Science.gov

Sample records for electron transfer catalyst

  1. Incorporation of Water-Oxidation Catalysts into Photoinduced Electron Transfer Systems: Toward Solar Fuel Generation via Artificial Photosynthesis

    NASA Astrophysics Data System (ADS)

    Vagnini, Michael Thomas

    A key goal of artificial photosynthesis is to mimic the photochemistry of photosystem II and oxidize water using light energy, with the ultimate aim of using the liberated electrons for reductive, fuel-forming reactions. One of the more recent challenges in the field of solar fuels chemistry is the efficient activation of molecular water-oxidation catalysts with photoinduced electron transfer, an effort that would benefit from detailed knowledge of the energetics and kinetics of each electron transfer step in a light-driven catalytic cycle. The focus of this thesis is the synthesis and photophysical characterization of covalent assemblies comprising a redox-active organic chromophore and the iridium(III)-based water-oxidation catalyst Cp*Ir(ppy)Cl (ppy = 2-phenylpyridine), and the rates and pathways for photogeneration of higher-valence states of the catalyst are determined with femtosecond transient absorption spectroscopy and other time-resolved spectroscopic techniques. In linking the photooxidant perylene-3,4:9,10-bis (dicarboximide) (PDI) to the Ir(III) catalyst, fast photoinduced electron transfer from the metal complex to PDI outcompetes heavy-atom quenching of the dye excited state, and the catalytic integrity of the complex is retained, as determined by electrocatalysis experiments. Long-lived higher-valence states of the catalyst are necessary for the accumulation of oxidizing equivalents for oxygen evolution, and the lifetime of photogenerated Ir(IV) has been extended by over two orders of magnitude by catalyst incorporation into a covalent electron acceptor--chromophore--catalyst triad, in which the dye is perylene-3,4-dicarboximide (PMI). Time resolved X-ray absorption studies of the triad confirm the photogeneration of an Ir(IV) metal center, a species that is too unstable to observe with chemical or electrochemical oxidation methods. This approach to preparing higher-valence states of water-oxidation catalysts has great promise for deducing catalytic

  2. Ultrafast photodriven intramolecular electron transfer from an iridium-based water-oxidation catalyst to perylene diimide derivatives

    PubMed Central

    Vagnini, Michael T.; Smeigh, Amanda L.; Blakemore, James D.; Eaton, Samuel W.; Schley, Nathan D.; D’Souza, Francis; Crabtree, Robert H.; Brudvig, Gary W.; Co, Dick T.; Wasielewski, Michael R.

    2012-01-01

    Photodriving the activity of water-oxidation catalysts is a critical step toward generating fuel from sunlight. The design of a system with optimal energetics and kinetics requires a mechanistic understanding of the single-electron transfer events in catalyst activation. To this end, we report here the synthesis and photophysical characterization of two covalently bound chromophore-catalyst electron transfer dyads, in which the dyes are derivatives of the strong photooxidant perylene-3,4:9,10-bis(dicarboximide) (PDI) and the molecular catalyst is the Cp∗Ir(ppy)Cl metal complex, where ppy = 2-phenylpyridine. Photoexcitation of the PDI in each dyad results in reduction of the chromophore to PDI•- in less than 10 ps, a process that outcompetes any generation of 3∗PDI by spin-orbit-induced intersystem crossing. Biexponential charge recombination largely to the PDI-Ir(III) ground state is suggestive of multiple populations of the PDI•--Ir(IV) ion-pair, whose relative abundance varies with solvent polarity. Electrochemical studies of the dyads show strong irreversible oxidation current similar to that seen for model catalysts, indicating that the catalytic integrity of the metal complex is maintained upon attachment to the high molecular weight photosensitizer. PMID:22586073

  3. Hydrogen Photogeneration Promoted by Efficient Electron Transfer from Iridium Sensitizers to Colloidal MoS2 Catalysts

    PubMed Central

    Yuan, Yong-Jun; Yu, Zhen-Tao; Liu, Xiao-Jie; Cai, Jian-Guang; Guan, Zhong-Jie; Zou, Zhi-Gang

    2014-01-01

    We report the utilization of colloidal MoS2 nanoparticles (NPs) for multicomponent photocatalytic water reduction systems in cooperation with a series of cyclometalated Ir(III) sensitizers. The effects of the particle size and particle dispersion of MoS2 NPs catalyst, reaction solvent and the concentration of the components on hydrogen evolution efficiency were investigated. The MoS2 NPs exhibited higher catalytic performance than did other commonly used water reduction catalysts under identical experiment conditions. The introduction of the carboxylate anchoring groups in the iridium complexes allows the species to be favorably chem-adsorbed onto the MoS2 NPs surface to increase the electron transfer, resulting in enhancement of hydrogen evolution relative to the non-attached systems. The highest apparent quantum yield, which was as high as 12.4%, for hydrogen evolution, was obtained (λ = 400 nm). PMID:24509729

  4. Generating power from cellulose in an alkaline fuel cell enhanced by methyl viologen as an electron-transfer catalyst

    NASA Astrophysics Data System (ADS)

    Hao, Miaoqing; Liu, Xianhua; Feng, Mengnan; Zhang, Pingping; Wang, Guangyi

    2014-04-01

    In this work, we developed a single-compartment direct cellulose alkaline fuel cell by using nickel foam as the anode and methyl viologen as an electron transfer catalyst. The maximum power density of the fuel cell at optimal conditions is 450 mW m-2. High-performance liquid chromatography detected short-chain aliphatic carboxylic acids in the oxidation products. Using common reed and red algae as fuels, the fuel cell achieved maximum power densities of 295 mW m-2 and 154 mW m-2, respectively.

  5. A Nickel Dithiolate Water Reduction Catalyst Providing Ligand-Based Proton-Coupled Electron-Transfer Pathways.

    PubMed

    Koshiba, Keita; Yamauchi, Kosei; Sakai, Ken

    2017-03-09

    A nickel pyrazinedithiolate ([Ni(dcpdt)2 ](2-) ; dcpdt=5,6-dicyanopyrazine-2,3-dithiolate), bearing a NiS4 core similar to the active center of [NiFe] hydrogenase, is shown to serve as an efficient molecular catalyst for the hydrogen evolution reaction (HER). This catalyst shows effectively low overpotentials for HER (330-400 mV at pH 4-6). Moreover, the turnover number of catalysis reaches 20 000 over the 24 h electrolysis with a high Faradaic efficiency, 92-100 %. The electrochemical and DFT studies reveal that diprotonated one-electron-reduced species (i.e., [Ni(II) (dcpdt)(dcpdtH2 )](-) or [Ni(II) (dcpdtH)2 ](-) ) forms at pH<6.4 via ligand-based proton-coupled electron-transfer (PCET) pathways, leading to electrocatalytic HER without applying the highly negative potential required to generate low-valent nickel intermediates. This is the first example of catalysts exhibiting such behavior.

  6. Introducing a closed system approach for the investigation of chemical steps involving proton and electron transfer; as illustrated by a copper-based water oxidation catalyst.

    PubMed

    de Ruiter, Jessica M; Buda, Francesco

    2017-02-08

    The investigation of the catalytic mechanism of homogeneous water oxidation catalysts remains an active field of research. When examining catalytic steps theoretically, it is often difficult to account for the transfer of protons and electrons from step to step. To this end, a closed system approach is proposed which includes both proton and electron acceptors in the simulation box to allow for the description of proton-coupled electron transfer processes. Using Car-Parrinello Molecular Dynamics, a mononuclear copper water oxidation catalyst Cu(bpy)(OH)2 was used as a model system to explore this closed system approach. The exploration of this model system shows that, compared to traditional methods, this approach offers extra insight into proposed catalytic steps and allows for the clear identification of preferred reaction paths.

  7. A kinetic study of plutonium dioxide dissolution in hydrochloric acid using iron (II) as an electron transfer catalyst

    SciTech Connect

    Fife, K.W.

    1996-09-01

    Effective dissolution of plutonium dioxide has traditionally been accomplished by contact with strong nitric acid containing a small amount of fluoride at temperatures of {approximately} 100 C. In spite of these aggressive conditions, PuO{sub 2} dissolution is sometimes incomplete requiring additional contact with the solvent. This work focused on an alternative to conventional dissolution in nitric acid where an electron transfer catalyst, Fe(II), was used in hydrochloric acid. Cyclic voltammetry was employed as an in-situ analytical technique for monitoring the dissolution reaction rate. The plutonium oxide selected for this study was decomposed plutonium oxalate with > 95% of the material having a particle diameter (< 70 {micro}m) as determined by a scanning laser microscopy technique. Attempts to dry sieve the oxide into narrow size fractions prior to dissolution in the HCl-Fe(II) solvent system failed, apparently due to significant interparticle attractive forces. Although sieve splits were obtained, subsequent scanning laser microscopy analysis of the sieve fractions indicated that particle segregation was not accomplished and the individual sieve fractions retained a particle size distribution very similar to the original powder assemblage. This phenomena was confirmed through subsequent dissolution experiments on the various screen fractions which illustrated no difference in kinetic behavior between the original oxide assemblage and the sieve fractions.

  8. The electron is a catalyst

    NASA Astrophysics Data System (ADS)

    Studer, Armido; Curran, Dennis P.

    2014-09-01

    The electron is an efficient catalyst for conducting various types of radical cascade reaction that proceed by way of radical and radical ion intermediates. But because electrons are omnipresent, catalysis by electrons often passes unnoticed. In this Review, a simple analogy between acid/base catalysis and redox catalysis is presented. Conceptually, the electron is a catalyst in much the same way that a proton is a catalyst. The 'electron is a catalyst' paradigm unifies mechanistically an assortment of synthetic transformations that otherwise have little or no apparent relationship. Diverse radical cascades, including unimolecular radical substitution reactions (SRN1-type chemistry), base-promoted homolytic aromatic substitutions (BHAS), radical Heck-type reactions, radical cross-dehydrogenative couplings (CDC), direct arene trifluoromethylations and radical alkoxycarbonylations, can all be viewed as electron-catalysed reactions.

  9. The role of a dipeptide outer-coordination sphere on H2-production catalysts: influence on catalytic rates and electron transfer.

    PubMed

    Reback, Matthew L; Ginovska-Pangovska, Bojana; Ho, Ming-Hsun; Jain, Avijita; Squier, Thomas C; Raugei, Simone; Roberts, John A S; Shaw, Wendy J

    2013-02-04

    The outer-coordination sphere of enzymes acts to fine-tune the active site reactivity and control catalytic rates, suggesting that incorporation of analogous structural elements into molecular catalysts may be necessary to achieve rates comparable to those observed in enzyme systems at low overpotentials. In this work, we evaluate the effect of an amino acid and dipeptide outer-coordination sphere on [Ni(P(Ph)(2)N(Ph-R)(2))(2)](2+) hydrogen production catalysts. A series of 12 new complexes containing non-natural amino acids or dipeptides was prepared to test the effects of positioning, size, polarity and aromaticity on catalytic activity. The non-natural amino acid was either 3-(meta- or para-aminophenyl)propionic acid terminated as an acid, an ester or an amide. Dipeptides consisted of one of the non-natural amino acids coupled to one of four amino acid esters: alanine, serine, phenylalanine or tyrosine. All of the catalysts are active for hydrogen production, with rates averaging ∼1000 s(-1), 40 % faster than the unmodified catalyst. Structure and polarity of the aliphatic or aromatic side chains of the C-terminal peptide do not strongly influence rates. However, the presence of an amide bond increases rates, suggesting a role for the amide in assisting catalysis. Overpotentials were lower with substituents at the N-phenyl meta position. This is consistent with slower electron transfer in the less compact, para-substituted complexes, as shown in digital simulations of catalyst cyclic voltammograms and computational modeling of the complexes. Combining the current results with insights from previous results, we propose a mechanism for the role of the amino acid and dipeptide based outer-coordination sphere in molecular hydrogen production catalysts.

  10. The Role of a Dipeptide Outer-Coordination Sphere on H2 -Production Catalysts: Influence on Catalytic Rates and Electron Transfer

    SciTech Connect

    Reback, Matthew L.; Ginovska-Pangovska, Bojana; Ho, Ming-Hsun; Jain, Avijita; Squier, Thomas C.; Raugei, Simone; Roberts, John A.; Shaw, Wendy J.

    2013-02-04

    The outer-coordination sphere of enzymes acts to fine-tune the active site reactivity and control catalytic rates, suggesting that incorporation of analogous structural elements into molecular catalysts may be necessary to achieve rates comparable to those observed in enzyme systems at low overpotentials. In this work, we evaluate the effect of an amino acid and dipeptide outer-coordination sphere on [Ni(PPh2NPh-R2)2]2+ hydrogen production catalysts. A series of 12 new complexes containing non-natural amino acids or dipeptides were prepared to test the effects of positioning, size, polarity and aromaticity on catalytic activity. The non-natural amino acid was either 3-(meta- or para-aminophenyl)propionic acid terminated as an acid, an ester or an amide. Dipeptides consisted of one of the non-natural amino acids coupled to one of four amino acid esters: alanine, serine, phenylalanine or tyrosine. All of the catalysts are active for hydrogen production, with rates averaging ~1000 s-1, 40% faster than the unmodified catalyst. Structure and polarity of the aliphatic or aromatic side chains of the C-terminal peptide do not strongly influence rates. However, the presence of an amide bond increases rates, suggesting a role for the amide in assisting catalysis. Overpotentials were lower with substituents at the N-phenyl meta position. This is consistent with slower electron transfer in the less compact, para-substituted complexes, as shown in digital simulations of catalyst cyclic voltammograms and computational modeling of the complexes. Combining the current results with insights from previous results, we propose a mechanism for the role of the amino acid and dipeptide based outer-coordination sphere in molecular hydrogen production catalysts.

  11. Unraveling a Single-Step Simultaneous Two-Electron Transfer Process from Semiconductor to Molecular Catalyst in a CoPy/CdS Hybrid System for Photocatalytic H2 Evolution under Strong Alkaline Conditions.

    PubMed

    Xu, Yuxing; Ye, Yun; Liu, Taifeng; Wang, Xiuli; Zhang, Bingqing; Wang, Mei; Han, Hongxian; Li, Can

    2016-08-31

    Electron transfer processes from semiconductor to molecular catalysts was studied in a model hybrid photocatalytic hydrogen evolution system composed of [Co((III))(dmgH)2PyCl] (CoPy) and CdS under different pH conditions. Thermodynamic and kinetic studies revealed that photocatalytic H2 evolution under high pH conditions (pH 13.5) can only account for the thermodynamically more favorable single-step simultaneous two-electron transfer from photoirradiated CdS to Co(III)Py to produce unavoidable intermediate Co(I)Py, rather than a two-step successive one-electron transfer process. This finding not only provides new insight into the charge transfer processes between semiconductors and molecular catalysts but also opens up a new avenue for the assembly and optimization of semiconductor-molecular catalyst hybrid systems processed through multielectron transfer processes.

  12. Nanostructured Ti(0.7)Mo(0.3)O2 support enhances electron transfer to Pt: high-performance catalyst for oxygen reduction reaction.

    PubMed

    Ho, Van Thi Thanh; Pan, Chun-Jern; Rick, John; Su, Wei-Nien; Hwang, Bing-Joe

    2011-08-03

    The slow rate of the oxygen reduction reaction (ORR) and the instability of Pt-based catalysts are two of the most important issues that must be solved in order to make proton exchange membrane fuel cells (PEMFCs) a reality. Additionally, the serious carbon corrosion on the cathode side is a critical problem with respect to the durability of catalyst that limits its wide application. Here, we present a new approach by exploring robust noncarbon Ti(0.7)Mo(0.3)O(2) used as a novel functionalized cocatalytic support for Pt. This approach is based on the novel nanostructure Ti(0.7)Mo(0.3)O(2) support with "electronic transfer mechanism" from Ti(0.7)Mo(0.3)O(2) to Pt that can modify the surface electronic structure of Pt, owing to a shift in the d-band center of the surface Pt atoms. Furthermore, another benefit of Ti(0.7)Mo(0.3)O(2) is the extremely high stability of Pt/Ti(0.7)Mo(0.3)O(2) during potential cycling, which is attributable to the strong metal/support interaction (SMSI) between Pt and Ti(0.7)Mo(0.3)O(2). This also enhances the inherent structural and chemical stability and the corrosion resistance of the TiO(2)-based oxide in acidic and oxidative environments. We also demonstrate that the ORR current densities generated using cocatalytic Pt/Ti(0.7)Mo(0.3)O(2) are respectively ~7- and 2.6-fold higher than those of commercial Pt/C and PtCo/C catalysts with the same Pt loading. This new approach opens a reliable path to the discovery advanced concept in designing new catalysts that can replace the traditional catalytic structure and motivate further research in the field.

  13. Vectorial electron transfer in spatially ordered arrays

    SciTech Connect

    Fox, M.A.

    1993-02-01

    Progress was made on synthesis of new materials for directional electron transfer (block copolymers and helical oligopeptides), preparation and characterization of anisotropic composites bearing organics and inorganics, electrocatalysis (redox-activated catalysts), and surface modifications of metals and semiconductors.

  14. Two-Electron Transfer Pathways.

    PubMed

    Lin, Jiaxing; Balamurugan, D; Zhang, Peng; Skourtis, Spiros S; Beratan, David N

    2015-06-18

    The frontiers of electron-transfer chemistry demand that we develop theoretical frameworks to describe the delivery of multiple electrons, atoms, and ions in molecular systems. When electrons move over long distances through high barriers, where the probability for thermal population of oxidized or reduced bridge-localized states is very small, the electrons will tunnel from the donor (D) to acceptor (A), facilitated by bridge-mediated superexchange interactions. If the stable donor and acceptor redox states on D and A differ by two electrons, it is possible that the electrons will propagate coherently from D to A. While structure-function relations for single-electron superexchange in molecules are well established, strategies to manipulate the coherent flow of multiple electrons are largely unknown. In contrast to one-electron superexchange, two-electron superexchange involves both one- and two-electron virtual intermediate states, the number of virtual intermediates increases very rapidly with system size, and multiple classes of pathways interfere with one another. In the study described here, we developed simple superexchange models for two-electron transfer. We explored how the bridge structure and energetics influence multielectron superexchange, and we compared two-electron superexchange interactions to single-electron superexchange. Multielectron superexchange introduces interference between singly and doubly oxidized (or reduced) bridge virtual states, so that even simple linear donor-bridge-acceptor systems have pathway topologies that resemble those seen for one-electron superexchange through bridges with multiple parallel pathways. The simple model systems studied here exhibit a richness that is amenable to experimental exploration by manipulating the multiple pathways, pathway crosstalk, and changes in the number of donor and acceptor species. The features that emerge from these studies may assist in developing new strategies to deliver multiple

  15. Coupled electron transfers in artificial photosynthesis

    PubMed Central

    Hammarström, Leif; Styring, Stenbjörn

    2007-01-01

    Light-induced charge separation in molecular assemblies has been widely investigated in the context of artificial photosynthesis. Important progress has been made in the fundamental understanding of electron and energy transfer and in stabilizing charge separation by multi-step electron transfer. In the Swedish Consortium for Artificial Photosynthesis, we build on principles from the natural enzyme photosystem II and Fe-hydrogenases. An important theme in this biomimetic effort is that of coupled electron-transfer reactions, which have so far received only little attention. (i) Each absorbed photon leads to charge separation on a single-electron level only, while catalytic water splitting and hydrogen production are multi-electron processes; thus there is the need for controlling accumulative electron transfer on molecular components. (ii) Water splitting and proton reduction at the potential catalysts necessarily require the management of proton release and/or uptake. Far from being just a stoichiometric requirement, this controls the electron transfer processes by proton-coupled electron transfer (PCET). (iii) Redox-active links between the photosensitizers and the catalysts are required to rectify the accumulative electron-transfer reactions, and will often be the starting points of PCET. PMID:17954432

  16. Photo-induced electron transfer method

    DOEpatents

    Wohlgemuth, R.; Calvin, M.

    1984-01-24

    The efficiency of photo-induced electron transfer reactions is increased and the back transfer of electrons in such reactions is greatly reduced when a photo-sensitizer zinc porphyrin-surfactant and an electron donor manganese porphyrin-surfactant are admixed into phospholipid membranes. The phospholipids comprising said membranes are selected from phospholipids whose head portions are negatively charged. Said membranes are contacted with an aqueous medium in which an essentially neutral viologen electron acceptor is admixed. Catalysts capable of transferring electrons from reduced viologen electron acceptor to hydrogen to produce elemental hydrogen are also included in the aqueous medium. An oxidizable olefin is also admixed in the phospholipid for the purpose of combining with oxygen that coordinates with oxidized electron donor manganese porphyrin-surfactant.

  17. Photo-induced electron transfer method

    DOEpatents

    Wohlgemuth, Roland; Calvin, Melvin

    1984-01-01

    The efficiency of photo-induced electron transfer reactions is increased and the back transfer of electrons in such reactions is greatly reduced when a photo-sensitizer zinc porphyrin-surfactant and an electron donor manganese porphyrin-surfactant are admixed into phospho-lipid membranes. The phospholipids comprising said membranes are selected from phospholipids whose head portions are negatively charged. Said membranes are contacted with an aqueous medium in which an essentially neutral viologen electron acceptor is admixed. Catalysts capable of transfering electrons from reduced viologen electron acceptor to hydrogen to produce elemental hydrogen are also included in the aqueous medium. An oxidizable olefin is also admixed in the phospholipid for the purpose of combining with oxygen that coordinates with oxidized electron donor manganese porphyrin-surfactant.

  18. Charge transfer dynamics between photoexcited CdS nanorods and mononuclear Ru water-oxidation catalysts.

    PubMed

    Tseng, Huan-Wei; Wilker, Molly B; Damrauer, Niels H; Dukovic, Gordana

    2013-03-06

    We describe the charge transfer interactions between photoexcited CdS nanorods and mononuclear water oxidation catalysts derived from the [Ru(bpy)(tpy)Cl](+) parent structure. Upon excitation, hole transfer from CdS oxidizes the catalyst (Ru(2+) → Ru(3+)) on a 100 ps to 1 ns timescale. This is followed by 10-100 ns electron transfer (ET) that reduces the Ru(3+) center. The relatively slow ET dynamics may provide opportunities for the accumulation of multiple holes at the catalyst, which is necessary for water oxidation.

  19. Proton-Coupled Electron Transfer

    SciTech Connect

    Weinberg, Dave; Gagliardi, Christopher J.; Hull, Jonathan F; Murphy, Christine Fecenko; Kent, Caleb A.; Westlake, Brittany C.; Paul, Amit; Ess, Daniel H; McCafferty, Dewey Granville; Meyer, Thomas J

    2012-07-11

    Proton-Coupled Electron Transfer (PCET) describes reactions in which there is a change in both electron and proton content between reactants and products. It originates from the influence of changes in electron content on acid-base properties and provides a molecular-level basis for energy transduction between proton transfer and electron transfer. Coupled electron-proton transfer or EPT is defined as an elementary step in which electrons and protons transfer from different orbitals on the donor to different orbitals on the acceptor. There is (usually) a clear distinction between EPT and H-atom transfer (HAT) or hydride transfer, in which the transferring electrons and proton come from the same bond. Hybrid mechanisms exist in which the elementary steps are different for the reaction partners. EPT pathways such as PhO•/PhOH exchange have much in common with HAT pathways in that electronic coupling is significant, comparable to the reorganization energy with H{sub DA} ~ λ. Multiple-Site Electron-Proton Transfer (MS-EPT) is an elementary step in which an electron-proton donor transfers electrons and protons to different acceptors, or an electron-proton acceptor accepts electrons and protons from different donors. It exploits the long-range nature of electron transfer while providing for the short-range nature of proton transfer. A variety of EPT pathways exist, creating a taxonomy based on what is transferred, e.g., 1e-/2H+ MS-EPT. PCET achieves “redox potential leveling” between sequential couples and the buildup of multiple redox equivalents, which is of importance in multielectron catalysis. There are many examples of PCET and pH-dependent redox behavior in metal complexes, in organic and biological molecules, in excited states, and on surfaces. Changes in pH can be used to induce electron transfer through films and over long distances in molecules. Changes in pH, induced by local electron transfer, create pH gradients and a driving

  20. Electron transfer in biological molecules

    SciTech Connect

    Gray, H.B.

    1995-12-01

    Electron-transfer reactions are key stemps in photosynthesis, respiration, drug metabolism, and many other biochemical processes. These reactions commonly occur between protein-bound prosthetic groups that are separated by large molecular distances (often greater than 10 {Angstrom}). Although the electron donors and acceptors are expected to be weakly coupled, the reactions are remarkably fast and proceed with high specificity. Recent work on structurally engineered iron and cooper proteins has shown that the chemical bonds in the intervening medium potentially can control the rates of these electron-transfer reactions.

  1. Charge Transfer Dynamics in Complexes of Light-Absorbing CdS Nanorods and Redox Catalysts

    NASA Astrophysics Data System (ADS)

    Wilker, Molly Bea

    The use of photoexcited electrons and holes in semiconductor nanocrystals as reduction and oxidation reagents is an intriguing way of harvesting photon energy to drive chemical reactions. This dissertation describes research efforts to understand the photoexcited charge transfer kinetics in complexes of colloidal CdS nanorods coupled with either a water oxidation or reduction catalyst. The first project focuses on the charge transfer interactions between photoexcited CdS nanorods and a mononuclear water oxidation catalyst derived from the [Ru(bpy)(tpy)Cl]+ parent structure. The second project details the electron transfer kinetics in complexes of CdS nanorods coupled with [FeFe]-hydrogenase, which catalyzes H+ reduction. These complexes photochemically produce H2 with quantum yields of up to 20%. Kinetics of electron transfer from CdS nanorods to hydrogenase play a critical role in the overall photochemical reactivity, as the quantum efficiency of electron transfer defines the upper limit on the quantum yield of H 2 generation. Insights from these time-resolved spectroscopic studies are used to discuss the intricate kinetic pathways involved in photochemical H2 generation and the mechanism for electron transfer from photoexcited nanorods to hydrogenase in photocatalytic complexes.

  2. Graphene oxide as a recyclable phase transfer catalyst.

    PubMed

    Kim, Youngmin; Some, Surajit; Lee, Hyoyoung

    2013-06-25

    We demonstrated a simple and green chemical method to obtain Michael adducts and their derivatives by using GO as a phase transfer catalyst with different kinds of bases in water and dichloromethane, and we also used GO multiple cycles almost without reduction in reaction yields.

  3. Matchmaking in Catalyst-Transfer Polycondensation: Optimizing Catalysts based on Mechanistic Insight.

    PubMed

    Leone, Amanda K; McNeil, Anne J

    2016-12-20

    Catalyst-transfer polycondensation (CTP) has emerged as a useful living, chain-growth polymerization method for synthesizing conjugated (hetero)arene-based polymers with targetable molecular weights, narrow dispersities, and controllable copolymer sequences-all properties that significantly influence their performance in devices. Over the past decade, several phosphine- and carbene-ligated Ni- and Pd-based precatalysts have been shown to be effective in CTP. One current limitation is that these traditional CTP catalysts lead to nonliving, non-chain-growth behavior when complex monomer scaffolds are utilized. Because these monomers are often found in the highest-performing materials, there is a significant need to identify alternative CTP catalysts. Recent mechanistic insight into CTP has laid the foundation for designing new catalysts to expand the CTP monomer scope. Building off this insight, we have designed and implemented model systems to identify effective catalysts by understanding their underlying mechanistic behaviors and systematically modifying catalyst structures to improve their chain-growth behavior. In this Account, we describe how each catalyst parameter-the ancillary ligand(s), reactive ligand(s), and transition metal-influences CTP. As an example, ancillary ligands often dictate the turnover-limiting step of the catalytic cycle, and perhaps more importantly, they can be used to promote the formation of the key intermediate (a metal-arene associative complex) and its subsequent reactivity. The fidelity of this intermediate is central to the mechanism for the living, chain-growth polymerization. Reactive ligands, on the other hand, can be used to improve catalyst solubility and accelerate initiation. Additional advantages of the reactive ligand include providing access points for postpolymerization modification and synthesizing polymers directly off surfaces. While the most frequently used CTP catalysts contain nickel, palladium-based catalysts

  4. Origin of Life and the Phosphate Transfer Catalyst

    NASA Astrophysics Data System (ADS)

    Piast, Radosław W.; Wieczorek, Rafał M.

    2017-03-01

    In this paper, we revisit several issues relevant to origin-of-life research and propose a Phosphate Transfer Catalyst hypothesis that furthers our understanding of some of the key events in prebiotic chemical evolution. In the Phosphate Transfer Catalyst hypothesis, we assume the existence of hypothetical metallopeptides with phosphate transfer activity that use abundant polyphosphates as both substrates and energy sources. Nonspecific catalysis by this phosphate transfer catalyst would provide a variety of different products such as phosphoryl amino acids, nucleosides, polyphosphate nucleotides, nucleic acids, and aminoacylated nucleic acids. Moreover, being an autocatalytic set and metabolic driver at the same time, it could possibly replicate itself and produce a collective system of two polymerases; a nucleic acid able to catalyze peptide bond formation and a peptide able to polymerize nucleic acids. The genetic code starts at first as a system that reduces the energy barrier by bringing substrates (2'/3' aminoacyl-nucleotides) together, an ancestral form of the catalysis performed by modern ribosomes.

  5. Origin of Life and the Phosphate Transfer Catalyst.

    PubMed

    Piast, Radosław W; Wieczorek, Rafał M

    2017-03-01

    In this paper, we revisit several issues relevant to origin-of-life research and propose a Phosphate Transfer Catalyst hypothesis that furthers our understanding of some of the key events in prebiotic chemical evolution. In the Phosphate Transfer Catalyst hypothesis, we assume the existence of hypothetical metallopeptides with phosphate transfer activity that use abundant polyphosphates as both substrates and energy sources. Nonspecific catalysis by this phosphate transfer catalyst would provide a variety of different products such as phosphoryl amino acids, nucleosides, polyphosphate nucleotides, nucleic acids, and aminoacylated nucleic acids. Moreover, being an autocatalytic set and metabolic driver at the same time, it could possibly replicate itself and produce a collective system of two polymerases; a nucleic acid able to catalyze peptide bond formation and a peptide able to polymerize nucleic acids. The genetic code starts at first as a system that reduces the energy barrier by bringing substrates (2'/3' aminoacyl-nucleotides) together, an ancestral form of the catalysis performed by modern ribosomes. Key Words: Origin of life-Prebiotic chemistry-Catalysis-Nucleic acids. Astrobiology 17, 277-285.

  6. Interfacial electronic effects control the reaction selectivity of platinum catalysts

    NASA Astrophysics Data System (ADS)

    Chen, Guangxu; Xu, Chaofa; Huang, Xiaoqing; Ye, Jinyu; Gu, Lin; Li, Gang; Tang, Zichao; Wu, Binghui; Yang, Huayan; Zhao, Zipeng; Zhou, Zhiyou; Fu, Gang; Zheng, Nanfeng

    2016-05-01

    Tuning the electronic structure of heterogeneous metal catalysts has emerged as an effective strategy to optimize their catalytic activities. By preparing ethylenediamine-coated ultrathin platinum nanowires as a model catalyst, here we demonstrate an interfacial electronic effect induced by simple organic modifications to control the selectivity of metal nanocatalysts during catalytic hydrogenation. This we apply to produce thermodynamically unfavourable but industrially important compounds, with ultrathin platinum nanowires exhibiting an unexpectedly high selectivity for the production of N-hydroxylanilines, through the partial hydrogenation of nitroaromatics. Mechanistic studies reveal that the electron donation from ethylenediamine makes the surface of platinum nanowires highly electron rich. During catalysis, such an interfacial electronic effect makes the catalytic surface favour the adsorption of electron-deficient reactants over electron-rich substrates (that is, N-hydroxylanilines), thus preventing full hydrogenation. More importantly, this interfacial electronic effect, achieved through simple organic modifications, may now be used for the optimization of commercial platinum catalysts.

  7. Conductive polymer layers to limit transfer of fuel reactants to catalysts of fuel cells to reduce reactant crossover

    SciTech Connect

    Stanis, Ronald J.; Lambert, Timothy N.

    2016-12-06

    An apparatus of an aspect includes a fuel cell catalyst layer. The fuel cell catalyst layer is operable to catalyze a reaction involving a fuel reactant. A fuel cell gas diffusion layer is coupled with the fuel cell catalyst layer. The fuel cell gas diffusion layer includes a porous electrically conductive material. The porous electrically conductive material is operable to allow the fuel reactant to transfer through the fuel cell gas diffusion layer to reach the fuel cell catalyst layer. The porous electrically conductive material is also operable to conduct electrons associated with the reaction through the fuel cell gas diffusion layer. An electrically conductive polymer material is coupled with the fuel cell gas diffusion layer. The electrically conductive polymer material is operable to limit transfer of the fuel reactant to the fuel cell catalyst layer.

  8. Vectorial electron transfer in spatially ordered arrays. Progress report, January 1992--January 1993

    SciTech Connect

    Fox, M.A.

    1993-02-01

    Progress was made on synthesis of new materials for directional electron transfer (block copolymers and helical oligopeptides), preparation and characterization of anisotropic composites bearing organics and inorganics, electrocatalysis (redox-activated catalysts), and surface modifications of metals and semiconductors.

  9. Organosilanols as catalysts in asymmetric aryl transfer reactions.

    PubMed

    Ozçubukçu, Salih; Schmidt, Frank; Bolm, Carsten

    2005-03-31

    [reaction: see text] Various ferrocene-based organosilanols have been synthesized in four steps starting from achiral ferrocene carboxylic acid. Applying these novel planar-chiral ferrocenes as catalysts in asymmetric phenyl transfer reactions to substituted benzaldehydes afforded products with high enantiomeric excesses. The best result (91% ee) was achieved in the addition to p-chlorobenzaldehyde with organosilanol 2b, which has a tert-butyl substituent on the oxazoline ring and an isopropyl group on the silanol fragment.

  10. Electronic metal-support interactions in single-atom catalysts.

    PubMed

    Hu, Pingping; Huang, Zhiwei; Amghouz, Zakariae; Makkee, Michiel; Xu, Fei; Kapteijn, Freek; Dikhtiarenko, Alla; Chen, Yaxin; Gu, Xiao; Tang, Xingfu

    2014-03-24

    The synthesis of single-atom catalysts and the control of the electronic properties of catalytic sites to arrive at superior catalysts is a major challenge in heterogeneous catalysis. A stable supported single-atom silver catalyst with a controllable electronic state was obtained by anti-Ostwald ripening. An electronic perturbation of the catalytic sites that is induced by a subtle change in the structure of the support has a strong influence on the intrinsic reactivity. The higher depletion of the 4d electronic state of the silver atoms causes stronger electronic metal-support interactions, which leads to easier reducibility and higher catalytic activity. These results may improve our understanding of the nature of electronic metal-support interactions and lead to structure-activity correlations.

  11. 75 FR 31665 - Electronic Fund Transfers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-04

    ... CFR Part 205 Electronic Fund Transfers AGENCY: Board of Governors of the Federal Reserve System..., which implements the Electronic Fund Transfer Act, and the official staff commentary to the regulation... implements the Electronic Fund Transfer Act (EFTA), limiting a financial institution's ability to assess...

  12. Catalyst Interface Engineering for Improved 2D Film Lift-Off and Transfer

    PubMed Central

    2016-01-01

    The mechanisms by which chemical vapor deposited (CVD) graphene and hexagonal boron nitride (h-BN) films can be released from a growth catalyst, such as widely used copper (Cu) foil, are systematically explored as a basis for an improved lift-off transfer. We show how intercalation processes allow the local Cu oxidation at the interface followed by selective oxide dissolution, which gently releases the 2D material (2DM) film. Interfacial composition change and selective dissolution can thereby be achieved in a single step or split into two individual process steps. We demonstrate that this method is not only highly versatile but also yields graphene and h-BN films of high quality regarding surface contamination, layer coherence, defects, and electronic properties, without requiring additional post-transfer annealing. We highlight how such transfers rely on targeted corrosion at the catalyst interface and discuss this in context of the wider CVD growth and 2DM transfer literature, thereby fostering an improved general understanding of widely used transfer processes, which is essential to numerous other applications. PMID:27934130

  13. Modular electron transfer circuits for synthetic biology

    PubMed Central

    Agapakis, Christina M

    2010-01-01

    Electron transfer is central to a wide range of essential metabolic pathways, from photosynthesis to fermentation. The evolutionary diversity and conservation of proteins that transfer electrons makes these pathways a valuable platform for engineered metabolic circuits in synthetic biology. Rational engineering of electron transfer pathways containing hydrogenases has the potential to lead to industrial scale production of hydrogen as an alternative source of clean fuel and experimental assays for understanding the complex interactions of multiple electron transfer proteins in vivo. We designed and implemented a synthetic hydrogen metabolism circuit in Escherichia coli that creates an electron transfer pathway both orthogonal to and integrated within existing metabolism. The design of such modular electron transfer circuits allows for facile characterization of in vivo system parameters with applications toward further engineering for alternative energy production. PMID:21468209

  14. Polymerization catalysts containing electron-withdrawing amide ligands

    DOEpatents

    Watkin, John G.; Click, Damon R.

    2002-01-01

    The present invention describes methods of making a series of amine-containing organic compounds which are used as ligands for group 3-10 and lanthanide metal compounds. The ligands have electron-withdrawing groups bonded to them. The metal compounds, when combined with a cocatalyst, are catalysts for the polymerization of olefins.

  15. Synergistic "ping-pong" energy transfer for efficient light activation in a chromophore-catalyst dyad.

    PubMed

    Quaranta, Annamaria; Charalambidis, Georgios; Herrero, Christian; Margiola, Sofia; Leibl, Winfried; Coutsolelos, Athanassios; Aukauloo, Ally

    2015-10-07

    The synthesis of a porphyrin-Ru(II) polypyridine complex where the porphyrin acts as a photoactive unit and the Ru(II) polypyridine as a catalytic precursor is described. Comparatively, the free base porphyrin was found to outperform the ruthenium based chromophore in the yield of light induced electron transfer. Mechanistic insights indicate the occurrence of a ping-pong energy transfer from the (1)LC excited state of the porphyrin chromophore to the (3)MCLT state of the catalyst and back to the (3)LC excited state of the porphyrin unit. The latter, triplet-triplet energy transfer back to the chromophore, efficiently competes with fast radiationless deactivation of the excited state at the catalyst site. The energy thus recovered by the chromophore allows improved yield of formation of the oxidized form of the chromophore and concomitantly of the oxidation of the catalytic unit by intramolecular charge transfer. The presented results are among the rare examples where a porphyrin chromophore is successfully used to drive an oxidative activation process where reductive processes prevail in the literature.

  16. Concerted proton-coupled electron transfer from a metal-hydride complex.

    PubMed

    Bourrez, Marc; Steinmetz, Romain; Ott, Sascha; Gloaguen, Frederic; Hammarström, Leif

    2014-02-01

    Metal hydrides are key intermediates in the catalytic reduction of protons and CO2 as well as in the oxidation of H2. In these reactions, electrons and protons are transferred to or from separate acceptors or donors in bidirectional protoncoupled electron transfer (PCET) steps. The mechanistic interpretation of PCET reactions of metal hydrides has focused on the stepwise transfer of electrons and protons. A concerted transfer may, however, occur with a lower reaction barrier and therefore proceed at higher catalytic rates. Here we investigate the feasibility of such a reaction by studying the oxidation–deprotonation reactions of a tungsten hydride complex. The rate dependence on the driving force for both electron transfer and proton transfer—employing different combinations of oxidants and bases—was used to establish experimentally the concerted, bidirectional PCET of a metal-hydride species. Consideration of the findings presented here in future catalyst designs may lead to more-efficient catalysts.

  17. 75 FR 33681 - Electronic Fund Transfers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ... From the Federal Register Online via the Government Publishing Office FEDERAL RESERVE SYSTEM 12 CFR Part 205 Electronic Fund Transfers June 4, 2010. AGENCY: Board of Governors of the Federal Reserve... following correction: PART 205--ELECTRONIC FUND TRANSFERS (REGULATION E) 1. On page 31671, in the...

  18. Molecular co-catalyst accelerating hole transfer for enhanced photocatalytic H2 evolution

    PubMed Central

    Bi, Wentuan; Li, Xiaogang; Zhang, Lei; Jin, Tao; Zhang, Lidong; Zhang, Qun; Luo, Yi; Wu, Changzheng; Xie, Yi

    2015-01-01

    In artificial photocatalysis, sluggish kinetics of hole transfer and the resulting high-charge recombination rate have been the Achilles' heel of photocatalytic conversion efficiency. Here we demonstrate water-soluble molecules as co-catalysts to accelerate hole transfer for improved photocatalytic H2 evolution activity. Trifluoroacetic acid (TFA), by virtue of its reversible redox couple TFA·/TFA−, serves as a homogeneous co-catalyst that not only maximizes the contact areas between co-catalysts and reactants but also greatly promotes hole transfer. Thus K4Nb6O17 nanosheet catalysts achieve drastically increased photocatalytic H2 production rate in the presence of TFA, up to 32 times with respect to the blank experiment. The molecular co-catalyst represents a new, simple and highly effective approach to suppress recombination of photogenerated charges, and has provided fertile new ground for creating high-efficiency photosynthesis systems, avoiding use of noble-metal co-catalysts. PMID:26486863

  19. Molecular co-catalyst accelerating hole transfer for enhanced photocatalytic H2 evolution

    NASA Astrophysics Data System (ADS)

    Bi, Wentuan; Li, Xiaogang; Zhang, Lei; Jin, Tao; Zhang, Lidong; Zhang, Qun; Luo, Yi; Wu, Changzheng; Xie, Yi

    2015-10-01

    In artificial photocatalysis, sluggish kinetics of hole transfer and the resulting high-charge recombination rate have been the Achilles' heel of photocatalytic conversion efficiency. Here we demonstrate water-soluble molecules as co-catalysts to accelerate hole transfer for improved photocatalytic H2 evolution activity. Trifluoroacetic acid (TFA), by virtue of its reversible redox couple TFA./TFA-, serves as a homogeneous co-catalyst that not only maximizes the contact areas between co-catalysts and reactants but also greatly promotes hole transfer. Thus K4Nb6O17 nanosheet catalysts achieve drastically increased photocatalytic H2 production rate in the presence of TFA, up to 32 times with respect to the blank experiment. The molecular co-catalyst represents a new, simple and highly effective approach to suppress recombination of photogenerated charges, and has provided fertile new ground for creating high-efficiency photosynthesis systems, avoiding use of noble-metal co-catalysts.

  20. Oligomer and mixed-metal compounds potential multielectron transfer catalysts

    SciTech Connect

    Rillema, D.P.

    1992-03-30

    Projects related to the design and characterization of multimetallic complexes has proceeded forward with a number of achievements. First, photoprocesses in hydrogel matrices lead to the conclusion that cationic metallochromophores could be ion exchanged into a hydrogel matrix ({kappa}-carageenan) and substantial photocurrents could be generated. Second, X-ray structures of Ru(bpy){sub 3}{sup 2+}, Ru(bpm){sub 3}{sup 2+} and Ru(bpz){sub 3}{sup 2+}, where bpy is 2,2{prime}-bipyridine, bpm is 2,2{prime}-bipyrimidine and bpz is 2,2{prime}-bipyrizine, were obtained and revealed similar Ru-N bond distances in each complex even though their {sigma}-donor and {pi}-acceptor character differ markedly. The structure parameters are expected to provide theoreticians with the information needed to probe the electronic character of the molecular systems and provide us with direction in our synthetic strategies. Third, a copper(I) complex was synthesized with a dimeric-ethane-bridged, 1,10-phenanthroline ligand that resulted in isolation of a bimetallic species. The copper(I) complex did luminesce weakly, suggesting that the dimer possesses potential electron transfer capability. Fourth, the photophysical properties of (Re(CO){sub 4}(L-L)){sup +}, where L-L = heterocyclic diimine ligands, and Pt(bph)X{sub 2}, where bph = the dianion of biphenyl and X = CH{sub 3}CN, py or ethylendiamine, displayed luminescence at high energy and underwent excited-state electron transfer. Such high energy emitters provide high driving forces for undergoing excited-state electron transfer. Fifth, both energy and electron transfer were observed in mixed-metal complexes bridged by 1,2-bis(2,2{prime}-bipyridyl-4{prime}-yl) ethane.

  1. Photoinduced electron transfer across molecular bridges: electron- and hole-transfer superexchange pathways.

    PubMed

    Natali, Mirco; Campagna, Sebastiano; Scandola, Franco

    2014-06-21

    Photoinduced electron transfer plays key roles in many areas of chemistry. Superexchange is an effective model to rationalize photoinduced electron transfer, particularly when molecular bridges between donor and acceptor subunits are present. In this tutorial review we discuss, within a superexchange framework, the complex role played by the bridge, with an emphasis on differences between thermal and photoinduced electron transfer, oxidative and reductive photoinduced processes, charge separation and charge recombination. Modular bridges are also considered, with specific attention to the distance dependence of donor-acceptor electronic coupling and electron transfer rate constants. The possibility of transition, depending on the bridge energetics, from coherent donor-acceptor electron transfer to incoherent charge injection and hopping through the bridge is also discussed. Finally, conceptual analogies between bridge effects in photoinduced electron transfer and optical intervalence transfer are outlined. Selected experimental examples, instrumental to illustration of the principles, are discussed.

  2. Catalytic Olefin Hydroamidation Enabled by Proton-Coupled Electron Transfer

    PubMed Central

    2015-01-01

    Here we report a ternary catalyst system for the intramolecular hydroamidation of unactivated olefins using simple N-aryl amide derivatives. Amide activation in these reactions occurs via concerted proton-coupled electron transfer (PCET) mediated by an excited state iridium complex and weak phosphate base to furnish a reactive amidyl radical that readily adds to pendant alkenes. A series of H-atom, electron, and proton transfer events with a thiophenol cocatalyst furnish the product and regenerate the active forms of the photocatalyst and base. Mechanistic studies indicate that the amide substrate can be selectively homolyzed via PCET in the presence of the thiophenol, despite a large difference in bond dissociation free energies between these functional groups. PMID:26439818

  3. Exciton Relaxation and Electron Transfer Dynamics of Semiconductor Quantum Dots

    NASA Astrophysics Data System (ADS)

    Liu, Cunming

    Quantum dots (QDs), also referred to as colloidal semiconductor nanocrystals, exhibit unique electronic and optical properties arising from their three-dimensional confinement and strongly enhanced coulomb interactions. Developing a detailed understanding of the exciton relaxation dynamics within QDs is important not only for sake of exploring the fundamental physics of quantum confinement processes, but also for their applications. Ultrafast transient absorption (TA) spectroscopy, as a powerful tool to explore the relaxation dynamics of excitons, was employed to characterize the hot single/multiexciton relaxation dynamics at the first four exciton states of CdSe/CdZnS QDs. We observed for the first time that the hot hole can relax through two possible pathways: Intraband multiple phonon coupling and intrinsic defect trapping, with a lifetime of ˜7 ps. Additionally, an ultra-short component of ˜ 8 ps, directly associated with the Auger recombination of highly energetic exciton states, was discovered. After exploring the exciton relaxation inside QDs, ultrafast TA spectroscopy was further applied to study the electron transferring outside from QDs. By using a brand-new photocatalytic system consisting of CdSe QDs and Ni-dihydrolipoic acid (Ni-DHLA) catalyst, which has represented a robust photocatalysis of H2 from water, the photoinduced electron transfer (ET) dynamics between QD and the catalyst, one of most important steps during H2 generation, was studied. We found smaller bare CdSe QDs exhibit a better ET performance and CdS shelling on the bare QDs leads to worsen the ET. The calculations of effective mass approximation (EMA) and Marcus theory show the ET process is mainly dominated by driving force, electronic coupling strength and reorganization energy between QD and the catalyst.

  4. Local control approach to ultrafast electron transfer

    NASA Astrophysics Data System (ADS)

    Vindel-Zandbergen, Patricia; Meier, Christoph; Sola, Ignacio R.

    2016-10-01

    We study ultrafast electron transfer between separated nuclei using local control theory. By imposing electron ionization and electron transport through the continuum, different local control formulations are used to increase the yield of retrapping the electron at the desired nuclei. The control mechanism is based on impulsive de-excitation. Both symmetric and asymmetric nuclear arrangements are analyzed, as well as the role of the nuclear motion.

  5. Photoinduced electron transfer in ordered polymers

    SciTech Connect

    Jones, G. II.

    1990-10-20

    Photochemical studies on organic polymers or biopolymers (particularly synthetic peptides) that have been modified by covalent attachment (or other means of binding) of organic chromophores and electron transfer agents are described. Specific projects involve are: peptide conjugates bearing electroactive residues such as tryptophan and specifically labeled at the N- or C-terminus of peptide chains; the electrostatic binding of organic dyes to poly-electrolytes (polyacrylates) for which the formation of dimeric aggregates of bound dye that display unusual photophysical and electron transfer properties is important; a study of the binding of dyes and electron transfer agents to the protein mimic,'' polyvinyl-2-pyrrolidinone (PVP), in hydrophobic domains that depend on specific H-bond interaction; and completion of an earlier study having to do with the triplet state properties of charge-transfer (CT) complexes of a high potential quinone and various electron donors (investigation of the properties of triplet (contact) radical-ion pairs). 13 refs., 5 figs., 2 tabs.

  6. Flavin Charge Transfer Transitions Assist DNA Photolyase Electron Transfer

    NASA Astrophysics Data System (ADS)

    Skourtis, Spiros S.; Prytkova, Tatiana; Beratan, David N.

    2007-12-01

    This contribution describes molecular dynamics, semi-empirical and ab-initio studies of the primary photo-induced electron transfer reaction in DNA photolyase. DNA photolyases are FADH--containing proteins that repair UV-damaged DNA by photo-induced electron transfer. A DNA photolyase recognizes and binds to cyclobutatne pyrimidine dimer lesions of DNA. The protein repairs a bound lesion by transferring an electron to the lesion from FADH-, upon photo-excitation of FADH- with 350-450 nm light. We compute the lowest singlet excited states of FADH- in DNA photolyase using INDO/S configuration interaction, time-dependent density-functional, and time-dependent Hartree-Fock methods. The calculations identify the lowest singlet excited state of FADH- that is populated after photo-excitation and that acts as the electron donor. For this donor state we compute conformationally-averaged tunneling matrix elements to empty electron-acceptor states of a thymine dimer bound to photolyase. The conformational averaging involves different FADH--thymine dimer confromations obtained from molecular dynamics simulations of the solvated protein with a thymine dimer docked in its active site. The tunneling matrix element computations use INDO/S-level Green's function, energy splitting, and Generalized Mulliken-Hush methods. These calculations indicate that photo-excitation of FADH- causes a π→π* charge-transfer transition that shifts electron density to the side of the flavin isoalloxazine ring that is adjacent to the docked thymine dimer. This shift in electron density enhances the FADH--to-dimer electronic coupling, thus inducing rapid electron transfer.

  7. Breaking the barrier to fast electron transfer.

    PubMed

    Demin, Soren; Hall, Elizabeth A H

    2009-09-01

    A study of the electron transfer for a non-glycosylated redox variant of GOx is reported, immobilised onto an electrode via a polyhistidine tag. The non-glycosylated variant allows the enzyme to be brought closer to the electrode, and within charge transfer distances predicted by Marcus' theory. The enzyme-electrode-hybrid shows direct very fast reversible electrochemical electron transfer, with a rate constant of approximately 350 s(-1) under anaerobic conditions. This is 2 orders of magnitude faster than the enzyme-free flavin adenine dinucleotide (FAD). These results are discussed in the context of the conformation of FAD in the active site of GOx. Further data, presented in the presence of oxygen, show a reduced electron transfer rate (approximately 160 s(-1)) that may be associated with the oxygen interaction with the histidines in the active site. These residues are implicated in the proton transfer mechanism and thus suggest that the presence of oxygen may have a profound effect in attenuating the direct electron transfer rate and thus moderating 'short-circuit' incidental electron transfer between proteins.

  8. Electron transfer induced fragmentation of acetic acid

    NASA Astrophysics Data System (ADS)

    Ferreira da Silva, F.; Meneses, G.; Almeida, D.; Limão-Vieira, P.

    2014-04-01

    We present negative ion formation driven by electron transfer in atom (K) molecule (acetic acid) collisions. Acetic acid has been found in the interstellar medium, is also considered a biological related compound and as such studying low energy electron interactions will bring new insights as far as induced chemistry is concerned.

  9. Electron transfer across a thermal gradient

    PubMed Central

    Craven, Galen T.

    2016-01-01

    Charge transfer is a fundamental process that underlies a multitude of phenomena in chemistry and biology. Recent advances in observing and manipulating charge and heat transport at the nanoscale, and recently developed techniques for monitoring temperature at high temporal and spatial resolution, imply the need for considering electron transfer across thermal gradients. Here, a theory is developed for the rate of electron transfer and the associated heat transport between donor–acceptor pairs located at sites of different temperatures. To this end, through application of a generalized multidimensional transition state theory, the traditional Arrhenius picture of activation energy as a single point on a free energy surface is replaced with a bithermal property that is derived from statistical weighting over all configurations where the reactant and product states are equienergetic. The flow of energy associated with the electron transfer process is also examined, leading to relations between the rate of heat exchange among the donor and acceptor sites as functions of the temperature difference and the electronic driving bias. In particular, we find that an open electron transfer channel contributes to enhanced heat transport between sites even when they are in electronic equilibrium. The presented results provide a unified theory for charge transport and the associated heat conduction between sites at different temperatures. PMID:27450086

  10. Artificial photosynthesis: from nanosecond electron transfer to catalytic water oxidation.

    PubMed

    Kärkäs, Markus D; Johnston, Eric V; Verho, Oscar; Akermark, Björn

    2014-01-21

    Human society faces a fundamental challenge as energy consumption is projected to increase due to population and economic growth as fossil fuel resources decrease. Therefore the transition to alternative and sustainable energy sources is of the utmost importance. The conversion of solar energy into chemical energy, by splitting H2O to generate molecular O2 and H2, could contribute to solving the global energy problem. Developing such a system will require the combination of several complicated processes, such as light-harvesting, charge separation, electron transfer, H2O oxidation, and reduction of the generated protons. The primary processes of charge separation and catalysis, which occur in the natural photosynthetic machinery, provide us with an excellent blueprint for the design of such systems. This Account describes our efforts to construct supramolecular assemblies capable of carrying out photoinduced electron transfer and to develop artificial water oxidation catalysts (WOCs). Early work in our group focused on linking a ruthenium chromophore to a manganese-based oxidation catalyst. When we incorporated a tyrosine unit into these supramolecular assemblies, we could observe fast intramolecular electron transfer from the manganese centers, via the tyrosine moiety, to the photooxidized ruthenium center, which clearly resembles the processes occurring in the natural system. Although we demonstrated multi-electron transfer in our artificial systems, the bottleneck proved to be the stability of the WOCs. Researchers have developed a number of WOCs, but the majority can only catalyze H2O oxidation in the presence of strong oxidants such as Ce(IV), which is difficult to generate photochemically. By contrast, illumination of ruthenium(II) photosensitizers in the presence of a sacrificial acceptor generates [Ru(bpy)3](3+)-type oxidants. Their oxidation potentials are significantly lower than that of Ce(IV), but our group recently showed that incorporating negatively

  11. Ultrafast Photoinduced Electron Transfer from Peroxide Dianion.

    PubMed

    Anderson, Bryce L; Maher, Andrew G; Nava, Matthew; Lopez, Nazario; Cummins, Christopher C; Nocera, Daniel G

    2015-06-18

    The encapsulation of peroxide dianion by hexacarboxamide cryptand provides a platform for the study of electron transfer of isolated peroxide anion. Photoinitiated electron transfer (ET) between freely diffusing Ru(bpy)3(2+) and the peroxide dianion occurs with a rate constant of 2.0 × 10(10) M(-1) s(-1). A competing electron transfer quenching pathway is observed within an ion pair. Picosecond transient spectroscopy furnishes a rate constant of 1.1 × 10(10) s(-1) for this first-order process. A driving force dependence for the ET rate within the ion pair using a series of Ru(bpy)3(2+) derivatives allows for the electronic coupling and reorganization energies to be assessed. The ET reaction is nonadiabatic and dominated by a large inner-sphere reorganization energy, in accordance with that expected for the change in bond distance accompanying the conversion of peroxide dianion to superoxide anion.

  12. Highly enantioselective asymmetric Henry reaction catalyzed by novel chiral phase transfer catalysts derived from cinchona alkaloids.

    PubMed

    Vijaya, Ponmuthu Kottala; Murugesan, Sepperumal; Siva, Ayyanar

    2016-10-25

    A new type of di-site chiral phase transfer catalyst has been designed and synthesized from cinchona alkaloids as a chiral precursor. The prepared catalysts are applied in the asymmetric Henry reaction to a wide range of aldehydes using mild concentrations of a base and solvent and under room-temperature conditions. Under the optimized reaction conditions, the highest chemical yields up to 99% along with an excellent enantiomeric excess (ee) up to 99% were obtained using the prepared cinchona alkaloid based chiral phase transfer catalysts.

  13. Electronic effects in homogeneous indenylzirconium Ziegler-Natta catalysts

    SciTech Connect

    Piccolrovazzi, N.; Pino, P.; Consiglio, G. ); Sironi, A.; Moret, M. )

    1990-12-01

    A series of new bis(indenyl)zirconium(IV) complexes of the general formula ({eta}{sup 5}-4,7-X{sub 2}C{sub 9}H{sub 5}){sub 2}ZrCl{sub 2} and ({eta}{sup 5}-4,7-X{sub 2}C{sub 9}H{sub 5}){sub 2}Zr(CH{sub 2}H{sub 5}){sub 2} (where X = H, CH{sub 3}, OCH{sub 3}, and F) were synthesized in order to investigate the electronic effects of substitutents on the nature of the catalytic species in homogeneous Ziegler-Natta catalysts. By use of poly(methylaluminoxane) as cocatalyst, the activity of these complexes as catalyst precursors in the polymerization of ethylene was examined. The substitution with electron-withdrawing groups resulted in a decrease of both molecular weights and productivity, whereas in the case of electron donors, like methyl groups, no significant change in productivity and average molecular weight was observed. These effects support the hypothesis of a polar or ionic character of the catalytic species. The molecular structure of ({eta}{sup 5}-4,7-F{sub 2}C{sub 9}H{sub 5}){sub 2}Zr(CH{sub 2}H{sub 5}){sub 2} was determined by X-ray diffraction.

  14. Electron transfer reactions in microporous solids

    SciTech Connect

    Mallouk, T.E.

    1993-01-01

    Basic thrust the research program involves use of microporous solids (zeolites, clays, layered and tunnel structure oxide semiconductors) as organizing media for artificial photosynthetic systems. Purpose of the microporous solid is twofold. First, it induces spatial organization of photoactive and electroactive components (sensitizers, semiconductor particles, electron relays, and catalysts) at the solid-solution interface, enhancing the quantum efficiency of charge separation and separating physically the ultimate electron donor and acceptor in the electron transport chain. Second, since the microcrystalline solid admits only molecules of a certain charge and size, it is possible to achieve permanent charge separation by sieving chemical photoproducts (e.g., H[sub 2] and I[sub 3][sup [minus

  15. Photoinduced electron transfer in ordered polymers

    SciTech Connect

    Jones, G. II.

    1991-12-01

    Long range photoinduced electron transfer between electron donor and acceptor groups is of considerable current interest in terms of strategies for artificial photosynthesis and studies regarding the redox properties of proteins. As part of an extensive study of long range electron transfer involving biopolymers, we have carried out this year investigations of the assembly of electron transfer agents in a system of model short peptides. Also studied is a polyelectrolyte that can adopt a helical conformation when electrostatically complexed with organic dye counter-ions. The principal interest in these systems has to do with the well ordered secondary structures adopted by peptide polymers, and the capabilities for synthetic modification of peptide side chains and end groups with chromophores or electroactive substituents. The present report gives a brief account of the following elements of work related to photochemical electron transfer themes: (1) the synthesis and photochemical characterization of chromophore-bound peptides and amino acid model compounds based on the amino acids, tryptophan and the spacer residue, alanine (Ala); (2) the study of binding of the cationic organic dye to a peptide electrolyte, for which cooperative dye loading and helix formation is important; and (3) completion of the synthesis of a new series of acridinium chromophores that have rod-like'' arrangements of inked aryl rings for assembly of electron donor-acceptor systems that will exhibit especially long lived charge separation.

  16. Theory of directed electronic energy transfer.

    PubMed

    Andrews, David L; Crisp, Richard G

    2006-03-01

    The migration of electronic energy between molecules or chromophores in molecular solids is a well-studied phenomenon. The ability to exert control over the directionality of this transfer, by a variety of methods involving applied electrical or optical fields, holds promise for advances in fields including nanoelectronics and energy harvesting materials. In this paper, we review in detail a number of methods for directing energy transfer, also identifying potential applications.

  17. A simple iridicycle catalyst for efficient transfer hydrogenation of N-heterocycles in water.

    PubMed

    Talwar, Dinesh; Li, Ho Yin; Durham, Emma; Xiao, Jianliang

    2015-03-27

    A cyclometalated iridium complex is shown to catalyse the transfer hydrogenation of various nitrogen heterocycles, including but not limited to quinolines, isoquinolines, indoles and pyridinium salts, in an aqueous solution of HCO2H/HCO2Na under mild conditions. The catalyst shows excellent functional-group compatibility and high turnover number (up to 7500), with catalyst loadings as low as 0.01 mol % being feasible. Mechanistic investigation of the quinoline reduction suggests that the transfer hydrogenation proceeds via both 1,2- and 1,4-addition pathways, with the catalytic turnover being limited by the step of hydride transfer.

  18. Solvent gating of intramolecular electron transfer

    SciTech Connect

    Miller, R.M. ); Spears, K.G.; Gong, J.H.; Wach, M. )

    1994-02-03

    The rates for ionic photodissociation of malachite green leucocyanide to form cyanide ion and a malachite green carbonium ion were measured as a function of solvent and temperature. The observed rates in mixtures of polar and nonpolar solvents all had an activation energy of about 1 kcal/mol for a wide range of dielectric constants. This dissociative intramolecular electron transfer (DIET) is unusual because it is the first example where solvent configurational entropy changes are required to enable a large amplitude molecular distortion leading to a nonadiabatic electron transfer and ionic dissociation. This solvent gated intramolecular electron-transfer mechanism is supported by analysis of the preexponential and activation energy trends in dipolar aprotic solven mixtures and alcohol solvents. The large amplitude motion is not separately measurable due to the slow gating rates, but viscosity effects on both the preexponential and the activation energy are analyzed to demonstrate consistency with a barrierless diffusion model having a structural dependence on electron-transfer rate. The rate has an inverse dependence on viscosity raised to the 0.53 power. 36 refs., 6 figs., 4 tabs.

  19. 75 FR 16579 - Electronic Fund Transfers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... From the Federal Register Online via the Government Publishing Office ] Part II Federal Reserve System 12 CFR Part 205 Electronic Fund Transfers; Final Rule #0;#0;Federal Register / Vol. 75 , No. 62... Consumers from Hidden Gift Card Fees Secretly Draining Shoppers' Pockets'', Press Release, Mar. 27,...

  20. Electron transfer and energy transfer through bridged systems. I. Formalism

    NASA Astrophysics Data System (ADS)

    Reimers, J. R.; Hush, N. S.

    1989-07-01

    A time-dependent formalism is developed for reactions in which energy (vibrational or electronic excitation, electron or hole transfer, etc.) is transferred coherently between centres through a bridge. This approach is inspired by the Robinson and Frosch model of energy transfer within two-level systems. This formalism yields a completely general algorithm which, in particular limits, reduces to a generalised form of both Fermi's golden rule and Rabi's rate equation, and, in so doing, unifies many existing theories. It is shown that, only in the limit of the bridge states being non-resonant with the initial and final states, can the full problem be represented by an effective two-level model. Existing methods based upon Löwdin diagonalization are shown to be appropriate only when this limit applies, and ambiguities which arise from the ad hoc nature of these methods are resolved. Also, it is typically only in this limit that the transfer of energy proceeds exponentially in time and can be described by a simple single-parameter rate constant. Only problems which can be modelled using a single set of quantum numbers are treated in this paper. Applications and more general problems are treated in subsequent papers.

  1. Dynamics of electron transfer in photosystem II.

    PubMed

    Burda, Kvetoslava

    2007-01-01

    Photosystem II, being a constituent of light driven photosynthetic apparatus, is a highly organized pigment-protein-lipid complex. The arrangement of PSII active redox cofactors insures efficiency of electron transfer within it. Donation of electrons extracted from water by the oxygen evolving complex to plastoquinones requires an additional activation energy. In this paper we present theoretical discussion of the anharmonic fluctuations of the protein-lipid matrix of PSII and an experimental evidence showing that the fluctuations are responsible for coupling of its donor and acceptor side. We argue that the fast collective motions liberated at temperatures higher that 200 K are crucial for the two final steps of the water splitting cycle and that one can distinguish three different dynamic regimes of PSII action which are controlled by the timescales of forward electron transfer, which vary with temperature. The three regimes of the dynamical behavior are related to different spatial domains of PSII.

  2. Estimates of electronic coupling for excess electron transfer in DNA

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.

    2005-07-01

    Electronic coupling Vda is one of the key parameters that determine the rate of charge transfer through DNA. While there have been several computational studies of Vda for hole transfer, estimates of electronic couplings for excess electron transfer (ET) in DNA remain unavailable. In the paper, an efficient strategy is established for calculating the ET matrix elements between base pairs in a π stack. Two approaches are considered. First, we employ the diabatic-state (DS) method in which donor and acceptor are represented with radical anions of the canonical base pairs adenine-thymine (AT) and guanine-cytosine (GC). In this approach, similar values of Vda are obtained with the standard 6-31G* and extended 6-31++G** basis sets. Second, the electronic couplings are derived from lowest unoccupied molecular orbitals (LUMOs) of neutral systems by using the generalized Mulliken-Hush or fragment charge methods. Because the radical-anion states of AT and GC are well reproduced by LUMOs of the neutral base pairs calculated without diffuse functions, the estimated values of Vda are in good agreement with the couplings obtained for radical-anion states using the DS method. However, when the calculation of a neutral stack is carried out with diffuse functions, LUMOs of the system exhibit the dipole-bound character and cannot be used for estimating electronic couplings. Our calculations suggest that the ET matrix elements Vda for models containing intrastrand thymine and cytosine bases are essentially larger than the couplings in complexes with interstrand pyrimidine bases. The matrix elements for excess electron transfer are found to be considerably smaller than the corresponding values for hole transfer and to be very responsive to structural changes in a DNA stack.

  3. Photoinitiated electron transfer in multichromophoric species: Synthetic tetrads and pentads

    SciTech Connect

    Not Available

    1989-04-12

    This research project involves the design, synthesis and study of molecules which mimic many of the important aspects of photosynthetic electron and energy transfer. Specifically, the molecules are designed to mimic the following aspects of natural photosynthetic multistep electron transfer: electron donation from a tetrapyrrole excited singlet state, electron transfer between tetrapyrroles, electron transfer from tetrapyrroles to quinones, and electron transfer between quinones with different redox properties. In addition, they model carotenoid antenna function in photosynthesis (singlet-singlet energy transfer from carotenoid polyenes to chlorophyll) and carotenoid photoprotection from singlet oxygen damage (triplet-triplet energy transfer from chlorophyll to carotenoids).

  4. Electron transfer kinetics in water-splitting dye-sensitized photoelectrochemical cells

    NASA Astrophysics Data System (ADS)

    Swierk, John R.

    Water-splitting dye-sensitized photoelectrochemical (WS-DSPECs) cells utilize molecular sensitizers absorbed on mesoporous TiO2 electrodes to harvest visible light, inject photoexcited electrons into the conduction band of TiO2, and finally transfer holes across the TiO2 surface to water oxidation catalysts, which in turn oxidize water to give molecular oxygen and four protons. Within the TiO2 layer photoinjected electrons are transported to a transparent conductor back contact and from there to a dark cathode to reduce protons to molecular hydrogen. WS-DSPECs offer several advantages for alternative solar fuels systems: the use of low-cost materials, tunable molecular sensitizers, and relaxed catalytic turnover requirements to name a few. Despite these advantageous features, power conversion efficiencies in WS-DSPECs are generally low. Broadly, this thesis explores the fundamental electron transfer processes that control the efficiency of these cells. Chapter 1 presents a survey of the previous literature and individually considers each component of a WS-DSPEC (water oxidation catalyst, sensitizers, electrode materials, redox mediators, and overall system design). Chapter 2 presents a novel method of preparing a WS-DSPEC that utilizes crystalline IrO2 nanoparticles directly sintered to TiO2 as a water oxidation catalyst and describes a previously unknown electron-scavenging pathway by IrO2. Chapter 3 explores how electron trapping by and proton intercalation into TiO2 controls the photoelectrochemical performance of WS-DSPECs. Chapter 4 characterizes how electron recombination with the oxidized sensitizer and electron scavenging by the IrO 2 catalyst combine to limit the concentration of conduction band electrons and by extension photocurrent in WS-DSPECs. Chapter 5 demonstrates the use of the first totally organic sensitizers for light driven water-splitting and explores how the molecular and electronic structure of a sensitizer affects the electron transfer

  5. Flavin Electron Shuttles Dominate Extracellular Electron Transfer by Shewanella oneidensis

    PubMed Central

    Kotloski, Nicholas J.; Gralnick, Jeffrey A.

    2013-01-01

    ABSTRACT Shewanella oneidensis strain MR-1 is widely studied for its ability to respire a diverse array of soluble and insoluble electron acceptors. The ability to breathe insoluble substrates is defined as extracellular electron transfer and can occur via direct contact or by electron shuttling in S. oneidensis. To determine the contribution of flavin electron shuttles in extracellular electron transfer, a transposon mutagenesis screen was performed with S. oneidensis to identify mutants unable to secrete flavins. A multidrug and toxin efflux transporter encoded by SO_0702 was identified and renamed bfe (bacterial flavin adenine dinucleotide [FAD] exporter) based on phenotypic characterization. Deletion of bfe resulted in a severe decrease in extracellular flavins, while overexpression of bfe increased the concentration of extracellular flavins. Strains lacking bfe had no defect in reduction of soluble Fe(III), but these strains were deficient in the rate of insoluble Fe(III) oxide reduction, which was alleviated by the addition of exogenous flavins. To test a different insoluble electron acceptor, graphite electrode bioreactors were set up to measure current produced by wild-type S. oneidensis and the Δbfe mutant. With the same concentration of supplemented flavins, the two strains produced similar amounts of current. However, when exogenous flavins were not supplemented to bioreactors, bfe mutant strains produced significantly less current than the wild type. We have demonstrated that flavin electron shuttling accounts for ~75% of extracellular electron transfer to insoluble substrates by S. oneidensis and have identified the first FAD transporter in bacteria. PMID:23322638

  6. Biotechnological Aspects of Microbial Extracellular Electron Transfer

    PubMed Central

    Kato, Souichiro

    2015-01-01

    Extracellular electron transfer (EET) is a type of microbial respiration that enables electron transfer between microbial cells and extracellular solid materials, including naturally-occurring metal compounds and artificial electrodes. Microorganisms harboring EET abilities have received considerable attention for their various biotechnological applications, in addition to their contribution to global energy and material cycles. In this review, current knowledge on microbial EET and its application to diverse biotechnologies, including the bioremediation of toxic metals, recovery of useful metals, biocorrosion, and microbial electrochemical systems (microbial fuel cells and microbial electrosynthesis), were introduced. Two potential biotechnologies based on microbial EET, namely the electrochemical control of microbial metabolism and electrochemical stimulation of microbial symbiotic reactions (electric syntrophy), were also discussed. PMID:26004795

  7. Bacterial Nanowires Facilitate Extracellular Electron Transfer

    NASA Astrophysics Data System (ADS)

    Gorby, Y.

    2005-12-01

    Dissimilatory metal reducing bacteria, including Shewanella oneidensis and Geobacter sulfurreducens, produce electrically conductive nanowires that facilitate electron transfer to solid phase iron oxides. Nanowires produced by S. oneidensis strain MR-1 are functionalized by decaheme cytochromes MtrC and OmcA that are distributed along the length of the nanowires, as confirmed by immunolocalization experiments using peptide specific antibodies. Mutants lacking MtrC and OmcA produce nanowires that were poorly conductive, are unable to reduce solid phase iron oxides, and do not produce electric current in microbial fuel cells. Although less completely characterized, nanowires are also produced by organisms throughout a broad metabolic spectrum, from sulfate reducing bacteria to oxygenic, phototrophic cyanobacteria. Our research suggests that electrically conductive nanowires may be common throughout the microbial world and may serve as structures for efficient electron transfer and energy dissemination in complex communities such as microbial mats and biofilms.

  8. Proton-Coupled Electron Transfer: Moving Together and Charging Forward

    SciTech Connect

    Hammes-Schiffer, Sharon

    2015-07-22

    Proton-coupled electron transfer (PCET) is ubiquitous throughout chemistry and biology. This Perspective discusses recent advances and current challenges in the field of PCET, with an emphasis on the role of theory and computation. The fundamental theoretical concepts are summarized, and expressions for rate constants and kinetic isotope effects are provided. Computational methods for calculating reduction potentials and pKa’s for molecular electrocatalysts, as well as methods for simulating the nonadiabatic dynamics of photoinduced processes, are also described. Representative applications to PCET in solution, proteins, electrochemistry, and photoinduced processes are presented, highlighting the interplay between theoretical and experimental studies. The current challenges and suggested future directions are outlined for each type of application, concluding with an overall view to the future. The work described herein was supported by National Science Foundation Grant CHE-13-61293 (theory development), National Institutes of Health Grant GM056207 (soybean lipoxygenase), Center for Chemical Innovation of the National Science Foundation Solar Fuels Grant CHE-1305124 (cobalt catalysts), Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (nickel catalysts), and Air Force Office of Scientific Research Award No. FA9550-14-1-0295 (photoinduced PCET).

  9. Electron transfer and catalysis with high-valent metal-oxo complexes.

    PubMed

    Fukuzumi, Shunichi

    2015-04-21

    High-valent metal-oxo complexes are produced by reductive activation of dioxygen via reduction of metal complexes with reductants and dioxygen. Photoinduced electron transfer from substrates to metal complexes with dioxygen also leads to the generation of high-valent metal-oxo complexes that can oxygenate substrates. In such a case metal complexes act as a photocatalyst to oxygenate substrates with dioxygen. High-valent metal-oxo complexes are also produced by proton-coupled electron-transfer oxidation of metal complexes by one-electron oxidants with water, oxygenating substrates to regenerate metal complexes. In such a case metal complexes act as a catalyst for electron-transfer oxygenation of substrates by one-electron oxidants with water that acts as an oxygen source. The one-electron oxidants which can oxidize metal complexes can be replaced by much weaker oxidants by a combination of redox photocatalysts and metal complexes. Thus, photocatalytic oxygenation of substrates proceeds via photoinduced electron transfer from a photocatalyst to reductants followed by proton-coupled electron transfer oxidation of metal complexes with the oxidized photocatalyst to produce high-valent metal-oxo complexes that oxygenate substrates. Thermal and photoinduced electron-transfer catalytic reactions of high-valent metal-oxo complexes for oxygenation of substrates using water or dioxygen as an oxygen source are summarized in this perspective.

  10. Electron Transfer and Reaction Mechanism of Laccases

    PubMed Central

    Jones, Stephen M.; Solomon, Edward I.

    2015-01-01

    Laccases are part of the family of multicopper oxidases (MCOs), which couple the oxidation of substrates to the four electron reduction of O2 to H2O. MCOs contain a minimum of four Cu's divided into Type 1 (T1), Type 2 (T2), and binuclear Type 3 (T3) Cu sites that are distinguished based on unique spectroscopic features. Substrate oxidation occurs near the T1, and electrons are transferred approximately 13 Å through the protein via the Cys-His pathway to the T2/T3 trinuclear copper cluster (TNC) where dioxygen reduction occurs. This review outlines the electron transfer (ET) process in laccases, and the mechanism of O2 reduction as elucidated through spectroscopic, kinetic, and computational data. Marcus theory is used to describe the relevant factors which impact ET rates including the driving force (ΔG°), reorganization energy (λ), and electronic coupling matrix element (HDA). Then the mechanism of O2 reaction is detailed with particular focus on the intermediates formed during the two 2e− reduction steps. The first 2e− step forms the peroxide intermediate (PI), followed by the second 2e− step to form the native intermediate (NI), which has been shown to be the catalytically relevant fully oxidized form of the enzyme. PMID:25572295

  11. Potential technology transfers of research on low-temperature carbon monoxide-oxygen recombination catalysts

    NASA Technical Reports Server (NTRS)

    Poziomek, Edward J.

    1990-01-01

    Results from research on catalytic recombination of CO-O2 for stable closed-cycle operation of CO2 lasers hold much promise for a variety of technology transfer. Expansion of CO2 laser remote sensing applications toward chemical detection and pollution monitoring would certainly be expected. However, the catalysts themselves may be especially effective in low-temperature oxidation of a number of chemicals in addition to CO. It is therefore of interest to compare the CO-O2 catalysts with chemical systems designed for chemical sensing, air purification and process catalysis. Success in understanding the catalytic mechanisms of the recombination of CO-O2 could help to shed light on how catalyst systems operate. New directions in low-temperature oxidation catalysts, coatings for chemical sensors and sorbents for air purification could well emerge.

  12. Promoting Interspecies Electron Transfer with Biochar

    PubMed Central

    Chen, Shanshan; Rotaru, Amelia-Elena; Shrestha, Pravin Malla; Malvankar, Nikhil S.; Liu, Fanghua; Fan, Wei; Nevin, Kelly P.; Lovley, Derek R.

    2014-01-01

    Biochar, a charcoal-like product of the incomplete combustion of organic materials, is an increasingly popular soil amendment designed to improve soil fertility. We investigated the possibility that biochar could promote direct interspecies electron transfer (DIET) in a manner similar to that previously reported for granular activated carbon (GAC). Although the biochars investigated were 1000 times less conductive than GAC, they stimulated DIET in co-cultures of Geobacter metallireducens with Geobacter sulfurreducens or Methanosarcina barkeri in which ethanol was the electron donor. Cells were attached to the biochar, yet not in close contact, suggesting that electrons were likely conducted through the biochar, rather than biological electrical connections. The finding that biochar can stimulate DIET may be an important consideration when amending soils with biochar and can help explain why biochar may enhance methane production from organic wastes under anaerobic conditions. PMID:24846283

  13. Electron paramagnetic resonance investigation of purified catalyst-free single-walled carbon nanotubes.

    PubMed

    Zaka, Mujtaba; Ito, Yasuhiro; Wang, Huiliang; Yan, Wenjing; Robertson, Alex; Wu, Yimin A; Rümmeli, Mark H; Staunton, David; Hashimoto, Takeshi; Morton, John J L; Ardavan, Arzhang; Briggs, G Andrew D; Warner, Jamie H

    2010-12-28

    Electron paramagnetic resonance of single-walled carbon nanotubes (SWCNTs) has been bedevilled by the presence of paramagnetic impurities. To address this, SWCNTs produced by laser ablation with a nonmagnetic PtRhRe catalyst were purified through a multiple step centrifugation process in order to remove amorphous carbon and catalyst impurities. Centrifugation of a SWCNT solution resulted in sedimentation of carbon nanotube bundles containing clusters of catalyst particles, while isolated nanotubes with reduced catalyst particle content remained in the supernatant. Further ultracentrifugation resulted in highly purified SWCNT samples with a narrow diameter distribution and almost no detectable catalyst particles. Electron paramagnetic resonance (EPR) signals were detected only for samples which contained catalyst particles, with the ultracentrifuged SWCNTs showing no EPR signal at X-band (9.4 GHz) and fields < 0.4 T.

  14. Two-Phase Reactions in Microdroplets without the Use of Phase-Transfer Catalysts.

    PubMed

    Yan, Xin; Cheng, Heyong; Zare, Richard N

    2017-02-22

    Many important chemical transformations occur in two-phase reactions, which are widely used in chemical, pharmaceutical, and polymer manufacturing. We present an efficient method for performing two-phase reactions in microdroplets sheared by sheath gas without using a phase-transfer catalyst. This avoids disadvantages such as thermal instability, high cost, and, especially, the need to separate and recycle the catalysts. We show that various alcohols can be oxidized to the corresponding aldehydes and ketones within milliseconds in moderate to good yields (50-75 %). The scale-up of the present method was achieved at an isolated rate of 1.2 mg min(-1) for the synthesis of 4-nitrobenzylaldehyde from 4-nitrobenzyl alcohol in the presence of sodium hypochlorite. The biphasic nature of this process, which avoids use of a phase-transfer catalyst, greatly enhances synthetic effectiveness.

  15. Transmission electron microscopy investigation of auto catalyst and cobalt germanide

    NASA Astrophysics Data System (ADS)

    Sun, Haiping

    The modern ceria-zirconia based catalysts are used in automobiles to reduce exhaust pollutants. Cobalt germanides have potential applications as electrical contacts in the future Ge-based semiconductor devices. In this thesis, transmission electron microscopy (TEM) techniques were used to study the atomic scale interactions between metallic nanostructures and crystalline substrates in the two material systems mentioned above. The model catalyst samples consisted of precious metal nano-particles (Pd, Rh) supported on the surface of (Ce,Zr)O2 thin films. The response of the microstructure of the metal-oxide interface to the reduction and oxidation treatments was investigated by cross-sectional high resolution TEM. Atomic detail of the metal-oxide interface was obtained. It was found that Pd and Rh showed different sintering and interaction behaviors on the oxide surface. The preferred orientation of Pd particles in this study was Pd(111)//CZO(111). Partial encapsulation of Pd particles by reduced (Ce,Zr)O 2 surface was observed and possible mechanisms of the encapsulation were discussed. The characteristics of the metal-oxide interaction depend on the properties of the oxide, as well as their relative orientation. The results provide experimental evidence for understanding the thermodynamics of the equilibrium morphology of a solid particle supported on a solid surface that is not considered as inert. The reaction of Co with Ge to form epitaxial Co5Ge7 was studied by in situ ultra-high vacuum (UHV) TEM using two methods. One was reactive deposition of Co on Ge, in which the Ge substrate was maintained at 350°C during deposition. The other method was solid state reaction, in which the deposition of Co on Ge was carried out at room temperature followed by annealing to higher temperatures. During reactive deposition, the deposited Co reacted with Ge to form nanosized 3D Co 5Ge7 islands. During solid state reaction, a continuous epitaxial Co5Ge7 film on the (001) Ge

  16. BASE-CATALYZED DESTRUCTION OF PCBS-NEW DONORS, NEW TRANSFER AGENTS/CATALYSTS

    EPA Science Inventory

    The use of hydrogen transfer agents and catalysts to improve the base-catalyzed decomposition of polychlorinated biphenyls (PCBs) was investigated. The reaction proceeded only in the presence of base, but the rate of PCB disappearance increased with increasing amount of hydrogen ...

  17. Magnetically Recoverable Supported Ruthenium Catalyst for Hydrogenation of Alkynes and Transfer Hydrogenation of Carbonyl Compounds

    EPA Science Inventory

    A ruthenium (Ru) catalyst supported on magnetic nanoparticles (NiFe2O4) has been successfully synthesized and used for hydrogenation of alkynes at room temperature as well as transfer hydrogenation of a number of carbonyl compounds under microwave irradiation conditions. The cata...

  18. A monolith immobilised iridium Cp* catalyst for hydrogen transfer reactions under flow conditions.

    PubMed

    Rojo, Maria Victoria; Guetzoyan, Lucie; Baxendale, Ian R

    2015-02-14

    An immobilised iridium hydrogen transfer catalyst has been developed for use in flow based processing by incorporation of a ligand into a porous polymeric monolithic flow reactor. The monolithic construct has been used for several redox reductions demonstrating excellent recyclability, good turnover numbers and high chemical stability giving negligible metal leaching over extended periods of use.

  19. Photoinitiated electron transfer in multichromophoric species: Synthetic tetrads and pentads

    SciTech Connect

    Gust, J.D. Jr.; Moore, T.A.

    1988-04-12

    This research project involves the design, synthesis and study of molecules which mimic many of the important aspects of photosynthetic electron and energy transfer. The knowledge gained from the study of synthetic model systems which abstract features of the natural photosynthetic apparatus can be used to design artificial photosynthetic systems which employ the basic physics and chemistry of photosynthesis to help meet mankind's energy needs. More specifically, the proposed models are designed to mimic the following aspects of natural photosynthetic multistep electron transfer: electron donation from a tetrapyrrole excited singlet state, electron transfer between tetrapyrroles, electron transfer from tetrapyrroles to quinones, and electron transfer between quinones with different redox properties.

  20. 77 FR 40459 - Electronic Fund Transfers (Regulation E); Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ... 1005 RIN 3170-AA15 Electronic Fund Transfers (Regulation E); Correction AGENCY: Bureau of Consumer..., the Bureau published the Final Rule (77 FR 6194), which implements the Electronic Fund Transfer Act... made to Sec. 1005.3(a) in the interim final rule, Electronic Fund Transfers (Regulation E),...

  1. 14 CFR 1274.931 - Electronic funds transfer payment methods.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Electronic funds transfer payment methods... COOPERATIVE AGREEMENTS WITH COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.931 Electronic funds transfer payment methods. Electronic Funds Transfer Payment Methods July 2002 Payments under...

  2. 14 CFR 1260.69 - Electronic funds transfer payment methods.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Electronic funds transfer payment methods... COOPERATIVE AGREEMENTS General Special Conditions § 1260.69 Electronic funds transfer payment methods. Electronic Funds Transfer Payment Methods October 2000 (a) Payments under this grant will be made by...

  3. 31 CFR 208.3 - Payment by electronic funds transfer.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 2 2011-07-01 2011-07-01 false Payment by electronic funds transfer... DISBURSEMENTS § 208.3 Payment by electronic funds transfer. Subject to § 208.4, and notwithstanding any other... electronic funds transfer....

  4. 14 CFR 1260.69 - Electronic funds transfer payment methods.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Government by electronic funds transfer through the Treasury Fedline Payment System (FEDLINE) or the... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Electronic funds transfer payment methods... COOPERATIVE AGREEMENTS General Special Conditions § 1260.69 Electronic funds transfer payment...

  5. Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators

    NASA Astrophysics Data System (ADS)

    Badalyan, Artavazd; Stahl, Shannon S.

    2016-07-01

    The electrochemical oxidation of alcohols is a major focus of energy and chemical conversion efforts, with potential applications ranging from fuel cells to biomass utilization and fine-chemical synthesis. Small-molecule electrocatalysts for processes of this type are promising targets for further development, as demonstrated by recent advances in nickel catalysts for electrochemical production and oxidation of hydrogen. Complexes with tethered amines that resemble the active site of hydrogenases have been shown both to catalyse hydrogen production (from protons and electrons) with rates far exceeding those of such enzymes and to mediate reversible electrocatalytic hydrogen production and oxidation with enzyme-like performance. Progress in electrocatalytic alcohol oxidation has been more modest. Nickel complexes similar to those used for hydrogen oxidation have been shown to mediate efficient electrochemical oxidation of benzyl alcohol, with a turnover frequency of 2.1 per second. These compounds exhibit poor reactivity with ethanol and methanol, however. Organic nitroxyls, such as TEMPO (2,2,6,6-tetramethyl-1-piperidine N-oxyl), are the most widely studied electrocatalysts for alcohol oxidation. These catalysts exhibit good activity (1-2 turnovers per second) with a wide range of alcohols and have great promise for electro-organic synthesis. Their use in energy-conversion applications, however, is limited by the high electrode potentials required to generate the reactive oxoammonium species. Here we report (2,2‧-bipyridine)Cu/nitroxyl co-catalyst systems for electrochemical alcohol oxidation that proceed with much faster rates, while operating at an electrode potential a half-volt lower than that used for the TEMPO-only process. The (2,2‧-bipyridine)Cu(II) and TEMPO redox partners exhibit cooperative reactivity and exploit the low-potential, proton-coupled TEMPO/TEMPOH redox process rather than the high-potential TEMPO/TEMPO+ process. The results show how

  6. Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators.

    PubMed

    Badalyan, Artavazd; Stahl, Shannon S

    2016-07-21

    The electrochemical oxidation of alcohols is a major focus of energy and chemical conversion efforts, with potential applications ranging from fuel cells to biomass utilization and fine-chemical synthesis. Small-molecule electrocatalysts for processes of this type are promising targets for further development, as demonstrated by recent advances in nickel catalysts for electrochemical production and oxidation of hydrogen. Complexes with tethered amines that resemble the active site of hydrogenases have been shown both to catalyse hydrogen production (from protons and electrons) with rates far exceeding those of such enzymes and to mediate reversible electrocatalytic hydrogen production and oxidation with enzyme-like performance. Progress in electrocatalytic alcohol oxidation has been more modest. Nickel complexes similar to those used for hydrogen oxidation have been shown to mediate efficient electrochemical oxidation of benzyl alcohol, with a turnover frequency of 2.1 per second. These compounds exhibit poor reactivity with ethanol and methanol, however. Organic nitroxyls, such as TEMPO (2,2,6,6-tetramethyl-1-piperidine N-oxyl), are the most widely studied electrocatalysts for alcohol oxidation. These catalysts exhibit good activity (1–2 turnovers per second) with a wide range of alcohols and have great promise for electro-organic synthesis. Their use in energy-conversion applications, however, is limited by the high electrode potentials required to generate the reactive oxoammonium species. Here we report (2,2′-bipyridine)Cu/nitroxyl co-catalyst systems for electrochemical alcohol oxidation that proceed with much faster rates, while operating at an electrode potential a half-volt lower than that used for the TEMPO-only process. The (2,2′-bipyridine)Cu(II) and TEMPO redox partners exhibit cooperative reactivity and exploit the low-potential, proton-coupled TEMPO/TEMPOH redox process rather than the high-potential TEMPO/TEMPO+ process. The results show how

  7. Mixed valent sites in biological electron transfer.

    PubMed

    Solomon, Edward I; Xie, Xiangjin; Dey, Abhishek

    2008-04-01

    Many of the active sites involved in electron transfer (ET) in biology have more than one metal and are mixed valent in at least one redox state. These include Cu(A), and the polynuclear Fe-S clusters which vary in their extent of delocalization. In this tutorial review the relative contributions to delocalization are evaluated using S K-edge X-ray absorption, magnetic circular dichroism and other spectroscopic methods. The role of intra-site delocalization in ET is considered.

  8. Photochemical electron transfer reactions of tirapazamine.

    PubMed

    Poole, James S; Hadad, Christopher M; Platz, Matthew S; Fredin, Zachary P; Pickard, Laura; Guerrero, Elisa Levya; Kessler, Margarita; Chowdhury, Goutam; Kotandeniya, Delshanee; Gates, Kent S

    2002-04-01

    The absorption and fluorescence spectra of 3-aminobenzo-1,2,4-triazine di-N-oxide (tirapazamine) have been recorded and exhibit a dependence on solvent that correlates with the Dimroth ET30 parameter. Time-dependent density functional theory calculations reveal that the transition of tirapazamine in the visible region is pi-->pi* in nature. The fluorescence lifetime is 98+/-2 ps in water. The fluorescence quantum yield is approximately 0.002 in water. The fluorescence of tirapazamine is efficiently quenched by electron donors via an electron-transfer process. Linear Stern-Volmer fluorescence quenching plots are observed with sodium azide, potassium thiocyanate, guanosine monophosphate and tryptophan (Trp) methyl ester hydrochloride. Guanosine monophosphate, tyrosine (Tyr) methyl ester hydrochloride and Trp methyl ester hydrochloride appear to quench the fluorescence at a rate greater than diffusion control implying that these substrates complex with tirapazamine in its ground state. This complexation was detected by absorption spectroscopy.

  9. Photoinduced electron transfer in ordered polymers

    SciTech Connect

    Jones, G. II.

    1993-01-01

    The present report gives a brief account of the following elements of work related to photochemical electron transfer themes: (1) the synthesis and Photochemical characterization of chromophore-bound peptides and amino acid model compounds based on the amino acids, tryptophan and the spacer residue, alanine (Ala); (2) the study of binding of cationic organic dyes to a peptide electrolyte, for which cooperative dye loading and helix formation is important; (3) the completion of work on a new series of acridinium chromophores that have rod-like'' arrangements of linked aryl rings for assembly of electron donor-acceptor systems that exhibit long lived charge separation; and (4) use of the modified form of the peptide, poly-L-histidine, as a template for sulfide oxidation.

  10. Analytical and computational studies of intramolecular electron transfer pertinent to electron transfer and electron capture dissociation mass spectrometry.

    PubMed

    Neff, Diane; Simons, Jack

    2010-01-28

    Earlier work from this group has suggested that, in electron capture and electron-transfer mass spectrometry experiments on positively charged gas-phase samples of polypeptides, the initial electron attachment event most likely occurs at one of the peptide's positively charged sites (e.g., protonated side chains), although electron attachment can occur at a disulfide or amide site ca. 1-10% of the time. Focusing on the 90-99% dominant channel in which initial electron attachment occurs at a positive site, this paper addresses to what extent and over what distances electron transfer can take place from a positively charged site to a disulfide sigma* or amide pi* orbital, because it is thought that it is through such orbitals that disulfide or N-C(alpha) backbone bond cleavage occurs. Ab initio electronic structure calculations show that, as long as an SS sigma* (or OCN pi*) orbital experiences sufficient Coulomb stabilization from proximal positively charged groups, there are a myriad of excited Rydberg states located on positive sites that are able to induce such intrapeptide electron transfer. Computational data show that the transfer rates decay exponentially with distance for a given Rydberg orbital. An analytical model is developed that allows us to estimate the rates of Rydberg-to-valence and Rydberg-to-Rydberg electron transfers as functions of the Rydberg orbitals' n quantum numbers. This model suggests that transfer can occur over very long distances at rates that are more than competitive with the rates of radiationless relaxation within the manifold of Rydberg states (the latter processes eventually terminate the electron-transfer process an thus the disulfide or N-C(alpha) bond cleavages), and it gives formulas for how these rates depend on n (and thus the radial span of the Rydberg orbitals).

  11. Role of iron-based catalyst and hydrogen transfer in direct coal liquefaction

    SciTech Connect

    Xian Li; Shuxun Hu; Lijun Jin; Haoquan Hu

    2008-03-15

    The aim of this research is to understand the major function of iron-based catalysts on direct coal liquefaction (DCL). Pyrolysis and direct liquefaction of Shenhua bituminous coal were carried out to investigate the effect of three solvents (wash-oil from coal-tar, cycle-oil from coal liquefaction, and tetralin) in a N{sub 2} or a H{sub 2} atmosphere and with or without catalyst. The hydrogen content in the solvent and liquid product and the H{sub 2} consumption for every run were calculated to understand the hydrogen transfer approach in DCL. The results showed that the iron-based catalyst promotes the coal pyrolysis, and the dominating function of the catalyst in DCL is to promote the formation of activated hydrogen and to accelerate the secondary distribution of H in the reaction system including the gas, liquid, and solid phases. The major transfer approach of the activated hydrogen is from molecular hydrogen to solvent and then from solvent to coal, and the solvent takes on the role of a 'bridge' in the hydrogen transfer approach. 31 refs., 5 figs., 3 tabs.

  12. New coal-derived catalyst for transfer hydrocracking of vacuum residue

    SciTech Connect

    Nakamura, Ikusei; Fujimoto, Kaoru

    1995-12-31

    Liquid phase hydrocracking of Arabian Heavy vacuum residue conducted in the presence of metal supported active carbon catalyst gave large amount of distillates (70%) with small hydrogen consumption. Especially the Yallourn coal derived active carbon catalyst showed high activity for the cracking of Arabian Heavy vacuum residue. The yield of asphaltene in the product oil was very low, whereas the coke yield was relatively high (about 4 wt%). In the metal-free active carbon system, the coke yield and the content of olefins, sulfur compounds, and asphaltene in the product oil were higher than those of the metal-supported active carbon system. These results suggest that asphaltene in feed oil was adsorbed on the metal supported active carbon catalyst and was decomposed or dehydrogenated on it to form coke and hydrogen atoms. The hydrogen atoms formed migrated on the carbon surface to reach the metal site and transferred to free radicals, olefins, or organo sulfur compounds.

  13. 78 FR 49365 - Electronic Fund Transfers (Regulation E); Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ... From the Federal Register Online via the Government Publishing Office ] BUREAU OF CONSUMER FINANCIAL PROTECTION 12 CFR Part 1005 RIN 3170-AA33 Electronic Fund Transfers (Regulation E); Correction... rules \\1\\ implements the Electronic Fund Transfer Act's provisions regarding remittance transfers...

  14. Hyperbranched polymers with a degree of branching of 100% prepared by catalyst transfer Suzuki-Miyaura polycondensation.

    PubMed

    Huang, Weiguo; Su, Linjie; Bo, Zhishan

    2009-08-05

    Hyperbranched polymers with a degree of branching of 100% were prepared by catalyst transfer Suzuki-Miyaura polymerization of AB(2) monomers carrying one boronic acid and two aromatic bromo functional groups; in contrast, Suzuki-Miyaura polymerization of the same AB(2) monomers using a traditional catalyst afforded hyperbranched polymers with a branching degree of only approximately 56%. This is a nice example of controlling the topology of hyperbranched polymers via the catalyst.

  15. Electron transfer reactions in microporous solids

    SciTech Connect

    Mallouk, T.E.

    1992-05-01

    We have studied electron transfer quenching of the excited state of Ru(bpy){sub 3}{sup 2+} in aqueous suspensions of zeolites Y, L, and mordenite. The internal pore network of the zeolite is ion-exchanged with methylviologen cations, which quench the excited state of the surface-bound sensitizer. A detailed study of the quenching and charge recombination kinetics, using time-resolved luminescence quenching and transient diffuse reflectance spectroscopies, shows to remarkable effects: first, the excited state quenching is entirely dynamic is large-pore zeolites (L and Y), even when they are prepared as apparently dry'' powders (which still contain significant amounts of internally sited water). Second, a lower limit for the diffusion coefficient of the MV{sup 2+} ion in these zeolites, determined by this technique, is 10{sup {minus}7} cm{sup 2}sec, i.e., only about one order of magnitude slower than a typical ion in liquid water, and 2--3 orders of magnitude faster than charge transfer diffusion of cations in polyelectrolyte films or membranes such as Nafion. Surface sensitization of internally platinized layered oxide semiconductors such as K{sub 4-x}H{sub x}Nb{sub 6}O{sub 17}{center dot}nH{sub 2}O (x {approx} 2.5) yields photocatalysts for the production of H{sub 2} and I{sub 3{minus}} in aqueous iodide solutions. Layered alkali niobates and titanates form a class of zeolitic wide-bandap semiconductors, and are the first examples of photocatalysts that evolve hydrogen from an electrochemically reversible (i.e., non-sacrificial) electron donor with visible light excitation.

  16. Soliton-like Solutions and Electron Transfer in DNA.

    PubMed

    Lakhno, V D

    2000-06-01

    We consider various mechanisms of long-range electron transfer in DNAwhich enable us to explain recent controversial experiments. We show thatcontinuous super-exchange theory can explain the values of electron rateconstants in short fragments of DNA. The soliton-type electron transfer inlong segments of DNA is also dealt with.

  17. Electronic and Nuclear Factors in Charge and Excitation Transfer

    SciTech Connect

    Piotr Piotrowiak

    2004-09-28

    We report the and/or state of several subprojects of our DOE sponsored research on Electronic and Nuclear Factors in Electron and Excitation Transfer: (1) Construction of an ultrafast Ti:sapphire amplifier. (2) Mediation of electronic interactions in host-guest molecules. (3) Theoretical models of electrolytes in weakly polar media. (4) Symmetry effects in intramolecular excitation transfer.

  18. Metal ion modulated electron transfer in photosynthetic proteins.

    SciTech Connect

    Utschig, L. M.; Thurnauer, M. C.; Chemistry

    2004-07-01

    Photosynthetic purple bacterial reaction center (RC) proteins are ideal native systems for addressing basic questions regarding the nature of biological electron transfer because both the protein structure and the electron-transfer reactions are well-characterized. Metal ion binding to the RC can affect primary photochemistry and provides a probe for understanding the involvement of local protein environments in electron transfer. The RC has two distinct transition metal ion binding sites, the well-known non-heme Fe{sup 2+} site buried in the protein interior and a recently discovered Zn{sup 2+} site located on the surface of the protein. Fe{sup 2+} removal and Zn{sup 2+} binding systematically affect different electron-transfer steps in the RC. Factors involved in the metal ion alteration of RC electron transfer may provide a paradigm for other biological systems involved in electron transfer.

  19. 76 FR 29901 - Electronic Fund Transfers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-23

    ... delivery may be available for a higher fee. International Wire Transfers Consumers may also send... institutions by international wire transfer. Consumers may choose to send funds by wire transfer when..., particularly when sending larger amounts. A wire transfer is generally an account-to- account...

  20. Heterogeneities of the nanostructure of platinum/zeolite y catalysts revealed by electron tomography.

    PubMed

    Zečević, Jovana; van der Eerden, Ad M J; Friedrich, Heiner; de Jongh, Petra E; de Jong, Krijn P

    2013-04-23

    To develop structure-performance relationships for important catalysts, a detailed characterization of their morphology is essential. Using electron tomography, we determined in three dimensions the structure of Pt/zeolite Y bifunctional catalysts. Optimum experimental conditions enabled for the first time high-resolution 3D imaging of Pt particles as small as 1 nm located inside zeolite micropores. Semiautomated image analysis of 3D reconstructions provided an efficient study of numbers, size distributions, and interparticle distances of thousands of Pt particles within individual zeolite crystals. Upon extending this approach to a number of zeolite crystals of one batch of Pt/zeolite Y catalyst, heterogeneities were revealed. The Pt loading, an important parameter for catalyst performance, varied between zeolite crystals up to a factor of 35. This discovery calls for re-evaluation of catalyst preparation methods and suggests potential for lowering the nominal loading with noble metals.

  1. [Electron transfer between globular proteins. Evaluation of a matrix element].

    PubMed

    Lakhno, V D; Chuev, G N; Ustinin, M N

    1998-01-01

    The dependence of the matrix element of the probability of interprotein electron transfer on the mutual orientation of the donor and acceptor centers and the distance between them was calculated. The calculations were made under the assumption that electron transfer proceeds mainly by a collective excitation of polaron nature, like a solvated electron state. The results obtained are consistent with experimental data and indicate the nonexponential behavior of this dependence in the case when the distance transfer is less than 20 A.

  2. Insights into proton-coupled electron transfer mechanisms of electrocatalytic H2 oxidation and production

    PubMed Central

    Horvath, Samantha; Fernandez, Laura E.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2012-01-01

    The design of molecular electrocatalysts for H2 oxidation and production is important for the development of alternative renewable energy sources that are abundant, inexpensive, and environmentally benign. Recently, nickel-based molecular electrocatalysts with pendant amines that act as proton relays for the nickel center were shown to effectively catalyze H2 oxidation and production. We developed a quantum mechanical approach for studying proton-coupled electron transfer processes in these types of molecular electrocatalysts. This theoretical approach is applied to a nickel-based catalyst in which phosphorous atoms are directly bonded to the nickel center, and nitrogen atoms of the ligand rings act as proton relays. The catalytic step of interest involves electron transfer between the nickel complex and the electrode as well as intramolecular proton transfer between the nickel and nitrogen atoms. This process can occur sequentially, with either the electron or proton transferring first, or concertedly, with the electron and proton transferring simultaneously without a stable intermediate. The electrochemical rate constants are calculated as functions of overpotential for the concerted electron-proton transfer reaction and the two electron transfer reactions in the sequential mechanisms. Our calculations illustrate that the concerted electron-proton transfer standard rate constant will increase as the equilibrium distance between the nickel and nitrogen atoms decreases and as the pendant amines become more flexible to facilitate the contraction of this distance with a lower energy penalty. This approach identifies the favored mechanisms under various experimental conditions and provides insight into the impact of substituents on the nitrogen and phosphorous atoms. PMID:22529352

  3. Cathodic Aromatic C,C Cross-Coupling Reaction via Single Electron Transfer Pathway.

    PubMed

    Qu, Yang; Tateno, Hiroyuki; Matsumura, Yoshimasa; Kashiwagi, Tsuneo; Atobe, Mahito

    2017-03-07

    We have successfully developed a novel cathodic cross-coupling reaction of aryl halides with arenes. Utilization of the cathodic single electron transfer (SET) mechanism for activation of aryl halides enables the cross-coupling reaction to proceed without the need for any transition metal catalysts or single electron donors in a mild condition. The SET from a cathode to an aryl halide initiates a radical chain by giving an anion radical of the aryl halide. The following propagation cycle also consists entirely of anion radical intermediates.

  4. Diameter dependent electron transfer kinetics in semiconductor-enzyme complexes.

    PubMed

    Brown, Katherine A; Song, Qing; Mulder, David W; King, Paul W

    2014-10-28

    Excited state electron transfer (ET) is a fundamental step for the catalytic conversion of solar energy into chemical energy. To understand the properties controlling ET between photoexcited nanoparticles and catalysts, the ET kinetics were measured for solution-phase complexes of CdTe quantum dots and Clostridium acetobutylicum [FeFe]-hydrogenase I (CaI) using time-resolved photoluminescence spectroscopy. Over a 2.0-3.5 nm diameter range of CdTe nanoparticles, the observed ET rate (kET) was sensitive to CaI concentration. To account for diameter effects on CaI binding, a Langmuir isotherm and two geometric binding models were created to estimate maximal CaI affinities and coverages at saturating concentrations. Normalizing the ET kinetics to CaI surface coverage for each CdTe diameter led to k(ET) values that were insensitive to diameter, despite a decrease in the free energy for photoexcited ET (ΔGET) with increasing diameter. The turnover frequency (TOF) of CaI in CdTe-CaI complexes was measured at several molar ratios. Normalization for diameter-dependent changes in CaI coverage showed an increase in TOF with diameter. These results suggest that k(ET) and H2 production for CdTe-CaI complexes are not strictly controlled by ΔG(ET) and that other factors must be considered.

  5. Proton Coupled Electron Transfer Reactions at the Surface of Metal Oxide Nanomaterials

    NASA Astrophysics Data System (ADS)

    Braten, Miles N.

    Nanostructured metal oxide materials are found in many products and processes in our society today, but they play a particularly important role in the conversion and storage of energy. The materials are used as catalysts and redox active supports in devices such as dye sensitized solar cells, solid oxide fuel cells, and flow batteries, where they transfer and store electrons and charge balancing cations. Oftentimes electron transfer is modulated by the cations and when the cation is a proton, these redox reactions are known as proton coupled electron transfer (PCET) reactions. The work described in this dissertation focuses on understanding the PCET reactivity of nanocrystalline metal oxide materials. Chapter 1 introduces the concept of PCET and provides background information on the zinc oxide (ZnO) nanocrystals (NCs) which the majority of the research is focused on. Chapter 2 examines the chemistry that occurs during the photoreduction of ZnO NCs. Chapter 3 describes experiments probing how ZnO NC capping ligand concentration and NC size modulate PCET reaction rates. Chapter 4 describes experiments that compare the PCET reactivity of ZnO NCs with different numbers of electrons and protons stored on them. Chapter 5 describes attempts to observe the electrochemical reduction of ZnO NCs attached to gold electrodes. Finally, Chapter 6 contains attempts to identify a nanostructured metal oxide alkane oxidation catalyst for use in fuel cell.

  6. [Mechanistic examination of organometallic electron transfer reactions: Annual report, 1989

    SciTech Connect

    Not Available

    1989-12-31

    Our mechanistic examination of electron transfer reactions between organometallic complexes has required data from our stopped-flow infrared spectrophotometer that was constructed in the first year. Our research on organometallic electron transfer reaction mechanisms was recognized by an invitation to the Symposium on Organometallic Reaction Mechanisms at the National ACS meeting in Miami. We have obtained a reasonable understanding of the electron transfer reactions between metal cations and anions and between metal carbonyl anions and metal carbonyl dimers. In addition we have begun to obtain data on the outer sphere electron transfer between metal carbonyl anions and coordination complexes and on reactions involving cluster anions.

  7. Structural, electronic and adsorption properties of Rh(111)/Mo(110) bimetallic catalyst: A DFT study

    NASA Astrophysics Data System (ADS)

    Palotás, K.; Bakó, I.; Bugyi, L.

    2016-12-01

    Geometric and electronic characterizations of one monolayer rhodium with Nishiyama-Wassermann (NW) structure on Mo(110) substrate have been performed by density functional theory (DFT) calculations. In the NW structure the Rh atoms form a wavy structure propagating along the [001] direction, characterized by an amplitude of 0.26 Å in the [110] direction and by 0.10 Å in the [110] direction of the Mo(110) substrate. Strain and ligand effects operating in the rhodium film are distinguished and found to be manifested in the downward shift of the d-band center of the electron density of states (DOS) by 0.11 eV and 0.18 eV, respectively. The shift in the d-band center of Rh DOS predicts a decrease in the surface reactivity toward CO adsorption, which has been verified by detailed calculations of bond energies of CO located at on-top, bridge and hollow adsorption sites. The CO adsorption energies are decreased by about 35% compared to those reported for pure Rh(111), offering novel catalytic pathways for the molecule. An in-depth analysis of the charge transfer and the partial DOS characters upon CO adsorption on the NW-structured Rh(111)/Mo(110) bimetallic catalyst and on the pure Rh(111) surface sheds light on the bonding mechanism of CO and on the governing factors determining its lowered bond energy on the bimetallic surface.

  8. Hybrid technology with microwaves, electron beams and catalysts for VOCs removals.

    PubMed

    Calinescu, Ioan; Bulearca, Anca; Ighigeanu, Daniel; Martin, Diana; Matei, Constantin; Trifan, Adrian

    2009-01-01

    This work presents a hybrid technology and two hybrid installations (HI-1 and HI-2) for volatile organic compounds (VOCs) removal using successive or simultaneous microwave (MW) irradiation, electron beam (EB) irradiation, and catalytic oxidation. HI-1 is designed for successive EB and MW irradiation with two distinct reactors, both containing a catalyst inside. HI-2 is designed for simultaneous EB and MW irradiation in the same reactor containing a catalyst. Real synergistic effects between non-thermal plasma (NTP) and catalysis were obtained by introducing the catalyst into the irradiation zone, i.e. into the MW reactor EB reactor or into a reactor in which both EB and MW are injected.

  9. Mechanism of Intermolecular Electron Transfer in Bionanostructures

    NASA Astrophysics Data System (ADS)

    Gruodis, A.; Galikova, N.; Šarka, K.; Saulė, R.; Batiuškaitė, D.; Saulis, G.

    Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. Most patients are inoperable and hepatoma cells are resistant to conventional chemotherapies. Thus, the development of novel therapies for HCC treatment is of paramount importance. Amongst different alimentary factors, vitamin C and vitamin K3 In the present work, it has been shown that the treatment of mouse hepatoma MH-22A cells by vitamin C and vitamin K3 at the ratio of 100:1 greatly enhanced their cytotoxicity. When cells were subjected to vitamin C at 200 μM or to vitamin K3 at 2 μM separately, their viability reduced by only about 10%. However, when vitamins C and K3 were combined at the same concentrations, they killed more than 90% of cells. To elucidate the mechanism of the synergistic cytotoxicity of the C&K3 mixture, theoretical quantum-chemical analysis of the dynamics of intermolecular electron transfer (IET) processes within the complexes containing C (five forms) and K3 (one form) has been carried out. Optimization of the ground state complex geometry has been provided by means of GAUSSIAN03 package. Simulation of the IET has been carried out using NUVOLA package, in the framework of molecular orbitals (MO). The rate of IET has been calculated using Fermi Golden rule. The results of simulations allow us to create the preliminary model of the reaction pathway.

  10. Ultrafast Charge Transfer between Light Absorber and Co3O4 Water Oxidation Catalyst across Molecular Wires Embedded in Silica Membrane.

    PubMed

    Edri, Eran; Cooper, Jason K; Sharp, Ian D; Guldi, Dirk M; Frei, Heinz

    2017-04-06

    The mechanism of visible light-induced hole transfer from a molecular light absorber, in the form of a free-base porphyrin, coupled to a Co3O4 nanoparticle catalyst for water oxidation by a molecular wire (p-oligo(phenylenevinylene) featuring three aryl units) is investigated by transient absorption spectroscopy. The wires are covalently anchored on the Co3O4 surface and embedded in a dense, yet ultrathin (2 nm), silica layer that separates light absorber and catalyst. The porphyrin is electrostatically adsorbed on the silica surface, and aqueous colloidal solutions of the core-shell particles are used for transient optical measurements. Pulsed optical excitation of the porphyrin results in rapid injection of the photogenerated hole onto the molecular wire and concurrent formation of reduced light absorber in less than 1 picosecond (ps). Ultrafast charge separation was monitored by transient absorption of the wire radical cation, which is given by bands in the 500 to 600 nm region and at 1130 nm, while formation of reduced porphyrin was characterized by absorption at 700 nm. Forward transfer of the hole to Co3O4 catalyst proceeds in 255 ± 23 ps. Ultrafast transfer of positive charge from the molecular assembly to a metal oxide nanoparticle catalyst for water oxidation is unprecedented. Holes on Co3O4 recombined with electrons of the reduced sensitizer with biphasic kinetics on a much longer time scale of ten to several hundred nanoseconds. The unusually efficient hole transfer coupling of a molecular light absorber with an Earth-abundant metal oxide catalyst by silica-embedded p-oligo(phenylenevinylene) offers an approach for integrated artificial photosystems featuring product separation on the nanoscale.

  11. Photoinitiated electron transfer in multichromophoric species: Synthetic tetrads and pentads

    SciTech Connect

    1993-03-01

    This project involves the design, synthesis and study of molecules which mimic some of the important aspects of photosynthetic electron and energy transfer. This research project is leading to a better understanding of the energy conserving steps of photosynthesis via the study of synthetic model systems which abstract features of the natural photosynthetic apparatus. The knowledge gained from these studies will aid in the design of artificial photosynthetic reaction centers which employ the basic chemistry and physics of photosynthesis to help meet mankind`s energy needs. The approach to artificial photosynthesis employed in this project is to use synthetic pigments, electron donors, and electron acceptors similar to those found in biological reaction centers, but to replace the protein component with covalent bonds. These chemical linkages determine the electronic coupling between the various moieties by controlling separation, relative orientation, and overlap of electronic orbitals. The model systems are designed to mimic the following aspects of natural photosynthetic electron transfer: electron donation from a tetrapyrrole excited single state, electron transfer between tetrapyrroles, electron transfer from tetrapyrroles to quinones, and electron transfer between quinones with different redox properties. In addition, they mimic carotenoid antenna function in photosynthesis (singlet-singlet energy transfer from carotenoid polyenes to chlorophyll) and carotenoid photoprotection from singlet oxygen damage (triplet-triplet energy transfer from chlorophyll to carotenoids).

  12. Current Theoretical Challenges in Proton-Coupled Electron Transfer: Electron-Proton Nonadiabaticity, Proton Relays, and Ultrafast Dynamics

    SciTech Connect

    Hammes-Schiffer, Sharon

    2011-06-16

    Proton-coupled electron transfer (PCET) reactions play an important role in a wide range of biological and chemical processes. The motions of the electrons, transferring protons, solute nuclei, and solvent nuclei occur on a wide range of timescales and are often strongly coupled. As a result, the theoretical description of these processes requires a combination of quantum and classical methods. This perspective discusses three of the current theoretical challenges in the field of PCET. The first challenge is the calculation of electron-proton nonadiabatic effects, which are significant for these reactions because the hydrogen tunneling is often faster than the electronic transition. The second challenge is the modeling of electron transfer coupled to proton transport along hydrogen-bonded networks. The third challenge is the simulation of the ultrafast dynamics of nonequilibrium photoinduced PCET reactions in solution. Insights provided by theoretical studies may assist in the design of more effective catalysts for energy conversion processes. The proton relay portion of this review is based upon work supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  13. Current Theoretical Challenges in Proton-Coupled Electron Transfer: Electron Proton Nonadiabaticity, Proton Relays, and Ultrafast Dynamics

    SciTech Connect

    Hammes-Schiffer, Sharon

    2011-06-16

    Proton-coupled electron transfer (PCET) reactions play an important role in a wide range of biological and chemical processes. The motions of the electrons, transferring protons, solute nuclei, and solvent nuclei occur on a wide range of time scales and are often strongly coupled. As a result, the theoretical description of these processes requires a combination of quantum and classical methods. This Perspective discusses three of the current theoretical challenges in the field of PCET. The first challenge is the calculation of electron proton nonadiabatic effects, which are significant for these reactions because the hydrogen tunneling is often faster than the electronic transition. The second challenge is the modeling of electron transfer coupled to proton transport along hydrogen-bonded networks. The third challenge is the simulation of the ultrafast dynamics of nonequilibrium photoinduced PCET reactions in solution. Insights provided by theoretical studies may assist in the design of more effective catalysts for energy conversion processes. The proton relay portion of this review is based upon work supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  14. 14 CFR 1274.931 - Electronic funds transfer payment methods.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... cooperative agreement will be made by the Government by electronic funds transfer through the Treasury Fedline... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Electronic funds transfer payment methods... COOPERATIVE AGREEMENTS WITH COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.931...

  15. Time-resolved EPR identifies unexpected electron transfer in cryptochrome**

    PubMed Central

    Biskup, Till; Hitomi, Kenichi; Getzoff, Elizabeth D.; Krapf, Sebastian; Koslowski, Thorsten; Schleicher, Erik

    2012-01-01

    Tuning photoinduced electron transfer: Subtle differences in local sequence and conformation can produce diversity and specificity in electron transfer (ET) in proteins, despite high structural conservation of redox partners. For individual ET steps, distance is not necessarily the decisive parameter; orientation and solvent accessibility of ET partners, and therefore, stabilization of charge-separated states contribute substantially. PMID:22086606

  16. PROTON-COUPLED ELECTRON TRANSFER: A Reaction Chemist's View

    NASA Astrophysics Data System (ADS)

    Mayer, James M.

    2004-01-01

    Proton-coupled electron transfer (PCET) reactions involve the concerted transfer of an electron and a proton. Such reactions play an important role in many areas of chemistry and biology. Concerted PCET is thermochemically more favorable than the first step in competing consecutive processes involving stepwise electron transfer (ET) and proton transfer (PT), often by >=1 eV. PCET reactions of the form X-H + Y X + H-Y can be termed hydrogen atom transfer (HAT). Another PCET class involves outersphere electron transfer concerted with deprotonation by another reagent, Y+ + XH-B Y + X-HB+ . Many PCET/HAT rate constants are predicted well by the Marcus cross relation. The cross-relation calculation uses rate constants for self-exchange reactions to provide information on intrinsic barriers. Intrinsic barriers for PCET can be comparable to or larger than those for ET. These properties are discussed in light of recent theoretical treatments of PCET.

  17. Ni catalyst wash-coated on metal monolith with enhanced heat-transfer capability for steam reforming

    NASA Astrophysics Data System (ADS)

    Ryu, Jae-Hong; Lee, Kwan-Young; La, Howon; Kim, Hak-Joo; Yang, Jung-Il; Jung, Heon

    A commercial Ni-based catalyst is wash-coated on a monolith made of 50 μm-thick fecralloy plates. Compared with the same volume of coarsely powdered Ni catalysts, the monolith wash-coated Ni catalysts give higher methane conversion in the steam reforming reaction, especially at gas hourly space velocities (GHSV) higher than 28,000 h -1, and with no pressure drop. A higher conversion of the monolith catalyst is obtained, even though it contains a lower amount of active catalyst (3 g versus 17 g for a powdered catalyst), which indicates that the heat-transfer capability of the wash-coated Ni catalyst is significantly enhanced by the use of a metal monolith. The efficacy of the monolith catalyst is tested using a shell-and-tube type heat-exchanger reactor with 912 cm 3 of the monolith catalyst charged on to the tube side and hot combusted gas supplied to the shell side in a counter-current direction to the reactant flow. A methane conversion greater than 94% is obtained at a GHSV of 7300 h -1 and an average temperature of 640 °C. Nickel catalysts should first be reduced to become active for steam reforming. Doping a small amount (0.12 wt.%) of noble metal (Ru or Pt) in the commercial Ni catalyst renders the wash-coated catalyst as active as a pre-reduced Ni catalyst. Thus, noble metal-doped Ni appears useful for steam reforming without any pre-reduction procedure.

  18. Heme electron transfer in peroxidases: the propionate e-pathway.

    PubMed

    Guallar, Victor

    2008-10-23

    Computational modeling offers a new insight about the electron transfer pathway in heme peroxidases. Available crystal structures have revealed an intriguing arrangement of the heme propionate side chains in heme-heme and heme-substrate complexes. By means of mixed quantum mechanical/molecular mechanics calculations, we study the involvement of these propionate groups into the substrate oxidation in ascorbate peroxidase and into the heme to heme electron transfer in bacterial cytochrome c peroxidase. By selectively turning on/off different quantum regions, we obtain the electron transfer pathway which directly involves the porphyrin ring and the heme propionates. Furthermore, in ascorbate peroxidase the presence of the substrate appears to be crucial for the activation of the electron transfer channel. The results might represent a general motif for electron transfer from/to the heme group and change our view for the propionate side chains as simple electrostatic binding anchors. We name the new mechanism "the propionate e-pathway".

  19. Computational characterization of competing energy and electron transfer states in bimetallic donor-acceptor systems for photocatalytic conversion

    NASA Astrophysics Data System (ADS)

    Fredin, Lisa A.; Persson, Petter

    2016-09-01

    The rapidly growing interest in photocatalytic systems for direct solar fuel production such as hydrogen generation from water splitting is grounded in the unique opportunity to achieve charge separation in molecular systems provided by electron transfer processes. In general, both photoinduced and catalytic processes involve complicated dynamics that depend on both structural and electronic effects. Here the excited state landscape of metal centered light harvester-catalyst pairs is explored using density functional theory calculations. In weakly bound systems, the interplay between structural and electronic factors involved can be constructed from the various mononuclear relaxed excited states. For this study, supramolecular states of electron transfer and excitation energy transfer character have been constructed from constituent full optimizations of multiple charge/spin states for a set of three Ru-based light harvesters and nine transition metal catalysts (based on Ru, Rh, Re, Pd, and Co) in terms of energy, structure, and electronic properties. The complete set of combined charge-spin states for each donor-acceptor system provides information about the competition of excited state energy transfer states with the catalytically active electron transfer states, enabling the identification of the most promising candidates for photocatalytic applications from this perspective.

  20. Electron transfer at thermally heterogeneous molecule-metal interfaces

    NASA Astrophysics Data System (ADS)

    Craven, Galen T.; Nitzan, Abraham

    2017-03-01

    The rate of electron transfer between a molecular species and a metal, each at a different local temperature, is examined theoretically through the implementation of a bithermal (characterized by two temperatures) Marcus formalism. Expressions for the rate constant and the electronic contribution to a heat transfer mechanism which is induced by the temperature gradient between a molecule and metal are constructed. The system of coupled dynamical equations describing the electronic and thermal currents are derived and examined over diverse ranges of reaction geometries and temperature gradients. It is shown that electron transfer across the molecule-metal interface is associated with heat transfer and that the electron exchange between metal and molecule makes a distinct contribution to the interfacial heat conduction even when the net electronic current vanishes.

  1. Variable Electron Transfer Pathways in an Amphibian Cryptochrome

    PubMed Central

    Biskup, Till; Paulus, Bernd; Okafuji, Asako; Hitomi, Kenichi; Getzoff, Elizabeth D.; Weber, Stefan; Schleicher, Erik

    2013-01-01

    Electron transfer reactions play vital roles in many biological processes. Very often the transfer of charge(s) proceeds stepwise over large distances involving several amino acid residues. By using time-resolved electron paramagnetic resonance and optical spectroscopy, we have studied the mechanism of light-induced reduction of the FAD cofactor of cryptochrome/photolyase family proteins. In this study, we demonstrate that electron abstraction from a nearby amino acid by the excited FAD triggers further electron transfer steps even if the conserved chain of three tryptophans, known to be an effective electron transfer pathway in these proteins, is blocked. Furthermore, we were able to characterize this secondary electron transfer pathway and identify the amino acid partner of the resulting flavin-amino acid radical pair as a tyrosine located at the protein surface. This alternative electron transfer pathway could explain why interrupting the conserved tryptophan triad does not necessarily alter photoreactions of cryptochromes in vivo. Taken together, our results demonstrate that light-induced electron transfer is a robust property of cryptochromes and more intricate than commonly anticipated. PMID:23430261

  2. Cd(ii)-MOF-IM: post-synthesis functionalization of a Cd(ii)-MOF as a triphase transfer catalyst.

    PubMed

    Wang, Jian-Cheng; Ma, Jian-Ping; Liu, Qi-Kui; Hu, Yu-Hong; Dong, Yu-Bin

    2016-05-19

    A robust and porous Cd(ii)-MOF based on a bent imidazole-bridged ligand was synthesized and post-synthetically functionalized with linear alkyl chains to afford imidazolium salt (IM)-type triphase transfer catalysts for organic transformations. The imidazolium salt decorated Cd(ii)-MOF-IM exhibits typical solid phase transfer catalytic behavior for the azidation and thiolation of bromoalkane between aqueous/organic phases. Moreover, they can be easily recovered and reused under the PTC conditions. Cd(ii)-MOF-IM herein created a versatile family of solid phase transfer catalysts for promoting a broad scope of reactions carried out in a biphasic mixture of two immiscible solvents.

  3. Electron transfer reactions in microporous solids. Progress report, September 1990--January 1993

    SciTech Connect

    Mallouk, T.E.

    1993-01-01

    Basic thrust the research program involves use of microporous solids (zeolites, clays, layered and tunnel structure oxide semiconductors) as organizing media for artificial photosynthetic systems. Purpose of the microporous solid is twofold. First, it induces spatial organization of photoactive and electroactive components (sensitizers, semiconductor particles, electron relays, and catalysts) at the solid-solution interface, enhancing the quantum efficiency of charge separation and separating physically the ultimate electron donor and acceptor in the electron transport chain. Second, since the microcrystalline solid admits only molecules of a certain charge and size, it is possible to achieve permanent charge separation by sieving chemical photoproducts (e.g., H{sub 2} and I{sub 3}{sup {minus}}, or H{sub 2} and O{sub 2)} from each other. Spectroscopic and electrochemical methods are used to study the kinetics of electron transfer reactions in these hybrid molecular/solid state assemblies.

  4. Electron acceptor dependence of electron shuttle secretion and extracellular electron transfer by Shewanella oneidensis MR-1.

    PubMed

    Wu, Chao; Cheng, Yuan-Yuan; Li, Bing-Bing; Li, Wen-Wei; Li, Dao-Bo; Yu, Han-Qing

    2013-05-01

    Shewanella oneidensis MR-1 is an extensively studied dissimilatory metal-reducing bacterium with a great potential for bioremediation and electricity generation. It secretes flavins as electron shuttles which play an important role in extracellular electron transfer. However, the influence of various environmental factors on the secretion of flavins is largely unknown. Here, the effects of electron acceptors, including fumarate, ferrihydrite, Fe(III)-nitrilotriacetic acid (NTA), nitrate and trimethylamine oxide (TMAO), on the secretion of flavins were investigated. The level of riboflavin and riboflavin-5'-phosphate (FMN) secreted by S. oneidensis MR-1 varied considerably with different electron acceptors. While nitrate and ferrihydrite suppressed the secretion of flavins in relative to fumarate, Fe(III)-NTA and TMAO promoted such a secretion and greatly enhanced ferrihydrite reduction and electricity generation. This work clearly demonstrates that electron acceptors could considerably affect the secretion of flavins and consequent microbial EET. Such impacts of electron acceptors in the environment deserve more attention.

  5. K-shell Analysis Reveals Distinct Functional Parts in an Electron Transfer Network and Its Implications for Extracellular Electron Transfer

    PubMed Central

    Ding, Dewu; Li, Ling; Shu, Chuanjun; Sun, Xiao

    2016-01-01

    Shewanella oneidensis MR-1 is capable of extracellular electron transfer (EET) and hence has attracted considerable attention. The EET pathways mainly consist of c-type cytochromes, along with some other proteins involved in electron transfer processes. By whole genome study and protein interactions inquisition, we constructed a large-scale electron transfer network containing 2276 interactions among 454 electron transfer related proteins in S. oneidensis MR-1. Using the k-shell decomposition method, we identified and analyzed distinct parts of the electron transfer network. We found that there was a negative correlation between the ks (k-shell values) and the average DR_100 (disordered regions per 100 amino acids) in every shell, which suggested that disordered regions of proteins played an important role during the formation and extension of the electron transfer network. Furthermore, proteins in the top three shells of the network are mainly located in the cytoplasm and inner membrane; these proteins can be responsible for transfer of electrons into the quinone pool in a wide variety of environmental conditions. In most of the other shells, proteins are broadly located throughout the five cellular compartments (cytoplasm, inner membrane, periplasm, outer membrane, and extracellular), which ensures the important EET ability of S. oneidensis MR-1. Specifically, the fourth shell was responsible for EET and the c-type cytochromes in the remaining shells of the electron transfer network were involved in aiding EET. Taken together, these results show that there are distinct functional parts in the electron transfer network of S. oneidensis MR-1, and the EET processes could achieve high efficiency through cooperation through such an electron transfer network. PMID:27148219

  6. A molecular shift register based on electron transfer

    NASA Technical Reports Server (NTRS)

    Hopfield, J. J.; Onuchic, Josenelson; Beratan, David N.

    1988-01-01

    An electronic shift-register memory at the molecular level is described. The memory elements are based on a chain of electron-transfer molecules and the information is shifted by photoinduced electron-transfer reactions. This device integrates designed electronic molecules onto a very large scale integrated (silicon microelectronic) substrate, providing an example of a 'molecular electronic device' that could actually be made. The design requirements for such a device and possible synthetic strategies are discussed. Devices along these lines should have lower energy usage and enhanced storage density.

  7. Nickel phlorin intermediate formed by proton-coupled electron transfer in hydrogen evolution mechanism

    PubMed Central

    Solis, Brian H.; Maher, Andrew G.; Dogutan, Dilek K.; Nocera, Daniel G.; Hammes-Schiffer, Sharon

    2016-01-01

    The development of more effective energy conversion processes is critical for global energy sustainability. The design of molecular electrocatalysts for the hydrogen evolution reaction is an important component of these efforts. Proton-coupled electron transfer (PCET) reactions, in which electron transfer is coupled to proton transfer, play an important role in these processes and can be enhanced by incorporating proton relays into the molecular electrocatalysts. Herein nickel porphyrin electrocatalysts with and without an internal proton relay are investigated to elucidate the hydrogen evolution mechanisms and thereby enable the design of more effective catalysts. Density functional theory calculations indicate that electrochemical reduction leads to dearomatization of the porphyrin conjugated system, thereby favoring protonation at the meso carbon of the porphyrin ring to produce a phlorin intermediate. A key step in the proposed mechanisms is a thermodynamically favorable PCET reaction composed of intramolecular electron transfer from the nickel to the porphyrin and proton transfer from a carboxylic acid hanging group or an external acid to the meso carbon of the porphyrin. The C–H bond of the active phlorin acts similarly to the more traditional metal-hydride by reacting with acid to produce H2. Support for the theoretically predicted mechanism is provided by the agreement between simulated and experimental cyclic voltammograms in weak and strong acid and by the detection of a phlorin intermediate through spectroelectrochemical measurements. These results suggest that phlorin species have the potential to perform unique chemistry that could prove useful in designing more effective electrocatalysts. PMID:26655344

  8. A Simple Marcus-Theory Type Model for Hydrogen Atom Transfer/Proton-Coupled Electron Transfer.

    PubMed

    Mayer, James M

    2011-01-01

    Hydrogen atom transfer reactions are the simplest class of proton-coupled electron transfer (PCET) processes. These reactions involve transfer of one electron and one proton from one reagent to another, in the same kinetic step: XH + Y → X + HY. A predictive model for these reactions based on the Marcus cross relation is described. The model predicts rate constants within one or two orders of magnitude in most cases, over a very wide range of reactants and solvents. This remarkable result implies a surprising generality of the additivity postulate for the reaction intrinsic barriers, and a smaller role for the quantum mechanical details of the proton and electron transfers.

  9. Catalytic electron-transfer oxygenation of substrates with water as an oxygen source using manganese porphyrins.

    PubMed

    Fukuzumi, Shunichi; Mizuno, Takuya; Ojiri, Tetsuya

    2012-12-03

    Manganese(V)-oxo-porphyrins are produced by the electron-transfer oxidation of manganese-porphyrins with tris(2,2'-bipyridine)ruthenium(III) ([Ru(bpy)(3)](3+); 2 equiv) in acetonitrile (CH(3)CN) containing water. The rate constants of the electron-transfer oxidation of manganese-porphyrins have been determined and evaluated in light of the Marcus theory of electron transfer. Addition of [Ru(bpy)(3)](3+) to a solution of olefins (styrene and cyclohexene) in CH(3)CN containing water in the presence of a catalytic amount of manganese-porphyrins afforded epoxides, diols, and aldehydes efficiently. Epoxides were converted to the corresponding diols by hydrolysis, and were further oxidized to the corresponding aldehydes. The turnover numbers vary significantly depending on the type of manganese-porphyrin used owing to the difference in their oxidation potentials and the steric bulkiness of the ligand. Ethylbenzene was also oxidized to 1-phenylethanol using manganese-porphyrins as electron-transfer catalysts. The oxygen source in the substrate oxygenation was confirmed to be water by using (18)O-labeled water. The rate constant of the reaction of the manganese(V)-oxo species with cyclohexene was determined directly under single-turnover conditions by monitoring the increase in absorbance attributable to the manganese(III) species produced in the reaction with cyclohexene. It has been shown that the rate-determining step in the catalytic electron-transfer oxygenation of cyclohexene is electron transfer from [Ru(bpy)(3)](3+) to the manganese-porphyrins.

  10. Photoinduced electron transfer between benzyloxy dendrimer phthalocyanine and benzoquinone

    NASA Astrophysics Data System (ADS)

    Zhang, Tiantian; Ma, Dongdong; Pan, Sujuan; Wu, Shijun; Jiang, Yufeng; Zeng, Di; Yang, Hongqin; Peng, Yiru

    2016-10-01

    Photo-induced electron transfer (PET) is an important and fundamental process in natural photosynthesis. To mimic such interesting PET process, a suitable donor and acceptor couple were properly chosen. Dendrimer phthalocyanines and their derivatives have emerged as promising materials for artificial photosynthesis systems. In this paper, the electron transfer between the light harvest dendrimer phthalocyanine (donor) and the 1,4-benzoquinone (acceptor) was studied by UV/Vis and fluorescence spectroscopic methods. It was found that fluorescence of phthalocyanine was quenched by benzoquinone (BQ) via excited state electron transfer, from the phthalocyanine to the BQ upon excitation at 610 nm. The Stern-Volmer constant (KSV) of electron transfer was calculated. Our study suggests that this dendritic phthalocyanine is an effective new electron donor and transmission complex and could be used as a potential artificial photosynthesis system.

  11. Biomimetic catalytic system driven by electron transfer for selective oxygenation of hydrocarbon.

    PubMed

    Yang, Guanyu; Ma, Yinfa; Xu, Jie

    2004-09-01

    Hydrocarbon oxyfunctionalization is a crucial industrial process. Most metallic catalysts require higher temperatures and often show lower selectivities. One of the intellectual approaches is the mimicry for bio-oxidation. We have established a biomimetic system with a nonmetallic redox center, composed of anthraquinones, N-hydroxyphthalimide, and zeolite HY, for selective hydrocarbon oxygenation by molecular oxygen. Selectivity of 95.8% for acetophenone and 66.2% conversion were accomplished for oxygenation of ethylbenzene at temperatures as low as 80 degrees C. The redox cycle, driven by one-electron transfer and product orientation by Zeolite HY, opens up the possibility of mimicking bio-oxidation under mild conditions.

  12. Engineering of an alternative electron transfer path in photosystem II

    PubMed Central

    Larom, Shirley; Salama, Faris; Schuster, Gadi; Adir, Noam

    2010-01-01

    The initial steps of oxygenic photosynthetic electron transfer occur within photosystem II, an intricate pigment/protein transmembrane complex. Light-driven electron transfer occurs within a multistep pathway that is efficiently insulated from competing electron transfer pathways. The heart of the electron transfer system, composed of six linearly coupled redox active cofactors that enable electron transfer from water to the secondary quinone acceptor QB, is mainly embedded within two proteins called D1 and D2. We have identified a site in silico, poised in the vicinity of the QA intermediate quinone acceptor, which could serve as a potential binding site for redox active proteins. Here we show that modification of Lysine 238 of the D1 protein to glutamic acid (Glu) in the cyanobacterium Synechocystis sp. PCC 6803, results in a strain that grows photautotrophically. The Glu thylakoid membranes are able to perform light-dependent reduction of exogenous cytochrome c with water as the electron donor. Cytochrome c photoreduction by the Glu mutant was also shown to significantly protect the D1 protein from photodamage when isolated thylakoid membranes were illuminated. We have therefore engineered a novel electron transfer pathway from water to a soluble protein electron carrier without harming the normal function of photosystem II. PMID:20457933

  13. Kinetics and Mechanism of Electron Transfer in Proteins

    NASA Astrophysics Data System (ADS)

    Kulys, J.

    1986-10-01

    The results of studies on the kinetics of the oxidation-reduction reactions of individual proteins (electron transfer agents and enzymes) are described. Attention has been concentrated on the effect of the nature of the active centres in the protein molecules and of the modification of individual aminoacid residues on the rate of electron transfer in a homogeneous medium. Questions associated with the electrochemical reactions of proteins and with the effect of the state of the interface on the rate of this process are considered in detail. Ideas concerning the theoretical calculation of the rate constants for electron transfer in proteins are described. The bibliography includes 154 references.

  14. A Systematic Investigation of Quaternary Ammonium Ions as Asymmetric Phase Transfer Catalysts. Application of Quantitative Structure Activity/Selectivity Relationships

    PubMed Central

    Denmark, Scott E.; Gould, Nathan D.; Wolf, Larry M.

    2011-01-01

    While the synthetic utility of asymmetric phase transfer catalysis continues to expand, the number of proven catalyst types and design criteria remains limited. At the origin of this scarcity is a lack in understanding of how catalyst structural features affect the rate and enantioselectivity of phase transfer catalyzed reactions. Described in this paper is the development of quantitative structure-activity relationships (QSAR) and -selectivity relationships (QSSR) for the alkylation of a protected glycine imine with libraries of quaternary ammonium ion catalysts. Catalyst descriptors including ammonium ion accessibility, interfacial adsorption affinity, and partition coefficient were found to correlate meaningfully with catalyst activity. The physical nature of the descriptors was rationalized through differing contributions of the interfacial and extraction mechanisms to the reaction under study. The variation in the observed enantioselectivity was rationalized employing a comparative molecular field analysis (CoMFA) using both the steric and electrostatic fields of the catalysts. A qualitative analysis of the developed model reveals preferred regions for catalyst binding to afford both configurations of the alkylated product. PMID:21446723

  15. REFLECTIONS ON THE TWO-STATE ELECTRON TRANSFER MODEL.

    SciTech Connect

    Brunschwig, B.S.

    2000-01-12

    There is general agreement that the two most important factors determining electron transfer rates in solution are the degree of electronic interaction between the donor and acceptor sites, and the changes in the nuclear configurations of the donor, acceptor, and surrounding medium that occur upon the gain or loss of an electron Ll-51. The electronic interaction of the sites will be very weak, and the electron transfer slow, when the sites are far apart or their interaction is symmetry or spin forbidden. Since electron motion is much faster than nuclear motion, energy conservation requires that, prior to the actual electron transfer, the nuclear configurations of the reactants and the surrounding medium adjust from their equilibrium values to a configuration (generally) intermediate between that of the reactants and products. In the case of electron transfer between , two metal complexes in a polar solvent, the nuclear configuration changes involve adjustments in the metal-ligand and intraligand bond lengths and angles, and changes in the orientations of the surrounding solvent molecules. In common with ordinary chemical reactions, an electron transfer reaction can then be described in terms of the motion of the system on an energy surface from the reactant equilibrium configuration (initial state) to the product equilibrium configuration (final state) via the activated complex (transition state) configuration.

  16. [Electron transfer between globular proteins. Dependence of the rate of transfer on distance].

    PubMed

    Lakhno, V D; Chuev, G N; Ustinin, M N; Komarov, V M

    1998-01-01

    Based on the assumption that electron transfer between globular proteins occurs by a collective excitation of polaron type, the dependence of the rate of this process on the distance between the donor and acceptor centers with regard to their detailed electron structure was calculated. The electron structure of the heme was calculated by the quantum-chemical MNDO-PM3 method. The results were compared with experimental data on interprotein and intraglobular electron transfer. It is shown that, in the framework of this model, the electron transfer is not exponential and does not require a particular transfer pathway since the whole protein macromolecule is involved in the formation of the electron excited state.

  17. Photosensitized electron transfer processes of nanocarbons applicable to solar cells.

    PubMed

    D'Souza, Francis; Ito, Osamu

    2012-01-07

    Photosensitized electron-transfer processes of nanocarbon materials hybridized with electron donating or electron accepting molecules have been surveyed in this tutorial review on the basis of the recent results reported mainly from our laboratories. As nano-carbon materials, fullerenes and single wall carbon nanotubes (SWCNTs) have been employed. Fullerenes act as photo-sensitizing electron acceptors with respect to a wide variety of electron donors; in addition, the fullerenes act as good ground state electron acceptors in the presence of light-absorbing electron donors such as porphyrins and phthalocyanines. In the case of SWCNTs, their ground states act as electron acceptor and electron donors, depending on the photosensitizers. For example, with respect to the photoexcited porphyrins and phthalocyanines, SWCNTs usually act as electron acceptors, whereas for the photoexcited fullerenes, SWCNTs act as electron donors. The diameter sorted semi-conductive SWCNTs have been used to verify the size-dependent electron transfer rates. For the confirmation of the electron transfer processes, the transient absorption methods have been widely used, in addition to the time-resolved fluorescence spectral measurements. The kinetic data thus obtained in solution are found to be quite useful to predict the efficiencies of photovoltaic cells constructed on semiconductor nanoparticle modified electrodes and their photocatalytic processes.

  18. Proton-coupled electron transfer dynamics in the catalytic mechanism of a [NiFe]-hydrogenase.

    PubMed

    Greene, Brandon L; Wu, Chang-Hao; McTernan, Patrick M; Adams, Michael W W; Dyer, R Brian

    2015-04-08

    The movement of protons and electrons is common to the synthesis of all chemical fuels such as H2. Hydrogenases, which catalyze the reversible reduction of protons, necessitate transport and reactivity between protons and electrons, but a detailed mechanism has thus far been elusive. Here, we use a phototriggered chemical potential jump method to rapidly initiate the proton reduction activity of a [NiFe] hydrogenase. Coupling the photochemical initiation approach to nanosecond transient infrared and visible absorbance spectroscopy afforded direct observation of interfacial electron transfer and active site chemistry. Tuning of intramolecular proton transport by pH and isotopic substitution revealed distinct concerted and stepwise proton-coupled electron transfer mechanisms in catalysis. The observed heterogeneity in the two sequential proton-associated reduction processes suggests a highly engineered protein environment modulating catalysis and implicates three new reaction intermediates; Nia-I, Nia-D, and Nia-SR(-). The results establish an elementary mechanistic understanding of catalysis in a [NiFe] hydrogenase with implications in enzymatic proton-coupled electron transfer and biomimetic catalyst design.

  19. Extracellular electron transfer mechanisms between microorganisms and minerals

    SciTech Connect

    Shi, Liang; Dong, Hailiang; Reguera, Gemma; Beyenal, Haluk; Lu, Anhuai; Liu, Juan; Yu, Han-Qing; Fredrickson, James K.

    2016-08-30

    Electrons can be transferred from microorganisms to multivalent metal ions that are associated with minerals and vice versa. As the microbial cell envelope is neither physically permeable to minerals nor electrically conductive, microorganisms have evolved strategies to exchange electrons with extracellular minerals. In this Review, we discuss the molecular mechanisms that underlie the ability of microorganisms to exchange electrons, such as c-type cytochromes and microbial nanowires, with extracellular minerals and with microorganisms of the same or different species. Microorganisms that have extracellular electron transfer capability can be used for biotechnological applications, including bioremediation, biomining and the production of biofuels and nanomaterials.

  20. Promoting Knowledge Transfer with Electronic Note Taking

    ERIC Educational Resources Information Center

    Katayama, Andrew D.; Shambaugh, R. Neal; Doctor, Tasneem

    2005-01-01

    We investigated the differences between (a) copying and pasting text versus typed note-taking methods of constructing study notes simultaneously with (b) vertically scaffolded versus horizontally scaffold notes on knowledge transfer. Forty-seven undergraduate educational psychology students participated. Materials included 2 electronic…

  1. Supramolecular networks with electron transfer in two dimensions

    SciTech Connect

    Stupp, Samuel I.; Stoddart, J. Fraser; Shveyd, Alexander K.; Tayi, Alok S.; Sue, Chi-Hau; Narayanan, Ashwin

    2016-09-13

    Organic charge-transfer (CT) co-crystals in a crossed stack system are disclosed. The co-crystals exhibit bidirectional charge transfer interactions where one donor molecule shares electrons with two different acceptors, one acceptor face-to-face and the other edge-to-face. The assembly and charge transfer interaction results in a pleochroic material whereby the optical absorption continuously changes depending on the polarization angle of incident light.

  2. Improved heterogeneous electron transfer kinetics of fluorinated graphene derivatives

    NASA Astrophysics Data System (ADS)

    Boopathi, Sidhureddy; Narayanan, Tharangattu N.; Senthil Kumar, Shanmugam

    2014-08-01

    Though graphitic carbons are commercially available for various electrochemical processes, their performance is limited in terms of various electrochemical activities. Recent experiments on layered carbon materials, such as graphene, demonstrated an augmented performance of these systems in all electrochemical activities due to their unique electronic properties, enhanced surface area, structure and chemical stabilities. Moreover, flexibility in controlling electronic, as well as electrochemical activities by heteroatom doping brings further leverage in their practical use. Here, we study the electron transfer kinetics of fluorinated graphene derivatives, known as fluorinated graphene oxide (FGO) and its reduced form, RFGO. Enhanced electron transfer kinetics (heterogeneous electron transfer (HET)) is observed from these fluorinated systems in comparison to their undoped systems such as graphene oxide (GO) and reduced GO. A detailed study has been conducted using standard redox probes and biomolecules revealing the enhanced electro-catalytic activities of FGO and RFGO, and electron transfer rates are simulated theoretically. This study reveals that fluorine not only induces defects in graphitic lattice leading to an enhanced HET process but also can modify the electronic structure of graphene surface.Though graphitic carbons are commercially available for various electrochemical processes, their performance is limited in terms of various electrochemical activities. Recent experiments on layered carbon materials, such as graphene, demonstrated an augmented performance of these systems in all electrochemical activities due to their unique electronic properties, enhanced surface area, structure and chemical stabilities. Moreover, flexibility in controlling electronic, as well as electrochemical activities by heteroatom doping brings further leverage in their practical use. Here, we study the electron transfer kinetics of fluorinated graphene derivatives, known as

  3. Real-time electron dynamics simulation of two-electron transfer reactions induced by nuclear motion

    NASA Astrophysics Data System (ADS)

    Suzuki, Yasumitsu; Yamashita, Koichi

    2012-04-01

    Real-time electron dynamics of two-electron transfer reactions induced by nuclear motion is calculated by three methods: the numerically exact propagation method, the time-dependent Hartree (TDH) method and the Ehrenfest method. We find that, as long as the nuclei move as localized wave packets, the TDH and Ehrenfest methods can reproduce the exact electron dynamics of a simple charge transfer reaction model containing two electrons qualitatively well, even when nonadiabatic transitions between adiabatic states occur. In particular, both methods can reproduce the cases where a complete two-electron transfer reaction occurs and those where it does not occur.

  4. MANAGING ELECTRONIC DATA TRANSFER IN ENVIRONMENTAL CLEANUPS

    EPA Science Inventory

    The use of computers and electronic information poses a complex problem for potential litigation in space law. The problem currently manifests itself in at least two ways. First, the Environmental Protection Agency (EPA) enforcement of Comprehensive Environmental Response, Compen...

  5. Electron Donor-Acceptor Quenching and Photoinduced Electron Transfer for Coumarin Dyes.

    DTIC Science & Technology

    1983-10-31

    Mechanism of cousarin photodegradation . Ithe behavior of eoiuma dyes is water ad In aqueous detergent media,. and the effsects of medism aud, additives on...D-i36 345 ELECTRON DONOR-ACCEPTOR UENCHING AND PHOTOINDUCED i/i Ai ELECTRON TRANSFER FOR COUMARIN DYES (U) BOSTON UNIY MR DEPT OF CHEMISTRY G JONES...TYPE OF REPORT & PEIOD COVERED Electron Donor-acceptor Quenching and Photo- Technical, 1/1/82-10/31/82 induced Electron Transfer for Coumarin Dyes S

  6. Electron microscopy studies of real and model oxide supported gold catalysts

    NASA Astrophysics Data System (ADS)

    Wang, Yingmin

    Oxide supported Au catalysts have been the center of intensive research since being discovered as the most active catalysts for low temperature CO oxidation. However, the origin of the high activity of these catalysts remains unknown. The complexity of this catalytic system prevents a clear identification and characterization of the factors truly affecting its properties. In this thesis research, the attention was focused on certain areas that are truly crucial for the understanding of the Au catalysts, including the preparation and activation of Au catalysts, the properties of the TiO2 surface and the interaction between TiO2 and gold nanoparticles. Electron microscopy was used throughout this research along with other techniques and has been proved to be a powerful and irreplaceable tool and provide an insight into this catalytic system with a unique angle. Among all of the findings of this research, the examination of Au catalysts identified the role of chlorine in accelerating the agglomeration of gold particles and poisoning the active sites. Studies on the activation of Au/Al 2O3 and Au/TiO2 catalysts demonstrated the oxidation state and the size of the gold particles were two competing factors during activation and both were very important. The difference in the mobility of gold species on oxide surfaces affects them. The study of the TiO2 surface described the reoxidation process of the TiO2 surface and a new surface reconstruction, c(2x2), on this surface was reported. Its atomic structure was solved by applying Direct Methods and Density Functional Theory calculations. The study of Au/TiO2 model catalysts revealed no preferred orientation between gold nanoparticles and TiO2 supports with various crystallographic orientations and surface conditions, and this fact was explained by the influence of surface adsorbates. Model catalyst studies also characterized surface induced sintering, and estimated the temperature of local heating during surface induced

  7. Reflections on the value of electron microscopy in the study of heterogeneous catalysts

    NASA Astrophysics Data System (ADS)

    Thomas, John Meurig

    2017-01-01

    Electron microscopy (EM) is arguably the single most powerful method of characterizing heterogeneous catalysts. Irrespective of whether they are bulk and multiphasic, or monophasic and monocrystalline, or nanocluster and even single-atom and on a support, their structures in atomic detail can be visualized in two or three dimensions, thanks to high-resolution instruments, with sub-Ångstrom spatial resolutions. Their topography, tomography, phase-purity, composition, as well as the bonding, and valence-states of their constituent atoms and ions and, in favourable circumstances, the short-range and long-range atomic order and dynamics of the catalytically active sites, can all be retrieved by the panoply of variants of modern EM. The latter embrace electron crystallography, rotation and precession electron diffraction, X-ray emission and high-resolution electron energy-loss spectra (EELS). Aberration-corrected (AC) transmission (TEM) and scanning transmission electron microscopy (STEM) have led to a revolution in structure determination. Environmental EM is already playing an increasing role in catalyst characterization, and new advances, involving special cells for the study of solid catalysts in contact with liquid reactants, have recently been deployed.

  8. Reflections on the value of electron microscopy in the study of heterogeneous catalysts

    PubMed Central

    2017-01-01

    Electron microscopy (EM) is arguably the single most powerful method of characterizing heterogeneous catalysts. Irrespective of whether they are bulk and multiphasic, or monophasic and monocrystalline, or nanocluster and even single-atom and on a support, their structures in atomic detail can be visualized in two or three dimensions, thanks to high-resolution instruments, with sub-Ångstrom spatial resolutions. Their topography, tomography, phase-purity, composition, as well as the bonding, and valence-states of their constituent atoms and ions and, in favourable circumstances, the short-range and long-range atomic order and dynamics of the catalytically active sites, can all be retrieved by the panoply of variants of modern EM. The latter embrace electron crystallography, rotation and precession electron diffraction, X-ray emission and high-resolution electron energy-loss spectra (EELS). Aberration-corrected (AC) transmission (TEM) and scanning transmission electron microscopy (STEM) have led to a revolution in structure determination. Environmental EM is already playing an increasing role in catalyst characterization, and new advances, involving special cells for the study of solid catalysts in contact with liquid reactants, have recently been deployed. PMID:28265196

  9. Catalytic Transfer Hydrogenation of Furfural to 2-Methylfuran and 2-Methyltetrahydrofuran over Bimetallic Copper-Palladium Catalysts.

    PubMed

    Chang, Xin; Liu, An-Feng; Cai, Bo; Luo, Jin-Yue; Pan, Hui; Huang, Yao-Bing

    2016-12-08

    The catalytic transfer hydrogenation of furfural to the fuel additives 2-methylfuran (2-MF) and 2-methyltetrahydrofuran (2-MTHF) was investigated over various bimetallic catalysts in the presence of the hydrogen donor 2-propanol. Of all the as-prepared catalysts, bimetallic Cu-Pd catalysts showed the highest catalytic activities towards the formation of 2-MF and 2-MTHF with a total yield of up to 83.9 % yield at 220 °C in 4 h. By modifying the Pd ratios in the Cu-Pd catalyst, 2-MF or 2-MTHF could be obtained selectively as the prevailing product. The other reaction conditions also had a great influence on the product distribution. Mechanistic studies by reaction monitoring and intermediate conversion revealed that the reaction proceeded mainly through the hydrogenation of furfural to furfuryl alcohol, which was followed by deoxygenation to 2-MF in parallel to deoxygenation/ring hydrogenation to 2-MTHF. Finally, the catalyst showed a high reactivity and stability in five catalyst recycling runs, which represents a significant step forward toward the catalytic transfer hydrogenation of furfural.

  10. Nanostructural and Chemical Characterization of Supported Metal Oxide Catalysts by Aberration Corrected Analytical Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Wu

    Ox with WOx. As a consequence, the catalytic activity of the co-impregnated material is dramatically increased by more than two orders of magnitude. We further showed in Chapter 5 that the Keggin structure based on phosphotungstic acid hydrate (i.e. an ˜ 1nm P-WOx mixed oxide cluster) can be successfully immobilized on an amorphous SiO2 support surface. Such catalyst design experiments further support our postulated structure-activity model, in which WO x clusters mixed with some low valence heteroatoms are the most active entities for the methanol dehydration and n-pentane isomerization reactions. Another major theme of this thesis is the analysis of model double-supported metal oxide catalysts, in which a high surface area oxide support material (amorphous SiO2) is modified by the presence of a second metal oxide surface species (TiO2 or ZrO2) added to control the distribution and activity of the active surface WOx component. These complex double-supported metal oxide catalysts represent a very significant challenge in terms of structural characterization. A new electron microscopy characterization strategy was developed for this purpose which combined aberration corrected STEM imaging with concurrent EELS and XEDS analysis. We demonstrated that the various components in a double-supported WO3/TiO 2/SiO2 catalyst system can be effectively visualized using complementary HAADF and STEM-BF imaging within an aberration corrected STEM. Furthermore, when combined with chemical analysis by STEM-EELS and XEDS within the same STEM instrument, it is possible to map out the relative spatial distribution of all the metal oxide components within the WO3/TiO2/SiO 2 catalyst. By comparing the structures of a systematic set of WO 3/TiO2/SiO2 samples displaying high, intermediate and low activity for the methanol dehydration reaction, we showed that the acidic catalytic activity seems to benefit from having (i) a more localized electron density on the TiOx support and (ii) a larger WOx

  11. Alternative ground states enable pathway switching in biological electron transfer.

    PubMed

    Abriata, Luciano A; Álvarez-Paggi, Damián; Ledesma, Gabriela N; Blackburn, Ninian J; Vila, Alejandro J; Murgida, Daniel H

    2012-10-23

    Electron transfer is the simplest chemical reaction and constitutes the basis of a large variety of biological processes, such as photosynthesis and cellular respiration. Nature has evolved specific proteins and cofactors for these functions. The mechanisms optimizing biological electron transfer have been matter of intense debate, such as the role of the protein milieu between donor and acceptor sites. Here we propose a mechanism regulating long-range electron transfer in proteins. Specifically, we report a spectroscopic, electrochemical, and theoretical study on WT and single-mutant Cu(A) redox centers from Thermus thermophilus, which shows that thermal fluctuations may populate two alternative ground-state electronic wave functions optimized for electron entry and exit, respectively, through two different and nearly perpendicular pathways. These findings suggest a unique role for alternative or "invisible" electronic ground states in directional electron transfer. Moreover, it is shown that this energy gap and, therefore, the equilibrium between ground states can be fine-tuned by minor perturbations, suggesting alternative ways through which protein-protein interactions and membrane potential may optimize and regulate electron-proton energy transduction.

  12. 14 CFR 1274.931 - Electronic funds transfer payment methods.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... processed. (c) In the event the Recipient, during the performance of this cooperative agreement, elects to... COOPERATIVE AGREEMENTS WITH COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.931 Electronic... cooperative agreement will be made by the Government by electronic funds transfer through the Treasury...

  13. Toddlers' word learning and transfer from electronic and print books.

    PubMed

    Strouse, Gabrielle A; Ganea, Patricia A

    2017-04-01

    Transfer from symbolic media to the real world can be difficult for young children. A sample of 73 toddlers aged 17 to 23months were read either an electronic book displayed on a touchscreen device or a traditional print book in which a novel object was paired with a novel label. Toddlers in both conditions learned the label within the context of the book. However, only those who read the traditional format book generalized and transferred the label to other contexts. An older group of 28 toddlers aged 24 to 30months did generalize and transfer from the electronic book. Across ages, those children who primarily used screens to watch prerecorded video at home transferred less from the electronic book than those with more diverse home media experiences.

  14. Electron transfer through rigid organic molecular wires enhanced by electronic and electron-vibration coupling.

    PubMed

    Sukegawa, Junpei; Schubert, Christina; Zhu, Xiaozhang; Tsuji, Hayato; Guldi, Dirk M; Nakamura, Eiichi

    2014-10-01

    Electron transfer (ET) is a fundamental process in a wide range of biological systems, photovoltaics and molecular electronics. Therefore to understand the relationship between molecular structure and ET properties is of prime importance. For this purpose, photoinduced ET has been studied extensively using donor-bridge-acceptor molecules, in which π-conjugated molecular wires are employed as bridges. Here, we demonstrate that carbon-bridged oligo-p-phenylenevinylene (COPV), which is both rigid and flat, shows an 840-fold increase in the ET rate compared with the equivalent flexible molecular bridges. A 120-fold rate enhancement is explained in terms of enhanced electronic coupling between the electron donor and the electron acceptor because of effective conjugation through the COPVs. The remainder of the rate enhancement is explained by inelastic electron tunnelling through COPV caused by electron-vibration coupling, unprecedented for organic molecular wires in solution at room temperature. This type of nonlinear effect demonstrates the versatility and potential practical utility of COPVs in molecular device applications.

  15. Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol over Nitrogen-Doped Carbon-Supported Iron Catalysts.

    PubMed

    Li, Jiang; Liu, Jun-Ling; Zhou, Hong-Jun; Fu, Yao

    2016-06-08

    Iron-based heterogeneous catalysts, which were generally prepared by pyrolysis of iron complexes on supports at elevated temperature, were found to be capable of catalyzing the transfer hydrogenation of furfural (FF) to furfuryl alcohol (FFA). The effects of metal precursor, nitrogen precursor, pyrolysis temperature, and support on catalytic performance were examined thoroughly, and a comprehensive study of the reaction parameters was also performed. The highest selectivity of FFA reached 83.0 % with a FF conversion of 91.6 % under the optimal reaction condition. Catalyst characterization suggested that iron cations coordinated by pyridinic nitrogen functionalities were responsible for the enhanced catalytic activity. The iron catalyst could be recycled without significant loss of catalytic activity for five runs, and the destruction of the nitrogen-iron species, the presence of crystallized Fe2 O3 phase, and the pore structure change were the main reasons for catalyst deactivation.

  16. In situ observation of water in a fuel cell catalyst using scanning electron microscopy.

    PubMed

    Ueda, Satoru; Kobayashi, Yoshio; Koizumi, Satoshi; Tsutsumi, Yasuyuki

    2015-04-01

    To visualize water in the catalyst of polymer electrolyte fuel cells (PEFCs), backscattered electron (BSE) imaging by means of scanning electron microscopy was employed. To confine a wet specimen of catalyst, an environmental wet cell was manufactured with a silicon nitride thin film (∼100 nm) as the beam window. By supplying humidified gas into the cell, a change in BSE brightness was detected in the catalyst attached to the silicon nitride window. As humidification proceeded, the BSE image became darker and returned brighter by switching to a dry gas. Monte Carlo simulations were performed to evaluate the energy and number of BSE obtained after passing through water with thickness d. Combining the results of the Monte Carlo simulation successfully converted the change in brightness to the change in thickness from d = 100 nm to d = 3 μm. This established method of evaluating water with a thickness resolution of the order of Δd = 100 nm can be applied to in situ observations of the catalyst in a PEFC during operation.

  17. Tuning the surface electronic structure of a Pt3Ti(111) electro catalyst

    NASA Astrophysics Data System (ADS)

    Paßens, M.; Caciuc, V.; Atodiresei, N.; Moors, M.; Blügel, S.; Waser, R.; Karthäuser, S.

    2016-07-01

    Increasing the efficiency and stability of bimetallic electro catalysts is particularly important for future clean energy technologies. However, the relationship between the surface termination of these alloys and their catalytic activity is poorly understood. Therefore, we report on fundamental UHV-SPM, LEED, and DFT calculations of the Pt3Ti(111) single crystal surface. Using voltage dependent imaging the surface termination of Pt3Ti(111) was studied with atomic resolution. Combining these images with simulated STM maps based on ab initio DFT calculations allowed us to identify the three upper layers of the Pt3Ti(111) single crystal and their influence upon the surface electronic structure. Our results show that small changes in the composition of the second and third atomic layer are of significant influence upon the surface electronic structure of the Pt3Ti electro catalyst. Furthermore, we provide relevant insights into the dependence of the surface termination on the preparation conditions.Increasing the efficiency and stability of bimetallic electro catalysts is particularly important for future clean energy technologies. However, the relationship between the surface termination of these alloys and their catalytic activity is poorly understood. Therefore, we report on fundamental UHV-SPM, LEED, and DFT calculations of the Pt3Ti(111) single crystal surface. Using voltage dependent imaging the surface termination of Pt3Ti(111) was studied with atomic resolution. Combining these images with simulated STM maps based on ab initio DFT calculations allowed us to identify the three upper layers of the Pt3Ti(111) single crystal and their influence upon the surface electronic structure. Our results show that small changes in the composition of the second and third atomic layer are of significant influence upon the surface electronic structure of the Pt3Ti electro catalyst. Furthermore, we provide relevant insights into the dependence of the surface termination on the

  18. Alternative ground states enable pathway switching in biological electron transfer

    PubMed Central

    Abriata, Luciano A.; Álvarez-Paggi, Damián; Ledesma, Gabriela N.; Blackburn, Ninian J.; Vila, Alejandro J.; Murgida, Daniel H.

    2012-01-01

    Electron transfer is the simplest chemical reaction and constitutes the basis of a large variety of biological processes, such as photosynthesis and cellular respiration. Nature has evolved specific proteins and cofactors for these functions. The mechanisms optimizing biological electron transfer have been matter of intense debate, such as the role of the protein milieu between donor and acceptor sites. Here we propose a mechanism regulating long-range electron transfer in proteins. Specifically, we report a spectroscopic, electrochemical, and theoretical study on WT and single-mutant CuA redox centers from Thermus thermophilus, which shows that thermal fluctuations may populate two alternative ground-state electronic wave functions optimized for electron entry and exit, respectively, through two different and nearly perpendicular pathways. These findings suggest a unique role for alternative or “invisible” electronic ground states in directional electron transfer. Moreover, it is shown that this energy gap and, therefore, the equilibrium between ground states can be fine-tuned by minor perturbations, suggesting alternative ways through which protein–protein interactions and membrane potential may optimize and regulate electron–proton energy transduction. PMID:23054836

  19. Alternative ground states enable pathway switching in biological electron transfer

    SciTech Connect

    Abriata, Luciano A.; Alvarez-Paggi, Damian; Ledesma, Gabirela N.; Blackburn, Ninian J.; Vila, Alejandro J.; Murgida, Daniel H.

    2012-10-10

    Electron transfer is the simplest chemical reaction and constitutes the basis of a large variety of biological processes, such as photosynthesis and cellular respiration. Nature has evolved specific proteins and cofactors for these functions. The mechanisms optimizing biological electron transfer have been matter of intense debate, such as the role of the protein milieu between donor and acceptor sites. Here we propose a mechanism regulating long-range electron transfer in proteins. Specifically, we report a spectroscopic, electrochemical, and theoretical study on WT and single-mutant CuA redox centers from Thermus thermophilus, which shows that thermal fluctuations may populate two alternative ground-state electronic wave functions optimized for electron entry and exit, respectively, through two different and nearly perpendicular pathways. In conclusion, these findings suggest a unique role for alternative or “invisible” electronic ground states in directional electron transfer. Moreover, it is shown that this energy gap and, therefore, the equilibrium between ground states can be fine-tuned by minor perturbations, suggesting alternative ways through which protein–protein interactions and membrane potential may optimize and regulate electron–proton energy transduction.

  20. Mimicking the electron transfer chain in photosystem II with a molecular triad thermodynamically capable of water oxidation

    PubMed Central

    Megiatto, Jackson D.; Antoniuk-Pablant, Antaeres; Sherman, Benjamin D.; Kodis, Gerdenis; Gervaldo, Miguel; Moore, Thomas A.; Moore, Ana L.; Gust, Devens

    2012-01-01

    In the photosynthetic photosystem II, electrons are transferred from the manganese-containing oxygen evolving complex (OEC) to the oxidized primary electron-donor chlorophyll P680•+ by a proton-coupled electron transfer process involving a tyrosine-histidine pair. Proton transfer from the tyrosine phenolic group to a histidine nitrogen positions the redox potential of the tyrosine between those of P680•+ and the OEC. We report the synthesis and time-resolved spectroscopic study of a molecular triad that models this electron transfer. The triad consists of a high-potential porphyrin bearing two pentafluorophenyl groups (PF10), a tetracyanoporphyrin electron acceptor (TCNP), and a benzimidazole-phenol secondary electron-donor (Bi-PhOH). Excitation of PF10 in benzonitrile is followed by singlet energy transfer to TCNP (τ = 41 ps), whose excited state decays by photoinduced electron transfer (τ = 830 ps) to yield . A second electron transfer reaction follows (τ < 12 ps), giving a final state postulated as BiH+-PhO•-PF10-TCNP•-, in which the phenolic proton now resides on benzimidazole. This final state decays with a time constant of 3.8 μs. The triad thus functionally mimics the electron transfers involving the tyrosine-histidine pair in PSII. The final charge-separated state is thermodynamically capable of water oxidation, and its long lifetime suggests the possibility of coupling systems such as this system to water oxidation catalysts for use in artificial photosynthetic fuel production. PMID:22566659

  1. Mimicking the electron transfer chain in photosystem II with a molecular triad thermodynamically capable of water oxidation.

    PubMed

    Megiatto, Jackson D; Antoniuk-Pablant, Antaeres; Sherman, Benjamin D; Kodis, Gerdenis; Gervaldo, Miguel; Moore, Thomas A; Moore, Ana L; Gust, Devens

    2012-09-25

    In the photosynthetic photosystem II, electrons are transferred from the manganese-containing oxygen evolving complex (OEC) to the oxidized primary electron-donor chlorophyll P680(•+) by a proton-coupled electron transfer process involving a tyrosine-histidine pair. Proton transfer from the tyrosine phenolic group to a histidine nitrogen positions the redox potential of the tyrosine between those of P680(•+) and the OEC. We report the synthesis and time-resolved spectroscopic study of a molecular triad that models this electron transfer. The triad consists of a high-potential porphyrin bearing two pentafluorophenyl groups (PF(10)), a tetracyanoporphyrin electron acceptor (TCNP), and a benzimidazole-phenol secondary electron-donor (Bi-PhOH). Excitation of PF(10) in benzonitrile is followed by singlet energy transfer to TCNP (τ = 41 ps), whose excited state decays by photoinduced electron transfer (τ = 830 ps) to yield Bi-PhOH-PF(10)(•+)-TCNP(•-). A second electron transfer reaction follows (τ < 12 ps), giving a final state postulated as BiH(+)-PhO(•)-PF(10)-TCNP(•-), in which the phenolic proton now resides on benzimidazole. This final state decays with a time constant of 3.8 μs. The triad thus functionally mimics the electron transfers involving the tyrosine-histidine pair in PSII. The final charge-separated state is thermodynamically capable of water oxidation, and its long lifetime suggests the possibility of coupling systems such as this system to water oxidation catalysts for use in artificial photosynthetic fuel production.

  2. Efficient asymmetric transfer hydrogenation of ketones in ethanol with chiral iridium complexes of spiroPAP ligands as catalysts.

    PubMed

    Liu, Wei-Peng; Yuan, Ming-Lei; Yang, Xiao-Hui; Li, Ke; Xie, Jian-Hua; Zhou, Qi-Lin

    2015-04-11

    Highly efficient iridium catalyzed asymmetric transfer hydrogenation of simple ketones with ethanol as a hydrogen donor has been developed. By using chiral spiro iridium catalysts (S)- a series of alkyl aryl ketones were hydrogenated to chiral alcohols with up to 98% ee.

  3. Effect of proton transfer on the electronic coupling in DNA

    NASA Astrophysics Data System (ADS)

    Rak, Janusz; Makowska, Joanna; Voityuk, Alexander A.

    2006-06-01

    The effects of single and double proton transfer within Watson-Crick base pairs on donor-acceptor electronic couplings, Vda, in DNA are studied on the bases of quantum chemical calculations. Four dimers [AT,AT], [GC,GC], [GC,AT] and [GC,TA)] are considered. Three techniques - the generalized Mulliken-Hush scheme, the fragment charge method and the diabatic states method - are employed to estimate Vda for hole transfer between base pairs. We show that both single- and double proton transfer (PT) reactions may substantially affect the electronic coupling in DNA. The electronic coupling in [AT,AT] is predicted to be most sensitive to PT. Single PT within the first base pair in the dimer leads to increase in the hole transfer efficiency by a factor of 4, while proton transfer within the second pair should substantially, by 2.7 times, decrease the rate of charge transfer. Thus, directional asymmetry of the PT effects on the electronic coupling is predicted. The changes in the Vda matrix elements correlate with the topological properties of orbitals of donor and acceptor and can be qualitatively rationalized in terms of resonance structures of donor and acceptor. Atomic pair contributions to the Vda matrix elements are also analyzed.

  4. Understanding catalyst behavior during in situ heating through simultaneous secondary and transmitted electron imaging

    NASA Astrophysics Data System (ADS)

    Howe, Jane Y.; Allard, Lawrence F.; Bigelow, Wilbur C.; Demers, Hendrix; Overbury, Steven H.

    2014-11-01

    By coupling techniques of simultaneous secondary (SE) and transmitted electron (TE) imaging at high resolution in a modern scanning transmission electron microscope (STEM), with the ability to heat specimens using a highly stable MEMS-based heating platform, we obtained synergistic information to clarify the behavior of catalysts during in situ thermal treatments. Au/iron oxide catalyst 'leached' to remove surface Au was heated to temperatures as high as 700°C. The Fe2O3 support particle structure tended to reduce to Fe3O4 and formed surface terraces; the formation, coalescence, and mobility of 1- to 2-nm particles on the terraces were characterized in SE, STEM-ADF, and TEM-BF modes. If combined with simultaneous nanoprobe spectroscopy, this approach will open the door to a new way of studying the kinetics of nano-scaled phenomena.

  5. Vectorial electron transfer in spatially ordered arrays. Progress report, August 1994--January 1997

    SciTech Connect

    Fox, M.A.

    1997-01-01

    With DOE support from August 1994 to August 1997, this project sought to identify methods for controlled placement of light absorbers, relays, and multielectron catalysts at defined sites from a fixed semiconductor or metal surface and, thus, to develop methods for preparing chemically modified photoactive surfaces as artificial photosynthetic units. These designed materials have been evaluated as efficient light collection devices and as substrates for defining the key features that govern the efficiency of long distance electron transfer and energy migration. The authors have synthesized several different families of integrated chemical systems as soluble arrays, as solid thin films, and as adsorbates on solid electrodes, seeking to establish how spatial definition deriving from covalent attachment to a helical polymer backbone, from self assembly of functionalized tethers on gold or metal oxide surfaces, and from rigid or layered block polymers can lead to controlled electron and energy transfer. The authors have also conducted physical characterization of semiconductor-containing composites active in controlled interfacial electron transfer, with charge transport in these materials having been evaluated by photophysical and electrochemical methods.

  6. Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri.

    PubMed

    Rotaru, Amelia-Elena; Shrestha, Pravin Malla; Liu, Fanghua; Markovaite, Beatrice; Chen, Shanshan; Nevin, Kelly P; Lovley, Derek R

    2014-08-01

    Direct interspecies electron transfer (DIET) is potentially an effective form of syntrophy in methanogenic communities, but little is known about the diversity of methanogens capable of DIET. The ability of Methanosarcina barkeri to participate in DIET was evaluated in coculture with Geobacter metallireducens. Cocultures formed aggregates that shared electrons via DIET during the stoichiometric conversion of ethanol to methane. Cocultures could not be initiated with a pilin-deficient G. metallireducens strain, suggesting that long-range electron transfer along pili was important for DIET. Amendments of granular activated carbon permitted the pilin-deficient G. metallireducens isolates to share electrons with M. barkeri, demonstrating that this conductive material could substitute for pili in promoting DIET. When M. barkeri was grown in coculture with the H2-producing Pelobacter carbinolicus, incapable of DIET, M. barkeri utilized H2 as an electron donor but metabolized little of the acetate that P.carbinolicus produced. This suggested that H2, but not electrons derived from DIET, inhibited acetate metabolism. P. carbinolicus-M. barkeri cocultures did not aggregate, demonstrating that, unlike DIET, close physical contact was not necessary for interspecies H2 transfer. M. barkeri is the second methanogen found to accept electrons via DIET and the first methanogen known to be capable of using either H2 or electrons derived from DIET for CO2 reduction. Furthermore, M. barkeri is genetically tractable,making it a model organism for elucidating mechanisms by which methanogens make biological electrical connections with other cells.

  7. Photoinduced electron transfer processes in homogeneous and microheterogeneous solutions

    SciTech Connect

    Whitten, D.G.

    1991-10-01

    The focus of the work described in this report is on single electron transfer reactions of excited states which culminate in the formation of stable or metastable even electron species. For the most part the studies have involved even electron organic substrates which are thus converted photochemically to odd electron species and then at some stage reconvert to even electron products. These reactions generally fall into two rather different categories. In one set of studies we have examined reactions in which the metastable reagents generated by single electron transfer quenching of an excited state undergo novel fragmentation reactions, chiefly involving C-C bond cleavage. These reactions often culminate in novel and potentially useful chemical reactions and frequently have the potential for leading to new chemical products otherwise unaffordable by conventional reaction paths. In a rather different investigation we have also studied reactions in which single electron transfer quenching of an excited state is followed by subsequent reactions which lead reversibly to metastable two electron products which, often stable in themselves, can nonetheless be reacted with each other or with other reagents to regenerate the starting materials with release of energy. 66 refs., 9 figs., 1 tab.

  8. Characterization of durable nanostructured thin film catalysts tested under transient conditions using analytical aberration-corrected electron microscopy

    SciTech Connect

    Cullen, David A; More, Karren Leslie; Reeves, Kimberly Shawn; Vernstrom, George; Atanasoska, Liliana; Haugen, Gregory; Atanasoski, Radoslav

    2011-01-01

    The stability of Ru0.1Ir0.9 oxidation evolution reaction (OER) catalysts deposited on Pt-coated nanostructured thin films (NSTFs) has been investigated by aberration-corrected electron microscopy. Accelerated stress tests showed that the OER catalysts significantly improved the durability of the Pt under cell reversal conditions. High-resolution images of the end-of-life NSTFs showed significant Ir loss from the whisker surfaces, while no Pt loss was observed, indicating that the OER catalysts had protected the catalyst coated whisker surfaces from degradation.

  9. Mapping protein electron transfer pathways with QM/MM methods

    PubMed Central

    Guallar, Victor; Wallrapp, Frank

    2008-01-01

    Mixed quantum mechanics/molecular mechanics (QM/MM) methods offer a valuable computational tool for understanding the electron transfer pathway in protein–substrate interactions and protein–protein complexes. These hybrid methods are capable of solving the Schrödinger equation on a small subset of the protein, the quantum region, describing its electronic structure under the polarization effects of the remainder of the protein. By selectively turning on and off different residues in the quantum region, we are able to obtain the electron pathway for short- and large-range interactions. Here, we summarize recent studies involving the protein–substrate interaction in cytochrome P450 camphor, ascorbate peroxidase and cytochrome c peroxidase, and propose a novel approach for the long-range protein–protein electron transfer. The results on ascorbate peroxidase and cytochrome c peroxidase reveal the importance of the propionate groups in the electron transfer pathway. The long-range protein–protein electron transfer has been studied on the cytochrome c peroxidase–cytochrome c complex. The results indicate the importance of Phe82 and Cys81 on cytochrome c, and of Asn196, Ala194, Ala176 and His175 on cytochrome c peroxidase. PMID:18445553

  10. Alternative ground states enable pathway switching in biological electron transfer

    DOE PAGES

    Abriata, Luciano A.; Alvarez-Paggi, Damian; Ledesma, Gabirela N.; ...

    2012-10-10

    Electron transfer is the simplest chemical reaction and constitutes the basis of a large variety of biological processes, such as photosynthesis and cellular respiration. Nature has evolved specific proteins and cofactors for these functions. The mechanisms optimizing biological electron transfer have been matter of intense debate, such as the role of the protein milieu between donor and acceptor sites. Here we propose a mechanism regulating long-range electron transfer in proteins. Specifically, we report a spectroscopic, electrochemical, and theoretical study on WT and single-mutant CuA redox centers from Thermus thermophilus, which shows that thermal fluctuations may populate two alternative ground-state electronicmore » wave functions optimized for electron entry and exit, respectively, through two different and nearly perpendicular pathways. In conclusion, these findings suggest a unique role for alternative or “invisible” electronic ground states in directional electron transfer. Moreover, it is shown that this energy gap and, therefore, the equilibrium between ground states can be fine-tuned by minor perturbations, suggesting alternative ways through which protein–protein interactions and membrane potential may optimize and regulate electron–proton energy transduction.« less

  11. Nanoantioxidant-driven plasmon enhanced proton-coupled electron transfer

    NASA Astrophysics Data System (ADS)

    Sotiriou, Georgios A.; Blattmann, Christoph O.; Deligiannakis, Yiannis

    2015-12-01

    Proton-coupled electron transfer (PCET) reactions involve the transfer of a proton and an electron and play an important role in a number of chemical and biological processes. Here, we describe a novel phenomenon, plasmon-enhanced PCET, which is manifested using SiO2-coated Ag nanoparticles functionalized with gallic acid (GA), a natural antioxidant molecule that can perform PCET. These GA-functionalized nanoparticles show enhanced plasmonic response at near-IR wavelengths, due to particle agglomeration caused by the GA molecules. Near-IR laser irradiation induces strong local hot-spots on the SiO2-coated Ag nanoparticles, as evidenced by surface enhanced Raman scattering (SERS). This leads to plasmon energy transfer to the grafted GA molecules that lowers the GA-OH bond dissociation enthalpy by at least 2 kcal mol-1 and therefore facilitates PCET. The nanoparticle-driven plasmon-enhancement of PCET brings together the so far unrelated research domains of nanoplasmonics and electron/proton translocation with significant impact on applications based on interfacial electron/proton transfer.Proton-coupled electron transfer (PCET) reactions involve the transfer of a proton and an electron and play an important role in a number of chemical and biological processes. Here, we describe a novel phenomenon, plasmon-enhanced PCET, which is manifested using SiO2-coated Ag nanoparticles functionalized with gallic acid (GA), a natural antioxidant molecule that can perform PCET. These GA-functionalized nanoparticles show enhanced plasmonic response at near-IR wavelengths, due to particle agglomeration caused by the GA molecules. Near-IR laser irradiation induces strong local hot-spots on the SiO2-coated Ag nanoparticles, as evidenced by surface enhanced Raman scattering (SERS). This leads to plasmon energy transfer to the grafted GA molecules that lowers the GA-OH bond dissociation enthalpy by at least 2 kcal mol-1 and therefore facilitates PCET. The nanoparticle-driven plasmon

  12. Condensed phase electron transfer beyond the Condon approximation

    NASA Astrophysics Data System (ADS)

    Mavros, Michael G.; Hait, Diptarka; Van Voorhis, Troy

    2016-12-01

    Condensed phase electron transfer problems are often simplified by making the Condon approximation: the approximation that the coupling connecting two charge-transfer diabatic states is a constant. Unfortunately, the Condon approximation does not predict the existence of conical intersections, which are ubiquitous in both gas-phase and condensed-phase photochemical dynamics. In this paper, we develop a formalism to treat condensed-phase dynamics beyond the Condon approximation. We show that even for an extremely simple test system, hexaaquairon(ii)/hexaaquairon(iii) self-exchange in water, the electronic coupling is expected to fluctuate rapidly and non-Condon effects must be considered to obtain quantitatively accurate ultrafast nonequilibrium dynamics. As diabatic couplings are expected to fluctuate substantially in many condensed-phase electron transfer systems, non-Condon effects may be essential to quantitatively capture accurate short-time dynamics.

  13. Photo-induced electron-transfer reactions in heterogeneous media

    NASA Astrophysics Data System (ADS)

    Yang, J. M.

    1981-11-01

    The conversion of solar energy into chemical energy was pursued by two approaches. One is the photo-induced electron transfer reactions in heterogeneous media, and the other is the photo-decomposition of water with liquid-junction solar cells. Photo-induced electron-transfer reactions in heterogeneous media with colloidal silica or poly-acrylate were studied by flash photolysis. In an effort to illustrate that small band-gap semiconductors can be protected from photo-corrosion through surface modification, the surface of polycrystalline ZnO was chemically coated with zinc phthalocyanine and the electron-transfer process across the coated ZnO-electrolyte interface was studied by photo-electrochemical techniques.

  14. Electron transfer statistics and thermal fluctuations in molecular junctions

    SciTech Connect

    Goswami, Himangshu Prabal; Harbola, Upendra

    2015-02-28

    We derive analytical expressions for probability distribution function (PDF) for electron transport in a simple model of quantum junction in presence of thermal fluctuations. Our approach is based on the large deviation theory combined with the generating function method. For large number of electrons transferred, the PDF is found to decay exponentially in the tails with different rates due to applied bias. This asymmetry in the PDF is related to the fluctuation theorem. Statistics of fluctuations are analyzed in terms of the Fano factor. Thermal fluctuations play a quantitative role in determining the statistics of electron transfer; they tend to suppress the average current while enhancing the fluctuations in particle transfer. This gives rise to both bunching and antibunching phenomena as determined by the Fano factor. The thermal fluctuations and shot noise compete with each other and determine the net (effective) statistics of particle transfer. Exact analytical expression is obtained for delay time distribution. The optimal values of the delay time between successive electron transfers can be lowered below the corresponding shot noise values by tuning the thermal effects.

  15. Theory of electron transfer and molecular state in DNA

    NASA Astrophysics Data System (ADS)

    Endres, Robert Gunter

    2002-09-01

    In this thesis, a mechanism for long-range electron transfer in DNA and a systematic search for high conductance DNA are developed. DNA is well known for containing the genetic code of all living species. On the other hand, there are some experimental indications that DNA can mediate effectively long-range electron transfer leading to the concept of chemistry at a distance. This can be important for DNA damage and healing. In the first part of the thesis, a possible mechanism for long-range electron transfer is introduced. The weak distance dependent electron transfer was experimentally observed using transition metal intercalators for donor and acceptor. In our model calculations, the transfer is mediated by the molecular analogue of a Kondo bound state well known from solid state physics of mixed-valence rare-earth compounds. We believe this is quite realistic, since localized d orbitals of the transition metal ions could function as an Anderson impurity embedded in a reservoir of rather delocalized molecular orbitals of the intercalator ligands and DNA pi orbitals. The effective Anderson model is solved with a physically intuitive variational ansatz as well as with the essentially exact DMRG method. The electronic transition matrix element, which is important because it contains the donor-acceptor distance dependence, is obtained with the Mulliken-Hush algorithm as well as from Born-Oppenheimer potential energy surfaces. Our possible explanation of long-range electron transfer is put in context to other more conventional mechanisms which also could lead to similar behavior. Another important issue of DNA is its possible use for nano-technology. Although DNA's mechanical properties are excellent, the question whether it can be conducting and be used for nano-wires is highly controversial. Experimentally, DNA shows conducting, semi-conducting and insulating properties. Motivated by these wide ranging experimental results on the conductivity of DNA, we have

  16. Well-defined iron complexes as efficient catalysts for "green" atom-transfer radical polymerization of styrene, methyl methacrylate, and butyl acrylate with low catalyst loadings and catalyst recycling.

    PubMed

    Nakanishi, So-Ichiro; Kawamura, Mitsunobu; Kai, Hidetomo; Jin, Ren-Hua; Sunada, Yusuke; Nagashima, Hideo

    2014-05-05

    Environmentally friendly iron(II) catalysts for atom-transfer radical polymerization (ATRP) were synthesized by careful selection of the nitrogen substituents of N,N,N-trialkylated-1,4,9-triazacyclononane (R3 TACN) ligands. Two types of structures were confirmed by crystallography: "[(R3 TACN)FeX2 ]" complexes with relatively small R groups have ionic and dinuclear structures including a [(R3 TACN)Fe(μ-X)3 Fe(R3 TACN)](+) moiety, whereas those with more bulky R groups are neutral and mononuclear. The twelve [(R3 TACN)FeX2 ]n complexes that were synthesized were subjected to bulk ATRP of styrene, methyl methacrylate (MMA), and butyl acrylate (BA). Among the iron complexes examined, [{(cyclopentyl)3 TACN}FeBr2 ] (4 b) was the best catalyst for the well-controlled ATRP of all three monomers. This species allowed easy catalyst separation and recycling, a lowering of the catalyst concentration needed for the reaction, and the absence of additional reducing reagents. The lowest catalyst loading was accomplished in the ATRP of MMA with 4 b (59 ppm of Fe based on the charged monomer). Catalyst recycling in ATRP with low catalyst loadings was also successful. The ATRP of styrene with 4 b (117 ppm Fe atom) was followed by precipitation from methanol to give polystyrene that contained residual iron below the calculated detection limit (0.28 ppm). Mechanisms that involve equilibria between the multinuclear and mononuclear species were also examined.

  17. 45 CFR 162.1601 - Health care electronic funds transfers (EFT) and remittance advice transaction.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 1 2013-10-01 2013-10-01 false Health care electronic funds transfers (EFT) and... Electronic Funds Transfers (EFT) and Remittance Advice § 162.1601 Health care electronic funds transfers (EFT) and remittance advice transaction. The health care electronic funds transfers (EFT) and...

  18. 45 CFR 162.1601 - Health care electronic funds transfers (EFT) and remittance advice transaction.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 1 2012-10-01 2012-10-01 false Health care electronic funds transfers (EFT) and... Electronic Funds Transfers (EFT) and Remittance Advice § 162.1601 Health care electronic funds transfers (EFT) and remittance advice transaction. The health care electronic funds transfers (EFT) and...

  19. 45 CFR 162.1601 - Health care electronic funds transfers (EFT) and remittance advice transaction.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 1 2014-10-01 2014-10-01 false Health care electronic funds transfers (EFT) and... Electronic Funds Transfers (EFT) and Remittance Advice § 162.1601 Health care electronic funds transfers (EFT) and remittance advice transaction. The health care electronic funds transfers (EFT) and...

  20. Charge transfer to ground-state ions produces free electrons

    NASA Astrophysics Data System (ADS)

    You, D.; Fukuzawa, H.; Sakakibara, Y.; Takanashi, T.; Ito, Y.; Maliyar, G. G.; Motomura, K.; Nagaya, K.; Nishiyama, T.; Asa, K.; Sato, Y.; Saito, N.; Oura, M.; Schöffler, M.; Kastirke, G.; Hergenhahn, U.; Stumpf, V.; Gokhberg, K.; Kuleff, A. I.; Cederbaum, L. S.; Ueda, K.

    2017-01-01

    Inner-shell ionization of an isolated atom typically leads to Auger decay. In an environment, for example, a liquid or a van der Waals bonded system, this process will be modified, and becomes part of a complex cascade of relaxation steps. Understanding these steps is important, as they determine the production of slow electrons and singly charged radicals, the most abundant products in radiation chemistry. In this communication, we present experimental evidence for a so-far unobserved, but potentially very important step in such relaxation cascades: Multiply charged ionic states after Auger decay may partially be neutralized by electron transfer, simultaneously evoking the creation of a low-energy free electron (electron transfer-mediated decay). This process is effective even after Auger decay into the dicationic ground state. In our experiment, we observe the decay of Ne2+ produced after Ne 1s photoionization in Ne-Kr mixed clusters.

  1. Charge transfer to ground-state ions produces free electrons

    PubMed Central

    You, D.; Fukuzawa, H.; Sakakibara, Y.; Takanashi, T.; Ito, Y.; Maliyar, G. G.; Motomura, K.; Nagaya, K.; Nishiyama, T.; Asa, K.; Sato, Y.; Saito, N.; Oura, M.; Schöffler, M.; Kastirke, G.; Hergenhahn, U.; Stumpf, V.; Gokhberg, K.; Kuleff, A. I.; Cederbaum, L. S.; Ueda, K

    2017-01-01

    Inner-shell ionization of an isolated atom typically leads to Auger decay. In an environment, for example, a liquid or a van der Waals bonded system, this process will be modified, and becomes part of a complex cascade of relaxation steps. Understanding these steps is important, as they determine the production of slow electrons and singly charged radicals, the most abundant products in radiation chemistry. In this communication, we present experimental evidence for a so-far unobserved, but potentially very important step in such relaxation cascades: Multiply charged ionic states after Auger decay may partially be neutralized by electron transfer, simultaneously evoking the creation of a low-energy free electron (electron transfer-mediated decay). This process is effective even after Auger decay into the dicationic ground state. In our experiment, we observe the decay of Ne2+ produced after Ne 1s photoionization in Ne–Kr mixed clusters. PMID:28134238

  2. Improving the efficiency of water splitting in dye-sensitized solar cells by using a biomimetic electron transfer mediator.

    PubMed

    Zhao, Yixin; Swierk, John R; Megiatto, Jackson D; Sherman, Benjamin; Youngblood, W Justin; Qin, Dongdong; Lentz, Deanna M; Moore, Ana L; Moore, Thomas A; Gust, Devens; Mallouk, Thomas E

    2012-09-25

    Photoelectrochemical water splitting directly converts solar energy to chemical energy stored in hydrogen, a high energy density fuel. Although water splitting using semiconductor photoelectrodes has been studied for more than 40 years, it has only recently been demonstrated using dye-sensitized electrodes. The quantum yield for water splitting in these dye-based systems has, so far, been very low because the charge recombination reaction is faster than the catalytic four-electron oxidation of water to oxygen. We show here that the quantum yield is more than doubled by incorporating an electron transfer mediator that is mimetic of the tyrosine-histidine mediator in Photosystem II. The mediator molecule is covalently bound to the water oxidation catalyst, a colloidal iridium oxide particle, and is coadsorbed onto a porous titanium dioxide electrode with a Ruthenium polypyridyl sensitizer. As in the natural photosynthetic system, this molecule mediates electron transfer between a relatively slow metal oxide catalyst that oxidizes water on the millisecond timescale and a dye molecule that is oxidized in a fast light-induced electron transfer reaction. The presence of the mediator molecule in the system results in photoelectrochemical water splitting with an internal quantum efficiency of approximately 2.3% using blue light.

  3. Accumulative electron transfer: multiple charge separation in artificial photosynthesis.

    PubMed

    Karlsson, Susanne; Boixel, Julien; Pellegrin, Yann; Blart, Errol; Becker, Hans-Christian; Odobel, Fabrice; Hammarström, Leif

    2012-01-01

    To achieve artificial photosynthesis it is necessary to couple the single-electron event of photoinduced charge separation with the multi-electron reactions of fuel formation and water splitting. Therefore, several rounds of light-induced charge separation are required to accumulate enough redox equivalents at the catalytic sites for the target chemistry to occur, without any sacrificial donors or acceptors other than the catalytic substrates. Herein, we discuss the challenges of such accumulative electron transfer in molecular systems. We present a series of closely related systems base on a Ru(II)-polypyridine photosensitizer with appended triaryl-amine or oligo-triaryl-amine donors, linked to nanoporous TiO2 as the acceptor. One of the systems, based on dye 4, shows efficient accumulative electron transfer in high overall yield resulting in the formation of a two-electron charge-separated state upon successive excitation by two photons. In contrast, the other systems do not show accumulative electron transfer because of different competing reactions. This illustrates the difficulties in designing successful systems for this still largely unexplored type of reaction scheme.

  4. Electronic Coupling Dependence of Ultrafast Interfacial Electron Transfer on Nanocrystalline Thin Films and Single Crystal

    SciTech Connect

    Lian, Tianquan

    2014-04-22

    The long-term goal of the proposed research is to understand electron transfer dynamics in nanoparticle/liquid interface. This knowledge is essential to many semiconductor nanoparticle based devices, including photocatalytic waste degradation and dye sensitized solar cells.

  5. Driving electrocatalytic activity by interface electronic structure control in a metalloprotein hybrid catalyst for efficient hydrogen evolution.

    PubMed

    Behera, Sushant Kumar; Deb, Pritam; Ghosh, Arghya

    2016-08-17

    The rational design of metalloprotein hybrid structures and precise calculations for understanding the role of the interfacial electronic structure in regulating the HER activity of water splitting sites and their microscopic effect for obtaining robust hydrogen evolution possess great promise for developing highly efficient nano-bio hybrid HER catalysts. Here, we employ high-accuracy linear-scaling density functional theory calculations using a near-complete basis set and a minimal parameter implicit solvent model within the self-consistent calculations, on silver (Ag) ions assimilated on bacteriorhodopsin (bR) at specific binding sites. Geometry optimization indicates the formation of active sites at the interface of the metalloprotein complex and the density of states reflects the metallic nature of the active sites. The reduced value of the canonical orbital gap indicates the state of dynamic nature after Ag ion assimilation on active sites and smooth electron transfer. These incorporated active protein sites are more efficient in electrolytic splitting of water than pristine sites due to their low value of Gibbs free energy for the HER in terms of hydrogen coverages. Volcano plot analysis and the free energy diagram are compared for understanding the hydrogen evolution efficiency. Moreover, the essential role of the interfacial electronic properties in regulating the HER catalytic activity of water splitting sites and enhancing the efficiency is elucidated.

  6. Tryptophan-to-heme electron transfer in ferrous myoglobins

    PubMed Central

    Monni, Roberto; Al Haddad, André; van Mourik, Frank; Auböck, Gerald; Chergui, Majed

    2015-01-01

    It was recently demonstrated that in ferric myoglobins (Mb) the fluorescence quenching of the photoexcited tryptophan 14 (*Trp14) residue is in part due to an electron transfer to the heme porphyrin (porph), turning it to the ferrous state. However, the invariance of *Trp decay times in ferric and ferrous Mbs raises the question as to whether electron transfer may also be operative in the latter. Using UV pump/visible probe transient absorption, we show that this is indeed the case for deoxy-Mb. We observe that the reduction generates (with a yield of about 30%) a low-valence Fe–porphyrin π [FeII(porph●−)] -anion radical, which we observe for the first time to our knowledge under physiological conditions. We suggest that the pathway for the electron transfer proceeds via the leucine 69 (Leu69) and valine 68 (Val68) residues. The results on ferric Mbs and the present ones highlight the generality of Trp–porphyrin electron transfer in heme proteins. PMID:25902517

  7. Quantum ergodicity breaking in semi-classical electron transfer dynamics.

    PubMed

    Goychuk, Igor

    2017-01-25

    Can the statistical properties of single-electron transfer events be correctly predicted within a common equilibrium ensemble description? This fundamental in nanoworld question of ergodic behavior is scrutinized within a very basic semi-classical curve-crossing problem. It is shown that in the limit of non-adiabatic electron transfer (weak tunneling) well-described by the Marcus-Levich-Dogonadze (MLD) rate the answer is yes. However, in the limit of the so-called solvent-controlled adiabatic electron transfer, a profound breaking of ergodicity occurs. Namely, a common description based on the ensemble reduced density matrix with an initial equilibrium distribution of the reaction coordinate is not able to reproduce the statistics of single-trajectory events in this seemingly classical regime. For sufficiently large activation barriers, the ensemble survival probability in a state remains nearly exponential with the inverse rate given by the sum of the adiabatic curve crossing (Kramers) time and the inverse MLD rate. In contrast, near to the adiabatic regime, the single-electron survival probability is clearly non-exponential, even though it possesses an exponential tail which agrees well with the ensemble description. Initially, it is well described by a Mittag-Leffler distribution with a fractional rate. Paradoxically, the mean transfer time in this classical on the ensemble level regime is well described by the inverse of the nonadiabatic quantum tunneling rate on a single particle level. An analytical theory is developed which perfectly agrees with stochastic simulations and explains our findings.

  8. 48 CFR 18.124 - Electronic funds transfer.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Electronic funds transfer. 18.124 Section 18.124 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACTING METHODS AND CONTRACT TYPES EMERGENCY ACQUISITIONS Available Acquisition Flexibilities...

  9. 48 CFR 18.123 - Electronic funds transfer.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Electronic funds transfer. 18.123 Section 18.123 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACTING METHODS AND CONTRACT TYPES EMERGENCY ACQUISITIONS Available Acquisition Flexibilities...

  10. 48 CFR 18.124 - Electronic funds transfer.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Electronic funds transfer. 18.124 Section 18.124 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACTING METHODS AND CONTRACT TYPES EMERGENCY ACQUISITIONS Available Acquisition Flexibilities...

  11. 48 CFR 18.124 - Electronic funds transfer.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Electronic funds transfer. 18.124 Section 18.124 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACTING METHODS AND CONTRACT TYPES EMERGENCY ACQUISITIONS Available Acquisition Flexibilities...

  12. 48 CFR 18.124 - Electronic funds transfer.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Electronic funds transfer. 18.124 Section 18.124 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACTING METHODS AND CONTRACT TYPES EMERGENCY ACQUISITIONS Available Acquisition Flexibilities...

  13. Tryptophan-to-heme electron transfer in ferrous myoglobins.

    PubMed

    Monni, Roberto; Al Haddad, André; van Mourik, Frank; Auböck, Gerald; Chergui, Majed

    2015-05-05

    It was recently demonstrated that in ferric myoglobins (Mb) the fluorescence quenching of the photoexcited tryptophan 14 (*Trp(14)) residue is in part due to an electron transfer to the heme porphyrin (porph), turning it to the ferrous state. However, the invariance of *Trp decay times in ferric and ferrous Mbs raises the question as to whether electron transfer may also be operative in the latter. Using UV pump/visible probe transient absorption, we show that this is indeed the case for deoxy-Mb. We observe that the reduction generates (with a yield of about 30%) a low-valence Fe-porphyrin π [Fe(II)(porph(●-))] -anion radical, which we observe for the first time to our knowledge under physiological conditions. We suggest that the pathway for the electron transfer proceeds via the leucine 69 (Leu(69)) and valine 68 (Val(68)) residues. The results on ferric Mbs and the present ones highlight the generality of Trp-porphyrin electron transfer in heme proteins.

  14. 75 FR 51707 - Electronic Funds Transfer of Depository Taxes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ..., 40, and 301 [REG-153340-09] RIN 1545-BJ13 Electronic Funds Transfer of Depository Taxes AGENCY... hearing. SUMMARY: This document contains proposed regulations relating to Federal tax deposits (FTDs) by...). SUPPLEMENTARY INFORMATION: Background This document contains proposed amendments to the Income Tax...

  15. A molecularly based theory for electron transfer reorganization energy.

    PubMed

    Zhuang, Bilin; Wang, Zhen-Gang

    2015-12-14

    Using field-theoretic techniques, we develop a molecularly based dipolar self-consistent-field theory (DSCFT) for charge solvation in pure solvents under equilibrium and nonequilibrium conditions and apply it to the reorganization energy of electron transfer reactions. The DSCFT uses a set of molecular parameters, such as the solvent molecule's permanent dipole moment and polarizability, thus avoiding approximations that are inherent in treating the solvent as a linear dielectric medium. A simple, analytical expression for the free energy is obtained in terms of the equilibrium and nonequilibrium electrostatic potential profiles and electric susceptibilities, which are obtained by solving a set of self-consistent equations. With no adjustable parameters, the DSCFT predicts activation energies and reorganization energies in good agreement with previous experiments and calculations for the electron transfer between metallic ions. Because the DSCFT is able to describe the properties of the solvent in the immediate vicinity of the charges, it is unnecessary to distinguish between the inner-sphere and outer-sphere solvent molecules in the calculation of the reorganization energy as in previous work. Furthermore, examining the nonequilibrium free energy surfaces of electron transfer, we find that the nonequilibrium free energy is well approximated by a double parabola for self-exchange reactions, but the curvature of the nonequilibrium free energy surface depends on the charges of the electron-transferring species, contrary to the prediction by the linear dielectric theory.

  16. A molecularly based theory for electron transfer reorganization energy

    SciTech Connect

    Zhuang, Bilin; Wang, Zhen-Gang

    2015-12-14

    Using field-theoretic techniques, we develop a molecularly based dipolar self-consistent-field theory (DSCFT) for charge solvation in pure solvents under equilibrium and nonequilibrium conditions and apply it to the reorganization energy of electron transfer reactions. The DSCFT uses a set of molecular parameters, such as the solvent molecule’s permanent dipole moment and polarizability, thus avoiding approximations that are inherent in treating the solvent as a linear dielectric medium. A simple, analytical expression for the free energy is obtained in terms of the equilibrium and nonequilibrium electrostatic potential profiles and electric susceptibilities, which are obtained by solving a set of self-consistent equations. With no adjustable parameters, the DSCFT predicts activation energies and reorganization energies in good agreement with previous experiments and calculations for the electron transfer between metallic ions. Because the DSCFT is able to describe the properties of the solvent in the immediate vicinity of the charges, it is unnecessary to distinguish between the inner-sphere and outer-sphere solvent molecules in the calculation of the reorganization energy as in previous work. Furthermore, examining the nonequilibrium free energy surfaces of electron transfer, we find that the nonequilibrium free energy is well approximated by a double parabola for self-exchange reactions, but the curvature of the nonequilibrium free energy surface depends on the charges of the electron-transferring species, contrary to the prediction by the linear dielectric theory.

  17. 77 FR 30923 - Electronic Fund Transfers (Regulation E)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-24

    ... Part 1005 [Docket No. CFPB-2012-0019] RIN 3170-AA22 Electronic Fund Transfers (Regulation E) AGENCY... interested in learning more about this product, including its costs, benefits, and risks to consumers. The Bureau intends to issue a proposal to extend the Regulation E protections to GPR cards. Your comments,...

  18. Correlating electronic and vibrational motions in charge transfer systems

    SciTech Connect

    Khalil, Munira

    2014-06-27

    The goal of this research program was to measure coupled electronic and nuclear motions during photoinduced charge transfer processes in transition metal complexes by developing and using novel femtosecond spectroscopies. The scientific highlights and the resulting scientific publications from the DOE supported work are outlined in the technical report.

  19. 77 FR 77187 - Electronic Fund Transfers (Regulation E)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-31

    ... From the Federal Register Online via the Government Publishing Office ] Vol. 77 Monday, No. 250 December 31, 2012 Part II Bureau of Consumer Financial Protection 12 CFR Part 1005 Electronic Fund Transfers (Regulation E); Proposed Rule #0;#0;Federal Register / Vol. 77 , No. 250 / Monday, December...

  20. Shewanella secretes flavins that mediate extracellular electron transfer

    PubMed Central

    Marsili, Enrico; Baron, Daniel B.; Shikhare, Indraneel D.; Coursolle, Dan; Gralnick, Jeffrey A.; Bond, Daniel R.

    2008-01-01

    Bacteria able to transfer electrons to metals are key agents in biogeochemical metal cycling, subsurface bioremediation, and corrosion processes. More recently, these bacteria have gained attention as the transfer of electrons from the cell surface to conductive materials can be used in multiple applications. In this work, we adapted electrochemical techniques to probe intact biofilms of Shewanella oneidensis MR-1 and Shewanella sp. MR-4 grown by using a poised electrode as an electron acceptor. This approach detected redox-active molecules within biofilms, which were involved in electron transfer to the electrode. A combination of methods identified a mixture of riboflavin and riboflavin-5′-phosphate in supernatants from biofilm reactors, with riboflavin representing the dominant component during sustained incubations (>72 h). Removal of riboflavin from biofilms reduced the rate of electron transfer to electrodes by >70%, consistent with a role as a soluble redox shuttle carrying electrons from the cell surface to external acceptors. Differential pulse voltammetry and cyclic voltammetry revealed a layer of flavins adsorbed to electrodes, even after soluble components were removed, especially in older biofilms. Riboflavin adsorbed quickly to other surfaces of geochemical interest, such as Fe(III) and Mn(IV) oxy(hydr)oxides. This in situ demonstration of flavin production, and sequestration at surfaces, requires the paradigm of soluble redox shuttles in geochemistry to be adjusted to include binding and modification of surfaces. Moreover, the known ability of isoalloxazine rings to act as metal chelators, along with their electron shuttling capacity, suggests that extracellular respiration of minerals by Shewanella is more complex than originally conceived. PMID:18316736

  1. Theory of ultrafast heterogeneous electron transfer: Contributions of direct charge transfer excitations to the absorbance

    SciTech Connect

    Wang, Luxia; Willig, Frank; May, Volkhard

    2007-04-07

    Absorption spectra related to heterogeneous electron transfer are analyzed with the focus on direct charge transfer transition from the surface attached molecule into the semiconductor band states. The computations are based on a model of reduced dimensionality with a single intramolecular vibrational coordinate but a complete account for the continuum of conduction band states. The applicability of this model to perylene on TiO{sub 2} has been demonstrated in a series of earlier papers. Here, based on a time-dependent formulation, the absorbance is calculated with the inclusion of charge transfer excitations. A broad parameter set inspired by the perylene TiO{sub 2} systems is considered. In particular, the description generalizes the Fano effect to heterogeneous electron transfer reactions. Preliminary simulations of measured spectra are presented for perylene-catechol attached to TiO{sub 2}.

  2. Ultrafast Intramolecular Electron and Proton Transfer in Bis(imino)isoindole Derivatives.

    PubMed

    Driscoll, Eric; Sorenson, Shayne; Dawlaty, Jahan M

    2015-06-04

    Concerted motion of electrons and protons in the excited state is pertinent to a wide range of chemical phenomena, including those relevant for solar-to-fuel light harvesting. The excited state dynamics of small proton-bearing molecules are expected to serve as models for better understanding such phenomena. In particular, for designing the next generation of multielectron and multiproton redox catalysts, understanding the dynamics of more than one proton in the excited state is important. Toward this goal, we have measured the ultrafast dynamics of intramolecular excited state proton transfer in a recently synthesized dye with two equivalent transferable protons. We have used a visible ultrafast pump to initiate the proton transfer in the excited state, and have probed the transient absorption of the molecule over a wide bandwidth in the visible range. The measurement shows that the signal which is characteristic of proton transfer emerges within ∼710 fs. To identify whether both protons were transferred in the excited state, we have measured the ultrafast dynamics of a related derivative, where only a single proton was available for transfer. The measured proton transfer time in that molecule was ∼427 fs. The observed dynamics in both cases were reasonably fit with single exponentials. Supported by the ultrafast observations, steady-state fluorescence, and preliminary computations of the relaxed excited states, we argue that the doubly protonated derivative most likely transfers only one of its two protons in the excited state. We have performed calculations of the frontier molecular orbitals in the Franck-Condon region. The calculations show that in both derivatives, the excitation is primarily from the HOMO to LUMO causing a large rearrangement of the electronic charge density immediately after photoexcitation. In particular, charge density is shifted away from the phenolic protons and toward the proton acceptor nitrogens. The proton transfer is

  3. Protein dynamics modulated electron transfer kinetics in early stage photosynthesis

    NASA Astrophysics Data System (ADS)

    Kundu, Prasanta; Dua, Arti

    2013-01-01

    A recent experiment has probed the electron transfer kinetics in the early stage of photosynthesis in Rhodobacter sphaeroides for the reaction center of wild type and different mutants [Science 316, 747 (2007)]. By monitoring the changes in the transient absorption of the donor-acceptor pair at 280 and 930 nm, both of which show non-exponential temporal decay, the experiment has provided a strong evidence that the initial electron transfer kinetics is modulated by the dynamics of protein backbone. In this work, we present a model where the electron transfer kinetics of the donor-acceptor pair is described along the reaction coordinate associated with the distance fluctuations in a protein backbone. The stochastic evolution of the reaction coordinate is described in terms of a non-Markovian generalized Langevin equation with a memory kernel and Gaussian colored noise, both of which are completely described in terms of the microscopics of the protein normal modes. This model provides excellent fits to the transient absorption signals at 280 and 930 nm associated with protein distance fluctuations and protein dynamics modulated electron transfer reaction, respectively. In contrast to previous models, the present work explains the microscopic origins of the non-exponential decay of the transient absorption curve at 280 nm in terms of multiple time scales of relaxation of the protein normal modes. Dynamic disorder in the reaction pathway due to protein conformational fluctuations which occur on time scales slower than or comparable to the electron transfer kinetics explains the microscopic origin of the non-exponential nature of the transient absorption decay at 930 nm. The theoretical estimates for the relative driving force for five different mutants are in close agreement with the experimental estimates obtained using electrochemical measurements.

  4. A unified diabatic description for electron transfer reactions, isomerization reactions, proton transfer reactions, and aromaticity.

    PubMed

    Reimers, Jeffrey R; McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S

    2015-10-14

    While diabatic approaches are ubiquitous for the understanding of electron-transfer reactions and have been mooted as being of general relevance, alternate applications have not been able to unify the same wide range of observed spectroscopic and kinetic properties. The cause of this is identified as the fundamentally different orbital configurations involved: charge-transfer phenomena involve typically either 1 or 3 electrons in two orbitals whereas most reactions are typically closed shell. As a result, two vibrationally coupled electronic states depict charge-transfer scenarios whereas three coupled states arise for closed-shell reactions of non-degenerate molecules and seven states for the reactions implicated in the aromaticity of benzene. Previous diabatic treatments of closed-shell processes have considered only two arbitrarily chosen states as being critical, mapping these states to those for electron transfer. We show that such effective two-state diabatic models are feasible but involve renormalized electronic coupling and vibrational coupling parameters, with this renormalization being property dependent. With this caveat, diabatic models are shown to provide excellent descriptions of the spectroscopy and kinetics of the ammonia inversion reaction, proton transfer in N2H7(+), and aromaticity in benzene. This allows for the development of a single simple theory that can semi-quantitatively describe all of these chemical phenomena, as well as of course electron-transfer reactions. It forms a basis for understanding many technologically relevant aspects of chemical reactions, condensed-matter physics, chemical quantum entanglement, nanotechnology, and natural or artificial solar energy capture and conversion.

  5. The Role of Resonant Vibrations in Electronic Energy Transfer

    PubMed Central

    Somsen, Oscar J. G.; Novoderezhkin, Vladimir I.; Mančal, Tomáš; van Grondelle, Rienk

    2016-01-01

    Abstract Nuclear vibrations play a prominent role in the spectroscopy and dynamics of electronic systems. As recent experimental and theoretical studies suggest, this may be even more so when vibrational frequencies are resonant with transitions between the electronic states. Herein, a vibronic multilevel Redfield model is reported for excitonically coupled electronic two‐level systems with a few explicitly included vibrational modes and interacting with a phonon bath. With numerical simulations the effects of the quantized vibrations on the dynamics of energy transfer and coherence in a model dimer are illustrated. The resonance between the vibrational frequency and energy gap between the sites leads to a large delocalization of vibronic states, which then results in faster energy transfer and longer‐lived mixed coherences. PMID:26910485

  6. Syntrophic growth via quinone-mediated interspecies electron transfer

    PubMed Central

    Smith, Jessica A.; Nevin, Kelly P.; Lovley, Derek R.

    2015-01-01

    The mechanisms by which microbial species exchange electrons are of interest because interspecies electron transfer can expand the metabolic capabilities of microbial communities. Previous studies with the humic substance analog anthraquinone-2,6-disulfonate (AQDS) suggested that quinone-mediated interspecies electron transfer (QUIET) is feasible, but it was not determined if sufficient energy is available from QUIET to support the growth of both species. Furthermore, there have been no previous studies on the mechanisms for the oxidation of anthrahydroquinone-2,6-disulfonate (AHQDS). A co-culture of Geobacter metallireducens and G. sulfurreducens metabolized ethanol with the reduction of fumarate much faster in the presence of AQDS, and there was an increase in cell protein. G. sulfurreducens was more abundant, consistent with G. sulfurreducens obtaining electrons from acetate that G. metallireducens produced from ethanol, as well as from AHQDS. Co-cultures initiated with a citrate synthase-deficient strain of G. sulfurreducens that was unable to use acetate as an electron donor also metabolized ethanol with the reduction of fumarate and cell growth, but acetate accumulated over time. G. sulfurreducens and G. metallireducens were equally abundant in these co-cultures reflecting the inability of the citrate synthase-deficient strain of G. sulfurreducens to metabolize acetate. Evaluation of the mechanisms by which G. sulfurreducens accepts electrons from AHQDS demonstrated that a strain deficient in outer-surface c-type cytochromes that are required for AQDS reduction was as effective at QUIET as the wild-type strain. Deletion of additional genes previously implicated in extracellular electron transfer also had no impact on QUIET. These results demonstrate that QUIET can yield sufficient energy to support the growth of both syntrophic partners, but that the mechanisms by which electrons are derived from extracellular hydroquinones require further investigation. PMID

  7. Photoinitiated electron transfer in multichromophoric species: Synthetic tetrads and pentads. Technical progress report, 1989

    SciTech Connect

    Not Available

    1989-04-12

    This research project involves the design, synthesis and study of molecules which mimic many of the important aspects of photosynthetic electron and energy transfer. Specifically, the molecules are designed to mimic the following aspects of natural photosynthetic multistep electron transfer: electron donation from a tetrapyrrole excited singlet state, electron transfer between tetrapyrroles, electron transfer from tetrapyrroles to quinones, and electron transfer between quinones with different redox properties. In addition, they model carotenoid antenna function in photosynthesis (singlet-singlet energy transfer from carotenoid polyenes to chlorophyll) and carotenoid photoprotection from singlet oxygen damage (triplet-triplet energy transfer from chlorophyll to carotenoids).

  8. Photoinitiated electron transfer in multi-chromophoric species: Synthetic tetrads and pentads

    SciTech Connect

    Not Available

    1990-02-14

    This research project involves the design, synthesis and study of the molecules which mimic many of the important aspects of photosynthetic electron and energy transfer. Specifically, the molecules are designed to mimic the following aspects of natural photosynthetic multistep electron transfer: electron donation from a tetrapyrrole excited singlet state, electron transfer between tetrapyrroles, electron transfer from tetrapyrroles to quinones, and electron transfer between quinones with different redox properties. In addition, they model carotenoid antenna function in photosynthesis (singlet-singlet energy transfer from carotenoid polyenes to chlorophyll) and carotenoid photoprotection from singlet oxygen damage (triplet-triplet energy transfer from chlorophyll to carotenoids).

  9. Precision synthesis of poly(3-hexylthiophene) from catalyst-transfer Suzuki-Miyaura coupling polymerization.

    PubMed

    Yokozawa, Tsutomu; Suzuki, Ryosuke; Nojima, Masataka; Ohta, Yoshihiro; Yokoyama, Akihiro

    2011-06-01

    (t)Bu(3) PPd(Ph)Br (1)-catalyzed Suzuki-Miyaura coupling polymerization of 2-(4-hexyl-5-iodo-2-thienyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2) was investigated. Monomer 2 was polymerized with 1 at 0 °C in the presence of CsF and 18-crown-6 in THF containing a small amount of water to yield P3HT with a narrow molecular weight distribution and almost perfect head-to-tail regioregularity. The M(n) values increased up to 11,400 g · mol(-1) in proportion to the feed ratio of 2 to 1. The MALDI-TOF mass spectra showed that P3HT with moderate molecular weight uniformly had a phenyl group at one end and a hydrogen atom at the other, indicating involvement of a catalyst-transfer mechanism. Successive 1-catalyzed polymerization of fluorene monomer 3 and then 2 yielded a well-defined block copolymer of polyfluorene and P3HT.

  10. Hydrolytic enantioselective protonation of cyclic dienyl esters and a β-diketone with chiral phase-transfer catalysts.

    PubMed

    Yamamoto, Eiji; Gokuden, Daichi; Nagai, Ayano; Kamachi, Takashi; Yoshizawa, Kazunari; Hamasaki, Akiyuki; Ishida, Tamao; Tokunaga, Makoto

    2012-12-21

    Hydrolytic enantioselective protonation of dienyl esters and a β-diketone catalyzed by phase-transfer catalysts are described. The latter reaction is the first example of an enantio-convergent retro-Claisen condensation. Corresponding various optically active α,β-unsaturated ketones having tertiary chiral centers adjacent to carbonyl groups were obtained in good to excellent yields and enantiomeric ratios (83-99%, up to 97.5:2.5 er).

  11. Long-range electron transfer in a model for DNA

    NASA Astrophysics Data System (ADS)

    Endres, R. G.; Cox, D. L.

    2001-03-01

    Long-range electron transfer (ET) between well separated donor (D) and acceptor (A) sites through quantum mechanical tunneling is essential to many biological processes like respiration, photosynthesis and possibly DNA repair and damage. We are investigating the distance dependence of the electronic transition matrix element H_DA and hence of the electron transfer rate in a model for DNA. Fluorescence quenching in DNA at D-A distances of 40 Åand more suggests ET with an unusually high decay length β-1 of order 10 Å (S.O.Kelley and J.K.Barton, in:Metal Ions in Biological Systems), A.Sigel and H.Sigel, Eds., Marcel Dekker, New York, Vol.36, 1999. Assuming strong electron interactions on the D complex and suitable energetics, this could be explained by formation of a many electron Kondo boundstate. We obtain H_DA from the splitting between the two lowest adiabatic electronic eigenenergies, which constitute the potential energy surfaces (PES) of the nuclear motion in lowest order Born-Oppenheimer approximation. The PES are constructed by coupling D and A to local breathing modes and by making a semi-analytical variational ansatz for the adiabatic eigenstates. The results from the PES are compared with results from the Mulliken-Hush algorithm.

  12. Rotational And Rovibrational Energy Transfer In Electron Collisions With Molecules

    NASA Technical Reports Server (NTRS)

    Thuemmel, Helmar T.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Air flows around a hypervelocity reentry vehicle undergo dissociation, rovibrational excitation and ionization. More specifically the air, initially 80% N2 and 20% O2, in the shock layer consists of species such as N, O, N2, O2, NO, N+, O+, N+, O+, NO+ and 2 free electrons. It was pointed out in multi temperature models'' that the temperature of the rotational energy modes and the gas-kinetic translational temperature are quickly equilibrated by a few collisions and rise rapidly to high temperatures as 50000K before falling off to equilibrium value of 10000K. Contrary, the electronic and vibrational temperatures state energy distributions remain low (less than 15000K) because of the slow equilibration. Electron vibrational energy transfer is thought to play a crucial role in such a ionizing flow regime since chemical reaction rates and dissociation depend strongly on the vibrational temperatures. Modeling of these flowfields in principle require the rovibrational excitation and de-excitation cross section data for average electron energies from threshold up to several eV (leV=11605.4 K). In this lecture we focus on theoretical description of rotational effects i.e. energy transfer of electrons to molecules such that the molecular rotational (vojo goes to voj) or vibrational and rotational (v(sub 0)j(sub 0) goes to vj) states are changed. Excitation and de-excitation of electronic states was discussed in a previous talk at this conference.

  13. Fundamental research on convective heat transfer in electronic cooling technology

    NASA Astrophysics Data System (ADS)

    Ma, C. F.; Gan, Y. P.; Tian, Y. Q.; Lei, D. H.

    1992-03-01

    During the past six years comprehensive research programs have been conducted at the Beijing Polytechnic University to provide a better understanding of heat transfer characteristics of existing and condidate cooling techniques for electronic and microelectronic devices. This paper provides a review and summary of the programs with emphasis on direct liquid cooling. Included in this review are the heat transfer investigations related to the following cooling modes: liquid free, mixed and forced convection, liquid jet impingement, flowing liquid film cooling, pool boiling, spray cooling, foreign gas jet impingement in liquid pool, and forced convection air-cooling.

  14. Electron Transfer Mechanisms of DNA Repair by Photolyase

    NASA Astrophysics Data System (ADS)

    Zhong, Dongping

    2015-04-01

    Photolyase is a flavin photoenzyme that repairs two DNA base damage products induced by ultraviolet (UV) light: cyclobutane pyrimidine dimers and 6-4 photoproducts. With femtosecond spectroscopy and site-directed mutagenesis, investigators have recently made significant advances in our understanding of UV-damaged DNA repair, and the entire enzymatic dynamics can now be mapped out in real time. For dimer repair, six elementary steps have been characterized, including three electron transfer reactions and two bond-breaking processes, and their reaction times have been determined. A unique electron-tunneling pathway was identified, and the critical residues in modulating the repair function at the active site were determined. The dynamic synergy between the elementary reactions for maintaining high repair efficiency was elucidated, and the biological nature of the flavin active state was uncovered. For 6-4 photoproduct repair, a proton-coupled electron transfer repair mechanism has been revealed. The elucidation of electron transfer mechanisms and two repair photocycles is significant and provides a molecular basis for future practical applications, such as in rational drug design for curing skin cancer.

  15. Vibrationally Assisted Electron Transfer Mechanism of Olfaction: Myth or Reality?

    PubMed Central

    Solov’yov, Ilia A.; Chang, Po-Yao; Schulten, Klaus

    2012-01-01

    Smell is a vital sense for animals. The mainstream explanation of smell is based on recognition of the odorant molecules through characteristics of their surface, e.g., shape, but certain experiments suggest that such recognition is complemented by recognition of vibrational modes. According to this suggestion an olfactory receptor is activated by electron transfer assisted through odorant vibrational excitation. The hundreds to thousands of different olfactory receptors in an animal recognize odorants over a discriminant landscape with surface properties and vibrational frequencies as the two major dimensions. In the present paper we introduce the vibrationally assisted mechanism of olfaction and demonstrate for several odorants that, indeed, a strong enhancement of an electron tunneling rate due to odorant vibrations can arise. We discuss in this regard the influence of odorant deuteration and explain, thereby, recent experiments performed on Drosophila melanogaster. Our demonstration is based on known physical properties of biological electron transfer and on ab initio calculations on odorants carried out for the purpose of the present study. We identify a range of physical characteristics which olfactory receptors and odorants must obey for the vibrationally assisted electron transfer mechanism to function. We argue that the stated characteristics are feasible for realistic olfactory receptors, noting, though, that the receptor structure presently is still unknown, but can be studied through homology modeling. PMID:22899100

  16. Alternating electron and proton transfer steps in photosynthetic water oxidation.

    PubMed

    Klauss, André; Haumann, Michael; Dau, Holger

    2012-10-02

    Water oxidation by cyanobacteria, algae, and plants is pivotal in oxygenic photosynthesis, the process that powers life on Earth, and is the paradigm for engineering solar fuel-production systems. Each complete reaction cycle of photosynthetic water oxidation requires the removal of four electrons and four protons from the catalytic site, a manganese-calcium complex and its protein environment in photosystem II. In time-resolved photothermal beam deflection experiments, we monitored apparent volume changes of the photosystem II protein associated with charge creation by light-induced electron transfer (contraction) and charge-compensating proton relocation (expansion). Two previously invisible proton removal steps were detected, thereby filling two gaps in the basic reaction-cycle model of photosynthetic water oxidation. In the S(2) → S(3) transition of the classical S-state cycle, an intermediate is formed by deprotonation clearly before electron transfer to the oxidant (Y Z OX). The rate-determining elementary step (τ, approximately 30 µs at 20 °C) in the long-distance proton relocation toward the protein-water interface is characterized by a high activation energy (E(a) = 0.46 ± 0.05 eV) and strong H/D kinetic isotope effect (approximately 6). The characteristics of a proton transfer step during the S(0) → S(1) transition are similar (τ, approximately 100 µs; E(a) = 0.34 ± 0.08 eV; kinetic isotope effect, approximately 3); however, the proton removal from the Mn complex proceeds after electron transfer to . By discovery of the transient formation of two further intermediate states in the reaction cycle of photosynthetic water oxidation, a temporal sequence of strictly alternating removal of electrons and protons from the catalytic site is established.

  17. A polaron model for electron transfer in globular proteins.

    PubMed

    Chuev, G N; Lakhno, V D

    1993-07-07

    Polaron models have been considered for the electron states in protein globules existing in a solvent. These models account for two fundamental effects, viz, polarization interaction of an electron with the conformational vibrations and the heterogeneity of the medium. Equations have been derived to determine the electron state in a protein globule. The parameters of this state show that it is an extended state with an energy of 2 eV. The electron transfer rate for cyt C self-exchange reaction has been calculated in the polaron model. Reorganization energy, tunneling matrix element and the rate constant have also been estimated. The results are compared with experimental data. The influence of model parameters on the significance of the data obtained has been studied. The potentialities of the model are discussed.

  18. Electron-Nuclear Spin Transfer in Triple Quantum Dot Networks

    NASA Astrophysics Data System (ADS)

    Prada, Marta; Toonen, Ryan; Harrison, Paul

    2005-03-01

    We investigate the conductance spectra of coupled quantum dots to study systematically the nuclear spin relaxation of delta- and y-junction networks and observe spin blockade dependence on the electronic configurations. We derive the conductance using the Beenakker approach generalised to an array of quantum dots where we consider the nuclear spin transfer to electrons by hyperfine coupling. This allows us to predict the relevant memory effects on the different electronic states by studying the evolution of the single electron resonances in presence of nuclear spin relaxation. We find that the gradual depolarisation of the nuclear system is imprinted in the conductance spectra of the multidot system. Our calculations of the temporal evolution of the conductance resonance reveal that spin blockade can be lifted by hyperfine coupling.

  19. Electron nuclear spin transfer in quantum-dot networks

    NASA Astrophysics Data System (ADS)

    Prada, M.; Toonen, R. C.; Blick, R. H.; Harrison, P.

    2005-05-01

    We investigate the conductance spectra of coupled quantum dots to study systematically the nuclear spin relaxation of different geometries of a two-dimensional network of quantum dots and observe spin blockade dependence on the electronic configurations. We derive the conductance using the Beenakker approach generalized to an array of quantum dots where we consider the nuclear spin transfer to electrons by hyperfine coupling. This allows us to predict the relevant memory effects on the different electronic states by studying the evolution of the single electron resonances in the presence of nuclear spin relaxation. We find that the gradual depolarization of the nuclear system is imprinted in the conductance spectra of the multidot system. Our calculations of the temporal evolution of the conductance resonance reveal that spin blockade can be lifted by hyperfine coupling.

  20. Effects of G-Quadruplex Topology on Electronic Transfer Integrals

    PubMed Central

    Sun, Wenming; Varsano, Daniele; Di Felice, Rosa

    2016-01-01

    G-quadruplex is a quadruple helical form of nucleic acids that can appear in guanine-rich parts of the genome. The basic unit is the G-tetrad, a planar assembly of four guanines connected by eight hydrogen bonds. Its rich topology and its possible relevance as a drug target for a number of diseases have stimulated several structural studies. The superior stiffness and electronic π-π overlap between consecutive G-tetrads suggest exploitation for nanotechnologies. Here we inspect the intimate link between the structure and the electronic properties, with focus on charge transfer parameters. We show that the electronic couplings between stacked G-tetrads strongly depend on the three-dimensional atomic structure. Furthermore, we reveal a remarkable correlation with the topology: a topology characterized by the absence of syn-anti G-G sequences can better support electronic charge transfer. On the other hand, there is no obvious correlation of the electronic coupling with usual descriptors of the helix shape. We establish a procedure to maximize the correlation with a global helix shape descriptor. PMID:28335314

  1. Distance dependence in photo-induced intramolecular electron transfer

    NASA Astrophysics Data System (ADS)

    Larsson, Sven; Volosov, Andrey

    1986-09-01

    The distance dependence of the rate of photo-induced electron transfer reactions is studied. A quantum mechanical method CNDO/S is applied to a series of molecules recently investigated by Hush et al. experimentally. The calculations show a large interaction through the saturated bridge which connects the two chromophores. The electronic matrix element HAB decreases a factor 10 in about 4 Å. There is also a decrease of the rate due to less exothermicity for the longer molecule. The results are in fair agreement with the experimental results.

  2. Solvent reorganizational red-edge effect in intramolecular electron transfer.

    PubMed Central

    Demchenko, A P; Sytnik, A I

    1991-01-01

    Polar solvents are characterized by statistical distributions of solute-solvent interaction energies that result in inhomogeneous broadening of the solute electronic spectra. This allows photoselection of the high interaction energy part of the distribution by excitation at the red (long-wavelength) edge of the absorption bands. We observe that intramolecular electron transfer in the bianthryl molecule from the locally excited (LE) to the charge-transfer (CT) state, which requires solvent relaxation and does not occur in vitrified polar solutions, is dramatically facilitated in low-temperature propylene glycol glass by the red-edge excitation. This allows one to obtain spectroscopically the pure CT form and observe its dependence upon the relaxational properties of the solvent. A qualitative potential model of this effect is presented. PMID:11607224

  3. Aza-heterocyclic Receptors for Direct Electron Transfer Hemoglobin Biosensor.

    PubMed

    Kumar, Vinay; Kashyap, D M Nikhila; Hebbar, Suraj; Swetha, R; Prasad, Sujay; Kamala, T; Srikanta, S S; Krishnaswamy, P R; Bhat, Navakanta

    2017-02-07

    Direct Electron Transfer biosensors, facilitating direct communication between the biomolecule of interest and electrode surface, are preferable compared to enzymatic and mediator based sensors. Although hemoglobin (Hb) contains four redox active iron centres, direct detection is not possible due to inaccessibility of iron centres and formation of dimers, blocking electron transfer. Through the coordination of iron with aza-heterocyclic receptors - pyridine and imidazole - we report a cost effective, highly sensitive and simple electrochemical Hb sensor using cyclic voltammetry and chronoamperometry. The receptor can be either in the form of liquid micro-droplet mixed with blood or dry chemistry embedded in paper membrane on top of screen printed carbon electrodes. We demonstrate excellent linearity and robustness against interference using clinical samples. A truly point of care technology is demonstrated by integrating disposable test strips with handheld reader, enabling finger prick to result in less than a minute.

  4. DNA Intercalated Psoralen Undergoes Efficient Photoinduced Electron Transfer.

    PubMed

    Fröbel, Sascha; Reiffers, Anna; Torres Ziegenbein, Christian; Gilch, Peter

    2015-04-02

    The interaction of psoralens with DNA has been used for therapeutic and research purposes for decades. Still the photoinduced behavior of psoralens in DNA has never been observed directly. Femtosecond transient absorption spectroscopy is used here to gain direct insight into the photophysics of a DNA-intercalated psoralen (4'-aminomethyl-4,5',8-trimethyl-psoralen (AMT)). Intercalation reduces the excited singlet lifetime of AMT to 4 ps compared with 1400 ps for AMT in water. This singlet quenching prohibits the population of the triplet state that is accessed in free AMT. Instead, a DNA to AMT electron transfer takes place. The resulting radical pair decays primarily via charge recombination with a time constant of 30 ps. The efficient electron transfer observed here reveals a completely new aspect of the psoralen-DNA interaction.

  5. Ligand reorganization and activation energies in nonadiabatic electron transfer reactions

    NASA Astrophysics Data System (ADS)

    Zhu, Jianjun; Wang, Jianji; Stell, George

    2006-10-01

    The activation energy and ligand reorganization energy for nonadiabatic electron transfer reactions in chemical and biological systems are investigated in this paper. The free energy surfaces and the activation energy are derived exactly in the general case in which the ligand vibration frequencies are not equal. The activation energy is derived by free energy minimization at the transition state. Our formulation leads to the Marcus-Hush [J. Chem. Phys. 24, 979 (1956); 98, 7170 (1994); 28, 962 (1958)] results in the equal-frequency limit and also generalizes the Marcus-Sumi [J. Chem. Phys. 84, 4894 (1986)] model in the context of studying the solvent dynamic effect on electron transfer reactions. It is found that when the ligand vibration frequencies are different, the activation energy derived from the Marcus-Hush formula deviates by 5%-10% from the exact value. If the reduced reorganization energy approximation is introduced in the Marcus-Hush formula, the result is almost exact.

  6. Aza-heterocyclic Receptors for Direct Electron Transfer Hemoglobin Biosensor

    NASA Astrophysics Data System (ADS)

    Kumar, Vinay; Kashyap, D. M. Nikhila; Hebbar, Suraj; Swetha, R.; Prasad, Sujay; Kamala, T.; Srikanta, S. S.; Krishnaswamy, P. R.; Bhat, Navakanta

    2017-02-01

    Direct Electron Transfer biosensors, facilitating direct communication between the biomolecule of interest and electrode surface, are preferable compared to enzymatic and mediator based sensors. Although hemoglobin (Hb) contains four redox active iron centres, direct detection is not possible due to inaccessibility of iron centres and formation of dimers, blocking electron transfer. Through the coordination of iron with aza-heterocyclic receptors - pyridine and imidazole - we report a cost effective, highly sensitive and simple electrochemical Hb sensor using cyclic voltammetry and chronoamperometry. The receptor can be either in the form of liquid micro-droplet mixed with blood or dry chemistry embedded in paper membrane on top of screen printed carbon electrodes. We demonstrate excellent linearity and robustness against interference using clinical samples. A truly point of care technology is demonstrated by integrating disposable test strips with handheld reader, enabling finger prick to result in less than a minute.

  7. Aza-heterocyclic Receptors for Direct Electron Transfer Hemoglobin Biosensor

    PubMed Central

    Kumar, Vinay; Kashyap, D. M. Nikhila; Hebbar, Suraj; Swetha, R.; Prasad, Sujay; Kamala, T.; Srikanta, S. S.; Krishnaswamy, P. R.; Bhat, Navakanta

    2017-01-01

    Direct Electron Transfer biosensors, facilitating direct communication between the biomolecule of interest and electrode surface, are preferable compared to enzymatic and mediator based sensors. Although hemoglobin (Hb) contains four redox active iron centres, direct detection is not possible due to inaccessibility of iron centres and formation of dimers, blocking electron transfer. Through the coordination of iron with aza-heterocyclic receptors - pyridine and imidazole - we report a cost effective, highly sensitive and simple electrochemical Hb sensor using cyclic voltammetry and chronoamperometry. The receptor can be either in the form of liquid micro-droplet mixed with blood or dry chemistry embedded in paper membrane on top of screen printed carbon electrodes. We demonstrate excellent linearity and robustness against interference using clinical samples. A truly point of care technology is demonstrated by integrating disposable test strips with handheld reader, enabling finger prick to result in less than a minute. PMID:28169325

  8. Steam reforming of n-hexane on pellet and monolithic catalyst beds. A comparative study on improvements due to heat transfer

    NASA Astrophysics Data System (ADS)

    1981-10-01

    Monolithic catalysts with higher available active surface areas and better thermal conductivity than conventional pellets beds, making possible the steam reforming of fuels heavier than naphtha, were examined. Performance comparisons were made between conventional pellet beds and honeycomb monolith catalysts using n-hexane as the fuel. Metal-supported monoliths were examined. These offer higher structural stability and higher thermal conductivity than ceramic supports. Data from two metal monoliths of different nickel catalyst loadings were compared to pellets under the same operating conditions. Improved heat transfer and better conversion efficiencies were obtained with the monolith having higher catalyst loading. Surface-gas interaction was observed throughout the length of the monoliths.

  9. Steam reforming of n-hexane on pellet and monolithic catalyst beds. A comparative study on improvements due to heat transfer

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Monolithic catalysts with higher available active surface areas and better thermal conductivity than conventional pellets beds, making possible the steam reforming of fuels heavier than naphtha, were examined. Performance comparisons were made between conventional pellet beds and honeycomb monolith catalysts using n-hexane as the fuel. Metal-supported monoliths were examined. These offer higher structural stability and higher thermal conductivity than ceramic supports. Data from two metal monoliths of different nickel catalyst loadings were compared to pellets under the same operating conditions. Improved heat transfer and better conversion efficiencies were obtained with the monolith having higher catalyst loading. Surface-gas interaction was observed throughout the length of the monoliths.

  10. Intermittent Single-Molecule Interfacial Electron Transfer Dynamics

    SciTech Connect

    Biju, Vasudevan P.; Micic, Miodrag; Hu, Dehong; Lu, H. Peter

    2004-08-04

    We report on single molecule studies of photosensitized interfacial electron transfer (ET) processes in Coumarin 343 (C343)-TiO2 nanoparticle (NP) and Cresyl Violet (CV+)-TiO2 NP systems, using time-correlated single photon counting coupled with scanning confocal fluorescence microscopy. Fluorescence intensity trajectories of individual dye molecules adsorbed on a semiconductor NP surface showed fluorescence fluctuations and blinking, with time constrants distributed from sub-milliseconds to several seconds.

  11. Insights into Proton-Coupled Electron Transfer from Computation

    NASA Astrophysics Data System (ADS)

    Provorse, Makenzie R.

    Proton-coupled electron transfer (PCET) is utilized throughout Nature to facilitate essential biological processes, such as photosynthesis, cellular respiration, and DNA replication and repair. The general approach to studying PCET processes is based on a two-dimensional More O'Ferrall-Jencks diagram in which electron transfer (ET) and proton transfer (PT) occur in a sequential or concerted fashion. Experimentally, it is difficult to discern the contributing factors of concerted PCET mechanisms. Several theoretical approaches have arisen to qualitatively and quantitatively investigate these reactions. Here, we present a multistate density functional theory (MSDFT) method to efficiently and accurately model PCET mechanisms. The MSDFT method is validated against experimental and computational data previously reported on an isoelectronic series of small molecule self-exchange hydrogen atom transfer reactions and a model complex specifically designed to study long-range ET through a hydrogen-bonded salt-bridge interface. Further application of this method to the hydrogen atom abstraction of ascorbate by a nitroxyl radical demonstrates the sensitivity of the thermodynamic and kinetic properties to solvent effects. In particular, the origin of the unusual kinetic isotope effect is investigated. Lastly, the MSDFT is employed in a combined quantum mechanical/molecular mechanical (QM/MM) approach to explicitly model PCET in condensed phases.

  12. Electron Spectroscopy In Heavy-Ion Storage Rings: Resonant and Non-Resonant Electron Transfer Processes

    SciTech Connect

    Hagmann, S.; Stoehlker, Th.; Trotsenko, S.; Kozhuharov, Ch.; Spillmann, U.; Bosch, F.; Liesen, D.; Winters, D.; Hillenbrand, P.-M.; Shabaev, V.; Tupitsyn, I.; Kozhedub, Y.; Rothard, H.; Reuschl, R.; Ullrich, J.; Moshammer, R.; Voitkiv, A.; Surzhykov, A.; Fischer, D.; Doerner, R.

    2011-06-01

    Whereas our understanding of total cross sections for ionization and capture processes in ion-atom collisions is widely viewed as having arrived at a state of adequate maturity, the same cannot be said at all about the dynamics of collisions, multi-electron processes or the electron continua (in target and projectile) which are at the origin of total cross sections. We depict how these processes can be studied favourably in storage ring environments. We present examples of resonant and non-resonant electron transfer processes, radiative and non-radiative. This is elucidated via the relation of the electron nucleus bremsstrahlung at the high energy tip of the bremsstrahlung spectrum to the radiative electron capture cusp (RECC) and a new approach to determining molecular orbital binding energies in superheavy quasi-molecules in resonant KK charge transfer.

  13. The electron transfer system of syntrophically grown Desulfovibrio vulgaris.

    PubMed

    Walker, Christopher B; He, Zhili; Yang, Zamin K; Ringbauer, Joseph A; He, Qiang; Zhou, Jizhong; Voordouw, Gerrit; Wall, Judy D; Arkin, Adam P; Hazen, Terry C; Stolyar, Sergey; Stahl, David A

    2009-09-01

    Interspecies hydrogen transfer between organisms producing and consuming hydrogen promotes the decomposition of organic matter in most anoxic environments. Although syntrophic coupling between hydrogen producers and consumers is a major feature of the carbon cycle, mechanisms for energy recovery at the extremely low free energies of reactions typical of these anaerobic communities have not been established. In this study, comparative transcriptional analysis of a model sulfate-reducing microbe, Desulfovibrio vulgaris Hildenborough, suggested the use of alternative electron transfer systems dependent on growth modality. During syntrophic growth on lactate with a hydrogenotrophic methanogen, numerous genes involved in electron transfer and energy generation were upregulated in D. vulgaris compared with their expression in sulfate-limited monocultures. In particular, genes coding for the putative membrane-bound Coo hydrogenase, two periplasmic hydrogenases (Hyd and Hyn), and the well-characterized high-molecular-weight cytochrome (Hmc) were among the most highly expressed and upregulated genes. Additionally, a predicted operon containing genes involved in lactate transport and oxidation exhibited upregulation, further suggesting an alternative pathway for electrons derived from lactate oxidation during syntrophic growth. Mutations in a subset of genes coding for Coo, Hmc, Hyd, and Hyn impaired or severely limited syntrophic growth but had little effect on growth via sulfate respiration. These results demonstrate that syntrophic growth and sulfate respiration use largely independent energy generation pathways and imply that to understand microbial processes that sustain nutrient cycling, lifestyles not captured in pure culture must be considered.

  14. The Electron Transfer System of Syntrophically Grown Desulfovibrio vulgaris

    SciTech Connect

    PBD; ENIGMA; GTL; VIMSS; Walker, Christopher B.; He, Zhili; Yang, Zamin K.; Ringbauer Jr., Joseph A.; He, Qiang; Zhou, Jizhong; Voordouw, Gerrit; Wall, Judy D.; Arkin, Adam P.; Hazen, Terry C.; Stolyar, Sergey; Stahl, David A.

    2009-06-22

    Interspecies hydrogen transfer between organisms producing and consuming hydrogen promotes the decomposition of organic matter in most anoxic environments. Although syntrophic couplings between hydrogen producers and consumers are a major feature of the carbon cycle, mechanisms for energy recovery at the extremely low free energies of reactions typical of these anaerobic communities have not been established. In this study, comparative transcriptional analysis of a model sulfate-reducing microbe, Desulfovibrio vulgaris Hildenborough, suggested the use of alternative electron transfer systems dependent upon growth modality. During syntrophic growth on lactate with a hydrogenotrophic methanogen, D. vulgaris up-regulated numerous genes involved in electron transfer and energy generation when compared with sulfate-limited monocultures. In particular, genes coding for the putative membrane-bound Coo hydrogenase, two periplasmic hydrogenases (Hyd and Hyn) and the well-characterized high-molecular weight cytochrome (Hmc) were among the most highly expressed and up-regulated. Additionally, a predicted operon coding for genes involved in lactate transport and oxidation exhibited up-regulation, further suggesting an alternative pathway for electrons derived from lactate oxidation during syntrophic growth. Mutations in a subset of genes coding for Coo, Hmc, Hyd and Hyn impaired or severely limited syntrophic growth but had little affect on growth via sulfate-respiration. These results demonstrate that syntrophic growth and sulfate-respiration use largely independent energy generation pathways and imply that understanding of microbial processes sustaining nutrient cycling must consider lifestyles not captured in pure culture.

  15. The electron transfer system of synthrophically grown desulfovibrio vulgaris

    SciTech Connect

    Walker, Christopher; He, Zhili; Yang, Zamin Koo; Ringbauer, Joseph; HE, Qiang; Zhou, Jizhong; Voordouw, Gerrit; Wall, Judy; Arkin, Adam; Hazen, Terry; Stolyar, Sergey; Stahl, David

    2009-01-01

    Interspecies hydrogen transfer between organisms producing and consuming hydrogen promotes the decomposition of organic matter in most anoxic environments. Although syntrophic coupling between hydrogen producers and consumers is a major feature of the carbon cycle, mechanisms for energy recovery at the extremely low free energies of reactions typical of these anaerobic communities have not been established. In this study, comparative transcriptional analysis of a model sulfate-reducing microbe, Desulfovibrio vulgaris Hildenborough, suggested the use of alternative electron transfer systems dependent on growth modality. During syntrophic growth on lactate with a hydrogenotrophic methanogen, numerous genes involved in electron transfer and energy generation were upregulated in D. vulgaris compared with their expression in sulfate-limited monocultures. In particular, genes coding for the putative membrane-bound Coo hydrogenase, two periplasmic hydrogenases (Hyd and Hyn), and the well-characterized high-molecular-weight cytochrome (Hmc) were among the most highly expressed and upregulated genes. Additionally, a predicted operon containing genes involved in lactate transport and oxidation exhibited upregulation, further suggesting an alternative pathway for electrons derived from lactate oxidation during syntrophic growth. Mutations in a subset of genes coding for Coo, Hmc, Hyd, and Hyn impaired or severely limited syntrophic growth but had little effect on growth via sulfate respiration. These results demonstrate that syntrophic growth and sulfate respiration use largely independent energy generation pathways and imply that to understand microbial processes that sustain nutrient cycling, lifestyles not captured in pure culture must be considered.

  16. The electron transfer system of syntrophically grown Desulfovibrio vulgaris

    SciTech Connect

    Walker, C.B.; He, Z.; Yang, Z.K.; Ringbauer, Jr., J.A.; He, Q.; Zhou, J.; Voordouw, G.; Wall, J.D.; Arkin, A.P.; Hazen, T.C.; Stolyar, S.; Stahl, D.A.

    2009-05-01

    Interspecies hydrogen transfer between organisms producing and consuming hydrogen promotes the decomposition of organic matter in most anoxic environments. Although syntrophic couplings between hydrogen producers and consumers are a major feature of the carbon cycle, mechanisms for energy recovery at the extremely low free energies of reactions typical of these anaerobic communities have not been established. In this study, comparative transcriptional analysis of a model sulfate-reducing microbe, Desulfovibrio vulgaris Hildenborough, suggested the use of alternative electron transfer systems dependent upon growth modality. During syntrophic growth on lactate with a hydrogenotrophic methanogen, D. vulgaris up-regulated numerous genes involved in electron transfer and energy generation when compared with sulfate-limited monocultures. In particular, genes coding for the putative membrane-bound Coo hydrogenase, two periplasmic hydrogenases (Hyd and Hyn) and the well-characterized high-molecular weight cytochrome (Hmc) were among the most highly expressed and up-regulated. Additionally, a predicted operon coding for genes involved in lactate transport and oxidation exhibited up-regulation, further suggesting an alternative pathway for electrons derived from lactate oxidation during syntrophic growth. Mutations in a subset of genes coding for Coo, Hmc, Hyd and Hyn impaired or severely limited syntrophic growth but had little affect on growth via sulfate-respiration. These results demonstrate that syntrophic growth and sulfate-respiration use largely independent energy generation pathways and imply that understanding of microbial processes sustaining nutrient cycling must consider lifestyles not captured in pure culture.

  17. Synthesis and characterization of novel antibacterial polymers and clay delivery systems and polymeric phase transfer catalysts

    NASA Astrophysics Data System (ADS)

    Dizman, Bekir

    The research presented in this dissertation involves the syntheses of both novel antibacterial polymers and nanocomposites and polymeric phase transfer catalysts. The first section describes the synthesis, characterization, and antibacterial activities of new acrylate/methacrylate and acrylamide/methacrylamide polymers containing pendant quaternary ammonium compounds and norfloxacin. The first part of this section focuses on the syntheses and antibacterial activities of new water-soluble bis-quaternary ammonium methacrylate monomers and polymers (Chapter II). The monomers and polymers showed antibacterial activities against Staphylococcus aureus and Escherichia coli and the activity increased as the alkyl chain length in ammonium groups increased from 4 to 6 carbons. The results are very encouraging since polymers with quaternary ammonium compounds containing short alkyl chains are generally not active against bacteria. The second part of the first section involves the syntheses and antibacterial activities of various new monomers and polymers with amine and mono-quaternary ammonium groups on the side chain (Chapter III). The monomers were either the derivatives of 3-(acryloyloxy)-2-hydroxypropyl methacrylate (AHM) or based on acrylamide and methacrylamide derivatives. All monomers were homopolymerized and copolymerized with 2-hydroxyethylmethacrylate (HEMA). Amine monomers, their homopolymers and copolymers did not show any antibacterial activity against S. aureus and E. coli while the quaternized AHM-3-(aminomethyl) pyridine monomer, its homopolymer and copolymer with HEMA showed antibacterial activities against both bacteria. It was also found that the antibacterial activity of the quaternized methacrylamide-3-(aminomethyl) pyridine monomers and polymers increased as the alkyl chain length in ammonium groups increased. (Abstract shortened by UMI.)

  18. First-Principles Calculations of Electron Transfer in Organic Molecules

    NASA Astrophysics Data System (ADS)

    Pati, Ranjit; Karna, Shashi P.

    2000-03-01

    Suitably tailored organic structures are considered potential candidates as components in molecular electronic devices. A common molecular architecture for electronics consists of an electron donor (D) and an electron acceptor (A) moiety bonded together by a chemically inert bridging moiety, called spacer (S). The D-S-A combination constitutes the basic component equivalent of a solid state capacitor. A useful physical property that determines the applicability of molecular structures in moletronics is the electron transfer (ET) rate, which is related, in a two-state approximation, to the coupling matrix between the two electronic states representing the localization of electrons. In an effort to model potential organic structures, we have calculated the ET coupling matrix elements in a number of D-, S-, and A-type organic molecules with the use of ab initio Hartree-Fock method and two different basis sets, namely an STO-3G and a double zeta plus polarization (DZP). A number of important findings have emerged from this study: (i) The ET coupling matrix strongly depends upon the geometrical arrangement of the molecular fragment(s) in the architecture. (ii) In an oligomeric chain, the ET matrix decreases exponentially with molecular length (number of monomer units). (iii) In cyclic alkanes, the magnitude of the ET coupling matrix decreases with increasing size of fused rings.

  19. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria.

    PubMed

    Wegener, Gunter; Krukenberg, Viola; Riedel, Dietmar; Tegetmeyer, Halina E; Boetius, Antje

    2015-10-22

    The anaerobic oxidation of methane (AOM) with sulfate controls the emission of the greenhouse gas methane from the ocean floor. In marine sediments, AOM is performed by dual-species consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB) inhabiting the methane-sulfate transition zone. The biochemical pathways and biological adaptations enabling this globally relevant process are not fully understood. Here we study the syntrophic interaction in thermophilic AOM (TAOM) between ANME-1 archaea and their consortium partner SRB HotSeep-1 (ref. 6) at 60 °C to test the hypothesis of a direct interspecies exchange of electrons. The activity of TAOM consortia was compared to the first ANME-free culture of an AOM partner bacterium that grows using hydrogen as the sole electron donor. The thermophilic ANME-1 do not produce sufficient hydrogen to sustain the observed growth of the HotSeep-1 partner. Enhancing the growth of the HotSeep-1 partner by hydrogen addition represses methane oxidation and the metabolic activity of ANME-1. Further supporting the hypothesis of direct electron transfer between the partners, we observe that under TAOM conditions, both ANME and the HotSeep-1 bacteria overexpress genes for extracellular cytochrome production and form cell-to-cell connections that resemble the nanowire structures responsible for interspecies electron transfer between syntrophic consortia of Geobacter. HotSeep-1 highly expresses genes for pili production only during consortial growth using methane, and the nanowire-like structures are absent in HotSeep-1 cells isolated with hydrogen. These observations suggest that direct electron transfer is a principal mechanism in TAOM, which may also explain the enigmatic functioning and specificity of other methanotrophic ANME-SRB consortia.

  20. Charge-Transfer Emitting Triarylborane π-Electron Systems.

    PubMed

    Li, Sheng-Yong; Sun, Zuo-Bang; Zhao, Cui-Hua

    2017-02-06

    Triarylboranes have attracted significantly increasing research interest as a remarkable class of photoelectronic π-electron materials. Because of the presence of vacant p orbital on the B center, the boryl group is a very unique electron acceptor that exhibits not only electron-accepting ability through p-π* conjugation but also high Lewis acidity to coordinate with Lewis bases and steric bulk arising from the aryl substituent on the B center to get enough kinetic stability. Thus, the incorporation of a trivalent B element into π-conjugated systems is an efficient strategy to tune the electronic and stereo structures and thus the photoelectronic properties of π-electron systems. When an electron-donating group, such as amino, is present, triarylboranes would likely display intramolecular charge-transfer transitions. These kinds of molecules are often highly emissive. In addition, the geometry of the molecules has a great impact on the emission properties. In this Forum Article, we herein describe our recent progress on the charge-transfer emitting triarylborane π-electron systems with novel geometries, which include the lateral boryl-substituted π-system with amino groups at the terminal positions, the o,o'-substituted biaryl π-system with boryl and amino groups at the o,o'-positions, a triarylborane-based BODIPY system, and a B,N/S-bridged ladder-type π-system. We mainly put the emphasis on the molecular design concept, structure-property relationships, intriguing emission properties and great applications of the corresponding triarylborane π-systems.

  1. Understanding catalyst behavior during in situ heating through simultaneous secondary and transmitted electron imaging

    DOE PAGES

    Howe, Jane Y.; Allard, Jr., Lawrence Frederick; Demers, Hendrix; ...

    2014-11-14

    In situ heating study via a simultaneous secondary electron (SE) and transmitted electron (TE) microscopy is extremely insightful because information from the surface (SE) and bulk (TE) can be readily obtained. The leached Au/Fe2O3 catalyst has voids on the surface of Fe2O3. Upon heating to 500 °C, voids shrank and disappeared, while internal Au species diffused to the surface to form new nanoparticles. Heating in vacuum reduced Fe2O3 to Fe3O4. Heating at 700 °C caused coalescence and growth of Au particles and formation of faceted Fe3O4 surfaces. We achieved 1.1 nm resolution in SE imaging during in situ heating.

  2. Catalytic alkylation of remote C-H bonds enabled by proton-coupled electron transfer

    NASA Astrophysics Data System (ADS)

    Choi, Gilbert J.; Zhu, Qilei; Miller, David C.; Gu, Carol J.; Knowles, Robert R.

    2016-11-01

    Despite advances in hydrogen atom transfer (HAT) catalysis, there are currently no molecular HAT catalysts that are capable of homolysing the strong nitrogen-hydrogen (N-H) bonds of N-alkyl amides. The motivation to develop amide homolysis protocols stems from the utility of the resultant amidyl radicals, which are involved in various synthetically useful transformations, including olefin amination and directed carbon-hydrogen (C-H) bond functionalization. In the latter process—a subset of the classical Hofmann-Löffler-Freytag reaction—amidyl radicals remove hydrogen atoms from unactivated aliphatic C-H bonds. Although powerful, these transformations typically require oxidative N-prefunctionalization of the amide starting materials to achieve efficient amidyl generation. Moreover, because these N-activating groups are often incorporated into the final products, these methods are generally not amenable to the direct construction of carbon-carbon (C-C) bonds. Here we report an approach that overcomes these limitations by homolysing the N-H bonds of N-alkyl amides via proton-coupled electron transfer. In this protocol, an excited-state iridium photocatalyst and a weak phosphate base cooperatively serve to remove both a proton and an electron from an amide substrate in a concerted elementary step. The resultant amidyl radical intermediates are shown to promote subsequent C-H abstraction and radical alkylation steps. This C-H alkylation represents a catalytic variant of the Hofmann-Löffler-Freytag reaction, using simple, unfunctionalized amides to direct the formation of new C-C bonds. Given the prevalence of amides in pharmaceuticals and natural products, we anticipate that this method will simplify the synthesis and structural elaboration of amine-containing targets. Moreover, this study demonstrates that concerted proton-coupled electron transfer can enable homolytic activation of common organic functional groups that are energetically inaccessible using

  3. Catalytic alkylation of remote C-H bonds enabled by proton-coupled electron transfer.

    PubMed

    Choi, Gilbert J; Zhu, Qilei; Miller, David C; Gu, Carol J; Knowles, Robert R

    2016-11-10

    Despite advances in hydrogen atom transfer (HAT) catalysis, there are currently no molecular HAT catalysts that are capable of homolysing the strong nitrogen-hydrogen (N-H) bonds of N-alkyl amides. The motivation to develop amide homolysis protocols stems from the utility of the resultant amidyl radicals, which are involved in various synthetically useful transformations, including olefin amination and directed carbon-hydrogen (C-H) bond functionalization. In the latter process-a subset of the classical Hofmann-Löffler-Freytag reaction-amidyl radicals remove hydrogen atoms from unactivated aliphatic C-H bonds. Although powerful, these transformations typically require oxidative N-prefunctionalization of the amide starting materials to achieve efficient amidyl generation. Moreover, because these N-activating groups are often incorporated into the final products, these methods are generally not amenable to the direct construction of carbon-carbon (C-C) bonds. Here we report an approach that overcomes these limitations by homolysing the N-H bonds of N-alkyl amides via proton-coupled electron transfer. In this protocol, an excited-state iridium photocatalyst and a weak phosphate base cooperatively serve to remove both a proton and an electron from an amide substrate in a concerted elementary step. The resultant amidyl radical intermediates are shown to promote subsequent C-H abstraction and radical alkylation steps. This C-H alkylation represents a catalytic variant of the Hofmann-Löffler-Freytag reaction, using simple, unfunctionalized amides to direct the formation of new C-C bonds. Given the prevalence of amides in pharmaceuticals and natural products, we anticipate that this method will simplify the synthesis and structural elaboration of amine-containing targets. Moreover, this study demonstrates that concerted proton-coupled electron transfer can enable homolytic activation of common organic functional groups that are energetically inaccessible using

  4. Photocatalyst size controls electron and energy transfer: selectable E/Z isomer synthesis via C-F alkenylation.

    PubMed

    Singh, A; Fennell, C J; Weaver, J D

    2016-11-18

    Photocatalytic alkene synthesis can involve electron and energy transfer processes. The structure of the photocatalyst can be used to control the rate of the energy transfer, providing a mechanistic handle over the two processes. Jointly considering catalyst volume and emissive energy provides a highly sensitive strategy for predicting which mechanistic pathway will dominate. This model was developed en route to a photocatalytic Caryl-F alkenylation reaction of alkynes and highly-fluorinated arenes as partners. By judicious choice of photocatalyst, access to E- or Z-olefins was accomplished, even in the case of synthetically challenging trisubstituted alkenes. The generality and transferability of this model was tested by evaluating established photocatalytic reactions, resulting in shortened reaction times and access to complimentary Z-cinnamylamines in the photocatalytic [2 + 2] and C-H vinylation of amines, respectively. These results show that taking into account the size of the photocatalyst provides predictive ability and control in photochemical quenching events.

  5. Ultrasound-assisted phase-transfer catalysis: benzoylation of sodium 4-acetylphenoxide by dual-site phase-transfer catalyst in a tri-liquid system.

    PubMed

    Yang, Hung-Ming; Chiu, Chun-Cheng

    2011-01-01

    A novel dual-site phase-transfer catalyst (PTC) was prepared and used to conduct the benzoylation of sodium 4-acetylphenoxide by ultrasound-assisted third-liquid phase-transfer catalysis. The catalyst 1,4-bis(tributylammoniomethyl)benzene dibromide (BTBAMBB) was synthesized from the reaction of p-xylylene dibromide and tributylamine in toluene at 70°C. The dual-site PTC was employed to form the third-liquid phase by extra addition of 0.04-0.05 mol of NaCl into 10 cm(3) of water. In the condition of 0.0425 mol of NaCl at 30°C, the catalytic intermediate in the third-liquid phase reached a maximum value. Almost 80% of the catalyst was transferred from the aqueous phase into the third-liquid phase. The distributions of the catalytic intermediate and dual-site PTC between phases and the kinetics of benzoylation of sodium 4-acetylphenoxide catalyzed by BTBAMBB with ultrasound irradiation were performed. The pseudo-first-order kinetic equation was applied to describe the overall reaction. Under ultrasound irradiation (28 kHz/300 W) in a batch reactor, the yield of product 4-acetylphenyl benzoate in the organic phase was 98.1% in 2 min at 30°C and 250 rpm with the apparent rate constant k(app) to be 0.0075 s(-1), which was 6 times faster than that without using ultrasound (yield=14.4%, k(app)=0.0013 s(-1)). The present study provides a green method to synthesize esters by ultrasound-assisted third-liquid phase-transfer catalysis.

  6. Guanine oxidation by electron transfer: one- versus two-electron oxidation mechanism.

    PubMed

    Kupan, Adam; Saulière, Aude; Broussy, Sylvain; Seguy, Christel; Pratviel, Geneviève; Meunier, Bernard

    2006-01-01

    The degeneracy of the guanine radical cation, which is formed in DNA by oxidation of guanine by electron transfer, was studied by a detailed analysis of the oxidation products of guanine on oligonucleotide duplexes and by labeling experiments. It was shown that imidazolone, the major product of guanine oxidation, is formed through a one-electron oxidation process and incorporates one oxygen atom from O2. The formation of 8-oxo-7,8-dihydroguanine by a two-electron oxidation process was a minor pathway. The two-electron oxidation mechanism was also evidenced by the formation of a tris(hydroxymethyl)aminomethane adduct.

  7. Evidence for the purely electronic character of primary electron transfer in purple bacteria Rh. Sphaeroides

    NASA Astrophysics Data System (ADS)

    Glebov, I. O.; Poddubnyy, V. V.; Eremin, V. V.

    2015-11-01

    A quantum-chemical calculation of the excited electronic states of a Rh. Sphaeroides reaction centre was performed. We discovered a new excited electronic state which can participate in electron transfer (ET). The energy gradient calculations showed that photoexcitation activates only high-frequency vibrational modes. This contradicts the widely accepted picture of ET resulting from vibrational wave packet motion. An alternative model is suggested where ET has a purely dissipative character and occurs only due to pigment--protein interaction. With this model, we demonstrate that oscillations in the femtosecond spectra can be caused by the new electronic state and non-Markovian character of dissipative dynamics.

  8. Peptide Self-Assembled Biofilm with Unique Electron Transfer Flexibility for Highly Efficient Visible-Light-Driven Photocatalysis.

    PubMed

    Pan, Yun-Xiang; Cong, Huai-Ping; Men, Yu-Long; Xin, Sen; Sun, Zheng-Qing; Liu, Chang-Jun; Yu, Shu-Hong

    2015-11-24

    Inspired by natural photosynthesis, biomaterial-based catalysts are being confirmed to be excellent for visible-light-driven photocatalysis, but are far less well explored. Herein, an ultrathin and uniform biofilm fabricated from cold-plasma-assisted peptide self-assembly was employed to support Eosin Y (EY) and Pt nanoparticles to form an EY/Pt/Film catalyst for photocatalytic water splitting to H2 and photocatalytic CO2 reduction with water to CO, under irradiation of visible light. The H2 evolution rate on EY/Pt/Film is 62.1 μmol h(-1), which is about 5 times higher than that on Pt/EY and 1.5 times higher than that on the EY/Pt/TiO2 catalyst. EY/Pt/Film exhibits an enhanced CO evolution rate (19.4 μmol h(-1)), as compared with Pt/EY (2.8 μmol h(-1)) and EY/Pt/TiO2 (6.1 μmol h(-1)). The outstanding activity of EY/Pt/Film results from the unique flexibility of the biofilm for an efficient transfer of the photoinduced electrons. The present work is helpful for designing efficient biomaterial-based catalysts for visible-light-driven photocatalysis and for imitating natural photosynthesis.

  9. Syntrophic anaerobic photosynthesis via direct interspecies electron transfer

    PubMed Central

    Ha, Phuc T.; Lindemann, Stephen R.; Shi, Liang; Dohnalkova, Alice C.; Fredrickson, James K.; Madigan, Michael T.; Beyenal, Haluk

    2017-01-01

    Microbial phototrophs, key primary producers on Earth, use H2O, H2, H2S and other reduced inorganic compounds as electron donors. Here we describe a form of metabolism linking anoxygenic photosynthesis to anaerobic respiration that we call ‘syntrophic anaerobic photosynthesis'. We show that photoautotrophy in the green sulfur bacterium Prosthecochloris aestaurii can be driven by either electrons from a solid electrode or acetate oxidation via direct interspecies electron transfer from a heterotrophic partner bacterium, Geobacter sulfurreducens. Photosynthetic growth of P. aestuarii using reductant provided by either an electrode or syntrophy is robust and light-dependent. In contrast, P. aestuarii does not grow in co-culture with a G. sulfurreducens mutant lacking a trans-outer membrane porin-cytochrome protein complex required for direct intercellular electron transfer. Syntrophic anaerobic photosynthesis is therefore a carbon cycling process that could take place in anoxic environments. This process could be exploited for biotechnological applications, such as waste treatment and bioenergy production, using engineered phototrophic microbial communities. PMID:28067226

  10. Synergistic effect of ultrasonication and phase transfer catalysts in radical polymerization of methyl methacrylate - A kinetic study.

    PubMed

    Prabha, J; Susan Jemima, W; Jayaprada, M; Umapathy, M J

    2017-03-01

    Methyl methacrylate (MMA) has been polymerized to poly methyl methacrylate (PMMA) by employing three different phase transfer catalysts (PTC) such as 1,4-bis(dimethylhexyl)ethylenediammoniumbromide (DMHEDAB), 1,4bis(dimethylheptyl)ethylenediammoniumbromide (DMH1EDAB) and 1,4-bis(dimethyloctyl)ethylenediammonium bromide (DMOEDAB) under the influence of ultrasound radiation. The radical polymerization was performed under unstirred condition at a temperature of 60±1°C in an oxygen free atmosphere employing water soluble K2S2O8 as initiator. Various parameters such as role of [Monomer], [Initiator], [PTC], solvent and temperature were investigated on rate of polymerization (Rp) and the synergic efficacy of ultrasound wave variation and phase transfer catalysts were also assessed. It was found that the rate of polymerization (Rp) increased drastically for all the three catalyst under the influence of ultrasound and the order of efficiency was found to be [Formula: see text] This increase may be due to the number of carbon chain attached to the polar group which facilitate and accelerate the rate of polymerization.

  11. Semisynthetic and Biomolecular Hydrogen Evolution Catalysts.

    PubMed

    Kandemir, Banu; Chakraborty, Saikat; Guo, Yixing; Bren, Kara L

    2016-01-19

    There has been great interest in the development of stable, inexpensive, efficient catalysts capable of reducing aqueous protons to hydrogen (H2), an alternative to fossil fuels. While synthetic H2 evolution catalysts have been in development for decades, recently there has been great progress in engineering biomolecular catalysts and assemblies of synthetic catalysts and biomolecules. In this Forum Article, progress in engineering proteins to catalyze H2 evolution from water is discussed. The artificial enzymes described include assemblies of synthetic catalysts and photosynthetic proteins, proteins with cofactors replaced with synthetic catalysts, and derivatives of electron-transfer proteins. In addition, a new catalyst consisting of a thermophilic cobalt-substituted cytochrome c is reported. As an electrocatalyst, the cobalt cytochrome shows nearly quantitative Faradaic efficiency and excellent longevity with a turnover number of >270000.

  12. Molecular mimicry of photosynthetic energy and electron transfer

    SciTech Connect

    Gust, D.; Moore, T.A.; Moore, A.L. )

    1993-04-01

    Proper application of reaction design considerations can yield artificial photosynthetic devices which credibility mimic the three natural photochemical processes. One approach is to use pigments and electron donors and acceptors related to those found in natural photosynthesis (and thus presumably optimal for that system), but to replace the protein with covalent bonds as an organizing precept. Molecular pentads described herein exemplify the success of this approach. At the heart of these molecules, are two covalently linked synthetic porphyrin moieties (P-P). One of these models for chlorophyll is attached to a carotenoid polyene (C), whereas the other is linked to a rigid diquinone (Q-Q). As discussed later in this paper, excitation of such a pentad is followed by photoinitiated electron transfer steps which ultimately give a C[sup [center dot]+]-P-P-Q-Q[sup [center dot]-] charge-separated state. Depending upon the structure of the pentad and the conditions, these states are formed with quantum yields of up to 0.83, have lifetimes approaching 0.5 ms, and store about one-half of the energy of the exciting singlet state. Related photosynthesis mimics display singlet-singlet energy transfer from carotenoid polyenes to porphyrins and among porphyrin chromophores, and rapid quenching of porphyrin triplet states by attached carotenoids. How have the structures of these and other successful artificial reaction centers evolved, and what will be the next steps in their development The authors will address these questions from the point of view of photoinitiated electron transfer, and then singlet and triplet energy transfer will briefly be considered. 37 refs., 4 figs.

  13. Mechanisms for control of biological electron transfer reactions

    PubMed Central

    Williamson, Heather R.; Dow, Brian A.; Davidson, Victor L.

    2014-01-01

    Electron transfer (ET) through and between proteins is a fundamental biological process. The rates and mechanisms of these ET reactions are controlled by the proteins in which the redox centers that donate and accept electrons reside. The protein influences the magnitudes of the ET parameters, the electronic coupling and reorganization energy that are associated with the ET reaction. The protein can regulate the rates of the ET reaction by requiring reaction steps to optimize the system for ET, leading to kinetic mechanisms of gated or coupled ET. Amino acid residues in the segment of the protein through which long range ET occurs can also modulate the ET rate by serving as staging points for hopping mechanisms of ET. Specific examples are presented to illustrate these mechanisms by which proteins control rates of ET reactions. PMID:25085775

  14. Application of Electron-Transfer Theory to Several Systems of Biological Interest

    DOE R&D Accomplishments Database

    Marcus, R. A.; Sutin, N.

    1985-03-23

    Electron-transfer reaction rates are compared with theoretically calculated values for several reactions in the bacterial photosynthetic reaction center. A second aspect of the theory, the cross-relation, is illustrated using protein-protein electron transfers.

  15. ELECTRON TRANSFER MECHANISM AT THE SOLID-LIQUID INTERFACE OF PHYLLOSILICATES

    EPA Science Inventory

    Interfacial electron transfer processes on clay minerals have significant impact in natural environments and geochemical systems. Nitrobenzene was used as molecular probes to study the electron transfer mechanism at the solid-water interfaces of Fe-containing phyllosicates. For...

  16. PS-BEMP as a basic catalyst for the phospha-Michael addition to electron-poor alkenes.

    PubMed

    Strappaveccia, Giacomo; Bianchi, Luca; Ziarelli, Simone; Santoro, Stefano; Lanari, Daniela; Pizzo, Ferdinando; Vaccaro, Luigi

    2016-04-14

    PS-BEMP was used as a heterogeneous catalyst for the phospha-Michael addition of phosphorus nucleophiles to a variety of electron-poor alkenes. The addition reactions were generally performed with equimolar amounts of reagents under solvent free conditions. The protocol proved to be very efficient for the addition to aromatic, non-aromatic and cyclic ketones, giving good yields (78-85%) in all cases. The protocol was also extended with good results to α,β-unsaturated esters and nitriles. This demonstrates that PS-BEMP is a good catalyst for the phospha-Michael addition to electron-poor alkenes.

  17. Photoinitiated electron transfer in multichromophoric species: Synthetic tetrads and pentads. Technical progress report

    SciTech Connect

    Gust, J.D. Jr.; Moore, T.A.

    1988-04-12

    This research project involves the design, synthesis and study of molecules which mimic many of the important aspects of photosynthetic electron and energy transfer. The knowledge gained from the study of synthetic model systems which abstract features of the natural photosynthetic apparatus can be used to design artificial photosynthetic systems which employ the basic physics and chemistry of photosynthesis to help meet mankind`s energy needs. More specifically, the proposed models are designed to mimic the following aspects of natural photosynthetic multistep electron transfer: electron donation from a tetrapyrrole excited singlet state, electron transfer between tetrapyrroles, electron transfer from tetrapyrroles to quinones, and electron transfer between quinones with different redox properties.

  18. Hetero-cycloreversions mediated by photoinduced electron transfer.

    PubMed

    Pérez-Ruiz, Raúl; Jiménez, M Consuelo; Miranda, Miguel A

    2014-04-15

    Discovered more than eight decades ago, the Diels-Alder (DA) cycloaddition (CA) remains one of the most versatile tools in synthetic organic chemistry. Hetero-DA processes are powerful methods for the synthesis of densely functionalized six-membered heterocycles, ubiquitous substructures found in natural products and bioactive compounds. These reactions frequently employ azadienes and oxadienes, but only a few groups have reported DA processes with thiadienes. The electron transfer (ET) version of the DA reaction, though less investigated, has emerged as a subject of increasing interest. In the last two decades, researchers have paid closer attention to radical ionic hetero-cycloreversions, mainly in connection with their possible involvement in the repair of pyrimidine(6-4)pyrimidone photolesions in DNA by photolyases. In biological systems, these reactions likely occur through a reductive photosensitization mechanism. In addition, photooxidation can lead to cycloreversion (CR) reactions, and researchers can exploit this strategy for DNA repair therapies. In this Account, we discuss electron-transfer (ET) mediated hetero-CR reactions. We focus on the oxidative and reductive ET splitting of oxetanes, azetidines, and thietanes. Photoinduced electron transfer facilitates the splitting of a variety of four-membered heterocycles. In this context, researchers have commonly examined oxetanes, both experimentally and theoretically. Although a few studies have reported the cycloreversion of azetidines and thietanes carried out under electron transfer conditions, the number of examples remains limited. In general, the cleavage of the ionized four-membered rings appears to occur via a nonconcerted two-step mechanism. The trapping of the intermediate 1,4-radical ions and transient absorption spectroscopy data support this hypothesis, and it explains the observed loss of stereochemistry in the products. In the initial step, either C-C or C-X bond breaking may occur, and the

  19. Modeling biofilms with dual extracellular electron transfer mechanisms

    SciTech Connect

    Renslow, Ryan S.; Babauta, Jerome T.; Kuprat, Andrew P.; Schenk, Jim; Ivory, Cornelius; Fredrickson, Jim K.; Beyenal, Haluk

    2013-11-28

    Electrochemically active biofilms have a unique form of respiration in which they utilize solid external materials as their terminal electron acceptor for metabolism. Currently, two primary mechanisms have been identified for long-range extracellular electron transfer (EET): a diffusion- and a conduction-based mechanism. Evidence in the literature suggests that some biofilms, particularly Shewanella oneidensis, produce components requisite for both mechanisms. In this study, a generic model is presented that incorporates both diffusion- and conduction-based mechanisms and allows electrochemically active biofilms to utilize both simultaneously. The model was applied to Shewanella oneidensis and Geobacter sulfurreducens biofilms using experimentally generated data found the literature. Our simulation results showed that 1) biofilms having both mechanisms available, especially if they can interact, may have metabolic advantage over biofilms that can use only a single mechanism; 2) the thickness of Geobacter sulfurreducens biofilms is likely not limited by conductivity; 3) accurate intrabiofilm diffusion coefficient values are critical for current generation predictions; and 4) the local biofilm potential and redox potential are two distinct measurements and cannot be assumed to have identical values. Finally, we determined that cyclic and squarewave voltammetry are currently not good tools to determine the specific percentage of extracellular electron transfer mechanisms used by biofilms. The developed model will be a critical tool in designing experiments to explain EET mechanisms.

  20. Modeling biofilms with dual extracellular electron transfer mechanisms

    PubMed Central

    Renslow, Ryan; Babauta, Jerome; Kuprat, Andrew; Schenk, Jim; Ivory, Cornelius; Fredrickson, Jim; Beyenal, Haluk

    2013-01-01

    Electrochemically active biofilms have a unique form of respiration in which they utilize solid external materials as terminal electron acceptors for their metabolism. Currently, two primary mechanisms have been identified for long-range extracellular electron transfer (EET): a diffusion- and a conduction-based mechanism. Evidence in the literature suggests that some biofilms, particularly Shewanella oneidensis, produce the requisite components for both mechanisms. In this study, a generic model is presented that incorporates the diffusion- and the conduction-based mechanisms and allows electrochemically active biofilms to utilize both simultaneously. The model was applied to S. oneidensis and Geobacter sulfurreducens biofilms using experimentally generated data found in the literature. Our simulation results show that 1) biofilms having both mechanisms available, especially if they can interact, may have a metabolic advantage over biofilms that can use only a single mechanism; 2) the thickness of G. sulfurreducens biofilms is likely not limited by conductivity; 3) accurate intrabiofilm diffusion coefficient values are critical for current generation predictions; and 4) the local biofilm potential and redox potential are two distinct parameters and cannot be assumed to have identical values. Finally, we determined that simulated cyclic and squarewave voltammetry based on our model are currently not capable of determining the specific percentages of extracellular electron transfer mechanisms in a biofilm. The developed model will be a critical tool for designing experiments to explain EET mechanisms. PMID:24113651

  1. Extracting electron transfer coupling elements from constrained density functional theory

    NASA Astrophysics Data System (ADS)

    Wu, Qin; Van Voorhis, Troy

    2006-10-01

    Constrained density functional theory (DFT) is a useful tool for studying electron transfer (ET) reactions. It can straightforwardly construct the charge-localized diabatic states and give a direct measure of the inner-sphere reorganization energy. In this work, a method is presented for calculating the electronic coupling matrix element (Hab) based on constrained DFT. This method completely avoids the use of ground-state DFT energies because they are known to irrationally predict fractional electron transfer in many cases. Instead it makes use of the constrained DFT energies and the Kohn-Sham wave functions for the diabatic states in a careful way. Test calculations on the Zn2+ and the benzene-Cl atom systems show that the new prescription yields reasonable agreement with the standard generalized Mulliken-Hush method. We then proceed to produce the diabatic and adiabatic potential energy curves along the reaction pathway for intervalence ET in the tetrathiafulvalene-diquinone (Q-TTF-Q) anion. While the unconstrained DFT curve has no reaction barrier and gives Hab≈17kcal /mol, which qualitatively disagrees with experimental results, the Hab calculated from constrained DFT is about 3kcal /mol and the generated ground state has a barrier height of 1.70kcal/mol, successfully predicting (Q-TTF-Q)- to be a class II mixed-valence compound.

  2. Photoinduced Electron Transfer Process Visualized on Single Silver Nanoparticles.

    PubMed

    Lei, Gang; Gao, Peng Fei; Yang, Tong; Zhou, Jun; Zhang, Hong Zhi; Sun, Shan Shan; Gao, Ming Xuan; Huang, Cheng Zhi

    2017-02-28

    Understanding the photoinduced electron transfer (PET) mechanism is vital to improving the photoelectric conversion efficiency for solar energy materials and photosensitization systems. Herein, we visually demonstrate the PET process by real-time monitoring the photoinduced chemical transformation of p-aminothiophenol (p-ATP), an important SERS signal molecule, to 4,4'-dimercaptoazobenzene on single silver nanoparticles (AgNPs) with a localized surface plasmon resonance (LSPR) spectroscopy coupled dark-field microscopy. The bidirectional LSPR scattering spectral shifts bathochromically at first and hypsochromically then, which are caused by the electron transfer delay of p-ATP, disclose the PET path from p-ATP to O2 through AgNPs during the reaction, and enable us to digitalize the corresponding electron loss and gain on the surface of AgNP at different time periods. This visualized PET process could provide a simple and efficient approach to explore the nature of PET and help to interpret the SERS mechanism in terms of p-ATP.

  3. MATHEMATICAL MODELING OF EXTRACELLULAR ELECTRON TRANSFER IN BIOFILMS

    SciTech Connect

    Renslow, Ryan S.; Babauta, Jerome T.; Kuprat, Andrew P.; Schenk, Jim; Ivory, Cornelius; Fredrickson, Jim K.; Beyenal, Haluk

    2015-09-12

    Electrochemically active biofilms have a unique form of respiration in which they utilize solid external materials as terminal electron acceptors for their metabolism. Currently, two primary mechanisms have been identified for long-range extracellular electron transfer (EET): a diffusion- and a conduction-based mechanism. Evidence in the literature suggests that some biofilms, particularly Shewanella oneidensis, produce the requisite components for both mechanisms. In this study, a generic model is presented that incorporates the diffusion- and the conduction-based mechanisms and allows electrochemically active biofilms to utilize both simultaneously. The model was applied to S. oneidensis and Geobacter sulfurreducens biofilms using experimentally generated data found in the literature. Our simulation results show that 1) biofilms having both mechanisms available, especially if they can interact, may have a metabolic advantage over biofilms that can use only a single mechanism; 2) the thickness of G. sulfurreducens biofilms is likely not limited by conductivity; 3) accurate intrabiofilm diffusion coefficient values are critical for current generation predictions; and 4) the local biofilm potential and redox potential are two distinct parameters and cannot be assumed to have identical values. Finally, we determined that simulated cyclic and squarewave voltammetry based on our model are currently not capable of determining the specific percentages of extracellular electron transfer mechanisms in a biofilm. The developed model will be a critical tool for designing experiments to explain EET mechanisms.

  4. Microbial extracellular electron transfer and its relevance to iron corrosion.

    PubMed

    Kato, Souichiro

    2016-03-01

    Extracellular electron transfer (EET) is a microbial metabolism that enables efficient electron transfer between microbial cells and extracellular solid materials. Microorganisms harbouring EET abilities have received considerable attention for their various biotechnological applications, including bioleaching and bioelectrochemical systems. On the other hand, recent research revealed that microbial EET potentially induces corrosion of iron structures. It has been well known that corrosion of iron occurring under anoxic conditions is mostly caused by microbial activities, which is termed as microbiologically influenced corrosion (MIC). Among diverse MIC mechanisms, microbial EET activity that enhances corrosion via direct uptake of electrons from metallic iron, specifically termed as electrical MIC (EMIC), has been regarded as one of the major causative factors. The EMIC-inducing microorganisms initially identified were certain sulfate-reducing bacteria and methanogenic archaea isolated from marine environments. Subsequently, abilities to induce EMIC were also demonstrated in diverse anaerobic microorganisms in freshwater environments and oil fields, including acetogenic bacteria and nitrate-reducing bacteria. Abilities of EET and EMIC are now regarded as microbial traits more widespread among diverse microbial clades than was thought previously. In this review, basic understandings of microbial EET and recent progresses in the EMIC research are introduced.

  5. 12 CFR 205.15 - Electronic fund transfer of government benefits.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 2 2012-01-01 2012-01-01 false Electronic fund transfer of government benefits. 205.15 Section 205.15 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.15 Electronic fund transfer of...

  6. 12 CFR 205.15 - Electronic fund transfer of government benefits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 2 2010-01-01 2010-01-01 false Electronic fund transfer of government benefits. 205.15 Section 205.15 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.15 Electronic fund transfer of...

  7. 12 CFR 205.15 - Electronic fund transfer of government benefits.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 2 2013-01-01 2013-01-01 false Electronic fund transfer of government benefits. 205.15 Section 205.15 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.15 Electronic fund transfer of...

  8. 12 CFR 205.15 - Electronic fund transfer of government benefits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 2 2014-01-01 2014-01-01 false Electronic fund transfer of government benefits. 205.15 Section 205.15 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.15 Electronic fund transfer of...

  9. 12 CFR 205.15 - Electronic fund transfer of government benefits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 2 2011-01-01 2011-01-01 false Electronic fund transfer of government benefits. 205.15 Section 205.15 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.15 Electronic fund transfer of...

  10. Gunn effect and transferred electron devices. Citations from the NTIS data base

    NASA Astrophysics Data System (ADS)

    Reed, W. E.

    1980-06-01

    A bibliography containing 99 abstracts addressing the Gunn effect and transferred electron devices is presented. The application of Gunn effect and transferred electron devices to microwave generation, amplification, and control is included. The Gunn effect in semiconductors is dicussed along with the design, fabrication, and properties of Gunn diodes and transferred electron devices.

  11. Photoinduced electron transfer from dialkyl nitroxides to halogenated solvents

    SciTech Connect

    Chateauneuf, J. ); Lusztyk, J.; Ingold, K.U. )

    1990-02-02

    Laser flash photolysis (LFP) at wavelengths within the charge-transfer absorption present in CCl{sub 4} solutions of 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) yields the oxoammonium chloride of TEMPO, 1 ({lambda}{sub max} = 460 nm), and the trichloromethyl radical in an essentially instantaneous ({le}18 ps) process. The primary photochemical event is an electron transfer from TEMPO to CCl{sub 4}, and this is followed by immediate decomposition of the CCl{sub 4}{sup {sm bullet}{minus}} radical anion to Cl{sup {minus}} and Cl{sub 3}C{sup {sm bullet}}. An independent synthesis of 1 confirmed that the absorption attributed to this species has been correctly assigned. The formation of Cl{sub 3}C{sup {sm bullet}} was inferred by its trapping by molecular oxygen. LFP of TEMPO in other halogenated solvents and of other nitroxides in halogenated solvents has confirmed the generality of these photoreactions.

  12. Molybdenum Imido Alkylidene Metathesis Catalysts that Contain Electron Withdrawing Biphenolates or Binaphtholates

    PubMed Central

    Singh, Rojendra; Czekelius, Constantin; Schrock, Richard R.; Müller, Peter; Hoveyda, Amir H.

    2008-01-01

    We have prepared new Mo(NR)(CHCMe2Ph)(diolate) complexes (R = 2,6-i-Pr2C6H3, 2,6-Me2C6H3, 1-Adamantyl, or 2-CF3C6H4) that contain relatively electron-withdrawing binaphtholate (3,3′-bis-(9-anthracenyl), 3,3′-bispentafluorophenyl, or 3,3′-bis(3,5-bis(trifluoromethyl)phenyl) or biphenolate (3,3′-di-tert-butyl-5,5′-bistrifluoromethyl-6,6′-dimethyl-1,1′-biphenyl-2,2′-diolate) ligands. We also have prepared new monomeric Mo(NR)(CHCMe2Ph)(2,5-dimethylpyrrolide)2 complexes and have treated them with biphenols or binaphthols in order to prepare several Mo(NR)(CHCMe2Ph)(diolate) species. In one case the new Mo(NR)(CHCMe2Ph)(diolate) complexes could be prepared only through reaction of a binaphthol [3,3′-bis(pentafluorophenyl)binaphthol] with a bis(2,5-dimethylpyrrolide) complex. The pyrrolide approach can be employed either to isolate catalysts on a preparative scale or to generate catalysts in situ. Several simple preliminary ring-closing metathesis reactions show that the new complexes are catalytically competent. PMID:18953421

  13. Transcriptomic and Genetic Analysis of Direct Interspecies Electron Transfer

    PubMed Central

    Rotaru, Amelia-Elena; Summers, Zarath M.; Shrestha, Minita; Liu, Fanghua; Lovley, Derek R.

    2013-01-01

    The possibility that metatranscriptomic analysis could distinguish between direct interspecies electron transfer (DIET) and H2 interspecies transfer (HIT) in anaerobic communities was investigated by comparing gene transcript abundance in cocultures in which Geobacter sulfurreducens was the electron-accepting partner for either Geobacter metallireducens, which performs DIET, or Pelobacter carbinolicus, which relies on HIT. Transcript abundance for G. sulfurreducens uptake hydrogenase genes was 7-fold lower in cocultures with G. metallireducens than in cocultures with P. carbinolicus, consistent with DIET and HIT, respectively, in the two cocultures. Transcript abundance for the pilus-associated cytochrome OmcS, which is essential for DIET but not for HIT, was 240-fold higher in the cocultures with G. metallireducens than in cocultures with P. carbinolicus. The pilin gene pilA was moderately expressed despite a mutation that might be expected to repress pilA expression. Lower transcript abundance for G. sulfurreducens genes associated with acetate metabolism in the cocultures with P. carbinolicus was consistent with the repression of these genes by H2 during HIT. Genes for the biogenesis of pili and flagella and several c-type cytochrome genes were among the most highly expressed in G. metallireducens. Mutant strains that lacked the ability to produce pili, flagella, or the outer surface c-type cytochrome encoded by Gmet_2896 were not able to form cocultures with G. sulfurreducens. These results demonstrate that there are unique gene expression patterns that distinguish DIET from HIT and suggest that metatranscriptomics may be a promising route to investigate interspecies electron transfer pathways in more-complex environments. PMID:23377933

  14. Fabrication of a biofuel cell improved by the π-conjugated electron pathway effect induced from a new enzyme catalyst employing terephthalaldehyde

    NASA Astrophysics Data System (ADS)

    Chung, Yongjin; Hyun, Kyu Hwan; Kwon, Yongchai

    2015-12-01

    A model explaining the π-conjugated electron pathway effect induced by a novel cross-linker adopted enzyme catalyst is suggested and the performance and stability of an enzymatic biofuel cell (EBC) adopting the new catalyst are evaluated. For this purpose, new terephthalaldehyde (TPA) and conventional glutaraldehyde (GA) cross-linkers are adopted on a glucose oxidase (GOx), polyethyleneimine (PEI) and carbon nanotube (CNT)(GOx/PEI/CNT) structure. GOx/PEI/CNT cross-linked by TPA (TPA/[GOx/PEI/CNT]) results in a superior EBC performance and stability to other catalysts. It is attributed to the π bonds conjugated between the aldehyde of TPA and amine of the GOx/PEI molecules. By π conjugation, electrons bonded with carbon and nitrogen are delocalized, promoting the electron transfer and catalytic activity with an excellent EBC performance. The maximum power density (MPD) of an EBC adopting TPA/[GOx/PEI/CNT] (0.66 mW cm-2) is far better than that of the other EBCs (the MPD of EBC adopting GOx/PEI/CNT is 0.40 mW cm-2). Regarding stability, the covalent bonding formed between TPA and GOx/PEI plays a critical role in preventing the denaturation of GOx molecules, leading to an excellent stability. By repeated measurements of the catalytic activity, TPA/[GOx/PEI/CNT] maintains its activity to 92% of its initial value even after five weeks.A model explaining the π-conjugated electron pathway effect induced by a novel cross-linker adopted enzyme catalyst is suggested and the performance and stability of an enzymatic biofuel cell (EBC) adopting the new catalyst are evaluated. For this purpose, new terephthalaldehyde (TPA) and conventional glutaraldehyde (GA) cross-linkers are adopted on a glucose oxidase (GOx), polyethyleneimine (PEI) and carbon nanotube (CNT)(GOx/PEI/CNT) structure. GOx/PEI/CNT cross-linked by TPA (TPA/[GOx/PEI/CNT]) results in a superior EBC performance and stability to other catalysts. It is attributed to the π bonds conjugated between the aldehyde of

  15. Ab initio quantum chemical study of electron transfer in carboranes

    NASA Astrophysics Data System (ADS)

    Pati, Ranjit; Pineda, Andrew C.; Pandey, Ravindra; Karna, Shashi P.

    2005-05-01

    The electron transfer (ET) properties of 10- and 12-vertex carboranes are investigated by the ab initio Hartree-Fock method within the Marcus-Hush (MH) two-state model and the Koopman theorem (KT) approach. The calculated value of the ET coupling matrix element, VAB, is consistently higher in the KT approach than in the MH two-state model. For the carborane molecules functionalized by -CH 2 groups at C-vertices, VAB strongly depends on the relative orientation of the planes containing the terminal -CH 2 groups. The predicted conformation dependence of VAB offers a molecular mechanism to control ET between two active centers in molecular systems.

  16. Photoinduced electron transfer based ion sensing within an optical fiber.

    PubMed

    Englich, Florian V; Foo, Tze Cheung; Richardson, Andrew C; Ebendorff-Heidepriem, Heike; Sumby, Christopher J; Monro, Tanya M

    2011-01-01

    We combine suspended-core microstructured optical fibers with the photoinduced electron transfer (PET) effect to demonstrate a new type of fluorescent optical fiber-dip sensing platform for small volume ion detection. A sensor design based on a simple model PET-fluoroionophore system and small core microstructured optical fiber capable of detecting sodium ions is demonstrated. The performance of the dip sensor operating in a high sodium concentration regime (925 ppm Na(+)) and for lower sodium concentration environments (18.4 ppm Na(+)) is explored and future approaches to improving the sensor's signal stability, sensitivity and selectivity are discussed.

  17. Geometric phase and quantum interference in photosynthetic reaction center: Regulation of electron transfer

    NASA Astrophysics Data System (ADS)

    Sun, Yuming; Su, Yuehua; Dai, Zhenhong; Wang, WeiTian

    2016-10-01

    Photosynthesis is driven by electron transfer in reaction centers in which the functional unit is composed of several simple molecules C2-symmetrically arranged into two branches. In view of quantum mechanism, both branches are possible pathways traversed by the transferred electron. Due to different evolution of spin state along two pathways in transmembrane electric potential (TEP), quantum state of the transferred electron at the bridged site acquires a geometric phase difference dependent on TEP, the most efficient electron transport takes place in a specific range of TEP beyond which electron transfer is dramatically suppressed. What's more, reaction center acts like elaborately designed quantum device preparing polarized spin dependent on TEP for the transferred electron to regulate the reduction potential at bridged site. In brief, electron transfer generates the TEP, reversely, TEP modulates the efficiency of electron transfer. This may be an important approach to maintaining an appreciable pH environment in photosynthesis.

  18. Model for primary electron transfer and coupling of electronic states at reaction centers of purple bacteria

    NASA Astrophysics Data System (ADS)

    Pavlovich, V. S.

    2006-05-01

    A detailed derivation is presented for relations making it possible to describe the effect of temperature on the halfwidth of the P960 and P870 absorption bands and also on the electron transfer (ET) rate at reaction centers (RCs) of the purple bacteria Rps. viridis and Rb. sphaeroides. Primary electron transfer is considered as a resonant nonradiative transition between P* and P+B L - states (where P is a special pair, BL is an additional bacteriochlorophyll in the L branch of the reaction center). It has been shown that the vibrational hα mode with frequency 130 150 cm-1 controls primary electron transfer. It has been found that the matrix element of the electronic transition between the states P* and P+B L - is equal to 12.7 ± 0.9 and 12.0 ± 1.2 cm-1 for Rps. viridis and Rb. sphaeroides respectively. The mechanism is discussed for electron transport from P* and BL and then to bacteriopheophytin HL.

  19. The electronic transfer of information and aerospace knowledge diffusion

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Bishop, Ann P.; Barclay, Rebecca O.; Kennedy, John M.

    1992-01-01

    Increasing reliance on and investment in information technology and electronic networking systems presupposes that computing and information technology will play a motor role in the diffusion of aerospace knowledge. Little is known, however, about actual information technology needs, uses, and problems within the aerospace knowledge diffusion process. The authors state that the potential contributions of information technology to increased productivity and competitiveness will be diminished unless empirically derived knowledge regarding the information-seeking behavior of the members of the social system - those who are producing, transferring, and using scientific and technical information - is incorporated into a new technology policy framework. Research into the use of information technology and electronic networks by U.S. aerospace engineers and scientists, collected as part of a research project designed to study aerospace knowledge diffusion, is presented in support of this assertion.

  20. Molecular structures of porphyrin-quinone models for electron transfer

    SciTech Connect

    Fajer, J.; Barkigia, K.M.; Melamed, D.; Sweet, R.M.; Kurreck, H.; Gersdorff, J. von; Plato, M.; Rohland, H.C.; Elger, G.; Moebius, K.

    1996-08-15

    Synthetic porphyrin-quinone complexes are commonly used to mimic electron transport in photosynthetic reaction centers and to probe the effects of energetics, distances, and relative orientations on rates of electron transfer between donor-acceptor couples. The structures of two such models have been determined by X-ray diffraction. The redox pairs consist of a zinc porphyrin covalently linked to benzoquinone in cis and trans configurations via a cyclohexanediyl bridge. The crystallographic studies were undertaken to provide a structural foundation for the extensive body of experimental and theoretical results that exists for these compounds in both the ground and photoinduced charge-separated states. The results validate conclusions reached from theoretical calculations, EPR and two-dimensional NMR results for these states. 15 refs., 6 figs., 2 tabs.

  1. Electronic energy transfer: Localized operator partitioning of electronic energy in composite quantum systems

    NASA Astrophysics Data System (ADS)

    Khan, Yaser; Brumer, Paul

    2012-11-01

    A Hamiltonian based approach using spatially localized projection operators is introduced to give precise meaning to the chemically intuitive idea of the electronic energy on a quantum subsystem. This definition facilitates the study of electronic energy transfer in arbitrarily coupled quantum systems. In particular, the decomposition scheme can be applied to molecular components that are strongly interacting (with significant orbital overlap) as well as to isolated fragments. The result defines a consistent electronic energy at all internuclear distances, including the case of separated fragments, and reduces to the well-known Förster and Dexter results in their respective limits. Numerical calculations of coherent energy and charge transfer dynamics in simple model systems are presented and the effect of collisionally induced decoherence is examined.

  2. Biochemical Mechanisms Controlling Terminal Electron Transfer in Geobacter sulfurreducens

    NASA Astrophysics Data System (ADS)

    Helmus, R.; Liermann, L. J.; Brantley, S. L.; Tien, M.

    2009-04-01

    The ability of Geobacter sulfurreducens to use a variety of metals as terminal electron acceptors (TEAs) for cellular respiration makes it attractive for use in bioremediation and implies its importance to mineral cycling in the environment. This study is aimed at understanding the biochemical mechanisms that allow Geobacter sulfurreducens to use soluble and insoluble iron and manganese forms as TEAs for cellular respiration and is the first of its kind to address the kinetics of manganese use as a TEA by G. sulfurreducens. First, G. sulfurreducens was conditioned to grow on various soluble and insoluble iron and manganese forms. G. sulfurreducens demonstrated enhanced growth rates when cultured using soluble TEAs compared with insoluble TEAs. However, the lower growth rate on insoluble iron compared with soluble iron was observed concomitantly with a 1-2 log lower cell density in stationary phase in insoluble iron cultures and a lower growth yield per electron donor used in log growth phase. Furthermore, the growth yield per electron was similar with both soluble and insoluble iron. These results suggest that the net amount of energy available for biomass production achieved from reducing insoluble iron is lower than with soluble iron, which may be due to a different biochemical mechanism catalyzing the electron transfer to TEA dependent upon the solubility of the TEA. One scenario consistent with this notion is that protein(s) in the outer membrane of G. sulfurreducens that transfers electrons to insoluble TEAs does so in a manner that uncouples electron flow from the proton pump in the cellular membrane, similar to what we have observed with Shewanella oneidensis MR-1. Both the growth rate and growth yield of G. sulfurreducens on insoluble manganese were higher than on insoluble iron, indicating that there is a difference in the flow of electrons to the TEA in these two situations. While the different redox potentials of these elements may affect these values

  3. Universality of energy and electron transfer processes in photosystem I.

    PubMed

    Hastings, G; Hoshina, S; Webber, A N; Blankenship, R E

    1995-11-28

    Femtosecond transient absorption spectroscopy has been used to investigate the photoinduced energy and electron transfer processes in photosystem I (PS I) particles from cyanobacteria, green algae, and higher plants. At room temperature, the kinetics observed in all three species are very similar: Following 590 nm excitation, an equilibration process(es) with a 3.7-7.5 ps lifetime was observed, followed by a 19-24 ps process that is associated with trapping. In all three species long-wavelength pigments (pigments that absorb at longer wavelengths than the primary electron donor) were observed. The difference spectrum associated with reduction of the primary electron acceptor [Ao(-)-Ao) difference spectrum] was obtained for all three species. The (Ao(-)-Ao) difference spectra obtained from measurements using detergent-isolated PS I particles from spinach and Chlamydomonas reinhardtii are similar but clearly membrane fragments. In all three species the reduced primary electron acceptor (Ao(-)) is reoxidized extremely rapidly, in about 20 ps. The difference spectrum associated with Ao reduction appears to contain contributions from more than a single chlorophyll pigment.

  4. Improving electronic structure methods to predict nano-optoelectronics and nano-catalyst functions.

    SciTech Connect

    Nielsen, Ida Marie B.; Marzari, Nicola; Shelnutt, John Allen; Kulik, Heather J.; Medforth, Craig John; Leung, Kevin

    2009-10-01

    This report focuses on quantum chemistry and ab initio molecular dynamics (AIMD) calculations applied to elucidate the mechanism of the multi-step, 2-electron, electrochemical reduction of the green house gas molecule carbon dioxide (CO{sub 2}) to carbon monoxide (CO) in aqueous media. When combined with H{sub 2} gas to form synthesis ('syn') gas, CO becomes a key precursor to methane, methanol, and other useful hydrocarbon products. To elucidate the mechanism of this reaction, we apply computational electrochemistry which is a fledgling, important area of basic science critical to energy storage. This report highlights several approaches, including the calculation of redox potentials, the explicit depiction of liquid water environments using AIMD, and free energy methods. While costly, these pioneering calculations reveal the key role of hydration- and protonation-stabilization of reaction intermediates, and may inform the design of CO{sub 2}-capture materials as well as its electrochemical reduction. In the course of this work, we have also dealt with the challenges of identifying and applying electronic structure methods which are sufficiently accurate to deal with transition metal ion complex-based catalyst. Such electronic structure methods are also pertinent to the accurate modeling of actinide materials and therefore to nuclear energy research. Our multi-pronged effort towards achieving this titular goal of the LDRD is discussed.

  5. Cu/MgAl(2)O(4) as bifunctional catalyst for aldol condensation of 5-hydroxymethylfurfural and selective transfer hydrogenation.

    PubMed

    Pupovac, Kristina; Palkovits, Regina

    2013-11-01

    Copper supported on mesoporous magnesium aluminate has been prepared as noble-metal-free solid catalyst for aldol condensation of 5-hydroxymethylfurfural with acetone, followed by hydrogenation of the aldol condensation products. The investigated mesoporous spinels possess high activity as solid-base catalysts. Magnesium aluminate exhibits superior activity compared to zinc and cobalt-based aluminates, reaching full conversion and up to 81 % yield of the 1:1 aldol product. The high activity can be correlated to a higher concentration of basic surface sites on magnesium aluminate. Applying continuous regeneration, the catalysts can be recycled without loss of activity. Focusing on the subsequent hydrogenation of aldol condensation products, Cu/MgAl2 O4 allows a selective hydrogenation and CO bond cleavage, delivering 3-hydroxybutyl-5-methylfuran as the main product with up to 84 % selectivity avoiding ring saturation. Analysis of the hydrogenation activity reveals that the reaction proceeds in the following order: CC>CO>CO cleavage>ring hydrogenation. Comparable activity and selectivity can be also achieved utilizing 2-propanol as solvent in the transfer hydrogenation, providing the possibility for partial recycling of acetone and optimization of the hydrogen management.

  6. Copper-Catalyzed Aerobic Oxidations of Organic Molecules: Pathways for Two-Electron Oxidation with a Four-Electron Oxidant and a One-Electron Redox-Active Catalyst.

    PubMed

    McCann, Scott D; Stahl, Shannon S

    2015-06-16

    Selective oxidation reactions have extraordinary value in organic chemistry, ranging from the conversion of petrochemical feedstocks into industrial chemicals and polymer precursors to the introduction of heteroatom functional groups into pharmaceutical and agrochemical intermediates. Molecular oxygen (O2) would be the ideal oxidant for these transformations. Whereas many commodity-scale oxidations of simple hydrocarbon feedstocks employ O2 as an oxidant, methods for selective oxidation of more complex molecules bearing diverse functional groups are often incompatible with existing aerobic oxidation methods. The latter limitation provides the basis for our interest in the development of new catalytic transformations and the elucidation of mechanistic principles that underlie selective aerobic oxidation reactions. One challenge inherent in such methods is the incommensurate redox stoichiometry associated with the use of O2, a four-electron oxidant, in reactions that achieve two-electron oxidation of organic molecules. This issue is further complicated by the use of first-row transition-metal catalysts, which tend to undergo facile one-electron redox steps. In recent years, we have been investigating Cu-catalyzed aerobic oxidation reactions wherein the complexities just noted are clearly evident. This Account surveys our work in this area, which has emphasized three general classes of reactions: (1) single-electron-transfer reactions for oxidative functionalization of electron-rich substrates, such as arenes and heterocycles; (2) oxidative carbon-heteroatom bond-forming reactions, including C-H oxidations, that proceed via organocopper(III) intermediates; and (3) methods for aerobic oxidation of alcohols and amines that use Cu(II) in combination with an organic redox-active cocatalyst to dehydrogenate the carbon-heteroatom bond. These reaction classes demonstrate three different pathways to achieve two-electron oxidation of organic molecules via the cooperative

  7. Spatial resolution and information transfer in scanning transmission electron microscopy.

    PubMed

    Peng, Yiping; Oxley, Mark P; Lupini, Andrew R; Chisholm, Matthew F; Pennycook, Stephen J

    2008-02-01

    The relation between image resolution and information transfer is explored. It is shown that the existence of higher frequency transfer in the image is just a necessary but not sufficient condition for the achievement of higher resolution. Adopting a two-point resolution criterion, we suggest that a 10% contrast level between two features in an image should be used as a practical definition of resolution. In the context of scanning transmission electron microscopy, it is shown that the channeling effect does not have a direct connection with image resolution because sharp channeling peaks do not move with the scanning probe. Through a quantitative comparison between experimental image and simulation, a Fourier-space approach is proposed to estimate defocus and sample thickness. The effective atom size in Z-contrast imaging depends on the annular detector's inner angle. Therefore, an optimum angle exists for the highest resolution as a trade-off between reduced atom size and reduced signal with limited information transfer due to noise.

  8. Electron transfer in native and mutated photosystem I reaction centers

    NASA Astrophysics Data System (ADS)

    Savikhin, Sergei; Xu, Wu; Chitnis, Parag; Struve, Walter

    2002-03-01

    Femtosecond time-resolved absorption difference studies were performed on photosystem I complexes from the cyanobacterium Synechocystis sp. PCC 6803. The overal electron transfer from the special pair P700 to the secondary acceptor A1 has been shown to be 10 ps, twice shorter than the previously estimated value. Similar studies were performed on more than 10 genetically engineered species, where protein structure was altered in the visinity of the reaction center (RC). The functioning of the PS I complex was found to be extremelly sensitive to the protein sequence in the immediate proximity of the RC: less than half of the studied mutations resulted in photosynthetically active complexes, and all of the latter had electron transfer dynamics indistinguishable from that of the wild type. Most of the mutations in the other areas of the PS I, including antenna, did not affect the photosynthetic function of this complex radically. These results confirm the extreme importance of the precise RC structure and demonstrate why millions of years of evolution resulted in only two types of topologically similar RC's shared by all photosynthetic organisms.

  9. MD studies of electron transfer at ambient and elevated pressures

    NASA Astrophysics Data System (ADS)

    Giles, Alex; Spooner, Jacob; Weinberg, Noham

    2013-06-01

    The effect of pressure on the rate constants of outer-sphere electron transfer reactions has often been described using the Marcus-Hush theory. This theory agrees well with experiment when internal reorganization of the ionic system is negligible, however it does not offer a recipe for calculation of the effects that result from significant solute restructuring. We have recently developed a molecular dynamics technique that accurately describes structural dependence of molecular volumes in non-polar and weakly polar systems. We are now extending this approach to the case of highly polar ionic systems where both solvent and solute restructuring components are important. For this purpose we construct pressure-dependent two-dimensional surfaces for electron transfer reactions in coordinate system composed of interionic distance and Marcus-type solvent polarization coordinate, and use these surfaces to describe pressure effects on reaction kinetics. R.A. Marcus. J. Chem. Phys. 24, 966 (1956); 24, 979 (1956); 26, 867 (1957). Discuss. Faraday Soc. 29, 21 (1960). Faraday Discuss. Chem. Soc. 74, 7 (1982); N.S. Hush. Trans. Faraday Soc. 57, 557 (1961).

  10. Vibrational dynamics in photoinduced electron transfer. Progress report, December 1, 1992--November 30, 1993

    SciTech Connect

    Spears, K.G.

    1993-09-08

    Objective is to perform a new type of measurement for optically excited electron transfer processes that can provide unique experimental insight into the molecular mechanism of electron transfer. Measurements of optically excited electron transfer are done with picosecond infrared (IR) absorption spectroscopy to monitor the vibrational motions of the molecules immediately after electron transfer. Theory and experiment suggest that molecular vibrations and distortions are important controlling elements for electron transfer, and direct information has yet to be obtained on these elements of electron transfer mechanisms. The second period of funding has been dedicated to finishing technique development and performing studies of electron transfer in ion pair systems to identify if vibrational dependent electron transfer rates are present in this system. We have succeeded in measuring, for the first time, electron transfer rates as a function of vibrational state in an ion pair complex in solution. In a different area of electron transfer research we have proposed a new mechanism of solvent gated electron transfer.

  11. Understanding the Electronic Structure of 4d Metal Complexes: From Molecular Spinors to L-Edge Spectra of a di-Ru Catalyst

    SciTech Connect

    Alperovich, Igor; Smolentsev, Grigory; Moonshiram, Dooshaye; Jurss, Jonah W.; Concepcion, Javier J.; Meyer, Thomas J.; Soldatov, Alexander; Pushkar, Yulia

    2015-09-17

    L{sub 2,3}-edge X-ray absorption spectroscopy (XAS) has demonstrated unique capabilities for the analysis of the electronic structure of di-Ru complexes such as the blue dimer cis,cis-[Ru{sub 2}{sup III}O(H{sub 2}O){sub 2}(bpy){sub 4}]{sup 4+} water oxidation catalyst. Spectra of the blue dimer and the monomeric [Ru(NH{sub 3}){sub 6}]{sup 3+} model complex show considerably different splitting of the Ru L{sub 2,3} absorption edge, which reflects changes in the relative energies of the Ru 4d orbitals caused by hybridization with a bridging ligand and spin-orbit coupling effects. To aid the interpretation of spectroscopic data, we developed a new approach, which computes L{sub 2,3}-edges XAS spectra as dipole transitions between molecular spinors of 4d transition metal complexes. This allows for careful inclusion of the spin-orbit coupling effects and the hybridization of the Ru 4d and ligand orbitals. The obtained theoretical Ru L{sub 2,3}-edge spectra are in close agreement with experiment. Critically, existing single-electron methods (FEFF, FDMNES) broadly used to simulate XAS could not reproduce the experimental Ru L-edge spectra for the [Ru(NH{sub 3}){sub 6}]{sup 3+} model complex nor for the blue dimer, while charge transfer multiplet (CTM) calculations were not applicable due to the complexity and low symmetry of the blue dimer water oxidation catalyst. We demonstrated that L-edge spectroscopy is informative for analysis of bridging metal complexes. The developed computational approach enhances L-edge spectroscopy as a tool for analysis of the electronic structures of complexes, materials, catalysts, and reactive intermediates with 4d transition metals.

  12. ATP-induced electron transfer by redox-selective partner recognition

    NASA Astrophysics Data System (ADS)

    Hennig, Sandra E.; Goetzl, Sebastian; Jeoung, Jae-Hun; Bommer, Martin; Lendzian, Friedhelm; Hildebrandt, Peter; Dobbek, Holger

    2014-08-01

    Thermodynamically unfavourable electron transfers are enabled by coupling to an energy-supplying reaction. How the energy is transduced from the exergonic to the endergonic process is largely unknown. Here we provide the structural basis for an energy transduction process in the reductive activation of B12-dependent methyltransferases. The transfer of one electron from an activating enzyme to the cobalamin cofactor is energetically uphill and relies on coupling to an ATPase reaction. Our results demonstrate that the key to coupling is, besides the oxidation state-dependent complex formation, the conformational gating of the electron transfer. Complex formation induces a substitution of the ligand at the electron-accepting Co ion. Addition of ATP initiates electron transfer by provoking conformational changes that destabilize the complex. We show how remodelling of the electron-accepting Co2+ promotes ATP-dependent electron transfer; an efficient strategy not seen in other electron-transferring ATPases.

  13. Fabrication and single-electron-transfer operation of a triple-dot single-electron transistor

    SciTech Connect

    Jo, Mingyu Uchida, Takafumi; Tsurumaki-Fukuchi, Atsushi; Arita, Masashi; Takahashi, Yasuo; Fujiwara, Akira; Nishiguchi, Katsuhiko; Ono, Yukinori; Inokawa, Hiroshi

    2015-12-07

    A triple-dot single-electron transistor was fabricated on silicon-on-insulator wafer using pattern-dependent oxidation. A specially designed one-dimensional silicon wire having small constrictions at both ends was converted to a triple-dot single-electron transistor by means of pattern-dependent oxidation. The fabrication of the center dot involved quantum size effects and stress-induced band gap reduction, whereas that of the two side dots involved thickness modulation because of the complex edge structure of two-dimensional silicon. Single-electron turnstile operation was confirmed at 8 K when a 100-mV, 1-MHz square wave was applied. Monte Carlo simulations indicated that such a device with inhomogeneous tunnel and gate capacitances can exhibit single-electron transfer.

  14. Photoinduced Bimolecular Electron Transfer from Cyano Anions in Ionic Liquids.

    PubMed

    Wu, Boning; Liang, Min; Maroncelli, Mark; Castner, Edward W

    2015-11-19

    Ionic liquids with electron-donating anions are used to investigate rates and mechanisms of photoinduced bimolecular electron transfer to the photoexcited acceptor 9,10-dicyanoanthracene (9,10-DCNA). The set of five cyano anion ILs studied comprises the 1-ethyl-3-methylimidazolium cation paired with each of these five anions: selenocyanate, thiocyanate, dicyanamide, tricyanomethanide, and tetracyanoborate. Measurements with these anions dilute in acetonitrile and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide show that the selenocyanate and tricyanomethanide anions are strong quenchers of the 9,10-DCNA fluorescence, thiocyanate is a moderately strong quencher, dicyanamide is a weak quencher, and no quenching is observed for tetracyanoborate. Quenching rates are obtained from both time-resolved fluorescence transients and time-integrated spectra. Application of a Smoluchowski diffusion-and-reaction model showed that the complex kinetics observed can be fit using only two adjustable parameters, D and V0, where D is the relative diffusion coefficient between donor and acceptor and V0 is the value of the electronic coupling at donor-acceptor contact.

  15. Mechanically Controlled Electron Transfer in a Single-Polypeptide Transistor

    NASA Astrophysics Data System (ADS)

    Sheu, Sheh-Yi; Yang, Dah-Yen

    2017-01-01

    Proteins are of interest in nano-bio electronic devices due to their versatile structures, exquisite functionality and specificity. However, quantum transport measurements produce conflicting results due to technical limitations whereby it is difficult to precisely determine molecular orientation, the nature of the moieties, the presence of the surroundings and the temperature; in such circumstances a better understanding of the protein electron transfer (ET) pathway and the mechanism remains a considerable challenge. Here, we report an approach to mechanically drive polypeptide flip-flop motion to achieve a logic gate with ON and OFF states during protein ET. We have calculated the transmission spectra of the peptide-based molecular junctions and observed the hallmarks of electrical current and conductance. The results indicate that peptide ET follows an NC asymmetric process and depends on the amino acid chirality and α-helical handedness. Electron transmission decreases as the number of water molecules increases, and the ET efficiency and its pathway depend on the type of water-bridged H-bonds. Our results provide a rational mechanism for peptide ET and new perspectives on polypeptides as potential candidates in logic nano devices.

  16. Structural basis of interprotein electron transfer in bacterial sulfite oxidation

    PubMed Central

    McGrath, Aaron P; Laming, Elise L; Casas Garcia, G Patricia; Kvansakul, Marc; Guss, J Mitchell; Trewhella, Jill; Calmes, Benoit; Bernhardt, Paul V; Kappler, Ulrike; Maher, Megan J

    2015-01-01

    Interprotein electron transfer underpins the essential processes of life and relies on the formation of specific, yet transient protein-protein interactions. In biological systems, the detoxification of sulfite is catalyzed by the sulfite-oxidizing enzymes (SOEs), which interact with an electron acceptor for catalytic turnover. Here, we report the structural and functional analyses of the SOE SorT from Sinorhizobium meliloti and its cognate electron acceptor SorU. Kinetic and thermodynamic analyses of the SorT/SorU interaction show the complex is dynamic in solution, and that the proteins interact with Kd = 13.5 ± 0.8 μM. The crystal structures of the oxidized SorT and SorU, both in isolation and in complex, reveal the interface to be remarkably electrostatic, with an unusually large number of direct hydrogen bonding interactions. The assembly of the complex is accompanied by an adjustment in the structure of SorU, and conformational sampling provides a mechanism for dissociation of the SorT/SorU assembly. DOI: http://dx.doi.org/10.7554/eLife.09066.001 PMID:26687009

  17. Mechanically Controlled Electron Transfer in a Single-Polypeptide Transistor

    PubMed Central

    Sheu, Sheh-Yi; Yang, Dah-Yen

    2017-01-01

    Proteins are of interest in nano-bio electronic devices due to their versatile structures, exquisite functionality and specificity. However, quantum transport measurements produce conflicting results due to technical limitations whereby it is difficult to precisely determine molecular orientation, the nature of the moieties, the presence of the surroundings and the temperature; in such circumstances a better understanding of the protein electron transfer (ET) pathway and the mechanism remains a considerable challenge. Here, we report an approach to mechanically drive polypeptide flip-flop motion to achieve a logic gate with ON and OFF states during protein ET. We have calculated the transmission spectra of the peptide-based molecular junctions and observed the hallmarks of electrical current and conductance. The results indicate that peptide ET follows an NC asymmetric process and depends on the amino acid chirality and α-helical handedness. Electron transmission decreases as the number of water molecules increases, and the ET efficiency and its pathway depend on the type of water-bridged H-bonds. Our results provide a rational mechanism for peptide ET and new perspectives on polypeptides as potential candidates in logic nano devices. PMID:28051140

  18. Exogenous electron shuttle-mediated extracellular electron transfer of Shewanella putrefaciens 200: electrochemical parameters and thermodynamics.

    PubMed

    Wu, Yundang; Liu, Tongxu; Li, Xiaomin; Li, Fangbai

    2014-08-19

    Despite the importance of exogenous electron shuttles (ESs) in extracellular electron transfer (EET), a lack of understanding of the key properties of ESs is a concern given their different influences on EET processes. Here, the ES-mediated EET capacity of Shewanella putrefaciens 200 (SP200) was evaluated by examining the electricity generated in a microbial fuel cell. The results indicated that all the ESs substantially accelerated the current generation compared to only SP200. The current and polarization parameters were linearly correlated with both the standard redox potential (E(ES)(0)) and the electron accepting capacity (EAC) of the ESs. A thermodynamic analysis of the electron transfer from the electron donor to the electrode suggested that the EET from c-type cytochromes (c-Cyts) to ESs is a crucial step causing the differences in EET capacities among various ESs. Based on the derived equations, both E(ES)(0) and EAC can quantitatively determine potential losses (ΔE) that reflect the potential loss of the ES-mediated EET. In situ spectral kinetic analysis of ES reduction by c-Cyts in a living SP200 suspension was first investigated with the E(ES), E(c-Cyt), and ΔE values being calculated. This study can provide a comprehensive understanding of the role of ESs in EET.

  19. Electronic shift register memory based on molecular electron-transfer reactions

    NASA Technical Reports Server (NTRS)

    Hopfield, J. J.; Onuchic, Jose Nelson; Beratan, David N.

    1989-01-01

    The design of a shift register memory at the molecular level is described in detail. The memory elements are based on a chain of electron-transfer molecules incorporated on a very large scale integrated (VLSI) substrate, and the information is shifted by photoinduced electron-transfer reactions. The design requirements for such a system are discussed, and several realistic strategies for synthesizing these systems are presented. The immediate advantage of such a hybrid molecular/VLSI device would arise from the possible information storage density. The prospect of considerable savings of energy per bit processed also exists. This molecular shift register memory element design solves the conceptual problems associated with integrating molecular size components with larger (micron) size features on a chip.

  20. Layered Black Phosphorus: Strongly Anisotropic Magnetic, Electronic, and Electron-Transfer Properties.

    PubMed

    Sofer, Zdeněk; Sedmidubský, David; Huber, Štěpán; Luxa, Jan; Bouša, Daniel; Boothroyd, Chris; Pumera, Martin

    2016-03-01

    Layered elemental materials, such as black phosphorus, exhibit unique properties originating from their highly anisotropic layered structure. The results presented herein demonstrate an anomalous anisotropy for the electrical, magnetic, and electrochemical properties of black phosphorus. It is shown that heterogeneous electron transfer from black phosphorus to outer- and inner-sphere molecular probes is highly anisotropic. The electron-transfer rates differ at the basal and edge planes. These unusual properties were interpreted by means of calculations, manifesting the metallic character of the edge planes as compared to the semiconducting properties of the basal plane. This indicates that black phosphorus belongs to a group of materials known as topological insulators. Consequently, these effects render the magnetic properties highly anisotropic, as both diamagnetic and paramagnetic behavior can be observed depending on the orientation in the magnetic field.

  1. Water promoting electron hole transport between tyrosine and cysteine in proteins via a special mechanism: double proton coupled electron transfer.

    PubMed

    Chen, Xiaohua; Ma, Guangcai; Sun, Weichao; Dai, Hongjing; Xiao, Dong; Zhang, Yanfang; Qin, Xin; Liu, Yongjun; Bu, Yuxiang

    2014-03-26

    The proton/electron transfer reactions between cysteine residue (Cys) and tyrosinyl radical (Tyr(•)) are an important step for many enzyme-catalyzed processes. On the basis of the statistical analysis of protein data bank, we designed three representative models to explore the possible proton/electron transfer mechanisms from Cys to Tyr(•) in proteins. Our ab initio calculations on simplified models and quantum mechanical/molecular mechanical (QM/MM) calculations on real protein environment reveal that the direct electron transfer between Cys and Tyr(•) is difficult to occur, but an inserted water molecule can greatly promote the proton/electron transfer reactions by a double-proton-coupled electron transfer (dPCET) mechanism. The inserted H2O plays two assistant roles in these reactions. The first one is to bridge the side chains of Tyr(•) and Cys via two hydrogen bonds, which act as the proton pathway, and the other one is to enhance the electron overlap between the lone-pair orbital of sulfur atom and the π-orbital of phenol moiety and to function as electron transfer pathway. This water-mediated dPCET mechanism may offer great help to understand the detailed electron transfer processes between Tyr and Cys residues in proteins, such as the electron transfer from Cys439 to Tyr730(•) in the class I ribonucleotide reductase.

  2. Theoretical Design and Calculation of a Crown Ether Phase-Transfer-Catalyst Scaffold for Nucleophilic Fluorination Merging Two Catalytic Concepts.

    PubMed

    Carvalho, Nathália F; Pliego, Josefredo R

    2016-09-16

    Fluorinated organic molecules are playing an increased role in the area of pharmaceuticals and agrochemicals. This fact demands the development of efficient catalytic fluorination processes. In this paper, we have designed a new crown ether with four hydroxyl groups strategically positioned. The catalytic activity of this basic scaffold was investigated with high levels of electronic structure theory, such as the ONIOM approach combining MP4 and MP2 methods. On the basis of the calculations, this new structure is able to solubilize potassium fluoride in toluene solution much more efficiently than 18-crown-6 (18C6). In addition, the strong interaction of the new catalyst with the SN2 transition state leads to a very important catalytic effect, with a predicted free energy barrier of 23.3 kcal mol(-1) for potassium fluoride plus ethyl bromide reaction model. Compared with experimental data and previous theoretical studies, this new catalyst is 10(4) times more efficient than 18C6 for nucleophilic fluorination of alkyl halides. The catalysis is predicted to be selective, leading to 97% of fluorination and only 3% of elimination. Catalytic fluorination of the aromatic ring has also been investigated, and although the catalyst is less efficient in this case, our analysis has indicated further development of this strategy can lead to more efficient catalysis.

  3. Charge transfer emission in coumarin 343 sensitized TiO{sub 2} nanoparticle: A direct measurement of back electron transfer

    SciTech Connect

    Ghosh, H.N.

    1999-11-25

    Electron injection and back electron transfer dynamics in coumarin 343 (C-343) adsorbed on TiO{sub 2} nanoparticles are studied by picosecond transient absorption and time-resolved fluorescence spectroscopy. The direct detection of electrons in the nanoparticles and the parent cation are monitored using picosecond transient absorption spectroscopy, and the corresponding dynamics of the adsorbate are monitored by time-resolved absorption spectra of the cation radical of C-343 in the visible region. When the electron returns from the nanoparticles to the present cation, a low quantum yield red-shifted charge transfer emission is observed. Measuring the charge transfer emission lifetimes by a picosecond time-resolved fluorimeter, the author gets an exact rate of back electron transfer reaction from the nanoparticle to the parent cation.

  4. Electrochemical Electron Transfer and Proton-Coupled Electron Transfer: Effects of Double Layer and Ionic Environment on Solvent Reorganization Energies

    SciTech Connect

    Ghosh, Soumya; Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2016-06-14

    Electron transfer and proton coupled electron transfer (PCET) reactions at electrochemical interfaces play an essential role in a broad range of energy conversion processes. The reorganization energy, which is a measure of the free energy change associated with solute and solvent rearrangements, is a key quantity for calculating rate constants for these reactions. We present a computational method for including the effects of the double layer and ionic environment of the diffuse layer in calculations of electrochemical solvent reorganization energies. This approach incorporates an accurate electronic charge distribution of the solute within a molecular-shaped cavity in conjunction with a dielectric continuum treatment of the solvent, ions, and electrode using the integral equations formalism polarizable continuum model. The molecule-solvent boundary is treated explicitly, but the effects of the electrode-double layer and double layer-diffuse layer boundaries, as well as the effects of the ionic strength of the solvent, are included through an external Green’s function. The calculated total reorganization energies agree well with experimentally measured values for a series of electrochemical systems, and the effects of including both the double layer and ionic environment are found to be very small. This general approach was also extended to electrochemical PCET and produced total reorganization energies in close agreement with experimental values for two experimentally studied PCET systems. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  5. Transfer of optical orbital angular momentum to a bound electron

    PubMed Central

    Schmiegelow, Christian T.; Schulz, Jonas; Kaufmann, Henning; Ruster, Thomas; Poschinger, Ulrich G.; Schmidt-Kaler, Ferdinand

    2016-01-01

    Photons can carry angular momentum, not only due to their spin, but also due to their spatial structure. This extra twist has been used, for example, to drive circular motion of microscopic particles in optical tweezers as well as to create vortices in quantum gases. Here we excite an atomic transition with a vortex laser beam and demonstrate the transfer of optical orbital angular momentum to the valence electron of a single trapped ion. We observe strongly modified selection rules showing that an atom can absorb two quanta of angular momentum from a single photon: one from the spin and another from the spatial structure of the beam. Furthermore, we show that parasitic ac-Stark shifts from off-resonant transitions are suppressed in the dark centre of vortex beams. These results show how light's spatial structure can determine the characteristics of light–matter interaction and pave the way for its application and observation in other systems. PMID:27694805

  6. Electron transfer dissociation of modified peptides and proteins.

    PubMed

    Zhou, Yuping; Dong, Jia; Vachet, Richard W

    2011-10-01

    Mass spectrometry is the method of choice for sequencing peptides and proteins and is the preferred choice for characterizing post-translational modifications (PTMs). The most commonly used dissociation method to characterize peptides (i.e. collision-induced dissociation (CID)), however, has some limitations when it comes to analyzing many PTMs. Because CID chemistry is influenced by amino acid side-chains, some modifications can alter or inhibit dissociation along the peptide backbone, thereby limiting sequence information and hindering identification of the modification site. Electron transfer dissociation (ETD) has emerged as an alternate dissociation technique that, in most cases, overcomes these limitations of CID because it is less affected by side chain chemistry. Here, we review recent applications of ETD for characterizing peptide and protein PTMs with a particular emphasis on the advantages of ETD over CID, the ways in which ETD and CID have been used in a complementary manner, and how peptide modifications can still influence ETD dissociation pathways.

  7. Proton-Coupled Electron Transfer: Moving Together and Charging Forward

    PubMed Central

    2016-01-01

    Proton-coupled electron transfer (PCET) is ubiquitous throughout chemistry and biology. This Perspective discusses recent advances and current challenges in the field of PCET, with an emphasis on the role of theory and computation. The fundamental theoretical concepts are summarized, and expressions for rate constants and kinetic isotope effects are provided. Computational methods for calculating reduction potentials and pKa’s for molecular electrocatalysts, as well as insights into linear correlations and non-innocent ligands, are also described. In addition, computational methods for simulating the nonadiabatic dynamics of photoexcited PCET are discussed. Representative applications to PCET in solution, proteins, electrochemistry, and photoinduced processes are presented, highlighting the interplay between theoretical and experimental studies. The current challenges and suggested future directions are outlined for each type of application, concluding with an overall view to the future. PMID:26110700

  8. Transfer of optical orbital angular momentum to a bound electron

    NASA Astrophysics Data System (ADS)

    Schmiegelow, Christian T.; Schulz, Jonas; Kaufmann, Henning; Ruster, Thomas; Poschinger, Ulrich G.; Schmidt-Kaler, Ferdinand

    2016-10-01

    Photons can carry angular momentum, not only due to their spin, but also due to their spatial structure. This extra twist has been used, for example, to drive circular motion of microscopic particles in optical tweezers as well as to create vortices in quantum gases. Here we excite an atomic transition with a vortex laser beam and demonstrate the transfer of optical orbital angular momentum to the valence electron of a single trapped ion. We observe strongly modified selection rules showing that an atom can absorb two quanta of angular momentum from a single photon: one from the spin and another from the spatial structure of the beam. Furthermore, we show that parasitic ac-Stark shifts from off-resonant transitions are suppressed in the dark centre of vortex beams. These results show how light's spatial structure can determine the characteristics of light-matter interaction and pave the way for its application and observation in other systems.

  9. Copper(I)/ABNO-catalyzed aerobic alcohol oxidation: alleviating steric and electronic constraints of Cu/TEMPO catalyst systems.

    PubMed

    Steves, Janelle E; Stahl, Shannon S

    2013-10-23

    Cu/TEMPO catalyst systems promote efficient aerobic oxidation of sterically unhindered primary alcohols and electronically activated substrates, but they show reduced reactivity with aliphatic and secondary alcohols. Here, we report a catalyst system, consisting of ((MeO)bpy)Cu(I)(OTf) and ABNO ((MeO)bpy = 4,4'-dimethoxy-2,2'-bipyridine; ABNO = 9-azabicyclo[3.3.1]nonane N-oxyl), that mediates aerobic oxidation of all classes of alcohols, including primary and secondary allylic, benzylic, and aliphatic alcohols with nearly equal efficiency. The catalyst exhibits broad functional group compatibility, and most reactions are complete within 1 h at room temperature using ambient air as the source of oxidant.

  10. Activation of molecular catalysts using semiconductor quantum dots

    DOEpatents

    Meyer, Thomas J [Chapel Hill, NC; Sykora, Milan [Los Alamos, NM; Klimov, Victor I [Los Alamos, NM

    2011-10-04

    Photocatalytic materials based on coupling of semiconductor nanocrystalline quantum dots (NQD) and molecular catalysts. These materials have capability to drive or catalyze non-spontaneous chemical reactions in the presence of visible radiation, ultraviolet radiation, or both. The NQD functions in these materials as a light absorber and charge generator. Following light absorption, the NQD activates a molecular catalyst adsorbed on the surface of the NQD via transfer of one or more charges (either electrons or electron-holes) from the NQD to the molecular catalyst. The activated molecular catalyst can then drive a chemical reaction. A photoelectrolytic device that includes such photocatalytic materials is also described.

  11. Electron transfer in systems of well-defined geometry

    SciTech Connect

    Overfield, R.E.; Kaufmann, K.J.; Wasielewski, M.R.

    1980-01-01

    Two mesopyropheophorbide macrocycles can be joined via two covalent linkages to produce a cyclophane. It is possible to insert one or two Mg atoms into the cyclophane. The Qy transitions of the macrocycles are nearly orthogonal. The visible absorption spectrum of the monometal cyclophane is nearly a superposition of the spectra of the monomers. Emission from the monometal cyclophane arises primarily from the red most absorbing chromophore. The excited state difference spectrum shows that both macrocycles are excited. Fluorescence lifetimes of the monometal cyclophane decrease with increasing dielectric strength. Changes in the fluorescence and the triplet yield parallel the shortening of the singlet lifetime. Thus the radiative rate is solvent independent. This is in contrast to what one would expect if the emitting state had charge transfer character. Since the fluorescence lifetime is dependent on dielectric, the nonradiative relaxation from the singlet state is due to formation of a radical pair. The decay rate of the postulated radical pair was monitored by observing the kinetics of ground state repopulation. For the geometry of this cyclophane, electron transfer proceeds relatively slowly (k = 3 x 10/sup 9/ sec/sup -1/) in the forward direction. Modeling calculations indicate that the rate of annihilation of the radical pair may decrease as the solvent dielectric decreases.

  12. Zwitterionic-surfactant-stabilized palladium nanoparticles as catalysts in the hydrogen transfer reductive amination of benzaldehydes.

    PubMed

    Drinkel, Emma E; Campedelli, Roberta R; Manfredi, Alex M; Fiedler, Haidi D; Nome, Faruk

    2014-03-21

    Palladium nanoparticles (NPs) stabilized by a zwitterionic surfactant are revealed here to be good catalysts for the reductive amination of benzaldehydes using formate salts as hydrogen donors in aqueous isopropanol. In terms of environmental impact and economy, metallic NPs offer several advantages over homogeneous and traditional heterogeneous catalysts. NPs usually display greater activity due to the increased metal surface area and sometimes exhibit enhanced selectivity. Thus, it is possible to use very low loadings of expensive metal. The methodology eliminates the use of a hydrogen gas atmosphere or toxic or expensive reagents. A range of aromatic aldehydes were converted to benzylamines when reacted with primary and secondary amines in the presence of the Pd NPs, which also displayed good activity when supported on alumina. In every case, the Pd NPs could be easily recovered and reused up to three more times, and at the end of the process, the product was metal-free.

  13. Synthesis of imine and reduced imine compounds containing aromatic sulfonamide: use as catalyst for in situ generation of ruthenium catalysts in transfer hydrogenation of acetophenone derivatives.

    PubMed

    Dayan, Serkan; Arslan, Fatma; Kayacı, Nilgün; Kalaycioglu, Nilgun Ozpozan

    2014-01-01

    Three imine and three reduced imine ligands containing aromatic sulfonamide (2-7) were isolated by a simple method and characterized by FT-IR, NMR, and elemental analysis. Meanwhile, the interaction of 2-7 ligands with [(p-cymene)RuCl2]2 was analyzed in situ by UV-vis spectrophotometer. The in situ generated catalytic system derived from N-(2-(benzylideneamino)phenyl)-2,4,6-trimethyl-benzenesulfonamides and N-(2-(benzylamino)phenyl)-2,4,6-trimethyl-benzenesulfonamides with [(p-cymene)RuCl2]2 was used as a catalyst in the transfer hydrogenation (TH) of p-substituted acetophenone derivatives. The catalytic systems displayed high activities, which increased in the order 7<4<5<6<1<2<3. The best activity for the TH of 4-chloroacetophenone was provided with the [(p-cymene)RuCl2]2/ligand (3) catalytic system (turnover frequency values: 720 h(-1) for 10 min on S/C: 500/1).

  14. Redox induced electron transfer in doublet azo-anion diradical rhenium(II) complexes. Characterization of complete electron transfer series.

    PubMed

    Paul, Nandadulal; Samanta, Subhas; Goswami, Sreebrata

    2010-03-15

    Reactions of dirhenium decacarbonyl with the two azoaromatic ligands, L(a) = (2-phenylazo)pyridine and L(b) = (4-chloro-2-phenylazo)pyridine (general abbreviation of the ligands is L) afford paramagnetic rhenium(II) complexes, [Re(II)(L(*-))(2)(CO)(2)] (1) (S = 1/2 ground state) with two one-electron reduced azo-anion radical ligands in an octahedral geometrical arrangement. At room temperature (300 K) the complexes 1a-b, showed magnetic moments (mu(eff)) close to 1.94 mu(B), which is suggestive of the existence of strong antiferromagnetic interactions in the complexes. The results of magnetic measurements on one of the complexes, 1b, in the temperature range 2-300 K are reported. The above complexes showed two cathodic and two anodic responses in cyclic voltammetry where one-electron oxidation leads to an unusual redox event involving simultaneous reduction of the rhenium(II) and oxidation of the second ligand via intramolecular electron transfer. The oxidized complexes 1a(+) and 1b(+) are air stable and were isolated as crystalline solids as their tri-iodide (I(3)(-)) salts. The structures of the two representative complexes, 1b and [1b]I(3), as determined by X-ray crystallography, are compared. The anionic complexes, [1](-) and [1](2-) were characterized in solution by their spectral properties.

  15. Evolution of gold structure during thermal treatment of Au/FeOx catalysts revealed by aberration-corrected electron microscopy.

    PubMed

    Allard, Lawrence F; Borisevich, Albina; Deng, Weiling; Si, Rui; Flytzani-Stephanopoulos, Maria; Overbury, Steven H

    2009-06-01

    High-resolution aberration-corrected electron microscopy was performed on a series of catalysts derived from a parent material, 2 at.% Au/Fe(2)O(3) (WGC ref. no. 60C), prepared by co-precipitation and calcined in air at 400 degrees C, and a catalyst prepared by leaching surface gold from the parent catalyst and exposed to various treatments, including use in the water-gas shift reaction at 250 degrees C. Aberration-corrected JEOL 2200FS (JEOL USA, Peabody, MA) and Vacuum Generators HB-603U STEM instruments were used to image fresh, reduced, leached, used and re-oxidized catalyst samples. A new in situ heating technology (Protochips Inc., Raleigh, NC, USA), which permits full sub-Angström imaging resolution in the JEOL 2200FS was used to study the effects of temperature on the behavior of gold species. A remarkable stability of gold to redox treatments up to 400 degrees C, with atomic gold decorating step surfaces of iron oxide was identified. On heating the samples in vacuum to 700 degrees C, it was found that monodispersed gold began to sinter to form nanoparticles above 500 degrees C. Gold species internal to the iron oxide support material was shown to diffuse to the surface at elevated temperature, coalescing into discrete nanocrystals. The results demonstrate the value of in situ heating for understanding morphological changes in the catalyst with elevated temperature treatments.

  16. Substrate entasis and electronic coupling elements in electron transfer from FeII in a multicopper ferroxidase

    PubMed Central

    Kosman, Daniel J.

    2008-01-01

    Outersphere electron transfer in multicopper oxidases occurs at the type 1, blue CuII. One class of MCO proteins exhibits a specificity in this reaction towards FeII. In work carried out in collaboration with the Solomon lab over the past 7 years, we have delineated the structural motifs that support this ferroxidase specificity and have quantified the contributions that each makes to this outersphere electron transfer reaction from FeII to the type 1 CuII. Two features of this electron transfer catalysis stand out. First, the protein provides a binding site for FeII that actually favors FeIII; this coordination sphere places the bound FeII in a state of “entasis” that can be relieved by loss of an electron. In short, the EO of the bound FeII is lowered relative to that of aqueous ferrous iron making electron transfer thermodynamically favorable. Second, carboxylates within this coordination sphere provide an electronic coupling pathway for the electron transfer via their H-bond network with type 1 Cu histidine ligands thus making electron transfer kinetically efficient. This brief report breaks down these contributions to ferroxidase specificity in terms of the semi-classical Marcus equation describing outersphere electron transfer. PMID:18443651

  17. Ions interacting with planar aromatic molecules: Modeling electron transfer reactions

    SciTech Connect

    Forsberg, B. O.; Alexander, J. D.; Chen, T.; Pettersson, A. T.; Gatchell, M.; Cederquist, H.; Zettergren, H.

    2013-02-07

    We present theoretical absolute charge exchange cross sections for multiply charged cations interacting with the Polycyclic Aromatic Hydrocarbon (PAH) molecules pyrene C{sub 14}H{sub 10}, coronene C{sub 24}H{sub 12}, or circumcoronene C{sub 54}H{sub 18}. These planar, nearly circular, PAHs are modelled as conducting, infinitely thin, and perfectly circular discs, which are randomly oriented with respect to straight line ion trajectories. We present the analytical solution for the potential energy surface experienced by an electron in the field of such a charged disc and a point-charge at an arbitrary position. The location and height of the corresponding potential energy barrier from this simple model are in close agreement with those from much more computationally demanding Density Functional Theory (DFT) calculations in a number of test cases. The model results compare favourably with available experimental data on single- and multiple electron transfer reactions and we demonstrate that it is important to include the orientation dependent polarizabilities of the molecules (model discs) in particular for the larger PAHs. PAH ionization energy sequences from DFT are tabulated and used as model inputs. Absolute cross sections for the ionization of PAH molecules, and PAH ionization energies such as the ones presented here may be useful when considering the roles of PAHs and their ions in, e.g., interstellar chemistry, stellar atmospheres, and in related photoabsorption and photoemission spectroscopies.

  18. Chlorophyll-quinone photochemical electron transfer in liposomes

    SciTech Connect

    Hurley, J.K.; Castelli, F.; Tollin, G.

    1981-09-01

    The study described involves the reduction of electron acceptors (quinones) by photoexcited Chloroplasts (Chl). Chl a (from spinach) is incorporated into phosphatidylcholine (either synthetic or from hen egg yolks) liposomes suspended in 10 mM phosphate buffer (pH 7.0). The quinones are either present during liposome formation or added later, depending upon their water solubility. The measurement technique employed is laser flash photolysis. A pulsed nitrogen laser pumps a dye laser, which delivers a short light flash (10 ns) to the sample at a wavelength (655-660 nm) within an absorption band of Chl. This raises Chl to an excited singlet level, which can rapidly cross to the lowest excited triple level (/sup 3/Chl). From this state Chl can transfer an electron to acceptors such as quinones, resulting in the formation of the Chl cation radical (Chl./sup +/) and the semiquinone anion radical (Q./sup +/). Transient absorbance changes ocurring within the sample cell are monitored and can be attributed to processes such as excited state quenching (of /sup 3/Chl by Q) and radical product formation and decay. (JMT)

  19. How Much Is Transferred from Training to the Job? The 10% Delusion as a Catalyst for Thinking about Transfer

    ERIC Educational Resources Information Center

    Ford, J. Kevin; Yelon, Stephen L.; Billington, Abigail Q.

    2011-01-01

    This article explores the common belief that only a small amount of what is taught in a training program is actually transferred to the job. After providing evidence of the source of the generalization and the acceptance of the notion despite the lack of empirical, behavioral evidence, we take the opportunity to examine the likely reasons for that…

  20. Structural changes in iron oxide and gold catalysts during nucleation of carbon nanotubes studied by in situ transmission electron microscopy.

    PubMed

    Tang, Dai-Ming; Liu, Chang; Yu, Wan-Jing; Zhang, Li-Li; Hou, Peng-Xiang; Li, Jin-Cheng; Li, Feng; Bando, Yoshio; Golberg, Dmitri; Cheng, Hui-Ming

    2014-01-28

    We report a simple, versatile in situ transmission electron microscopy (TEM) approach for investigating the nucleation and growth mechanism of carbon nanotubes (CNTs), by which the composition, phase transition, and physical state of various catalysts can be clearly resolved. In our approach, catalyst nanoparticles (NPs) are placed in a multiwall CNT "tubular furnace" with two open ends, and a high temperature is obtained by Joule heating in the specimen chamber of a TEM. The carbon is supplied by electron irradiation-induced injection of carbon atoms. Comparative studies on the catalytic behavior of traditional iron oxide and recently discovered gold catalysts were performed. It was found that the growth of CNTs from iron oxide involves the reduction of Fe2O3 to Fe3C, nucleation and growth of CNTs from partially liquefied Fe3C, and finally the formation of elemental Fe when the growth stops. In contrast, while changes in shape, size, and orientation were also observed for the fluctuating Au NPs, no chemical reactions or phase transitions occurred during the nucleation of CNTs. These two distinct nucleation and growth processes and mechanisms would be valuable for the structure-controlled growth of CNTs by catalyst design and engineering.

  1. Long-range electron transfer in biomolecules. Tunneling or hopping?

    PubMed

    Voityuk, Alexander A

    2011-10-27

    Two competing mechanisms are relevant for long-range electron transfer (ET) in biomolecules: direct electron tunneling between donor (D) and acceptor (A), D → A, and multistep hopping D → X → A, where an electron or an electron hole is transiently localized on intermediate sites X. Which of these mechanisms dominates the ET reaction is determined by the arrangement and electronic properties of the redox centers. For thermal ET, it is shown that single-step tunneling is overcome by hopping when the energy gap E between D and X is smaller than the crossover barrier E(C), E(C) = (ΔG/2) + (3/4)k(B)TβR(DA), where ΔG is the driving force, β the decay parameter, and R(DA) the donor-acceptor distance. In proteins at T = 300 K, hopping will dominate when E < E(C) = (ΔG/2) + (R(DA)/50) (E and ΔG are in eV, R(DA) in Å); single-step tunneling will be operative when E > E(C). Thus, one can explore the ET mechanism using three quantities E, ΔG, and R(DA). When ΔG = 0 and E = 0.5 eV (the difference in redox potentials of D and X is 0.5 V), two-step hopping D → X → A will be favored at R(DA) >25 Å. In protein ET chains, the distance between redox cofactors is often smaller than 20 Å, but the gap E between the cofactors and surrounding amino acid residues is larger than 0.5 eV. Therefore, ET in the systems should occur by single-step tunneling D → A. In the activationless regime (ΔG ≈ -λ, λ is the reorganization energy) often observed for photoinduced ET, the crossing point energy is determined by E(C) = (2λkTβR(DA))(1/2) - λ. The suggested expressions for the threshold barrier may be useful to predict the ET mechanism in natural and artificial redox systems.

  2. Photoinduced electron transfer reaction in polymer-surfactant aggregates: Photoinduced electron transfer between N,N-dimethylaniline and 7-amino coumarin dyes

    SciTech Connect

    Chakraborty, Anjan; Seth, Debabrata; Setua, Palash; Sarkar, Nilmoni

    2008-05-28

    Photoinduced electron transfer between coumarin dyes and N,N-dimethylaniline has been investigated by using steady state and picosecond time resolved fluorescence spectroscopy in sodium dodecyl sulphate (SDS) micelles and PVP-polyvinyl pyrrolidone (SDS) polymer-surfactant aggregates. A slower rate of electron transfer is observed in PVP-SDS aggregates than in polymer-free SDS micelles. A Marcus type inversion is observed in the correlation of free energy change in comparison with the electron transfer rate. The careful investigation reveals that C-151 deviates from the normal Marcus inverted region compared to its analogs C-152 and C-481 due to slower rotational relaxation and smaller translational diffusion coefficient.

  3. Modular electron transfer circuits for synthetic biology: insulation of an engineered biohydrogen pathway.

    PubMed

    Agapakis, Christina M; Silver, Pamela A

    2010-01-01

    Electron transfer is central to a wide range of essential metabolic pathways, from photosynthesis to fermentation. The evolutionary diversity and conservation of proteins that transfer electrons makes these pathways a valuable platform for engineered metabolic circuits in synthetic biology. Rational engineering of electron transfer pathways containing hydrogenases has the potential to lead to industrial scale production of hydrogen as an alternative source of clean fuel and experimental assays for understanding the complex interactions of multiple electron transfer proteins in vivo. We designed and implemented a synthetic hydrogen metabolism circuit in Escherichia coli that creates an electron transfer pathway both orthogonal to and integrated within existing metabolism. The design of such modular electron transfer circuits allows for facile characterization of in vivo system parameters with applications toward further engineering for alternative energy production.

  4. Directionality of electron-transfer reactions in photosystem I of prokaryotes: universality of the bidirectional electron-transfer model.

    PubMed

    Santabarbara, Stefano; Kuprov, Ilya; Poluektov, Oleg; Casal, Antonio; Russell, Charlotte A; Purton, Saul; Evans, Michael C W

    2010-11-25

    The electron-transfer (ET) reactions in photosystem I (PS I) of prokaryotes have been investigated in wild-type cells of the cyanobacterium Synechocystis sp. PCC 6803, and in two site-directed mutants in which the methionine residue of the reaction center subunits PsaA and PsaB, which acts as the axial ligand to the primary electron chlorophyll acceptor A(0), was substituted with histidine. Analysis by pulsed electron paramagnetic resonance spectroscopy at 100 K indicates the presence of two forms of the secondary spin-correlated radical pairs, which are assigned to [P(700)(+)A(1A)(-)] and [P(700)(+)A(1B)(-)], where A(1A) and A(1B) are the phylloquinone molecules bound to the PsaA and the PsaB reaction center subunits, respectively. Each of the secondary radical pair forms is selectively observed in either the PsaA-M688H or the PsaB-M668H mutant, whereas both radical pairs are observed in the wild type following reduction of the iron-sulfur cluster F(X), the intermediate electron acceptor between A(1) and the terminal acceptors F(A) and F(B). Analysis of the time and spectral dependence of the light-induced electron spin echo allows the resolution of structural differences between the [P(700)(+)A(1A)(-)] and [P(700)(+)A(1B)(-)] radical pairs. The interspin distance is 25.43 ± 0.01 Å for [P(700)(+)A(1A)(-)] and 24.25 ± 0.01 Å for [P(700)(+)A(1B)(-)]. Moreover, the relative orientation of the interspin vector is rotated by ~60° with respect to the g-tensor of the P(700)(+) radical. These estimates are in agreement with the crystallographic structural model, indicating that the cofactors bound to both reaction center subunits of prokaryotic PS I are actively involved in electron transport. This work supports the model that bidirectionality is a general property of type I reaction centers from both prokaryotes and eukaryotes, and contrasts with the situation for photosystem II and other type II reaction centers, in which ET is strongly asymmetric. A revised model

  5. Interfacial Electron Transfer and Transient Photoconductivity Studied with Terahertz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Milot, Rebecca Lee

    Terahertz spectroscopy is distinguished from other far infrared and millimeter wave spectroscopies by its inherent phase sensitivity and sub-picosecond time resolution making it a versatile technique to study a wide range of physical phenomena. As THz spectroscopy is still a relatively new field, many aspects of THz generation mechanisms have not been fully examined. Using terahertz emission spectroscopy (TES), THz emission from ZnTe(110) was analyzed and found to be limited by two-photon absorption and free-carrier generation at high excitation fluences. Due to concerns about the continued use of fossil fuels, solar energy has been widely investigated as a promising source of renewable energy. Dye-sensitized solar cells (DSSCs) have been developed as a low-cost alternative to conventional photovoltaic solar cells. To solve the issues of the intermittency and inefficient transport associated with solar energy, researchers are attempting to adapt DSSCs for water oxidation and chemical fuel production. Both device designs incorporate sensitizer molecules covalently bound to metal oxide nanoparticles. The sensitizer, which is comprised of a chromophore and anchoring group, absorbs light and transfers an electron from its excited state to the conduction band of the metal oxide, producing an electric current. Using time-resolved THz spectroscopy (TRTS), an optical pump/THz probe technique, the efficiency and dynamics of electron injection from sensitizers to metal oxides was evaluated as a function of the chromophore, its anchoring group, and the metal oxide identity. Experiments for studying fully functioning DSSCs and water oxidation devices are also described. Bio-inspired pentafluorophenyl porphyrin chromophores have been designed and synthesized for use in photoelectrochemical water oxidation cells. Influences on the efficiency and dynamics of electron injection from the chromophores into TiO2 and SnO2 nanoparticles due to changes in both the central substituent to

  6. A highly selective ferrocene-based planar chiral PIP (Fc-PIP) acyl transfer catalyst for the kinetic resolution of alcohols.

    PubMed

    Hu, Bin; Meng, Meng; Wang, Zheng; Du, Wenting; Fossey, John S; Hu, Xinquan; Deng, Wei-Ping

    2010-12-01

    Novel planar chiral ferrocene nucleophilic catalysts (Fc-PIP) containing both central and planar chiral elements were designed and synthesized for catalytic enantioselective acyl transfer of secondary alcohols. A remarkably efficient catalyst with high selectivity factors (up to S = 1892) was identified. Comparing the combination of central and planar chirality revealed a strong requirement for the "matched" chiral elements, indicating that the stereogenic center of the imidazole rings should present itself on the same face as the ferrocenyl fragment; otherwise, the catalyst is completely inactive. An exclusively stacked transition state that accounts for the high selectivity of the kinetic resolution of secondary alcohols is proposed. Notably, this newly designed catalyst family is suitable for the catalytic kinetic resolution of bulky arylalkyl carbinols, producing esters with extremely high ee (>99%).

  7. Role of bonding mechanisms during transfer hydrogenation reaction on heterogeneous catalysts of platinum nanoparticles supported on zinc oxide nanorods

    NASA Astrophysics Data System (ADS)

    Al-Alawi, Reem A.; Laxman, Karthik; Dastgir, Sarim; Dutta, Joydeep

    2016-07-01

    For supported heterogeneous catalysis, the interface between a metal nanoparticle and the support plays an important role. In this work the dependency of the catalytic efficiency on the bonding chemistry of platinum nanoparticles supported on zinc oxide (ZnO) nanorods is studied. Platinum nanoparticles were deposited on ZnO nanorods (ZnO NR) using thermal and photochemical processes and the effects on the size, distribution, density and chemical state of the metal nanoparticles upon the catalytic activities are presented. The obtained results indicate that the bonding at Pt-ZnO interface depends on the deposition scheme which can be utilized to modulate the surface chemistry and thus the activity of the supported catalysts. Additionally, uniform distribution of metal on the catalyst support was observed to be more important than the loading density. It is also found that oxidized platinum Pt(IV) (platinum hydroxide) provided a more suitable surface for enhancing the transfer hydrogenation reaction of cyclohexanone with isopropanol compared to zero valent platinum. Photochemically synthesized ZnO supported nanocatalysts were efficient and potentially viable for upscaling to industrial applications.

  8. Hydrated Electron Transfer to Nucleobases in Aqueous Solutions Revealed by Ab Initio Molecular Dynamics Simulations.

    PubMed

    Zhao, Jing; Wang, Mei; Fu, Aiyun; Yang, Hongfang; Bu, Yuxiang

    2015-08-03

    We present an ab initio molecular dynamics (AIMD) simulation study into the transfer dynamics of an excess electron from its cavity-shaped hydrated electron state to a hydrated nucleobase (NB)-bound state. In contrast to the traditional view that electron localization at NBs (G/A/C/T), which is the first step for electron-induced DNA damage, is related only to dry or prehydrated electrons, and a fully hydrated electron no longer transfers to NBs, our AIMD simulations indicate that a fully hydrated electron can still transfer to NBs. We monitored the transfer dynamics of fully hydrated electrons towards hydrated NBs in aqueous solutions by using AIMD simulations and found that due to solution-structure fluctuation and attraction of NBs, a fully hydrated electron can transfer to a NB gradually over time. Concurrently, the hydrated electron cavity gradually reorganizes, distorts, and even breaks. The transfer could be completed in about 120-200 fs in four aqueous NB solutions, depending on the electron-binding ability of hydrated NBs and the structural fluctuation of the solution. The transferring electron resides in the π*-type lowest unoccupied molecular orbital of the NB, which leads to a hydrated NB anion. Clearly, the observed transfer of hydrated electrons can be attributed to the strong electron-binding ability of hydrated NBs over the hydrated electron cavity, which is the driving force, and the transfer dynamics is structure-fluctuation controlled. This work provides new insights into the evolution dynamics of hydrated electrons and provides some helpful information for understanding the DNA-damage mechanism in solution.

  9. Probing electron transfer mechanisms in Shewanella oneidensis MR-1 using a nanoelectrode platform and single-cell imaging.

    PubMed

    Jiang, Xiaocheng; Hu, Jinsong; Fitzgerald, Lisa A; Biffinger, Justin C; Xie, Ping; Ringeisen, Bradley R; Lieber, Charles M

    2010-09-28

    Microbial fuel cells (MFCs) represent a promising approach for sustainable energy production as they generate electricity directly from metabolism of organic substrates without the need for catalysts. However, the mechanisms of electron transfer between microbes and electrodes, which could ultimately limit power extraction, remain controversial. Here we demonstrate optically transparent nanoelectrodes as a platform to investigate extracellular electron transfer in Shewanella oneidensis MR-1, where an array of nanoholes precludes or single window allows for direct microbe-electrode contacts. Following addition of cells, short-circuit current measurements showed similar amplitude and temporal response for both electrode configurations, while in situ optical imaging demonstrates that the measured currents were uncorrelated with the cell number on the electrodes. High-resolution imaging showed the presence of thin, 4- to 5-nm diameter filaments emanating from cell bodies, although these filaments do not appear correlated with current generation. Both types of electrodes yielded similar currents at longer times in dense cell layers and exhibited a rapid drop in current upon removal of diffusible mediators. Reintroduction of the original cell-free media yielded a rapid increase in current to ∼80% of original level, whereas imaging showed that the positions of > 70% of cells remained unchanged during solution exchange. Together, these measurements show that electron transfer occurs predominantly by mediated mechanism in this model system. Last, simultaneous measurements of current and cell positions showed that cell motility and electron transfer were inversely correlated. The ability to control and image cell/electrode interactions down to the single-cell level provide a powerful approach for advancing our fundamental understanding of MFCs.

  10. 75 FR 59172 - Electronic Funds Transfer of Depository Taxes; Hearing Cancellation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ... Depository Taxes; Hearing Cancellation AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Cancellation... on proposed regulation relating to Federal tax deposits (FTDs) by Electronic Funds Transfer...

  11. Type IV pili of Acidithiobacillus ferrooxidans can transfer electrons from extracellular electron donors.

    PubMed

    Li, Yongquan; Li, Hongyu

    2014-03-01

    Studies on Acidithiobacillus ferrooxidans accepting electrons from Fe(II) have previously focused on cytochrome c. However, we have discovered that, besides cytochrome c, type IV pili (Tfp) can transfer electrons. Here, we report conduction by Tfp of A. ferrooxidans analyzed with a conducting-probe atomic force microscope (AFM). The results indicate that the Tfp of A. ferrooxidans are highly conductive. The genome sequence of A. ferrooxidans ATCC 23270 contains two genes, pilV and pilW, which code for pilin domain proteins with the conserved amino acids characteristic of Tfp. Multiple alignment analysis of the PilV and PilW (pilin) proteins indicated that pilV is the adhesin gene while pilW codes for the major protein element of Tfp. The likely function of Tfp is to complete the circuit between the cell surface and Fe(II) oxides. These results indicate that Tfp of A. ferrooxidans might serve as biological nanowires transferring electrons from the surface of Fe(II) oxides to the cell surface.

  12. When electron transfer meets electron transport in redox-active molecular nanojunctions.

    PubMed

    Janin, Marion; Ghilane, Jalal; Lacroix, Jean-Christophe

    2013-02-13

    A scanning electrochemical microscope (SECM) was used to arrange two microelectrodes face-to-face separated by a micrometric gap. Polyaniline (PANI) was deposited electrochemically from the SECM tip side until it bridged the two electrodes. The junctions obtained were characterized by following the current through the PANI as a function of its electrochemical potential measured versus a reference electrode acting as a gate electrode in a solid-state transistor. PANI nanojunctions showed conductances below 100 nS in the oxidized state, indicating control of the charge transport within the whole micrometric gap by a limited number of PANI wires. The SECM configuration makes it possible to observe in the same experiment and in the same current range the electron-transfer and electron-transport processes. These two phenomena are distinguished here and characterized by following the variation of the current with the bias voltage and the scan rate. The electron-transfer current changes with the scan rate, while the charge-transport current varies with the bias voltage. Finally, despite the initially micrometric gap, a junction where the conductance is controlled by a single oligoaniline strand is achieved.

  13. Vibrational and Electronic Energy Transfer and Dissociation of Diatomic Molecules by Electron Collisions

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    At high altitudes and velocities equal to or greater than the geosynchronous return velocity (10 kilometers per second), the shock layer of a hypersonic flight will be in thermochemical nonequilibrium and partially ionized. The amount of ionization is determined by the velocity. For a trans atmospheric flight of 10 kilometers per second and at an altitude of 80 kilometers, a maximum of 1% ionization is expected. At a velocity of 12 - 17 kilometer per second, such as a Mars return mission, up to 30% of the atoms and molecules in the flow field will be ionized. Under those circumstances, electrons play an important role in determining the internal states of atoms and molecules in the flow field and hence the amount of radiative heat load and the distance it takes for the flow field to re-establish equilibrium. Electron collisions provide an effective means of transferring energy even when the electron number density is as low as 1%. Because the mass of an electron is 12,760 times smaller than the reduced mass of N2, its average speed, and hence its average collision frequency, is more than 100 times larger. Even in the slightly ionized regime with only 1% electrons, the frequency of electron-molecule collisions is equal to or larger than that of molecule-molecule collisions, an important consideration in the low density part of the atmosphere. Three electron-molecule collision processes relevant to hypersonic flows will be considered: (1) vibrational excitation/de-excitation of a diatomic molecule by electron impact, (2) electronic excitation/de-excitation, and (3) dissociative recombination in electron-diatomic ion collisions. A review of available data, both theory and experiment, will be given. Particular attention will be paid to tailoring the molecular physics to the condition of hypersonic flows. For example, the high rotational temperatures in a hypersonic flow field means that most experimental data carried out under room temperatures are not applicable. Also

  14. Phenyl Benzo[b]phenothiazine as a Visible Light Photoredox Catalyst for Metal-Free Atom Transfer Radical Polymerization.

    PubMed

    Dadashi-Silab, Sajjad; Pan, Xiangcheng; Matyjaszewski, Krzysztof

    2016-12-23

    This paper reports use of phenyl benzo[b]phenothiazine (Ph-benzoPTZ) as a visible light-induced metal-free atom transfer radical polymerization (ATRP) photoredox catalyst. Well-controlled polymerizations of various methacrylate monomers were conducted under a 392 nm visible light LED using Ph-benzoPTZ to activate different alkyl halides. The use of the photocatalyst enabled temporal control over the growth of polymer chains during intermittent on/off periods. The polymerization was initiated and progressed only under stimulation by light and completely stopped in the absence of light. Block copolymers were synthesized to demonstrate high retention of chain end fidelity in the polymers and livingness of the process.

  15. DETERMINATION OF HETEROGENEOUS ELECTRON TRANSFER RATE CONSTANTS AT MICROFABRICATED IRIDIUM ELECTRODES. (R825511C022)

    EPA Science Inventory

    There has been an increasing use of both solid metal and microfabricated iridium electrodes as substrates for various types of electroanalysis. However, investigations to determine heterogeneous electron transfer rate constants on iridium, especially at an electron beam evapor...

  16. 77 FR 1555 - Administrative Simplification: Adoption of Standards for Health Care Electronic Funds Transfers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-10

    ... and 162 Administrative Simplification: Adoption of Standards for Health Care Electronic Funds... Health Care Electronic Funds Transfers (EFTs) and Remittance Advice AGENCY: Office of the Secretary, HHS... facilitate health care EFT transmissions. DATES: Effective Date: These regulations are effective on...

  17. Thermal transfer structures coupling electronics card(s) to coolant-cooled structure(s)

    DOEpatents

    David, Milnes P; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Parida, Pritish R; Schmidt, Roger R

    2014-12-16

    Cooling apparatuses and coolant-cooled electronic systems are provided which include thermal transfer structures configured to engage with a spring force one or more electronics cards with docking of the electronics card(s) within a respective socket(s) of the electronic system. A thermal transfer structure of the cooling apparatus includes a thermal spreader having a first thermal conduction surface, and a thermally conductive spring assembly coupled to the conduction surface of the thermal spreader and positioned and configured to reside between and physically couple a first surface of an electronics card to the first surface of the thermal spreader with docking of the electronics card within a socket of the electronic system. The thermal transfer structure is, in one embodiment, metallurgically bonded to a coolant-cooled structure and facilitates transfer of heat from the electronics card to coolant flowing through the coolant-cooled structure.

  18. Photoinduced electron transfer from triplet fullerene, [sup 3]C[sub 60], to tetracyanoethylene. Fourier transform electron paramagnetic resonance study

    SciTech Connect

    Michaeli, S.; Meiklyar, V.; Levanon, H. ); Schulz, M.; Moebius, K. )

    1994-08-04

    Fourier transform EPR spectroscopy was employed in studying the electron transfer (ET) and the quenching mechanisms of the photoexcited triplet state of C[sub 60] (electron donor) in the presence of the electron acceptor tetracyanoethylene (TCNE) in a benzonitrile solution. The ET reaction product, which is the stable anion radical TCNE[sup [minus

  19. Comprehensive comparison of collision induced dissociation and electron transfer dissociation.

    PubMed

    Molina, Henrik; Matthiesen, Rune; Kandasamy, Kumaran; Pandey, Akhilesh

    2008-07-01

    Electron transfer dissociation (ETD) is a recently introduced mass spectrometric technique which has proven to be an excellent tool for the elucidation of labile post-translational modifications such as phosphorylation and O-GlcNAcylation of serine and threonine residues. However, unlike collision induced dissociation (CID), which has been studied for decades, the intricacies of ETD-based fragmentation have not yet been firmly established or systematically addressed. In this analysis, we have systematically compared the CID and ETD fragmentation patterns for the large majority of the peptides that do not contain such labile modifications. Using a standard 48 protein mix, we were able to measure false-positive rates for the experiments and also assess a large number of peptides for a detailed comparison of CID and ETD fragmentation pattern. Analysis of approximately 19,000 peptides derived from both standard proteins and complex protein samples revealed that (i) CID identified 50% more peptides than ETD; (ii) ETD resulted in approximately 20% increase in amino acid sequence coverage over CID; and (iii) combining CID and ETD fragmentation increased the sequence coverage for an average tryptic peptide to 92%. Interestingly, our analysis revealed that nearly 60% of all ETD-identified peptides carried two positive charges, which is in sharp contrast to what has been generally accepted. We also present a novel strategy for automatic validation of peptide assignments based on identification of a peptide by consecutive CID and ETD fragmentation in an alternating mode.

  20. Mechanism of teratogenesis: electron transfer, reactive oxygen species, and antioxidants.

    PubMed

    Kovacic, Peter; Somanathan, Ratnasamy

    2006-12-01

    Teratogenesis has been a topic of increasing interest and concern in recent years, generating controversy in association with danger to humans and other living things. A veritable host of chemicals is known to be involved, encompassing a wide variety of classes, both organic and inorganic. Contact with these chemicals is virtually unavoidable due to contamination of air, water, ground, food, beverages, and household items, as well as exposure to medicinals. The resulting adverse effects on reproduction are numerous. There is uncertainty regarding the mode of action of these chemicals, although various theories have been advanced, e.g., disruption of the central nervous system (CNS), DNA attack, enzyme inhibition, interference with hormonal action, and insult to membranes, proteins, and mitochondria. This review provides extensive evidence for involvement of oxidative stress (OS) and electron transfer (ET) as a unifying theme. Successful application of the mechanistic approach is made to all of the main classes of toxins, in addition to large numbers of miscellaneous types. We believe it is not coincidental that the vast majority of these substances incorporate ET functionalities (quinone, metal complex, ArNO2, or conjugated iminium) either per se or in metabolites, potentially giving rise to reactive oxygen species (ROS) by redox cycling. Some categories, e.g., peroxides and radiation, appear to generate ROS by non-ET routes. Other mechanisms are briefly addressed; a multifaceted approach to mode of action appears to be the most logical. Our framework should increase understanding and contribute to preventative measures, such as use of antioxidants.

  1. Synthesis, Characterization, Photophysics and Photochemistry of Pyrylogen Electron Transfer Sensitizers

    SciTech Connect

    Clennan, Edward L.; Liao, Chen

    2014-01-01

    A series of new dicationic sensitizers that are hybrids of pyrylium salts and viologens has been synthesized. The electrochemical and photophysical properties of these "pyrylogen" sensitizers are reported in sufficient detail to allow rationale design of new photoinduced electron transfer reactions. The range of their reduction potentials (+0.37-+0.05V vs SCE) coupled with their range of singlet (48-63 kcal mol(-1)) and triplet (48-57kcalmol(-1)) energies demonstrate that they are potent oxidizing agents in both their singlet and triplet excited states, thermodynamically capable of oxidizing substrates with oxidation potentials as high as 3.1eV. The pyrylogens are synthesized in three steps from readily available starting materials in modest overall 11.4-22.3% yields. These sensitizers have the added advantages that: (1) their radical cations do not react on the CV timescale with oxygen bypassing the need to run reactions under nitrogen or argon and (2) have long wavelength absorptions between 413 and 523nm well out of the range where competitive absorbance by most substrates would cause a problem. These new sensitizers do react with water requiring special precautions to operate in a dry reaction environment.

  2. Single cell activity reveals direct electron transfer in methanotrophic consortia

    NASA Astrophysics Data System (ADS)

    McGlynn, Shawn E.; Chadwick, Grayson L.; Kempes, Christopher P.; Orphan, Victoria J.

    2015-10-01

    Multicellular assemblages of microorganisms are ubiquitous in nature, and the proximity afforded by aggregation is thought to permit intercellular metabolic coupling that can accommodate otherwise unfavourable reactions. Consortia of methane-oxidizing archaea and sulphate-reducing bacteria are a well-known environmental example of microbial co-aggregation; however, the coupling mechanisms between these paired organisms is not well understood, despite the attention given them because of the global significance of anaerobic methane oxidation. Here we examined the influence of interspecies spatial positioning as it relates to biosynthetic activity within structurally diverse uncultured methane-oxidizing consortia by measuring stable isotope incorporation for individual archaeal and bacterial cells to constrain their potential metabolic interactions. In contrast to conventional models of syntrophy based on the passage of molecular intermediates, cellular activities were found to be independent of both species intermixing and distance between syntrophic partners within consortia. A generalized model of electric conductivity between co-associated archaea and bacteria best fit the empirical data. Combined with the detection of large multi-haem cytochromes in the genomes of methanotrophic archaea and the demonstration of redox-dependent staining of the matrix between cells in consortia, these results provide evidence for syntrophic coupling through direct electron transfer.

  3. Unusual non-bifunctional mechanism for Co-PNP complex catalyzed transfer hydrogenation governed by the electronic configuration of metal center.

    PubMed

    Hou, Cheng; Jiang, Jingxing; Li, Yinwu; Zhang, Zhihan; Zhao, Cunyuan; Ke, Zhuofeng

    2015-10-07

    The mimic of hydrogenases has unleashed a myriad of bifunctional catalysts, which are widely used in the catalytic hydrogenation of polar multiple bonds. With respect to ancillary ligands, the bifunctional mechanism is generally considered to proceed via the metal-ligand cooperation transition state. Inspired by the interesting study conducted by Hanson et al. (Chem Commun., 2013, 49, 10151), we present a computational study of a distinctive example, where a Co(II)-PNP catalyst with an ancillary ligand exhibits efficient transfer hydrogenation through a non-bifunctional mechanism. Both the bifunctional and non-bifunctional mechanisms are discussed. The calculated results, which are based on a full model of the catalyst, suggest that the inner-sphere non-bifunctional mechanism is more favorable (by ∼11 kcal mol(-1)) than the outer-sphere bifunctional mechanism, which is in agreement with the experimental observations. The origin of this mechanistic preference of the Co(II)-PNP catalyst can be attributed to its preference for the square planar geometry. A traditional bifunctional mechanism is less plausible for Co(II)-PNP due to the high distortion energy caused by the change in electronic configuration with the varied ligand field. Considering previous studies that focus on the development of ligands more often, this computational study indicates that the catalytic hydrogenation mechanism is controlled not only by the structure of the ligand but also by the electronic configuration of the metal center.

  4. 77 FR 6193 - Electronic Fund Transfers (Regulation E)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-07

    ... instance through wire transfers or automated clearing house (ACH) transactions. Furthermore, consumers in... Dodd-Frank Amendments, Congress had specifically structured the EFTA to exclude wire transfers,\\13\\ and... of certain methods, particularly consumer wire transfers, is very limited, but the Bureau...

  5. Photoinitiated electron transfer in multi-chromophoric species: Synthetic tetrads and pentads. Technical progress report, 1987--1990

    SciTech Connect

    Not Available

    1990-02-14

    This research project involves the design, synthesis and study of the molecules which mimic many of the important aspects of photosynthetic electron and energy transfer. Specifically, the molecules are designed to mimic the following aspects of natural photosynthetic multistep electron transfer: electron donation from a tetrapyrrole excited singlet state, electron transfer between tetrapyrroles, electron transfer from tetrapyrroles to quinones, and electron transfer between quinones with different redox properties. In addition, they model carotenoid antenna function in photosynthesis (singlet-singlet energy transfer from carotenoid polyenes to chlorophyll) and carotenoid photoprotection from singlet oxygen damage (triplet-triplet energy transfer from chlorophyll to carotenoids).

  6. Amine(imine)diphosphine iron catalysts for asymmetric transfer hydrogenation of ketones and imines.

    PubMed

    Zuo, Weiwei; Lough, Alan J; Li, Young Feng; Morris, Robert H

    2013-11-29

    A rational approach is needed to design hydrogenation catalysts that make use of Earth-abundant elements to replace the rare elements such as ruthenium, rhodium, and palladium that are traditionally used. Here, we validate a prior mechanistic hypothesis that partially saturated amine(imine)diphosphine ligands (P-NH-N-P) activate iron to catalyze the asymmetric reduction of the polar bonds of ketones and imines to valuable enantiopure alcohols and amines, with isopropanol as the hydrogen donor, at turnover frequencies as high as 200 per second at 28°C. We present a direct synthetic approach to enantiopure ligands of this type that takes advantage of the iron(lI) ion as a template. The catalytic mechanism is elucidated by the spectroscopic detection of iron hydride and amide intermediates.

  7. Electron-transfer acceleration investigated by time resolved infrared spectroscopy.

    PubMed

    Vlček, Antonín; Kvapilová, Hana; Towrie, Michael; Záliš, Stanislav

    2015-03-17

    Ultrafast electron transfer (ET) processes are important primary steps in natural and artificial photosynthesis, as well as in molecular electronic/photonic devices. In biological systems, ET often occurs surprisingly fast over long distances of several tens of angströms. Laser-pulse irradiation is conveniently used to generate strongly oxidizing (or reducing) excited states whose reactions are then studied by time-resolved spectroscopic techniques. While photoluminescence decay and UV-vis absorption supply precise kinetics data, time-resolved infrared absorption (TRIR) and Raman-based spectroscopies have the advantage of providing additional structural information and monitoring vibrational energy flows and dissipation, as well as medium relaxation, that accompany ultrafast ET. We will discuss three cases of photoinduced ET involving the Re(I)(CO)3(N,N) moiety (N,N = polypyridine) that occur much faster than would be expected from ET theories. [Re(4-N-methylpyridinium-pyridine)(CO)3(N,N)](2+) represents a case of excited-state picosecond ET between two different ligands that remains ultrafast even in slow-relaxing solvents, beating the adiabatic limit. This is caused by vibrational/solvational excitation of the precursor state and participation of high-frequency quantum modes in barrier crossing. The case of Re-tryptophan assemblies demonstrates that excited-state Trp → *Re(II) ET is accelerated from nanoseconds to picoseconds when the Re(I)(CO)3(N,N) chromophore is appended to a protein, close to a tryptophan residue. TRIR in combination with DFT calculations and structural studies reveals an interaction between the N,N ligand and the tryptophan indole. It results in partial electronic delocalization in the precursor excited state and likely contributes to the ultrafast ET rate. Long-lived vibrational/solvational excitation of the protein Re(I)(CO)3(N,N)···Trp moiety, documented by dynamic IR band shifts, could be another accelerating factor. The last

  8. Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles

    PubMed Central

    Tvrdy, Kevin; Frantsuzov, Pavel A.; Kamat, Prashant V.

    2011-01-01

    Quantum dot-metal oxide junctions are an integral part of next-generation solar cells, light emitting diodes, and nanostructured electronic arrays. Here we present a comprehensive examination of electron transfer at these junctions, using a series of CdSe quantum dot donors (sizes 2.8, 3.3, 4.0, and 4.2 nm in diameter) and metal oxide nanoparticle acceptors (SnO2, TiO2, and ZnO). Apparent electron transfer rate constants showed strong dependence on change in system free energy, exhibiting a sharp rise at small driving forces followed by a modest rise further away from the characteristic reorganization energy. The observed trend mimics the predicted behavior of electron transfer from a single quantum state to a continuum of electron accepting states, such as those present in the conduction band of a metal oxide nanoparticle. In contrast with dye-sensitized metal oxide electron transfer studies, our systems did not exhibit unthermalized hot-electron injection due to relatively large ratios of electron cooling rate to electron transfer rate. To investigate the implications of these findings in photovoltaic cells, quantum dot-metal oxide working electrodes were constructed in an identical fashion to the films used for the electron transfer portion of the study. Interestingly, the films which exhibited the fastest electron transfer rates (SnO2) were not the same as those which showed the highest photocurrent (TiO2). These findings suggest that, in addition to electron transfer at the quantum dot-metal oxide interface, other electron transfer reactions play key roles in the determination of overall device efficiency. PMID:21149685

  9. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis.

    PubMed

    Hammarström, Leif

    2015-03-17

    The conversion and storage of solar energy into a fuel holds promise to provide a significant part of the future renewable energy demand of our societies. Solar energy technologies today generate heat or electricity, while the large majority of our energy is used in the form of fuels. Direct conversion of solar energy to a fuel would satisfy our needs for storable energy on a large scale. Solar fuels can be generated by absorbing light and converting its energy to chemical energy by electron transfer leading to separation of electrons and holes. The electrons are used in the catalytic reduction of a cheap substrate with low energy content into a high-energy fuel. The holes are filled by oxidation of water, which is the only electron source available for large scale solar fuel production. Absorption of a single photon typically leads to separation of a single electron-hole pair. In contrast, fuel production and water oxidation are multielectron, multiproton reactions. Therefore, a system for direct solar fuel production must be able to accumulate the electrons and holes provided by the sequential absorption of several photons in order to complete the catalytic reactions. In this Account, the process is termed accumulative charge separation. This is considerably more complicated than charge separation on a single electron level and needs particular attention. Semiconductor materials and molecular dyes have for a long time been optimized for use in photovoltaic devices. Efforts are made to develop new systems for light harvesting and charge separation that are better optimized for solar fuel production than those used in the early devices presented so far. Significant progress has recently been made in the discovery and design of better homogeneous and heterogeneous catalysts for solar fuels and water oxidation. While the heterogeneous ones perform better today, molecular catalysts based on transition metal complexes offer much greater tunability of electronic and

  10. Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer

    PubMed Central

    Westereng, Bjørge; Cannella, David; Wittrup Agger, Jane; Jørgensen, Henning; Larsen Andersen, Mogens; Eijsink, Vincent G.H.; Felby, Claus

    2015-01-01

    Enzymatic oxidation of cell wall polysaccharides by lytic polysaccharide monooxygenases (LPMOs) plays a pivotal role in the degradation of plant biomass. While experiments have shown that LPMOs are copper dependent enzymes requiring an electron donor, the mechanism and origin of the electron supply in biological systems are only partly understood. We show here that insoluble high molecular weight lignin functions as a reservoir of electrons facilitating LPMO activity. The electrons are donated to the enzyme by long-range electron transfer involving soluble low molecular weight lignins present in plant cell walls. Electron transfer was confirmed by electron paramagnetic resonance spectroscopy showing that LPMO activity on cellulose changes the level of unpaired electrons in the lignin. The discovery of a long-range electron transfer mechanism links the biodegradation of cellulose and lignin and sheds new light on how oxidative enzymes present in plant degraders may act in concert. PMID:26686263

  11. Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer.

    PubMed

    Westereng, Bjørge; Cannella, David; Wittrup Agger, Jane; Jørgensen, Henning; Larsen Andersen, Mogens; Eijsink, Vincent G H; Felby, Claus

    2015-12-21

    Enzymatic oxidation of cell wall polysaccharides by lytic polysaccharide monooxygenases (LPMOs) plays a pivotal role in the degradation of plant biomass. While experiments have shown that LPMOs are copper dependent enzymes requiring an electron donor, the mechanism and origin of the electron supply in biological systems are only partly understood. We show here that insoluble high molecular weight lignin functions as a reservoir of electrons facilitating LPMO activity. The electrons are donated to the enzyme by long-range electron transfer involving soluble low molecular weight lignins present in plant cell walls. Electron transfer was confirmed by electron paramagnetic resonance spectroscopy showing that LPMO activity on cellulose changes the level of unpaired electrons in the lignin. The discovery of a long-range electron transfer mechanism links the biodegradation of cellulose and lignin and sheds new light on how oxidative enzymes present in plant degraders may act in concert.

  12. Photoinduced bimolecular electron transfer kinetics in small unilamellar vesicles

    SciTech Connect

    Choudhury, Sharmistha Dutta; Kumbhakar, Manoj; Nath, Sukhendu; Pal, Haridas

    2007-11-21

    Photoinduced electron transfer (ET) from N,N-dimethylaniline to some coumarin derivatives has been studied in small unilamellar vesicles (SUVs) of the phospholipid, DL-{alpha}-dimyristoyl-phosphatidylcholine, using steady-state and time-resolved fluorescence quenching, both below and above the phase transition temperature of the vesicles. The primary interest was to examine whether Marcus inversion [H. Sumi and R. A. Marcus, J. Chem. Phys. 84, 4894 (1986)] could be observed for the present ET systems in these organized assemblies. The influence of the topology of SUVs on the photophysical properties of the reactants and consequently on their ET kinetics has also been investigated. Absorption and fluorescence spectral data of the coumarins in SUVs and the variation of their fluorescence decays with temperature indicate that the dyes are localized in the bilayer of the SUVs. Time-resolved area normalized emission spectra analysis, however, reveals that the dyes are distributed in two different microenvironments in the SUVs, which we attribute to the two leaflets of the bilayer, one toward bulk water and the other toward the inner water pool. The microenvironments in the two leaflets are, however, not indicated to be that significantly different. Time-resolved anisotropy decays were biexponential for all the dyes in SUVs, and this has been interpreted in terms of the compound motion model according to which the dye molecules can experience a fast wobbling-in-cone type of motion as well as a slow overall rotating motion of the cone containing the molecule. The expected bimolecular diffusion-controlled rates in SUVs, as estimated by comparing the microviscosities in SUVs (determined from rotational correlation times) and that in acetonitrile solution, are much slower than the observed fluorescence quenching rates, suggesting that reactant diffusion (translational) does not play any role in the quenching kinetics in the present systems. Accordingly, clear inversions are

  13. Revising Intramolecular Photoinduced Electron Transfer (PET) from First-Principles.

    PubMed

    Escudero, Daniel

    2016-09-20

    Photoinduced electron transfer (PET) plays relevant roles in many areas of chemistry, including charge separation processes in photovoltaics, natural and artificial photosynthesis, and photoluminescence sensors and switches. As in many other photochemical scenarios, the structural and energetic factors play relevant roles in determining the rates and efficiencies of PET and its competitive photodeactivation processes. Particularly, in the field of fluorescent sensors and switches, intramolecular PET is believed (in many cases without compelling experimental proof) to be responsible of the quench of fluorescence. There is an increasing experimental interest in fluorophore's molecular design and on achieving optimal excitation/emission spectra, excitation coefficients, and fluorescence quantum yields (importantly for bioimaging purposes), but less efforts are devoted to fundamental mechanistic studies. In this Account, I revise the origins of the fluorescence quenching in some of these systems with state-of-the-art quantum chemical tools. These studies go beyond the common strategy of analyzing frontier orbital energy diagrams and performing PET thermodynamics calculations. Instead, the potential energy surfaces (PESs) of the lowest-lying excited states are explored with time-dependent density functional theory (TD-DFT) and complete active space self-consistent field (CASSCF) calculations and the radiative and nonradiative decay rates from the involved excited states are computed from first-principles using a thermal vibration correlation function formalism. With such a strategy, this work reveals the real origins of the fluorescence quenching, herein entitled as dark-state quenching. Dark states (those that do not absorb or emit light) are often elusive to experiments and thus, computational investigations can provide novel insights into the actual photodeactivation mechanisms. The success of the dark-state quenching mechanism is demonstrated for a wide variety of

  14. 27 CFR 26.267 - Payment of tax by electronic fund transfer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... transfer (EFT), as defined in paragraph (c) of this section, of such taxes during the succeeding calendar... make remittances by EFT. For purposes of this section, the dollar amount of tax liability is to be... to make remittances by EFT. (c) Electronic fund transfer or EFT means any transfer of funds,...

  15. 27 CFR 26.267 - Payment of tax by electronic fund transfer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... transfer (EFT), as defined in paragraph (c) of this section, of such taxes during the succeeding calendar... make remittances by EFT. For purposes of this section, the dollar amount of tax liability is to be... to make remittances by EFT. (c) Electronic fund transfer or EFT means any transfer of funds,...

  16. 27 CFR 26.267 - Payment of tax by electronic fund transfer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... transfer (EFT), as defined in paragraph (c) of this section, of such taxes during the succeeding calendar... make remittances by EFT. For purposes of this section, the dollar amount of tax liability is to be... to make remittances by EFT. (c) Electronic fund transfer or EFT means any transfer of funds,...

  17. 27 CFR 26.267 - Payment of tax by electronic fund transfer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... transfer (EFT), as defined in paragraph (c) of this section, of such taxes during the succeeding calendar... make remittances by EFT. For purposes of this section, the dollar amount of tax liability is to be... to make remittances by EFT. (c) Electronic fund transfer or EFT means any transfer of funds,...

  18. 27 CFR 26.267 - Payment of tax by electronic fund transfer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... transfer (EFT), as defined in paragraph (c) of this section, of such taxes during the succeeding calendar... make remittances by EFT. For purposes of this section, the dollar amount of tax liability is to be... to make remittances by EFT. (c) Electronic fund transfer or EFT means any transfer of funds,...

  19. 49 CFR 225.37 - Magnetic media transfer and electronic submission.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Magnetic media transfer and electronic submission..., AND INVESTIGATIONS § 225.37 Magnetic media transfer and electronic submission. (a) A railroad has the option of submitting the following reports, updates, and amendments by way of magnetic media...

  20. 49 CFR 225.37 - Optical media transfer and electronic submission.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Optical media transfer and electronic submission..., AND INVESTIGATIONS § 225.37 Optical media transfer and electronic submission. (a) A railroad has the option of submitting the following reports, updates, and amendments by way of optical media (CD-ROM),...

  1. 27 CFR 40.165a - Payment of tax by electronic fund transfer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... making payment by electronic fund transfer (EFT) of taxes on tobacco products, cigarette papers, and... electronic fund transfer. 40.165a Section 40.165a Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO..., CIGARETTE PAPERS AND TUBES, AND PROCESSED TOBACCO Operations by Manufacturers of Tobacco...

  2. 27 CFR 41.115a - Payment of tax by electronic fund transfer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... electronic fund transfer. 41.115a Section 41.115a Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO..., CIGARETTE PAPERS AND TUBES, AND PROCESSED TOBACCO Puerto Rican Tobacco Products and Cigarette Papers and....115a Payment of tax by electronic fund transfer. (a) General. (1) Each taxpayer who was liable,...

  3. 27 CFR 41.63 - Payment of tax by electronic fund transfer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... electronic fund transfer. 41.63 Section 41.63 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX..., CIGARETTE PAPERS AND TUBES, AND PROCESSED TOBACCO Taxes Customs' Collection of Taxes § 41.63 Payment of tax by electronic fund transfer. (a) Each importer who was liable, during a calendar year, for a...

  4. 27 CFR 40.357 - Payment of tax by electronic fund transfer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... electronic fund transfer. 40.357 Section 40.357 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO..., CIGARETTE PAPERS AND TUBES, AND PROCESSED TOBACCO Manufacture of Cigarette Papers and Tubes Taxes § 40.357 Payment of tax by electronic fund transfer. (a) General. (1) Each taxpayer who was liable, during...

  5. Distance dependence of electron transfer from liposome-embedded (alkanephosphocholine-porphinato) zinc

    SciTech Connect

    Tsuchida, E.; Kaneko, M.; Nishide, H.; Hoshino, M.

    1986-05-22

    (Alkanephosphocholine-porphinato)zinc forms a geometrically well-defined bilayer liposome with phospholipid. Electron transfer from the liposome-embedded (porphinato)zincs with different alkyl chain lengths to methylviologen present in the outer bulk solution is measured by laser flash photolysis: the intermolecular electron transfer was observed only when the porphyrin plane is located within 12 A from the surface.

  6. 41 CFR 102-118.70 - Must my agency make all payments via electronic funds transfer?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... payments via electronic funds transfer? 102-118.70 Section 102-118.70 Public Contracts and Property... Services § 102-118.70 Must my agency make all payments via electronic funds transfer? Yes, under 31 U.S.C. 3332, et seq., your agency must make all payments for goods and services via EFT (this includes...

  7. 41 CFR 102-118.70 - Must my agency make all payments via electronic funds transfer?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... payments via electronic funds transfer? 102-118.70 Section 102-118.70 Public Contracts and Property... Services § 102-118.70 Must my agency make all payments via electronic funds transfer? Yes, under 31 U.S.C. 3332, et seq., your agency must make all payments for goods and services via EFT (this includes...

  8. 27 CFR 41.63 - Payment of tax by electronic fund transfer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... commercial bank in making payment by electronic fund transfer (EFT) of such taxes during the succeeding... is required, by this section, to make remittances by EFT. For purposes of this section, the dollar... required to make remittances by EFT. (c) For the purposes of this section, (1) electronic fund transfer...

  9. 27 CFR 41.63 - Payment of tax by electronic fund transfer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... commercial bank in making payment by electronic fund transfer (EFT) of such taxes during the succeeding... is required, by this section, to make remittances by EFT. For purposes of this section, the dollar... required to make remittances by EFT. (c) For the purposes of this section, (1) electronic fund transfer...

  10. 27 CFR 41.63 - Payment of tax by electronic fund transfer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... commercial bank in making payment by electronic fund transfer (EFT) of such taxes during the succeeding... is required, by this section, to make remittances by EFT. For purposes of this section, the dollar... required to make remittances by EFT. (c) For the purposes of this section, (1) electronic fund transfer...

  11. 27 CFR 41.63 - Payment of tax by electronic fund transfer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... commercial bank in making payment by electronic fund transfer (EFT) of such taxes during the succeeding... is required, by this section, to make remittances by EFT. For purposes of this section, the dollar... required to make remittances by EFT. (c) For the purposes of this section, (1) electronic fund transfer...

  12. Superexchange coupling and electron transfer in globular proteins via polaron excitations.

    PubMed

    Chuev, G N; Lakhno, V D; Ustitnin, M N

    2000-06-01

    The polaron approach is used to treat long-range electron transfersbetween globular proteins. A rate expression for the polaron transfer model is given along with a description of appropriate conditions forits use. Assuming that electrons transfer via a superexchange couplingdue to a polaron excitation, we have estimated the distance dependenceof the rate constant for the self-exchange reactions between globularproteins in solutions. The distance dependence of the polaron coupling andsolvent reorganization energy are provided as a basis forunderstanding and interpreting a long-range electron transfer experiment.The difficulties and problems of the polaron treatment of long-rangeelectron transfers are discussed, and suggestions for new experimentsare made.

  13. Activated-ion electron transfer dissociation improves the ability of electron transfer dissociation to identify peptides in a complex mixture.

    PubMed

    Ledvina, Aaron R; Beauchene, Nicole A; McAlister, Graeme C; Syka, John E P; Schwartz, Jae C; Griep-Raming, Jens; Westphall, Michael S; Coon, Joshua J

    2010-12-15

    Using a modified electron transfer dissociation (ETD)-enabled quadrupole linear ion trap (QLT) mass spectrometer, we demonstrate the utility of IR activation concomitant with ETD ion-ion reactions (activated-ion ETD, AI-ETD). Analyzing 12 strong cation exchanged (SCX) fractions of a LysC digest of human cell protein extract using ETD, collision-activated dissociation (CAD), and AI-ETD, we find that AI-ETD generates 13 405 peptide spectral matches (PSMs) at a 1% false-discovery rate (1% FDR), surpassing both ETD (7 968) and CAD (10 904). We also analyze 12 SCX fractions of a tryptic digest of human cell protein extract and find that ETD produces 6 234 PSMs, AI-ETD 9 130 PSMs, and CAD 15 209 PSMs. Compared to ETD with supplemental collisional activation (ETcaD), AI-ETD generates ∼80% more PSMs for the whole cell lysate digested with trypsin and ∼50% more PSMs for the whole cell lysate digested with LysC.

  14. Magnetic Silica-Supported Ruthenium Nanoparticles: An Efficient Catalyst for Transfer Hydrogenation of Carbonyl Compounds

    EPA Science Inventory

    One-pot synthesis of ruthenium nanoparticles on magnetic silica is described which involve the in situ generation of magnetic silica (Fe3O4@ SiO2) and ruthenium nano particles immobilization; the hydration of nitriles and transfer hydrogenation of carbonyl compounds occurs in hi...

  15. Protein electron transfer: is biology (thermo)dynamic?

    NASA Astrophysics Data System (ADS)

    Matyushov, Dmitry V.

    2015-12-01

    Simple physical mechanisms are behind the flow of energy in all forms of life. Energy comes to living systems through electrons occupying high-energy states, either from food (respiratory chains) or from light (photosynthesis). This energy is transformed into the cross-membrane proton-motive force that eventually drives all biochemistry of the cell. Life’s ability to transfer electrons over large distances with nearly zero loss of free energy is puzzling and has not been accomplished in synthetic systems. The focus of this review is on how this energetic efficiency is realized. General physical mechanisms and interactions that allow proteins to fold into compact water-soluble structures are also responsible for a rugged landscape of energy states and a broad distribution of relaxation times. Specific to a protein as a fluctuating thermal bath is the protein-water interface, which is heterogeneous both dynamically and structurally. The spectrum of interfacial fluctuations is a consequence of protein’s elastic flexibility combined with a high density of surface charges polarizing water dipoles into surface nanodomains. Electrostatics is critical to the protein function and the relevant questions are: (i) What is the spectrum of interfacial electrostatic fluctuations? (ii) Does the interfacial biological water produce electrostatic signatures specific to proteins? (iii) How is protein-mediated chemistry affected by electrostatics? These questions connect the fluctuation spectrum to the dynamical control of chemical reactivity, i.e. the dependence of the activation free energy of the reaction on the dynamics of the bath. Ergodicity is often broken in protein-driven reactions and thermodynamic free energies become irrelevant. Continuous ergodicity breaking in a dense spectrum of relaxation times requires using dynamically restricted ensembles to calculate statistical averages. When applied to the calculation of the rates, this formalism leads to the nonergodic

  16. Electron transfer catalysis with monolayer protected Au25 clusters

    NASA Astrophysics Data System (ADS)

    Antonello, Sabrina; Hesari, Mahdi; Polo, Federico; Maran, Flavio

    2012-08-01

    Au25L18 (L = S(CH2)2Ph) clusters were prepared and characterized. The resulting monodisperse clusters were reacted with bis(pentafluorobenzoyl) peroxide in dichloromethane to form Au25L18+ quantitatively. The kinetics and thermodynamics of the corresponding electron transfer (ET) reactions were characterized via electrochemistry and thermochemical calculations. Au25L18+ was used in homogeneous redox catalysis experiments with a series of sym-substituted benzoyl peroxides, including the above peroxide, bis(para-cyanobenzoyl) peroxide, dibenzoyl peroxide, and bis(para-methoxybenzoyl) peroxide. Peroxide dissociative ET was catalyzed using both the Au25L18/Au25L18- and the Au25L18+/Au25L18 redox couples as redox mediators. Simulation of the CV curves led to determination of the ET rate constant (kET) values for concerted dissociative ET to the peroxides. The ET free energy ΔG° could be estimated for all donor-acceptor combinations, leading to observation of a nice activation-driving force (log kETvs. ΔG°) relationship. Comparison with the kET obtained using a ferrocene-type donor with a formal potential similar to that of Au25L18/Au25L18- showed that the presence of the capping monolayer affects the ET rate rather significantly, which is attributed to the intrinsic nonadiabaticity of peroxide acceptors.Au25L18 (L = S(CH2)2Ph) clusters were prepared and characterized. The resulting monodisperse clusters were reacted with bis(pentafluorobenzoyl) peroxide in dichloromethane to form Au25L18+ quantitatively. The kinetics and thermodynamics of the corresponding electron transfer (ET) reactions were characterized via electrochemistry and thermochemical calculations. Au25L18+ was used in homogeneous redox catalysis experiments with a series of sym-substituted benzoyl peroxides, including the above peroxide, bis(para-cyanobenzoyl) peroxide, dibenzoyl peroxide, and bis(para-methoxybenzoyl) peroxide. Peroxide dissociative ET was catalyzed using both the Au25L18/Au25L18- and

  17. Bridge-mediated hopping or superexchange electron-transfer processes in bis(triarylamine) systems

    NASA Astrophysics Data System (ADS)

    Lambert, Christoph; Nöll, Gilbert; Schelter, Jürgen

    2002-09-01

    Hopping and superexchange are generally considered to be alternative electron-transfer mechanisms in molecular systems. In this work we used mixed-valence radical cations as model systems for the investigation of electron-transfer pathways. We show that substituents attached to a conjugated bridge connecting two triarylamine redox centres have a marked influence on the near-infrared absorption spectra of the corresponding cations. Spectral analysis, followed by evaluation of the electron-transfer parameters using the Generalized Mulliken-Hush theory and simulation of the potential energy surfaces, indicate that hopping and superexchange are not alternatives, but are both present in the radical cation with a dimethoxybenzene bridge. We found that the type of electron-transfer mechanism depends on the bridge-reorganization energy as well as on the bridge-state energy. Because superexchange and hopping follow different distance laws, our findings have implications for the design of new molecular and polymeric electron-transfer materials.

  18. Bio-batteries and bio-fuel cells: leveraging on electronic charge transfer proteins.

    PubMed

    Kannan, A M; Renugopalakrishnan, V; Filipek, S; Li, P; Audette, G F; Munukutla, L

    2009-03-01

    Bio-fuel cells are alternative energy devises based on bio-electrocatalysis of natural substrates by enzymes or microorganisms. Here we review bio-fuel cells and bio-batteries based on the recent literature. In general, the bio-fuel cells are classified based on the type of electron transfer; mediated electron transfer and direct electron transfer or electronic charge transfer (ECT). The ECT of the bio-fuel cells is critically reviewed and a variety of possible applications are considered. The technical challenges of the bio-fuel cells, like bioelectrocatalysis, immobilization of bioelectrocatalysts, protein denaturation etc. are highlighted and future research directions are discussed leveraging on the use of electron charge transfer proteins. In addition, the packaging aspects of the bio-fuel cells are also analyzed and the found that relatively little work has been done in the engineering development of bio-fuel cells.

  19. Transfer-free graphene synthesis on sapphire by catalyst metal agglomeration technique and demonstration of top-gate field-effect transistors

    SciTech Connect

    Miyoshi, Makoto Arima, Yukinori; Kubo, Toshiharu; Egawa, Takashi; Mizuno, Masaya; Soga, Tetsuo

    2015-08-17

    Transfer-free graphene synthesis was performed on sapphire substrates by using the catalyst metal agglomeration technique, and the graphene film quality was compared to that synthesized on sputtered SiO{sub 2}/Si substrates. Raman scattering measurements indicated that the graphene film on sapphire has better structural qualities than that on sputtered SiO{sub 2}/Si substrates. The cross-sectional transmission microscopic study also revealed that the film flatness was drastically improved by using sapphire substrates instead of sputtered SiO{sub 2}/Si substrates. These quality improvements seemed to be due the chemical and thermal stabilities of sapphire. Top-gate field-effect transistors were fabricated using the graphene films on sapphire, and it was confirmed that their drain current can be modulated with applied gate voltages. The maximum field-effect mobilities were estimated to be 720 cm{sup 2}/V s for electrons and 880 cm{sup 2}/V s for holes, respectively.

  20. Bulk-surface relationship of an electronic structure for high-throughput screening of metal oxide catalysts

    NASA Astrophysics Data System (ADS)

    Kweun, Joshua Minwoo; Li, Chenzhe; Zheng, Yongping; Cho, Maenghyo; Kim, Yoon Young; Cho, Kyeongjae

    2016-05-01

    Designing metal-oxides consisting of earth-abundant elements has been a crucial issue to replace precious metal catalysts. To achieve efficient screening of metal-oxide catalysts via bulk descriptors rather than surface descriptors, we investigated the relationship between the electronic structure of bulk and that of the surface for lanthanum-based perovskite oxides, LaMO3 (M = Ti, V, Cr, Mn, Fe, Co, Ni, Cu). Through density functional theory calculations, we examined the d-band occupancy of the bulk and surface transition-metal atoms (nBulk and nSurf) and the adsorption energy of an oxygen atom (Eads) on (001), (110), and (111) surfaces. For the (001) surface, we observed strong correlation between the nBulk and nSurf with an R-squared value over 94%, and the result was interpreted in terms of ligand field splitting and antibonding/bonding level splitting. Moreover, the Eads on the surfaces was highly correlated with the nBulk with an R-squared value of more than 94%, and different surface relaxations could be explained by the bulk electronic structure (e.g., LaMnO3 vs. LaTiO3). These results suggest that a bulk-derived descriptor such as nBulk can be used to screen metal-oxide catalysts.

  1. Cobalt(III) tetraaza-macrocyclic complexes as efficient catalyst for photoinduced hydrogen production in water: Theoretical investigation of the electronic structure of the reduced species and mechanistic insight.

    PubMed

    Gueret, Robin; Castillo, Carmen E; Rebarz, Mateusz; Thomas, Fabrice; Hargrove, Aaron-Albert; Pécaut, Jacques; Sliwa, Michel; Fortage, Jérôme; Collomb, Marie-Noëlle

    2015-11-01

    We recently reported a very efficient homogeneous system for visible-light driven hydrogen production in water based on the cobalt(III) tetraaza-macrocyclic complex [Co(CR)Cl2](+) (1) (CR=2,12-dimethyl-3,7,11,17-tetra-azabicyclo(11.3.1)-heptadeca-1(17),2,11,13,15-pentaene) as a noble metal-free catalyst, with [Ru(II)(bpy)3](2+) (Ru) as photosensitizer and ascorbate/ascorbic acid (HA(-)/H2A) as a sacrificial electron donor and buffer (PhysChemChemPhys 2013, 15, 17544). This catalyst presents the particularity to achieve very high turnover numbers (TONs) (up to 1000) at pH 4.0 at a relative high concentration (0.1mM) generating a large amount of hydrogen and having a long term stability. A similar activity was observed for the aquo derivative [Co(III)(CR)(H2O)2](3+) (2) due to substitution of chloro ligands by water molecule in water. In this work, the geometry and electronic structures of 2 and its analog [Zn(II)(CR)Cl](+) (3) derivative containing the redox innocent Zn(II) metal ion have been investigated by DFT calculations under various oxidation states. We also further studied the photocatalytic activity of this system and evaluated the influence of varying the relative concentration of the different components on the H2-evolving activity. Turnover numbers versus catalyst (TONCat) were found to be dependent on the catalyst concentration with the highest value of 1130 obtained at 0.05 mM. Interestingly, the analogous nickel derivative, [Ni(II)(CR)Cl2] (4), when tested under the same experimental conditions was found to be fully inactive for H2 production. Nanosecond transient absorption spectroscopy measurements have revealed that the first electron-transfer steps of the photocatalytic H2-evolution mechanism with the Ru/cobalt tetraaza/HA(-)/H2A system involve a reductive quenching of the excited state of the photosensitizer by ascorbate (kq=2.5×10(7) M(-1) s(-1)) followed by an electron transfer from the reduced photosensitizer to the catalyst (ket=1.4×10(9) M

  2. Demonstration of Lignin-to-Peroxidase Direct Electron Transfer

    PubMed Central

    Sáez-Jiménez, Verónica; Baratto, Maria Camilla; Pogni, Rebecca; Rencoret, Jorge; Gutiérrez, Ana; Santos, José Ignacio; Martínez, Angel T.; Ruiz-Dueñas, Francisco Javier

    2015-01-01

    Versatile peroxidase (VP) is a high redox-potential peroxidase of biotechnological interest that is able to oxidize phenolic and non-phenolic aromatics, Mn2+, and different dyes. The ability of VP from Pleurotus eryngii to oxidize water-soluble lignins (softwood and hardwood lignosulfonates) is demonstrated here by a combination of directed mutagenesis and spectroscopic techniques, among others. In addition, direct electron transfer between the peroxidase and the lignin macromolecule was kinetically characterized using stopped-flow spectrophotometry. VP variants were used to show that this reaction strongly depends on the presence of a solvent-exposed tryptophan residue (Trp-164). Moreover, the tryptophanyl radical detected by EPR spectroscopy of H2O2-activated VP (being absent from the W164S variant) was identified as catalytically active because it was reduced during lignosulfonate oxidation, resulting in the appearance of a lignin radical. The decrease of lignin fluorescence (excitation at 355 nm/emission at 400 nm) during VP treatment under steady-state conditions was accompanied by a decrease of the lignin (aromatic nuclei and side chains) signals in one-dimensional and two-dimensional NMR spectra, confirming the ligninolytic capabilities of the enzyme. Simultaneously, size-exclusion chromatography showed an increase of the molecular mass of the modified residual lignin, especially for the (low molecular mass) hardwood lignosulfonate, revealing that the oxidation products tend to recondense during the VP treatment. Finally, mutagenesis of selected residues neighboring Trp-164 resulted in improved apparent second-order rate constants for lignosulfonate reactions, revealing that changes in its protein environment (modifying the net negative charge and/or substrate accessibility/binding) can modulate the reactivity of the catalytic tryptophan. PMID:26240145

  3. Identification of Catalysts and Materials for a High-Energy Density Biochemical Fuel Cell: Cooperative Research and Development Final Report, CRADA Number CRD-09-345

    SciTech Connect

    Ghirardi, M.; Svedruzic, D.

    2013-07-01

    The proposed research attempted to identify novel biochemical catalysts, catalyst support materials, high-efficiency electron transfer agents between catalyst active sites and electrodes, and solid-phase electrolytes in order to maximize the current density of biochemical fuel cells that utilize various alcohols as substrates.

  4. An electron energy-loss study of picene and chrysene based charge transfer salts

    SciTech Connect

    Müller, Eric; Mahns, Benjamin; Büchner, Bernd; Knupfer, Martin

    2015-05-14

    The electronic excitation spectra of charge transfer compounds built from the hydrocarbons picene and chrysene, and the strong electron acceptors F{sub 4}TCNQ (2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane) and TCNQ (7,7,8,8-tetracyanoquinodimethan) have been investigated using electron energy-loss spectroscopy. The corresponding charge transfer compounds have been prepared by co-evaporation of the pristine constituents. We demonstrate that all investigated combinations support charge transfer, which results in new electronic excitation features at low energy. This might represent a way to synthesize low band gap organic semiconductors.

  5. Dynamic structural evolution of supported palladium-ceria core-shell catalysts revealed by in situ electron microscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Shuyi; Chen, Chen; Cargnello, Matteo; Fornasiero, Paolo; Gorte, Raymond J.; Graham, George W.; Pan, Xiaoqing

    2015-07-01

    The exceptional activity for methane combustion of modular palladium-ceria core-shell subunits on silicon-functionalized alumina that was recently reported has created renewed interest in the potential of core-shell structures as catalysts. Here we report on our use of advanced ex situ and in situ electron microscopy with atomic resolution to show that the modular palladium-ceria core-shell subunits undergo structural evolution over a wide temperature range. In situ observations performed in an atmospheric gas cell within this temperature range provide real-time evidence that the palladium and ceria nanoparticle constituents of the palladium-ceria core-shell participate in a dynamical process that leads to the formation of an unanticipated structure comprised of an intimate mixture of palladium, cerium, silicon and oxygen, with very high dispersion. This finding may open new perspectives about the origin of the activity of this catalyst.

  6. Dynamic structural evolution of supported palladium-ceria core-shell catalysts revealed by in situ electron microscopy.

    PubMed

    Zhang, Shuyi; Chen, Chen; Cargnello, Matteo; Fornasiero, Paolo; Gorte, Raymond J; Graham, George W; Pan, Xiaoqing

    2015-07-10

    The exceptional activity for methane combustion of modular palladium-ceria core-shell subunits on silicon-functionalized alumina that was recently reported has created renewed interest in the potential of core-shell structures as catalysts. Here we report on our use of advanced ex situ and in situ electron microscopy with atomic resolution to show that the modular palladium-ceria core-shell subunits undergo structural evolution over a wide temperature range. In situ observations performed in an atmospheric gas cell within this temperature range provide real-time evidence that the palladium and ceria nanoparticle constituents of the palladium-ceria core-shell participate in a dynamical process that leads to the formation of an unanticipated structure comprised of an intimate mixture of palladium, cerium, silicon and oxygen, with very high dispersion. This finding may open new perspectives about the origin of the activity of this catalyst.

  7. SO2−· Electron Transfer Ion/Ion Reactions with Disulfide Linked Polypeptide Ions

    PubMed Central

    Chrisman, Paul A.; Pitteri, Sharon J.; Hogan, Jason M.; McLuckey, Scott A.

    2005-01-01

    Multiply-charged peptide cations comprised of two polypeptide chains (designated A and B) bound via a disulfide linkage have been reacted with SO2−· in an electrodynamic ion trap mass spectrometer. These reactions proceed through both proton transfer (without dissociation) and electron transfer (with and without dissociation). Electron transfer reactions are shown to give rise to cleavage along the peptide backbone, loss of neutral molecules, and cleavage of the cystine bond. Disulfide bond cleavage is the preferred dissociation channel and both Chain A (or B)—S· and Chain A (or B)—SH fragment ions are observed, similar to those observed with electron capture dissociation (ECD) of disulfide-bound peptides. Electron transfer without dissociation produces [M + 2H]+· ions, which appear to be less kinetically stable than the proton transfer [M + H]+ product. When subjected to collision-induced dissociation (CID), the [M + 2H]+· ions fragment to give products that were also observed as dissociation products during the electron transfer reaction. However, not all dissociation channels noted in the electron transfer reaction were observed in the CID of the [M + 2H]+· ions. The charge state of the peptide has a significant effect on both the extent of electron transfer dissociation observed and the variety of dissociation products, with higher charge states giving more of each. PMID:15914021

  8. Mass transfer in a flow past a non-porous catalyst sphere

    NASA Astrophysics Data System (ADS)

    Sun, Bo; Tenneti, Sudheer; Subramaniam, Shankar

    2015-11-01

    Mass transfer in a flow past a particle with a surface chemical reaction occurs in applications involving catalytic reaction. This type of the mass transfer problem has been analyzed by solving the convection-diffusion equation for Stokes flow (Acrivos et al., 1962) or flow at low Reynolds number (Taylor 1963, Gupalo et al., 1972). The objective of this study is to extend our understanding of this mass transfer problem to higher Reynolds number (up to 100) and assemblies of several particles by using particle-resolved direct numerical simulation (PR-DNS) of gas-solid flow. A uniform flow past a non-porous spherical particle with a first-order surface reaction is simulated. The non-dimensional reaction rate constant is the important parameter in the single particle case. The PR-DNS results at low Reynolds number for a single particle are first compared with 2D analytical solutions for concentration fields and the Sherwood number. Finally, the dependence of the concentration field on the non-dimensional reaction rate constant, and comparison of PR-DNS results with other Sherwood number correlations that use the Reynolds analogy to adapt Nusselt number correlations (which do not explicitly account for surface reactions) are explored at high Reynolds number. CBET 1034307, CBET 1336941.

  9. Membrane catalyst layer for fuel cells

    DOEpatents

    Wilson, Mahlon S.

    1993-01-01

    A gas reaction fuel cell incorporates a thin catalyst layer between a solid polymer electrolyte (SPE) membrane and a porous electrode backing. The catalyst layer is preferably less than about 10 .mu.m in thickness with a carbon supported platinum catalyst loading less than about 0.35 mgPt/cm.sup.2. The film is formed as an ink that is spread and cured on a film release blank. The cured film is then transferred to the SPE membrane and hot pressed into the surface to form a catalyst layer having a controlled thickness and catalyst distribution. Alternatively, the catalyst layer is formed by applying a Na.sup.+ form of a perfluorosulfonate ionomer directly to the membrane, drying the film at a high temperature, and then converting the film back to the protonated form of the ionomer. The layer has adequate gas permeability so that cell performance is not affected and has a density and particle distribution effective to optimize proton access to the catalyst and electronic continuity for electron flow from the half-cell reaction occurring at the catalyst.

  10. A Comparison of Electron-Transfer Dynamics inIonic Liquids and Neutral Solvents

    SciTech Connect

    Wishart J. F.; Lee, H.Y.; Issa, J.B.; Isied, S.S.; Castner, Jr., E.W.; Pan, Y.; Hussey, C.L.; Lee, K.S.

    2012-03-01

    The effect of ionic liquids on photoinduced electron-transfer reactions in a donor-bridge-acceptor system is examined for two ionic liquid solvents, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide and tributylmethylammonium bis(trifluoromethylsulfonyl)amide. The results are compared with those for the same system in methanol and acetonitrile solution. Electron-transfer rates were measured using time-resolved fluorescence quenching for the donor-bridge-acceptor system comprising a 1-N,1-N-dimethylbenzene-1,4-diamine donor, a proline bridge, and a coumarin 343 acceptor. The photoinduced electron-transfer processes are in the inverted regime (-{Delta}G > {lambda}) in all four solvents, with driving forces of -1.6 to -1.9 eV and estimated reorganization energies of about 1.0 eV. The observed electron-transfer kinetics have broadly distributed rates that are generally slower in the ionic liquids compared to the neutral solvents, which also have narrower rate distributions. To describe the broad distributions of electron-transfer kinetics, we use two different models: a distribution of exponential lifetimes and a discrete sum of exponential lifetimes. Analysis of the donor-acceptor electronic coupling shows that for ionic liquids this intramolecular electron-transfer reaction should be treated using a solvent-controlled electron-transfer model.

  11. Redox potential of the terminal quinone electron acceptor QB in photosystem II reveals the mechanism of electron transfer regulation

    PubMed Central

    Kato, Yuki; Nagao, Ryo; Noguchi, Takumi

    2016-01-01

    Photosystem II (PSII) extracts electrons from water at a Mn4CaO5 cluster using light energy and then transfers them to two plastoquinones, the primary quinone electron acceptor QA and the secondary quinone electron acceptor QB. This forward electron transfer is an essential process in light energy conversion. Meanwhile, backward electron transfer is also significant in photoprotection of PSII proteins. Modulation of the redox potential (Em) gap of QA and QB mainly regulates the forward and backward electron transfers in PSII. However, the full scheme of electron transfer regulation remains unresolved due to the unknown Em value of QB. Here, for the first time (to our knowledge), the Em value of QB reduction was measured directly using spectroelectrochemistry in combination with light-induced Fourier transform infrared difference spectroscopy. The Em(QB−/QB) was determined to be approximately +90 mV and was virtually unaffected by depletion of the Mn4CaO5 cluster. This insensitivity of Em(QB−/QB), in combination with the known large upshift of Em(QA−/QA), explains the mechanism of PSII photoprotection with an impaired Mn4CaO5 cluster, in which a large decrease in the Em gap between QA and QB promotes rapid charge recombination via QA−. PMID:26715751

  12. 77 FR 50243 - Electronic Fund Transfers (Regulation E)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-20

    ... course of business'' in the definition of ``remittance transfer provider,'' which determines whether a... in the United States to individuals and businesses in foreign countries. For covered transactions... providing remittance transfers in the ``normal course of business,'' and thus is a ``remittance...

  13. 77 FR 6310 - Electronic Fund Transfers (Regulation E)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-07

    ... discontinue providing a small number of transfers per year to accommodate customers of its regular business... phrase ``normal course of business'' in the definition of ``remittance transfer provider.'' This... 1700 G Street, NW., Washington, DC 20006, on official business days between the hours of 10 a.m. and...

  14. Where Does the Electron Go? Stable and Metastable Peptide Cation Radicals Formed by Electron Transfer

    NASA Astrophysics Data System (ADS)

    Pepin, Robert; Layton, Erik D.; Liu, Yang; Afonso, Carlos; Tureček, František

    2017-01-01

    Electron transfer to doubly and triply charged heptapeptide ions containing polar residues Arg, Lys, and Asp in combination with nonpolar Gly, Ala, and Pro or Leu generates stable and metastable charge-reduced ions, (M + 2H)+●, in addition to standard electron-transfer dissociation (ETD) fragment ions. The metastable (M + 2H)+● ions spontaneously dissociate upon resonant ejection from the linear ion trap, giving irregularly shaped peaks with offset m/ z values. The fractions of stable and metastable (M + 2H)+● ions and their mass shifts depend on the presence of Pro-4 and Leu-4 residues in the peptides, with the Pro-4 sequences giving larger fractions of the stable ions while showing smaller mass shifts for the metastables. Conversion of the Asp and C-terminal carboxyl groups to methyl esters further lowers the charge-reduced ion stability. Collisional activation and photodissociation at 355 nm of mass-selected (M + 2H)+● results in different dissociations that give sequence specific MS3 spectra. With a single exception of charge-reduced (LKGLADR + 2H)+●, the MS3 spectra do not produce ETD sequence fragments of the c and z type. Hence, these (M + 2H)+● ions are covalent radicals, not ion-molecule complexes, undergoing dramatically different dissociations in the ground and excited electronic states. The increased stability of the Pro-4 containing (M + 2H)+● ions is attributed to radicals formed by opening of the Pro ring and undergoing further stabilization by hydrogen atom migrations. UV-VIS photodissociation action spectroscopy and time-dependent density functional theory calculations are used in a case in point study of the stable (LKGPADR + 2H)+● ion produced by ETD. In contrast to singly-reduced peptide ions, doubly reduced (M + 3H)+ ions are stable only when formed from the Pro-4 precursors and show all characteristics of even electron ions regarding no photon absorption at 355 nm or ion-molecule reactions, and exhibiting proton driven

  15. Transferable pseudoclassical electrons for aufbau of atomic ions.

    PubMed

    Ekesan, Solen; Kale, Seyit; Herzfeld, Judith

    2014-06-05

    Generalizing the LEWIS reactive force field from electron pairs to single electrons, we present LEWIS• in which explicit valence electrons interact with each other and with nuclear cores via pairwise interactions. The valence electrons are independently mobile particles, following classical equations of motion according to potentials modified from Coulombic as required to capture quantum characteristics. As proof of principle, the aufbau of atomic ions is described for diverse main group elements from the first three rows of the periodic table, using a single potential for interactions between electrons of like spin and another for electrons of unlike spin. The electrons of each spin are found to distribute themselves in a fashion akin to the major lobes of the hybrid atomic orbitals, suggesting a pointillist description of the electron density. The broader validity of the LEWIS• force field is illustrated by predicting the vibrational frequencies of diatomic and triatomic hydrogen species.

  16. Superexchange coupling and electron transfer in globular proteins via polaron excitations.

    PubMed

    Chuev, G N; Lakhno, V D; Ustitnin, M N

    1999-06-01

    The polaron approach is used to treat long-range electron transfers between globular proteins. A rate expression for the polaron transfer model is given along with a description of appropriate conditions for its use. Assuming that electrons transfer via a superexchange coupling due to a polaron excitation, we have estimated the distance dependence of the rate constant for the self-exchange reactions between globular proteins in solutions. The distance dependence of the polaron coupling and solvent reorganization energy are provided as a basis for understanding and interpreting a long-range electron transfer experiment. The difficulties and problems of the polaron treatment of long-range electron transfers are discussed, and suggestions for new experiments are made.

  17. Observation of orientation-dependent electron transfer in molecule–surface collisions

    PubMed Central

    Bartels, Nils; Golibrzuch, Kai; Bartels, Christof; Chen, Li; Auerbach, Daniel J.; Wodtke, Alec M.; Schäfer, Tim

    2013-01-01

    Molecules typically must point in specific relative directions to participate efficiently in energy transfer and reactions. For example, Förster energy transfer favors specific relative directions of each molecule’s transition dipole [Förster T (1948) Ann Phys 2(1-2):55–75] and electron transfer between gas-phase molecules often depends on the relative orientation of orbitals [Brooks PR, et al. (2007) J Am Chem Soc 129(50):15572–15580]. Surface chemical reactions can be many orders of magnitude faster than their gas-phase analogs, a fact that underscores the importance of surfaces for catalysis. One reason surface reactions can be so fast is the labile change of oxidation state that commonly takes place upon adsorption, a process involving electron transfer between a solid metal and an approaching molecule. By transferring electrons to or from the adsorbate, the process of bond weakening and/or cleavage is initiated, chemically activating the reactant [Yoon B, et al. (2005) Science 307(5708):403–407]. Here, we show that the vibrational relaxation of NO—an example of electronically nonadiabatic energy transfer that is driven by an electron transfer event [Gadzuk JW (1983) J Chem Phys 79(12):6341–6348]—is dramatically enhanced when the molecule approaches an Au(111) surface with the N atom oriented toward the surface. This represents a rare opportunity to investigate the steric influences on an electron transfer reaction happening at a surface. PMID:24127598

  18. High throughput electron transfer from carbon dots to chloroplast: a rationale of enhanced photosynthesis

    NASA Astrophysics Data System (ADS)

    Chandra, Sourov; Pradhan, Saheli; Mitra, Shouvik; Patra, Prasun; Bhattacharya, Ankita; Pramanik, Panchanan; Goswami, Arunava

    2014-03-01

    A biocompatible amine functionalized fluorescent carbon dots were developed and isolated for gram scale applications. Such carbogenic quantum dots can strongly conjugate over the surface of the chloroplast and due to that strong interaction the former can easily transfer electrons towards the latter by assistance of absorbed light or photons. An exceptionally high electron transfer from carbon dots to the chloroplast can directly effect the whole chain electron transfer pathway in a light reaction of photosynthesis, where electron carriers play an important role in modulating the system. As a result, carbon dots can promote photosynthesis by modulating the electron transfer process as they are capable of fastening the conversion of light energy to the electrical energy and finally to the chemical energy as assimilatory power (ATP and NADPH).A biocompatible amine functionalized fluorescent carbon dots were developed and isolated for gram scale applications. Such carbogenic quantum dots can strongly conjugate over the surface of the chloroplast and due to that strong interaction the former can easily transfer electrons towards the latter by assistance of absorbed light or photons. An exceptionally high electron transfer from carbon dots to the chloroplast can directly effect the whole chain electron transfer pathway in a light reaction of photosynthesis, where electron carriers play an important role in modulating the system. As a result, carbon dots can promote photosynthesis by modulating the electron transfer process as they are capable of fastening the conversion of light energy to the electrical energy and finally to the chemical energy as assimilatory power (ATP and NADPH). Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr06079a

  19. A framework for modeling electroactive microbial biofilms performing direct electron transfer.

    PubMed

    Korth, Benjamin; Rosa, Luis F M; Harnisch, Falk; Picioreanu, Cristian

    2015-12-01

    A modeling platform for microbial electrodes based on electroactive microbial biofilms performing direct electron transfer (DET) is presented. Microbial catabolism and anabolism were coupled with intracellular and extracellular electron transfer, leading to biofilm growth and current generation. The model includes homogeneous electron transfer from cells to a conductive biofilm component, biofilm matrix conduction, and heterogeneous electron transfer to the electrode. Model results for Geobacter based anodes, both at constant electrode potential and in voltammetric (dynamic electrode potential) conditions, were compared to experimental data from different sources. The model can satisfactorily describe microscale (concentration, pH and redox gradients) and macroscale (electric currents, biofilm thickness) properties of Geobacter biofilms. The concentration of electrochemically accessible redox centers, here denominated as cytochromes, involved in the extracellular electron transfer, plays the key role and may differ between constant potential (300 mM) and dynamic potential (3mM) conditions. Model results also indicate that the homogeneous and heterogeneous electron transfer rates have to be within the same order of magnitude (1.2 s(-1)) for reversible extracellular electron transfer.

  20. Fundamental study of catalysts using laser Raman, infrared, Auger electron spectroscopy and low energy electron diffraction. Progress report. [Carbon monoxide methanation with nickel catalyst

    SciTech Connect

    Sargent, G.A.; Bradley, E.B.

    1981-03-01

    The fundamantal goal of this project is to develop an understanding of catalytic activity and selectivity with the long-range goal of producing better catalysts. The techniques of LEED, Auger spectroscopy, and laser Raman and infared spectroscopies are being used to study the surface structure and obnding of CO, CH/sub 4/, H/sub 2/ and O/sub 2/ adsorbed on Ni(111) and Ni(100) single crystal surfaces. The surface coverage is controlled by varying the gas pressure and exposure time. Surface dipoles (magitude and orientation) are being measured for spectroscopic techniques. Laser Raman and infrared spectroscopy are used to determine vibrational modes of surface structures of the adsorbed molecules and the polarization of Raman bands and changes in band intensities are used to determine electric dipole orientation and thermal desorption characteristics. Thermal desorption experiments have been undertaken for each gas absorbed on each surface using the linear temperature programming technique. The mass of the desorbed species is determined by means of a precision mass analyzer. The mass analyzer is also used to determine residual gas concentrations in the experimental chamber and to identify the structure of intermediate molecules. A new theory has been developed to explain enhanced Raman scatteirng from surface adsorbed species. The theory explains, with good agrement, the Raman scattered intensities observed from molecules adsorbed on smooth and rough surfaces.

  1. Sequential energy and electron transfer in a three-component system aligned on a clay nanosheet.

    PubMed

    Fujimura, Takuya; Ramasamy, Elamparuthi; Ishida, Yohei; Shimada, Tetsuya; Takagi, Shinsuke; Ramamurthy, Vaidhyanathan

    2016-02-21

    To achieve the goal of energy transfer and subsequent electron transfer across three molecules, a phenomenon often utilized in artificial light harvesting systems, we have assembled a light absorber (that also serves as an energy donor), an energy acceptor (that also serves as an electron donor) and an electron acceptor on the surface of an anionic clay nanosheet. Since neutral organic molecules have no tendency to adsorb onto the anionic surface of clay, a positively charged water-soluble organic capsule was used to hold neutral light absorbers on the above surface. A three-component assembly was prepared by the co-adsorption of a cationic bipyridinium derivative, cationic zinc porphyrin and cationic octaamine encapsulated 2-acetylanthracene on an exfoliated anionic clay surface in water. Energy and electron transfer phenomena were monitored by steady state fluorescence and picosecond time resolved fluorescence decay. The excitation of 2-acetylanthracene in the three-component system resulted in energy transfer from 2-acetylanthracene to zinc porphyrin with 71% efficiency. Very little loss due to electron transfer from 2-acetylanthracene in the cavitand to the bipyridinium derivative was noticed. Energy transfer was followed by electron transfer from the zinc porphyrin to the cationic bipyridinium derivative with 81% efficiency. Analyses of fluorescence decay profiles confirmed the occurrence of energy transfer and subsequent electron transfer. Merging the concepts of supramolecular chemistry and surface chemistry we realized sequential energy and electron transfer between three hydrophobic molecules in water. Exfoliated transparent saponite clay served as a matrix to align the three photoactive molecules at a close distance in aqueous solutions.

  2. 48 CFR 52.232-33 - Payment by Electronic Funds Transfer-Central Contractor Registration.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Government under this contract shall be made by electronic funds transfer (EFT), except as provided in... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Payment by Electronic... CONTRACT CLAUSES Text of Provisions and Clauses 52.232-33 Payment by Electronic Funds...

  3. Electronic coherence and the kinetics of energy transfer in light-harvesting systems

    NASA Astrophysics Data System (ADS)

    Huo, Pengfei; Coker, David; Miller, Thomas

    Recent 2D-spectroscopy experiments have observed transient electronic coherence in natural and artificial light harvesting systems, which raises questions about the role of electronic coherence in facilitating excitation energy transfer (EET) processes. In this talk, we introduce the recently developed partial linearized path-integral (PLPI) method, which can accurately simulate exciton transfer dynamics across multiple reaction regimes, as well as reliably describe the electronic coherence among excitonic states. Further, we develop a strategy that enables the analysis of the relative impact of static and dynamic electronic coherence. With PLPI simulations, we find that energy transfer dynamics are almost entirely dominated by static coherence effects; dynamic coherence is found to cause only minor effects. These conclusions are consistent with the historical view that emphasizes the importance of energy-level alignment for efficient incoherent energy transfer,while suggesting a less important role for more exotic electronic coherence effects that have been recently emphasized.

  4. Intercalation of trioxatriangulenium ion in DNA: binding, electron transfer, x-ray crystallography, and electronic structure.

    PubMed

    Reynisson, Jóhannes; Schuster, Gary B; Howerton, Sheldon B; Williams, Loren Dean; Barnett, Robert N; Cleveland, Charles L; Landman, Uzi; Harrit, Niels; Chaires, Jonathan B

    2003-02-26

    Trioxatriangulenium ion (TOTA(+)) is a flat, somewhat hydrophobic compound that has a low-energy unoccupied molecular orbital. It binds to duplex DNA by intercalation with a preference for G-C base pairs. Irradiation of intercalated TOTA(+) causes charge (radical cation) injection that results in strand cleavage (after piperidine treatment) primarily at GG steps. The X-ray crystal structure of TOTA(+) intercalated in the hexameric duplex d[CGATCG](2) described here reveals that intercalation of TOTA(+) results in an unusually large extension of the helical rise of the DNA and that the orientation of TOTA(+) is sensitive to hydrogen-bonding interactions with backbone atoms of the DNA. Electronic structure calculations reveal no meaningful charge transfer from DNA to TOTA(+) because the lowest unoccupied molecular orbital of TOTA(+), (LUMO)(T), falls in the gap between the highest occupied molecular orbital, (HOMO)(D), and the (LUMO)(D) of the DNA bases. These calculations reveal the importance of backbone, water, and counterion interactions, which shift the energy levels of the bases and the intercalated TOTA(+) orbitals significantly. The calculations also show that the inserted TOTA(+) strongly polarizes the intercalation cavity where a sheet of excess electron density surrounds the TOTA(+).

  5. Electron donor-acceptor quenching and photoinduced electron transfer for coumarin dyes. Technical report, 1 January-31 October 1982

    SciTech Connect

    Jones, G. II; Griffin, S.F.; Choi, C.; Bergmark, W.R.

    1983-10-31

    The fluorescence of 7-aminocoumarins is quenched by a variety of organic electron donors or acceptors in acetonitrile. In general, donors with half-wave oxidation potentials less positive than 1.0 V vs SCE and acceptors with reduction potentials less negative than -1.5 V vs SCE are candidates for diffusion limited quenching of coumarin singlet states. Profiles of quenching rates are consistent with calculated free energies for electron transfer between excited coumarins and donors or acceptors. In flash photolysis experiments electron transfer for several dyes and quenchers (e.g., methyl viologen) is demonstrated. Relatively low yields of net electron transfer are consistently obtained due to inefficient ionic photodissociation via singlet quenching or a low yield of more photoactive coumarin triplets. Electrochemical properties of the coumarins have been investigated by cyclic voltammetry with the indications of reversible oxidation and irreversible reduction as important processes.

  6. Synthesis and use of an asymmetric transfer hydrogenation catalyst based on iron(II) for the synthesis of enantioenriched alcohols and amines.

    PubMed

    Zuo, Weiwei; Morris, Robert H

    2015-02-01

    The catalytic hydrogenation of prochiral ketones and imines is an advantageous approach to the synthesis of enantioenriched alcohols and amines, respectively, which are two classes of compounds that are highly prized in pharmaceutical, fragrance and flavoring chemistry. This hydrogenation reaction is generally carried out using ruthenium-based catalysts. Our group has developed an alternative synthetic route that is based on the environmentally friendlier iron-based catalysis. This protocol describes the three-part synthesis of trans-[amine(imine)diphosphine]chlorocarbonyliron(II) tetrafluoroborate templated by iron salts and starting from commercially available chemicals, which provides the precatalyst for the efficient asymmetric transfer hydrogenation of ketones and imines. The use of the enantiopure (S,S) catalyst to reduce prochiral ketones to the (R)-alcohol in good to excellent yields and enantioenrichment is also detailed, as well as the reduction to the amine in very high yield and enantiopurity of imines substituted at the nitrogen with the N-(diphenylphosphinoyl) group (-P(O)Ph2). Although the best ruthenium catalysts provide alcohols in higher enantiomeric excess (ee) than the iron complex catalyst used in this protocol, they do so on much longer time scales or at higher catalyst loadings. This protocol can be completed in 2 weeks.

  7. Covalent versus Charge Transfer Modification of Graphene/Carbon-Nanotubes with Vitamin B1: Co/N/S-C Catalyst toward Excellent Oxygen Reduction.

    PubMed

    Vij, Varun; Tiwari, Jitendra N; Kim, Kwang S

    2016-06-29

    High-performance nonprecious cathodic catalysts for oxygen reduction are highly demanded for low-temperature polymer electrolyte membrane fuel cells (PEMFCs). Here, we report a noble-meta- free, nitrogen and sulfur codoped graphene(G)/carbon-nanotube(CNT) material decorated with Co nanoparticles (NPs), which serve as catalytic sites for excellent oxygen reduction reaction (ORR) in basic and acidic media. Out of the cathodic catalysts synthesized by either covalent (cov) or charge transfer (CT) modification of graphen oxide (GO) with thiamine (Th: Vitamin B1), ThG/CNT/Co-cov shows more promising ORR properties than ThG/CNT/Co-CT. Catalyst ThG/CNT/Co-cov exhibits onset/halfwave potentials of 0.95/0.86 V in 0.1 M KOH and 0.92/0.83 V in 0.1 M HClO4, which are comparable to those of commercial catalyst Pt/C (0.95/0.86 V). As compared to Pt/C, our catalyst shows higher current densities of 6.72 mA cm(-2) in basic medium and 7.08 mA cm(-2) in acidic medium at 0.55 V (vs reversible hydrogen electrode (RHE)). It also exhibits better catalytic stability and methanol tolerance. High catalytic efficiency and stability of ThG/CNT/Co-cov show a promising prospect of materialization of PEMFCs for clean energy production.

  8. Nitrate storage behavior of Ba/MnOx-CeO2 catalyst and its activity for soot oxidation with heat transfer limitations.

    PubMed

    Wu, Xiaodong; Liu, Shuang; Lin, Fan; Weng, Duan

    2010-09-15

    A BaMnCe ternary catalyst was prepared by impregnating barium acetate on MnO(x)-CeO(2) mixed oxides, with the monoxide supported catalysts and the solid solution support as references. The activities of the catalysts for soot oxidation were evaluated in the presence of NO under an energy transference controlled regime. BaMnCe presented the lowest maximal soot oxidation rate temperature at 393 degrees C among the catalysts investigated. Although BaMnCe experienced a loss in the specific surface area and low-temperature redox property due to blocking of the support pores by barium carbonate, its superior soot oxidation activity highlighted the importance of relatively stable bidentate/monodentate nitrates coordinated to Mn(x+) and Ce(x+) sites and more stable ionic barium nitrate. About half of the nitrates stored on this catalyst decomposed within the temperature interval of 350-450 degrees C, and the ignition temperature of soot decreased significantly with involvement of the nitrates or NO(2) released.

  9. Rates and Routes of Electron Transfer of [NiFe]-Hydrogenase in an Enzymatic Fuel Cell.

    PubMed

    Petrenko, Alexander; Stein, Matthias

    2015-10-29

    Hydrogenase enzymes are being used in enzymatic fuel cells immobilized on a graphite or carbon electrode surface, for example. The enzyme is used for the anodic oxidation of molecular hydrogen (H2) to produce protons and electrons. The association and orientation of the enzyme at the anode electrode for a direct electron transfer is not completely resolved. The distal FeS-cluster in [NiFe]-hydrogenases contains a histidine residue which is known to play a critical role in the intermolecular electron transfer between the enzyme and the electrode surface. The [NiFe]-hydrogenase graphite electrode association was investigated using Brownian Dynamics simulations. Residues that were shown to be in proximity to the electrode surface were identified (His184, Ser196, Glu461, Glu464), and electron transfer routes connecting the distal FeS-cluster with the surface residues were investigated. Several possible pathways for electron transfer between the distal FeS-cluster and the terminal amino acid residues were probed in terms of their rates of electron transfer using DFT methods. The reorganization energies λ of the distal iron-sulfur cluster and coronene as a molecular model for graphite were calculated. The reorganization energy of the distal (His)(Cys)3 cluster was found to be not very different from that of a standard cubane clusters with a (Cys)4 coordination. Electronic coupling matrix elements and rates of electron transfer for the different pathways were calculated according to the Marcus equation. The rates for glutamate-mediated electrode binding were found to be incompatible with experimental data. A direct electron transfer from the histidine ligand of the distal FeS-cluster to the electrode yielded rates of electron transfer in excellent agreement with experiment. A second pathway, however, from the distal FeS-cluster to the Ser196 residue was found to be equally efficient and feasible.

  10. Single-molecule interfacial electron transfer dynamics manipulated by an external electric current.

    PubMed

    Zhang, Guofeng; Xiao, Liantuan; Chen, Ruiyun; Gao, Yan; Wang, Xiaobo; Jia, Suotang

    2011-08-14

    Interfacial electron transfer (IET) dynamics in a 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine (DiD) dye molecule/indium tin oxide (ITO) film system have been probed at the ensemble and single-molecule levels. By comparing the difference in the external electric current (EEC) dependence of the fluorescence intensities and lifetimes of the ensembles and single molecules, it is shown that the single-molecule probe can effectively demonstrate IET dynamics. The backward electron transfer and electron transfer from the ground state induce single-molecule fluorescence quenching when an EEC is applied to the DiD/ITO film system.

  11. CNN pincer ruthenium catalysts for hydrogenation and transfer hydrogenation of ketones: experimental and computational studies.

    PubMed

    Baratta, Walter; Baldino, Salvatore; Calhorda, Maria José; Costa, Paulo J; Esposito, Gennaro; Herdtweck, Eberhardt; Magnolia, Santo; Mealli, Carlo; Messaoudi, Abdelatif; Mason, Sax A; Veiros, Luis F

    2014-10-13

    Reaction of [RuCl(CNN)(dppb)] (1-Cl) (HCNN=2-aminomethyl-6-(4-methylphenyl)pyridine; dppb=Ph2 P(CH2 )4 PPh2 ) with NaOCH2 CF3 leads to the amine-alkoxide [Ru(CNN)(OCH2 CF3 )(dppb)] (1-OCH2 CF3 ), whose neutron diffraction study reveals a short RuO⋅⋅⋅HN bond length. Treatment of 1-Cl with NaOEt and EtOH affords the alkoxide [Ru(CNN)(OEt)(dppb)]⋅(EtOH)n (1-OEt⋅n EtOH), which equilibrates with the hydride [RuH(CNN)(dppb)] (1-H) and acetaldehyde. Compound 1-OEt⋅n EtOH reacts reversibly with H2 leading to 1-H and EtOH through dihydrogen splitting. NMR spectroscopic studies on 1-OEt⋅n EtOH and 1-H reveal hydrogen bond interactions and exchange processes. The chloride 1-Cl catalyzes the hydrogenation (5 atm of H2 ) of ketones to alcohols (turnover frequency (TOF) up to 6.5×10(4) h(-1) , 40 °C). DFT calculations were performed on the reaction of [RuH(CNN')(dmpb)] (2-H) (HCNN'=2-aminomethyl-6-(phenyl)pyridine; dmpb=Me2 P(CH2 )4 PMe2 ) with acetone and with one molecule of 2-propanol, in alcohol, with the alkoxide complex being the most stable species. In the first step, the Ru-hydride transfers one hydrogen atom to the carbon of the ketone, whereas the second hydrogen transfer from NH2 is mediated by the alcohol and leads to the key "amide" intermediate. Regeneration of the hydride complex may occur by reaction with 2-propanol or with H2 ; both pathways have low barriers and are alcohol assisted.

  12. Intermolecular electron transfer from intramolecular excitation and coherent acoustic phonon generation in a hydrogen-bonded charge-transfer solid

    NASA Astrophysics Data System (ADS)

    Rury, Aaron S.; Sorenson, Shayne; Dawlaty, Jahan M.

    2016-03-01

    Organic materials that produce coherent lattice phonon excitations in response to external stimuli may provide next generation solutions in a wide range of applications. However, for these materials to lead to functional devices in technology, a full understanding of the possible driving forces of coherent lattice phonon generation must be attained. To facilitate the achievement of this goal, we have undertaken an optical spectroscopic study of an organic charge-transfer material formed from the ubiquitous reduction-oxidation pair hydroquinone and p-benzoquinone. Upon pumping this material, known as quinhydrone, on its intermolecular charge transfer resonance as well as an intramolecular resonance of p-benzoquinone, we find sub-cm-1 oscillations whose dispersion with probe energy resembles that of a coherent acoustic phonon that we argue is coherently excited following changes in the electron density of quinhydrone. Using the dynamical information from these ultrafast pump-probe measurements, we find that the fastest process we can resolve does not change whether we pump quinhydrone at either energy. Electron-phonon coupling from both ultrafast coherent vibrational and steady-state resonance Raman spectroscopies allows us to determine that intramolecular electronic excitation of p-benzoquinone also drives the electron transfer process in quinhydrone. These results demonstrate the wide range of electronic excitations of the parent of molecules found in many functional organic materials that can drive coherent lattice phonon excitations useful for applications in electronics, photonics, and information technology.

  13. Development of latent fingermarks on surfaces submerged in water: Optimization studies for phase transfer catalyst (PTC) based reagents.

    PubMed

    Jasuja, O P; Kumar, Parveen; Singh, Gagandeep

    2015-09-01

    The use of a phase transfer catalyst (PTC) based reagent for the development of latent fingermarks is relatively a recent one and therefore a thorough evaluation is required before making any suggestion for its use in the routine fingermark development protocol. In the present study, non-porous surfaces including the sticky side of adhesive tapes loaded with latent fingermarks (eccrine, groomed and natural fingermarks) were submerged in water for different times and were treated with a PTC based reagent to develop fingermarks. The PTC based reagent was able to develop latent fingermarks on various surfaces submerged in water for different time intervals. The proposed method has been compared with standard methods like superglue fuming, small particle reagent and gentian violet (for adhesive tapes). The results have shown that the duration of submersion and the method selected for visualization have influences on the quality of developed fingermarks. The performance of the PTC technique against conventional methods was evaluated and compared thoroughly as a part of the optimization studies for the reagent.

  14. Proton-Coupled Electron-Transfer Processes in Ultrafast Time Domain: Evidence for Effects of Hydrogen-Bond Stabilization on Photoinduced Electron Transfer.

    PubMed

    Dey, Ananta; Dana, Jayanta; Aute, Sunil; Maity, Partha; Das, Amitava; Ghosh, Hirendra N

    2017-03-08

    The proton-coupled electron-transfer (PCET) reaction is investigated for a newly synthesized imidazole-anthraquinone biomimetic model with a photoactive Ru(II) -polypyridyl moiety that is covalently coupled to the imidazole fragment. Intramolecular H-bonding interactions between imidazole and anthraquinone moieties favor the PCET process; this can be correlated to an appreciable positive shift in the one-electron reduction potential of the coordinated anthraquinone moiety functionalized with the imidazole fragment. This can also be attributed to the low luminescence quantum yield of the Ru(II) -polypyridyl complex used. The dynamics of the intramolecular electron-transfer (ET) and PCET processes are studied by using femtosecond transient absorption spectroscopy. The steady-state spectroscopic studies and the results of the time-resolved absorption studies confirm that H-bonded water molecules play a major role in both ET and PCET dynamics as a proton relay in the excited state. The electron-transfer process is followed by a change in the H-bonding equilibrium between AQ and imidazole in acetonitrile solvent, and protonation of AQ(.-) by water leads to PCET in the presence of water. A slower forward and backward electron-transfer rate is observed in the presence of D2 O compared with that in H2 O. These results provide further experimental support for a detailed understanding of the PCET process.

  15. 75 FR 52485 - Electronic Funds Transfer of Depository Taxes; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    ... Depository Taxes; Correction AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Correction to notice... Federal Register on Monday, August 23, 2010, relating to Federal tax deposits (FTDs) by Electronic...

  16. Role for bound water and CH-pi aromatic interactions in photosynthetic electron transfer.

    PubMed

    Sacksteder, Colette A; Bender, Shana L; Barry, Bridgette A

    2005-06-01

    Photosystem I (PSI) is one of two photosynthetic reaction centers present in plants, algae, and cyanobacteria and catalyzes the reduction of ferredoxin and the oxidation of cytochrome c or plastocyanin. The PSI primary chlorophyll donor, which is oxidized in the primary electron-transfer events, is a heterodimer of chl a and a' called P700. It has been suggested that protein relaxation accompanies light-induced electron transfer in this reaction center (Dashdorj, N.; Xu, W.; Martinsson, P.; Chitnis, P. R.; Savikhin, S. Biophys. J. 2004, 86, 3121. Kim, S.; Sacksteder, C. A.; Bixby, K. A.; Barry, B. A. Biochemistry 2001, 40, 15384). To investigate the details of electron transfer and relaxation events in PSI, we have employed several experimental approaches. First, we report a pH-dependent viscosity effect on P700+ reduction; this result suggests a role for proton transfer in the PSI electron-transfer reactions. Second, we find that changes in hydration alter the rate of P700+ reduction and the interactions of P700 with the protein environment. This result suggests a role for bound water in electron transfer to P700+. Third, we present evidence that deuteration of the tyrosine aromatic side chain perturbs the vibrational spectrum, associated with P700+ reduction. We attribute this result to a linkage between CH-pi interactions and electron transfer to P700+.

  17. Role of coherence and delocalization in photo-induced electron transfer at organic interfaces

    PubMed Central

    Abramavicius, V.; Pranculis, V.; Melianas, A.; Inganäs, O.; Gulbinas, V.; Abramavicius, D.

    2016-01-01

    Photo-induced charge transfer at molecular heterojunctions has gained particular interest due to the development of organic solar cells (OSC) based on blends of electron donating and accepting materials. While charge transfer between donor and acceptor molecules can be described by Marcus theory, additional carrier delocalization and coherent propagation might play the dominant role. Here, we describe ultrafast charge separation at the interface of a conjugated polymer and an aggregate of the fullerene derivative PCBM using the stochastic Schrödinger equation (SSE) and reveal the complex time evolution of electron transfer, mediated by electronic coherence and delocalization. By fitting the model to ultrafast charge separation experiments, we estimate the extent of electron delocalization and establish the transition from coherent electron propagation to incoherent hopping. Our results indicate that even a relatively weak coupling between PCBM molecules is sufficient to facilitate electron delocalization and efficient charge separation at organic interfaces. PMID:27605035

  18. Pulse radiolytic studies of electron transfer processes and applications to solar photochemistry. Progress report

    SciTech Connect

    Neta, P.

    1995-02-01

    The pulse radiolysis technique is applied to the study of electron transfer processes in a variety of chemical systems. Reactive intermediates are produced in solution by electron pulse irradiation and the kinetics of their reactions are followed by time resolved absorption spectrophotometry. Complementary experiments are carried out with excimer laser flash photolysis. These studies are concerned with mechanisms, kinetics, and thermodynamics of reactions of organic and inorganic radicals and unstable oxidation states of metal ions. Reactions are studied in both aqueous and non-aqueous solutions. The studies focus on the unique ability of pulse radiolysis to provide absolute rate constants for reactions of many inorganic radicals and organic peroxyl radicals, species that are key intermediates in many chemical processes. A special concern of this work is the study of electron transfer reactions of metalloporphyrins, which permits evaluation of these molecules as intermediates in solar energy conversion. Metalloporphyrins react with free radicals via electron transfer, involving the ligand or the metal center, or via bonding to the metal, leading to a variety of chemical species whose behavior is also investigated. The highlights of the results during the past three years are summarized below under the following sections: (a) electron transfer reactions of peroxyl radicals, concentrating on the characterization of new peroxyl radicals derived from vinyl, phenyl, other aryl, and pyridyl; (b) solvent effects on electron transfer reactions of inorganic and organic peroxyl radicals, including reactions with porphyrins, and (c) electron transfer and alkylation reactions of metalloporphyrins and other complexes.

  19. The Mechanism and Properties of Electron Transfer in the Biological Organism

    NASA Astrophysics Data System (ADS)

    Pang, Xiao-Feng

    2013-08-01

    The mechanism and properties of electron transfer along protein molecules at finite temperature T ≠ 0 in the life systems are studied using nonlinear theory of bio-energy transport and Green function method, in which the electrons are transferred from donors to acceptors in virtue of the supersound soliton excited by the energy released in ATP hydrolysis. The electron transfer is, in essence, a process of oxidation-reduction reaction. In this study we first give the Hamiltonian and wavefunction of the system and find out the soliton solution of the dynamical equation in the protein molecules with finite temperature, and obtain the dynamical coefficient of the electron transfer. The results show that the speed of the electron transfer is related to the velocity of motion of the soliton, distribution of electrons in the donor and acceptor as well as the interaction strength among them. We finally concluded the changed rule of electric current, arising from the electron transfer, with increasing time. These results are useful in molecular and chemical biology.

  20. Counting electrons on supported nanoparticles.

    PubMed

    Lykhach, Yaroslava; Kozlov, Sergey M; Skála, Tomáš; Tovt, Andrii; Stetsovych, Vitalii; Tsud, Nataliya; Dvořák, Filip; Johánek, Viktor; Neitzel, Armin; Mysliveček, Josef; Fabris, Stefano; Matolín, Vladimír; Neyman, Konstantin M; Libuda, Jörg

    2016-03-01

    Electronic interactions between metal nanoparticles and oxide supports control the functionality of nanomaterials, for example, the stability, the activity and the selectivity of catalysts. Such interactions involve electron transfer across the metal/support interface. In this work we quantify this charge transfer on a well-defined platinum/ceria catalyst at particle sizes relevant for heterogeneous catalysis. Combining synchrotron-radiation photoelectron spectroscopy, scanning tunnelling microscopy and density functional calculations we show that the charge transfer per Pt atom is largest for Pt particles of around 50 atoms. Here, approximately one electron is transferred per ten Pt atoms from the nanoparticle to the support. For larger particles, the charge transfer reaches its intrinsic limit set by the support. For smaller particles, charge transfer is partially suppressed by nucleation at defects. These mechanistic and quantitative insights into charge transfer will help to make better use of particle size effects and electronic metal-support interactions in metal/oxide nanomaterials.

  1. Nanoparticle Facilitated Extracellular Electron Transfer in Microbial Fuel Cells

    DTIC Science & Technology

    2014-10-13

    KEYWORDS: Bacteria, facilitated electron transport, electrochemically active, iron sulfide, Shewanella Microbial fuel cells (MFCs) are capable of...to MFC technology is the unique capability of electrochemically active bacteria, such as Shewanella and Geobacter, to divert electrons from the... electrochemical studies also demonstra- ted that the current contribution from remote bacterial cells was significantly diminished at longer cell−electrode dis

  2. Theoretical study on the antioxidant properties of 2'-hydroxychalcones: H-atom vs. electron transfer mechanism.

    PubMed

    Xue, Yunsheng; Zheng, Youguang; Zhang, Ling; Wu, Wenya; Yu, Ding; Liu, Yi

    2013-09-01

    The free radical scavenging activity of six 2'-hydroxychalcones has been studied in gas phase and solvents using the density functional theory (DFT) method. The three main working mechanisms, hydrogen atom transfer (HAT), stepwise electron-transfer-proton-transfer (ET-PT) and sequential-proton-loss-electron-transfer (SPLET) have been considered. The O-H bond dissociation enthalpy (BDE), ionization potential (IP), proton affinity (PA) and electron transfer energy (ETE) parameters have been computed in gas phase and solvents. The theoretical results confirmed the important role of the B ring in the antioxidant properties of hydroxychalcones. In addition, the calculated results matched well with experimental values. The results suggested that HAT would be the most favorable mechanism for explaining the radical-scavenging activity of hydroxychalcone in gas phase, whereas SPLET mechanism is thermodynamically preferred pathway in aqueous solution.

  3. [Long-range electron transfer in globular proteins by polaron excitation].

    PubMed

    Lakhno, V L; Chuev, G N

    1997-01-01

    Considering polaron model, we have calculated an electron state localized in the protein heme. Using these calculations: the electron density and electron energy, we estimated the self-exchange rate constant for cyt c (horse heart), its reorganization energy, matrix element, and dependence of this rate on the distance between hemes. The results are compared with the experimental data and other theoretical estimations. We discuss the role of polaron excitations in the long-range electron transfer in globular proteins.

  4. Bi-directional magnetic resonance based wireless power transfer for electronic devices

    SciTech Connect

    Kar, Durga P.; Nayak, Praveen P.; Bhuyan, Satyanarayan; Mishra, Debasish

    2015-09-28

    In order to power or charge electronic devices wirelessly, a bi-directional wireless power transfer method has been proposed and experimentally investigated. In the proposed design, two receiving coils are used on both sides of a transmitting coil along its central axis to receive the power wirelessly from the generated magnetic fields through strongly coupled magnetic resonance. It has been observed experimentally that the maximum power transfer occurs at the operating resonant frequency for optimum electric load connected across the receiving coils on both side. The optimum wireless power transfer efficiency is 88% for the bi-directional power transfer technique compared 84% in the one side receiver system. By adopting the developed bi-directional power transfer method, two electronic devices can be powered up or charged simultaneously instead of a single device through usual one side receiver system without affecting the optimum power transfer efficiency.

  5. An electron-transfer photochromic crystalline MOF accompanying photoswitchable luminescence in a host-guest system.

    PubMed

    Liu, Yu-Shuang; Luo, Yu-Hui; Li, Li; Zhang, Hong

    2017-03-23

    A new electron transfer type photoactive host-guest supramolecule was constructed by introducing (CH3)2NH2(+) cations to the MOF framework. The resulting compound 1 exhibits reversible photochromic property without using photochromic components, resulting from photoinduced electron-transfer between the electron-rich anionic framework and the electron-deficient guest ions. In addition, a photoluminescence "on/off switch" occurs during the coloration-decoloration process. The raw materials are non-poisonous and harmless, hence compound 1 may be more cost-effective, clean, and harmless to the heath than existing photochromic materials.

  6. Design of a Molecular Memory Device: The Electron Transfer Shift Register Memory

    NASA Technical Reports Server (NTRS)

    Beratan, D.

    1993-01-01

    A molecular shift register memory at the molecular level is described. The memory elements consist of molecules can exit in either an oxidized or reduced state and the bits are shifted between the cells with photoinduced electron transfer reactions.

  7. Density Functional Reactivity Theory Characterizes Charge Separation Propensity in Proton-Coupled Electron Transfer Reactions

    SciTech Connect

    Liu, Shubin; Ess, Daniel H.; Schauer, Cynthia

    2011-04-20

    Proton-coupled electron transfer (PCET) reactions occur in many biological and artificial solar energy conversion processes. In these reactions the electron is often transferred to a site distant to the proton acceptor site. In this work, we employ the dual descriptor and the electrophilic Fukui function from density functional reactivity theory (DFRT) to characterize the propensity for an electron to be transferred to a site other than the proton acceptor site. The electrophilic regions of hydrogen bond or van der Waal reactant complexes were examined using these DFRT descriptors to determine the region of space to which the electron is most likely to be transferred. This analysis shows that in PCET reactions the electrophilic region of the reactant complex does not include the proton acceptor site.

  8. Determination of electron transfer kinetic parameters by fourier transform electrochemical impedance spectroscopic analysis.

    PubMed

    Chang, Byoung-Yong; Hong, Sung-Young; Yoo, Jung-Suk; Park, Su-Moon

    2006-10-05

    A new attempt to obtain electron transfer kinetic parameters at an electrified electrode/electrolyte interface using Fourier transform electrochemical impedance spectroscopic (FTEIS) analyses of small potential step chronoamperometric currents is presented. The kinetic parameters thus obtained allowed mass transport free voltammograms to be constructed in an overpotential region, where the diffusion limits the electron transfer reaction, using the Butler-Volmer (B-V) relation. The B-V voltammograms clearly distinguish electrode reactions that are not much different in their electron transfer kinetic parameters, thus showing very similar normal linear sweep voltammetric (SCV) behaviors. Electrochemical reduction of p-benzoquinone, which displays nearly the same SCV responses at a gold electrode regardless whether the electrode is covered by a thiolated beta-cyclodextrin self-assembled monolayer, was taken as an example for the demonstration. The results show that the two voltametrically similar systems display very different electron transfer characteristics.

  9. Rhodamine-6G can photosensitize folic acid decomposition through electron transfer

    NASA Astrophysics Data System (ADS)

    Hirakawa, Kazutaka; Ito, Hiroki

    2015-05-01

    Rhodamine-6G photosensitized folic acid decomposition in aqueous solution, and its quantum yield in the presence of 10 μM folic acid was 9.9 × 10-6. A possible mechanism of this photodecomposition is direct oxidation through an electron transfer from folic acid to rhodamine-6G. The fluorescence lifetime of rhodamine-6G was slightly decreased by folic acid, suggesting electron transfer in the excited singlet state of rhodamine-6G. The quenching rate coefficient estimated from the Stern-Volmer plot of the fluorescence quenching supported that this electron transfer proceeds as a diffusion-controlled reaction. The quantum yields of the electron transfer and the following reaction could be determined.

  10. 48 CFR 52.232-38 - Submission of Electronic Funds Transfer Information with Offer.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... information that is required to make payment by electronic funds transfer (EFT) under any contract that results from this solicitation. This submission satisfies the requirement to provide EFT information...

  11. 48 CFR 52.232-38 - Submission of Electronic Funds Transfer Information with Offer.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... information that is required to make payment by electronic funds transfer (EFT) under any contract that results from this solicitation. This submission satisfies the requirement to provide EFT information...

  12. 48 CFR 52.232-38 - Submission of Electronic Funds Transfer Information with Offer.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... information that is required to make payment by electronic funds transfer (EFT) under any contract that results from this solicitation. This submission satisfies the requirement to provide EFT information...

  13. 48 CFR 52.232-38 - Submission of Electronic Funds Transfer Information with Offer.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... information that is required to make payment by electronic funds transfer (EFT) under any contract that results from this solicitation. This submission satisfies the requirement to provide EFT information...

  14. 48 CFR 52.232-38 - Submission of Electronic Funds Transfer Information with Offer.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... information that is required to make payment by electronic funds transfer (EFT) under any contract that results from this solicitation. This submission satisfies the requirement to provide EFT information...

  15. 77 FR 71035 - Financial Management Service; Proposed Collection of Information: Electronic Funds Transfer (EFT...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-28

    ... Fiscal Service Financial Management Service; Proposed Collection of Information: Electronic Funds Transfer (EFT) Market Research Study AGENCY: Financial Management Service, Fiscal Service, Treasury. ACTION: Notice and Request for comments. SUMMARY: The Financial Management Service, as part of its...

  16. Electrode assemblies composed of redox cascades from microbial respiratory electron transfer chains

    SciTech Connect

    Gates, Andrew J.; Marritt, Sophie; Bradley, Justin; Shi, Liang; McMillan, Duncan G.; Jeuken, Lars J.; Richardson, David; Butt, Julea N.

    2013-10-01

    Respiratory and photosynthetic electron transfer chains are dependent on vectorial electron transfer through a series of redox proteins. Examples include electron transfer from NapC to NapAB nitrate reductase in Paracoccus denitrificans and from CymA to Fcc3 (flavocytochrome c3) fumarate reductase in Shewanella oneidensis MR-1. In the present article, we demonstrate that graphite electrodes can serve as surfaces for the stepwise adsorption of NapC and NapAB, and the stepwise adsorption of CymA and Fcc3. Aspects of the catalytic properties of these assemblies are different from those of NapAB and Fcc3 adsorbed in isolation. We propose that this is due to the formation of NapC-NapAB and of CymA-Fcc3 complexes that are capable of supporting vectorial electron transfer.

  17. 77 FR 34127 - Financial Management Service; Proposed Collection of Information: Electronic Transfer Account...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-08

    ... Fiscal Service Financial Management Service; Proposed Collection of Information: Electronic Transfer Account (ETA) Financial Agency Agreement AGENCY: Financial Management Service, Fiscal Service, Treasury. ACTION: Notice and Request for comments. SUMMARY: The Financial Management Service, as part of...

  18. Quantifying electron transfer reactions in biological systems: what interactions play the major role?

    PubMed

    Sjulstok, Emil; Olsen, Jógvan Magnus Haugaard; Solov'yov, Ilia A

    2015-12-22

    Various biological processes involve the conversion of energy into forms that are usable for chemical transformations and are quantum mechanical in nature. Such processes involve light absorption, excited electronic states formation, excitation energy transfer, electrons and protons tunnelling which for example occur in photosynthesis, cellular respiration, DNA repair, and possibly magnetic field sensing. Quantum biology uses computation to model biological interactions in light of quantum mechanical effects and has primarily developed over the past decade as a result of convergence between quantum physics and biology. In this paper we consider electron transfer in biological processes, from a theoretical view-point; namely in terms of quantum mechanical and semi-classical models. We systematically characterize the interactions between the moving electron and its biological environment to deduce the driving force for the electron transfer reaction and to establish those interactions that play the major role in propelling the electron. The suggested approach is seen as a general recipe to treat electron transfer events in biological systems computationally, and we utilize it to describe specifically the electron transfer reactions in Arabidopsis thaliana cryptochrome-a signaling photoreceptor protein that became attractive recently due to its possible function as a biological magnetoreceptor.

  19. Electron transfer from humic substances to biogenic and abiogenic Fe(III) oxyhydroxide minerals.

    PubMed

    Piepenbrock, Annette; Schröder, Christian; Kappler, Andreas

    2014-01-01

    Microbial humic substance (HS) reduction and subsequent abiotic electron transfer from reduced HS to poorly soluble Fe(III) (oxyhydr)oxides, a process named electron shuttling, significantly increases microbial Fe(III) mineral reduction rates. However, the importance of electron shuttling in nature and notably the electron transfer from HS to biogenic Fe(III) (oxyhydr)oxides have thus far not been determined. In this study, we have quantified the rate and extent of electron transfer from reduced and nonreduced Pahokee Peat humic acids (PPHA) and fresh soil organic matter (SOM) extracts to both synthetic and environmentally relevant biogenic Fe(III) (oxyhydr)oxides. We found that biogenic Fe(III) minerals were reduced faster and to an equal or higher degree than their abiogenic counterparts. Differences were attributed to differences in crystallinity and the association of bacterial biomass with biogenic minerals. Compared to purified PPHA, SOM extract transferred fewer electrons per milligram of carbon and electron transfer was observed only to poorly crystalline ferrihydrite but not to more crystalline goethite. This indicates a difference in redox potential distribution of the redox-active functional groups in extracted SOM relative to the purified PPHA. Our results suggest that HS electron shuttling can also contribute to iron redox processes in environments where biogenic Fe(III) minerals are present.

  20. Quantifying electron transfer reactions in biological systems: what interactions play the major role?

    NASA Astrophysics Data System (ADS)

    Sjulstok, Emil; Olsen, Jógvan Magnus Haugaard; Solov'Yov, Ilia A.

    2015-12-01

    Various biological processes involve the conversion of energy into forms that are usable for chemical transformations and are quantum mechanical in nature. Such processes involve light absorption, excited electronic states formation, excitation energy transfer, electrons and protons tunnelling which for example occur in photosynthesis, cellular respiration, DNA repair, and possibly magnetic field sensing. Quantum biology uses computation to model biological interactions in light of quantum mechanical effects and has primarily developed over the past decade as a result of convergence between quantum physics and biology. In this paper we consider electron transfer in biological processes, from a theoretical view-point; namely in terms of quantum mechanical and semi-classical models. We systematically characterize the interactions between the moving electron and its biological environment to deduce the driving force for the electron transfer reaction and to establish those interactions that play the major role in propelling the electron. The suggested approach is seen as a general recipe to treat electron transfer events in biological systems computationally, and we utilize it to describe specifically the electron transfer reactions in Arabidopsis thaliana cryptochrome-a signaling photoreceptor protein that became attractive recently due to its possible function as a biological magnetoreceptor.

  1. Quantifying electron transfer reactions in biological systems: what interactions play the major role?

    PubMed Central

    Sjulstok, Emil; Olsen, Jógvan Magnus Haugaard; Solov’yov, Ilia A.

    2015-01-01

    Various biological processes involve the conversion of energy into forms that are usable for chemical transformations and are quantum mechanical in nature. Such processes involve light absorption, excited electronic states formation, excitation energy transfer, electrons and protons tunnelling which for example occur in photosynthesis, cellular respiration, DNA repair, and possibly magnetic field sensing. Quantum biology uses computation to model biological interactions in light of quantum mechanical effects and has primarily developed over the past decade as a result of convergence between quantum physics and biology. In this paper we consider electron transfer in biological processes, from a theoretical view-point; namely in terms of quantum mechanical and semi-classical models. We systematically characterize the interactions between the moving electron and its biological environment to deduce the driving force for the electron transfer reaction and to establish those interactions that play the major role in propelling the electron. The suggested approach is seen as a general recipe to treat electron transfer events in biological systems computationally, and we utilize it to describe specifically the electron transfer reactions in Arabidopsis thaliana cryptochrome–a signaling photoreceptor protein that became attractive recently due to its possible function as a biological magnetoreceptor. PMID:26689792

  2. Mechanistic Investigation of Catalyst-Transfer Suzuki-Miyaura Condensation Polymerization of Thiophene-Pyridine Biaryl Monomers with the Aid of Model Reactions.

    PubMed

    Tokita, Yu; Katoh, Masaru; Ohta, Yoshihiro; Yokozawa, Tsutomu

    2016-11-21

    We have investigated the requirements for efficient Pd-catalyzed Suzuki-Miyaura catalyst-transfer condensation polymerization (Pd-CTCP) reactions of 2-alkoxypropyl-6-(5-bromothiophen-2-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine (12) as a donor-acceptor (D-A) biaryl monomer. As model reactions, we first carried out the Suzuki-Miyaura coupling reaction of X-Py-Th-X' (Th=thiophene, Py=pyridine, X, X'=Br or I) 1 with phenylboronic acid ester 2 by using tBu3 PPd(0) as the catalyst. Monosubstitution with a phenyl group at Th-I mainly took place in the reaction of Br-Py-Th-I (1 b) with 2, whereas disubstitution selectively occurred in the reaction of I-Py-Th-Br (1 c) with 2, indicating that the Pd catalyst is intramolecularly transferred from acceptor Py to donor Th. Therefore, we synthesized monomer 12 by introduction of a boronate moiety and bromine into Py and Th, respectively. However, examination of the relationship between monomer conversion and the Mn of the obtained polymer, as well as the matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectra, indicated that Suzuki-Miyaura coupling polymerization of 12 with (o-tolyl)tBu3 PPdBr initiator 13 proceeded in a step-growth polymerization manner through intermolecular transfer of the Pd catalyst. To understand the discrepancy between the model reactions and polymerization reaction, Suzuki-Miyaura coupling reactions of 1 c with thiopheneboronic acid ester instead of 2 were carried out. This resulted in a decrease of the disubstitution product. Therefore, step-growth polymerization appears to be due to intermolecular transfer of the Pd catalyst from Th after reductive elimination of the Th-Pd-Py complex formed by transmetalation of polymer Th-Br with (Pin)B-Py-Th-Br monomer 12 (Pin=pinacol). Catalysts with similar stabilization energies of metal-arene η(2) -coordination for D and A monomers may be needed for CTCP reactions of biaryl D-A monomers.

  3. 76 FR 81019 - Electronic Fund Transfers (Regulation E)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ...Title X of the Dodd-Frank Wall Street Reform and Consumer Protection Act (Dodd-Frank Act) transferred rulemaking authority for a number of consumer financial protection laws from seven Federal agencies to the Bureau of Consumer Financial Protection (Bureau) as of July 21, 2011. The Bureau is in the process of republishing the regulations implementing those laws with technical and conforming......

  4. 78 FR 30661 - Electronic Fund Transfers (Regulation E)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-22

    ... involved in open network transfers may learn about each other's practices regarding fees or other matters..., even a large correspondent bank, attempting to learn and accurately disclose these fees. Relatedly... introductory language in Sec. 1005.30 states that ``for purposes of this subpart, the following...

  5. Transferred metal electrode films for large-area electronic devices

    SciTech Connect

    Yang, Jin-Guo; Kam, Fong-Yu; Chua, Lay-Lay

    2014-11-10

    The evaporation of metal-film gate electrodes for top-gate organic field-effect transistors (OFETs) limits the minimum thickness of the polymer gate dielectric to typically more than 300 nm due to deep hot metal atom penetration and damage of the dielectric. We show here that the self-release layer transfer method recently developed for high-quality graphene transfer is also capable of giving high-quality metal thin-film transfers to produce high-performance capacitors and OFETs with superior dielectric breakdown strength even for ultrathin polymer dielectric films. Dielectric breakdown strengths up to 5–6 MV cm{sup −1} have been obtained for 50-nm thin films of polystyrene and a cyclic olefin copolymer TOPAS{sup ®} (Zeon). High-quality OFETs with sub-10 V operational voltages have been obtained this way using conventional polymer dielectrics and a high-mobility polymer semiconductor poly[2,5-bis(3-tetradecylthiophene-2-yl)thieno[3,2-b]thiophene-2,5-diyl]. The transferred metal films can make reliable contacts without damaging ultrathin polymer films, self-assembled monolayers and graphene, which is not otherwise possible from evaporated or sputtered metal films.

  6. The Historian and Electronic Research: File Transfer Protocol (FTP).

    ERIC Educational Resources Information Center

    McCarthy, Michael J.

    1993-01-01

    Asserts that the Internet will become the academic communication medium for historians in the 1990s. Describes the "file transfer protocol" (FTP) access approach to the Internet and discusses its significant for historical research. Includes instructions for using FTP and a list of history-related FTP sites. (CFR)

  7. An in situ transmission electron microscope deformation study of the slip transfer mechanisms in metals

    SciTech Connect

    Lee, T.C.; Robertson, I.M.; Birnbaum, H.K. . Dept. of Materials Science and Engineering)

    1990-09-01

    The slip transfer mechanisms across grain boundaries in 310 stainless steel, high-purity aluminum, and a Ni-S alloy have been studied by using the in situ transmission electron microscope (TEM) deformation technique. Several interactions between mobile lattice dislocations and grain boundaries have been observed, including the transfer and generation of dislocations at grain boundaries and the nucleation and propagation of a grain boundary crack. Quantitative condition have been established to correctly predict the slip transfer mechanism.

  8. Electron Transfer Studies of Ruthenium(II) Complexes with Biologically Important Phenolic Acids and Tyrosine.

    PubMed

    Rajeswari, Angusamy; Ramdass, Arumugam; Muthu Mareeswaran, Paulpandian; Rajagopal, Seenivasan

    2016-03-01

    The ruthenium(II) complexes having 2,2'-bipyridine and phenanthroline derivatives are synthesized and characterized. The photophysical properties of these complexes at pH 12.5 are studied. The electron transfer reaction of biologically important phenolic acids and tyrosine are studied using absorption, emission and transient absorption spectral techniques. Semiclassical theory is applied to calculate the rate of electron transfer between ruthenium(II) complexes and biologically important phenolic acids.

  9. 36 CFR 1235.48 - What documentation must agencies transfer with electronic records?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... NARA Form 14097, Technical Description for Transfer of Electronic Records, for magnetic tape media, and... format and codes as transferred. (c) Digital geospatial data files. Digital geospatial data files must... digital geospatial data files can include metadata that conforms to the Federal Geographic Data...

  10. 12 CFR 205.14 - Electronic fund transfer service provider not holding consumer's account.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... initiates a transfer to effect a provisional credit in accordance with § 205.11(c)(2)(ii). (iii) If the..., in the appropriate amount and within the applicable time period, in accordance with § 205.11(c)(2)(i... 12 Banks and Banking 2 2014-01-01 2014-01-01 false Electronic fund transfer service provider...

  11. 12 CFR 205.14 - Electronic fund transfer service provider not holding consumer's account.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... initiates a transfer to effect a provisional credit in accordance with § 205.11(c)(2)(ii). (iii) If the..., in the appropriate amount and within the applicable time period, in accordance with § 205.11(c)(2)(i... 12 Banks and Banking 2 2012-01-01 2012-01-01 false Electronic fund transfer service provider...

  12. 12 CFR 205.14 - Electronic fund transfer service provider not holding consumer's account.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... initiates a transfer to effect a provisional credit in accordance with § 205.11(c)(2)(ii). (iii) If the..., in the appropriate amount and within the applicable time period, in accordance with § 205.11(c)(2)(i... 12 Banks and Banking 2 2010-01-01 2010-01-01 false Electronic fund transfer service provider...

  13. 12 CFR 205.14 - Electronic fund transfer service provider not holding consumer's account.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... initiates a transfer to effect a provisional credit in accordance with § 205.11(c)(2)(ii). (iii) If the..., in the appropriate amount and within the applicable time period, in accordance with § 205.11(c)(2)(i... 12 Banks and Banking 2 2013-01-01 2013-01-01 false Electronic fund transfer service provider...

  14. 12 CFR 205.14 - Electronic fund transfer service provider not holding consumer's account.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... initiates a transfer to effect a provisional credit in accordance with § 205.11(c)(2)(ii). (iii) If the..., in the appropriate amount and within the applicable time period, in accordance with § 205.11(c)(2)(i... 12 Banks and Banking 2 2011-01-01 2011-01-01 false Electronic fund transfer service provider...

  15. 36 CFR 1235.50 - What specifications and standards for transfer apply to electronic records?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-proprietary, published open standard maintained by or for a Federal, national, or international standards... standards for transfer apply to electronic records? 1235.50 Section 1235.50 Parks, Forests, and Public... NATIONAL ARCHIVES OF THE UNITED STATES Transfer Specifications and Standards § 1235.50 What...

  16. Catalysts for electrochemical generation of oxygen

    NASA Technical Reports Server (NTRS)

    Hagans, P.; Yeager, E.

    1978-01-01

    Single crystal surfaces of platinum and gold and transition metal oxides of the spinel type were studied to find more effective catalysts for the electrolytic evolution of oxygen and to understand the mechanism and kinetics for the electrocatalysis in relation to the surface electronic and lattice properties of the catalyst. The single crystal studies involve the use of low energy electron diffraction (LEED) and Auger electron spectroscopy as complementary tools to the electrochemical measurements. Modifications to the transfer system and to the thin-layer electrochemical cell used to facilitate the transfer between the ultrahigh vacuum environment of the electron surface physics equipment and the electrochemical environment with a minimal possibility of changes in the surface structure, are described. The electrosorption underpotential deposition of Pb onto the Au(111), (100) and (110) single crystal surfaces with the thin-layer cell-LEED-Auger system is discussed as well as the synthesis of spinels for oxygen evolution studies.

  17. Simultaneous detection of electronic structure changes from two elements of a bifunctional catalyst using wavelength-dispersive X-ray emission spectroscopy and in situ electrochemistry

    DOE PAGES

    Gul, Sheraz; Ng, Jia Wei Desmond; Alonso-Mori, Roberto; ...

    2015-02-25

    Multielectron catalytic reactions, such as water oxidation, nitrogen reduction, or hydrogen production in enzymes and inorganic catalysts often involve multimetallic clusters. In these systems, the reaction takes place between metals or metals and ligands to facilitate charge transfer, bond formation/breaking, substrate binding, and release of products. In this study, we present a method to detect X-ray emission signals from multiple elements simultaneously, which allows for the study of charge transfer and the sequential chemistry occurring between elements. Kβ X-ray emission spectroscopy (XES) probes charge and spin states of metals as well as their ligand environment. A wavelength-dispersive spectrometer based onmore » the von Hamos geometry was used to disperse Kβ signals of multiple elements onto a position detector, enabling an XES spectrum to be measured in a single-shot mode. This overcomes the scanning needs of the scanning spectrometers, providing data free from temporal and normalization errors and therefore ideal to follow sequential chemistry at multiple sites. We have applied this method to study MnOx-based bifunctional electrocatalysts for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR). In particular, we investigated the effects of adding a secondary element, Ni, to form MnNiOx and its impact on the chemical states and catalytic activity, by tracking the redox characteristics of each element upon sweeping the electrode potential. In conclusion, the detection scheme we describe here is general and can be applied to time-resolved studies of materials consisting of multiple elements, to follow the dynamics of catalytic and electron transfer reactions.« less

  18. Simultaneous Detection of Electronic Structure Changes from Two Elements of a Bifunctional Catalyst Using Wavelength-Dispersive X-ray Emission Spectroscopy and in situ Electrochemistry

    PubMed Central

    Gul, Sheraz; Desmond Ng, Jia Wei; Alonso-Mori, Roberto; Kern, Jan; Sokaras, Dimosthenis; Anzenberg, Eitan; Lassalle-Kaiser, Benedikt; Gorlin, Yelena; Weng, Tsu-Chien; Zwart, Petrus H.; Zhang, Jin Z.; Bergmann, Uwe; Yachandra, Vittal K.; Jaramillo, Thomas F.; Yano, Junko

    2015-01-01

    Multielectron catalytic reactions, such as water oxidation, nitrogen reduction, or hydrogen production in enzymes and inorganic catalysts often involve multimetallic clusters. In these systems, the reaction takes place between metals or metals and ligands to facilitate charge transfer, bond formation/breaking, substrate binding, and release of products. In this study, we present a method to detect X-ray emission signals from multiple elements simultaneously, which allows for the study of charge transfer and the sequential chemistry occurring between elements. Kβ X-ray emission spectroscopy (XES) probes charge and spin states of metals as well as their ligand environment. A wavelength-dispersive spectrometer based on the von Hamos geometry was used to disperse Kβ signals of multiple elements onto a position detector, enabling an XES spectrum to be measured in a single-shot mode. This overcomes the scanning needs of the scanning spectrometers, providing data free from temporal and normalization errors and therefore ideal to follow sequential chemistry at multiple sites. We have applied this method to study MnOx-based bifunctional electrocatalysts for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR). In particular, we investigated the effects of adding a secondary element, Ni, to form MnNiOx and its impact on the chemical states and catalytic activity, by tracking the redox characteristics of each element upon sweeping the electrode potential. The detection scheme we describe here is general and can be applied to time-resolved studies of materials consisting of multiple elements, to follow the dynamics of catalytic and electron transfer reactions. PMID:25747045

  19. Simultaneous detection of electronic structure changes from two elements of a bifunctional catalyst using wavelength-dispersive X-ray emission spectroscopy and in situ electrochemistry

    SciTech Connect

    Gul, Sheraz; Ng, Jia Wei Desmond; Alonso-Mori, Roberto; Kern, Jan; Sokaras, Dimosthenis; Anzenberg, Eitan; Lassalle-Kaiser, Benedikt; Gorlin, Yelena; Weng, Tsu-Chien; Zwart, Petrus H.; Zhang, Jin Z.; Bergmann, Uwe; Yachandra, Vittal K.; Jaramillo, Thomas F.; Yano, Junko

    2015-02-25

    Multielectron catalytic reactions, such as water oxidation, nitrogen reduction, or hydrogen production in enzymes and inorganic catalysts often involve multimetallic clusters. In these systems, the reaction takes place between metals or metals and ligands to facilitate charge transfer, bond formation/breaking, substrate binding, and release of products. In this study, we present a method to detect X-ray emission signals from multiple elements simultaneously, which allows for the study of charge transfer and the sequential chemistry occurring between elements. Kβ X-ray emission spectroscopy (XES) probes charge and spin states of metals as well as their ligand environment. A wavelength-dispersive spectrometer based on the von Hamos geometry was used to disperse Kβ signals of multiple elements onto a position detector, enabling an XES spectrum to be measured in a single-shot mode. This overcomes the scanning needs of the scanning spectrometers, providing data free from temporal and normalization errors and therefore ideal to follow sequential chemistry at multiple sites. We have applied this method to study MnOx-based bifunctional electrocatalysts for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR). In particular, we investigated the effects of adding a secondary element, Ni, to form MnNiOx and its impact on the chemical states and catalytic activity, by tracking the redox characteristics of each element upon sweeping the electrode potential. In conclusion, the detection scheme we describe here is general and can be applied to time-resolved studies of materials consisting of multiple elements, to follow the dynamics of catalytic and electron transfer reactions.

  20. Understanding catalyst behavior during in situ heating through simultaneous secondary and transmitted electron imaging

    SciTech Connect

    Howe, Jane Y.; Allard, Jr., Lawrence Frederick; Demers, Hendrix; Bigelow, Wilbur C.; Steven H. Overbury

    2014-11-14

    In situ heating study via a simultaneous secondary electron (SE) and transmitted electron (TE) microscopy is extremely insightful because information from the surface (SE) and bulk (TE) can be readily obtained. The leached Au/Fe2O3 catalyst has voids on the surface of Fe2O3. Upon heating to 500 °C, voids shrank and disappeared, while internal Au species diffused to the surface to form new nanoparticles. Heating in vacuum reduced Fe2O3 to Fe3O4. Heating at 700 °C caused coalescence and growth of Au particles and formation of faceted Fe3O4 surfaces. We achieved 1.1 nm resolution in SE imaging during in situ heating.

  1. Performance of alumina-supported Pt catalysts in an electron-beam-sustained CO2 laser amplifier

    NASA Technical Reports Server (NTRS)

    Cunningham, D. L.; Jones, P. L.; Miyake, C. I.; Moody, S. E.

    1990-01-01

    The performance of an alumina-supported Pt catalyst system used to maintain the gas purity in an electron-beam-sustained (636) isotope CO2 laser amplifier has been tested. The system characteristics using the two-zone, parallel flow reactor were determined for both continuous- and end-of-day reactor operation using on-line mass spectrometric sampling. The laser amplifier was run with an energy loading of typically 110 J-l/atm and an electron-beam current of 4 mA/sq cm. With these conditions and a pulse repetition frequency of 10 Hz for up to 10,000 shots, increases on the order of 100 ppm O2 were observed with the purifier on and 150 ppm with it off. The 1/e time recovery time was found to be approximately 75 minutes.

  2. Photoinduced Electron Transfer in DNA: Charge Shift Dynamics Between 8-Oxo-Guanine Anion and Adenine.

    PubMed

    Zhang, Yuyuan; Dood, Jordan; Beckstead, Ashley A; Li, Xi-Bo; Nguyen, Khiem V; Burrows, Cynthia J; Improta, Roberto; Kohler, Bern

    2015-06-18

    Femtosecond time-resolved IR spectroscopy is used to investigate the excited-state dynamics of a dinucleotide containing an 8-oxoguanine anion at the 5'-end and neutral adenine at the 3'-end. UV excitation of the dinucleotide transfers an electron from deprotonated 8-oxoguanine to its π-stacked neighbor adenine in less than 1 ps, generating a neutral 8-oxoguanine radical and an adenine radical anion. These species are identified by the excellent agreement between the experimental and calculated IR difference spectra. The quantum efficiency of this ultrafast charge shift reaction approaches unity. Back electron transfer from the adenine radical anion to the 8-oxguanine neutral radical occurs in 9 ps, or approximately 6 times faster than between the adenine radical anion and the 8-oxoguanine radical cation (Zhang, Y. et al. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 11612-11617). The large asymmetry in forward and back electron transfer rates is fully rationalized by semiclassical nonadiabatic electron transfer theory. Forward electron transfer is ultrafast because the driving force is nearly equal to the reorganization energy, which is estimated to lie between 1 and 2 eV. Back electron transfer is highly exergonic and takes place much more slowly in the Marcus inverted region.

  3. Evidence for concerted pathways in ion-pairing coupled electron transfers.

    PubMed

    Savéant, Jean-Michel

    2008-04-09

    Ion-pairing with electro-inactive metal ions may change drastically the thermodynamic and kinetic reactivity of electron transfer in chemical and biochemical processes. Besides the classical stepwise pathways (electron-transfer first, followed by ion-pairing or vice versa), ion-pairing may also occur concertedly with electron transfer. The latter pathway avoids high-energy intermediates but a key issue is that of the kinetic price to pay to benefit from this thermodynamic advantage. A model is proposed leading to activation/driving force relationships characterizing such concerted associative electron transfers for intermolecular and intramolecular homogeneous reactions and for electrochemical reactions. Contrary to previous assertions, the driving force of the reaction (defined as the opposite of the reaction standard free energy), as well as the intrinsic barrier, does not depend on the concentration of the ion-pairing agent, which simply plays the role of one of the reactants. Besides solvent and intramolecular reorganization, the energy of the bond being formed is the main component of the intrinsic barrier. Application of these considerations to reactions reported in recent literature illustrates how concerted ion-pairing electron-transfer reactions can be diagnosed and how competition between stepwise and concerted pathways can be analyzed. It provided the first experimental evidence of the viability of concerted ion-pairing electron-transfer reactions.

  4. Experimental and Theoretical Demonstrations for the Mechanism behind Enhanced Microbial Electron Transfer by CNT Network

    PubMed Central

    Liu, Xian-Wei; Chen, Jie-Jie; Huang, Yu-Xi; Sun, Xue-Fei; Sheng, Guo-Ping; Li, Dao-Bo; Xiong, Lu; Zhang, Yuan-Yuan; Zhao, Feng; Yu, Han-Qing

    2014-01-01

    Bioelectrochemical systems (BESs) share the principle of the microbially catalyzed anodic substrate oxidation. Creating an electrode interface to promote extracellular electron transfer from microbes to electrode and understanding such mechanisms are crucial for engineering BESs. In this study, significantly promoted electron transfer and a 10-times increase in current generation in a BES were achieved by the utilization of carbon nanotube (CNT) network, compared with carbon paper. The mechanisms for the enhanced current generation with the CNT network were elucidated with both experimental approach and molecular dynamic simulations. The fabricated CNT network was found to be able to substantially enhance the interaction between the c-type cytochromes and solid electron acceptor, indicating that the direct electron transfer from outer-membrane decaheme c-type cytochromes to electrode might occur. The results obtained in this study will benefit for the optimized design of new materials to target the outer membrane proteins for enhanced electron exchanges. PMID:24429552

  5. A new semiclassical decoupling scheme for electronic transitions in molecular collisions - Application to vibrational-to-electronic energy transfer

    NASA Technical Reports Server (NTRS)

    Lee, H.-W.; Lam, K. S.; Devries, P. L.; George, T. F.

    1980-01-01

    A new semiclassical decoupling scheme (the trajectory-based decoupling scheme) is introduced in a computational study of vibrational-to-electronic energy transfer for a simple model system that simulates collinear atom-diatom collisions. The probability of energy transfer (P) is calculated quasiclassically using the new scheme as well as quantum mechanically as a function of the atomic electronic-energy separation (lambda), with overall good agreement between the two sets of results. Classical mechanics with the new decoupling scheme is found to be capable of predicting resonance behavior whereas an earlier decoupling scheme (the coordinate-based decoupling scheme) failed. Interference effects are not exhibited in P vs lambda results.

  6. Electron Transfer Dissociation: Effects of Cation Charge State on Product Partitioning in Ion/Ion Electron Transfer to Multiply Protonated Polypeptides

    PubMed Central

    Liu, Jian; McLuckey, Scott A.

    2012-01-01

    The effect of cation charge state on product partitioning in the gas-phase ion/ion electron transfer reactions of multiply protonated tryptic peptides, model peptides, and relatively large peptides with singly charged radical anions has been examined. In particular, partitioning into various competing channels, such as proton transfer (PT) versus electron transfer (ET), electron transfer with subsequent dissociation (ETD) versus electron transfer with no dissociation (ET,noD), and fragmentation of backbone bonds versus fragmentation of side chains, was measured quantitatively as a function of peptide charge state to allow insights to be drawn about the fundamental aspects of ion/ion reactions that lead to ETD. The ET channel increases relative to the PT channel, ETD increases relative to ET,noD, and fragmentation at backbone bonds increases relative to side-chain cleavages as cation charge state increases. The increase in ET versus PT with charge state is consistent with a Landau-Zener based curve-crossing model. An optimum charge state for ET is predicted by the model for the ground state-to-ground state reaction. However, when the population of excited product ion states is considered, it is possible that a decrease in ET efficiency as charge state increases will not be observed due to the possibility of the population of excited electronic states of the products. Several factors can contribute to the increase in ETD versus ET,noD and backbone cleavage versus side-chain losses. These factors include an increase in reaction exothermicity and charge state dependent differences in precursor and product ion structures, stabilities, and sites of protonation. PMID:23264749

  7. The dipole moment of the electron carrier adrenodoxin is not critical for redox partner interaction and electron transfer.

    PubMed

    Hannemann, Frank; Guyot, Arnaud; Zöllner, Andy; Müller, Jürgen J; Heinemann, Udo; Bernhardt, Rita

    2009-07-01

    Dipole moments of proteins arise from helical dipoles, hydrogen bond networks and charged groups at the protein surface. High protein dipole moments were suggested to contribute to the electrostatic steering between redox partners in electron transport chains of respiration, photosynthesis and steroid biosynthesis, although so far experimental evidence for this hypothesis was missing. In order to probe this assumption, we changed the dipole moment of the electron transfer protein adrenodoxin and investigated the influence of this on protein-protein interactions and electron transfer. In bovine adrenodoxin, the [2Fe-2S] ferredoxin of the adrenal glands, a dipole moment of 803 Debye was calculated for a full-length adrenodoxin model based on the Adx(4-108) and the wild type adrenodoxin crystal structures. Large distances and asymmetric distribution of the charged residues in the molecule mainly determine the observed high value. In order to analyse the influence of the resulting inhomogeneous electric field on the biological function of this electron carrier the molecular dipole moment was systematically changed. Five recombinant adrenodoxin mutants with successively reduced dipole moment (from 600 to 200 Debye) were analysed for their redox properties, their binding affinities to the redox partner proteins and for their function during electron transfer-dependent steroid hydroxylation. None of the mutants, not even the quadruple mutant K6E/K22Q/K24Q/K98E with a dipole moment reduced by about 70% showed significant changes in the protein function as compared with the unmodified adrenodoxin demonstrating that neither the formation of the transient complex nor the biological activity of the electron transfer chain of the endocrine glands was affected. This is the first experimental evidence that the high dipole moment observed in electron transfer proteins is not involved in electrostatic steering among the proteins in the redox chain.

  8. A dynamic periplasmic electron transfer network enables respiratory flexibility beyond a thermodynamic regulatory regime

    PubMed Central

    Sturm, Gunnar; Richter, Katrin; Doetsch, Andreas; Heide, Heinrich; Louro, Ricardo O; Gescher, Johannes

    2015-01-01

    Microorganisms show an astonishing versatility in energy metabolism. They can use a variety of different catabolic electron acceptors, but they use them according to a thermodynamic hierarchy, which is determined by the redox potential of the available electron acceptors. This hierarchy is reflected by a regulatory machinery that leads to the production of respiratory chains in dependence of the availability of the corresponding electron acceptors. In this study, we showed that the γ-proteobacterium Shewanella oneidensis produces several functional electron transfer chains simultaneously. Furthermore, these chains are interconnected, most likely with the aid of c-type cytochromes. The cytochrome pool of a single S. oneidensis cell consists of ca. 700 000 hemes, which are reduced in the absence on an electron acceptor, but can be reoxidized in the presence of a variety of electron acceptors, irrespective of prior growth conditions. The small tetraheme cytochrome (STC) and the soluble heme and flavin containing fumarate reductase FccA have overlapping activity and appear to be important for this electron transfer network. Double deletion mutants showed either delayed growth or no growth with ferric iron, nitrate, dimethyl sulfoxide or fumarate as electron acceptor. We propose that an electron transfer machinery that is produced irrespective of a thermodynamic hierarchy not only enables the organism to quickly release catabolic electrons to a variety of environmental electron acceptors, but also offers a fitness benefit in redox-stratified environments. PMID:25635641

  9. Identification of a new electron-transfer relaxation pathway in photoexcited pyrrole dimers

    NASA Astrophysics Data System (ADS)

    Neville, Simon P.; Kirkby, Oliver M.; Kaltsoyannis, Nikolas; Worth, Graham A.; Fielding, Helen H.

    2016-04-01

    Photoinduced electron transfer is central to many biological processes and technological applications, such as the harvesting of solar energy and molecular electronics. The electron donor and acceptor units involved in electron transfer are often held in place by covalent bonds, π-π interactions or hydrogen bonds. Here, using time-resolved photoelectron spectroscopy and ab initio calculations, we reveal the existence of a new, low-energy, photoinduced electron-transfer mechanism in molecules held together by an NH⋯π bond. Specifically, we capture the electron-transfer process in a pyrrole dimer, from the excited π-system of the donor pyrrole to a Rydberg orbital localized on the N-atom of the acceptor pyrrole, mediated by an N-H stretch on the acceptor molecule. The resulting charge-transfer state is surprisingly long lived and leads to efficient electronic relaxation. We propose that this relaxation pathway plays an important role in biological and technological systems containing the pyrrole building block.

  10. Design of photoactive ruthenium complexes to study electron transfer and proton pumping in cytochrome oxidase.

    PubMed

    Durham, Bill; Millett, Francis

    2012-04-01

    This review describes the development and application of photoactive ruthenium complexes to study electron transfer and proton pumping reactions in cytochrome c oxidase (CcO). CcO uses four electrons from Cc to reduce O(2) to two waters, and pumps four protons across the membrane. The electron transfer reactions in cytochrome oxidase are very rapid, and cannot be resolved by stopped-flow mixing techniques. Methods have been developed to covalently attach a photoactive tris(bipyridine)ruthenium group [Ru(II)] to Cc to form Ru-39-Cc. Photoexcitation of Ru(II) to the excited state Ru(II*), a strong reductant, leads to rapid electron transfer to the ferric heme group in Cc, followed by electron transfer to Cu(A) in CcO with a rate constant of 60,000s(-1). Ruthenium kinetics and mutagenesis studies have been used to define the domain for the interaction between Cc and CcO. New ruthenium dimers have also been developed to rapidly inject electrons into Cu(A) of CcO with yields as high as 60%, allowing measurement of the kinetics of electron transfer and proton release at each step in the oxygen reduction mechanism.

  11. Dependence of Vibronic Coupling on Molecular Geometry and Environment: Bridging Hydrogen Atom Transfer and Electron-Proton Transfer.

    PubMed

    Harshan, Aparna Karippara; Yu, Tao; Soudackov, Alexander V; Hammes-Schiffer, Sharon

    2015-10-28

    The rate constants for typical concerted proton-coupled electron transfer (PCET) reactions depend on the vibronic coupling between the diabatic reactant and product states. The form of the vibronic coupling is different for electronically adiabatic and nonadiabatic reactions, which are associated with hydrogen atom transfer (HAT) and electron-proton transfer (EPT) mechanisms, respectively. Most PCET rate constant expressions rely on the Condon approximation, which assumes that the vibronic coupling is independent of the nuclear coordinates of the solute and the solvent or protein. Herein we test the Condon approximation for PCET vibronic couplings. The dependence of the vibronic coupling on molecular geometry is investigated for an open and a stacked transition state geometry of the phenoxyl-phenol self-exchange reaction. The calculations indicate that the open geometry is electronically nonadiabatic, corresponding to an EPT mechanism that involves significant electronic charge redistribution, while the stacked geometry is predominantly electronically adiabatic, corresponding primarily to an HAT mechanism. Consequently, a single molecular system can exhibit both HAT and EPT character. The dependence of the vibronic coupling on the solvent or protein configuration is examined for the soybean lipoxygenase enzyme. The calculations indicate that this PCET reaction is electronically nonadiabatic with a vibronic coupling that does not depend significantly on the protein environment. Thus, the Condon approximation is shown to be valid for the solvent and protein nuclear coordinates but invalid for the solute nuclear coordinates in certain PCET systems. These results have significant implications for the calculation of rate constants, as well as mechanistic interpretations, of PCET reactions.

  12. Determination of the electronics transfer function for current transient measurements

    NASA Astrophysics Data System (ADS)

    Scharf, Christian; Klanner, Robert

    2015-04-01

    We describe a straight-forward method for determining the transfer function of the readout of a sensor for the situation in which the current transient of the sensor can be precisely simulated. The method relies on the convolution theorem of Fourier transforms. The specific example is a planar silicon pad diode. The charge carriers in the sensor are produced by picosecond lasers with light of wavelengths of 675 and 1060 nm. The transfer function is determined from the 1060 nm data with the pad diode biased at 1000 V. It is shown that the simulated sensor response convoluted with this transfer function provides an excellent description of the measured transients for laser light of both wavelengths. The method has been applied successfully for the simulation of current transients of several different silicon pad diodes. It can also be applied for the analysis of transient-current measurements of radiation-damaged solid state sensors, as long as sensors properties, like high-frequency capacitance, are not too different.

  13. Transfer printing of thermoreversible ion gels for flexible electronics.

    PubMed

    Lee, Keun Hyung; Zhang, Sipei; Gu, Yuanyan; Lodge, Timothy P; Frisbie, C Daniel

    2013-10-09

    Thermally assisted transfer printing was employed to pattern thin films of high capacitance ion gels on polyimide, poly(ethylene terephthalate), and SiO2 substrates. The ion gels consisted of 20 wt % block copolymer poly(styrene-b-ethylene oxide-b-styrene and 80 wt % ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)amide. Patterning resolution was on the order of 10 μm. Importantly, ion gels containing the block polymer with short PS end blocks (3.4 kg/mol) could be transfer-printed because of thermoreversible gelation that enabled intimate gel-substrate contact at 100 °C, while gels with long PS blocks (11 kg/mol) were not printable at the same temperature due to poor wetting contact between the gel and substrates. By using printed ion gels as high-capacitance gate insulators, electrolyte-gated thin-film transistors were fabricated that operated at low voltages (<1 V) with high on/off current ratios (∼10(5)). Statistical analysis of carrier mobility, turn-on voltage, and on/off ratio for an array of printed transistors demonstrated the excellent reproducibility of the printing technique. The results show that transfer printing is an attractive route to pattern high-capacitance ion gels for flexible thin-film devices.

  14. Concerted proton-electron transfer in the oxidation of hydrogen-bonded phenols.

    PubMed

    Rhile, Ian J; Markle, Todd F; Nagao, Hirotaka; DiPasquale, Antonio G; Lam, Oanh P; Lockwood, Mark A; Rotter, Katrina; Mayer, James M

    2006-05-10

    Three phenols with pendant, hydrogen-bonded bases (HOAr-B) have been oxidized in MeCN with various one-electron oxidants. The bases are a primary amine (-CPh(2)NH(2)), an imidazole, and a pyridine. The product of chemical and quasi-reversible electrochemical oxidations in each case is the phenoxyl radical in which the phenolic proton has transferred to the base, (*)OAr-BH(+), a proton-coupled electron transfer (PCET) process. The redox potentials for these oxidations are lower than for other phenols, predominately from the driving force for proton movement. One-electron oxidation of the phenols occurs by a concerted proton-electron transfer (CPET) mechanism, based on thermochemical arguments, isotope effects, and DeltaDeltaG(++)/DeltaDeltaG degrees . The data rule out stepwise paths involving initial electron transfer to form the phenol radical cations [(*)(+)HOAr-B] or initial proton transfer to give the zwitterions [(-)OAr-BH(+)]. The rate constant for heterogeneous electron transfer from HOAr-NH(2) to a platinum electrode has been derived from electrochemical measurements. For oxidations of HOAr-NH(2), the dependence of the solution rate constants on driving force, on temperature, and on the nature of the oxidant, and the correspondence between the homogeneous and heterogeneous rate constants, are all consistent with the application of adiabatic Marcus theory. The CPET reorganization energies, lambda = 23-56 kcal mol(-)(1), are large in comparison with those for electron transfer reactions of aromatic compounds. The reactions are not highly non-adiabatic, based on minimum values of H(rp) derived from the temperature dependence of the rate constants. These are among the first detailed analyses of CPET reactions where the proton and electron move to different sites.

  15. The thermodynamics of charge transfer in DNA photolyase: using thermodynamic integration calculations to analyse the kinetics of electron transfer reactions.

    PubMed

    Krapf, Sebastian; Koslowski, Thorsten; Steinbrecher, Thomas

    2010-08-28

    DNA Photolyases are light sensitive oxidoreductases present in many organisms that participate in the repair of photodamaged DNA. They are capable of electron transfer between a bound cofactor and a chain of tryptophan amino acid residues. Due to their unique mechanism and important function, photolyases have been subject to intense study in recent times, with both experimental and computational efforts. In this work, we present a novel application of classical molecular dynamics based free energy calculations, combined with quantum mechanical computations, to biomolecular charge transfer. Our approach allows for the determination of all reaction parameters in Marcus' theory of charge transport. We were able to calculate the free energy profile for the movement of a positive charge along protein sidechains involved in the biomolecule's function as well as charge-transfer rates that are in good agreement with experimental results. Our approach to simulate charge-transfer reactions explicitly includes the influence of protein flexibility and solvent dynamics on charge-transfer energetics. As applied here to a biomolecular system of considerable scientific interest, we believe the method to be easily adaptable to the study of charge-transfer phenomena in biochemistry and other fields.

  16. Classical model for electronically non-adiabatic collision processes resonance effects in electronic-vibrational energy transfer

    SciTech Connect

    Orel, Ann E.; Ali, Dominic P.; Miller, William H.

    1981-02-01

    In this paper, a classical model for electronically non-adiabatic collision processes is applied to E → V energy transfer in a collinear system, A + BC (v = 1) → A* + BC (v = 0), resembling Br-H2. Finally, the model, which treats electronic as well as translational, rotational, and vibrational degrees of freedom by classical mechanics, describes the resonance features in this process reasonably well.

  17. Concerted electron-proton transfer in the optical excitation of hydrogen-bonded dyes.

    PubMed

    Westlake, Brittany C; Brennaman, M Kyle; Concepcion, Javier J; Paul, Jared J; Bettis, Stephanie E; Hampton, Shaun D; Miller, Stephen A; Lebedeva, Natalia V; Forbes, Malcolm D E; Moran, Andrew M; Meyer, Thomas J; Papanikolas, John M

    2011-05-24

    The simultaneous, concerted transfer of electrons and protons--electron-proton transfer (EPT)--is an important mechanism utilized in chemistry and biology to avoid high energy intermediates. There are many examples of thermally activated EPT in ground-state reactions and in excited states following photoexcitation and thermal relaxation. Here we report application of ultrafast excitation with absorption and Raman monitoring to detect a photochemically driven EPT process (photo-EPT). In this process, both electrons and protons are transferred during the absorption of a photon. Photo-EPT is induced by intramolecular charge-transfer (ICT) excitation of hydrogen-bonded-base adducts with either a coumarin dye or 4-nitro-4'-biphenylphenol. Femtosecond transient absorption spectral measurements following ICT excitation reveal the appearance of two spectroscopically distinct states having different dynamical signatures. One of these states corresponds to a conventional ICT excited state in which the transferring H(+) is initially associated with the proton donor. Proton transfer to the base (B) then occurs on the picosecond time scale. The other state is an ICT-EPT photoproduct. Upon excitation it forms initially in the nuclear configuration of the ground state by application of the Franck-Condon principle. However, due to the change in electronic configuration induced by the transition, excitation is accompanied by proton transfer with the protonated base formed with a highly elongated (+)H ─ B bond. Coherent Raman spectroscopy confirms the presence of a vibrational mode corresponding to the protonated base in the optically prepared state.

  18. Distance dependence in photoinduced intramolecular electron transfer. Additional remarks and calculations

    NASA Astrophysics Data System (ADS)

    Larsson, Sven; Volosov, Andrey

    1987-12-01

    Rate constants for photoinduced intramolecular electron transfer are calculated for four of the molecules studied by Hush et al. The electronic factor is obtained in quantum chemical calculations using the CNDO/S method. The results agree reasonably well with experiments for the forward reaction. Possible reasons for the disagreement for the charge recombination process are offered.

  19. Plasmon Enhancement of Electronic Energy Transfer Between Quantum Dots on the Surface of Nanoporous Silica

    NASA Astrophysics Data System (ADS)

    Tikhomirova, N. S.; Myslitskaya, N. A.; Samusev, I. G.; Bryukhanov, V. V.

    2016-01-01

    We use spectral kinetic methods to study electronic energy transfer processes between semiconductor quantum dots on the surface of wide-pore silica in the absence of and in the presence of silver nanoparticles, obtained by laser ablation methods. We have determined the efficiencies of dipole-dipole energy transfer between two-shell (CdSe/CdS/ZnS) and one-shell (CdSe/ZnS) quantum dots on the surface, the luminescence lifetimes and quantum yields, transfer distances and transfer rate constants. We have studied enhancement of photoprocesses in individual quantum dots and in a pair under the influence of resonant localized plasmons of ablative silver nanoparticles.

  20. Experimental exploration of the Mulliken-Hush relationship for intramolecular electron transfer reactions.

    PubMed

    Mukherjee, Tamal; Ito, Naoki; Gould, Ian R

    2011-03-17

    The Mulliken-Hush (M-H) relationship provides the critical link between optical and thermal electron transfer processes, and yet very little direct experimental support for its applicability has been provided. Dicyanovinylazaadamantane (DCVA) represents a simple two-state (neutral/charge-transfer) intramolecular electron transfer system that exhibits charge-transfer absorption and emission spectra that are readily measurable in solvents with a wide range of polarities. In this regard it represents an ideal model system for studying the factors that control both optical charge separation (absorption) and recombination (emission) processes in solution. Here we explore the applicability of the M-H relation to quantitative descriptions of the optical charge-transfer processes in DCVA. For DCVA, the measured radiative rate constants exhibit a linear dependence on transition energy, and transition dipole moments exhibit an inverse dependence on transition energy, consistent with the M-H relationship.

  1. Kinetics of electron transfer through the respiratory chain.

    PubMed Central

    Jin, Qusheng; Bethke, Craig M

    2002-01-01

    We show that the rate at which electrons pass through the respiratory chain in mitochondria and respiring prokaryotic cells is described by the product of three terms, one describing electron donation, one acceptance, and a third, the thermodynamic drive. We apply the theory of nonequilibrium thermodynamics in the context of the chemiosmotic model of proton translocation and energy conservation. This approach leads to a closed-form expression that predicts steady-state electron flux as a function of chemical conditions and the proton motive force across the mitochondrial inner membrane or prokaryotic cytoplasmic membrane. The rate expression, derived considering reverse and forward electron flow, is the first to account for both thermodynamic and kinetic controls on the respiration rate. The expression can be simplified under specific conditions to give rate laws of various forms familiar in cellular physiology and microbial ecology. The expression explains the nonlinear dependence of flux on electrical potential gradient, its hyperbolic dependence on substrate concentration, and the inhibiting effects of reaction products. It provides a theoretical basis for investigating life under unusual conditions, such as microbial respiration in alkaline waters. PMID:12324402

  2. Nuclear interlevel transfer driven by collective outer shell electron oscillations

    SciTech Connect

    Rinker, G.A.; Solem, J.G.; Biedenharn, L.C.

    1986-10-20

    The general problem of dynamic electron-nucleus coupling is discussed, and the possibility of using this mechanism to initiate gamma-ray lasing. Single-particle and collective mechanisms are considered. The problems associated with accurate calculation of these processes are discussed, and some numerical results are given. Work in process in described. 10 refs., 7 figs.

  3. Rates of primary electron transfer reactions in the photosystem I reaction center reconstituted with different quinones as the secondary acceptor

    SciTech Connect

    Kumazaki, Shigeichi; Kandori, Hideki; Yoshihara, Keitaro ); Iwaki, Masayo; Itoh, Shigeru ); Ikegamu, Isamu )

    1994-10-27

    Rates of sequential electron transfer reactions from the primary electron donor chlorophyll dimer (P700) to the electron acceptor chlorophyll a-686 (A[sub 0]) and to the secondary acceptor quinone (Q[sub [phi

  4. Kinetic pathway for interfacial electron transfer from a semiconductor to a molecule

    NASA Astrophysics Data System (ADS)

    Hu, Ke; Blair, Amber D.; Piechota, Eric J.; Schauer, Phil A.; Sampaio, Renato N.; Parlane, Fraser G. L.; Meyer, Gerald J.; Berlinguette, Curtis P.

    2016-09-01

    Molecular approaches to solar-energy conversion require a kinetic optimization of light-induced electron-transfer reactions. At molecular-semiconductor interfaces, this optimization has previously been accomplished through control of the distance between the semiconductor donor and the molecular acceptor and/or the free energy that accompanies electron transfer. Here we show that a kinetic pathway for electron transfer from a semiconductor to a molecular acceptor also exists and provides an alternative method for the control of interfacial kinetics. The pathway was identified by the rational design of molecules in which the distance and the driving force were held near parity and only the geometric torsion about a xylyl- or phenylthiophene bridge was varied. Electronic coupling through the phenyl bridge was a factor of ten greater than that through the xylyl bridge. Comparative studies revealed a significant bridge dependence for electron transfer that could not be rationalized by a change in distance or driving force. Instead, the data indicate an interfacial electron-transfer pathway that utilizes the aromatic bridge orbitals.

  5. Molecular view of an electron transfer process essential for iron–sulfur protein biogenesis

    PubMed Central

    Banci, Lucia; Bertini, Ivano; Calderone, Vito; Ciofi-Baffoni, Simone; Giachetti, Andrea; Jaiswal, Deepa; Mikolajczyk, Maciej; Piccioli, Mario; Winkelmann, Julia

    2013-01-01

    Biogenesis of iron–sulfur cluster proteins is a highly regulated process that requires complex protein machineries. In the cytosolic iron–sulfur protein assembly machinery, two human key proteins—NADPH-dependent diflavin oxidoreductase 1 (Ndor1) and anamorsin—form a stable complex in vivo that was proposed to provide electrons for assembling cytosolic iron–sulfur cluster proteins. The Ndor1–anamorsin interaction was also suggested to be implicated in the regulation of cell survival/death mechanisms. In the present work we unravel the molecular basis of recognition between Ndor1 and anamorsin and of the electron transfer process. This is based on the structural characterization of the two partner proteins, the investigation of the electron transfer process, and the identification of those protein regions involved in complex formation and those involved in electron transfer. We found that an unstructured region of anamorsin is essential for the formation of a specific and stable protein complex with Ndor1, whereas the C-terminal region of anamorsin, containing the [2Fe-2S] redox center, transiently interacts through complementary charged residues with the FMN-binding site region of Ndor1 to perform electron transfer. Our results propose a molecular model of the electron transfer process that is crucial for understanding the functional role of this interaction in human cells. PMID:23596212

  6. Hot-electron-transfer enhancement for the efficient energy conversion of visible light.

    PubMed

    Yu, Sungju; Kim, Yong Hwa; Lee, Su Young; Song, Hyeon Don; Yi, Jongheop

    2014-10-13

    Great strides have been made in enhancing solar energy conversion by utilizing plasmonic nanostructures in semiconductors. However, current generation with plasmonic nanostructures is still somewhat inefficient owing to the ultrafast decay of plasmon-induced hot electrons. It is now shown that the ultrafast decay of hot electrons across Au nanoparticles can be significantly reduced by strong coupling with CdS quantum dots and by a Schottky junction with perovskite SrTiO3 nanoparticles. The designed plasmonic nanostructure with three distinct components enables a hot-electron-assisted energy cascade for electron transfer, CdS→Au→SrTiO3, as demonstrated by steady-state and time-resolved photoluminescence spectroscopy. Consequently, hot-electron transfer enabled the efficient production of H2 from water as well as significant electron harvesting under irradiation with visible light of various wavelengths. These findings provide a new approach for overcoming the low efficiency that is typically associated with plasmonic nanostructures.

  7. Generalization of the Mulliken-Hush treatment for the calculation of electron transfer matrix elements

    NASA Astrophysics Data System (ADS)

    Cave, Robert J.; Newton, Marshall D.

    1996-01-01

    A new method for the calculation of the electronic coupling matrix element for electron transfer processes is introduced and results for several systems are presented. The method can be applied to ground and excited state systems and can be used in cases where several states interact strongly. Within the set of states chosen it is a non-perturbative treatment, and can be implemented using quantities obtained solely in terms of the adiabatic states. Several applications based on quantum chemical calculations are briefly presented. Finally, since quantities for adiabatic states are the only input to the method, it can also be used with purely experimental data to estimate electron transfer matrix elements.

  8. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry

    PubMed Central

    Syka, John E. P.; Coon, Joshua J.; Schroeder, Melanie J.; Shabanowitz, Jeffrey; Hunt, Donald F.

    2004-01-01

    Peptide sequence analysis using a combination of gas-phase ion/ion chemistry and tandem mass spectrometry (MS/MS) is demonstrated. Singly charged anthracene anions transfer an electron to multiply protonated peptides in a radio frequency quadrupole linear ion trap (QLT) and induce fragmentation of the peptide backbone along pathways that are analogous to those observed in electron capture dissociation. Modifications to the QLT that enable this ion/ion chemistry are presented, and automated acquisition of high-quality, single-scan electron transfer dissociation MS/MS spectra of phosphopeptides separated by nanoflow HPLC is described. PMID:15210983

  9. Riboflavin-shuttled extracellular electron transfer from Enterococcus faecalis to electrodes in microbial fuel cells.

    PubMed

    Zhang, Enren; Cai, Yamin; Luo, Yue; Piao, Zhe

    2014-11-01

    Great attention has been focused on Gram-negative bacteria in the application of microbial fuel cells. In this study, the Gram-positive bacterium Enterococcus faecalis was employed in microbial fuel cells. Bacterial biofilms formed by E. faecalis ZER6 were investigated with respect to electricity production through the riboflavin-shuttled extracellular electron transfer. Trace riboflavin was shown to be essential for transferring electrons derived from the oxidation of glucose outside the peptidoglycan layer in the cell wall of E. faecalis biofilms formed on the surface of electrodes, in the absence of other potential electron mediators (e.g., yeast extract).

  10. Localization of alkali metal ions in sodium-promoted palladium catalysts as studied by low energy ion scattering and transmission electron microscopy

    SciTech Connect

    Liotta, L.F.; Deganello, G.; Delichere, P.

    1996-12-01

    Three series of palladium-based catalysts have been studied by Low Energy Ion Scattering (LEIS) and Transmission Electron Microscopy (TEM). The first series is comprised of Na-Pd/SiO{sub 2} catalysts, obtained by addition of palladium to a silica support and by further addition of sodium ions with a Na/Pd atomic ratio (R) equal to 0,6.4 and 25.6. The second series consists of palladium catalysts supported on natural pumice, in which, due to a different loading of supported palladium, R{prime}, the (Na+K)/Pd atomic ratio, is equal to 17.0 and 39.4. The third series is represented by two palladium-based catalysts supported on {open_quotes}model pumices,{close_quotes} synthetic silico-aluminates, obtained by sol-gel techniques, with a different amount of sodium, and R equal to 2.1 and 6.1 respectively. LEIS experiments and electron microscopy demonstrate a different location of alkali metal ions in the first two series: in the Na-Pd/SiO{sub 2} catalysts sodium is distributed in a way which is not uniform on the support and on the palladium metal, which is partly decorated with Na ions, whereas in the Pd/natural-pumice series the palladium surface is sodium-free. The results on the third series of catalysts, Pd/model pumice, are not definitive on the basis of the LEIS and TEM analyses, but by FTIR study of CO and CO{sub 2} adsorption, the decoration of palladium by sodium ions could be excluded. The results confirm the importance of the alkali metal ion location in alkali-promoted palladium catalysts and open new possibilities in the design of palladium-supported catalysts by a better control of promoter location. 18 refs., 5 figs., 2 tabs.

  11. Electron transfer and coupling in graphene-tungsten disulfide van der Waals heterostructures.

    PubMed

    He, Jiaqi; Kumar, Nardeep; Bellus, Matthew Z; Chiu, Hsin-Ying; He, Dawei; Wang, Yongsheng; Zhao, Hui

    2014-11-25

    The newly discovered two-dimensional materials can be used to form atomically thin and sharp van der Waals heterostructures with nearly perfect interface qualities, which can transform the science and technology of semiconductor heterostructures. Owing to the weak van der Waals interlayer coupling, the electronic states of participating materials remain largely unchanged. Hence, emergent properties of these structures rely on two key elements: electron transfer across the interface and interlayer coupling. Here we show, using graphene-tungsten disulfide heterostructures as an example, evidence of ultrafast and highly efficient interlayer electron transfer and strong interlayer coupling and control. We find that photocarriers injected in tungsten disulfide transfer to graphene in 1 ps and with near-unity efficiency. We also demonstrate that optical properties of tungsten disulfide can be effectively tuned by carriers in graphene. These findings illustrate basic processes required for using van der Waals heterostructures in electronics and photonics.

  12. Reaction electronic flux and its role in DNA intramolecular proton transfers.

    PubMed

    Durán, Rocío; Vöhringer-Martinez, Esteban; Toro-Labbé, Alejandro; Herrera, Bárbara

    2016-06-01

    Proton transfer reactions present a key step in many biological and chemical processes. Here, we focused on the electronic changes in the proton transfer reactions of the four DNA bases. In combination with the previous structural analysis the reaction electronic flux together with local descriptors as the Hirshfeld-I charges allow us to identify chemical events and rationalize the underlying reaction mechanism. Our results show that imine-enamine in adenine and citosyne, and keto-enol tautomerizations in thymine and guanine have different reaction mechanisms. The former involve net structural rearrangements driven by favoured electrostatic interactions between the proton and the acceptor atom whereas the keto-enol tautomerizations require electronic changes reflected in the reaction electronic flux and changes in the NBO bond orders which favour the proton transfer reaction.

  13. Modulating the electronic structure of chromophores by chemical substituents for efficient energy transfer: application to fluorone.

    PubMed

    Sand, Andrew M; Liu, Claire; Valentine, Andrew J S; Mazziotti, David A

    2014-08-07

    Strong electron correlation within a quasi-spin model of chromophores was recently shown to enhance exciton energy transfer significantly. Here we investigate how the modulation of the electronic structure of the chromophores by chemical substitution can enhance energy-transfer efficiency. Unlike previous work that does not consider the direct effect of the electronic structure on exciton dynamics, we add chemical substituents to the fluorone dimer to study the effect of electron-donating and electron-withdrawing substituents on exciton energy transfer. The exciton dynamics are studied from the solution of a quantum Liouville equation for an open system whose model Hamiltonian is derived from excited-state electronic structure calculations. Both van der Waals energies and coupling energies, arising from the Hellmann-Feynman force generated upon transferring the dimers from infinity to a finite separation, are built into the model Hamiltonian. Though these two effects are implicitly treated in dipole-based models, their explicit and separate treatment as discussed here is critical to forging the correct connection with the electronic structure calculations. We find that the addition of electron-donating substituents to the fluorone system results in an increase in exciton-transfer rates by factors ranging from 1.3-1.9. The computed oscillator strength is consistent with the recent experimental results on a larger heterodimer system containing fluorone. The oscillator strength increases with the addition of electron-donating substituents. Our results indicate that the study of chromophore networks via electronic structure will help in the future design of efficient synthetic light-harvesting systems.

  14. pH-Dependent Reduction Potentials and Proton-Coupled Electron Transfer Mechanisms in Hydrogen-Producing Nickel Molecular Electrocatalysts

    SciTech Connect

    Horvath, Samantha; Fernandez, Laura; Appel, Aaron M.; Hammes-Schiffer, Sharon

    2013-04-01

    The nickel-based Ph Bz 2 2 P N electrocatalysts, which are comprised of a nickel atom and two 1,5-dibenzyl-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane ligands, have been shown to effectively catalyze H2 production in acetonitrile. Recent electrochemical experiments revealed a linear dependence of the NiII/I reduction potential on pH, suggesting a proton-coupled electron transfer (PCET) reaction. In the proposed mechanism, the catalytic cycle begins with a PCET process involving electrochemical electron transfer to the nickel center and intermolecular proton transfer from an acid to the pendant amine ligand. This paper presents quantum mechanical calculations of this PCET process to examine the thermodynamics of the sequential mechanisms, in which either the electron or the proton transfers first (ET–PT and PT–ET, respectively), and the concerted mechanism (EPT). The favored mechanism depends on a balance among many factors, including the acid strength, association free energy for the acid–catalyst complex, PT free energy barrier, and ET reduction potential. The ET reduction potential is less negative after PT, favoring the PT–ET mechanism, and the association free energy is less positive after reduction, favoring the ET–PT mechanism. The calculations, along with analysis of the experimental data, indicate that the sequential ET–PT mechanism is favored for weak acids because of the substantial decrease in the association free energy after reduction. For strong acids, however, the PT–ET mechanism may be favored because the association free energy is somewhat smaller and PT is more thermodynamically favorable. The concerted mechanism could also occur, particularly for intermediate acid strengths. In the context of the entire catalytic cycle for H2 production, the initial PCET process involving intermolecular PT has a more negative reduction potential than the subsequent PCET process involving intramolecular PT. As a result, the second PCET should

  15. Direct observation of electron-to-hole energy transfer in CdSe quantum dots.

    PubMed

    Hendry, E; Koeberg, M; Wang, F; Zhang, H; de Mello Donegá, C; Vanmaekelbergh, D; Bonn, M

    2006-02-10

    We independently determine the subpicosecond cooling rates for holes and electrons in CdSe quantum dots. Time-resolved luminescence and terahertz spectroscopy reveal that the rate of hole cooling, following photoexcitation of the quantum dots, depends critically on the electron excess energy. This constitutes the first direct, quantitative measurement of electron-to-hole energy transfer, the hypothesis behind the Auger cooling mechanism proposed in quantum dots, which is found to occur on a 1 +/- 0.15 ps time scale.

  16. The transfer between electron bulk kinetic energy and thermal energy in collisionless magnetic reconnection

    SciTech Connect

    Lu, San; Lu, Quanming; Huang, Can; Wang, Shui

    2013-06-15

    By performing two-dimensional particle-in-cell simulations, we investigate the transfer between electron bulk kinetic and electron thermal energy in collisionless magnetic reconnection. In the vicinity of the X line, the electron bulk kinetic energy density is much larger than the electron thermal energy density. The evolution of the electron bulk kinetic energy is mainly determined by the work done by the electric field force and electron pressure gradient force. The work done by the electron gradient pressure force in the vicinity of the X line is changed to the electron enthalpy flux. In the magnetic island, the electron enthalpy flux is transferred to the electron thermal energy due to the compressibility of the plasma in the magnetic island. The compression of the plasma in the magnetic island is the consequence of the electromagnetic force acting on the plasma as the magnetic field lines release their tension after being reconnected. Therefore, we can observe that in the magnetic island the electron thermal energy density is much larger than the electron bulk kinetic energy density.

  17. Diffusion mass transfer in ionic materials under intense electron irradiation

    NASA Astrophysics Data System (ADS)

    Bochkarev, I. G.; Ghyngazov, S. A.; Frangulyan, T. S.; Petrova, A. B.; Chernyavskii, A. V.

    2017-01-01

    The results of studies on the impact of an electron beam with the energy of 1-2 MeV on diffusion processes in materials with ionic bonds are presented in the paper. Used electron beam intensity is allowed to provide heating of the material to temperatures of 1600 K. Diffusion of Na, Mg, Al ions into single crystals KBr in the temperature range 573-883 K, Al ions in the NiO-AlO system at 1373-1573 K, was studied. Diffusion annealing carried out under thermal and radiation-thermal heating of the samples. Then diffusion coefficients were determined. It was found stimulating action of irradiation on diffusion processes of Mg, Al ions in Kbr and Al ions in the NiO-Al2O3 system, which consists in increasing the diffusion coefficients at radiation-thermal annealing. The observed effect is achieved by increasing the effective rate of diffusion jumps.

  18. Electronic Energies for Neon Dimer Dication Radiative Charge Transfer

    DTIC Science & Technology

    1989-12-01

    E+ or E- symmetry, but Herzberg indicates that they are both E- The electronic energy levels shown can be verified by examining their values at large... Herzberg , Molecular Spectra and Molecular Structure: 1. Spectra of Diatomic Molecules, Second Ed., Princeton, New Jersey: D. Van Nostrand Company, Inc...tlerzherg, Gerhard , F.R.S. Molecular Spectra and Molecular Structure: 1. Spectra of Diatomic .M,,leculcs. Second Ed., Princeton, New Jersey: D. Van

  19. Electron transfer dynamics of Rhodothermus marinus caa3 cytochrome c domains on biomimetic films.

    PubMed

    Molinas, Maria F; De Candia, Ariel; Szajnman, Sergio H; Rodríguez, Juan B; Martí, Marcelo; Pereira, Manuela; Teixeira, Miguel; Todorovic, Smilja; Murgida, Daniel H

    2011-10-28

    The subunit II of the caa(3) oxygen reductase from Rhodothermus marinus contains, in addition to the Cu(A) center, a c-type heme group in the cytochrome c domain (Cyt-D) that is the putative primary electron acceptor of the enzyme. In this work we have combined surface-enhanced resonance Raman (SERR) spectroelectrochemistry, molecular dynamics (MD) simulations and electron pathway calculations to assess the most likely interaction domains and electron entry/exit points of the truncated Cyt-D of subunit II in the reactions with its electron donor, HiPIP and electron acceptor, Cu(A). The results indicate that the transient interaction between Cyt-D and HiPIP relies upon a delicate balance of hydrophobic and polar contacts for establishing an optimized electron transfer pathway that involves the exposed edge of the heme group and guaranties efficient inter-protein electron transfer on the nanosecond time scale. The reorganization energy of ca. 0.7 eV was determined by time-resolved SERR spectroelectrochemistry. The intramolecular electron transfer pathway in integral subunit II from Cyt-D to the Cu(A) redox center most likely involves the iron ligand histidine 20 as an electron exit point in Cyt-D.

  20. Guanidinium groups act as general-acid catalysts in phosphoryl transfer reactions: a two-proton inventory on a model system.

    PubMed

    Piatek, Anna M; Gray, Mark; Anslyn, Eric V

    2004-08-18

    Cleavage/transesterification of phosphodiesters is catalyzed by various acidic groups in solution and with enzymes. General-acid catalysts can transfer protons to the developing phosphorane intermediate, resulting in a monoprotic-monoanionic intermediate, giving the so-called "triester mechanism". Using a proton inventory on a model compound (1) possessing an intramolecular hydrogen bond between a phosphodiester and a guanidinium group, we find that two protons move in the rate-determining step for cleavage/transesterification. In contrast, HPNP shows a single-proton inventory and is a substrate well accepted to react with the movement of only one proton at the transition state. We therefore propose a mechanism for 1 that involves general-acid catalysis by the guanidinium group. This leads one to conclude that other, more acidic groups, such as ammonium and imidazolium, would also act as general-acid catalysts.