidation potential due to the deprotonation of GMP*+. The one-electron reduced species of the photosensitizer produced by photoinduced electron transfer are observed as the transient absorption spectra when the free energy change of electron transfer is negative. The rate constants of electron-transfer oxidation of the guanine moieties in DNA oligomers with Fe(bpy)3(3+) and Ru(bpy)3(3+) were also determined using DNA oligomers containing different guanine (G) sequences from 1 to 10 G. The rate constants of electron-transfer oxidation of the guanine moieties in single- and double-stranded DNA oligomers with Fe(bpy)3(2+) and Ru(bpy)3(3+) are dependent on the number of sequential guanine molecules as well as on pH.
14 CFR 1274.931 - Electronic funds transfer payment methods.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Electronic funds transfer payment methods... COOPERATIVE AGREEMENTS WITH COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.931 Electronic funds transfer payment methods. Electronic Funds Transfer Payment Methods July 2002 Payments under this...
77 FR 40459 - Electronic Fund Transfers (Regulation E); Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-10
... Electronic Fund Transfers (Regulation E); Correction AGENCY: Bureau of Consumer Financial Protection. ACTION... published the Final Rule (77 FR 6194), which implements the Electronic Fund Transfer Act, and the official... Sec. 1005.3(a) in the interim final rule, Electronic Fund Transfers (Regulation E), published on...
14 CFR 1274.931 - Electronic funds transfer payment methods.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Electronic funds transfer payment methods... COOPERATIVE AGREEMENTS WITH COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.931 Electronic funds transfer payment methods. Electronic Funds Transfer Payment Methods July 2002 Payments under this...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Qi; Zhong, Yong-Hui; Laboratory of Nanomaterials and Environmental Detection, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei 230031
2014-03-01
Graphical abstract: - Highlights: • Mesoporous TiO{sub 2} nanoparticles with anatase phase were assembled on reduced graphene oxide via a template-free one-step hydrothermal method. • The TiO{sub 2}/rGO nanocomposites have better adsorption capacity and photocatalytic degradation efficiency for dyes removal. • Improved dye adsorption and photogenerated charge separation are responsible for enhanced activity. - Abstract: Mesoporous anatase phase TiO{sub 2} was assembled on reduced graphene oxide (rGO) using a template-free one-step hydrothermal process. The nanocomposites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and Brunauer–Emmett–Teller (BET) surface area.more » Morphology of TiO{sub 2} was related to the content of graphene oxide. TiO{sub 2}/rGO nanocomposites exhibited excellent photocatalytic activity for the photo-degradation of methyl orange. The degradation rate was 4.5 times greater than that of pure TiO{sub 2} nanoparticles. This difference was attributed to the thin two-dimensional graphene sheet. The graphene sheet had a large surface area, high adsorption capacity, and acted as a good electron acceptor for the transfer of photo-generated electrons from the conduction band of TiO{sub 2}. The enhanced surface adsorption characteristics and excellent charge transport separation were independent properties of the photocatalytic degradation process.« less
14 CFR § 1260.69 - Electronic funds transfer payment methods.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Electronic funds transfer payment methods... GRANTS AND COOPERATIVE AGREEMENTS General Special Conditions § 1260.69 Electronic funds transfer payment methods. Electronic Funds Transfer Payment Methods October 2000 (a) Payments under this grant will be made...
14 CFR 1260.69 - Electronic funds transfer payment methods.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Electronic funds transfer payment methods... COOPERATIVE AGREEMENTS General Special Conditions § 1260.69 Electronic funds transfer payment methods. Electronic Funds Transfer Payment Methods October 2000 (a) Payments under this grant will be made by the...
14 CFR 1260.69 - Electronic funds transfer payment methods.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Electronic funds transfer payment methods... COOPERATIVE AGREEMENTS General Special Conditions § 1260.69 Electronic funds transfer payment methods. Electronic Funds Transfer Payment Methods October 2000 (a) Payments under this grant will be made by the...
14 CFR 1260.69 - Electronic funds transfer payment methods.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Electronic funds transfer payment methods... COOPERATIVE AGREEMENTS General Special Conditions § 1260.69 Electronic funds transfer payment methods. Electronic Funds Transfer Payment Methods October 2000 (a) Payments under this grant will be made by the...
10 CFR 205.373 - Application procedures.
Code of Federal Regulations, 2013 CFR
2013-01-01
... interconnection: (i) Proposed location; (ii) Required thermal capacity or power transfer capability of the... interconnection: (i) Location; (ii) Thermal capacity of power transfer capability of interconnection facilities... DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and Reports...
10 CFR 205.373 - Application procedures.
Code of Federal Regulations, 2014 CFR
2014-01-01
... interconnection: (i) Proposed location; (ii) Required thermal capacity or power transfer capability of the... interconnection: (i) Location; (ii) Thermal capacity of power transfer capability of interconnection facilities... DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and Reports...
10 CFR 205.373 - Application procedures.
Code of Federal Regulations, 2011 CFR
2011-01-01
... interconnection: (i) Proposed location; (ii) Required thermal capacity or power transfer capability of the... interconnection: (i) Location; (ii) Thermal capacity of power transfer capability of interconnection facilities... DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and Reports...
10 CFR 205.373 - Application procedures.
Code of Federal Regulations, 2012 CFR
2012-01-01
... interconnection: (i) Proposed location; (ii) Required thermal capacity or power transfer capability of the... interconnection: (i) Location; (ii) Thermal capacity of power transfer capability of interconnection facilities... DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and Reports...
Three-dimensionally scaffolded Co3O4 nanosheet anodes with high rate performance
NASA Astrophysics Data System (ADS)
Liu, Jinyun; Kelly, Sean J.; Epstein, Eric S.; Pan, Zeng; Huang, Xingjiu; Liu, Jinhuai; Braun, Paul V.
2015-12-01
Advances in secondary batteries are required for realization of many technologies. In particular, there remains a need for stable higher energy batteries. Here we suggest a new anode concept consisting of an ultrathin Co3O4 nanosheet-coated Ni inverse opal which provides high charge-discharge rate performance using a material system with potential for high energy densities. Via a hydrothermal process, about 4 nm thick Co3O4 nanosheets were grown throughout a three-dimensional Ni scaffold. This architecture provides efficient pathways for both lithium and electron transfer, enabling high charge-discharge rate performance. The scaffold also accommodates volume changes during cycling, which serves to reduce capacity fade. Because the scaffold has a low electrical resistance, and is three-dimensionally porous, it enables most of the electrochemically active nanomaterials to take part in lithiation-delithiation reactions, resulting in a near-theoretical capacity. On a Co3O4 basis, the Ni@Co3O4 electrode possesses a capacity of about 726 mAh g-1 at a current density of 500 mA g-1 after 50 cycles, which is about twice the theoretical capacity of graphite. The capacity is 487 mAh g-1, even at a current density of 1786 mA g-1.
He, Jiarui; Lv, Weiqiang; Chen, Yuanfu; Wen, Kechun; Xu, Chen; Zhang, Wanli; Li, Yanrong; Qin, Wu; He, Weidong
2017-08-22
Lithium-tellurium (Li-Te) batteries are attractive for energy storage owing to their high theoretical volumetric capacity of 2621 mAh cm -3 . In this work, highly nanoporous cobalt and nitrogen codoped carbon polyhedra (C-Co-N) derived from a metal-organic framework (MOF) is synthesized and employed as tellurium host for Li-Te batteries. The Te@C-Co-N cathode with a high Te loading of 77.2 wt % exhibits record-breaking electrochemical performances including an ultrahigh initial capacity of 2615.2 mAh cm -3 approaching the theoretical capacity of Te (2621 mAh cm -3 ), a superior cycling stability with a high capacity retention of 93.6%, a ∼99% Columbic efficiency after 800 cycles as well as rate capacities of 2160, 1327.6, and 894.8 mAh cm -3 at 4, 10, and 20 C, respectively. The redox chemistry of tellurium is revealed by in operando Raman spectroscopic analysis and density functional theory simulations. The results illustrate that the performances are attributed to the highly conductive C-Co-N matrix with an advantageous structure of abundant micropores, which provides highly efficient channels for electron transfer and ionic diffusion as well as sufficient surface area to efficiently host tellurium while mitigating polytelluride dissolution and suppressing volume expansion.
In Situ Activation of Nitrogen-Doped Graphene Anchored on Graphite Foam for a High-Capacity Anode.
Ji, Junyi; Liu, Jilei; Lai, Linfei; Zhao, Xin; Zhen, Yongda; Lin, Jianyi; Zhu, Yanwu; Ji, Hengxing; Zhang, Li Li; Ruoff, Rodney S
2015-08-25
We report the fabrication of a three-dimensional free-standing nitrogen-doped porous graphene/graphite foam by in situ activation of nitrogen-doped graphene on highly conductive graphite foam (GF). After in situ activation, intimate "sheet contact" was observed between the graphene sheets and the GF. The sheet contact produced by in situ activation is found to be superior to the "point contact" obtained by the traditional drop-casting method and facilitates electron transfer. Due to the intimate contact as well as the use of an ultralight GF current collector, the composite electrode delivers a gravimetric capacity of 642 mAh g(-1) and a volumetric capacity of 602 mAh cm(-3) with respect to the whole electrode mass and volume (including the active materials and the GF current collector). When normalized based on the mass of the active material, the composite electrode delivers a high specific capacity of up to 1687 mAh g(-1), which is superior to that of most graphene-based electrodes. Also, after ∼90 s charging, the anode delivers a capacity of about 100 mAh g(-1) (with respect to the total mass of the electrode), indicating its potential use in high-rate lithium-ion batteries.
The influence of dielectric relaxation on intramolecular electron transfer
NASA Astrophysics Data System (ADS)
Heitele, H.; Michel-Beyerle, M. E.; Finckh, P.
1987-07-01
An unusually strong temperature dependence on the intramolecular electron-transfer rate has been observed for bridged donor-acceptor compounds in propylene glycol solution. In the frame of recent electron-transfer theories this effect reflects the influence of dielectric relaxation dynamics on electron transfer. With increasing dielectric relaxation time a smooth transition from non-adiabatic to solvent-controlled adiabatic behaviour is observed. The electron transfer rate in the solvent-controlled adiabatic limit is dominated by an inhomogeneous distribution of relaxation times.
Impact of kinetic mass transfer on free convection in a porous medium
NASA Astrophysics Data System (ADS)
Lu, Chunhui; Shi, Liangsheng; Chen, Yiming; Xie, Yueqing; Simmons, Craig T.
2016-05-01
We investigate kinetic mass transfer effects on unstable density-driven flow and transport processes by numerical simulations of a modified Elder problem. The first-order dual-domain mass transfer model coupled with a variable-density-flow model is employed to describe transport behavior in porous media. Results show that in comparison to the no-mass-transfer case, a higher degree of instability and more unstable system is developed in the mass transfer case due to the reduced effective porosity and correspondingly a larger Rayleigh number (assuming permeability is independent on the mobile porosity). Given a constant total porosity, the magnitude of capacity ratio (i.e., immobile porosity/mobile porosity) controls the macroscopic plume profile in the mobile domain, while the magnitude of mass transfer timescale (i.e., the reciprocal of the mass transfer rate coefficient) dominates its evolution rate. The magnitude of capacity ratio plays an important role on the mechanism driving the mass flux into the aquifer system. Specifically, for a small capacity ratio, solute loading is dominated by the density-driven transport, while with increasing capacity ratio local mass transfer dominated solute loading may occur at later times. At significantly large times, however, both mechanisms contribute comparably to solute loading. Sherwood Number could be a nonmonotonic function of mass transfer timescale due to complicated interactions of solute between source zone, mobile zone and immobile zone in the top boundary layer, resulting in accordingly a similar behavior of the total mass. The initial assessment provides important insights into unstable density-driven flow and transport in the presence of kinetic mass transfer.
Calzia, Daniela; Panfoli, Isabella; Heinig, Nora; Schumann, Ulrike; Ader, Marius; Traverso, Carlo Enrico; Funk, Richard H W; Roehlecke, Cora
2016-06-01
Exposure to short wavelength light causes increased reactive oxygen intermediates production in the outer retina, particularly in the rod Outer Segments (OS). Consistently, the OS were shown to conduct aerobic ATP production through the ectopic expression of the electron transfer chain complexes I-IV and F1Fo-ATP synthase. These facts prompted us to verify if the oxidative phosphorylation in the OS is implied in the oxidative damage of the blue-light (BL) treated OS, in an organotypic model of mouse retina. Whole mouse eyeball cultures were treated with short wavelength BL (peak at 405 nm, output power 1 mW/cm(2)) for 6 h. Immunogold transmission electron microscopy confirmed the expression of Complex I and F1Fo-ATP synthase in the OS. In situ histochemical assays on unfixed sections showed impairment of respiratory Complexes I and II after BL exposure, both in the OS and IS, utilized as a control. Basal O2 consumption and ATP synthesis were impaired in the OS purified from blue-light irradiated eyeball cultures. Electron transfer capacity between Complex I and II as well as activity of Complexes I and II was decreased in blue-light irradiated purified OS. The severe malfunctioning of the OS aerobic respiratory capacity after 6 h BL treatment may be the consequence of a self-induced damage. BL exposure would cause an initial over-functioning of both the phototransduction and respiratory chain, with reactive oxygen species production. In a self-renewal vicious cycle, membrane and protein oxidative damage, proton leakage and uncoupling, would impair redox chains, perpetuating the damage and causing hypo-metabolism with eventual apoptosis of the rod. Data may shed new light on the rod-driven retinopathies such as Age Related Macular Degeneration, of which blue-light irradiated retina represents a model. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Cruz Viggi, Carolina; Simonetti, Serena; Palma, Enza; Pagliaccia, Pamela; Braguglia, Camilla; Fazi, Stefano; Baronti, Silvia; Navarra, Maria Assunta; Pettiti, Ida; Koch, Christin; Harnisch, Falk; Aulenta, Federico
2017-01-01
Recent studies have suggested that addition of electrically conductive biochar particles is an effective strategy to improve the methanogenic conversion of waste organic substrates, by promoting syntrophic associations between acetogenic and methanogenic organisms based on interspecies electron transfer processes. However, the underlying fundamentals of the process are still largely speculative and, therefore, a priori identification, screening, and even design of suitable biochar materials for a given biotechnological process are not yet possible. Here, three charcoal-like products (i.e., biochars) obtained from the pyrolysis of different lignocellulosic materials, (i.e., wheat bran pellets, coppiced woodlands, and orchard pruning) were tested for their capacity to enhance methane production from a food waste fermentate. In all biochar-supplemented (25 g/L) batch experiments, the complete methanogenic conversion of fermentate volatile fatty acids proceeded at a rate that was up to 5 times higher than that observed in the unamended (or sand-supplemented) controls. Fluorescent in situ hybridization analysis coupled with confocal laser scanning microscopy revealed an intimate association between archaea and bacteria around the biochar particles and provided a clear indication that biochar also shaped the composition of the microbial consortium. Based on the application of a suite of physico-chemical and electrochemical characterization techniques, we demonstrated that the positive effect of biochar is directly related to the electron-donating capacity (EDC) of the material, but is independent of its bulk electrical conductivity and specific surface area. The latter properties were all previously hypothesized to play a major role in the biochar-mediated interspecies electron transfer process in methanogenic consortia. Collectively, these results of this study suggest that for biochar addition in anaerobic digester operation, the screening and identification of the most suitable biochar material should be based on EDC determination, via simple electrochemical tests.
12 CFR 205.15 - Electronic fund transfer of government benefits.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 12 Banks and Banking 2 2011-01-01 2011-01-01 false Electronic fund transfer of government benefits. 205.15 Section 205.15 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.15 Electronic fund transfer of government...
Code of Federal Regulations, 2014 CFR
2014-01-01
...-time electronic fund transfer from a consumer's account. The consumer must authorize the transfer. (ii... one-time electronic fund transfer (in providing a check to a merchant or other payee for the MICR... transfer. A consumer authorizes a one-time electronic fund transfer from his or her account to pay the fee...
Anomalous Behavior of Electronic Heat Capacity of Strongly Correlated Iron Monosilicide
NASA Astrophysics Data System (ADS)
Povzner, A. A.; Volkov, A. G.; Nogovitsyna, T. A.
2018-04-01
The paper deals with the electronic heat capacity of iron monosilicide FeSi subjected to semiconductor-metal thermal transition during which the formation of its spintronic properties is observed. The proposed model which considers pd-hybridization of strongly correlated d-electrons with non-correlated p-electrons, demonstrates a connection of their contribution to heat capacity in the insulator phase with paramagnon effects and fluctuations of occupation numbers for p- and d-states. In a slitless state, the temperature curve of heat capacity is characterized by a maximum appeared due to normalization of the electron density of states using fluctuating exchange fields. At higher temperatures, a linear growth in heat capacity occurs due to paramagnon effects. The correlation between the model parameters and the first-principles calculation provides the electron contribution to heat capacity, which is obtained from the experimental results on phonon heat capacity. Anharmonicity of phonons is connected merely with the thermal expansion of the crystal lattice.
NASA Astrophysics Data System (ADS)
Li, Fanqun; Qin, Furong; Zhang, Kai; Fang, Jing; Lai, Yanqing; Li, Jie
2017-09-01
Facile and sustainable route is developed to convert biomass into hierarchically porous carbon matrix cooperating with highly conductive graphene. By tailoring the porosity of the carbon matrix to promote fast mass transfer and cooperating highly conductive interconnected graphene frameworks to accelerate the electron transport, the carbon sulfur cathodes simultaneously achieve high areal and gravimetric sulfur loading/content (6 mg cm-2/67 wt%) and deliver outstanding electrochemical performance. After 100 cyclic discharge-charge test at the current density of 0.2 C, the reversible capacity maintains at 707 mA h g-1.
Quasi-passive heat sink for high-power laser diodes
NASA Astrophysics Data System (ADS)
Vetrovec, John
2009-02-01
We report on a novel heat sink for high-power laser diodes offering unparalleled capacity in high-heat flux handling and temperature control. The heat sink uses a liquid coolant flowing at high speed in a miniature closed and sealed loop. Diode waste heat is received at high flux and transferred to environment, coolant fluid, heat pipe, or structure at a reduced flux. When pumping solid-state or alkali vapor lasers, diode wavelength can be electronically tuned to the absorption features of the laser gain medium. This paper presents the heat sink physics, engineering design, performance modeling, and configurations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xiaoming; Ke, Changhong, E-mail: xqwang@uga.edu, E-mail: cke@binghamton.edu; Zhang, Liuyang
We investigate the mechanical strength of boron nitride nanotube (BNNT) polymer interfaces by using in situ electron microscopy nanomechanical single-tube pull-out techniques. The nanomechanical measurements show that the shear strengths of BNNT-epoxy and BNNT-poly(methyl methacrylate) interfaces reach 323 and 219 MPa, respectively. Molecular dynamics simulations reveal that the superior load transfer capacity of BNNT-polymer interfaces is ascribed to both the strong van der Waals interactions and Coulomb interactions on BNNT-polymer interfaces. The findings of the extraordinary mechanical strength of BNNT-polymer interfaces suggest that BNNTs are excellent reinforcing nanofiller materials for light-weight and high-strength polymer nanocomposites.
12 CFR 205.14 - Electronic fund transfer service provider not holding consumer's account.
Code of Federal Regulations, 2010 CFR
2010-01-01
... consumer learns of the loss or theft; and extends the time periods for reporting unauthorized transfers or... 12 Banks and Banking 2 2010-01-01 2010-01-01 false Electronic fund transfer service provider not... GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.14 Electronic fund...
12 CFR 205.14 - Electronic fund transfer service provider not holding consumer's account.
Code of Federal Regulations, 2013 CFR
2013-01-01
... consumer learns of the loss or theft; and extends the time periods for reporting unauthorized transfers or... 12 Banks and Banking 2 2013-01-01 2013-01-01 false Electronic fund transfer service provider not... GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.14 Electronic fund...
12 CFR 205.14 - Electronic fund transfer service provider not holding consumer's account.
Code of Federal Regulations, 2014 CFR
2014-01-01
... consumer learns of the loss or theft; and extends the time periods for reporting unauthorized transfers or... 12 Banks and Banking 2 2014-01-01 2014-01-01 false Electronic fund transfer service provider not... GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.14 Electronic fund...
12 CFR 205.14 - Electronic fund transfer service provider not holding consumer's account.
Code of Federal Regulations, 2011 CFR
2011-01-01
... consumer learns of the loss or theft; and extends the time periods for reporting unauthorized transfers or... 12 Banks and Banking 2 2011-01-01 2011-01-01 false Electronic fund transfer service provider not... GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.14 Electronic fund...
12 CFR 205.14 - Electronic fund transfer service provider not holding consumer's account.
Code of Federal Regulations, 2012 CFR
2012-01-01
... consumer learns of the loss or theft; and extends the time periods for reporting unauthorized transfers or... 12 Banks and Banking 2 2012-01-01 2012-01-01 false Electronic fund transfer service provider not... GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.14 Electronic fund...
NASA Astrophysics Data System (ADS)
Imai, Shigeru; Ito, Masato
2018-06-01
In this paper, anomalous single-electron transfer in common-gate quadruple-dot turnstile devices with asymmetric junction capacitances is revealed. That is, the islands have the same total number of excess electrons at high and low gate voltages of the swing that transfers a single electron. In another situation, two electrons enter the islands from the source and two electrons leave the islands for the source and drain during a gate voltage swing cycle. First, stability diagrams of the turnstile devices are presented. Then, sequences of single-electron tunneling events by gate voltage swings are investigated, which demonstrate the above-mentioned anomalous single-electron transfer between the source and the drain. The anomalous single-electron transfer can be understood by regarding the four islands as “three virtual islands and a virtual source or drain electrode of a virtual triple-dot device”. The anomalous behaviors of the four islands are explained by the normal behavior of the virtual islands transferring a single electron and the behavior of the virtual electrode.
Investigations on Zr incorporation into Li3V2(PO4)3/C cathode materials for lithium ion batteries.
Sun, Hua-Bin; Zhou, Ying-Xian; Zhang, Lu-Lu; Yang, Xue-Lin; Cao, Xing-Zhong; Arave, Hanu; Fang, Hui; Liang, Gan
2017-02-15
Li 3 V 2 (PO 4 ) 3 /C (LVP/C) composites have been modified by different ways of Zr-incorporation via ultrasonic-assisted solid-state reaction. The difference in the effect on the physicochemical properties and the electrochemical performance of LVP between Zr-doping and ZrO 2 -coating has also been investigated. Compared with pristine LVP/C, Zr-incorporated LVP/C composites exhibit better rate capability and cycling stability. In particular, the LVP/C-Zr electrode delivers the highest initial capacity of 150.4 mA h g -1 at 10C with a capacity retention ratio of 88.4% after 100 cycles. The enhanced electrochemical performance of Zr-incorporated LVP/C samples (LVZrP/C and LVP/C-Zr) is attributed to the increased ionic conductivity and electronic conductivity, the improved stability of the LVP structure, and the decreased charge-transfer resistance.
Cipolla, Thomas M [Katonah, NY; Colgan, Evan George [Chestnut Ridge, NY; Coteus, Paul W [Yorktown Heights, NY; Hall, Shawn Anthony [Pleasantville, NY; Tian, Shurong [Mount Kisco, NY
2011-12-20
A cooling apparatus, system and like method for an electronic device includes a plurality of heat producing electronic devices affixed to a wiring substrate. A plurality of heat transfer assemblies each include heat spreaders and thermally communicate with the heat producing electronic devices for transferring heat from the heat producing electronic devices to the heat transfer assemblies. The plurality of heat producing electronic devices and respective heat transfer assemblies are positioned on the wiring substrate having the regions overlapping. A heat conduit thermally communicates with the heat transfer assemblies. The heat conduit circulates thermally conductive fluid therethrough in a closed loop for transferring heat to the fluid from the heat transfer assemblies via the heat spreader. A thermally conductive support structure supports the heat conduit and thermally communicates with the heat transfer assemblies via the heat spreader transferring heat to the fluid of the heat conduit from the support structure.
Pandit, Palash; Yamamoto, Koji; Nakamura, Toshikazu; Nishimura, Katsuyuki; Kurashige, Yuki; Yanai, Takeshi; Nakamura, Go; Masaoka, Shigeyuki; Furukawa, Ko; Yakiyama, Yumi; Kawano, Masaki
2015-01-01
Regulation of electron transfer on organic substances by external stimuli is a fundamental issue in science and technology, which affects organic materials, chemical synthesis, and biological metabolism. Nevertheless, acid/base-responsive organic materials that exhibit reversible electron transfer have not been well studied and developed, owing to the difficulty in inventing a mechanism to associate acid/base stimuli and electron transfer. We discovered a new phenomenon in which N–N linked bicarbazole (BC) and tetramethylbiacridine (TBA) derivatives undergo electron transfer disproportionation by acid stimulus, forming their stable radical cations and reduced species. The reaction occurs through a biradical intermediate generated by the acid-triggered N–N bond cleavage reaction of BC or TBA, which acts as a two electron acceptor to undergo electron transfer reactions with two equivalents of BC or TBA. In addition, in the case of TBA the disproportionation reaction is highly reversible through neutralization with NEt3, which recovers TBA through back electron transfer and N–N bond formation reactions. This highly reversible electron transfer reaction is possible due to the association between the acid stimulus and electron transfer via the acid-regulated N–N bond cleavage/formation reactions which provide an efficient switching mechanism, the ability of the organic molecules to act as multi-electron donors and acceptors, the extraordinary stability of the radical species, the highly selective reactivity, and the balance of the redox potentials. This discovery provides new design concepts for acid/base-regulated organic electron transfer systems, chemical reagents, or organic materials. PMID:29218181
Yang, Yang; Chen, Fu; Chen, Qi; He, Jie; Bu, Tao; He, Xuemei
2017-11-15
To broaden the application fields for guar gum, this natural polymer is often grafted to/from the surface to modify its properties. Polystyrene-guar gum (PS-guar gum) is successfully synthesized using atom transfer radical addition based n-BuBr(C 4 H 9 Br), Cu(I)Cl and N,N,N',N″,N‴-penthamethyldiethylenetriamine (C 9 H 23 N 3 ,PMDETA) as initiator, electronating agent and ligand respectively in an inert atmosphere. The graft copolymer is characterized by FT-IR, 1 H NMR, XRD and scanning electron microscope (SEM). The results show that styrene is successfully introduced onto guar gum and particles of PS-guar gum adopt a disordered morphology with diameters of 100nm, and PS-guar gum are largely amorphous with poor crystallinity. Besides, add on shows an increasing trend on increasing the concentration of PS. Swelling behavior, hydrophobicity and thermal stability of PS-guar gum indicate that PS-guar gum has great thickening capacity and thermal stability. Nevertheless, modification of guar gum via ATRA truly is convenient to industrial production since facilitating the manufacturing process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Calendering effects on the physical and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 cathode
NASA Astrophysics Data System (ADS)
Zheng, Honghe; Tan, Li; Liu, Gao; Song, Xiangyun; Battaglia, Vincent S.
2012-06-01
Li[Ni1/3Mn1/3Co1/3]O2 cathode laminate containing 8% PVDF and 7% acetylene black is fabricated and calendered to different porosities. Calendering effects on the physical and electrochemical properties of the Li[Ni1/3Mn1/3Co1/3]O2 cathode are investigated. It is found that mechanical properties of the composite laminate strongly depend on the electrode porosity whereas the electronic conductivity is not significantly affected by calendering. Electrochemical performances including the specific capacity, the first coulombic efficiency, cycling performance and rate capability for the cathode at different porosities are compared. An optimized porosity of around 30-40% is identified. Electrochemical impedance spectroscopy (EIS) studies illustrate that calendering improves the electronic conductivity between active particles at relatively high porosities, but increases charge transfer resistance at electrode/electrolyte interface at relatively low porosities. An increase of activation energy of Li interfacial transfer for the electrode at 0% porosity indicates a relatively high barrier of activation at the electrode/electrolyte interface, which accounts for the poor rate capability of the electrode at extremely low porosity.
NASA Astrophysics Data System (ADS)
Cecily mary glory, D.; Sambathkumar, K.; Madivanane, R.; Rajkamal, N.; Venkatachalapathy, M.
2017-12-01
Systematic interactions of hydrogenated & fluorinated tribromobenzene on Ag and Cu surfaces. First bromine dehalogenation takes place right upon adsorption due to catalytic properties of Ag. Different adsorption geometries of monomers and dimmers of 1,3,5-tribromo-2,4,6-trifluoro-benzene(TBFB) and 1,3,5-tribromobenzene(TBB). DFT calculations of the Csbnd Br binding energy dependent on the amount of remaining bromine atoms for both TBFB and TBB were performed. The experiments were performed at low temperature of 80 K.STM measurements where performed for of TBFB and TBB. STM show adsorbed molecules in a loose arrangement of molecules. NBO analysis the stability of the molecule arising within hyper-conjugative interactions. The HOMO and LUMO energies and electronic charge transfer (ECT) confirms that electronic transition. High field indicates that this molecule exhibit considerable electrical conductivity in atomic charges. The ESP map is found to be positive within the molecule. The negative charges have a tendency to drift from left to right. The computed thermodynamic parameters like heat capacities (Cºp,m), entropies (Sºm) and enthalpies changes (Hºm) are used for various electrical field.
Electrochemistry and electrochemiluminescence from a redox-active metal-organic framework.
Xu, Yang; Yin, Xue-Bo; He, Xi-Wen; Zhang, Yu-Kui
2015-06-15
The marriage of metal-organic frameworks (MOFs) and electrochemiluminescence (ECL) can combine their merits together. Designing ECL-active MOF with a high electron transfer capacity and high stability is critical for ECL emission. Here we reported the ECL from a redox-active MOF prepared from {Ru[4,4'-(HO2C)2-bpy]2bpy}(2+) and Zn(2+); a property of MOFs has not been reported previously. The MOF structure is independent of its charge and is therefore stable electrochemically. The redox-activity and well-ordered porous structure of the MOF were confirmed by its electrochemical properties and ECL emission. The high ECL emission indicated the ease of electron transfer between the MOF and co-reactants. Furthermore, the MOF exhibited permselectivity, charge selectivity, and catalytic selectivity along with a stable and concentration-dependent ECL emission toward co-reactants. ECL mechanism was proposed based on the results. The detection and recovery of cocaine in the serum sample was used to validate the feasibility of MOF- based ECL system. The information obtained in this study provides a better understanding of the redox properties of MOFs and their potential electrochemical applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Rate of Interfacial Electron Transfer through the 1,2,3-Triazole Linkage
Devaraj, Neal K.; Decreau, Richard A.; Ebina, Wataru; Collman, James P.; Chidsey, Christopher E. D.
2012-01-01
The rate of electron transfer is measured to two ferrocene and one iron tetraphenylporphyrin redox species coupled through terminal acetylenes to azide-terminated thiol monolayers by the Cu(I)-catalyzed azide–alkyne cycloaddition (a Sharpless “click” reaction) to form the 1,2,3-triazole linkage. The high yield, chemoselectivity, convenience, and broad applicability of this triazole formation reaction make such a modular assembly strategy very attractive. Electron-transfer rate constants from greater than 60,000 to 1 s−1 are obtained by varying the length and conjugation of the electron-transfer bridge and by varying the surrounding diluent thiols in the monolayer. Triazole and the triazole carbonyl linkages provide similar electronic coupling for electron transfer as esters. The ability to vary the rate of electron transfer to many different redox species over many orders of magnitude by using modular coupling chemistry provides a convenient way to study and control the delivery of electrons to multielectron redox catalysts and similar interfacial systems that require controlled delivery of electrons. PMID:16898751
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turick, Charles E.; Beliaev, Alex S.; Zakrajsek, Brian A.
2009-05-01
ABSTRACT - While mechanistic details of dissimilatory metal reduction are far from being understood, it is postulated that the electron transfer to solid metal oxides is mediated by outer membrane associated c-type cytochromes and electron shuttling compounds. This study focuses on the production of homogensitate in Shewanella oneidensis MR-1, an intermediate of the tyrosine degradation pathway, which is a precursor of a redox cycling metabolite, pyomelanin. We determined that two enzymes involved in this pathway, 4-hydroxyphenylpyruvate dioxygenase (4HPPD) and homogentisate 1,2-dioxygenase are responsible for homogentisate production and oxidation, respectively. Inhibition of 4-HPPD activity with the specific inhibitor sulcotrione ([2-(2- chloro-more » 4- methane sulfonylbenzoyl)-1,3-cyclohexanedione), and deletion of melA, a gene encoding 4-HPPD, resulted in no pyomelanin production by S. oneidensis MR-1. Conversely, deletion of hmgA, which encodes the putative homogentisate 1,2-dioxygenase, resulted in pyomelanin overproduction. The efficiency and rates at which MR-1 reduces hydrous ferric oxide were directly linked to the ability of mutant strains to produce pyomelanin. Electrochemical studies with whole cells demonstrated that pyomelanin substantially increases the formal potential (E°') of S. oneidensis MR-1. Based on our findings, environmental production of pyomelanin likely contributes to an increased solid-phase metal reduction capacity in S. oneidensis MR-1.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turick, C; Amy Ekechukwu, A
2007-06-01
While mechanistic details of dissimilatory metal reduction are far from being understood, it is postulated that the electron transfer to solid metal oxides is mediated by outer membrane-associated c-type cytochromes and redox active electron shuttling compounds. This study focuses on the production of homogensitate in Shewanella oneidensis MR-1, an intermediate of tyrosine degradation pathway, which is a precursor of a redox cycling metabolite, pyomelanin. In this study, we determined that two enzymes involved in this pathway, 4-hydroxyphenylpyruvate dioxygenase (4HPPD) and homogentisate 1,2-dioxygenase are responsible for homogentisate production and oxidation, respectively. Inhibition of 4-HPPD activity with the specific inhibitor sulcotrione (2-(2-chloro-4-methanemore » sulfonylbenzoyl)-1,3-cyclohexanedione), and deletion of melA, a gene encoding 4-HPPD, resulted in no pyomelanin production by S. oneidensis MR-1. Conversely, deletion of hmgA which encodes the putative homogentisate 1,2-dioxygenase, resulted in pyomelanin overproduction. The efficiency and rates, with which MR-1 reduces hydrous ferric oxide, were directly linked to the ability of mutant strains to produce pyomelanin. Electrochemical studies with whole cells demonstrated that pyomelanin substantially increases the formal potential (E{sup o}{prime}) of S. oneidensis MR-1. Based on this work, environmental production of pyomelanin likely contributes to an increased solid-phase metal reduction capacity in Shewanella oneidensis.« less
NASA Astrophysics Data System (ADS)
Boriev, I. A.
2018-03-01
An analysis of the problem of so-called “abnormal” fast transfer of electrons in tokamak plasma, which turned out much faster than the result of accepted calculation, is given. Such transfer of hot electrons leads to unexpectedly fast destruction of the inner tokamak wall with ejection of its matter in plasma volume, what violates a condition of plasma confinement for controlled thermonuclear fusion. It is shown, taking into account real physics of electron drift in the gas (plasma) and using the conservation law for momentum of electron transfer (drift), that the drift velocity of elastically scattered electrons should be significantly greater than that of accepted calculation. The reason is that the relaxation time of the momentum of electron transfer, to which the electron drift velocity is proportional, is significantly greater (from 16 up to 4 times) than the electron free path time. Therefore, generally accepted replacement of the relaxation time, which is unknown a priori, by the electron free path time, leads to significant (16 times for thermal electrons) underestimation of electron drift velocity (mobility). This result means, that transfer of elastically (and isotropically) scattered electrons in the gas phase should be so fast, and corresponds to multiplying coefficient (16), introduced by D. Bohm to explain the observed by him “abnormal” fast diffusion of electrons.
Facial synthesis of carbon-coated ZnFe2O4/graphene and their enhanced lithium storage properties
NASA Astrophysics Data System (ADS)
Yao, Libing; Su, Qingmei; Xiao, Yanling; Huang, Min; Li, Haojie; Deng, Huihui; Du, Gaohui
2017-07-01
Carbon-coated ZnFe2O4 spheres with sizes of 110-180 nm anchored on graphene nanosheets (ZF@C/G) are successfully prepared and applied as anode materials for lithium ion batteries (LIBs). The obtained ZF@C/G presents an initial discharge capacity of 1235 mAh g-1 and maintains a reversible capacity of 775 mAh g-1 after 150 cycles at a current density of 500 mA g-1. After being tested at 2 A g-1 for 700 cycles, the capacity still retains 617 mAh g-1. The enhanced electrochemical performances can be attributed to the synergetic role of graphene and uniform carbon coating ( 3-6 nm), which can inhibit the volume expansion, prevent the pulverization/aggregation upon prolonged cycling, and facilitate the electron transfer between carbon-coated ZnFe2O4 spheres. The electrochemical results suggest that the synthesized ZF@C/G nanostructures are promising electrode materials for high-performance lithium ion batteries. [Figure not available: see fulltext.
DOE R&D Accomplishments Database
1998-09-21
In the late 1950s to early 1960s Rudolph A. Marcus developed a theory for treating the rates of outer-sphere electron-transfer reactions. Outer-sphere reactions are reactions in which an electron is transferred from a donor to an acceptor without any chemical bonds being made or broken. (Electron-transfer reactions in which bonds are made or broken are referred to as inner-sphere reactions.) Marcus derived several very useful expressions, one of which has come to be known as the Marcus cross-relation or, more simply, as the Marcus equation. It is widely used for correlating and predicting electron-transfer rates. For his contributions to the understanding of electron-transfer reactions, Marcus received the 1992 Nobel Prize in Chemistry. This paper discusses the development and use of the Marcus equation. Topics include self-exchange reactions; net electron-transfer reactions; Marcus cross-relation; and proton, hydride, atom and group transfers.
Corrosion of Nickel-Based Alloys in Ultra-High Temperature Heat Transfer Fluid
NASA Astrophysics Data System (ADS)
Wang, Tao; Reddy, Ramana G.
2017-03-01
MgCl2-KCl binary system has been proposed to be used as high temperature reactor coolant. Due to its relatively low melting point, good heat capacity and excellent thermal stability, this system can also be used in high operation temperature concentrating solar power generation system as heat transfer fluid (HTF). The corrosion behaviors of nickel based alloys in MgCl2-KCl molten salt system at 1,000 °C were determined based on long-term isothermal dipping test. After 500 h exposure tests under strictly maintained high purity argon gas atmosphere, the weight loss and corrosion rate analysis were conducted. Among all the tested samples, Ni-201 demonstrated the lowest corrosion rate due to the excellent resistance of Ni to high temperature element dissolution. Detailed surface topography and corrosion mechanisms were also determined by using scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS).
NASA Technical Reports Server (NTRS)
Bhandari, Pradeep (Inventor); Fujita, Toshio (Inventor)
1991-01-01
A thermal power transfer system using a phase change liquid gas fluid in a closed loop configuration has a heat exchanger member connected to a gas conduit for inputting thermal energy into the fluid. The pressure in the gas conduit is higher than a liquid conduit that is connected to a heat exchanger member for outputting thermal energy. A solid electrolyte member acts as a barrier between the gas conduit and the liquid conduit adjacent to a solid electrolyte member. The solid electrolyte member has the capacity of transmitting ions of a fluid through the electrolyte member. The ions can be recombined with electrons with the assistance of a porous electrode. An electrical field is applied across the solid electrolyte member to force the ions of the fluid from a lower pressure liquid conduit to the higher pressure gas conduit.
Sancho-García, J C
2012-05-07
A set of N-heteroquinones, deriving from oligoacenes, have been recently proposed as n-type organic semiconductors with high electron mobilities in thin-film transistors. Generally speaking, this class of compounds self-assembles in neighboring π-stacks linked by weak hydrogen bonds. We aim at theoretically characterizing here the sequential charge transport (hopping) process expected to take place across these arrays of molecules. To do so, we need to accurately address the preferred packing of these materials simultaneously to single-molecule properties related to charge-transfer events, carefully employing dispersion-corrected density functional theory methods to accurately extract the key molecular parameters governing this phenomenon at the nanoscale. This study confirms the great deal of interest around these compounds, since controlled functionalization of model molecules (i.e., pentacene) allows to efficiently tune the corresponding charge mobilities, and the capacity of modern quantum-chemical methods to predict it after rationalizing the underlying structure-property relationships.
Odobel, Fabrice; Séverac, Marjorie; Pellegrin, Yann; Blart, Errol; Fosse, Céline; Cannizzo, Caroline; Mayer, Cédric R; Elliott, Kristopher J; Harriman, Anthony
2009-01-01
Ultrafast discharge of a single-electron capacitor: A variety of intramolecular electron-transfer reactions are apparent for polyoxometalates functionalized with covalently attached perylene monoimide chromophores, but these are restricted to single-electron events. (et=electron transfer, cr=charge recombination, csr=charge-shift reaction, PER=perylene, POM=polyoxometalate).A new strategy is introduced that permits covalent attachment of an organic chromophore to a polyoxometalate (POM) cluster. Two examples are reported that differ according to the nature of the anchoring group and the flexibility of the linker. Both POMs are functionalized with perylene monoimide units, which function as photon collectors and form a relatively long-lived charge-transfer state under illumination. They are reduced to a stable pi-radical anion by electrolysis or to a protonated dianion under photolysis in the presence of aqueous triethanolamine. The presence of the POM opens up an intramolecular electron-transfer route by which the charge-transfer state reduces the POM. The rate of this process depends on the molecular conformation and appears to involve through-space interactions. Prior reduction of the POM leads to efficient fluorescence quenching, again due to intramolecular electron transfer. In most cases, it is difficult to resolve the electron-transfer products because of relatively fast reverse charge shift that occurs within a closed conformer. Although the POM can store multiple electrons, it has not proved possible to use these systems as molecular-scale capacitors because of efficient electron transfer from the one-electron-reduced POM to the excited singlet state of the perylene monoimide.
NASA Astrophysics Data System (ADS)
Delor, Milan; Archer, Stuart A.; Keane, Theo; Meijer, Anthony J. H. M.; Sazanovich, Igor V.; Greetham, Gregory M.; Towrie, Michael; Weinstein, Julia A.
2017-11-01
Ultrafast electron transfer in condensed-phase molecular systems is often strongly coupled to intramolecular vibrations that can promote, suppress and direct electronic processes. Recent experiments exploring this phenomenon proved that light-induced electron transfer can be strongly modulated by vibrational excitation, suggesting a new avenue for active control over molecular function. Here, we achieve the first example of such explicit vibrational control through judicious design of a Pt(II)-acetylide charge-transfer donor-bridge-acceptor-bridge-donor 'fork' system: asymmetric 13C isotopic labelling of one of the two -C≡C- bridges makes the two parallel and otherwise identical donor→acceptor electron-transfer pathways structurally distinct, enabling independent vibrational perturbation of either. Applying an ultrafast UVpump(excitation)-IRpump(perturbation)-IRprobe(monitoring) pulse sequence, we show that the pathway that is vibrationally perturbed during UV-induced electron transfer is dramatically slowed down compared to its unperturbed counterpart. One can thus choose the dominant electron transfer pathway. The findings deliver a new opportunity for precise perturbative control of electronic energy propagation in molecular devices.
Mailloux, Ryan J; Gardiner, Danielle; O'Brien, Marisa
2016-08-01
Pyruvate dehydrogenase (Pdh) and 2-oxoglutarate dehydrogenase (Ogdh) are vital for Krebs cycle metabolism and sources of reactive oxygen species (ROS). O2(·-)/H2O2 formation by Pdh and Ogdh from porcine heart were compared when operating under forward or reverse electron transfer conditions. Comparisons were also conducted with liver and cardiac mitochondria. During reverse electron transfer (RET) from NADH, purified Ogdh generated ~3-3.5× more O2(·-)/H2O2 in comparison to Pdh when metabolizing 0.5-10µM NADH. Under forward electron transfer (FET) conditions Ogdh generated ~2-4× more O2(·-)/H2O2 than Pdh. In both liver and cardiac mitochondria, Ogdh displayed significantly higher rates of ROS formation when compared to Pdh. Ogdh was also a significant source of ROS in liver mitochondria metabolizing 50µM and 500µM pyruvate or succinate. Finally, we also observed that DTT directly stimulated O2(·-)/H2O2 formation by purified Pdh and Ogdh and in cardiac or liver mitochondria in the absence of substrates and cofactors. Taken together, Ogdh is a more potent source of ROS than Pdh in liver and cardiac tissue. Ogdh is also an important ROS generator regardless of whether pyruvate or succinate serve as the sole source of carbon. Our observations provide insight into the ROS generating capacity of either complex in cardiac and liver tissue. The evidence presented herein also indicates DTT, a reductant that is routinely added to biological samples, should be avoided when assessing mitochondrial O2(·-)/H2O2 production. Copyright © 2016 Elsevier B.V. All rights reserved.
Cury, Diego Pulzatto; Dias, Fernando José; Miglino, Maria Angélica; Watanabe, Ii-sei
2016-01-01
Tendons are transition tissues that transfer the contractile forces generated by the muscles to the bones, allowing movement. The region where the tendon attaches to the bone is called bone-tendon junction or enthesis and may be classified as fibrous or fibrocartilaginous. This study aims to analyze the collagen fibers and the cells present in the bone-tendon junction using light microscopy and ultrastructural techniques as scanning electron microscopy and transmission electron microscopy. Forty male Wistar rats were used in the experiment, being 20 adult rats at 4 months-old and 20 elderly rats at 20 months-old. The hind limbs of the rats were removed, dissected and prepared to light microscopy, transmission electron microscopy and scanning electron microscopy. The aging process showed changes in the collagen fibrils, with a predominance of type III fibers in the elderly group, in addition to a decrease in the amount of the fibrocartilage cells, fewer and shorter cytoplasmic processes and a decreased synthetic capacity due to degradation of the organelles involved in synthesis. PMID:27078690
NASA Astrophysics Data System (ADS)
Gausachs, Gaston
2008-07-01
The Near Infrared Chronographic Imager (NICI) being commissioned at Gemini was upgraded with a more powerful Chilled Water Glycol System to address early overheating problems. The previous system was replaced with a completely new design favoring improved airflow and increased heat transfer capabilities. The research leading to this upgrade showed a significant lack of cooling power of the original design. The solution was a combination of commercial heat exchanger and fans and a custom built enclosure. As a prime infrared telescope facility, Gemini is very much interested in maintaining the least amount of heat dissipated to the ambient air. The results obtained through the implementation of this solution will be helpful in understanding the state of other existing electronics enclosures as well as those for new instruments to come. With the advent of electronic intensive AO systems, future electronics enclosures must take full advantage of improved cooling. This paper describes the design and implementation phases of the project. The results under maximum operating capacity proved to be within the expected theoretical values and were deemed successful.
NASA Astrophysics Data System (ADS)
Yang, Xiao-Yong; Lu, Yong; Zheng, Fa-Wei; Zhang, Ping
2015-11-01
Mechanical, electronic, and thermodynamic properties of zirconium carbide have been systematically studied using the ab initio calculations. The calculated equilibrium lattice parameter, bulk modulus, and elastic constants are all well consistent with the experimental data. The electronic band structure indicates that the mixture of C 2p and Zr 4d and 4p orbitals around the Fermi level makes a large covalent contribution to the chemical bonds between the C and Zr atoms. The Bader charge analysis suggests that there are about 1.71 electrons transferred from each Zr atom to its nearest C atom. Therefore, the Zr-C bond displays a mixed ionic/covalent character. The calculated phonon dispersions of ZrC are stable, coinciding with the experimental measurement. A drastic expansion in the volume of ZrC is seen with increasing temperature, while the bulk modulus decreases linearly. Based on the calculated phonon dispersion curves and within the quasi-harmonic approximation, the temperature dependence of the heat capacities is obtained, which gives a good description compared with the available experimental data. Project supported by the National Natural Science Foundation of China (Grant No. 51071032).
Cury, Diego Pulzatto; Dias, Fernando José; Miglino, Maria Angélica; Watanabe, Ii-sei
2016-01-01
Tendons are transition tissues that transfer the contractile forces generated by the muscles to the bones, allowing movement. The region where the tendon attaches to the bone is called bone-tendon junction or enthesis and may be classified as fibrous or fibrocartilaginous. This study aims to analyze the collagen fibers and the cells present in the bone-tendon junction using light microscopy and ultrastructural techniques as scanning electron microscopy and transmission electron microscopy. Forty male Wistar rats were used in the experiment, being 20 adult rats at 4 months-old and 20 elderly rats at 20 months-old. The hind limbs of the rats were removed, dissected and prepared to light microscopy, transmission electron microscopy and scanning electron microscopy. The aging process showed changes in the collagen fibrils, with a predominance of type III fibers in the elderly group, in addition to a decrease in the amount of the fibrocartilage cells, fewer and shorter cytoplasmic processes and a decreased synthetic capacity due to degradation of the organelles involved in synthesis.
NASA Astrophysics Data System (ADS)
Tian, Xiaohui; Zhou, Yingke; Tu, Xiaofeng; Zhang, Zhongtang; Du, Guodong
2017-02-01
A three-dimensional graphene aerogel supporting LiFePO4 nanoparticles (LFP/GA) has been synthesized by a hydrothermal process. The morphology and microstructure of LFP/GA were investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and thermal gravimetric analysis. The electrochemical properties were evaluated by constant-current charge/discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy. Well-distributed LFP nanoparticles are anchored on both sides of graphene and then assemble into a highly porous three-dimensional aerogel architecture. Conductive graphene networks provide abundant paths to facilitate the transfer of electrons, while the aerogel structures offer plenty of interconnected open pores for the storage of electrolyte to enable the fast supply of Li ions. The LFP and graphene aerogel composites present superior specific capacity, rate capability and cycling performance in comparison to the pristine LFP or LFP supported on graphene sheets and are thus promising for lithium-ion battery applications.
Ultrafast electronic relaxation in superheated bismuth
NASA Astrophysics Data System (ADS)
Gamaly, E. G.; Rode, A. V.
2013-01-01
Interaction of moving electrons with vibrating ions in the lattice forms the basis for many physical properties from electrical resistivity and electronic heat capacity to superconductivity. In ultrafast laser interaction with matter the electrons are heated much faster than the electron-ion energy equilibration, leading to a two-temperature state with electron temperature far above that of the lattice. The rate of temperature equilibration is governed by the strength of electron-phonon energy coupling, which is conventionally described by a coupling constant, neglecting the dependence on the electron and lattice temperature. The application of this constant to the observations of fast relaxation rate led to a controversial notion of ‘ultra-fast non-thermal melting’ under extreme electronic excitation. Here we provide theoretical grounds for a strong dependence of the electron-phonon relaxation time on the lattice temperature. We show, by taking proper account of temperature dependence, that the heating and restructuring of the lattice occurs much faster than were predicted on the assumption of a constant, temperature independent energy coupling. We applied the temperature-dependent momentum and energy transfer time to experiments on fs-laser excited bismuth to demonstrate that all the observed ultra-fast transformations of the transient state of bismuth are purely thermal in nature. The developed theory, when applied to ultrafast experiments on bismuth, provides interpretation of the whole variety of transient phase relaxation without the non-thermal melting conjecture.
Renal mitochondrial impairment is attenuated by AT1 blockade in experimental Type I diabetes.
de Cavanagh, Elena M V; Ferder, León; Toblli, Jorge E; Piotrkowski, Bárbara; Stella, Inés; Fraga, Cesar G; Inserra, Felipe
2008-01-01
To investigate whether ANG II type 1 (AT(1)) receptor blockade could protect kidney mitochondria in streptozotocin-induced Type 1 diabetes, we treated 8-wk-old male Sprague-Dawley rats with a single streptozotocin injection (65 mg/kg ip; STZ group), streptozotocin and drinking water containing either losartan (30 mg.kg(-1).day(-1); STZ+Los group) or amlodipine (3 mg.kg(-1).day(-1); STZ+Amlo group), or saline (intraperitoneally) and pure water (control group). Four-month-long losartan or amlodipine treatments started 30 days before streptozotocin injection to improve the antioxidant defenses. The number of renal lesions, plasma glucose and lipid levels, and proteinuria were higher and creatinine clearance was lower in STZ and STZ+Amlo compared with STZ+Los and control groups. Glycemia was higher in STZ+Los compared with control. Blood pressure, basal mitochondrial membrane potential and mitochondrial pyruvate content, and renal oxidized glutathione levels were higher and NADH/cytochrome c oxidoreductase activity was lower in STZ compared with the other groups. In STZ and STZ+Amlo groups, mitochondrial H(2)O(2) production rate was higher and uncoupling protein-2 content, cytochrome c oxidase activity, and renal glutathione level were lower than in STZ+Los and control groups. Mitochondrial nitric oxide synthase activity was higher in STZ+Amlo compared with the other groups. Mitochondrial pyruvate content and H(2)O(2) production rate negatively contributed to electron transfer capacity and positively contributed to renal lesions. Uncoupling protein-2 content negatively contributed to mitochondrial H(2)O(2) production rate and renal lesions. Renal glutathione reduction potential positively contributed to mitochondria electron transfer capacity. In conclusion, AT(1) blockade protects kidney mitochondria and kidney structure in streptozotocin-induced diabetes independently of blood pressure and glycemia.
Cocoa and Grape Seed Byproducts as a Source of Antioxidant and Anti-Inflammatory Proanthocyanidins
Cádiz-Gurrea, María De La Luz; Borrás-Linares, Isabel; Lozano-Sánchez, Jesús; Joven, Jorge; Fernández-Arroyo, Salvador; Segura-Carretero, Antonio
2017-01-01
Phenolic compounds, which are secondary plant metabolites, are considered an integral part of the human diet. Physiological properties of dietary polyphenols have come to the attention in recent years. Especially, proanthocyanidins (ranging from dimers to decamers) have demonstrated potential interactions with biological systems, such as antiviral, antibacterial, molluscicidal, enzyme-inhibiting, antioxidant, and radical-scavenging properties. Agroindustry produces a considerable amount of phenolic-rich sources, and the ability of polyphenolic structures to interacts with other molecules in living organisms confers their beneficial properties. Cocoa wastes and grape seeds and skin byproducts are a source of several phenolic compounds, particularly mono-, oligo-, and polymeric proanthocyanidins. The aim of this work is to compare the phenolic composition of Theobroma cacao and Vitis vinifera grape seed extracts by high pressure liquid chromatography coupled to a quadrupole time-of-flight mass spectrometer and equipped with an electrospray ionization interface (HPLC-ESI-QTOF-MS) and its phenolic quantitation in order to evaluate the proanthocyanidin profile. The antioxidant capacity was measured by different methods, including electron transfer and hydrogen atom transfer-based mechanisms, and total phenolic and flavan-3-ol contents were carried out by Folin–Ciocalteu and Vanillin assays. In addition, to assess the anti-inflammatory capacity, the expression of MCP-1 in human umbilical vein endothelial cells was measured. PMID:28208630
Cocoa and Grape Seed Byproducts as a Source of Antioxidant and Anti-Inflammatory Proanthocyanidins.
Cádiz-Gurrea, María De La Luz; Borrás-Linares, Isabel; Lozano-Sánchez, Jesús; Joven, Jorge; Fernández-Arroyo, Salvador; Segura-Carretero, Antonio
2017-02-10
Phenolic compounds, which are secondary plant metabolites, are considered an integral part of the human diet. Physiological properties of dietary polyphenols have come to the attention in recent years. Especially, proanthocyanidins (ranging from dimers to decamers) have demonstrated potential interactions with biological systems, such as antiviral, antibacterial, molluscicidal, enzyme-inhibiting, antioxidant, and radical-scavenging properties. Agroindustry produces a considerable amount of phenolic-rich sources, and the ability of polyphenolic structures to interacts with other molecules in living organisms confers their beneficial properties. Cocoa wastes and grape seeds and skin byproducts are a source of several phenolic compounds, particularly mono-, oligo-, and polymeric proanthocyanidins. The aim of this work is to compare the phenolic composition of Theobroma cacao and Vitis vinifera grape seed extracts by high pressure liquid chromatography coupled to a quadrupole time-of-flight mass spectrometer and equipped with an electrospray ionization interface (HPLC-ESI-QTOF-MS) and its phenolic quantitation in order to evaluate the proanthocyanidin profile. The antioxidant capacity was measured by different methods, including electron transfer and hydrogen atom transfer-based mechanisms, and total phenolic and flavan-3-ol contents were carried out by Folin-Ciocalteu and Vanillin assays. In addition, to assess the anti-inflammatory capacity, the expression of MCP-1 in human umbilical vein endothelial cells was measured.
NASA Astrophysics Data System (ADS)
Lee, Wonmi; Jo, Changshin; Youk, Sol; Shin, Hun Yong; Lee, Jinwoo; Chung, Yongjin; Kwon, Yongchai
2018-01-01
For enhancing the performance of vanadium redox flow battery (VRFB), a sluggish reaction rate issue of V2+/V3+ redox couple evaluated as the rate determining reaction should be addressed. For doing that, mesoporous tungsten oxide (m-WO3) and oxyniride (m-WON) structures are proposed as the novel catalysts, while m-WON is gained by NH3 heat treatment of m-WO3. Their specific surface area, crystal structure, surface morphology and component analysis are measured using BET, XRD, TEM and XPS, while their catalytic activity for V2+/V3+ redox reaction is electrochemically examined. As a result, the m-WON shows higher peak current, smaller peak potential difference, higher electron transfer rate constant and lower charge transfer resistance than other catalysts, like the m-WO3, WO3 nanoparticle and mesoporous carbon, proving that it is superior catalyst. Regarding the charge-discharge curve tests, the VRFB single cell employing the m-WON demonstrates high voltage and energy efficiencies, high specific capacity and low capacity loss rate. The excellent results of m-WON are due to the reasons like (i) reduced energy band gap, (ii) reaction familiar surface functional groups and (ii) greater electronegativity.
NASA Astrophysics Data System (ADS)
Kim, Hee Jin; Talukdar, Krishan; Choi, Sang-June
2016-02-01
Metal-organic frameworks can be intentionally coordinated to achieve improved proton conductivity because they have highly ordered structures and modular nature that serve as a scaffold to anchor acidic groups and develop efficient proton transfer pathways for fuel cell application. Using the concept of a coordination network, the conductivity of Nafion® was tuned by the incorporation of HKUST-1. It has CuII-paddle wheel type nodes and 1,3,5-benzenetricarboxylate struts, feature accessible sites that provides an improved protonic channel depending on the water content. In spite of the fact that HKUST-1 is neutral, coordinated water molecules are contributed adequately acidic by CuII to supply protons to enhance proton conductivity. Water molecules play a vital part in transfer of proton as conducting media and serve as triggers to change proton conductivity through reforming hydrogen bonding networks by water adsorption/desorption process. Increased ion exchange capacity and proton conductivity with lower water uptake of the H3PO4-doped material, and improved thermal stability (as confirmed by thermogravimetric analysis) were achieved. The structure of HKUST-1 was confirmed via field emission scanning electron microscopy and X-ray diffraction, while the porosity and adsorption desorption capacity were characterized by porosity analysis.
Thermal transfer structures coupling electronics card(s) to coolant-cooled structure(s)
David, Milnes P; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Parida, Pritish R; Schmidt, Roger R
2014-12-16
Cooling apparatuses and coolant-cooled electronic systems are provided which include thermal transfer structures configured to engage with a spring force one or more electronics cards with docking of the electronics card(s) within a respective socket(s) of the electronic system. A thermal transfer structure of the cooling apparatus includes a thermal spreader having a first thermal conduction surface, and a thermally conductive spring assembly coupled to the conduction surface of the thermal spreader and positioned and configured to reside between and physically couple a first surface of an electronics card to the first surface of the thermal spreader with docking of the electronics card within a socket of the electronic system. The thermal transfer structure is, in one embodiment, metallurgically bonded to a coolant-cooled structure and facilitates transfer of heat from the electronics card to coolant flowing through the coolant-cooled structure.
High performance Li2MnO3/rGO composite cathode for lithium ion batteries
NASA Astrophysics Data System (ADS)
Zhao, Wei; Xiong, Lilong; Xu, Youlong; Li, Houli; Ren, Zaihuang
2017-05-01
The novel composite Li2MnO3 (LMO)/reduced graphene oxide (rGO) has been synthesized successfully. Based on the scanning electron microscopy and transmission electron microscopy, LMO is found to distribute separately on the rGO sheets by forming a laminated structure, which is in favor of good electrical contact between the cathode active materials and the rGO matrix, and also facilitates the separation of LMO secondary particles with reduced size. Cyclic voltammetry and electrochemical impedance spectroscopy tests show that the charge transfer resistance decreases from 81.2 Ω for LMO to 29.6 Ω for LMO/rGO composite. The Li-ion diffusion coefficient of LMO/rGO composite is almost triple that of LMO. As a result, the LMO/rGO composite delivers an initial discharge capacity of 284.9 mAh g-1 with a capacity retention of 86.6% after 45 cycles at 0.1 C between 2.0 and 4.6 V. Cycle performance is even better at a higher current density 0.2 C while the retention ratio is up to 97.1% after 45 cycles. The rate capability is also significantly enhanced, and the LMO/rGO composite could exhibit a large discharge capacity of 123.7 mAh g-1 which is more than three times larger than that of LMO (40.8 mAh g-1) at a high rate of 8 C.
Arivazhagan, M; Muniappan, P; Meenakshi, R; Rajavel, G
2013-03-15
This study represents an integral approach towards understanding the electronic and structural aspects of 1-bromo-2,3-dichlorobenzene (BDCB). The experimental spectral bands were structurally assigned with the theoretical calculation, and the thermodynamic properties of the studied compound were obtained from the theoretically calculated frequencies. The relationship between the structure and absorption spectrum and effects of solvents have been discussed. It turns that the hybrid PBE1PBE functional with 6-311+G(d,p) basis provide reliable λ(max) when solvent effects are included in the model. The NBO analysis reveals that the studied compound presents a structural characteristic of electron-transfer within the compound. The frontier molecular orbitals (HOMO-LUMO) are responsible for the electron polarization and electron-transfer properties. The reactivity sites are identified by mapping the electron density into electrostatic potential surface (MESP). Besides, (13)C and (1)H have been calculated using the gauge-invariant atomic orbital (GIAO) method. The thermodynamic properties at different temperatures were calculated, revealing the correlations between standard heat capacity, standard entropy, standard enthalpy changes and temperatures. Furthermore, the studied compound can be used as a good nonlinear optical material due to the higher value of first hyper polarizability (5.7 times greater than that of urea (0.37289×10(-30) esu)). Finally, it is worth to mentioning that solvent induces a considerable red shift of the absorption maximum going from the gas phase, and a slight blue shift of the transition S(0)→S(1) going from less polar to more polar solvents. Copyright © 2012 Elsevier B.V. All rights reserved.
Ghosh, Hirendra N; Verma, Sandeep; Nibbering, Erik T J
2011-02-10
Femtosecond infrared spectroscopy is used to study both forward and backward electron transfer (ET) dynamics between coumarin 337 (C337) and the aromatic amine solvents aniline (AN), N-methylaniline (MAN), and N,N-dimethylaniline (DMAN), where all the aniline solvents can donate an electron but only AN and MAN can form hydrogen bonds with C337. The formation of a hydrogen bond with AN and MAN is confirmed with steady state FT-IR spectroscopy, where the C═O stretching vibration is a direct marker mode for hydrogen bond formation. Transient IR absorption measurements in all solvents show an absorption band at 2166 cm(-1), which has been attributed to the C≡N stretching vibration of the C337 radical anion formed after ET. Forward electron transfer dynamics is found to be biexponential with time constants τ(ET)(1) = 500 fs, τ(ET)(2) = 7 ps in all solvents. Despite the presence of hydrogen bonds of C337 with the solvents AN and MAN, no effect has been found on the forward electron transfer step. Because of the absence of an H/D isotope effect on the forward electron transfer reaction of C337 in AN, hydrogen bonds are understood to play a minor role in mediating electron transfer. In contrast, direct π-orbital overlap between C337 and the aromatic amine solvents causes ultrafast forward electron transfer dynamics. Backward electron transfer dynamics, in contrast, is dependent on the solvent used. Standard Marcus theory explains the observed backward electron transfer rates.
Photo-induced electron transfer method
Wohlgemuth, R.; Calvin, M.
1984-01-24
The efficiency of photo-induced electron transfer reactions is increased and the back transfer of electrons in such reactions is greatly reduced when a photo-sensitizer zinc porphyrin-surfactant and an electron donor manganese porphyrin-surfactant are admixed into phospholipid membranes. The phospholipids comprising said membranes are selected from phospholipids whose head portions are negatively charged. Said membranes are contacted with an aqueous medium in which an essentially neutral viologen electron acceptor is admixed. Catalysts capable of transferring electrons from reduced viologen electron acceptor to hydrogen to produce elemental hydrogen are also included in the aqueous medium. An oxidizable olefin is also admixed in the phospholipid for the purpose of combining with oxygen that coordinates with oxidized electron donor manganese porphyrin-surfactant.
Allosteric control of internal electron transfer in cytochrome cd1 nitrite reductase
Farver, Ole; Kroneck, Peter M. H.; Zumft, Walter G.; Pecht, Israel
2003-01-01
Cytochrome cd1 nitrite reductase is a bifunctional multiheme enzyme catalyzing the one-electron reduction of nitrite to nitric oxide and the four-electron reduction of dioxygen to water. Kinetics and thermodynamics of the internal electron transfer process in the Pseudomonas stutzeri enzyme have been studied and found to be dominated by pronounced interactions between the c and the d1 hemes. The interactions are expressed both in dramatic changes in the internal electron-transfer rates between these sites and in marked cooperativity in their electron affinity. The results constitute a prime example of intraprotein control of the electron-transfer rates by allosteric interactions. PMID:12802018
Rodriguez-Mendez, M L; Apetrei, C; Gay, M; Medina-Plaza, C; de Saja, J A; Vidal, S; Aagaard, O; Ugliano, M; Wirth, J; Cheynier, V
2014-07-15
An electronic panel formed by an electronic nose and an electronic tongue has been used to analyse red wines showing high and low phenolic contents, obtained by flash release and traditional soaking, respectively, and processed with or without micro-oxygenation. Four oxygen transfer rate conditions (0.8, 1.9, 8.0, and 11.9 μl oxygen/bottle/day) were ensured by using synthetic closures with controlled oxygen permeability and storage under controlled atmosphere. Twenty-five chemical parameters associated with the polyphenolic composition, the colour indices and the levels of oxygen were measured in triplicate and correlated with the signals registered (seven replicas) by means of the electronic nose and the electronic tongue using partial least squares regression analysis. The electronic nose and the electronic tongue showed particularly good correlations with those parameters associated with the oxygen levels and, in particular, with the influence of the porosity of the closure to oxygen exposure. In turn, the electronic tongue was particularly sensitive to redox species including oxygen and phenolic compounds. It has been demonstrated that a combined system formed from the electronic nose and the electronic tongue provides information about the chemical composition of both the gas and the liquid phase of red wines. This complementary information improves the capacity to predict values of oxygen-related parameters, phenolic content and colour parameters. Copyright © 2014 Elsevier Ltd. All rights reserved.
Busch, Florian; Hüner, Norman P.A.; Ensminger, Ingo
2008-01-01
Changes in temperature and daylength trigger physiological and seasonal developmental processes that enable evergreen trees of the boreal forest to withstand severe winter conditions. Climate change is expected to increase the autumn air temperature in the northern latitudes, while the natural decreasing photoperiod remains unaffected. As shown previously, an increase in autumn air temperature inhibits CO2 assimilation, with a concomitant increased capacity for zeaxanthin-independent dissipation of energy exceeding the photochemical capacity in Pinus banksiana. In this study, we tested our previous model of antenna quenching and tested a limitation in intersystem electron transport in plants exposed to elevated autumn air temperatures. Using a factorial design, we dissected the effects of temperature and photoperiod on the function as well as the stoichiometry of the major components of the photosynthetic electron transport chain in P. banksiana. Natural summer conditions (16-h photoperiod/22°C) and late autumn conditions (8-h photoperiod/7°C) were compared with a treatment of autumn photoperiod with increased air temperature (SD/HT: 8-h photoperiod/22°C) and a treatment with summer photoperiod and autumn temperature (16-h photoperiod/7°C). Exposure to SD/HT resulted in an inhibition of the effective quantum yield associated with a decreased photosystem II/photosystem I stoichiometry coupled with decreased levels of Rubisco. Our data indicate that a greater capacity to keep the primary electron donor of photosystem I (P700) oxidized in plants exposed to SD/HT compared with the summer control may be attributed to a reduced rate of electron transport from the cytochrome b6f complex to photosystem I. Photoprotection under increased autumn air temperature conditions appears to be consistent with zeaxanthin-independent antenna quenching through light-harvesting complex II aggregation and a decreased efficiency in energy transfer from the antenna to the photosystem II core. We suggest that models that predict the effect of climate change on the productivity of boreal forests must take into account the interactive effects of photoperiod and elevated temperatures. PMID:18375598
Busch, Florian; Hüner, Norman P A; Ensminger, Ingo
2008-05-01
Changes in temperature and daylength trigger physiological and seasonal developmental processes that enable evergreen trees of the boreal forest to withstand severe winter conditions. Climate change is expected to increase the autumn air temperature in the northern latitudes, while the natural decreasing photoperiod remains unaffected. As shown previously, an increase in autumn air temperature inhibits CO2 assimilation, with a concomitant increased capacity for zeaxanthin-independent dissipation of energy exceeding the photochemical capacity in Pinus banksiana. In this study, we tested our previous model of antenna quenching and tested a limitation in intersystem electron transport in plants exposed to elevated autumn air temperatures. Using a factorial design, we dissected the effects of temperature and photoperiod on the function as well as the stoichiometry of the major components of the photosynthetic electron transport chain in P. banksiana. Natural summer conditions (16-h photoperiod/22 degrees C) and late autumn conditions (8-h photoperiod/7 degrees C) were compared with a treatment of autumn photoperiod with increased air temperature (SD/HT: 8-h photoperiod/22 degrees C) and a treatment with summer photoperiod and autumn temperature (16-h photoperiod/7 degrees C). Exposure to SD/HT resulted in an inhibition of the effective quantum yield associated with a decreased photosystem II/photosystem I stoichiometry coupled with decreased levels of Rubisco. Our data indicate that a greater capacity to keep the primary electron donor of photosystem I (P700) oxidized in plants exposed to SD/HT compared with the summer control may be attributed to a reduced rate of electron transport from the cytochrome b6f complex to photosystem I. Photoprotection under increased autumn air temperature conditions appears to be consistent with zeaxanthin-independent antenna quenching through light-harvesting complex II aggregation and a decreased efficiency in energy transfer from the antenna to the photosystem II core. We suggest that models that predict the effect of climate change on the productivity of boreal forests must take into account the interactive effects of photoperiod and elevated temperatures.
Information Transfer Capacity of Articulators in American Sign Language.
Malaia, Evie; Borneman, Joshua D; Wilbur, Ronnie B
2018-03-01
The ability to convey information is a fundamental property of communicative signals. For sign languages, which are overtly produced with multiple, completely visible articulators, the question arises as to how the various channels co-ordinate and interact with each other. We analyze motion capture data of American Sign Language (ASL) narratives, and show that the capacity of information throughput, mathematically defined, is highest on the dominant hand (DH). We further demonstrate that information transfer capacity is also significant for the non-dominant hand (NDH), and the head channel too, as compared to control channels (ankles). We discuss both redundancy and independence in articulator motion in sign language, and argue that the NDH and the head articulators contribute to the overall information transfer capacity, indicating that they are neither completely redundant to, nor completely independent of, the DH.
Toogood, Helen S; Leys, David; Scrutton, Nigel S
2007-11-01
Electron transferring flavoproteins (ETFs) are soluble heterodimeric FAD-containing proteins that function primarily as soluble electron carriers between various flavoprotein dehydrogenases. ETF is positioned at a key metabolic branch point, responsible for transferring electrons from up to 10 primary dehydrogenases to the membrane-bound respiratory chain. Clinical mutations of ETF result in the often fatal disease glutaric aciduria type II. Structural and biophysical studies of ETF in complex with partner proteins have shown that ETF partitions the functions of partner binding and electron transfer between (a) a 'recognition loop', which acts as a static anchor at the ETF-partner interface, and (b) a highly mobile redox-active FAD domain. Together, this enables the FAD domain of ETF to sample a range of conformations, some compatible with fast interprotein electron transfer. This 'conformational sampling' enables ETF to recognize structurally distinct partners, whilst also maintaining a degree of specificity. Complex formation triggers mobility of the FAD domain, an 'induced disorder' mechanism contrasting with the more generally accepted models of protein-protein interaction by induced fit mechanisms. We discuss the implications of the highly dynamic nature of ETFs in biological interprotein electron transfer. ETF complexes point to mechanisms of electron transfer in which 'dynamics drive function', a feature that is probably widespread in biology given the modular assembly and flexible nature of biological electron transfer systems.
2014-09-24
which nature uses strong electron correlation for efficient energy transfer, particularly in photosynthesis and bioluminescence, (ii) providing an...strong electron correlation for efficient energy transfer, particularly in photosynthesis and bioluminescence, (ii) providing an innovative paradigm...efficient energy transfer, particularly in photosynthesis and bioluminescence, (ii) providing an innovative paradigm for energy transfer in photovoltaic
Maeda, Kiminori; Lodge, Matthew T.J.; Harmer, Jeffrey; Freed, Jack H.; Edwards, Peter P.
2012-01-01
Electron transfer or quantum tunneling dynamics for excess or solvated electrons in dilute lithium-ammonia solutions have been studied by pulse electron paramagnetic resonance (EPR) spectroscopy at both X- (9.7 GHz) and W-band (94 GHz) frequencies. The electron spin-lattice (T1) and spin-spin (T2) relaxation data indicate an extremely fast transfer or quantum tunneling rate of the solvated electron in these solutions which serves to modulate the hyperfine (Fermi-contact) interaction with nitrogen nuclei in the solvation shells of ammonia molecules surrounding the localized, solvated electron. The donor and acceptor states of the solvated electron in these solutions are the initial and final electron solvation sites found before, and after, the transfer or tunneling process. To interpret and model our electron spin relaxation data from the two observation EPR frequencies requires a consideration of a multi-exponential correlation function. The electron transfer or tunneling process that we monitor through the correlation time of the nitrogen Fermi-contact interaction has a time scale of (1–10)×10−12 s over a temperature range 230–290K in our most dilute solution of lithium in ammonia. Two types of electron-solvent interaction mechanisms are proposed to account for our experimental findings. The dominant electron spin relaxation mechanism results from an electron tunneling process characterized by a variable donor-acceptor distance or range (consistent with such a rapidly fluctuating liquid structure) in which the solvent shell that ultimately accepts the transferring electron is formed from random, thermal fluctuations of the liquid structure in, and around, a natural hole or Bjerrum-like defect vacancy in the liquid. Following transfer and capture of the tunneling electron, further solvent-cage relaxation with a timescale of ca. 10−13 s results in a minor contribution to the electron spin relaxation times. This investigation illustrates the great potential of multi-frequency EPR measurements to interrogate the microscopic nature and dynamics of ultra fast electron transfer or quantum-tunneling processes in liquids. Our results also impact on the universal issue of the role of a host solvent (or host matrix, e.g. a semiconductor) in mediating long-range electron transfer processes and we discuss the implications of our results with a range of other materials and systems exhibiting the phenomenon of electron transfer. PMID:22568866
Wang, Fang; Zhang, Yonglai; Liu, Yang; Wang, Xuefeng; Shen, Mingrong; Lee, Shuit-Tong; Kang, Zhenhui
2013-03-07
Here we show a bias-mediated electron/energy transfer process at the CQDs-TiO(2) interface for the dynamic modulation of opto-electronic properties. Different energy and electron transfer states have been observed in the CQDs-TNTs system due to the up-conversion photoluminescence and the electron donation/acceptance properties of the CQDs decorated on TNTs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sontakke, Atul D., E-mail: sontakke.atul.55a@st.kyoto-u.ac.jp; Katayama, Yumiko; Tanabe, Setsuhisa
2015-03-30
A facile method to describe the electron transfer and energy transfer processes among lanthanide ions is presented based on the temperature dependent donor luminescence decay kinetics. The electron transfer process in Ce{sup 3+}-Yb{sup 3+} exhibits a steady rise with temperature, whereas the Ce{sup 3+}-Tb{sup 3+} energy transfer remains nearly unaffected. This feature has been investigated using the rate equation modeling and a methodology for the quantitative estimation of interaction parameters is presented. Moreover, the overall consequences of electron transfer and energy transfer process on donor-acceptor luminescence behavior, quantum efficiency, and donor luminescence decay kinetics are discussed in borate glass host.more » The results in this study propose a straight forward approach to distinguish the electron transfer and energy transfer processes between lanthanide ions in dielectric hosts, which is highly advantageous in view of the recent developments on lanthanide doped materials for spectral conversion, persistent luminescence, and related applications.« less
NASA Astrophysics Data System (ADS)
Yamaji, Minoru; Oshima, Juro; Hidaka, Motohiko
2009-06-01
Evidence for the coupled electron/proton transfer mechanism of the phenolic H-atom transfer between triplet π,π ∗ 3,3'-carbonylbis(7-diethylaminocoumarin) and phenol derivatives is obtained by using laser photolysis techniques. It was confirmed that the quenching rate constants of triplet CBC by phenols having positive Hammett constants do not follow the Rehm-Weller equation for electron transfer while those by phenols with negative Hammett constants do it. From the viewpoint of thermodynamic parameters for electron transfer, the crucial factors for phenolic H-atom transfer to π,π ∗ triplet are discussed.
Bridge-mediated hopping or superexchange electron-transfer processes in bis(triarylamine) systems
NASA Astrophysics Data System (ADS)
Lambert, Christoph; Nöll, Gilbert; Schelter, Jürgen
2002-09-01
Hopping and superexchange are generally considered to be alternative electron-transfer mechanisms in molecular systems. In this work we used mixed-valence radical cations as model systems for the investigation of electron-transfer pathways. We show that substituents attached to a conjugated bridge connecting two triarylamine redox centres have a marked influence on the near-infrared absorption spectra of the corresponding cations. Spectral analysis, followed by evaluation of the electron-transfer parameters using the Generalized Mulliken-Hush theory and simulation of the potential energy surfaces, indicate that hopping and superexchange are not alternatives, but are both present in the radical cation with a dimethoxybenzene bridge. We found that the type of electron-transfer mechanism depends on the bridge-reorganization energy as well as on the bridge-state energy. Because superexchange and hopping follow different distance laws, our findings have implications for the design of new molecular and polymeric electron-transfer materials.
Bollella, Paolo; Gorton, Lo; Antiochia, Riccarda
2018-04-24
Dehydrogenase based bioelectrocatalysis has been increasingly exploited in recent years in order to develop new bioelectrochemical devices, such as biosensors and biofuel cells, with improved performances. In some cases, dehydrogeases are able to directly exchange electrons with an appropriately designed electrode surface, without the need for an added redox mediator, allowing bioelectrocatalysis based on a direct electron transfer process. In this review we briefly describe the electron transfer mechanism of dehydrogenase enzymes and some of the characteristics required for bioelectrocatalysis reactions via a direct electron transfer mechanism. Special attention is given to cellobiose dehydrogenase and fructose dehydrogenase, which showed efficient direct electron transfer reactions. An overview of the most recent biosensors and biofuel cells based on the two dehydrogenases will be presented. The various strategies to prepare modified electrodes in order to improve the electron transfer properties of the device will be carefully investigated and all analytical parameters will be presented, discussed and compared.
Herrera, Barbara
2011-05-01
In this article, a theoretical study of 1-5 proton transfers is presented. Two model systems which represent 1-5 proton transfer, 3-hidroxy-2-propenimine and salicyldenaniline have been studied as shown in Fig. 1. For this purpose, a DFT/B3LYP/6-311+G**, reaction force and reaction electronic flux analysis is made. The obtained results indicate that both proton transfers exhibit energetic and electronic differences emphasizing the role of the neighbor ring and the impact of conjugation on electronic properties.
Physical Fitness and Mitochondrial Respiratory Capacity in Horse Skeletal Muscle
Lemieux, Hélène; Mouithys-Mickalad, Ange; Serteyn, Didier
2012-01-01
Background Within the animal kingdom, horses are among the most powerful aerobic athletic mammals. Determination of muscle respiratory capacity and control improves our knowledge of mitochondrial physiology in horses and high aerobic performance in general. Methodology/Principal Findings We applied high-resolution respirometry and multiple substrate-uncoupler-inhibitor titration protocols to study mitochondrial physiology in small (1.0–2.5 mg) permeabilized muscle fibres sampled from triceps brachii of healthy horses. Oxidative phosphorylation (OXPHOS) capacity (pmol O2•s−1•mg−1 wet weight) with combined Complex I and II (CI+II) substrate supply (malate+glutamate+succinate) increased from 77±18 in overweight horses to 103±18, 122±15, and 129±12 in untrained, trained and competitive horses (N = 3, 8, 16, and 5, respectively). Similar to human muscle mitochondria, equine OXPHOS capacity was limited by the phosphorylation system to 0.85±0.10 (N = 32) of electron transfer capacity, independent of fitness level. In 15 trained horses, OXPHOS capacity increased from 119±12 to 134±37 when pyruvate was included in the CI+II substrate cocktail. Relative to this maximum OXPHOS capacity, Complex I (CI)-linked OXPHOS capacities were only 50% with glutamate+malate, 64% with pyruvate+malate, and 68% with pyruvate+malate+glutamate, and ∼78% with CII-linked succinate+rotenone. OXPHOS capacity with glutamate+malate increased with fitness relative to CI+II-supported ETS capacity from a flux control ratio of 0.38 to 0.40, 0.41 and 0.46 in overweight to competitive horses, whereas the CII/CI+II substrate control ratio remained constant at 0.70. Therefore, the apparent deficit of the CI- over CII-linked pathway capacity was reduced with physical fitness. Conclusions/Significance The scope of mitochondrial density-dependent OXPHOS capacity and the density-independent (qualitative) increase of CI-linked respiratory capacity with increased fitness open up new perspectives of integrative and comparative mitochondrial respiratory physiology. PMID:22529950
Coherent Electron Transfer at the Ag / Graphite Heterojunction Interface
NASA Astrophysics Data System (ADS)
Tan, Shijing; Dai, Yanan; Zhang, Shengmin; Liu, Liming; Zhao, Jin; Petek, Hrvoje
2018-03-01
Charge transfer in transduction of light to electrical or chemical energy at heterojunctions of metals with semiconductors or semimetals is believed to occur by photogenerated hot electrons in metal undergoing incoherent internal photoemission through the heterojunction interface. Charge transfer, however, can also occur coherently by dipole coupling of electronic bands at the heterojunction interface. Microscopic physical insights into how transfer occurs can be elucidated by following the coherent polarization of the donor and acceptor states on the time scale of electronic dephasing. By time-resolved multiphoton photoemission spectroscopy (MPP), we investigate the coherent electron transfer from an interface state that forms upon chemisorption of Ag nanoclusters onto graphite to a σ symmetry interlayer band of graphite. Multidimensional MPP spectroscopy reveals a resonant two-photon transition, which dephases within 10 fs completing the coherent transfer.
Food Antioxidants: Chemical Insights at the Molecular Level.
Galano, Annia; Mazzone, Gloria; Alvarez-Diduk, Ruslán; Marino, Tiziana; Alvarez-Idaboy, J Raúl; Russo, Nino
2016-01-01
In this review, we briefly summarize the reliability of the density functional theory (DFT)-based methods to accurately predict the main antioxidant properties and the reaction mechanisms involved in the free radical-scavenging reactions of chemical compounds present in food. The analyzed properties are the bond dissociation energies, in particular those involving OH bonds, electron transfer enthalpies, adiabatic ionization potentials, and proton affinities. The reaction mechanisms are hydrogen-atom transfer, proton-coupled electron transfer, radical adduct formation, single electron transfer, sequential electron proton transfer, proton-loss electron transfer, and proton-loss hydrogen-atom transfer. Furthermore, the chelating ability of these compounds and its role in decreasing or inhibiting the oxidative stress induced by Fe(III) and Cu(II) are considered. Comparisons between theoretical and experimental data confirm that modern theoretical tools are not only able to explain controversial experimental facts but also to predict chemical behavior.
Testing of active heat sink for advanced high-power laser diodes
NASA Astrophysics Data System (ADS)
Vetrovec, John; Copeland, Drew A.; Feeler, Ryan; Junghans, Jeremy
2011-03-01
We report on the development of a novel active heat sink for high-power laser diodes offering unparalleled capacity in high-heat flux handling and temperature control. The heat sink employs convective heat transfer by a liquid metal flowing at high speed inside a miniature sealed flow loop. Liquid metal flow in the loop is maintained electromagnetically without any moving parts. Thermal conductance of the heat sink is electronically adjustable, allowing for precise control of diode temperature and the laser light wavelength. This paper presents the principles and challenges of liquid metal cooling, and data from testing at high heat flux and high heat loads.
Study of heating capacity of focused IR light soldering systems.
Anguiano, C; Félix, M; Medel, A; Bravo, M; Salazar, D; Márquez, H
2013-10-07
An experimental study about four optical setups used for developing a Focused IR Light Soldering System (FILSS) for Surface Mount Technology (SMT) lead-free electronic devices specifically for Ball Grid Arrays (BGA) is presented. An analysis of irradiance and infrared thermography at BGA surface is presented, as well as heat transfer by radiation and conduction process from the surface of the BGA to the solder balls. The results of this work show that the heating provided by our proposed optical setups, measured at the BGA under soldering process, meets the high temperature and uniform thermal distribution requirements, which are defined by the reflow solder method for SMT devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kryachko, E.S.
1999-06-03
The electronic coupling between the initial and final diabatic states is the major factor that determines the rate of electron transfer. A general formula for the adiabatic-to-diabatic mixing angle in terms of the electronic dipole moments is derived within a two-state model. It expresses the electronic coupling determining the rate of electronic transfer in terms of the off-diagonal diabatic dipole moment.
Photo-induced electron transfer method
Wohlgemuth, Roland; Calvin, Melvin
1984-01-01
The efficiency of photo-induced electron transfer reactions is increased and the back transfer of electrons in such reactions is greatly reduced when a photo-sensitizer zinc porphyrin-surfactant and an electron donor manganese porphyrin-surfactant are admixed into phospho-lipid membranes. The phospholipids comprising said membranes are selected from phospholipids whose head portions are negatively charged. Said membranes are contacted with an aqueous medium in which an essentially neutral viologen electron acceptor is admixed. Catalysts capable of transfering electrons from reduced viologen electron acceptor to hydrogen to produce elemental hydrogen are also included in the aqueous medium. An oxidizable olefin is also admixed in the phospholipid for the purpose of combining with oxygen that coordinates with oxidized electron donor manganese porphyrin-surfactant.
Proliferative lifespan is conserved after nuclear transfer.
Clark, A John; Ferrier, Patricia; Aslam, Samena; Burl, Sarah; Denning, Chris; Wylie, Diana; Ross, Arlene; de Sousa, Paul; Wilmut, Ian; Cui, Wei
2003-06-01
Cultured primary cells exhibit a finite proliferative lifespan, termed the Hayflick limit. Cloning by nuclear transfer can reverse this cellular ageing process and can be accomplished with cultured cells nearing senescence. Here we describe nuclear transfer experiments in which donor cell lines at different ages and with different proliferative capacities were used to clone foetuses and animals from which new primary cell lines were generated. The rederived lines had the same proliferative capacity and rate of telomere shortening as the donor cell lines, suggesting that these are innate, genetically determined, properties that are conserved by nuclear transfer.
Beek, Kristen; Dawson, Angela; Whelan, Anna
2017-01-01
A lack of access to sexual and reproductive health (SRH) care is the leading cause of morbidity and mortality among displaced women and girls of reproductive age. Efforts to address this public health emergency in humanitarian settings have included the widespread delivery of training programmes to address gaps in health worker capacity for SRH. There remains a lack of data on the factors which may affect the ability of health workers to apply SRH knowledge and skills gained through training programmes in humanitarian contexts. We searched four electronic databases and ten key organizations' websites to locate literature on SRH training for humanitarian settings in low and lower-middle income countries. Papers were examined using content analysis to identify factors which contribute to health workers' capacity to transfer SRH knowledge, skills and attitudes learned in training into practice in humanitarian settings. Seven studies were included in this review. Six research papers focused on the response stage of humanitarian crises and five papers featured the disaster context of conflict. A range of SRH components were addressed including maternal, newborn health and sexual violence. The review identified factors, including appropriate resourcing, organisational support and confidence in health care workers that were found to facilitate the transfer of learning. The findings suggest the presence of factors that moderate the transfer of training at the individual, training, organisational, socio-cultural, political and health system levels. Supportive strategies are necessary to best assist trainees to apply newly acquired knowledge and skills in their work settings. These interventions must address factors that moderate the success of learning transfer. Findings from this review suggest that these are related to the individual trainee, the training program itself and the workplace as well as the broader environmental context. Organisations which provide SRH training for humanitarian emergencies should work to identify the system of moderating factors that affect training transfer in their setting and employ evidence-based strategies to ameliorate these.
Surface Modification of the LiFePO4 Cathode for the Aqueous Rechargeable Lithium Ion Battery.
Tron, Artur; Jo, Yong Nam; Oh, Si Hyoung; Park, Yeong Don; Mun, Junyoung
2017-04-12
The LiFePO 4 surface is coated with AlF 3 via a simple chemical precipitation for aqueous rechargeable lithium ion batteries (ARLBs). During electrochemical cycling, the unfavorable side reactions between LiFePO 4 and the aqueous electrolyte (1 M Li 2 SO 4 in water) leave a highly resistant passivation film, which causes a deterioration in the electrochemical performance. The coated LiFePO 4 by 1 wt % AlF 3 has a high discharge capacity of 132 mAh g -1 and a highly improved cycle life, which shows 93% capacity retention even after 100 cycles, whereas the pristine LiFePO 4 has a specific capacity of 123 mAh g -1 and a poor capacity retention of 82%. The surface analysis results, which include X-ray photoelectron spectroscopy and transmission electron microscopy results, show that the AlF 3 coating material is highly effective for reducing the detrimental surface passivation by relieving the electrochemical side reactions of the fragile aqueous electrolyte. The AlF 3 coating material has good compatibility with the LiFePO 4 cathode material, which mitigates the surface diffusion obstacles, reduces the charge-transfer resistances and improves the electrochemical performance and surface stability of the LiFePO 4 material in aqueous electrolyte solutions.
Distinct Transfer Effects of Training Different Facets of Working Memory Capacity
ERIC Educational Resources Information Center
von Bastian, Claudia C.; Oberauer, Klaus
2013-01-01
The impact of working memory training on a broad set of transfer tasks was examined. Each of three groups of participants trained one specific functional category of working memory capacity: storage and processing, relational integration, and supervision. A battery comprising tests to measure working memory, task shifting, inhibition, and…
Application of Electron-Transfer Theory to Several Systems of Biological Interest
DOE R&D Accomplishments Database
Marcus, R. A.; Sutin, N.
1985-03-23
Electron-transfer reaction rates are compared with theoretically calculated values for several reactions in the bacterial photosynthetic reaction center. A second aspect of the theory, the cross-relation, is illustrated using protein-protein electron transfers.
NASA Astrophysics Data System (ADS)
Zhang, Jie; Chu, Ruixia; Chen, Yanli; Jiang, Heng; Zhang, Ying; Huang, Nay Ming; Guo, Hang
2018-03-01
Binder-free nickel cobaltite on a carbon nanofiber (NiCo2O4@CNF) anode for lithium ion batteries was prepared via a two-step procedure of electrospinning and electrodeposition. The CNF was obtained by annealing electrospun poly-acrylonitrile (PAN) in nitrogen (N2). The NiCo2O4 nanostructures were then grown on the CNF by electrodeposition, followed by annealing in air. Experimental results showed that vertically aligned NiCo2O4 nanosheets had uniformly grown on the surface of the CNF, forming an interconnected network. The NiCo2O4@CNF possessed considerable lithium storage capacity and cycling stability. It exhibited a high reversible capacity of 778 mAhg-1 after 300 cycles at a current density of 0.25 C (1 C = 890 mAg-1) with an average capacity loss rate of 0.05% per cycle. The NiCo2O4@CNF had considerable rate capacities, delivering a capacity of 350 mAhg-1 at a current density of 2.0 C. The outstanding electrochemical performance can be mainly attributed to the following: (1) The nanoscale structure of NiCo2O4 could not only shorten the diffusion path of lithium ions and electrons but also increase the specific surface area, providing more active sites for electrochemical reactions. (2) The CNF with considerable mechanical strength and electrical conductivity could function as an anchor for the NiCo2O4 nanostructure and ensure an efficient electron transfer. (3) The porous structure resulted in a high specific surface area and an effective buffer for the volume changes during the repeated charge-discharge processes. Compared with a conventional hydrothermal method, electrodeposition could significantly simplify the preparation of NiCo2O4, with a shorter preparation period and lower energy consumption. This work provides an alternative strategy to obtain a high performance anode for lithium ion batteries.
Bridging the gap between peak and average loads on science networks
Nickolay, Sam; Jung, Eun -Sung; Kettimuthu, Rajkumar; ...
2017-05-12
Backbone networks are typically overprovisioned in order to support peak loads. Research and education networks (RENs), for example, are often designed to operate at 20–30% of capacity. Thus, Internet2 upgrades its backbone interconnects when the weekly 95th-percentile load is reliably above 30% of link capacity, and analysis of ESnet traffic between major laboratories shows a substantial gap between peak and average utilization. As science data volumes increase exponentially, it is unclear whether this overprovisioning trend can continue into the future. Even if overprovisioning is possible, it may not be the most cost-effective (and desirable) approach going forward. Under the currentmore » mode of free access to RENs, traffic at peak load may include both flows that need to be transferred in near-real time–for example, for computation and instrument monitoring and steering–and flows that are less time-critical, for example, archival and storage replication operations. Thus, peak load does not necessarily indicate the capacity that is absolutely required at that moment. We thus examine how data transfers are impacted when the average network load is increased while the network capacity is kept at the current levels. We also classify data transfers into on-demand (time-critical) and best-effort (less time-critical) and study the impact on both classes for different proportions of both the number of on-demand transfers and amount of bandwidth allocated for on-demand transfers. For our study, we use real transfer logs from production GridFTP servers to do simulation-based experiments as well as real experiments on a testbed. We find that when the transfer load is doubled and the network capacity is fixed at the current level, the gap between peak and average throughput decreases by an average of 18% in the simulation experiments and 16% in the testbed experiments, and the average slowdown experienced by the data transfers is under 1.5×. Moreover, when transfers are classified as on-demand or best-effort, on-demand transfers experience almost no slowdown and the mean slowdown experienced by best-effort transfers is under 2× in the simulation experiments and under 1.2× in the testbed experiments.« less
Bridging the gap between peak and average loads on science networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nickolay, Sam; Jung, Eun -Sung; Kettimuthu, Rajkumar
Backbone networks are typically overprovisioned in order to support peak loads. Research and education networks (RENs), for example, are often designed to operate at 20–30% of capacity. Thus, Internet2 upgrades its backbone interconnects when the weekly 95th-percentile load is reliably above 30% of link capacity, and analysis of ESnet traffic between major laboratories shows a substantial gap between peak and average utilization. As science data volumes increase exponentially, it is unclear whether this overprovisioning trend can continue into the future. Even if overprovisioning is possible, it may not be the most cost-effective (and desirable) approach going forward. Under the currentmore » mode of free access to RENs, traffic at peak load may include both flows that need to be transferred in near-real time–for example, for computation and instrument monitoring and steering–and flows that are less time-critical, for example, archival and storage replication operations. Thus, peak load does not necessarily indicate the capacity that is absolutely required at that moment. We thus examine how data transfers are impacted when the average network load is increased while the network capacity is kept at the current levels. We also classify data transfers into on-demand (time-critical) and best-effort (less time-critical) and study the impact on both classes for different proportions of both the number of on-demand transfers and amount of bandwidth allocated for on-demand transfers. For our study, we use real transfer logs from production GridFTP servers to do simulation-based experiments as well as real experiments on a testbed. We find that when the transfer load is doubled and the network capacity is fixed at the current level, the gap between peak and average throughput decreases by an average of 18% in the simulation experiments and 16% in the testbed experiments, and the average slowdown experienced by the data transfers is under 1.5×. Moreover, when transfers are classified as on-demand or best-effort, on-demand transfers experience almost no slowdown and the mean slowdown experienced by best-effort transfers is under 2× in the simulation experiments and under 1.2× in the testbed experiments.« less
Lu, Qiujun; Chen, Xiaogen; Liu, Dan; Wu, Cuiyan; Liu, Meiling; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo
2018-05-15
The selective and sensitive detection of dopamine (DA) is of great significance for the identification of schizophrenia, Huntington's disease, and Parkinson's disease from the perspective of molecular diagnostics. So far, most of DA fluorescence sensors are based on the electron transfer from the fluorescence nanomaterials to DA-quinone. However, the limited electron transfer ability of the DA-quinone affects the level of detection sensitivity of these sensors. In this work, based on the DA can reduce Ag + into AgNPs followed by oxidized to DA-quinone, we developed a novel silicon nanoparticles-based electron transfer fluorescent sensor for the detection of DA. As electron transfer acceptor, the AgNPs and DA-quinone can quench the fluorescence of silicon nanoparticles effectively through the synergistic electron transfer effect. Compared with traditional fluorescence DA sensors, the proposed synergistic electron transfer-based sensor improves the detection sensitivity to a great extent (at least 10-fold improvement). The proposed sensor shows a low detection limit of DA, which is as low as 0.1 nM under the optimal conditions. This sensor has potential applicability for the detection of DA in practical sample. This work has been demonstrated to contribute to a substantial improvement in the sensitivity of the sensors. It also gives new insight into design electron transfer-based sensors. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Sjulstok, Emil; Olsen, Jógvan Magnus Haugaard; Solov'Yov, Ilia A.
2015-12-01
Various biological processes involve the conversion of energy into forms that are usable for chemical transformations and are quantum mechanical in nature. Such processes involve light absorption, excited electronic states formation, excitation energy transfer, electrons and protons tunnelling which for example occur in photosynthesis, cellular respiration, DNA repair, and possibly magnetic field sensing. Quantum biology uses computation to model biological interactions in light of quantum mechanical effects and has primarily developed over the past decade as a result of convergence between quantum physics and biology. In this paper we consider electron transfer in biological processes, from a theoretical view-point; namely in terms of quantum mechanical and semi-classical models. We systematically characterize the interactions between the moving electron and its biological environment to deduce the driving force for the electron transfer reaction and to establish those interactions that play the major role in propelling the electron. The suggested approach is seen as a general recipe to treat electron transfer events in biological systems computationally, and we utilize it to describe specifically the electron transfer reactions in Arabidopsis thaliana cryptochrome-a signaling photoreceptor protein that became attractive recently due to its possible function as a biological magnetoreceptor.
Hierarchical TiO2/C micro-nano spheres as high-performance anode materials for sodium ion batteries
NASA Astrophysics Data System (ADS)
Ma, Xiao; Zhang, Zhihui; Tian, Jianliya; Xu, Beibei; Ping, Qiushi; Wang, Baofeng
The hierarchical TiO2/C microspheres were obtained via a facile method of in-situ hydrolysis and spray drying. Antase TiO2 nanoparticles were coherent to microspheres TiO2/C due to the pyrolysis of carbon source (PVP). Besides, the favorable electron transfer from carbon to TiO2 improves the electronic conductivity of TiO2 via the presence of Ti-C bond within TiO2/C composite. Charge-discharge tests show that TiO2/C microspheres delivered a good rate capability of 106.1mAhg‑1 at the high current density of 5Ag‑1 and an enhanced cyclic capacity. The superior electrochemical performance could be ascribed to the porous micro-nano structure, smaller crystal size and increased conductivity. The synthesis of TiO2/C microspheres is easy to scale up for satisfying high-performance sodium storage.
Control voltage and power fluctuations when connecting wind farms
NASA Astrophysics Data System (ADS)
Berinde, Ioan; Bǎlan, Horia; Oros Pop, Teodora Susana
2015-12-01
Voltage, frequency, active power and reactive power are very important parameters in terms of power quality. These parameters are followed when connecting any power plant, the more the connection of wind farms. Connecting wind farms to the electricity system must not cause interference outside the limits set by regulations. Modern solutions for fast and automatic voltage control and power fluctuations using electronic control systems of reactive power flows. FACTS (Flexible Alternating Current Transmision System) systems, established on the basis of power electronic circuits ensure control of electrical status quantities to achieve the necessary transfer of power to the power grid. FACTS devices can quickly control parameters and sizes of state power lines, such as impedance line voltages and phase angles of the voltages of the two ends of the line. Their use can lead to improvement in power system operation by increasing the transmission capacity of power lines, power flow control lines, improved static and transient stability reserve.
ELECTRON TRANSFER MECHANISM AT THE SOLID-LIQUID INTERFACE OF PHYLLOSILICATES
Interfacial electron transfer processes on clay minerals have significant impact in natural environments and geochemical systems. Nitrobenzene was used as molecular probes to study the electron transfer mechanism at the solid-water interfaces of Fe-containing phyllosicates. For...
Maina, James W; Schütz, Jürg A; Grundy, Luke; Des Ligneris, Elise; Yi, Zhifeng; Kong, Lingxue; Pozo-Gonzalo, Cristina; Ionescu, Mihail; Dumée, Ludovic F
2017-10-11
Photocatalytic conversion of carbon dioxide (CO 2 ) to useful products has potential to address the adverse environmental impact of global warming. However, most photocatalysts used to date exhibit limited catalytic performance, due to poor CO 2 adsorption capacity, inability to efficiently generate photoexcited electrons, and/or poor transfer of the photogenerated electrons to CO 2 molecules adsorbed on the catalyst surface. The integration of inorganic semiconductor nanoparticles across metal organic framework (MOF) materials has potential to yield new hybrid materials, combining the high CO 2 adsorption capacity of MOF and the ability of the semiconductor nanoparticles to generate photoexcited electrons. Herein, controlled encapsulation of TiO 2 and Cu-TiO 2 nanoparticles within zeolitic imidazolate framework (ZIF-8) membranes was successfully accomplished, using rapid thermal deposition (RTD), and their photocatalytic efficiency toward CO 2 conversion was investigated under UV irradiation. Methanol and carbon monoxide (CO) were found to be the only products of the CO 2 reduction, with yields strongly dependent upon the content and composition of the dopant semiconductor particles. CuTiO 2 nanoparticle doped membranes exhibited the best photocatalytic performance, with 7 μg of the semiconductor nanoparticle enhancing CO yield of the pristine ZIF-8 membrane by 233%, and methanol yield by 70%. This work opens new routes for the fabrication of hybrid membranes containing inorganic nanoparticles and MOFs, with potential application not only in catalysis but also in electrochemical, separation, and sensing applications.
Tunneling induced electron transfer between separated protons
NASA Astrophysics Data System (ADS)
Vindel-Zandbergen, Patricia; Meier, Christoph; Sola, Ignacio R.
2018-04-01
We study electron transfer between two separated protons using local control theory. In this symmetric system one can favour a slow transfer by biasing the algorithm, achieving high efficiencies for fixed nuclei. The solution can be parametrized using a sequence of a pump followed by a dump pulse that lead to tunneling-induced electron transfer. Finally, we study the effect of the nuclear kinetic energy on the efficiency. Even in the absence of relative motion between the protons, the spreading of the nuclear wave function is enough to reduce the yield of electronic transfer to less than one half.
X.400: The Standard for Message Handling Systems.
ERIC Educational Resources Information Center
Swain, Leigh; Tallim, Paula
1990-01-01
Profiles X.400, the Open Systems Interconnection (OSI) Application layer standard that supports interpersonal electronic mail services, facsimile transfer, electronic data interchange, electronic funds transfer, electronic publishing, and electronic invoicing. Also discussed are an electronic directory to support message handling, compatibility…
Farnum, Byron H; Morseth, Zachary A; Brennaman, M Kyle; Papanikolas, John M; Meyer, Thomas J
2015-06-18
Degenerately doped In2O3:Sn semiconductor nanoparticles (nanoITO) have been used to study the photoinduced interfacial electron-transfer reactivity of surface-bound [Ru(II)(bpy)2(4,4'-(PO3H2)2-bpy)](2+) (RuP(2+)) molecules as a function of driving force over a range of 1.8 eV. The metallic properties of the ITO nanoparticles, present within an interconnected mesoporous film, allowed for the driving force to be tuned by controlling their Fermi level with an external bias while their optical transparency allowed for transient absorption spectroscopy to be used to monitor electron-transfer kinetics. Photoinduced electron transfer from excited-state -RuP(2+*) molecules to nanoITO was found to be dependent on applied bias and competitive with nonradiative energy transfer to nanoITO. Back electron transfer from nanoITO to oxidized -RuP(3+) was also dependent on the applied bias but without complication from inter- or intraparticle electron diffusion in the oxide nanoparticles. Analysis of the electron injection kinetics as a function of driving force using Marcus-Gerischer theory resulted in an experimental estimate of the reorganization energy for the excited-state -RuP(3+/2+*) redox couple of λ* = 0.83 eV and an electronic coupling matrix element, arising from electronic wave function overlap between the donor orbital in the molecule and the acceptor orbital(s) in the nanoITO electrode, of Hab = 20-45 cm(-1). Similar analysis of the back electron-transfer kinetics yielded λ = 0.56 eV for the ground-state -RuP(3+/2+) redox couple and Hab = 2-4 cm(-1). The use of these wide band gap, degenerately doped materials provides a unique experimental approach for investigating single-site electron transfer at the surface of oxide nanoparticles.
Chemical and charge transfer studies on interfaces of a conjugated polymer and ITO
NASA Astrophysics Data System (ADS)
David, Tanya M. S.; Arasho, Wondwosson; Smith, O'Neil; Hong, Kunlun; Bonner, Carl; Sun, Sam-Shajing
2017-08-01
Conjugated oligomers and polymers are very attractive for potential future plastic electronic and opto-electronic device applications such as plastic photo detectors and solar cells, thermoelectric devices, field effect transistors, and light emitting diodes. Understanding and optimizing charge transport between an active polymer layer and conductive substrate is critical to the optimization of polymer based electronic and opto-electronic devices. This study focused on the design, synthesis, self-assembly, and electron transfers and transports of a phosphonic acid end-functionalized polyphenylenevinylene (PPV) that was covalently attached and self-assembled onto an Indium Tin Oxide (ITO) substrate. This study demonstrated how atomic force microscopy (AFM) can be an effective characterization technique in conjunction with conventional electron transfer methods, including cyclic voltammetry (CV), towards determining electron transfer rates in polymer and polymer/conductor interface systems. This study found that the electron transfer rates of covalently attached and self-assembled films were much faster than the spin coated films. The knowledge from this study can be very useful for designing potential polymer based electronic and opto-electronic thin film devices.
Electron transfer by excited benzoquinone anions: slow rates for two-electron transitions.
Zamadar, Matibur; Cook, Andrew R; Lewandowska-Andralojc, Anna; Holroyd, Richard; Jiang, Yan; Bikalis, Jin; Miller, John R
2013-09-05
Electron transfer (ET) rate constants from the lowest excited state of the radical anion of benzoquinone, BQ(-•)*, were measured in THF solution. Rate constants for bimolecular electron transfer reactions typically reach the diffusion-controlled limit when the free-energy change, ΔG°, reaches -0.3 eV. The rate constants for ET from BQ(-•)* are one-to-two decades smaller at this energy and do not reach the diffusion-controlled limit until -ΔG° is 1.5-2.0 eV. The rates are so slow probably because a second electron must also undergo a transition to make use of the energy of the excited state. Similarly, ET, from solvated electrons to neutral BQ to form the lowest excited state, is slow, while fast ET is observed at a higher excited state, which can be populated in a transition involving only one electron. A simple picture based on perturbation theory can roughly account for the control of electron transfer by the need for transition of a second electron. The picture also explains how extra driving force (-ΔG°) can restore fast rates of electron transfer.
Otte, Douglas A L; Woerpel, K A
2015-08-07
Addition of allylmagnesium reagents to an aliphatic aldehyde bearing a radical clock gave only addition products and no evidence of ring-opened products that would suggest single-electron-transfer reactions. The analogous Barbier reaction also did not provide evidence for a single-electron-transfer mechanism in the addition step. Other Grignard reagents (methyl-, vinyl-, t-Bu-, and triphenylmethylmagnesium halides) also do not appear to add to an alkyl aldehyde by a single-electron-transfer mechanism.
Evidence for protein conformational change at a Au(110)/protein interface
NASA Astrophysics Data System (ADS)
Messiha, H. L.; Smith, C. I.; Scrutton, N. S.; Weightman, P.
2008-07-01
Evidence is presented that reflection anisotropy spectroscopy (RAS) can provide real-time measurements of conformational change in proteins induced by electron transfer reactions. A bacterial electron transferring flavoprotein (ETF) has been modified so as to adsorb on an Au(110) electrode and enable reversible electron transfer to the protein cofactor in the absence of mediators. Reversible changes are observed in the RAS of this protein that are interpreted as arising from conformational changes accompanying the transfer of electrons.
Enhanced electron transfer kinetics through hybrid graphene-carbon nanotube films.
Henry, Philémon A; Raut, Akshay S; Ubnoske, Stephen M; Parker, Charles B; Glass, Jeffrey T
2014-11-01
We report the first study of the electrochemical reactivity of a graphenated carbon nanotube (g-CNT) film. The electron transfer kinetics of the ferri-ferrocyanide couple were examined for a g-CNT film and compared to the kinetics to standard carbon nanotubes (CNTs). The g-CNT film exhibited much higher catalytic activity, with a heterogeneous electron-transfer rate constant, k 0 , approximately two orders of magnitude higher than for standard CNTs. Scanning electron microscopy and Raman spectroscopy were used to correlate the higher electron transfer kinetics with the higher edge-density of the g-CNT film.
Liu, Yang; Zhang, Jieyu; Li, Ying; Hu, Yemin; Li, Wenxian; Zhu, Mingyuan; Hu, Pengfei; Chou, Shulei; Wang, Guoxiu
2017-01-01
To overcome the low lithium ion diffusion and slow electron transfer, a hollow micro sphere LiFePO4/C cathode material with a porous interior structure was synthesized via a solvothermal method by using ethylene glycol (EG) as the solvent medium and cetyltrimethylammonium bromide (CTAB) as the surfactant. In this strategy, the EG solvent inhibits the growth of the crystals and the CTAB surfactant boots the self-assembly of the primary nanoparticles to form hollow spheres. The resultant carbon-coat LiFePO4/C hollow micro-spheres have a ~300 nm thick shell/wall consisting of aggregated nanoparticles and a porous interior. When used as materials for lithium-ion batteries, the hollow micro spherical LiFePO4/C composite exhibits superior discharge capacity (163 mAh g−1 at 0.1 C), good high-rate discharge capacity (118 mAh g−1 at 10 C), and fine cycling stability (99.2% after 200 cycles at 0.1 C). The good electrochemical performances are attributed to a high rate of ionic/electronic conduction and the high structural stability arising from the nanosized primary particles and the micro-sized hollow spherical structure. PMID:29099814
Structure evolution and thermal stability of high-energy density Li-ion battery cathode Li 2VO 2F
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaoya; Huang, Yiqing; Ji, Dongsheng
Lithium-ion batteries (LIBs) provide high-energy-density electrochemical energy storage, which plays a central role in advancing technologies ranging from portable electronics to electric vehicles (EVs). However, a demand for lighter, more compact devices and for extended range EVs continues to fuel the need for higher energy density storage systems. Li 2VO 2F, which is synthesized in its lithiated state, allows two-electron transfer per formula during the electrochemical reaction providing a high theoretical capacity of 462 mAh/g. Herein, the synthesis and electrochemical performance of Li 2VO 2F are optimized. The thermal stability of Li 2VO 2F, which is related to the safetymore » of a battery is studied by thermal gravimetric analysis. The structure and vanadium oxidation state evolution along Li cycling are studied by ex-situ X-ray diffraction and absorption techniques. It is shown that the rock-salt structure of pristine Li 2VO 2F is stable up to at least 250°C, and is preserved upon Li cycling, which proceeds by the solid-solution mechanism. However, not all Li can be removed from the structure upon charge to 4.5 V, limiting the experimentally obtained capacity.« less
Design Principles of Perovskites for Thermochemical Oxygen Separation
Ezbiri, Miriam; Allen, Kyle M.; Gàlvez, Maria E.; Steinfeld, Aldo
2015-01-01
Abstract Separation and concentration of O2 from gas mixtures is central to several sustainable energy technologies, such as solar‐driven synthesis of liquid hydrocarbon fuels from CO2, H2O, and concentrated sunlight. We introduce a rationale for designing metal oxide redox materials for oxygen separation through “thermochemical pumping” of O2 against a pO2 gradient with low‐grade process heat. Electronic structure calculations show that the activity of O vacancies in metal oxides pinpoints the ideal oxygen exchange capacity of perovskites. Thermogravimetric analysis and high‐temperature X‐ray diffraction for SrCoO3−δ, BaCoO3−δ and BaMnO3−δ perovskites and Ag2O and Cu2O references confirm the predicted performance of SrCoO3−δ, which surpasses the performance of state‐of‐the‐art Cu2O at these conditions with an oxygen exchange capacity of 44 mmol O 2 mol SrCoO 3−δ −1 exchanged at 12.1 μmol O 2 min−1 g−1 at 600–900 K. The redox trends are understood due to lattice expansion and electronic charge transfer. PMID:25925955
Design Principles of Perovskites for Thermochemical Oxygen Separation.
Ezbiri, Miriam; Allen, Kyle M; Gàlvez, Maria E; Michalsky, Ronald; Steinfeld, Aldo
2015-06-08
Separation and concentration of O2 from gas mixtures is central to several sustainable energy technologies, such as solar-driven synthesis of liquid hydrocarbon fuels from CO2 , H2 O, and concentrated sunlight. We introduce a rationale for designing metal oxide redox materials for oxygen separation through "thermochemical pumping" of O2 against a pO2 gradient with low-grade process heat. Electronic structure calculations show that the activity of O vacancies in metal oxides pinpoints the ideal oxygen exchange capacity of perovskites. Thermogravimetric analysis and high-temperature X-ray diffraction for SrCoO3-δ , BaCoO3-δ and BaMnO3-δ perovskites and Ag2 O and Cu2 O references confirm the predicted performance of SrCoO3-δ , which surpasses the performance of state-of-the-art Cu2 O at these conditions with an oxygen exchange capacity of 44 mmol O 2 mol SrCoO 3-δ(-1) exchanged at 12.1 μmol O 2 min(-1) g(-1) at 600-900 K. The redox trends are understood due to lattice expansion and electronic charge transfer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structure evolution and thermal stability of high-energy density Li-ion battery cathode Li 2VO 2F
Wang, Xiaoya; Huang, Yiqing; Ji, Dongsheng; ...
2017-05-24
Lithium-ion batteries (LIBs) provide high-energy-density electrochemical energy storage, which plays a central role in advancing technologies ranging from portable electronics to electric vehicles (EVs). However, a demand for lighter, more compact devices and for extended range EVs continues to fuel the need for higher energy density storage systems. Li 2VO 2F, which is synthesized in its lithiated state, allows two-electron transfer per formula during the electrochemical reaction providing a high theoretical capacity of 462 mAh/g. Herein, the synthesis and electrochemical performance of Li 2VO 2F are optimized. The thermal stability of Li 2VO 2F, which is related to the safetymore » of a battery is studied by thermal gravimetric analysis. The structure and vanadium oxidation state evolution along Li cycling are studied by ex-situ X-ray diffraction and absorption techniques. It is shown that the rock-salt structure of pristine Li 2VO 2F is stable up to at least 250°C, and is preserved upon Li cycling, which proceeds by the solid-solution mechanism. However, not all Li can be removed from the structure upon charge to 4.5 V, limiting the experimentally obtained capacity.« less
Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer
Westereng, Bjørge; Cannella, David; Wittrup Agger, Jane; Jørgensen, Henning; Larsen Andersen, Mogens; Eijsink, Vincent G.H.; Felby, Claus
2015-01-01
Enzymatic oxidation of cell wall polysaccharides by lytic polysaccharide monooxygenases (LPMOs) plays a pivotal role in the degradation of plant biomass. While experiments have shown that LPMOs are copper dependent enzymes requiring an electron donor, the mechanism and origin of the electron supply in biological systems are only partly understood. We show here that insoluble high molecular weight lignin functions as a reservoir of electrons facilitating LPMO activity. The electrons are donated to the enzyme by long-range electron transfer involving soluble low molecular weight lignins present in plant cell walls. Electron transfer was confirmed by electron paramagnetic resonance spectroscopy showing that LPMO activity on cellulose changes the level of unpaired electrons in the lignin. The discovery of a long-range electron transfer mechanism links the biodegradation of cellulose and lignin and sheds new light on how oxidative enzymes present in plant degraders may act in concert. PMID:26686263
Jensen, Heather M.; TerAvest, Michaela A.; Kokish, Mark G.; ...
2016-03-22
Introducing extracellular electron transfer pathways into heterologous organisms offers the opportunity to explore fundamental biogeochemical processes and to biologically alter redox states of exogenous metals for various applications. While expression of the MtrCAB electron nanoconduit from Shewanella oneidensis MR-1 permits extracellular electron transfer in Escherichia coli, the low electron flux and absence of growth in these cells limits their practicality for such applications. In this paper, we investigate how the rate of electron transfer to extracellular Fe(III) and cell survival in engineered E. coli are affected by mimicking different features of the S. oneidensis pathway: the number of electron nanoconduits,more » the link between the quinol pool and MtrA, and the presence of flavin-dependent electron transfer. While increasing the number of pathways does not significantly improve the extracellular electron transfer rate or cell survival, using the native inner membrane component, CymA, significantly improves the reduction rate of extracellular acceptors and increases cell viability. Strikingly, introducing both CymA and riboflavin to Mtr-expressing E. coli also allowed these cells to couple metal reduction to growth, which is the first time an increase in biomass of an engineered E. coli has been observed under Fe 2O 3 (s) reducing conditions. Overall and finally, this work provides engineered E. coli strains for modulating extracellular metal reduction and elucidates critical factors for engineering extracellular electron transfer in heterologous organisms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Heather M.; TerAvest, Michaela A.; Kokish, Mark G.
Introducing extracellular electron transfer pathways into heterologous organisms offers the opportunity to explore fundamental biogeochemical processes and to biologically alter redox states of exogenous metals for various applications. While expression of the MtrCAB electron nanoconduit from Shewanella oneidensis MR-1 permits extracellular electron transfer in Escherichia coli, the low electron flux and absence of growth in these cells limits their practicality for such applications. In this paper, we investigate how the rate of electron transfer to extracellular Fe(III) and cell survival in engineered E. coli are affected by mimicking different features of the S. oneidensis pathway: the number of electron nanoconduits,more » the link between the quinol pool and MtrA, and the presence of flavin-dependent electron transfer. While increasing the number of pathways does not significantly improve the extracellular electron transfer rate or cell survival, using the native inner membrane component, CymA, significantly improves the reduction rate of extracellular acceptors and increases cell viability. Strikingly, introducing both CymA and riboflavin to Mtr-expressing E. coli also allowed these cells to couple metal reduction to growth, which is the first time an increase in biomass of an engineered E. coli has been observed under Fe 2O 3 (s) reducing conditions. Overall and finally, this work provides engineered E. coli strains for modulating extracellular metal reduction and elucidates critical factors for engineering extracellular electron transfer in heterologous organisms.« less
Flavin Charge Transfer Transitions Assist DNA Photolyase Electron Transfer
NASA Astrophysics Data System (ADS)
Skourtis, Spiros S.; Prytkova, Tatiana; Beratan, David N.
2007-12-01
This contribution describes molecular dynamics, semi-empirical and ab-initio studies of the primary photo-induced electron transfer reaction in DNA photolyase. DNA photolyases are FADH--containing proteins that repair UV-damaged DNA by photo-induced electron transfer. A DNA photolyase recognizes and binds to cyclobutatne pyrimidine dimer lesions of DNA. The protein repairs a bound lesion by transferring an electron to the lesion from FADH-, upon photo-excitation of FADH- with 350-450 nm light. We compute the lowest singlet excited states of FADH- in DNA photolyase using INDO/S configuration interaction, time-dependent density-functional, and time-dependent Hartree-Fock methods. The calculations identify the lowest singlet excited state of FADH- that is populated after photo-excitation and that acts as the electron donor. For this donor state we compute conformationally-averaged tunneling matrix elements to empty electron-acceptor states of a thymine dimer bound to photolyase. The conformational averaging involves different FADH--thymine dimer confromations obtained from molecular dynamics simulations of the solvated protein with a thymine dimer docked in its active site. The tunneling matrix element computations use INDO/S-level Green's function, energy splitting, and Generalized Mulliken-Hush methods. These calculations indicate that photo-excitation of FADH- causes a π→π* charge-transfer transition that shifts electron density to the side of the flavin isoalloxazine ring that is adjacent to the docked thymine dimer. This shift in electron density enhances the FADH--to-dimer electronic coupling, thus inducing rapid electron transfer.
Photoinduced electron transfer between benzyloxy dendrimer phthalocyanine and benzoquinone
NASA Astrophysics Data System (ADS)
Zhang, Tiantian; Ma, Dongdong; Pan, Sujuan; Wu, Shijun; Jiang, Yufeng; Zeng, Di; Yang, Hongqin; Peng, Yiru
2016-10-01
Photo-induced electron transfer (PET) is an important and fundamental process in natural photosynthesis. To mimic such interesting PET process, a suitable donor and acceptor couple were properly chosen. Dendrimer phthalocyanines and their derivatives have emerged as promising materials for artificial photosynthesis systems. In this paper, the electron transfer between the light harvest dendrimer phthalocyanine (donor) and the 1,4-benzoquinone (acceptor) was studied by UV/Vis and fluorescence spectroscopic methods. It was found that fluorescence of phthalocyanine was quenched by benzoquinone (BQ) via excited state electron transfer, from the phthalocyanine to the BQ upon excitation at 610 nm. The Stern-Volmer constant (KSV) of electron transfer was calculated. Our study suggests that this dendritic phthalocyanine is an effective new electron donor and transmission complex and could be used as a potential artificial photosynthesis system.
Andersson, Mikael; Linke, Myriam; Chambron, Jean-Claude; Davidsson, Jan; Heitz, Valérie; Hammarström, Leif; Sauvage, Jean-Pierre
2002-04-24
A series of [2]-rotaxanes has been synthesized in which two Zn(II)-porphyrins (ZnP) electron donors were attached as stoppers on the rod. A macrocycle attached to a Au(III)-porphyrin (AuP+) acceptor was threaded on the rod. By selective excitation of either porphyrin, we could induce an electron transfer from the ZnP to the AuP+ unit that generated the same ZnP*+-AuP* charge-transfer state irrespective of which porphyrin was excited. Although the reactants were linked only by mechanical or coordination bonds, electron-transfer rate constants up to 1.2x10(10) x s(-1) were obtained over a 15-17 A edge-to-edge distance between the porphyrins. The resulting charge-transfer state had a relatively long lifetime of 10-40 ns and was formed in high yield (>80%) in most cases. By a simple variation of the link between the reactants, viz. a coordination of the phenanthroline units on the rotaxane rod and ring by either Ag+ or Cu+, we could enhance the electron-transfer rate from the ZnP to the excited 3AuP+. We interpret our data in terms of an enhanced superexchange mechanism with Ag+ and a change to a stepwise hopping mechanism with Cu+, involving the oxidized Cu(phen)22+ unit as a real intermediate. When the ZnP unit was excited instead, electron transfer from the excited 1ZnP to AuP+ was not affected, or even slowed, by Ag+ or Cu+. We discuss this asymmetry in terms of the different orbitals involved in mediating the reaction in an electron- and a hole-transfer mechanism. Our results show the possibility to tune the rates of electron transfer between noncovalently linked reactants by a convenient modification of the link. The different effect of Ag+ and Cu+ on the rate with ZnP and AuP+ excitation shows an additional possibility to control the electron-transfer reactions by selective excitation. We also found that coordination of the Cu+ introduced an energy-transfer reaction from 1ZnP to Cu(phen)2+ (k = 5.1x10(9) x s(-1)) that proceeded in competition with electron transfer to AuP+ and was followed by a quantitative energy transfer to give the 3ZnP state (k = 1.5x10(9) x s(-1)).
A molecular shift register based on electron transfer
NASA Technical Reports Server (NTRS)
Hopfield, J. J.; Onuchic, Josenelson; Beratan, David N.
1988-01-01
An electronic shift-register memory at the molecular level is described. The memory elements are based on a chain of electron-transfer molecules and the information is shifted by photoinduced electron-transfer reactions. This device integrates designed electronic molecules onto a very large scale integrated (silicon microelectronic) substrate, providing an example of a 'molecular electronic device' that could actually be made. The design requirements for such a device and possible synthetic strategies are discussed. Devices along these lines should have lower energy usage and enhanced storage density.
12 CFR 1005.6 - Liability of consumer for unauthorized transfers.
Code of Federal Regulations, 2012 CFR
2012-01-01
... transfers. 1005.6 Section 1005.6 Banks and Banking BUREAU OF CONSUMER FINANCIAL PROTECTION ELECTRONIC FUND TRANSFERS (REGULATION E) § 1005.6 Liability of consumer for unauthorized transfers. (a) Conditions for..., for an unauthorized electronic fund transfer involving the consumer's account only if the financial...
Toogood, Helen S; van Thiel, Adam; Scrutton, Nigel S; Leys, David
2005-08-26
Crystal structures of protein complexes with electron-transferring flavoprotein (ETF) have revealed a dual protein-protein interface with one region serving as anchor while the ETF FAD domain samples available space within the complex. We show that mutation of the conserved Glu-165beta in human ETF leads to drastically modulated rates of interprotein electron transfer with both medium chain acyl-CoA dehydrogenase and dimethylglycine dehydrogenase. The crystal structure of free E165betaA ETF is essentially identical to that of wild-type ETF, but the crystal structure of the E165betaA ETF.medium chain acyl-CoA dehydrogenase complex reveals clear electron density for the FAD domain in a position optimal for fast interprotein electron transfer. Based on our observations, we present a dynamic multistate model for conformational sampling that for the wild-type ETF. medium chain acyl-CoA dehydrogenase complex involves random motion between three distinct positions for the ETF FAD domain. ETF Glu-165beta plays a key role in stabilizing positions incompatible with fast interprotein electron transfer, thus ensuring high rates of complex dissociation.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-08
... Information: Electronic Transfer Account (ETA) Financial Agency Agreement AGENCY: Financial Management Service... of information described below: Title: Electronic Transfer Account (ETA) Financial Agency Agreement... public and other Federal agencies to take this opportunity to comment on a continuing information...
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Payment by electronic funds transfer is not required in the following cases: (1) Where an individual: (i... are not required to be made by electronic funds transfer, unless and until such payments become... waiver request with Treasury certifying that payment by electronic funds transfer would impose a hardship...
12 CFR 1005.7 - Initial disclosures.
Code of Federal Regulations, 2012 CFR
2012-01-01
... disclosures required by this section at the time a consumer contracts for an electronic fund transfer service or before the first electronic fund transfer is made involving the consumer's account. (b) Content of... Banks and Banking BUREAU OF CONSUMER FINANCIAL PROTECTION ELECTRONIC FUND TRANSFERS (REGULATION E...
Solvent effects on the oxidation (electron transfer) reaction of [Fe(CN) 6] 4- by [Co(NH 3) 5pz] 3+
NASA Astrophysics Data System (ADS)
Muriel, F.; Jiménez, R.; López, M.; Prado-Gotor, R.; Sánchez, F.
2004-03-01
Solvent effects on the title reaction were studied in different reaction media constituted by water and organic cosolvents (methanol, tert-butyl alcohol, ethyleneglycol and glucose) at 298.2 K. The results are considered in light of the Marcus-Hush approach for electron transfer reactions. Variations of the electron transfer rate constant are shown to be mainly due to changes in the reaction free energy. On the other hand the energies of the MMCT band, corresponding to the optical electron transfer within the ion pair [Fe(CN) 6] 4-/[Co(NH 3) 5pz] 3+, in the different reaction media, have been obtained. The activation free energies of the thermal electron transfer process have been calculated from the band ( Eop) data, and compared with those obtained from the kinetic study. Quantitative agreement is found between the two series of data. This shows the possibility of estimating activation free energies for electron transfer reactions from static (optical) measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kokhan, Oleksandr; Ponomarenko, Nina S.; Pokkuluri, P. Raj
PpcA, a tri-heme cytochrome c7 from Geobacter sulfurreducens was investigated as a model for photosensitizer-initiated electron transfer within a multi-heme "molecular wire" protein architecture. E. coli expression of PpcA was found to be tolerant of cysteine site-directed mutagenesis, demonstrated by the successful expression of natively folded proteins bearing cysteine mutations at a series of sites selected to vary characteristically with respect to the three -CXXCH- heme binding domains. A preliminary survey of 5 selected mutants found that the introduced cysteines can be readily covalently linked to a Ru(II)-(2,2'-bpy)2(4-bromomethyl-4’-methyl-2,2'-bpy) photosensitizer (where bpy = bipyridine), and that the linked constructs support bothmore » photo-oxidative and photo-reductive quenching of the photosensitizer excited-state, depending upon the initial heme redox state. For photo-oxidative electron transfer, apparent heme reduction risetimes were found to vary from 7 x 10-12 s to 5 x 10-8 s, depending upon the site of photosensitizer linking. The excited-state electron transfers are about 103-fold faster than any previously reported photosensitizer-redox protein covalently linked construct. Preliminary conformational analysis using molecular dynamics simulations shows that rates for electron transfer track both the distance and pathways for electron transfer. Two mutants with the fastest charge transfer rates, A23C and K29C, showed a significant role of specific paths for electron transfer. While K29C labeled mutant was expected to have approximately 0.8Å greater donor-acceptor distance, it showed 20-fold faster charge separation rate. Clear evidence for inter-heme electron transfer within the multi-heme protein is not detected within the lifetimes of the charge separated states. These results demonstrate an opportunity to develop multi-heme c-cytochromes for investigation of electron transfer in protein "molecular wires" and to serve as frameworks for metalloprotein designs that support multiple electron transfer redox chemistry.« less
Photoemission of Energetic Hot Electrons Produced via Up-Conversion in Doped Quantum Dots.
Dong, Yitong; Parobek, David; Rossi, Daniel; Son, Dong Hee
2016-11-09
The benefits of the hot electrons from semiconductor nanostructures in photocatalysis or photovoltaics result from their higher energy compared to that of the band-edge electrons facilitating the electron-transfer process. The production of high-energy hot electrons usually requires short-wavelength UV or intense multiphoton visible excitation. Here, we show that highly energetic hot electrons capable of above-threshold ionization are produced via exciton-to-hot-carrier up-conversion in Mn-doped quantum dots under weak band gap excitation (∼10 W/cm 2 ) achievable with the concentrated solar radiation. The energy of hot electrons is as high as ∼0.4 eV above the vacuum level, much greater than those observed in other semiconductor or plasmonic metal nanostructures, which are capable of performing energetically and kinetically more-challenging electron transfer. Furthermore, the prospect of generating solvated electron is unique for the energetic hot electrons from up-conversion, which can open a new door for long-range electron transfer beyond short-range interfacial electron transfer.
NASA Astrophysics Data System (ADS)
Gao, Chao; Zhou, Jian; Liu, Guizhen; Wang, Lin
2018-03-01
Olivine structure LiFePO4/carbon nanoparticles are synthesized successfully using a microwave plasma chemical vapor deposition (MPCVD) method. Microwave is an effective method to synthesize nanomaterials, the LiFePO4/carbon nanoparticles with high crystallinity can shorten diffusion routes for ionic transfer and electron tunneling. Meanwhile, a high quality, complete and homogenous carbon layer with appropriate thickness coating on the surface of LiFePO4 particles during in situ chemical vapor deposition process, which can ensure that electrons are able to transfer fast enough from all sides. Electrochemical impedance spectroscopy (EIS) is carried out to collect information about the kinetic behavior of lithium diffusion in LiFePO4/carbon nanoparticles during the charging and discharging processes. The chemical diffusion coefficients of lithium ions, DLi, are calculated in the range of 10-15-10-9 cm2s-1. Nanoscale LiFePO4/carbon particles show the longer regions of the faster solid-solution diffusion, and corresponding to the narrower region of the slower two-phase diffusion during the insertion/exaction of lithium ions. The CV and galvanostatic charge-discharge measurements show that the LiFePO4/carbon nanoparticles perform an excellent electrochemical performance, especially the high rate capacity and cycle life.
Liu, Yuanyue; Wang, Y. Morris; Yakobson, Boris I.; ...
2014-07-11
Many key performance characteristics of carbon-based lithium-ion battery anodes are largely determined by the strength of binding between lithium (Li) and sp 2 carbon (C), which can vary significantly with subtle changes in substrate structure, chemistry, and morphology. We use density functional theory calculations to investigate the interactions of Li with a wide variety of sp 2 C substrates, including pristine, defective, and strained graphene, planar C clusters, nanotubes, C edges, and multilayer stacks. In almost all cases, we find a universal linear relation between the Li-C binding energy and the work required to fill previously unoccupied electronic states withinmore » the substrate. This suggests that Li capacity is predominantly determined by two key factors—namely, intrinsic quantum capacitance limitations and the absolute placement of the Fermi level. This simple descriptor allows for straightforward prediction of the Li-C binding energy and related battery characteristics in candidate C materials based solely on the substrate electronic structure. It further suggests specific guidelines for designing more effective C-based anodes. Furthermore, this method should be broadly applicable to charge-transfer adsorption on planar substrates, and provides a phenomenological connection to established principles in supercapacitor and catalyst design.« less
Quantum Calculations of Electron Tunneling in Respiratory Complex III.
Hagras, Muhammad A; Hayashi, Tomoyuki; Stuchebrukhov, Alexei A
2015-11-19
The most detailed and comprehensive to date study of electron transfer reactions in the respiratory complex III of aerobic cells, also known as bc1 complex, is reported. In the framework of the tunneling current theory, electron tunneling rates and atomistic tunneling pathways between different redox centers were investigated for all electron transfer reactions comprising different stages of the proton-motive Q-cycle. The calculations reveal that complex III is a smart nanomachine, which under certain conditions undergoes conformational changes gating electron transfer, or channeling electrons to specific pathways. One-electron tunneling approximation was adopted in the tunneling calculations, which were performed using hybrid Broken-Symmetry (BS) unrestricted DFT/ZINDO levels of theory. The tunneling orbitals were determined using an exact biorthogonalization scheme that uniquely separates pairs of tunneling orbitals with small overlaps out of the remaining Franck-Condon orbitals with significant overlap. Electron transfer rates in different redox pairs show exponential distance dependence, in agreement with the reported experimental data; some reactions involve coupled proton transfer. Proper treatment of a concerted two-electron bifurcated tunneling reaction at the Q(o) site is given.
Charge transfer from TiO2 into adsorbed benzene diazonium compounds
NASA Astrophysics Data System (ADS)
Merson, A.; Dittrich, Th.; Zidon, Y.; Rappich, J.; Shapira, Yoram
2004-08-01
Electron transfer from sol-gel-prepared TiO2 into adsorbed benzene diazonium compounds has been investigated using cyclic voltammetry, x-ray photoelectron spectroscopy, contact potential difference, and surface photovoltage spectroscopy. The results show that the potential of maximum electron transfer depends strongly on the dipole moment of the benzene compound. Two reactive surface sites at which electron transfer occurs have been identified.
The burden and outcome of in utero transfers.
Musson, Rebecca E; Harrison, Catherine M
2016-05-01
To quantify the number of intrauterine transfers (IUTs) arranged by Embrace Yorkshire and Humber Infant and Children's Transport Service and, to determine the outcome of when women delivered their babies, or when they were discharged following transfer. Identification of all IUTs Embrace arranged between January 1, 2011 and February 29, 2012 with data collection to determine delivery time or date of discharge. There were 623 IUT referrals with a mean time taken to arrange a transfer of 109 minutes. The mean distance of IUT was 42.5 miles, and the main reason for IUT request was capacity of referring unit. 247 (52%) women delivered during the same admission and 156 delivered within 48 hours of transfer. Of those undelivered, 111 (48.7%) were discharged within 48 hours. Fibronectin test was used in 51 patients. The IUT service provided by Embrace is busy, with significant demands on administrative staff time. Neonatal cot capacity and gestation are the main reasons for transfer. There is potentially a cohort of women who may not have benefitted from IUT. We suggest the use of obstetric expertise will enhance the service, while ongoing work looking at neonatal unit cot capacity problems continues. ©2015 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
Sung, Jooyoung; Nowak-Król, Agnieszka; Schlosser, Felix; Fimmel, Benjamin; Kim, Woojae; Kim, Dongho; Würthner, Frank
2016-07-27
We have elucidated excimer-mediated intramolecular electron transfer in cofacially stacked PBIs tethered by two phenylene-butadiynylene loops. The electron transfer between energetically equivalent PBIs is revealed by the simultaneous observation of the PBI radical anion and cation bands in the transient absorption spectra. The fluorescence decay time of the excimer states is in good agreement with the rise time of PBI radical bands in transient absorption spectra suggesting that the electron transfer dynamics proceed via the excimer state. We can conclude that the excimer state effectuates the efficient charge transfer in the cofacially stacked PBI dimer.
12 CFR 1005.6 - Liability of consumer for unauthorized transfers.
Code of Federal Regulations, 2014 CFR
2014-01-01
... transfers. 1005.6 Section 1005.6 Banks and Banking BUREAU OF CONSUMER FINANCIAL PROTECTION ELECTRONIC FUND TRANSFERS (REGULATION E) General § 1005.6 Liability of consumer for unauthorized transfers. (a) Conditions... this section, for an unauthorized electronic fund transfer involving the consumer's account only if the...
12 CFR 1005.6 - Liability of consumer for unauthorized transfers.
Code of Federal Regulations, 2013 CFR
2013-01-01
... transfers. 1005.6 Section 1005.6 Banks and Banking BUREAU OF CONSUMER FINANCIAL PROTECTION ELECTRONIC FUND TRANSFERS (REGULATION E) General § 1005.6 Liability of consumer for unauthorized transfers. (a) Conditions... this section, for an unauthorized electronic fund transfer involving the consumer's account only if the...
Single-Molecule Interfacial Electron Transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, H. Peter
This project is focused on the use of single-molecule high spatial and temporal resolved techniques to study molecular dynamics in condensed phase and at interfaces, especially, the complex reaction dynamics associated with electron and energy transfer rate processes. The complexity and inhomogeneity of the interfacial ET dynamics often present a major challenge for a molecular level comprehension of the intrinsically complex systems, which calls for both higher spatial and temporal resolutions at ultimate single-molecule and single-particle sensitivities. Combined single-molecule spectroscopy and electrochemical atomic force microscopy approaches are unique for heterogeneous and complex interfacial electron transfer systems because the static andmore » dynamic inhomogeneities can be identified and characterized by studying one molecule at a specific nanoscale surface site at a time. The goal of our project is to integrate and apply these spectroscopic imaging and topographic scanning techniques to measure the energy flow and electron flow between molecules and substrate surfaces as a function of surface site geometry and molecular structure. We have been primarily focusing on studying interfacial electron transfer under ambient condition and electrolyte solution involving both single crystal and colloidal TiO 2 and related substrates. The resulting molecular level understanding of the fundamental interfacial electron transfer processes will be important for developing efficient light harvesting systems and broadly applicable to problems in fundamental chemistry and physics. We have made significant advancement on deciphering the underlying mechanism of the complex and inhomogeneous interfacial electron transfer dynamics in dyesensitized TiO 2 nanoparticle systems that strongly involves with and regulated by molecule-surface interactions. We have studied interfacial electron transfer on TiO 2 nanoparticle surfaces by using ultrafast single-molecule spectroscopy and electrochemical AFM metal tip scanning microscopy, focusing on understanding the interfacial electron transfer dynamics at specific nanoscale electron transfer sites with high-spatially and temporally resolved topographic-and-spectroscopic characterization at individual molecule basis, characterizing single-molecule rate processes, reaction driving force, and molecule-substrate electronic coupling. One of the most significant characteristics of our new approach is that we are able to interrogate the complex interfacial electron transfer dynamics by actively pin-point energetic manipulation of the surface interaction and electronic couplings, beyond the conventional excitation and observation.« less
What Hinders Electron Transfer Dissociation (ETD) of DNA Cations?
NASA Astrophysics Data System (ADS)
Hari, Yvonne; Leumann, Christian J.; Schürch, Stefan
2017-12-01
Radical activation methods, such as electron transfer dissociation (ETD), produce structural information complementary to collision-induced dissociation. Herein, electron transfer dissociation of 3-fold protonated DNA hexamers was studied to gain insight into the fragmentation mechanism. The fragmentation patterns of a large set of DNA hexamers confirm cytosine as the primary target of electron transfer. The reported data reveal backbone cleavage by internal electron transfer from the nucleobase to the phosphate linker leading either to a•/ w or d/ z• ion pairs. This reaction pathway contrasts with previous findings on the dissociation processes after electron capture by DNA cations, suggesting multiple, parallel dissociation channels. However, all these channels merely result in partial fragmentation of the precursor ion because the charge-reduced DNA radical cations are quite stable. Two hypotheses are put forward to explain the low dissociation yield of DNA radical cations: it is either attributed to non-covalent interactions between complementary fragments or to the stabilization of the unpaired electron in stacked nucleobases. MS3 experiments suggest that the charge-reduced species is the intact oligonucleotide. Moreover, introducing abasic sites significantly increases the dissociation yield of DNA cations. Consequently, the stabilization of the unpaired electron by π-π-stacking provides an appropriate rationale for the high intensity of DNA radical cations after electron transfer. [Figure not available: see fulltext.
75 FR 33681 - Electronic Fund Transfers
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-15
... FEDERAL RESERVE SYSTEM 12 CFR Part 205 [Regulation E; Docket No. R-1343] Electronic Fund Transfers June 4, 2010. AGENCY: Board of Governors of the Federal Reserve System. ACTION: Final rule; correction..., published on June 4, 2010 (75 FR 31665) make the following correction: PART 205--ELECTRONIC FUND TRANSFERS...
NASA Astrophysics Data System (ADS)
Tan, ShuangYuan; Wang, Lei; Bian, Liang; Xu, JinBao; Ren, Wei; Hu, PengFei; Chang, AiMin
2015-03-01
Although lithium ion battery is known to be an excellent renewable energy provider in electronic markets further application of it has been limited by its notoriously poor performance at low temperature, especially below -20 °C. In this paper, the electrochemical performance of the LiNi1/3Co1/3Mn1/3O2 cathode materials coated by lithium boron oxide (LBO) glass was investigated at a temperature range from 20 to -40 °C. The results show that the LBO coating not only helps to improve the discharge capacity of LiNi1/3Co1/3Mn1/3O2 at room temperature but also increase the discharge capacity retention of the LiNi1/3Co1/3Mn1/3O2 from 22.5% to 57.8% at -40 °C. Electrochemical impedance spectra results reveal that the LBO coating plays an important role in reducing the charge-transfer resistance on the electrolyte-electrode interfaces and improving lithium ion diffusion coefficients. The mechanism associated with the change of the structure and electrical properties are discussed in detail.
Mg-doped Li2FeSiO4/C as high-performance cathode material for lithium-ion battery
NASA Astrophysics Data System (ADS)
Qu, Long; Luo, Dong; Fang, Shaohua; Liu, Yi; Yang, Li; Hirano, Shin-ichi; Yang, Chun-Chen
2016-03-01
Mg-doped Li2FeSiO4/C is synthesized by using Fe2O3 nanoparticle as iron source. Through Rietveld refinement of X-ray diffraction data, it is confirmed that Mg-doped Li2FeSiO4 owns monoclinic P21/n structure and Mg occupies in Fe site in the lattice. Through energy dispersive X-ray measurement, it is detected that Mg element is distributed homogenously in the resulting product. The results of transmission electron microscopy measurement reveal that the effect of Mg-doping on Li2FeSiO4 crystallite size is not obvious. As a cathode material for lithium-ion battery, this Mg-doped Li2FeSiO4/C delivers high discharge capacity of 190 mAh g-1 (the capacity was with respect to the mass of Li2FeSiO4) at 0.1C and its capacity retention of 100 charge-discharge cycles reaches 96% at 0.1C. By the analysis of electrochemical impedance spectroscopy, it is concluded that Mg-doping can help to decrease the charge-transfer resistance and increase the Li+ diffusion capability.
Martínez-González, Eduardo; Frontana, Carlos
2014-05-07
In this work, experimental evidence of the influence of the electron transfer kinetics during electron transfer controlled hydrogen bonding between anion radicals of metronidazole and ornidazole, derivatives of 5-nitro-imidazole, and 1,3-diethylurea as the hydrogen bond donor, is presented. Analysis of the variations of voltammetric EpIcvs. log KB[DH], where KB is the binding constant, allowed us to determine the values of the binding constant and also the electron transfer rate k, confirmed by experiments obtained at different scan rates. Electronic structure calculations at the BHandHLYP/6-311++G(2d,2p) level for metronidazole, including the solvent effect by the Cramer/Truhlar model, suggested that the minimum energy conformer is stabilized by intramolecular hydrogen bonding. In this structure, the inner reorganization energy, λi,j, contributes significantly (0.5 eV) to the total reorganization energy of electron transfer, thus leading to a diminishment of the experimental k.
Diller, David J
2017-01-10
Here we present a new method for point charge calculation which we call Q ET (charges by electron transfer). The intent of this work is to develop a method that can be useful for studying charge transfer in large biological systems. It is based on the intuitive framework of the Q EQ method with the key difference being that the Q ET method tracks all pairwise electron transfers by augmenting the Q EQ pseudoenergy function with a distance dependent cost function for each electron transfer. This approach solves the key limitation of the Q EQ method which is its handling of formally charged groups. First, we parametrize the Q ET method by fitting to electrostatic potentials calculated using ab initio quantum mechanics on over 11,000 small molecules. On an external test set of over 2500 small molecules the Q ET method achieves a mean absolute error of 1.37 kcal/mol/electron when compared to the ab initio electrostatic potentials. Second, we examine the conformational dependence of the charges on over 2700 tripeptides. With the tripeptide data set, we show that the conformational effects account for approximately 0.4 kcal/mol/electron on the electrostatic potentials. Third, we test the Q ET method for its ability to reproduce the effects of polarization and electron transfer on 1000 water clusters. For the water clusters, we show that the Q ET method captures about 50% of the polarization and electron transfer effects. Finally, we examine the effects of electron transfer and polarizability on the electrostatic interaction between p38 and 94 small molecule ligands. When used in conjunction with the Generalized-Born continuum solvent model, polarization and electron transfer with the Q ET model lead to an average change of 17 kcal/mol on the calculated electrostatic component of ΔG.
Tomiki, Takeshi; Saitou, Naruya
2004-08-01
The four electron transfer energy metabolism systems, photosynthesis, aerobic respiration, denitrification, and sulfur respiration, are thought to be evolutionarily related because of the similarity of electron transfer patterns and the existence of some homologous proteins. How these systems have evolved is elusive. We therefore conducted a comprehensive homology search using PSI-BLAST, and phylogenetic analyses were conducted for the three homologous groups (groups 1-3) based on multiple alignments of domains defined in the Pfam database. There are five electron transfer types important for catalytic reaction in group 1, and many proteins bind molybdenum. Deletions of two domains led to loss of the function of binding molybdenum and ferredoxin, and these deletions seem to be critical for the electron transfer pattern changes in group 1. Two types of electron transfer were found in group 2, and all its member proteins bind siroheme and ferredoxin. Insertion of the pyridine nucleotide disulfide oxidoreductase domain seemed to be the critical point for the electron transfer pattern change in this group. The proteins belonging to group 3 are all flavin enzymes, and they bind flavin adenine dinucleotide (FAD) or flavin mononucleotide (FMN). Types of electron transfer in this group are divergent, but there are two common characteristics. NAD(P)H works as an electron donor or acceptor, and FAD or FMN transfers electrons from/to NAD(P)H. Electron transfer functions might be added to these common characteristics by the addition of functional domains through the evolution of group 3 proteins. Based on the phylogenetic analyses in this study and previous studies, we inferred the phylogeny of the energy metabolism systems as follows: photosynthesis (and possibly aerobic respiration) and the sulfur/nitrogen assimilation system first diverged, then the sulfur/nitrogen dissimilation system was produced from the latter system.
Predicting the Rate Constant of Electron Tunneling Reactions at the CdSe-TiO2 Interface.
Hines, Douglas A; Forrest, Ryan P; Corcelli, Steven A; Kamat, Prashant V
2015-06-18
Current interest in quantum dot solar cells (QDSCs) motivates an understanding of the electron transfer dynamics at the quantum dot (QD)-metal oxide (MO) interface. Employing transient absorption spectroscopy, we have monitored the electron transfer rate (ket) at this interface as a function of the bridge molecules that link QDs to TiO2. Using mercaptoacetic acid, 3-mercaptopropionic acid, 8-mercaptooctanoic acid, and 16-mercaptohexadecanoic acid, we observe an exponential attenuation of ket with increasing linker length, and attribute this to the tunneling of the electron through the insulating linker molecule. We model the electron transfer reaction using both rectangular and trapezoidal barrier models that have been discussed in the literature. The one-electron reduction potential (equivalent to the lowest unoccupied molecular orbital) of each molecule as determined by cyclic voltammetry (CV) was used to estimate the effective barrier height presented by each ligand at the CdSe-TiO2 interface. The electron transfer rate (ket) calculated for each CdSe-ligand-TiO2 interface using both models showed the results in agreement with the experimentally determined trend. This demonstrates that electron transfer between CdSe and TiO2 can be viewed as electron tunneling through a layer of linking molecules and provides a useful method for predicting electron transfer rate constants.
Sirjoosingh, Andrew; Hammes-Schiffer, Sharon
2011-03-24
The distinction between proton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) mechanisms is important for the characterization of many chemical and biological processes. PCET and HAT mechanisms can be differentiated in terms of electronically nonadiabatic and adiabatic proton transfer, respectively. In this paper, quantitative diagnostics to evaluate the degree of electron-proton nonadiabaticity are presented. Moreover, the connection between the degree of electron-proton nonadiabaticity and the physical characteristics distinguishing PCET from HAT, namely, the extent of electronic charge redistribution, is clarified. In addition, a rigorous diabatization scheme for transforming the adiabatic electronic states into charge-localized diabatic states for PCET reactions is presented. These diabatic states are constructed to ensure that the first-order nonadiabatic couplings with respect to the one-dimensional transferring hydrogen coordinate vanish exactly. Application of these approaches to the phenoxyl-phenol and benzyl-toluene systems characterizes the former as PCET and the latter as HAT. The diabatic states generated for the phenoxyl-phenol system possess physically meaningful, localized electronic charge distributions that are relatively invariant along the hydrogen coordinate. These diabatic electronic states can be combined with the associated proton vibrational states to generate the reactant and product electron-proton vibronic states that form the basis of nonadiabatic PCET theories. Furthermore, these vibronic states and the corresponding vibronic couplings may be used to calculate rate constants and kinetic isotope effects of PCET reactions.
Liu, Qian; Zhang, Jianhua; He, Shu-Ang; Zou, Rujia; Xu, Chaoting; Cui, Zhe; Huang, Xiaojuan; Guan, Guoqiang; Zhang, Wenlong; Xu, Kaibing; Hu, Junqing
2018-04-17
Lithium-sulfur (Li-S) batteries are investigated intensively as a promising large-scale energy storage system owing to their high theoretical energy density. However, the application of Li-S batteries is prevented by a series of primary problems, including low electronic conductivity, volumetric fluctuation, poor loading of sulfur, and shuttle effect caused by soluble lithium polysulfides. Here, a novel composite structure of sulfur nanoparticles attached to porous-carbon nanotube (p-CNT) encapsulated by hollow MnO 2 nanoflakes film to form p-CNT@Void@MnO 2 /S composite structures is reported. Benefiting from p-CNTs and sponge-like MnO 2 nanoflake film, p-CNT@Void@MnO 2 /S provides highly efficient pathways for the fast electron/ion transfer, fixes sulfur and Li 2 S aggregation efficiently, and prevents polysulfide dissolution during cycling. Besides, the additional void inside p-CNT@Void@MnO 2 /S composite structure provides sufficient free space for the expansion of encapsulated sulfur nanoparticles. The special material composition and structural design of p-CNT@Void@MnO 2 /S composite structure with a high sulfur content endow the composite high capacity, high Coulombic efficiency, and an excellent cycling stability. The capacity of p-CNT@Void@MnO 2 /S electrode is ≈599.1 mA h g -1 for the fourth cycle and ≈526.1 mA h g -1 after 100 cycles, corresponding to a capacity retention of ≈87.8% at a high current density of 1.0 C. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Choi, Jeong-Hee; Ha, Chung-Wan; Choi, Hae-Young; Shin, Heon-Cheol; Lee, Sang-Min
2017-11-01
The electrochemical comparison between Sb2S3 and its composite with carbon (Sb2S3/C) involved by sodium ion carrier are explained by enhanced kinetics, particularly with respect to improved interfacial conductivity by surface modulation by carbon. Sb2S3 and Sb2S3/C are synthesized by a high energy mechanical milling process. The successful synthesis of these materials is confirmed with X-ray diffraction (XRD), scanning electron microscopy, and transmission electron microscopy (TEM). As an anode material for sodium ion batteries, Sb2S3 exhibits an initial sodiation/desodiation capacity of 1,021/523 mAh g-1 whereas the Sb2S3/C composite exhibits a higher reversible capacity (642 mAh g-1). Furthermore, the cycle performance and rate capability of the Sb2S3/C composite are estimated to be much better than those of Sb and Sb2S3. Electrochemical impedance spectroscopy analysis shows that the Sb2S3/C composite exhibited charge transfer resistance and surface film resistance much lower than Sb2S3. X-ray photoelectron spectroscopy analyses of both electrodes demonstrate that NaF layer on Sb2S3/C composite electrode leads to the better electrochemical performances. In order to clarify the electrochemical reaction mechanism, ex-situ XRD based on differential capacity plots and ex-situ HR-TEM analyses of the Sb2S3/C composite electrode are carried out and its reaction mechanism was established.
49 CFR 225.37 - Optical media transfer and electronic submission.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Optical media transfer and electronic submission..., AND INVESTIGATIONS § 225.37 Optical media transfer and electronic submission. (a) A railroad has the option of submitting the following reports, updates, and amendments by way of optical media (CD-ROM), or...
49 CFR 225.37 - Optical media transfer and electronic submission.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Optical media transfer and electronic submission..., AND INVESTIGATIONS § 225.37 Optical media transfer and electronic submission. (a) A railroad has the option of submitting the following reports, updates, and amendments by way of optical media (CD-ROM), or...
49 CFR 225.37 - Optical media transfer and electronic submission.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Optical media transfer and electronic submission..., AND INVESTIGATIONS § 225.37 Optical media transfer and electronic submission. (a) A railroad has the option of submitting the following reports, updates, and amendments by way of optical media (CD-ROM), or...
49 CFR 225.37 - Optical media transfer and electronic submission.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Optical media transfer and electronic submission..., AND INVESTIGATIONS § 225.37 Optical media transfer and electronic submission. (a) A railroad has the option of submitting the following reports, updates, and amendments by way of optical media (CD-ROM), or...
76 FR 708 - Electronic Funds Transfer of Depository Taxes; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-06
... DEPARTMENT OF THE TREASURY Internal Revenue Service 26 CFR Parts 1, 31, 40, and 301 [TD 9507] RIN 1545-BJ13 Electronic Funds Transfer of Depository Taxes; Correction AGENCY: Internal Revenue Service... Electronic Funds Transfer (EFT). The temporary and final regulations provide rules under which depositors...
76 FR 709 - Electronic Funds Transfer of Depository Taxes; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-06
... DEPARTMENT OF THE TREASURY Internal Revenue Service 26 CFR Parts 40 and 301 [TD 9507] RIN 1545-BJ13 Electronic Funds Transfer of Depository Taxes; Correction AGENCY: Internal Revenue Service (IRS...) providing guidance relating to Federal tax deposits (FTDs) by Electronic Funds Transfer (EFT). The temporary...
78 FR 49365 - Electronic Fund Transfers (Regulation E); Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-14
... BUREAU OF CONSUMER FINANCIAL PROTECTION 12 CFR Part 1005 [Docket No. CFPB-2012-0050] RIN 3170-AA33 Electronic Fund Transfers (Regulation E); Correction AGENCY: Bureau of Consumer Financial Protection. ACTION... 2013 Final Rule, which along with three other final rules \\1\\ implements the Electronic Fund Transfer...
75 FR 52485 - Electronic Funds Transfer of Depository Taxes; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-26
... DEPARTMENT OF THE TREASURY Internal Revenue Service 26 CFR Parts 1, 31, 40, and 301 [REG-153340-09] RIN 1545-BJ13 Electronic Funds Transfer of Depository Taxes; Correction AGENCY: Internal Revenue... to Federal tax deposits (FTDs) by Electronic Funds Transfer (EFT). FOR FURTHER INFORMATION CONTACT...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-31
...; Submission for OMB Review; Payment by Electronic Fund Transfer AGENCY: Department of Defense (DOD), General... collection requirement concerning payment by electronic fund transfer. A notice was published in the Federal... technological collection techniques or other forms of information technology. DATES: Submit comments on or...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Fluorinated Heat Transfer Fluids Used by the Electronics Industry I Table I-2 to Subpart I Protection of... REPORTING Electronics Manufacturing Pt. 98, Subpt. I, Table I-2 Table I-2 to Subpart I—Examples of Fluorinated GHGs and Fluorinated Heat Transfer Fluids Used by the Electronics Industry Product type...
NASA Astrophysics Data System (ADS)
Sugawara, Hirotake; Yamamoto, Tappei
2016-09-01
In order to quantitatively evaluate the electron confinement effect of the confronting divergent magnetic fields (CDMFs) applied to an inductively coupled plasma, we analyzed the electron transfer between two regions divided by the separatrix of the CDMFs in Ar at 0.67 Pa at 300 K using a Monte Carlo method. A conventional transfer judgement was simply based on the electron passage across the separatrix from the upstream source region to the downstream diffusion region. An issue was an overestimation of the transfer due to temporary stay of electrons in the downstream region. Electrons may pass the downstream region during their gyration even in case they are effectively bound to the upstream region, where their guiding magnetic flux lines run. More than half of the transfers were temporary ones and such seeming transfers were relevantly excluded from the statistics by introducing a newly chosen criterion based on the passage of electron gyrocenters across the separatrix and collisional events in the downstream region. Simulation results showed a tendency that the ratio of the temporary transfers excluded was higher under stronger magnetic fields because of higher cyclotron frequency. Work supported by JSPS Kakenhi Grant Number 16K05626.
The role of defects in Fe(II) – goethite electron transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrade de Notini, Luiza; Latta, Drew; Neumann, Anke
Despite accumulating experimental evidence for Fe(II)-Fe(III) oxide electron transfer, computational chemical calculations suggest that oxidation of sorbed Fe(II) is not energetically feasible unless defects are present. Here we used isotope specific 57Fe Mössbauer spectroscopy to investigate whether Fe(II)-goethite electron transfer is influenced by defects. Specifically, we heated the mineral to try to anneal the goethite surface and ground goethite to try to create defects. We found that heating goethite results in less oxidation of sorbed Fe(II) by goethite. When goethite was re-ground after heating, electron transfer was partially restored. X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) ofmore » heated and ground goethite confirm that heating and grinding alter the surface structure of the goethite. We propose that the heating process annealed the surface and decreased the number of sites where electron transfer could occur. Our experimental findings suggest that surface defects play an important role in Fe(II)-goethite electron transfer as suggested by computational calculations. Our finding that defects influence heterogeneous Fe(II)-goethite electron transfer has important implications for Fe(II) driven recrystallization of Fe oxides, as well as X and Y.« less
Höferl, Martina; Stoilova, Ivanka; Schmidt, Erich; Wanner, Jürgen; Jirovetz, Leopold; Trifonova, Dora; Krastev, Lutsian; Krastanov, Albert
2014-01-01
The essential oil of juniper berries (Juniperus communis L., Cupressaceae) is traditionally used for medicinal and flavoring purposes. As elucidated by gas chromatography/flame ionization detector (GC/FID) and gas chromatography/mass spectrometry (GC/MS methods), the juniper berry oil from Bulgaria is largely comprised of monoterpene hydrocarbons such as α-pinene (51.4%), myrcene (8.3%), sabinene (5.8%), limonene (5.1%) and β-pinene (5.0%). The antioxidant capacity of the essential oil was evaluated in vitro by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging, 2,2-azino-bis-3-ethylbenzothiazoline-6 sulfonic acid (ABTS) radical cation scavenging, hydroxyl radical (ОН•) scavenging and chelating capacity, superoxide radical (•O2−) scavenging and xanthine oxidase inhibitory effects, hydrogen peroxide scavenging. The antioxidant activity of the oil attributable to electron transfer made juniper berry essential oil a strong antioxidant, whereas the antioxidant activity attributable to hydrogen atom transfer was lower. Lipid peroxidation inhibition by the essential oil in both stages, i.e., hydroperoxide formation and malondialdehyde formation, was less efficient than the inhibition by butylated hydroxytoluene (BHT). In vivo studies confirmed these effects of the oil which created the possibility of blocking the oxidation processes in yeast cells by increasing activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). PMID:26784665
Höferl, Martina; Stoilova, Ivanka; Schmidt, Erich; Wanner, Jürgen; Jirovetz, Leopold; Trifonova, Dora; Krastev, Lutsian; Krastanov, Albert
2014-02-24
The essential oil of juniper berries (Juniperus communis L., Cupressaceae) is traditionally used for medicinal and flavoring purposes. As elucidated by gas chromatography/flame ionization detector (GC/FID) and gas chromatography/mass spectrometry (GC/MS methods), the juniper berry oil from Bulgaria is largely comprised of monoterpene hydrocarbons such as α-pinene (51.4%), myrcene (8.3%), sabinene (5.8%), limonene (5.1%) and β-pinene (5.0%). The antioxidant capacity of the essential oil was evaluated in vitro by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging, 2,2-azino-bis-3-ethylbenzothiazoline-6 sulfonic acid (ABTS) radical cation scavenging, hydroxyl radical (ОН(•)) scavenging and chelating capacity, superoxide radical ((•)O₂(-)) scavenging and xanthine oxidase inhibitory effects, hydrogen peroxide scavenging. The antioxidant activity of the oil attributable to electron transfer made juniper berry essential oil a strong antioxidant, whereas the antioxidant activity attributable to hydrogen atom transfer was lower. Lipid peroxidation inhibition by the essential oil in both stages, i.e., hydroperoxide formation and malondialdehyde formation, was less efficient than the inhibition by butylated hydroxytoluene (BHT). In vivo studies confirmed these effects of the oil which created the possibility of blocking the oxidation processes in yeast cells by increasing activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx).
Removal of 2-ClBP from soil-water system using activated carbon supported nanoscale zerovalent iron.
Zhang, Wei; Yu, Tian; Han, Xiaolin; Ying, Weichi
2016-09-01
We explored the feasibility and removal mechanism of removing 2-chlorobiphenyl (2-ClBP) from soil-water system using granular activated carbon (GAC) impregnated with nanoscale zerovalent iron (reactive activated carbon or RAC). The RAC samples were successfully synthesized by the liquid precipitation method. The mesoporous GAC based RAC with low iron content (1.32%) exhibited higher 2-ClBP removal efficiency (54.6%) in the water phase. The result of Langmuir-Hinshelwood kinetic model implied that the different molecular structures between 2-ClBP and trichloroethylene (TCE) resulted in more difference in dechlorination reaction rates on RAC than adsorption capacities. Compared to removing 2-ClBP in the water phase, RAC removed the 2-ClBP more slowly in the soil phase due to the significant external mass transfer resistance. However, in the soil phase, a better removal capacity of RAC was observed than its base GAC because the chemical dechlorination played a more important role in total removal process for 2-ClBP. This important result verified the effectiveness of RAC for removing 2-ClBP in the soil phase. Although reducing the total RAC removal rate of 2-ClBP, soil organic matter (SOM), especially the soft carbon, also served as an electron transfer medium to promote the dechlorination of 2-ClBP in the long term. Copyright © 2016. Published by Elsevier B.V.
Chen, Renjie; Zhao, Teng; Wu, Weiping; Wu, Feng; Li, Li; Qian, Ji; Xu, Rui; Wu, Huiming; Albishri, Hassan M; Al-Bogami, A S; El-Hady, Deia Abd; Lu, Jun; Amine, Khalil
2014-10-08
Transition metal dichalcogenides (TMD), analogue of graphene, could form various dimensionalities. Similar to carbon, one-dimensional (1D) nanotube of TMD materials has wide application in hydrogen storage, Li-ion batteries, and supercapacitors due to their unique structure and properties. Here we demonstrate the feasibility of tungsten disulfide nanotubes (WS2-NTs)/graphene (GS) sandwich-type architecture as anode for lithium-ion batteries for the first time. The graphene-based hierarchical architecture plays vital roles in achieving fast electron/ion transfer, thus leading to good electrochemical performance. When evaluated as anode, WS2-NTs/GS hybrid could maintain a capacity of 318.6 mA/g over 500 cycles at a current density of 1A/g. Besides, the hybrid anode does not require any additional polymetric binder, conductive additives, or a separate metal current-collector. The relatively high density of this hybrid is beneficial for high capacity per unit volume. Those characteristics make it a potential anode material for light and high-performance lithium-ion batteries.
Effect of group electronegativity on electron transfer in bis(hydrazine) radical cations.
Qin, Haimei; Zhong, Xinxin; Si, Yubing; Zhang, Weiwei; Zhao, Yi
2011-04-14
The radical cation of 4,10-ditert-butyl-5,9-diisopropyl-4,5,9,10-tetraazatetracyclo[6.2.2.2]-tetradecane (sBI4T(+)), as well as its substituted bis(hydrazine) radical cations, is chosen for the investigation of the electronegativity dependence of its intramolecular electron transfer. To do so, two parameters, reorganization energy and electronic coupling, are calculated with several ab initio approaches. It is found that the electronic couplings decrease with the increase of the group electronegativity while the reorganization energies do not show an explicit dependency. Furthermore, Marcus formula is employed to reveal those effect on the electron transfer rates. The predicted rates of electron transfer generally decrease with increasing group electronegativity, although not monotonically.
Guo, Xunmin; Liu, Zheyun; Song, Qinhua; Wang, Lijuan; Zhong, Dongping
2015-02-26
Many biomimetic chemical systems for repair of UV-damaged DNA showed very low repair efficiency, and the molecular origin is still unknown. Here, we report our systematic characterization of the repair dynamics of a model compound of indole-thymine dimer adduct in three solvents with different polarity. By resolving all elementary steps including three electron-transfer processes and two bond-breaking and bond-formation dynamics with femtosecond resolution, we observed the slow electron injection in 580 ps in water, 4 ns in acetonitrile, and 1.38 ns in dioxane, the fast back electron transfer without repair in 120, 150, and 180 ps, and the slow bond splitting in 550 ps, 1.9 ns, and 4.5 ns, respectively. The dimer bond cleavage is clearly accelerated by the solvent polarity. By comparing with the biological repair machine photolyase with a slow back electron transfer (2.4 ns) and a fast bond cleavage (90 ps), the low repair efficiency in the biomimetic system is mainly determined by the fast back electron transfer and slow bond breakage. We also found that the model system exists in a dynamic heterogeneous C-clamped conformation, leading to a stretched dynamic behavior. In water, we even identified another stacked form with ultrafast cyclic electron transfer, significantly reducing the repair efficiency. Thus, the comparison of the repair efficiency in different solvents is complicated and should be cautious, and only the dynamics by resolving all elementary steps can finally determine the total repair efficiency. Finally, we use the Marcus electron-transfer theory to analyze all electron-transfer reactions and rationalize all observed electron-transfer dynamics.
Wang, Qingrong; Wang, Xinyu; Wan, Fang; Chen, Kena; Niu, Zhiqiang; Chen, Jun
2018-06-01
The emergence of flexible and wearable electronics has raised the demand for flexible supercapacitors with accurate sizes and aesthetic shapes. Here, a strategy is developed to prepare flexible all-in-one integrated supercapacitors by combining all-freeze-casting with typography technique. The continuous seamless connection of all-in-one supercapacitor devices enhances the load and/or electron transfer capacity and avoids displacing and detaching between their neighboring components at bending status. Therefore, such a unique structure of all-in-one integrated devices is beneficial for retaining stable electrochemical performance at different bending levels. More importantly, the sizes and aesthetic shapes of integrated supercapacitors could be controlled by the designed molds, like type matrices of typography. The molds could be assembled together and typeset randomly, achieving the controllable construction and series and/or parallel connection of several supercapacitor devices. The preparation of flexible integrated supercapacitors will pave the way for assembling programmable all-in-one energy storage devices into highly flexible electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electron shuttles in biotechnology.
Watanabe, Kazuya; Manefield, Mike; Lee, Matthew; Kouzuma, Atsushi
2009-12-01
Electron-shuttling compounds (electron shuttles [ESs], or redox mediators) are essential components in intracellular electron transfer, while microbes also utilize self-produced and naturally present ESs for extracellular electron transfer. These compounds assist in microbial energy metabolism by facilitating electron transfer between microbes, from electron-donating substances to microbes, and/or from microbes to electron-accepting substances. Artificially supplemented ESs can create new routes of electron flow in the microbial energy metabolism, thereby opening up new possibilities for the application of microbes to biotechnology processes. Typical examples of such processes include halogenated-organics bioremediation, azo-dye decolorization, and microbial fuel cells. Herein we suggest that ESs can be applied widely to create new microbial biotechnology processes.
Isegawa, Miho; Gao, Jiali; Truhlar, Donald G
2011-08-28
Molecular fragmentation algorithms provide a powerful approach to extending electronic structure methods to very large systems. Here we present a method for including charge transfer between molecular fragments in the explicit polarization (X-Pol) fragment method for calculating potential energy surfaces. In the conventional X-Pol method, the total charge of each fragment is preserved, and charge transfer between fragments is not allowed. The description of charge transfer is made possible by treating each fragment as an open system with respect to the number of electrons. To achieve this, we applied Mermin's finite temperature method to the X-Pol wave function. In the application of this method to X-Pol, the fragments are open systems that partially equilibrate their number of electrons through a quasithermodynamics electron reservoir. The number of electrons in a given fragment can take a fractional value, and the electrons of each fragment obey the Fermi-Dirac distribution. The equilibrium state for the electrons is determined by electronegativity equalization with conservation of the total number of electrons. The amount of charge transfer is controlled by re-interpreting the temperature parameter in the Fermi-Dirac distribution function as a coupling strength parameter. We determined this coupling parameter so as to reproduce the charge transfer energy obtained by block localized energy decomposition analysis. We apply the new method to ten systems, and we show that it can yield reasonable approximations to potential energy profiles, to charge transfer stabilization energies, and to the direction and amount of charge transferred. © 2011 American Institute of Physics
Isegawa, Miho; Gao, Jiali; Truhlar, Donald G.
2011-01-01
Molecular fragmentation algorithms provide a powerful approach to extending electronic structure methods to very large systems. Here we present a method for including charge transfer between molecular fragments in the explicit polarization (X-Pol) fragment method for calculating potential energy surfaces. In the conventional X-Pol method, the total charge of each fragment is preserved, and charge transfer between fragments is not allowed. The description of charge transfer is made possible by treating each fragment as an open system with respect to the number of electrons. To achieve this, we applied Mermin's finite temperature method to the X-Pol wave function. In the application of this method to X-Pol, the fragments are open systems that partially equilibrate their number of electrons through a quasithermodynamics electron reservoir. The number of electrons in a given fragment can take a fractional value, and the electrons of each fragment obey the Fermi–Dirac distribution. The equilibrium state for the electrons is determined by electronegativity equalization with conservation of the total number of electrons. The amount of charge transfer is controlled by re-interpreting the temperature parameter in the Fermi–Dirac distribution function as a coupling strength parameter. We determined this coupling parameter so as to reproduce the charge transfer energy obtained by block localized energy decomposition analysis. We apply the new method to ten systems, and we show that it can yield reasonable approximations to potential energy profiles, to charge transfer stabilization energies, and to the direction and amount of charge transferred. PMID:21895159
Hoggard, Anneli; Wang, Lin-Yung; Ma, Lulu; Fang, Ying; You, Ge; Olson, Jana; Liu, Zheng; Chang, Wei-Shun; Ajayan, Pulickel M; Link, Stephan
2013-12-23
We present a quantitative analysis of the electron transfer between single gold nanorods and monolayer graphene under no electrical bias. Using single-particle dark-field scattering and photoluminescence spectroscopy to access the homogeneous linewidth, we observe broadening of the surface plasmon resonance for gold nanorods on graphene compared to nanorods on a quartz substrate. Because of the absence of spectral plasmon shifts, dielectric interactions between the gold nanorods and graphene are not important and we instead assign the plasmon damping to charge transfer between plasmon-generated hot electrons and the graphene that acts as an efficient acceptor. Analysis of the plasmon linewidth yields an average electron transfer time of 160 ± 30 fs, which is otherwise difficult to measure directly in the time domain with single-particle sensitivity. In comparison to intrinsic hot electron decay and radiative relaxation, we furthermore calculate from the plasmon linewidth that charge transfer between the gold nanorods and the graphene support occurs with an efficiency of ∼10%. Our results are important for future applications of light harvesting with metal nanoparticle plasmons and efficient hot electron acceptors as well as for understanding hot electron transfer in plasmon-assisted chemical reactions.
Ito, Akitaka; Stewart, David J.; Fang, Zhen; Brennaman, M. Kyle; Meyer, Thomas J.
2012-01-01
Distance-dependent energy transfer occurs from the Metal-to-Ligand Charge Transfer (MLCT) excited state to an anthracene-acrylate derivative (Acr-An) incorporated into the polymer network of a semirigid poly(ethyleneglycol)dimethacrylate monolith. Following excitation, to Acr-An triplet energy transfer occurs followed by long-range, Acr-3An—Acr-An → Acr-An—Acr-3An, energy migration. With methyl viologen dication (MV2+) added as a trap, Acr-3An + MV2+ → Acr-An+ + MV+ electron transfer results in sensitized electron transfer quenching over a distance of approximately 90 Å. PMID:22949698
Chen, Yingwen; Zhao, Jinlong; Li, Kai; Xie, Shitao
In this paper, a fast mass transfer anaerobic inner loop fluidized bed biofilm reactor (ILFBBR) was developed to improve purified terephthalic acid (PTA) wastewater treatment. The emphasis of this study was on the start-up mode of the anaerobic ILFBBR, the hydraulic loadings and the operation stability. The biological morphology of the anaerobic biofilm in the reactors was also analyzed. The anaerobic column could operate successfully for 46 days due to the pre-aerating process. The anaerobic column had the capacity to resist shock loadings and maintained a high stable chemical oxygen demand (COD) and terephthalic acid removal rates at a hydraulic retention time of 5-10 h, even under conditions of organic volumetric loadings as high as 28.8 kg COD·m(-3).d(-1). The scanning electron microscope analysis of the anaerobic carrier demonstrated that clusters of prokaryotes grew inside of pores and that the filaments generated by pre-aeration contributed to the anaerobic biofilm formation and stability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Fluorinated Heat Transfer Fluids Used by the Electronics Industry I Table I-2 to Subpart I of Part 98... GREENHOUSE GAS REPORTING Electronics Manufacturing Pt. 98, Subpt. I, Table I-2 Table I-2 to Subpart I of Part 98—Examples of Fluorinated GHGs and Fluorinated Heat Transfer Fluids Used by the Electronics Industry...
48 CFR 252.232-7011 - Payments in Support of Emergencies and Contingency Operations.
Code of Federal Regulations, 2011 CFR
2011-10-01
.... Internal Revenue Code. (ix) Electronic funds transfer banking information. (A) The Contractor shall include electronic funds transfer banking information on the invoice only if required elsewhere in this contract. (B) If electronic funds transfer banking information is not required to be on the invoice, in order for...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-24
... 40 Cigars and cigarettes, Claims, Electronic fund transfers, Excise taxes, Labeling, Packaging and... that are not required to pay taxes through electronic funds transfer (EFT), this first payment period..., Electronic funds transfers, Excise taxes, Exports, Food additives, Fruit juices, Labeling, Liquors, Packaging...
Wang, Qi; Puntambekar, Ajinkya; Chakrapani, Vidhya
2017-09-14
Species from ambient atmosphere such as water and oxygen are known to affect electronic and optical properties of GaN, but the underlying mechanism is not clearly known. In this work, we show through careful measurement of electrical resistivity and photoluminescence intensity under various adsorbates that the presence of oxygen or water vapor alone is not sufficient to induce electron transfer to these species. Rather, the presence of both water and oxygen is necessary to induce electron transfer from GaN that leads to the formation of an electron depletion region on the surface. Exposure to acidic gases decreases n-type conductivity due to increased electron transfer from GaN, while basic gases increase n-type conductivity and PL intensity due to reduced charge transfer from GaN. These changes in the electrical and optical properties, as explained using a new electrochemical framework based on the phenomenon of surface transfer doping, suggest that gases interact with the semiconductor surface through electrochemical reactions occurring in an adsorbed water layer present on the surface.
The interaction of trimethylamine dehydrogenase and electron-transferring flavoprotein.
Shi, Weiwei; Mersfelder, John; Hille, Russ
2005-05-27
The interaction between the physiological electron transfer partners trimethylamine dehydrogenase (TMADH) and electron-transferring flavoprotein (ETF) from Methylophilus methylotrophus has been examined with particular regard to the proposal that the former protein "imprints" a conformational change on the latter. The results indicate that the absorbance change previously attributed to changes in the environment of the FAD of ETF upon binding to TMADH is instead caused by electron transfer from partially reduced, as-isolated TMADH to ETF. Prior treatment of the as-isolated enzyme with the oxidant ferricenium essentially abolishes the observed spectral change. Further, when the semiquinone form of ETF is used instead of the oxidized form, the mirror image of the spectral change seen with as-isolated TMADH and oxidized ETF is observed. This is attributable to a small amount of electron transfer in the reverse of the physiological direction. Kinetic determination of the dissociation constant and limiting rate constant for electron transfer within the complex of (reduced) TMADH with (oxidized) ETF is reconfirmed and discussed in the context of a recently proposed model for the interaction between the two proteins that involves "structural imprinting" of ETF.
Protein electron transfer: Dynamics and statistics
NASA Astrophysics Data System (ADS)
Matyushov, Dmitry V.
2013-07-01
Electron transfer between redox proteins participating in energy chains of biology is required to proceed with high energetic efficiency, minimizing losses of redox energy to heat. Within the standard models of electron transfer, this requirement, combined with the need for unidirectional (preferably activationless) transitions, is translated into the need to minimize the reorganization energy of electron transfer. This design program is, however, unrealistic for proteins whose active sites are typically positioned close to the polar and flexible protein-water interface to allow inter-protein electron tunneling. The high flexibility of the interfacial region makes both the hydration water and the surface protein layer act as highly polar solvents. The reorganization energy, as measured by fluctuations, is not minimized, but rather maximized in this region. Natural systems in fact utilize the broad breadth of interfacial electrostatic fluctuations, but in the ways not anticipated by the standard models based on equilibrium thermodynamics. The combination of the broad spectrum of static fluctuations with their dispersive dynamics offers the mechanism of dynamical freezing (ergodicity breaking) of subsets of nuclear modes on the time of reaction/residence of the electron at a redox cofactor. The separation of time-scales of nuclear modes coupled to electron transfer allows dynamical freezing. In particular, the separation between the relaxation time of electro-elastic fluctuations of the interface and the time of conformational transitions of the protein caused by changing redox state results in dynamical freezing of the latter for sufficiently fast electron transfer. The observable consequence of this dynamical freezing is significantly different reorganization energies describing the curvature at the bottom of electron-transfer free energy surfaces (large) and the distance between their minima (Stokes shift, small). The ratio of the two reorganization energies establishes the parameter by which the energetic efficiency of protein electron transfer is increased relative to the standard expectations, thus minimizing losses of energy to heat. Energetically efficient electron transfer occurs in a chain of conformationally quenched cofactors and is characterized by flattened free energy surfaces, reminiscent of the flat and rugged landscape at the stability basin of a folded protein.
Protein electron transfer: Dynamics and statistics.
Matyushov, Dmitry V
2013-07-14
Electron transfer between redox proteins participating in energy chains of biology is required to proceed with high energetic efficiency, minimizing losses of redox energy to heat. Within the standard models of electron transfer, this requirement, combined with the need for unidirectional (preferably activationless) transitions, is translated into the need to minimize the reorganization energy of electron transfer. This design program is, however, unrealistic for proteins whose active sites are typically positioned close to the polar and flexible protein-water interface to allow inter-protein electron tunneling. The high flexibility of the interfacial region makes both the hydration water and the surface protein layer act as highly polar solvents. The reorganization energy, as measured by fluctuations, is not minimized, but rather maximized in this region. Natural systems in fact utilize the broad breadth of interfacial electrostatic fluctuations, but in the ways not anticipated by the standard models based on equilibrium thermodynamics. The combination of the broad spectrum of static fluctuations with their dispersive dynamics offers the mechanism of dynamical freezing (ergodicity breaking) of subsets of nuclear modes on the time of reaction/residence of the electron at a redox cofactor. The separation of time-scales of nuclear modes coupled to electron transfer allows dynamical freezing. In particular, the separation between the relaxation time of electro-elastic fluctuations of the interface and the time of conformational transitions of the protein caused by changing redox state results in dynamical freezing of the latter for sufficiently fast electron transfer. The observable consequence of this dynamical freezing is significantly different reorganization energies describing the curvature at the bottom of electron-transfer free energy surfaces (large) and the distance between their minima (Stokes shift, small). The ratio of the two reorganization energies establishes the parameter by which the energetic efficiency of protein electron transfer is increased relative to the standard expectations, thus minimizing losses of energy to heat. Energetically efficient electron transfer occurs in a chain of conformationally quenched cofactors and is characterized by flattened free energy surfaces, reminiscent of the flat and rugged landscape at the stability basin of a folded protein.
Monte Carlo study on pulse response of underwater optical channel
NASA Astrophysics Data System (ADS)
Li, Jing; Ma, Yong; Zhou, Qunqun; Zhou, Bo; Wang, Hongyuan
2012-06-01
Pulse response of the underwater wireless optical channel is significant for the analysis of channel capacity and error probability. Traditional vector radiative transfer theory (VRT) is not able to deal with the effect of receiving aperture. On the other hand, general water tank experiments cannot acquire an accurate pulse response due to the limited time resolution of the photo-electronic detector. We present a Monte Carlo simulation model to extract the time-domain pulse response undersea. In comparison with the VRT model, a more accurate pulse response for practical ocean communications could be achieved through statistical analysis of the received photons. The proposed model is more reasonable for the study of the underwater optical channel.
Tactically Extensible and Modular Communications X-Band TEMCOM-X
NASA Technical Reports Server (NTRS)
Sims, William H.
2015-01-01
This paper will discuss a CubeSat size (3U) telemetry system concept being developed at Marshall Space Flight Center (MSFC) in cooperation with the U.S. Department of the Army and Dynetics Corporation. This telemetry system incorporates efficient, high-bandwidth communications by developing flight-ready, low-cost, Proto-flight software defined radio (SDR) and Electronically Steerable Patch Array (ESPA) antenna subsystems for use on platforms as small as CubeSats and unmanned aircraft systems (UASs). Higher bandwidth capacity will enable high-volume, low error-rate data transfer to and from tactical forces or sensors operating in austere locations (e.g., direct imagery download, unattended ground sensor data exfiltration, interlink communications).
NASA Astrophysics Data System (ADS)
Meyenburg, I.; Hofeditz, N.; Ruess, R.; Rudolph, M.; Schlettwein, D.; Heimbrodt, W.
2018-05-01
We studied the electron transfer at the interface of organic-inorganic hybrids consisting of indoline derivatives (D149 and D131) on ZnO substrates using a new optical method. We revealed the electron transfer times from the excited dye, e.g. the excitons formed in the dye aggregates to the ZnO substrate by analyzing the photoluminescence transients of the excitons after femtosecond excitation and applying kinetic model calculations. We reveal the changes of the electron transfer times by applying electrical bias. Pushing the Fermi energy of the ZnO substrate towards the excited dye level the transfer time gets longer and eventually the electron transfer is suppressed. The level alignment between the excited dye state and the ZnO Fermi-level is estimated. The excited state of D131 is about 100 meV higher than the respective state of D149 compared to the ZnO conduction band. This leads to shorter electron transfer times and eventually to higher quantum efficiencies of the solar cells.
Shen, Qing; Ogomi, Yuhei; Park, Byung-wook; Inoue, Takafumi; Pandey, Shyam S; Miyamoto, Akari; Fujita, Shinsuke; Katayama, Kenji; Toyoda, Taro; Hayase, Shuzi
2012-04-07
Understanding the electron transfer dynamics at the interface between dye sensitizer and semiconductor nanoparticle is very important for both a fundamental study and development of dye-sensitized solar cells (DSCs), which are a potential candidate for next generation solar cells. In this study, we have characterized the ultrafast photoexcited electron dynamics in a newly produced linearly-linked two dye co-sensitized solar cell using both a transient absorption (TA) and an improved transient grating (TG) technique, in which tin(IV) 2,11,20,29-tetra-tert-butyl-2,3-naphthalocyanine (NcSn) and cis-diisothiocyanato-bis(2,2'-bipyridyl-4,4'-dicarboxylato)ruthenium(II) bis(tetrabutylammonium) (N719) are molecularly and linearly linked and are bonded to the surface of a nanocrystalline tin dioxide (SnO(2)) electrode by a metal-O-metal linkage (i.e. SnO(2)-NcSn-N719). By comparing the TA and TG kinetics of NcSn, N719, and hybrid NcSn-N719 molecules adsorbed onto both of the SnO(2) and zirconium dioxide (ZrO(2)) nanocrystalline films, the forward and backward electron transfer dynamics in SnO(2)-NcSn-N719 were clarified. We found that there are two pathways for electron injection from the linearly-linked two dye molecules (NcSn-N719) to SnO(2). The first is a stepwise electron injection, in which photoexcited electrons first transfer from N719 to NcSn with a transfer time of 0.95 ps and then transfer from NcSn to the conduction band (CB) of SnO(2) with two timescales of 1.6 ps and 4.2 ps. The second is direct photoexcited electron transfer from N719 to the CB of SnO(2) with a timescale of 20-30 ps. On the other hand, back electron transfer from SnO(2) to NcSn is on a timescale of about 2 ns, which is about three orders of magnitude slower compared to the forward electron transfer from NcSn to SnO(2). The back electron transfer from NcSn to N719 is on a timescale of about 40 ps, which is about one order slower compared to the forward electron transfer from N719 to NcSn. These results demonstrate that photoexcited electrons can be effectively injected into SnO(2) from both of the N719 and NcSn dyes.
12 CFR 205.9 - Receipts at electronic terminals; periodic statements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.9 Receipts at electronic terminals; periodic..., a financial institution shall make a receipt available to a consumer at the time the consumer initiates an electronic fund transfer at an electronic terminal. The receipt shall set forth the following...
12 CFR 205.9 - Receipts at electronic terminals; periodic statements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.9 Receipts at electronic terminals; periodic..., a financial institution shall make a receipt available to a consumer at the time the consumer initiates an electronic fund transfer at an electronic terminal. The receipt shall set forth the following...
12 CFR 205.9 - Receipts at electronic terminals; periodic statements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.9 Receipts at electronic terminals; periodic..., a financial institution shall make a receipt available to a consumer at the time the consumer initiates an electronic fund transfer at an electronic terminal. The receipt shall set forth the following...
12 CFR 205.9 - Receipts at electronic terminals; periodic statements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.9 Receipts at electronic terminals; periodic..., a financial institution shall make a receipt available to a consumer at the time the consumer initiates an electronic fund transfer at an electronic terminal. The receipt shall set forth the following...
12 CFR 205.9 - Receipts at electronic terminals; periodic statements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.9 Receipts at electronic terminals; periodic..., a financial institution shall make a receipt available to a consumer at the time the consumer initiates an electronic fund transfer at an electronic terminal. The receipt shall set forth the following...
Ultrafast above-threshold dynamics of the radical anion of a prototypical quinone electron-acceptor.
Horke, Daniel A; Li, Quansong; Blancafort, Lluís; Verlet, Jan R R
2013-08-01
Quinones feature prominently as electron acceptors in nature. Their electron-transfer reactions are often highly exergonic, for which Marcus theory predicts reduced electron-transfer rates because of a free-energy barrier that occurs in the inverted region. However, the electron-transfer kinetics that involve quinones can appear barrierless. Here, we consider the intrinsic properties of the para-benzoquinone radical anion, which serves as the prototypical electron-transfer reaction product involving a quinone-based acceptor. Using time-resolved photoelectron spectroscopy and ab initio calculations, we show that excitation at 400 and 480 nm yields excited states that are unbound with respect to electron loss. These excited states are shown to decay on a sub-40 fs timescale through a series of conical intersections with lower-lying excited states, ultimately to form the ground anionic state and avoid autodetachment. From an isolated electron-acceptor perspective, this ultrafast stabilization mechanism accounts for the ability of para-benzoquinone to capture and retain electrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Stephen C.; Bettis Homan, Stephanie; Weiss, Emily A.
2016-01-28
This paper describes the use of cadmium sulfide quantum dots (CdS QDs) as visible-light photocatalysts for the reduction of nitrobenzene to aniline through six sequential photoinduced, proton-coupled electron transfers. At pH 3.6–4.3, the internal quantum yield of photons-to-reducing electrons is 37.1% over 54 h of illumination, with no apparent decrease in catalyst activity. Monitoring of the QD exciton by transient absorption reveals that, for each step in the catalytic cycle, the sacrificial reductant, 3-mercaptopropionic acid, scavenges the excitonic hole in ~5 ps to form QD•–; electron transfer to nitrobenzene or the intermediates nitrosobenzene and phenylhydroxylamine then occurs on the nanosecondmore » time scale. The rate constants for the single-electron transfer reactions are correlated with the driving forces for the corresponding proton-coupled electron transfers. This result suggests, but does not prove, that electron transfer, not proton transfer, is rate-limiting for these reactions. Nuclear magnetic resonance analysis of the QD–molecule systems shows that the photoproduct aniline, left unprotonated, serves as a poison for the QD catalyst by adsorbing to its surface. Performing the reaction at an acidic pH not only encourages aniline to desorb but also increases the probability of protonated intermediates; the latter effect probably ensures that recruitment of protons is not rate-limiting.« less
Quantum state transfer in double-quantum-well devices
NASA Technical Reports Server (NTRS)
Jakumeit, Jurgen; Tutt, Marcel; Pavlidis, Dimitris
1994-01-01
A Monte Carlo simulation of double-quantum-well (DQW) devices is presented in view of analyzing the quantum state transfer (QST) effect. Different structures, based on the AlGaAs/GaAs system, were simulated at 77 and 300 K and optimized in terms of electron transfer and device speed. The analysis revealed the dominant role of the impurity scattering for the QST. Different approaches were used for the optimization of QST devices and basic physical limitations were found in the electron transfer between the QWs. The maximum transfer of electrons from a high to a low mobility well was at best 20%. Negative differential resistance is hampered by the almost linear rather than threshold dependent relation of electron transfer on electric field. By optimizing the doping profile the operation frequency limit could be extended to 260 GHz.
Li, Dan; Jiang, Jia; Han, Dandan; Yu, Xinyu; Wang, Kun; Zang, Shuang; Lu, Dayong; Yu, Aimin; Zhang, Ziwei
2016-04-05
A new method is proposed for measuring the antioxidant capacity by electron spin resonance spectroscopy based on the loss of electron spin resonance signal after Cu(2+) is reduced to Cu(+) with antioxidant. Cu(+) was removed by precipitation in the presence of SCN(-). The remaining Cu(2+) was coordinated with diethyldithiocarbamate, extracted into n-butanol and determined by electron spin resonance spectrometry. Eight standards widely used in antioxidant capacity determination, including Trolox, ascorbic acid, ferulic acid, rutin, caffeic acid, quercetin, chlorogenic acid, and gallic acid were investigated. The standard curves for determining the eight standards were plotted, and results showed that the linear regression correlation coefficients were all high enough (r > 0.99). Trolox equivalent antioxidant capacity values for the antioxidant standards were calculated, and a good correlation (r > 0.94) between the values obtained by the present method and cupric reducing antioxidant capacity method was observed. The present method was applied to the analysis of real fruit samples and the evaluation of the antioxidant capacity of these fruits.
Prasanna, K; Subburaj, T; Jo, Yong Nam; Lee, Won Jong; Lee, Chang Woo
2015-04-22
The biopolymer chitosan has been investigated as a potential binder for the fabrication of LiFePO4 cathode electrodes in lithium ion batteries. Chitosan is compared to the conventional binder, polyvinylidene fluoride (PVDF). Dispersion of the active material, LiFePO4, and conductive agent, Super P carbon black, is tested using a viscosity analysis. The enhanced structural and morphological properties of chitosan are compared to the PVDF binder using X-ray diffraction analysis (XRD) and field emission scanning electron microscopy (FE-SEM). Using an electrochemical impedance spectroscopy (EIS) analysis, the LiFePO4 electrode with the chitosan binder is observed to have a high ionic conductivity and a smaller increase in charge transfer resistance based on time compared to the LiFePO4 electrode with the PVDF binder. The electrode with the chitosan binder also attains a higher discharge capacity of 159.4 mAh g(-1) with an excellent capacity retention ratio of 98.38% compared to the electrode with the PVDF binder, which had a discharge capacity of 127.9 mAh g(-1) and a capacity retention ratio of 85.13%. Further, the cycling behavior of the chitosan-based electrode is supported by scrutinizing its charge-discharge behavior at specified intervals and by a plot of dQ/dV.
Ozyurt, Dilek; Demirata, Birsen; Apak, Resat
2011-11-01
A Ce(IV)-based reducing capacity (CERAC) assay was developed to measure the total antioxidant capacity (TAC) of foods, in which Ce(IV) would selectively oxidize antioxidant compounds but not citric acid and reducing sugars which are not classified as antioxidants. The method is based on the electron-transfer (ET) reaction between Ce(IV) ion and antioxidants in optimized acidic sulphate medium (i.e., 0.3 M H(2)SO(4) and 0.7 M Na(2)SO(4)) and subsequent determination of the produced Ce(III) ions by a fluorometric method. The fluorescent product, Ce(III), exhibited strong fluorescence at 360 nm with an excitation wavelength of 256 nm, the fluorescence intensity being correlated to antioxidant power of the original sample. The linear concentration range for most antioxidants was quite wide, e.g., 5.0 × 10(-7)-1.0 × 10(-5) M for quercetin. The developed procedure was successfully applied to the TAC assay of antioxidant compounds such as trolox, quercetin, gallic acid, ascorbic acid, catechin, naringin, naringenin, caffeic acid, ferulic acid, glutathione, and cysteine. The proposed method was reproducible, additive in terms of TAC values of constituents of complex mixtures, and the trolox equivalent antioxidant capacities (TEAC coefficients) of the tested antioxidant compounds gave good correlations with those found by reference methods such as ABTS and CUPRAC.
NASA Astrophysics Data System (ADS)
Shi, Waipeng; Zhang, Yingmeng; Key, Julian; Shen, Pei Kang
2018-03-01
An efficient synthesis method to grow well attached NiO nanobelts from 3D graphene sheets (3DGS) is reported herein. Ni-ion exchanged resin provides the initial Ni reactant portion, which serves both as a catalyst to form 3DGS and then as a seeding agent to grow the NiO nanobelts. The macroporous structure of 3DGS provides NiO containment to achieve a high cycling stability of up to 445 mAh g-1 after 360 cycles (and >112% capacity retention after 515 cycles) at a high current density of 2 A g-1. With a 26.8 wt.% content of NiO on 3DGS, increases in specific and volumetric capacity were 41.6 and 75.7% respectively over that of 3DGS at matching current densities. Therefore, the seeded growth of NiO nanobelts from 3DGS significantly boosts volumetric capacity, while 3DGS enables high rate long term cycling of the NiO. The high rate cycling stability of NiO on 3DGS can be attributed to (i) good attachment and contact to the large surface of 3DGS, (ii) high electron conductivity and rapid Li-ion transfer (via the interconnected, highly conductive graphitized walls of 3DGS) and (iii) buffering void space in 3DGS to contain volume expansion of NiO during charge/discharge.
NASA Astrophysics Data System (ADS)
He, Jiarui; Lv, Weiqiang; Chen, Yuanfu; Xiong, Jie; Wen, Kechun; Xu, Chen; Zhang, Wanli; Li, Yanrong; Qin, Wu; He, Weidong
2017-09-01
Three-dimensional, porous graphitic carbon co-doped with cobalt and nitrogen (C-Co-N) is prepared with metal-organic framework (MOF) and employed as Lewis base matrix to host selenium. Owing to the unique structure with abundant micro/meso-pores, the highly-conductive C-Co-N matrix provides highly-efficient channels for electron transfer and ionic diffusion, and sufficient surface area for loading of selenium nanoparticles while mitigating dissolution of polyselenides and suppressing volume expansion. The homogenous distribution of cobalt nanoparticles and nitrogen-group in C-Co-N composite immobilize polyselenides through strong chemical interaction in the operation of Li-Se batteries. With a very high Se loading of 76.5 wt%, the C-Co-N/Se cathode delivers superior electrochemical performance with an ultrahigh reversible capacity of 672.3 mAh g-1 (99.6% of the theoretical value) and a capacity of 574.2 mAh g-1 after 200 cycles, giving a capacity fading of only 0.07% per cycle and a nearly 100% Columbic efficiency. In-situ Raman spectroscopy and density functional theory simulations are employed to investigate the Se (de)lithiation mechanism at the electrolyte/cathode interface, and confirm that the structure and composition of C-Co-N scaffold give rise to efficient cathode host for high-performance Se-based cathodes with dramatically reduced capacity fading.
Dioxygen in Polyoxometalate Mediated Reactions.
Weinstock, Ira A; Schreiber, Roy E; Neumann, Ronny
2018-03-14
In this review article, we consider the use of molecular oxygen in reactions mediated by polyoxometalates. Polyoxometalates are anionic metal oxide clusters of a variety of structures that are soluble in liquid phases and therefore amenable to homogeneous catalytic transformations. Often, they are active for electron transfer oxidations of a myriad of substrates and upon reduction can be reoxidized by molecular oxygen. For example, the phosphovanadomolybdate, H 5 PV 2 Mo 10 O 40 , can oxidize Pd(0) thereby enabling aerobic reactions catalyzed by Pd and H 5 PV 2 Mo 10 O 40 . In a similar vein, polyoxometalates can stabilize metal nanoparticles, leading to additional transformations. Furthermore, electron transfer oxidation of other substrates such as halides and sulfur-containing compounds is possible. More uniquely, H 5 PV 2 Mo 10 O 40 and its analogues can mediate electron transfer-oxygen transfer reactions where oxygen atoms are transferred from the polyoxometalate to the substrate. This unique property has enabled correspondingly unique transformations involving carbon-carbon, carbon-hydrogen, and carbon-metal bond activation. The pathway for the reoxidation of vanadomolybdates with O 2 appears to be an inner-sphere reaction, but the oxidation of one-electron reduced polyoxotungstates has been shown through intensive research to be an outer-sphere reaction. Beyond electron transfer and electron transfer-oxygen transfer aerobic transformations, there a few examples of apparent dioxygenase activity where both oxygen atoms are donated to a substrate.
Picture of the Week: Hacking the bio-nano interface for better biofuels
) influence electron transfer between the enzyme and the electrode to determine the best placement of enzymes compounds) influence electron transfer between the enzyme and the electrode to determine the best placement studied how three quinones (a class of organic compounds) influence electron transfer between the enzyme
Lancaster, Kelly; Odom, Susan A; Jones, Simon C; Thayumanavan, S; Marder, Seth R; Brédas, Jean-Luc; Coropceanu, Veaceslav; Barlow, Stephen
2009-02-11
The electron spin resonance spectra of the radical cations of 4,4'-bis[di(4-methoxyphenyl)amino]tolane, E-4,4'-bis[di(4-methoxyphenyl)amino]stilbene, and E,E-1,4-bis{4-[di(4-methoxyphenyl)amino]styryl}benzene in dichloromethane exhibit five lines over a wide temperature range due to equivalent coupling to two 14N nuclei, indicating either delocalization between both nitrogen atoms or rapid intramolecular electron transfer on the electron spin resonance time scale. In contrast, those of the radical cations of 1,4-bis{4-[di(4-methoxyphenyl)amino]phenylethynyl}benzene and E,E-1,4-bis{4-[di(4-n-butoxyphenyl)amino]styryl}-2,5-dicyanobenzene exhibit line shapes that vary strongly with temperature, displaying five lines at room temperature and only three lines at ca. 190 K, indicative of slow electron transfer on the electron spin resonance time scale at low temperatures. The rates of intramolecular electron transfer in the latter compounds were obtained by simulation of the electron spin resonance spectra and display an Arrhenius temperature dependence. The activation barriers obtained from Arrhenius plots are significantly less than anticipated from Hush analyses of the intervalence bands when the diabatic electron-transfer distance, R, is equated to the N[symbol: see text]N distance. Comparison of optical and electron spin resonance data suggests that R is in fact only ca. 40% of the N[symbol: see text]N distance, while the Arrhenius prefactor indicates that the electron transfer falls in the adiabatic regime.
Liu, Chunyu; Zhang, Dezhong; Li, Zhiqi; Zhang, Xinyuan; Guo, Wenbin; Zhang, Liu; Ruan, Shengping; Long, Yongbing
2017-07-05
To overcome drawbacks of the electron transport layer, such as complex surface defects and unmatched energy levels, we successfully employed a smart semiconductor-metal interfacial nanojunciton in organic solar cells by evaporating an ultrathin Al interlayer onto annealing-free ZnO electron transport layer, resulting in a high fill factor of 73.68% and power conversion efficiency of 9.81%. The construction of ZnO-Al nanojunction could effectively fill the surface defects of ZnO and reduce its work function because of the electron transfer from Al to ZnO by Fermi level equilibrium. The filling of surface defects decreased the interfacial carrier recombination in midgap trap states. The reduced surface work function of ZnO-Al remodulated the interfacial characteristics between ZnO and [6,6]-phenyl C71-butyric acid methyl ester (PC 71 BM), decreasing or even eliminating the interfacial barrier against the electron transport, which is beneficial to improve the electron extraction capacity. The filled surface defects and reduced interfacial barrier were realistically observed by photoluminescence measurements of ZnO film and the performance of electron injection devices, respectively. This work provides a simple and effective method to simultaneously solve the problems of surface defects and unmatched energy level for the annealing-free ZnO or other metal oxide semiconductors, paving a way for the future popularization in photovoltaic devices.
7 CFR 2902.54 - Heat transfer fluids.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 15 2011-01-01 2011-01-01 false Heat transfer fluids. 2902.54 Section 2902.54... Items § 2902.54 Heat transfer fluids. (a) Definition. Products with high thermal capacities used to facilitate the transfer of heat from one location to another, including coolants or refrigerants for use in...
Role of protein fluctuation correlations in electron transfer in photosynthetic complexes.
Nesterov, Alexander I; Berman, Gennady P
2015-04-01
We consider the dependence of the electron transfer in photosynthetic complexes on correlation properties of random fluctuations of the protein environment. The electron subsystem is modeled by a finite network of connected electron (exciton) sites. The fluctuations of the protein environment are modeled by random telegraph processes, which act either collectively (correlated) or independently (uncorrelated) on the electron sites. We derived an exact closed system of first-order linear differential equations with constant coefficients, for the average density matrix elements and for their first moments. Under some conditions, we obtained analytic expressions for the electron transfer rates and found the range of parameters for their applicability by comparing with the exact numerical simulations. We also compared the correlated and uncorrelated regimes and demonstrated numerically that the uncorrelated fluctuations of the protein environment can, under some conditions, either increase or decrease the electron transfer rates.
Role of coherence and delocalization in photo-induced electron transfer at organic interfaces
NASA Astrophysics Data System (ADS)
Abramavicius, V.; Pranculis, V.; Melianas, A.; Inganäs, O.; Gulbinas, V.; Abramavicius, D.
2016-09-01
Photo-induced charge transfer at molecular heterojunctions has gained particular interest due to the development of organic solar cells (OSC) based on blends of electron donating and accepting materials. While charge transfer between donor and acceptor molecules can be described by Marcus theory, additional carrier delocalization and coherent propagation might play the dominant role. Here, we describe ultrafast charge separation at the interface of a conjugated polymer and an aggregate of the fullerene derivative PCBM using the stochastic Schrödinger equation (SSE) and reveal the complex time evolution of electron transfer, mediated by electronic coherence and delocalization. By fitting the model to ultrafast charge separation experiments, we estimate the extent of electron delocalization and establish the transition from coherent electron propagation to incoherent hopping. Our results indicate that even a relatively weak coupling between PCBM molecules is sufficient to facilitate electron delocalization and efficient charge separation at organic interfaces.
Tuning the reactivity of mononuclear nonheme manganese(iv)-oxo complexes by triflic acid
Chen, Junying; Yoon, Heejung; Lee, Yong -Min; ...
2015-04-14
Triflic acid (HOTf)-bound nonheme Mn( IV)-oxo complexes, [(L)Mn IV(O)] 2+–(HOTf) 2 (L = N4Py and Bn-TPEN; N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine and Bn-TPEN = N-benzyl-N,N',N'-tris(2-pyridylmethyl)ethane-1,2-diamine), were synthesized by adding HOTf to the solutions of the [(L)Mn IV(O)] 2+ complexes and were characterized by various spectroscopies. The one-electron reduction potentials of the Mn IV(O) complexes exhibited a significant positive shift upon binding of HOTf. The driving force dependences of electron transfer (ET) from electron donors to the Mn IV(O) and Mn IV(O)–(HOTf) 2 complexes were examined and evaluated in light of the Marcus theory of ET to determine the reorganization energies of ET.more » The smaller reorganization energies and much more positive reduction potentials of the [(L)Mn IV(O)] 2+–(HOTf) 2 complexes resulted in greatly enhanced oxidation capacity towards one-electron reductants and para-X-substituted-thioanisoles. The reactivities of the Mn(IV)-oxo complexes were markedly enhanced by binding of HOTf, such as a 6.4 × 10 5-fold increase in the oxygen atom transfer (OAT) reaction (i.e., sulfoxidation). Such a remarkable acceleration in the OAT reaction results from the enhancement of ET from para-X-substituted-thioanisoles to the MnIV(O) complexes as revealed by the unified ET driving force dependence of the rate constants of OAT and ET reactions of [(L)Mn IV(O)] 2+–(HOTf) 2. In contrast, deceleration was observed in the rate of H-atom transfer (HAT) reaction of [(L)Mn IV(O)] 2+–(HOTf) 2 complexes with 1,4-cyclohexadiene as compared with those of the [(L)Mn IV(O)] 2+ complexes. Thus, the binding of two HOTf molecules to the Mn IV(O) moiety resulted in remarkable acceleration of the ET rate when the ET is thermodynamically feasible. When the ET reaction is highly endergonic, the rate of the HAT reaction is decelerated due to the steric effect of the counter anion of HOTf.« less
Using Water Transfers to Manage Supply Risk
NASA Astrophysics Data System (ADS)
Characklis, G. W.
2007-12-01
Most cities currently rely on water supplies with sufficient capacity to meet demand under almost all conditions. However, the rising costs of water supply development make the maintenance of infrequently used excess capacity increasingly expensive, and more utilities are considering the use of water transfers as a means of more cost effectively meeting demand under drought conditions. Transfers can take place between utilities, as well as different user groups (e.g., municipal and agricultural), and can involve both treated and untreated water. In cases where both the "buyer" and "seller" draw water from the same supply, contractual agreements alone can facilitate a transfer, but in other cases new infrastructure (e.g., pipelines) will be required. Developing and valuing transfer agreements and/or infrastructure investments requires probabilistic supply/demand analyses that incorporate elements of both hydrology and economics. The complexity of these analyses increases as more sophisticated types of agreements (e. g., options) are considered, and as utilities begin to consider how to integrate transfers into long-term planning efforts involving a more diversified portfolio of supply assets. This discussion will revolve around the methods used to develop minimum (expected) cost portfolios of supply assets that meet specified reliability goals. Two different case studies, one in both the eastern and western U.S., will be described with attention to: the role that transfers can play in reducing average supply costs; tradeoffs between costs and supply reliability, and; the effects of different transfer agreement types on the infrastructure capacity required to complete the transfers. Results will provide insights into the cost savings potential of more flexible water supply strategies.
NASA Astrophysics Data System (ADS)
Guo, Haipeng; Liu, Li; Shu, Hongbo; Yang, Xiukang; Yang, Zhenhua; Zhou, Meng; Tan, Jinli; Yan, Zichao; Hu, Hai; Wang, Xianyou
2014-02-01
LiV3O8/polythiophene (LiV3O8/PTh) composite has been chemically synthesized via an in-situ oxidative polymerization method. The structure and morphology of the samples have been characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). LiV3O8/PTh composite shows a single phase in the XRD pattern, but the existence of PTh has been confirmed by FTIR spectra. HRTEM images show that an uniform PTh layer with a thickness of 3-5 nm covered on the surface of LiV3O8. Electrochemical performance of samples has been characterized by the charge/discharge test, cyclic voltammetry (CV), electrochemical impedance spectroscopic studies (EIS) and galvanostatic intermittent titration technique (GITT). The LiV3O8/PTh composite exhibits much better electrochemical performance than bare LiV3O8. The initial discharge capacities of 15 wt.% LiV3O8/PTh composite are 213.3 and 200.3 mAh g-1 with almost no capacity retention after 50 cycles at current densities of 300 and 900 mA g-1, respectively. PTh could enhance electronic conductivity, decrease the charge transfer resistance, increase the lithium diffusion coefficient, and thus improve cycling performance of LiV3O8. All these results demonstrate that the LiV3O8/PTh composite has a promising application as cathode material for lithium ion batteries.
Measurement of electron-ion relaxation in warm dense copper
Cho, B. I.; Ogitsu, T.; Engelhorn, K.; ...
2016-01-06
Experimental investigation of electron-ion coupling and electron heat capacity of copper in warm and dense states are presented. From time-resolved x-ray absorption spectroscopy, the temporal evolution of electron temperature is obtained for non-equilibrium warm dense copper heated by an intense femtosecond laser pulse. Electron heat capacity and electron-ion coupling are inferred from the initial electron temperature and its decrease over 10 ps. As a result, data are compared with various theoretical models.
Alternative ground states enable pathway switching in biological electron transfer
Abriata, Luciano A.; Alvarez-Paggi, Damian; Ledesma, Gabirela N.; ...
2012-10-10
Electron transfer is the simplest chemical reaction and constitutes the basis of a large variety of biological processes, such as photosynthesis and cellular respiration. Nature has evolved specific proteins and cofactors for these functions. The mechanisms optimizing biological electron transfer have been matter of intense debate, such as the role of the protein milieu between donor and acceptor sites. Here we propose a mechanism regulating long-range electron transfer in proteins. Specifically, we report a spectroscopic, electrochemical, and theoretical study on WT and single-mutant CuA redox centers from Thermus thermophilus, which shows that thermal fluctuations may populate two alternative ground-state electronicmore » wave functions optimized for electron entry and exit, respectively, through two different and nearly perpendicular pathways. In conclusion, these findings suggest a unique role for alternative or “invisible” electronic ground states in directional electron transfer. Moreover, it is shown that this energy gap and, therefore, the equilibrium between ground states can be fine-tuned by minor perturbations, suggesting alternative ways through which protein–protein interactions and membrane potential may optimize and regulate electron–proton energy transduction.« less
Sun, Chang; Carey, Anne-Marie; Gao, Bing-Rong; Wraight, Colin A; Woodbury, Neal W; Lin, Su
2016-06-23
It has become increasingly clear that dynamics plays a major role in the function of many protein systems. One system that has proven particularly facile for studying the effects of dynamics on protein-mediated chemistry is the bacterial photosynthetic reaction center from Rhodobacter sphaeroides. Previous experimental and computational analysis have suggested that the dynamics of the protein matrix surrounding the primary quinone acceptor, QA, may be particularly important in electron transfer involving this cofactor. One can substantially increase the flexibility of this region by removing one of the reaction center subunits, the H-subunit. Even with this large change in structure, photoinduced electron transfer to the quinone still takes place. To evaluate the effect of H-subunit removal on electron transfer to QA, we have compared the kinetics of electron transfer and associated spectral evolution for the LM dimer with that of the intact reaction center complex on picosecond to millisecond time scales. The transient absorption spectra associated with all measured electron transfer reactions are similar, with the exception of a broadening in the QX transition and a blue-shift in the QY transition bands of the special pair of bacteriochlorophylls (P) in the LM dimer. The kinetics of the electron transfer reactions not involving quinones are unaffected. There is, however, a 4-fold decrease in the electron transfer rate from the reduced bacteriopheophytin to QA in the LM dimer compared to the intact reaction center and a similar decrease in the recombination rate of the resulting charge-separated state (P(+)QA(-)). These results are consistent with the concept that the removal of the H-subunit results in increased flexibility in the region around the quinone and an associated shift in the reorganization energy associated with charge separation and recombination.
Hankache, Jihane; Wenger, Oliver S
2012-02-28
Four rigid rod-like molecules comprised of a Ru(bpy)(3)(2+) (bpy = 2,2'-bipyridine) photosensitizer, a 9,10-anthraquinone electron acceptor, and a molecular bridge connecting the two redox partners were synthesized and investigated by optical spectroscopic and electrochemical means. An attempt was made to assess the relative importance of driving-force, solvent polarity, and bridge variation on the rates of photoinduced electron transfer in these molecules. Expectedly, introduction of tert-butyl substituents in the bipyridine ligands of the ruthenium complex and a change in solvent from dichloromethane to acetonitrile lead to a significant acceleration of charge transfer rates. In dichloromethane, photoinduced electron transfer is not competitive with the inherent excited-state deactivation processes of the photosensitizer. In acetonitrile, an increase in driving-force by 0.2 eV through attachment of tert-butyl substituents to the bpy ancillary ligands causes an increase in electron transfer rates by an order of magnitude. Replacement of a p-xylene bridge by a p-dimethoxybenzene spacer entails an acceleration of charge transfer rates by a factor of 3.5. In the dyads from this study, the relative order of importance of individual influences on electron transfer rates is therefore as follows: solvent polarity ≥ driving-force > donor-bridge energy gap.
CRADA Payment Options | NCI Technology Transfer Center | TTC
NCI TTC CRADA PAYMENT OPTIONS: Electronic Payments by Wire Transfer via Fedwire, Mail a check to the Institute or Center, or Automated Clearing House (ACH)/Electronic Funds Transfer (ETF) payments via Pay.gov (NCI ONLY).
Transfer coefficients in ultracold strongly coupled plasma
NASA Astrophysics Data System (ADS)
Bobrov, A. A.; Vorob'ev, V. S.; Zelener, B. V.
2018-03-01
We use both analytical and molecular dynamic methods for electron transfer coefficients in an ultracold plasma when its temperature is small and the coupling parameter characterizing the interaction of electrons and ions exceeds unity. For these conditions, we use the approach of nearest neighbor to determine the average electron (ion) diffusion coefficient and to calculate other electron transfer coefficients (viscosity and electrical and thermal conductivities). Molecular dynamics simulations produce electronic and ionic diffusion coefficients, confirming the reliability of these results. The results compare favorably with experimental and numerical data from earlier studies.
NASA Astrophysics Data System (ADS)
Bominaar, E. L.; Achim, C.; Borshch, S. A.
1999-06-01
Polynuclear transition-metal complexes, such as Fe-S clusters, are the prosthetic groups in a large number of metalloproteins and serve as temporary electron storage units in a number of important redox-based biological processes. Polynuclearity distinguishes clusters from mononuclear centers and confers upon them unique properties, such as spin ordering and the presence of thermally accessible excited spin states in clusters with paramagnetic sites, and fractional valencies in clusters of the mixed-valence type. In an earlier study we presented an effective-mode (EM) analysis of electron transfer from a binuclear mixed-valence donor with paramagnetic sites to a mononuclear acceptor which revealed that the cluster-specific attributes have an important impact on the kinetics of long-range electron transfer. In the present study, the validity of these results is tested in the framework of more detailed theories which we have termed the multimode semiclassical (SC) model and the quantum-mechanical (QM) model. It is found that the qualitative trends in the rate constant are the same in all treatments and that the semiclassical models provide a good approximation of the more rigorous quantum-mechanical description of electron transfer under physiologically relevant conditions. In particular, the present results corroborate the importance of electron transfer via excited spin states in reactions with a low driving force and justify the use of semiclassical theory in cases in which the QM model is computationally too demanding. We consider cases in which either one or two donor sites of a dimer are electronically coupled to the acceptor. In the case of multiconnectivity, the rate constant for electron transfer from a valence-delocalized (class-III) donor is nonadditive with respect to transfer from individual metal sites of the donor and undergoes an order-of-magnitude change by reversing the sign of the intradimer metal-metal resonance parameter (β). In the case of single connectivity, the rate constant for electron transfer from a valence-localized (class-II) donor can readily be tuned over several orders of magnitude by introducing differences in the electronic potentials at the two metal sites of the donor. These results indicate that theories of cluster-based electron transfer, in order to be realistic, need to consider both intrinsic electronic structure and extrinsic interactions of the cluster with the protein environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Changwon; Atalla, Viktor; Smith, Sean
Charge transfer between an electron donor and an electron acceptor is widely accepted as being independent of their relative configurations if the interaction between them is weak; however, the limit of this concept for an interacting system has not yet been well established. Our study of prototypical electron donor–acceptor molecules, tetrathiafulvalene–tetracyanoquinodimethane, using density functional theory based on an advanced functional, clearly demonstrates that for interacting molecules, their configurational arrangement is as important as their individual electronic properties in the asymptotic limit to determine the charge transfer direction. For the first time, we demonstrate that by changing their relative orientation, onemore » can reverse the charge transfer direction of the pair, causing the molecules to exchange roles as donor and acceptor. In conclusion, our theory has important implications for understanding the interfacial charge-transfer mechanism of hybrid systems and related phenomena.« less
Sulfate-reducing bacteria: Microbiology and physiology
NASA Technical Reports Server (NTRS)
Peck, H. D.
1985-01-01
The sulfate reducing bacteria, the first nonphotosynthetic anaerobic bacteria demonstrated to contain c type cytochromes, perform electron transfer coupled to phosphorylation. A new bioenergetic scheme for the formation of a proton gradient for growth of Desulfovibrio on organic substrates and sulfate involving vectors electron transfer and consistent with the cellular localization of enzymes and electron transfer components was proposed. Hydrogen is produced in the cytoplasm from organic substrates and, as a permease molecule diffuses rapidly across the cytoplasmic membrane, it is oxidized to protons and electrons by the periplasmic hydrogenase. The electrons only are transferred across the cytoplasmic membrane to the cytoplasm where they are used to reduce sulfate to sulfide. The protons are used for transport or to drive a reversible ATPOSE. The net effect is the transfer of protons across the cytoplasmic membrane with the intervention of a proton pump. This type of H2 cycling is relevant to the bioenergetics of other types of anaerobic microorganisms.
Park, Changwon; Atalla, Viktor; Smith, Sean; ...
2017-06-16
Charge transfer between an electron donor and an electron acceptor is widely accepted as being independent of their relative configurations if the interaction between them is weak; however, the limit of this concept for an interacting system has not yet been well established. Our study of prototypical electron donor–acceptor molecules, tetrathiafulvalene–tetracyanoquinodimethane, using density functional theory based on an advanced functional, clearly demonstrates that for interacting molecules, their configurational arrangement is as important as their individual electronic properties in the asymptotic limit to determine the charge transfer direction. For the first time, we demonstrate that by changing their relative orientation, onemore » can reverse the charge transfer direction of the pair, causing the molecules to exchange roles as donor and acceptor. In conclusion, our theory has important implications for understanding the interfacial charge-transfer mechanism of hybrid systems and related phenomena.« less
Nanoantioxidant-driven plasmon enhanced proton-coupled electron transfer
NASA Astrophysics Data System (ADS)
Sotiriou, Georgios A.; Blattmann, Christoph O.; Deligiannakis, Yiannis
2015-12-01
Proton-coupled electron transfer (PCET) reactions involve the transfer of a proton and an electron and play an important role in a number of chemical and biological processes. Here, we describe a novel phenomenon, plasmon-enhanced PCET, which is manifested using SiO2-coated Ag nanoparticles functionalized with gallic acid (GA), a natural antioxidant molecule that can perform PCET. These GA-functionalized nanoparticles show enhanced plasmonic response at near-IR wavelengths, due to particle agglomeration caused by the GA molecules. Near-IR laser irradiation induces strong local hot-spots on the SiO2-coated Ag nanoparticles, as evidenced by surface enhanced Raman scattering (SERS). This leads to plasmon energy transfer to the grafted GA molecules that lowers the GA-OH bond dissociation enthalpy by at least 2 kcal mol-1 and therefore facilitates PCET. The nanoparticle-driven plasmon-enhancement of PCET brings together the so far unrelated research domains of nanoplasmonics and electron/proton translocation with significant impact on applications based on interfacial electron/proton transfer.Proton-coupled electron transfer (PCET) reactions involve the transfer of a proton and an electron and play an important role in a number of chemical and biological processes. Here, we describe a novel phenomenon, plasmon-enhanced PCET, which is manifested using SiO2-coated Ag nanoparticles functionalized with gallic acid (GA), a natural antioxidant molecule that can perform PCET. These GA-functionalized nanoparticles show enhanced plasmonic response at near-IR wavelengths, due to particle agglomeration caused by the GA molecules. Near-IR laser irradiation induces strong local hot-spots on the SiO2-coated Ag nanoparticles, as evidenced by surface enhanced Raman scattering (SERS). This leads to plasmon energy transfer to the grafted GA molecules that lowers the GA-OH bond dissociation enthalpy by at least 2 kcal mol-1 and therefore facilitates PCET. The nanoparticle-driven plasmon-enhancement of PCET brings together the so far unrelated research domains of nanoplasmonics and electron/proton translocation with significant impact on applications based on interfacial electron/proton transfer. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04942c
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denysenko, I. B.; Azarenkov, N. A.; Kersten, H.
2016-05-15
Analytical expressions describing the variation of electron energy distribution function (EEDF) in an afterglow of a plasma are obtained. Especially, the case when the electron energy loss is mainly due to momentum-transfer electron-neutral collisions is considered. The study is carried out for different EEDFs in the steady state, including Maxwellian and Druyvesteyn distributions. The analytical results are not only obtained for the case when the rate for momentum-transfer electron-neutral collisions is independent on electron energy but also for the case when the collisions are a power function of electron energy. Using analytical expressions for the EEDF, the effective electron temperaturemore » and charge of the dust particles, which are assumed to be present in plasma, are calculated for different afterglow durations. An analytical expression for the rate describing collection of electrons by dust particles for the case when the rate for momentum-transfer electron-neutral collisions is independent on electron energy is also derived. The EEDF profile and, as a result, the effective electron temperature and dust charge are sufficiently different in the cases when the rate for momentum-transfer electron-neutral collisions is independent on electron energy and when the rate is a power function of electron energy.« less
Sündermann, Axel; Oostenbrink, Chris
2013-01-01
Cytochrome P450 reductase (CYPOR) undergoes a large conformational change to allow for an electron transfer to a redox partner to take place. After an internal electron transfer over its cofactors, it opens up to facilitate the interaction and electron transfer with a cytochrome P450. The open conformation appears difficult to crystallize. Therefore, a model of a human CYPOR in the open conformation was constructed to be able to investigate the stability and conformational change of this protein by means of molecular dynamics simulations. Since the role of the protein is to provide electrons to a redox partner, the interactions with cytochrome P450 2D6 (2D6) were investigated and a possible complex structure is suggested. Additionally, electron pathway calculations with a newly written program were performed to investigate which amino acids relay the electrons from the FMN cofactor of CYPOR to the HEME of 2D6. Several possible interacting amino acids in the complex, as well as a possible electron transfer pathway were identified and open the way for further investigation by site directed mutagenesis studies. PMID:23832577
Anomalous electronic heat capacity of copper nanowires at sub-Kelvin temperatures
NASA Astrophysics Data System (ADS)
Viisanen, K. L.; Pekola, J. P.
2018-03-01
We have measured the electronic heat capacity of thin film nanowires of copper and silver at temperatures 0.1-0.3 K; the films were deposited by standard electron-beam evaporation. The specific heat of the Ag films of sub-100-nm thickness agrees with the bulk value and the free-electron estimate, whereas that of similar Cu films exceeds the corresponding reference values by one order of magnitude. The origin of the anomalously high heat capacity of copper films remains unknown for the moment. Based on the small heat capacity at low temperatures and the possibility to devise a tunnel probe thermometer on it, metal films form a promising absorber material, e.g., for microwave photon calorimetry.
Heat capacity of free electrons at the degenerate-nondegenerate transition
NASA Astrophysics Data System (ADS)
Nimtz, G.; Stadler, J. P.
1985-04-01
In this Brief Report the heat capacity of an electron gas at the degenerate-nondegenerate transition is presented. The values are deduced from hot-carrier data of InSb with ~=1014 electrons/cm3 determined by Maneval, Zylberstejn, and Budd.
Electron transfer across a thermal gradient
Craven, Galen T.
2016-01-01
Charge transfer is a fundamental process that underlies a multitude of phenomena in chemistry and biology. Recent advances in observing and manipulating charge and heat transport at the nanoscale, and recently developed techniques for monitoring temperature at high temporal and spatial resolution, imply the need for considering electron transfer across thermal gradients. Here, a theory is developed for the rate of electron transfer and the associated heat transport between donor–acceptor pairs located at sites of different temperatures. To this end, through application of a generalized multidimensional transition state theory, the traditional Arrhenius picture of activation energy as a single point on a free energy surface is replaced with a bithermal property that is derived from statistical weighting over all configurations where the reactant and product states are equienergetic. The flow of energy associated with the electron transfer process is also examined, leading to relations between the rate of heat exchange among the donor and acceptor sites as functions of the temperature difference and the electronic driving bias. In particular, we find that an open electron transfer channel contributes to enhanced heat transport between sites even when they are in electronic equilibrium. The presented results provide a unified theory for charge transport and the associated heat conduction between sites at different temperatures. PMID:27450086
Chuang, Chi-Hung; Porel, Mintu; Choudhury, Rajib; Burda, Clemens; Ramamurthy, V
2018-01-11
Results of our study on ultrafast electron transfer (eT) dynamics from coumarins (coumarin-1, coumarin-480, and coumarin-153) incarcerated within octa acid (OA) capsules as electron donors to methyl viologen dissolved in water as acceptor are presented. Upon photoexcitation, coumarin inside the OA capsule transfers an electron to the acceptor electrostatically attached to the capsule leading to a long-lived radical-ion pair separated by the OA capsular wall. This charge-separated state returns to the neutral ground state via back electron transfer on the nanosecond time scale. This system allows for ultrafast electron transfer processes through a molecular wall from the apolar capsular interior to the highly polar (aqueous) environment on the femtosecond time scale. Employing femtosecond transient absorption spectroscopy, distinct rates of both forward (1-25 ps) and backward eT (700-1200 ps) processes were measured. Further understanding of the energetics is provided using Rehm-Weller analysis for the investigated photoinduced eT reactions. The results provide the rates of the eT across a molecular wall, akin to an isotropic solution, depending on the standard free energy of the reaction. The insights from this work could be utilized in the future design of efficient electron transfer processes across interfaces separating apolar and polar environments.
Reimers, Jeffrey R; McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S
2015-10-14
While diabatic approaches are ubiquitous for the understanding of electron-transfer reactions and have been mooted as being of general relevance, alternate applications have not been able to unify the same wide range of observed spectroscopic and kinetic properties. The cause of this is identified as the fundamentally different orbital configurations involved: charge-transfer phenomena involve typically either 1 or 3 electrons in two orbitals whereas most reactions are typically closed shell. As a result, two vibrationally coupled electronic states depict charge-transfer scenarios whereas three coupled states arise for closed-shell reactions of non-degenerate molecules and seven states for the reactions implicated in the aromaticity of benzene. Previous diabatic treatments of closed-shell processes have considered only two arbitrarily chosen states as being critical, mapping these states to those for electron transfer. We show that such effective two-state diabatic models are feasible but involve renormalized electronic coupling and vibrational coupling parameters, with this renormalization being property dependent. With this caveat, diabatic models are shown to provide excellent descriptions of the spectroscopy and kinetics of the ammonia inversion reaction, proton transfer in N2H7(+), and aromaticity in benzene. This allows for the development of a single simple theory that can semi-quantitatively describe all of these chemical phenomena, as well as of course electron-transfer reactions. It forms a basis for understanding many technologically relevant aspects of chemical reactions, condensed-matter physics, chemical quantum entanglement, nanotechnology, and natural or artificial solar energy capture and conversion.
Electronic Transfer of School Records.
ERIC Educational Resources Information Center
Yeagley, Raymond
2001-01-01
Describes the electronic transfer of student records, notably the use of a Web-server named CHARLOTTE sponsored by the National Forum on Education Statistics and an Electronic Data Exchange system named SPEEDE/ExPRESS. (PKP)
Soltau, Sarah R.; Dahlberg, Peter D.; Niklas, Jens; Poluektov, Oleg G.; Mulfort, Karen L.
2016-01-01
A series of Ru–protein–Co biohybrids have been prepared using the electron transfer proteins ferredoxin (Fd) and flavodoxin (Fld) as scaffolds for photocatalytic hydrogen production. The light-generated charge separation within these hybrids has been monitored by transient optical and electron paramagnetic resonance spectroscopies. Two distinct electron transfer pathways are observed. The Ru–Fd–Co biohybrid produces up to 650 turnovers of H2 utilizing an oxidative quenching mechanism for Ru(ii)* and a sequential electron transfer pathway via the native [2Fe–2S] cluster to generate a Ru(iii)–Fd–Co(i) charge separated state that lasts for ∼6 ms. In contrast, a direct electron transfer pathway occurs for the Ru–ApoFld–Co biohybrid, which lacks an internal electron relay, generating Ru(i)–ApoFld–Co(i) charge separated state that persists for ∼800 μs and produces 85 turnovers of H2 by a reductive quenching mechanism for Ru(ii)*. This work demonstrates the utility of protein architectures for linking donor and catalytic function via direct or sequential electron transfer pathways to enable stabilized charge separation which facilitates photocatalysis for solar fuel production. PMID:28451142
Production of vibrationally excited N 2 by electron impact
NASA Astrophysics Data System (ADS)
Campbell, L.; Brunger, M. J.; Cartwright, D. C.; Teubner, P. J. O.
2004-08-01
Energy transfer from electrons to neutral gases and ions is one of the dominant electron cooling processes in the ionosphere, and the role of vibrationally excited N 2 in this is particularly significant. We report here the results from a new calculation of electron energy transfer rates ( Q) for vibrational excitation of N 2, as a function of the electron temperature Te. The present study was motivated by the development of a new cross-section compilation for vibrational excitation processes in N 2 which supercedes those used in the earlier calculations of the electron energy transfer rates. We show that the energy dependence and magnitude of these cross sections, particularly in the region of the well-known 2Π g resonance in N 2, significantly affect the calculated values of Q. A detailed comparison between the current and previous calculated electron energy transfer rates is made and coefficients are provided so that these rates for transitions from level 0 to levels 1-10 can be calculated for electron temperatures less than 6000 K.
NASA Astrophysics Data System (ADS)
Badrinarayanan, Rajagopalan; Zhao, Jiyun; Tseng, K. J.; Skyllas-Kazacos, Maria
2014-12-01
As with all redox flow batteries, the Vanadium Redox flow Battery (VRB) can suffer from capacity loss as the vanadium ions diffuse at different rates leading to a build-up on one half-cell and dilution on the other. In this paper an extended dynamic model of the vanadium ion transfer is developed including the effect of temperature and bulk electrolyte transfer. The model is used to simulate capacity decay for a range of different ion exchange membranes that are being used in the VRB. The simulations show that Selemion CMV and Nafion 115 membranes have similar behavior where the impact of temperature on capacity loss is highest within the first 100 cycles. The results for Selemion AMV membrane however are seen to be very different where the capacity loss at different temperatures observed to increase linearly with increasing charging/discharging cycles. The model is made more comprehensive by including the effect of bulk electrolyte transfer. A volume change of 19% is observed in each half-cell for Nafion 115 membrane based on the simulation parameters. The effect of this change in volume directly affects concentration, and the characteristics are analyzed for each vanadium species as well as the overall concentration in the half-cells.
Photogeneration of Charge Carriers in Bilayer Assemblies of Conjugated Rigid-Rod Polymers
1994-07-08
photoinduced electron transfer and exciplex formation at the bilayer interface. Thus photocarrier generation on photoexcitation of the conjugated rigid...rod polymers in the bilayer occurs by photoinduced electron transfer, forming intermolecular exciplexes which dissociate efficiently in electric field...photogeneration, conjugated rigid-rod polymers, is. MACI COD bilayer assemblies, electron transfer, exciplexes . 11. SEOJUTY CLASUICA 10. 51(11MIE CLASSIMIAVION
Telematics and satellites. Part 1: Information systems
NASA Astrophysics Data System (ADS)
Burke, W. R.
1980-06-01
Telematic systems are identified and described. The applications are examined emphasizing the role played by satellite links. The discussion includes file transfer, examples of distributed processor systems, terminal communication, information retrieval systems, office information systems, electronic preparation and publishing of information, electronic systems for transfer of funds, electronic mail systems, record file transfer characteristics, intra-enterprise networks, and inter-enterprise networks.
Is back-electron transfer process in Betaine-30 coherent?
NASA Astrophysics Data System (ADS)
Rafiq, Shahnawaz; Scholes, Gregory D.
2017-09-01
The possible role of coherent vibrational motion in ultrafast photo-induced electron transfer remains unclear despite considerable experimental and theoretical advances. We revisited this problem by tracking the back-electron transfer (bET) process in Betaine-30 with broadband pump-probe spectroscopy. Dephasing time constant of certain high-frequency vibrations as a function of solvent shows a trend similar to the ET rates. In the purview of Bixon-Jortner model, high-frequency quantum vibrations bridge the reactant-product energy gap by providing activationless vibronic channels. Such interaction reduces the effective coupling significantly and thereby the coherence effects are eliminated due to energy gap fluctuations, making the back-electron transfer incoherent.
NASA Astrophysics Data System (ADS)
Li, Lesheng; Giokas, Paul G.; Kanai, Yosuke; Moran, Andrew M.
2014-06-01
Kinetic models based on Fermi's Golden Rule are commonly employed to understand photoinduced electron transfer dynamics at molecule-semiconductor interfaces. Implicit in such second-order perturbative descriptions is the assumption that nuclear relaxation of the photoexcited electron donor is fast compared to electron injection into the semiconductor. This approximation breaks down in systems where electron transfer transitions occur on 100-fs time scale. Here, we present a fourth-order perturbative model that captures the interplay between time-coincident electron transfer and nuclear relaxation processes initiated by light absorption. The model consists of a fairly small number of parameters, which can be derived from standard spectroscopic measurements (e.g., linear absorbance, fluorescence) and/or first-principles electronic structure calculations. Insights provided by the model are illustrated for a two-level donor molecule coupled to both (i) a single acceptor level and (ii) a density of states (DOS) calculated for TiO2 using a first-principles electronic structure theory. These numerical calculations show that second-order kinetic theories fail to capture basic physical effects when the DOS exhibits narrow maxima near the energy of the molecular excited state. Overall, we conclude that the present fourth-order rate formula constitutes a rigorous and intuitive framework for understanding photoinduced electron transfer dynamics that occur on the 100-fs time scale.
Marsili, Enrico; Rollefson, Janet B.; Baron, Daniel B.; Hozalski, Raymond M.; Bond, Daniel R.
2008-01-01
While electrochemical characterization of enzymes immobilized on electrodes has become common, there is still a need for reliable quantitative methods for study of electron transfer between living cells and conductive surfaces. This work describes growth of thin (<20 μm) Geobacter sulfurreducens biofilms on polished glassy carbon electrodes, using stirred three-electrode anaerobic bioreactors controlled by potentiostats and nondestructive voltammetry techniques for characterization of viable biofilms. Routine in vivo analysis of electron transfer between bacterial cells and electrodes was performed, providing insight into the main redox-active species participating in electron transfer to electrodes. At low scan rates, cyclic voltammetry revealed catalytic electron transfer between cells and the electrode, similar to what has been observed for pure enzymes attached to electrodes under continuous turnover conditions. Differential pulse voltammetry and electrochemical impedance spectroscopy also revealed features that were consistent with electron transfer being mediated by an adsorbed catalyst. Multiple redox-active species were detected, revealing complexity at the outer surfaces of this bacterium. These techniques provide the basis for cataloging quantifiable, defined electron transfer phenotypes as a function of potential, electrode material, growth phase, and culture conditions and provide a framework for comparisons with other species or communities. PMID:18849456
Cabo Verde telemedicine program: initial results of nationwide implementation.
Latifi, Rifat; Dasho, Erion; Merrell, Ronald C; Lopes, Miguel; Azevedo, Vanda; Bekteshi, Flamur; Osmani, Kalterina L; Qesteri, Orland; Kucani, Julian; Lecaj, Ismet
2014-11-01
Telemedicine and e-health have been suggested as one solution for closing the health disparity gap between the developed world and the developing world. Yet evidence is lacking from current successful programs in the developing world and, in particular, from sub-Saharan Africa. The primary objective of our study was to present the preliminary results of our efforts in building the Integrated Telemedicine and e-Health Program for Cabo Verde (ITeHP-CV), with an emphasis on initial utilization and results. This is a prospective study of data collected while we worked to establish a fully functional, integrated national telemedicine network and virtual education network in Cabo Verde. We used the International Virtual e-Hospital Foundation strategic approach known as "initiate-build-operate-transfer" over a 26-month period (November 2011-December 2013). We describe herein the five main pillars of this process that have been implemented: (1) capacity building; (2) network development and deployment of equipment; (3) implementation of clinical telemedicine; (4) implementation of activities related to continuing medical education, delivered from within the country and from abroad; and (5) establishment and use of the electronic virtual library. Based on comprehensive technical and medical assessment of the country's needs, 10 fully functional telemedicine centers in all nine inhabited islands of the Republic of Cabo Verde have been established. RESULTS are presented under the five main pillars of capacity building, network deployment, implementation of clinical telemedicine, implementation of continuing medical education activities, and establishment of the electronic virtual library. The ITeHP-CV has been successfully launched, and the initial results are encouraging. The continuity of the program and sustainability are primary goals once the program is transferred fully to the Ministry of Health of Cabo Verde. A long-term follow-up study is required in order to ensure sustainability and continuity goals are met.
Real-time electron transfer in respiratory complex I
Verkhovskaya, Marina L.; Belevich, Nikolai; Euro, Liliya; Wikström, Mårten; Verkhovsky, Michael I.
2008-01-01
Electron transfer in complex I from Escherichia coli was investigated by an ultrafast freeze-quench approach. The reaction of complex I with NADH was stopped in the time domain from 90 μs to 8 ms and analyzed by electron paramagnetic resonance (EPR) spectroscopy at low temperatures. The data show that after binding of the first molecule of NADH, two electrons move via the FMN cofactor to the iron–sulfur (Fe/S) centers N1a and N2 with an apparent time constant of ≈90 μs, implying that these two centers should have the highest redox potential in the enzyme. The rate of reduction of center N2 (the last center in the electron transfer sequence) is close to that predicted by electron transfer theory, which argues for the absence of coupled proton transfer or conformational changes during electron transfer from FMN to N2. After fast reduction of N1a and N2, we observe a slow, ≈1-ms component of reduction of other Fe/S clusters. Because all elementary electron transfer rates between clusters are several orders of magnitude higher than this observed rate, we conclude that the millisecond component is limited by a single process corresponding to dissociation of the oxidized NAD+ molecule from its binding site, where it prevents entry of the next NADH molecule. Despite the presence of approximately one ubiquinone per enzyme molecule, no transient semiquinone formation was observed, which has mechanistic implications, suggesting a high thermodynamic barrier for ubiquinone reduction to the semiquinone radical. Possible consequences of these findings for the proton translocation mechanism are discussed. PMID:18316732
Dexter energy transfer pathways
Skourtis, Spiros S.; Liu, Chaoren; Antoniou, Panayiotis; Virshup, Aaron M.; Beratan, David N.
2016-01-01
Energy transfer with an associated spin change of the donor and acceptor, Dexter energy transfer, is critically important in solar energy harvesting assemblies, damage protection schemes of photobiology, and organometallic opto-electronic materials. Dexter transfer between chemically linked donors and acceptors is bridge mediated, presenting an enticing analogy with bridge-mediated electron and hole transfer. However, Dexter coupling pathways must convey both an electron and a hole from donor to acceptor, and this adds considerable richness to the mediation process. We dissect the bridge-mediated Dexter coupling mechanisms and formulate a theory for triplet energy transfer coupling pathways. Virtual donor–acceptor charge-transfer exciton intermediates dominate at shorter distances or higher tunneling energy gaps, whereas virtual intermediates with an electron and a hole both on the bridge (virtual bridge excitons) dominate for longer distances or lower energy gaps. The effects of virtual bridge excitons were neglected in earlier treatments. The two-particle pathway framework developed here shows how Dexter energy-transfer rates depend on donor, bridge, and acceptor energetics, as well as on orbital symmetry and quantum interference among pathways. PMID:27382185
Dexter energy transfer pathways.
Skourtis, Spiros S; Liu, Chaoren; Antoniou, Panayiotis; Virshup, Aaron M; Beratan, David N
2016-07-19
Energy transfer with an associated spin change of the donor and acceptor, Dexter energy transfer, is critically important in solar energy harvesting assemblies, damage protection schemes of photobiology, and organometallic opto-electronic materials. Dexter transfer between chemically linked donors and acceptors is bridge mediated, presenting an enticing analogy with bridge-mediated electron and hole transfer. However, Dexter coupling pathways must convey both an electron and a hole from donor to acceptor, and this adds considerable richness to the mediation process. We dissect the bridge-mediated Dexter coupling mechanisms and formulate a theory for triplet energy transfer coupling pathways. Virtual donor-acceptor charge-transfer exciton intermediates dominate at shorter distances or higher tunneling energy gaps, whereas virtual intermediates with an electron and a hole both on the bridge (virtual bridge excitons) dominate for longer distances or lower energy gaps. The effects of virtual bridge excitons were neglected in earlier treatments. The two-particle pathway framework developed here shows how Dexter energy-transfer rates depend on donor, bridge, and acceptor energetics, as well as on orbital symmetry and quantum interference among pathways.
Effect of proton transfer on the electronic coupling in DNA
NASA Astrophysics Data System (ADS)
Rak, Janusz; Makowska, Joanna; Voityuk, Alexander A.
2006-06-01
The effects of single and double proton transfer within Watson-Crick base pairs on donor-acceptor electronic couplings, Vda, in DNA are studied on the bases of quantum chemical calculations. Four dimers [AT,AT], [GC,GC], [GC,AT] and [GC,TA)] are considered. Three techniques - the generalized Mulliken-Hush scheme, the fragment charge method and the diabatic states method - are employed to estimate Vda for hole transfer between base pairs. We show that both single- and double proton transfer (PT) reactions may substantially affect the electronic coupling in DNA. The electronic coupling in [AT,AT] is predicted to be most sensitive to PT. Single PT within the first base pair in the dimer leads to increase in the hole transfer efficiency by a factor of 4, while proton transfer within the second pair should substantially, by 2.7 times, decrease the rate of charge transfer. Thus, directional asymmetry of the PT effects on the electronic coupling is predicted. The changes in the Vda matrix elements correlate with the topological properties of orbitals of donor and acceptor and can be qualitatively rationalized in terms of resonance structures of donor and acceptor. Atomic pair contributions to the Vda matrix elements are also analyzed.
Copper/carbon coated lithium sodium titanate as advanced anode material for lithium-ion batteries
NASA Astrophysics Data System (ADS)
Wu, Kaiqiang; Lin, Xiaoting; Shao, Lianyi; Shui, Miao; Long, Nengbing; Ren, Yuanlong; Shu, Jie
2014-08-01
Core-shell Li2Na2Ti6O14@Cu/C is prepared by a preliminary formation of Li2Na2Ti6O14 by solid state reaction and a following coating process with Cu/C layer by thermal decomposition. The amorphous Cu/C coating layer reveals a thickness of 5 nm on the surface of Li2Na2Ti6O14, which improves the electronic conductivity and charge transfer rate of active materials. As a result, Li2Na2Ti6O14@Cu/C shows lower electrochemical polarization and quicker kinetic behavior compared to bare Li2Na2Ti6O14. Cycled at 50 mA g-1, Li2Na2Ti6O14@Cu/C can deliver a reversible capacity of 120.3 mAh g-1 after 50 cycles, which is much higher than the value of 96.8 mAh g-1 obtained by Li2Na2Ti6O14. Even kept at 400 mA g-1, a reversible lithium storage capacity of 76.3 mAh g-1 can be delivered by Li2Na2Ti6O14@Cu/C. The improved electrochemical properties of Li2Na2Ti6O14 are attributed to the electronic conductive Cu/C coating layer on the surface.
NASA Astrophysics Data System (ADS)
Cao, Jingchao; Hu, Guorong; Peng, Zhongdong; Du, Ke; Cao, Yanbing
2015-05-01
A conducting polypyrrole thin film is successfully coated onto the surface of LiCoO2 by a simple chemical polymerization method. The structure and morphology of pristine LiCoO2 and PPy-coated LiCoO2 are investigated by the techniques of X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM). Energy dispersive X-ray spectroscopy (EDXS), Fourier transform infrared spectrometry (FTIR) and thermogravimetric analysis (TGA) further demonstrate the existence of PPy. The electrochemical properties of the composites are investigated by galvanostatic charge-discharge test and AC impedance measurements, which show that the conductive PPy film on the surface significantly decrease the charge-transfer resistance of LiCoO2. The PPy-coated LiCoO2 exhibits a good electrochemical performance, showing initial discharge capacity of 182 mAh g-1 and retains 94.3% after 170 cycles. However, the retention of pristine LiCoO2 is only 83.5%. The rate capability results show that the reversible capacity retention (10C/0.2C) of LiCoO2 increases from 52.4% to 80.1% after being coated with PPy. The continuously coated thin PPy film is just like a capsule shell, which can protect the core (LiCoO2) from corrosion causing by the HF attacking and greatly reduce the dissolution of Co into electrolyte.
Wang, Bo; Liu, Anmin; Abdulla, Wael Al; Wang, Dianlong; Zhao, X S
2015-05-21
Electron transfer and lithium ion diffusion rates are the key factors limiting the lithium ion storage in anisotropic LiFePO4 electrodes. In this work, we employed a facile solvothermal method to synthesize a "platelet-on-sheet" LiFePO4/graphene composite (LFP@GNs), which is LiFePO4 nanoplatelets in situ grown on graphene sheets with highly oriented (010) facets of LiFePO4 crystals. Such a two-phase contact mode with graphene sheets cross-linked to form a three-dimensional porous network is favourable for both fast lithium ion and electron transports. As a result, the designed LFP@GNs displayed a high rate capability (∼56 mA h g(-1) at 60 C) and long life cycling stability (∼87% capacity retention over 1000 cycles at 10 C). For comparison purposes, samples ex situ modified with graphene (LFP/GNs) as well as pure LiFePO4 platelets (LFP) were also prepared and investigated. More importantly, the obtained LFP@GNs can be used as a basic unit for constructing more complex structures to further improve electrochemical performance, such as coating the exposed LFP surface with a thin layer of carbon to build a C@LFP@GN composite to further enhance its cycling stability (∼98% capacity retention over 1000 cycles at 10 C).
NASA Astrophysics Data System (ADS)
Ri, Gum-Chol; Choe, Song-Hyok; Yu, Chol-Jun
2018-02-01
Natural abundance of sodium and its similar behavior to lithium triggered recent extensive studies of cost-effective sodium-ion batteries (SIBs) for large-scale energy storage systems. A challenge is to develop electrode materials with a high electrode potential, specific capacity and a good rate capability. In this work we propose mixed eldfellite compounds Nax(Fe1/2M1/2) (SO4)2 (x = 0-2, M = Mn, Co, Ni) as a new family of high electrode potential cathodes of SIBs and present their material properties predicted by first-principles calculations. The structural optimizations show that these materials have significantly small volume expansion rates below 5% upon Na insertion/desertion with negative Na binding energies. Through the electronic structure calculations, we find band insulating properties and hole (and/or electron) polaron hoping as a possible mechanism for the charge transfer. Especially we confirm the high electrode voltages over 4 V with reasonably high specific capacities. We also investigate the sodium ion mobility by estimating plausible diffusion pathways and calculating the corresponding activation barriers, demonstrating the reasonably fast migrations of sodium ions during the operation. Our calculation results indicate that these mixed eldfellite compounds can be suitable materials for high performance SIB cathodes.
NASA Astrophysics Data System (ADS)
Ma, Ting; Muslim, Arzugul; Su, Zhi
2015-05-01
Nano structured LiMnBO3/C cathode materials are synthesized by a fast microwave solid-state reaction method using MnCO3, Li2CO3, H3BO3 and glucose as starting materials for the first time. The crystal structure, morphology and electrochemical properties of LiMnBO3/C composites are characterized by X-ray diffraction (XRD), raman spectroscopy (Ramon), scanning electron microscopy (SEM), transmission electron microscopy (TEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and charge-discharge tests. The result shows that not only monoclinic LiMnBO3/C but also hexagonal LiMnBO3/C cathode materials can be successfully synthesized by microwave solid-state method with power of 240 W in different time. Compared with h-LiMnBO3/C and mixed phase LiMnBO3/C, m-LiMnBO3/C displays lower charge-transfer resistance and the Warburg impedance, so it reveals a higher first discharge capacity of 156.3 mAh g-1 at 0.05 C within 1.8V-4.6 V, The value increases up to 173.2 mAh g-1 caused by the activation process. Even after 50 cycles, the discharge capacity of m-LiMnBO3/C still remains at 148.2 mAh g-1.
Alsharaeh, Edreese; Ahmed, Faheem; Aldawsari, Yazeed; Khasawneh, Majdi; Abuhimd, Hatem; Alshahrani, Mohammad
2016-01-01
In this work, holey reduced graphene oxide (HRGO) was synthesized by the deposition of silver (Ag) nanoparticles onto the reduced graphene oxide (RGO) sheets followed by nitric acid treatment to remove Ag nanoparticles by microwave irradiation to form a porous structure. The HRGO were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), ultra violet-visible spectroscopy (UV-Vis), thermogravimetric analysis (TGA), and Raman spectroscopy. These novel HRGO exhibited high rate capability with excellent cycling stability as an anode material for lithium-ion batteries. The results have shown an excellent electrochemical response in terms of charge/discharge capacity (423 mAh/g at 100 mA/g). The cyclic performance was also exceptional as a high reversible capacity (400 mAh/g at 100 mA/g) was retained for 100 charge/discharge cycles. This fascinating electrochemical performance can be ascribed to their specific porous structure (2–5 nm pores) and high surface area (457 m2/g), providing numerous active sites for Li+ insertion, high electrical conductivity, low charge-transfer resistance across the electrolyte–electrode interface, and improved structural stability against the local volume change during Li+ insertion–extraction. Such electrodes are envisioned to be mass scalable with relatively simple and low-cost fabrication procedures, thereby providing a clear pathway toward commercialization. PMID:27457356
Scholz, Mirko; Flender, Oliver; Boschloo, Gerrit; Oum, Kawon; Lenzer, Thomas
2017-03-08
The stability of dye cations against recombination with conduction band electrons in mesoporous TiO 2 electrodes is a key property for improving light harvesting in dye-sensitised solar cells. Using ultrafast transient broadband absorption spectroscopy, we monitor efficient intramolecular hole transfer in the solar cell dye E6 having two peripheral triarylamine acceptors. After photoexcitation, two hole transfer mechanisms are identified: a concerted mechanism for electron injection and hole transfer (2.4 ps) and a sequential mechanism with time constants of 3.9 ps and 30 ps. This way the dye retards unwanted recombination with a TiO 2 conduction band electron by quickly moving the hole further away from the surface. Contact of the E6/TiO 2 surface with the solvent acetonitrile has almost no influence on the electron injection and hole transfer kinetics. Fast hole transfer (2.8 ps) is also observed on a "non-injecting" Al 2 O 3 surface generating a radical cation-radical anion species with a lifetime of 530 ps. The findings confirm the good intramolecular hole transfer properties of this dye on both thin films. In contrast, intramolecular hole transfer does not occur in the mid-polar organic solvent methyl acetate. This is confirmed by TDDFT calculations suggesting a polarity-induced reduction of the driving force for hole transfer. In methyl acetate, only the relaxation of the initially photoexcited core chromophore is observed including solvent relaxation processes of the electronically excited state S 1 /ICT.
Abdeen, Nishard; Cross, Albert; Cron, Gregory; White, Steven; Rand, Thomas; Miller, David; Santyr, Giles
2006-08-01
We used the dual capability of hyperpolarized 129Xe for spectroscopy and imaging to develop new measures of xenon diffusing capacity in the rat lung that (analogously to the diffusing capacity of carbon monoxide or DLCO) are calculated as a product of total lung volume and gas transfer rate constants divided by the pressure gradient. Under conditions of known constant pressure breath-hold, the volume is measured by hyperpolarized 129Xe MRI, and the transfer rate is measured by dynamic spectroscopy. The new quantities (xenon diffusing capacity in lung parenchyma (DLXeLP)), xenon diffusing capacity in RBCs (DLXeRBC), and total lung xenon diffusing capacity (DLXe)) were measured in six normal rats and six rats with lung inflammation induced by instillation of fungal spores of Stachybotrys chartarum. DLXeLP, DLXeRBC, and DLXe were 56 +/- 10 ml/min/mmHg, 64 +/- 35 ml/min/mmHg, and 29 +/- 9 ml/min/mmHg, respectively, for normal rats, and 27 +/- 9 ml/min/mmHg, 42 +/- 27 ml/min/mmHg, and 16 +/- 7 ml/min/mmHg, respectively, for diseased rats. Lung volumes and gas transfer times for LP (TtrLP) were 16 +/- 2 ml and 22 +/- 3 ms, respectively, for normal rats and 12 +/- 2 ml and 35 +/- 8 ms, respectively, for diseased rats. Xenon diffusing capacities may be useful for measuring changes in gas exchange associated with inflammation and other lung diseases. Copyright 2006 Wiley-Liss, Inc.
Electronic Data Interchange: Using Technology to Exchange Transcripts.
ERIC Educational Resources Information Center
Stewart, John T.
1994-01-01
Describes the Florida Automated System for Transferring Educational Records (FASTER) project, which permits the electronic exchange of student transcripts; uses of similar electronic data interchange (EDI) programs in other states; and the national SPEEDE/ExPRESS project, which uses a standard format for transferring electronic transcripts.…
Designing Tasks to Promote and Assess Mathematical Transfer in Primary School Children
ERIC Educational Resources Information Center
Clark, Julie; Page, Shaileigh; Thornton, Steve
2013-01-01
This study aims to design learning situations and tasks that promote and assess the capacity of primary school children to transfer mathematical knowledge to new contexts. We discuss previous studies investigating mathematical transfer, and particularly the strengths and limitations of tasks used to assess transfer in these studies. We describe…
Consolidated Transfer Report. Transfer Policy and Upper-Division Baccalaureate Capacity
ERIC Educational Resources Information Center
Washington Higher Education Coordinating Board, 2006
2006-01-01
Transfer is a primary strategy for providing access to baccalaureate-level education in Washington State. For thousands of students, transfer is an effective and efficient way to complete their studies. About 41 percent of the 16,800 students awarded degrees at Washington public baccalaureate institutions in the 2000-2001 academic year had…
Electronic coupling in long-range electron transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newton, M.D.
1996-12-31
One of the quantities crucial in controlling electron transfer (et) kinetics is the donor/acceptor electronic coupling integral (HDA). Recent theoretical models for HDA will be presented, and the results of ab initio computational implementation will be reported and analyzed for several metal-to-metal ligand charge transfer processes in complex molecular aggregates. New procedures for defining diabatic states, including a generalization of the Mulliken-Hush model, allow applications to optical and excited state as well as ground state et in a many-state framework.
Electron transfer statistics and thermal fluctuations in molecular junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goswami, Himangshu Prabal; Harbola, Upendra
2015-02-28
We derive analytical expressions for probability distribution function (PDF) for electron transport in a simple model of quantum junction in presence of thermal fluctuations. Our approach is based on the large deviation theory combined with the generating function method. For large number of electrons transferred, the PDF is found to decay exponentially in the tails with different rates due to applied bias. This asymmetry in the PDF is related to the fluctuation theorem. Statistics of fluctuations are analyzed in terms of the Fano factor. Thermal fluctuations play a quantitative role in determining the statistics of electron transfer; they tend tomore » suppress the average current while enhancing the fluctuations in particle transfer. This gives rise to both bunching and antibunching phenomena as determined by the Fano factor. The thermal fluctuations and shot noise compete with each other and determine the net (effective) statistics of particle transfer. Exact analytical expression is obtained for delay time distribution. The optimal values of the delay time between successive electron transfers can be lowered below the corresponding shot noise values by tuning the thermal effects.« less
Dynamic load testing on the bearing capacity of prestressed tubular concrete piles in soft ground
NASA Astrophysics Data System (ADS)
Yu, Chuang; Liu, Songyu
2008-11-01
Dynamic load testing (DLT) is a high strain test method for assessing pile performance. The shaft capacity of a driven PTC (prestressed tubular concrete) pile in marine soft ground will vary with time after installation. The DLT method has been successfully transferred to the testing of prestressed pipe piles in marine soft clay of Lianyungang area in China. DLT is investigated to determine the ultimate bearing capacity of single pile at different period after pile installation. The ultimate bearing capacity of single pile was founded to increase more than 70% during the inventing 3 months, which demonstrate the time effect of rigid pile bearing capacity in marine soft ground. Furthermore, the skin friction and axial force along the pile shaft are presented as well, which present the load transfer mechanism of pipe pile in soft clay. It shows the economy and efficiency of DLT method compared to static load testing method.
Extracellular electron transfer mechanisms between microorganisms and minerals.
Shi, Liang; Dong, Hailiang; Reguera, Gemma; Beyenal, Haluk; Lu, Anhuai; Liu, Juan; Yu, Han-Qing; Fredrickson, James K
2016-10-01
Electrons can be transferred from microorganisms to multivalent metal ions that are associated with minerals and vice versa. As the microbial cell envelope is neither physically permeable to minerals nor electrically conductive, microorganisms have evolved strategies to exchange electrons with extracellular minerals. In this Review, we discuss the molecular mechanisms that underlie the ability of microorganisms to exchange electrons, such as c-type cytochromes and microbial nanowires, with extracellular minerals and with microorganisms of the same or different species. Microorganisms that have extracellular electron transfer capability can be used for biotechnological applications, including bioremediation, biomining and the production of biofuels and nanomaterials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bose, A; Gardel, EJ; Vidoudez, C
Oxidation-reduction reactions underlie energy generation in nearly all life forms. Although most organisms use soluble oxidants and reductants, some microbes can access solid-phase materials as electron-acceptors or -donors via extracellular electron transfer. Many studies have focused on the reduction of solid-phase oxidants. Far less is known about electron uptake via microbial extracellular electron transfer, and almost nothing is known about the associated mechanisms. Here we show that the iron-oxidizing photoautotroph Rhodopseudomonas palustris TIE-1 accepts electrons from a poised electrode, with carbon dioxide as the sole carbon source/electron acceptor. Both electron uptake and ruBisCo form I expression are stimulated by light.more » Electron uptake also occurs in the dark, uncoupled from photosynthesis. Notably, the pioABC operon, which encodes a protein system essential for photoautotrophic growth by ferrous iron oxidation, influences electron uptake. These data reveal a previously unknown metabolic versatility of photoferrotrophs to use extracellular electron transfer for electron uptake.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-22
... Greenhouse Gas Reporting Program: Electronics Manufacturing: Revisions to Heat Transfer Fluid Provisions... technical revisions to the electronics manufacturing source category of the Greenhouse Gas Reporting Rule... related to the electronics manufacturing source category. DATES: This rule will be effective on March 23...
12 CFR 1005.9 - Receipts at electronic terminals; periodic statements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... TRANSFERS (REGULATION E) General § 1005.9 Receipts at electronic terminals; periodic statements. (a... institution shall make a receipt available to a consumer at the time the consumer initiates an electronic fund transfer at an electronic terminal. The receipt shall set forth the following information, as applicable...
12 CFR 1005.9 - Receipts at electronic terminals; periodic statements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... TRANSFERS (REGULATION E) General § 1005.9 Receipts at electronic terminals; periodic statements. (a... institution shall make a receipt available to a consumer at the time the consumer initiates an electronic fund transfer at an electronic terminal. The receipt shall set forth the following information, as applicable...
12 CFR 1005.9 - Receipts at electronic terminals; periodic statements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... TRANSFERS (REGULATION E) § 1005.9 Receipts at electronic terminals; periodic statements. (a) Receipts at... shall make a receipt available to a consumer at the time the consumer initiates an electronic fund transfer at an electronic terminal. The receipt shall set forth the following information, as applicable...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-12
... electronic funds transfer information to maintain its vendor (credit union) records to make electronic... maintain current electronic funds transfer data for its vendor (credit union) electronic routing and... the information on the respondents such as through the use of automated collection techniques or other...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.
In this study, a new mechanism for the reduction of vanadyl acetylacetonate, VO(acac)2, to vanadium acetylacetonate, V(acac)3, is introduced. V(acac)3 has been studied for use in redox flow batteries (RFBs) for some time; however, contamination by moisture leads to the formation of VO(acac)2. In previous work, once this transformation occurs, it is no longer reversible because there is a requirement for extreme low potentials for the reduction to occur. Here, we propose that, in the presence of excess acetylacetone (Hacac) and free protons (H+), the reduction can take place between 2.25 and 1.5 V versus Na/Na+ via a one-electron-transfer reduction.more » This reduction can take place in situ during discharge in a novel hybrid Na-based flow battery (HNFB) with a molten Na–Cs alloy as the anode. The in situ recovery of V(acac)3 during discharge is shown to allow the Coulombic efficiency of the HNFB to be ≈100 % with little or no capacity decay over cycles. In addition, utilizing two-electron-transfer redox reactions (i.e., V3+/V4+ and V2+/V3+ redox couples) per V ion to increase the energy density of RFBs becomes possible owing to the in situ recovery of V(acac)3 during discharge. The concept of in situ recovery of material can lead to more advances in maintaining the cycle life of RFBs in the future.« less
Guo, Lichao; Li, Jiajun; Cao, Tingting; Wang, Huayu; Zhao, Naiqin; He, Fang; Shi, Chunsheng; He, Chunnian; Liu, Enzuo
2016-09-21
Sluggish surface reaction kinetics hinders the power density of Li-ion battery. Thus, various surface modification techniques have been applied to enhance the electronic/ionic transfer kinetics. However, it is challenging to obtain a continuous and uniform surface modification layer on the prime particles with structure integration at the interface. Instead of classic physical-adsorption/deposition techniques, we propose a novel chemical-adsorption strategy to synthesize double-shell modified lithium-rich layered cathodes with enhanced mass transfer kinetics. On the basis of experimental measurement and first-principles calculation, MoO2S2 ions are proved to joint the layered phase via chemical bonding. Specifically, the Mo-O or Mo-S bonds can flexibly rotate to bond with the cations in the layered phase, leading to the good compatibility between the thiomolybdate adsorption layer and layered cathode. Followed by annealing treatment, the lithium-excess-spinel inner shell forms under the thiomolybdate adsorption layer and functions as favorable pathways for lithium and electron. Meanwhile, the nanothick MoO3-x(SO4)x outer shell protects the transition metal from dissolution and restrains electrolyte decomposition. The double-shell modified sample delivers an enhanced discharge capacity almost twice as much as that of the unmodified one at 1 A g(-1) after 100 cycles, demonstrating the superiority of the surface modification based on chemical adsorption.
Du, Wei; Zhang, Bilin; Guo, Pengqi; Chen, Guoning; Chang, Chun; Fu, Qiang
2018-03-15
Dexamethasone-imprinted polymers were fabricated by reversible addition-fragmentation chain transfer polymerization on the surface of magnetic nanoparticles under mild polymerization conditions, which exhibited a narrow polydispersity and high selectivity for dexamethasone extraction. The dexamethasone-imprinted polymers were characterized by scanning electron microscopy, transmission electron microscope, Fourier transform infrared spectroscopy, X-ray diffraction, energy dispersive spectrometry, and vibrating sample magnetometry. The adsorption performance was evaluated by static adsorption, kinetic adsorption and selectivity tests. The results confirmed the successful construction of an imprinted polymer layer on the surface of the magnetic nanoparticles, which benefits the characteristics of high adsorption capacity, fast mass transfer, specific molecular recognition, and simple magnetic separation. Combined with high-performance liquid chromatography, molecularly imprinted polymers as magnetic extraction sorbents were used for the rapid and selective extraction and determination of dexamethasone in skincare cosmetic samples, with the accuracies of the spiked samples ranging from 93.8 to 97.6%. The relative standard deviations were less than 2.7%. The limit of detection and limit of quantification were 0.05 and 0.20 μg/mL, respectively. The developed method was simple, fast and highly selective and could be a promising method for dexamethasone monitoring in cosmetic products. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Evaluation of Laminaria-based microbial fuel cells (LbMs) for electricity production.
Gadhamshetty, Venkataramana; Belanger, Derek; Gardiner, Carly-Jeanne; Cummings, Anasha; Hynes, Anne
2013-01-01
Marine algae represents a sustainable feedstock in microbial fuel cells (MFCs) due to its low water and energy requirements for cultivation, higher capacity to sequester carbondioxide, and high carbohydrate content. Two-compartment MFCs were evaluated under batch-fed mode using Laminaria saccharina as the model for algae-based electron donor, and mixed microbial consortia as the biocatalyst, in the anode compartment. The Laminaria-based MFCs (LBMs) were studied with three different pretreatment conditions for the L. saccharina: (i) autoclaving (Auto), (ii) microwave irradiation (Micro), and (iii) as received treatment (No-Treat). A control was setup to establish base line performance for two-compartment MFCs using glucose as the electron donor in the anode. The performance of LBMs (250 mW/m(2) and 900 mA/m(2)) was on par with glucose-based MFCs. AC impedance analysis revealed that the charge transfer resistance was at least 50-fold higher than the corresponding ohmic losses in both LBMs and glucose-based MFCs. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Ruihong; Li, Junli; Qi, Kaiyu; Ge, Xin; Zhang, Qiwei; Zhang, Bangwen
2018-03-01
Silicon is one of the most promising candidates for next-generation anode of Lithium-ion batteries. However, poor electrical conductivity and large volume change during alloying/dealloying hinder its practical use. Here we reported a three-dimensional (3D) nitrogen and sulfur codoped graphene supported silicon nanoparticles composite (SN-G/Si) through one-step hydrothermal self-assembly. The obtained SN-G/Si was investigated in term of instrumental characterizations and electrochemical properties. The results show that SN-G/Si as a freestanding anode in LIBs delivers a reversible capacity of 2020 mAh g-1 after 100 cycles with coulombic efficiency of nearly 97%. The excellent electrochemical performance is associated with the unique structure and the synergistic effect of SN-G/Si, in which SN-G provides volume buffer for nano Si as the flexible loader, short paths/fast channels for electron/Li ion transport as porous skeleton, and low charge-transfer resistance.
Control voltage and power fluctuations when connecting wind farms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berinde, Ioan, E-mail: ioan-berinde@yahoo.com; Bălan, Horia, E-mail: hbalan@mail.utcluj.ro; Oros, Teodora Susana, E-mail: teodoraoros-87@yahoo.com
2015-12-23
Voltage, frequency, active power and reactive power are very important parameters in terms of power quality. These parameters are followed when connecting any power plant, the more the connection of wind farms. Connecting wind farms to the electricity system must not cause interference outside the limits set by regulations. Modern solutions for fast and automatic voltage control and power fluctuations using electronic control systems of reactive power flows. FACTS (Flexible Alternating Current Transmision System) systems, established on the basis of power electronic circuits ensure control of electrical status quantities to achieve the necessary transfer of power to the power grid.more » FACTS devices can quickly control parameters and sizes of state power lines, such as impedance line voltages and phase angles of the voltages of the two ends of the line. Their use can lead to improvement in power system operation by increasing the transmission capacity of power lines, power flow control lines, improved static and transient stability reserve.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekiert, Robert; Czapla, Monika; Sarewicz, Marcin
2014-08-22
Highlights: • We used hybrid fusion bc{sub 1} complex to test inter-monomer electron transfer in vivo. • Cross-inactivated complexes were able to sustain photoheterotrophic growth. • Inter-monomer electron transfer supports catalytic cycle in vivo. • bc{sub 1} dimer is functional even when cytochrome b subunits come from different species. - Abstract: Electronic connection between Q{sub o} and Q{sub i} quinone catalytic sites of dimeric cytochrome bc{sub 1} is a central feature of the energy-conserving Q cycle. While both the intra- and inter-monomer electron transfers were shown to connect the sites in the enzyme, mechanistic and physiological significance of the lattermore » remains unclear. Here, using a series of mutated hybrid cytochrome bc{sub 1}-like complexes, we show that inter-monomer electron transfer robustly sustains the function of the enzyme in vivo, even when the two subunits in a dimer come from different species. This indicates that minimal requirement for bioenergetic efficiency is to provide a chain of cofactors for uncompromised electron flux between the catalytic sites, while the details of protein scaffold are secondary.« less
Distal [FeS]-Cluster Coordination in [NiFe]-Hydrogenase Facilitates Intermolecular Electron Transfer
Petrenko, Alexander; Stein, Matthias
2017-01-01
Biohydrogen is a versatile energy carrier for the generation of electric energy from renewable sources. Hydrogenases can be used in enzymatic fuel cells to oxidize dihydrogen. The rate of electron transfer (ET) at the anodic side between the [NiFe]-hydrogenase enzyme distal iron–sulfur cluster and the electrode surface can be described by the Marcus equation. All parameters for the Marcus equation are accessible from Density Functional Theory (DFT) calculations. The distal cubane FeS-cluster has a three-cysteine and one-histidine coordination [Fe4S4](His)(Cys)3 first ligation sphere. The reorganization energy (inner- and outer-sphere) is almost unchanged upon a histidine-to-cysteine substitution. Differences in rates of electron transfer between the wild-type enzyme and an all-cysteine mutant can be rationalized by a diminished electronic coupling between the donor and acceptor molecules in the [Fe4S4](Cys)4 case. The fast and efficient electron transfer from the distal iron–sulfur cluster is realized by a fine-tuned protein environment, which facilitates the flow of electrons. This study enables the design and control of electron transfer rates and pathways by protein engineering. PMID:28067774
Jia, Ru; Yang, Dongqing; Xu, Dake; Gu, Tingyue
2017-12-01
Electron transfer is a rate-limiting step in microbiologically influenced corrosion (MIC) caused by microbes that utilize extracellular electrons. Cross-cell wall electron transfer is necessary to transport the electrons released from extracellular iron oxidation into the cytoplasm of cells. Electron transfer mediators were found to accelerate the MIC caused by sulfate reducing bacteria. However, there is no publication in the literature showing the effect of electron transfer mediators on MIC caused by nitrate reducing bacteria (NRB). This work demonstrated that the corrosion of anaerobic Pseudomonas aeruginosa (PAO1) grown as a nitrate reducing bacterium biofilm on C1018 carbon steel was enhanced by two electron transfer mediators, riboflavin and flavin adenine dinucleotide (FAD) separately during a 7-day incubation period. The addition of either 10ppm (w/w) (26.6μM) riboflavin or 10ppm (12.7μM) FAD did not increase planktonic cell counts, but they increased the maximum pit depth on carbon steel coupons considerably from 17.5μm to 24.4μm and 25.0μm, respectively. Riboflavin and FAD also increased the specific weight loss of carbon steel from 2.06mg/cm 2 to 2.34mg/cm 2 and 2.61mg/cm 2 , respectively. Linear polarization resistance, electrochemical impedance spectroscopy and potentiodynamic polarization curves all corroborated the pitting and weight loss data. Copyright © 2017 Elsevier B.V. All rights reserved.
Cytochromes and iron sulfur proteins in sulfur metabolism of phototrophic bacteria
NASA Technical Reports Server (NTRS)
Fischer, U.
1985-01-01
Dissimilatory sulfur metabolism in phototrophic sulfur bacteria provides the bacteria with electrons for photosynthetic electron transport chain and, with energy. Assimilatory sulfate reduction is necessary for the biosynthesis of sulfur-containing cell components. Sulfide, thiosulfate, and elemental sulfur are the sulfur compounds most commonly used by phototrophic bacteria as electron donors for anoxygenic photosynthesis. Cytochromes or other electron transfer proteins, like high-potential-iron-sulfur protein (HIPIP) function as electron acceptors or donors for most enzymatic steps during the oxidation pathways of sulfide or thiosulfate. Yet, heme- or siroheme-containing proteins themselves undergo enzymatic activities in sulfur metabolism. Sirohemes comprise a porphyrin-like prosthetic group of sulfate reductase. eenzymatic reactions involve electron transfer. Electron donors or acceptors are necessary for each reaction. Cytochromes and iron sulfur problems, are able to transfer electrons.
Frenkel versus charge-transfer exciton dispersion in molecular crystals
NASA Astrophysics Data System (ADS)
Cudazzo, Pierluigi; Gatti, Matteo; Rubio, Angel; Sottile, Francesco
2013-11-01
By solving the many-body Bethe-Salpeter equation at finite momentum transfer, we characterize the exciton dispersion in two prototypical molecular crystals, picene and pentacene, in which localized Frenkel excitons compete with delocalized charge-transfer excitons. We explain the exciton dispersion on the basis of the interplay between electron and hole hopping and electron-hole exchange interaction, unraveling a simple microscopic description to distinguish Frenkel and charge-transfer excitons. This analysis is general and can be applied to other systems in which the electron wave functions are strongly localized, as in strongly correlated insulators.
Extracellular Electron Uptake: Among Autotrophs and Mediated by Surfaces.
Tremblay, Pier-Luc; Angenent, Largus T; Zhang, Tian
2017-04-01
Autotrophic microbes can acquire electrons from solid donors such as steel, other microbial cells, or electrodes. Based on this feature, bioprocesses are being developed for the microbial electrosynthesis (MES) of useful products from the greenhouse gas CO 2 . Extracellular electron-transfer mechanisms involved in the acquisition of electrons from metals by electrical microbially influenced corrosion (EMIC), from other living cells by interspecies electron transfer (IET), or from an electrode during MES rely on: (i) mediators such as H 2 ; (ii) physical contact through electron-transfer proteins; or (iii) mediator-generating enzymes detached from cells. This review explores the interactions of autotrophs with solid electron donors and their importance in nature and for biosustainable technologies. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Electronic Flux in Chemical Reactions. Insights on the Mechanism of the Maillard Reaction
NASA Astrophysics Data System (ADS)
Flores, Patricio; Gutiérrez-Oliva, Soledad; Herrera, Bárbara; Silva, Eduardo; Toro-Labbé, Alejandro
2007-11-01
The electronic transfer that occurs during a chemical process is analysed in term of a new concept, the electronic flux, that allows characterizing the regions along the reaction coordinate where electron transfer is actually taking place. The electron flux is quantified through the variation of the electronic chemical potential with respect to the reaction coordinate and is used, together with the reaction force, to shed light on reaction mechanism of the Schiff base formation in the Maillard reaction. By partitioning the reaction coordinate in regions in which different process might be taking place, electronic reordering associated to polarization and transfer has been identified and found to be localized at specific transition state regions where most bond forming and breaking occur.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Tiejun; Department of Chemistry, Iowa State University, Ames, Iowa 50011; Song, Xueyu
2014-10-07
Electron transfer near an electrode immersed in ionic fluids is studied using the linear response approximation, namely, mean value of the vertical energy gap can be used to evaluate the reorganization energy, and hence any linear response model that can treat Coulomb interactions successfully can be used for the reorganization energy calculation. Specifically, a molecular Debye-Hückel theory is used to calculate the reorganization energy of electron transfer reactions in an electric cell. Applications to electron transfer near an electrode in molten salts show that the reorganization energies from our molecular Debye-Hückel theory agree well with the results from MD simulations.
Cohen-Atiya, Meirav; Mandler, Daniel
2006-10-14
A new approach based on measuring the change of the open-circuit potential (OCP) of a hanging mercury drop electrode (HMDE), modified with alkanethiols of different chain length conducted in a solution containing a mixture of Ru(NH3)6(2+) and Ru(NH3)6(3+) is used for studying electron transfer across the monolayer. Following the time dependence of the OCP allowed the extraction of the kinetic parameters, such as the charge transfer resistance (R(ct)) and the electron transfer rate constant (k(et)), for different alkanethiol monolayers. An electron tunneling coefficient, beta, of 0.9 A(-1) was calculated for the monolayers on Hg.
Photoinduced Bimolecular Electron Transfer in Ionic Liquids: Cationic Electron Donors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Boning; Liang, Min; Zmich, Nicole
Recently, we have reported a systematic study of photoinduced electron-transfer reactions in ionic liquid solvents using neutral and anionic electron donors and a series of cyano-substituted anthracene acceptors [Wu, B.; Maroncelli, M.; Castner, E. W., Jr.Photoinduced Bimolecular Electron Transfer in Ionic Liquids. J. Am. Chem. Soc.139, 2017, 14568]. In this paper, we report complementary results for a cationic class of 1-alkyl-4-dimethylaminopyridinium electron donors. Reductive quenching of cyano-substituted anthracene fluorophores by these cationic quenchers is studied in solutions of acetonitrile and the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Varying the length of the alkyl chain permits tuning of the quencher diffusivities in solution.more » The observed quenching kinetics are interpreted using a diffusion-reaction analysis. Finally, together with results from the prior study, these results show that the intrinsic electron-transfer rate constant does not depend on the quencher charge in this family of reactions.« less
Photoinduced Bimolecular Electron Transfer in Ionic Liquids: Cationic Electron Donors
Wu, Boning; Liang, Min; Zmich, Nicole; ...
2018-01-29
Recently, we have reported a systematic study of photoinduced electron-transfer reactions in ionic liquid solvents using neutral and anionic electron donors and a series of cyano-substituted anthracene acceptors [Wu, B.; Maroncelli, M.; Castner, E. W., Jr.Photoinduced Bimolecular Electron Transfer in Ionic Liquids. J. Am. Chem. Soc.139, 2017, 14568]. In this paper, we report complementary results for a cationic class of 1-alkyl-4-dimethylaminopyridinium electron donors. Reductive quenching of cyano-substituted anthracene fluorophores by these cationic quenchers is studied in solutions of acetonitrile and the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Varying the length of the alkyl chain permits tuning of the quencher diffusivities in solution.more » The observed quenching kinetics are interpreted using a diffusion-reaction analysis. Finally, together with results from the prior study, these results show that the intrinsic electron-transfer rate constant does not depend on the quencher charge in this family of reactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jolley, Greg; Dehdashti Akhavan, Nima; Umana-Membreno, Gilberto
An electron transfer quantum well infrared photodetector (QWIP) consisting of repeating units of two coupled quantum wells (QWs) is capable of exhibiting a two color voltage dependent spectral response. However, significant electron transfer between the coupled QWs is required for spectral tuning, which may require the application of relatively high electric fields. Also, the band structure of coupled quantum wells is more complicated in comparison to a regular quantum well and, therefore, it is not always obvious if an electron transfer QWIP can be designed such that it meets specific performance characteristics. This paper presents a feasibility study of themore » electron transfer QWIP and its suitability for spectral tuning. Self consistent calculations have been performed of the bandstructure and the electric field that results from electron population within the quantum wells, from which the optical characteristics have been obtained. The band structure, spectral response, and the resonant final state energy locations have been compared with standard QWIPs. It is shown that spectral tuning in the long-wave infrared band can be achieved over a wide wavelength range of several microns while maintaining a relatively narrow spectral response FWHM. However, the total absorption strength is more limited in comparison to a standard QWIP, since the higher QW doping densities require much higher electric fields for electron transfer.« less
Enhancing the Performance of Vanadium Redox Flow Batteries using Quinones
NASA Astrophysics Data System (ADS)
Mulcahy, James W., III
The global dependence on fossil fuels continues to increase while the supply diminishes, causing the proliferation in demand for renewable energy sources. Intermittent renewable energy sources such as wind and solar, require electrochemical storage devices in order to transfer stored energy to the power grid at a constant output. Redox flow batteries (RFB) have been studied extensively due to improvements in scalability, cyclability and efficiency over conventional batteries. Vanadium redox flow batteries (VRFB) provide one of the most comprehensive solutions to energy storage in relation to other RFBs by alleviating the problem of cross-contamination. Quinones are a class of organic compounds that have been extensively used in chemistry, biochemistry and pharmacology due to their catalytic properties, fast proton-coupled electron transfer, good chemical stability and low cost. Anthraquinones are a subcategory of quinones and have been utilized in several battery systems. Anthraquinone-2, 6-disulfonic acid (AQDS) was added to a VRFB in order to study its effects on cyclical performance. This study utilized carbon paper electrodes and a Nafion 117 ion exchange membrane for the membrane-electrode assembly (MEA). The cycling performance was investigated over multiple charge and discharge cycles and the addition of AQDS was found to increase capacity efficiency by an average of 7.6% over the standard VRFB, while decreasing the overall cycle duration by approximately 18%. It is thus reported that the addition of AQDS to a VRFB electrolyte has the potential to increase the activity and capacity with minimal increases in costs.
Photonics applications in high-capacity data link terminals
NASA Astrophysics Data System (ADS)
Shi, Zan; Foshee, James J.
2001-12-01
Radio systems and, in particular, RF data link systems are evolving toward progressively more bandwidth and higher data rates. For many military RF data link applications the data transfer requirements exceed one Gigabit per second. Airborne collectors need to transfer sensor information and other large data files to ground locations and other airborne terminals, including the rel time transfer of files. It is a challenge to the system designer to provide a system design, which meets the RF link budget requirements for a one Gigabit per second data link; and there is a corresponding challenge in the development of the terminal architecture and hardware. The utilization of photonic circuitry and devices as a part of the terminal design offers the designer some alternatives to the conventional RF hardware design within the radio. Areas of consideration for the implementation of photonic technology include Gigabit per second baseband data interfaces with fiber along with the associated clocking rates and extending these Gigabit data rates into the radio for optical processing technology; optical interconnections within the individual circuit boards in the radio; and optical backplanes to allow the transfer of not only the Gigabit per second data rates and high speed clocks but other RF signals within the radio. True time delay using photonics in phased array antennas has been demonstrated and is an alternative to the conventional phase shifter designs used in phased array antennas, and remoting of phased array antennas from the terminal electronics in the Ku and Ka frequency bands using fiber optics as the carrier to minimize the RF losses, negate the use of the conventional waveguides, and allow the terminal equipment to be located with other electronic equipment in the aircraft suitable for controlled environment, ready access, and maintenance. The various photonics design alternatives will be discussed including specific photonic design approaches. Packaging, performance, and affordability of the various design alternatives will also be discussed.
An Ambient Temperature Molten Sodium-Vanadium Battery with Aqueous Flowing Catholyte.
Liu, Caihong; Shamie, Jack S; Shaw, Leon L; Sprenkle, Vincent L
2016-01-20
In this study, we have investigated the key factors dictating the cyclic performance of a new type of hybrid sodium-based flow batteries (HNFBs) that can operate at room temperature with high cell voltages (>3 V), multiple electron transfer redox reactions per active ion, and decoupled design of power and energy. HNFBs are composed of a molten Na-Cs alloy anode, flowing aqueous catholyte, and a Na-β″-Al2O3 solid electrolyte as the separator. The surface functionalization of graphite felt electrodes for the flowing aqueous catholyte has been studied for its effectiveness in enhancing V(2+)/V(3+), V(3+)/V(4+), and V(4+)/V(5+) redox couples. The V(4+)/V(5+) redox reaction has been further investigated at different cell operation temperatures for its cyclic stability and how the properties of the solid electrolyte membrane play a role in cycling. These fundamental understandings provide guidelines for improving the cyclic performance and stability of HNFBs with aqueous catholytes. We show that the HNFB with aqueous V-ion catholyte can reach high storage capacity (∼70% of the theoretical capacity) with good Coulombic efficiency (90% ± 1% in 2-30 cycles) and cyclic performance (>99% capacity retention for 30 cycles). It demonstrates, for the first time, the potential of high capacity HNFBs with aqueous catholytes, good capacity retention and long cycling life. This is also the first demonstration that Na-β″-Al2O3 solid electrolyte can be used with aqueous electrolyte at near room temperature for more than 30 cycles.
Chen, Jie; Xu, Mao-Wen; Wu, Jinggao; Li, Chang Ming
2018-05-17
Iodine edge-doped graphene can improve the capacity and stability of lithium-ion batteries (LIBs). Our theoretical calculations indicate that center-iodization can further significantly enhance the anode catalytic process. To experimentally prove the theoretical prediction, iodine-doped graphene materials were prepared by one-pot hydrothermal and ball-milling approaches to realize different doping-sites. Results show that the center-iodinated graphene (CIG) anode exhibits a remarkably high reversible capacity (1121 mA h g-1 after 180 cycles at 0.5 A g-1), long-cycle life (0.01% decay per cycle over 300 cycles at 1 A g-1) and high-rate capacity (374 mA h g-1 after 800 cycles at 8 A g-1), which greatly improves the performance of the edge-iodinated graphene anode and these results are in good agreement with the theoretical analysis. More importantly, the CIG anode also delivers a high-rate capacity and excellent cycling stability (279 mA h g-1 after 500 cycles at 10 A g-1) in full-cells. Both the theoretical analysis and experimental investigation reveal the enhancement mechanism, in which the center-iodization increases the surface charge for fast electron transfer rate, improves the conductivity for charge transport and rationalizes the pore structure for enhanced mass transport and ion insertion/desertion, thus resulting in a high rate capacity and long cycle life. This work not only discloses the critical role of catalytic sites including both amounts and site positions but also offers great potential for high-power rechargeable LIB applications.
Toddlers' word learning and transfer from electronic and print books.
Strouse, Gabrielle A; Ganea, Patricia A
2017-04-01
Transfer from symbolic media to the real world can be difficult for young children. A sample of 73 toddlers aged 17 to 23months were read either an electronic book displayed on a touchscreen device or a traditional print book in which a novel object was paired with a novel label. Toddlers in both conditions learned the label within the context of the book. However, only those who read the traditional format book generalized and transferred the label to other contexts. An older group of 28 toddlers aged 24 to 30months did generalize and transfer from the electronic book. Across ages, those children who primarily used screens to watch prerecorded video at home transferred less from the electronic book than those with more diverse home media experiences. Copyright © 2016 Elsevier Inc. All rights reserved.
Pettersson, Karin; Wiberg, Joanna; Ljungdahl, Thomas; Mårtensson, Jerker; Albinsson, Bo
2006-01-12
The rate of electron tunneling in molecular donor-bridge-acceptor (D-B-A) systems is determined both by the tunneling barrier width and height, that is, both by the distance between the donor and acceptor as well as by the energy gap between the donor and bridge moieties. These factors are therefore important to control when designing functional electron transfer systems, such as constructs for photovoltaics, artificial photosynthesis, and molecular scale electronics. In this paper we have investigated a set of D-B-A systems in which the distance and the energy difference between the donor and bridge states (DeltaEDB) are systematically varied. Zinc(II) and gold(III) porphyrins were chosen as electron donor and acceptor because of their suitable driving force for photoinduced electron transfer (-0.9 eV in butyronitrile) and well-characterized photophysics. We have previously shown, in accordance with the superexchange mechanism for electron transfer, that the electron transfer rate is proportional to the inverse of DeltaEDB in a series of zinc/gold porphyrin D-B-A systems with bridges of constant edge to edge distance (19.6 A) and varying DeltaEDB (3900-17 600 cm(-1)). Here, we use the same donor and acceptor but the bridge is shortened or extended giving a set of oligo-p-phenyleneethynylene bridges (OPE) with four different edge to edge distances ranging from 12.7 to 33.4 A. These two sets of D-B-A systems-ZnP-RB-AuP+ and ZnP-nB-AuP+-have one bridge in common, and hence, for the first time both the distance and DeltaEDB dependence of electron transfer can be studied simultaneously in a systematic way.
Lin, Shengxuan; Yan, Yang; Cai, Zihe; Liu, Lin; Hu, Xiaobin
2018-04-18
The insulator of the sulfur cathode and the easy dendrites growth of the lithium anode are the main barriers for lithium-sulfur cells in commercial application. Here, a 3D NPC@S/3D NPC@Li full cell is reported based on 3D hierarchical and continuously porous nickel photonic crystal (NPC) to solve the problems of sulfur cathode and lithium anode at the same time. In this case, the 3D NPC@S cathode can not only offer a fast transfer of electron and lithium ion, but also effectively prevent the dissolution of polysulfides and the tremendous volume change during cycling, and the 3D NPC@Li anode can efficiently inhibit the growth of lithium dendrites and volume expansion, too. As a result, the cell exhibits a high reversible capacity of 1383 mAh g -1 at 0.5 C (the current density of 837 mA g -1 ), superior rate ability (the reversible capacity of 735 mAh g -1 at the extremely high current density of 16 750 mA g -1 ) with excellent coulombic efficiency of about 100% and an excellent cycle life over 500 cycles with only about 0.026% capacity loss per cycle. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Junyong; Deng, Qinglin; Li, Mengjiao; Wu, Cong; Jiang, Kai; Hu, Zhigao; Chu, Junhao
2018-08-03
To overcome inferior rate capability and cycle stability of MnO-based anode materials for lithium-ion batteries (LIBs), we reported a novel 3D porous MnO@GS/CNT composite, consisting of MnO nanoparticles homogeneously distributed on the conductive interconnected framework based on 2D graphene sheets (GS) and 1D carbon nanotubes (CNTs). The distinctive architecture offers highly interpenetrated network along with efficient porous channels for fast electron transfer and ionic diffusion as well as abundant stress buffer space to accommodate the volume expansion of the MnO nanoparticles. The MnO@GS/CNT anode exhibits an ultrahigh capacity of 1115 mAh g -1 at 0.2 A g -1 after 150 cycles and outstanding rate capacity of 306 mAh g -1 at 10.0 A g -1 . Moreover, a stable capacity of 405 mAh g -1 after 3200 cycles can still be achieved, even at a large current density of 5.0 A g -1 . When coupled with LiMn 2 O 4 (LMO) cathode, the LMO [Formula: see text] MnO@GS/CNT full cell characterizes an excellent cycling stability and rate capability, indicating the promising application of MnO@GS/CNT anode in the next-generation LIBs.
Duan, Ying; Zhang, Mengxia; Gao, Jin; Li, Pengmin; Goltsev, Vasilij; Ma, Fengwang
2015-11-01
During the seasonal shift from June to August, air temperatures increase. To explore how apple trees improve their thermotolerance during this shift, we examined the photochemical reaction capacity of apple tree leaves by simultaneous measurement of prompt chlorophyll fluorescence, delayed chlorophyll fluorescence, and modulated 820 nm reflection at varying temperatures. It was found that the reaction centers and antennae of photosystem II (PSII) and photosystem I (PSI), the donor side of PSII, the electron transfer capacity from QA to QB, and the reoxidation capacity of plastoquinol were all sensitive to heat stress, particularly in June. As the season shifted, apple tree leaves improved in thermotolerance. Interestingly, the acclimation to seasonal shift enhanced the thermotolerance of PSII and PSI reaction centers more than that of their antennae, and the activity of PSII more than that of PSI. This may be a strategy for plant adaptation to changes in environmental temperatures. In addition, results from prompt and delayed fluorescence, as well as modulated 820 nm reflection corroborate each other. We suggest that the simultaneous measurement of the three independent signals may provide more information on thermal acclimation mechanisms of photochemical reactions in plant leaves. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Du, L. C.; Xi, W. D.; Zhang, J. B.; Matsuzaki, H.; Furube, A.
2018-06-01
Photoinduced electron transfer from gold nanoparticles (NPs) to semiconductor under plasmon excitation is an important phenomenon in photocatalysis and solar cell applications. Femtosecond plasmon-induced electron transfer from gold NPs to the conduction band of different semiconductor like TiO2, SnO2, and ZnO was monitored at 3440 nm upon optical excitation of the surface plasmon band of gold NPs. It was found that electron injection was completed within 240 fs and the electron injection yield reached 10-30% under 570 nm excitation. It means TiO2 is not the only proper semiconductor as electron acceptors in such gold/semiconductor nanoparticle systems.
Rappaport, Fabrice; Boussac, Alain; Force, Dee Ann; Peloquin, Jeffrey; Brynda, Marcin; Sugiura, Miwa; Un, Sun; Britt, R. David; Diner, Bruce A.
2009-01-01
The catalytic cycle of numerous enzymes involves the coupling between proton transfer and electron transfer. Yet, the understanding of this coordinated transfer in biological systems remains limited, likely because its characterization relies on the controlled but experimentally challenging modifications of the free energy changes associated with either the electron or proton transfer. We have performed such a study here in Photosystem II. The driving force for electron transfer from TyrZ to P680•+ has been decreased by ~ 80 meV by mutating the axial ligand of P680, and that for proton transfer upon oxidation of TyrZ by substituting a 3-fluorotyrosine (3F-TyrZ) for TyrZ. In Mn-depleted Photosystem II, the dependence upon pH of the oxidation rates of TyrZ and 3F-TyrZ were found to be similar. However, in the pH range where the phenolic hydroxyl of TyrZ is involved in a H-bond with a proton acceptor, the activation energy of the oxidation of 3F-TyrZ is decreased by 110 meV, a value which correlates with the in vitro finding of a 90 meV stabilization energy to the phenolate form of 3F-Tyr when compared to Tyr (Seyedsayamdost et al., 2006, JACS 128:1569–79). Thus, when the phenol of YZ acts as a H-bond-donor, its oxidation by P680•+ is controlled by its prior deprotonation. This contrasts with the situation prevailing at lower pH, where the proton acceptor is protonated and therefore unavailable, in which the oxidation-induced proton transfer from the phenolic hydroxyl of TyrZ has been proposed to occur concertedly with the electron transfer to P680•+. This suggests a switch between a concerted proton/electron transfer at pHs < 7.5 to a sequential one at pHs > 7.5 and illustrates the roles of the H-bond and of the likely salt-bridge existing between the phenolate and the nearby proton acceptor in determining the coupling between proton and electron transfer. PMID:19265377
ZnO-nanorods/graphene heterostructure: a direct electron transfer glucose biosensor
NASA Astrophysics Data System (ADS)
Zhao, Yu; Li, Wenbo; Pan, Lijia; Zhai, Dongyuan; Wang, Yu; Li, Lanlan; Cheng, Wen; Yin, Wei; Wang, Xinran; Xu, Jian-Bin; Shi, Yi
2016-08-01
ZnO-nanorods/graphene heterostructure was synthesized by hydrothermal growth of ZnO nanorods on chemically reduced graphene (CRG) film. The hybrid structure was demonstrated as a biosensor, where direct electron transfer between glucose oxidase (GOD) and electrode was observed. The charge transfer was attributed to the ZnO nanorod wiring between the redox center of GOD and electrode, and the ZnO/graphene heterostructure facilitated the transport of electrons on the hybride electrode. The glucose sensor based on the GOD-ZnO/CRG/Pt electrode had a high sensitivity of 17.64 μA mM-1, which is higher than most of the previously reported values for direct electron transfer based glucose biosensors. Moreover, this biosensor is linearly proportional to the concentration of glucose in the range of 0.2-1.6 mM. The study revealed that the band structure of electrode could affect the detection of direct electron transfer of GOD, which would be helpful for the design of the biosensor electrodes in the future.
Bediako, D. Kwabena; Solis, Brian H.; Dogutan, Dilek K.; ...
2014-10-08
Here, the hangman motif provides mechanistic insights into the role of pendant proton relays in governing proton-coupled electron transfer (PCET) involved in the hydrogen evolution reaction (HER). We now show improved HER activity of Ni compared with Co hangman porphyrins. Cyclic voltammogram data and simulations, together with computational studies using density functional theory, implicate a shift in electrokinetic zone between Co and Ni hangman porphyrins due to a change in the PCET mechanism. Unlike the Co hangman porphyrin, the Ni hangman porphyrin does not require reduction to the formally metal(0) species before protonation by weak acids in acetonitrile. We concludemore » that protonation likely occurs at the Ni(I) state followed by reduction, in a stepwise proton transfer–electron transfer pathway. Spectroelectrochemical and computational studies reveal that upon reduction of the Ni(II) compound, the first electron is transferred to a metal-based orbital, whereas the second electron is transferred to a molecular orbital on the porphyrin ring.« less
Bediako, D. Kwabena; Solis, Brian H.; Dogutan, Dilek K.; Roubelakis, Manolis M.; Maher, Andrew G.; Lee, Chang Hoon; Chambers, Matthew B.; Hammes-Schiffer, Sharon; Nocera, Daniel G.
2014-01-01
The hangman motif provides mechanistic insights into the role of pendant proton relays in governing proton-coupled electron transfer (PCET) involved in the hydrogen evolution reaction (HER). We now show improved HER activity of Ni compared with Co hangman porphyrins. Cyclic voltammogram data and simulations, together with computational studies using density functional theory, implicate a shift in electrokinetic zone between Co and Ni hangman porphyrins due to a change in the PCET mechanism. Unlike the Co hangman porphyrin, the Ni hangman porphyrin does not require reduction to the formally metal(0) species before protonation by weak acids in acetonitrile. We conclude that protonation likely occurs at the Ni(I) state followed by reduction, in a stepwise proton transfer–electron transfer pathway. Spectroelectrochemical and computational studies reveal that upon reduction of the Ni(II) compound, the first electron is transferred to a metal-based orbital, whereas the second electron is transferred to a molecular orbital on the porphyrin ring. PMID:25298534
Energy gap law of electron transfer in nonpolar solvents.
Tachiya, M; Seki, Kazuhiko
2007-09-27
We investigate the energy gap law of electron transfer in nonpolar solvents for charge separation and charge recombination reactions. In polar solvents, the reaction coordinate is given in terms of the electrostatic potentials from solvent permanent dipoles at solutes. In nonpolar solvents, the energy fluctuation due to solvent polarization is absent, but the energy of the ion pair state changes significantly with the distance between the ions as a result of the unscreened strong Coulomb potential. The electron transfer occurs when the final state energy coincides with the initial state energy. For charge separation reactions, the initial state is a neutral pair state, and its energy changes little with the distance between the reactants, whereas the final state is an ion pair state and its energy changes significantly with the mutual distance; for charge recombination reactions, vice versa. We show that the energy gap law of electron-transfer rates in nonpolar solvents significantly depends on the type of electron transfer.
Simulation-Based Approach to Determining Electron Transfer Rates Using Square-Wave Voltammetry.
Dauphin-Ducharme, Philippe; Arroyo-Currás, Netzahualcóyotl; Kurnik, Martin; Ortega, Gabriel; Li, Hui; Plaxco, Kevin W
2017-05-09
The efficiency with which square-wave voltammetry differentiates faradic and charging currents makes it a particularly sensitive electroanalytical approach, as evidenced by its ability to measure nanomolar or even picomolar concentrations of electroactive analytes. Because of the relative complexity of the potential sweep it uses, however, the extraction of detailed kinetic and mechanistic information from square-wave data remains challenging. In response, we demonstrate here a numerical approach by which square-wave data can be used to determine electron transfer rates. Specifically, we have developed a numerical approach in which we model the height and the shape of voltammograms collected over a range of square-wave frequencies and amplitudes to simulated voltammograms as functions of the heterogeneous rate constant and the electron transfer coefficient. As validation of the approach, we have used it to determine electron transfer kinetics in both freely diffusing and diffusionless surface-tethered species, obtaining electron transfer kinetics in all cases in good agreement with values derived using non-square-wave methods.
Chemical dynamics of the first proton-coupled electron transfer of water oxidation on TiO2 anatase.
Chen, Jia; Li, Ye-Fei; Sit, Patrick; Selloni, Annabella
2013-12-18
Titanium dioxide (TiO2) is a prototype, water-splitting (photo)catalyst, but its performance is limited by the large overpotential for the oxygen evolution reaction (OER). We report here a first-principles density functional theory study of the chemical dynamics of the first proton-coupled electron transfer (PCET), which is considered responsible for the large OER overpotential on TiO2. We use a periodic model of the TiO2/water interface that includes a slab of anatase TiO2 and explicit water molecules, sample the solvent configurations by first principles molecular dynamics, and determine the energy profiles of the two electronic states involved in the electron transfer (ET) by hybrid functional calculations. Our results suggest that the first PCET is sequential, with the ET following the proton transfer. The ET occurs via an inner sphere process, which is facilitated by a state in which one electronic hole is shared by the two oxygen ions involved in the transfer.
Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis.
Deutzmann, Jörg S; Sahin, Merve; Spormann, Alfred M
2015-04-21
Direct, mediator-free transfer of electrons between a microbial cell and a solid phase in its surrounding environment has been suggested to be a widespread and ecologically significant process. The high rates of microbial electron uptake observed during microbially influenced corrosion of iron [Fe(0)] and during microbial electrosynthesis have been considered support for a direct electron uptake in these microbial processes. However, the underlying molecular mechanisms of direct electron uptake are unknown. We investigated the electron uptake characteristics of the Fe(0)-corroding and electromethanogenic archaeon Methanococcus maripaludis and discovered that free, surface-associated redox enzymes, such as hydrogenases and presumably formate dehydrogenases, are sufficient to mediate an apparent direct electron uptake. In genetic and biochemical experiments, we showed that these enzymes, which are released from cells during routine culturing, catalyze the formation of H2 or formate when sorbed to an appropriate redox-active surface. These low-molecular-weight products are rapidly consumed by M. maripaludis cells when present, thereby preventing their accumulation to any appreciable or even detectable level. Rates of H2 and formate formation by cell-free spent culture medium were sufficient to explain the observed rates of methane formation from Fe(0) and cathode-derived electrons by wild-type M. maripaludis as well as by a mutant strain carrying deletions in all catabolic hydrogenases. Our data collectively show that cell-derived free enzymes can mimic direct extracellular electron transfer during Fe(0) corrosion and microbial electrosynthesis and may represent an ecologically important but so far overlooked mechanism in biological electron transfer. The intriguing trait of some microbial organisms to engage in direct electron transfer is thought to be widespread in nature. Consequently, direct uptake of electrons into microbial cells from solid surfaces is assumed to have a significant impact not only on fundamental microbial and biogeochemical processes but also on applied bioelectrochemical systems, such as microbial electrosynthesis and biocorrosion. This study provides a simple mechanistic explanation for frequently observed fast electron uptake kinetics in microbiological systems without a direct transfer: free, cell-derived enzymes can interact with cathodic surfaces and catalyze the formation of intermediates that are rapidly consumed by microbial cells. This electron transfer mechanism likely plays a significant role in various microbial electron transfer reactions in the environment. Copyright © 2015 Deutzmann et al.
75 FR 7551 - Transfer of Accumulated Benefit Payments
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-22
... Transfer of Accumulated Benefit Payments AGENCY: Social Security Administration (SSA). ACTION: Final rule... that capacity to transfer accumulated benefit payments and interest directly to a beneficiary if we.... For information on eligibility or filing for benefits, call our national toll-free number, 1-800-772...
Suppression of the sonic heat transfer limit in high-temperature heat pipes
NASA Astrophysics Data System (ADS)
Dobran, Flavio
1989-08-01
The design of high-performance heat pipes requires optimization of heat transfer surfaces and liquid and vapor flow channels to suppress the heat transfer operating limits. In the paper an analytical model of the vapor flow in high-temperature heat pipes is presented, showing that the axial heat transport capacity limited by the sonic heat transfer limit depends on the working fluid, vapor flow area, manner of liquid evaporation into the vapor core of the evaporator, and lengths of the evaporator and adiabatic regions. Limited comparisons of the model predictions with data of the sonic heat transfer limits are shown to be very reasonable, giving credibility to the proposed analytical approach to determine the effect of various parameters on the axial heat transport capacity. Large axial heat transfer rates can be achieved with large vapor flow cross-sectional areas, small lengths of evaporator and adiabatic regions or a vapor flow area increase in these regions, and liquid evaporation in the evaporator normal to the main flow.
Numerical Modeling and Optimization of Warm-water Heat Sinks
NASA Astrophysics Data System (ADS)
Hadad, Yaser; Chiarot, Paul
2015-11-01
For cooling in large data-centers and supercomputers, water is increasingly replacing air as the working fluid in heat sinks. Utilizing water provides unique capabilities; for example: higher heat capacity, Prandtl number, and convection heat transfer coefficient. The use of warm, rather than chilled, water has the potential to provide increased energy efficiency. The geometric and operating parameters of the heat sink govern its performance. Numerical modeling is used to examine the influence of geometry and operating conditions on key metrics such as thermal and flow resistance. This model also facilitates studies on cooling of electronic chip hot spots and failure scenarios. We report on the optimal parameters for a warm-water heat sink to achieve maximum cooling performance.
A new composite electrode architecture for energy storage devices
NASA Technical Reports Server (NTRS)
Ferro, Richard E.; Swain, Greg M.; Tatarchuk, B. J.
1992-01-01
The research objective is to determine how the electrode microstructure (architecture) affect the performance of the nickel hydroxide electrochemical system. It was found that microstructure and additional surface area makes a difference. The best architectures are the FIBREX/nickel and nickel fiber composite electrodes. The conditioning time for full utilization was greatly reduced. The accelerated increase in capacity vs. cycling appears to be a good indicator of the condition of the electrode/active material microstructure and morphology. Conformal deposition of the active material may be indicated and important. Also higher utilizations were obtained; greater than 80 pct. after less than 5 cycles and greater than 300 pct. after more than 5 cycles using nickel fiber composite electrode assuming a 1 electron transfer per equivalent.
Ultrafast Spectroscopy of Proton-Coupled Electron Transfer (PCET) in Photocatalysis
2016-07-08
AFRL-AFOSR-VA-TR-2016-0244 Ultrafast Spectroscopy of Proton-Coupled Electron Transfer (PCET) in Photocatalysis Jahan Dawlaty UNIVERSITY OF SOUTHERN...TITLE AND SUBTITLE Ultrafast Spectroscopy of Proton-Coupled Electron Transfer (PCET) in Photocatalysis 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550...298 Back (Rev. 8/98) DISTRIBUTION A: Distribution approved for public release. Final Report: AFOSR YIP Grant FA9550-13-1-0128: Ultrafast Spectroscopy
2010-02-11
purchase a new gun. Mr. Mike Ackeret ( Transfer Engineering Inc.) Transfer Engineering’s expertise in specialty UHV work and machining propelled...modifications they helped design for the test stand. With UNLV guidance, Transfer Engineering designed and built the original UNLV SEE Test Stand...Staib electron gun, an isolated beam drift tube, a hexanode delay line with a chevron microchannel plate (MCP) stack, an isolated grid, an isolated
Zhang, Min; E, Wenbo; Ohkubo, Kei; Sanchez-Garcia, David; Yoon, Dae-Wi; Sessler, Jonathan L; Fukuzumi, Shunichi; Kadish, Karl M
2008-02-21
Electron-transfer interconversion between the four-electron oxidized form of a quaterpyrrole (abbreviated as P4 for four pyrroles) and the two-electron oxidized form (P4H2) as well as between P4H2 and its fully reduced form (P4H4) bearing analogous substituents in the alpha- and beta-pyrrolic positions was studied by means of cyclic voltammetry and UV-visible spectroelectrochemistry combined with ESR and laser flash photolysis measurements. The two-electron oxidized form, P4H2, acts as both an electron donor and an electron acceptor. The radical cation (P4H2*+) and radical anion (P4H2*-) are both produced by photoinduced electron transfer from dimeric 1-benzyl-1,4-dihydronicotinamide to P4H2, whereas the cation radical form of the compound is also produced by electron-transfer oxidation of P4H2 with [Ru(bpy)3]3+. The ESR spectra of P4H2*+ and P4H2*- were recorded at low temperature and exhibit spin delocalization over all four pyrrole units. Thus, the two-electron oxidized form of the quaterpyrrole (P4H2) displays redox and electronic features analogous to those seen in the case of porphyrins and may be considered as a simple, open-chain model of this well-studied tetrapyrrolic macrocycle. The dynamics of deprotonation from P4H2*+ and disproportionation of P4H2 were examined by laser flash photolysis measurements of photoinduced electron-transfer oxidation and reduction of P4H2, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wishart, J.F.; Sun, J.; Su, C.
1997-01-23
Several ruthenium ammine complexes were used to modify horse-heart cytochrome c at histidine-33, creating a series of (NH{sub 3}){sub 4}(L)Ru-Cyt c derivatives (L = H{sub 2}O/OH{sup -}, ammonia, 4-ethylpyridine, 3,5-lutidine, pyridine, isonicotinamide, N-methylpyrazinium) with a wide range of driving forces for Fe-to-Ru electron transfer (-{Delta}G{degree} = -0.125 to +0.46 eV). Electron-transfer rates and activation parameters were measured by pulse radiolysis using azide or carbonate radicals. The driving-force dependence of electron-transfer rates between redox centers of the same charge types obeys Marcus-Hush theory. The activationless rate limit for all of the ruthenium derivatives except the N-methylpyrazinium complex is 3.9x10{sup 5} s{supmore » -1}. Thermodynamic parameters obtained from nonisothermal differential pulse voltammetry show that the electron-transfer reactions are entropy-driven. The thermodynamic and kinetic effects of phosphate ion binding to the ruthenium center are examined. The rate of intramolecular electron transfer in (NH{sub 3}){sub 4}(isn)Ru{sup III}-Cyt c{sup II} decreases at high pH, with a midpoint at pH 9.1. 28 refs., 4 figs., 3 tabs.« less
Excitation energy transfer in the photosystem I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webber, Andrew N
2012-09-25
Photosystem I is a multimeric pigment protein complex in plants, green alage and cyanobacteria that functions in series with Photosystem II to use light energy to oxidize water and reduce carbon dioxide. The Photosystem I core complex contains 96 chlorophyll a molecules and 22 carotenoids that are involved in light harvesting and electron transfer. In eucaryotes, PSI also has a peripheral light harvesting complex I (LHCI). The role of specific chlorophylls in excitation and electron transfer are still unresolved. In particular, the role of so-called bridging chlorophylls, located between the bulk antenna and the core electron transfer chain, in themore » transfer of excitation energy to the reaction center are unknown. During the past funding period, site directed mutagenesis has been used to create mutants that effect the physical properties of these key chlorophylls, and to explore how this alters the function of the photosystem. Studying these mutants using ultrafast absorption spectroscopy has led to a better understanding of the process by which excitation energy is transferred from the antenna chlorophylls to the electron transfer chain chlorophylls, and what the role of connecting chlorophylls and A_0 chlorophylls is in this process. We have also used these mutants to investigate whch of the central group of six chlorophylls are involved in the primary steps of charge separation and electron transfer.« less
7 CFR 3201.54 - Heat transfer fluids.
Code of Federal Regulations, 2013 CFR
2013-01-01
... for use in HVAC applications, internal combustion engines, personal cooling devices, thermal energy... Designated Items § 3201.54 Heat transfer fluids. (a) Definition. Products with high thermal capacities used...
7 CFR 3201.54 - Heat transfer fluids.
Code of Federal Regulations, 2014 CFR
2014-01-01
... for use in HVAC applications, internal combustion engines, personal cooling devices, thermal energy... Designated Items § 3201.54 Heat transfer fluids. (a) Definition. Products with high thermal capacities used...
7 CFR 3201.54 - Heat transfer fluids.
Code of Federal Regulations, 2012 CFR
2012-01-01
... for use in HVAC applications, internal combustion engines, personal cooling devices, thermal energy... Designated Items § 3201.54 Heat transfer fluids. (a) Definition. Products with high thermal capacities used...
Dynamics of charge-transfer excitons in type-II semiconductor heterostructures
NASA Astrophysics Data System (ADS)
Stein, M.; Lammers, C.; Richter, P.-H.; Fuchs, C.; Stolz, W.; Koch, M.; Vänskä, O.; Weseloh, M. J.; Kira, M.; Koch, S. W.
2018-03-01
The formation, decay, and coherence properties of charge-transfer excitons in semiconductor heterostructures are investigated by applying four-wave-mixing and terahertz spectroscopy in combination with a predictive microscopic theory. A charge-transfer process is identified where the optically induced coherences decay directly into a charge-transfer electron-hole plasma and exciton states. It is shown that charge-transfer excitons are more sensitive to the fermionic electron-hole substructure than regular excitons.
36 CFR § 1235.44 - What general transfer requirements apply to electronic records?
Code of Federal Regulations, 2013 CFR
2013-07-01
... requirements apply to electronic records? § 1235.44 Section § 1235.44 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT TRANSFER OF RECORDS TO THE NATIONAL... requirements apply to electronic records? (a) Each agency must retain a copy of permanent electronic records...
NASA Astrophysics Data System (ADS)
Perlík, Václav; Seibt, Joachim; Cranston, Laura J.; Cogdell, Richard J.; Lincoln, Craig N.; Savolainen, Janne; Šanda, František; Mančal, Tomáš; Hauer, Jürgen
2015-06-01
The initial energy transfer steps in photosynthesis occur on ultrafast timescales. We analyze the carotenoid to bacteriochlorophyll energy transfer in LH2 Marichromatium purpuratum as well as in an artificial light-harvesting dyad system by using transient grating and two-dimensional electronic spectroscopy with 10 fs time resolution. We find that Förster-type models reproduce the experimentally observed 60 fs transfer times, but overestimate coupling constants, which lead to a disagreement with both linear absorption and electronic 2D-spectra. We show that a vibronic model, which treats carotenoid vibrations on both electronic ground and excited states as part of the system's Hamiltonian, reproduces all measured quantities. Importantly, the vibronic model presented here can explain the fast energy transfer rates with only moderate coupling constants, which are in agreement with structure based calculations. Counterintuitively, the vibrational levels on the carotenoid electronic ground state play the central role in the excited state population transfer to bacteriochlorophyll; resonance between the donor-acceptor energy gap and the vibrational ground state energies is the physical basis of the ultrafast energy transfer rates in these systems.
Electron transfer from plastocyanin to photosystem I.
Haehnel, W; Jansen, T; Gause, K; Klösgen, R B; Stahl, B; Michl, D; Huvermann, B; Karas, M; Herrmann, R G
1994-01-01
Mutant plastocyanins with Leu at position 10, 90 or 83 (Gly, Ala and Tyr respectively in wildtype) were constructed by site-specific mutagenesis of the spinach gene, and expressed in transgenic potato plants under the control of the authentic plastocyanin promoter, as well as in Escherichia coli as truncated precursor intermediates carrying the C-terminal 22 amino acid residues of the transit peptide, i.e. the thylakoid-targeting domain that acts as a bacterial export signal. The identity of the purified plastocyanins was verified by matrix-assisted laser desorption/ionization mass spectrometry. The formation of a complex between authentic or mutant spinach plastocyanin and isolated photosystem I and the electron transfer has been studied from the biphasic reduction kinetics of P700+ after excitation with laser flashes. The formation of the complex was abolished by the bulky hydrophobic group of Leu at the respective position of G10 or A90 which are part of the conserved flat hydrophobic surface around the copper ligand H87. The rate of electron transfer decreased by both mutations to < 20% of that found with wildtype plastocyanin. We conclude that the conserved flat surface of plastocyanin represents one of two crucial structural elements for both the docking at photosystem I and the efficient electron transfer via H87 to P700+. The Y83L mutant exhibited faster electron transfer to P700+ than did authentic plastocyanin. This proves that Y83 is not involved in electron transfer to P700 and suggests that electron transfer from cytochrome f and to P700 follows different routes in the plastocyanin molecule. Plastocyanin (Y83L) expressed in either E. coli or potato exhibited different isoelectric points and binding constants to photosystem I indicative of differences in the folding of the protein. The structure of the binding site at photosystem I and the mechanism of electron transfer are discussed. Images PMID:8131737
12 CFR 205.7 - Initial disclosures.
Code of Federal Regulations, 2014 CFR
2014-01-01
... TRANSFERS (REGULATION E) § 205.7 Initial disclosures. (a) Timing of disclosures. A financial institution shall make the disclosures required by this section at the time a consumer contracts for an electronic fund transfer service or before the first electronic fund transfer is made involving the consumer's...
12 CFR 205.7 - Initial disclosures.
Code of Federal Regulations, 2010 CFR
2010-01-01
... TRANSFERS (REGULATION E) § 205.7 Initial disclosures. (a) Timing of disclosures. A financial institution shall make the disclosures required by this section at the time a consumer contracts for an electronic fund transfer service or before the first electronic fund transfer is made involving the consumer's...
Extracellular electron transfer mechanisms between microorganisms and minerals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Liang; Dong, Hailiang; Reguera, Gemma
Electrons can be transferred from microorganisms to multivalent metal ions that are associated with minerals and vice versa. As the microbial cell envelope is neither physically permeable to minerals nor electrically conductive, microorganisms have evolved strategies to exchange electrons with extracellular minerals. In this Review, we discuss the molecular mechanisms that underlie the ability of microorganisms to exchange electrons, such as c-type cytochromes and microbial nanowires, with extracellular minerals and with microorganisms of the same or different species. Microorganisms that have extracellular electron transfer capability can be used for biotechnological applications, including bioremediation, biomining and the production of biofuels andmore » nanomaterials.« less
Li, Jingrui; Kondov, Ivan; Wang, Haobin; Thoss, Michael
2015-04-10
A recently developed methodology to simulate photoinduced electron transfer processes at dye-semiconductor interfaces is outlined. The methodology employs a first-principles-based model Hamiltonian and accurate quantum dynamics simulations using the multilayer multiconfiguration time-dependent Hartree approach. This method is applied to study electron injection in the dye-semiconductor system coumarin 343-TiO2. Specifically, the influence of electronic-vibrational coupling is analyzed. Extending previous work, we consider the influence of Dushinsky rotation of the normal modes as well as anharmonicities of the potential energy surfaces on the electron transfer dynamics.
Dynamic transport capacity in gravel-bed river systems
T. E. Lisle; B. Smith
2003-01-01
Abstract - Sediment transport capacity mediates the transfer and storage of bed material between alluvial reservoirs in a drainage system. At intermediate time scales corresponding to the evolution of sediment pulses, conditions governing bed-material transport capacity under the hydrologic regime respond to variations in storage and sediment flux as pulses extend,...
Diffuse charge and Faradaic reactions in porous electrodes
NASA Astrophysics Data System (ADS)
Biesheuvel, P. M.; Fu, Yeqing; Bazant, Martin Z.
2011-06-01
Porous electrodes instead of flat electrodes are widely used in electrochemical systems to boost storage capacities for ions and electrons, to improve the transport of mass and charge, and to enhance reaction rates. Existing porous electrode theories make a number of simplifying assumptions: (i) The charge-transfer rate is assumed to depend only on the local electrostatic potential difference between the electrode matrix and the pore solution, without considering the structure of the double layer (DL) formed in between; (ii) the charge-transfer rate is generally equated with the salt-transfer rate not only at the nanoscale of the matrix-pore interface, but also at the macroscopic scale of transport through the electrode pores. In this paper, we extend porous electrode theory by including the generalized Frumkin-Butler-Volmer model of Faradaic reaction kinetics, which postulates charge transfer across the molecular Stern layer located in between the electron-conducting matrix phase and the plane of closest approach for the ions in the diffuse part of the DL. This is an elegant and purely local description of the charge-transfer rate, which self-consistently determines the surface charge and does not require consideration of reference electrodes or comparison with a global equilibrium. For the description of the DLs, we consider the two natural limits: (i) the classical Gouy-Chapman-Stern model for thin DLs compared to the macroscopic pore dimensions, e.g., for high-porosity metallic foams (macropores >50 nm) and (ii) a modified Donnan model for strongly overlapping DLs, e.g., for porous activated carbon particles (micropores <2 nm). Our theory is valid for electrolytes where both ions are mobile, and it accounts for voltage and concentration differences not only on the macroscopic scale of the full electrode, but also on the local scale of the DL. The model is simple enough to allow us to derive analytical approximations for the steady-state and early transients. We also present numerical solutions to validate the analysis and to illustrate the evolution of ion densities, pore potential, surface charge, and reaction rates in response to an applied voltage.
Tâme Parreira, Renato Luis; Galembeck, Sérgio Emanuel; Hobza, Pavel
2007-01-08
Complexes between formic acid or formate anion and various proton donors (HF, H(2)O, NH(3), and CH(4)) are studied by the MP2 and B3LYP methods with the 6-311++G(3df,3pd) basis set. Formation of a complex is characterized by electron-density transfer from electron donor to ligands. This transfer is much larger with the formate anion, for which it exceeds 0.1 e. Electron-density transfer from electron lone pairs of the electron donor is directed into sigma* antibonding orbitals of X--H bonds of the electron acceptor and leads to elongation of the bond and a red shift of the X--H stretching frequency (standard H-bonding). However, pronounced electron-density transfer from electron lone pairs of the electron donor also leads to reorganization of the electron density in the electron donor, which results in changes in geometry and vibrational frequency. These changes are largest for the C--H bonds of formic acid and formate anion, which do not participate in H-bonding. The resulting blue shift of this stretching frequency is substantial and amounts to almost 35 and 170 cm(-1), respectively.
USING MOLECULAR PROBES TO STUDY INTERFACIAL REDOX REACTION AT FE-BEARING SMECTITES
The interfacial electron transfer of clay-water systems has a wide range of significance in geochemical and biogeochernical environments. However the mechanism of interfacial electron transport is poorly understood. The electron transfer mechanism at the solid-water interfaces of...
Mathes, Tilo; van Stokkum, Ivo H. M.; Stierl, Manuela; Kennis, John T. M.
2012-01-01
Photoinduced electron transfer in biological systems, especially in proteins, is a highly intriguing matter. Its mechanistic details cannot be addressed by structural data obtained by crystallography alone because this provides only static information on a given redox system. In combination with transient spectroscopy and site-directed manipulation of the protein, however, a dynamic molecular picture of the ET process may be obtained. In BLUF (blue light sensors using FAD) photoreceptors, proton-coupled electron transfer between a tyrosine and the flavin cofactor is the key reaction to switch from a dark-adapted to a light-adapted state, which corresponds to the biological signaling state. Particularly puzzling is the fact that, although the various naturally occurring BLUF domains show little difference in the amino acid composition of the flavin binding pocket, the reaction rates of the forward reaction differ quite largely from a few ps up to several hundred ps. In this study, we modified the redox potential of the flavin/tyrosine redox pair by site-directed mutagenesis close to the flavin C2 carbonyl and fluorination of the tyrosine, respectively. We provide information on how changes in the redox potential of either reaction partner significantly influence photoinduced proton-coupled electron transfer. The altered redox potentials allowed us furthermore to experimentally describe an excited state charge transfer intermediately prior to electron transfer in the BLUF photocycle. Additionally, we show that the electron transfer rate directly correlates with the quantum yield of signaling state formation. PMID:22833672
12 CFR 205.11 - Procedures for resolving errors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... institution's findings and shall note the consumer's right to request the documents that the institution... transfer; (ii) An incorrect electronic fund transfer to or from the consumer's account; (iii) The omission... made by the financial institution relating to an electronic fund transfer; (v) The consumer's receipt...
Photoinduced electron transfer in a molecular dyad by nanosecond pump-pump-probe spectroscopy.
Ha-Thi, M-H; Pham, V-T; Pino, T; Maslova, V; Quaranta, A; Lefumeux, C; Leibl, W; Aukauloo, A
2018-06-01
The design of robust and inexpensive molecular photocatalysts for the conversion of abundant stable molecules like H2O and CO2 into an energetic carrier is one of the major fundamental questions for scientists nowadays. The outstanding challenge is to couple single photoinduced charge separation events with the sequential accumulation of redox equivalents at the catalytic unit for performing multielectronic catalytic reactions. Herein, double excitation by nanosecond pump-pump-probe experiments was used to interrogate the photoinduced charge transfer and charge accumulation on a molecular dyad composed of a porphyrin chromophore and a ruthenium-based catalyst in the presence of a reversible electron acceptor. An accumulative charge transfer state is unattainable because of rapid reverse electron transfer to the photosensitizer upon the second excitation and the low driving force of the forward photodriven electron transfer reaction. Such a method allows the fundamental understanding of the relaxation mechanism after two sequential photon absorptions, deciphering the undesired electron transfer reactions that limit the charge accumulation efficiency. This study is a step toward the improvement of synthetic strategies of molecular photocatalysts for light-induced charge accumulation and more generally, for solar energy conversion.
Excited state electron transfer in systems with a well-defined geometry. [cyclophane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaufmann, K.J.
1980-12-01
The effect of temperature, dielectric strength and ligand on the structure of the mesopyropheophorbide cyclophanes will be studied. ESR, NMR, emission and absorption spectroscopy, as well as circular dichroism will be used. The changes in structure will be correlated with changes in the photochemical activity. Electron acceptors such as benzoquinone will be utilized to stabilize the charge separation. Charge separation in porphyrin quinone dimers will also be studied. It was found that electron transfer in the cyclophane system is relatively slow. This is presumably due to an orientation requirement for fast electron transfer. Solvent dielectric also is important in producingmore » a charge separation. Decreasing the temperature effects the yield of charge transfer, but not the kinetics.« less
Tang, Wangjia; Xie, Dong; Shen, Tong; Wang, Xiuli; Wang, Donghuang; Zhang, Xuqing; Xia, Xinhui; Wu, Jianbo; Tu, Jiangping
2017-09-18
Exploring advanced anode materials with highly reversible capacity have gained great interests for large-scale lithium storage. A facile two-step method is developed to synthesize nitrogen-doped carbon coated MoSe 2 microspheres via hydrothermal plus thermal polymerization. The MoSe 2 microspheres composed of interconnected nanoflakes are homogeneously coated by a thin nitrogen-doped carbon (N-C) layer. As an anode for lithium ion batteries, the MoSe 2 /N-C composite shows better reversibility, smaller polarization, and higher electrochemical reactivity as compared to the unmodified MoSe 2 microspheres. The MoSe 2 /N-C electrode delivers a high specific capacity of 698 mAh g -1 after 100 cycles at a current density of 100 mA g -1 and good high rate performance (471 mAh g -1 at a high current density of 2000 mA g -1 ). The improved electrochemical performance is attributed to the conductive N-C coating and hierarchical microsphere structure with fast ion/electron transfer characteristics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Acevedo-Peña, Próspero; Haro, Marta; Rincón, Marina E.; Bisquert, Juan; Garcia-Belmonte, Germà
2014-12-01
Nanotechnology produces hybrids with superior properties than its individual constituents. Here MWCNT@TiO2 composites have been synthesized by controlled hydrolysis of titanium isopropoxide over MWCNT, to be incorporated into Li-ion battery electrodes. Outstanding rate capability of the coated nanotubes is observed in comparison to pristine TiO2. Specific storage capacity as high as 250 mAh g-1 is achieved for the nanocomposite electrode which doubles that encountered for TiO2-based anodes. The mechanism explaining the enhancement in power performance has been revealed by means of electrochemical impedance methods. Although both pristine TiO2 and MWCNT@TiO2 would potentially exhibit comparable specific capacity, the charge transfer resistance for the latter is reduced by a factor 10, implying a key role of MWCNTs to favor the interfacial Li+ ion intake from the electrolyte. MWCNT efficiently provides electrons to the nanostructure through the Ti-C bond which assists the Li+ ion incorporation. These findings provide access to the detailed lithiation kinetics of a broad class of nanocomposites for battery applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yuandong; Liu, Kewei; Zhu, Yu
Silicon is regarded as the next generation anode material for LIBs with its ultra-high theoretical capacity and abundance. Nevertheless, the severe capacity degradation resulting from the huge volume change and accumulative solid-electrolyte interphase (SEI) formation hinders the silicon based anode material for further practical applications. Hence, a variety of methods have been applied to enhance electrochemical performances in terms of the electrochemical stability and rate performance of the silicon anodes such as designing nanostructured Si, combining with carbonaceous material, exploring multifunctional polymer binders, and developing artificial SEI layers. Silicon anodes with low-dimensional structures (0D, 1D, and 2D), compared with bulkymore » silicon anodes, are strongly believed to have several advanced characteristics including larger surface area, fast electron transfer, and shortened lithium diffusion pathway as well as better accommodation with volume changes, which leads to improved electrochemical behaviors. Finally, in this review, recent progress of silicon anode synthesis methodologies generating low-dimensional structures for lithium ion batteries (LIBs) applications is listed and discussed.« less
Sun, Yuandong; Liu, Kewei; Zhu, Yu
2017-07-31
Silicon is regarded as the next generation anode material for LIBs with its ultra-high theoretical capacity and abundance. Nevertheless, the severe capacity degradation resulting from the huge volume change and accumulative solid-electrolyte interphase (SEI) formation hinders the silicon based anode material for further practical applications. Hence, a variety of methods have been applied to enhance electrochemical performances in terms of the electrochemical stability and rate performance of the silicon anodes such as designing nanostructured Si, combining with carbonaceous material, exploring multifunctional polymer binders, and developing artificial SEI layers. Silicon anodes with low-dimensional structures (0D, 1D, and 2D), compared with bulkymore » silicon anodes, are strongly believed to have several advanced characteristics including larger surface area, fast electron transfer, and shortened lithium diffusion pathway as well as better accommodation with volume changes, which leads to improved electrochemical behaviors. Finally, in this review, recent progress of silicon anode synthesis methodologies generating low-dimensional structures for lithium ion batteries (LIBs) applications is listed and discussed.« less
Investigating molecule-semiconductor interfaces with nonlinear spectroscopies
NASA Astrophysics Data System (ADS)
Giokas, Paul George
Knowledge of electronic structures and transport mechanisms at molecule-semiconductor interfaces is motivated by their ubiquity in photoelectrochemical cells. In this dissertation, optical spectroscopies are used uncover the influence of electronic coupling, coherent vibrational motion, and molecular geometry, and other factors on dynamics initiated by light absorption at such interfaces. These are explored for a family of ruthenium bipyridyl chromophores bound to titanium dioxide. Transient absorption measurements show molecular singlet state electron injection in 100 fs or less. Resonance Raman intensity analysis suggests the electronic excitations possess very little charge transfer character. The connections drawn in this work between molecular structure and photophysical behavior contribute to the general understanding of photoelectrochemical cells. Knowledge of binding geometry in nanocrystalline films is challenged by heterogeneity of semiconductor surfaces. Polarized resonance Raman spectroscopy is used to characterize the ruthenium chromophore family on single crystal titanium dioxide . Chromophores display a broad distribution of molecular geometries at the interface, with increased variation in binding angle due to the presence of a methylene bridge, as well as additional phosphonate anchors. This result implies multiple binding configurations for chromophores which incorporate multiple phosphonate ligands, and indicates the need for careful consideration when developing surface-assembled chromophore-catalyst cells. Electron transfer transitions occurring on the 100 fs time scale challenge conventional second-order approximations made when modeling these reactions. A fourth-order perturbative model which includes the relationship between coincident electron transfer and nuclear relaxation processes is presented. Insights provided by the model are illustrated for a two-level donor molecule. The presented fourth-order rate formula constitutes a rigorous and intuitive framework for understanding sub-picosecond photoinduced electron transfer dynamics. Charge transfer systems fit by this model include catechol-sensitized titanium dioxide nanoparticles and a closely-related molecular complex. These systems exhibit vibrational coherence coincident with back-electron transfer in the first picosecond after excitation, which suggests that intramolecular nuclear motion strongly influences the electronic transfer process and plays an important role in the dynamics of interfacial systems following light absorption.
NASA Astrophysics Data System (ADS)
Zhou, Ye; Han, Su-Ting; Xu, Zong-Xiang; Roy, V. A. L.
2013-02-01
The strain and temperature dependent memory effect of organic memory transistors on plastic substrates has been investigated under ambient conditions. The gold (Au) nanoparticle monolayer was prepared and embedded in an atomic layer deposited aluminum oxide (Al2O3) as the charge trapping layer. The devices exhibited low operation voltage, reliable memory characteristics and long data retention time. Experimental analysis of the programming and erasing behavior at various bending states showed the relationship between strain and charging capacity. Thermal-induced effects on these memory devices have also been analyzed. The mobility shows ~200% rise and the memory window increases from 1.48 V to 1.8 V when the temperature rises from 20 °C to 80 °C due to thermally activated transport. The retention capability of the devices decreases with the increased working temperature. Our findings provide a better understanding of flexible organic memory transistors under various operating temperatures and validate their applications in various areas such as temperature sensors, temperature memory or advanced electronic circuits. Furthermore, the low temperature processing procedures of the key elements (Au nanoparticle monolayer and Al2O3 dielectric layer) could be potentially integrated with large area flexible electronics.The strain and temperature dependent memory effect of organic memory transistors on plastic substrates has been investigated under ambient conditions. The gold (Au) nanoparticle monolayer was prepared and embedded in an atomic layer deposited aluminum oxide (Al2O3) as the charge trapping layer. The devices exhibited low operation voltage, reliable memory characteristics and long data retention time. Experimental analysis of the programming and erasing behavior at various bending states showed the relationship between strain and charging capacity. Thermal-induced effects on these memory devices have also been analyzed. The mobility shows ~200% rise and the memory window increases from 1.48 V to 1.8 V when the temperature rises from 20 °C to 80 °C due to thermally activated transport. The retention capability of the devices decreases with the increased working temperature. Our findings provide a better understanding of flexible organic memory transistors under various operating temperatures and validate their applications in various areas such as temperature sensors, temperature memory or advanced electronic circuits. Furthermore, the low temperature processing procedures of the key elements (Au nanoparticle monolayer and Al2O3 dielectric layer) could be potentially integrated with large area flexible electronics. Electronic supplementary information (ESI) available: UV-vis spectrum of Au nanoparticle aqueous solution, transfer characteristics of the transistors without inserting an Au nanoparticle monolayer, AFM image of the pentacene layer, transfer characteristics at different program voltages and memory windows with respect to the P/E voltage. See DOI: 10.1039/c2nr32579a
A Versatile High-Vacuum Cryo-transfer System for Cryo-microscopy and Analytics
Tacke, Sebastian; Krzyzanek, Vladislav; Nüsse, Harald; Wepf, Roger Albert; Klingauf, Jürgen; Reichelt, Rudolf
2016-01-01
Cryogenic microscopy methods have gained increasing popularity, as they offer an unaltered view on the architecture of biological specimens. As a prerequisite, samples must be handled under cryogenic conditions below their recrystallization temperature, and contamination during sample transfer and handling must be prevented. We present a high-vacuum cryo-transfer system that streamlines the entire handling of frozen-hydrated samples from the vitrification process to low temperature imaging for scanning transmission electron microscopy and transmission electron microscopy. A template for cryo-electron microscopy and multimodal cryo-imaging approaches with numerous sample transfer steps is presented. PMID:26910419
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Qingyun, E-mail: hizhengqingyun@126.com; Zhang, Xiangyang; Shen, Youming
Graphical abstract: Hydrothermal-synthesized NiCo{sub 2}O{sub 4} mesowall films exhibit porous structure and high capacity as well as good cycling life for supercapacitor application. - Highlights: • Hierarchical porous NiCo{sub 2}O{sub 4} nanowall films are prepared by a hydrothermal method. • NiCo{sub 2}O{sub 4} nanowall films show excellent electrochemical performance. • Hierarchical porous film structure is favorable for fast ion/electron transfer. - Abstract: Hierarchical porous NiCo{sub 2}O{sub 4} films composed of nanowalls on nickel foam are synthesized via a facile hydrothermal method. Besides the mesoporous walls, the NiCo{sub 2}O{sub 4} nanowalls are interconnected with each other to form hierarchical porous structure.more » These unique porous structured films possess a high specific surface area. The supercapacitor performance of the hierarchical porous NiCo{sub 2}O{sub 4} film is fully characterized. A high capacity of 130 mA h g{sup −1} is achieved at 2 A g{sup −1} with 97% capacity maintained after 2,000 cycles. Importantly, 75.6% of capacity is retained when the current density changes from 3 A g{sup −1} to 36 A g{sup −1}. The superior electrochemical performance is mainly due to the unique hierarchical porous structure with large surface area as well as shorter diffusion length for ion and charge transport.« less
Zhang, Baoping; Xia, Guanglin; Sun, Dalin; Fang, Fang; Yu, Xuebin
2018-04-24
MgH 2 nanoparticles (NPs) uniformly anchored on graphene (GR) are fabricated based on a bottom-up self-assembly strategy as anode materials for lithium-ion batteries (LIBs). Monodisperse MgH 2 NPs with an average particle size of ∼13.8 nm are self-assembled on the flexible GR, forming interleaved MgH 2 /GR (GMH) composite architectures. Such nanoarchitecture could effectively constrain the aggregation of active materials, buffer the strain of volume changes, and facilitate the electron/lithium ion transfer of the whole electrode, leading to a significant enhancement of the lithium storage capacity of the GMH composite. Furthermore, the performances of GMH composite as anode materials for LIBs are enabled largely through robust interfacial interactions with poly(methyl methacrylate) (PMMA) binder, which plays multifunctional roles in forming a favorable solid-electrolyte interphase (SEI) film, alleviating the volume expansion and detachment of active materials, and maintaining the structural integrity of the whole electrode. As a result, these synergistic effects endow the obtained GMH composite with a significantly enhanced reversible capacity and cyclability as well as a good rate capability. The GMH composite with 50 wt % MgH 2 delivers a high reversible capacity of 946 mA h g -1 at 100 mA g -1 after 100 cycles and a capacity of 395 mAh g -1 at a high current density of 2000 mA g -1 after 1000 cycles.
Wang, Dong; Chen, Chuan; Ke, Xuebin; Kang, Ning; Shen, Yuqing; Liu, Yongliang; Zhou, Xi; Wang, Hongjun; Chen, Changqing; Ren, Lei
2015-02-11
A novel core-shell structure based on upconversion fluorescent nanoparticles (UCNPs) and dopamine-melanin has been developed for evaluation of the antioxidant capacity of biological fluids. In this approach, dopamine-melanin nanoshells facilely formed on the surface of UCNPs act as ultraefficient quenchers for upconversion fluorescence, contributing to a photoinduced electron-transfer mechanism. This spontaneous oxidative polymerization of the dopamine-induced quenching effect could be effectively prevented by the presence of various antioxidants (typically biothiols, ascorbic acid (Vitamin C), and Trolox). The chemical response of the UCNPs@dopamine-melanin hybrid system exhibited great selectivity and sensitivity toward antioxidants relative to other compounds at 100-fold higher concentration. A satisfactory correlation was established between the ratio of the "anti-quenching" fluorescence intensity and the concentration of antioxidants. Besides the response of the upconversion fluorescence signal, a specific evaluation process for antioxidants could be visualized by the color change from colorless to dark gray accompanied by the spontaneous oxidation of dopamine. The near-infrared (NIR)-excited UCNP-based antioxidant capacity assay platform was further used to evaluate the antioxidant capacity of cell extracts and human plasma, and satisfactory sensitivity, repeatability, and recovery rate were obtained. This approach features easy preparation, fluorescence/visual dual mode detection, high specificity to antioxidants, and enhanced sensitivity with NIR excitation, showing great potential for screening and quantitative evaluation of antioxidants in biological systems.
Wilker, Molly B.; Utterback, James K.; Greene, Sophie; ...
2017-12-08
Complexes of CdS nanorods and [FeFe] hydrogenase from Clostridium acetobutylicum have been shown to photochemically produce H 2. This study examines the role of the ligands that passivate the nanocrystal surfaces in the electron transfer from photoexcited CdS to hydrogenase and the H 2 generation that follows. We functionalized CdS nanorods with a series of mercaptocarboxylate surface-capping ligands of varying lengths and measured their photoexcited electron relaxation by transient absorption (TA) spectroscopy before and after hydrogenase adsorption. Rate constants for electron transfer from the nanocrystals to the enzyme, extracted by modeling of TA kinetics, decrease exponentially with ligand length, suggestingmore » that the ligand layer acts as a barrier to charge transfer and controls the degree of electronic coupling. Relative light-driven H 2 production efficiencies follow the relative quantum efficiencies of electron transfer, revealing the critical role of surface-capping ligands in determining the photochemical activity of these nanocrystal-enzyme complexes. Our results suggest that the H 2 production in this system could be maximized with a choice of a surface-capping ligand that decreases the distance between the nanocrystal surface and the electron injection site of the enzyme.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilker, Molly B.; Utterback, James K.; Greene, Sophie
Complexes of CdS nanorods and [FeFe] hydrogenase from Clostridium acetobutylicum have been shown to photochemically produce H 2. This study examines the role of the ligands that passivate the nanocrystal surfaces in the electron transfer from photoexcited CdS to hydrogenase and the H 2 generation that follows. We functionalized CdS nanorods with a series of mercaptocarboxylate surface-capping ligands of varying lengths and measured their photoexcited electron relaxation by transient absorption (TA) spectroscopy before and after hydrogenase adsorption. Rate constants for electron transfer from the nanocrystals to the enzyme, extracted by modeling of TA kinetics, decrease exponentially with ligand length, suggestingmore » that the ligand layer acts as a barrier to charge transfer and controls the degree of electronic coupling. Relative light-driven H 2 production efficiencies follow the relative quantum efficiencies of electron transfer, revealing the critical role of surface-capping ligands in determining the photochemical activity of these nanocrystal-enzyme complexes. Our results suggest that the H 2 production in this system could be maximized with a choice of a surface-capping ligand that decreases the distance between the nanocrystal surface and the electron injection site of the enzyme.« less
Electron transfer between colloidal ZnO nanocrystals.
Hayoun, Rebecca; Whitaker, Kelly M; Gamelin, Daniel R; Mayer, James M
2011-03-30
Colloidal ZnO nanocrystals capped with dodecylamine and dissolved in toluene can be charged photochemically to give stable solutions in which electrons are present in the conduction bands of the nanocrystals. These conduction-band electrons are readily monitored by EPR spectroscopy, with g* values that correlate with the nanocrystal sizes. Mixing a solution of charged small nanocrystals (e(-)(CB):ZnO-S) with a solution of uncharged large nanocrystals (ZnO-L) caused changes in the EPR spectrum indicative of quantitative electron transfer from small to large nanocrystals. EPR spectra of the reverse reaction, e(-)(CB):ZnO-L + ZnO-S, showed that electrons do not transfer from large to small nanocrystals. Stopped-flow kinetics studies monitoring the change in the UV band-edge absorption showed that reactions of 50 μM nanocrystals were complete within the 5 ms mixing time of the instrument. Similar results were obtained for the reaction of charged nanocrystals with methyl viologen (MV(2+)). These and related results indicate that the electron-transfer reactions of these colloidal nanocrystals are quantitative and very rapid, despite the presence of ~1.5 nm long dodecylamine capping ligands. These soluble ZnO nanocrystals are thus well-defined redox reagents suitable for studies of electron transfer involving semiconductor nanostructures.
Mukherjee, Puspal; Biswas, Somnath; Sen, Pratik
2015-08-27
Fluorescence quenching studies through steady-state and time-resolved measurements are inadequate to quantify the bimolecular electron transfer rate in bulk homogeneous solution due to constraints from diffusion. To nullify the effect of diffusion, direct evaluation of the rate of formation of a transient intermediate produced upon the electron transfer is essential. Methyl viologen, a well-known electron acceptor, produces a radical cation after accepting an electron, which has a characteristic strong and broad absorption band centered at 600 nm. Hence it is a good choice to evaluate the rate of photoinduced electron transfer reaction employing femtosecond broadband transient absorption spectroscopy. The time constant of the aforementioned process between pyrene and methyl viologen in methanol has been estimated to be 2.5 ± 0.4 ps using the same technique. The time constant for the backward reaction was found to be 14 ± 1 ps. These values did not change with variation of concentration of quencher, i.e., methyl viologen. Hence, we can infer that diffusion has no contribution in the estimation of rate constants. However, on changing the solvent from methanol to ethanol, the time constant of the electron transfer reaction has been found to increase and has accounted for the change in solvent reorganization energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yiman; Pelliccione, Christopher J.; Brady, Alexander B.
Here, we report an extensive study on fundamental properties that determine the functional electrochemistry of ZnFe 2O 4 spinel (theoretical capacity of 1000 mAh/g). For the first time, the reduction mechanism is followed through a combination of in situ X-ray diffraction data, synchrotron based powder diffraction, and ex-situ extended X-ray absorption fine structure allowing complete visualization of reduction products irrespective of their crystallinity. The first 0.5 electron equivalents (ee) do not significantly change the starting crystal structure. Subsequent lithiation results in migration of Zn 2+ ions from 8a tetrahedral sites into vacant 16c sites. Density functional theory shows that Limore » + ions insert into 16c site initially and then 8a site with further lithiation. Fe metal is formed over the next eight ee of reduction with no evidence of concurrent Zn 2+ reduction to Zn metal. Despite the expected formation of LiZn alloy from the electron count, we find no evidence for this phase under the tested conditions. Additionally, upon oxidation to 3 V, we observe an FeO phase with no evidence of Fe 2O 3. Electrochemistry data show higher electron equivalent transfer than can be accounted for solely based on ZnFe 2O 4 reduction indicating excess capacity ascribed to carbon reduction or surface electrolyte interphase formation.« less
Zhang, Yiman; Pelliccione, Christopher J.; Brady, Alexander B.; ...
2017-04-24
Here, we report an extensive study on fundamental properties that determine the functional electrochemistry of ZnFe 2O 4 spinel (theoretical capacity of 1000 mAh/g). For the first time, the reduction mechanism is followed through a combination of in situ X-ray diffraction data, synchrotron based powder diffraction, and ex-situ extended X-ray absorption fine structure allowing complete visualization of reduction products irrespective of their crystallinity. The first 0.5 electron equivalents (ee) do not significantly change the starting crystal structure. Subsequent lithiation results in migration of Zn 2+ ions from 8a tetrahedral sites into vacant 16c sites. Density functional theory shows that Limore » + ions insert into 16c site initially and then 8a site with further lithiation. Fe metal is formed over the next eight ee of reduction with no evidence of concurrent Zn 2+ reduction to Zn metal. Despite the expected formation of LiZn alloy from the electron count, we find no evidence for this phase under the tested conditions. Additionally, upon oxidation to 3 V, we observe an FeO phase with no evidence of Fe 2O 3. Electrochemistry data show higher electron equivalent transfer than can be accounted for solely based on ZnFe 2O 4 reduction indicating excess capacity ascribed to carbon reduction or surface electrolyte interphase formation.« less
Supramolecular networks with electron transfer in two dimensions
Stupp, Samuel I.; Stoddart, J. Fraser; Shveyd, Alexander K.; Tayi, Alok S.; Sue, Chi-Hau; Narayanan, Ashwin
2016-09-13
Organic charge-transfer (CT) co-crystals in a crossed stack system are disclosed. The co-crystals exhibit bidirectional charge transfer interactions where one donor molecule shares electrons with two different acceptors, one acceptor face-to-face and the other edge-to-face. The assembly and charge transfer interaction results in a pleochroic material whereby the optical absorption continuously changes depending on the polarization angle of incident light.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeda, Kouta; Matsumura, Hirotoshi; Ishida, Takuya
A pyranose dehydrogenase from Coprinopsis cinerea (CcPDH) is an extracellular quinohemoeprotein, which consists a b-type cytochrome domain, a pyrroloquinoline-quinone (PQQ) domain, and a family 1-type carbohydrate-binding module. The electron transfer reaction of CcPDH was studied using some electron acceptors and a carbon electrode at various pH levels. Phenazine methosulfate (PMS) reacted directly at the PQQ domain, whereas cytochrome c (cyt c) reacted via the cytochrome domain of intact CcPDH. Thus, electrons are transferred from reduced PQQ in the catalytic domain of CcPDH to heme b in the N-terminal cytochrome domain, which acts as a built-in mediator and transfers electron tomore » a heterogenous electron transfer protein. The optimal pH values of the PMS reduction (pH 6.5) and the cyt c reduction (pH 8.5) differ. The catalytic currents for the oxidation of L-fucose were observed within a range of pH 4.5 to 11. Bioelectrocatalysis of CcPDH based on direct electron transfer demonstrated that the pH profile of the biocatalytic current was similar to the reduction activity of cyt c characters. - Highlights: • pH dependencies of activity were different for the reduction of cyt c and DCPIP. • DET-based bioelectrocatalysis of CcPDH was observed. • The similar pH-dependent profile was found with cyt c and electrode. • The present results suggested that IET reaction of CcPDH shows pH dependence.« less
Electron Transfer Strategies Regulate Carbonate Mineral and Micropore Formation.
Zeng, Zhirui; Tice, Michael M
2018-01-01
Some microbial carbonates are robust biosignatures due to their distinct morphologies and compositions. However, whether carbonates induced by microbial iron reduction have such features is unknown. Iron-reducing bacteria use various strategies to transfer electrons to iron oxide minerals (e.g., membrane-bound enzymes, soluble electron shuttles, nanowires, as well as different mechanisms for moving over or attaching to mineral surfaces). This diversity has the potential to create mineral biosignatures through manipulating the microenvironments in which carbonate precipitation occurs. We used Shewanella oneidensis MR-1, Geothrix fermentans, and Geobacter metallireducens GS-15, representing three different strategies, to reduce solid ferric hydroxide in order to evaluate their influence on carbonate and micropore formation (micro-size porosity in mineral rocks). Our results indicate that electron transfer strategies determined the morphology (rhombohedral, spherical, or long-chained) of precipitated calcium-rich siderite by controlling the level of carbonate saturation and the location of carbonate formation. Remarkably, electron transfer strategies also produced distinctive cell-shaped micropores in both carbonate and hydroxide minerals, thus producing suites of features that could potentially serve as biosignatures recording information about the sizes, shapes, and physiologies of iron-reducing organisms. Key Words: Microbial iron reduction-Micropore-Electron transfer strategies-Microbial carbonate. Astrobiology 18, 28-36.
36 CFR § 1235.50 - What specifications and standards for transfer apply to electronic records?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT TRANSFER OF RECORDS TO THE... Records Administration, Electronic/Special Media Records Services Division (NWME), 8601 Adelphi Road... and Records Administration, Electronic/Special Media Records Services Division (NWME), 8601 Adelphi...
36 CFR 1235.50 - What specifications and standards for transfer apply to electronic records?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT TRANSFER OF REC- ORDS TO THE... Records Administration, Electronic/Special Media Records Services Division (NWME), 8601 Adelphi Road... and Records Administration, Electronic/Special Media Records Services Division (NWME), 8601 Adelphi...
Liu, Baoshun
2016-04-28
In photocatalysis, it is known that light intensity, organic concentration, and temperature affect the photocatalytic activity by changing the microscopic kinetics of holes and electrons. However, how the microscopic kinetics of holes and electrons relates to the photocatalytic activity was not well known. In the present research, we developed a Monte-Carlo random walking model that involved all of the charge kinetics, including the photo-generation, the recombination, the transport, and the interfacial transfer of holes and electrons, to simulate the overall photocatalytic reaction, which we called a "computer experiment" of photocatalysis. By using this model, we simulated the effect of light intensity, temperature, and organic surface coverage on the photocatalytic activity and the density of the free electrons that accumulate in the simulated system. It was seen that the increase of light intensity increases the electron density and its mobility, which increases the probability for a hole/electron to find an electron/hole for recombination, and consequently led to an apparent kinetics that the quantum yield (QY) decreases with the increase of light intensity. It was also seen that the increase of organic surface coverage could increase the rate of hole interfacial transfer and result in the decrease of the probability for an electron to recombine with a hole. Moreover, the increase of organic coverage on the nano-material surface can also increase the accumulation of electrons, which enhances the mobility for electrons to undergo interfacial transfer, and finally leads to the increase of photocatalytic activity. The simulation showed that the temperature had a more complicated effect, as it can simultaneously change the activation of electrons, the interfacial transfer of holes, and the interfacial transfer of electrons. It was shown that the interfacial transfer of holes might play a main role at low temperature, with the temperature-dependence of QY conforming to the Arrhenius model. The activation of electrons from the traps to the conduction band might become important at high temperature, which accelerates the electron movement for recombination and leads to a temperature dependence of QY that deviates from the Arrhenius model.
Code of Federal Regulations, 2014 CFR
2014-01-01
... to initiate a one-time electronic fund transfer from a consumer's account. The consumer must...-time electronic fund transfer (in providing a check to a merchant or other payee for the MICR encoding... information for the transfer shall also provide a notice to the consumer at the same time it provides the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... to initiate a one-time electronic fund transfer from a consumer's account. The consumer must...-time electronic fund transfer (in providing a check to a merchant or other payee for the MICR encoding... information for the transfer shall also provide a notice to the consumer at the same time it provides the...
Code of Federal Regulations, 2013 CFR
2013-01-01
... to initiate a one-time electronic fund transfer from a consumer's account. The consumer must...-time electronic fund transfer (in providing a check to a merchant or other payee for the MICR encoding... information for the transfer shall also provide a notice to the consumer at the same time it provides the...
Charge-transfer complexes and their role in exciplex emission and near-infrared photovoltaics.
Ng, Tsz-Wai; Lo, Ming-Fai; Fung, Man-Keung; Zhang, Wen-Jun; Lee, Chun-Sing
2014-08-20
Charge transfer and interactions at organic heterojunctions (OHJs) are known to have critical influences on various properties of organic electronic devices. In this Research News article, a short review is given from the electronic viewpoint on how the local molecular interactions and interfacial energetics at P/N OHJs contribute to the recombination/dissociation of electron-hole pairs. Very often, the P-type materials donate electrons to the N-type materials, giving rise to charge-transfer complexes (CTCs) with a P(δ+) -N(δ-) configuration. A recently observed opposite charge-transfer direction in OHJs is also discussed (i.e., N-type material donates electrons to P-type material to form P(δ-) -N(δ+) ). Recent studies on the electronic structures of CTC-forming material pairs are also summarized. The formation of P(δ-) -N(δ+) -type CTCs and their correlations with exciplex emission are examined. Furthermore, the potential applications of CTCs in NIR photovoltaic devices are reviewed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Canton, Sophie E.; Kjær, Kasper S.; Vankó, György; van Driel, Tim B.; Adachi, Shin-ichi; Bordage, Amélie; Bressler, Christian; Chabera, Pavel; Christensen, Morten; Dohn, Asmus O.; Galler, Andreas; Gawelda, Wojciech; Gosztola, David; Haldrup, Kristoffer; Harlang, Tobias; Liu, Yizhu; Møller, Klaus B.; Németh, Zoltán; Nozawa, Shunsuke; Pápai, Mátyás; Sato, Tokushi; Sato, Takahiro; Suarez-Alcantara, Karina; Togashi, Tadashi; Tono, Kensuke; Uhlig, Jens; Vithanage, Dimali A.; Wärnmark, Kenneth; Yabashi, Makina; Zhang, Jianxin; Sundström, Villy; Nielsen, Martin M.
2015-01-01
Ultrafast photoinduced electron transfer preceding energy equilibration still poses many experimental and conceptual challenges to the optimization of photoconversion since an atomic-scale description has so far been beyond reach. Here we combine femtosecond transient optical absorption spectroscopy with ultrafast X-ray emission spectroscopy and diffuse X-ray scattering at the SACLA facility to track the non-equilibrated electronic and structural dynamics within a bimetallic donor–acceptor complex that contains an optically dark centre. Exploiting the 100-fold increase in temporal resolution as compared with storage ring facilities, these measurements constitute the first X-ray-based visualization of a non-equilibrated intramolecular electron transfer process over large interatomic distances. Experimental and theoretical results establish that mediation through electronically excited molecular states is a key mechanistic feature. The present study demonstrates the extensive potential of femtosecond X-ray techniques as diagnostics of non-adiabatic electron transfer processes in synthetic and biological systems, and some directions for future studies, are outlined. PMID:25727920
Canton, Sophie E.; Kjær, Kasper S.; Vankó, György; ...
2015-03-02
Ultrafast photoinduced electron transfer preceding energy equilibration still poses many experimental and conceptual challenges to the optimization of photoconversion since an atomic-scale description has so far been beyond reach. Here we combine femtosecond transient optical absorption spectroscopy with ultrafast X-ray emission spectroscopy and diffuse X-ray scattering at the SACLA facility to track the non-equilibrated electronic and structural dynamics within a bimetallic donor–acceptor complex that contains an optically dark centre. Exploiting the 100-fold increase in temporal resolution as compared with storage ring facilities, these measurements constitute the first X-ray-based visualization of a non-equilibrated intramolecular electron transfer process over large interatomic distances.more » Thus experimental and theoretical results establish that mediation through electronically excited molecular states is a key mechanistic feature. The present study demonstrates the extensive potential of femtosecond X-ray techniques as diagnostics of non-adiabatic electron transfer processes in synthetic and biological systems, and some directions for future studies, are outlined.« less
Photosensitizing Electron Transfer Processes of Fullerenes, Carbon Nanotubes, and Carbon Nanohorns.
Ito, Osamu
2017-03-01
In this account, studies on the photosensitizing electron transfer of nanocarbons, such as fullerenes, single-walled carbon nanotubes (SWCNTs), and carbon nanohorns (CNH), performed in our laboratory for about 15 years in the early 21st century have been briefly reviewed. These novel nanocarbons act as excellent electron acceptors, when they are linked to light-absorbing electron donors, such as porphyrins or phthalocyanines. For such molecule-nanocarbon hybrids, the direct confirmation of fast, transient, electron-transfer phenomena must be performed with time-resolved spectroscopic methods, such as transient absorption spectral measurements, in addition to fluorescence time-profile measurements in the wide-wavelength regions. Careful use of these methods affords useful information to understand photoinduced electron-transfer mechanisms. In addition, kinetic data obtained by these methods can assist in the construction of light-active devices, such as photovoltaic cells and solar H 2 -generation systems. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Liu, Xian-Wei; Chen, Jie-Jie; Huang, Yu-Xi; Sun, Xue-Fei; Sheng, Guo-Ping; Li, Dao-Bo; Xiong, Lu; Zhang, Yuan-Yuan; Zhao, Feng; Yu, Han-Qing
2014-01-01
Bioelectrochemical systems (BESs) share the principle of the microbially catalyzed anodic substrate oxidation. Creating an electrode interface to promote extracellular electron transfer from microbes to electrode and understanding such mechanisms are crucial for engineering BESs. In this study, significantly promoted electron transfer and a 10-times increase in current generation in a BES were achieved by the utilization of carbon nanotube (CNT) network, compared with carbon paper. The mechanisms for the enhanced current generation with the CNT network were elucidated with both experimental approach and molecular dynamic simulations. The fabricated CNT network was found to be able to substantially enhance the interaction between the c-type cytochromes and solid electron acceptor, indicating that the direct electron transfer from outer-membrane decaheme c-type cytochromes to electrode might occur. The results obtained in this study will benefit for the optimized design of new materials to target the outer membrane proteins for enhanced electron exchanges.
Zhou, Yecheng; Deng, Wei-Qiao; Zhang, Hao-Li
2016-09-14
Cn-[1]benzothieno[3,2-b][1]-benzothiophene (BTBT) crystals show very high hole mobilities in experiments. These high mobilities are beyond existing theory prediction. Here, we employed different quantum chemistry methods to investigate charge transfer in Cn-BTBT crystals and tried to find out the reasons for the underestimation in the theory. It was found that the hopping rate estimated by the Fermi Golden Rule is higher than that of the Marcus theory due to the high temperature approximation and failure at the classic limit. More importantly, molecular dynamics simulations revealed that the phonon induced fluctuation of electronic transfer integral is much larger than the average of the electronic transfer integral itself. Mobilities become higher if simulations implement the phonon-electron coupling. This conclusion indicates that the phonon-electron coupling promotes charge transfer in organic semi-conductors at room temperature.
NASA Astrophysics Data System (ADS)
Zhou, Yecheng; Deng, Wei-Qiao; Zhang, Hao-Li
2016-09-01
Cn-[1]benzothieno[3,2-b][1]-benzothiophene (BTBT) crystals show very high hole mobilities in experiments. These high mobilities are beyond existing theory prediction. Here, we employed different quantum chemistry methods to investigate charge transfer in Cn-BTBT crystals and tried to find out the reasons for the underestimation in the theory. It was found that the hopping rate estimated by the Fermi Golden Rule is higher than that of the Marcus theory due to the high temperature approximation and failure at the classic limit. More importantly, molecular dynamics simulations revealed that the phonon induced fluctuation of electronic transfer integral is much larger than the average of the electronic transfer integral itself. Mobilities become higher if simulations implement the phonon-electron coupling. This conclusion indicates that the phonon-electron coupling promotes charge transfer in organic semi-conductors at room temperature.
Electronic and Vibrational Coherence in Charge-Transfer Reactions
NASA Astrophysics Data System (ADS)
Scherer, Norbert
1996-03-01
The ultrafast dynamics associated with optically-induced intervalence charge-transfer reactions in solution and protein environments are reported. These studies include the Fe^(II)-Fe^(III) MMCT complex Prussian blue and the mixed valence dimer (CN)_5Ru^(II)CNRuRu^(III)(NH_3)_5. The protein systems include blue copper proteins and the bacterial photosynthetic reaction center. The experimental approaches include photon echo, wavelength-resolved pump-probe and anisotropy measurements performed with 12-16fs duration optical pulses. Complicated time-domain waveforms reflect the several different p[rocesses and time scales for relaxation of coherences (both electronic and vibrational) and populations within these systems. The photon echo and anisotropy results probe electronic coherence and dephasing prior to back electron transfer. Wavelength-resolved pump-probe results reveal vibrational modes coupled to the CT-coordinate as well as formation of new product states or vibrational cooling in the ground state following back electron transfer.
Vertically aligned multiwalled carbon nanotubes as electronic interconnects
NASA Astrophysics Data System (ADS)
Gopee, Vimal Chandra
The drive for miniaturisation of electronic circuits provides new materials challenges for the electronics industry. Indeed, the continued downscaling of transistor dimensions, described by Moore’s Law, has led to a race to find suitable replacements for current interconnect materials to replace copper. Carbon nanotubes have been studied as a suitable replacement for copper due to its superior electrical, thermal and mechanical properties. One of the advantages of using carbon nanotubes is their high current carrying capacity which has been demonstrated to be three orders of magnitude greater than that of copper. Most approaches in the implementation of carbon nanotubes have so far focused on the growth in vias which limits their application. In this work, a process is described for the transfer of carbon nanotubes to substrates allowing their use for more varied applications. Arrays of vertically aligned multiwalled carbon nanotubes were synthesised by photo-thermal chemical vapour deposition with high growth rates. Raman spectroscopy was used to show that the synthesised carbon nanotubes were of high quality. The carbon nanotubes were exposed to an oxygen plasma and the nature of the functional groups present was determined using X-ray photoelectron spectroscopy. Functional groups, such as carboxyl, carbonyl and hydroxyl groups, were found to be present on the surface of the multiwalled carbon nanotubes after the functionalisation process. The multiwalled carbon nanotubes were metallised after the functionalisation process using magnetron sputtering. Two materials, solder and sintered silver, were chosen to bind carbon nanotubes to substrates so as to enable their transfer and also to make electrical contact. The wettability of solder to carbon nanotubes was investigated and it was demonstrated that both functionalisation and metallisation were required in order for solder to bond with the carbon nanotubes. Similarly, functionalisation followed by metallisation was critical for bonding carbon nanotubes to sintered silver. A step by step process is described that allows the production of solder-carbon nanotubes and silver-carbon nanotubes interconnects. 4-point probe electrical characterisation of the interconnects was performed and the interconnects were shown to have a resistivity of 5.0 x 10-4 Ωcm for solder-carbon nanotubes and 5.2 x 10-4 Ωcm for silver-carbon nanotubes interconnects. Ramp to failure tests carried out on solder-carbon nanotubes interconnects showed current carrying capacity of 0.75 MA/cm2, only one order of magnitude lower than copper.
NASA Astrophysics Data System (ADS)
Gopi, Chandu V. V. Muralee; Somasekha, A.; Reddy, Araveeti Eswar; Kim, Soo-Kyoung; Kim, Hee-Je
2018-03-01
Herein, for the first time, we demonstrate the fabrication of Fe2O3@LiCoO2 hybrid nanostructures on Ni foam substrate by facile one-step hydrothermal technique. Morphological studies reveal that aggregated Fe2O3 nanoflakes anchored on the surface of sphere-like LiCoO2 nanoflakes. Electrochemical studies are used to examine the performance of the supercapacitor electrodes. The composite Fe2O3@LiCoO2 electrode exhibited excellent electrochemical performance than Fe2O3 and LiCoO2 electrodes, such as a low charge transfer resistance, a high specific capacitance of 489 F g-1 at 5 mA cm-2 and an enhanced capacity retention of 108% over 3000 cycles at 15 mA cm-2. The composite Fe2O3@LiCoO2 holds great promise for electrochemical applications due to well-defined hierarchical morphology, synergetic effect of Fe2O3 and LiCoO2, enhanced electrical conductivity, efficient electrolyte penetration and fast electron transfer.
Method for eliminating artifacts in CCD imagers
Turko, B.T.; Yates, G.J.
1992-06-09
An electronic method for eliminating artifacts in a video camera employing a charge coupled device (CCD) as an image sensor is disclosed. The method comprises the step of initializing the camera prior to normal read out and includes a first dump cycle period for transferring radiation generated charge into the horizontal register while the decaying image on the phosphor being imaged is being integrated in the photosites, and a second dump cycle period, occurring after the phosphor image has decayed, for rapidly dumping unwanted smear charge which has been generated in the vertical registers. Image charge is then transferred from the photosites and to the vertical registers and read out in conventional fashion. The inventive method allows the video camera to be used in environments having high ionizing radiation content, and to capture images of events of very short duration and occurring either within or outside the normal visual wavelength spectrum. Resultant images are free from ghost, smear and smear phenomena caused by insufficient opacity of the registers and, and are also free from random damage caused by ionization charges which exceed the charge limit capacity of the photosites. 3 figs.
Liu, Jian; McLuckey, Scott A.
2012-01-01
The effect of cation charge state on product partitioning in the gas-phase ion/ion electron transfer reactions of multiply protonated tryptic peptides, model peptides, and relatively large peptides with singly charged radical anions has been examined. In particular, partitioning into various competing channels, such as proton transfer (PT) versus electron transfer (ET), electron transfer with subsequent dissociation (ETD) versus electron transfer with no dissociation (ET,noD), and fragmentation of backbone bonds versus fragmentation of side chains, was measured quantitatively as a function of peptide charge state to allow insights to be drawn about the fundamental aspects of ion/ion reactions that lead to ETD. The ET channel increases relative to the PT channel, ETD increases relative to ET,noD, and fragmentation at backbone bonds increases relative to side-chain cleavages as cation charge state increases. The increase in ET versus PT with charge state is consistent with a Landau-Zener based curve-crossing model. An optimum charge state for ET is predicted by the model for the ground state-to-ground state reaction. However, when the population of excited product ion states is considered, it is possible that a decrease in ET efficiency as charge state increases will not be observed due to the possibility of the population of excited electronic states of the products. Several factors can contribute to the increase in ETD versus ET,noD and backbone cleavage versus side-chain losses. These factors include an increase in reaction exothermicity and charge state dependent differences in precursor and product ion structures, stabilities, and sites of protonation. PMID:23264749
Qin, Xin; Deng, Li; Hu, Caihong; Li, Li; Chen, Xiaohua
2017-10-20
The possible catalytic mechanism of the reduction of nitrite by copper-containing nitrite reductases (CuNiRs) is examined by using the M06 function according to two copper models, which include type-one copper (T1Cu) and type-two copper (T2Cu) sites. Examinations confirm that the protonation of two residues, His255 and Asp98, near the T2Cu site, can modulate the redox states of T1Cu and T2Cu, but cannot directly cause electron transfer from T1Cu to T2Cu. The electron hole remains at the T2Cu site when only one residue, His255 or Asp98, is protonated. However, the hole resides at the T1Cu site when both His255 and Asp98 are protonated. Then, the first protonation of nitrite takes place through indirect proton transfer from protonated His255 through the bridging H 2 O and Asp98 with three protons moving together, which cannot cause the cleavage of the HO-NO bond. Subsequently, the substrate is required to obtain another proton from reprotonated His255 through the bridging H 2 O. The reprotonation of nitrite induces the generation of nitric oxide (NO) and H 2 O at the T2Cu site through a special double-proton-coupled spin-exchanged electron-transfer mechanism with indirect proton transfer from His255 to the substrate, a beta-electron of T2Cu I shift to the NO cation, and the remaining alpha-electron changing spin direction at the same time. These results may provide useful information to better understand detailed proton-/electron-transfer reactions for the catalytic processes of CuNiR. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Feist, Adam M; Nagarajan, Harish; Rotaru, Amelia-Elena; Tremblay, Pier-Luc; Zhang, Tian; Nevin, Kelly P; Lovley, Derek R; Zengler, Karsten
2014-04-01
Geobacter species are of great interest for environmental and biotechnology applications as they can carry out direct electron transfer to insoluble metals or other microorganisms and have the ability to assimilate inorganic carbon. Here, we report on the capability and key enabling metabolic machinery of Geobacter metallireducens GS-15 to carry out CO2 fixation and direct electron transfer to iron. An updated metabolic reconstruction was generated, growth screens on targeted conditions of interest were performed, and constraint-based analysis was utilized to characterize and evaluate critical pathways and reactions in G. metallireducens. The novel capability of G. metallireducens to grow autotrophically with formate and Fe(III) was predicted and subsequently validated in vivo. Additionally, the energetic cost of transferring electrons to an external electron acceptor was determined through analysis of growth experiments carried out using three different electron acceptors (Fe(III), nitrate, and fumarate) by systematically isolating and examining different parts of the electron transport chain. The updated reconstruction will serve as a knowledgebase for understanding and engineering Geobacter and similar species.
Concerted electron-proton transfer in the optical excitation of hydrogen-bonded dyes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westlake, Brittany C.; Brennaman, Kyle M.; Concepcion, Javier J.
2011-05-24
The simultaneous, concerted transfer of electrons and protons—electron-proton transfer (EPT)—is an important mechanism utilized in chemistry and biology to avoid high energy intermediates. There are many examples of thermally activated EPT in ground-state reactions and in excited states following photoexcitation and thermal relaxation. Here we report application of ultrafast excitation with absorption and Raman monitoring to detect a photochemically driven EPT process (photo-EPT). In this process, both electrons and protons are transferred during the absorption of a photon. Photo-EPT is induced by intramolecular charge-transfer (ICT) excitation of hydrogen-bonded-base adducts with either a coumarin dye or 4-nitro-4'-biphenylphenol. Femtosecond transient absorption spectralmore » measurements following ICT excitation reveal the appearance of two spectroscopically distinct states having different dynamical signatures. One of these states corresponds to a conventional ICT excited state in which the transferring H⁺ is initially associated with the proton donor. Proton transfer to the base (B) then occurs on the picosecond time scale. The other state is an ICT-EPT photoproduct. Upon excitation it forms initially in the nuclear configuration of the ground state by application of the Franck–Condon principle. However, due to the change in electronic configuration induced by the transition, excitation is accompanied by proton transfer with the protonated base formed with a highly elongated ⁺H–B bond. Coherent Raman spectroscopy confirms the presence of a vibrational mode corresponding to the protonated base in the optically prepared state.« less
Concerted electron-proton transfer in the optical excitation of hydrogen-bonded dyes.
Westlake, Brittany C; Brennaman, M Kyle; Concepcion, Javier J; Paul, Jared J; Bettis, Stephanie E; Hampton, Shaun D; Miller, Stephen A; Lebedeva, Natalia V; Forbes, Malcolm D E; Moran, Andrew M; Meyer, Thomas J; Papanikolas, John M
2011-05-24
The simultaneous, concerted transfer of electrons and protons--electron-proton transfer (EPT)--is an important mechanism utilized in chemistry and biology to avoid high energy intermediates. There are many examples of thermally activated EPT in ground-state reactions and in excited states following photoexcitation and thermal relaxation. Here we report application of ultrafast excitation with absorption and Raman monitoring to detect a photochemically driven EPT process (photo-EPT). In this process, both electrons and protons are transferred during the absorption of a photon. Photo-EPT is induced by intramolecular charge-transfer (ICT) excitation of hydrogen-bonded-base adducts with either a coumarin dye or 4-nitro-4'-biphenylphenol. Femtosecond transient absorption spectral measurements following ICT excitation reveal the appearance of two spectroscopically distinct states having different dynamical signatures. One of these states corresponds to a conventional ICT excited state in which the transferring H(+) is initially associated with the proton donor. Proton transfer to the base (B) then occurs on the picosecond time scale. The other state is an ICT-EPT photoproduct. Upon excitation it forms initially in the nuclear configuration of the ground state by application of the Franck-Condon principle. However, due to the change in electronic configuration induced by the transition, excitation is accompanied by proton transfer with the protonated base formed with a highly elongated (+)H ─ B bond. Coherent Raman spectroscopy confirms the presence of a vibrational mode corresponding to the protonated base in the optically prepared state.