Sample records for electron transfer induced

  1. Directing the path of light-induced electron transfer at a molecular fork using vibrational excitation

    NASA Astrophysics Data System (ADS)

    Delor, Milan; Archer, Stuart A.; Keane, Theo; Meijer, Anthony J. H. M.; Sazanovich, Igor V.; Greetham, Gregory M.; Towrie, Michael; Weinstein, Julia A.

    2017-11-01

    Ultrafast electron transfer in condensed-phase molecular systems is often strongly coupled to intramolecular vibrations that can promote, suppress and direct electronic processes. Recent experiments exploring this phenomenon proved that light-induced electron transfer can be strongly modulated by vibrational excitation, suggesting a new avenue for active control over molecular function. Here, we achieve the first example of such explicit vibrational control through judicious design of a Pt(II)-acetylide charge-transfer donor-bridge-acceptor-bridge-donor 'fork' system: asymmetric 13C isotopic labelling of one of the two -C≡C- bridges makes the two parallel and otherwise identical donor→acceptor electron-transfer pathways structurally distinct, enabling independent vibrational perturbation of either. Applying an ultrafast UVpump(excitation)-IRpump(perturbation)-IRprobe(monitoring) pulse sequence, we show that the pathway that is vibrationally perturbed during UV-induced electron transfer is dramatically slowed down compared to its unperturbed counterpart. One can thus choose the dominant electron transfer pathway. The findings deliver a new opportunity for precise perturbative control of electronic energy propagation in molecular devices.

  2. Photo-induced electron transfer method

    DOEpatents

    Wohlgemuth, R.; Calvin, M.

    1984-01-24

    The efficiency of photo-induced electron transfer reactions is increased and the back transfer of electrons in such reactions is greatly reduced when a photo-sensitizer zinc porphyrin-surfactant and an electron donor manganese porphyrin-surfactant are admixed into phospholipid membranes. The phospholipids comprising said membranes are selected from phospholipids whose head portions are negatively charged. Said membranes are contacted with an aqueous medium in which an essentially neutral viologen electron acceptor is admixed. Catalysts capable of transferring electrons from reduced viologen electron acceptor to hydrogen to produce elemental hydrogen are also included in the aqueous medium. An oxidizable olefin is also admixed in the phospholipid for the purpose of combining with oxygen that coordinates with oxidized electron donor manganese porphyrin-surfactant.

  3. Tunneling induced electron transfer between separated protons

    NASA Astrophysics Data System (ADS)

    Vindel-Zandbergen, Patricia; Meier, Christoph; Sola, Ignacio R.

    2018-04-01

    We study electron transfer between two separated protons using local control theory. In this symmetric system one can favour a slow transfer by biasing the algorithm, achieving high efficiencies for fixed nuclei. The solution can be parametrized using a sequence of a pump followed by a dump pulse that lead to tunneling-induced electron transfer. Finally, we study the effect of the nuclear kinetic energy on the efficiency. Even in the absence of relative motion between the protons, the spreading of the nuclear wave function is enough to reduce the yield of electronic transfer to less than one half.

  4. Photo-induced electron transfer method

    DOEpatents

    Wohlgemuth, Roland; Calvin, Melvin

    1984-01-01

    The efficiency of photo-induced electron transfer reactions is increased and the back transfer of electrons in such reactions is greatly reduced when a photo-sensitizer zinc porphyrin-surfactant and an electron donor manganese porphyrin-surfactant are admixed into phospho-lipid membranes. The phospholipids comprising said membranes are selected from phospholipids whose head portions are negatively charged. Said membranes are contacted with an aqueous medium in which an essentially neutral viologen electron acceptor is admixed. Catalysts capable of transfering electrons from reduced viologen electron acceptor to hydrogen to produce elemental hydrogen are also included in the aqueous medium. An oxidizable olefin is also admixed in the phospholipid for the purpose of combining with oxygen that coordinates with oxidized electron donor manganese porphyrin-surfactant.

  5. Ultrafast direct electron transfer at organic semiconductor and metal interfaces.

    PubMed

    Xiang, Bo; Li, Yingmin; Pham, C Huy; Paesani, Francesco; Xiong, Wei

    2017-11-01

    The ability to control direct electron transfer can facilitate the development of new molecular electronics, light-harvesting materials, and photocatalysis. However, control of direct electron transfer has been rarely reported, and the molecular conformation-electron dynamics relationships remain unclear. We describe direct electron transfer at buried interfaces between an organic polymer semiconductor film and a gold substrate by observing the first dynamical electric field-induced vibrational sum frequency generation (VSFG). In transient electric field-induced VSFG measurements on this system, we observe dynamical responses (<150 fs) that depend on photon energy and polarization, demonstrating that electrons are directly transferred from the Fermi level of gold to the lowest unoccupied molecular orbital of organic semiconductor. Transient spectra further reveal that, although the interfaces are prepared without deliberate alignment control, a subensemble of surface molecules can adopt conformations for direct electron transfer. Density functional theory calculations support the experimental results and ascribe the observed electron transfer to a flat-lying polymer configuration in which electronic orbitals are found to be delocalized across the interface. The present observation of direct electron transfer at complex interfaces and the insights gained into the relationship between molecular conformations and electron dynamics will have implications for implementing novel direct electron transfer in energy materials.

  6. Flavin Charge Transfer Transitions Assist DNA Photolyase Electron Transfer

    NASA Astrophysics Data System (ADS)

    Skourtis, Spiros S.; Prytkova, Tatiana; Beratan, David N.

    2007-12-01

    This contribution describes molecular dynamics, semi-empirical and ab-initio studies of the primary photo-induced electron transfer reaction in DNA photolyase. DNA photolyases are FADH--containing proteins that repair UV-damaged DNA by photo-induced electron transfer. A DNA photolyase recognizes and binds to cyclobutatne pyrimidine dimer lesions of DNA. The protein repairs a bound lesion by transferring an electron to the lesion from FADH-, upon photo-excitation of FADH- with 350-450 nm light. We compute the lowest singlet excited states of FADH- in DNA photolyase using INDO/S configuration interaction, time-dependent density-functional, and time-dependent Hartree-Fock methods. The calculations identify the lowest singlet excited state of FADH- that is populated after photo-excitation and that acts as the electron donor. For this donor state we compute conformationally-averaged tunneling matrix elements to empty electron-acceptor states of a thymine dimer bound to photolyase. The conformational averaging involves different FADH--thymine dimer confromations obtained from molecular dynamics simulations of the solvated protein with a thymine dimer docked in its active site. The tunneling matrix element computations use INDO/S-level Green's function, energy splitting, and Generalized Mulliken-Hush methods. These calculations indicate that photo-excitation of FADH- causes a π→π* charge-transfer transition that shifts electron density to the side of the flavin isoalloxazine ring that is adjacent to the docked thymine dimer. This shift in electron density enhances the FADH--to-dimer electronic coupling, thus inducing rapid electron transfer.

  7. Three-dimensional hollow graphene efficiently promotes electron transfer of Ag3PO4 for photocatalytically eliminating phenol

    NASA Astrophysics Data System (ADS)

    Song, Shaoqing; Meng, Aiyun; Jiang, Shujuan; Cheng, Bei

    2018-06-01

    The effective transport of photo-induced carriers over semiconductor photocatalyst is critical for enhancing the photocatalytic performance under light excitation. Although oxidized graphene (GO) and/or reduced graphene oxide (rGO) has been used as cocatalyst to promote the transfer and utilization of electrons, however, random diffusion and transfer of photo-induced charges are inevitable from all sides over these actual graphene owing to the limitation of the preparation process and theory. Herein, we utilized three-dimensional hollow carbon graphene (HCG) to promote the efficient electron transfer of Ag3PO4 in the photocatalytic process. Owing to the confinement-induced electron field of HCG, the constructed HCG-Ag3PO4 photocatalytic system demonstrated the enhanced visible-light adsorption, improved transfer of photo-induced charges, and suitable redox potentials as revealed by transient photo-current spectroscopic, surface photovoltage spectroscopy, and electron paramagnetic resonance (EPR). EPR spectra of oxygen species and gas chromatography-mass spectra exhibited high efficiency activity over HCG-Ag3PO4 with Z-scheme photocatalytic mechanism for phenol decomposition by reaction between hexanoic acid and radOH and radO2-. It is noteworthy that photocatalytic performance over optimal HCG-Ag3PO4 is 6, 3.43, 1.92 times of pristine Ag3PO4, GO-Ag3PO4, and rGO-Ag3PO4, respectively. The results may supply a novel perspective to enhance transfer of photo-induced charges for the promotion of photocatalytic technology.

  8. Electron transfer dynamics and yield from gold nanoparticle to different semiconductors induced by plasmon band excitation

    NASA Astrophysics Data System (ADS)

    Du, L. C.; Xi, W. D.; Zhang, J. B.; Matsuzaki, H.; Furube, A.

    2018-06-01

    Photoinduced electron transfer from gold nanoparticles (NPs) to semiconductor under plasmon excitation is an important phenomenon in photocatalysis and solar cell applications. Femtosecond plasmon-induced electron transfer from gold NPs to the conduction band of different semiconductor like TiO2, SnO2, and ZnO was monitored at 3440 nm upon optical excitation of the surface plasmon band of gold NPs. It was found that electron injection was completed within 240 fs and the electron injection yield reached 10-30% under 570 nm excitation. It means TiO2 is not the only proper semiconductor as electron acceptors in such gold/semiconductor nanoparticle systems.

  9. Role of coherence and delocalization in photo-induced electron transfer at organic interfaces

    NASA Astrophysics Data System (ADS)

    Abramavicius, V.; Pranculis, V.; Melianas, A.; Inganäs, O.; Gulbinas, V.; Abramavicius, D.

    2016-09-01

    Photo-induced charge transfer at molecular heterojunctions has gained particular interest due to the development of organic solar cells (OSC) based on blends of electron donating and accepting materials. While charge transfer between donor and acceptor molecules can be described by Marcus theory, additional carrier delocalization and coherent propagation might play the dominant role. Here, we describe ultrafast charge separation at the interface of a conjugated polymer and an aggregate of the fullerene derivative PCBM using the stochastic Schrödinger equation (SSE) and reveal the complex time evolution of electron transfer, mediated by electronic coherence and delocalization. By fitting the model to ultrafast charge separation experiments, we estimate the extent of electron delocalization and establish the transition from coherent electron propagation to incoherent hopping. Our results indicate that even a relatively weak coupling between PCBM molecules is sufficient to facilitate electron delocalization and efficient charge separation at organic interfaces.

  10. Dynamics driving function: new insights from electron transferring flavoproteins and partner complexes.

    PubMed

    Toogood, Helen S; Leys, David; Scrutton, Nigel S

    2007-11-01

    Electron transferring flavoproteins (ETFs) are soluble heterodimeric FAD-containing proteins that function primarily as soluble electron carriers between various flavoprotein dehydrogenases. ETF is positioned at a key metabolic branch point, responsible for transferring electrons from up to 10 primary dehydrogenases to the membrane-bound respiratory chain. Clinical mutations of ETF result in the often fatal disease glutaric aciduria type II. Structural and biophysical studies of ETF in complex with partner proteins have shown that ETF partitions the functions of partner binding and electron transfer between (a) a 'recognition loop', which acts as a static anchor at the ETF-partner interface, and (b) a highly mobile redox-active FAD domain. Together, this enables the FAD domain of ETF to sample a range of conformations, some compatible with fast interprotein electron transfer. This 'conformational sampling' enables ETF to recognize structurally distinct partners, whilst also maintaining a degree of specificity. Complex formation triggers mobility of the FAD domain, an 'induced disorder' mechanism contrasting with the more generally accepted models of protein-protein interaction by induced fit mechanisms. We discuss the implications of the highly dynamic nature of ETFs in biological interprotein electron transfer. ETF complexes point to mechanisms of electron transfer in which 'dynamics drive function', a feature that is probably widespread in biology given the modular assembly and flexible nature of biological electron transfer systems.

  11. Nonadiabatic dynamics of photo-induced proton-coupled electron transfer reactions via ring-polymer surface hopping

    NASA Astrophysics Data System (ADS)

    Shakib, Farnaz; Huo, Pengfei

    Photo-induced proton-coupled electron transfer reactions (PCET) are at the heart of energy conversion reactions in photocatalysis. Here, we apply the recently developed ring-polymer surface-hopping (RPSH) approach to simulate the nonadiabatic dynamics of photo-induced PCET. The RPSH method incorporates ring-polymer (RP) quantization of the proton into the fewest-switches surface-hopping (FSSH) approach. Using two diabatic electronic states, corresponding to the electron donor and acceptor states, we model photo-induced PCET with the proton described by a classical isomorphism RP. From the RPSH method, we obtain numerical results that are comparable to those obtained when the proton is treated quantum mechanically. This accuracy stems from incorporating exact quantum statistics, such as proton tunnelling, into approximate quantum dynamics. Additionally, RPSH offers the numerical accuracy along with the computational efficiency. Namely, compared to the FSSH approach in vibronic representation, there is no need to calculate a massive number of vibronic states explicitly. This approach opens up the possibility to accurately and efficiently simulate photo-induced PCET with multiple transferring protons or electrons.

  12. Co-adsorption of water and oxygen on GaN: Effects of charge transfer and formation of electron depletion layer.

    PubMed

    Wang, Qi; Puntambekar, Ajinkya; Chakrapani, Vidhya

    2017-09-14

    Species from ambient atmosphere such as water and oxygen are known to affect electronic and optical properties of GaN, but the underlying mechanism is not clearly known. In this work, we show through careful measurement of electrical resistivity and photoluminescence intensity under various adsorbates that the presence of oxygen or water vapor alone is not sufficient to induce electron transfer to these species. Rather, the presence of both water and oxygen is necessary to induce electron transfer from GaN that leads to the formation of an electron depletion region on the surface. Exposure to acidic gases decreases n-type conductivity due to increased electron transfer from GaN, while basic gases increase n-type conductivity and PL intensity due to reduced charge transfer from GaN. These changes in the electrical and optical properties, as explained using a new electrochemical framework based on the phenomenon of surface transfer doping, suggest that gases interact with the semiconductor surface through electrochemical reactions occurring in an adsorbed water layer present on the surface.

  13. Evidence for protein conformational change at a Au(110)/protein interface

    NASA Astrophysics Data System (ADS)

    Messiha, H. L.; Smith, C. I.; Scrutton, N. S.; Weightman, P.

    2008-07-01

    Evidence is presented that reflection anisotropy spectroscopy (RAS) can provide real-time measurements of conformational change in proteins induced by electron transfer reactions. A bacterial electron transferring flavoprotein (ETF) has been modified so as to adsorb on an Au(110) electrode and enable reversible electron transfer to the protein cofactor in the absence of mediators. Reversible changes are observed in the RAS of this protein that are interpreted as arising from conformational changes accompanying the transfer of electrons.

  14. Visible-light-induced two-electron-transfer photoreductions on CdS: Effects of morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiragami, Tsutomu; Pac, Chyongjin; Yanagida, Shozo

    1990-01-25

    Freshly prepared CdS suspensions (CdS-O) consisting of quantized particles and their loose aggregation catalyze photoreductions of aromatic ketones and olefins in methanol under visible light irradiation using triethylamine as sacrificial electron donor, yielding alcohols and dihydro compounds, respectively, which are more selective than photocatalysis of commercially available crystalline CdS (Aldrich) (CdS-Ald). Deuterium incorporation experiments in photolysis of dimethyl maleate in methanol-O-D revealed that CdS-O catalyzes sequential two-electron-transfer photoreduction, affording dideuterated dimethyl succinate, while CdS-Ald induces both photoreduction and photoisomerization through disproportionation between one-electron-transfer-reduction intermediates, yielding much trideuterated dimethyl succinate and monodeuterated dimethyl fumarate and maleate.

  15. Anion Photoelectron Spectroscopy of the Homogenous 2-Hydroxypyridine Dimer Electron Induced Proton Transfer System

    NASA Astrophysics Data System (ADS)

    Vlk, Alexandra; Stokes, Sarah; Wang, Yi; Hicks, Zachary; Zhang, Xinxing; Blando, Nicolas; Frock, Andrew; Marquez, Sara; Bowen, Kit; Bowen Lab JHU Team

    Anion photoelectron spectroscopic (PES) and density functional theory (DFT) studies on the dimer anion of (2-hydroxypyridine)2-are reported. The experimentally measured vertical detachment energy (VDE) of 1.21eV compares well with the theoretically predicted values. The 2-hydroxypyridine anionic dimer system was investigated because of its resemblance to the nitrogenous heterocyclic pyrimidine nucleobases. Experimental and theoretical results show electron induced proton transfer (EIPT) in both the lactim and lactam homogeneous dimers. Upon electron attachment, the anion can serve as the intermediate between the two neutral dimers. A possible double proton transfer process can occur from the neutral (2-hydroxypyridine)2 to (2-pyridone)2 through the dimer anion. This potentially suggests an electron catalyzed double proton transfer mechanism of tautomerization. Research supported by the NSF Grant No. CHE-1360692.

  16. Dynamics of charge-transfer excitons in type-II semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Stein, M.; Lammers, C.; Richter, P.-H.; Fuchs, C.; Stolz, W.; Koch, M.; Vänskä, O.; Weseloh, M. J.; Kira, M.; Koch, S. W.

    2018-03-01

    The formation, decay, and coherence properties of charge-transfer excitons in semiconductor heterostructures are investigated by applying four-wave-mixing and terahertz spectroscopy in combination with a predictive microscopic theory. A charge-transfer process is identified where the optically induced coherences decay directly into a charge-transfer electron-hole plasma and exciton states. It is shown that charge-transfer excitons are more sensitive to the fermionic electron-hole substructure than regular excitons.

  17. Distance dependence in photo-induced intramolecular electron transfer

    NASA Astrophysics Data System (ADS)

    Larsson, Sven; Volosov, Andrey

    1986-09-01

    The distance dependence of the rate of photo-induced electron transfer reactions is studied. A quantum mechanical method CNDO/S is applied to a series of molecules recently investigated by Hush et al. experimentally. The calculations show a large interaction through the saturated bridge which connects the two chromophores. The electronic matrix element HAB decreases a factor 10 in about 4 Å. There is also a decrease of the rate due to less exothermicity for the longer molecule. The results are in fair agreement with the experimental results.

  18. Food Antioxidants: Chemical Insights at the Molecular Level.

    PubMed

    Galano, Annia; Mazzone, Gloria; Alvarez-Diduk, Ruslán; Marino, Tiziana; Alvarez-Idaboy, J Raúl; Russo, Nino

    2016-01-01

    In this review, we briefly summarize the reliability of the density functional theory (DFT)-based methods to accurately predict the main antioxidant properties and the reaction mechanisms involved in the free radical-scavenging reactions of chemical compounds present in food. The analyzed properties are the bond dissociation energies, in particular those involving OH bonds, electron transfer enthalpies, adiabatic ionization potentials, and proton affinities. The reaction mechanisms are hydrogen-atom transfer, proton-coupled electron transfer, radical adduct formation, single electron transfer, sequential electron proton transfer, proton-loss electron transfer, and proton-loss hydrogen-atom transfer. Furthermore, the chelating ability of these compounds and its role in decreasing or inhibiting the oxidative stress induced by Fe(III) and Cu(II) are considered. Comparisons between theoretical and experimental data confirm that modern theoretical tools are not only able to explain controversial experimental facts but also to predict chemical behavior.

  19. Near infrared light induced plasmonic hot hole transfer at a nano-heterointerface.

    PubMed

    Lian, Zichao; Sakamoto, Masanori; Matsunaga, Hironori; Vequizo, Junie Jhon M; Yamakata, Akira; Haruta, Mitsutaka; Kurata, Hiroki; Ota, Wataru; Sato, Tohru; Teranishi, Toshiharu

    2018-06-13

    Localized surface plasmon resonance (LSPR)-induced hot-carrier transfer is a key mechanism for achieving artificial photosynthesis using the whole solar spectrum, even including the infrared (IR) region. In contrast to the explosive development of photocatalysts based on the plasmon-induced hot electron transfer, the hole transfer system is still quite immature regardless of its importance, because the mechanism of plasmon-induced hole transfer has remained unclear. Herein, we elucidate LSPR-induced hot hole transfer in CdS/CuS heterostructured nanocrystals (HNCs) using time-resolved IR (TR-IR) spectroscopy. TR-IR spectroscopy enables the direct observation of carrier in a LSPR-excited CdS/CuS HNC. The spectroscopic results provide insight into the novel hole transfer mechanism, named plasmon-induced transit carrier transfer (PITCT), with high quantum yields (19%) and long-lived charge separations (9.2 μs). As an ultrafast charge recombination is a major drawback of all plasmonic energy conversion systems, we anticipate that PITCT will break the limit of conventional plasmon-induced energy conversion.

  20. Extensive domain motion and electron transfer in the human electron transferring flavoprotein.medium chain Acyl-CoA dehydrogenase complex.

    PubMed

    Toogood, Helen S; van Thiel, Adam; Basran, Jaswir; Sutcliffe, Mike J; Scrutton, Nigel S; Leys, David

    2004-07-30

    The crystal structure of the human electron transferring flavoprotein (ETF).medium chain acyl-CoA dehydrogenase (MCAD) complex reveals a dual mode of protein-protein interaction, imparting both specificity and promiscuity in the interaction of ETF with a range of structurally distinct primary dehydrogenases. ETF partitions the functions of partner binding and electron transfer between (i) the recognition loop, which acts as a static anchor at the ETF.MCAD interface, and (ii) the highly mobile redox active FAD domain. Together, these enable the FAD domain of ETF to sample a range of conformations, some compatible with fast interprotein electron transfer. Disorders in amino acid or fatty acid catabolism can be attributed to mutations at the protein-protein interface. Crucially, complex formation triggers mobility of the FAD domain, an induced disorder that contrasts with general models of protein-protein interaction by induced fit mechanisms. The subsequent interfacial motion in the MCAD.ETF complex is the basis for the interaction of ETF with structurally diverse protein partners. Solution studies using ETF and MCAD with mutations at the protein-protein interface support this dynamic model and indicate ionic interactions between MCAD Glu(212) and ETF Arg alpha(249) are likely to transiently stabilize productive conformations of the FAD domain leading to enhanced electron transfer rates between both partners.

  1. FTIR Study of the Photoactivation Process of Xenopus (6-4) Photolyase†

    PubMed Central

    Yamada, Daichi; Zhang, Yu; Iwata, Tatsuya; Hitomi, Kenichi; Getzoff, Elizabeth D.; Kandori, Hideki

    2012-01-01

    Photolyases (PHRs) are blue-light activated DNA repair enzymes that maintain genetic integrity by reverting UV-induced photoproducts into normal bases. The FAD chromophore of PHRs has four different redox states: oxidized (FADox), anion radical (FAD•−), neutral radical (FADH•) and fully reduced (FADH−). We combined difference Fourier-transform infrared (FTIR) spectroscopy with UV-visible spectroscopy to study the detailed photoactivation process of Xenopus (6-4) PHR. Two photons produce the enzymatically active, fully reduced PHR from oxidized FAD: FADox is converted to semiquinone via light-induced one-electron and one-proton transfers, and then to FADH− by light-induced one-electron transfer. We successfully trapped FAD•− at 200 K, where electron transfer occurs, but proton transfer does not. UV-visible spectroscopy following 450-nm illumination of FADox at 277 K defined the FADH•/FADH− mixture and allowed calculation of difference FTIR spectra among the four redox states. The absence of a characteristic C=O stretching vibration indicated that the proton donor is not a protonated carboxylic acid. Structural changes in Trp and Tyr are suggested from UV-visible and FTIR analysis of FAD•− at 200 K. Spectral analysis of amide-I vibrations revealed structural perturbation of the protein’s β-sheet during initial electron transfer (FAD•− formation), transient increase in α-helicity during proton transfer (FADH• formation) and reversion to the initial amide-I signal following subsequent electron transfer (FADH− formation). Consequently, in (6-4) PHR, unlike cryptochrome-DASH, formation of enzymatically active FADH− did not perturb α-helicity. Protein structural changes in the photoactivation of (6-4) PHR are discussed on the basis of the present FTIR observations. PMID:22747528

  2. Photoinduced electron transfer between benzyloxy dendrimer phthalocyanine and benzoquinone

    NASA Astrophysics Data System (ADS)

    Zhang, Tiantian; Ma, Dongdong; Pan, Sujuan; Wu, Shijun; Jiang, Yufeng; Zeng, Di; Yang, Hongqin; Peng, Yiru

    2016-10-01

    Photo-induced electron transfer (PET) is an important and fundamental process in natural photosynthesis. To mimic such interesting PET process, a suitable donor and acceptor couple were properly chosen. Dendrimer phthalocyanines and their derivatives have emerged as promising materials for artificial photosynthesis systems. In this paper, the electron transfer between the light harvest dendrimer phthalocyanine (donor) and the 1,4-benzoquinone (acceptor) was studied by UV/Vis and fluorescence spectroscopic methods. It was found that fluorescence of phthalocyanine was quenched by benzoquinone (BQ) via excited state electron transfer, from the phthalocyanine to the BQ upon excitation at 610 nm. The Stern-Volmer constant (KSV) of electron transfer was calculated. Our study suggests that this dendritic phthalocyanine is an effective new electron donor and transmission complex and could be used as a potential artificial photosynthesis system.

  3. Is back-electron transfer process in Betaine-30 coherent?

    NASA Astrophysics Data System (ADS)

    Rafiq, Shahnawaz; Scholes, Gregory D.

    2017-09-01

    The possible role of coherent vibrational motion in ultrafast photo-induced electron transfer remains unclear despite considerable experimental and theoretical advances. We revisited this problem by tracking the back-electron transfer (bET) process in Betaine-30 with broadband pump-probe spectroscopy. Dephasing time constant of certain high-frequency vibrations as a function of solvent shows a trend similar to the ET rates. In the purview of Bixon-Jortner model, high-frequency quantum vibrations bridge the reactant-product energy gap by providing activationless vibronic channels. Such interaction reduces the effective coupling significantly and thereby the coherence effects are eliminated due to energy gap fluctuations, making the back-electron transfer incoherent.

  4. Water Molecules Gating a Photoinduced One-Electron Two-Protons Transfer in a Tyrosine/Histidine (Tyr/His) Model of Photosystem II.

    PubMed

    Chararalambidis, Georgios; Das, Shyamal; Trapali, Adelais; Quaranta, Annamaria; Orio, Maylis; Halime, Zakaria; Fertey, Pierre; Guillot, Régis; Coutsolelos, Athanassios; Leibl, Winfried; Aukauloo, Ally; Sircoglou, Marie

    2018-05-22

    We investigate a biomimetic model of a Tyr Z /His 190 pair, a hydrogen-bonded phenol/imidazole covalently attached to a porphyrin sensitizer. Laser flash photolysis in the presence of an external electron acceptor reveals the need for water molecules to unlock the light-induced oxidation of the phenol through an intramolecular pathway. Kinetics monitoring encompasses two fast phases with distinct spectral properties. The first phase is related to a one-electron transfer from the phenol to the porphyrin radical cation coupled with a domino two-proton transfer leading to the ejection of a proton from the imidazole-phenol pair. The second phase concerns conveying the released proton to the porphyrin N 4 coordinating cavity. Our study provides an unprecedented example of a light-induced electron-transfer process in a Tyr Z /His 190 model of photosystem II, evidencing the movement of both the phenol and imidazole protons along an isoenergetic pathway. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Concerted electron-proton transfer in the optical excitation of hydrogen-bonded dyes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westlake, Brittany C.; Brennaman, Kyle M.; Concepcion, Javier J.

    2011-05-24

    The simultaneous, concerted transfer of electrons and protons—electron-proton transfer (EPT)—is an important mechanism utilized in chemistry and biology to avoid high energy intermediates. There are many examples of thermally activated EPT in ground-state reactions and in excited states following photoexcitation and thermal relaxation. Here we report application of ultrafast excitation with absorption and Raman monitoring to detect a photochemically driven EPT process (photo-EPT). In this process, both electrons and protons are transferred during the absorption of a photon. Photo-EPT is induced by intramolecular charge-transfer (ICT) excitation of hydrogen-bonded-base adducts with either a coumarin dye or 4-nitro-4'-biphenylphenol. Femtosecond transient absorption spectralmore » measurements following ICT excitation reveal the appearance of two spectroscopically distinct states having different dynamical signatures. One of these states corresponds to a conventional ICT excited state in which the transferring H⁺ is initially associated with the proton donor. Proton transfer to the base (B) then occurs on the picosecond time scale. The other state is an ICT-EPT photoproduct. Upon excitation it forms initially in the nuclear configuration of the ground state by application of the Franck–Condon principle. However, due to the change in electronic configuration induced by the transition, excitation is accompanied by proton transfer with the protonated base formed with a highly elongated ⁺H–B bond. Coherent Raman spectroscopy confirms the presence of a vibrational mode corresponding to the protonated base in the optically prepared state.« less

  6. Concerted electron-proton transfer in the optical excitation of hydrogen-bonded dyes.

    PubMed

    Westlake, Brittany C; Brennaman, M Kyle; Concepcion, Javier J; Paul, Jared J; Bettis, Stephanie E; Hampton, Shaun D; Miller, Stephen A; Lebedeva, Natalia V; Forbes, Malcolm D E; Moran, Andrew M; Meyer, Thomas J; Papanikolas, John M

    2011-05-24

    The simultaneous, concerted transfer of electrons and protons--electron-proton transfer (EPT)--is an important mechanism utilized in chemistry and biology to avoid high energy intermediates. There are many examples of thermally activated EPT in ground-state reactions and in excited states following photoexcitation and thermal relaxation. Here we report application of ultrafast excitation with absorption and Raman monitoring to detect a photochemically driven EPT process (photo-EPT). In this process, both electrons and protons are transferred during the absorption of a photon. Photo-EPT is induced by intramolecular charge-transfer (ICT) excitation of hydrogen-bonded-base adducts with either a coumarin dye or 4-nitro-4'-biphenylphenol. Femtosecond transient absorption spectral measurements following ICT excitation reveal the appearance of two spectroscopically distinct states having different dynamical signatures. One of these states corresponds to a conventional ICT excited state in which the transferring H(+) is initially associated with the proton donor. Proton transfer to the base (B) then occurs on the picosecond time scale. The other state is an ICT-EPT photoproduct. Upon excitation it forms initially in the nuclear configuration of the ground state by application of the Franck-Condon principle. However, due to the change in electronic configuration induced by the transition, excitation is accompanied by proton transfer with the protonated base formed with a highly elongated (+)H ─ B bond. Coherent Raman spectroscopy confirms the presence of a vibrational mode corresponding to the protonated base in the optically prepared state.

  7. A computational study of photo-induced electron transfer rate constants in subphthalocyanine/C60 organic photovoltaic materials via Fermi's golden rule

    NASA Astrophysics Data System (ADS)

    Lee, Myeong H.; Dunietz, Barry D.; Geva, Eitan

    2014-03-01

    We present a methodology to obtain the photo-induced electron transfer rate constant in organic photovoltaic (OPV) materials within the framework of Fermi's golden rule, using inputs obtained from first-principles electronic structure calculation. Within this approach, the nuclear vibrational modes are treated quantum-mechanically and a short-time approximation is avoided in contrast to the classical Marcus theory where these modes are treated classically within the high-temperature and short-time limits. We demonstrate our methodology on boron-subphthalocyanine-chloride/C60 OPV system to determine the rate constants of electron transfer and electron recombination processes upon photo-excitation. We consider two representative donor/acceptor interface configurations to investigate the effect of interface configuration on the charge transfer characteristics of OPV materials. In addition, we determine the time scale of excited states population by employing a master equation after obtaining the rate constants for all accessible electronic transitions. This work is pursued as part of the Center for Solar and Thermal Energy Conversion, an Energy Frontier Research Center funded by the US Department of Energy Office of Science, Office of Basic Energy Sciences under 390 Award No. DE-SC0000957.

  8. Controlling electron transfer processes on insulating surfaces with the non-contact atomic force microscope.

    PubMed

    Trevethan, Thomas; Shluger, Alexander

    2009-07-01

    We present the results of theoretical modelling that predicts how a process of transfer of single electrons between two defects on an insulating surface can be induced using a scanning force microscope tip. A model but realistic system is employed which consists of a neutral oxygen vacancy and a noble metal (Pt or Pd) adatom on the MgO(001) surface. We show that the ionization potential of the vacancy and the electron affinity of the metal adatom can be significantly modified by the electric field produced by an ionic tip apex at close approach to the surface. The relative energies of the two states are also a function of the separation of the two defects. Therefore the transfer of an electron from the vacancy to the metal adatom can be induced either by the field effect of the tip or by manipulating the position of the metal adatom on the surface.

  9. Electron transfer in a virtual quantum state of LiBH4 induced by strong optical fields and mapped by femtosecond x-ray diffraction.

    PubMed

    Stingl, J; Zamponi, F; Freyer, B; Woerner, M; Elsaesser, T; Borgschulte, A

    2012-10-05

    Transient polarizations connected with a spatial redistribution of electronic charge in a mixed quantum state are induced by optical fields of high amplitude. We determine for the first time the related transient electron density maps, applying femtosecond x-ray powder diffraction as a structure probe. The prototype ionic material LiBH4 driven nonresonantly by an intense sub-40 fs optical pulse displays a large-amplitude fully reversible electron transfer from the BH4(-) anion to the Li+ cation during excitation. Our results establish this mechanism as the source of the strong optical polarization which agrees quantitatively with theoretical estimates.

  10. Experimental and Theoretical Aspects of Excited State Electron Transfer and Related Phenomena: Conference Held in Honour of Zbigniew R. Grabowski in Pultusk, Poland on September 27-October 2, 1992

    DTIC Science & Technology

    1992-10-01

    DBMBF2 ) undergoes photoreaction with olefins through a partial electron transfer that leads to cycloaddition or sensitized Diels - Alder reactions. We...8217 Fluorescence. 10:00 J.M. WARMAN: Photon-induced Intramolecular Charge Sepaiation Studied byTime-Resolved Microwave Conductivity. 10:30 Coffee 11:)) W...26 Photon-Induced Intramolecular Charge Separation Studied by Time-Resolved Microwave Conductivity John M. Warman IRI, Delft University of Technology

  11. Nanoantioxidant-driven plasmon enhanced proton-coupled electron transfer

    NASA Astrophysics Data System (ADS)

    Sotiriou, Georgios A.; Blattmann, Christoph O.; Deligiannakis, Yiannis

    2015-12-01

    Proton-coupled electron transfer (PCET) reactions involve the transfer of a proton and an electron and play an important role in a number of chemical and biological processes. Here, we describe a novel phenomenon, plasmon-enhanced PCET, which is manifested using SiO2-coated Ag nanoparticles functionalized with gallic acid (GA), a natural antioxidant molecule that can perform PCET. These GA-functionalized nanoparticles show enhanced plasmonic response at near-IR wavelengths, due to particle agglomeration caused by the GA molecules. Near-IR laser irradiation induces strong local hot-spots on the SiO2-coated Ag nanoparticles, as evidenced by surface enhanced Raman scattering (SERS). This leads to plasmon energy transfer to the grafted GA molecules that lowers the GA-OH bond dissociation enthalpy by at least 2 kcal mol-1 and therefore facilitates PCET. The nanoparticle-driven plasmon-enhancement of PCET brings together the so far unrelated research domains of nanoplasmonics and electron/proton translocation with significant impact on applications based on interfacial electron/proton transfer.Proton-coupled electron transfer (PCET) reactions involve the transfer of a proton and an electron and play an important role in a number of chemical and biological processes. Here, we describe a novel phenomenon, plasmon-enhanced PCET, which is manifested using SiO2-coated Ag nanoparticles functionalized with gallic acid (GA), a natural antioxidant molecule that can perform PCET. These GA-functionalized nanoparticles show enhanced plasmonic response at near-IR wavelengths, due to particle agglomeration caused by the GA molecules. Near-IR laser irradiation induces strong local hot-spots on the SiO2-coated Ag nanoparticles, as evidenced by surface enhanced Raman scattering (SERS). This leads to plasmon energy transfer to the grafted GA molecules that lowers the GA-OH bond dissociation enthalpy by at least 2 kcal mol-1 and therefore facilitates PCET. The nanoparticle-driven plasmon-enhancement of PCET brings together the so far unrelated research domains of nanoplasmonics and electron/proton translocation with significant impact on applications based on interfacial electron/proton transfer. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04942c

  12. Hydrated Electron Transfer to Nucleobases in Aqueous Solutions Revealed by Ab Initio Molecular Dynamics Simulations.

    PubMed

    Zhao, Jing; Wang, Mei; Fu, Aiyun; Yang, Hongfang; Bu, Yuxiang

    2015-08-03

    We present an ab initio molecular dynamics (AIMD) simulation study into the transfer dynamics of an excess electron from its cavity-shaped hydrated electron state to a hydrated nucleobase (NB)-bound state. In contrast to the traditional view that electron localization at NBs (G/A/C/T), which is the first step for electron-induced DNA damage, is related only to dry or prehydrated electrons, and a fully hydrated electron no longer transfers to NBs, our AIMD simulations indicate that a fully hydrated electron can still transfer to NBs. We monitored the transfer dynamics of fully hydrated electrons towards hydrated NBs in aqueous solutions by using AIMD simulations and found that due to solution-structure fluctuation and attraction of NBs, a fully hydrated electron can transfer to a NB gradually over time. Concurrently, the hydrated electron cavity gradually reorganizes, distorts, and even breaks. The transfer could be completed in about 120-200 fs in four aqueous NB solutions, depending on the electron-binding ability of hydrated NBs and the structural fluctuation of the solution. The transferring electron resides in the π*-type lowest unoccupied molecular orbital of the NB, which leads to a hydrated NB anion. Clearly, the observed transfer of hydrated electrons can be attributed to the strong electron-binding ability of hydrated NBs over the hydrated electron cavity, which is the driving force, and the transfer dynamics is structure-fluctuation controlled. This work provides new insights into the evolution dynamics of hydrated electrons and provides some helpful information for understanding the DNA-damage mechanism in solution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Direct observation of ultrafast-electron-transfer reactions unravels high effectiveness of reductive DNA damage

    PubMed Central

    Nguyen, Jenny; Ma, Yuhan; Luo, Ting; Bristow, Robert G.; Jaffray, David A.; Lu, Qing-Bin

    2011-01-01

    Both water and electron-transfer reactions play important roles in chemistry, physics, biology, and the environment. Oxidative DNA damage is a well-known mechanism, whereas the relative role of reductive DNA damage is unknown. The prehydrated electron (), a novel species of electrons in water, is a fascinating species due to its fundamental importance in chemistry, biology, and the environment. is an ideal agent to observe reductive DNA damage. Here, we report both the first in situ femtosecond time-resolved laser spectroscopy measurements of ultrafast-electron-transfer (UET) reactions of with various scavengers (KNO3, isopropanol, and dimethyl sulfoxide) and the first gel electrophoresis measurements of DNA strand breaks induced by and OH• radicals co-produced by two-UV-photon photolysis of water. We strikingly found that the yield of reductive DNA strand breaks induced by each is twice the yield of oxidative DNA strand breaks induced by each OH• radical. Our results not only unravel the long-standing mystery about the relative role of radicals in inducing DNA damage under ionizing radiation, but also challenge the conventional notion that oxidative damage is the main pathway for DNA damage. The results also show the potential of femtomedicine as a new transdisciplinary frontier and the broad significance of UET reactions of in many processes in chemistry, physics, biology, and the environment. PMID:21730183

  14. Molecular orbital (SCF-Xα-SW) theory of metal-metal charge transfer processes in minerals

    USGS Publications Warehouse

    Sherman, David M.

    1987-01-01

    Electronic transitions between the Fe-Fe bonding and Fe-Fe antibonding orbitals results in the optically-induced intervalence charge transfer bands observed in the electronic spectra of mixed valence minerals. Such transitions are predicted to be polarized along the metal-metal bond direction, in agreement with experimental observations.

  15. Free Electron Laser Induced Forward Transfer Method of Biomaterial for Marking

    NASA Astrophysics Data System (ADS)

    Suzuki, Kaoru

    Biomaterial, such as chitosan, poly lactic acid, etc., containing fluorescence agent was deposited onto biology hard tissue, such as teeth, fingernail of dog or cat, or sapphire substrate by free electron laser induced forward transfer method for direct write marking. Spin-coated biomaterial with fluorescence agent of rhodamin-6G or zinc phthalochyamine target on sapphire plate was ablated by free electron laser (resonance absorption wavelength of biomaterial : 3380 nm). The influence of the spin-coating film-forming temperature on hardness and adhesion strength of biomaterial is particularly studied. Effect of resonance excitation of biomaterial target by turning free electron laser was discussed to damage of biomaterial, rhodamin-6G or zinc phtarochyamine for direct write marking

  16. IR-Driven Ultrafast Transfer of Plasmonic Hot Electrons in Nonmetallic Branched Heterostructures for Enhanced H2 Generation.

    PubMed

    Zhang, Zhenyi; Jiang, Xiaoyi; Liu, Benkang; Guo, Lijiao; Lu, Na; Wang, Li; Huang, Jindou; Liu, Kuichao; Dong, Bin

    2018-03-01

    The ultrafast transfer of plasmon-induced hot electrons is considered an effective kinetics process to enhance the photoconversion efficiencies of semiconductors through strong localized surface plasmon resonance (LSPR) of plasmonic nanostructures. Although this classical sensitization approach is widely used in noble-metal-semiconductor systems, it remains unclear in nonmetallic plasmonic heterostructures. Here, by combining ultrafast transient absorption spectroscopy with theoretical simulations, IR-driven transfer of plasmon-induced hot electron in a nonmetallic branched heterostructure is demonstrated, which is fabricated through solvothermal growth of plasmonic W 18 O 49 nanowires (as branches) onto TiO 2 electrospun nanofibers (as backbones). The ultrafast transfer of hot electron from the W 18 O 49 branches to the TiO 2 backbones occurs within a timeframe on the order of 200 fs with very large rate constants ranging from 3.8 × 10 12 to 5.5 × 10 12 s -1 . Upon LSPR excitation by low-energy IR photons, the W 18 O 49 /TiO 2 branched heterostructure exhibits obviously enhanced catalytic H 2 generation from ammonia borane compared with that of W 18 O 49 nanowires. Further investigations by finely controlling experimental conditions unambiguously confirm that this plasmon-enhanced catalytic activity arises from the transfer of hot electron rather than from the photothermal effect. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Energy transfer enhancement by oxygen perturbation of spin-forbidden electronic transitions in aromatic systems

    NASA Astrophysics Data System (ADS)

    Monguzzi, A.; Tubino, R.; Salamone, M. M.; Meinardi, F.

    2010-09-01

    Triplet-triplet energy transfer in multicomponent organic systems is usually entirely ascribed to a Dexter-type mechanism involving only short-range donor/acceptor interactions. We demonstrate that the presence of molecular oxygen introduces a perturbation to the electronic structure of one of the involved moieties which can induce a large increase in the spin-forbidden transition oscillator strength so that the otherwise negligible Förster contribution dominates the overall energy transfer rate.

  18. Three-dimensional representations of photo-induced electron transfer rates in pyrene-(CH2)n-N,N'-dimethylaniline systems obtained by three electron transfer theories.

    PubMed

    Rujkorakarn, Rong; Tanaka, Fumio

    2009-01-01

    The observed rates of photo-induced electron transfer (ET) from N,N'-dimethylaniline (DMA) to the excited pyrene (Py) in confined systems of pyrene-(CH(2))(n)-N,N'- dimethylaniline (PnD: n=1-3) were studied by molecular dynamic simulation (MD) and three kinds of electron transfer theories. ET parameters contained in Marcus theory (M theory), Bixon and Jortner theory (BJ theory) and Kakitani and Mataga theory (KM theory) were determined so as to fit the calculated fluorescence intensities with those obtained by the observed ET rates, according to a non-linear least squares method. Three-dimensional profiles of logarithm of calculated ET rates depending on two of three ET parameters, R, epsilon(0) and -DeltaG degrees were systematically examined with best-fit ET parameters of P1D. Bell shape dependencies of ET rate were predicted on R and on epsilon(0), and on -DeltaG degrees as well, by M theory and KM theory. The profiles of logarithm of ET rate calculated by BJ theory exhibited oscillatory dependencies not only on -DeltaG degrees , but also on R and on epsilon(0). Relationship between ET state and charge transfer complex was discussed with BJ theory.

  19. Light- induced electron transfer and ATP synthesis in a carotene synthesizing insect

    NASA Astrophysics Data System (ADS)

    Valmalette, Jean Christophe; Dombrovsky, Aviv; Brat, Pierre; Mertz, Christian; Capovilla, Maria; Robichon, Alain

    2012-08-01

    A singular adaptive phenotype of a parthenogenetic insect species (Acyrthosiphon pisum) was selected in cold conditions and is characterized by a remarkable apparition of a greenish colour. The aphid pigments involve carotenoid genes well defined in chloroplasts and cyanobacteria and amazingly present in the aphid genome, likely by lateral transfer during evolution. The abundant carotenoid synthesis in aphids suggests strongly that a major and unknown physiological role is related to these compounds beyond their canonical anti-oxidant properties. We report here that the capture of light energy in living aphids results in the photo induced electron transfer from excited chromophores to acceptor molecules. The redox potentials of molecules involved in this process would be compatible with the reduction of the NAD+ coenzyme. This appears as an archaic photosynthetic system consisting of photo-emitted electrons that are in fine funnelled into the mitochondrial reducing power in order to synthesize ATP molecules.

  20. What Hinders Electron Transfer Dissociation (ETD) of DNA Cations?

    NASA Astrophysics Data System (ADS)

    Hari, Yvonne; Leumann, Christian J.; Schürch, Stefan

    2017-12-01

    Radical activation methods, such as electron transfer dissociation (ETD), produce structural information complementary to collision-induced dissociation. Herein, electron transfer dissociation of 3-fold protonated DNA hexamers was studied to gain insight into the fragmentation mechanism. The fragmentation patterns of a large set of DNA hexamers confirm cytosine as the primary target of electron transfer. The reported data reveal backbone cleavage by internal electron transfer from the nucleobase to the phosphate linker leading either to a•/ w or d/ z• ion pairs. This reaction pathway contrasts with previous findings on the dissociation processes after electron capture by DNA cations, suggesting multiple, parallel dissociation channels. However, all these channels merely result in partial fragmentation of the precursor ion because the charge-reduced DNA radical cations are quite stable. Two hypotheses are put forward to explain the low dissociation yield of DNA radical cations: it is either attributed to non-covalent interactions between complementary fragments or to the stabilization of the unpaired electron in stacked nucleobases. MS3 experiments suggest that the charge-reduced species is the intact oligonucleotide. Moreover, introducing abasic sites significantly increases the dissociation yield of DNA cations. Consequently, the stabilization of the unpaired electron by π-π-stacking provides an appropriate rationale for the high intensity of DNA radical cations after electron transfer. [Figure not available: see fulltext.

  1. Mutations in algal and cyanobacterial Photosystem I that independently affect the yield of initial charge separation in the two electron transfer cofactor branches.

    PubMed

    Badshah, Syed Lal; Sun, Junlei; Mula, Sam; Gorka, Mike; Baker, Patricia; Luthra, Rajiv; Lin, Su; van der Est, Art; Golbeck, John H; Redding, Kevin E

    2018-01-01

    In Photosystem I, light-induced electron transfer can occur in either of two symmetry-related branches of cofactors, each of which is composed of a pair of chlorophylls (ec2 A /ec3 A or ec2 B /ec3 B ) and a phylloquinone (PhQ A or PhQ B ). The axial ligand to the central Mg 2+ of the ec2 A and ec2 B chlorophylls is a water molecule that is also H-bonded to a nearby Asn residue. Here, we investigate the importance of this interaction for charge separation by converting each of the Asn residues to a Leu in the green alga, Chlamydomonas reinhardtii, and the cyanobacterium, Synechocystis sp. PCC6803, and studying the energy and electron transfer using time-resolved optical and EPR spectroscopy. Nanosecond transient absorbance measurements of the PhQ to F X electron transfer show that in both species, the PsaA-N604L mutation (near ec2 B ) results in a ~50% reduction in the amount of electron transfer in the B-branch, while the PsaB-N591L mutation (near ec2 A ) results in a ~70% reduction in the amount of electron transfer in the A-branch. A diminished quantum yield of P 700 + PhQ - is also observed in ultrafast optical experiments, but the lower yield does not appear to be a consequence of charge recombination in the nanosecond or microsecond timescales. The most significant finding is that the yield of electron transfer in the unaffected branch did not increase to compensate for the lower yield in the affected branch. Hence, each branch of the reaction center appears to operate independently of the other in carrying out light-induced charge separation. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Phonon-electron coupling and tunneling effect on charge transport in organic semi-conductor crystals of Cn-BTBT.

    PubMed

    Zhou, Yecheng; Deng, Wei-Qiao; Zhang, Hao-Li

    2016-09-14

    Cn-[1]benzothieno[3,2-b][1]-benzothiophene (BTBT) crystals show very high hole mobilities in experiments. These high mobilities are beyond existing theory prediction. Here, we employed different quantum chemistry methods to investigate charge transfer in Cn-BTBT crystals and tried to find out the reasons for the underestimation in the theory. It was found that the hopping rate estimated by the Fermi Golden Rule is higher than that of the Marcus theory due to the high temperature approximation and failure at the classic limit. More importantly, molecular dynamics simulations revealed that the phonon induced fluctuation of electronic transfer integral is much larger than the average of the electronic transfer integral itself. Mobilities become higher if simulations implement the phonon-electron coupling. This conclusion indicates that the phonon-electron coupling promotes charge transfer in organic semi-conductors at room temperature.

  3. Phonon-electron coupling and tunneling effect on charge transport in organic semi-conductor crystals of Cn-BTBT

    NASA Astrophysics Data System (ADS)

    Zhou, Yecheng; Deng, Wei-Qiao; Zhang, Hao-Li

    2016-09-01

    Cn-[1]benzothieno[3,2-b][1]-benzothiophene (BTBT) crystals show very high hole mobilities in experiments. These high mobilities are beyond existing theory prediction. Here, we employed different quantum chemistry methods to investigate charge transfer in Cn-BTBT crystals and tried to find out the reasons for the underestimation in the theory. It was found that the hopping rate estimated by the Fermi Golden Rule is higher than that of the Marcus theory due to the high temperature approximation and failure at the classic limit. More importantly, molecular dynamics simulations revealed that the phonon induced fluctuation of electronic transfer integral is much larger than the average of the electronic transfer integral itself. Mobilities become higher if simulations implement the phonon-electron coupling. This conclusion indicates that the phonon-electron coupling promotes charge transfer in organic semi-conductors at room temperature.

  4. Electronic and Vibrational Coherence in Charge-Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Scherer, Norbert

    1996-03-01

    The ultrafast dynamics associated with optically-induced intervalence charge-transfer reactions in solution and protein environments are reported. These studies include the Fe^(II)-Fe^(III) MMCT complex Prussian blue and the mixed valence dimer (CN)_5Ru^(II)CNRuRu^(III)(NH_3)_5. The protein systems include blue copper proteins and the bacterial photosynthetic reaction center. The experimental approaches include photon echo, wavelength-resolved pump-probe and anisotropy measurements performed with 12-16fs duration optical pulses. Complicated time-domain waveforms reflect the several different p[rocesses and time scales for relaxation of coherences (both electronic and vibrational) and populations within these systems. The photon echo and anisotropy results probe electronic coherence and dephasing prior to back electron transfer. Wavelength-resolved pump-probe results reveal vibrational modes coupled to the CT-coordinate as well as formation of new product states or vibrational cooling in the ground state following back electron transfer.

  5. Enhanced surface transfer doping of diamond by V{sub 2}O{sub 5} with improved thermal stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, Kevin G., E-mail: k.crawford.2@research.gla.ac.uk; Moran, David A. J.; Cao, Liang

    2016-01-25

    Surface transfer doping of hydrogen-terminated diamond has been achieved utilising V{sub 2}O{sub 5} as a surface electron accepting material. Contact between the oxide and diamond surface promotes the transfer of electrons from the diamond into the V{sub 2}O{sub 5} as revealed by the synchrotron-based high resolution photoemission spectroscopy. Electrical characterization by Hall measurement performed before and after V{sub 2}O{sub 5} deposition shows an increase in hole carrier concentration in the diamond from 3.0 × 10{sup 12} to 1.8 × 10{sup 13 }cm{sup −2} at room temperature. High temperature Hall measurements performed up to 300 °C in atmosphere reveal greatly enhanced thermal stability of the hole channelmore » produced using V{sub 2}O{sub 5} in comparison with an air-induced surface conduction channel. Transfer doping of hydrogen-terminated diamond using high electron affinity oxides such as V{sub 2}O{sub 5} is a promising approach for achieving thermally stable, high performance diamond based devices in comparison with air-induced surface transfer doping.« less

  6. Micellar control over tautomerization and photo-induced electron transfer of Lumichrome in the presence of aliphatic and aromatic amines: a transient absorption study

    NASA Astrophysics Data System (ADS)

    Sengupta, Chaitrali; Sarangi, Manas Kumar; Sau, Abhishek; Basu, Samita

    2017-03-01

    Lumichrome (Lc), a molecule consisting of a trinuclear alloxazine moiety is our present subject of interest. This molecule is subjected to tautomerization in the presence of pyridine, acetic acid, etc, through the formation of an eight-membered ring. In our present contribution, we have attempted to analyze the influence of the presence of an aliphatic amine, triethylamine (TEA) and an aromatic amine, N,N-dimethylaniline (DMA) in the double proton transfer step of the tautomerization as well as the photo-induced electron transfer (PET) from those amines to Lc. We have studied these phenomena within micelles, anionic and neutral, to observe the effect of confinement. Through our experiments, it could be stated that along with tautomerization and proton transfer, there is also evidence of PET in triplet excited state.

  7. Elucidating the role of methyl viologen as a scavenger of photoactivated electrons from photosystem I under aerobic and anaerobic conditions.

    PubMed

    Bennett, Tyler; Niroomand, Hanieh; Pamu, Ravi; Ivanov, Ilia; Mukherjee, Dibyendu; Khomami, Bamin

    2016-03-28

    We present detailed electrochemical investigations into the role of dissolved O2 in electrolyte solutions in scavenging photoactivated electrons from a uniform photosystem I (PS I) monolayer assembled on alkanethiolate SAM (self-assembled monolayer)/Au surfaces while using methyl viologen (MV(2+)) as the redox mediator. To this end, we report results for direct measurements of light induced photocurrent from uniform monolayer assemblies of PS I on C9 alkanethiolate SAM/Au surfaces. These measurements, apart from demonstrating the ability of dissolved O2 in the electrolyte medium to act as an electron scavenger, also reveal its essential role in driving the solution-phase methyl viologen to initiate light-induced directional electron transfer from an electron donor surface (Au) via surface assembled PS I trimers. Specifically, our systematic electrochemical measurements have revealed that the dissolved O2 in aqueous electrolyte solutions form a complex intermediate species with MV that plays the essential role in mediating redox pathways for unidirectional electron transfer processes. This critical insight into the redox-mediated electron transfer pathways allows for rational design of electron scavengers through systematic tuning of mediator combinations that promote such intermediate formation. Our current findings facilitate the incorporation of PS I-based bio-hybrid constructs as photo-anodes in future photoelectrochemical cells and bio-electronic devices.

  8. Electronic energy transfer: Localized operator partitioning of electronic energy in composite quantum systems

    NASA Astrophysics Data System (ADS)

    Khan, Yaser; Brumer, Paul

    2012-11-01

    A Hamiltonian based approach using spatially localized projection operators is introduced to give precise meaning to the chemically intuitive idea of the electronic energy on a quantum subsystem. This definition facilitates the study of electronic energy transfer in arbitrarily coupled quantum systems. In particular, the decomposition scheme can be applied to molecular components that are strongly interacting (with significant orbital overlap) as well as to isolated fragments. The result defines a consistent electronic energy at all internuclear distances, including the case of separated fragments, and reduces to the well-known Förster and Dexter results in their respective limits. Numerical calculations of coherent energy and charge transfer dynamics in simple model systems are presented and the effect of collisionally induced decoherence is examined.

  9. Storage and retrieval of quantum information with a hybrid optomechanics-spin system

    NASA Astrophysics Data System (ADS)

    Feng, Zhi-Bo; Zhang, Jian-Qi; Yang, Wan-Li; Feng, Mang

    2016-08-01

    We explore an efficient scheme for transferring the quantum state between an optomechanical cavity and an electron spin of diamond nitrogen-vacancy center. Assisted by a mechanical resonator, quantum information can be controllably stored (retrieved) into (from) the electron spin by adjusting the external field-induced detuning or coupling. Our scheme connects effectively the cavity photon and the electron spin and transfers quantum states between two regimes with large frequency difference. The experimental feasibility of our protocol is justified with accessible laboratory parameters.

  10. Creating and optimizing interfaces for electric-field and photon-induced charge transfer.

    PubMed

    Park, Byoungnam; Whitham, Kevin; Cho, Jiung; Reichmanis, Elsa

    2012-11-27

    We create and optimize a structurally well-defined electron donor-acceptor planar heterojunction interface in which electric-field and/or photon-induced charge transfer occurs. Electric-field-induced charge transfer in the dark and exciton dissociation at a pentacene/PCBM interface were probed by in situ thickness-dependent threshold voltage shift measurements in field-effect transistor devices during the formation of the interface. Electric-field-induced charge transfer at the interface in the dark is correlated with development of the pentacene accumulation layer close to PCBM, that is, including interface area, and dielectric relaxation time in PCBM. Further, we demonstrate an in situ test structure that allows probing of both exciton diffusion length and charge transport properties, crucial for optimizing optoelectronic devices. Competition between the optical absorption length and the exciton diffusion length in pentacene governs exciton dissociation at the interface. Charge transfer mechanisms in the dark and under illumination are detailed.

  11. Synergistic effect of tungsten carbide and palladium on graphene for promoted ethanol electrooxidation.

    PubMed

    Yang, Jun; Xie, Ying; Wang, Ruihong; Jiang, Baojiang; Tian, Chungui; Mu, Guang; Yin, Jie; Wang, Bo; Fu, Honggang

    2013-07-24

    The synergistic effect of WC and Pd has large benefit for ethanol electrooxidation. The small-sized Pd nanoparticles (NPs) decorated tungsten carbide on graphene (Pd-WC/GN) will be a promising anode catalyst for the direct ethanol fuel cells. The density functional theory (DFT) calculations reveal that the strong interaction exists at the interface between Pd and WC, which induces the electron transfer from WC to Pd. Fortunately, the nanoscale architecture of Pd-WC/GN has been successfully fabricated in our experiments. X-ray photoelectron spectrum further confirms the existence of electron transfer from WC to Pd in a Pd-WC/GN nanohybrid. Notably, electrochemical tests show that the Pd-WC/GN catalyst exhibits low onset potential, a large electrochemical surface area, high activity, and stability for ethanol electrooxidation in alkaline solution compared with Pd/graphene and Pd/commercial Vulcan 72R carbon catalysts. The enhancement can be attributed to the synergistic effect of Pd and WC on graphene. At the interface between Pd and WC, the electron transfer from WC to Pd leads to the increased electron densities of surface Pd, which is available for weakening adsorption of intermediate oxygen-containing species such as CO and activating catalyst. Meanwhile, the increased tungsten oxide induced by electron transfer can facilitate the effective removal of intermediate species adsorbed on the Pd surface through a bifunctional mechanism or hydrogen spillover effect.

  12. Probing the electronic and local structural changes across the pressure-induced insulator-to-metal transition in VO2

    NASA Astrophysics Data System (ADS)

    Marini, C.; Bendele, M.; Joseph, B.; Kantor, I.; Mitrano, M.; Mathon, O.; Baldini, M.; Malavasi, L.; Pascarelli, S.; Postorino, P.

    2014-11-01

    Local and electronic structures of vanadium in \\text{VO}2 are studied across the high-pressure insulator-to-metal (IMT) transition using V K-edge x-ray absorption spectroscopy. Unlike the temperature-induced IMT, pressure-induced metallization leads to only subtle changes in the V K-edge prepeak structure, indicating a different mechanism involving smaller electronic spectral weight transfer close to the chemical potential. Intriguingly, upon application of the hydrostatic pressure, the electronic structure begins to show substantial changes well before the occurrence of the IMT and the associated structural transition to an anisotropic compression of the monoclinic metallic phase.

  13. Conductive scanning probe microscopy of the semicontinuous gold film and its SERS enhancement toward two-step photo-induced charge transfer and effect of the supportive layer

    NASA Astrophysics Data System (ADS)

    Sinthiptharakoon, K.; Sapcharoenkun, C.; Nuntawong, N.; Duong, B.; Wutikhun, T.; Treetong, A.; Meemuk, B.; Kasamechonchung, P.; Klamchuen, A.

    2018-05-01

    The semicontinuous gold film, enabling various electronic applications including development of surface-enhanced Raman scattering (SERS) substrate, is investigated using conductive atomic force microscopy (CAFM) and Kelvin probe force microscopy (KPFM) to reveal and investigate local electronic characteristics potentially associated with SERS generation of the film material. Although the gold film fully covers the underlying silicon surface, CAFM results reveal that local conductivity of the film is not continuous with insulating nanoislands appearing throughout the surface due to incomplete film percolation. Our analysis also suggests the two-step photo-induced charge transfer (CT) play the dominant role in the enhancement of SERS intensity with strong contribution from free electrons of the silicon support. Silicon-to-gold charge transport is illustrated by KPFM results showing that Fermi level of the gold film is slightly inhomogeneous and far below the silicon conduction band. We propose that inhomogeneity of the film workfunction affecting chemical charge transfer between gold and Raman probe molecule is associated with the SERS intensity varying across the surface. These findings provide deeper understanding of charge transfer mechanism for SERS which can help in design and development of the semicontinuous gold film-based SERS substrate and other electronic applications.

  14. The mitochondrial electron transfer flavoprotein complex is essential for survival of Arabidopsis in extended darkness.

    PubMed

    Ishizaki, Kimitsune; Schauer, Nicolas; Larson, Tony R; Graham, Ian A; Fernie, Alisdair R; Leaver, Christopher J

    2006-09-01

    In mammals, the electron transfer flavoprotein (ETF) is a heterodimeric protein composed of two subunits, alpha and beta, that is responsible for the oxidation of at least nine mitochondrial matrix flavoprotein dehydrogenases. Electrons accepted by ETF are further transferred to the main respiratory chain via the ETF ubiquinone oxide reductase (ETFQO). Sequence analysis of the unique Arabidopsis homologues of two subunits of ETF revealed their high similarity to both subunits of the mammalian ETF. Yeast two-hybrid experiments showed that the Arabidopsis ETFalpha and ETFbeta can form a heteromeric protein. Isolation and characterization of two independent T-DNA insertional Arabidopsis mutants of the ETFbeta gene revealed accelerated senescence and early death compared to wild-type during extended darkness. Furthermore in contrast to wild-type, the etfb mutants demonstrated a significant accumulation of several amino acids, isovaleryl CoA and phytanoyl CoA during dark-induced carbohydrate deprivation. These phenotypic characteristics of etfb mutants are broadly similar to those that we observed previously in Arabidopsis etfqo mutants, suggesting functional association between ETF and ETFQO in Arabidopsis, and confirming the essential roles of the ETF/ETFQO electron transfer complex in the catabolism of leucine and involvement in the chlorophyll degradation pathway activated during dark-induced carbohydrate deprivation.

  15. Light-Induced Conversion of Chemical Permeability to Enhance Electron and Molecular Transfer in Nanoscale Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balgley, Renata; de Ruiter, Graham; Evmenenko, Guennadi

    In this paper, we demonstrate how photochemically enhancing the permeability of metal–organic assemblies results in a significant enhancement of the electrochemical activity of metal complexes located within the assembly. The molecular assemblies consist of different layers of redox-active metal complexes ([M(mbpy-py)3][PF6]2; M = Ru or Os) that are separated by redox-inactive spacers consisting of 1,4-bis[2-(4-pyridyl)ethenyl]benzene (BPEB) and PdCl2 of variable thicknesses (0–13.4 nm). UV-irradiation (λ = 254 nm) of our assemblies induces a photochemical reaction in the redox-inactive spacer increasing the permeability of the assembly. The observed increase was evident by trapping organic (nBu4NBF4) and inorganic (NiCl2) salts inside themore » assemblies, and by evaluating the electrochemical response of quinones absorbed inside the molecular assemblies before and after UV irradiation. The increase in permeability is reflected by higher currents and a change in the directionality of electron transfer, i.e., from mono- to bidirectional, between the redox-active metal complexes and the electrode surface. The supramolecular structure of the assemblies dominates the overall electron transfer properties and overrules possible electron transfer mediated by the extensive π-conjugation of its individual organic components.« less

  16. Synthesis, characterisation and optical studies of new tetraethyl- rubyrin-graphene oxide covalent adducts

    NASA Astrophysics Data System (ADS)

    Garg, Kavita; Shanmugam, Ramakrishanan; Ramamurthy, Praveen C.

    2018-02-01

    Tetrathia-rubyrin and graphene oxide (GO) covalent adduct was synthesized, characterised and optical properties were studied. GO-Rubyrin adducts showed fluorescence quenching of rubyrin due to electron or energy transfer from rubyrin to graphene oxide, which also reflected in UV-vis absorbance spectroscopy. The non-linear optical responses were measured through Z scan technique in nano-second regime. The enhanced optical non-linearity was observed after attachment of GO with rubyrin, can be ascribed to the photo-induced electron or energy transfer from the electron rich rubyrin moiety to the electron deficient GO.

  17. Electron transfer from nucleophilic species to N,N,N prime ,N prime -tetramethylbenzidine cation in micellar media: Effect of interfacial electrical potential on cation decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grand, D.; Hautecloque, S.

    1990-01-25

    Electron-transfer reaction between N,N,N{prime},N{prime}-tetramethylbenzidine cation (TMB{sup +}) and neutral nucleophiles, pyridine (Py) and triethylamine (Et{sub 3}N), is studied in NaLS micellar media. A biphasic decay of TMB{sup +} follows the laser-induced TMB photoionization. The very fast decay is attributed to an electron transfer between reactants located in the core of the micelle. The slow decay would correspond to an electron transfer from the nucleophile solubilized in the aqueous phase to TMB{sup +} embedded in the lipidic phase. The role of the electrical interfacial potential {Delta}{psi} is evidenced. The rate constant of the TMB{sup +} slow decay displays an exponential functionmore » of {Delta}{psi}. The effect of the localization and distance of the reactants is emphasized.« less

  18. Photochromic molecules as building blocks for molecular electronics.

    PubMed

    Peter, Belser

    2010-01-01

    Energy and electron transfer processes can be easily induced by a photonic excitation of a donor metal complex ([Ru(bpy)3]2), which is connected via a wire-type molecular fragment to an acceptor metal complex ([Os(bpy)3]2+). The rate constant for the transfer process can be determined by emission measurements of the two connected metal complexes. The system can be modified by incorporation of a switching unit or an interrupter into the wire, influencing the transfer process. Such a molecular device corresponds to an interrupter, mimic the same function applied in molecular electronics. We have used organic switches, which show photochromic properties. By irradiation with light of different wavelengths, the switch changes its functionality by a photochemical reaction from an OFF- to an ON-state and vice versa. The ON- respectively OFF-state is manifested by a color change but also in different conductivity properties for energy and electron transfer processes. Therefore, the mentioned molecular device can work as a simple interrupter, controlling the rate of the transfer processes.

  19. Low-Cost Fabrication of Printed Electronics Devices through Continuous Wave Laser-Induced Forward Transfer.

    PubMed

    Sopeña, Pol; Arrese, Javier; González-Torres, Sergio; Fernández-Pradas, Juan Marcos; Cirera, Albert; Serra, Pere

    2017-09-06

    Laser-induced forward transfer (LIFT) is a direct-writing technique that allows printing inks from a liquid film in a similar way to inkjet printing but with fewer limitations concerning ink viscosity and loading particle size. In this work, we prove that liquid inks can be printed through LIFT by using continuous wave (CW) instead of pulsed lasers, which allows a substantial reduction in the cost of the printing system. Through the fabrication of a functional circuit on both rigid and flexible substrates (plastic and paper), we provide a proof-of-concept that demonstrates the versatility of the technique for printed electronics applications.

  20. [INVITED] Laser-induced forward transfer: A high resolution additive manufacturing technology

    NASA Astrophysics Data System (ADS)

    Delaporte, Philippe; Alloncle, Anne-Patricia

    2016-04-01

    Among the additive manufacturing techniques, laser-induced forward transfer addresses the challenges of printing thin films in solid phase or small volume droplets in liquid phase with very high resolution. This paper reviews the physics of this process and explores the pros and cons of this technology versus other digital printing technologies. The main field of applications are printed electronics, organic electronics and tissue engineering, and the most promising short terms ones concern digital laser printing of sensors and conductive tracks. Future directions and emerging areas of interest are discussed such as printing solid from a liquid phase and 3D digital nanomanufacturing.

  1. Electron-Induced Displacement Damage Effects in CCDs

    NASA Technical Reports Server (NTRS)

    Becker, Heidi N.; Elliott, Tom; Alexander, James W.

    2006-01-01

    We compare differences in parametric degradation for CCDs irradiated to the same displacement damage dose with 10-MeV and 50-MeV electrons. Charge transfer efficiency degradation was observed to not scale with NIEL for small signals.

  2. Photoinduced electron transfer in a molecular dyad by nanosecond pump-pump-probe spectroscopy.

    PubMed

    Ha-Thi, M-H; Pham, V-T; Pino, T; Maslova, V; Quaranta, A; Lefumeux, C; Leibl, W; Aukauloo, A

    2018-06-01

    The design of robust and inexpensive molecular photocatalysts for the conversion of abundant stable molecules like H2O and CO2 into an energetic carrier is one of the major fundamental questions for scientists nowadays. The outstanding challenge is to couple single photoinduced charge separation events with the sequential accumulation of redox equivalents at the catalytic unit for performing multielectronic catalytic reactions. Herein, double excitation by nanosecond pump-pump-probe experiments was used to interrogate the photoinduced charge transfer and charge accumulation on a molecular dyad composed of a porphyrin chromophore and a ruthenium-based catalyst in the presence of a reversible electron acceptor. An accumulative charge transfer state is unattainable because of rapid reverse electron transfer to the photosensitizer upon the second excitation and the low driving force of the forward photodriven electron transfer reaction. Such a method allows the fundamental understanding of the relaxation mechanism after two sequential photon absorptions, deciphering the undesired electron transfer reactions that limit the charge accumulation efficiency. This study is a step toward the improvement of synthetic strategies of molecular photocatalysts for light-induced charge accumulation and more generally, for solar energy conversion.

  3. Protein Conformational Dynamics Probed by Single-Molecule Electron Transfer

    NASA Astrophysics Data System (ADS)

    Yang, Haw; Luo, Guobin; Karnchanaphanurach, Pallop; Louie, Tai-Man; Rech, Ivan; Cova, Sergio; Xun, Luying; Xie, X. Sunney

    2003-10-01

    Electron transfer is used as a probe for angstrom-scale structural changes in single protein molecules. In a flavin reductase, the fluorescence of flavin is quenched by a nearby tyrosine residue by means of photo-induced electron transfer. By probing the fluorescence lifetime of the single flavin on a photon-by-photon basis, we were able to observe the variation of flavin-tyrosine distance over time. We could then determine the potential of mean force between the flavin and the tyrosine, and a correlation analysis revealed conformational fluctuation at multiple time scales spanning from hundreds of microseconds to seconds. This phenomenon suggests the existence of multiple interconverting conformers related to the fluctuating catalytic reactivity.

  4. Interfacial charge transfer absorption: Application to metal molecule assemblies

    NASA Astrophysics Data System (ADS)

    Creutz, Carol; Brunschwig, Bruce S.; Sutin, Norman

    2006-05-01

    Optically induced charge transfer between adsorbed molecules and a metal electrode was predicted by Hush to lead to new electronic absorption features, but has been only rarely observed experimentally. Interfacial charge transfer absorption (IFCTA) provides information concerning the barriers to charge transfer between molecules and the metal/semiconductor and the magnitude of the electronic coupling and could thus provide a powerful tool for understanding interfacial charge-transfer kinetics. Here, we utilize a previously published model [C. Creutz, B.S. Brunschwig, N. Sutin, J. Phys. Chem. B 109 (2005) 10251] to predict IFCTA spectra of metal-molecule assemblies and compare the literature observations to these predictions. We conclude that, in general, the electronic coupling between molecular adsorbates and the metal levels is so small that IFCTA is not detectable. However, few experiments designed to detect IFCTA have been done. We suggest approaches to optimizing the conditions for observing the process.

  5. Electron Transfer Strategies Regulate Carbonate Mineral and Micropore Formation.

    PubMed

    Zeng, Zhirui; Tice, Michael M

    2018-01-01

    Some microbial carbonates are robust biosignatures due to their distinct morphologies and compositions. However, whether carbonates induced by microbial iron reduction have such features is unknown. Iron-reducing bacteria use various strategies to transfer electrons to iron oxide minerals (e.g., membrane-bound enzymes, soluble electron shuttles, nanowires, as well as different mechanisms for moving over or attaching to mineral surfaces). This diversity has the potential to create mineral biosignatures through manipulating the microenvironments in which carbonate precipitation occurs. We used Shewanella oneidensis MR-1, Geothrix fermentans, and Geobacter metallireducens GS-15, representing three different strategies, to reduce solid ferric hydroxide in order to evaluate their influence on carbonate and micropore formation (micro-size porosity in mineral rocks). Our results indicate that electron transfer strategies determined the morphology (rhombohedral, spherical, or long-chained) of precipitated calcium-rich siderite by controlling the level of carbonate saturation and the location of carbonate formation. Remarkably, electron transfer strategies also produced distinctive cell-shaped micropores in both carbonate and hydroxide minerals, thus producing suites of features that could potentially serve as biosignatures recording information about the sizes, shapes, and physiologies of iron-reducing organisms. Key Words: Microbial iron reduction-Micropore-Electron transfer strategies-Microbial carbonate. Astrobiology 18, 28-36.

  6. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra

    DOE PAGES

    Fujihashi, Yuta; Fleming, Graham R.; Ishizaki, Akihito

    2015-03-11

    Recently, nuclear vibrational contribution signatures in two-dimensional (2D) electronic spectroscopy have attracted considerable interest, in particular as regards interpretation of the oscillatory transients observed in light-harvesting complexes. These transients have dephasing times that persist for much longer than theoretically predicted electronic coherence lifetime. As a plausible explanation for this long-lived spectral beating in 2D electronic spectra, quantum-mechanically mixed electronic and vibrational states (vibronic excitons) were proposed by Christensson et al. [J. Phys. Chem. B 116, 7449 (2012)] and have since been explored. Here in this work, we address a dimer which produces little beating of electronic origin in the absencemore » of vibronic contributions, and examine the impact of protein-induced fluctuations upon electronic-vibrational quantum mixtures by calculating the electronic energy transfer dynamics and 2D electronic spectra in a numerically accurate manner. It is found that, at cryogenic temperatures, the electronic-vibrational quantum mixtures are rather robust, even under the influence of the fluctuations and despite the small Huang-Rhys factors of the Franck-Condon active vibrational modes. This results in long-lasting beating behavior of vibrational origin in the 2D electronic spectra. At physiological temperatures, however, the fluctuations eradicate the mixing, and hence, the beating in the 2D spectra disappears. Further, it is demonstrated that such electronic-vibrational quantum mixtures do not necessarily play a significant role in electronic energy transfer dynamics, despite contributing to the enhancement of long-lived quantum beating in 2D electronic spectra, contrary to speculations in recent publications.« less

  7. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujihashi, Yuta; Ishizaki, Akihito, E-mail: ishizaki@ims.ac.jp; Fleming, Graham R.

    2015-06-07

    Recently, nuclear vibrational contribution signatures in two-dimensional (2D) electronic spectroscopy have attracted considerable interest, in particular as regards interpretation of the oscillatory transients observed in light-harvesting complexes. These transients have dephasing times that persist for much longer than theoretically predicted electronic coherence lifetime. As a plausible explanation for this long-lived spectral beating in 2D electronic spectra, quantum-mechanically mixed electronic and vibrational states (vibronic excitons) were proposed by Christensson et al. [J. Phys. Chem. B 116, 7449 (2012)] and have since been explored. In this work, we address a dimer which produces little beating of electronic origin in the absence ofmore » vibronic contributions, and examine the impact of protein-induced fluctuations upon electronic-vibrational quantum mixtures by calculating the electronic energy transfer dynamics and 2D electronic spectra in a numerically accurate manner. It is found that, at cryogenic temperatures, the electronic-vibrational quantum mixtures are rather robust, even under the influence of the fluctuations and despite the small Huang-Rhys factors of the Franck-Condon active vibrational modes. This results in long-lasting beating behavior of vibrational origin in the 2D electronic spectra. At physiological temperatures, however, the fluctuations eradicate the mixing, and hence, the beating in the 2D spectra disappears. Further, it is demonstrated that such electronic-vibrational quantum mixtures do not necessarily play a significant role in electronic energy transfer dynamics, despite contributing to the enhancement of long-lived quantum beating in 2D electronic spectra, contrary to speculations in recent publications.« less

  8. Dynamic Pattern Formation in Electron-Beam-Induced Etching [Emergent formation of dynamic topographic patterns in electron beam induced etching

    DOE PAGES

    Martin, Aiden A.; Bahm, Alan; Bishop, James; ...

    2015-12-15

    Here, we report highly ordered topographic patterns that form on the surface of diamond, span multiple length scales, and have a symmetry controlled by the precursor gas species used in electron-beam-induced etching (EBIE). The pattern formation dynamics reveals an etch rate anisotropy and an electron energy transfer pathway that is overlooked by existing EBIE models. Therefore, we, modify established theory such that it explains our results and remains universally applicable to EBIE. Furthermore, the patterns can be exploited in controlled wetting, optical structuring, and other emerging applications that require nano- and microscale surface texturing of a wide band-gap material.

  9. An ab initio study of ion induced charge transfer dynamics in collision of carbon ions with thymine.

    PubMed

    Bacchus-Montabonel, Marie-Christine; Tergiman, Yvette Suzanne

    2011-05-28

    Charge transfer in collisions of carbon ions on a thymine target has been studied theoretically in a wide collision range by means of ab initio quantum chemistry molecular methods. The process appears markedly anisotropic in the whole energy domain, significantly favoured in the perpendicular orientation. A specific decrease of the charge transfer cross sections at low collision energies may be pointed out and could induce an enhancement of the complementary fragmentation processes for collision energies down to about 10 eV, as observed for the low-electron fragmentation process. Such feature may be of important interest in ion-induced biomolecular radiation damage. This journal is © the Owner Societies 2011

  10. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Hydrodynamic efficiency of laser-induced transfer of matter

    NASA Astrophysics Data System (ADS)

    Isakov, Vladimir A.; Kanavin, Andrey P.; Nasibov, A. S.

    2007-04-01

    A one-dimensional analytic hydrodynamic model of the direct laser-induced transfer of matter is considered. The efficiency of pulsed laser radiation energy conversion to the kinetic energy of the ejected matter is determined. It is shown that the hydrodynamic efficiency of the process for the layers of matter of thickness exceeding the laser radiation absorption depth is determined by the adiabatic index of the evaporated matter.

  11. Ultrafast electron and hole transfer dynamics of a solar cell dye containing hole acceptors on mesoporous TiO2 and Al2O3.

    PubMed

    Scholz, Mirko; Flender, Oliver; Boschloo, Gerrit; Oum, Kawon; Lenzer, Thomas

    2017-03-08

    The stability of dye cations against recombination with conduction band electrons in mesoporous TiO 2 electrodes is a key property for improving light harvesting in dye-sensitised solar cells. Using ultrafast transient broadband absorption spectroscopy, we monitor efficient intramolecular hole transfer in the solar cell dye E6 having two peripheral triarylamine acceptors. After photoexcitation, two hole transfer mechanisms are identified: a concerted mechanism for electron injection and hole transfer (2.4 ps) and a sequential mechanism with time constants of 3.9 ps and 30 ps. This way the dye retards unwanted recombination with a TiO 2 conduction band electron by quickly moving the hole further away from the surface. Contact of the E6/TiO 2 surface with the solvent acetonitrile has almost no influence on the electron injection and hole transfer kinetics. Fast hole transfer (2.8 ps) is also observed on a "non-injecting" Al 2 O 3 surface generating a radical cation-radical anion species with a lifetime of 530 ps. The findings confirm the good intramolecular hole transfer properties of this dye on both thin films. In contrast, intramolecular hole transfer does not occur in the mid-polar organic solvent methyl acetate. This is confirmed by TDDFT calculations suggesting a polarity-induced reduction of the driving force for hole transfer. In methyl acetate, only the relaxation of the initially photoexcited core chromophore is observed including solvent relaxation processes of the electronically excited state S 1 /ICT.

  12. Lateral hopping of CO on Cu(111) induced by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Ueba, H.; Ootsuka, Y.; Paulsson, M.; Persson, B. N. J.

    2010-09-01

    We present a theoretical study of the lateral hopping of a single CO molecule on Cu(111) induced by femtosecond laser pulses by Mehlhorn [Phys. Rev. Lett. 104, 076101 (2010)]10.1103/PhysRevLett.104.076101. Our model assumes an intermode coupling between the CO frustrated translation (FT) and frustrated rotation (FR) modes with a weak and strong electronic friction coupling to hot electrons, respectively, and heat transfer between the FT mode and the substrate phonons. In this model the effective electronic friction coupling of the FT mode depends on the absorbed laser fluence F through the temperature of the FR mode. The calculated hopping yield as a function of F nicely reproduces the nonlinear increase observed above F=4.0J/m2 . It is found that the electronic heating via friction coupling nor the phonon coupling alone cannot explain the experimental result. Both heatings are cooperatively responsible for CO hopping on Cu(111). The electronic heat transfer dominates over the phononic one at high F , where the effective electronic friction coupling becomes larger than the phononic coupling.

  13. Analysis of a Range of Catabolic Mutants Provides Evidence That Phytanoyl-Coenzyme A Does Not Act as a Substrate of the Electron-Transfer Flavoprotein/Electron-Transfer Flavoprotein:Ubiquinone Oxidoreductase Complex in Arabidopsis during Dark-Induced Senescence1[W][OA

    PubMed Central

    Araújo, Wagner L.; Ishizaki, Kimitsune; Nunes-Nesi, Adriano; Tohge, Takayuki; Larson, Tony R.; Krahnert, Ina; Balbo, Ilse; Witt, Sandra; Dörmann, Peter; Graham, Ian A.; Leaver, Christopher J.; Fernie, Alisdair R.

    2011-01-01

    The process of dark-induced senescence in plants is not fully understood, however, the functional involvement of an electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF/ETFQO), has been demonstrated. Recent studies have revealed that the enzymes isovaleryl-coenzyme A (CoA) dehydrogenase and 2-hydroxyglutarate dehydrogenase act as important electron donors to this complex. In addition both enzymes play a role in the breakdown of cellular carbon storage reserves with isovaleryl-CoA dehydrogenase being involved in degradation of the branched-chain amino acids, phytol, and lysine while 2-hydroxyglutarate dehydrogenase is exclusively involved in lysine degradation. Given that the chlorophyll breakdown intermediate phytanoyl-CoA accumulates dramatically both in knockout mutants of the ETF/ETFQO complex and of isovaleryl-CoA dehydrogenase following growth in extended dark periods we have investigated the direct importance of chlorophyll breakdown for the supply of carbon and electrons during this process. For this purpose we isolated three independent Arabidopsis (Arabidopsis thaliana) knockout mutants of phytanoyl-CoA 2-hydroxylase and grew them under the same extended darkness regime as previously used. Despite the fact that these mutants accumulated phytanoyl-CoA and also 2-hydroxyglutarate they exhibited no morphological changes in comparison to the other mutants previously characterized. These results are consistent with a single entry point of phytol breakdown into the ETF/ETFQO system and furthermore suggest that phytol is not primarily metabolized by this pathway. Furthermore analysis of isovaleryl-CoA dehydrogenase/2-hydroxyglutarate dehydrogenase double mutants generated here suggest that these two enzymes essentially account for the entire electron input via the ETF complex. PMID:21788362

  14. Biomimetic Interfacial Electron-Induced Electrochemiluminesence.

    PubMed

    Pu, Guiqiang; Zhang, Dongxu; Mao, Xiang; Zhang, Zhen; Wang, Huan; Ning, Xingming; Lu, Xiaoquan

    2018-04-17

    We provide here, for the first time, a new interfacial electron-induced electrochemiluminescence (IEIECL) system, realizing bionic construction of bioluminescence (BL) by exploiting electrochemiluminescence (ECL) and ITIES (the interface between two immiscible electrolyte solutions). Significantly, the superiority of the IEIECL system is embodied with the solution of the two bottlenecks encountered in the conventional ECL innovation: that are (a) the applications of hydrophobic luminophores in more commonly used aqueous solution are inhibited tremendously due to the poor inherent solubility and the instability of radicals and (b) the analytes, insoluble in water, are hard to be discovered in an aqueous system because of too little content. More productive IEIECL radiation, analogous to BL, originates from the triplet excited state porphyrin in comparison to the homogeneous ECL. The mechanism of IEIECL, as well as the interaction mechanism between IEIECL and charge transfer (comprising electron transfer (ET), ion transfer (IT), and facilitated ion transfer (FIT)) at the ITIES, are explored in detail. Finally, we emphasize the actual application potential of the IEIECL system with the detection of cytochrome c (Cyt c); it is a key biomolecule in the electron transport chain in the process of biological oxidation and is also an intermediate species in apoptosis. Potentially, the IEIECL system permits ones to explore the lifetime and diffusion path of free radicals, as well as imparting a possibility for the construction of a bionic sensor.

  15. A quantitative structure–function relationship for the Photosystem II reaction center: Supermolecular behavior in natural photosynthesis

    PubMed Central

    Barter, Laura M. C.; Durrant, James R.; Klug, David R.

    2003-01-01

    Light-induced charge separation is the primary photochemical event of photosynthesis. Efficient charge separation in photosynthetic reaction centers requires the balancing of electron and excitation energy transfer processes, and in Photosystem II (PSII), these processes are particularly closely entangled. Calculations that treat the cofactors of the PSII reaction center as a supermolecular complex allow energy and electron transfer reactions to be described in a unified way. This calculational approach is shown to be in good agreement with experimentally observed energy and electron transfer dynamics. This supermolecular view also correctly predicts the effect of changing the redox potentials of cofactors by site-directed mutagenesis, thus providing a unified and quantitative structure–function relationship for the PSII reaction center. PMID:12538865

  16. Effect of morphology and defect density on electron transfer of electrochemically reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Hao, Huilian; Wang, Linlin

    2016-12-01

    Electrochemically reduced graphene oxide (ERGO) is widely used to construct electrochemical sensors. Understanding the electron transfer behavior of ERGO is essential for its electrode material applications. In this paper, different morphologies of ERGO were prepared via two different methods. Compared to ERGO/GCEs prepared by electrochemical reduction of pre-deposited GO, more exposed edge planes of ERGO are observed on the surface of ERGO-GCE that was constructed by electrophoretic deposition of GO. The defect densities of ERGO were controlled by tuning the mass or concentration of GO. The electron transfer kinetics (k0) of GCE with different ERGOs was comparatively investigated. Owing to increased surface areas and decreased defect density, the k0 values of ERGO/GCE initially increase and then decrease with incrementing of GO mass. When the morphology and surface real areas of ERGO-GCE are the same, an increased defect density induces an accelerated electron transfer rate. k0 valuesof ERGO-GCEs are about 1 order of magnitude higher than those of ERGO/GCEs due to the difference in the amount of edge planes. This work demonstrates that both defect densities and edge planes of ERGO play crucial roles in electron transfer kinetics.

  17. Super-quenched Molecular Probe Based on Aggregation-Induced Emission and Photoinduced Electron Transfer Mechanisms for Formaldehyde Detection in Human Serum.

    PubMed

    Yang, Haitao; Wang, Fujia; Zheng, Jilin; Lin, Hao; Liu, Bin; Tang, Yi-Da; Zhang, Chong-Jing

    2018-06-04

    Energy transfer between fluorescent dyes and quenchers is widely used in the design of light-up probes. Although dual quenchers are more effective in offering lower background signals and higher turn-on ratios than one quencher, such probes are less explored in practice as they require both quenchers to be within the proximity of the fluorescent core. In this contribution, we utilized intramolecular motion and photoinduced electron transfer (PET) as quenching mechanisms to build super-quenched light-up probes based on fluorogens with aggregation-induced emission. The optimized light-up probe possesses negligible background and is able to detect not only free formaldehyde (FA) but also polymeric FA, with an unprecedented turn-on ratio of >4900. We envision that this novel dual quenching strategy will help to develop various light-up probes for analyte sensing. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Iron Deficiency Induces a Partial Inhibition of the Photosynthetic Electron Transport and a High Sensitivity to Light in the Diatom Phaeodactylum tricornutum.

    PubMed

    Roncel, Mercedes; González-Rodríguez, Antonio A; Naranjo, Belén; Bernal-Bayard, Pilar; Lindahl, Anna M; Hervás, Manuel; Navarro, José A; Ortega, José M

    2016-01-01

    Iron limitation is the major factor controlling phytoplankton growth in vast regions of the contemporary oceans. In this study, a combination of thermoluminescence (TL), chlorophyll fluorescence, and P700 absorbance measurements have been used to elucidate the effects of iron deficiency in the photosynthetic electron transport of the marine diatom P. tricornutum. TL was used to determine the effects of iron deficiency on photosystem II (PSII) activity. Excitation of iron-replete P. tricornutum cells with single turn-over flashes induced the appearance of TL glow curves with two components with different peaks of temperature and contributions to the total signal intensity: the B band (23°C, 63%), and the AG band (40°C, 37%). Iron limitation did not significantly alter these bands, but induced a decrease of the total TL signal. Far red excitation did not increase the amount of the AG band in iron-limited cells, as observed for iron-replete cells. The effect of iron deficiency on the photosystem I (PSI) activity was also examined by measuring the changes in P700 redox state during illumination. The electron donation to PSI was substantially reduced in iron-deficient cells. This could be related with the important decline on cytochrome c 6 content observed in these cells. Iron deficiency also induced a marked increase in light sensitivity in P. tricornutum cells. A drastic increase in the level of peroxidation of chloroplast lipids was detected in iron-deficient cells even when grown under standard conditions at low light intensity. Illumination with a light intensity of 300 μE m(-2) s(-1) during different time periods caused a dramatic disappearance in TL signal in cells grown under low iron concentration, this treatment not affecting to the signal in iron-replete cells. The results of this work suggest that iron deficiency induces partial blocking of the electron transfer between PSII and PSI, due to a lower concentration of the electron donor cytochrome c 6. This decreased electron transfer may induce the over-reduction of the plastoquinone pool and consequently the appearance of acceptor side photoinhibition in PSII even at low light intensities. The functionality of chlororespiratory electron transfer pathway under iron restricted conditions is also discussed.

  19. Iron Deficiency Induces a Partial Inhibition of the Photosynthetic Electron Transport and a High Sensitivity to Light in the Diatom Phaeodactylum tricornutum

    PubMed Central

    Roncel, Mercedes; González-Rodríguez, Antonio A.; Naranjo, Belén; Bernal-Bayard, Pilar; Lindahl, Anna M.; Hervás, Manuel; Navarro, José A.; Ortega, José M.

    2016-01-01

    Iron limitation is the major factor controlling phytoplankton growth in vast regions of the contemporary oceans. In this study, a combination of thermoluminescence (TL), chlorophyll fluorescence, and P700 absorbance measurements have been used to elucidate the effects of iron deficiency in the photosynthetic electron transport of the marine diatom P. tricornutum. TL was used to determine the effects of iron deficiency on photosystem II (PSII) activity. Excitation of iron-replete P. tricornutum cells with single turn-over flashes induced the appearance of TL glow curves with two components with different peaks of temperature and contributions to the total signal intensity: the B band (23°C, 63%), and the AG band (40°C, 37%). Iron limitation did not significantly alter these bands, but induced a decrease of the total TL signal. Far red excitation did not increase the amount of the AG band in iron-limited cells, as observed for iron-replete cells. The effect of iron deficiency on the photosystem I (PSI) activity was also examined by measuring the changes in P700 redox state during illumination. The electron donation to PSI was substantially reduced in iron-deficient cells. This could be related with the important decline on cytochrome c6 content observed in these cells. Iron deficiency also induced a marked increase in light sensitivity in P. tricornutum cells. A drastic increase in the level of peroxidation of chloroplast lipids was detected in iron-deficient cells even when grown under standard conditions at low light intensity. Illumination with a light intensity of 300 μE m-2 s-1 during different time periods caused a dramatic disappearance in TL signal in cells grown under low iron concentration, this treatment not affecting to the signal in iron-replete cells. The results of this work suggest that iron deficiency induces partial blocking of the electron transfer between PSII and PSI, due to a lower concentration of the electron donor cytochrome c6. This decreased electron transfer may induce the over-reduction of the plastoquinone pool and consequently the appearance of acceptor side photoinhibition in PSII even at low light intensities. The functionality of chlororespiratory electron transfer pathway under iron restricted conditions is also discussed. PMID:27536301

  20. NO-sensing performance of vacancy defective monolayer MoS2 predicted by density function theory

    NASA Astrophysics Data System (ADS)

    Li, Feifei; Shi, Changmin

    2018-03-01

    Using density functional theory (DFT), we predict the NO-sensing performance of monolayer MoS2 (MoS2-MLs) with and without MoS3-vacancy/S-vacancy defects. Our theoretical results demonstrate that MoS3- and S-vacancy defective MoS2-MLs show stronger chemisorption and greater electron transfer effects than pure MoS2-MLs. The charge transfer analysis showed pure and defective MoS2-MLs all act as donors. Both MoS3-vacancy and S-vacancy defects induce dramatic changes of electronic properties of MoS2-MLs, which have direct relationship with gas sensing performance. In addition, S-vacancy defect leads to more electrons transfer to NO molecule than MoS3-vacancy defect. The H2O molecule urges more electrons transfer from MoS3- or S-vacancy defective MoS2-MLs to NO molecule. We believe that this calculation results will provide some information for future experiment.

  1. Alternative Electron-Transfer Channels Ensure Ultrafast Deactivation of Light-Induced Excited States in Riboflavin Binding Protein.

    PubMed

    Zanetti-Polzi, Laura; Aschi, Massimiliano; Amadei, Andrea; Daidone, Isabella

    2017-07-20

    Flavoproteins, containing flavin chromophores, are enzymes capable of transferring electrons at very high speeds. The ultrafast photoinduced electron-transfer (ET) kinetics of riboflavin binding protein to the excited riboflavin was studied by femtosecond spectroscopy and found to occur within a few hundred femtoseconds [ Zhong and Zewail, Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 11867-11872 ]. This ultrafast kinetics was attributed to the presence of two aromatic rings that could transfer the electron to riboflavin: the side chains of tryptophan 156 and tyrosine 75. However, the underlying ET mechanism remained unclear. Here, using a hybrid quantum mechanical-molecular dynamics approach, we perform ET dynamics simulations taking into account the motion of the protein and the solvent upon ET. This approach reveals that ET occurs via a major reaction channel involving tyrosine 75 (83%) and a minor one involving tryptophan 156 (17%). We also show that the protein environment is designed to ensure the fast quenching of the riboflavin excited state.

  2. Near-UV Photodissociation of Tryptic Peptide Cation Radicals. Scope and Effects of Amino Acid Residues and Radical Sites

    NASA Astrophysics Data System (ADS)

    Nguyen, Huong T. H.; Tureček, František

    2017-07-01

    Peptide cation-radical fragment ions of the z-type, [●AXAR+], [●AXAK+], and [●XAR+], where X = A, C, D, E, F, G, H, K, L, M, N, P, Y, and W, were generated by electron transfer dissociation of peptide dications and investigated by MS3-near-ultraviolet photodissociation (UVPD) at 355 nm. Laser-pulse dependence measurements indicated that the ion populations were homogeneous for most X residues except phenylalanine. UVPD resulted in dissociations of backbone CO-NH bonds that were accompanied by hydrogen atom transfer, producing fragment ions of the [yn]+ type. Compared with collision-induced dissociation, UVPD yielded less side-chain dissociations even for residues that are sensitive to radical-induced side-chain bond cleavages. The backbone dissociations are triggered by transitions to second ( B) excited electronic states in the peptide ion R-CH●-CONH- chromophores that are resonant with the 355-nm photon energy. Electron promotion increases the polarity of the B excited states, R-CH+-C●(O-)NH-, and steers the reaction to proceed by transfer of protons from proximate acidic Cα and amide nitrogen positions.

  3. Charge-Transfer-Induced Fluorescence Quenching of Anthracene Derivatives and Selective Detection of Picric Acid.

    PubMed

    Santra, Dines Chandra; Bera, Manas Kumar; Sukul, Pradip Kumar; Malik, Sudip

    2016-02-01

    2,6-Divinylpyridine-appended anthracene derivatives flanked by two alkyl chains at the 9,10-position of the core have been designed, synthesized, and characterized by NMR, MALDI-TOF, FTIR, and single-crystal XRD. These anthracene derivatives are able to recognize picric acid (2,4,6-trinitrophenol, PA) selectively down to parts per billion (ppb) level in aqueous as well as nonaqueous medium. Fluorescence emission of these derivatives in solution is significantly quenched by adding trace amounts of PA, even in the presence of other competing analogues, such as 2,4-dinitrophenol (2,4-DNP), 4-nitrophenol (NP), nitrobenzene (NB), benzoic acid (BA), and phenol (PH). The high sensitivity of these derivatives toward PA is considered as a combined effect of the proton-induced intramolecular charge transfer (ICT) as well as electron transfer from the electron-rich anthracene to the electron-deficient PA. Moreover, visual detection of PA has been successfully demonstrated in the solid state by using different substrates. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Direct evidence of two interatomic relaxation mechanisms in argon dimers ionized by electron impact

    PubMed Central

    Ren, Xueguang; Jabbour Al Maalouf, Elias; Dorn, Alexander; Denifl, Stephan

    2016-01-01

    In weakly bound systems like liquids and clusters electronically excited states can relax in inter-particle reactions via the interplay of electronic and nuclear dynamics. Here we report on the identification of two prominent examples, interatomic Coulombic decay (ICD) and radiative charge transfer (RCT), which are induced in argon dimers by electron collisions. After initial ionization of one dimer constituent ICD and RCT lead to the ionization of its neighbour either by energy transfer to or by electron transfer from the neighbour, respectively. By full quintuple-coincidence measurements, we unambiguously identify ICD and RCT, and trace the relaxation dynamics as function of the collisional excited state energies. Such interatomic processes multiply the number of electrons and shift their energies down to the critical 1–10 eV range, which can efficiently cause chemical degradation of biomolecules. Therefore, the observed relaxation channels might contribute to cause efficient radiation damage in biological systems. PMID:27000407

  5. Electron Transfer Mechanisms of DNA Repair by Photolyase

    NASA Astrophysics Data System (ADS)

    Zhong, Dongping

    2015-04-01

    Photolyase is a flavin photoenzyme that repairs two DNA base damage products induced by ultraviolet (UV) light: cyclobutane pyrimidine dimers and 6-4 photoproducts. With femtosecond spectroscopy and site-directed mutagenesis, investigators have recently made significant advances in our understanding of UV-damaged DNA repair, and the entire enzymatic dynamics can now be mapped out in real time. For dimer repair, six elementary steps have been characterized, including three electron transfer reactions and two bond-breaking processes, and their reaction times have been determined. A unique electron-tunneling pathway was identified, and the critical residues in modulating the repair function at the active site were determined. The dynamic synergy between the elementary reactions for maintaining high repair efficiency was elucidated, and the biological nature of the flavin active state was uncovered. For 6-4 photoproduct repair, a proton-coupled electron transfer repair mechanism has been revealed. The elucidation of electron transfer mechanisms and two repair photocycles is significant and provides a molecular basis for future practical applications, such as in rational drug design for curing skin cancer.

  6. Electron Transfer Strategies Regulate Carbonate Mineral and Micropore Formation

    NASA Astrophysics Data System (ADS)

    Zeng, Zhirui; Tice, Michael M.

    2018-01-01

    Some microbial carbonates are robust biosignatures due to their distinct morphologies and compositions. However, whether carbonates induced by microbial iron reduction have such features is unknown. Iron-reducing bacteria use various strategies to transfer electrons to iron oxide minerals (e.g., membrane-bound enzymes, soluble electron shuttles, nanowires, as well as different mechanisms for moving over or attaching to mineral surfaces). This diversity has the potential to create mineral biosignatures through manipulating the microenvironments in which carbonate precipitation occurs. We used Shewanella oneidensis MR-1, Geothrix fermentans, and Geobacter metallireducens GS-15, representing three different strategies, to reduce solid ferric hydroxide in order to evaluate their influence on carbonate and micropore formation (micro-size porosity in mineral rocks). Our results indicate that electron transfer strategies determined the morphology (rhombohedral, spherical, or long-chained) of precipitated calcium-rich siderite by controlling the level of carbonate saturation and the location of carbonate formation. Remarkably, electron transfer strategies also produced distinctive cell-shaped micropores in both carbonate and hydroxide minerals, thus producing suites of features that could potentially serve as biosignatures recording information about the sizes, shapes, and physiologies of iron-reducing organisms.

  7. A new technique for Auger analysis of surface species subject to electron-induced desorption.

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1973-01-01

    A method is presented to observe surface species subject to electron-induced desorption by Auger electron spectroscopy. The surface to be examined is moved under the electron beam at constant velocity, establishing a time-independent condition and eliminating the time response of the electron spectrometer as a limiting factor. The dependence of the Auger signal on the sample velocity, incident electron current, beam diameter, and desorption cross section is analyzed. It is shown that it is advantageous to analyze the moving sample with a high beam current, in contrast to the usual practice of using a low beam current to minimize desorption from a stationary sample. The method is illustrated by the analysis of a friction transfer film of PTFE, in which the fluorine is removed by electron-induced desorption. The method is relevant to surface studies in the field of lubrication and catalysis.

  8. Long-range electron transfer in porphyrin-containing [2]-rotaxanes: tuning the rate by metal cation coordination.

    PubMed

    Andersson, Mikael; Linke, Myriam; Chambron, Jean-Claude; Davidsson, Jan; Heitz, Valérie; Hammarström, Leif; Sauvage, Jean-Pierre

    2002-04-24

    A series of [2]-rotaxanes has been synthesized in which two Zn(II)-porphyrins (ZnP) electron donors were attached as stoppers on the rod. A macrocycle attached to a Au(III)-porphyrin (AuP+) acceptor was threaded on the rod. By selective excitation of either porphyrin, we could induce an electron transfer from the ZnP to the AuP+ unit that generated the same ZnP*+-AuP* charge-transfer state irrespective of which porphyrin was excited. Although the reactants were linked only by mechanical or coordination bonds, electron-transfer rate constants up to 1.2x10(10) x s(-1) were obtained over a 15-17 A edge-to-edge distance between the porphyrins. The resulting charge-transfer state had a relatively long lifetime of 10-40 ns and was formed in high yield (>80%) in most cases. By a simple variation of the link between the reactants, viz. a coordination of the phenanthroline units on the rotaxane rod and ring by either Ag+ or Cu+, we could enhance the electron-transfer rate from the ZnP to the excited 3AuP+. We interpret our data in terms of an enhanced superexchange mechanism with Ag+ and a change to a stepwise hopping mechanism with Cu+, involving the oxidized Cu(phen)22+ unit as a real intermediate. When the ZnP unit was excited instead, electron transfer from the excited 1ZnP to AuP+ was not affected, or even slowed, by Ag+ or Cu+. We discuss this asymmetry in terms of the different orbitals involved in mediating the reaction in an electron- and a hole-transfer mechanism. Our results show the possibility to tune the rates of electron transfer between noncovalently linked reactants by a convenient modification of the link. The different effect of Ag+ and Cu+ on the rate with ZnP and AuP+ excitation shows an additional possibility to control the electron-transfer reactions by selective excitation. We also found that coordination of the Cu+ introduced an energy-transfer reaction from 1ZnP to Cu(phen)2+ (k = 5.1x10(9) x s(-1)) that proceeded in competition with electron transfer to AuP+ and was followed by a quantitative energy transfer to give the 3ZnP state (k = 1.5x10(9) x s(-1)).

  9. Local light-induced magnetization using nanodots and chiral molecules.

    PubMed

    Dor, Oren Ben; Morali, Noam; Yochelis, Shira; Baczewski, Lech Tomasz; Paltiel, Yossi

    2014-11-12

    With the increasing demand for miniaturization, nanostructures are likely to become the primary components of future integrated circuits. Different approaches are being pursued toward achieving efficient electronics, among which are spin electronics devices (spintronics). In principle, the application of spintronics should result in reducing the power consumption of electronic devices. Recently a new, promising, effective approach for spintronics has emerged, using spin selectivity in electron transport through chiral molecules. In this work, using chiral molecules and nanocrystals, we achieve local spin-based magnetization generated optically at ambient temperatures. Through the chiral layer, a spin torque can be transferred without permanent charge transfer from the nanocrystals to a thin ferromagnetic layer, creating local perpendicular magnetization. We used Hall sensor configuration and atomic force microscopy (AFM) to measure the induced local magnetization. At low temperatures, anomalous spin Hall effects were measured using a thin Ni layer. The results may lead to optically controlled spintronics logic devices that will enable low power consumption, high density, and cheap fabrication.

  10. Photo-induced regeneration of hormones by electron transfer processes: Potential biological and medical consequences

    NASA Astrophysics Data System (ADS)

    Getoff, Nikola; Hartmann, Johannes; Schittl, Heike; Gerschpacher, Marion; Quint, Ruth Maria

    2011-08-01

    Based on the previous results concerning electron transfer processes in biological substances, it was of interest to investigate if hormone transients resulting by e.g. electron emission can be regenerated. The presented results prove for the first time that the hormone transients originating by the electron emission process can be successfully regenerated by the transfer of electrons from a potent electron donor, such as vitamin C (VitC). Investigations were performed using progesterone (PRG), testosterone (TES) and estrone (E1) as representatives of hormones. By irradiation with monochromatic UV light (λ=254 nm) in a media of 40% water and 60% ethanol, the degradation as well as the regeneration of the hormones was studied with each hormone individually and in the mixture with VitC as a function of the absorbed UV dose, using HPLC. Calculated from the obtained initial yields, the determined regeneration of PRG amounted to 52.7%, for TES to 58.6% and for E1 to 90.9%. The consumption of VitC was determined in the same way. The reported results concerning the regeneration of hormones by the transfer of electrons from an electron donor offer a new, promising method for the therapy with hormones. As a consequence of the regeneration of hormones, a decreased formation of carcinogenic metabolites is expected.

  11. The Critical Role of Arabidopsis Electron-Transfer Flavoprotein:Ubiquinone Oxidoreductase during Dark-Induced StarvationW⃞

    PubMed Central

    Ishizaki, Kimitsune; Larson, Tony R.; Schauer, Nicolas; Fernie, Alisdair R.; Graham, Ian A.; Leaver, Christopher J.

    2005-01-01

    In mammals, electron-transfer flavoprotein:ubiquinone oxidoreductase (ETFQO) and electron-transfer flavoprotein (ETF) are functionally associated, and ETF accepts electrons from at least nine mitochondrial matrix flavoprotein dehydrogenases and transfers them to ubiquinone in the inner mitochondrial membrane. In addition, the mammalian ETF/ETFQO system plays a key role in β-oxidation of fatty acids and catabolism of amino acids and choline. By contrast, nothing is known of the function of ETF and ETFQO in plants. Sequence analysis of the unique Arabidopsis thaliana homologue of ETFQO revealed high similarity to the mammalian ETFQO protein. Moreover, green fluorescent protein cellular localization experiments suggested a mitochondrial location for this protein. RNA gel blot analysis revealed that Arabidopsis ETFQO transcripts accumulated in long-term dark-treated leaves. Analysis of three independent insertional mutants of Arabidopsis ETFQO revealed a dramatic reduction in their ability to withstand extended darkness, resulting in senescence and death within 10 d after transfer, whereas wild-type plants remained viable for at least 15 d. Metabolite profiling of dark-treated leaves of the wild type and mutants revealed a dramatic decline in sugar levels. In contrast with the wild type, the mutants demonstrated a significant accumulation of several amino acids, an intermediate of Leu catabolism, and, strikingly, high-level accumulation of phytanoyl-CoA. These data demonstrate the involvement of a mitochondrial protein, ETFQO, in the catabolism of Leu and potentially of other amino acids in higher plants and also imply a novel role for this protein in the chlorophyll degradation pathway activated during dark-induced senescence and sugar starvation. PMID:16055629

  12. Influences of Quantum Mechanically Mixed Electronic and Vibrational Pigment States in 2D Electronic Spectra of Photosynthetic Systems: Strong Electronic Coupling Cases

    DOE PAGES

    Fujihashi, Yuta; Fleming, Graham R.; Ishizaki, Akihito

    2015-09-07

    In 2D electronic spectroscopy studies, long-lived quantum beats have recently been observed in photosynthetic systems, and several theoretical studies have suggested that the beats are produced by quantum mechanically mixed electronic and vibrational states. Concerning the electronic-vibrational quantum mixtures, the impact of protein-induced fluctuations was examined by calculating the 2D electronic spectra of a weakly coupled dimer with the Franck-Condon active vibrational modes in the resonant condition. This analysis demonstrated that quantum mixtures of the vibronic resonance are rather robust under the influence of the fluctuations at cryogenic temperatures, whereas the mixtures are eradicated by the fluctuations at physiological temperatures.more » However, this conclusion cannot be generalized because the magnitude of the coupling inducing the quantum mixtures is proportional to the inter-pigment electronic coupling. In this paper, we explore the impact of the fluctuations on electronic-vibrational quantum mixtures in a strongly coupled dimer with an off-resonant vibrational mode. Toward this end, we calculate energy transfer dynamics and 2D electronic spectra of a model dimer that corresponds to the most strongly coupled bacteriochlorophyll molecules in the Fenna-Matthews-Olson complex in a numerically accurate manner. The quantum mixtures are found to be robust under the exposure of protein-induced fluctuations at cryogenic temperatures, irrespective of the resonance. At 300 K, however, the quantum mixing is disturbed more strongly by the fluctuations, and therefore, the beats in the 2D spectra become obscure even in a strongly coupled dimer with a resonant vibrational mode. Further, the overall behaviors of the energy transfer dynamics are demonstrated to be dominated by the environment and coupling between the 0 0 vibronic transitions as long as the Huang-Rhys factor of the vibrational mode is small. Finally, the electronic-vibrational quantum mixtures do not necessarily play a significant role in electronic energy transfer dynamics despite contributing to the enhancement of long-lived quantum beating in the 2D spectra.« less

  13. Internal electron transfer between hemes and Cu(II) bound at cysteine beta93 promotes methemoglobin reduction by carbon monoxide.

    PubMed

    Bonaventura, C; Godette, G; Tesh, S; Holm, D E; Bonaventura, J; Crumbliss, A L; Pearce, L L; Peterson, J

    1999-02-26

    Previous studies showed that CO/H2O oxidation provides electrons to drive the reduction of oxidized hemoglobin (metHb). We report here that Cu(II) addition accelerates the rate of metHb beta chain reduction by CO by a factor of about 1000. A mechanism whereby electron transfer occurs via an internal pathway coupling CO/H2O oxidation to Fe(III) and Cu(II) reduction is suggested by the observation that the copper-induced rate enhancement is inhibited by blocking Cys-beta93 with N-ethylmaleimide. Furthermore, this internal electron-transfer pathway is more readily established at low Cu(II) concentrations in Hb Deer Lodge (beta2His --> Arg) and other species lacking His-beta2 than in Hb A0. This difference is consistent with preferential binding of Cu(II) in Hb A0 to a high affinity site involving His-beta2, which is ineffective in promoting electron exchange between Cu(II) and the beta heme iron. Effective electron transfer is thus affected by Hb type but is not governed by the R left arrow over right arrow T conformational equilibrium. The beta hemes in Cu(II)-metHb are reduced under CO at rates close to those observed for cytochrome c oxidase, where heme and copper are present together in the oxygen-binding site and where internal electron transfer also occurs.

  14. Fabrication and single-electron-transfer operation of a triple-dot single-electron transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jo, Mingyu, E-mail: mingyujo@eis.hokudai.ac.jp; Uchida, Takafumi; Tsurumaki-Fukuchi, Atsushi

    2015-12-07

    A triple-dot single-electron transistor was fabricated on silicon-on-insulator wafer using pattern-dependent oxidation. A specially designed one-dimensional silicon wire having small constrictions at both ends was converted to a triple-dot single-electron transistor by means of pattern-dependent oxidation. The fabrication of the center dot involved quantum size effects and stress-induced band gap reduction, whereas that of the two side dots involved thickness modulation because of the complex edge structure of two-dimensional silicon. Single-electron turnstile operation was confirmed at 8 K when a 100-mV, 1-MHz square wave was applied. Monte Carlo simulations indicated that such a device with inhomogeneous tunnel and gate capacitances canmore » exhibit single-electron transfer.« less

  15. The surface plasmon-induced hot carrier effect on the catalytic activity of CO oxidation on a Cu2O/hexoctahedral Au inverse catalyst.

    PubMed

    Lee, Si Woo; Hong, Jong Wook; Lee, Hyunhwa; Wi, Dae Han; Kim, Sun Mi; Han, Sang Woo; Park, Jeong Young

    2018-06-14

    The intrinsic correlation between an enhancement of catalytic activity and the flow of hot electrons generated at metal-oxide interfaces suggests an intriguing way to control catalytic reactions and is a significant subject in heterogeneous catalysis. Here, we show surface plasmon-induced catalytic enhancement by the peculiar nanocatalyst design of hexoctahedral (HOH) Au nanocrystals (NCs) with Cu2O clusters. We found that this inverse catalyst comprising a reactive oxide for the catalytic portion and a metal as the source of electrons by localized surface plasmon resonance (localized SPR) exhibits a change in catalytic activity by direct hot electron transfer or plasmon-induced resonance energy transfer (PIRET) when exposed to light. We prepared two types of inverse catalysts, Cu2O at the vertex sites of HOH Au NCs (Cu2O/Au vertex site) and a HOH Au NC-Cu2O core-shell structure (HOH Au@Cu2O), to test the structural effect on surface plasmons. Under broadband light illumination, the Cu2O/Au vertex site catalyst showed 30-90% higher catalytic activity and the HOH Au@Cu2O catalyst showed 10-30% higher catalytic activity than when in the dark. Embedding thin SiO2 layers between the HOH Au NCs and the Cu2O verified that the dominant mechanism for the catalytic enhancement is direct hot electron transfer from the HOH Au to the Cu2O. Finite-difference time domain calculations show that a much stronger electric field was formed on the vertex sites after growing the Cu2O on the HOH Au NCs. These results imply that the catalytic activity is enhanced when hot electrons, created from photon absorption on the HOH Au metal and amplified by the presence of surface plasmons, are transferred to the reactive Cu2O.

  16. Dietary avocado oil supplementation attenuates the alterations induced by type I diabetes and oxidative stress in electron transfer at the complex II-complex III segment of the electron transport chain in rat kidney mitochondria.

    PubMed

    Ortiz-Avila, Omar; Sámano-García, Carlos Alberto; Calderón-Cortés, Elizabeth; Pérez-Hernández, Ismael H; Mejía-Zepeda, Ricardo; Rodríguez-Orozco, Alain R; Saavedra-Molina, Alfredo; Cortés-Rojo, Christian

    2013-06-01

    Impaired complex III activity and reactive oxygen species (ROS) generation in mitochondria have been identified as key events leading to renal damage during diabetes. Due to its high content of oleic acid and antioxidants, we aimed to test whether avocado oil may attenuate the alterations in electron transfer at complex III induced by diabetes by a mechanism related with increased resistance to lipid peroxidation. 90 days of avocado oil administration prevented the impairment in succinate-cytochrome c oxidoreductase activity caused by streptozotocin-induced diabetes in kidney mitochondria. This was associated with a protection against decreased electron transfer through high potential chain in complex III related to cytochromes c + c1 loss. During Fe(2+)-induced oxidative stress, avocado oil improved the activities of complexes II and III and enhanced the protection conferred by a lipophilic antioxidant against damage by Fe(2+). Avocado oil also decreased ROS generation in Fe(2+)-damaged mitochondria. Alterations in the ratio of C20:4/C18:2 fatty acids were observed in mitochondria from diabetic animals that not were corrected by avocado oil treatment, which yielded lower peroxidizability indexes only in diabetic mitochondria although avocado oil caused an augment in the total content of monounsaturated fatty acids. Moreover, a protective effect of avocado oil against lipid peroxidation was observed consistently only in control mitochondria. Since the beneficial effects of avocado oil in diabetic mitochondria were not related to increased resistance to lipid peroxidation, these effects were discussed in terms of the antioxidant activity of both C18:1 and the carotenoids reported to be contained in avocado oil.

  17. The role of electron transfer in DNA building blocks: Evaluation of strand breaks and their implications

    NASA Astrophysics Data System (ADS)

    Almeida, Diogo Alexandre Fialho de

    Radiation-induced damage to biological systems, both direct and indirect processes, has increasingly come under scrutiny by the international scientific community due to recent findings that electrons are a very effective agent in damaging DNA/RNA. Indeed, much remains to be discovered regarding the exact physico-chemical processes that occur in the nascent stages of DNA/RNA damage by incident radiation. However, it is also known that electrons do not exist freely in the physiological medium, but rather solvated and/or pre-solvated states. This leads to the need for new techniques that can better explore the damaging role of "bound" electrons to DNA/RNA. The work presented in this thesis consists on the study of electron transfer in collisions of atomic species with molecules of biological relevance. In order to study these processes, two experimental setups were used. One setup consists of a crossed beam experiment where a neutral potassium beam is created and made to collide with an effusive molecular target beam. The anionic products that stem from electron transfer in potassium atom to the molecular target collisions are then extracted and time-of-flight (TOF) mass analysed. In the second setup a beam of anionic species is formed and made to collide with a molecular target. Collisions with three different anionic beams were performed (H-, O- and OH-), as well as with different simple organic molecules, by measuring the positive and negative ion fragmentation patterns with a quadrupole mass spectrometer (QMS). A comparison between these two collisional systems can greatly help to understand the underlying mechanisms of the electron transfer processes. Finally, studies of potassium collisions with sugar surrogates D-Ribose and THF were performed. These studies show very different fragmentation patterns from DEA, although in the case of THF, it is suggested that the initially accessed states are the same as in DEA. With these studies was also possible to show for the first time collision induced site and bond selectivity breaking, where the electron is transferred into a given state of the acceptor molecule and the resulting fragmentation pathways are exclusive to the initial anionic state. Furthermore, the role of the potassium cation post collisionwas explored and indeed its presence is suggested to induce at least partial suppression of auto-detachment. The implications that ensue from this degradation are analysed in the light of the obtained fragmentation patterns.

  18. Ultra-fast electron capture by electrosterically-stabilized gold nanoparticles.

    PubMed

    Ghandi, Khashayar; Findlater, Alexander D; Mahimwalla, Zahid; MacNeil, Connor S; Awoonor-Williams, Ernest; Zahariev, Federico; Gordon, Mark S

    2015-07-21

    Ultra-fast pre-solvated electron capture has been observed for aqueous solutions of room-temperature ionic liquid (RTIL) surface-stabilized gold nanoparticles (AuNPs; ∼9 nm). The extraordinarily large inverse temperature dependent rate constants (k(e)∼ 5 × 10(14) M(-1) s(-1)) measured for the capture of electrons in solution suggest electron capture by the AuNP surface that is on the timescale of, and therefore in competition with, electron solvation and electron-cation recombination reactions. The observed electron transfer rates challenge the conventional notion that radiation induced biological damage would be enhanced in the presence of AuNPs. On the contrary, AuNPs stabilized by non-covalently bonded ligands demonstrate the potential to quench radiation-induced electrons, indicating potential applications in fields ranging from radiation therapy to heterogeneous catalysis.

  19. Mechanically induced intramolecular electron transfer in a mixed-valence molecular shuttle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, J. C.; Fahrenbach, A. C.; Dyar, S. M.

    2012-06-08

    The kinetics and thermodynamics of intramolecular electron transfer (IET) can be subjected to redox control in a bistable [2]rotaxane comprised of a dumbbell component containing an electron-rich 1,5-dioxynaphthalene (DNP) unit and an electron-poor phenylene-bridged bipyridinium (P-BIPY2+) unit and a cyclobis (paraquat-p-phenylene) (CBPQT4+) ring component. The [2]rotaxane exists in the ground-state co-conformation (GSCC) wherein the CBPQT4+ ring encircles the DNP unit. Reduction of the CBPQT4+ leads to the CBPQT2(•+) diradical dication while the P-BIPY2+ unit is reduced to its P-BIPY•+ radical cation. A radical-state co-conformation (RSCC) results from movement of the CBPQT2(•+) ring along the dumbbell to surround the P-BIPY•+ unit.more » This shuttling event induces IET to occur between the pyridinium redox centers of the P-BIPY•+ unit, a property which is absent between these redox centers in the free dumbbell and in the 1:1 complex formed between the CBPQT2(•+) ring and the radical cation of methyl-phenylene-viologen (MPV•+). Using electron paramagnetic resonance (EPR) spectroscopy, the process of IET was investigated by monitoring the line broadening at varying temperatures and determining the rate constant (kET = 1.33 × 107 s-1) and activation energy (ΔG‡ = 1.01 kcal mol-1) for electron transfer. These values were compared to the corresponding values predicted, using the optical absorption spectra and Marcus–Hush theory.« less

  20. Laser Measurement Of Convective-Heat-Transfer Coefficient

    NASA Technical Reports Server (NTRS)

    Porro, A. Robert; Hingst, Warren R.; Chriss, Randall M.; Seablom, Kirk D.; Keith, Theo G., Jr.

    1994-01-01

    Coefficient of convective transfer of heat at spot on surface of wind-tunnel model computed from measurements acquired by developmental laser-induced-heat-flux technique. Enables non-intrusive measurements of convective-heat-transfer coefficients at many points across surfaces of models in complicated, three-dimensional, high-speed flows. Measurement spot scanned across surface of model. Apparatus includes argon-ion laser, attenuator/beam splitter electronic shutter infrared camera, and subsystem.

  1. Ero1-α and PDIs constitute a hierarchical electron transfer network of endoplasmic reticulum oxidoreductases

    PubMed Central

    Araki, Kazutaka; Iemura, Shun-ichiro; Kamiya, Yukiko; Ron, David; Kato, Koichi; Natsume, Tohru

    2013-01-01

    Ero1-α and endoplasmic reticulum (ER) oxidoreductases of the protein disulfide isomerase (PDI) family promote the efficient introduction of disulfide bonds into nascent polypeptides in the ER. However, the hierarchy of electron transfer among these oxidoreductases is poorly understood. In this paper, Ero1-α–associated oxidoreductases were identified by proteomic analysis and further confirmed by surface plasmon resonance. Ero1-α and PDI were found to constitute a regulatory hub, whereby PDI induced conformational flexibility in an Ero1-α shuttle cysteine (Cys99) facilitated intramolecular electron transfer to the active site. In isolation, Ero1-α also oxidized ERp46, ERp57, and P5; however, kinetic measurements and redox equilibrium analysis revealed that PDI preferentially oxidized other oxidoreductases. PDI accepted electrons from the other oxidoreductases via its a′ domain, bypassing the a domain, which serves as the electron acceptor from reduced glutathione. These observations provide an integrated picture of the hierarchy of cooperative redox interactions among ER oxidoreductases in mammalian cells. PMID:24043701

  2. A small electron donor in cobalt complex electrolyte significantly improves efficiency in dye-sensitized solar cells

    PubMed Central

    Hao, Yan; Yang, Wenxing; Zhang, Lei; Jiang, Roger; Mijangos, Edgar; Saygili, Yasemin; Hammarström, Leif; Hagfeldt, Anders; Boschloo, Gerrit

    2016-01-01

    Photoelectrochemical approach to solar energy conversion demands a kinetic optimization of various light-induced electron transfer processes. Of great importance are the redox mediator systems accomplishing the electron transfer processes at the semiconductor/electrolyte interface, therefore affecting profoundly the performance of various photoelectrochemical cells. Here, we develop a strategy—by addition of a small organic electron donor, tris(4-methoxyphenyl)amine, into state-of-art cobalt tris(bipyridine) redox electrolyte—to significantly improve the efficiency of dye-sensitized solar cells. The developed solar cells exhibit efficiency of 11.7 and 10.5%, at 0.46 and one-sun illumination, respectively, corresponding to a 26% efficiency improvement compared with the standard electrolyte. Preliminary stability tests showed the solar cell retained 90% of its initial efficiency after 250 h continuous one-sun light soaking. Detailed mechanistic studies reveal the crucial role of the electron transfer cascade processes within the new redox system. PMID:28000672

  3. Efficient etching-free transfer of high quality, large-area CVD grown graphene onto polyvinyl alcohol films

    NASA Astrophysics Data System (ADS)

    Marta, Bogdan; Leordean, Cosmin; Istvan, Todor; Botiz, Ioan; Astilean, Simion

    2016-02-01

    Graphene transfer is a procedure of paramount importance for the production of graphene-based electronic devices. The transfer procedure can affect the electronic properties of the transferred graphene and can be detrimental for possible applications both due to procedure induced defects which can appear and due to scalability of the method. Hence, it is important to investigate new transfer methods for graphene that are less time consuming and show great promise. In the present study we propose an efficient, etching-free transfer method that consists in applying a thin polyvinyl alcohol layer on top of the CVD grown graphene on Cu and then peeling-off the graphene onto the polyvinyl alcohol film. We investigate the quality of the transferred graphene before and after the transfer, using Raman spectroscopy and imaging as well as optical and atomic force microscopy techniques. This simple transfer method is scalable and can lead to complete transfer of graphene onto flexible and transparent polymer support films without affecting the quality of the graphene during the transfer procedure.

  4. Dynamic nuclear polarisation via the integrated solid effect II: experiments on naphthalene-h8 doped with pentacene-d14

    NASA Astrophysics Data System (ADS)

    Eichhorn, T. R.; van den Brandt, B.; Hautle, P.; Henstra, A.; Wenckebach, W. Th.

    2014-07-01

    In dynamic nuclear polarisation (DNP), also called hyperpolarisation, a small amount of unpaired electron spins is added to the sample containing the nuclear spins, and the polarisation of these unpaired electron spins is transferred to the nuclear spins by means of a microwave field. Traditional DNP polarises the electron spin of stable paramagnetic centres by cooling down to low temperature and applying a strong magnetic field. Then weak continuous wave microwave fields are used to induce the polarisation transfer. Complicated cryogenic equipment and strong magnets can be avoided using short-lived photo-excited triplet states that are strongly aligned in the optical excitation process. However, a much faster transfer of the electron spin polarisation is needed and pulsed DNP methods like nuclear orientation via electron spin locking (NOVEL) and the integrated solid effect (ISE) are used. To describe the polarisation transfer with the strong microwave fields in NOVEL and ISE, the usual perturbation methods cannot be used anymore. In the previous paper, we presented a theoretical approach to calculate the polarisation transfer in ISE. In the present paper, the theory is applied to the system naphthalene-h8 doped with pentacene-d14 yielding the photo-excited triplet states and compared with experimental results.

  5. Copper-Containing Nitrite Reductase Employing Proton-Coupled Spin-Exchanged Electron-Transfer and Multiproton Synchronized Transfer to Reduce Nitrite.

    PubMed

    Qin, Xin; Deng, Li; Hu, Caihong; Li, Li; Chen, Xiaohua

    2017-10-20

    The possible catalytic mechanism of the reduction of nitrite by copper-containing nitrite reductases (CuNiRs) is examined by using the M06 function according to two copper models, which include type-one copper (T1Cu) and type-two copper (T2Cu) sites. Examinations confirm that the protonation of two residues, His255 and Asp98, near the T2Cu site, can modulate the redox states of T1Cu and T2Cu, but cannot directly cause electron transfer from T1Cu to T2Cu. The electron hole remains at the T2Cu site when only one residue, His255 or Asp98, is protonated. However, the hole resides at the T1Cu site when both His255 and Asp98 are protonated. Then, the first protonation of nitrite takes place through indirect proton transfer from protonated His255 through the bridging H 2 O and Asp98 with three protons moving together, which cannot cause the cleavage of the HO-NO bond. Subsequently, the substrate is required to obtain another proton from reprotonated His255 through the bridging H 2 O. The reprotonation of nitrite induces the generation of nitric oxide (NO) and H 2 O at the T2Cu site through a special double-proton-coupled spin-exchanged electron-transfer mechanism with indirect proton transfer from His255 to the substrate, a beta-electron of T2Cu I shift to the NO cation, and the remaining alpha-electron changing spin direction at the same time. These results may provide useful information to better understand detailed proton-/electron-transfer reactions for the catalytic processes of CuNiR. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Biotic stress induced demolition of thylakoid structure and loss in photoelectron transport of chloroplasts in papaya leaves.

    PubMed

    Nanda, Rashmi Madhumita; Biswal, Basanti

    2008-04-01

    Papaya mosaic virus (PMV) causes severe mosaic symptoms in the papaya (Carica papaya L.) leaves. The PMV-induced alterations in photosystem II (PS II) structure and photochemical functions were probed. An increase in chlorophyll a (Chl a) fluorescence polarization suggests pathogen-induced transformation of thylakoid membrane to a gel phase. This transformation in physical state of thylakoid membrane may result in alteration in topology of pigments on pigment-binding proteins as reflected in pathogen-induced loss in the efficiency of energy transfer from carotenoids to chlorophylls. The fast Chl a fluorescence induction kinetics of healthy and PMV-infected plants by F(O)-F(J)-F(I)-F(P) transients revealed pathogen-induced perturbation on PS II acceptor side electron transfer equilibrium between Q(A) and Q(B) and in the pool size of electron transport acceptors. Pathogen-induced loss in photosynthetic pigments, changes in thylakoid structure and decrease in the ratio of F(V)/F(M) (photochemical potential of PS II) further correlate with the loss in photoelectron transport of PS II as probed by 2,6-dichlorophenol indophenol (DCPIP)-Hill reaction. Restoration of the loss by 1,5-diphenyl carbazide (DPC), an exogenous electron donor, that donates electron directly to reaction centre II bypassing the oxygen evolving system (OES), leads towards the conclusion that OES is one of the major targets of biotic stress. Further, the data suggest that chlorophyll fluorescence could be used as a non-invasive handy tool to assess the loss in photosynthetic efficiency and symptom severity in infected green tissues vis-a-vis the healthy ones.

  7. Multiple sites of retardation of electron transfer in Photosystem II after hydrolysis of phosphatidylglycerol.

    PubMed

    Kim, Eun-Ha; Razeghifard, Reza; Anderson, Jan M; Chow, Wah Soon

    2007-01-01

    Phosphatidylglycerol (PG), containing the unique fatty acid Delta3, trans-16:1-hexadecenoic acid, is a minor but ubiquitous lipid component of thylakoid membranes of chloroplasts and cyanobacteria. We investigated its role in electron transfers and structural organization of Photosystem II (PSII) by treating Arabidopsis thaliana thylakoids with phospholipase A(2) to decrease the PG content. Phospholipase A(2) treatment of thylakoids (a) inhibited electron transfer from the primary quinone acceptor Q(A) to the secondary quinone acceptor Q(B), (b) retarded electron transfer from the manganese cluster to the redox-active tyrosine Z, (c) decreased the extent of flash-induced oxidation of tyrosine Z and dark-stable tyrosine D in parallel, and (d) inhibited PSII reaction centres such that electron flow to silicomolybdate in continuous light was inhibited. In addition, phospholipase A(2) treatment of thylakoids caused the partial dissociation of (a) PSII supercomplexes into PSII dimers that do not have the complete light-harvesting complex of PSII (LHCII); (b) PSII dimers into monomers; and (c) trimers of LHCII into monomers. Thus, removal of PG by phospholipase A(2) brings about profound structural changes in PSII, leading to inhibition/retardation of electron transfer on the donor side, in the reaction centre, and on the acceptor side. Our results broaden the simple view of the predominant effect being on the Q(B)-binding site.

  8. Enhanced emission and photoconductivity due to photo-induced charge transfer from Au nanoislands to ZnO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Shang-Hsuan; Chan, Ching-Hsiang; Liang, Ching-Tarng

    2016-01-25

    We report systematic studies based on photoluminescence, Hall, and photoconductivity measurements together with theoretical modeling in order to identify mechanisms for the photo-induced charge transfer effects in ZnO thin film incorporated with the Au nano-islands (AuNIs). Significant enhancement of near band edge emission and improvement in conductivity of ZnO/AuNIs samples after illumination are observed, which are attributed to the photo-induced hot electrons in Au which are then transferred into the conduction band of ZnO as long as the excitation energy is higher than the offset between the ZnO conduction-band minimum and Au Fermi level. Our experimental results are consistent withmore » the general features predicted by first principles calculations.« less

  9. Electron Transfer Ion/Ion Reactions in a Three-Dimensional Quadrupole Ion Trap: Reactions of Doubly and Triply Protonated Peptides with SO2·−

    PubMed Central

    Pitteri, Sharon J.; Chrisman, Paul A.; Hogan, Jason M.; McLuckey, Scott A.

    2005-01-01

    Ion–ion reactions between a variety of peptide cations (doubly and triply charged) and SO2 anions have been studied in a 3-D quadrupole ion trap, resulting in proton and electron transfer. Electron transfer dissociation (ETD) gives many c- and z-type fragments, resulting in extensive sequence coverage in the case of triply protonated peptides with SO2·−. For triply charged neurotensin, in which a direct comparison can be made between 3-D and linear ion trap results, abundances of ETD fragments relative to one another appear to be similar. Reactions of doubly protonated peptides with SO2·− give much less structural information from ETD than triply protonated peptides. Collision-induced dissociation (CID) of singly charged ions formed in reactions with SO2·− shows a combination of proton and electron transfer products. CID of the singly charged species gives more structural information than ETD of the doubly protonated peptide, but not as much information as ETD of the triply protonated peptide. PMID:15762593

  10. Dynamics of intramolecular electron transfer reaction of FAD studied by magnetic field effects on transient absorption spectra.

    PubMed

    Murakami, Masaaki; Maeda, Kiminori; Arai, Tatsuo

    2005-07-07

    The kinetics of intermediates generated from intramolecular electron-transfer reaction by photo irradiation of the flavin adenine dinucleotide (FAD) molecule was studied by a magnetic field effect (MFE) on transient absorption (TA) spectra. Existence time of MFE and MFE action spectra have a strong dependence on the pH of solutions. The MFE action spectra have indicated the existence of interconversion between the radical pair and the cation form of the triplet excited state of flavin part. All rate constants of the triplet and the radical pair were determined by analysis of the MFE action spectra and decay kinetics of TA. The obtained values for the interconversion indicate that the formation of cation radical promotes the back electron-transfer reaction to the triplet excited state. Further, rate constants of spin relaxation and recombination have been studied by the time profiles of MFE at various pH. The drastic change of those two factors has been obtained and can be explained by SOC (spin-orbit coupling) induced back electron-transfer promoted by the formation of a stacking conformation at pH > 2.5.

  11. Theoretical rate constants of super-exchange hole transfer and thermally induced hopping in DNA.

    PubMed

    Shimazaki, Tomomi; Asai, Yoshihiro; Yamashita, Koichi

    2005-01-27

    Recently, the electronic properties of DNA have been extensively studied, because its conductivity is important not only to the study of fundamental biological problems, but also in the development of molecular-sized electronics and biosensors. We have studied theoretically the reorganization energies, the activation energies, the electronic coupling matrix elements, and the rate constants of hole transfer in B-form double-helix DNA in water. To accommodate the effects of DNA nuclear motions, a subset of reaction coordinates for hole transfer was extracted from classical molecular dynamics (MD) trajectories of DNA in water and then used for ab initio quantum chemical calculations of electron coupling constants based on the generalized Mulliken-Hush model. A molecular mechanics (MM) method was used to determine the nuclear Franck-Condon factor. The rate constants for two types of mechanisms of hole transfer-the thermally induced hopping (TIH) and the super-exchange mechanisms-were determined based on Marcus theory. We found that the calculated matrix elements are strongly dependent on the conformations of the nucleobase pairs of hole-transferable DNA and extend over a wide range of values for the "rise" base-step parameter but cluster around a particular value for the "twist" parameter. The calculated activation energies are in good agreement with experimental results. Whereas the rate constant for the TIH mechanism is not dependent on the number of A-T nucleobase pairs that act as a bridge, the rate constant for the super-exchange process rapidly decreases when the length of the bridge increases. These characteristic trends in the calculated rate constants effectively reproduce those in the experimental data of Giese et al. [Nature 2001, 412, 318]. The calculated rate constants were also compared with the experimental results of Lewis et al. [Nature 2000, 406, 51].

  12. One-electron oxidation of electronically diverse manganese(III) and nickel(II) salen complexes: transition from localized to delocalized mixed-valence ligand radicals.

    PubMed

    Kurahashi, Takuya; Fujii, Hiroshi

    2011-06-01

    Ligand radicals from salen complexes are unique mixed-valence compounds in which a phenoxyl radical is electronically linked to a remote phenolate via a neighboring redox-active metal ion, providing an opportunity to study electron transfer from a phenolate to a phenoxyl radical mediated by a redox-active metal ion as a bridge. We herein synthesize one-electron-oxidized products from electronically diverse manganese(III) salen complexes in which the locus of oxidation is shown to be ligand-centered, not metal-centered, affording manganese(III)-phenoxyl radical species. The key point in the present study is an unambiguous assignment of intervalence charge transfer bands by using nonsymmetrical salen complexes, which enables us to obtain otherwise inaccessible insight into the mixed-valence property. A d(4) high-spin manganese(III) ion forms a Robin-Day class II mixed-valence system, in which electron transfer is occurring between the localized phenoxyl radical and the phenolate. This is in clear contrast to a d(8) low-spin nickel(II) ion with the same salen ligand, which induces a delocalized radical (Robin-Day class III) over the two phenolate rings, as previously reported by others. The present findings point to a fascinating possibility that electron transfer could be drastically modulated by exchanging the metal ion that bridges the two redox centers. © 2011 American Chemical Society

  13. Electrochemical capacitance modulation in an interacting mesoscopic capacitor induced by internal charge transfer

    NASA Astrophysics Data System (ADS)

    Liu, Wei; He, Jianhong; Guo, Huazhong; Gao, Jie

    2018-04-01

    We report experiments on the dynamic response of an interacting mesoscopic capacitor consisting of a quantum dot with two confined spin-split levels of the lowest Landau level. In high magnetic fields, states inside the dot are regulated by a mixture of Coulomb interaction and Landau-level quantization, and electrons distribute on two spatially separated regions. Quantum point contact voltage and magnetic field are employed to manipulate the number and distribution of electrons inside the quantum dot. We find that the periodicity of the electrochemical capacitance oscillations is dominated by the charging energy, and their amplitudes, due to internal charge transfer and strong internal capacitive coupling, show rich variations of modulations. Magnetocapacitance displays a sawtoothlike manner and may differ in tooth directions for different voltages, which, we demonstrate, result from a sawtoothlike electrochemical potential change induced by internal charge transfer and field-sensitive electrostatic potential. We further build a charge stability diagram, which, together with all other capacitance properties, is consistently interpreted in terms of a double-dot model. The demonstrated technique is of interest as a tool for fast and sensitive charge state readout of a double-quantum-dot qubit in the gigahertz frequency quantum electronics.

  14. Benzylic Fluorination of Aza-Heterocycles Induced by Single-Electron Transfer to Selectfluor.

    PubMed

    Danahy, Kelley E; Cooper, Julian C; Van Humbeck, Jeffrey F

    2018-04-23

    A selective and mild method for the benzylic fluorination of aromatic azaheterocycles with Selectfluor is described. These reactions take place by a previously unreported mechanism, in which electron transfer from the heterocyclic substrate to the electrophilic fluorinating agent Selectfluor eventually yields a benzylic radical, thus leading to the desired C-F bond formation. This mechanism enables high intra- and intermolecular selectivity for aza-heterocycles over other benzylic components with similar C-H bond-dissociation energies. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Cold denaturation induces inversion of dipole and spin transfer in chiral peptide monolayers

    PubMed Central

    Eckshtain-Levi, Meital; Capua, Eyal; Refaely-Abramson, Sivan; Sarkar, Soumyajit; Gavrilov, Yulian; Mathew, Shinto P.; Paltiel, Yossi; Levy, Yaakov; Kronik, Leeor; Naaman, Ron

    2016-01-01

    Chirality-induced spin selectivity is a recently-discovered effect, which results in spin selectivity for electrons transmitted through chiral peptide monolayers. Here, we use this spin selectivity to probe the organization of self-assembled α-helix peptide monolayers and examine the relation between structural and spin transfer phenomena. We show that the α-helix structure of oligopeptides based on alanine and aminoisobutyric acid is transformed to a more linear one upon cooling. This process is similar to the known cold denaturation in peptides, but here the self-assembled monolayer plays the role of the solvent. The structural change results in a flip in the direction of the electrical dipole moment of the adsorbed molecules. The dipole flip is accompanied by a concomitant change in the spin that is preferred in electron transfer through the molecules, observed via a new solid-state hybrid organic–inorganic device that is based on the Hall effect, but operates with no external magnetic field or magnetic material. PMID:26916536

  16. Cold denaturation induces inversion of dipole and spin transfer in chiral peptide monolayers

    NASA Astrophysics Data System (ADS)

    Eckshtain-Levi, Meital; Capua, Eyal; Refaely-Abramson, Sivan; Sarkar, Soumyajit; Gavrilov, Yulian; Mathew, Shinto P.; Paltiel, Yossi; Levy, Yaakov; Kronik, Leeor; Naaman, Ron

    2016-02-01

    Chirality-induced spin selectivity is a recently-discovered effect, which results in spin selectivity for electrons transmitted through chiral peptide monolayers. Here, we use this spin selectivity to probe the organization of self-assembled α-helix peptide monolayers and examine the relation between structural and spin transfer phenomena. We show that the α-helix structure of oligopeptides based on alanine and aminoisobutyric acid is transformed to a more linear one upon cooling. This process is similar to the known cold denaturation in peptides, but here the self-assembled monolayer plays the role of the solvent. The structural change results in a flip in the direction of the electrical dipole moment of the adsorbed molecules. The dipole flip is accompanied by a concomitant change in the spin that is preferred in electron transfer through the molecules, observed via a new solid-state hybrid organic-inorganic device that is based on the Hall effect, but operates with no external magnetic field or magnetic material.

  17. Investigation of Radiation Resistant Polymer Photodetectors for Space Applications

    DTIC Science & Technology

    2002-09-11

    54 A. XPD Data 54 B. Bibliography 56 iv FIGURES Figure Page 1. Electron transfer in a self-assembled dye-sensitized heterojunction device...electrooptic technology for space applications. By employing molecular engineering to achieve selective orientation of π- electrons within the polymer...temperature, vacuum and radiation induced degradation. Many of these adverse effects are well known for a wide variety of inorganic electronic materials

  18. Quantum electron tunneling in respiratory complex I.

    PubMed

    Hayashi, Tomoyuki; Stuchebrukhov, Alexei A

    2011-05-12

    We have simulated the atomistic details of electronic wiring of all Fe/S clusters in complex I, a key enzyme in the respiratory electron transport chain. The tunneling current theory of many-electron systems is applied to the broken-symmetry (BS) states of the protein at the ZINDO level. While the one-electron tunneling approximation is found to hold in electron tunneling between the antiferromagnetic binuclear and tetranuclear Fe/S clusters without major orbital or spin rearrangement of the core electrons, induced polarization of the core electrons contributes significantly to decrease the electron transfer rates to 19-56 %. Calculated tunneling energy is about 3 eV higher than Fermi level in the band gap of the protein, which supports that the mechanism of electron transfer is quantum mechanical tunneling, as in the rest of the electron transport chain. Resulting electron tunneling pathways consist of up to three key contributing protein residues between neighboring Fe/S clusters. A signature of the wave properties of electrons is observed as distinct quantum interferences when multiple tunneling pathways exist. In N6a-N6b, electron tunnels along different pathways depending on the involved BS states, suggesting possible fluctuations of the tunneling pathways driven by the local protein environment. The calculated distance dependence of the electron transfer rates with internal water molecules included is in good agreement with a reported phenomenological relation.

  19. Development of a glucose oxidase-based biocatalyst adopting both physical entrapment and crosslinking, and its use in biofuel cells

    NASA Astrophysics Data System (ADS)

    Chung, Yongjin; Ahn, Yeonjoo; Christwardana, Marcelinus; Kim, Hansung; Kwon, Yongchai

    2016-04-01

    New enzymatic catalysts prepared using physical entrapment and chemical bonding were used as anodic catalysts to enhance the performance of enzymatic biofuel cells (EBCs). For estimating the physical entrapment effect, the best glucose oxidase (GOx) concentration immobilized on polyethyleneimine (PEI) and carbon nanotube (CNT) (GOx/PEI/CNT) was determined, while for inspecting the chemical bonding effect, terephthalaldehyde (TPA) and glutaraldehyde (GA) crosslinkers were employed. According to the enzyme activity and XPS measurements, when the GOx concentration is 4 mg mL-1, they are most effectively immobilized (via the physical entrapment effect) and TPA-crosslinked GOx/PEI/CNT(TPA/[GOx/PEI/CNT]) forms π conjugated bonds via chemical bonding, inducing the promotion of electron transfer by delocalization of electrons. Due to the optimized GOx concentration and π conjugated bonds, TPA/[GOx/PEI/CNT], including 4 mg mL-1 GOx displays a high electron transfer rate, followed by excellent catalytic activity and EBC performance.New enzymatic catalysts prepared using physical entrapment and chemical bonding were used as anodic catalysts to enhance the performance of enzymatic biofuel cells (EBCs). For estimating the physical entrapment effect, the best glucose oxidase (GOx) concentration immobilized on polyethyleneimine (PEI) and carbon nanotube (CNT) (GOx/PEI/CNT) was determined, while for inspecting the chemical bonding effect, terephthalaldehyde (TPA) and glutaraldehyde (GA) crosslinkers were employed. According to the enzyme activity and XPS measurements, when the GOx concentration is 4 mg mL-1, they are most effectively immobilized (via the physical entrapment effect) and TPA-crosslinked GOx/PEI/CNT(TPA/[GOx/PEI/CNT]) forms π conjugated bonds via chemical bonding, inducing the promotion of electron transfer by delocalization of electrons. Due to the optimized GOx concentration and π conjugated bonds, TPA/[GOx/PEI/CNT], including 4 mg mL-1 GOx displays a high electron transfer rate, followed by excellent catalytic activity and EBC performance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00902f

  20. Probing the coupling between proton and electron transfer in Photosystem II core complexes containing a 3-fluorotyrosine

    PubMed Central

    Rappaport, Fabrice; Boussac, Alain; Force, Dee Ann; Peloquin, Jeffrey; Brynda, Marcin; Sugiura, Miwa; Un, Sun; Britt, R. David; Diner, Bruce A.

    2009-01-01

    The catalytic cycle of numerous enzymes involves the coupling between proton transfer and electron transfer. Yet, the understanding of this coordinated transfer in biological systems remains limited, likely because its characterization relies on the controlled but experimentally challenging modifications of the free energy changes associated with either the electron or proton transfer. We have performed such a study here in Photosystem II. The driving force for electron transfer from TyrZ to P680•+ has been decreased by ~ 80 meV by mutating the axial ligand of P680, and that for proton transfer upon oxidation of TyrZ by substituting a 3-fluorotyrosine (3F-TyrZ) for TyrZ. In Mn-depleted Photosystem II, the dependence upon pH of the oxidation rates of TyrZ and 3F-TyrZ were found to be similar. However, in the pH range where the phenolic hydroxyl of TyrZ is involved in a H-bond with a proton acceptor, the activation energy of the oxidation of 3F-TyrZ is decreased by 110 meV, a value which correlates with the in vitro finding of a 90 meV stabilization energy to the phenolate form of 3F-Tyr when compared to Tyr (Seyedsayamdost et al., 2006, JACS 128:1569–79). Thus, when the phenol of YZ acts as a H-bond-donor, its oxidation by P680•+ is controlled by its prior deprotonation. This contrasts with the situation prevailing at lower pH, where the proton acceptor is protonated and therefore unavailable, in which the oxidation-induced proton transfer from the phenolic hydroxyl of TyrZ has been proposed to occur concertedly with the electron transfer to P680•+. This suggests a switch between a concerted proton/electron transfer at pHs < 7.5 to a sequential one at pHs > 7.5 and illustrates the roles of the H-bond and of the likely salt-bridge existing between the phenolate and the nearby proton acceptor in determining the coupling between proton and electron transfer. PMID:19265377

  1. Real-time investigation of cytochrome c release profiles in living neuronal cells undergoing amyloid beta oligomer-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Lee, Jae Young; Park, Younggeun; Pun, San; Lee, Sung Sik; Lo, Joe F.; Lee, Luke P.

    2015-06-01

    Intracellular Cyt c release profiles in living human neuroblastoma undergoing amyloid β oligomer (AβO)-induced apoptosis, as a model Alzheimer's disease-associated pathogenic molecule, were analysed in a real-time manner using plasmon resonance energy transfer (PRET)-based spectroscopy.Intracellular Cyt c release profiles in living human neuroblastoma undergoing amyloid β oligomer (AβO)-induced apoptosis, as a model Alzheimer's disease-associated pathogenic molecule, were analysed in a real-time manner using plasmon resonance energy transfer (PRET)-based spectroscopy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02390d

  2. Formation of a cytochrome c-nitrous oxide reductase complex is obligatory for N2O reduction by Paracoccus pantotrophus.

    PubMed

    Rasmussen, Tim; Brittain, Thomas; Berks, Ben C; Watmough, Nicholas J; Thomson, Andrew J

    2005-11-07

    Nitrous oxide reductase (N2OR) catalyses the final step of bacterial denitrification, the two-electron reduction of nitrous oxide (N2O) to dinitrogen (N2). N2OR contains two metal centers; a binuclear copper center, CuA, that serves to receive electrons from soluble donors, and a tetranuclear copper-sulfide center, CuZ, at the active site. Stopped flow experiments at low ionic strengths reveal rapid electron transfer (kobs=150 s-1) between reduced horse heart (HH) cytochrome c and the CuA center in fully oxidized N2OR. When fully reduced N2OR was mixed with oxidized cytochrome c, a similar rate of electron transfer was recorded for the reverse reaction, followed by a much slower internal electron transfer from CuZ to CuA(kobs=0.1-0.4 s-1). The internal electron transfer process is likely to represent the rate-determining step in the catalytic cycle. Remarkably, in the absence of cytochrome c, fully reduced N2OR is inert towards its substrate, even though sufficient electrons are stored to initiate a single turnover. However, in the presence of reduced cytochrome c and N2O, a single turnover occurs after a lag-phase. We propose that a conformational change in N2OR is induced by its specific interaction with cytochrome c that in turn either permits electron transfer between CuA and CuZ or controls the rate of N2O decomposition at the active site.

  3. Electron lenses for head-on beam-beam compensation in RHIC

    DOE PAGES

    Gu, X.; Fischer, W.; Altinbas, Z.; ...

    2017-02-17

    Two electron lenses (e-lenses) have been in operation during 2015 RHIC physics run as part of a head-on beam-beam compensation scheme. While the RHIC lattice was chosen to reduce the beam-beam induced resonance driving terms, the electron lenses reduced the beam-beam induced tune spread. This has been demonstrated for the first time. The beam-beam compensation scheme allows for higher beam-beam parameters and therefore higher intensities and luminosity. In this paper, we detailed the design considerations and verification of the electron beam parameters of the RHIC e-lenses. Lastly, longitudinal and transverse alignments with ion beams and the transverse beam transfer functionmore » (BTF) measurement with head-on electron-proton beam are presented.« less

  4. Electron lenses for head-on beam-beam compensation in RHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, X.; Fischer, W.; Altinbas, Z.

    Two electron lenses (e-lenses) have been in operation during 2015 RHIC physics run as part of a head-on beam-beam compensation scheme. While the RHIC lattice was chosen to reduce the beam-beam induced resonance driving terms, the electron lenses reduced the beam-beam induced tune spread. This has been demonstrated for the first time. The beam-beam compensation scheme allows for higher beam-beam parameters and therefore higher intensities and luminosity. In this paper, we detailed the design considerations and verification of the electron beam parameters of the RHIC e-lenses. Lastly, longitudinal and transverse alignments with ion beams and the transverse beam transfer functionmore » (BTF) measurement with head-on electron-proton beam are presented.« less

  5. Hybridization-controlled charge transfer and induced magnetism at correlated oxide interfaces

    PubMed Central

    Grisolia, M.N.; Arora, A.; Valencia, S.; Varela, M.; Abrudan, R.; Weschke, E.; Schierle, E.; Rault, J.E.; Rueff, J.-P.; Barthélémy, A.; Santamaria, J.; Bibes, M.

    2015-01-01

    At interfaces between conventional materials, band bending and alignment are classically controlled by differences in electrochemical potential. Applying this concept to oxides in which interfaces can be polar and cations may adopt a mixed valence has led to the discovery of novel two-dimensional states between simple band insulators such as LaAlO3 and SrTiO3. However, many oxides have a more complex electronic structure, with charge, orbital and/or spin orders arising from strong Coulomb interactions between transition metal and oxygen ions. Such electronic correlations offer a rich playground to engineer functional interfaces but their compatibility with the classical band alignment picture remains an open question. Here we show that beyond differences in electron affinities and polar effects, a key parameter determining charge transfer at correlated oxide interfaces is the energy required to alter the covalence of the metal-oxygen bond. Using the perovskite nickelate (RNiO3) family as a template, we probe charge reconstruction at interfaces with gadolinium titanate GdTiO3. X-ray absorption spectroscopy shows that the charge transfer is thwarted by hybridization effects tuned by the rare-earth (R) size. Charge transfer results in an induced ferromagnetic-like state in the nickelate, exemplifying the potential of correlated interfaces to design novel phases. Further, our work clarifies strategies to engineer two-dimensional systems through the control of both doping and covalence. PMID:27158255

  6. Hybridization-controlled charge transfer and induced magnetism at correlated oxide interfaces

    NASA Astrophysics Data System (ADS)

    Grisolia, M. N.; Varignon, J.; Sanchez-Santolino, G.; Arora, A.; Valencia, S.; Varela, M.; Abrudan, R.; Weschke, E.; Schierle, E.; Rault, J. E.; Rueff, J.-P.; Barthélémy, A.; Santamaria, J.; Bibes, M.

    2016-05-01

    At interfaces between conventional materials, band bending and alignment are classically controlled by differences in electrochemical potential. Applying this concept to oxides in which interfaces can be polar and cations may adopt a mixed valence has led to the discovery of novel two-dimensional states between simple band insulators such as LaAlO3 and SrTiO3. However, many oxides have a more complex electronic structure, with charge, orbital and/or spin orders arising from strong Coulomb interactions at and between transition metal and oxygen ions. Such electronic correlations offer a rich playground to engineer functional interfaces but their compatibility with the classical band alignment picture remains an open question. Here we show that beyond differences in electron affinities and polar effects, a key parameter determining charge transfer at correlated oxide interfaces is the energy required to alter the covalence of the metal-oxygen bond. Using the perovskite nickelate (RNiO3) family as a template, we probe charge reconstruction at interfaces with gadolinium titanate GdTiO3. X-ray absorption spectroscopy shows that the charge transfer is thwarted by hybridization effects tuned by the rare-earth (R) size. Charge transfer results in an induced ferromagnetic-like state in the nickelate, exemplifying the potential of correlated interfaces to design novel phases. Further, our work clarifies strategies to engineer two-dimensional systems through the control of both doping and covalence.

  7. Graphene-ferromagnet interfaces: hybridization, magnetization and charge transfer.

    PubMed

    Abtew, Tesfaye; Shih, Bi-Ching; Banerjee, Sarbajit; Zhang, Peihong

    2013-03-07

    Electronic and magnetic properties of graphene-ferromagnet interfaces are investigated using first-principles electronic structure methods in which a single layer graphene is adsorbed on Ni(111) and Co(111) surfaces. Due to the symmetry matching and orbital overlap, the hybridization between graphene pπ and Ni (or Co) d(z(2)) states is very strong. This pd hybridization, which is both spin and k dependent, greatly affects the electronic and magnetic properties of the interface, resulting in a significantly reduced (by about 20% for Ni and 10% for Co) local magnetic moment of the top ferromagnetic layer at the interface and an induced spin polarization on the graphene layer. The calculated induced magnetic moment on the graphene layer agrees well with a recent experiment. In addition, a substantial charge transfer across the graphene-ferromagnet interfaces is observed. We also investigate the effects of thickness of the ferromagnet slab on the calculated electronic and magnetic properties of the interface. The strength of the pd hybridization and the thickness-dependent interfacial properties may be exploited to design structures with desirable magnetic and transport properties for spintronic applications.

  8. Absolute Negative Resistance Induced by Directional Electron-Electron Scattering in a Two-Dimensional Electron Gas

    NASA Astrophysics Data System (ADS)

    Kaya, Ismet I.; Eberl, Karl

    2007-05-01

    A three-terminal device formed by two electrostatic barriers crossing an asymmetrically patterned two-dimensional electron gas displays an unusual potential depression at the middle contact, yielding absolute negative resistance. The device displays momentum and current transfer ratios that far exceed unity. The observed reversal of the current or potential in the middle terminal can be interpreted as the analog of Bernoulli’s effect in a Fermi liquid. The results are explained by directional scattering of electrons in two dimensions.

  9. An electrochemical and photophysical study of a covalently linked inorganic-organic dyad.

    PubMed

    Kahnt, Axel; Heiniger, Leo-Philipp; Liu, Shi-Xia; Tu, Xiaoyan; Zheng, Zhiping; Hauser, Andreas; Decurtins, Silvio; Guldi, Dirk M

    2010-02-22

    A molecular donor-acceptor dyad comprising a hexarhenium cluster core, [Re(6)(mu(3)-Se)(8)](2+), and a fullerene moiety which are covalently linked through a pyridine ligand was synthesized and fully characterized. The electrochemical and photophysical properties are reported. The detailed study includes cyclic voltammetry, steady-state absorption and fluorescence spectroscopy, radiation chemistry and transient absorption spectroscopy. A light-induced electron transfer between the inorganic cluster moiety and the fullerene can be excluded. However, a light-induced energy transfer from the rhenium cluster to the fullerene is proposed.

  10. Model-based confirmation of alternative substrates of mitochondrial electron transport chain.

    PubMed

    Kleessen, Sabrina; Araújo, Wagner L; Fernie, Alisdair R; Nikoloski, Zoran

    2012-03-30

    Discrimination of metabolic models based on high throughput metabolomics data, reflecting various internal and external perturbations, is essential for identifying the components that contribute to the emerging behavior of metabolic processes. Here, we investigate 12 different models of the mitochondrial electron transport chain (ETC) in Arabidopsis thaliana during dark-induced senescence in order to elucidate the alternative substrates to this metabolic pathway. Our findings demonstrate that the coupling of the proposed computational approach, based on dynamic flux balance analysis, with time-resolved metabolomics data results in model-based confirmations of the hypotheses that, during dark-induced senescence in Arabidopsis, (i) under conditions where the main substrate for the ETC are not fully available, isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase are able to donate electrons to the ETC, (ii) phytanoyl-CoA does not act even as an indirect substrate of the electron transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase complex, and (iii) the mitochondrial γ-aminobutyric acid transporter has functional significance in maintaining mitochondrial metabolism. Our study provides a basic framework for future in silico studies of alternative pathways in mitochondrial metabolism under extended darkness whereby the role of its components can be computationally discriminated based on available molecular profile data.

  11. Facile fabrication of BiVO4 nanofilms with controlled pore size and their photoelectrochemical performances

    NASA Astrophysics Data System (ADS)

    Feng, Chenchen; Jiao, Zhengbo; Li, Shaopeng; Zhang, Yan; Bi, Yingpu

    2015-12-01

    We demonstrate a facile method for the rational fabrication of pore-size controlled nanoporous BiVO4 photoanodes, and confirmed that the optimum pore-size distributions could effectively absorb visible light through light diffraction and confinement functions. Furthermore, in situ X-ray photoelectron spectroscopy (XPS) reveals more efficient photoexcited electron-hole separation than conventional particle films, induced by light confinement and rapid charge transfer in the inter-crossed worm-like structures.We demonstrate a facile method for the rational fabrication of pore-size controlled nanoporous BiVO4 photoanodes, and confirmed that the optimum pore-size distributions could effectively absorb visible light through light diffraction and confinement functions. Furthermore, in situ X-ray photoelectron spectroscopy (XPS) reveals more efficient photoexcited electron-hole separation than conventional particle films, induced by light confinement and rapid charge transfer in the inter-crossed worm-like structures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06584d

  12. Triboelectric effect: A new perspective on electron transfer process

    NASA Astrophysics Data System (ADS)

    Pan, Shuaihang; Zhang, Zhinan

    2017-10-01

    As interest in the triboelectric effect increases in line with the development of tribo-electrification related devices, the mechanisms involved in this phenomenon require more systematic review from the dual perspectives of developed classical insights and emerging quantum understanding. In this paper, the clear energy changing and transferring process of electrons have been proposed from the quantum point of view as the trigger for the charging initiation process in the triboelectric effect, and the phonon modes on the friction surfaces are believed to hold great importance as one of the main driving forces. Compatible with Maxwell Displacement Current theory, the complete consideration for charging steady state, i.e., the competition mechanisms between the breakdown process and the continuously charging process, and the balance mechanisms of phonon-electron interaction, built voltage, and induced polarization, are illustrated. In brief, the proposed theory emphasizes the fundamental role of electron transferring in tribo-electrical fields. By comparing certain experimental results from the previous studies, the theory is justified.

  13. Electric-field-driven electron-transfer in mixed-valence molecules.

    PubMed

    Blair, Enrique P; Corcelli, Steven A; Lent, Craig S

    2016-07-07

    Molecular quantum-dot cellular automata is a computing paradigm in which digital information is encoded by the charge configuration of a mixed-valence molecule. General-purpose computing can be achieved by arranging these compounds on a substrate and exploiting intermolecular Coulombic coupling. The operation of such a device relies on nonequilibrium electron transfer (ET), whereby the time-varying electric field of one molecule induces an ET event in a neighboring molecule. The magnitude of the electric fields can be quite large because of close spatial proximity, and the induced ET rate is a measure of the nonequilibrium response of the molecule. We calculate the electric-field-driven ET rate for a model mixed-valence compound. The mixed-valence molecule is regarded as a two-state electronic system coupled to a molecular vibrational mode, which is, in turn, coupled to a thermal environment. Both the electronic and vibrational degrees-of-freedom are treated quantum mechanically, and the dissipative vibrational-bath interaction is modeled with the Lindblad equation. This approach captures both tunneling and nonadiabatic dynamics. Relationships between microscopic molecular properties and the driven ET rate are explored for two time-dependent applied fields: an abruptly switched field and a linearly ramped field. In both cases, the driven ET rate is only weakly temperature dependent. When the model is applied using parameters appropriate to a specific mixed-valence molecule, diferrocenylacetylene, terahertz-range ET transfer rates are predicted.

  14. Sculpting Nanoscale Functional Channels in Complex Oxides Using Energetic Ions and Electrons

    DOE PAGES

    Sachan, Ritesh; Zarkadoula, Eva; Ou, Xin; ...

    2018-04-26

    The formation of metastable phases has attracted significant attention because of their unique properties and potential functionalities. In the present study, we demonstrate the phase conversion of energetic-ion-induced amorphous nanochannels/tracks into a metastable defect fluorite in A 2B 2O 7 structured complex oxides by electron irradiation. Through in situ electron irradiation experiments in a scanning transmission electron microscope, we observe electron-induced epitaxial crystallization of the amorphous nanochannels in Yb 2Ti 2O 7 into the defect fluorite. This energetic-electron-induced phase transformation is attributed to the coupled effect of ionization-induced electronic excitations and local heating, along with subthreshold elastic energy transfers. Wemore » also show the role of ionic radii of A-site cations (A = Yb, Gd, and Sm) and B-site cations (Ti and Zr) in facilitating the electron-beam-induced crystallization of the amorphous phase to the defect-fluorite structure. The formation of the defect-fluorite structure is eased by the decrease in the difference between ionic radii of A- and B-site cations in the lattice. Molecular dynamics simulations of thermal annealing of the amorphous phase nanochannels in A 2B 2O 7 draw parallels to the electron-irradiation-induced crystallization and confirm the role of ionic radii in lowering the barrier for crystallization. Furthermore, these results suggest that employing guided electron irradiation with atomic precision is a useful technique for selected area phase formation in nanoscale printed devices.« less

  15. Sculpting Nanoscale Functional Channels in Complex Oxides Using Energetic Ions and Electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sachan, Ritesh; Zarkadoula, Eva; Ou, Xin

    The formation of metastable phases has attracted significant attention because of their unique properties and potential functionalities. In the present study, we demonstrate the phase conversion of energetic-ion-induced amorphous nanochannels/tracks into a metastable defect fluorite in A 2B 2O 7 structured complex oxides by electron irradiation. Through in situ electron irradiation experiments in a scanning transmission electron microscope, we observe electron-induced epitaxial crystallization of the amorphous nanochannels in Yb 2Ti 2O 7 into the defect fluorite. This energetic-electron-induced phase transformation is attributed to the coupled effect of ionization-induced electronic excitations and local heating, along with subthreshold elastic energy transfers. Wemore » also show the role of ionic radii of A-site cations (A = Yb, Gd, and Sm) and B-site cations (Ti and Zr) in facilitating the electron-beam-induced crystallization of the amorphous phase to the defect-fluorite structure. The formation of the defect-fluorite structure is eased by the decrease in the difference between ionic radii of A- and B-site cations in the lattice. Molecular dynamics simulations of thermal annealing of the amorphous phase nanochannels in A 2B 2O 7 draw parallels to the electron-irradiation-induced crystallization and confirm the role of ionic radii in lowering the barrier for crystallization. Furthermore, these results suggest that employing guided electron irradiation with atomic precision is a useful technique for selected area phase formation in nanoscale printed devices.« less

  16. High Fidelity Tape Transfer Printing Based On Chemically Induced Adhesive Strength Modulation

    NASA Astrophysics Data System (ADS)

    Sim, Kyoseung; Chen, Song; Li, Yuhang; Kammoun, Mejdi; Peng, Yun; Xu, Minwei; Gao, Yang; Song, Jizhou; Zhang, Yingchun; Ardebili, Haleh; Yu, Cunjiang

    2015-11-01

    Transfer printing, a two-step process (i.e. picking up and printing) for heterogeneous integration, has been widely exploited for the fabrication of functional electronics system. To ensure a reliable process, strong adhesion for picking up and weak or no adhesion for printing are required. However, it is challenging to meet the requirements of switchable stamp adhesion. Here we introduce a simple, high fidelity process, namely tape transfer printing(TTP), enabled by chemically induced dramatic modulation in tape adhesive strength. We describe the working mechanism of the adhesion modulation that governs this process and demonstrate the method by high fidelity tape transfer printing several types of materials and devices, including Si pellets arrays, photodetector arrays, and electromyography (EMG) sensors, from their preparation substrates to various alien substrates. High fidelity tape transfer printing of components onto curvilinear surfaces is also illustrated.

  17. First-principles calculation of photo-induced electron transfer rate constants in phthalocyanine-C60 organic photovoltaic materials: Beyond Marcus theory

    NASA Astrophysics Data System (ADS)

    Lee, Myeong H.; Dunietz, Barry D.; Geva, Eitan

    2014-03-01

    Classical Marcus theory is commonly adopted in solvent-mediated charge transfer (CT) process to obtain the CT rate constant, but it can become questionable when the intramolecular vibrational modes dominate the CT process as in OPV devices because Marcus theory treats these modes classically and therefore nuclear tunneling is not accounted for. We present a computational scheme to obtain the electron transfer rate constant beyond classical Marcus theory. Within this approach, the nuclear vibrational modes are treated quantum-mechanically and a short-time approximation is avoided. Ab initio calculations are used to obtain the basic parameters needed for calculating the electron transfer rate constant. We apply our methodology to phthalocyanine(H2PC)-C60 organic photovoltaic system where one C60 acceptor and one or two H2PC donors are included to model the donor-acceptor interface configuration. We obtain the electron transfer and recombination rate constants for all accessible charge transfer (CT) states, from which the CT exciton dynamics is determined by employing a master equation. The role of higher lying excited states in CT exciton dynamics is discussed. This work is pursued as part of the Center for Solar and Thermal Energy Conversion, an Energy Frontier Research Center funded by the US Department of Energy Office of Science, Office of Basic Energy Sciences under 390 Award No. DE-SC0000957.

  18. Electronic Delocalization, Vibrational Dynamics and Energy Transfer in Organic Chromophores

    DOE PAGES

    Nelson, Tammie Renee; Fernandez Alberti, Sebastian; Roitberg, Adrian; ...

    2017-06-12

    The efficiency of materials developed for solar energy and technological applications depends on the interplay between molecular architecture and light-induced electronic energy redistribution. The spatial localization of electronic excitations is very sensitive to molecular distortions. Vibrational nuclear motions can couple to electronic dynamics driving changes in localization. The electronic energy transfer among multiple chromophores arises from several distinct mechanisms that can give rise to experimentally measured signals. Atomistic simulations of coupled electron-vibrational dynamics can help uncover the nuclear motions directing energy flow. Through careful analysis of excited state wave function evolution and a useful fragmenting of multichromophore systems, through-bond transportmore » and exciton hopping (through-space) mechanisms can be distinguished. Such insights are crucial in the interpretation of fluorescence anisotropy measurements and can aid materials design. Finally, this Perspective highlights the interconnected vibrational and electronic motions at the foundation of nonadiabatic dynamics where nuclear motions, including torsional rotations and bond vibrations, drive electronic transitions.« less

  19. Quinonoid metal complexes: toward molecular switches.

    PubMed

    Dei, Andrea; Gatteschi, Dante; Sangregorio, Claudio; Sorace, Lorenzo

    2004-11-01

    The peculiar redox-active character of quinonoid metal complexes makes them extremely appealing to design materials of potential technological interest. We show here how the tuning of the properties of these systems can be pursued by using appropriate molecular synthetic techniques. In particular, we focus our attention on metal polyoxolene complexes exhibiting intramolecular electron transfer processes involving either the ligand and the metal ion or the two dioxolene moieties of a properly designed ligand thus inducing electronic bistability. The transition between the two metastable electronic states can be induced by different external stimuli such as temperature, pressure, light, or pH suggesting the use of these systems for molecular switches.

  20. Measurement of the spectra of low energy electrons resulting from Auger transitions induced by the annihilation of low energy positrons implanted at The Ag (100) surface

    NASA Astrophysics Data System (ADS)

    Shastry, Karthik; Joglekar, Prasad; Weiss, A. H.; Fazleev, N. G.

    2013-04-01

    A few percent of positrons bound to a solid surface annihilate with core electrons resulting in highly excited atoms containing core holes. These core holes may be filled in an auto-ionizing process in which a less tightly bound electron drops into the hole and the energy difference transferred to an outgoing "Auger electron." Because the core holes are created by annihilation and not impact it is possible to use very low energy positron beams to obtain annihilation induced Auger signals. The Auger signals so obtained have little or none of the large impact induced secondary electron background that interferes with measurements of the low energy Auger spectra obtained using the much higher incident energies necessary when using electron or photon beams. Here we present the results of measurements of the energy spectrum of low energy electrons emitted as a result of Positron Annihilation Induce Auger Electron Emission [1] from a clean Ag (100) surface. The measurements were performed using the University of Texas Arlington Time of Flight Positron Annihilation induced Auger Electron Spectrometer (T-O-F-PAES) System [2]. A strong double peak was observed at ˜35eV corresponding to the N2VV and N3VV Auger transitions in agreement with previous PAES studies [3].

  1. Photoinduced azidohydroperoxidation of myrtenyl hydroperoxide with semiconductor particles and lucigenin as PET-catalysts.

    PubMed

    Griesbeck, Axel G; Reckenthäler, Melissa; Uhlig, Johannes

    2010-06-01

    The allylic hydroperoxide 2 (myrtenyl hydroperoxide), available from singlet oxygen photooxygenation of beta-pinene (1), is converted into the azido bis-hydroperoxide 3 by an electron-transfer induced azidyl radical formation and trapping of the initial tertiary carbon radical by triplet oxygen. The azido bis-hydroperoxide 3 is reduced to the azido 1,2-diol 4 or the amino diol 5, respectively. Beside classical fluorescent PET sensitizers such as rhodamines, also nanosized semiconductor particles as well as lucigenin were applied as catalysts. The electron transfer rate of azide oxidation was determined for lucigenin by fluorescence quenching analysis.

  2. Improving the efficiency of water splitting in dye-sensitized solar cells by using a biomimetic electron transfer mediator

    PubMed Central

    Zhao, Yixin; Swierk, John R.; Megiatto, Jackson D.; Sherman, Benjamin; Youngblood, W. Justin; Qin, Dongdong; Lentz, Deanna M.; Moore, Ana L.; Moore, Thomas A.; Gust, Devens; Mallouk, Thomas E.

    2012-01-01

    Photoelectrochemical water splitting directly converts solar energy to chemical energy stored in hydrogen, a high energy density fuel. Although water splitting using semiconductor photoelectrodes has been studied for more than 40 years, it has only recently been demonstrated using dye-sensitized electrodes. The quantum yield for water splitting in these dye-based systems has, so far, been very low because the charge recombination reaction is faster than the catalytic four-electron oxidation of water to oxygen. We show here that the quantum yield is more than doubled by incorporating an electron transfer mediator that is mimetic of the tyrosine-histidine mediator in Photosystem II. The mediator molecule is covalently bound to the water oxidation catalyst, a colloidal iridium oxide particle, and is coadsorbed onto a porous titanium dioxide electrode with a Ruthenium polypyridyl sensitizer. As in the natural photosynthetic system, this molecule mediates electron transfer between a relatively slow metal oxide catalyst that oxidizes water on the millisecond timescale and a dye molecule that is oxidized in a fast light-induced electron transfer reaction. The presence of the mediator molecule in the system results in photoelectrochemical water splitting with an internal quantum efficiency of approximately 2.3% using blue light. PMID:22547794

  3. A simple model of solvent-induced symmetry-breaking charge transfer in excited quadrupolar molecules

    NASA Astrophysics Data System (ADS)

    Ivanov, Anatoly I.; Dereka, Bogdan; Vauthey, Eric

    2017-04-01

    A simple model has been developed to describe the symmetry-breaking of the electronic distribution of AL-D-AR type molecules in the excited state, where D is an electron donor and AL and AR are identical acceptors. The origin of this process is usually associated with the interaction between the molecule and the solvent polarization that stabilizes an asymmetric and dipolar state, with a larger charge transfer on one side than on the other. An additional symmetry-breaking mechanism involving the direct Coulomb interaction of the charges on the acceptors is proposed. At the same time, the electronic coupling between the two degenerate states, which correspond to the transferred charge being localised either on AL or AR, favours a quadrupolar excited state with equal amount of charge-transfer on both sides. Because of these counteracting effects, symmetry breaking is only feasible when the electronic coupling remains below a threshold value, which depends on the solvation energy and the Coulomb repulsion energy between the charges located on AL and AR. This model allows reproducing the solvent polarity dependence of the symmetry-breaking reported recently using time-resolved infrared spectroscopy.

  4. Optical glow spectra arising from low-energy N2, N2(+) and electron bombardment of MgF2 surfaces

    NASA Technical Reports Server (NTRS)

    Qi, J.; Barnes, A. V.; Espy, S. L.; Riehl-Chudoba, M.; Sun, C.-N.; Albridge, R. G.; Tolk, N. H.

    1991-01-01

    Photon emission spectra resulting from the impact of N2, N2(+), and electron beams on magnesium fluoride in an ultrahigh vacuum environment were measured and compared for beam energies in the range 200-2000 eV. Unexpectedly, only the ion- and electron-induced spectra exhibited broad fluorescence. The observed data suggest that the broad fluorescence arising from low-energy ion bombardment is due primarily to the transfer of electronic energy to the surface by resonance or Auger neutralization. Since molecular nitrogen is a major constituent of the atmosphere at orbital altitudes, these measurements bear directly on radiation-induced glow and erosion processes on surfaces of spacecraft in low-earth orbit.

  5. Manipulation of spin transfer torque using light

    NASA Astrophysics Data System (ADS)

    Rontani, Massimo; Vendelbjerg, Karsten; Sham, Lu

    We show that the spin transfer torque induced by a spin-polarized current on a nanomagnet as the current flows through a semiconductor-nanomagnet-semiconductor junction is externally controlled by shining the junction off-resonantly with a strong laser beam. The excitonic coherence driven by the laser dresses the virtual electron-hole pairs coupling conduction and valence bands and inducing an evanescent state in the proximity of the nanomagnet. The Fano-like quantum interference between this localized state and the continuum spectrum is different in the two spin channels and hence it dramatically alters the spin transport, leading to the coherent control of the spin transfer torque. This work is supported by EU-FP7 Marie Curie Initial Training Network INDEX.

  6. Studying electron-PAG interactions using electron-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Narasimhan, Amrit; Grzeskowiak, Steven; Ostrander, Jonathan; Schad, Jonathon; Rebeyev, Eliran; Neisser, Mark; Ocola, Leonidas E.; Denbeaux, Gregory; Brainard, Robert L.

    2016-03-01

    In extreme ultraviolet (EUV) lithography, 92 eV photons are used to expose photoresists. Typical EUV resists are organic-based and chemically amplified using photoacid generators (PAGs). Upon exposure, PAGs produce acids which catalyze reactions that result in changes in solubility. In EUV lithography, photo- and secondary electrons (energies of 10- 80 eV) play a large role in PAG acid-production. Several mechanisms for electron-PAG interactions (e.g. electron trapping, and hole-initiated chemistry) have been proposed. The aim of this study is to explore another mechanism - internal excitation - in which a bound PAG electron can be excited by receiving energy from another energetic electron, causing a reaction that produces acid. This paper explores the mechanism of internal excitation through the analogous process of electron-induced fluorescence, in which an electron loses energy by transferring that energy to a molecule and that molecule emits a photon rather than decomposing. We will show and quantify electron-induced fluorescence of several fluorophores in polymer films to mimic resist materials, and use this information to refine our proposed mechanism. Relationships between the molecular structure of fluorophores and fluorescent quantum yield may aid in the development of novel PAGs for EUV lithography.

  7. Electric field changes on Au nanoparticles on semiconductor supports--the molecular voltmeter and other methods to observe adsorbate-induced charge-transfer effects in Au/TiO2 nanocatalysts.

    PubMed

    McEntee, Monica; Stevanovic, Ana; Tang, Wenjie; Neurock, Matthew; Yates, John T

    2015-02-11

    Infrared (IR) studies of Au/TiO2 catalyst particles indicate that charge transfer from van der Waals-bound donor or acceptor molecules on TiO2 to or from Au occurs via transport of charge carriers in the semiconductor TiO2 support. The ΔνCO on Au is shown to be proportional to the polarizability of the TiO2 support fully covered with donor or acceptor molecules, producing a proportional frequency shift in νCO. Charge transfer through TiO2 is associated with the population of electron trap sites in the bandgap of TiO2 and can be independently followed by changes in photoluminescence intensity and by shifts in the broad IR absorbance region for electron trap sites, which is also proportional to the polarizability of donors by IR excitation. Density functional theory calculations show that electron transfer from the donor molecules to TiO2 and to supported Au particles produces a negative charge on the Au, whereas the transfer from the Au particles to the TiO2 support into acceptor molecules results in a positive charge on the Au. These changes along with the magnitudes of the shifts are consistent with the Stark effect. A number of experiments show that the ∼3 nm Au particles act as "molecular voltmeters" in influencing ΔνCO. Insulator particles, such as SiO2, do not display electron-transfer effects to Au particles on their surface. These studies are preliminary to doping studies of semiconductor-oxide particles by metal ions which modify Lewis acid/base oxide properties and possibly strongly modify the electron-transfer and catalytic activity of supported metal catalyst particles.

  8. Characterization of photo-induced valence tautomerism in a cobalt-dioxolene complex by ultrafast spectroscopy

    NASA Astrophysics Data System (ADS)

    Beni, A.; Bogani, L.; Bussotti, L.; Dei, A.; Gentili, P. L.; Righini, R.

    2005-01-01

    The valence tautomerism of low-spin CoIII(Cat-N-BQ)(Cat-N-SQ) was investigated by means of UV-vis pump-probe transient absorption spectroscopy in chloroform. By exciting the CT transition of the complex at 480 nm, an intramolecular electron transfer process is selectively triggered. The photo-induced charge transfer is pursued by a cascade of two main molecular events characterized by the ultrafast transient absorption spectroscopy: the first gives rise to the metastable high-spin CoII(Cat-N-BQ)2 that, secondly, reaches the chemical equilibrium with the reactant species.

  9. Adhesion and transfer of PTFE to metals studied by auger emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.; Buckley, D. H.

    1972-01-01

    The adhesion and transfer of polytetrafluoroethylene (PTFE) to metals in ultrahigh vacuum has been studied using Auger emission spectroscopy. The transfer was effected both by compressive static contact and by sliding contact. The transfer observed after static contact was independent of the chemical constitution of the substrate. Electron induced desorption of the fluorine in the transferred PTFE showed that the fluorine had no chemical interaction with the metal substrate. The coefficient of friction on metals was independent of the chemical constitution of the substrate. However, sliding PTFE on soft metals such as aluminum, generated wear fragments that lodged in the PTFE and machined the substrate.

  10. Adhesion and transfer of polytetrafluorethylene to metals studied by Auger emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.; Buckley, D. H.

    1972-01-01

    The adhesion and transfer of polytetrafluoroethylene (PTFE) to metals in ultrahigh vacuum were studied. The transfer was effected both by compressive static contact and by sliding contact. The transfer observed after static contact was independent of the chemical constitution of the substrate. Electron-induced desorption of the fluorine in the transferred PTFE showed that the fluorine had no chemical interaction with the metal substrate. The coefficient of friction on metals was independent of the chemical constitution of the substrate. However, sliding PTFE on soft metals, such as aluminum, generated wear fragments that lodged in the PTFE and machined the substrate.

  11. Resolution of concerted versus sequential mechanisms in photo-induced double-proton transfer reaction in 7-azaindole H-bonded dimer

    PubMed Central

    Catalán, Javier; del Valle, Juan Carlos; Kasha, Michael

    1999-01-01

    The experimental and theoretical bases for a synchronous or concerted double-proton transfer in centro-symmetric H-bonded electronically excited molecular dimers are presented. The prototype model is the 7-azaindole dimer. New research offers confirmation of a concerted mechanism for excited-state biprotonic transfer. Recent femtosecond photoionization and coulombic explosion techniques have given rise to time-of-flight MS observations suggesting sequential two-step biprotonic transfer for the same dimer. We interpret the overall species observed in the time-of-flight experiments as explicable without conflict with the concerted mechanism of proton transfer. PMID:10411876

  12. Laser-induced forward transfer for printed electronics applications

    NASA Astrophysics Data System (ADS)

    Fernández-Pradas, J. M.; Sopeña, P.; González-Torres, S.; Arrese, J.; Cirera, A.; Serra, P.

    2018-02-01

    Laser-induced forward transfer (LIFT) is a printing technique based on the action of a laser pulse that is focused on a thin film of a precursor ink for getting the transfer of a droplet onto a receiver substrate. The experiments presented in this article aim to demonstrate the ability of LIFT to produce electronic circuits on paper, a substrate that is flexible, cheap and recyclable. Tests were conducted to study the printing of conductive tracks with an Ag ink. The printing of a suspension of carbon nanofibers was also studied to demonstrate the ability of LIFT for printing inks with particles with some microns in size that provoke inkjet nozzles to clog. As a proof-of-concept of the LIFT possibilities, both inks were used to print entirely by LIFT a functional humidity sensor on a piece of paper. All the LIFT experiments were performed with a Nd:YAG laser that delivers pulses of a few hundreds of ns in an attempt to approach the technique to laser systems that are already introduced in many production lines for marking and labeling.

  13. Single-molecule interfacial electron transfer dynamics in solar energy conversion

    NASA Astrophysics Data System (ADS)

    Dhital, Bharat

    This dissertation work investigated the parameters affecting the interfacial electron transfer (ET) dynamics in dye-semiconductor nanoparticles (NPs) system by using single-molecule fluorescence spectroscopy and imaging combined with electrochemistry. The influence of the molecule-substrate electronic coupling, the molecular structure, binding geometry on the surface and the molecule-attachment surface chemistry on interfacial charge transfer processes was studied on zinc porphyrin-TiO2 NP systems. The fluorescence blinking measurement on TiO2 NP demonstrated that electronic coupling regulates dynamics of charge transfer processes at the interface depending on the conformation of molecule on the surface. Moreover, semiconductor surface charge induced electronic coupling of molecule which is electrostatically adsorbed on the semiconductor surface also predominantly alters the ET dynamics. Furthermore, interfacial electric field and electron accepting state density dependent ET dynamics has been dissected in zinc porphyrin-TiO2 NP system by observing the single-molecule fluorescence blinking dynamics and fluorescence lifetime with and without applied bias. The significant difference in fluorescence fluctuation and lifetime suggested the modulation of charge transfer dynamics at the interface with external electric field perturbation. Quasi-continuous distribution of fluorescence intensity with applied negative potential was attributed to the faster charge recombination due to reduced density of electron accepting states. The driving force and electron accepting state density ET dependent dynamics has also been probed in zinc porphyrin-TiO2 NP and zinc porphyrin-indium tin oxide (ITO) systems. Study of a molecule adsorbed on two different semiconductors (ITO and TiO2), with large difference in electron densities and distinct driving forces, allows us to observe the changes in rates of back electron transfer process reflected by the suppressed fluorescence blinking of molecule on ITO surface. Finally, the electric field effect on the interface properties has been probed by using surface-enhanced Raman spectroscopy and supported by density functional theory calculations in alizarin-TiO2 system. The perturbation, created by the external potential, has been observed to cause a shift and/or splitting interfacial bond vibrational mode, typical indicator of the coupling energy changes between alizarin and TiO2. Such splitting provides evidence for electric field-dependent electronic coupling changes that have a significant impact on the interfacial electron transfer dynamics.

  14. Fourier transform infrared difference and time-resolved infrared detection of the electron and proton transfer dynamics in photosynthetic water oxidation.

    PubMed

    Noguchi, Takumi

    2015-01-01

    Photosynthetic water oxidation, which provides the electrons necessary for CO₂ reduction and releases O₂ and protons, is performed at the Mn₄CaO₅ cluster in photosystem II (PSII). In this review, studies that assessed the mechanism of water oxidation using infrared spectroscopy are summarized focusing on electron and proton transfer dynamics. Structural changes in proteins and water molecules between intermediates known as Si states (i=0-3) were detected using flash-induced Fourier transform infrared (FTIR) difference spectroscopy. Electron flow in PSII and proton release from substrate water were monitored using the infrared changes in ferricyanide as an exogenous electron acceptor and Mes buffer as a proton acceptor. Time-resolved infrared (TRIR) spectroscopy provided information on the dynamics of proton-coupled electron transfer during the S-state transitions. In particular, a drastic proton movement during the lag phase (~200μs) before electron transfer in the S3→S0 transition was detected directly by monitoring the infrared absorption of a polarizable proton in a hydrogen bond network. Furthermore, the proton release pathways in the PSII proteins were analyzed by FTIR difference measurements in combination with site-directed mutagenesis, isotopic substitutions, and quantum chemical calculations. Therefore, infrared spectroscopy is a powerful tool for understanding the molecular mechanism of photosynthetic water oxidation. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Adsorbate hopping via vibrational-mode coupling induced by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Ueba, H.; Hayashi, M.; Paulsson, M.; Persson, B. N. J.

    2008-09-01

    We study the heat transfer from femtosecond laser-heated hot electrons in a metal to adsorbates in the presence of vibrational-mode coupling. The theory is successfully applied to the experimental result of atomic oxygen hopping on a vicinal Pt(111) surface. The effective friction coupling between hot electrons and the vibrational mode relevant to the hopping motion depends on the transient temperature of the partner mode excited by hot electrons. The calculated two-pulse correlation and fluence dependence of the hopping probability reproduce the experimental results, which were previously analyzed using the hot-electron temperature (Te) -dependent friction ηa(Te) in a conventional heat transfer equation. A possible elementary process behind such a hypothetic modeling using ηa(Te) is discussed in terms of an indirect heating of the vibrational mode for hopping at the surface.

  16. Inhibition of Photophosphorylation by Kaempferol 1

    PubMed Central

    Arntzen, Charles J.; Falkenthal, Scott V.; Bobick, Sandra

    1974-01-01

    Kaempferol, a naturally occurring flavonol, inhibited coupled electron transport and both cyclic and noncyclic photophosphorylation in isolated pea (Pisum sativum) chloroplasts. Over a concentration range which gave marked inhibition of ATP synthesis, there was no effect on basal or uncoupled electron flow or light-induced proton accumulation by isolated thylakoids. It is suggested that kaempferol acts as an energy transfer inhibitor. PMID:16658695

  17. Reduced Charge Transfer Exciton Recombination in Organic Semiconductor Heterojunctions by Molecular Doping

    NASA Astrophysics Data System (ADS)

    Deschler, Felix; da Como, Enrico; Limmer, Thomas; Tautz, Raphael; Godde, Tillmann; Bayer, Manfred; von Hauff, Elizabeth; Yilmaz, Seyfullah; Allard, Sybille; Scherf, Ullrich; Feldmann, Jochen

    2011-09-01

    We investigate the effect of molecular doping on the recombination of electrons and holes localized at conjugated-polymer-fullerene interfaces. We demonstrate that a low concentration of p-type dopant molecules (<4% weight) reduces the interfacial recombination via charge transfer excitons and results in a favored formation of separated carriers. This is observed by the ultrafast quenching of photoluminescence from charge transfer excitons and the increase in photoinduced polaron density by ˜70%. The results are consistent with a reduced formation of emissive charge transfer excitons, induced by state filling of tail states.

  18. Investigation of the Mechanism of Electron Capture and Electron Transfer Dissociation of Peptides with a Covalently Attached Free Radical Hydrogen Atom Scavenger.

    PubMed

    Sohn, Chang Ho; Yin, Sheng; Peng, Ivory; Loo, Joseph A; Beauchamp, J L

    2015-11-15

    The mechanisms of electron capture and electron transfer dissociation (ECD and ETD) are investigated by covalently attaching a free-radical hydrogen atom scavenger to a peptide. The 2,2,6,6-tetramethylpiperidin-l-oxyl (TEMPO) radical was chosen as the scavenger due to its high hydrogen atom affinity (ca. 280 kJ/mol) and low electron affinity (ca. 0.45 ev), and was derivatized to the model peptide, FQX TEMPO EEQQQTEDELQDK. The X TEMPO residue represents a cysteinyl residue derivatized with an acetamido-TEMPO group. The acetamide group without TEMPO was also examined as a control. The gas phase proton affinity (882 kJ/mol) of TEMPO is similar to backbone amide carbonyls (889 kJ/mol), minimizing perturbation to internal solvation and sites of protonation of the derivatized peptides. Collision induced dissociation (CID) of the TEMPO tagged peptide dication generated stable odd-electron b and y type ions without indication of any TEMPO radical induced fragmentation initiated by hydrogen abstraction. The type and abundance of fragment ions observed in the CID spectra of the TEMPO and acetamide tagged peptides are very similar. However, ECD of the TEMPO labeled peptide dication yielded no backbone cleavage. We propose that a labile hydrogen atom in the charge reduced radical ions is scavenged by the TEMPO radical moiety, resulting in inhibition of N-C α backbone cleavage processes. Supplemental activation after electron attachment (ETcaD) and CID of the charge-reduced precursor ion generated by electron transfer of the TEMPO tagged peptide dication produced a series of b + H (b H ) and y + H (y H ) ions along with some c ions having suppressed intensities, consistent with stable O-H bond formation at the TEMPO group. In summary, the results indicate that ECD and ETD backbone cleavage processes are inhibited by scavenging of a labile hydrogen atom by the localized TEMPO radical moiety. This observation supports the conjecture that ECD and ETD processes involve long-lived intermediates formed by electron capture/transfer in which a labile hydrogen atom is present and plays a key role with low energy processes leading to c and z ion formation. Ab initio and density functional calculations are performed to support our conclusion, which depends most importantly on the proton affinity, electron affinity and hydrogen atom affinity of the TEMPO moiety.

  19. Model-based Confirmation of Alternative Substrates of Mitochondrial Electron Transport Chain

    PubMed Central

    Kleessen, Sabrina; Araújo, Wagner L.; Fernie, Alisdair R.; Nikoloski, Zoran

    2012-01-01

    Discrimination of metabolic models based on high throughput metabolomics data, reflecting various internal and external perturbations, is essential for identifying the components that contribute to the emerging behavior of metabolic processes. Here, we investigate 12 different models of the mitochondrial electron transport chain (ETC) in Arabidopsis thaliana during dark-induced senescence in order to elucidate the alternative substrates to this metabolic pathway. Our findings demonstrate that the coupling of the proposed computational approach, based on dynamic flux balance analysis, with time-resolved metabolomics data results in model-based confirmations of the hypotheses that, during dark-induced senescence in Arabidopsis, (i) under conditions where the main substrate for the ETC are not fully available, isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase are able to donate electrons to the ETC, (ii) phytanoyl-CoA does not act even as an indirect substrate of the electron transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase complex, and (iii) the mitochondrial γ-aminobutyric acid transporter has functional significance in maintaining mitochondrial metabolism. Our study provides a basic framework for future in silico studies of alternative pathways in mitochondrial metabolism under extended darkness whereby the role of its components can be computationally discriminated based on available molecular profile data. PMID:22334689

  20. Sulfur K-edge X-ray absorption spectroscopy and density functional theory calculations on monooxo Mo(IV) and bisoxo Mo(VI) bis-dithiolenes: insights into the mechanism of oxo transfer in sulfite oxidase and its relation to the mechanism of DMSO reductase.

    PubMed

    Ha, Yang; Tenderholt, Adam L; Holm, Richard H; Hedman, Britt; Hodgson, Keith O; Solomon, Edward I

    2014-06-25

    Sulfur K-edge X-ray absorption spectroscopy (XAS) and density functional theory (DFT) calculations have been used to determine the electronic structures of two complexes [Mo(IV)O(bdt)2](2-) and [Mo(VI)O2(bdt)2](2-) (bdt = benzene-1,2-dithiolate(2-)) that relate to the reduced and oxidized forms of sulfite oxidase (SO). These are compared with those of previously studied dimethyl sulfoxide reductase (DMSOr) models. DFT calculations supported by the data are extended to evaluate the reaction coordinate for oxo transfer to a phosphite ester substrate. Three possible transition states are found with the one at lowest energy, stabilized by a P-S interaction, in good agreement with experimental kinetics data. Comparison of both oxo transfer reactions shows that in DMSOr, where the oxo is transferred from the substrate to the metal ion, the oxo transfer induces electron transfer, while in SO, where the oxo transfer is from the metal site to the substrate, the electron transfer initiates oxo transfer. This difference in reactivity is related to the difference in frontier molecular orbitals (FMO) of the metal-oxo and substrate-oxo bonds. Finally, these experimentally related calculations are extended to oxo transfer by sulfite oxidase. The presence of only one dithiolene at the enzyme active site selectively activates the equatorial oxo for transfer, and allows facile structural reorganization during turnover.

  1. Comparison of different substrates for laser-induced electron transfer desorption/ionization of metal complexes

    NASA Astrophysics Data System (ADS)

    Grechnikov, A. A.; Georgieva, V. B.; Donkov, N.; Borodkov, A. S.; Pento, A. V.; Raicheva, Z. G.; Yordanov, Tc A.

    2016-03-01

    Four different substrates, namely, graphite, tungsten, amorphous silicon (α-Si) and titanium dioxide (TiO2) films, were compared in view of the laser-induced electron transfer desorption/ionization (LETDI) of metal coordination complexes. A rhenium complex with 8-mercaptoquinoline, a copper complex with diphenylthiocarbazone and chlorophyll A were studied as the test analytes. The dependencies of the ion yield and the surface temperature on the incident radiation fluence were investigated experimentally and theoretically. The temperature was estimated using the numerical solution of a one-dimensional heat conduction problem with a heat source distributed in time and space. It was found that at the same temperature, the ion yield from the different substrates varies in the range of three orders of magnitude. The direct comparison of all studied substrates revealed that LETDI from the TiO2 and α-Si films offer a better choice for producing molecular ions of metal coordination complexes.

  2. Light-induced catalytic and cytotoxic properties of phosphorescent transition metal compounds with a d8 electronic configuration.

    PubMed

    To, Wai-Pong; Zou, Taotao; Sun, Raymond Wai-Yin; Che, Chi-Ming

    2013-07-28

    Transition metal compounds are well documented to have diverse applications such as in catalysis, light-emitting materials and therapeutics. In the areas of photocatalysis and photodynamic therapy, metal compounds of heavy transition metals are highly sought after because they can give rise to triplet excited states upon photoexcitation. The long lifetimes (more than 1 μs) of the triplet states of transition metal compounds allow for bimolecular reactions/processes such as energy transfer and/or electron transfer to occur. Reactions of triplet excited states of luminescent metal compounds with oxygen in cells may generate reactive oxygen species and/or induce damage to DNA, leading to cell death. This article recaps the recent findings on photochemical and phototoxic properties of luminescent platinum(II) and gold(III) compounds both from the literature and experimental results from our group.

  3. Ambipolar insulator-to-metal transition in black phosphorus by ionic-liquid gating.

    PubMed

    Saito, Yu; Iwasa, Yoshihiro

    2015-03-24

    We report ambipolar transport properties in black phosphorus using an electric-double-layer transistor configuration. The transfer curve clearly exhibits ambipolar transistor behavior with an ON-OFF ratio of ∼5 × 10(3). The band gap was determined as ≅0.35 eV from the transfer curve, and Hall-effect measurements revealed that the hole mobility was ∼190 cm(2)/(V s) at 170 K, which is 1 order of magnitude larger than the electron mobility. By inducing an ultrahigh carrier density of ∼10(14) cm(-2), an electric-field-induced transition from the insulating state to the metallic state was realized, due to both electron and hole doping. Our results suggest that black phosphorus will be a good candidate for the fabrication of functional devices, such as lateral p-n junctions and tunnel diodes, due to the intrinsic narrow band gap.

  4. Production of Highly Polarized Positrons Using Polarized Electrons at MeV Energies

    NASA Astrophysics Data System (ADS)

    Abbott, D.; Adderley, P.; Adeyemi, A.; Aguilera, P.; Ali, M.; Areti, H.; Baylac, M.; Benesch, J.; Bosson, G.; Cade, B.; Camsonne, A.; Cardman, L. S.; Clark, J.; Cole, P.; Covert, S.; Cuevas, C.; Dadoun, O.; Dale, D.; Dong, H.; Dumas, J.; Fanchini, E.; Forest, T.; Forman, E.; Freyberger, A.; Froidefond, E.; Golge, S.; Grames, J.; Guèye, P.; Hansknecht, J.; Harrell, P.; Hoskins, J.; Hyde, C.; Josey, B.; Kazimi, R.; Kim, Y.; Machie, D.; Mahoney, K.; Mammei, R.; Marton, M.; McCarter, J.; McCaughan, M.; McHugh, M.; McNulty, D.; Mesick, K. E.; Michaelides, T.; Michaels, R.; Moffit, B.; Moser, D.; Muñoz Camacho, C.; Muraz, J.-F.; Opper, A.; Poelker, M.; Réal, J.-S.; Richardson, L.; Setiniyaz, S.; Stutzman, M.; Suleiman, R.; Tennant, C.; Tsai, C.; Turner, D.; Ungaro, M.; Variola, A.; Voutier, E.; Wang, Y.; Zhang, Y.; PEPPo Collaboration

    2016-05-01

    The Polarized Electrons for Polarized Positrons experiment at the injector of the Continuous Electron Beam Accelerator Facility has demonstrated for the first time the efficient transfer of polarization from electrons to positrons produced by the polarized bremsstrahlung radiation induced by a polarized electron beam in a high-Z target. Positron polarization up to 82% have been measured for an initial electron beam momentum of 8.19 MeV /c , limited only by the electron beam polarization. This technique extends polarized positron capabilities from GeV to MeV electron beams, and opens access to polarized positron beam physics to a wide community.

  5. Production of Highly Polarized Positrons Using Polarized Electrons at MeV Energies

    DOE PAGES

    Abbott, D.; Adderley, P.; Adeyemi, A.; ...

    2016-05-27

    The Polarized Electrons for Polarized Positrons experiment at the injector of the Continuous Electron Beam Accelerator Facility has demonstrated for the first time the efficient transfer of polarization from electrons to positrons produced by the polarized bremsstrahlung radiation induced by a polarized electron beam in a high-Z target. Positron polarization up to 82% have been measured for an initial electron beam momentum of 8.19~MeV/c, limited only by the electron beam polarization. We report that this technique extends polarized positron capabilities from GeV to MeV electron beams, and opens access to polarized positron beam physics to a wide community.

  6. Electric-field-driven electron-transfer in mixed-valence molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blair, Enrique P., E-mail: enrique-blair@baylor.edu; Corcelli, Steven A., E-mail: scorcell@nd.edu; Lent, Craig S., E-mail: lent@nd.edu

    2016-07-07

    Molecular quantum-dot cellular automata is a computing paradigm in which digital information is encoded by the charge configuration of a mixed-valence molecule. General-purpose computing can be achieved by arranging these compounds on a substrate and exploiting intermolecular Coulombic coupling. The operation of such a device relies on nonequilibrium electron transfer (ET), whereby the time-varying electric field of one molecule induces an ET event in a neighboring molecule. The magnitude of the electric fields can be quite large because of close spatial proximity, and the induced ET rate is a measure of the nonequilibrium response of the molecule. We calculate themore » electric-field-driven ET rate for a model mixed-valence compound. The mixed-valence molecule is regarded as a two-state electronic system coupled to a molecular vibrational mode, which is, in turn, coupled to a thermal environment. Both the electronic and vibrational degrees-of-freedom are treated quantum mechanically, and the dissipative vibrational-bath interaction is modeled with the Lindblad equation. This approach captures both tunneling and nonadiabatic dynamics. Relationships between microscopic molecular properties and the driven ET rate are explored for two time-dependent applied fields: an abruptly switched field and a linearly ramped field. In both cases, the driven ET rate is only weakly temperature dependent. When the model is applied using parameters appropriate to a specific mixed-valence molecule, diferrocenylacetylene, terahertz-range ET transfer rates are predicted.« less

  7. Long-lived, charge-shift states in heterometallic, porphyrin-based dendrimers formed via click chemistry.

    PubMed

    Le Pleux, Loïc; Pellegrin, Yann; Blart, Errol; Odobel, Fabrice; Harriman, Anthony

    2011-05-26

    A series of multiporphyrin clusters has been synthesized and characterized in which there exists a logical gradient for either energy or electron transfer between the porphyrins. A central free-base porphyrin (FbP), for example, is equipped with peripheral zinc(II) porphyrins (ZnP) which act as ancillary light harvesters and transfer excitation energy to the FbP under visible light illumination. Additional energy-transfer steps occur at the triplet level, and the series is expanded by including magnesium(II) porphyrins and/or tin(IV) porphyrins as chromophores. Light-induced electron transfer is made possible by incorporating a gold(III) porphyrin (AuP(+)) into the array. Although interesting by themselves, these clusters serve as control compounds by which to understand the photophysical processes occurring within a three-stage dendrimer comprising an AuP(+) core, a second layer formed from four FbP units, and an outer layer containing 12 ZnP residues. Here, illumination into a peripheral ZnP leads to highly efficient electronic energy transfer to FbP, followed by charge transfer to the central AuP(+). Charge recombination within the resultant charge-shift state is intercepted by secondary hole transfer to the ZnP, which occurs with a quantum yield of around 20%. The final charge-shift state survives for some microseconds in fluid solution at room temperature.

  8. Sliding of poly(vinyl chloride) on metals studied by Auger electron spectroscopy

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1974-01-01

    The sliding of polyvinyl chloride on nickel, iron and S-Monel has been studied by Auger electron spectroscopy. Polymer was not transferred to the metals, rather shear appeared to take place at the interface. The metal was progressively chlorinated as the polymer made multiple passes on the surface. The thickness of this chlorine film was the order of one atomic layer. Electron-induced desorption studies indicate that the chlorine is chemisorbed to the metal. These results are interpreted as evidence for mechanically induced and/or thermal degradation of the polymer during sliding. Degradation products of HCl and Cl2 which chemisorb to the metal are evolved near the interface.

  9. Control of Electron Flow Direction in Photoexcited Cycloplatinated Complex Containing Conjugated Polymer-Single Walled Carbon Nanotube Hybrids.

    PubMed

    Xiong, Wenjuan; Du, Lili; Lo, Kin Cheung; Shi, Haiting; Takaya, Tomohisa; Iwata, Koichi; Chan, Wai Kin; Phillips, David Lee

    2018-06-25

    Conjugated polymers incorporated with cycloplatinated complexes (P1-Pt and P2-Pt) were used as dispersants for single walled carbon nanotubes (SWCNTs). Significant changes in the UV-vis absorption spectra were observed after the formation of the polymer/SWCNT hybrids. Molecular dynamics (MD) simulations revealed the presence of a strong interaction between the cycloplatinated complex moieties and the SWCNT surface. The photoinduced electron transfer processes in these hybrids were strongly dependent on the type of the comonomer unit. Upon photoexcitation, the excited P1-Pt donates electrons to the SWCNT, while P2-Pt accepts electrons from the photoexcited SWCNT. These observations were supported by results from Raman and femtosecond time-resolved transient absorption spectroscopy experiments. The strong electronic interaction between the Pt complexes and the SWCNT gives rise to a new hybrid system that has a controllable photo-induced electron transfer flow, which are important in regulating the charge transport processes SWCNT-based optoelectronic devices.

  10. Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography

    NASA Astrophysics Data System (ADS)

    Wang, Qing Hua; Jin, Zhong; Kim, Ki Kang; Hilmer, Andrew J.; Paulus, Geraldine L. C.; Shih, Chih-Jen; Ham, Moon-Ho; Sanchez-Yamagishi, Javier D.; Watanabe, Kenji; Taniguchi, Takashi; Kong, Jing; Jarillo-Herrero, Pablo; Strano, Michael S.

    2012-09-01

    Graphene has exceptional electronic, optical, mechanical and thermal properties, which provide it with great potential for use in electronic, optoelectronic and sensing applications. The chemical functionalization of graphene has been investigated with a view to controlling its electronic properties and interactions with other materials. Covalent modification of graphene by organic diazonium salts has been used to achieve these goals, but because graphene comprises only a single atomic layer, it is strongly influenced by the underlying substrate. Here, we show a stark difference in the rate of electron-transfer reactions with organic diazonium salts for monolayer graphene supported on a variety of substrates. Reactions proceed rapidly for graphene supported on SiO2 and Al2O3 (sapphire), but negligibly on alkyl-terminated and hexagonal boron nitride (hBN) surfaces, as shown by Raman spectroscopy. We also develop a model of reactivity based on substrate-induced electron-hole puddles in graphene, and achieve spatial patterning of chemical reactions in graphene by patterning the substrate.

  11. Molecular alignment effect on the photoassociation process via a pump-dump scheme.

    PubMed

    Wang, Bin-Bin; Han, Yong-Chang; Cong, Shu-Lin

    2015-09-07

    The photoassociation processes via the pump-dump scheme for the heternuclear (Na + H → NaH) and the homonuclear (Na + Na → Na2) molecular systems are studied, respectively, using the time-dependent quantum wavepacket method. For both systems, the initial atom pair in the continuum of the ground electronic state (X(1)Σ(+)) is associated into the molecule in the bound states of the excited state (A(1)Σ(+)) by the pump pulse. Then driven by a time-delayed dumping pulse, the prepared excited-state molecule can be transferred to the bound states of the ground electronic state. It is found that the pump process can induce a superposition of the rovibrational levels |v, j〉 on the excited state, which can lead to the field-free alignment of the excited-state molecule. The molecular alignment can affect the dumping process by varying the effective coupling intensity between the two electronic states or by varying the population transfer pathways. As a result, the final population transferred to the bound states of the ground electronic state varies periodically with the delay time of the dumping pulse.

  12. Molecular alignment effect on the photoassociation process via a pump-dump scheme

    NASA Astrophysics Data System (ADS)

    Wang, Bin-Bin; Han, Yong-Chang; Cong, Shu-Lin

    2015-09-01

    The photoassociation processes via the pump-dump scheme for the heternuclear (Na + H → NaH) and the homonuclear (Na + Na → Na2) molecular systems are studied, respectively, using the time-dependent quantum wavepacket method. For both systems, the initial atom pair in the continuum of the ground electronic state (X1Σ+) is associated into the molecule in the bound states of the excited state (A1Σ+) by the pump pulse. Then driven by a time-delayed dumping pulse, the prepared excited-state molecule can be transferred to the bound states of the ground electronic state. It is found that the pump process can induce a superposition of the rovibrational levels |v, j> on the excited state, which can lead to the field-free alignment of the excited-state molecule. The molecular alignment can affect the dumping process by varying the effective coupling intensity between the two electronic states or by varying the population transfer pathways. As a result, the final population transferred to the bound states of the ground electronic state varies periodically with the delay time of the dumping pulse.

  13. Theoretical study of anisotropic mobility in ladder-type molecule organic semiconductors

    NASA Astrophysics Data System (ADS)

    Wei, Hui-Ling; Liu, Yu-Fang

    2014-09-01

    The properties of two ladder-type semiconductors {M1: 2,2'-(2,7-dihexy1-4,9-dihydro- s-indaceno[1,2- b:5,6- b']dithiophene-4,9-diylidene) dimalononitrile and M2: 2,7-dihexy1-4,9-dihydro- s-indaceno[1,2- b:5,6- b']dithiophene-4,9-dione} as the n-type and ambipolar organic materials are systematically investigated using the first-principle density functional theory combined with the Marcus-Hush electron transfer theory. It is found that the substitution of M1 induces large changes in its electron-transfer mobility of 1.370 cm2 V-1 s-1. M2 has both large electron- and hole-transfer mobility of 0.420 and 0.288 cm2 V-1 s-1, respectively, which indicates that M2 is potentially a high efficient ambipolar organic semiconducting material. Both the M1 and M2 crystals show remarkable anisotropic behavior. A proper design of the n-type and ambipolar organic electronic materials, which may have high mobility performance, is suggested based on the investigated two molecules.

  14. Single ion induced surface nanostructures: a comparison between slow highly charged and swift heavy ions.

    PubMed

    Aumayr, Friedrich; Facsko, Stefan; El-Said, Ayman S; Trautmann, Christina; Schleberger, Marika

    2011-10-05

    This topical review focuses on recent advances in the understanding of the formation of surface nanostructures, an intriguing phenomenon in ion-surface interaction due to the impact of individual ions. In many solid targets, swift heavy ions produce narrow cylindrical tracks accompanied by the formation of a surface nanostructure. More recently, a similar nanometric surface effect has been revealed for the impact of individual, very slow but highly charged ions. While swift ions transfer their large kinetic energy to the target via ionization and electronic excitation processes (electronic stopping), slow highly charged ions produce surface structures due to potential energy deposited at the top surface layers. Despite the differences in primary excitation, the similarity between the nanostructures is striking and strongly points to a common mechanism related to the energy transfer from the electronic to the lattice system of the target. A comparison of surface structures induced by swift heavy ions and slow highly charged ions provides a valuable insight to better understand the formation mechanisms. © 2011 IOP Publishing Ltd

  15. Modulated photochemical reactivities of O-acetylated (3',5'-dimethoxyphenyl)heteroaryl acyloin derivatives under direct irradiation and photo-induced electron transfer conditions.

    PubMed

    Bisht, Rajesh; Singh, Saumya; Krishnamoorthy, Kothandam; Nithyanandhan, Jayaraj

    2018-05-25

    3',5'-Dimethoxybenzoin esters are important photoremovable protecting groups which form 2-phenylbenzofuran derivatives upon photo-release. We utilized a similar concept to test a photochemical method of installing a benzofuran moiety to the conjugated backbone by subjecting O-acetylated (3',5'-dimethylphenyl)heteroaryl acyloin derivatives through direct photo irradiation and a photo-induced electron transfer reaction. These photochemical methods were explored for a variety of heteroaromatic substrates appended on the ketone part of the O-acetylated cross-acyloin derivatives. The furan, thiophene and bithiophene derivatives led to the expected cyclized (benzofuran capped) products but the derivatives with extended conjugation decomposed under direct irradiation. However, under irradiation in the presence of an electron donor such as triethylamine, the extended acyloin derivatives afforded both cyclized and deacetoxylated products. The semiconducting nature of the extended cyclized products was also explored and tested for solution-processed organic field effect transistors, providing a maximum hole mobility of 1.3 × 10-6 cm2 V-1 s-1.

  16. Supression of laser breakdown by pulsed nonequilibrium ns discharge

    NASA Astrophysics Data System (ADS)

    Starikovskiy, A. Y.; Semenov, I. E.; Shneider, M. N.

    2016-10-01

    The avalanche ionization induced by infrared laser pulses was investigated in a pre-ionized argon gas. Pre-ionization was created by a high-voltage pulsed nanosecond discharge developed in the form of a fast ionization wave. Then, behind the front of ionization wave additional avalanche ionization was initiated by the focused Nd-YAG laser pulse. It was shown that the gas pre-ionization inhibits the laser spark generation. It was demonstrated that the suppression of laser spark development in the case of strong gas pre-ionization is because of fast electron energy transfer from the laser beam focal region. The main mechanism of this energy transfer is free electrons diffusion.

  17. Electrostatic transfer of epitaxial graphene to glass.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohta, Taisuke; Pan, Wei; Howell, Stephen Wayne

    2010-12-01

    We report on a scalable electrostatic process to transfer epitaxial graphene to arbitrary glass substrates, including Pyrex and Zerodur. This transfer process could enable wafer-level integration of graphene with structured and electronically-active substrates such as MEMS and CMOS. We will describe the electrostatic transfer method and will compare the properties of the transferred graphene with nominally-equivalent 'as-grown' epitaxial graphene on SiC. The electronic properties of the graphene will be measured using magnetoresistive, four-probe, and graphene field effect transistor geometries [1]. To begin, high-quality epitaxial graphene (mobility 14,000 cm2/Vs and domains >100 {micro}m2) is grown on SiC in an argon-mediated environmentmore » [2,3]. The electrostatic transfer then takes place through the application of a large electric field between the donor graphene sample (anode) and the heated acceptor glass substrate (cathode). Using this electrostatic technique, both patterned few-layer graphene from SiC(000-1) and chip-scale monolayer graphene from SiC(0001) are transferred to Pyrex and Zerodur substrates. Subsequent examination of the transferred graphene by Raman spectroscopy confirms that the graphene can be transferred without inducing defects. Furthermore, the strain inherent in epitaxial graphene on SiC(0001) is found to be partially relaxed after the transfer to the glass substrates.« less

  18. A conjugated microporous polymer based visual sensing platform for aminoglycoside antibiotics in water.

    PubMed

    Bhunia, Subhajit; Dey, Nilanjan; Pradhan, Anirban; Bhattacharya, Santanu

    2018-06-20

    A donor-acceptor based conjugated microporous polymer, PER@NiP-CMOP-1, has been synthesized which can achieve highly sensitive stereo-specific "Turn ON" biosensing of an aminoglycoside up to the ppb level. The coordination-driven inhibition of photo-induced electron transfer (d-PET) for d-electrons and the rotational freezing are the key factors for the recovery of the emission.

  19. Water-chromophore electron transfer determines the photochemistry of cytosine and cytidine.

    PubMed

    Szabla, Rafał; Kruse, Holger; Šponer, Jiří; Góra, Robert W

    2017-07-21

    Many of the UV-induced phenomena observed experimentally for aqueous cytidine were lacking the mechanistic interpretation for decades. These processes include the substantial population of the puzzling long-lived dark state, photohydration, cytidine to uridine conversion and oxazolidinone formation. Here, we present quantum-chemical simulations of excited-state spectra and potential energy surfaces of N1-methylcytosine clustered with two water molecules using the second-order approximate coupled cluster (CC2), complete active space with second-order perturbation theory (CASPT2), and multireference configuration interaction with single and double excitation (MR-CISD) methods. We argue that the assignment of the long-lived dark state to a singlet nπ* excitation involving water-chromophore electron transfer might serve as an explanation for the numerous experimental observations. While our simulated spectra for the state are in excellent agreement with experimentally acquired data, the electron-driven proton transfer process occurring on the surface may initiate the subsequent damage in the vibrationally hot ground state of the chromophore.

  20. A metal-organic framework based on nanosized hexagonal channels as fluorescent indicator for detection of nitroaromatic explosives

    NASA Astrophysics Data System (ADS)

    Hu, Xiao-Li; Wang, Xin-Long; Su, Zhong-Min

    2018-02-01

    A novel Zn-MOF (metal organic framework) [Zn3(NTB)2(DMA)2]·12DMA (NTB = 4,4‧,4″-nitrilotrisbenzoic acid; DMA = N,N-dimethylacetamide) (1) was obtained under solvothermal condition. The resulted MOF which is based on {Zn3} SBU displays an interesting (3,6)-connected three-dimensional net with nanosized, hexagonal channels. Additionally, 1 can be a useful fluorescent indicator for the detection of nitroaromatic explosives qualitatively and quantitatively via a strong quenching effect, especially for picric acid (PA). With increasing - NO2 groups, energy transfer from the electron-donating framework to high electron deficiency becomes more, making the effect of fluorescence quenching more obvious. The result demonstrates that the photo-induced electron transfer (PET) is responsible for the emission quenching.

  1. Enhanced, robust light-driven H 2 generation by gallium-doped titania nanoparticles

    DOE PAGES

    Luo, Si; Nguyen-Phan, Thuy-Duong; Vovchok, Dimitriy; ...

    2017-12-14

    The splitting of water into molecular hydrogen and oxygen with the use of renewable solar energy is considered one of the most promising routes to yield sustainable fuel. In this paper, we report the H 2 evolution performance of gallium doped TiO 2 photocatalysts with varying degrees of Ga dopant. The gallium(III) ions induced significant changes in the structural, textural and electronic properties of TiO 2 nanoparticles, resulting in remarkably enhanced photocatalytic activity and good stability for H 2 production. Ga 3+ ions can act as hole traps that enable a large number of excited electrons to migrate towards themore » TiO 2 surface, thereby facilitating electron transfer and charge separation. Additionally, the cationic dopant and its induced defects might introduce a mid-gap state, promoting electron migration and prolonging the lifetime of charge carrier pairs. We have discovered that the optimal Ga dopant concentration was 3.125 at% and that the incorporation of platinum (0.5 wt%) as a co-catalyst further improved the H 2 evolution rate up to 5722 μmol g -1 h -1. Pt not only acts as an electron sink, drastically increasing the electron/hole pair lifetime, but it also creates an intimate contact at the heterojunction between Pt and Ga-TiO 2, thus improving the interfacial electron transfer process. Finally, these catalyst design strategies provide new ways of designing transition metal photocatalysts that improve green fuel production from renewable solar energy and water.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Si; Nguyen-Phan, Thuy-Duong; Vovchok, Dimitriy

    The splitting of water into molecular hydrogen and oxygen with the use of renewable solar energy is considered one of the most promising routes to yield sustainable fuel. In this paper, we report the H 2 evolution performance of gallium doped TiO 2 photocatalysts with varying degrees of Ga dopant. The gallium(III) ions induced significant changes in the structural, textural and electronic properties of TiO 2 nanoparticles, resulting in remarkably enhanced photocatalytic activity and good stability for H 2 production. Ga 3+ ions can act as hole traps that enable a large number of excited electrons to migrate towards themore » TiO 2 surface, thereby facilitating electron transfer and charge separation. Additionally, the cationic dopant and its induced defects might introduce a mid-gap state, promoting electron migration and prolonging the lifetime of charge carrier pairs. We have discovered that the optimal Ga dopant concentration was 3.125 at% and that the incorporation of platinum (0.5 wt%) as a co-catalyst further improved the H 2 evolution rate up to 5722 μmol g -1 h -1. Pt not only acts as an electron sink, drastically increasing the electron/hole pair lifetime, but it also creates an intimate contact at the heterojunction between Pt and Ga-TiO 2, thus improving the interfacial electron transfer process. Finally, these catalyst design strategies provide new ways of designing transition metal photocatalysts that improve green fuel production from renewable solar energy and water.« less

  3. Understanding How Isotopes Affect Charge Transfer in P3HT/PCBM: A Quantum Trajectory-Electronic Structure Study with Nonlinear Quantum Corrections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lei; Jakowski, Jacek; Garashchuk, Sophya

    The experimentally observed effect of selective deuterium substitution on the open circuit voltage for a blend of poly(3-hexylthiophene)(P3HT) and [6,6]-phenyl-C 61- butyric acid methyl ester (PCBM) (Nat. Commun. 5:3180, 2014) is explored using a 221-atom model of a polymer-wrapped PCBM molecule. We describe the protonic and deuteronic wavefunctions for the H/D isotopologues of the hexyl side chains within a Quantum Trajectory/Electronic Structure approach where the dynamics is performed with newly developed nonlinear corrections to the quantum forces, necessary to describe the nuclear wavefunctions; the classical forces are generated with a Density Functional Tight Binding method. We used the resulting protonicmore » and deuteronic time-dependent wavefunctions to assess the effects of isotopic substitution (deuteration) on the energy gaps relevant to the charge transfer for the donor and acceptor electronic states. Furthermore, while the isotope effect on the electronic energy levels is found negligible, the quantum-induced fluctuations of the energy gap between the charge transfer and charge separated states due to nuclear wavefunctions may account for experimental trends by promoting charge transfer in P3HT/PCBM and increasing charge recombination on the donor in the deuterium substituted P3HT/PCBM.« less

  4. Highly galloylated tannin fractions from witch hazel (Hamamelis virginiana) bark: electron transfer capacity, in vitro antioxidant activity, and effects on skin-related cells.

    PubMed

    Touriño, Sonia; Lizárraga, Daneida; Carreras, Anna; Lorenzo, Sonia; Ugartondo, Vanessa; Mitjans, Montserrat; Vinardell, María Pilar; Juliá, Luis; Cascante, Marta; Torres, Josep Lluís

    2008-03-01

    Witch hazel ( Hammamelis virginiana) bark is a rich source of both condensed and hydrolizable oligomeric tannins. From a polyphenolic extract soluble in both ethyl acetate and water, we have generated fractions rich in pyrogallol-containing polyphenols (proanthocyanidins, gallotannins, and gallates). The mixtures were highly active as free radical scavengers against ABTS, DPPH (hydrogen donation and electron transfer), and HNTTM (electron transfer). They were also able to reduce the newly introduced TNPTM radical, meaning that they included some highly reactive components. Witch hazel phenolics protected red blood cells from free radical-induced hemolysis and were mildly cytotoxic to 3T3 fibroblasts and HaCat keratinocytes. They also inhibited the proliferation of tumoral SK-Mel 28 melanoma cells at lower concentrations than grape and pine procyanidins. The high content in pyrogallol moieties may be behind the effect of witch hazel phenolics on skin cells. Because the most cytotoxic and antiproliferative mixtures were also the most efficient as electron transfer agents, we hypothesize that the final putative antioxidant effect of polyphenols may be in part attributed to the stimulation of defense systems by mild prooxidant challenges provided by reactive oxygen species generated through redox cycling.

  5. Understanding How Isotopes Affect Charge Transfer in P3HT/PCBM: A Quantum Trajectory-Electronic Structure Study with Nonlinear Quantum Corrections

    DOE PAGES

    Wang, Lei; Jakowski, Jacek; Garashchuk, Sophya; ...

    2016-08-09

    The experimentally observed effect of selective deuterium substitution on the open circuit voltage for a blend of poly(3-hexylthiophene)(P3HT) and [6,6]-phenyl-C 61- butyric acid methyl ester (PCBM) (Nat. Commun. 5:3180, 2014) is explored using a 221-atom model of a polymer-wrapped PCBM molecule. We describe the protonic and deuteronic wavefunctions for the H/D isotopologues of the hexyl side chains within a Quantum Trajectory/Electronic Structure approach where the dynamics is performed with newly developed nonlinear corrections to the quantum forces, necessary to describe the nuclear wavefunctions; the classical forces are generated with a Density Functional Tight Binding method. We used the resulting protonicmore » and deuteronic time-dependent wavefunctions to assess the effects of isotopic substitution (deuteration) on the energy gaps relevant to the charge transfer for the donor and acceptor electronic states. Furthermore, while the isotope effect on the electronic energy levels is found negligible, the quantum-induced fluctuations of the energy gap between the charge transfer and charge separated states due to nuclear wavefunctions may account for experimental trends by promoting charge transfer in P3HT/PCBM and increasing charge recombination on the donor in the deuterium substituted P3HT/PCBM.« less

  6. Synthesis and room temperature photo-induced electron transfer in biologically active bis(terpyridine)ruthenium(II)-cytochrome c bioconjugates and the effect of solvents on the bioconjugation of cytochrome c.

    PubMed

    Peterson, Joshua R; Smith, Trevor A; Thordarson, Pall

    2010-01-07

    Photo-active bis(terpyridine)ruthenium(ii) chromophores were synthesised and attached to the redox enzyme iso-1 cytochrome c in a mixed solvent system to form photo-induced bioconjugates in greater than 40% yield after purification. The effects of up to 20% (v/v) of acetonitrile, tetrahydrofuran, dimethylformamide, or dimethyl sulfoxide at 4, 25 and 35 degrees C on the stability and biological activity of cytochrome c and its reactivity towards the model compound 4,4'-dithiodipyridine (DTDP) was measured. The second-order rate constant for the DTDP reaction was found to range between k = 2.5-4.3 M(-1) s(-1) for reactions with 5% organic solvent added compared to k = 5.6 M(-1) s(-1) in pure water at 25 degrees C. Use of 20% solvent generally results in significant protein oxidation, and 20% acetonitrile and tetrahydrofuran in particular result in significant protein dimerization, which competes with the bioconjugation reaction. Cyclic voltammetry studies indicated that the rate of electron transfer to the heme in solution was reduced in the bis(terpyridine)ruthenium(ii) cytochrome c bioconjugates compared to unmodified cytochrome c. Steady-state fluorescence studies on these bioconjugates showed that energy or electron transfer is taking place between the bis(terpyridine)ruthenium(ii) chromophores and cytochrome c. The bis(terpyridine)ruthenium(ii) cytochrome c bioconjugates demonstrate room temperature photo-activated electron transfer from the bis(terpyridine)ruthenium(ii) donor to the protein acceptor. Two sacrificial donors were used; in 50% glycerol, the bioconjugates were reduced in about 15 min while in 20 mM EDTA the bioconjugates were fully reduced in less than 5 min upon irradiation with a xenon lamp source. Under these conditions, the reduction of the non-covalent mixture of cytochrome c and bis(terpyridine)ruthenium(ii) mixtures took over 30 min. Control experiments showed that the photo-induced reduction of cytochrome c only occurs in the absence of oxygen and presence of a sacrificial donor. These results are encouraging for future incorporation of these bioconjugates in light-responsive bioelectronic circuits, including photo-activated biosensors and biofuel cells.

  7. Alternating electron and proton transfer steps in photosynthetic water oxidation

    PubMed Central

    Klauss, André; Haumann, Michael; Dau, Holger

    2012-01-01

    Water oxidation by cyanobacteria, algae, and plants is pivotal in oxygenic photosynthesis, the process that powers life on Earth, and is the paradigm for engineering solar fuel–production systems. Each complete reaction cycle of photosynthetic water oxidation requires the removal of four electrons and four protons from the catalytic site, a manganese–calcium complex and its protein environment in photosystem II. In time-resolved photothermal beam deflection experiments, we monitored apparent volume changes of the photosystem II protein associated with charge creation by light-induced electron transfer (contraction) and charge-compensating proton relocation (expansion). Two previously invisible proton removal steps were detected, thereby filling two gaps in the basic reaction-cycle model of photosynthetic water oxidation. In the S2 → S3 transition of the classical S-state cycle, an intermediate is formed by deprotonation clearly before electron transfer to the oxidant (). The rate-determining elementary step (τ, approximately 30 µs at 20 °C) in the long-distance proton relocation toward the protein–water interface is characterized by a high activation energy (Ea = 0.46 ± 0.05 eV) and strong H/D kinetic isotope effect (approximately 6). The characteristics of a proton transfer step during the S0 → S1 transition are similar (τ, approximately 100 µs; Ea = 0.34 ± 0.08 eV; kinetic isotope effect, approximately 3); however, the proton removal from the Mn complex proceeds after electron transfer to . By discovery of the transient formation of two further intermediate states in the reaction cycle of photosynthetic water oxidation, a temporal sequence of strictly alternating removal of electrons and protons from the catalytic site is established. PMID:22988080

  8. Alternating electron and proton transfer steps in photosynthetic water oxidation.

    PubMed

    Klauss, André; Haumann, Michael; Dau, Holger

    2012-10-02

    Water oxidation by cyanobacteria, algae, and plants is pivotal in oxygenic photosynthesis, the process that powers life on Earth, and is the paradigm for engineering solar fuel-production systems. Each complete reaction cycle of photosynthetic water oxidation requires the removal of four electrons and four protons from the catalytic site, a manganese-calcium complex and its protein environment in photosystem II. In time-resolved photothermal beam deflection experiments, we monitored apparent volume changes of the photosystem II protein associated with charge creation by light-induced electron transfer (contraction) and charge-compensating proton relocation (expansion). Two previously invisible proton removal steps were detected, thereby filling two gaps in the basic reaction-cycle model of photosynthetic water oxidation. In the S(2) → S(3) transition of the classical S-state cycle, an intermediate is formed by deprotonation clearly before electron transfer to the oxidant (Y Z OX). The rate-determining elementary step (τ, approximately 30 µs at 20 °C) in the long-distance proton relocation toward the protein-water interface is characterized by a high activation energy (E(a) = 0.46 ± 0.05 eV) and strong H/D kinetic isotope effect (approximately 6). The characteristics of a proton transfer step during the S(0) → S(1) transition are similar (τ, approximately 100 µs; E(a) = 0.34 ± 0.08 eV; kinetic isotope effect, approximately 3); however, the proton removal from the Mn complex proceeds after electron transfer to . By discovery of the transient formation of two further intermediate states in the reaction cycle of photosynthetic water oxidation, a temporal sequence of strictly alternating removal of electrons and protons from the catalytic site is established.

  9. Exploring routes to tailor the physical and chemical properties of oxides via doping: an STM study

    NASA Astrophysics Data System (ADS)

    Nilius, Niklas

    2015-08-01

    Doping opens fascinating possibilities for tailoring the electronic, optical, magnetic, and chemical properties of oxides. The dopants perturb the intrinsic behavior of the material by generating charge centers for electron transfer into adsorbates, by inducing new energy levels for electronic and optical excitations, and by altering the surface morphology and hence the adsorption and reactivity pattern. Despite a vivid scientific interest, knowledge on doped oxides is limited when compared to semiconductors, which reflects the higher complexity and the insulating nature of many oxides. In fact, atomic-scale studies, aiming at a mechanistic understanding of dopant-related processes, are still scarce. In this article, we review our scanning tunneling microscopy (STM) experiments on thin, crystalline oxide films with a defined doping level. We demonstrate how the impurities alter the surface morphology and produce cationic/anionic vacancies in order to keep the system charge neutral. We discuss how individual dopants can be visualized in the lattice, even if they reside in subsurface layers. By means of STM-conductance and x-ray photoelectron spectroscopy, we determine the electronic impact of dopants, including the energies of their eigen states and local band-bending effects in the host oxide. Electronic transitions between dopant-induced gap states give rise to new optical modes, as detected with STM luminescence spectroscopy. From a chemical perspective, dopants are introduced to improve the redox potential of oxide materials. Electron transfer from Mo-donors, for example, alters the growth behavior of gold and activates O2 molecules on a wide-gap CaO surface. Such results demonstrate the enormous potential of doped oxides in heterogeneous catalysis. Our experiments address the issue of doping from a fundamental viewpoint, posing questions on the lattice position, charge state, and electron-transfer potential of the impurity ions. Whether doped oxides are suitable to catalyze surface reactions needs to be explored in more applied studies in the future.

  10. Electron emission from surfaces resulting from low energy positron bombardment

    NASA Astrophysics Data System (ADS)

    Mukherjee, Saurabh

    Measurements of the secondary electron energy spectra resulting from very low energy positron bombardment of a polycrystalline Au and Cu (100) surfaces are presented that provide evidence for a single step transition from an unbound scattering state to an image potential bound state. The primary positron energy threshold for secondary electron emission and energy cutoff of the positron induced secondary electron energy peak are consistent with an Auger like process in which an incident positron make a transition from a scattering state to a surface-image potential bound while transferring all of the energy difference to an outgoing secondary electron. We term this process: the Auger mediated quantum sticking effect (AQSE). The intensities of the positron induced secondary electron peak are used to estimate the probability of this process as a function of incident positron energy. Positron annihilation induced Auger spectra (PAES) of Cu and Au are presented that are free of all primary beam induced secondary electron background. This background was eliminated by setting the positron beam energy below AQSE threshold. The background free PAES spectra obtained include the first measurements of the low energy tail of CVV Auger transitions all the way down to zero kinetic energy. The integrated intensity of this tail is several times larger than Auger peak itself which provides strong evidence for multi-electron Auger processes.

  11. Influence of Proton Acceptors on the Proton-Coupled Electron Transfer Reaction Kinetics of a Ruthenium-Tyrosine Complex.

    PubMed

    Lennox, J Christian; Dempsey, Jillian L

    2017-11-22

    A polypyridyl ruthenium complex with fluorinated bipyridine ligands and a covalently bound tyrosine moiety was synthesized, and its photo-induced proton-coupled electron transfer (PCET) reactivity in acetonitrile was investigated with transient absorption spectroscopy. Using flash-quench methodology with methyl viologen as an oxidative quencher, a Ru 3+ species is generated that is capable of initiating the intramolecular PCET oxidation of the tyrosine moiety. Using a series of substituted pyridine bases, the reaction kinetics were found to vary as a function of proton acceptor concentration and identity, with no significant H/D kinetic isotope effect. Through analysis of the kinetics traces and comparison to a control complex without the tyrosine moiety, PCET reactivity was found to proceed through an equilibrium electron transfer followed by proton transfer (ET-PT) pathway in which irreversible deprotonation of the tyrosine radical cation shifts the ET equilibrium, conferring a base dependence on the reaction. Comprehensive kinetics modeling allowed for deconvolution of complex kinetics and determination of rate constants for each elementary step. Across the five pyridine bases explored, spanning a range of 4.2 pK a units, a linear free-energy relationship was found for the proton transfer rate constant with a slope of 0.32. These findings highlight the influence that proton transfer driving force exerts on PCET reaction kinetics.

  12. Molecular level energy and electron transfer processes at nanocrystalline titanium dioxide interfaces

    NASA Astrophysics Data System (ADS)

    Farzad, Fereshteh

    This thesis describes photo-induced molecular electron and energy transfer processes occurring at nanocrystalline semiconductor interfaces. The Introductory Chapter provides background and describes how these materials may be useful for solar energy conversion. In Chapter 2, results describing excitation of Ru(deeb)(bpy)2 2+, bis(2,2'-bipyridine)(2,2'-bipyridine-4,4 '-diethylester)ruthenium(II) hexafluorophosphate, bound to nanocrystalline TiO2 thin films, immersed in an acetonitrile bath are presented. The data indicates that light excitation forms predominately long-lived metal-to-ligand charge-transfer, MLCT, excited states under these conditions. Modeling of the data as a function of irradiance has been accomplished assuming parallel unimolecular and bimolecular excited state deactivation processes. The quantum yield for excited state formation depends on the excitation irradiance, consistent with triplet-triplet annihilation processes that occur with k > 1 x 108 s-1. Chapter 3 extends the work described in Chapter 2 to LiClO4 acetonitrile solutions. Li+ addition results in a red shift in the MLCT absorption and photoluminescence, PL, and a concentration dependent quenching of the PL intensity on TiO2. The Li+ induced spectroscopic changes were found to be reversible by varying the electrolyte composition. A second-order kinetic model quantified charge recombination transients. A model is proposed wherein Li+ ion adsorption stabilizes TiO2 acceptor states resulting in energetically more favorable interfacial electron transfer. The photophysical and photoelectrochemical properties of porous nanocrystalline anatase TiO2 electrodes modified with Ru(deeb)(bpy)2 2+, Os(deeb)(bpy)22+, and mixtures of both are described in Chapters 4 and 5. In regenerative solar cells with 0.5 M LiI/0.05 M I2 acetonitrile electrolyte, both compounds efficiently inject electrons into TiO2 producing monochromatic incident photon-to-current efficiencies (IPCE), IPCE (460 nm) = 0.70 + 0.05 for Ru(dcb)(bpy)2 2+/TiO2 and 0. 10 + 0.05 for Os(dcb)(bpy)2 2+/TiO2. Os(dcb)(bpy)22+ extends the spectral sensitivity of the TiO2 material beyond 700 rim. Application of a negative bias to the derivatized TiO2 surfaces results in inefficient interfacial electron transfer and no significant photocurrent. Instead, lateral energy transfer cross the nanocrystalline TiO2 surface from Ru(dcb)(bpy)22+* to Os(dcb)(bpy) 22+ is observed. The energy transfer process can be switched off with a positive applied bias ten times with no significant deterioration. The results demonstrate control of molecular excited states at nanostructured interfaces.

  13. Theoretical investigation of the charge-transfer properties in different meso-linked zinc porphyrins for highly efficient dye-sensitized solar cells.

    PubMed

    Namuangruk, Supawadee; Sirithip, Kanokkorn; Rattanatwan, Rattanawelee; Keawin, Tinnagon; Kungwan, Nawee; Sudyodsuk, Taweesak; Promarak, Vinich; Surakhot, Yaowarat; Jungsuttiwong, Siriporn

    2014-06-28

    The charge transfer effect of different meso-substituted linkages on porphyrin analogue 1 (A1, B1 and C1) was theoretically investigated using density functional theory (DFT) and time-dependent DFT (TDDFT) calculations. The calculated geometry parameters and natural bond orbital analysis reveal that the twisted conformation between porphyrin macrocycle and meso-substituted linkages leads to blocking of the conjugation of the conjugated backbone, and the frontier molecular orbital plot shows that the intramolecular charge transfer of A1, B1 and C1 hardly takes place. In an attempt to improve the photoinduced intramolecular charge transfer ability of the meso-linked zinc porphyrin sensitizer, a strong electron-withdrawing group (CN) was introduced into the anchoring group of analogue 1 forming analogue 2 (A2, B2 and C2). The density difference plot of A2, B2 and C2 shows that the charge transfer properties dramatically improved. The electron injection process has been performed using TDDFT; the direct charge-transfer transition in the A2-(TiO2)38 interacting system takes place; our results strongly indicated that introducing electron-withdrawing groups into the acceptor part of porphyrin dyes can fine-tune the effective conjugation length of the π-spacer and improve intramolecular charge transfer properties, consequently inducing the electron injection process from the anchoring group of the porphyrin dye to the (TiO2)38 surface which may improve the conversion efficiency of the DSSCs. Our calculated results can provide valuable information and a promising outlook for computation-aided sensitizer design with anticipated good properties in further experimental synthesis.

  14. Low-cost optical fabrication of flexible copper electrode via laser-induced reductive sintering and adhesive transfer

    NASA Astrophysics Data System (ADS)

    Back, Seunghyun; Kang, Bongchul

    2018-02-01

    Fabricating copper electrodes on heat-sensitive polymer films in air is highly challenging owing to the need of expensive copper nanoparticles, rapid oxidation of precursor during sintering, and limitation of sintering temperature to prevent the thermal damage of the polymer film. A laser-induced hybrid process of reductive sintering and adhesive transfer is demonstrated to cost-effectively fabricate copper electrode on a polyethylene film with a thermal resistance below 100 °C. A laser-induced reductive sintering process directly fabricates a high-conductive copper electrode onto a glass donor from copper oxide nanoparticle solution via photo-thermochemical reduction and agglomeration of copper oxide nanoparticles. The sintered copper patterns were transferred in parallel to a heat-sensitive polyethylene film through self-selective surface adhesion of the film, which was generated by the selective laser absorption of the copper pattern. The method reported here could become one of the most important manufacturing technologies for fabricating low-cost wearable and disposable electronics.

  15. Reduction of electron accumulation at InN(0001) surfaces via saturation of surface states by potassium and oxygen as donor- or acceptor-type adsorbates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenhardt, A.; Reiß, S.; Krischok, S., E-mail: stefan.krischok@tu-ilmenau.de

    2014-01-28

    The influence of selected donor- and acceptor-type adsorbates on the electronic properties of InN(0001) surfaces is investigated implementing in-situ photoelectron spectroscopy. The changes in work function, surface band alignment, and chemical bond configurations are characterized during deposition of potassium and exposure to oxygen. Although an expected opponent charge transfer characteristic is observed with potassium donating its free electron to InN, while dissociated oxygen species extract partial charge from the substrate, a reduction of the surface electron accumulation occurs in both cases. This observation can be explained by adsorbate-induced saturation of free dangling bonds at the InN resulting in the disappearancemore » of surface states, which initially pin the Fermi level and induce downward band bending.« less

  16. Quantum Electron Tunneling in Respiratory Complex I1

    PubMed Central

    Hayashi, Tomoyuki; Stuchebrukhov, Alexei A.

    2014-01-01

    We have simulated the atomistic details of electronic wiring of all Fe/S clusters in complex I, a key enzyme in the respiratory electron transport chain. The tunneling current theory of many-electron systems is applied to the broken-symmetry (BS) states of the protein at the ZINDO level. One-electron tunneling approximation is found to hold in electron tunneling between the anti-ferromagnetic binuclear and tetranuclear Fe/S clusters with moderate induced polarization of the core electrons. Calculated tunneling energy is about 3 eV higher than Fermi level in the band gap of the protein, which supports that the mechanism of electron transfer is quantum mechanical tunneling, as in the rest of electron transport chain. Resulting electron tunneling pathways consist of up to three key contributing protein residues between neighboring Fe/S clusters. A distinct signature of the wave properties of electrons is observed as quantum interferences when multiple tunneling pathways exist. In N6a-N6b, electron tunnels along different pathways depending on the involved BS states, suggesting possible fluctuations of the tunneling pathways driven by the local protein environment. The calculated distance dependence of the electron transfer rates with internal water molecules included are in good agreement with a reported phenomenological relation. PMID:21495666

  17. Light-Induced Activation of a Molybdenum Oxotransferase Model within a Ru(II)-Mo(VI) Dyad.

    PubMed

    Ducrot, Aurélien B; Coulson, Ben A; Perutz, Robin N; Duhme-Klair, Anne-Kathrin

    2016-12-19

    Nature uses molybdenum-containing enzymes to catalyze oxygen atom transfer (OAT) from water to organic substrates. In these enzymes, the two electrons that are released during the reaction are rapidly removed, one at a time, by spatially separated electron transfer units. Inspired by this design, a Ru(II)-Mo(VI) dyad was synthesized and characterized, with the aim of accelerating the rate-determining step in the cis-dioxo molybdenum-catalyzed OAT cycle, the transfer of an oxo ligand to triphenyl phosphine, via a photo-oxidation process. The dyad consists of a photoactive bis(bipyridyl)-phenanthroline ruthenium moiety that is covalently linked to a bioinspired cis-dioxo molybdenum thiosemicarbazone complex. The quantum yield and luminescence lifetimes of the dyad [Ru(bpy) 2 (L 2 )MoO 2 (solv)] 2+ were determined. The major component of the luminescence decay in MeCN solution (τ = 1149 ± 2 ns, 67%) corresponds closely to the lifetime of excited [Ru(bpy) 2 (phen-NH 2 )] 2+ , while the minor component (τ = 320 ± 1 ns, 31%) matches that of [Ru(bpy) 2 (H 2 -L 2 )] 2+ . In addition, the (spectro)electrochemical properties of the system were investigated. Catalytic tests showed that the dyad-catalyzed OAT from dimethyl sulfoxide to triphenyl phosphine proceeds significantly faster upon irradiation with visible light than in the dark. Methylviologen acts as a mediator in the photoredox cycle, but it is regenerated and hence only required in stoichiometric amounts with respect to the catalyst rather than sacrificial amounts. It is proposed that oxidative quenching of the photoexcited Ru unit, followed by intramolecular electron transfer, leads to the production of a reactive one-electron oxidized catalyst, which is not accessible by electrochemical methods. A significant, but less pronounced, rate enhancement was observed when an analogous bimolecular system was tested, indicating that intramolecular electron transfer between the photosensitizer and the catalytic center is more efficient than intermolecular electron transfer between the separate components.

  18. UV-radiation-induced electron emission by hormones. Hypothesis for specific communication mechanisms

    NASA Astrophysics Data System (ADS)

    Getoff, Nikola

    2009-11-01

    The highlights of recently observed electron emission from electronically excited sexual hormones (17β-estradiol, progesterone, testosterone) and the phytohormone genistein in polar media are briefly reviewed. The electron yield, Q(e aq-), dependence from substrate concentration, hormone structure, polarity of solvent, absorbed energy and temperature are discussed. The hormones reactivity with e aq- and efficiency in electron transfer ensure them the ability to communicate with other biological systems in an organism. A hypothesis is presented for the explanation of the mechanisms of the distinct recognition of signals transmitted by electrons, originating from different types of hormones to receiving centres. Biological consequences of the electron emission in respect to cancer are mentioned.

  19. All-optical photochromic spatial light modulators based on photoinduced electron transfer in rigid matrices

    NASA Technical Reports Server (NTRS)

    Beratan, David N. (Inventor); Perry, Joseph W. (Inventor)

    1991-01-01

    A single material (not a multi-element structure) spatial light modulator may be written to, as well as read out from, using light. The device has tailorable rise and hold times dependent on the composition and concentration of the molecular species used as the active components. The spatial resolution of this device is limited only by light diffraction as in volume holograms. The device may function as a two-dimensional mask (transmission or reflection) or as a three-dimensional volume holographic medium. This device, based on optically-induced electron transfer, is able to perform incoherent to coherent image conversion or wavelength conversion over a wide spectral range (ultraviolet, visible, or near-infrared regions).

  20. Comparative investigation of surface transfer doping of hydrogen terminated diamond by high electron affinity insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verona, C.; Marinelli, Marco; Verona-Rinati, G.

    We report on a comparative study of transfer doping of hydrogenated single crystal diamond surface by insulators featured by high electron affinity, such as Nb{sub 2}O{sub 5}, WO{sub 3}, V{sub 2}O{sub 5}, and MoO{sub 3}. The low electron affinity Al{sub 2}O{sub 3} was also investigated for comparison. Hole transport properties were evaluated in the passivated hydrogenated diamond films by Hall effect measurements, and were compared to un-passivated diamond films (air-induced doping). A drastic improvement was observed in passivated samples in terms of conductivity, stability with time, and resistance to high temperatures. The efficiency of the investigated insulators, as electron acceptingmore » materials in hydrogenated diamond surface, is consistent with their electronic structure. These surface acceptor materials generate a higher hole sheet concentration, up to 6.5 × 10{sup 13} cm{sup −2}, and a lower sheet resistance, down to 2.6 kΩ/sq, in comparison to the atmosphere-induced values of about 1 × 10{sup 13} cm{sup −2} and 10 kΩ/sq, respectively. On the other hand, hole mobilities were reduced by using high electron affinity insulator dopants. Hole mobility as a function of hole concentration in a hydrogenated diamond layer was also investigated, showing a well-defined monotonically decreasing trend.« less

  1. Competing charge transfer pathways at the photosystem II-electrode interface

    PubMed Central

    Zhang, Jenny Z.; Sokol, Katarzyna P.; Paul, Nicholas; Romero, Elisabet; van Grondelle, Rienk; Reisner, Erwin

    2016-01-01

    The integration of the water-oxidation enzyme, photosystem II (PSII), into electrodes allows the electrons extracted from water-oxidation to be harnessed for enzyme characterization and driving novel endergonic reactions. However, PSII continues to underperform in integrated photoelectrochemical systems despite extensive optimization efforts. Here, we performed protein-film photoelectrochemistry on spinach and Thermosynechococcus elongatus PSII, and identified a competing charge transfer pathway at the enzyme-electrode interface that short-circuits the known water-oxidation pathway: photo-induced O2 reduction occurring at the chlorophyll pigments. This undesirable pathway is promoted by the embedment of PSII in an electron-conducting matrix, a common strategy of enzyme immobilization. Anaerobicity helps to recover the PSII photoresponses, and unmasked the onset potentials relating to the QA/QB charge transfer process. These findings have imparted a fuller understanding of the charge transfer pathways within PSII and at photosystem-electrode interfaces, which will lead to more rational design of pigment-containing photoelectrodes in general. PMID:27723748

  2. Clean graphene electrodes on organic thin-film devices via orthogonal fluorinated chemistry.

    PubMed

    Beck, Jonathan H; Barton, Robert A; Cox, Marshall P; Alexandrou, Konstantinos; Petrone, Nicholas; Olivieri, Giorgia; Yang, Shyuan; Hone, James; Kymissis, Ioannis

    2015-04-08

    Graphene is a promising flexible, highly transparent, and elementally abundant electrode for organic electronics. Typical methods utilized to transfer large-area films of graphene synthesized by chemical vapor deposition on metal catalysts are not compatible with organic thin-films, limiting the integration of graphene into organic optoelectronic devices. This article describes a graphene transfer process onto chemically sensitive organic semiconductor thin-films. The process incorporates an elastomeric stamp with a fluorinated polymer release layer that can be removed, post-transfer, via a fluorinated solvent; neither fluorinated material adversely affects the organic semiconductor materials. We used Raman spectroscopy, atomic force microscopy, and scanning electron microscopy to show that chemical vapor deposition graphene can be successfully transferred without inducing defects in the graphene film. To demonstrate our transfer method's compatibility with organic semiconductors, we fabricate three classes of organic thin-film devices: graphene field effect transistors without additional cleaning processes, transparent organic light-emitting diodes, and transparent small-molecule organic photovoltaic devices. These experiments demonstrate the potential of hybrid graphene/organic devices in which graphene is deposited directly onto underlying organic thin-film structures.

  3. Quantum coherent π-electron rotations in a non-planar chiral molecule induced by using a linearly polarized UV laser pulse

    NASA Astrophysics Data System (ADS)

    Mineo, Hirobumi; Fujimura, Yuichi

    2015-06-01

    We propose an ultrafast quantum switching method of π-electron rotations, which are switched among four rotational patterns in a nonplanar chiral aromatic molecule (P)-2,2’- biphenol and perform the sequential switching among four rotational patterns which are performed by the overlapped pump-dump laser pulses. Coherent π-electron dynamics are generated by applying the linearly polarized UV pulse laser to create a pair of coherent quasidegenerated excited states. We also plot the time-dependent π-electron ring current, and discussed ring current transfer between two aromatic rings.

  4. Molecular alignment effect on the photoassociation process via a pump-dump scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bin-Bin; Han, Yong-Chang, E-mail: ychan@dlut.edu.cn; Cong, Shu-Lin

    The photoassociation processes via the pump-dump scheme for the heternuclear (Na + H → NaH) and the homonuclear (Na + Na → Na{sub 2}) molecular systems are studied, respectively, using the time-dependent quantum wavepacket method. For both systems, the initial atom pair in the continuum of the ground electronic state (X{sup 1}Σ{sup +}) is associated into the molecule in the bound states of the excited state (A{sup 1}Σ{sup +}) by the pump pulse. Then driven by a time-delayed dumping pulse, the prepared excited-state molecule can be transferred to the bound states of the ground electronic state. It is found thatmore » the pump process can induce a superposition of the rovibrational levels |v, j〉 on the excited state, which can lead to the field-free alignment of the excited-state molecule. The molecular alignment can affect the dumping process by varying the effective coupling intensity between the two electronic states or by varying the population transfer pathways. As a result, the final population transferred to the bound states of the ground electronic state varies periodically with the delay time of the dumping pulse.« less

  5. Kelvin probe force microscopy studies of the charge effects upon adsorption of carbon nanotubes and C60 fullerenes on hydrogen-terminated diamond

    NASA Astrophysics Data System (ADS)

    Kölsch, S.; Fritz, F.; Fenner, M. A.; Kurch, S.; Wöhrl, N.; Mayne, A. J.; Dujardin, G.; Meyer, C.

    2018-01-01

    Hydrogen-terminated diamond is known for its unusually high surface conductivity that is ascribed to its negative electron affinity. In the presence of acceptor molecules, electrons are expected to transfer from the surface to the acceptor, resulting in p-type surface conductivity. Here, we present Kelvin probe force microscopy (KPFM) measurements on carbon nanotubes and C60 adsorbed onto a hydrogen-terminated diamond(001) surface. A clear reduction in the Kelvin signal is observed at the position of the carbon nanotubes and C60 molecules as compared with the bare, air-exposed surface. This result can be explained by the high positive electron affinity of carbon nanotubes and C60, resulting in electron transfer from the surface to the adsorbates. When an oxygen-terminated diamond(001) is used instead, no reduction in the Kelvin signal is obtained. While the presence of a charged adsorbate or a difference in work function could induce a change in the KPFM signal, a charge transfer effect of the hydrogen-terminated diamond surface, by the adsorption of the carbon nanotubes and the C60 fullerenes, is consistent with previous theoretical studies.

  6. Sunlight-Induced photochemical synthesis of Au nanodots on α-Fe2O3@Reduced graphene oxide nanocomposite and their enhanced heterogeneous catalytic properties.

    PubMed

    Bharath, G; Anwer, Shoaib; Mangalaraja, R V; Alhseinat, Emad; Banat, Fawzi; Ponpandian, N

    2018-04-09

    In this present study, we report the synthesis of Au nanodots on α-Fe 2 O 3 @reduced graphene oxide (RGO) based hetero-photocatalytic nanohybrids through a chlorophyll mediated photochemical synthesis. In this process, chlorophyll induces a rapid reduction (30 min) of Au 3+ ions to Au° metallic nanodots on α-Fe 2 O 3 @RGO surface under sunlight irradiation. The nucleation growth process, photo-induced electron-transfer mechanism and physico-chemical properties of the Au@α-Fe 2 O 3 @RGO ternary nanocomposites were systematically studied with various analytical techniques. This novel photochemical synthesis process is a cost-effective, convenient, surfactant-less, and scalable method. Moreover, the prepared ternary nanocomposites enhanced catalytic activity as compared to pure α-Fe 2 O 3 and α-Fe 2 O 3 @RGO. The advantages and synergistic effect of Au@α-Fe 2 O 3 @RGO exhibit, (i) a broader range of visible-light absorption due to visible light band gap of α-Fe 2 O 3 , (ii) lower recombination possibility of photo-generated electrons and holes due to effect of Au and (iii) faster electron transfer due to higher conductivity of RGO. Therefore, the prepared Au@α-Fe 2 O 3 @RGO hetero-photocatalytic nanohybrids exhibited a remarkable photocatalytic activity, thus enabling potential active hetero-photocatalyst for industrial and environmental applications.

  7. Gate control of quantum dot-based electron spin-orbit qubits

    NASA Astrophysics Data System (ADS)

    Wu, Shudong; Cheng, Liwen; Yu, Huaguang; Wang, Qiang

    2018-07-01

    We investigate theoretically the coherent spin dynamics of gate control of quantum dot-based electron spin-orbit qubits subjected to a tilted magnetic field under electric-dipole spin resonance (EDSR). Our results reveal that Rabi oscillation of qubit states can be manipulated electrically based on rapid gate control of SOC strength. The Rabi frequency is strongly dependent on the gate-induced electric field, the strength and orientation of the applied magnetic field. There are two major EDSR mechanisms. One arises from electric field-induced spin-orbit hybridization, and the other arises from magnetic field-induced energy-level crossing. The SOC introduced by the gate-induced electric field allows AC electric fields to drive coherent Rabi oscillations between spin-up and -down states. After the crossing of the energy-levels with the magnetic field, the spin-transfer crossing results in Rabi oscillation irrespective of whether or not the external electric field is present. The spin-orbit qubit is transferred into the orbit qubit. Rabi oscillation is anisotropic and periodic with respect to the tilted and in-plane orientation of the magnetic field originating from the interplay of the SOC, orbital, and Zeeman effects. The strong electrically-controlled SOC strength suggests the possibility for scalable applications of gate-controllable spin-orbit qubits.

  8. Metallated DNA Aptamers for Prostate Cancer Treatment. Revision

    DTIC Science & Technology

    2013-10-01

    determined using Matlab software. Dynamic light scattering (DLS) was performed under ambient conditions using a Malvern Zetasizer nano series ZEN-1600... entangling porphyrins as suitable vessels for light-induced energy and electron transfer. J Mater Chem 2008;18:802-5. 57. Meenakshisundaram G, Eteshola

  9. Magnetization switching in ferromagnets by adsorbed chiral molecules without current or external magnetic field.

    PubMed

    Ben Dor, Oren; Yochelis, Shira; Radko, Anna; Vankayala, Kiran; Capua, Eyal; Capua, Amir; Yang, See-Hun; Baczewski, Lech Tomasz; Parkin, Stuart Stephen Papworth; Naaman, Ron; Paltiel, Yossi

    2017-02-23

    Ferromagnets are commonly magnetized by either external magnetic fields or spin polarized currents. The manipulation of magnetization by spin-current occurs through the spin-transfer-torque effect, which is applied, for example, in modern magnetoresistive random access memory. However, the current density required for the spin-transfer torque is of the order of 1 × 10 6  A·cm -2 , or about 1 × 10 25 electrons s -1 cm -2 . This relatively high current density significantly affects the devices' structure and performance. Here we demonstrate magnetization switching of ferromagnetic thin layers that is induced solely by adsorption of chiral molecules. In this case, about 10 13 electrons per cm 2 are sufficient to induce magnetization reversal. The direction of the magnetization depends on the handedness of the adsorbed chiral molecules. Local magnetization switching is achieved by adsorbing a chiral self-assembled molecular monolayer on a gold-coated ferromagnetic layer with perpendicular magnetic anisotropy. These results present a simple low-power magnetization mechanism when operating at ambient conditions.

  10. Magnetization switching in ferromagnets by adsorbed chiral molecules without current or external magnetic field

    PubMed Central

    Ben Dor, Oren; Yochelis, Shira; Radko, Anna; Vankayala, Kiran; Capua, Eyal; Capua, Amir; Yang, See-Hun; Baczewski, Lech Tomasz; Parkin, Stuart Stephen Papworth; Naaman, Ron; Paltiel, Yossi

    2017-01-01

    Ferromagnets are commonly magnetized by either external magnetic fields or spin polarized currents. The manipulation of magnetization by spin-current occurs through the spin-transfer-torque effect, which is applied, for example, in modern magnetoresistive random access memory. However, the current density required for the spin-transfer torque is of the order of 1 × 106 A·cm−2, or about 1 × 1025 electrons s−1 cm−2. This relatively high current density significantly affects the devices' structure and performance. Here we demonstrate magnetization switching of ferromagnetic thin layers that is induced solely by adsorption of chiral molecules. In this case, about 1013 electrons per cm2 are sufficient to induce magnetization reversal. The direction of the magnetization depends on the handedness of the adsorbed chiral molecules. Local magnetization switching is achieved by adsorbing a chiral self-assembled molecular monolayer on a gold-coated ferromagnetic layer with perpendicular magnetic anisotropy. These results present a simple low-power magnetization mechanism when operating at ambient conditions. PMID:28230054

  11. Sites of electron transfer to membrane-bound copper and hydroperoxide-induced damage in the respiratory chain of Escherichia coli.

    PubMed

    Rodríguez-Montelongo, L; Farías, R N; Massa, E M

    1995-10-20

    Previous studies in Escherichia coli as a model system for peroxide toxicity (L. Rodríguez-Montelongo, L. C. De la Cruz-Rodríguez, R. N. Farías, and E. M. Massa, 1993, Biochim. Biophys. Acta 1144, 77-84) have shown that electron flow through the respiratory chain supports a membrane-associated Cu(II)/Cu(I) redox cycle involved in irreversible impairment of the respiratory system by tert-butyl hydroperoxide (t-BOOH). In this paper, E. coli mutants deficient in specific respiratory chain components have been used to determine the sites of copper reduction and the targets inactivated by t-BOOH. Two sites of electron transfer to membrane-bound copper were identified: one in the region between NADH and ubiquinone supported by NADH as electron donor and another localized between ubiquinone and the cytochromes supported by electrons coming from NADH, succinate, or D-lactate. Electron flow through the former site in the presence of t-BOOH led to inactivation of NADH dehydrogenase II, whereas electron flow through the latter site in the presence of the hydroperoxide led to damage of ubiquinone. In agreement with the above in vitro results with isolated membranes, copper-dependent inactivation of NADH dehydrogenase and ubiquinone was demonstrated in E. coli cells exposed to t-BOOH. It is proposed that the t-BOOH-induced damage is a consequence of t-butylalkoxy radical generation through a Fenton-type reaction mediated by redox cycling of membrane-bound copper at those two loci of the respiratory chain.

  12. Facile synthesis of bismuth oxyhalide nanosheet films with distinct conduction type and photo-induced charge carrier behavior

    NASA Astrophysics Data System (ADS)

    Jia, Huimin; He, Weiwei; Zhang, Beibei; Yao, Lei; Yang, Xiaokai; Zheng, Zhi

    2018-05-01

    A modified successive ionic layer adsorption and reaction (SILAR) method was developed to fabricate 2D ordered BiOX (X = CI, Br, I) nanosheet array films on FTO substrates at room temperature. The formation of BiOX films were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), UV-vis absorption spectroscopy, and X-ray photoelectron spectroscopy (XPS). The semiconductor surface states determine the type of semiconductor. Although BiOCI, BiOBr and BiOI belong to the bismuth oxyhalide semiconductor family and possess similar crystal and electronic structures, they show different conductivity types due to their respective surface states. Mott-Schottky curve results demonstrate that the BiOCl and BiOI nanosheet arrays display n-type semiconductor properties, while the BiOBr films exhibit p-type semiconductor properties. Assisted by surface photovoltage (SPV) and transient photovoltage (TPV) techniques, the photoinduced charge transfer dynamics on the surface/interface of the BiOX/FTO nanosheet films were systematically and comparatively investigated. As revealed by the results, both the separation and transfer dynamics of the photo-induced carrier are influenced by film thickness.

  13. Optoelectronics of supported and suspended 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Bolotin, Kirill

    2014-03-01

    Two-dimensional semiconductors, materials such monolayer molybdenum disulfide (MoS2) are characterized by strong spin-orbit and electron-electron interactions. However, both electronic and optoelectronic properties of these materials are dominated by disorder-related scattering. In this talk, we investigate approaches to reduce scattering and explore physical phenomena arising in intrinsic 2D semiconductors. First, we discuss fabrication of pristine suspended monolayer MoS2 and use photocurrent spectroscopy measurements to study excitons in this material. We observe band-edge and van Hove singularity excitons and estimate their binding energies. Furthermore, we study dissociation of these excitons and uncover the mechanism of their contribution to photoresponse of MoS2. Second, we study strain-induced modification of bandstructures of 2D semiconductors. With increasing strain, we find large and controllable band gap reduction of both single- and bi-layer MoS2. We also detect experimental signatures consistent with strain-induced transition from direct to indirect band gap in monolayer MoS2. Finally, we fabricate heterostructures of dissimilar 2D semiconductors and study their photoresponse. For closely spaced 2D semiconductors we detect charge transfer, while for separation larger than 10nm we observe Forster-like energy transfer between excitations in different layers.

  14. UVA radiation induced ultrafast electron transfer from a food carcinogen benzo[a]pyrene to organic molecules, biological macromolecules, and inorganic nano structures.

    PubMed

    Banerjee, Soma; Sarkar, Soumik; Lakshman, Karthik; Dutta, Joydeep; Pal, Samir Kumar

    2013-04-11

    Reactions involving electron transfer (ET) and reactive oxygen species (ROS) play a pivotal role in carcinogenesis and cancer biochemistry. Our present study emphasizes UVA radiation induced ET reaction as one of the key aspects of a potential carcinogen, benzo[a]pyrene (BP), in the presence of a wide variety of molecules covering organic p-benzoquinone (BQ), biological macromolecules like calf-thymus DNA (CT-DNA), human serum albumin (HSA) protein, and inorganic zinc oxide (ZnO) nanorods (NRs). Steady-state and picosecond-resolved fluorescence spectroscopy have been used to monitor such ET reactions. Physical consequences of BP association with CT-DNA have been investigated through temperature-dependent circular dichroism (CD) spectroscopy. The temperature-dependent steady-state, picosecond-resolved fluorescence lifetime and anisotropy studies reveal the effect of temperature on the perturbation of such ET reactions from BP to biological macromolecules, highlighting their temperature-dependent association. Furthermore, the electron-donating property of BP has been corroborated by measuring wavelength-dependent photocurrent in a BP-anchored ZnO NR-based photodevice, offering new physical insights for the carcinogenic study of BP.

  15. The Role of Electronic and Phononic Excitation in the Optical Response of Monolayer WS 2 after Ultrafast Excitation

    DOE PAGES

    Ruppert, Claudia; Chernikov, Alexey; Hill, Heather M.; ...

    2017-01-06

    We study transient changes of the optical response of WS 2 monolayers by femtosecond broadband pump–probe spectroscopy. Time-dependent absorption spectra are analyzed by tracking the line width broadening, bleaching, and energy shift of the main exciton resonance as a function of time delay after the excitation. Two main sources for the pump-induced changes of the optical response are identified. Specifically, we find an interplay between modifications induced by many-body interactions from photoexcited carriers and by the subsequent transfer of the excitation to the phonon system followed by cooling of the material through the heat transfer to the substrate.

  16. The Role of Electronic and Phononic Excitation in the Optical Response of Monolayer WS 2 after Ultrafast Excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruppert, Claudia; Chernikov, Alexey; Hill, Heather M.

    We study transient changes of the optical response of WS 2 monolayers by femtosecond broadband pump–probe spectroscopy. Time-dependent absorption spectra are analyzed by tracking the line width broadening, bleaching, and energy shift of the main exciton resonance as a function of time delay after the excitation. Two main sources for the pump-induced changes of the optical response are identified. Specifically, we find an interplay between modifications induced by many-body interactions from photoexcited carriers and by the subsequent transfer of the excitation to the phonon system followed by cooling of the material through the heat transfer to the substrate.

  17. Kinetics of nitrogenase of Klebsiella pneumoniae. Heterotropic interactions between magnesium-adenosine 5'-diphosphate and magnesium-adenosine 5'-triphosphate.

    PubMed Central

    Thorneley, R N; Cornish-Bowden, A

    1977-01-01

    The effects of MgADP and MgATP on the kinetics of a pre-steady-state electron-transfer reaction and on the steady-state kinetics of H2 evulution for nitrogenase proteins of K. pneumoniae were studied. MgADP was a competitive inhibitor of MgATP in the MgATP-induced electron transfer from the Fe-protein to the Mo-Fe-protein. A dissociation constant K'i = 20 micron was determined for MgADP. The release of MgADP or a coupled conformation change in the Fe-protein of K.pneumoniae occurred with a rate comparable with that of electron transfer, k approximately 2 X 10(2)S-1. Neither homotropic nor heterotropic interactions involving MgATP and MgADP were observed for this reaction. Steady-state kinetic data for H2 evolution exhibited heterotropic effects between MgADP and MgATP. The data have been fitted to symmetry and sequential-type models involving conformation changes in two identical subunits. The data suggest that the enzyme can bind up to molecules of either MgATP or MgADP, but is unable to bind both nucleotides simultaneously. The control of H2 evolution by the MgATP/MgADP ratio is not at the level of electron transfer between the Fe- and Mo-Fe-proteins. Images Fig. 2. PMID:336036

  18. Rab11b mediates melanin transfer between donor melanocytes and acceptor keratinocytes via coupled exo/endocytosis.

    PubMed

    Tarafder, Abul K; Bolasco, Giulia; Correia, Maria S; Pereira, Francisco J C; Iannone, Lucio; Hume, Alistair N; Kirkpatrick, Niall; Picardo, Mauro; Torrisi, Maria R; Rodrigues, Inês P; Ramalho, José S; Futter, Clare E; Barral, Duarte C; Seabra, Miguel C

    2014-04-01

    The transfer of melanin from melanocytes to keratinocytes is a crucial process underlying maintenance of skin pigmentation and photoprotection against UV damage. Here, we present evidence supporting coupled exocytosis of the melanin core, or melanocore, by melanocytes and subsequent endocytosis by keratinocytes as a predominant mechanism of melanin transfer. Electron microscopy analysis of human skin samples revealed three lines of evidence supporting this: (1) the presence of melanocores in the extracellular space; (2) within keratinocytes, melanin was surrounded by a single membrane; and (3) this membrane lacked the melanosomal membrane protein tyrosinase-related protein 1 (TYRP1). Moreover, co-culture of melanocytes and keratinocytes suggests that melanin exocytosis is specifically induced by keratinocytes. Furthermore, depletion of Rab11b, but not Rab27a, caused a marked decrease in both keratinocyte-stimulated melanin exocytosis and transfer to keratinocytes. Thus, we propose that the predominant mechanism of melanin transfer is keratinocyte-induced exocytosis, mediated by Rab11b through remodeling of the melanosome membrane, followed by subsequent endocytosis by keratinocytes.

  19. Reactivity of hydropersulfides toward the hydroxyl radical unraveled: disulfide bond cleavage, hydrogen atom transfer, and proton-coupled electron transfer.

    PubMed

    Anglada, Josep M; Crehuet, Ramon; Adhikari, Sarju; Francisco, Joseph S; Xia, Yu

    2018-02-14

    Hydropersulfides (RSSH) are highly reactive as nucleophiles and hydrogen atom transfer reagents. These chemical properties are believed to be key for them to act as antioxidants in cells. The reaction involving the radical species and the disulfide bond (S-S) in RSSH, a known redox-active group, however, has been scarcely studied, resulting in an incomplete understanding of the chemical nature of RSSH. We have performed a high-level theoretical investigation on the reactions of the hydroxyl radical (˙OH) toward a set of RSSH (R = -H, -CH 3 , -NH 2 , -C(O)OH, -CN, and -NO 2 ). The results show that S-S cleavage and H-atom abstraction are the two competing channels. The electron inductive effect of R induces selective ˙OH substitution at one sulfur atom upon S-S cleavage, forming RSOH and ˙SH for the electron donating groups (EDGs), whereas producing HSOH and ˙SR for the electron withdrawing groups (EWGs). The H-Atom abstraction by ˙OH follows a classical hydrogen atom transfer (hat) mechanism, producing RSS˙ and H 2 O. Surprisingly, a proton-coupled electron transfer (pcet) process also occurs for R being an EDG. Although for RSSH having EWGs hat is the leading channel, S-S cleavage can be competitive or even dominant for the EDGs. The overall reactivity of RSSH toward ˙OH attack is greatly enhanced with the presence of an EDG, with CH 3 SSH being the most reactive species found in this study (overall rate constant: 4.55 × 10 12 M -1 s -1 ). Our results highlight the complexity in RSSH reaction chemistry, the extent of which is closely modulated by the inductive effect of the substituents in the case of the oxidation by hydroxyl radicals.

  20. Sirtuin activation: a role for plasma membrane in the cell growth puzzle.

    PubMed

    Crane, Frederick L; Navas, Plácido; Low, Hans; Sun, Iris L; de Cabo, Rafael

    2013-04-01

    For more than 20 years, the observation that impermeable oxidants can stimulate cell growth has not been satisfactorily explained. The discovery of sirtuins provides a logical answer to the puzzle. The NADH-dependent transplasma membrane electron transport system, which is stimulated by growth factors and interventions such as calorie restriction, can transfer electrons to external acceptors and protect against stress-induced apoptosis. We hypothesize that the activation of plasma membrane electron transport contributes to the cytosolic NAD(+) pool required for sirtuin to activate transcription factors necessary for cell growth and survival.

  1. Theory of electron transfer and molecular state in DNA

    NASA Astrophysics Data System (ADS)

    Endres, Robert Gunter

    2002-09-01

    In this thesis, a mechanism for long-range electron transfer in DNA and a systematic search for high conductance DNA are developed. DNA is well known for containing the genetic code of all living species. On the other hand, there are some experimental indications that DNA can mediate effectively long-range electron transfer leading to the concept of chemistry at a distance. This can be important for DNA damage and healing. In the first part of the thesis, a possible mechanism for long-range electron transfer is introduced. The weak distance dependent electron transfer was experimentally observed using transition metal intercalators for donor and acceptor. In our model calculations, the transfer is mediated by the molecular analogue of a Kondo bound state well known from solid state physics of mixed-valence rare-earth compounds. We believe this is quite realistic, since localized d orbitals of the transition metal ions could function as an Anderson impurity embedded in a reservoir of rather delocalized molecular orbitals of the intercalator ligands and DNA pi orbitals. The effective Anderson model is solved with a physically intuitive variational ansatz as well as with the essentially exact DMRG method. The electronic transition matrix element, which is important because it contains the donor-acceptor distance dependence, is obtained with the Mulliken-Hush algorithm as well as from Born-Oppenheimer potential energy surfaces. Our possible explanation of long-range electron transfer is put in context to other more conventional mechanisms which also could lead to similar behavior. Another important issue of DNA is its possible use for nano-technology. Although DNA's mechanical properties are excellent, the question whether it can be conducting and be used for nano-wires is highly controversial. Experimentally, DNA shows conducting, semi-conducting and insulating properties. Motivated by these wide ranging experimental results on the conductivity of DNA, we have embarked on a theoretical effort to ascertain what conditions might induce such remarkable behavior. We use a combination of an ab initio density functional theory method and a parameterized Huckel-Slater-Koster model. Our focus here is to examine whether any likely DNA structures or environments can yield reduced activation gaps to conduction or enhanced electronic overlaps. In particular, we study a hypothetical stretched ribbon structure, A-, and B-form DNA, and the effects of counterions and humidity. Unlike solids, DNA and other molecules are considered soft condensed matter. Hence, we study the influence of vibrations upon the electronic structure of DNA. We calculate parameters for charge transfer rates between adjacent bases. We find good agreement between our estimated rates and recent experimental data assuming that torsional vibrations limit the charge transfer most significantly.

  2. Protein-induced geometric constraints and charge transfer in bacteriochlorophyll-histidine complexes in LH2.

    PubMed

    Wawrzyniak, Piotr K; Alia, A; Schaap, Roland G; Heemskerk, Mattijs M; de Groot, Huub J M; Buda, Francesco

    2008-12-14

    Bacteriochlorophyll-histidine complexes are ubiquitous in nature and are essential structural motifs supporting the conversion of solar energy into chemically useful compounds in a wide range of photosynthesis processes. A systematic density functional theory study of the NMR chemical shifts for histidine and for bacteriochlorophyll-a-histidine complexes in the light-harvesting complex II (LH2) is performed using the BLYP functional in combination with the 6-311++G(d,p) basis set. The computed chemical shift patterns are consistent with available experimental data for positive and neutral(tau) (N(tau) protonated) crystalline histidines. The results for the bacteriochlorophyll-a-histidine complexes in LH2 provide evidence that the protein environment is stabilizing the histidine close to the Mg ion, thereby inducing a large charge transfer of approximately 0.5 electronic equivalent. Due to this protein-induced geometric constraint, the Mg-coordinated histidine in LH2 appears to be in a frustrated state very different from the formal neutral(pi) (N(pi) protonated) form. This finding could be important for the understanding of basic functional mechanisms involved in tuning the electronic properties and exciton coupling in LH2.

  3. [The release of flavin adenine dinucleotide upon local conformational transition in electron-transferring flavoprotein induced by trimethylamine dehydrogenase].

    PubMed

    Lomtev, A S; Bobrov, A G; Vekshin, N L

    2004-01-01

    The electron-transferring proteins, trimethylamine dehydrogenase (TMAD) and electron-transferring flavoprotein (ETF) from the bacterium Methylophilius methylotrophus, were studied in vitro by fluorescence spectroscopy. Flavin adenine dinucleotide (FAD) was found to be capable of a slow and spontaneous release from ETF, which is accompanied by an increase in flavin fluorescence. At a rather high ionic strength (0.1 M NaCl or 50 mM phosphate), the FAD release is sharply activated by TMAD preparations that induce a local conformational transition in ETF. The values of tryptophan fluorescence polarization and lifetime and the use of the Levshin-Perrin equation helped show that the size of protein particles remain unchanged upon the TMAD and ETF mixing; i.e., these proteins themselves do not form a stable complex with each other. The protein mixture did not release flavin from ETF in the presence of trimethylamine and formaldehyde. In this case, a stable complex between the proteins appeared to be formed under the action of formaldehyde. Upon a short-term incubation of ETF with ferricyanide, FAD was hydrolyzed to flavin mononucleotide (FMN) and AMP. This fact explains the previous detection of AMP in ETF preparations by some researches. A fluorescence method was proposed for distinguishing FAD from FMN in solution using ethylene glycol. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2004, vol. 30, no. 3; see also http://www.maik.ru.

  4. UCP1 deficiency causes brown fat respiratory chain depletion and sensitizes mitochondria to calcium overload-induced dysfunction.

    PubMed

    Kazak, Lawrence; Chouchani, Edward T; Stavrovskaya, Irina G; Lu, Gina Z; Jedrychowski, Mark P; Egan, Daniel F; Kumari, Manju; Kong, Xingxing; Erickson, Brian K; Szpyt, John; Rosen, Evan D; Murphy, Michael P; Kristal, Bruce S; Gygi, Steven P; Spiegelman, Bruce M

    2017-07-25

    Brown adipose tissue (BAT) mitochondria exhibit high oxidative capacity and abundant expression of both electron transport chain components and uncoupling protein 1 (UCP1). UCP1 dissipates the mitochondrial proton motive force (Δp) generated by the respiratory chain and increases thermogenesis. Here we find that in mice genetically lacking UCP1, cold-induced activation of metabolism triggers innate immune signaling and markers of cell death in BAT. Moreover, global proteomic analysis reveals that this cascade induced by UCP1 deletion is associated with a dramatic reduction in electron transport chain abundance. UCP1-deficient BAT mitochondria exhibit reduced mitochondrial calcium buffering capacity and are highly sensitive to mitochondrial permeability transition induced by reactive oxygen species (ROS) and calcium overload. This dysfunction depends on ROS production by reverse electron transport through mitochondrial complex I, and can be rescued by inhibition of electron transfer through complex I or pharmacologic depletion of ROS levels. Our findings indicate that the interscapular BAT of Ucp1 knockout mice exhibits mitochondrial disruptions that extend well beyond the deletion of UCP1 itself. This finding should be carefully considered when using this mouse model to examine the role of UCP1 in physiology.

  5. Formate-induced inhibition of the water-oxidizing complex of photosystem II studied by EPR.

    PubMed

    Feyziev, Y M; Yoneda, D; Yoshii, T; Katsuta, N; Kawamori, A; Watanabe, Y

    2000-04-04

    The effects of various formate concentrations on both the donor and the acceptor sides in oxygen-evolving PS II membranes (BBY particles) were examined. EPR, oxygen evolution and variable chlorophyll fluorescence have been observed. It was found that formate inhibits the formation of the S(2) state multiline signal concomitant with stimulation of the Q(A)(-)Fe(2+) signal at g = 1.82. The decrease and the increase in intensities of the multiline and Q(A)(-)Fe(2+) signals, respectively, had a linear relation for formate concentrations between 5 and 500 mM. The g = 4.1 signal formation measured in the absence of methanol was not inhibited by formate up to 250 mM in the buffer. In the presence of 3% methanol the g = 4.1 signal evolved as formate concentration increased. The evolved signal could be ascribed to the inhibited centers. Oxygen evolution measured in the presence of an electron acceptor, phenyl-p-benzoquinone, was also inhibited by formate proportionally to the decrease in the multiline signal intensity. The inhibition seemed to be due to a retarded electron transfer from the water-oxidizing complex to Y(Z)(+), which was observed in the decay kinetics of the Y(Z)(+) signal induced by illumination above 250 K. These results show that formate induces inhibition of water oxidation reactions as well as electron transfer on the PS II acceptor side. The inhibition effects of formate in PS II were found to be reversible, indicating no destructive effect on the reaction center induced by formate.

  6. Active space debris charging for contactless electrostatic disposal maneuvers

    NASA Astrophysics Data System (ADS)

    Schaub, Hanspeter; Sternovsky, Zoltán

    2014-01-01

    The remote charging of a passive object using an electron beam enables touchless re-orbiting of large space debris from geosynchronous orbit (GEO) using electrostatic forces. The advantage of this method is that it can operate with a separation distance of multiple craft radii, thus reducing the risk of collision. The charging of the tug-debris system to high potentials is achieved by active charge transfer using a directed electron beam. Optimal potential distributions using isolated- and coupled-sphere models are discussed. A simple charging model takes into account the primary electron beam current, ultra-violet radiation induced photoelectron emission, collection of plasma particles, secondary electron emission and the recapture of emitted particles. The results show that through active charging in a GEO space environment high potentials can be both achieved and maintained with about a 75% transfer efficiency. Further, the maximum electrostatic tractor force is shown to be insensitive to beam current levels. This latter later result is important when considering debris with unknown properties.

  7. Mesh-structured N-doped graphene@Sb2Se3 hybrids as an anode for large capacity sodium-ion batteries.

    PubMed

    Zhao, Wenxi; Li, Chang Ming

    2017-02-15

    A mesh-structured N-doped graphene@Sb 2 Se 3 (NGS) hybrid was one-pot prepared to realize N-doping, nanostructuring and hybridization for a sodium-ion battery anode to deliver much larger reversible specific capacity, faster interfacial electron transfer rate, better ionic and electronic transport, higher rate performance and longer cycle life stability in comparison to the plain Sb 2 Se 3 one. The better performance is ascribed to the unique intertwined porous mash-like structure associated with a strong synergistic effect of N-doped graphene for dramatic improvement of electronic and ionic conductivity by the unique porous structure, the specific capacity of graphene from N doping and fast interfacial electron transfer rate by N-doping induced surface effect and the structure-shortening insertion/desertion pathway of Na + . The detail electrochemical process on the NGS electrode is proposed and analyzed in terms of the experimental results. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Ebselen is a new skin depigmenting agent that inhibits melanin biosynthesis and melanosomal transfer.

    PubMed

    Kasraee, Behrooz; Nikolic, Damjan S; Salomon, Denis; Carraux, Pierre; Fontao, Lionel; Piguet, Vincent; Omrani, Gholamhossein R; Sorg, Olivier; Saurat, Jean-Hilaire

    2012-01-01

    We assessed the ability of ebselen, a glutathione peroxidase mimic, to reduce pigmentation in various models. In murine B16 melanocytes, 25 μm ebselen inhibited melanogenesis and induced a depolymerisation of actin filaments. In co-cultures of B16 melanocytes with BDVII keratinocytes, a pretreatment of melanocytes with ebselen resulted in a strong inhibition of melanosome transfer to keratinocytes, as shown under optical and electron microscopy. In reconstructed epidermis, topical 0.5% ebselen led to a twofold decrease of melanin without affecting the density of active melanocytes. A similar result was obtained with topical 0.5% ebselen in black guinea pig ears. Ebselen induced a decrease of epidermal melanin parallel to a localisation of melanin and melanosomes in the basal layer. Ebselen appears as a new depigmenting compound that inhibits melanin synthesis and melanosome transfer to keratinocytes. © 2011 John Wiley & Sons A/S.

  9. Time-resolved photoelectron spectroscopy of IR-driven electron dynamics in a charge transfer model system.

    PubMed

    Falge, Mirjam; Fröbel, Friedrich Georg; Engel, Volker; Gräfe, Stefanie

    2017-08-02

    If the adiabatic approximation is valid, electrons smoothly adapt to molecular geometry changes. In contrast, as a characteristic of diabatic dynamics, the electron density does not follow the nuclear motion. Recently, we have shown that the asymmetry in time-resolved photoelectron spectra serves as a tool to distinguish between these dynamics [Falge et al., J. Phys. Chem. Lett., 2012, 3, 2617]. Here, we investigate the influence of an additional, moderately intense infrared (IR) laser field, as often applied in attosecond time-resolved experiments, on such asymmetries. This is done using a simple model for coupled electronic-nuclear motion. We calculate time-resolved photoelectron spectra and their asymmetries and demonstrate that the spectra directly map the bound electron-nuclear dynamics. From the asymmetries, we can trace the IR field-induced population transfer and both the field-driven and intrinsic (non-)adiabatic dynamics. This holds true when considering superposition states accompanied by electronic coherences. The latter are observable in the asymmetries for sufficiently short XUV pulses to coherently probe the coupled states. It is thus documented that the asymmetry is a measure for phases in bound electron wave packets and non-adiabatic dynamics.

  10. I-V characterization of a quantum well infrared photodetector with stepped and graded barriers

    NASA Astrophysics Data System (ADS)

    Nutku, F.; Erol, A.; Gunes, M.; Buklu, L. B.; Ergun, Y.; Arikan, M. C.

    2012-09-01

    I-V characterization of an n-type quantum well infrared photodetector which consists of stepped and graded barriers has been done under dark at temperatures between 20-300 K. Different current transport mechanisms and transition between them have been observed at temperature around 47 K. Activation energies of the electrons at various bias voltages have been obtained from the temperature dependent I-V measurements. Activation energy at zero bias has been calculated by extrapolating the bias dependence of the activation energies. Ground state energies and barrier heights of the four different quantum wells have been calculated by using an iterative technique, which depends on experimentally obtained activation energy. Ground state energies also have been calculated with transfer matrix technique and compared with iteration results. Incorporating the effect of high electron density induced electron exchange interaction on ground state energies; more consistent results with theoretical transfer matrix calculations have been obtained.

  11. Reactivating Catalytic Surface: Insights into the Role of Hot Holes in Plasmonic Catalysis.

    PubMed

    Peng, Tianhuan; Miao, Junjian; Gao, Zhaoshuai; Zhang, Linjuan; Gao, Yi; Fan, Chunhai; Li, Di

    2018-03-01

    Surface plasmon resonance of coinage metal nanoparticles is extensively exploited to promote catalytic reactions via harvesting solar energy. Previous efforts on elucidating the mechanisms of enhanced catalysis are devoted to hot electron-induced photothermal conversion and direct charge transfer to the adsorbed reactants. However, little attention is paid to roles of hot holes that are generated concomitantly with hot electrons. In this work, 13 nm spherical Au nanoparticles with small absorption cross-section are employed to catalyze a well-studied glucose oxidation reaction. Density functional theory calculation and X-ray absorption spectrum analysis reveal that hot holes energetically favor transferring catalytic intermediates to product molecules and then desorbing from the surface of plasmonic catalysts, resulting in the recovery of their catalytic activities. The studies shed new light on the use of the synergy of hot holes and hot electrons for plasmon-promoted catalysis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Enzymatic-induced upconversion photoinduced electron transfer for sensing tyrosine in human serum.

    PubMed

    Wu, Qiongqiong; Fang, Aijin; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo

    2016-03-15

    This paper reports a novel nanosensor for tyrosine based on photoinduced electron-transfer (PET) between NaYF4:Yb, Tm upconversion nanoparticles (UCNPs) and melanin-like polymers. Melanin-like films were obtained from catalytic oxidation of tyrosine by tyrosinase, and deposited on the surface of UCNPs, and then quenched the fluorescence of UCNPs. Under the optimized conditions, the fluorescence quenching of UCNPs showed a good linear response to tyrosine concentration in the range of 0.8-100 μΜ with a detection limit of 1.1 μΜ. Meanwhile, it showed good sensitivity, stability and has been successfully applied to the detection of tyrosine in human serum. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Identification of the 2-Hydroxyglutarate and Isovaleryl-CoA Dehydrogenases as Alternative Electron Donors Linking Lysine Catabolism to the Electron Transport Chain of Arabidopsis Mitochondria[W][OA

    PubMed Central

    Araújo, Wagner L.; Ishizaki, Kimitsune; Nunes-Nesi, Adriano; Larson, Tony R.; Tohge, Takayuki; Krahnert, Ina; Witt, Sandra; Obata, Toshihiro; Schauer, Nicolas; Graham, Ian A.; Leaver, Christopher J.; Fernie, Alisdair R.

    2010-01-01

    The process of dark-induced senescence in plants is relatively poorly understood, but a functional electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF/ETFQO) complex, which supports respiration during carbon starvation, has recently been identified. Here, we studied the responses of Arabidopsis thaliana mutants deficient in the expression of isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase to extended darkness and other environmental stresses. Evaluations of the mutant phenotypes following carbon starvation induced by extended darkness identify similarities to those exhibited by mutants of the ETF/ETFQO complex. Metabolic profiling and isotope tracer experimentation revealed that isovaleryl-CoA dehydrogenase is involved in degradation of the branched-chain amino acids, phytol, and Lys, while 2-hydroxyglutarate dehydrogenase is involved exclusively in Lys degradation. These results suggest that isovaleryl-CoA dehydrogenase is the more critical for alternative respiration and that a series of enzymes, including 2-hydroxyglutarate dehydrogenase, plays a role in Lys degradation. Both physiological and metabolic phenotypes of the isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase mutants were not as severe as those observed for mutants of the ETF/ETFQO complex, indicating some functional redundancy of the enzymes within the process. Our results aid in the elucidation of the pathway of plant Lys catabolism and demonstrate that both isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase act as electron donors to the ubiquinol pool via an ETF/ETFQO-mediated route. PMID:20501910

  14. Identification of the 2-hydroxyglutarate and isovaleryl-CoA dehydrogenases as alternative electron donors linking lysine catabolism to the electron transport chain of Arabidopsis mitochondria.

    PubMed

    Araújo, Wagner L; Ishizaki, Kimitsune; Nunes-Nesi, Adriano; Larson, Tony R; Tohge, Takayuki; Krahnert, Ina; Witt, Sandra; Obata, Toshihiro; Schauer, Nicolas; Graham, Ian A; Leaver, Christopher J; Fernie, Alisdair R

    2010-05-01

    The process of dark-induced senescence in plants is relatively poorly understood, but a functional electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF/ETFQO) complex, which supports respiration during carbon starvation, has recently been identified. Here, we studied the responses of Arabidopsis thaliana mutants deficient in the expression of isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase to extended darkness and other environmental stresses. Evaluations of the mutant phenotypes following carbon starvation induced by extended darkness identify similarities to those exhibited by mutants of the ETF/ETFQO complex. Metabolic profiling and isotope tracer experimentation revealed that isovaleryl-CoA dehydrogenase is involved in degradation of the branched-chain amino acids, phytol, and Lys, while 2-hydroxyglutarate dehydrogenase is involved exclusively in Lys degradation. These results suggest that isovaleryl-CoA dehydrogenase is the more critical for alternative respiration and that a series of enzymes, including 2-hydroxyglutarate dehydrogenase, plays a role in Lys degradation. Both physiological and metabolic phenotypes of the isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase mutants were not as severe as those observed for mutants of the ETF/ETFQO complex, indicating some functional redundancy of the enzymes within the process. Our results aid in the elucidation of the pathway of plant Lys catabolism and demonstrate that both isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase act as electron donors to the ubiquinol pool via an ETF/ETFQO-mediated route.

  15. The isotopic effects of electron transfer: An explanation for Fe isotope fractionation in nature

    NASA Astrophysics Data System (ADS)

    Kavner, Abby; Bonet, François; Shahar, Anat; Simon, Justin; Young, Edward

    2005-06-01

    Isotope fractionation of electroplated Fe was measured as a function of applied electrochemical potential. As plating voltage was varied from -0.9 V to 2.0 V, the isotopic signature of the electroplated iron became depleted in heavy Fe, with δ 56Fe values (relative to IRMM-14) ranging from -0.18(±0.02) to -2.290(±0.006) ‰, and corresponding δ 57Fe values of -0.247(±0.014) and -3.354(±0.019) ‰. This study demonstrates that there is a voltage-dependent isotope fractionation associated with the reduction of iron. We show that Marcus's theory for the kinetics of electron transfer can be extended to include the isotope effects of electron transfer, and that the extended theory accounts for the voltage dependence of Fe isotope fractionation. The magnitude of the electrochemically-induced fractionation is similar to that of Fe reduction by certain bacteria, suggesting that similar electrochemical processes may be responsible for biogeochemical Fe isotope effects. Charge transfer is a fundamental physicochemical process involving Fe as well as other transition metals with multiple isotopes. Partitioning of isotopes among elements with varying redox states holds promise as a tool in a wide range of the Earth and environmental sciences, biology, and industry.

  16. Direct Observation of Pressure-Driven Valence Electron Transfer in Ba 3 BiRu 2 O 9 , Ba 3 BiIr 2 O 9 , and Ba 4 BiIr 3 O 12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchard, Peter E. R.; Chapman, Karena W.; Heald, Steve M.

    The hexagonal perovskites Ba3BiIr2O9, Ba3BiRu2O9 and Ba4BiIr3O12 all undergo pressure-induced 1% volume collapses above 5 GPa. These first-order transitions have been ascribed to internal transfer of valence electrons between bismuth and iridium/ruthenium, which is driven by external applied pressure because the reduction in volume achieved by emptying the 6s shell of bismuth upon oxidation to Bi5+ is greater in magnitude than the increase in volume by reducing iridium or ruthenium. Here, we report direct observation of these valence transfers for the first time, using high-pressure X-ray absorption near-edge spectroscopy (XANES) measurements. Our data also support the highly unusual “4+” nominalmore » oxidation state of bismuth in these compounds, although the possibility of local disproportionation into Bi3+/Bi5+ cannot be definitively ruled out. Ab initio calculations reproduce the transition, support its interpretation as a valence electron transfer from Bi to Ir/Ru, and suggest that the high-pressure phase may show metallic behavior (in contrast to the insulating ambient-pressure phase).« less

  17. Photoinduced Oxidative DNA Damage Revealed by an Agarose Gel Nicking Assay: A Biophysical Chemistry Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Shafirovich, Vladimir; Singh, Carolyn; Geacintov, Nicholas E.

    2003-11-01

    Oxidative damage of DNA molecules associated with electron-transfer reactions is an important phenomenon in living cells, which can lead to mutations and contribute to carcinogenesis and the aging processes. This article describes the design of several simple experiments to explore DNA damage initiated by photoinduced electron-transfer reactions sensitized by the acridine derivative, proflavine (PF). A supercoiled DNA agarose gel nicking assay is employed as a sensitive probe of DNA strand cleavage. A low-cost experimental and computer-interfaced imaging apparatus is described allowing for the digital recording and analysis of the gel electrophoresis results. The first experiment describes the formation of direct strand breaks in double-stranded DNA induced by photoexcitation of the intercalated PF molecules. The second experiment demonstrates that the addition of the well-known electron acceptor, methylviologen, gives rise to a significant enhancement of the photochemical DNA strand cleavage effect. This occurs by an electron transfer step to methylviologen that renders the inital photoinduced charge separation between photoexcited PF and DNA irreversible. The third experiment demonstrates that the action spectrum of the DNA photocleavage matches the absorption spectrum of DNA-bound, intercalated PF molecules, which differs from that of free PF molecules. This result demonstrates that the photoinduced DNA strand cleavage is initiated by intercalated rather than free PF molecules.

  18. Elucidating light-induced charge accumulation in an artificial analogue of methane monooxygenase enzymes using time-resolved X-ray absorption spectroscopy

    DOE PAGES

    Moonshiram, Dooshaye; Picon, Antonio; Vazquez-Mayagoitia, Alvaro; ...

    2017-02-08

    Here, we report the use of time-resolved X-ray absorption spectroscopy in the ns–μs time scale to track the light induced two electron transfer processes in a multi-component photocatalytic system, consisting of [Ru(bpy) 3] 2+/ a diiron(III,III) model/triethylamine. EXAFS analysis with DFT calculations confirms the structural configurations of the diiron(III,III) and reduced diiron(II,II) states.

  19. Elucidating light-induced charge accumulation in an artificial analogue of methane monooxygenase enzymes using time-resolved X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moonshiram, Dooshaye; Picon, Antonio; Vazquez-Mayagoitia, Alvaro

    Here, we report the use of time-resolved X-ray absorption spectroscopy in the ns–μs time scale to track the light induced two electron transfer processes in a multi-component photocatalytic system, consisting of [Ru(bpy) 3] 2+/ a diiron(III,III) model/triethylamine. EXAFS analysis with DFT calculations confirms the structural configurations of the diiron(III,III) and reduced diiron(II,II) states.

  20. Utilizing the dynamic stark shift as a probe for dielectric relaxation in photosynthetic reaction centers during charge separation.

    PubMed

    Guo, Zhi; Lin, Su; Woodbury, Neal W

    2013-09-26

    In photosynthetic reaction centers, the electric field generated by light-induced charge separation produces electrochromic shifts in the transitions of reaction center pigments. The extent of this Stark shift indirectly reflects the effective field strength at a particular cofactor in the complex. The dynamics of the effective field strength near the two monomeric bacteriochlorophylls (BA and BB) in purple photosynthetic bacterial reaction centers has been explored near physiological temperature by monitoring the time-dependent Stark shift during charge separation (dynamic Stark shift). This dynamic Stark shift was determined through analysis of femtosecond time-resolved absorbance change spectra recorded in wild type reaction centers and in four mutants at position M210. In both wild type and the mutants, the kinetics of the dynamic Stark shift differ from those of electron transfer, though not in the same way. In wild type, the initial electron transfer and the increase in the effective field strength near the active-side monomer bacteriochlorophyll (BA) occur in synchrony, but the two signals diverge on the time scale of electron transfer to the quinone. In contrast, when tyrosine is replaced by aspartic acid at M210, the kinetics of the BA Stark shift and the initial electron transfer differ, but transfer to the quinone coincides with the decay of the Stark shift. This is interpreted in terms of differences in the dynamics of the local dielectric environment between the mutants and the wild type. In wild type, comparison of the Stark shifts associated with BA and BB on the two quasi-symmetric halves of the reaction center structure confirm that the effective dielectric constants near these cofactors are quite different when the reaction center is in the state P(+)QA(-), as previously determined by Steffen et al. at 1.5 K (Steffen, M. A.; et al. Science 1994, 264, 810-816). However, it is not possible to determine from static, low-temperature measurments if the difference in the effective dielectric constant between the two sides of the reaction center is manifest on the time scale of initial electron transfer. By comparing directly the Stark shift dynamics of the ground-state spectra of the two monomer bacteriochlorophylls, it is evident that there is, in fact, a large dielectric difference between protein environments of the two quasi-symmetric electron-transfer branches on the time scale of initial electron transfer and that the effective dielectric constant in the region continues to evolve on a time scale of hundreds of picoseconds.

  1. Tailored-waveform Collisional Activation of Peptide Ion Electron Transfer Survivor Ions in Cation Transmission Mode Ion/Ion Reaction Experiments

    PubMed Central

    Han, Hongling; Londry, Frank A.; Erickson, David E.; McLuckey, Scott A.

    2010-01-01

    SUMMARY Broad-band resonance excitation via a tailored waveform in a high pressure collision cell (Q2) on a hybrid quadrupole/time-of-flight (QqTOF) tandem mass spectrometer has been implemented for cation transmission mode electron transfer ion/ion reactions of tryptic polypeptides. The frequency components in the broadband waveform were defined to excite the first generation intact electron transfer products for relatively large tryptic peptides. The optimum amplitude of the arbitrary waveform applied has been determined empirically to be 3.0 Vp-p, which is effective for relatively high mass-to-charge (m/z) ratio precursor ions with little elimination of sequence information for low m/z ions. The application of broadband activation during the transmission mode ion/ion reaction obviates frequency and amplitude tuning normally associated with ion trap collision induced dissociation (CID). This approach has been demonstrated with triply and doubly charged tryptic peptides with and without post-translational modifications. Enhanced structural information was achieved by production of a larger number of informative c- and z-type fragments using the tailored waveform on unmodified and modified (phosphorylated and glycosylated) peptides when the first generation intact electron transfer products fell into the defined frequency range. This approach can be applied to a wide range of tryptic peptide ions, making it attractive as a rapid and general approach for ETD LC-MS/MS of tryptic peptides in a QqTOF instrument. PMID:19305916

  2. The role of charge transfer in the energy level alignment at the pentacene/C60 interface.

    PubMed

    Beltrán, J; Flores, F; Ortega, J

    2014-03-07

    Understanding the mechanism of energy level alignment at organic-organic interfaces is a crucial line of research to optimize applications in organic electronics. We address this problem for the C60-pentacene interface by performing local-orbital Density Functional Theory (DFT) calculations, including the effect of the charging energies on the energy gap of both organic materials. The results are analyzed within the induced density of interface states (IDIS) model. We find that the induced interface potential is in the range of 0.06-0.10 eV, in good agreement with the experimental evidence, and that such potential is mainly induced by the small, but non-negligible, charge transfer between the two compounds and the multipolar contribution associated with pentacene. We also suggest that an appropriate external intercompound potential could create an insulator-metal transition at the interface.

  3. Distinguishing the Roles of Thylakoid Respiratory Terminal Oxidases in the Cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Ermakova, Maria; Huokko, Tuomas; Richaud, Pierre; Bersanini, Luca; Howe, Christopher J; Lea-Smith, David J; Peltier, Gilles; Allahverdiyeva, Yagut

    2016-06-01

    Various oxygen-utilizing electron sinks, including the soluble flavodiiron proteins (Flv1/3), and the membrane-localized respiratory terminal oxidases (RTOs), cytochrome c oxidase (Cox) and cytochrome bd quinol oxidase (Cyd), are present in the photosynthetic electron transfer chain of Synechocystis sp. PCC 6803. However, the role of individual RTOs and their relative importance compared with other electron sinks are poorly understood, particularly under light. Via membrane inlet mass spectrometry gas exchange, chlorophyll a fluorescence, P700 analysis, and inhibitor treatment of the wild type and various mutants deficient in RTOs, Flv1/3, and photosystem I, we investigated the contribution of these complexes to the alleviation of excess electrons in the photosynthetic chain. To our knowledge, for the first time, we demonstrated the activity of Cyd in oxygen uptake under light, although it was detected only upon inhibition of electron transfer at the cytochrome b6f site and in ∆flv1/3 under fluctuating light conditions, where linear electron transfer was drastically inhibited due to impaired photosystem I activity. Cox is mostly responsible for dark respiration and competes with P700 for electrons under high light. Only the ∆cox/cyd double mutant, but not single mutants, demonstrated a highly reduced plastoquinone pool in darkness and impaired gross oxygen evolution under light, indicating that thylakoid-based RTOs are able to compensate partially for each other. Thus, both electron sinks contribute to the alleviation of excess electrons under illumination: RTOs continue to function under light, operating on slower time ranges and on a limited scale, whereas Flv1/3 responds rapidly as a light-induced component and has greater capacity. © 2016 American Society of Plant Biologists. All Rights Reserved.

  4. Sirtuin Activation: A Role for Plasma Membrane in the Cell Growth Puzzle

    PubMed Central

    2013-01-01

    For more than 20 years, the observation that impermeable oxidants can stimulate cell growth has not been satisfactorily explained. The discovery of sirtuins provides a logical answer to the puzzle. The NADH-dependent transplasma membrane electron transport system, which is stimulated by growth factors and interventions such as calorie restriction, can transfer electrons to external acceptors and protect against stress-induced apoptosis. We hypothesize that the activation of plasma membrane electron transport contributes to the cytosolic NAD+ pool required for sirtuin to activate transcription factors necessary for cell growth and survival. PMID:23033342

  5. Nanosecond laser photolysis studies of vitamin K 3 in aqueous solution

    NASA Astrophysics Data System (ADS)

    Chen, J. F.; Ge, X. W.; Chu, G. S.; Zhang, Z. C.; Zhang, M. W.; Yao, S. D.; Lin, N. Y.

    1999-06-01

    Vitamin K 3 in aqueous solution was investigated by 248 nm laser flash photolysis. Laser-induced transient species were characterized according to kinetic analysis and quenching experiments by Mn 2+ and O 2. In neutral solutions, the intermediates recorded were assigned to excited triplet states and dehydrogenated radicals of vitamin K 3. In comparison with the results of pulse radiolytical experiment, vitamin K 3 not only has strong electron affinity but could also could be photoionized by UV laser light. All this shows that vitamin K 3 acts as an effective electron carrier and electron transfer agent.

  6. Introduction to Time of Flight Positron Annihilation Induced Auger Spectroscopy (TOF-PAES)

    NASA Astrophysics Data System (ADS)

    Joglekar, Prasad; Kalaskar, Sushant; Shastry, Karthik; Satyal, Suman; Weiss, Alex

    2009-10-01

    Time of flight- positron annihilation induced auger electron spectroscopy (TOF-PAES) is extremely surface selective with close to 95% of the PAES signal stemming from the top-most atomic layer. In PAES, a beam of low energy (1eV -- 25eV) positrons is made incident on a surface where they become trapped in an image potential well. A fraction (up to several percent) of the positrons in the surface state annihilate with the core electrons of atoms at the surface resulting in core-holes. Electrons in higher levels can fill these core-hole via an Auger transition in which the energy associated with this filling the core hole is transferred to another electron which can leave the atom and the surface. The energy of the outgoing (Auger) electrons is characteristic of the energy levels of the atom and can be used to identify the specific element taking part in the transition. In this talk I will present a brief review of how the TOF PAES technique can be used to obtain Auger spectra that is completely free of secondary electron background.

  7. Disorder induced semiconductor to metal transition and modifications of grain boundaries in nanocrystalline zinc oxide thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Fouran; Kumar, Vinod; Chaudhary, Babloo

    2012-10-01

    This paper report on the disorder induced semiconductor to metal transition (SMT) and modifications of grain boundaries in nanocrystalline zinc oxide thin film. Disorder is induced using energetic ion irradiation. It eliminates the possibility of impurities induced transition. However, it is revealed that some critical concentration of defects is needed for inducing such kind of SMT at certain critical temperature. Above room temperature, the current-voltage characteristics in reverse bias attributes some interesting phenomenon, such as electric field induced charge transfer, charge trapping, and diffusion of defects. The transition is explained by the defects induced disorder and strain in ZnO crystallitesmore » created by high density of electronic excitations.« less

  8. [2.2]paracyclophane-bridged mixed-valence compounds: application of a generalized Mulliken-Hush three-level model.

    PubMed

    Amthor, Stephan; Lambert, Christoph

    2006-01-26

    A series of [2.2]paracylophane-bridged bis-triarylamine mixed-valence (MV) radical cations were analyzed by a generalized Mulliken-Hush (GMH) three-level model which takes two transitions into account: the intervalence charge transfer (IV-CT) band which is assigned to an optically induced hole transfer (HT) from one triarylamine unit to the second one and a second band associated with a triarylamine radical cation to bridge (in particular, the [2.2]paracyclophane bridge) hole transfer. From the GMH analysis, we conclude that the [2.2]paracyclophane moiety is not the limiting factor which governs the intramolecular charge transfer. AM1-CISD calculations reveal that both through-bond as well as through-space interactions of the [2.2]paracyclophane bridge play an important role for hole transfer processes. These electronic interactions are of course smaller than direct pi-conjugation, but from the order of magnitude of the couplings of the [2.2]paracyclophane MV species, we assume that this bridge is able to mediate significant through-space and through-bond interactions and that the cyclophane bridge acts more like an unsaturated spacer rather than a saturated one. From the exponential dependence of the electronic coupling V between the two triarylamine localized states on the distance r between the two redox centers, we infer that the hole transfer occurs via a superexchange mechanism. Our analysis reveals that even significantly longer pi-conjugated bridges should still mediate significant electronic interactions because the decay constant beta of a series of pi-conjugated MV species is small.

  9. Laser-induced Forward Transfer of Ag Nanopaste.

    PubMed

    Breckenfeld, Eric; Kim, Heungsoo; Auyeung, Raymond C Y; Piqué, Alberto

    2016-03-31

    Over the past decade, there has been much development of non-lithographic methods(1-3) for printing metallic inks or other functional materials. Many of these processes such as inkjet(3) and laser-induced forward transfer (LIFT)(4) have become increasingly popular as interest in printable electronics and maskless patterning has grown. These additive manufacturing processes are inexpensive, environmentally friendly, and well suited for rapid prototyping, when compared to more traditional semiconductor processing techniques. While most direct-write processes are confined to two-dimensional structures and cannot handle materials with high viscosity (particularly inkjet), LIFT can transcend both constraints if performed properly. Congruent transfer of three dimensional pixels (called voxels), also referred to as laser decal transfer (LDT)(5-9), has recently been demonstrated with the LIFT technique using highly viscous Ag nanopastes to fabricate freestanding interconnects, complex voxel shapes, and high-aspect-ratio structures. In this paper, we demonstrate a simple yet versatile process for fabricating a variety of micro- and macroscale Ag structures. Structures include simple shapes for patterning electrical contacts, bridging and cantilever structures, high-aspect-ratio structures, and single-shot, large area transfers using a commercial digital micromirror device (DMD) chip.

  10. Laser-induced Forward Transfer of Ag Nanopaste

    PubMed Central

    Breckenfeld, Eric; Kim, Heungsoo; Auyeung, Raymond C. Y.; Piqué, Alberto

    2016-01-01

    Over the past decade, there has been much development of non-lithographic methods1-3 for printing metallic inks or other functional materials. Many of these processes such as inkjet3 and laser-induced forward transfer (LIFT)4 have become increasingly popular as interest in printable electronics and maskless patterning has grown. These additive manufacturing processes are inexpensive, environmentally friendly, and well suited for rapid prototyping, when compared to more traditional semiconductor processing techniques. While most direct-write processes are confined to two-dimensional structures and cannot handle materials with high viscosity (particularly inkjet), LIFT can transcend both constraints if performed properly. Congruent transfer of three dimensional pixels (called voxels), also referred to as laser decal transfer (LDT)5-9, has recently been demonstrated with the LIFT technique using highly viscous Ag nanopastes to fabricate freestanding interconnects, complex voxel shapes, and high-aspect-ratio structures. In this paper, we demonstrate a simple yet versatile process for fabricating a variety of micro- and macroscale Ag structures. Structures include simple shapes for patterning electrical contacts, bridging and cantilever structures, high-aspect-ratio structures, and single-shot, large area transfers using a commercial digital micromirror device (DMD) chip. PMID:27077645

  11. Influence of non-collisional laser heating on the electron dynamics in dielectric materials

    NASA Astrophysics Data System (ADS)

    Barilleau, L.; Duchateau, G.; Chimier, B.; Geoffroy, G.; Tikhonchuk, V.

    2016-12-01

    The electron dynamics in dielectric materials induced by intense femtosecond laser pulses is theoretically addressed. The laser driven temporal evolution of the energy distribution of electrons in the conduction band is described by a kinetic Boltzmann equation. In addition to the collisional processes for energy transfer such as electron-phonon-photon and electron-electron interactions, a non-collisional process for photon absorption in the conduction band is included. It relies on direct transitions between sub-bands of the conduction band through multiphoton absorption. This mechanism is shown to significantly contribute to the laser heating of conduction electrons for large enough laser intensities. It also increases the time required for the electron distribution to reach the equilibrium state as described by the Fermi-Dirac statistics. Quantitative results are provided for quartz irradiated by a femtosecond laser pulse with a wavelength of 800 nm and for intensities in the range of tens of TW cm-2, lower than the ablation threshold. The change in the energy deposition induced by this non-collisional heating process is expected to have a significant influence on the laser processing of dielectric materials.

  12. A composite generator film impregnated with cellulose nanocrystals for enhanced triboelectric performance

    Treesearch

    Jun Peng; Huilong Zhang; Qifeng Zheng; Craig M. Clemons; Ronald C. Sabo; Shaoqin Gong; Zhenqiang Ma; Lih-Sheng Turng

    2017-01-01

    A novel polydimethylsiloxane (PDMS)/cellulose nanocrystal flake (CNCF) composite triboelectric nanogenerator (CTG) using CNCFs as effective dielectrics a 10-times-enhanced triboelectric performance compared with its pure PDMS counterpart. Positive charges generated on the surface of the CNCFs during cyclic compression boosted electron transfer and induced extra charges...

  13. Energy Level Alignment of N-Doping Fullerenes and Fullerene Derivatives Using Air-Stable Dopant.

    PubMed

    Bao, Qinye; Liu, Xianjie; Braun, Slawomir; Li, Yanqing; Tang, Jianxin; Duan, Chungang; Fahlman, Mats

    2017-10-11

    Doping has been proved to be one of the powerful technologies to achieve significant improvement in the performance of organic electronic devices. Herein, we systematically map out the interface properties of solution-processed air-stable n-type (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl) doping fullerenes and fullerene derivatives and establish a universal energy level alignment scheme for this class of n-doped system. At low doping levels at which the charge-transfer doping induces mainly bound charges, the energy level alignment of the n-doping organic semiconductor can be described by combining integer charger transfer-induced shifts with a so-called double-dipole step. At high doping levels, significant densities of free charges are generated and the charge flows between the organic film and the conducting electrodes equilibrating the Fermi level in a classic "depletion layer" scheme. Moreover, we demonstrate that the model holds for both n- and p-doping of π-backbone molecules and polymers. With the results, we provide wide guidance for identifying the application of the current organic n-type doping technology in organic electronics.

  14. Evidence of photo- and thermal-induced reversible intermolecular hydrogen-atom transfer in. gamma. -irradiated thiourea clathrates as studied by electron spin resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ichikawa, T.

    1979-05-17

    There has been a report (M. Iwasaki and Toriyama) on an electron spin resonance study of reversible intramolecular radical conversion due to photo- and thermal-induced H-atom transfer. Schlenk, Brown, White, Chatini, and Nakatani reported H-atom abstraction of a photostimulated allylic radical from its neighbor molecules and thermal recovery of the allylic radical from photoirradiation in a thiourea clathrate. Radiolysis of a thiourea clathrate containing a mixture of 10 mol% 2,3-dimethylbutadiene and 90 mol% 2,3-dimethylbutane gave a resolved room-temperature spectrum. The result seemed to suggest that the monomer radical was stabilized in the canal even at room temperature in the presencemore » of the inert DBA molecules which might block chain propagation. Results suggested that the photostimulated R/sub 1/, radicals abstract H atoms from DBA molecules to form tetramethylethylene molecules and R/sub 2/ radicals and that the R/sub 2/ radicals produced by photoirradiation abstract H atoms from TME molecules to regenerate R/sub 1/ radicals and DBA molecules. 2 figures. (DP)« less

  15. From non-covalent binding to irreversible DNA lesions: nile blue and nile red as photosensitizing agents

    PubMed Central

    Gattuso, Hugo; Besancenot, Vanessa; Grandemange, Stéphanie; Marazzi, Marco; Monari, Antonio

    2016-01-01

    We report a molecular modeling study, coupled with spectroscopy experiments, on the behavior of two well known organic dyes, nile blue and nile red, when interacting with B-DNA. In particular, we evidence the presence of two competitive binding modes, for both drugs. However their subsequent photophysical behavior is different and only nile blue is able to induce DNA photosensitization via an electron transfer mechanism. Most notably, even in the case of nile blue, its sensitization capabilities strongly depend on the environment resulting in a single active binding mode: the minor groove. Fluorescence spectroscopy confirms the presence of competitive interaction modes for both sensitizers, while the sensitization via electron transfer, is possible only in the case of nile blue. PMID:27329409

  16. Size-Induced Segregation in the Stepwise Microhydration of Hydantoin and Its Role in Proton-Induced Charge Transfer

    NASA Astrophysics Data System (ADS)

    Calvo, Florent; Bacchus-Montabonel, Marie-Christine

    2018-01-01

    Recent photochemistry experiments provided evidence for the formation of hydantoin by irradiation of interstellar ice analogues. The significance of these results and the importance of hydantoin in prebiotic chemistry and polypeptide synthesis motivate the present theoretical investigation, in which we analyzed the effects of stepwise hydration on the electronic and thermodynamical properties of the structure of microhydrated hydantoin using a variety of computational approaches. We generally find microhydration to proceed around the hydantoin heterocycle until 5 water molecules are reached, at which stage hydration becomes segregated with a water cluster forming aside the heterocycle. The reactivity of microhydrated hydantoin caused by an impinging proton was evaluated through charge transfer collision cross sections for microhydrated compounds but also for hydantoin on icy grains modeled using a cluster approach mimicking the true hexagonal ice surface. The effects of hydration on charge transfer efficiency are mostly significant when few water molecules are present, and they progressively weaken and stabilize in larger clusters. On the ice substrate, charge transfer essentially contributes to a global increase in the cross sections.

  17. Indium oxide thin film as potential photoanodes for corrosion protection of stainless steel under visible light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yan; Yu, Jianqiang, E-mail: jianqyu@qdu.edu.cn; Sun, Kai

    Graphical abstract: If the conduction band potential of In{sub 2}O{sub 3} is more negative than the corrosion potential of stainless steel, photo-induced electrons will be transferred from In{sub 2}O{sub 3} to the steel, thus shifting the potential of the steel into a corrosion immunity region and preventing the steel from the corrosion. - Highlights: • Indium oxide performed novel application under visible light. • Indium oxide by sol–gel method behaved better photoelectrochemical properties. • Electrons were transferred to stainless steel from indium oxide once light on. - Abstract: This paper reports the photoelectrochemical cathodic protection of 304 stainless steel bymore » In{sub 2}O{sub 3} thin-film under visible-light. The films were fabricated with In{sub 2}O{sub 3} powders, synthesized by both sol–gel (In{sub 2}O{sub 3}-sg) and solid-state (In{sub 2}O{sub 3}-ss) processes. The photo-induced open circuit potential and the photo-to-current efficiency measurements suggested that In{sub 2}O{sub 3} could be a promising candidate material for photoelectrochemical cathodic protection of metallic alloys under visible light. Moreover, the polarization curve experimental results indicated that In{sub 2}O{sub 3}-sg thin-film can mitigate the corrosion potential of 304 stainless steel to much more negative values with a higher photocurrent density than the In{sub 2}O{sub 3}-ss film under visible-light illumination. All the results demonstrated that the In{sub 2}O{sub 3}-sg thin-film provides a better photoelectrochemical cathodic protection for 304 stainless steel than In{sub 2}O{sub 3}-ss thin-film under visible-light illumination. The higher photoelectrochemical efficiency is possibly due to the uniform thin films produced with the smaller particle size of In{sub 2}O{sub 3}-sg, which facilitates the transfer of the photo-induced electrons from bulk to the surface and suppresses the charge recombination of the electrons and holes.« less

  18. Absorption and fluorescence spectroscopic characterisation of the circadian blue-light photoreceptor cryptochrome from Drosophila melanogaster (dCry)

    NASA Astrophysics Data System (ADS)

    Shirdel, J.; Zirak, P.; Penzkofer, A.; Breitkreuz, H.; Wolf, E.

    2008-09-01

    The absorption and fluorescence behaviour of the circadian blue-light photoreceptor cryptochrome from Drosophila melanogaster (dCry) in a pH 8 aqueous buffer solution is studied. The flavin adenine dinucleotide (FAD) cofactor of dCry is identified to be present in its oxidized form (FAD ox), and the 5,10-methenyltetrahydrofolate (MTHF) cofactor is found to be hydrolyzed and oxidized to 10-formyldihydrofolate (10-FDHF). The absorption and the fluorescence behaviour of dCry is investigated in the dark-adapted (receptor) state, the light-adapted (signalling) state, and under long-time violet light exposure. Photo-excitation of FAD ox in dCry causes a reductive electron transfer to the formation of anionic FAD semiquinone (FAD rad - ), and photo-excitation of the generated FAD rad - causes an oxidative electron transfer to the back formation of FAD ox. In light adapted dCry a photo-induced equilibrium between FAD ox and FAD rad - exists. The photo-cycle dynamics of signalling state formation and recovery is discussed. Quantum yields of photo-induced signalling state formation of about 0.2 and of photo-induced back-conversion of about 0.2 are determined. A recovery of FAD rad - to FAD ox in the dark with a time constant of 1.6 min at room temperature is found.

  19. UCP1 deficiency causes brown fat respiratory chain depletion and sensitizes mitochondria to calcium overload-induced dysfunction

    PubMed Central

    Kazak, Lawrence; Chouchani, Edward T.; Stavrovskaya, Irina G.; Lu, Gina Z.; Jedrychowski, Mark P.; Egan, Daniel F.; Kumari, Manju; Kong, Xingxing; Erickson, Brian K.; Szpyt, John; Rosen, Evan D.; Murphy, Michael P.; Kristal, Bruce S.; Gygi, Steven P.; Spiegelman, Bruce M.

    2017-01-01

    Brown adipose tissue (BAT) mitochondria exhibit high oxidative capacity and abundant expression of both electron transport chain components and uncoupling protein 1 (UCP1). UCP1 dissipates the mitochondrial proton motive force (Δp) generated by the respiratory chain and increases thermogenesis. Here we find that in mice genetically lacking UCP1, cold-induced activation of metabolism triggers innate immune signaling and markers of cell death in BAT. Moreover, global proteomic analysis reveals that this cascade induced by UCP1 deletion is associated with a dramatic reduction in electron transport chain abundance. UCP1-deficient BAT mitochondria exhibit reduced mitochondrial calcium buffering capacity and are highly sensitive to mitochondrial permeability transition induced by reactive oxygen species (ROS) and calcium overload. This dysfunction depends on ROS production by reverse electron transport through mitochondrial complex I, and can be rescued by inhibition of electron transfer through complex I or pharmacologic depletion of ROS levels. Our findings indicate that the interscapular BAT of Ucp1 knockout mice exhibits mitochondrial disruptions that extend well beyond the deletion of UCP1 itself. This finding should be carefully considered when using this mouse model to examine the role of UCP1 in physiology. PMID:28630339

  20. Photophysics and morphology of poly (3-dodecylthienylenevinylene)-[6,6]-phenyl-C{sub 61}-butyric acid methyl ester composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lafalce, E.; Toglia, P.; Jiang, X.

    2012-05-21

    A series of low band gap poly(3-dodecylthienylenevinylene) (PTV) with controlled morphological order have been synthesized and blended with the electron acceptor [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) for organic photovoltaic devices. Two polymers with the most and least side chain regioregularity were chosen in this work, namely the PTV010 and PTV55, respectively. Using photoluminescence, photo-induced absorption spectroscopy, and atomic force microscopy, we find no direct evidence of photoinduced charge transfer between the two constituents, independent of the bulk-heterojunction morphology of the film, although the possibility of formation of P{sup +}/C{sub 60}{sup -} charge transfer complex was not completely ruled out.more » The large exciton binding energy (E{sub b} = 0.6 eV) in PTV inhibits the photoinduced electron transfer from PTV to PCBM. In addition, excitons formed on polymer chains suffer ultrafast (« less

  1. Characterizing Plasmonic Excitations of Quasi-2D Chains

    NASA Astrophysics Data System (ADS)

    Townsend, Emily; Bryant, Garnett

    A quantum description of the optical response of nanostructures and other atomic-scale systems is desirable for modeling systems that use plasmons for quantum information transfer, or coherent transport and interference of quantum states, as well as systems small enough for electron tunneling or quantum confinement to affect the electronic states of the system. Such a quantum description is complicated by the fact that collective and single-particle excitations can have similar energies and thus will mix. We seek to better understand the excitations of nanosystems to identify which characteristics of the excitations are most relevant to modeling their behavior. In this work we use a quasi 2-dimensional linear atomic chain as a model system, and exact diagonalization of the many-body Hamiltonian to obtain its excitations. We compare this to previous work in 1-d chains which used a combination of criteria involving a many-body state's transfer dipole moment, balance, transfer charge, dynamical response, and induced-charge distribution to identify which excitations are plasmonic in character.

  2. 12 CFR 1005.14 - Electronic fund transfer service provider not holding consumer's account.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 8 2012-01-01 2012-01-01 false Electronic fund transfer service provider not... PROTECTION ELECTRONIC FUND TRANSFERS (REGULATION E) § 1005.14 Electronic fund transfer service provider not holding consumer's account. (a) Provider of electronic fund transfer service. A person that provides an...

  3. 12 CFR 1005.14 - Electronic fund transfer service provider not holding consumer's account.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 8 2013-01-01 2013-01-01 false Electronic fund transfer service provider not... PROTECTION ELECTRONIC FUND TRANSFERS (REGULATION E) General § 1005.14 Electronic fund transfer service provider not holding consumer's account. (a) Provider of electronic fund transfer service. A person that...

  4. 12 CFR 1005.14 - Electronic fund transfer service provider not holding consumer's account.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 8 2014-01-01 2014-01-01 false Electronic fund transfer service provider not... PROTECTION ELECTRONIC FUND TRANSFERS (REGULATION E) General § 1005.14 Electronic fund transfer service provider not holding consumer's account. (a) Provider of electronic fund transfer service. A person that...

  5. pH-Dependent Regulation of the Relaxation Rate of the Radical Anion of the Secondary Quinone Electron Acceptor QB in Photosystem II As Revealed by Fourier Transform Infrared Spectroscopy.

    PubMed

    Nozawa, Yosuke; Noguchi, Takumi

    2018-05-15

    Photosystem II (PSII) is a protein complex that performs water oxidation using light energy during photosynthesis. In PSII, electrons abstracted from water are eventually transferred to the secondary quinone electron acceptor, Q B , and upon double reduction, Q B is converted to quinol by binding two protons. Thus, excess electron transfer in PSII increases the pH of the stroma. In this study, to investigate the pH-dependent regulation of the electron flow in PSII, we have estimated the relaxation rate of the Q B - radical anion in the pH region between 5 and 8 by direct monitoring of its population using light-induced Fourier transform infrared difference spectroscopy. The decay of Q B - by charge recombination with the S 2 state of the water oxidation center in PSII membranes was shown to be accelerated at higher pH, whereas that of Q A - examined in the presence of a herbicide was virtually unaffected at pH ≤7.5 and slightly slowed at pH 8. These observations were consistent with the previous studies that included rather indirect monitoring of the Q B - and Q A - decays using fluorescence detection. The accelerated relaxation of Q B - was explained by the shift of a redox equilibrium between Q A - and Q B - to the Q A - side due to the decrease in the redox potential of Q B at higher pH, which is induced by deprotonation of a single amino acid residue near Q B . It is proposed that this pH-dependent Q B - relaxation is one of the mechanisms of electron flow regulation in PSII for its photoprotection.

  6. Hot-electron real-space transfer and longitudinal transport in dual AlGaN/AlN/{AlGaN/GaN} channels

    NASA Astrophysics Data System (ADS)

    Šermukšnis, E.; Liberis, J.; Matulionis, A.; Avrutin, V.; Ferreyra, R.; Özgür, Ü.; Morkoç, H.

    2015-03-01

    Real-space transfer of hot electrons is studied in dual-channel GaN-based heterostructure operated at or near plasmon-optical phonon resonance in order to attain a high electron drift velocity at high current densities. For this study, pulsed electric field is applied in the channel plane of a nominally undoped Al0.3Ga0.7N/AlN/{Al0.15Ga0.85N/GaN} structure with a composite channel of Al0.15Ga0.85N/GaN, where the electrons with a sheet density of 1.4 × 1013 cm-2, estimated from the Hall effect measurements, are confined. The equilibrium electrons are situated predominantly in the Al0.15Ga0.85N layer as confirmed by capacitance-voltage experiment and Schrödinger-Poisson modelling. The main peak of the electron density per unit volume decreases as more electrons occupy the GaN layer at high electric fields. The associated decrease in the plasma frequency induces the plasmon-assisted decay of non-equilibrium optical phonons (hot phonons) confirmed by the decrease in the measured hot-phonon lifetime from 0.95 ps at low electric fields down below 200 fs at fields of E \\gt 4 kV cm-1 as the plasmon-optical phonon resonance is approached. The onset of real-space transfer is resolved from microwave noise measurements: this source of noise dominates for E \\gt 8 kV cm-1. In this range of fields, the longitudinal current exceeds the values measured for a mono channel reference Al0.3Ga0.7N/AlN/GaN structure. The results are explained in terms of the ultrafast decay of hot phonons and reduced alloy scattering caused by the real-space transfer in the composite channel.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eich, F. G.; Agostini, Federica, E-mail: agostini@mpi-halle.mpg.de

    We propose a procedure to analyze the relation between the exact factorization of the electron-nuclear wave function and the Born-Oppenheimer approximation. We define the adiabatic limit as the limit of infinite nuclear mass. To this end, we introduce a unit system that singles out the dependence on the electron-nuclear mass ratio of each term appearing in the equations of the exact factorization. We observe how non-adiabatic effects induced by the coupling to the nuclear motion affect electronic properties and we analyze the leading term, connecting it to the classical nuclear momentum. Its dependence on the mass ratio is tested numericallymore » on a model of proton-coupled electron transfer in different non-adiabatic regimes.« less

  8. Ultrafast lattice dynamics in lead selenide quantum dot induced by laser excitation

    DOE PAGES

    Wang, Xuan; Rahmani, Hamidreza; Zhou, Jun; ...

    2016-10-10

    We directly monitored the lattice dynamics in PbSe quantum dots induced by laser excitation using ultrafast electron di raction. The energy relaxation between the carriers and the lattice took place within 10 ps, showing no evidence of any signi cant phonon bottleneck e ect. Meanwhile, the lattice dilation exhibited some unusual features that could not be explained by the available mechanisms of photon- induced acoustic vibrations in semiconductors alone. The heat transport between the QDs and the substrate deviates signi cantly from Fourier's Law, which opens questions about the heat transfer under nonequilibrium conditions in nanoscale materials.

  9. Ultrafast lattice dynamics in lead selenide quantum dot induced by laser excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xuan; Rahmani, Hamidreza; Zhou, Jun

    We directly monitored the lattice dynamics in PbSe quantum dots induced by laser excitation using ultrafast electron di raction. The energy relaxation between the carriers and the lattice took place within 10 ps, showing no evidence of any signi cant phonon bottleneck e ect. Meanwhile, the lattice dilation exhibited some unusual features that could not be explained by the available mechanisms of photon- induced acoustic vibrations in semiconductors alone. The heat transport between the QDs and the substrate deviates signi cantly from Fourier's Law, which opens questions about the heat transfer under nonequilibrium conditions in nanoscale materials.

  10. The Effect of Neighboring Methionine Residue on Tyrosine Nitration & Oxidation in Peptides Treated with MPO, H2O2, & NO2- or Peroxynitrite and Bicarbonate: Role of Intramolecular Electron-Transfer Mechanism?

    PubMed Central

    Zhang, Hao; Zielonka, Jacek; Sikora, Adam; Joseph, Joy; Xu, Yingkai; Kalyanaraman, B.

    2009-01-01

    Recent reports suggest that intramolecular electron-transfer reactions can profoundly affect the site and specificity of tyrosyl nitration and oxidation in peptides and proteins. Here we investigated the effects of methionine on tyrosyl nitration and oxidation induced by myeloperoxidase (MPO), H2O2 and NO2- and peroxynitrite (ONOO-) or ONOO- and bicarbonate (HCO3-) in model peptides, tyrosylmethionine (YM), tyrosylphenylalanine (YF) and tyrosine. Nitration and oxidation products of these peptides were analysed by HPLC with UV/Vis and fluorescence detection, and mass spectrometry; radical intermediates were identified by electron paramagnetic resonance (EPR)-spin-trapping. We have previously shown (Zhang et al., J. Biol. Chem. (2005) 280, 40684-40698) that oxidation and nitration of tyrosyl residue was inhibited in tyrosylcysteine(YC)-type peptides as compared to free tyrosine. Here we show that methionine, another sulfur-containing amino acid, does not inhibit nitration and oxidation of a neighboring tyrosine residue in the presence of ONOO- (or ONOOCO2-) or MPO/H2O2/NO2- system. Nitration of tyrosyl residue in YM was actually stimulated under the conditions of in situ generation of ONOO- (formed by reaction of superoxide with nitric oxide during SIN-1 decomposition), as compared to YF, YC and tyrosine. The dramatic variations in tyrosyl nitration profiles caused by methionine and cysteine residues have been attributed to differences in the direction of intramolecular electron transfer mechanism in these peptides. Further confirmation of HPLC data analysis was obtained by steady-state radiolysis and photolysis experiments. Potential implications of the intramolecular electron-transfer mechanism in mediating selective nitration of protein tyrosyl groups are discussed. PMID:19056332

  11. Progress and Perspectives of Plasmon-Enhanced Solar Energy Conversion.

    PubMed

    Cushing, Scott K; Wu, Nianqiang

    2016-02-18

    Plasmonics allows extraordinary control of light, making it attractive for application in solar energy harvesting. In metal-semiconductor heterojunctions, plasmons can enhance photoconversion in the semiconductor via three mechanisms, including light trapping, hot electron/hole transfer, and plasmon-induced resonance energy transfer (PIRET). To understand the plasmonic enhancement, the metal's geometry, constituent metal, and interface must be viewed in terms of the effects on the plasmon's dephasing and decay route. To simplify design of plasmonic metal-semiconductor heterojunctions for high-efficiency solar energy conversion, the parameters controlling the plasmonic enhancement can be distilled to the dephasing time. The plasmonic geometry can then be further refined to optimize hot carrier transfer, PIRET, or light trapping.

  12. Influence of metallic surface states on electron affinity of epitaxial AlN films

    NASA Astrophysics Data System (ADS)

    Mishra, Monu; Krishna, Shibin; Aggarwal, Neha; Gupta, Govind

    2017-06-01

    The present article investigates surface metallic states induced alteration in the electron affinity of epitaxial AlN films. AlN films grown by plasma-assisted molecular beam epitaxy system with (30% and 16%) and without metallic aluminium on the surface were probed via photoemission spectroscopic measurements. An in-depth analysis exploring the influence of metallic aluminium and native oxide on the electronic structure of the films is performed. It was observed that the metallic states pinned the Fermi Level (FL) near valence band edge and lead to the reduction of electron affinity (EA). These metallic states initiated charge transfer and induced changes in surface and interface dipoles strength. Therefore, the EA of the films varied between 0.6-1.0 eV due to the variation in contribution of metallic states and native oxide. However, the surface barrier height (SBH) increased (4.2-3.5 eV) adversely due to the availability of donor-like surface states in metallic aluminium rich films.

  13. Enhancement of plasmon-induced charge separation efficiency by coupling silver nanocubes with a thin gold film

    NASA Astrophysics Data System (ADS)

    Akiyoshi, Kazutaka; Saito, Koichiro; Tatsuma, Tetsu

    2016-10-01

    Plasmon-induced charge separation (PICS), in which an energetic electron is injected from a plasmonic nanoparticle (NP) to a semiconductor on contact, is often inhibited by a protecting agent adsorbed on the NP. We addressed this issue for an Ag nanocube-TiO2 system by coating it with a thin Au layer or by inserting the Au layer between the nanocubes (NCs) and TiO2. Both of the electrodes exhibit much higher photocurrents due to PICS than the electrodes without the Au film or the Ag NCs. These photocurrent enhancements can be explained in terms of PICS with accelerated electron transfer, in which electron injection from the Ag NCs or Ag@Au core-shell NCs to TiO2 is promoted by the Au film, or PICS enhanced by a nanoantenna effect, in which the electron injection from the Au film to TiO2 is enhanced by optical near field generated by the Ag NC.

  14. Access to long-term optical memories using photon echoes retrieved from electron spins in semiconductor quantum wells

    NASA Astrophysics Data System (ADS)

    Poltavtsev, S. V.; Langer, L.; Yugova, I. A.; Salewski, M.; Kapitonov, Y. V.; Yakovlev, D. R.; Karczewski, G.; Wojtowicz, T.; Akimov, I. A.; Bayer, M.

    2016-10-01

    We use spontaneous (two-pulse) and stimulated (three-pulse) photon echoes for studying the coherent evolution of optically excited ensemble of trions which are localized in semiconductor CdTe/CdMgTe quantum well. Application of transverse magnetic field leads to the Larmor precession of the resident electron spins, which shuffles optically induced polarization between optically accessible and inaccessible states. This results in several spectacular phenomena. First, magnetic field induces oscillations of spontaneous photon echo amplitude. Second, in three-pulse excitation scheme, the photon echo decay is extended by several orders of magnitude. In this study, short-lived optical excitation which is created by the first pulse is coherently transferred into a long-lived electron spin state using the second optical pulse. This coherent spin state of electron ensemble persists much longer than any optical excitation in the system, preserving information on initial optical field, which can be retrieved as a photon echo by means of third optical pulse.

  15. SERS study of surface plasmon resonance induced carrier movement in Au@Cu2O core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Zhang, Fan; Deng, Xin-Yu; Xue, Xiangxin; Wang, Li; Sun, Yantao; Feng, Jing-Dong; Zhang, Yongjun; Wang, Yaxin; Jung, Young Mee

    2018-01-01

    A plasmon induced carrier movement enhanced mechanism of surface-enhanced Raman scattering (SERS) was investigated using a charge-transfer (CT) enhancement mechanism. Here, we designed a strategy to study SERS in Au@Cu2O nanoshell nanoparticles with different shell thicknesses. Among the plasmonically coupled nanostructures, Au spheres with Cu2O shells have been of special interest due to their ultrastrong electromagnetic fields and controllable carrier transfer properties, which are useful for SERS. Au@Cu2O nanoshell nanoparticles (NPs) with shell thicknesses of 48-56 nm are synthesized that exhibit high SERS activity. This high activity originates from plasmonic-induced carrier transfer from Au@Cu2O to 4-mercaptobenzoic acid (MBA). The CT transition from the valence band (VB) of Cu2O to the second excited π-π* transition of MBA, and is of b2 electronic symmetry, which was enhanced significantly. The Herzberg-Teller selection rules were employed to predict the observed enhanced b2 symmetry modes. The system constructed in this study combines the long-range electromagnetic effect of Au NPs, localized surface plasmon resonance (LSPR) of the Au@Cu2O nanoshell, and the CT contribution to assist in understanding the SERS mechanism based on LSPR-induced carrier movement in metal/semiconductor nanocomposites.

  16. Heterogeneous catalysis with lasers

    NASA Astrophysics Data System (ADS)

    George, T. F.

    1986-06-01

    Theoretical techniques have been developed to describe a variety of laser-induced molecular rate processes occurring at solid surfaces which are involved in heterogeneous catalysis. Such processes include adsorption, migration, chemical reactions and desorption. The role of surface phonons in laser-selective processes and laser heating has been analyzed. The importance of electronic degrees of freedom has been considered for semiconductor and metal substrates, with special emphasis on the laser excitation of surface states. Surface-modified photochemistry has also been investigated, where the effect of a metal surface on the resonance fluorescence spectrum of a laser-driven atom/molecule has been assessed by means of surface-dressed optical Bloch equations. It is seen that the spectrum can be significantly different from the gas-phase case. Two related gas-surface collision processes have also been studied. First, the feasibility of the formation of the electron-hole pairs in a semiconductor by vibrationally excited molecules has been explored. Second, charge transfer in ion-surface collisions has been examined for both one-electron and two-electron transfer processes. Work has been initiated on microstructures and rough structures, including clusters and surface gratings.

  17. Proton conduction within the reaction centers of Rhodobacter capsulatus: the electrostatic role of the protein.

    PubMed

    Maróti, P; Hanson, D K; Baciou, L; Schiffer, M; Sebban, P

    1994-06-07

    Light-induced charge separation in the photosynthetic reaction center results in delivery of two electrons and two protons to the terminal quinone acceptor QB. In this paper, we have used flash-induced absorbance spectroscopy to study three strains that share identical amino acid sequences in the QB binding site, all of which lack the protonatable amino acids Glu-L212 and Asp-L213. These strains are the photosynthetically incompetent site-specific mutant Glu-L212/Asp-L213-->Ala-L212/Ala-L213 and two different photocompetent derivatives that carry both alanine substitutions and an intergenic suppressor mutation located far from QB (class 3 strain, Ala-Ala + Arg-M231-->Leu; class 4 strain, Ala-Ala + Asn-M43-->Asp). At pH 8 in the double mutant, we observe a concomitant decrease of nearly 4 orders of magnitude in the rate constants of second electron and proton transfer to QB compared to the wild type. Surprisingly, these rates are increased to about the same extent in both types of suppressor strains but remain > 2 orders of magnitude smaller than those of the wild type. In the double mutant, at pH 8, the loss of Asp-L213 and Glu-L212 leads to a substantial stabilization (> or = 60 meV) of the semiquinone energy level. Both types of compensatory mutations partially restore, to nearly the same level, the original free energy difference for electron transfer from primary quinone QA to QB. The pH dependence of the electron and proton transfer processes in the double-mutant and the suppressor strains suggests that when reaction centers of the double mutant are shifted to lower pH (1.5-2 units), they function like those of the suppressor strains at physiological pH. Our data suggest that the main effect of the compensatory mutations is to partially restore the negative electrostatic environment of QB and to increase an apparent "functional" pK of the system for efficient proton transfer to the active site. This emphasizes the role of the protein in tuning the electrostatic environment of its cofactors and highlights the possible long-range electrostatic effects.

  18. Structural and electronic phase transitions of MoTe2 induced by Li ionic gating

    NASA Astrophysics Data System (ADS)

    Hwang, Jeongwoon; Zhang, Chenxi; Cho, Kyeongjae

    2017-12-01

    Monolayer MoTe2 has semiconducting and semimetallic phases with small energy difference, and the relative stability is readily reversed by gating. By first-principles calculations, we investigate the changes in atomic structure, electronic structure, and relative stability of two phases induced by Li ionic gating. To model Li ionic gating, we employ two approaches; one is direct adsorption of Li on MoTe2 and the other is introducing non-contacting Li plate over MoTe2. We show phonon instability in H-phase of MoTe2 with increasing the amount of charge transfer from Li, which implies a large electron-phonon coupling in the system resulting in a charge density wave state. Structural distortion is also observed in highly doped T d phase. The transition energy barrier from distorted H phase to distorted T d phase is reduced considerably compared to that of pristine MoTe2.

  19. Modeling the effects of low-LET cosmic rays on electronic components.

    PubMed

    Keating, A; Goncalves, P; Pimenta, M; Brogueira, P; Zadeh, A; Daly, E

    2012-08-01

    The effects of cosmic radiation in single cells, organic tissues and electronics are a major concern for space exploration and manned missions. Standard heavy ions radiation tests employ ion cocktails with energy of the order of 10 MeV per nucleon and with a linear energy transfer ranging from a few MeV cm(2) mg(-1) to hundreds of MeV cm(2) mg(-1). In space, cosmic rays show significant fluxes at energies up to the order of GeV per nucleon. The present work aims at investigating single event damage due to low-, high- and very-high-energy ions. The European Space Agency reference single event upset monitor data are used to support the discussion. Finally, the effect of ionization induced directly by primary particles and ionization induced by recoils produced in an electronic device is investigated for different types of devices.

  20. Unraveling the charge transfer/electron transport in mesoporous semiconductive TiO2 films by voltabsorptometry.

    PubMed

    Renault, Christophe; Nicole, Lionel; Sanchez, Clément; Costentin, Cyrille; Balland, Véronique; Limoges, Benoît

    2015-04-28

    In this work, we demonstrate that chronoabsorptometry and more specifically cyclic voltabsorptometry are particularly well suited techniques for acquiring a comprehensive understanding of the dynamics of electron transfer/charge transport within a transparent mesoporous semiconductive metal oxide film loaded with a redox-active dye. This is illustrated with the quantitative analysis of the spectroelectrochemical responses of two distinct heme-based redox probes adsorbed in highly-ordered mesoporous TiO2 thin films (prepared from evaporation-induced self-assembly, EISA). On the basis of a finite linear diffusion-reaction model as well as the establishment of the analytical expressions governing the limiting cases, it was possible to quantitatively analyse, predict and interpret the unusual voltabsorptometric responses of the adsorbed redox species as a function of the potential applied to the semiconductive film (i.e., as a function of the transition from an insulating to a conductive state or vice versa). In particular, we were able to accurately determine the interfacial charge transfer rates between the adsorbed redox species and the porous semiconductor. Another important and unexpected finding, inferred from the voltabsorptograms, is an interfacial electron transfer process predominantly governed by the extended conduction band states of the EISA TiO2 film and not by the localized traps in the bandgap. This is a significant result that contrasts those previously observed for dye-sensitized solar cells formed of randomly sintered TiO2 nanoparticles, a behaviour that was ascribed to a particularly low density of localized surface states in EISA TiO2. The present methodology also provides a unique and straightforward access to an activation-driving force relationship according to the Marcus theory, thus opening new opportunities not only to investigate the driving-force effects on electron recombination dynamics in dye-sensitized solar cells but also to study the electron transfer/transport mechanisms in heterogeneous photoelectrocatalytic systems combining nanostructured semiconductor electrodes and heterogeneous redox-active catalysts.

  1. Electron transparent graphene windows for environmental scanning electron microscopy in liquids and dense gases.

    PubMed

    Stoll, Joshua D; Kolmakov, Andrei

    2012-12-21

    Due to its ultrahigh electron transmissivity in a wide electron energy range, molecular impermeability, high electrical conductivity and excellent mechanical stiffness, suspended graphene membranes appear to be a nearly ideal window material for in situ (in vivo) environmental electron microscopy of nano- and mesoscopic objects (including bio-medical samples) immersed in liquids and/or in dense gaseous media. In this paper, taking advantage of a small modification of the graphene transfer protocol onto metallic and SiN supporting orifices, reusable environmental cells with exchangeable graphene windows have been designed. Using colloidal gold nanoparticles (50 nm) dispersed in water as model objects for scanning electron microscopy in liquids as proof of concept, different conditions for imaging through the graphene membrane were tested. Limiting factors for electron microscopy in liquids, such as electron beam induced water radiolysis and damage of the graphene membrane at high electron doses, are discussed.

  2. Ferrocene pixels by laser-induced forward transfer: towards flexible microelectrode printing

    NASA Astrophysics Data System (ADS)

    Mitu, B.; Matei, A.; Filipescu, M.; Palla Papavlu, A.; Bercea, A.; Lippert, T.; Dinescu, M.

    2017-03-01

    The aim of this work is to demonstrate the potential of laser-induced forward transfer (LIFT) as a printing technology, alternative to standard microfabrication techniques, in the area of flexible micro-electrode fabrication. First, ferrocene thin films are deposited onto fused silica and fused silica substrates previously coated with a photodegradable polymer film (triazene polymer) by matrix assisted pulsed laser evaporation (MAPLE). The morphology and chemical structure of the ferrocene thin films deposited by MAPLE has been investigated by atomic force microscopy and Fourier transformed infrared spectroscopy, and no structural damage occurs as a result of the laser deposition. Second, LIFT is applied to print for the first time ferrocene pixels and lines onto flexible polydimethylsiloxane (PDMS) substrates. The ferrocene pixels and lines are flawlessly transferred onto the PDMS substrates in air at room temperature, without the need of additional conventional photolithography processes. We believe that these results are very promising for a variety of applications ranging from flexible electronics to lab-on-a-chip devices, MEMS, and medical implants.

  3. Accuracy and Transferability of Ab Initio Electronic Band Structure Calculations for Doped BiFeO3

    NASA Astrophysics Data System (ADS)

    Gebhardt, Julian; Rappe, Andrew M.

    2017-11-01

    BiFeO3 is a multiferroic material and, therefore, highly interesting with respect to future oxide electronics. In order to realize such devices, pn junctions need to be fabricated, which are currently impeded by the lack of successful p-type doping in this material. In order to guide the numerous research efforts in this field, we recently finished a comprehensive computational study, investigating the influence of many dopants onto the electronic structure of BiFeO3. In order to allow for this large scale ab initio study, the computational setup had to be accurate and efficient. Here we discuss the details of this assessment, showing that standard density-functional theory (DFT) yields good structural properties. The obtained electronic structure, however, suffers from well-known shortcomings. By comparing the conventional DFT results for alkali and alkaline-earth metal doping with more accurate hybrid-DFT calculations, we show that, in this case, the problems of standard DFT go beyond a simple systematic error. Conventional DFT shows bad transferability and the more reliable hybrid-DFT has to be chosen for a qualitatively correct prediction of doping induced changes in the electronic structure of BiFeO3.

  4. Buckminsterfullerene hybridized zinc oxide tetrapods: defects and charge transfer induced optical and electrical response.

    PubMed

    Smazna, Daria; Rodrigues, Joana; Shree, Sindu; Postica, Vasile; Neubüser, Gero; Martins, A F; Ben Sedrine, N; Jena, Naresh K; Siebert, Leonard; Schütt, Fabian; Lupan, Oleg; Ahuja, Rajeev; Correia, M R; Monteiro, Teresa; Kienle, Lorenz; Yang, Ya; Adelung, Rainer; Mishra, Yogendra Kumar

    2018-05-21

    Buckminster fullerene (C60) based hybrid metal oxide materials are receiving considerable attention because of their excellent fundamental and applied aspects, like semiconducting, electron transfer, luminescent behaviors, etc. and this work briefly discusses the successful fabrication of C60 decorated ZnO tetrapod materials and their detailed structure-property relationships including device sensing applications. The electron microscopy investigations indicate that a quite dense surface coverage of ZnO tetrapods with C60 clusters is achieved. The spectroscopy studies confirmed the identification of the C60 vibrational modes and the C60 induced changes in the absorption and luminescence properties of the ZnO tetrapods. An increased C60 concentration on ZnO results in steeper ZnO bandgap absorption followed by well-defined free exciton and 3.31 eV line emissions. As expected, higher amounts of C60 increase the intensity of C60-related visible absorption bands. Pumping the samples with photons with an energy corresponding to these absorption band maxima leads to additional emission from ZnO showing an effective charge transfer phenomenon from C60 to the ZnO host. The density of states model obtained from DFT studies for pure and C60 coated ZnO surfaces confirms the experimental observations. The fabricated C60-ZnO hybrid tetrapod based micro- and nanodevices showed interesting ethanol gas sensing characteristics.

  5. n l -> n' l' transition rates in electron and proton - Rydberg atom collision

    NASA Astrophysics Data System (ADS)

    Vrinceanu, Daniel

    2017-04-01

    Electrons and protons drive the recombination dynamics of highly excited Rydberg atoms in cold rarefied plasmas found in astrophysical conditions such as primordial recombination or star formation in H-II clouds. It has been recognized that collisions induce both energy and angular momentum transitions in Rydberg atoms, although in different proportions, depending on the initial state, temperature and the given species considered in the collision (electron or proton). Most studies focused on one collision type at a time, under the assumption that collision types are independent or their effects are not competing. The classical Monte-Carlo trajectory simulations presented in this work calculate the rates for both energy and angular momentum transfers and show their interdependence. For example, energy transfer with small angular momentum change are more efficient for target states with initial large angular momentum. The author acknowledges support received from the National Science Foundation through a Grant for the Center for Research on Complex Networks (HRD-1137732).

  6. The Involvement of Hydrogen-producing and ATP-dependent NADPH-consuming Pathways in Setting the Redox Poise in the Chloroplast of Chlamydomonas reinhardtii in Anoxia

    PubMed Central

    Clowez, Sophie; Godaux, Damien; Cardol, Pierre; Wollman, Francis-André; Rappaport, Fabrice

    2015-01-01

    Photosynthetic microalgae are exposed to changing environmental conditions. In particular, microbes found in ponds or soils often face hypoxia or even anoxia, and this severely impacts their physiology. Chlamydomonas reinhardtii is one among such photosynthetic microorganisms recognized for its unusual wealth of fermentative pathways and the extensive remodeling of its metabolism upon the switch to anaerobic conditions. As regards the photosynthetic electron transfer, this remodeling encompasses a strong limitation of the electron flow downstream of photosystem I. Here, we further characterize the origin of this limitation. We show that it stems from the strong reducing pressure that builds up upon the onset of anoxia, and this pressure can be relieved either by the light-induced synthesis of ATP, which promotes the consumption of reducing equivalents, or by the progressive activation of the hydrogenase pathway, which provides an electron transfer pathway alternative to the CO2 fixation cycle. PMID:25691575

  7. Multiferroicity in an organic charge-transfer salt that is suggestive of electric-dipole-driven magnetism

    NASA Astrophysics Data System (ADS)

    Lunkenheimer, Peter; Müller, Jens; Krohns, Stephan; Schrettle, Florian; Loidl, Alois; Hartmann, Benedikt; Rommel, Robert; de Souza, Mariano; Hotta, Chisa; Schlueter, John A.; Lang, Michael

    2012-09-01

    Multiferroics, showing simultaneous ordering of electrical and magnetic degrees of freedom, are remarkable materials as seen from both the academic and technological points of view. A prominent mechanism of multiferroicity is the spin-driven ferroelectricity, often found in frustrated antiferromagnets with helical spin order. There, as for conventional ferroelectrics, the electrical dipoles arise from an off-centre displacement of ions. However, recently a different mechanism, namely purely electronic ferroelectricity, where charge order breaks inversion symmetry, has attracted considerable interest. Here we provide evidence for ferroelectricity, accompanied by antiferromagnetic spin order, in a two-dimensional organic charge-transfer salt, thus representing a new class of multiferroics. We propose a charge-order-driven mechanism leading to electronic ferroelectricity in this material. Quite unexpectedly for electronic ferroelectrics, dipolar and spin order arise nearly simultaneously. This can be ascribed to the loss of spin frustration induced by the ferroelectric ordering. Hence, here the spin order is driven by the ferroelectricity, in marked contrast to the spin-driven ferroelectricity in helical magnets.

  8. Electronic charge rearrangement at metal/organic interfaces induced by weak van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Ferri, Nicola; Ambrosetti, Alberto; Tkatchenko, Alexandre

    2017-07-01

    Electronic charge rearrangements at interfaces between organic molecules and solid surfaces play a key role in a wide range of applications in catalysis, light-emitting diodes, single-molecule junctions, molecular sensors and switches, and photovoltaics. It is common to utilize electrostatics and Pauli pushback to control the interface electronic properties, while the ubiquitous van der Waals (vdW) interactions are often considered to have a negligible direct contribution (beyond the obvious structural relaxation). Here, we apply a fully self-consistent Tkatchenko-Scheffler vdW density functional to demonstrate that the weak vdW interactions can induce sizable charge rearrangements at hybrid metal/organic systems (HMOS). The complex vdW correlation potential smears out the interfacial electronic density, thereby reducing the charge transfer in HMOS, changes the interface work functions by up to 0.2 eV, and increases the interface dipole moment by up to 0.3 Debye. Our results suggest that vdW interactions should be considered as an additional control parameter in the design of hybrid interfaces with the desired electronic properties.

  9. Plasmon-induced artificial photosynthesis

    PubMed Central

    Ueno, Kosei; Oshikiri, Tomoya; Shi, Xu; Zhong, Yuqing; Misawa, Hiroaki

    2015-01-01

    We have successfully developed a plasmon-induced artificial photosynthesis system that uses a gold nanoparticle-loaded oxide semiconductor electrode to produce useful chemical energy as hydrogen and ammonia. The most important feature of this system is that both sides of a strontium titanate single-crystal substrate are used without an electrochemical apparatus. Plasmon-induced water splitting occurred even with a minimum chemical bias of 0.23 V owing to the plasmonic effects based on the efficient oxidation of water and the use of platinum as a co-catalyst for reduction. Photocurrent measurements were performed to determine the electron transfer between the gold nanoparticles and the oxide semiconductor. The efficiency of water oxidation was determined through spectroelectrochemical experiments aimed at elucidating the electron density in the gold nanoparticles. A set-up similar to the water-splitting system was used to synthesize ammonia via nitrogen fixation using ruthenium instead of platinum as a co-catalyst. PMID:26052419

  10. Visualizing changes in electron distribution in coupled chains of cytochrome bc(1) by modifying barrier for electron transfer between the FeS cluster and heme c(1).

    PubMed

    Cieluch, Ewelina; Pietryga, Krzysztof; Sarewicz, Marcin; Osyczka, Artur

    2010-02-01

    Cytochrome c(1) of Rhodobacter (Rba.) species provides a series of mutants which change barriers for electron transfer through the cofactor chains of cytochrome bc(1) by modifying heme c(1) redox midpoint potential. Analysis of post-flash electron distribution in such systems can provide useful information about the contribution of individual reactions to the overall electron flow. In Rba. capsulatus, the non-functional low-potential forms of cytochrome c(1) which are devoid of the disulfide bond naturally present in this protein revert spontaneously by introducing a second-site suppression (mutation A181T) that brings the potential of heme c(1) back to the functionally high levels, yet maintains it some 100 mV lower from the native value. Here we report that the disulfide and the mutation A181T can coexist in one protein but the mutation exerts a dominant effect on the redox properties of heme c(1) and the potential remains at the same lower value as in the disulfide-free form. This establishes effective means to modify a barrier for electron transfer between the FeS cluster and heme c(1) without breaking disulfide. A comparison of the flash-induced electron transfers in native and mutated cytochrome bc(1) revealed significant differences in the post-flash equilibrium distribution of electrons only when the connection of the chains with the quinone pool was interrupted at the level of either of the catalytic sites by the use of specific inhibitors, antimycin or myxothiazol. In the non-inhibited system no such differences were observed. We explain the results using a kinetic model in which a shift in the equilibrium of one reaction influences the equilibrium of all remaining reactions in the cofactor chains. It follows a rather simple description in which the direction of electron flow through the coupled chains of cytochrome bc(1) exclusively depends on the rates of all reversible partial reactions, including the Q/QH2 exchange rate to/from the catalytic sites. 2009 Elsevier B.V. All rights reserved.

  11. Enhancing Mo:BiVO 4 Solar Water Splitting with Patterned Au Nanospheres by Plasmon-Induced Energy Transfer [Rational Nanopositioning for BiVO 4 Solar Water Splitting by Plasmon-induced Energy Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jung Kyu; Shi, Xinjian; Jeong, Myung Jin

    Here, plasmonic metal nanostructures have been extensively investigated to improve the performance of metal oxide photoanodes for photoelectrochemical (PEC) solar water splitting cells. Most of these studies have focused on the effects of those metal nanostructures on enhancing light absorption and enabling direct energy transfer via hot electrons. However, several recent studies have shown that plasmonic metal nanostructures can improve the PEC performance of metal oxide photoanodes via another mechanism known as plasmon–induced resonant energy transfer (PIRET). However, this PIRET effect has not yet been tested for the molybdenum–doped bismuth vanadium oxide (Mo:BiVO 4), regarded as one of the bestmore » metal oxide photoanode candidates. Here, this study constructs a hybrid Au nanosphere/Mo:BiVO 4 photoanode interwoven in a hexagonal pattern to investigate the PIRET effect on the PEC performance of Mo:BiVO 4. This study finds that the Au nanosphere array not only increases light absorption of the photoanode as expected, but also improves both its charge transport and charge transfer efficiencies via PIRET, as confirmed by time–correlated single photon counting and transient absorption studies. As a result, incorporating the Au nanosphere array increases the photocurrent density of Mo:BiVO 4 at 1.23 V versus RHE by ≈2.2–fold (2.83 mA cm –2).« less

  12. Enhancing Mo:BiVO 4 Solar Water Splitting with Patterned Au Nanospheres by Plasmon-Induced Energy Transfer [Rational Nanopositioning for BiVO 4 Solar Water Splitting by Plasmon-induced Energy Transfer

    DOE PAGES

    Kim, Jung Kyu; Shi, Xinjian; Jeong, Myung Jin; ...

    2017-10-04

    Here, plasmonic metal nanostructures have been extensively investigated to improve the performance of metal oxide photoanodes for photoelectrochemical (PEC) solar water splitting cells. Most of these studies have focused on the effects of those metal nanostructures on enhancing light absorption and enabling direct energy transfer via hot electrons. However, several recent studies have shown that plasmonic metal nanostructures can improve the PEC performance of metal oxide photoanodes via another mechanism known as plasmon–induced resonant energy transfer (PIRET). However, this PIRET effect has not yet been tested for the molybdenum–doped bismuth vanadium oxide (Mo:BiVO 4), regarded as one of the bestmore » metal oxide photoanode candidates. Here, this study constructs a hybrid Au nanosphere/Mo:BiVO 4 photoanode interwoven in a hexagonal pattern to investigate the PIRET effect on the PEC performance of Mo:BiVO 4. This study finds that the Au nanosphere array not only increases light absorption of the photoanode as expected, but also improves both its charge transport and charge transfer efficiencies via PIRET, as confirmed by time–correlated single photon counting and transient absorption studies. As a result, incorporating the Au nanosphere array increases the photocurrent density of Mo:BiVO 4 at 1.23 V versus RHE by ≈2.2–fold (2.83 mA cm –2).« less

  13. Ab initio molecular dynamics simulations of AlN responding to low energy particle radiation

    NASA Astrophysics Data System (ADS)

    Xi, Jianqi; Liu, Bin; Zhang, Yanwen; Weber, William J.

    2018-01-01

    Ab initio molecular dynamics simulations of low energy recoil events in wurtzite AlN have been performed to determine threshold displacement energies, defect production and evolution mechanisms, role of partial charge transfer during the process, and the influence of irradiation-induced defects on the properties of AlN. The results show that the threshold displacement energies, Ed, along the direction parallel to the basal planes are smaller than those perpendicular to the basal planes. The minimum Ed values are determined to be 19 eV and 55 eV for N and Al atom, respectively, which occur along the [ 1 ¯ 1 ¯ 20 ] direction. In general, the threshold displacement energies for N are smaller than those for Al atom, indicating the N defects would be dominant under irradiation. The defect production mechanisms have been analyzed. It is found that charge transfer and redistribution for both the primary knock-on atom and the subsequent recoil atoms play a significant role in defect production and evolution. Similar to the trend in oxide materials, there is a nearly linear relationship between Ed and the total amount of charge transfer at the potential energy peak in AlN, which provides guidance on the development of charge-transfer interatomic potentials for classic molecular dynamics simulations. Finally, the response behavior of AlN to low energy irradiation is qualitatively investigated. The existence of irradiation-induced defects significantly modifies the electronic structure, and thus affects the magnetic, electronic and optical properties of AlN. These findings further enrich the understanding of defects in the wide bandgap semiconductor of AlN.

  14. Interfaces between strongly correlated oxides: controlling charge transfer and induced magnetism by hybridization

    NASA Astrophysics Data System (ADS)

    Bibes, Manuel

    At interfaces between conventional materials, band bending and alignment are controlled by differences in electrochemical potential. Applying this concept to oxides in which interfaces can be polar and cations may adopt a mixed valence has led to the discovery of novel two-dimensional states between simple band insulators such as LaAlO3 and SrTiO3. However, many oxides have a more complex electronic structure, with charge, orbital and/or spin orders arising from correlations between transition metal and oxygen ions. Strong correlations thus offer a rich playground to engineer functional interfaces but their compatibility with the classical band alignment picture remains an open question. In this talk we will show that beyond differences in electron affinities and polar effects, a key parameter determining charge transfer at correlated oxide interfaces is the energy required to alter the covalence of the metal-oxygen bond. Using the perovskite nickelate (RNiO3) family as a template, we have probed charge reconstruction at interfaces with gadolinium titanate GdTiO3 using soft X-ray absorption spectroscopy and hard X-ray photoemission spectroscopy. We show that the charge transfer is thwarted by hybridization effects tuned by the rare-earth (R) size. Charge transfer results in an induced ferromagnetic-like state in the nickelate (observed by XMCD), exemplifying the potential of correlated interfaces to design novel phases. Further, our work clarifies strategies to engineer two-dimensional systems through the control of both doping and covalence. Work supported by ERC CoG MINT #615759.

  15. Demonstration of Electronic Capacitor-Based Water Treatment System for Application at Military Installations

    DTIC Science & Technology

    2009-07-01

    45 7.1 Scale, corrosion, bacteria and biofilm control...isms to thrive, creating a potential scenario for microbially induced corro- sion (MIC), heat transfer losses due to biofilm deposits, and potential...health hazards due to pathogenic bacteria growing within biofilm deposits. The following terms are used throughout this paper. Brief definitions are

  16. A transition-metal-free synthesis of arylcarboxyamides from aryl diazonium salts and isocyanides.

    PubMed

    Xia, Zhonghua; Zhu, Qiang

    2013-08-16

    A transition-metal-free carboxyamidation process, using aryl diazonium tetrafluoroborates and isocyanides under mild conditions, has been developed. This novel conversion was initiated by a base and solvent induced aryl radical, followed by radical addition to isocyanide and single electron transfer (SET) oxidation, affording the corresponding arylcarboxyamide upon hydration of the nitrilium intermediate.

  17. Quantum tunneling resonant electron transfer process in Lorentzian plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Woo-Pyo; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791

    The quantum tunneling resonant electron transfer process between a positive ion and a neutral atom collision is investigated in nonthermal generalized Lorentzian plasmas. The result shows that the nonthermal effect enhances the resonant electron transfer cross section in Lorentzian plasmas. It is found that the nonthermal effect on the classical resonant electron transfer cross section is more significant than that on the quantum tunneling resonant charge transfer cross section. It is shown that the nonthermal effect on the resonant electron transfer cross section decreases with an increase of the Debye length. In addition, the nonthermal effect on the quantum tunnelingmore » resonant electron transfer cross section decreases with increasing collision energy. The variation of nonthermal and plasma shielding effects on the quantum tunneling resonant electron transfer process is also discussed.« less

  18. Typical effects of laser dazzling CCD camera

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Zhang, Jianmin; Shao, Bibo; Cheng, Deyan; Ye, Xisheng; Feng, Guobin

    2015-05-01

    In this article, an overview of laser dazzling effect to buried channel CCD camera is given. The CCDs are sorted into staring and scanning types. The former includes the frame transfer and interline transfer types. The latter includes linear and time delay integration types. All CCDs must perform four primary tasks in generating an image, which are called charge generation, charge collection, charge transfer and charge measurement. In camera, the lenses are needed to input the optical signal to the CCD sensors, in which the techniques for erasing stray light are used. And the electron circuits are needed to process the output signal of CCD, in which many electronic techniques are used. The dazzling effects are the conjunct result of light distribution distortion and charge distribution distortion, which respectively derive from the lens and the sensor. Strictly speaking, in lens, the light distribution is not distorted. In general, the lens are so well designed and fabricated that its stray light can be neglected. But the laser is of much enough intensity to make its stray light obvious. In CCD image sensors, laser can induce a so large electrons generation. Charges transfer inefficiency and charges blooming will cause the distortion of the charge distribution. Commonly, the largest signal outputted from CCD sensor is restricted by capability of the collection well of CCD, and can't go beyond the dynamic range for the subsequent electron circuits maintaining normal work. So the signal is not distorted in the post-processing circuits. But some techniques in the circuit can make some dazzling effects present different phenomenon in final image.

  19. Electron Transfer Dissociation of iTRAQ Labeled Peptide Ions

    PubMed Central

    Han, Hongling; Pappin, Darryl J.; Ross, Philip L; McLuckey, Scott A.

    2009-01-01

    Triply and doubly charged iTRAQ (isobaric tagging for relative and absolute quantitation) labeled peptide cations from a tryptic peptide mixture of bovine carbonic anhydrase II were subjected to electron transfer ion/ion reactions to investigate the effect of charge bearing modifications associated with iTRAQ on the fragmentation pattern. It was noted that electron transfer dissociation (ETD) of triply charged or activated ETD (ETD + supplemental collisional activation of intact electron transfer species) of doubly charged iTRAQ tagged peptide ions yielded extensive sequence information, in analogy with ETD of unmodified peptide ions. That is, addition of the fixed charge iTRAQ tag showed relatively little deleterious effect on the ETD performance of the modified peptides. ETD of the triply charged iTRAQ labeled peptide ions followed by collision-induced dissociation (CID) of the product ion at m/z 162 yielded the reporter ion at m/z 116, which is the reporter ion used for quantitation via CID of the same precursor ions. The reporter ion formed via the two-step activation process is expected to provide quantitative information similar to that directly produced from CID. A 103 Da neutral loss species observed in the ETD spectra of all the triply and doubly charged iTRAQ labeled peptide ions is unique to the 116 Da iTRAQ reagent, which implies that this process also has potential for quantitation of peptides/proteins. Therefore, ETD with or without supplemental collisional activation, depending on the precursor ion charge state, has the potential to directly identify and quantify the peptides/proteins simultaneously using existing iTRAQ reagents. PMID:18646790

  20. Chemiexcitation of Melanin Derivatives Induces DNA Photoproducts Long after UV Exposure

    PubMed Central

    Premi, Sanjay; Wallisch, Silvia; Mano, Camila M.; Weiner, Adam B.; Bacchiocchi, Antonella; Wakamatsu, Kazumasa; Bechara, Etelvino J. H.; Halaban, Ruth; Douki, Thierry; Brash, Douglas E.

    2015-01-01

    Mutations in sunlight-induced melanoma arise from cyclobutane pyrimidine dimers (CPD), DNA photoproducts that are typically created picoseconds after an ultraviolet (UV) photon is absorbed at thymine or cytosine. Here we show that in melanocytes, CPD are generated for >3 hours after exposure to UVA, a major component of the radiation in sunlight and in tanning beds. These “dark CPD” constitute the majority of CPD and include the cytosine-containing CPD that initiate UV-signature C→T mutations. Dark CPD arise when UV-induced reactive oxygen and nitrogen species combine to excite an electron in fragments of the pigment melanin. This creates a quantum triplet state that has the energy of a UV photon but that induces CPD by energy transfer to DNA in a radiation-independent manner. Melanin may thus be carcinogenic as well as protective against cancer. These findings also validate the long-standing suggestion that chemically-generated excited electronic states are relevant to mammalian biology. PMID:25700512

  1. Inhibition of melanosome transfer results in skin lightening.

    PubMed

    Seiberg, M; Paine, C; Sharlow, E; Andrade-Gordon, P; Costanzo, M; Eisinger, M; Shapiro, S S

    2000-08-01

    The chemical basis of melanogenesis is well documented, but the mechanism of melanosome transfer and the regulation of pigmentation by keratinocyte-melanocyte interactions are not well understood. Therefore we examined the effects of serine protease inhibitors on skin pigmentation and found that the protease-activated receptor 2, expressed on keratinocytes, may regulate pigmentation via keratinocyte-melanocyte interactions. Here we show that modulation of protease-activated receptor 2 activation affects melanosome transfer into keratinocytes, resulting in changes in pigment production and deposition. SLIGRL, the protease-activated receptor 2 activating peptide, enhanced melanosome ingestion by keratinocytes, thus increasing pigment deposition. RWJ-50353, a serine protease inhibitor, led to reduced pigment deposition in melanocytes and depigmentation. Electron microscopy studies illustrated an accumulation of immature melanosomes inside melanocytes and abnormal dendrite dynamics in RWJ-50353-treated epidermal equivalents. RWJ-50353 induced a visible and dose-dependent skin lightening effect in the dark-skinned Yucatan swine. Examinations by electron microscopy indicated that the in vivo transfer of melanosomes from melanocytes to keratinocytes was affected. Our data suggest that modulation of keratinocyte-melanocyte interactions via the protease-activated receptor 2 pathway affects melanosome transfer. The use of RWJ-50353 to modulate protease-activated receptor 2 activation could lead to a new class of depigmenting agents.

  2. Contribution of direct electron transfer mechanisms to overall electron transfer in microbial fuel cells utilising Shewanella oneidensis as biocatalyst.

    PubMed

    Fapetu, Segun; Keshavarz, Taj; Clements, Mark; Kyazze, Godfrey

    2016-09-01

    To investigate the contribution of direct electron transfer mechanisms to electricity production in microbial fuel cells by physically retaining Shewanella oneidensis cells close to or away from the anode electrode. A maximum power output of 114 ± 6 mWm(-2) was obtained when cells were retained close to the anode using a dialysis membrane. This was 3.5 times more than when the cells were separated away from the anode. Without the membrane the maximum power output was 129 ± 6 mWm(-2). The direct mechanisms of electron transfer contributed significantly to overall electron transfer from S. oneidensis to electrodes, a result that was corroborated by another experiment where S. oneidensis cells were entrapped in alginate gels. S. oneidensis transfers electrons primarily by direct electron transfer as opposed to mediated electron transfer.

  3. Charge transport in molecular junctions: From tunneling to hopping with the probe technique

    NASA Astrophysics Data System (ADS)

    Kilgour, Michael; Segal, Dvira

    2015-07-01

    We demonstrate that a simple phenomenological approach can be used to simulate electronic conduction in molecular wires under thermal effects induced by the surrounding environment. This "Landauer-Büttiker's probe technique" can properly replicate different transport mechanisms, phase coherent nonresonant tunneling, ballistic behavior, and hopping conduction. Specifically, our simulations with the probe method recover the following central characteristics of charge transfer in molecular wires: (i) the electrical conductance of short wires falls off exponentially with molecular length, a manifestation of the tunneling (superexchange) mechanism. Hopping dynamics overtakes superexchange in long wires demonstrating an ohmic-like behavior. (ii) In off-resonance situations, weak dephasing effects facilitate charge transfer, but under large dephasing, the electrical conductance is suppressed. (iii) At high enough temperatures, kBT/ɛB > 1/25, with ɛB as the molecular-barrier height, the current is enhanced by a thermal activation (Arrhenius) factor. However, this enhancement takes place for both coherent and incoherent electrons and it does not readily indicate on the underlying mechanism. (iv) At finite-bias, dephasing effects may impede conduction in resonant situations. We further show that memory (non-Markovian) effects can be implemented within the Landauer-Büttiker's probe technique to model the interaction of electrons with a structured environment. Finally, we examine experimental results of electron transfer in conjugated molecular wires and show that our computational approach can reasonably reproduce reported values to provide mechanistic information.

  4. Magnetic field effects on electron transfer reactions involving sextet-spin ( S = 5/2) intermediates generated on photoexcitation of a Cr(III)-porphyrin complex

    NASA Astrophysics Data System (ADS)

    Mori, Yukie; Hoshino, Mikio; Hayashi, Hisaharu

    The excited trip-sextet ( 6 T 1 ) state of chloro-(3-methylimidazol)-( meso -tetraphenylporphyrinato) chromium(III) (Cr III P) is quenched by 1,1 '-dibenzyl-4,4 '-bipyridinium (BV 2+ ) in acetonitrile through electron transfer to give 5 (Cr III P .+ ) and 2 BV .+ . The intermediate is a geminate ion pair in the sextet (Sx) state 6 [ 5 (Cr III P .+ ) 2 BV .+ ], which decays through either the escape from a solvent cage to give the free ions or the spin conversion to the quartet (Qa) state followed by back electron transfer. The free ion yield ( ΦFI ) increased with increasing magnetic field from 0 to 4 T and then slightly decreased from 4 T to 10 T. These magnetic field effects are explained as follows. Under low fields where the Zeeman splitting of the spin sublevels is lower than or comparable with the electron spin dipole-dipole interaction within 5 (Cr III P .+ ), this interaction effectively induces the Sx ⇔Qa conversion of [ 5 (Cr III P .+ ) 2 BV + ] to result in low ΦFI values. Under high fields where the Zeeman splitting is larger than the dipole-dipole interaction, the Sx Qa conversion is decreased with increasing field to cause higher ΦFI values. The slight decrease in ΦFI above 4 T may be due to the Δg mechanism.

  5. Reduced energy offset via substitutional doping for efficient organic/inorganic hybrid solar cells.

    PubMed

    Jin, Xiao; Sun, Weifu; Zhang, Qin; Ruan, Kelian; Cheng, Yuanyuan; Xu, Haijiao; Xu, Zhongyuan; Li, Qinghua

    2015-06-01

    Charge carrier transport in bulk heterojunction that is central to the device performance of solar cells is sensitively dependent on the energy level alignment of acceptor and donor. However, the effect of energy level regulation induced by nickel ions on the primary photoexcited electron transfer and the performance of P3HT/TiO2 hybrid solar cells remains being poorly understood and rarely studied. Here we demonstrate that the introduction of the versatile nickel ions into TiO2 nanocrystals can significantly elevate the conduction and valence band energy levels of the acceptor, thus resulting in a remarkable reduction of energy level offset between the conduction band of acceptor and lowest unoccupied molecular orbital of donor. By applying transient photoluminescence and femtosecond transient absorption spectroscopies, we demonstrate that the electron transfer becomes more competitive after incorporating nickel ions. In particular, the electron transfer life time is shortened from 30.2 to 16.7 ps, i.e., more than 44% faster than pure TiO2 acceptor, thus leading to a notable increase of power conversion efficiency in organic/inorganic hybrid solar cells. This work underscores the promising virtue of engineering the reduction of 'excess' energy offset to accelerate electron transport and demonstrates the potential of nickel ions in applications of solar energy conversion and photon detectors.

  6. Suppression of BRCA2 by Mutant Mitochondrial DNA in Prostate Cancer

    DTIC Science & Technology

    2011-05-01

    Briefly, the electron transfer activities of complex I/III (NADH dehydrogenase/cytochrome bc1 complex: catalyzes the electron transfer from NADH to...ferricytochrome c) and complex II/III (succinate dehydrogenase/cytochrome bc1 complex: catalyzes the electron transfer from succinate to ferricytochrome...The electron transfer activity of complex IV (cytochrome c oxidase: catalyzes the final step of the respiratory chain by transferring electrons from

  7. The mechanism and regularity of quenching the effect of bases on fluorophores: the base-quenched probe method.

    PubMed

    Mao, Huihui; Luo, Guanghua; Zhan, Yuxia; Zhang, Jun; Yao, Shuang; Yu, Yang

    2018-04-30

    The base-quenched probe method for detecting single nucleotide polymorphisms (SNPs) relies on real-time PCR and melting-curve analysis, which might require only one pair of primers and one probe. At present, it has been successfully applied to detect SNPs of multiple genes. However, the mechanism of the base-quenched probe method remains unclear. Therefore, we investigated the possible mechanism of fluorescence quenching by DNA bases in aqueous solution using spectroscopic techniques. It showed that the possible mechanism might be photo-induced electron transfer. We next analyzed electron transfer or transmission between DNA bases and fluorophores. The data suggested that in single-stranded DNA, the electrons of the fluorophore are transferred to the orbital of pyrimidine bases (thymine (T) and cytosine (C)), or that the electron orbitals of the fluorophore are occupied by electrons from purine bases (guanine (G) and adenine (A)), which lead to fluorescence quenching. In addition, the electrons of a fluorophore excited by light can be transmitted along double-stranded DNA, which gives rise to stronger fluorescence quenching. Furthermore, we demonstrated that the quenching efficiency of bases is in the order of G > C ≥ A ≥ T and the capability of electron transmission of base-pairs in double-stranded DNA is in the order of CG[combining low line] ≥ GC[combining low line] > TA[combining low line] ≥ AT[combining low line] (letters representing bases on the complementary strand of the probe are bold and underlined), and the most common commercial fluorophores including FAM, HEX, TET, JOE, and TAMRA could be influenced by bases and are in line with this mechanism and regularity.

  8. Electrochemical Measurement of Electron Transfer Kinetics by Shewanella oneidensis MR-1*

    PubMed Central

    Baron, Daniel; LaBelle, Edward; Coursolle, Dan; Gralnick, Jeffrey A.; Bond, Daniel R.

    2009-01-01

    Shewanella oneidensis strain MR-1 can respire using carbon electrodes and metal oxyhydroxides as electron acceptors, requiring mechanisms for transferring electrons from the cell interior to surfaces located beyond the cell. Although purified outer membrane cytochromes will reduce both electrodes and metals, S. oneidensis also secretes flavins, which accelerate electron transfer to metals and electrodes. We developed techniques for detecting direct electron transfer by intact cells, using turnover and single turnover voltammetry. Metabolically active cells attached to graphite electrodes produced thin (submonolayer) films that demonstrated both catalytic and reversible electron transfer in the presence and absence of flavins. In the absence of soluble flavins, electron transfer occurred in a broad potential window centered at ∼0 V (versus standard hydrogen electrode), and was altered in single (ΔomcA, ΔmtrC) and double deletion (ΔomcA/ΔmtrC) mutants of outer membrane cytochromes. The addition of soluble flavins at physiological concentrations significantly accelerated electron transfer and allowed catalytic electron transfer to occur at lower applied potentials (−0.2 V). Scan rate analysis indicated that rate constants for direct electron transfer were slower than those reported for pure cytochromes (∼1 s−1). These observations indicated that anodic current in the higher (>0 V) window is due to activation of a direct transfer mechanism, whereas electron transfer at lower potentials is enabled by flavins. The electrochemical dissection of these activities in living cells into two systems with characteristic midpoint potentials and kinetic behaviors explains prior observations and demonstrates the complementary nature of S. oneidensis electron transfer strategies. PMID:19661057

  9. Theoretical investigation of the electron transfer dynamics and photodegradation pathways in a hydrogen-evolving ruthenium-palladium photocatalyst.

    PubMed

    Staniszewska, Magdalena; Kupfer, Stephan; Guthmuller, Julien

    2018-05-16

    Time-dependent density functional theory calculations combined with the Marcus theory of electron transfer (ET) were applied on the molecular photocatalyst [(tbbpy)2Ru(tpphz)PdCl2]2+ in order to elucidate the light-induced relaxation pathways populated upon excitation in the longer wavelength range of its absorption spectrum. The computational results show that after the initial excitation, metal (Ru) to ligand (tpphz) charge transfer (MLCT) triplet states are energetically accessible, but that an ET toward the catalytic center (PdCl2) from these states is a slow process, with estimated time constants above 1 ns. Instead, the calculations predict that low-lying Pd-centered states are efficiently populated - associated to an energy transfer toward the catalytic center. Thus, it is postulated that these states lead to the dissociation of a Cl- and are consequently responsible for the experimentally observed degradation of the catalytic center. Following dissociation, it is shown that the ET rates from the MLCT states to the charge separated states are significantly increased (i.e. 10^5-10^6 times larger). This demonstrates that alteration of the catalytic center generates efficient charge separation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Near-Infrared Plasmon-Assisted Water Oxidation.

    PubMed

    Nishijima, Yoshiaki; Ueno, Kosei; Kotake, Yuki; Murakoshi, Kei; Inoue, Haruo; Misawa, Hiroaki

    2012-05-17

    We report the stoichiometric evolution of oxygen via water oxidation by irradiating a plasmon-enhanced photocurrent generation system with near-infrared light (λ: 1000 nm), in which gold nanostructures were arrayed on the surface of TiO2 electrode. It is considered that multiple electron holes generated by plasmon-induced charge excitation led to the effective recovery of water oxidation after the electron transfer from gold to TiO2. The proposed system containing a gold nanostructured TiO2 electrode may be a promising artificial photosynthetic system using near-infrared light.

  11. The target material influence on the current pulse during high power pulsed magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Moens, Filip; Konstantinidis, Stéphanos; Depla, Diederik

    2017-10-01

    The current-time characteristic during high power pulsed magnetron sputtering is measured under identical conditions for seventeen different target materials. Based on physical processes such as gas rarefaction, ion-induced electron emission, and electron impact ionization, two test parameters were derived that significantly correlate with specific features of the current-time characteristic: i) the peak current is correlated to the momentum transfer between the sputtered material and the argon gas, ii) while the observed current plateau after the peak is connected to the metal ionization rate.

  12. Femtosecond transient absorption, Raman, and electrochemistry studies of tetrasulfonated copper phthalocyanine in water solutions.

    PubMed

    Abramczyk, H; Brozek-Płuska, B; Kurczewski, K; Kurczewska, M; Szymczyk, I; Krzyczmonik, P; Błaszczyk, T; Scholl, H; Czajkowski, W

    2006-07-20

    Ultrafast time-resolved electronic spectra of the primary events induced in the copper tetrasulfonated phthalocyanine Cu(tsPc)4-) in aqueous solution has been measured by femtosecond pump-probe transient absorption spectroscopy. The primary events initiated by the absorption of a photon occurring within the femtosecond time scale are discussed on the basis of the electron transfer mechanism between the adjacent phthalocyanine rings proposed recently in our laboratory. The femtosecond transient absorption results are compared with the low temperature emission spectra obtained with Raman spectroscopy and the voltammetric curves.

  13. Improved Ion Resistance for III-V Photocathodes in High Current Guns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulhollan, Gregory, A.

    2012-11-16

    The two photocathode test systems were modified, baked and recommissioned. The first system was dedicated to ion studies and the second to electron stimulated recovery (ESR) work. The demonstration system for the electron beam rejuvenation was set up, tested and demonstrated to one of the SSRL team (Dr. Kirby) during a site visit. The requisite subsystems were transferred to SSRL, installed and photoemission studies conducted on activated surfaces following electron beam exposure. Little surface chemistry change was detected in the photoemission spectra following the ESR process. The yield mapping system for the ion (and later, the electron beam rejuvenation) studiesmore » was implemented and use made routine. Ion species and flux measurements were performed for H, He, Ne, Ar, Kr and Xe ions at energies of 0.5, 1.0 and 2.0 kV. Gas induced photoyield measurements followed each ion exposure measurement. These data permit the extraction of photoyield induced change per ion (by species) at the measured energies. Electron beam induced rejuvenation was first demonstrated in the second chamber with primary electron beam energy and dependency investigations following. A Hiden quadrupole mass spectrometer for the electron stimulated desorption (ESD) measurements was procured. The UHV test systems needed for subsequent measurements were configured, baked, commissioned and utilized for their intended purposes. Measurements characterizing the desorption products from the ESD process and secondary electron (SE) yield at the surfaces of negative electron affinity GaAs photocathodes have been performed. One US Utility Patent was granted covering the ESR process.« less

  14. Single-step electron transfer on the nanometer scale: ultra-fast charge shift in strongly coupled zinc porphyrin-gold porphyrin dyads.

    PubMed

    Fortage, Jérôme; Boixel, Julien; Blart, Errol; Hammarström, Leif; Becker, Hans Christian; Odobel, Fabrice

    2008-01-01

    The synthesis, electrochemical properties, and photoinduced electron transfer processes of a series of three novel zinc(II)-gold(III) bisporphyrin dyads (ZnP--S--AuP(+)) are described. The systems studied consist of two trisaryl porphyrins connected directly in the meso position via an alkyne unit to tert-(phenylenethynylene) or penta(phenylenethynylene) spacers. In these dyads, the estimated center to center interporphyrin separation distance varies from 32 to 45 A. The absorption, emission, and electrochemical data indicate that there are strong electronic interactions between the linked elements, thanks to the direct attachment of the spacer on the porphyrin ring through the alkyne unit. At room temperature in toluene, light excitation of the zinc porphyrin results in almost quantitative formation of the charge shifted state (.+)ZnP--S--AuP(.), whose lifetime is in the order of hundreds of picoseconds. In this solvent, the charge-separated state decays to the ground state through the intermediate population of the zinc porphyrin triplet excited state. Excitation of the gold porphyrin leads instead to rapid energy transfer to the triplet ZnP. In dichloromethane the charge shift reactions are even faster, with time constants down to 2 ps, and may be induced also by excitation of the gold porphyrin. In this latter solvent, the longest charge-shifted lifetime (tau=2.3 ns) was obtained with the penta-(phenylenethynylene) spacer. The charge shift reactions are discussed in terms of bridge-mediated super-exchange mechanisms as electron or hole transfer. These new bis-porphyrin arrays, with strong electronic coupling, represent interesting molecular systems in which extremely fast and efficient long-range photoinduced charge shift occurs over a long distance. The rate constants are two to three orders of magnitude larger than for corresponding ZnP--AuP(+) dyads linked via meso-phenyl groups to oligo-phenyleneethynylene spacers. This study demonstrates the critical impact of the attachment position of the spacer on the porphyrin on the electron transfer rate, and this strategy can represent a useful approach to develop molecular photonic devices for long-range charge separations.

  15. Electron transfer and conformational change in complexes of trimethylamine dehydrogenase and electron transferring flavoprotein.

    PubMed

    Jones, Matthew; Talfournier, Francois; Bobrov, Anton; Grossmann, J Günter; Vekshin, Nikolai; Sutcliffe, Michael J; Scrutton, Nigel S

    2002-03-08

    The trimethylamine dehydrogenase-electron transferring flavoprotein (TMADH.ETF) electron transfer complex has been studied by fluorescence and absorption spectroscopies. These studies indicate that a series of conformational changes occur during the assembly of the TMADH.ETF electron transfer complex and that the kinetics of assembly observed with mutant TMADH (Y442F/L/G) or ETF (alpha R237A) complexes are much slower than are the corresponding rates of electron transfer in these complexes. This suggests that electron transfer does not occur in the thermodynamically most favorable state (which takes too long to form), but that one or more metastable states (which are formed more rapidly) are competent in transferring electrons from TMADH to ETF. Additionally, fluorescence spectroscopy studies of the TMADH.ETF complex indicate that ETF undergoes a stable conformational change (termed structural imprinting) when it interacts transiently with TMADH to form a second, distinct, structural form. The mutant complexes compromise imprinting of ETF, indicating a dependence on the native interactions present in the wild-type complex. The imprinted form of semiquinone ETF exhibits an enhanced rate of electron transfer to the artificial electron acceptor, ferricenium. Overall molecular conformations as probed by small-angle x-ray scattering studies are indistinguishable for imprinted and non-imprinted ETF, suggesting that changes in structure likely involve confined reorganizations within the vicinity of the FAD. Our results indicate a series of conformational events occur during the assembly of the TMADH.ETF electron transfer complex, and that the properties of electron transfer proteins can be affected lastingly by transient interaction with their physiological redox partners. This may have significant implications for our understanding of biological electron transfer reactions in vivo, because ETF encounters TMADH at all times in the cell. Our studies suggest that caution needs to be exercised in extrapolating the properties of in vitro interprotein electron transfer reactions to those occurring in vivo.

  16. 31 CFR 208.3 - Payment by electronic funds transfer.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 2 2011-07-01 2011-07-01 false Payment by electronic funds transfer... DISBURSEMENTS § 208.3 Payment by electronic funds transfer. Subject to § 208.4, and notwithstanding any other... electronic funds transfer. ...

  17. 48 CFR 18.124 - Electronic funds transfer.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Electronic funds transfer. 18.124 Section 18.124 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION... Electronic funds transfer. Electronic funds transfer payments may be waived for acquisitions to support...

  18. 48 CFR 18.124 - Electronic funds transfer.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Electronic funds transfer. 18.124 Section 18.124 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION... Electronic funds transfer. Electronic funds transfer payments may be waived for acquisitions to support...

  19. 31 CFR 208.3 - Payment by electronic funds transfer.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 2 2012-07-01 2012-07-01 false Payment by electronic funds transfer... DISBURSEMENTS § 208.3 Payment by electronic funds transfer. Subject to § 208.4, and notwithstanding any other... electronic funds transfer. ...

  20. 48 CFR 18.123 - Electronic funds transfer.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Electronic funds transfer. 18.123 Section 18.123 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION... Electronic funds transfer. Electronic funds transfer payments may be waived for acquisitions to support...

  1. 48 CFR 18.124 - Electronic funds transfer.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Electronic funds transfer. 18.124 Section 18.124 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION... Electronic funds transfer. Electronic funds transfer payments may be waived for acquisitions to support...

  2. 48 CFR 18.124 - Electronic funds transfer.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Electronic funds transfer. 18.124 Section 18.124 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION... Electronic funds transfer. Electronic funds transfer payments may be waived for acquisitions to support...

  3. Photo-induced water oxidation at the aqueous GaN (101¯0) interface: Deprotonation kinetics of the first proton-coupled electron-transfer step

    DOE PAGES

    Ertem, Mehmed Z.; Kharche, Neerav; Batista, Victor S.; ...

    2015-03-12

    Photoeclectrochemical water splitting plays a key role in a promising path to the carbon-neutral generation of solar fuels. Wurzite GaN and its alloys ( e.g., GaN/ZnO and InGaN) are demonstrated photocatalysts for water oxidation, and they can drive the overall water splitting reaction when coupled with co-catalysts for proton reduction. In the present work, we investigate the water oxidation mechanism on the prototypical GaN (101¯0) surface using a combined ab initio molecular dynamics and molecular cluster model approach taking into account the role of water dissociation and hydrogen bonding within the first solvation shell of the hydroxylated surface. The investigationmore » of free-energy changes for the four proton-coupled electron-transfer (PCET) steps of the water oxidation mechanism shows that the first PCET step for the conversion of –Ga-OH to –Ga-O˙⁻ requires the highest energy input. We further examine the sequential PCETs, with the proton transfer (PT) following the electron transfer (ET), and find that photo-generated holes localize on surface –NH sites is thermodynamically more favorable than –OH sites. However, proton transfer from –OH sites with subsequent localization of holes on oxygen atoms is kinetically favored owing to hydrogen bonding interactions at the GaN (101¯0)–water interface. We find that the deprotonation of surface –OH sites is the limiting factor for the generation of reactive oxyl radical ion intermediates and consequently for water oxidation.« less

  4. Triply differential measurements of single ionization of argon by 1-keV positron and electron impact

    NASA Astrophysics Data System (ADS)

    Gavin, J.; de Lucio, O. G.; DuBois, R. D.

    2017-06-01

    By establishing coincidences between target ions and scattered projectiles, and coincidences between target ions, scattered projectiles, and ejected electrons, triply differential cross-section (TDCS) information was generated in terms of projectile energy loss and scattering angles for interactions between 1-keV positrons and electrons and Ar atoms. The conversion of the raw experimental information to the TDCS is discussed. The single-ionization TDCS exhibits two distinguishable regions (lobes) where binary and recoil interactions can be described by two peaks. A comparison of the positron and electron impact data shows that the relative intensity of both binary and recoil interactions decreases exponentially as a function of the momentum transfer and is larger when ionization is induced by positron impact, when compared with electron impact.

  5. Effect of chromium doping on the correlated electronic structure of V2O3

    NASA Astrophysics Data System (ADS)

    Grieger, Daniel; Lechermann, Frank

    2014-09-01

    The archetypical strongly correlated Mott-phenomena compound V2O3 is known to show a paramagnetic metal-insulator transition driven by doping with chromium atoms and/or (negative) pressure. Via charge self-consistent density-functional theory+dynamical mean-field theory calculations we demonstrate that these two routes cannot be understood as equivalent. An explicit description of Cr-doped V2O3 by means of supercell calculations and the virtual crystal approximation is performed. Introducing chromium's additional electron to the system is shown to modify the overall many-body electronic structure substantially. Chromium doping increases electronic correlations which in addition induce charge transfers between Cr and the remaining V ions. Thereby the transition-metal orbital polarization is increased by the electron doping, in close agreement with experimental findings.

  6. The influence of alternative pathways of respiration that utilize branched-chain amino acids following water shortage in Arabidopsis.

    PubMed

    Pires, Marcel V; Pereira Júnior, Adilson A; Medeiros, David B; Daloso, Danilo M; Pham, Phuong Anh; Barros, Kallyne A; Engqvist, Martin K M; Florian, Alexandra; Krahnert, Ina; Maurino, Veronica G; Araújo, Wagner L; Fernie, Alisdair R

    2016-06-01

    During dark-induced senescence isovaleryl-CoA dehydrogenase (IVDH) and D-2-hydroxyglutarate dehydrogenase (D-2HGDH) act as alternate electron donors to the ubiquinol pool via the electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF/ETFQO) pathway. However, the role of this pathway in response to other stresses still remains unclear. Here, we demonstrated that this alternative pathway is associated with tolerance to drought in Arabidopsis. In comparison with wild type (WT) and lines overexpressing D-2GHDH, loss-of-function etfqo-1, d2hgdh-2 and ivdh-1 mutants displayed compromised respiration rates and were more sensitive to drought. Our results demonstrated that an operational ETF/ETFQO pathway is associated with plants' ability to withstand drought and to recover growth once water becomes replete. Drought-induced metabolic reprogramming resulted in an increase in tricarboxylic acid (TCA) cycle intermediates and total amino acid levels, as well as decreases in protein, starch and nitrate contents. The enhanced levels of the branched-chain amino acids in loss-of-function mutants appear to be related to their increased utilization as substrates for the TCA cycle under water stress. Our results thus show that mitochondrial metabolism is highly active during drought stress responses and provide support for a role of alternative respiratory pathways within this response. © 2015 John Wiley & Sons Ltd.

  7. Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles

    PubMed Central

    Tvrdy, Kevin; Frantsuzov, Pavel A.; Kamat, Prashant V.

    2011-01-01

    Quantum dot-metal oxide junctions are an integral part of next-generation solar cells, light emitting diodes, and nanostructured electronic arrays. Here we present a comprehensive examination of electron transfer at these junctions, using a series of CdSe quantum dot donors (sizes 2.8, 3.3, 4.0, and 4.2 nm in diameter) and metal oxide nanoparticle acceptors (SnO2, TiO2, and ZnO). Apparent electron transfer rate constants showed strong dependence on change in system free energy, exhibiting a sharp rise at small driving forces followed by a modest rise further away from the characteristic reorganization energy. The observed trend mimics the predicted behavior of electron transfer from a single quantum state to a continuum of electron accepting states, such as those present in the conduction band of a metal oxide nanoparticle. In contrast with dye-sensitized metal oxide electron transfer studies, our systems did not exhibit unthermalized hot-electron injection due to relatively large ratios of electron cooling rate to electron transfer rate. To investigate the implications of these findings in photovoltaic cells, quantum dot-metal oxide working electrodes were constructed in an identical fashion to the films used for the electron transfer portion of the study. Interestingly, the films which exhibited the fastest electron transfer rates (SnO2) were not the same as those which showed the highest photocurrent (TiO2). These findings suggest that, in addition to electron transfer at the quantum dot-metal oxide interface, other electron transfer reactions play key roles in the determination of overall device efficiency. PMID:21149685

  8. Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles.

    PubMed

    Tvrdy, Kevin; Frantsuzov, Pavel A; Kamat, Prashant V

    2011-01-04

    Quantum dot-metal oxide junctions are an integral part of next-generation solar cells, light emitting diodes, and nanostructured electronic arrays. Here we present a comprehensive examination of electron transfer at these junctions, using a series of CdSe quantum dot donors (sizes 2.8, 3.3, 4.0, and 4.2 nm in diameter) and metal oxide nanoparticle acceptors (SnO(2), TiO(2), and ZnO). Apparent electron transfer rate constants showed strong dependence on change in system free energy, exhibiting a sharp rise at small driving forces followed by a modest rise further away from the characteristic reorganization energy. The observed trend mimics the predicted behavior of electron transfer from a single quantum state to a continuum of electron accepting states, such as those present in the conduction band of a metal oxide nanoparticle. In contrast with dye-sensitized metal oxide electron transfer studies, our systems did not exhibit unthermalized hot-electron injection due to relatively large ratios of electron cooling rate to electron transfer rate. To investigate the implications of these findings in photovoltaic cells, quantum dot-metal oxide working electrodes were constructed in an identical fashion to the films used for the electron transfer portion of the study. Interestingly, the films which exhibited the fastest electron transfer rates (SnO(2)) were not the same as those which showed the highest photocurrent (TiO(2)). These findings suggest that, in addition to electron transfer at the quantum dot-metal oxide interface, other electron transfer reactions play key roles in the determination of overall device efficiency.

  9. Laser-induced forward transfer (LIFT) of congruent voxels

    NASA Astrophysics Data System (ADS)

    Piqué, Alberto; Kim, Heungsoo; Auyeung, Raymond C. Y.; Beniam, Iyoel; Breckenfeld, Eric

    2016-06-01

    Laser-induced forward transfer (LIFT) of functional materials offers unique advantages and capabilities for the rapid prototyping of electronic, optical and sensor elements. The use of LIFT for printing high viscosity metallic nano-inks and nano-pastes can be optimized for the transfer of voxels congruent with the shape of the laser pulse, forming thin film-like structures non-lithographically. These processes are capable of printing patterns with excellent lateral resolution and thickness uniformity typically found in 3-dimensional stacked assemblies, MEMS-like structures and free-standing interconnects. However, in order to achieve congruent voxel transfer with LIFT, the particle size and viscosity of the ink or paste suspensions must be adjusted to minimize variations due to wetting and drying effects. When LIFT is carried out with high-viscosity nano-suspensions, the printed voxel size and shape become controllable parameters, allowing the printing of thin-film like structures whose shape is determined by the spatial distribution of the laser pulse. The result is a new level of parallelization beyond current serial direct-write processes whereby the geometry of each printed voxel can be optimized according to the pattern design. This work shows how LIFT of congruent voxels can be applied to the fabrication of 2D and 3D microstructures by adjusting the viscosity of the nano-suspension and laser transfer parameters.

  10. Theoretical study of dynamic electron-spin-polarization via the doublet-quartet quantum-mixed state and time-resolved ESR spectra of the quartet high-spin state.

    PubMed

    Teki, Yoshio; Matsumoto, Takafumi

    2011-04-07

    The mechanism of the unique dynamic electron polarization of the quartet (S = 3/2) high-spin state via a doublet-quartet quantum-mixed state and detail theoretical calculations of the population transfer are reported. By the photo-induced electron transfer, the quantum-mixed charge-separate state is generated in acceptor-donor-radical triad (A-D-R). This mechanism explains well the unique dynamic electron polarization of the quartet state of A-D-R. The generation of the selectively populated quantum-mixed state and its transfer to the strongly coupled pure quartet and doublet states have been treated both by a perturbation approach and by exact numerical calculations. The analytical solutions show that generation of the quantum-mixed states with the selective populations after de-coherence and/or accompanying the (complete) dephasing during the charge-recombination are essential for the unique dynamic electron polarization. Thus, the elimination of the quantum coherence (loss of the quantum information) is the key process for the population transfer from the quantum-mixed state to the quartet state. The generation of high-field polarization on the strongly coupled quartet state by the charge-recombination process can be explained by a polarization transfer from the quantum-mixed charge-separate state. Typical time-resolved ESR patterns of the quantum-mixed state and of the strongly coupled quartet state are simulated based on the generation mechanism of the dynamic electron polarization. The dependence of the spectral pattern of the quartet high-spin state has been clarified for the fine-structure tensor and the exchange interaction of the quantum-mixed state. The spectral pattern of the quartet state is not sensitive towards the fine-structure tensor of the quantum-mixed state, because this tensor contributes only as a perturbation in the population transfer to the spin-sublevels of the quartet state. Based on the stochastic Liouville equation, it is also discussed why the selective population in the quantum-mixed state is generated for the "finite field" spin-sublevels. The numerical calculations of the elimination of the quantum coherence (de-coherence and/or dephasing) are demonstrated. A new possibility of the enhanced intersystem crossing pathway in solution is also proposed.

  11. Modular electron transfer circuits for synthetic biology

    PubMed Central

    Agapakis, Christina M

    2010-01-01

    Electron transfer is central to a wide range of essential metabolic pathways, from photosynthesis to fermentation. The evolutionary diversity and conservation of proteins that transfer electrons makes these pathways a valuable platform for engineered metabolic circuits in synthetic biology. Rational engineering of electron transfer pathways containing hydrogenases has the potential to lead to industrial scale production of hydrogen as an alternative source of clean fuel and experimental assays for understanding the complex interactions of multiple electron transfer proteins in vivo. We designed and implemented a synthetic hydrogen metabolism circuit in Escherichia coli that creates an electron transfer pathway both orthogonal to and integrated within existing metabolism. The design of such modular electron transfer circuits allows for facile characterization of in vivo system parameters with applications toward further engineering for alternative energy production. PMID:21468209

  12. Interaction of inorganic nanoparticles with graphene.

    PubMed

    Das, Barun; Choudhury, Biswajit; Gomathi, A; Manna, Arun K; Pati, S K; Rao, C N R

    2011-04-04

    The changes in the electronic and magnetic properties of graphene induced by interaction with semiconducting oxide nanoparticles such as ZnO and TiO(2) and with magnetic nanoparticles such as Fe(3)O(4), CoFe(2)O(4), and Ni are investigated by using Raman spectroscopy, magnetic measurements, and first-principles calculations. Significant electronic and magnetic interactions between the nanoparticles and graphene are found. The findings suggest that changes in magnetization as well as the Raman shifts are directly linked to charge transfer between the deposited nanoparticles and graphene. The study thus demonstrates significant effects in tailoring the electronic structure of graphene for applications in futuristic electronic devices. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Interatomic relaxation processes induced in neon dimers by electron-impact ionization

    NASA Astrophysics Data System (ADS)

    Yan, S.; Zhang, P.; Stumpf, V.; Gokhberg, K.; Zhang, X. C.; Xu, S.; Li, B.; Shen, L. L.; Zhu, X. L.; Feng, W. T.; Zhang, S. F.; Zhao, D. M.; Ma, X.

    2018-01-01

    We report an experimental observation of the interatomic Coulombic decay (ICD) and radiative charge-transfer (RCT) processes in a Ne dimer (e ,2 e ) following a 380-eV electron impact. By detecting the N e+-N e+ cation pair and one of the emitted electrons in coincidence, the fingerprint of the ICD process initiated by the inner-valence ionization of Ne is obtained. Furthermore, the experimental results and ab initio calculations together unambiguously confirm the occurrence of the RCT process, and we show that most of the low-energy electrons produced in ionization of the Ne dimers are due to the ICD, which strongly suggests the importance of the ICD in causing radiation damage in a biological medium.

  14. Electrochemical control over photoinduced electron transfer and trapping in CdSe-CdTe quantum-dot solids.

    PubMed

    Boehme, Simon C; Walvis, T Ardaan; Infante, Ivan; Grozema, Ferdinand C; Vanmaekelbergh, Daniël; Siebbeles, Laurens D A; Houtepen, Arjan J

    2014-07-22

    Understanding and controlling charge transfer between different kinds of colloidal quantum dots (QDs) is important for devices such as light-emitting diodes and solar cells and for thermoelectric applications. Here we study photoinduced electron transfer between CdTe and CdSe QDs in a QD film. We find that very efficient electron trapping in CdTe QDs obstructs electron transfer to CdSe QDs under most conditions. Only the use of thiol ligands results in somewhat slower electron trapping; in this case the competition between trapping and electron transfer results in a small fraction of electrons being transferred to CdSe. However, we demonstrate that electron trapping can be controlled and even avoided altogether by using the unique combination of electrochemistry and transient absorption spectroscopy. When the Fermi level is raised electrochemically, traps are filled with electrons and electron transfer from CdTe to CdSe QDs occurs with unity efficiency. These results show the great importance of knowing and controlling the Fermi level in QD films and open up the possibility of studying the density of trap states in QD films as well as the systematic investigation of the intrinsic electron transfer rates in donor-acceptor films.

  15. A novel strategy to increase separated electron-hole dipoles in commercial Si based solar panel to assist photovoltaic effect

    NASA Astrophysics Data System (ADS)

    Feng, Yefeng; He, Cheng-En; Xu, Zhichao; Hu, Jianbing; Peng, Cheng

    2018-01-01

    Interface induced polarization has been found to have a significant impact on dielectric properties of 2-2 type polymer composites bearing Si based semi-conducting ceramic sheets. Inherent overall polarity of polymer layers in 2-2 composites has been verified to be closely connected with interface effect and achieved permittivity in composites. In present work, conducting performances of monocrystalline Si sheets coated by varied high polarity material layers were deeply researched. The positive results inspired us to propose a novel strategy to improve separated electron-hole dipoles in commercial Si based solar cell panel for assisting photovoltaic effect, based on strong interface induced polarization. Conducting features of solar panels coated by two different high polarity polymer layers were detected to be greatly elevated compared with solar panel standalone, thanks to interface induced polarization between panel and polymer. Polymer coating with higher polarity would lead to more separated electron-hole dipole pairs in solar panel contributing to higher conductivity of panel. Valid synergy of interface effect and photovoltaic effect was based on their unidirectional traits of electron transfer. Dielectric properties of solar panels in composites further confirmed that strategy. This work might provide a facile route to prepare promising Si based solar panels with higher photoelectric conversion efficiency by enhancing interface induced polarization between panel and polymer coating.

  16. Turbulent mass transfer caused by vortex induced reconnection in collisionless magnetospheric plasmas.

    PubMed

    Nakamura, T K M; Hasegawa, H; Daughton, W; Eriksson, S; Li, W Y; Nakamura, R

    2017-11-17

    Magnetic reconnection is believed to be the main driver to transport solar wind into the Earth's magnetosphere when the magnetopause features a large magnetic shear. However, even when the magnetic shear is too small for spontaneous reconnection, the Kelvin-Helmholtz instability driven by a super-Alfvénic velocity shear is expected to facilitate the transport. Although previous kinetic simulations have demonstrated that the non-linear vortex flows from the Kelvin-Helmholtz instability gives rise to vortex-induced reconnection and resulting plasma transport, the system sizes of these simulations were too small to allow the reconnection to evolve much beyond the electron scale as recently observed by the Magnetospheric Multiscale (MMS) spacecraft. Here, based on a large-scale kinetic simulation and its comparison with MMS observations, we show for the first time that ion-scale jets from vortex-induced reconnection rapidly decay through self-generated turbulence, leading to a mass transfer rate nearly one order higher than previous expectations for the Kelvin-Helmholtz instability.

  17. A ZnO nanowire-based photo-inverter with pulse-induced fast recovery.

    PubMed

    Raza, Syed Raza Ali; Lee, Young Tack; Hosseini Shokouh, Seyed Hossein; Ha, Ryong; Choi, Heon-Jin; Im, Seongil

    2013-11-21

    We demonstrate a fast response photo-inverter comprised of one transparent gated ZnO nanowire field-effect transistor (FET) and one opaque FET respectively as the driver and load. Under ultraviolet (UV) light the transfer curve of the transparent gate FET shifts to the negative side and so does the voltage transfer curve (VTC) of the inverter. After termination of UV exposure the recovery of photo-induced current takes a long time in general. This persistent photoconductivity (PPC) is due to hole trapping on the surface of ZnO NWs. Here, we used a positive voltage short pulse after UV exposure, for the first time resolving the PPC issue in nanowire-based photo-detectors by accumulating electrons at the ZnO/dielectric interface. We found that a pulse duration as small as 200 ns was sufficient to reach a full recovery to the dark state from the UV induced state, realizing a fast UV detector with a voltage output.

  18. A FRET-Based Ratiometric Chemosensor for in Vitro Cellular Fluorescence Analyses of pH

    PubMed Central

    Zhou, Xianfeng; Su, Fengyu; Lu, Hongguang; Senechal-Willis, Patti; Tian, Yanqing; Johnson, Roger H.; Meldrum, Deirdre R.

    2011-01-01

    Ratiometric fluorescence sensing is an important technique for precise and quantitative analysis of biological events occurring under complex conditions by simultaneously recording fluorescence intensities at two wavelengths and calculating their ratios. Herein, we design a ratiometric chemosensor for pH that is based on photo-induced electron transfer (PET) and binding-induced modulation of fluorescence resonance energy transfer (FRET) mechanisms. This ratiometric chemosensor was constructed by introduction of a pH-insensitive coumarin fluorophore as a FRET donor into a pH-sensitive amino-naphthalimide derivative as the FRET acceptor. The sensor exhibited clear dual-mission signal changes in blue and green spectral windows upon pH changes. The pH sensor was applied for not only measuring cellular pH, but also for visualizing stimulus-responsive changes of intracellular pH values. PMID:21982292

  19. Hot-electron transfer in quantum-dot heterojunction films.

    PubMed

    Grimaldi, Gianluca; Crisp, Ryan W; Ten Brinck, Stephanie; Zapata, Felipe; van Ouwendorp, Michiko; Renaud, Nicolas; Kirkwood, Nicholas; Evers, Wiel H; Kinge, Sachin; Infante, Ivan; Siebbeles, Laurens D A; Houtepen, Arjan J

    2018-06-13

    Thermalization losses limit the photon-to-power conversion of solar cells at the high-energy side of the solar spectrum, as electrons quickly lose their energy relaxing to the band edge. Hot-electron transfer could reduce these losses. Here, we demonstrate fast and efficient hot-electron transfer between lead selenide and cadmium selenide quantum dots assembled in a quantum-dot heterojunction solid. In this system, the energy structure of the absorber material and of the electron extracting material can be easily tuned via a variation of quantum-dot size, allowing us to tailor the energetics of the transfer process for device applications. The efficiency of the transfer process increases with excitation energy as a result of the more favorable competition between hot-electron transfer and electron cooling. The experimental picture is supported by time-domain density functional theory calculations, showing that electron density is transferred from lead selenide to cadmium selenide quantum dots on the sub-picosecond timescale.

  20. Controlling molecular condensation/diffusion of copper phthalocyanine by local electric field induced with scanning tunneling microscope tip

    NASA Astrophysics Data System (ADS)

    Nagaoka, Katsumi; Yaginuma, Shin; Nakayama, Tomonobu

    2018-02-01

    We have discovered the condensation/diffusion phenomena of copper phthalocyanine (CuPc) molecules controlled with a pulsed electric field induced by the scanning tunneling microscope tip. This behavior is not explained by the conventional induced dipole model. In order to understand the mechanism, we have measured the electronic structure of the molecule by tunneling spectroscopy and also performed theoretical calculations on molecular orbitals. These data clearly indicate that the molecule is positively charged owing to charge transfer to the substrate, and that hydrogen bonding exists between CuPc molecules, which makes the molecular island stable.

  1. First principles studies of electron tunneling in proteins

    PubMed Central

    Hayashi, Tomoyuki; Stuchebrukhov, Alexei A.

    2014-01-01

    A first principles study of electronic tunneling along the chain of seven Fe/S clusters in respiratory complex I, a key enzyme in the respiratory electron transport chain, is described. The broken-symmetry states of the Fe/S metal clusters calculated at both DFT and semi-empirical ZINDO levels were utilized to examine both the extremely weak electronic couplings between Fe/S clusters and the tunneling pathways, which provide a detailed atomistic-level description of the charge transfer process in the protein. One-electron tunneling approximation was found to hold within a reasonable accuracy, with only a moderate induced polarization of the core electrons. The method is demonstrated to be able to calculate accurately the coupling matrix elements as small as 10−4 cm−1. A distinct signature of the wave properties of electrons is observed as quantum interferences of multiple tunneling pathways. PMID:25383312

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Tammie Renee; Fernandez Alberti, Sebastian; Roitberg, Adrian

    The efficiency of materials developed for solar energy and technological applications depends on the interplay between molecular architecture and light-induced electronic energy redistribution. The spatial localization of electronic excitations is very sensitive to molecular distortions. Vibrational nuclear motions can couple to electronic dynamics driving changes in localization. The electronic energy transfer among multiple chromophores arises from several distinct mechanisms that can give rise to experimentally measured signals. Atomistic simulations of coupled electron-vibrational dynamics can help uncover the nuclear motions directing energy flow. Through careful analysis of excited state wave function evolution and a useful fragmenting of multichromophore systems, through-bond transportmore » and exciton hopping (through-space) mechanisms can be distinguished. Such insights are crucial in the interpretation of fluorescence anisotropy measurements and can aid materials design. Finally, this Perspective highlights the interconnected vibrational and electronic motions at the foundation of nonadiabatic dynamics where nuclear motions, including torsional rotations and bond vibrations, drive electronic transitions.« less

  3. Electronic transitions in quantum dots and rings induced by inhomogeneous off-centered light beams.

    PubMed

    Quinteiro, G F; Lucero, A O; Tamborenea, P I

    2010-12-22

    We theoretically investigate the effect of inhomogeneous light beams with (twisted light) and without (plane-wave light) orbital angular momentum on semiconductor-based nanostructures, when the symmetry axes of the beam and the nanostructure are displaced parallel to each other. Exact analytical results are obtained by expanding the off-centered light field in terms of the appropriate light modes centered around the nanostructure. We demonstrate how electronic transitions involving the transfer of different amounts of orbital angular momentum are switched on and off as a function of the separation between the axes of the beam and the system. In particular, we show that even off-centered plane-wave beams induce transitions such that the angular momenta of the initial and final states are different.

  4. Light-Directed Tuning of Plasmon Resonances via Plasmon-Induced Polymerization Using Hot Electrons

    PubMed Central

    2017-01-01

    The precise morphology of nanoscale gaps between noble-metal nanostructures controls their resonant wavelengths. Here we show photocatalytic plasmon-induced polymerization can locally enlarge the gap size and tune the plasmon resonances. We demonstrate light-directed programmable tuning of plasmons can be self-limiting. Selective control of polymer growth around individual plasmonic nanoparticles is achieved, with simultaneous real-time monitoring of the polymerization process in situ using dark-field spectroscopy. Even without initiators present, we show light-triggered chain growth of various monomers, implying plasmon initiation of free radicals via hot-electron transfer to monomers at the Au surface. This concept not only provides a programmable way to fine-tune plasmons for many applications but also provides a window on polymer chemistry at the sub-nanoscale. PMID:28670601

  5. Electron-transfer oxidation properties of DNA bases and DNA oligomers.

    PubMed

    Fukuzumi, Shunichi; Miyao, Hiroshi; Ohkubo, Kei; Suenobu, Tomoyoshi

    2005-04-21

    Kinetics for the thermal and photoinduced electron-transfer oxidation of a series of DNA bases with various oxidants having the known one-electron reduction potentials (E(red)) in an aqueous solution at 298 K were examined, and the resulting electron-transfer rate constants (k(et)) were evaluated in light of the free energy relationship of electron transfer to determine the one-electron oxidation potentials (E(ox)) of DNA bases and the intrinsic barrier of the electron transfer. Although the E(ox) value of GMP at pH 7 is the lowest (1.07 V vs SCE) among the four DNA bases, the highest E(ox) value (CMP) is only 0.19 V higher than that of GMP. The selective oxidation of GMP in the thermal electron-transfer oxidation of GMP results from a significant decrease in the pH dependent oxidation potential due to the deprotonation of GMP*+. The one-electron reduced species of the photosensitizer produced by photoinduced electron transfer are observed as the transient absorption spectra when the free energy change of electron transfer is negative. The rate constants of electron-transfer oxidation of the guanine moieties in DNA oligomers with Fe(bpy)3(3+) and Ru(bpy)3(3+) were also determined using DNA oligomers containing different guanine (G) sequences from 1 to 10 G. The rate constants of electron-transfer oxidation of the guanine moieties in single- and double-stranded DNA oligomers with Fe(bpy)3(2+) and Ru(bpy)3(3+) are dependent on the number of sequential guanine molecules as well as on pH.

  6. 14 CFR 1274.931 - Electronic funds transfer payment methods.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Electronic funds transfer payment methods... COOPERATIVE AGREEMENTS WITH COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.931 Electronic funds transfer payment methods. Electronic Funds Transfer Payment Methods July 2002 Payments under this...

  7. 77 FR 40459 - Electronic Fund Transfers (Regulation E); Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ... Electronic Fund Transfers (Regulation E); Correction AGENCY: Bureau of Consumer Financial Protection. ACTION... published the Final Rule (77 FR 6194), which implements the Electronic Fund Transfer Act, and the official... Sec. 1005.3(a) in the interim final rule, Electronic Fund Transfers (Regulation E), published on...

  8. 14 CFR 1274.931 - Electronic funds transfer payment methods.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Electronic funds transfer payment methods... COOPERATIVE AGREEMENTS WITH COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.931 Electronic funds transfer payment methods. Electronic Funds Transfer Payment Methods July 2002 Payments under this...

  9. Supramolecular complex of a fused zinc phthalocyanine-zinc porphyrin dyad assembled by two imidazole-C60 units: ultrafast photoevents.

    PubMed

    Follana-Berná, Jorge; Seetharaman, Sairaman; Martín-Gomis, Luis; Charalambidis, Georgios; Trapali, Adelais; Karr, Paul A; Coutsolelos, Athanassios G; Fernández-Lázaro, Fernando; D'Souza, Francis; Sastre-Santos, Ángela

    2018-03-14

    A new zinc phthalocyanine-zinc porphyrin dyad (ZnPc-ZnP) fused through a pyrazine ring has been synthesized as a receptor for imidazole-substituted C 60 (C 60 Im) electron acceptor. Self-assembly via metal-ligand axial coordination and the pertinent association constants in solution were determined by 1 H-NMR, UV-Vis and fluorescence titration experiments at room temperature. The designed host was able to bind up to two C 60 Im electron acceptor guest molecules to yield C 60 Im:ZnPc-ZnP:ImC 60 donor-acceptor supramolecular complex. The spectral data showed that the two binding sites behave independently with binding constants similar in magnitude. Steady-state fluorescence studies were indicative of an efficient singlet-singlet energy transfer from zinc porphyrin to zinc phthalocyanine within the fused dyad. Accordingly, the transient absorption studies covering a wide timescale of femto-to-milli seconds revealed ultrafast energy transfer from 1 ZnP* to ZnPc (k EnT ∼ 10 12 s -1 ) in the fused dyad. Further, a photo induced electron transfer was observed in the supramolecularly assembled C 60 Im:ZnPc-ZnP:ImC 60 donor-acceptor complex leading to charge separated states, which persisted for about 200 ns.

  10. Ion Trap Collisional Activation of c and z• Ions Formed via Gas-Phase Ion/Ion Electron Transfer Dissociation

    PubMed Central

    Han, Hongling; Xia, Yu; McLuckey, Scott A.

    2008-01-01

    A series of c- and z•-type product ions formed via gas-phase electron transfer ion/ion reactions between protonated polypeptides with azobenzene radical anions are subjected to ion trap collision activation in a linear ion trap. Fragment ions including a-, b-, y-type and ammonia-loss ions are typically observed in collision induced dissociation (CID) of c ions, showing almost identical CID patterns as those of the C-terminal amidated peptides consisting of the same sequences. Collisional activation of z• species mainly gives rise to side-chain losses and peptide backbone cleavages resulting in a-, b-, c-, x-, y-and z-type ions. Most of the fragmentation pathways of z• species upon ion trap CID can be accounted for by radical driven processes. The side-chain losses from z• species are different from the small losses observed from the charge-reduced peptide molecular species in electron transfer dissociation (ETD), which indicates rearrangement of the radical species. Characteristic side-chain losses are observed for several amino acid residues, which are useful to predict their presence in peptide/protein ions. Furthermore, the unique side-chain losses from leucine and isoleucine residues allow facile distinction of these two isomeric residues. PMID:17608403

  11. 14 CFR § 1260.69 - Electronic funds transfer payment methods.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Electronic funds transfer payment methods... GRANTS AND COOPERATIVE AGREEMENTS General Special Conditions § 1260.69 Electronic funds transfer payment methods. Electronic Funds Transfer Payment Methods October 2000 (a) Payments under this grant will be made...

  12. 14 CFR 1260.69 - Electronic funds transfer payment methods.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Electronic funds transfer payment methods... COOPERATIVE AGREEMENTS General Special Conditions § 1260.69 Electronic funds transfer payment methods. Electronic Funds Transfer Payment Methods October 2000 (a) Payments under this grant will be made by the...

  13. 14 CFR 1260.69 - Electronic funds transfer payment methods.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Electronic funds transfer payment methods... COOPERATIVE AGREEMENTS General Special Conditions § 1260.69 Electronic funds transfer payment methods. Electronic Funds Transfer Payment Methods October 2000 (a) Payments under this grant will be made by the...

  14. 14 CFR 1260.69 - Electronic funds transfer payment methods.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Electronic funds transfer payment methods... COOPERATIVE AGREEMENTS General Special Conditions § 1260.69 Electronic funds transfer payment methods. Electronic Funds Transfer Payment Methods October 2000 (a) Payments under this grant will be made by the...

  15. Dominance of Plasmonic Resonant Energy Transfer over Direct Electron Transfer in Substantially Enhanced Water Oxidation Activity of BiVO4 by Shape-Controlled Au Nanoparticles.

    PubMed

    Lee, Mi Gyoung; Moon, Cheon Woo; Park, Hoonkee; Sohn, Woonbae; Kang, Sung Bum; Lee, Sanghan; Choi, Kyoung Jin; Jang, Ho Won

    2017-10-01

    The performance of plasmonic Au nanostructure/metal oxide heterointerface shows great promise in enhancing photoactivity, due to its ability to confine light to the small volume inside the semiconductor and modify the interfacial electronic band structure. While the shape control of Au nanoparticles (NPs) is crucial for moderate bandgap semiconductors, because plasmonic resonance by interband excitations overlaps above the absorption edge of semiconductors, its critical role in water splitting is still not fully understood. Here, first, the plasmonic effects of shape-controlled Au NPs on bismuth vanadate (BiVO 4 ) are studied, and a largely enhanced photoactivity of BiVO 4 is reported by introducing the octahedral Au NPs. The octahedral Au NP/BiVO 4 achieves 2.4 mA cm -2 at the 1.23 V versus reversible hydrogen electrode, which is the threefold enhancement compared to BiVO 4 . It is the highest value among the previously reported plasmonic Au NPs/BiVO 4 . Improved photoactivity is attributed to the localized surface plasmon resonance; direct electron transfer (DET), plasmonic resonant energy transfer (PRET). The PRET can be stressed over DET when considering the moderate bandgap semiconductor. Enhanced water oxidation induced by the shape-controlled Au NPs is applicable to moderate semiconductors, and shows a systematic study to explore new efficient plasmonic solar water splitting cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Dual-Enzyme Characteristics of Polyvinylpyrrolidone-Capped Iridium Nanoparticles and Their Cellular Protective Effect against H2O2-Induced Oxidative Damage.

    PubMed

    Su, Hua; Liu, Dan-Dan; Zhao, Meng; Hu, Wei-Liang; Xue, Shan-Shan; Cao, Qian; Le, Xue-Yi; Ji, Liang-Nian; Mao, Zong-Wan

    2015-04-22

    Polyvinylpyrrolidone-stabilized iridium nanoparticles (PVP-IrNPs), synthesized by the facile alcoholic reduction method using abundantly available PVP as protecting agents, were first reported as enzyme mimics showing intrinsic catalase- and peroxidase-like activities. The preparation procedure was much easier and more importantly, kinetic studies found that the catalytic activity of PVP-IrNPs was comparable to previously reported platinum nanoparticles. Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) characterization indicated that PVP-IrNPs had the average size of approximately 1.5 nm and mainly consisted of Ir(0) chemical state. The mechanism of PVP-IrNPs' dual-enzyme activities was investigated using XPS, Electron spin resonance (ESR) and cytochrome C-based electron transfer methods. The catalase-like activity was related to the formation of oxidized species Ir(0)@IrO2 upon reaction with H2O2. The peroxidase-like activity originated from their ability acting as electron transfer mediators during the catalysis cycle, without the production of hydroxyl radicals. Interestingly, the protective effect of PVP-IrNPs against H2O2-induced cellular oxidative damage was investigated in an A549 lung cancer cell model and PVP-IrNPs displayed excellent biocompatibility and antioxidant activity. Upon pretreatment of cells with PVP-IrNPs, the intracellular reactive oxygen species (ROS) level in response to H2O2 was decreased and the cell viability increased. This work will facilitate studies on the mechanism and biomedical application of nanomaterials-based enzyme mimic.

  17. The influence of dielectric relaxation on intramolecular electron transfer

    NASA Astrophysics Data System (ADS)

    Heitele, H.; Michel-Beyerle, M. E.; Finckh, P.

    1987-07-01

    An unusually strong temperature dependence on the intramolecular electron-transfer rate has been observed for bridged donor-acceptor compounds in propylene glycol solution. In the frame of recent electron-transfer theories this effect reflects the influence of dielectric relaxation dynamics on electron transfer. With increasing dielectric relaxation time a smooth transition from non-adiabatic to solvent-controlled adiabatic behaviour is observed. The electron transfer rate in the solvent-controlled adiabatic limit is dominated by an inhomogeneous distribution of relaxation times.

  18. Crystal structure refinement of the electron-transfer-active potassium manganese hexacyanoferrates and isomorphous potassium manganese hexacyanocobaltates

    NASA Astrophysics Data System (ADS)

    Rykov, Alexandre I.; Li, Xuning; Wang, Junhu

    2015-07-01

    We report on the crystal structure refinements in the novel electron-transfer-active Prussian Blue analogs (PBA) KMn4II [Co1-xIII FexIII (CN)6 ]3 · nH2 O (n ≃ 12). The series of novel PBA with the end members of KMn4[ Co(CN)6]3 · 11.8H2 O and KMn4[ Fe(CN)6 ]3 · 10.5H2 O have been synthesized for the first time, all showing a number of extra-reflections incompatible with ordinary face-centered cell of the Fm-3m symmetry group. We have analyzed the Rietveld patterns for x = 0 , 0.53 , 1 and found that the extra-reflections could be well fitted using several primitive (P) cell symmetries. The best fitting quality was obtained using the noncentrosymmetric space group (S.G.) P 4 bar 3 m (Z=1) with the origin of coordinate system shifted into a zeolitic site. In this structure model, the Co-CN-Mn entities are bent owing to the charge introduced by the K+ insertion that induces also the electron transfer between Mn and Fe. Using Mössbauer spectroscopy the electron transfer activity is identified with the appearance of unsplit resonance at the isomer shift of typically -0.15 mm/s evidencing the low-spin state for Fe3+ and Fe2+ species. In the same P 4 bar 3 m phases doped with 2+57Fe into the Mn site, a sequence of discrete values of quadrupole splitting (0 mm/s, 0.9 mm/s, 1.8 mm/s) is observed and attributed to different conformations of the polyhedra, in which the ground states are orbital triplet, doublet and singlet, respectively.

  19. Single-Molecule Interfacial Electron Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Wilson

    Interfacial electron transfer (ET) plays an important role in many chemical and biological processes. Specifically, interfacial ET in TiO 2-based systems is important to solar energy technology, catalysis, and environmental remediation technology. However, the microscopic mechanism of interfacial ET is not well understood with regard to atomic surface structure, molecular structure, bonding, orientation, and motion. In this project, we used two complementary methodologies; single-molecule fluorescence spectroscopy, and scanning-tunneling microscopy and spectroscopy (STM and STS) to address this scientific need. The goal of this project was to integrate these techniques and measure the molecular dependence of ET between adsorbed molecules andmore » TiO 2 semiconductor surfaces and the ET induced reactions such as the splitting of water. The scanning probe techniques, STM and STS, are capable of providing the highest spatial resolution but not easily time-resolved data. Single-molecule fluorescence spectroscopy is capable of good time resolution but requires further development to match the spatial resolution of the STM. The integrated approach involving Peter Lu at Bowling Green State University (BGSU) and Wilson Ho at the University of California, Irvine (UC Irvine) produced methods for time and spatially resolved chemical imaging of interfacial electron transfer dynamics and photocatalytic reactions. An integral aspect of the joint research was a significant exchange of graduate students to work at the two institutions. This project bridged complementary approaches to investigate a set of common problems by working with the same molecules on a variety of solid surfaces, but using appropriate techniques to probe under ambient (BGSU) and ultrahigh vacuum (UCI) conditions. The molecular level understanding of the fundamental interfacial electron transfer processes obtained in this joint project will be important for developing efficient light harvesting, solar energy conversion, and broadly applicable to problems in interface chemistry and surface physics.« less

  20. Kinetic and Spectral Properties of Isovaleryl-CoA Dehydrogenase and Interaction with Ligands

    PubMed Central

    Mohsen, Al-Walid A.; Vockley, Jerry

    2014-01-01

    Isovaleryl-CoA dehydrogenase (IVD) catalyzes the conversion of isovaleryl-CoA to 3-methylcrotonyl-CoA and the transfer of electrons to the electron transfer flavoprotein (ETF). Recombinant human IVD purifies with bound CoA-persulfide. A modified purification protocol was developed to isolate IVD without bound CoA-persulfide and to protect the protein thiols from oxidation. The CoA-persulfide-free IVD specific activity was 112.5 µmol porcine ETF•min−1•mg−1, which was ~20-fold higher than that of its CoA-persulfide bound form. The Km and catalytic efficiency (kcat/Km) for isovaleryl-CoA were 1.0 µM and 4.3 × 106•M−1•sec−1 per monomer, respectively, and its Km for ETF was 2.0 µM. Anaerobic titration of isovaleryl-CoA into an IVD solution resulted in a stable blue complex with increased absorbance at 310 nm, decreased absorbance at 373 and 447 nm, and the appearance of the charge transfer complex band at 584 nm. The apparent dissociation constant (KD app) determined spectrally for isovaleryl-CoA was 0.54 µM. Isovaleryl-CoA, acetoacetyl-CoA, methylenecyclopropylacetyl-CoA, and ETF induced CD spectral changes at the 250–500 nm region while isobutyryl-CoA did not, suggesting conformational changes occur at the flavin ring that are ligand specific. Replacement of the IVD Trp166 with a Phe did not block IVD interaction with ETF, indicating that its indole ring is not essential for electron transfer to ETF. A twelve amino acid synthetic peptide that matches the sequence of the ETF docking peptide competitively inhibited the enzyme reaction when ETF was used as the electron acceptor with a Ki of 1.5 mM. PMID:25450250

  1. Through-Space Ultrafast Photoinduced Electron Transfer Dynamics of a C 70 -Encapsulated Bisporphyrin Covalent Organic Polyhedron in a Low-Dielectric Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz, Michael; Cho, Sung; Niklas, Jens

    Ultrafast photoinduced electron transfer (PIET) dynamics of a C 70-encapsulated bisporphyrin covalent organic polyhedron hybrid (C 70@COP-5) is studied in a nonpolar toluene medium with fluorescence and transient absorption spectroscopies. This structurally rigid donor (D)-acceptor (A) molecular hybrid offers a new platform featuring conformationally predetermined cofacial D-A orientation with a fixed edge-to-edge separation, R EE (2.8 Å), without the aid of covalent bonds. Sub-picosecond PIET (T ET ≤ 0.4 ps) and very slow charge recombination (T CR ≈ 600 ps) dynamics are observed. The origin of these dynamics is discussed in terms of enhanced D-A coupling (V = 675 cmmore » -1) and extremely small reorganization energy (λ ≈ 0.18 eV), induced by the intrinsic structural rigidity of the C 70@COP-5 complex.« less

  2. Through-Space Ultrafast Photoinduced Electron Transfer Dynamics of a C 70 -Encapsulated Bisporphyrin Covalent Organic Polyhedron in a Low-Dielectric Medium

    DOE PAGES

    Ortiz, Michael; Cho, Sung; Niklas, Jens; ...

    2017-03-13

    Ultrafast photoinduced electron transfer (PIET) dynamics of a C 70-encapsulated bisporphyrin covalent organic polyhedron hybrid (C 70@COP-5) is studied in a nonpolar toluene medium with fluorescence and transient absorption spectroscopies. This structurally rigid donor (D)-acceptor (A) molecular hybrid offers a new platform featuring conformationally predetermined cofacial D-A orientation with a fixed edge-to-edge separation, R EE (2.8 Å), without the aid of covalent bonds. Sub-picosecond PIET (T ET ≤ 0.4 ps) and very slow charge recombination (T CR ≈ 600 ps) dynamics are observed. The origin of these dynamics is discussed in terms of enhanced D-A coupling (V = 675 cmmore » -1) and extremely small reorganization energy (λ ≈ 0.18 eV), induced by the intrinsic structural rigidity of the C 70@COP-5 complex.« less

  3. Influence of acceptor on charge mobility in stacked π-conjugated polymers

    NASA Astrophysics Data System (ADS)

    Sun, Shih-Jye; Menšík, Miroslav; Toman, Petr; Gagliardi, Alessio; Král, Karel

    2018-02-01

    We present a quantum molecular model to calculate mobility of π-stacked P3HT polymer layers with electron acceptor dopants coupled next to side groups in random position with respect to the linear chain. The hole density, the acceptor LUMO energy and the hybridization transfer integral between the acceptor and polymer were found to be very critical factors to the final hole mobility. For a dopant LUMO energy close and high above the top of the polymer valence band we have found a significant mobility increase with the hole concentration and with the dopant LUMO energy approaching the top of the polymer valence band. Higher mobility was achieved for small values of hybridization transfer integral between polymer and the acceptor, corresponding to the case of weakly bound acceptor. Strong couplings between the polymer and the acceptor with Coulomb repulsion interactions induced from the electron localizations was found to suppress the hole mobility.

  4. Through-Space Ultrafast Photoinduced Electron Transfer Dynamics of a C70-Encapsulated Bisporphyrin Covalent Organic Polyhedron in a Low-Dielectric Medium.

    PubMed

    Ortiz, Michael; Cho, Sung; Niklas, Jens; Kim, Seonah; Poluektov, Oleg G; Zhang, Wei; Rumbles, Garry; Park, Jaehong

    2017-03-29

    Ultrafast photoinduced electron transfer (PIET) dynamics of a C 70 -encapsulated bisporphyrin covalent organic polyhedron hybrid (C 70 @COP-5) is studied in a nonpolar toluene medium with fluorescence and transient absorption spectroscopies. This structurally rigid donor (D)-acceptor (A) molecular hybrid offers a new platform featuring conformationally predetermined cofacial D-A orientation with a fixed edge-to-edge separation, R EE (2.8 Å), without the aid of covalent bonds. Sub-picosecond PIET (τ ET ≤ 0.4 ps) and very slow charge recombination (τ CR ≈ 600 ps) dynamics are observed. The origin of these dynamics is discussed in terms of enhanced D-A coupling (V = 675 cm -1 ) and extremely small reorganization energy (λ ≈ 0.18 eV), induced by the intrinsic structural rigidity of the C 70 @COP-5 complex.

  5. Phylogenetic characterization of the ubiquitous electron transfer flavoprotein families ETF-alpha and ETF-beta.

    PubMed

    Tsai, M H; Saier, M H

    1995-06-01

    Electron transfer flavoproteins (ETF) are alpha beta-heterodimers found in eukaryotic mitochondria and bacteria. We have identified currently sequenced protein members of the ETF-alpha and ETF-beta families. Members of these two families include (a) the ETF subunits of mammals and bacteria, (b) homologous pairs of proteins (FixB/FixA) that are essential for nitrogen fixation in some bacteria, and (c) a pair of carnitine-inducible proteins encoded by two open reading frames in Escherichia coli (YaaQ and YaaR). These three groups of proteins comprise three clusters on both the ETF-alpha and ETF-beta phylogenetic trees, separated from each other by comparable phylogenetic distances. This fact suggests that these two protein families evolved with similar overall rates of evolutionary divergence. Relative regions of sequence conservation are evaluated, and signature sequences for both families are derived.

  6. Theoretical prediction of a self-forming gallium oxide layer at an n-type GaN/SiO2 interface

    NASA Astrophysics Data System (ADS)

    Chokawa, Kenta; Narita, Tetsuo; Kikuta, Daigo; Kachi, Tetsu; Shiozaki, Koji; Shiraishi, Kenji

    2018-03-01

    We examine the energy band diagram at the n-type GaN (n-GaN)/SiO2 interface and show that electron transfer from n-GaN to SiO2 leads to the formation of negatively charged oxygen vacancies in the SiO2, resulting in the self-formation of an n-GaN/Ga2O3/SiO2 structure. On the other hand, it is difficult to automatically form Ga2O3 at a p-type GaN (p-GaN)/SiO2 interface. This electron-transfer-induced self-formation of Ga2O3 causes an interface dipole, which leads to band bending, resulting in an increase in the conduction band offset between GaN and SiO2. Accordingly, by using this self-forming phenomenon, GaN MOSFETs with lower leakage current can be realized.

  7. Electronic and transport properties of a molecular junction with asymmetric contacts.

    PubMed

    Tsai, M-H; Lu, T-H

    2010-02-10

    Asymmetric molecular junctions have been shown experimentally to exhibit a dual-conductance transport property with a pulse-like current-voltage characteristic, by Reed and co-workers. Using a recently developed first-principles integrated piecewise thermal equilibrium current calculation method and a gold-benzene-1-olate-4-thiolate-gold model molecular junction, this unusual transport property has been reproduced. Analysis of the electrostatics and the electronic structure reveals that the high-current state results from subtle bias induced charge transfer at the electrode-molecule contacts that raises molecular orbital energies and enhances the current-contributing molecular density of states and the probabilities of resonance tunneling of conduction electrons from one electrode to another.

  8. Ab initio molecular dynamics simulations of AlN responding to low energy particle radiation

    DOE PAGES

    Xi, Jianqi; Liu, Bin; Zhang, Yanwen; ...

    2018-01-30

    Ab initio molecular dynamics simulations of low energy recoil events in wurtzite AlN have been performed to determine threshold displacement energies, defect production and evolution mechanisms, role of partial charge transfer during the process, and the influence of irradiation-induced defects on the properties of AlN. Here, the results show that the threshold displacement energies, E d, along the direction parallel to the basal planes are smaller than those perpendicular to the basal planes. The minimum E d values are determined to be 19 eV and 55 eV for N and Al atom, respectively, which occur along the [more » $$\\overline{11}20$$] direction. In general, the threshold displacement energies for N are smaller than those for Al atom, indicating the N defects would be dominant under irradiation. The defect production mechanisms have been analyzed. It is found that charge transfer and redistribution for both the primary knock-on atom and the subsequent recoil atoms play a significant role in defect production and evolution. Similar to the trend in oxide materials, there is a nearly linear relationship between E d and the total amount of charge transfer at the potential energy peak in AlN, which provides guidance on the development of charge-transfer interatomic potentials for classic molecular dynamics simulations. Finally, the response behavior of AlN to low energy irradiation is qualitatively investigated. The existence of irradiation-induced defects significantly modifies the electronic structure, and thus affects the magnetic, electronic and optical properties of AlN. In conclusion, these findings further enrich the understanding of defects in the wide bandgap semiconductor of AlN.« less

  9. A unifying model for non-adiabatic coupling at metallic surfaces beyond the local harmonic approximation: From vibrational relaxation to scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Tremblay, Jean Christophe

    2013-06-01

    A model for treating excitation and relaxation of adsorbates at metallic surfaces induced by non-adiabatic coupling is developed. The derivation is based on the concept of resonant electron transfer, where the adsorbate serves as a molecular bridge for the inelastic transition between an electron source and a sink. In this picture, energy relaxation and scanning tunneling microscopy (STM) at metallic surfaces are treated on an equal footing as a quasi-thermal process. The model goes beyond the local harmonic approximation and allows for an unbiased description of floppy systems with multiple potential wells. Further, the limitation of the product ansatz for the vibronic wave function to include the position-dependence of the non-adiabatic couplings is avoided by explicitly enforcing detailed balance. The theory is applied to the excitation of hydrogen on palladium, which has multiple local potential minima connected by low energy barriers. The main aspects investigated are the lifetimes of adsorbate vibrations in different adsorption sites, as well as the dependence of the excitation, response, and transfer rates on an applied potential bias. The excitation and relaxation simulations reveal intricate population dynamics that depart significantly from the simplistic tunneling model in a truncated harmonic potential. In particular, the population decay from an initially occupied local minimum induced by the contact with an STM tip is found to be better described by a double exponential. The two rates are interpreted as a response to the system perturbation and a transfer rate following the perturbation. The transfer rate is found to obey a power law, as was the case in previous experimental and theoretical work.

  10. Ab initio molecular dynamics simulations of AlN responding to low energy particle radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xi, Jianqi; Liu, Bin; Zhang, Yanwen

    Ab initio molecular dynamics simulations of low energy recoil events in wurtzite AlN have been performed to determine threshold displacement energies, defect production and evolution mechanisms, role of partial charge transfer during the process, and the influence of irradiation-induced defects on the properties of AlN. Here, the results show that the threshold displacement energies, E d, along the direction parallel to the basal planes are smaller than those perpendicular to the basal planes. The minimum E d values are determined to be 19 eV and 55 eV for N and Al atom, respectively, which occur along the [more » $$\\overline{11}20$$] direction. In general, the threshold displacement energies for N are smaller than those for Al atom, indicating the N defects would be dominant under irradiation. The defect production mechanisms have been analyzed. It is found that charge transfer and redistribution for both the primary knock-on atom and the subsequent recoil atoms play a significant role in defect production and evolution. Similar to the trend in oxide materials, there is a nearly linear relationship between E d and the total amount of charge transfer at the potential energy peak in AlN, which provides guidance on the development of charge-transfer interatomic potentials for classic molecular dynamics simulations. Finally, the response behavior of AlN to low energy irradiation is qualitatively investigated. The existence of irradiation-induced defects significantly modifies the electronic structure, and thus affects the magnetic, electronic and optical properties of AlN. In conclusion, these findings further enrich the understanding of defects in the wide bandgap semiconductor of AlN.« less

  11. Picosecond absorption spectroscopy of self-trapped excitons and transient Ce states in LaBr3 and LaBr3:Ce

    NASA Astrophysics Data System (ADS)

    Li, Peiyun; Gridin, Sergii; Ucer, K. Burak; Williams, Richard T.; Menge, Peter R.

    2018-04-01

    Picosecond time-resolved optical absorption spectra induced by two-photon interband excitation of LaBr3 are reported. The spectra are similar in general characteristics to self-trapped exciton (STE) absorption previously measured in alkali halides and alkaline-earth halides. A broad ultraviolet absorption band results from excitation of the self-trapped hole within the STE. A series of infrared and red-visible bands results from excitation of the bound outer electron within the STE similar to bands found in alkali halides corresponding to different degrees of "off-center" relaxation. Induced absorption in cerium-doped LaBr3 after band-gap excitation of the host exhibits similar STE spectra, except it decays faster on the tens-of-picoseconds scale in proportion to the Ce concentration. This is attributed to dipole-dipole energy transfer from STE to Ce3 + dopant ions. The absorption spectra were also measured after direct excitation of the Ce3 + ions with sufficient intensity to drive two- and three-photon resonantly enhanced excitation. In this case, the spectrum attributed to STEs created adjacent to Ce3 + ions decays in 1 ps suggesting dipole-dipole transfer from the nearest-neighbor separation. A transient absorption band at 2.1 eV growing with Ce concentration is found and attributed to a charge-transfer excitation of the Ce3 +* excited state responsible for scintillation in LaBr3:Ce crystals. This study concludes that the energy transport from host to activator responsible for the scintillation of LaBr3:Ce proceeds by STE creation and dipole-dipole transfer more than by sequential trapping of holes and electrons on Ce3 + ions.

  12. Guest-induced emergent properties in Metal–Organic Frameworks

    DOE PAGES

    Allendorf, Mark D.; Foster, Michael E.; Léonard, François; ...

    2015-03-19

    Metal–Organic frameworks (MOFs) are crystalline nanoporous materials comprised of organic electron donors linked to metal ions by strong coordination bonds. Applications such as gas storage and separations are currently receiving considerable attention, but if the unique properties of MOFs could be extended to electronics, magnetics, and photonics, the impact on material science would greatly increase. Recently, we obtained “emergent properties,” such as electronic conductivity and energy transfer, by infiltrating MOF pores with “guest” molecules that interact with the framework electronic structure. In this Perspective, we define a path to emergent properties based on the Guest@MOF concept, using zinc-carboxylate and copper-paddlewheelmore » MOFs for illustration. Energy transfer and light harvesting are discussed for zinc carboxylate frameworks infiltrated with triplet-scavenging organometallic compounds and thiophene- and fullerene-infiltrated MOF-177. In addition, we discuss the mechanism of charge transport in TCNQ-infiltrated HKUST-1, the first MOF with electrical conductivity approaching conducting organic polymers. Lastly, these examples show that guest molecules in MOF pores should be considered not merely as impurities or analytes to be sensed but also as an important aspect of rational design.« less

  13. 12 CFR 205.15 - Electronic fund transfer of government benefits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 2 2011-01-01 2011-01-01 false Electronic fund transfer of government benefits. 205.15 Section 205.15 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.15 Electronic fund transfer of government...

  14. 12 CFR 1005.3 - Coverage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...-time electronic fund transfer from a consumer's account. The consumer must authorize the transfer. (ii... one-time electronic fund transfer (in providing a check to a merchant or other payee for the MICR... transfer. A consumer authorizes a one-time electronic fund transfer from his or her account to pay the fee...

  15. Mottness Collapse in 1 T -TaS2 -xSex Transition-Metal Dichalcogenide: An Interplay between Localized and Itinerant Orbitals

    NASA Astrophysics Data System (ADS)

    Qiao, Shuang; Li, Xintong; Wang, Naizhou; Ruan, Wei; Ye, Cun; Cai, Peng; Hao, Zhenqi; Yao, Hong; Chen, Xianhui; Wu, Jian; Wang, Yayu; Liu, Zheng

    2017-10-01

    The layered transition-metal dichalcogenide 1 T -TaS2 has been recently found to undergo a Mott-insulator-to-superconductor transition induced by high pressure, charge doping, or isovalent substitution. By combining scanning tunneling microscopy measurements and first-principles calculations, we investigate the atomic scale electronic structure of the 1 T -TaS2 Mott insulator and its evolution to the metallic state upon isovalent substitution of S with Se. We identify two distinct types of orbital textures—one localized and the other extended—and demonstrate that the interplay between them is the key factor that determines the electronic structure. In particular, we show that the continuous evolution of the charge gap visualized by scanning tunneling microscopy is due to the immersion of the localized-orbital-induced Hubbard bands into the extended-orbital-spanned Fermi sea, featuring a unique evolution from a Mott gap to a charge-transfer gap. This new mechanism of Mottness collapse revealed here suggests an interesting route for creating novel electronic states and designing future electronic devices.

  16. Synthesis and Characterization of a Novel -D-B-A-B- Block Copolymer System for Light Harvesting Applications

    NASA Technical Reports Server (NTRS)

    Sun, Sam-Shajing; Fan, Zhen; Wang, Yiqing; Taft, Charles; Haliburton, James; Maaref, Shahin

    2002-01-01

    Supra-molecular or nano-structured electro-active polymers are potentially useful for developing variety inexpensive and flexible shaped opto-electronic devices. In the case of organic photovoltaic materials or devices, for instance, photo induced electrons and holes need to be separated and transported in organic acceptor (A) and donor (D) phases respectively. In this paper, preliminary results of synthesis and characterizations of a coupled block copolymers containing a conjugated donor block RO-PPV and a conjugated acceptor block SF-PPV and some of their electronic/optical properties are presented. While the donor block film has a strong PL emission at around 570 nm, and acceptor block film has a strong PL emission at around 590 nm, the PL emissions of final -B-D-B-A- block copolymer films were quenched over 99%. Experimental results demonstrated an effective photo induced electron transfer and charge separation due to the interfaces of donor and acceptor blocks. The system is very promising for variety light harvesting applications, including "plastic" photovoltaic devices.

  17. α-Lactalbumin-oleic acid complex kills tumor cells by inducing excess energy metabolism but inhibiting mRNA expression of the related enzymes.

    PubMed

    Fang, B; Zhang, M; Ge, K S; Xing, H Z; Ren, F Z

    2018-06-01

    Previous studies have demonstrated that the anti-tumor α-lactalbumin-oleic acid complex (α-LA-OA) may target the glycolysis of tumor cells. However, few data are available regarding the effects of α-LA-OA on energy metabolism. In this study, we measured glycolysis and mitochondrial functions in HeLa cells in response to α-LA-OA using the XF flux analyzer (Seahorse Bioscience, North Billerica, MA). The gene expression of enzymes involved in glycolysis, tricarboxylic acid cycle, electron transfer chain, and ATP synthesis were also evaluated. Our results show that α-LA-OA significantly enhanced the basal glycolysis and glycolytic capacity. Mitochondrial oxidative phosphorylation, including the basal respiration, maximal respiration, spare respiratory capacity and ATP production were also improved in response to α-LA-OA. The enhanced mitochondrial functions maybe partly due to the increased capacity of utilizing fatty acids and glutamine as the substrate. However, the gene expressions of pyruvate kinase M2, lactate dehydrogenase A, aconitate hydratase, and isocitrate dehydrogenase 1 were inhibited, suggesting an insufficient ability for the glycolysis process and the tricarboxylic acid cycle. The increased expression of acetyl-coenzyme A acyltransferase 2, a central enzyme involved in the β-oxidation of fatty acids, would enhance the unbalance due to the decreased expression of electron transfer flavoprotein β subunit, which acts as the electron acceptor. These results indicated that α-LA-OA may induce oxidative stress due to conditions in which the ATP production is exceeding the energy demand. Our results may help clarify the mechanism of apoptosis induced by reactive oxygen species and mitochondrial destruction. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Effects of oxidants and reductants on the efficiency of excitation transfer in green photosynthetic bacteria

    NASA Technical Reports Server (NTRS)

    Wang, J.; Brune, D. C.; Blankenship, R. E.

    1990-01-01

    The efficiency of energy transfer in chlorosome antennas in the green sulfur bacteria Chlorobium vibrioforme and Chlorobium limicola was found to be highly sensitive to the redox potential of the suspension. Energy transfer efficiencies were measured by comparing the absorption spectrum of the bacteriochlorophyll c or d pigments in the chlorosome to the excitation spectrum for fluorescence arising from the chlorosome baseplate and membrane-bound antenna complexes. The efficiency of energy transfer approaches 100% at low redox potentials induced by addition of sodium dithionite or other strong reductants, and is lowered to 10-20% under aerobic conditions or after addition of a variety of membrane-permeable oxidizing agents. The redox effect on energy transfer is observed in whole cells, isolated membranes and purified chlorosomes, indicating that the modulation of energy transfer efficiency arises within the antenna complexes and is not directly mediated by the redox state of the reaction center. It is proposed that chlorosomes contain a component that acts as a highly quenching center in its oxidized state, but is an inefficient quencher when reduced by endogenous or exogenous reductants. This effect may be a control mechanism that prevents cellular damage resulting from reaction of oxygen with reduced low-potential electron acceptors found in the green sulfur bacteria. The redox modulation effect is not observed in the green gliding bacterium Chloroflexus aurantiacus, which contains chlorosomes but does not contain low-potential electron acceptors.

  19. Electron elevator: Excitations across the band gap via a dynamical gap state

    DOE PAGES

    Lim, Anthony; Foulkes, W. M. C.; Horsfield, A. P.; ...

    2016-01-27

    We use time-dependent density functional theory to study self-irradiated Si. We calculate the electronic stopping power of Si in Si by evaluating the energy transferred to the electrons per unit path length by an ion of kinetic energy from 1 eV to 100 keV moving through the host. Electronic stopping is found to be significant below the threshold velocity normally identified with transitions across the band gap. A structured crossover at low velocity exists in place of a hard threshold. Lastly, an analysis of the time dependence of the transition rates using coupled linear rate equations enables one of themore » excitation mechanisms to be clearly identified: a defect state induced in the gap by the moving ion acts like an elevator and carries electrons across the band gap.« less

  20. Electron Elevator: Excitations across the Band Gap via a Dynamical Gap State.

    PubMed

    Lim, A; Foulkes, W M C; Horsfield, A P; Mason, D R; Schleife, A; Draeger, E W; Correa, A A

    2016-01-29

    We use time-dependent density functional theory to study self-irradiated Si. We calculate the electronic stopping power of Si in Si by evaluating the energy transferred to the electrons per unit path length by an ion of kinetic energy from 1 eV to 100 keV moving through the host. Electronic stopping is found to be significant below the threshold velocity normally identified with transitions across the band gap. A structured crossover at low velocity exists in place of a hard threshold. An analysis of the time dependence of the transition rates using coupled linear rate equations enables one of the excitation mechanisms to be clearly identified: a defect state induced in the gap by the moving ion acts like an elevator and carries electrons across the band gap.

  1. In-Situ Probing Plasmonic Energy Transfer in Cu(In, Ga)Se2 Solar Cells by Ultrabroadband Femtosecond Pump-Probe Spectroscopy.

    PubMed

    Chen, Shih-Chen; Wu, Kaung-Hsiung; Li, Jia-Xing; Yabushita, Atsushi; Tang, Shih-Han; Luo, Chih Wei; Juang, Jenh-Yih; Kuo, Hao-Chung; Chueh, Yu-Lun

    2015-12-18

    In this work, we demonstrated a viable experimental scheme for in-situ probing the effects of Au nanoparticles (NPs) incorporation on plasmonic energy transfer in Cu(In, Ga)Se2 (CIGS) solar cells by elaborately analyzing the lifetimes and zero moment for hot carrier relaxation with ultrabroadband femtosecond pump-probe spectroscopy. The signals of enhanced photobleach (PB) and waned photoinduced absorption (PIA) attributable to surface plasmon resonance (SPR) of Au NPs were in-situ probed in transient differential absorption spectra. The results suggested that substantial carriers can be excited from ground state to lower excitation energy levels, which can reach thermalization much faster with the existence of SPR. Thus, direct electron transfer (DET) could be implemented to enhance the photocurrent of CIGS solar cells. Furthermore, based on the extracted hot carrier lifetimes, it was confirmed that the improved electrical transport might have been resulted primarily from the reduction in the surface recombination of photoinduced carriers through enhanced local electromagnetic field (LEMF). Finally, theoretical calculation for resonant energy transfer (RET)-induced enhancement in the probability of exciting electron-hole pairs was conducted and the results agreed well with the enhanced PB peak of transient differential absorption in plasmonic CIGS film. These results indicate that plasmonic energy transfer is a viable approach to boost high-efficiency CIGS solar cells.

  2. A solution-processed binary cathode interfacial layer facilitates electron extraction for inverted polymer solar cells.

    PubMed

    Zhang, Xinyuan; Li, Zhiqi; Liu, Chunyu; Guo, Jiaxin; Shen, Liang; Guo, Wenbin

    2018-03-15

    The charge transfer and separation are significantly affected by the electron properties of the interface between the electron-donor layer and the carrier-transporting layer in polymer solar cells (PSCs). In this study, we investigate the electron extraction mechanism of PSCs with a low temperature solution-processed ZnO/PEI as electron transport layer. The incorporation of PEI layer can decrease the work function of ZnO and reduce interfacial barrier, which facilitates electron extraction and suppresses bimolecular recombination, leading to a significant performance enhancement. Furthermore, PEI layer can induce phase separation and passivite inorganic surface trap states as well as shift the interfacial energy offset between metal oxide and organic materials. This work offers a simple and effective way to improve the charge transporting property of organic photovoltaic devices. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Absolute Negative Resistance Induced by Directional Electron-Electron Scattering in a Two-Dimensional Electron Gas

    NASA Astrophysics Data System (ADS)

    Kaya, Ismet I.

    2007-03-01

    A ballistic conductor is restricted to have positive three terminal resistance just as a Drude conductor. Intercarrier scattering does not influence the conductivity of the latter transport regime and does not exist in the former. However, as the electron energies increased, in the intermediate regime, single or few intercarrier scattering events starts to dominate the transport properties of a conductor with sufficiently small dimensions. A three-terminal device formed by two electrostatic barriers crossing an asymmetrically patterned two dimensional electron gas displays an unusual potential depression at the middle contact, yielding absolute negative resistance. The device displays momentum and current transfer ratios that far exceed unity. The observed reversal of the current or potential in the middle terminal is interpreted as the analog of Bernoulli's effect in a Fermi liquid. The results are explained by directional scattering of electrons in two dimensions.

  4. Electronic structure and electron-phonon interaction in hexagonal yttrium by density functional calculations

    NASA Astrophysics Data System (ADS)

    Singh, Prabhakar P.

    2007-03-01

    To understand the pressure-induced changes in the electronic structure and the electron-phonon interaction in yttrium, we have studied hexagonal-close-packed (hcp) yttrium, stable at ambient pressure, and double hexagonal-close-packed (dhcp) yttrium, stable up to around 44GPa , using density-functional-based methods. Our results show that as one goes from hcp yttrium to dhcp yttrium, there are (i) a substantial charge transfer from s→d with extensive modifications of the d band and a sizable reduction in the density of states at the Fermi energy, (ii) a substantial stiffening of phonon modes with the electron-phonon coupling covering the entire frequency range, and (iii) an increase in the electron-phonon coupling constant λ from 0.55 to 1.24, leading to a change in the superconducting transition temperature Tc from 0.3to15.3K for μ*=0.2 .

  5. Architecture of the nitric-oxide synthase holoenzyme reveals large conformational changes and a calmodulin-driven release of the FMN domain.

    PubMed

    Yokom, Adam L; Morishima, Yoshihiro; Lau, Miranda; Su, Min; Glukhova, Alisa; Osawa, Yoichi; Southworth, Daniel R

    2014-06-13

    Nitric-oxide synthase (NOS) is required in mammals to generate NO for regulating blood pressure, synaptic response, and immune defense. NOS is a large homodimer with well characterized reductase and oxygenase domains that coordinate a multistep, interdomain electron transfer mechanism to oxidize l-arginine and generate NO. Ca(2+)-calmodulin (CaM) binds between the reductase and oxygenase domains to activate NO synthesis. Although NOS has long been proposed to adopt distinct conformations that alternate between interflavin and FMN-heme electron transfer steps, structures of the holoenzyme have remained elusive and the CaM-bound arrangement is unknown. Here we have applied single particle electron microscopy (EM) methods to characterize the full-length of the neuronal isoform (nNOS) complex and determine the structural mechanism of CaM activation. We have identified that nNOS adopts an ensemble of open and closed conformational states and that CaM binding induces a dramatic rearrangement of the reductase domain. Our three-dimensional reconstruction of the intact nNOS-CaM complex reveals a closed conformation and a cross-monomer arrangement with the FMN domain rotated away from the NADPH-FAD center, toward the oxygenase dimer. This work captures, for the first time, the reductase-oxygenase structural arrangement and the CaM-dependent release of the FMN domain that coordinates to drive electron transfer across the domains during catalysis. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Titanium magnetic polarization at the Fe/BaTiO3 interfaces: An effect of ferroelectric polarization discontinuity

    NASA Astrophysics Data System (ADS)

    Paul, Amitesh; Zheng, Jian-Guo; Aoki, Toshihiro

    2017-10-01

    The exotic magnetic phenomena and the associated functionalities have attracted extensive scientific interest in fundamental physics and cater to the purpose of the novel material search. In this article, with a combination of the electron energy-loss spectroscopy and the X-ray absorption spectroscopy, we have investigated the interfacial Fe atoms and the induced ferromagnetic moment of Ti atoms in Fe/BaTiO3 (BTO) heterostructures. The samples were grown with two different BTO thicknesses, thus resulting in two different states of distorted oxygen environments or different electrostatic potentials. We demonstrate that in these systems, the electronic and magnetic proximity effects remain coupled as the ferroelectric polar discontinuity is held responsible for an induced transfer of the interface electrons. These electrons migrate from the Fe2+ layers to the Ti(4+)-δ layers with the hybridization via O-2p oxide orbitals into Ti orbitals to screen the ferroelectric polarization. These findings, in charge neutral BaO-TiO2 and FeO layers or nonpolar/nopolar interface, essentially underline the central role of the covalent bonding in defining the spin-electronic properties.

  7. Sulfide-dependent photosynthetic electron flow coupled to proton translocation in thylakoids of the cyanobacterium Oscillatoria limnetica.

    PubMed

    Shahak, Y; Arieli, B; Binder, B; Padan, E

    1987-12-01

    Light-induced proton translocation coupled to sulfide-dependent electron transport has been studied in isolated thylakoids of the cyanobacterium Oscillatoria limnetica. The thylakoids are obtained by osmotic shock of washed spheroplasts, prepared with glycine-betaine as the osmotic stabilizer. 13C NMR studies suggests that betaine is the major osmoregulator in O. limnetica. Thylakoid preparations obtained from both sulfide-induced anoxygenic cells and noninduced oxygenic cells are capable of proton pumping coupled to phenazinemethosulfate-mediated cyclic electron flow. However, only in the induced thylakoids can sulfide-dependent proton gradient (delta pH) formation be measured, using either NADP or methyl viologen as the terminal acceptor. Sulfide-dependent delta pH formation correlates with a high-affinity electron donation site (apparent Km 44 microM at pH 7.9). This site is not lost upon washing of the thylakoids. In addition, both sulfide-dependent electron transport and delta pH formation are sensitive to inhibitors of the cytochrome b6f complex such as 2-n-nonyl-4-hydroxyquinoline-N-oxide, 2,4-dinitrophenyl ether of 2-iodo-4-nitrothymol, or stigmatellin. Sulfide-dependent NADP photoreduction of low affinity (which does not saturate by as much as 7 mM sulfide) is detected in both induced and noninduced thylakoids, but this activity is insensitive to the inhibitors and is not coupled to proton transport. It is suggested that the adaptation of O. limnetica to anoxygenic photosynthesis involves the induction of a thylakoid factor(s) which creates a high-affinity site for sulfide, and the transfer of its electrons via the cytochrome b6f complex, coupled to proton translocation.

  8. Influence of orbital symmetry on diffraction imaging with rescattering electron wave packets

    DOE PAGES

    Pullen, M. G.; Wolter, B.; Le, A. -T.; ...

    2016-06-22

    The ability to directly follow and time-resolve the rearrangement of the nuclei within molecules is a frontier of science that requires atomic spatial and few-femtosecond temporal resolutions. While laser-induced electron diffraction can meet these requirements, it was recently concluded that molecules with particular orbital symmetries (such as pg) cannot be imaged using purely backscattering electron wave packets without molecular alignment. Here, we demonstrate, in direct contradiction to these findings, that the orientation and shape of molecular orbitals presents no impediment for retrieving molecular structure with adequate sampling of the momentum transfer space. We overcome previous issues by showcasing retrieval ofmore » the structure of randomly oriented O 2 and C 2H 2 molecules, with π g and π u symmetries, respectively, and where their ionization probabilities do not maximize along their molecular axes. As a result, while this removes a serious bottleneck for laser-induced diffraction imaging, we find unexpectedly strong backscattering contributions from low-Z atoms.« less

  9. Manipulation of resonant Auger processes with strong optical fields

    NASA Astrophysics Data System (ADS)

    Picón, Antonio; Buth, Christian; Doumy, Gilles; Krässig, Bertold; Young, Linda; Southworth, Stephen

    2013-05-01

    We recently reported on the optical control of core-excited states of a resonant Auger process in neon. We have focused on the resonant excitation 1 s --> 1s-1 3 p , while a strong optical field may resonantly couple two core-excited states (1s-1 3 p and 1s-1 3 s) in the Rydberg manifold as well as dressing the continuum. There is a clear signature in the Auger electron spectrum of the inner-shell dynamics induced by the strong optical field: i) the Auger electron spectrum is modified by the rapid optical-induced population transfer from the 1s-1 3 p state to the 1s-1 3 s state during their decay. ii) The angular anisotropy parameter, defining the angular distribution of the Auger electron, is manifested in the envelope of the (angle-integrated) sidebands. This work is funded by the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, under Contract No. DE-AC02-06CH11357.

  10. Ultrafast Charge Transfer in Nickel Phthalocyanine Probed by Femtosecond Raman-Induced Kerr Effect Spectroscopy

    PubMed Central

    2015-01-01

    The recently developed technique of femtosecond stimulated Raman spectroscopy, and its variant, femtosecond Raman-induced Kerr effect spectroscopy (FRIKES), offer access to ultrafast excited-state dynamics via structurally specific vibrational spectra. We have used FRIKES to study the photoexcitation dynamics of nickel(II) phthalocyanine with eight butoxy substituents, NiPc(OBu)8. NiPc(OBu)8 is reported to have a relatively long-lived ligand-to-metal charge-transfer (LMCT) state, an essential characteristic for efficient electron transfer in photocatalysis. Following photoexcitation, vibrational transitions in the FRIKES spectra, assignable to phthalocyanine ring modes, evolve on the femtosecond to picosecond time scales. Correlation of ring core size with the frequency of the ν10 (asymmetric C–N stretching) mode confirms the identity of the LMCT state, which has a ∼500 ps lifetime, as well as that of a precursor d-d excited state. An even earlier (∼0.2 ps) transient is observed and tentatively assigned to a higher-lying Jahn–Teller-active LMCT state. This study illustrates the power of FRIKES spectroscopy in elucidating ultrafast molecular dynamics. PMID:24841906

  11. 12 CFR 205.14 - Electronic fund transfer service provider not holding consumer's account.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... consumer learns of the loss or theft; and extends the time periods for reporting unauthorized transfers or... 12 Banks and Banking 2 2010-01-01 2010-01-01 false Electronic fund transfer service provider not... GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.14 Electronic fund...

  12. 12 CFR 205.14 - Electronic fund transfer service provider not holding consumer's account.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... consumer learns of the loss or theft; and extends the time periods for reporting unauthorized transfers or... 12 Banks and Banking 2 2013-01-01 2013-01-01 false Electronic fund transfer service provider not... GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.14 Electronic fund...

  13. 12 CFR 205.14 - Electronic fund transfer service provider not holding consumer's account.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... consumer learns of the loss or theft; and extends the time periods for reporting unauthorized transfers or... 12 Banks and Banking 2 2014-01-01 2014-01-01 false Electronic fund transfer service provider not... GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.14 Electronic fund...

  14. 12 CFR 205.14 - Electronic fund transfer service provider not holding consumer's account.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... consumer learns of the loss or theft; and extends the time periods for reporting unauthorized transfers or... 12 Banks and Banking 2 2011-01-01 2011-01-01 false Electronic fund transfer service provider not... GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.14 Electronic fund...

  15. 12 CFR 205.14 - Electronic fund transfer service provider not holding consumer's account.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... consumer learns of the loss or theft; and extends the time periods for reporting unauthorized transfers or... 12 Banks and Banking 2 2012-01-01 2012-01-01 false Electronic fund transfer service provider not... GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.14 Electronic fund...

  16. Laser-Material Interactions for Flexible Applications.

    PubMed

    Joe, Daniel J; Kim, Seungjun; Park, Jung Hwan; Park, Dae Yong; Lee, Han Eol; Im, Tae Hong; Choi, Insung; Ruoff, Rodney S; Lee, Keon Jae

    2017-07-01

    The use of lasers for industrial, scientific, and medical applications has received an enormous amount of attention due to the advantageous ability of precise parameter control for heat transfer. Laser-beam-induced photothermal heating and reactions can modify nanomaterials such as nanoparticles, nanowires, and two-dimensional materials including graphene, in a controlled manner. There have been numerous efforts to incorporate lasers into advanced electronic processing, especially for inorganic-based flexible electronics. In order to resolve temperature issues with plastic substrates, laser-material processing has been adopted for various applications in flexible electronics including energy devices, processors, displays, and other peripheral electronic components. Here, recent advances in laser-material interactions for inorganic-based flexible applications with regard to both materials and processes are presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Laser-induced electron dynamics including photoionization: A heuristic model within time-dependent configuration interaction theory.

    PubMed

    Klinkusch, Stefan; Saalfrank, Peter; Klamroth, Tillmann

    2009-09-21

    We report simulations of laser-pulse driven many-electron dynamics by means of a simple, heuristic extension of the time-dependent configuration interaction singles (TD-CIS) approach. The extension allows for the treatment of ionizing states as nonstationary states with a finite, energy-dependent lifetime to account for above-threshold ionization losses in laser-driven many-electron dynamics. The extended TD-CIS method is applied to the following specific examples: (i) state-to-state transitions in the LiCN molecule which correspond to intramolecular charge transfer, (ii) creation of electronic wave packets in LiCN including wave packet analysis by pump-probe spectroscopy, and, finally, (iii) the effect of ionization on the dynamic polarizability of H(2) when calculated nonperturbatively by TD-CIS.

  18. Graphene oxide quantum dot-sensitized porous titanium dioxide microsphere: Visible-light-driven photocatalyst based on energy band engineering.

    PubMed

    Zhang, Yu; Qi, Fuyuan; Li, Ying; Zhou, Xin; Sun, Hongfeng; Zhang, Wei; Liu, Daliang; Song, Xi-Ming

    2017-07-15

    We report a novel graphene oxide quantum dot (GOQD)-sensitized porous TiO 2 microsphere for efficient photoelectric conversion. Electro-chemical analysis along with the Mott-Schottky equation reveals conductivity type and energy band structure of the two semiconductors. Based on their energy band structures, visible light-induced electrons can transfer from the p-type GOQD to the n-type TiO 2 . Enhanced photocurrent and photocatalytic activity in visible light further confirm the enhanced separation of electrons and holes in the nanocomposite. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Anomalous single-electron transfer in common-gate quadruple-dot single-electron devices with asymmetric junction capacitances

    NASA Astrophysics Data System (ADS)

    Imai, Shigeru; Ito, Masato

    2018-06-01

    In this paper, anomalous single-electron transfer in common-gate quadruple-dot turnstile devices with asymmetric junction capacitances is revealed. That is, the islands have the same total number of excess electrons at high and low gate voltages of the swing that transfers a single electron. In another situation, two electrons enter the islands from the source and two electrons leave the islands for the source and drain during a gate voltage swing cycle. First, stability diagrams of the turnstile devices are presented. Then, sequences of single-electron tunneling events by gate voltage swings are investigated, which demonstrate the above-mentioned anomalous single-electron transfer between the source and the drain. The anomalous single-electron transfer can be understood by regarding the four islands as “three virtual islands and a virtual source or drain electrode of a virtual triple-dot device”. The anomalous behaviors of the four islands are explained by the normal behavior of the virtual islands transferring a single electron and the behavior of the virtual electrode.

  20. Attaching naphthalene derivatives onto BODIPY for generating excited triplet state and singlet oxygen: Tuning PET-based photosensitizer by electron donors

    NASA Astrophysics Data System (ADS)

    Zhang, Xian-Fu; Feng, Nan

    2018-01-01

    meso-Naphthalene substituted BODIPY compounds were prepared in a facile one pot reaction. The naphthalene functionalization of BODIPY leads up to a 5-fold increase in the formation efficiency of excited triplet state and singlet oxygen in polar solvents. Steady state and time resolved fluorescence, laser flash photolysis, and quantum chemistry methods were used to reveal the mechanism. All measured data and quantum chemical results suggest that these systems can be viewed as electron donor-acceptor (D-A) pair (BODIPY acts as the acceptor), photoinduced charge transfer (PCT) or photoinduced electron transfer (PET) occurs upon photo excitation (D-A + hν → Dδ +-Aδ -, 0 < δ ≤ 1), and the charge recombination induced the formation of triplet state (Dδ +-Aδ - → D-A (T1). These novel PCT- or PET-based photosensitizers (PSs) show different features from traditional PSs, such as the strong tunability by facile structural modification and good selectivity upon medium polarity. The new character for this type of PSs can lead to important applications in organic oxygenation reactions and photodynamic therapy of tumors.

  1. Large Modulation of Charge Carrier Mobility in Doped Nanoporous Organic Transistors.

    PubMed

    Zhang, Fengjiao; Dai, Xiaojuan; Zhu, Weikun; Chung, Hyunjoong; Diao, Ying

    2017-07-01

    Molecular doping of organic electronics has shown promise to sensitively modulate important device metrics. One critical challenge is the disruption of structure order upon doping of highly crystalline organic semiconductors, which significantly reduces the charge carrier mobility. This paper demonstrates a new method to achieve large modulation of charge carrier mobility via channel doping without disrupting the molecular ordering. Central to the method is the introduction of nanopores into the organic semiconductor thin films via a simple and robust templated meniscus-guided coating method. Using this method, the charge carrier mobility of C 8 -benzothieno[3,2-b]benzothiophene transistors is boosted by almost sevenfold. This paper further demonstrates enhanced electron transport by close to an order of magnitude in a diketopyrrolopyrrole-based donor-acceptor polymer. Combining spectroscopic measurements, density functional theory calculations, and electrical characterizations, the doping mechanism is identified as partial-charge-transfer induced trap filling. The nanopores serve to enhance the dopant/organic semiconductor charge transfer reaction by exposing the π-electrons to the pore wall. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Large Modulation of Charge Carrier Mobility in Doped Nanoporous Organic Transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fengjiao; Dai, Xiaojuan; Zhu, Weikun

    Molecular doping of organic electronics has shown promise to sensitively modulate important device metrics. One critical challenge is the disruption of structure order upon doping of highly crystalline organic semiconductors, which significantly reduces the charge carrier mobility. This paper demonstrates a new method to achieve large modulation of charge carrier mobility via channel doping without disrupting the molecular ordering. Central to the method is the introduction of nanopores into the organic semiconductor thin films via a simple and robust templated meniscus-guided coating method. Using this method, the charge carrier mobility of C8-benzothieno[3,2-b]benzothiophene transistors is boosted by almost sevenfold. This papermore » further demonstrates enhanced electron transport by close to an order of magnitude in a diketopyrrolopyrrole-based donor–acceptor polymer. Combining spectroscopic measurements, density functional theory calculations, and electrical characterizations, the doping mechanism is identified as partial-charge-transfer induced trap filling. The nanopores serve to enhance the dopant/organic semiconductor charge transfer reaction by exposing the π-electrons to the pore wall.« less

  3. Anomalous spectral-weight transfers unraveling oxygen screening and electronic correlations in the insulator-metal transition of VO2

    NASA Astrophysics Data System (ADS)

    Yeo, L. H.; Srivastava, A.; Majidi, M. A.; Sutarto, R.; He, F.; Poh, S. M.; Diao, C.; Yu, X.; Motapothula, M.; Saha, S.; Ojha, S.; Kanjilal, D.; Trevisanutto, P. E.; Breese, M. B. H.; Venkatesan, T.; Rusydi, A.

    2015-02-01

    Vanadium dioxide (VO2) undergoes an unusual insulator-metal transition (IMT), and after decades of study, the origin of the IMT remains hotly debated. Here, by analyzing spectral-weight transfers (SWTs) of x-ray absorption spectroscopy at the V L3 ,2 and O K edges on specially designed VO2 films, we observe d||(dx2-y2) band splitting at the V L3 ,2 edges across the IMT, accompanied by anomalous SWTs as high as ˜12 eV at the O K edge, indicating strong electronic correlations. Surprisingly, a few oxygen vacancies induce dramatic SWTs at the O K edge, but the sample remains conducting. Supported by theoretical calculations, we find that in the metallic state, direct V (3 d∥) -V(3 d∥) and O(2 p ) -V(3 d∥) hybridized orbital correlations are screened by O(2 p ) -V(3 dπ) hybridized orbitals, while in the insulating state they are strongly correlated due to changes in the oxygen orbital occupancy. Our result shows the importance of screenings and electronic correlations for IMTs in VO2.

  4. Spatially resolved mapping of electrical conductivity across individual domain (grain) boundaries in graphene.

    PubMed

    Clark, Kendal W; Zhang, X-G; Vlassiouk, Ivan V; He, Guowei; Feenstra, Randall M; Li, An-Ping

    2013-09-24

    All large-scale graphene films contain extended topological defects dividing graphene into domains or grains. Here, we spatially map electronic transport near specific domain and grain boundaries in both epitaxial graphene grown on SiC and CVD graphene on Cu subsequently transferred to a SiO2 substrate, with one-to-one correspondence to boundary structures. Boundaries coinciding with the substrate step on SiC exhibit a significant potential barrier for electron transport of epitaxial graphene due to the reduced charge transfer from the substrate near the step edge. Moreover, monolayer-bilayer boundaries exhibit a high resistance that can change depending on the height of substrate step coinciding at the boundary. In CVD graphene, the resistance of a grain boundary changes with the width of the disordered transition region between adjacent grains. A quantitative modeling of boundary resistance reveals the increased electron Fermi wave vector within the boundary region, possibly due to boundary induced charge density variation. Understanding how resistance change with domain (grain) boundary structure in graphene is a crucial first step for controlled engineering of defects in large-scale graphene films.

  5. Apparatus and method of direct water cooling several parallel circuit cards each containing several chip packages

    DOEpatents

    Cipolla, Thomas M [Katonah, NY; Colgan, Evan George [Chestnut Ridge, NY; Coteus, Paul W [Yorktown Heights, NY; Hall, Shawn Anthony [Pleasantville, NY; Tian, Shurong [Mount Kisco, NY

    2011-12-20

    A cooling apparatus, system and like method for an electronic device includes a plurality of heat producing electronic devices affixed to a wiring substrate. A plurality of heat transfer assemblies each include heat spreaders and thermally communicate with the heat producing electronic devices for transferring heat from the heat producing electronic devices to the heat transfer assemblies. The plurality of heat producing electronic devices and respective heat transfer assemblies are positioned on the wiring substrate having the regions overlapping. A heat conduit thermally communicates with the heat transfer assemblies. The heat conduit circulates thermally conductive fluid therethrough in a closed loop for transferring heat to the fluid from the heat transfer assemblies via the heat spreader. A thermally conductive support structure supports the heat conduit and thermally communicates with the heat transfer assemblies via the heat spreader transferring heat to the fluid of the heat conduit from the support structure.

  6. Mechanisms for pressure-induced crystal-crystal transition, amorphization, and devitrification of SnI{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H.; Tse, J. S., E-mail: john.tse@usask.ca; Hu, M. Y.

    2015-10-28

    The pressure-induced amorphization and subsequent recrystallization of SnI{sub 4} have been investigated using first principles molecular dynamics calculations together with high-pressure {sup 119}Sn nuclear resonant inelastic x-ray scattering measurements. Above ∼8 GPa, we observe a transformation from an ambient crystalline phase to an intermediate crystal structure and a subsequent recrystallization into a cubic phase at ∼64 GPa. The crystalline-to-amorphous transition was identified on the basis of elastic compatibility criteria. The measured tin vibrational density of states shows large amplitude librations of SnI{sub 4} under ambient conditions. Although high pressure structures of SnI{sub 4} were thought to be determined by randommore » packing of equal-sized spheres, we detected electron charge transfer in each phase. This charge transfer results in a crystal structure packing determined by larger than expected iodine atoms.« less

  7. Mechanisms for pressure-induced crystal-crystal transition, amorphization, and devitrification of Snl 4

    DOE PAGES

    Liu, Hanyu; Tse, John S.; Hu, Michael Y.; ...

    2015-10-27

    The pressure-induced amorphization and subsequent recrystallization of SnI 4 have been investigated using first principles molecular dynamics calculations together with high-pressure 119Sn nuclear resonant inelastic x-ray scattering measurements. Above ~8 GPa, we observe a transformation from an ambient crystalline phase to an intermediate crystal structure and a subsequent recrystallization into a cubic phase at ~64 GPa. The crystalline-to-amorphous transition was identified on the basis of elastic compatibility criteria. The measured tin vibrational density of states shows large amplitude librations of SnI 4 under ambient conditions. Although high pressure structures of SnI 4 were thought to be determined by random packingmore » of equal-sized spheres, we detected electron charge transfer in each phase. As a result, this charge transfer results in a crystal structure packing determined by larger than expected iodine atoms. (C) 2015 AIP Publishing LLC.« less

  8. Mechanisms for pressure-induced crystal-crystal transition, amorphization, and devitrification of SnI4.

    PubMed

    Liu, H; Tse, J S; Hu, M Y; Bi, W; Zhao, J; Alp, E E; Pasternak, M; Taylor, R D; Lashley, J C

    2015-10-28

    The pressure-induced amorphization and subsequent recrystallization of SnI4 have been investigated using first principles molecular dynamics calculations together with high-pressure (119)Sn nuclear resonant inelastic x-ray scattering measurements. Above ∼8 GPa, we observe a transformation from an ambient crystalline phase to an intermediate crystal structure and a subsequent recrystallization into a cubic phase at ∼64 GPa. The crystalline-to-amorphous transition was identified on the basis of elastic compatibility criteria. The measured tin vibrational density of states shows large amplitude librations of SnI4 under ambient conditions. Although high pressure structures of SnI4 were thought to be determined by random packing of equal-sized spheres, we detected electron charge transfer in each phase. This charge transfer results in a crystal structure packing determined by larger than expected iodine atoms.

  9. Electrochemical sensing platform based on the highly ordered mesoporous carbon-fullerene system.

    PubMed

    Zhou, Ming; Guo, Jidong; Guo, Li-ping; Bai, Jing

    2008-06-15

    In this paper, we report a novel all-carbon two-dimensionally ordered nanocomposite electrode system on the basis of the consideration of host-guest chemistry, which utilizes synergistic interactions between a nanostructured matrix of ordered mesoporous carbon (OMC) and an excellent electron acceptor of nanosized fullerene (C 60) to facilitate heterogeneous electron-transfer processes. The integration of OMC-C 60 by covalent interaction, especially its electrochemical applications for electrocatalysis, has not been explored thus far. Such integration may even appear to be counterintuitive because OMC and C 60 provide opposite electrochemical benefits in terms of facilitating heterogeneous electron-transfer processes. Nevertheless, the present work demonstrates the integration of OMC and C 60 can provide a remarkable synergistic augmentation of the current. To illuminate the concept, eight kinds of inorganic and organic electroactive compounds were employed to study the electrochemical response at an OMC-C 60 modified glassy carbon (OMC-C 60/GC) electrode for the first time, which shows more favorable electron-transfer kinetics than OMC/GC, carbon nanotube modified GC, C 60/GC, and GC electrodes. Such electrocatalytic behavior at OMC-C 60/GC electrode could be attributed to the unique physicochemical properties of OMC and C 60, especially the unusual host-guest synergy of OMC-C 60, which induced a substantial decrease in the overvoltage for NADH oxidation compared with GC electrode. The ability of OMC-C 60 to promote electron transfer not only suggests a new platform for the development of dehydrogenase-based bioelectrochemical devices but also indicates a potential of OMC-C 60 to be of a wide range of sensing applications because the electrocatalysis of different electroactive compounds at the OMC-C 60/GC electrode in this work should be a good model for constructing a novel and promising electrochemical sensing platform for further electrochemical detection of other biomolecules.

  10. Acid/base-regulated reversible electron transfer disproportionation of N–N linked bicarbazole and biacridine derivatives† †Electronic supplementary information (ESI) available: Experimental information, synthesis and characterization data, NMR spectra, solid state NMR data, X-ray data, ESR spectra, UV-Vis-NIR spectra, fluorescence spectra, kinetic experiments, theoretical calculations, Tables S1–S8, Scheme S1, Fig. S1–12, References. CCDC 1025063, 1038914, 1049677 and 1040722. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5sc00946d

    PubMed Central

    Pandit, Palash; Yamamoto, Koji; Nakamura, Toshikazu; Nishimura, Katsuyuki; Kurashige, Yuki; Yanai, Takeshi; Nakamura, Go; Masaoka, Shigeyuki; Furukawa, Ko; Yakiyama, Yumi; Kawano, Masaki

    2015-01-01

    Regulation of electron transfer on organic substances by external stimuli is a fundamental issue in science and technology, which affects organic materials, chemical synthesis, and biological metabolism. Nevertheless, acid/base-responsive organic materials that exhibit reversible electron transfer have not been well studied and developed, owing to the difficulty in inventing a mechanism to associate acid/base stimuli and electron transfer. We discovered a new phenomenon in which N–N linked bicarbazole (BC) and tetramethylbiacridine (TBA) derivatives undergo electron transfer disproportionation by acid stimulus, forming their stable radical cations and reduced species. The reaction occurs through a biradical intermediate generated by the acid-triggered N–N bond cleavage reaction of BC or TBA, which acts as a two electron acceptor to undergo electron transfer reactions with two equivalents of BC or TBA. In addition, in the case of TBA the disproportionation reaction is highly reversible through neutralization with NEt3, which recovers TBA through back electron transfer and N–N bond formation reactions. This highly reversible electron transfer reaction is possible due to the association between the acid stimulus and electron transfer via the acid-regulated N–N bond cleavage/formation reactions which provide an efficient switching mechanism, the ability of the organic molecules to act as multi-electron donors and acceptors, the extraordinary stability of the radical species, the highly selective reactivity, and the balance of the redox potentials. This discovery provides new design concepts for acid/base-regulated organic electron transfer systems, chemical reagents, or organic materials. PMID:29218181

  11. Rate of Interfacial Electron Transfer through the 1,2,3-Triazole Linkage

    PubMed Central

    Devaraj, Neal K.; Decreau, Richard A.; Ebina, Wataru; Collman, James P.; Chidsey, Christopher E. D.

    2012-01-01

    The rate of electron transfer is measured to two ferrocene and one iron tetraphenylporphyrin redox species coupled through terminal acetylenes to azide-terminated thiol monolayers by the Cu(I)-catalyzed azide–alkyne cycloaddition (a Sharpless “click” reaction) to form the 1,2,3-triazole linkage. The high yield, chemoselectivity, convenience, and broad applicability of this triazole formation reaction make such a modular assembly strategy very attractive. Electron-transfer rate constants from greater than 60,000 to 1 s−1 are obtained by varying the length and conjugation of the electron-transfer bridge and by varying the surrounding diluent thiols in the monolayer. Triazole and the triazole carbonyl linkages provide similar electronic coupling for electron transfer as esters. The ability to vary the rate of electron transfer to many different redox species over many orders of magnitude by using modular coupling chemistry provides a convenient way to study and control the delivery of electrons to multielectron redox catalysts and similar interfacial systems that require controlled delivery of electrons. PMID:16898751

  12. Laser printed interconnects for flexible electronics

    NASA Astrophysics Data System (ADS)

    Pique, Alberto; Beniam, Iyoel; Mathews, Scott; Charipar, Nicholas

    Laser-induced forward transfer (LIFT) can be used to generate microscale 3D structures for interconnect applications non-lithographically. The laser printing of these interconnects takes place through aggregation of voxels of either molten metal or dispersed metallic nanoparticles. However, the resulting 3D structures do not achieve the bulk conductivity of metal interconnects of the same cross-section and length as those formed by wire bonding or tab welding. It is possible, however, to laser transfer entire structures using a LIFT technique known as lase-and-place. Lase-and-place allows whole components and parts to be transferred from a donor substrate onto a desired location with one single laser pulse. This talk will present the use of LIFT to laser print freestanding solid metal interconnects to connect individual devices into functional circuits. Furthermore, the same laser can bend or fold the thin metal foils prior to transfer, thus forming compliant 3D structures able to provide strain relief due to flexing or thermal mismatch. Examples of these laser printed 3D metallic bridges and their role in the development of next generation flexible electronics by additive manufacturing will be presented. This work was funded by the Office of Naval Research (ONR) through the Naval Research Laboratory Basic Research Program.

  13. Diabatization for Time-Dependent Density Functional Theory: Exciton Transfers and Related Conical Intersections.

    PubMed

    Tamura, Hiroyuki

    2016-11-23

    Intermolecular exciton transfers and related conical intersections are analyzed by diabatization for time-dependent density functional theory. The diabatic states are expressed as a linear combination of the adiabatic states so as to emulate the well-defined reference states. The singlet exciton coupling calculated by the diabatization scheme includes contributions from the Coulomb (Förster) and electron exchange (Dexter) couplings. For triplet exciton transfers, the Dexter coupling, charge transfer integral, and diabatic potentials of stacked molecules are calculated for analyzing direct and superexchange pathways. We discuss some topologies of molecular aggregates that induce conical intersections on the vanishing points of the exciton coupling, namely boundary of H- and J-aggregates and T-shape aggregates, as well as canceled exciton coupling to the bright state of H-aggregate, i.e., selective exciton transfer to the dark state. The diabatization scheme automatically accounts for the Berry phase by fixing the signs of reference states while scanning the coordinates.

  14. Mechanism of solid-state plasma-induced dewetting for formation of copper and gold nanoparticles.

    PubMed

    Kwon, Soon-Ho; Choe, Han Joo; Lee, Hyo-Chang; Chung, Chin-Wook; Lee, Jung-Joong

    2013-09-01

    Cu and Au nanoparticles were fabricated by plasma treatment on Cu and Au films at 653 K. The nanoparticles were formed by dewetting the metallic films using plasma. Scanning electron microscopy and transmission electron microscopy investigations showed that the plasma-induced dewetting of the Cu and Au films proceeded through heterogeneous hole nucleation and growth along the grain boundaries to lower the surface energy. The amount of energy transferred to surface atoms by one Ar ion was calculated to be 16.1 eV, which was sufficient for displacing Cu and Au atoms. Compared to thermally activated dewetting, more uniform particles could be obtained by plasma-induced dewetting because a much larger number of holes with smaller sizes was generated. The plasma dewetting process is less sensitive to the oxidation of metallic films compared to the annealing process. As a result, Cu nanoparticles could be fabricated at 653 K, whereas the thermally activated dewetting was not possible.

  15. Methyl group transfer upon gas phase decomposition of protonated methyl benzoate and similar compounds.

    PubMed

    Frański, Rafał; Gierczyk, Błażej; Zalas, Maciej; Jankowski, Wojciech; Hoffmann, Marcin

    2018-05-01

    Gas phase decompositions of protonated methyl benzoate and its conjugates have been studied by using electrospray ionization-collision induced dissociation-tandem mass spectrometry. Loss of CO 2 molecule, thus transfer of methyl group, has been observed. In order to better understand this process, the theoretical calculations have been performed. For methyl benzoate conjugates, it has been found that position of substituent affects the loss of CO 2 molecule, not the electron donor/withdrawing properties of the substituent. Therefore, electrospray ionization-mass spectrometry in positive ion mode may be useful for differentiation of isomers of methyl benzoate conjugates. Copyright © 2018 John Wiley & Sons, Ltd.

  16. Spatially modulated laser pulses for printing electronics.

    PubMed

    Auyeung, Raymond C Y; Kim, Heungsoo; Mathews, Scott; Piqué, Alberto

    2015-11-01

    The use of a digital micromirror device (DMD) in laser-induced forward transfer (LIFT) is reviewed. Combining this technique with high-viscosity donor ink (silver nanopaste) results in laser-printed features that are highly congruent in shape and size to the incident laser beam spatial profile. The DMD empowers LIFT to become a highly parallel, rapidly reconfigurable direct-write technology. By adapting half-toning techniques to the DMD bitmap image, the laser transfer threshold fluence for 10 μm features can be reduced using an edge-enhanced beam profile. The integration of LIFT with this beam-shaping technique allows the printing of complex large-area patterns with a single laser pulse.

  17. On the physics of electron transfer (drift) in the substance: about the reason of “abnormal” fast transfer of electrons in the plasma of tokamak and at known Bohm’s diffusion

    NASA Astrophysics Data System (ADS)

    Boriev, I. A.

    2018-03-01

    An analysis of the problem of so-called “abnormal” fast transfer of electrons in tokamak plasma, which turned out much faster than the result of accepted calculation, is given. Such transfer of hot electrons leads to unexpectedly fast destruction of the inner tokamak wall with ejection of its matter in plasma volume, what violates a condition of plasma confinement for controlled thermonuclear fusion. It is shown, taking into account real physics of electron drift in the gas (plasma) and using the conservation law for momentum of electron transfer (drift), that the drift velocity of elastically scattered electrons should be significantly greater than that of accepted calculation. The reason is that the relaxation time of the momentum of electron transfer, to which the electron drift velocity is proportional, is significantly greater (from 16 up to 4 times) than the electron free path time. Therefore, generally accepted replacement of the relaxation time, which is unknown a priori, by the electron free path time, leads to significant (16 times for thermal electrons) underestimation of electron drift velocity (mobility). This result means, that transfer of elastically (and isotropically) scattered electrons in the gas phase should be so fast, and corresponds to multiplying coefficient (16), introduced by D. Bohm to explain the observed by him “abnormal” fast diffusion of electrons.

  18. Modular Homogeneous Chromophore–Catalyst Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulfort, Karen L.; Utschig, Lisa M.

    2016-05-17

    Photosynthetic reaction center (RC) proteins convert incident solar energy to chemical energy through a network of molecular cofactors which have been evolutionarily tuned to couple efficient light-harvesting, directional electron transfer, and long-lived charge separation with secondary reaction sequences. These molecular cofactors are embedded within a complex protein environment which precisely positions each cofactor in optimal geometries along efficient electron transfer pathways with localized protein environments facilitating sequential and accumulative charge transfer. By contrast, it is difficult to approach a similar level of structural complexity in synthetic architectures for solar energy conversion. However, by using appropriate self-assembly strategies, we anticipate thatmore » molecular modules, which are independently synthesized and optimized for either light-harvesting or redox catalysis, can be organized into spatial arrangements that functionally mimic natural photosynthesis. In this Account, we describe a modular approach to new structural designs for artificial photosynthesis which is largely inspired by photosynthetic RC proteins. We focus on recent work from our lab which uses molecular modules for light-harvesting or proton reduction catalysis in different coordination geometries and different platforms, spanning from discrete supramolecular assemblies to molecule–nanoparticle hybrids to protein-based biohybrids. Molecular modules are particularly amenable to high-resolution characterization of the ground and excited state of each module using a variety of physical techniques; such spectroscopic interrogation helps our understanding of primary artificial photosynthetic mechanisms. In particular, we discuss the use of transient optical spectroscopy, EPR, and X-ray scattering techniques to elucidate dynamic structural behavior and light-induced kinetics and the impact on photocatalytic mechanism. Two different coordination geometries of supramolecular photocatalyst based on the [Ru(bpy)3]2+ (bpy = 2,2'-bipyridine) light-harvesting module with cobaloxime-based catalyst module are compared, with progress in stabilizing photoinduced charge separation identified. These same modules embedded in the small electron transfer protein ferredoxin exhibit much longer charge-separation, enabled by stepwise electron transfer through the native [2Fe-2S] cofactor. We anticipate that the use of interchangeable, molecular modules which can interact in different coordination geometries or within entirely different structural platforms will provide important fundamental insights into the effect of environment on parameters such as electron transfer and charge separation, and ultimately drive more efficient designs for artificial photosynthesis.« less

  19. Marcus equation

    DOE R&D Accomplishments Database

    1998-09-21

    In the late 1950s to early 1960s Rudolph A. Marcus developed a theory for treating the rates of outer-sphere electron-transfer reactions. Outer-sphere reactions are reactions in which an electron is transferred from a donor to an acceptor without any chemical bonds being made or broken. (Electron-transfer reactions in which bonds are made or broken are referred to as inner-sphere reactions.) Marcus derived several very useful expressions, one of which has come to be known as the Marcus cross-relation or, more simply, as the Marcus equation. It is widely used for correlating and predicting electron-transfer rates. For his contributions to the understanding of electron-transfer reactions, Marcus received the 1992 Nobel Prize in Chemistry. This paper discusses the development and use of the Marcus equation. Topics include self-exchange reactions; net electron-transfer reactions; Marcus cross-relation; and proton, hydride, atom and group transfers.

  20. AT base pair anions versus (9-methyl-A)(1-methyl-T) base pair anions.

    PubMed

    Radisic, Dunja; Bowen, Kit H; Dabkowska, Iwona; Storoniak, Piotr; Rak, Janusz; Gutowski, Maciej

    2005-05-04

    The anionic base pairs of adenine and thymine, (AT)(-), and 9-methyladenine and 1-methylthymine, (MAMT)(-), have been investigated both theoretically and experimentally in a complementary, synergistic study. Calculations on (AT)(-) found that it had undergone a barrier-free proton transfer (BFPT) similar to that seen in other dimer anion systems and that its structural configuration was neither Watson-Crick (WC) nor Hoogsteen (HS). The vertical detachment energy (VDE) of (AT)(-) was determined by anion photoelectron spectroscopy and found to be in agreement with the VDE value predicted by theory for the BFPT mechanism. An AT pair in DNA is structurally immobilized into the WC configuration, in part, by being bonded to the sugars of the double helix. This circumstance was mimicked by methylating the sites on both A and T where these sugars would have been tied, viz., 9-methyladenine and 1-methylthymine. Calculations found no BFPT in (MAMT)(-) and a resulting (MAMT)(-) configuration that was either HS or WC, with the configurations differing in stability by ca. 2 kcal/mol. The photoelectron spectrum of (MAMT)(-) occurred at a completely different electron binding energy than had (AT)(-). Moreover, the VDE value of (MAMT)(-) was in agreement with that predicted by theory. The configuration of (MAMT)(-) and its lack of electron-induced proton transfer are inter-related. While there may be other pathways for electron-induced DNA alterations, BFPT in the WC/HS configurations of (AT)(-) is not feasible.

  1. Coupled sensitizer-catalyst dyads: electron-transfer reactions in a perylene-polyoxometalate conjugate.

    PubMed

    Odobel, Fabrice; Séverac, Marjorie; Pellegrin, Yann; Blart, Errol; Fosse, Céline; Cannizzo, Caroline; Mayer, Cédric R; Elliott, Kristopher J; Harriman, Anthony

    2009-01-01

    Ultrafast discharge of a single-electron capacitor: A variety of intramolecular electron-transfer reactions are apparent for polyoxometalates functionalized with covalently attached perylene monoimide chromophores, but these are restricted to single-electron events. (et=electron transfer, cr=charge recombination, csr=charge-shift reaction, PER=perylene, POM=polyoxometalate).A new strategy is introduced that permits covalent attachment of an organic chromophore to a polyoxometalate (POM) cluster. Two examples are reported that differ according to the nature of the anchoring group and the flexibility of the linker. Both POMs are functionalized with perylene monoimide units, which function as photon collectors and form a relatively long-lived charge-transfer state under illumination. They are reduced to a stable pi-radical anion by electrolysis or to a protonated dianion under photolysis in the presence of aqueous triethanolamine. The presence of the POM opens up an intramolecular electron-transfer route by which the charge-transfer state reduces the POM. The rate of this process depends on the molecular conformation and appears to involve through-space interactions. Prior reduction of the POM leads to efficient fluorescence quenching, again due to intramolecular electron transfer. In most cases, it is difficult to resolve the electron-transfer products because of relatively fast reverse charge shift that occurs within a closed conformer. Although the POM can store multiple electrons, it has not proved possible to use these systems as molecular-scale capacitors because of efficient electron transfer from the one-electron-reduced POM to the excited singlet state of the perylene monoimide.

  2. Electron-driven and thermal chemistry during water-assisted purification of platinum nanomaterials generated by electron beam induced deposition

    PubMed Central

    Warneke, Jonas; Kopyra, Janina

    2018-01-01

    Focused electron beam induced deposition (FEBID) is a versatile tool for the direct-write fabrication of nanostructures on surfaces. However, FEBID nanostructures are usually highly contaminated by carbon originating from the precursor used in the process. Recently, it was shown that platinum nanostructures produced by FEBID can be efficiently purified by electron irradiation in the presence of water. If such processes can be transferred to FEBID deposits produced from other carbon-containing precursors, a new general approach to the generation of pure metallic nanostructures could be implemented. Therefore this study aims to understand the chemical reactions that are fundamental to the water-assisted purification of platinum FEBID deposits generated from trimethyl(methylcyclopentadienyl)platinum(IV) (MeCpPtMe3). The experiments performed under ultrahigh vacuum conditions apply a combination of different desorption experiments coupled with mass spectrometry to analyse reaction products. Electron-stimulated desorption monitors species that leave the surface during electron exposure while post-irradiation thermal desorption spectrometry reveals products that evolve during subsequent thermal treatment. In addition, desorption of volatile products was also observed when a deposit produced by electron exposure was subsequently brought into contact with water. The results distinguish between contributions of thermal chemistry, direct chemistry between water and the deposit, and electron-induced reactions that all contribute to the purification process. We discuss reaction kinetics for the main volatile products CO and CH4 to obtain mechanistic information. The results provide novel insights into the chemistry that occurs during purification of FEBID nanostructures with implications also for the stability of the carbonaceous matrix of nanogranular FEBID materials under humid conditions. PMID:29441253

  3. Benzil/triethylamine: a photo-reducing system for Cu2.

    PubMed

    Schmallegger, Max; Gescheidt, Georg

    2018-01-01

    We have investigated the photo-induced reduction of Cu 2+ -Cu 0 using benzil/triethylamine mixtures. The formation of elemental Cu is indicated by the appearance of its characteristic plasmon absorption peaks at 515 nm and 620 nm. Importantly, the nature of the counterion of the Cu 2+ salt affects the reduction process. In the presence of Cl - , the reduction proceeds faster than with SO 4 2- . Photo-induced electron transfer between excited benzil and triethylamine leads to the benzil radical anion, which acts as the reducing agent for Cu 2+ and generates Cu 0 .

  4. Thermal transfer structures coupling electronics card(s) to coolant-cooled structure(s)

    DOEpatents

    David, Milnes P; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Parida, Pritish R; Schmidt, Roger R

    2014-12-16

    Cooling apparatuses and coolant-cooled electronic systems are provided which include thermal transfer structures configured to engage with a spring force one or more electronics cards with docking of the electronics card(s) within a respective socket(s) of the electronic system. A thermal transfer structure of the cooling apparatus includes a thermal spreader having a first thermal conduction surface, and a thermally conductive spring assembly coupled to the conduction surface of the thermal spreader and positioned and configured to reside between and physically couple a first surface of an electronics card to the first surface of the thermal spreader with docking of the electronics card within a socket of the electronic system. The thermal transfer structure is, in one embodiment, metallurgically bonded to a coolant-cooled structure and facilitates transfer of heat from the electronics card to coolant flowing through the coolant-cooled structure.

  5. Tuning charge transfer in the LaTiO3/RO/LaNiO3 (R = rare-earth) superlattices by the rare-earth oxides interfaces from a first-principles calculation

    NASA Astrophysics Data System (ADS)

    Yao, Fen; Zhang, Lifang; Meng, Junling; Liu, Xiaojuan; Zhang, Xiong; Zhang, Wenwen; Meng, Jian; Zhang, Hongjie

    2018-03-01

    We investigate the internal charge transfer at the isopolar interfaces in LaTiO3/RO/LaNiO3 (R = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu) superlattices by means of density functional theory calculations. The charge transfer from Ti sites to Ni sites in all superlattices is induced by the electronegativity difference between the elements Ti and Ni, and the lanthanide oxides interfaces can modulate the amount of charge transfer. Comparison of the perovskite heterostructures with the different rare-earth interfaces shows that increasing the deviations of bond angles from 180.0° and the oxygen motions near the interfaces enhance charge transfer. The 4f electrons themselves of rare-earth elements have faint influences on charge transfer. In addition, the reasons why our calculated 4f states of Sm and Tm elements disagree with the experimental systems have been provided. It is hoped that all the calculated results could be used to design new functional nanoelectronic devices in perovskite oxides.

  6. Interlayer‐State‐Coupling Dependent Ultrafast Charge Transfer in MoS2/WS2 Bilayers

    PubMed Central

    Zhang, Jin; Hong, Hao; Lian, Chao; Ma, Wei; Xu, Xiaozhi; Zhou, Xu; Fu, Huixia

    2017-01-01

    Light‐induced interlayer ultrafast charge transfer in 2D heterostructures provides a new platform for optoelectronic and photovoltaic applications. The charge separation process is generally hypothesized to be dependent on the interlayer stackings and interactions, however, the quantitative characteristic and detailed mechanism remain elusive. Here, a systematical study on the interlayer charge transfer in model MoS2/WS2 bilayer system with variable stacking configurations by time‐dependent density functional theory methods is demonstrated. The results show that the slight change of interlayer geometry can significantly modulate the charge transfer time from 100 fs to 1 ps scale. Detailed analysis further reveals that the transfer rate in MoS2/WS2 bilayers is governed by the electronic coupling between specific interlayer states, rather than the interlayer distances, and follows a universal dependence on the state‐coupling strength. The results establish the interlayer stacking as an effective freedom to control ultrafast charge transfer dynamics in 2D heterostructures and facilitate their future applications in optoelectronics and light harvesting. PMID:28932669

  7. Hydrogen-bonding effect on spin-center transfer of tetrathiafulvalene-linked 6-oxophenalenoxyl evaluated using temperature-dependent cyclic voltammetry and theoretical calculations.

    PubMed

    Nishida, Shinsuke; Fukui, Kozo; Morita, Yasushi

    2014-02-01

    The stable tetrathiafulvalene (TTF)-linked 6-oxophenalenoxyl neutral radical exhibits a spin-center transfer with a continuous color change in solution caused by an intramolecular electron transfer, which is dependent on solvent and temperature. Cyclic voltammetry measurements showed that addition of 2,2,2-trifluoroethanol (TFE) to a benzonitrile solution of the neutral radical induces a redox potential shift that is favorable for the spin-center transfer. Temperature-dependent cyclic voltammetry of the neutral radical using a novel low-temperature electrochemical cell demonstrated that the redox potentials change with decreasing temperature in a 199:1 CH2Cl2/TFE mixed solvent. Furthermore, theoretical calculation revealed that the energy levels of the frontier molecular orbitals involved in the spin-center transfer are lowered by the hydrogen-bonding interaction of TFE with the neutral radical. These results indicate that the hydrogen-bonding effect is a key factor for the occurrence of the spin-center transfer of TTF-linked 6-oxophenalenoxyl. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Axial interactions in the mixed-valent CuA active site and role of the axial methionine in electron transfer

    PubMed Central

    Tsai, Ming-Li; Hadt, Ryan G.; Marshall, Nicholas M.; Wilson, Tiffany D.; Lu, Yi; Solomon, Edward I.

    2013-01-01

    Within Cu-containing electron transfer active sites, the role of the axial ligand in type 1 sites is well defined, yet its role in the binuclear mixed-valent CuA sites is less clear. Recently, the mutation of the axial Met to Leu in a CuA site engineered into azurin (CuA Az) was found to have a limited effect on E0 relative to this mutation in blue copper (BC). Detailed low-temperature absorption and magnetic circular dichroism, resonance Raman, and electron paramagnetic resonance studies on CuA Az (WT) and its M123X (X = Q, L, H) axial ligand variants indicated stronger axial ligation in M123L/H. Spectroscopically validated density functional theory calculations show that the smaller ΔE0 is attributed to H2O coordination to the Cu center in the M123L mutant in CuA but not in the equivalent BC variant. The comparable stabilization energy of the oxidized over the reduced state in CuA and BC (CuA ∼ 180 mV; BC ∼ 250 mV) indicates that the S(Met) influences E0 similarly in both. Electron delocalization over two Cu centers in CuA was found to minimize the Jahn–Teller distortion induced by the axial Met ligand and lower the inner-sphere reorganization energy. The Cu–S(Met) bond in oxidized CuA is weak (5.2 kcal/mol) but energetically similar to that of BC, which demonstrates that the protein matrix also serves an entatic role in keeping the Met bound to the active site to tune down E0 while maintaining a low reorganization energy required for rapid electron transfer under physiological conditions. PMID:23964128

  9. Intraprotein Electron Transfer in Inducible Nitric Oxide Synthase Holoenzyme

    PubMed Central

    Feng, Changjian; Dupont, Andrea L.; Nahm, Nickolas J.; Spratt, Donald E.; Hazzard, James T.; Weinberg, J. Brice; Guillemette, J. Guy; Tollin, Gordon; Ghosh, Dipak K.

    2008-01-01

    Intraprotein electron transfer (IET) from flavin mononucleotide (FMN) to heme is essential in nitric oxide (NO) synthesis by NO synthase (NOS). Our previous laser flash photolysis studies provided a direct determination of the kinetics of the FMN–heme IET in a truncated oxyFMN construct of murine inducible NOS (iNOS), in which only the oxygenase and FMN domains along with the calmodulin (CaM) binding site are present [Feng et al. (2006) J. Am. Chem. Soc. 128, 3808-3811]. Here we report the kinetics of the IET in a human iNOS oxyFMN construct, a human iNOS holoenzyme and a murine iNOS holoenzyme, using CO photolysis in comparative studies on partially reduced NOS and a NOS oxygenase construct that lacks the FMN domain. The IET rate constants for the human and murine iNOS holoenzymes are 34 ± 5 s-1 and 35 ± 3 s-1, respectively, thereby providing a direct measurement of this IET between the catalytically significant redox couples of FMN and heme in the iNOS holoenzyme. These values are approximately an order of magnitude smaller than that in the corresponding iNOS oxyFMN construct, suggesting that in the holoenzyme the rate-limiting step in the IET is the conversion of the shielded electron-accepting (input) state to a new electron-donating (output) state. The fact that there is no rapid IET component in the kinetic traces obtained with the iNOS holoenzyme implies that the enzyme remains mainly in the input state. The IET rate constant value for the iNOS holoenzyme is similar to that obtained for a CaM-bound neuronal NOS (nNOS) holoenzyme, suggesting that CaM activation effectively removes the inhibitory effect of the unique autoregulatory insert in nNOS. PMID:18830722

  10. Gene expression profiling of breast cancer cell lines treated with proton and electron radiations.

    PubMed

    Bravatà, Valentina; Minafra, Luigi; Cammarata, Francesco Paolo; Pisciotta, Pietro; Lamia, Debora; Marchese, Valentina; Manti, Lorenzo; Cirrone, Giuseppe Ap; Gilardi, Maria Carla; Cuttone, Giacomo; Forte, Giusi Irma; Russo, Giorgio

    2018-06-11

    Technological advances in radiation therapy are evolving with the use of hadrons, such as protons, indicated for tumors where conventional radiotherapy does not give significant advantages or for tumors located in sensitive regions, which need the maximum of dose-saving of the surrounding healthy tissues. The genomic response to conventional and non conventional Linear Energy Transfer exposure is a poor investigated topic and became an issue of radiobiological interest. The aim of this work was to analyze and compare molecular responses in term of gene expression profiles, induced by electron and proton irradiation in breast cancer cell lines. We studied the gene expression profiling differences by cDNA microarray activated in response to electron and proton irradiation with different Linear Energy Transfer values, among three breast cell lines (the tumorigenic MCF7 and MDA-MB-231 and the non tumorigenic MCF10A), exposed to the same sub-lethal dose of 9 Gy. Gene expression profiling pathway analyses showed the activation of different signaling and molecular networks in a cell line and radiation type-dependent manner. MCF10A and MDA-MB-231 cell lines were found to induce factors and pathways involved in the immunological process control. Here we describe in a detailed way the gene expression profiling and pathways activated after electron and proton irradiation in breast cancer cells. Summarizing, although specific pathways are activated in a radiation type-dependent manner, each cell line activates overall similar molecular networks in response to both these two types of ionizing radiation. Advances in knowledge: In the era of personalized medicine and breast cancer target-directed intervention, we trust that this study could drive radiation therapy towards personalized treatments, evaluating possible combined treatments, based on the molecular characterization.

  11. Quantitative imaging of electron transfer flavoprotein autofluorescence reveals the dynamics of lipid partitioning in living pancreatic islets.

    PubMed

    Lam, Alan K; Silva, Pamuditha N; Altamentova, Svetlana M; Rocheleau, Jonathan V

    2012-08-01

    Pancreatic islet β-cells metabolically sense nutrients to maintain blood glucose homeostasis through the regulated secretion of insulin. Long-term exposure to a mixed supply of excess glucose and fatty acids induces β-cell dysfunction and type II diabetes in a process termed glucolipotoxicity. Despite a number of documented mechanisms for glucolipotoxicity, the interplay between glucose and fatty acid oxidation in islets remains debated. Here, we develop confocal imaging of electron transfer flavoprotein (ETF) autofluorescence to reveal the dynamics of fatty acid oxidation in living pancreatic islets. This method further integrates microfluidic devices to hold the islets stationary in flow, and thus achieve ETF imaging in the β-cells with high spatial and temporal resolution. Our data first confirm that ETF autofluorescence reflects electron transport chain (ETC) activity downstream of Complex I, consistent with a response directly related to fatty acid metabolism. Together with two-photon imaging of NAD(P)H and confocal imaging of lipoamide dehydrogenase (LipDH) autofluorescence, we show that the ETC predominantly draws electrons from LipDH/NADH-dependent Complex I rather than from ETF/FADH(2)-dependent ETF:CoQ oxidoreductase (ETF-QO). Islets stimulated with palmitate also show increased ETF redox state that is dose-dependently diminished by glucose (>10 mM). Furthermore, stimulation with a glucose bolus causes a two-tier drop in the ETF redox state at ∼5 and ∼20 min, suggesting glucose metabolism immediately increases ETC activity and later decreases fatty acid oxidation. Our results demonstrate the utility of ETF imaging in characterizing fatty acid-induced redox responses with high subcellular and temporal resolution. Our results further demonstrate a dominant role of glucose metabolism over fatty acid oxidation in β-cells even when presented with a mixed nutrient condition associated with glucolipotoxicity.

  12. Quantum State-Resolved Collision Dynamics of Nitric Oxide at Ionic Liquid and Molten Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Zutz, Amelia Marie

    Detailed molecular scale interactions at the gas-liquid interface are explored with quantum state-to-state resolved scattering of a jet-cooled beam of NO(2pi1/2; N = 0) from ionic liquid and molten metal surfaces. The scattered distributions are probed via laser-induced fluorescence methods, which yield rotational and spin-orbit state populations that elucidate the dynamics of energy transfer at the gas-liquid interface. These collision dynamics are explored as a function of incident collision energy, surface temperature, scattering angle, and liquid identity, all of which are found to substantially affect the degree of rotational, electronic and vibrational excitation of NO via collisions at the liquid surface. Rotational distributions observed reveal two distinct scattering pathways, (i) molecules that trap, thermalize and eventually desorb from the surface (trapping-desorption, TD), and (ii) those that undergo prompt recoil (impulsive scattering, IS) prior to complete equilibration with the liquid surface. Thermally desorbing NO molecules are found to have rotational temperatures close to, but slightly cooler than the surface temperature, indicative of rotational dependent sticking probabilities on liquid surfaces. Nitric oxide is a radical with multiple low-lying electronic states that serves as an ideal candidate for exploring nonadiabatic state-changing collision dynamics at the gas-liquid interface, which induce significant excitation from ground (2pi1/2) to excited (2pi 3/2) spin-orbit states. Molecular beam scattering of supersonically cooled NO from hot molten metals (Ga and Au, Ts = 300 - 1400 K) is also explored, which provide preliminary evidence for vibrational excitation of NO mediated by thermally populated electron-hole pairs in the hot, conducting liquid metals. The results highlight the presence of electronically nonadiabatic effects and build toward a more complete characterization of energy transfer dynamics at gas-liquid interfaces.

  13. The damage equivalence of electrons, protons, and gamma rays in MOS devices

    NASA Technical Reports Server (NTRS)

    Brucker, G. J.; Stassinopoulos, E. G.; Van Gunten, O.; August, L. S.; Jordan, T. M.

    1982-01-01

    The results of laboratory tests to determine the radiation damage effects induced on MOS devices from Co-60, electron, and proton radiation are reported. The tests are performed to establish the relationship between the Co-60 gamma rays and the level of damage to the MOS devices in regards to different damages which can be expected with the electron and particle bombardments experienced in space applications. CMOS devices were exposed to the Co-60 gamma rays, 1 MeV electrons, and 1 MeV protons while operating at 3, 10, and 15 V. The test data indicated that the Co-60 source was reliable for an initial evaluation of the electron damages up to 2 MeV charge. A correction factor was devised for transferring the Co-60 measurements to proton damages, independent of bias and transistor types, for any orbit or environment.

  14. Energy and Electron Transfer in Enhanced Two-Photon-Absorbing Systems with Triplet Cores

    PubMed Central

    Finikova, Olga S.; Troxler, Thomas; Senes, Alessandro; DeGrado, William F.; Hochstrasser, Robin M.; Vinogradov, Sergei A.

    2008-01-01

    Enhanced two-photon-absorbing (2PA) systems with triplet cores are currently under scrutiny for several biomedical applications, including photodynamic therapy (PDT) and two-photon microscopy of oxygen. The performance of so far developed molecules, however, is substantially below expected. In this study we take a detailed look at the processes occurring in these systems and propose ways to improve their performance. We focus on the interchromophore distance tuning as a means for optimization of two-photon sensors for oxygen. In these constructs, energy transfer from several 2PA chromophores is used to enhance the effective 2PA cross section of phosphorescent metalloporphyrins. Previous studies have indicated that intramolecular electron transfer (ET) can act as an effective quencher of phosphorescence, decreasing the overall sensor efficiency. We studied the interplay between 2PA, energy transfer, electron transfer, and phosphorescence emission using Rhodamine B-Pt tetrabenzoporphyrin (RhB-PtTBP) adducts as model compounds. 2PA cross sections (σ2) of tetrabenzoporphyrins (TBPs) are in the range of several tens of GM units (near 800 nm), making TBPs superior 2PA chromophores compared to regular porphyrins (σ2 values typically 1-2 GM). Relatively large 2PA cross sections of rhodamines (about 200 GM in 800-850 nm range) and their high photostabilities make them good candidates as 2PA antennae. Fluorescence of Rhodamine B (λfl = 590 nm, ϕfl = 0.5 in EtOH) overlaps with the Q-band of phosphorescent PtTBP (λabs = 615 nm, ϵ = 98 000 M-1 cm-1, ϕp ∼ 0.1), suggesting that a significant amplification of the 2PA-induced phosphorescence via fluorescence resonance energy transfer (FRET) might occur. However, most of the excitation energy in RhB-PtTBP assemblies is consumed in several intramolecular ET processes. By installing rigid nonconducting decaproline spacers (Pro10) between RhB and PtTBP, the intramolecular ETs were suppressed, while the chromophores were kept within the Förster r0 distance in order to maintain high FRET efficiency. The resulting assemblies exhibit linear amplification of their 2PA-induced phosphorescence upon increase in the number of 2PA antenna chromophores and show high oxygen sensitivity. We also have found that PtTBPs possess unexpectedly strong forbidden S0 → T1 bands (λmax = 762 nm, ϵ = 120 M-1 cm-1). The latter may overlap with the laser spectrum and lead to unwanted linear excitation. PMID:17608457

  15. Ultrafast forward and backward electron transfer dynamics of coumarin 337 in hydrogen-bonded anilines as studied with femtosecond UV-pump/IR-probe spectroscopy.

    PubMed

    Ghosh, Hirendra N; Verma, Sandeep; Nibbering, Erik T J

    2011-02-10

    Femtosecond infrared spectroscopy is used to study both forward and backward electron transfer (ET) dynamics between coumarin 337 (C337) and the aromatic amine solvents aniline (AN), N-methylaniline (MAN), and N,N-dimethylaniline (DMAN), where all the aniline solvents can donate an electron but only AN and MAN can form hydrogen bonds with C337. The formation of a hydrogen bond with AN and MAN is confirmed with steady state FT-IR spectroscopy, where the C═O stretching vibration is a direct marker mode for hydrogen bond formation. Transient IR absorption measurements in all solvents show an absorption band at 2166 cm(-1), which has been attributed to the C≡N stretching vibration of the C337 radical anion formed after ET. Forward electron transfer dynamics is found to be biexponential with time constants τ(ET)(1) = 500 fs, τ(ET)(2) = 7 ps in all solvents. Despite the presence of hydrogen bonds of C337 with the solvents AN and MAN, no effect has been found on the forward electron transfer step. Because of the absence of an H/D isotope effect on the forward electron transfer reaction of C337 in AN, hydrogen bonds are understood to play a minor role in mediating electron transfer. In contrast, direct π-orbital overlap between C337 and the aromatic amine solvents causes ultrafast forward electron transfer dynamics. Backward electron transfer dynamics, in contrast, is dependent on the solvent used. Standard Marcus theory explains the observed backward electron transfer rates.

  16. Turbulent mass transfer caused by vortex induced reconnection in collisionless magnetospheric plasmas

    DOE PAGES

    Nakamura, T. K. M.; Hasegawa, H.; Daughton, William Scott; ...

    2017-11-17

    Magnetic reconnection is believed to be the main driver to transport solar wind into the Earth’s magnetosphere when the magnetopause features a large magnetic shear. However, even when the magnetic shear is too small for spontaneous reconnection, the Kelvin–Helmholtz instability driven by a super-Alfvénic velocity shear is expected to facilitate the transport. Although previous kinetic simulations have demonstrated that the non-linear vortex flows from the Kelvin–Helmholtz instability gives rise to vortex-induced reconnection and resulting plasma transport, the system sizes of these simulations were too small to allow the reconnection to evolve much beyond the electron scale as recently observed bymore » the Magnetospheric Multiscale (MMS) spacecraft. Here in this paper, based on a large-scale kinetic simulation and its comparison with MMS observations, we show for the first time that ion-scale jets from vortex-induced reconnection rapidly decay through self-generated turbulence, leading to a mass transfer rate nearly one order higher than previous expectations for the Kelvin–Helmholtz instability.« less

  17. Study on the photo-induced oxygen reordering in YBa2Cu3O6+x

    NASA Astrophysics Data System (ADS)

    Milić, M. M.; Lazarov, N. Dj.; Cucić, D. A.

    2012-05-01

    Effect of the long term illumination of the YBa2Cu3O6+x with visible light or ultraviolet irradiation on its superconducting properties was studied in the frame of a simple theoretical model, which assumes that photodoping triggers rearrangement of oxygen monomers in the chain layers thus causing the enhancement of the average chain length, lav. Since, according to the model of charge transfer mechanism, long CuO chains are better electronic hole donors than the short ones, increase of the average chain length induces additional holes transfer from chain layers to the superconducting CuO2 planes which in turn leads to the increase of the superconducting transition temperature Tc. By the use of the expression for the chain length probability distribution and numerically calculated values for the average chain length in the non-excited system, we were able to estimate the doping p (number of holes per one Cu atom in the superconducting CuO2 planes) and Tc enhancement due to photo-induced oxygen reordering. The theoretical results are compared with available experimental data.

  18. Turbulent mass transfer caused by vortex induced reconnection in collisionless magnetospheric plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, T. K. M.; Hasegawa, H.; Daughton, William Scott

    Magnetic reconnection is believed to be the main driver to transport solar wind into the Earth’s magnetosphere when the magnetopause features a large magnetic shear. However, even when the magnetic shear is too small for spontaneous reconnection, the Kelvin–Helmholtz instability driven by a super-Alfvénic velocity shear is expected to facilitate the transport. Although previous kinetic simulations have demonstrated that the non-linear vortex flows from the Kelvin–Helmholtz instability gives rise to vortex-induced reconnection and resulting plasma transport, the system sizes of these simulations were too small to allow the reconnection to evolve much beyond the electron scale as recently observed bymore » the Magnetospheric Multiscale (MMS) spacecraft. Here in this paper, based on a large-scale kinetic simulation and its comparison with MMS observations, we show for the first time that ion-scale jets from vortex-induced reconnection rapidly decay through self-generated turbulence, leading to a mass transfer rate nearly one order higher than previous expectations for the Kelvin–Helmholtz instability.« less

  19. Allosteric control of internal electron transfer in cytochrome cd1 nitrite reductase

    PubMed Central

    Farver, Ole; Kroneck, Peter M. H.; Zumft, Walter G.; Pecht, Israel

    2003-01-01

    Cytochrome cd1 nitrite reductase is a bifunctional multiheme enzyme catalyzing the one-electron reduction of nitrite to nitric oxide and the four-electron reduction of dioxygen to water. Kinetics and thermodynamics of the internal electron transfer process in the Pseudomonas stutzeri enzyme have been studied and found to be dominated by pronounced interactions between the c and the d1 hemes. The interactions are expressed both in dramatic changes in the internal electron-transfer rates between these sites and in marked cooperativity in their electron affinity. The results constitute a prime example of intraprotein control of the electron-transfer rates by allosteric interactions. PMID:12802018

  20. Molecular diagnosis of Plasmodium ovale by photo-induced electron transfer fluorogenic primers: PET-PCR

    PubMed Central

    Akerele, David; Ljolje, Dragan; Talundzic, Eldin; Udhayakumar, Venkatachalam

    2017-01-01

    Accurate diagnosis of malaria infections continues to be challenging and elusive, especially in the detection of submicroscopic infections. Developing new malaria diagnostic tools that are sensitive enough to detect low-level infections, user friendly, cost effective and capable of performing large scale diagnosis, remains critical. We have designed novel self-quenching photo-induced electron transfer (PET) fluorogenic primers for the detection of P. ovale by real-time PCR. In our study, a total of 173 clinical samples, consisting of different malaria species, were utilized to test this novel PET-PCR primer. The sensitivity and specificity were calculated using nested-PCR as the reference test. The novel primer set demonstrated a sensitivity of 97.5% and a specificity of 99.2% (95% CI 85.2–99.8% and 95.2–99.9% respectively). Furthermore, the limit of detection for P. ovale was found to be 1 parasite/μl. The PET-PCR assay is a new molecular diagnostic tool with comparable performance to other commonly used PCR methods. It is relatively easy to perform, and amiable to large scale malaria surveillance studies and malaria control and elimination programs. Further field validation of this novel primer will be helpful to ascertain the utility for large scale malaria screening programs. PMID:28640824

  1. Molecular diagnosis of Plasmodium ovale by photo-induced electron transfer fluorogenic primers: PET-PCR.

    PubMed

    Akerele, David; Ljolje, Dragan; Talundzic, Eldin; Udhayakumar, Venkatachalam; Lucchi, Naomi W

    2017-01-01

    Accurate diagnosis of malaria infections continues to be challenging and elusive, especially in the detection of submicroscopic infections. Developing new malaria diagnostic tools that are sensitive enough to detect low-level infections, user friendly, cost effective and capable of performing large scale diagnosis, remains critical. We have designed novel self-quenching photo-induced electron transfer (PET) fluorogenic primers for the detection of P. ovale by real-time PCR. In our study, a total of 173 clinical samples, consisting of different malaria species, were utilized to test this novel PET-PCR primer. The sensitivity and specificity were calculated using nested-PCR as the reference test. The novel primer set demonstrated a sensitivity of 97.5% and a specificity of 99.2% (95% CI 85.2-99.8% and 95.2-99.9% respectively). Furthermore, the limit of detection for P. ovale was found to be 1 parasite/μl. The PET-PCR assay is a new molecular diagnostic tool with comparable performance to other commonly used PCR methods. It is relatively easy to perform, and amiable to large scale malaria surveillance studies and malaria control and elimination programs. Further field validation of this novel primer will be helpful to ascertain the utility for large scale malaria screening programs.

  2. Calculations of Alfven Wave Driving Forces, Plasma Flow and Current Drive in Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Elfimov, Artur; Galvao, Ricardo; Amarante-Segundo, Gesil; Nascimento, Ivan

    2000-10-01

    A general form of time-averaged poloidal ponderomotive forces induced by fast and kinetic Alfvin waves by direct numerical calculations and in geometric optics approximation are analyzed on the basis of the collisionless two fluid (ions and electrons) magneto-hydrodynamics equation. Analytical approximations are used to clarify the effect of Larmour radius on radio-frequency (RF) ponderomotive forces and on poloidal flows induced by them in tokamak plasmas.The RF ponderomotive force is expressed as a sum of a gradient part and of a wave momentum transfer force, which is proportional to wave dissipation. The gradient electromagnetic stress force is combined with fluid dynamic (Reynolds) stress force. It is shown that accounting only Reynolds stress term can overestimate the plasma flow and it is found that the finite ion Larmor radius effect play fundamental role in ponderomotive forces that can drive a poloidal flow, which is larger than a flow driven by a wave momentum transfer force. Finally, balancing the RF forces by the electron-ion friction and viscous force the current and plasma flows driven by ponderomotive forces are calculated for tokamak plasmas, using a kinetic code [Phys. Plasmas, v.6 (1999) p.2437]. Strongly sheared current and plasma flow waves is found.

  3. Zn induced in-gap electronic states in La214 probed by uniform magnetic susceptibility: relevance to the suppression of superconducting T c

    NASA Astrophysics Data System (ADS)

    Islam, R. S.; Naqib, S. H.

    2018-02-01

    Substitution of isovalent non-magnetic defects, such as Zn, in the CuO2 plane strongly modifies the magnetic properties of strongly electron correlated hole doped cuprate superconductors. The reason for enhanced uniform magnetic susceptibility, χ, in Zn substituted cuprates is debatable. Generally the defect induced magnetic behavior has been analyzed mainly in terms of two somewhat contrasting scenarios. The first one is due to independent localized moments appearing in the vicinity of Zn arising because of the strong electronic/magnetic correlations present in the host compound and the second one is due to transfer of quasiparticle (QP) spectral weight and creation of weakly localized low-energy electronic states associated with each Zn atom in place of an in-plane Cu. If the second scenario is correct, one should expect a direct correspondence between Zn induced suppression of the superconducting transition temperature, T c, and the extent of the enhanced magnetic susceptibility at low temperature. In this case, the low-T enhancement of χ would be due to weakly localized QP states at low energy and these electronic states will be precluded from taking part in Cooper pairing. We explore this second possibility by analyzing the χ(T) data for La2-x Sr x Cu1-y Zn y O4 with different hole contents, p (=x), and Zn concentrations (y) in this paper. The results of our analysis support this scenario.

  4. The PEPPo method for polarized positrons and PEPPo II

    DOE PAGES

    Cardman, Lawrence S.

    2018-05-01

    The Polarized Electrons for Polarized Positrons (PEPPo) experiment at the injector of the Continuous Electron Beam Accelerator Facility demonstrated for the first time the efficient transfer of polarization from electrons to positrons via a two-step process: polarized bremsstrahlung radiation is induced by a polarized electron beam in a high-Z target; then the polarized bremsstrahlung produces polarized positrons via the pair-production process in the same target. Positron polarization up to 82% was measured for an initial electron beam momentum of 8.19 MeV/c, limited only by the electron beam polarization of 85%. This technique extends polarized positron capabilities from GeV to MeVmore » electron beams, and opens access to polarized positron beam physics to a wide community. We present the results of the PEPPo experiment and outline tentative plans for a follow-up experiment that would investigate key aspects of an approach based on PEPPo as a polarized positron source for the 12 GeV Upgrade of CEBAF.« less

  5. Parallel Large-scale Semidefinite Programming for Strong Electron Correlation: Using Correlation and Entanglement in the Design of Efficient Energy-Transfer Mechanisms

    DTIC Science & Technology

    2014-09-24

    which nature uses strong electron correlation for efficient energy transfer, particularly in photosynthesis and bioluminescence, (ii) providing an...strong electron correlation for efficient energy transfer, particularly in photosynthesis and bioluminescence, (ii) providing an innovative paradigm...efficient energy transfer, particularly in photosynthesis and bioluminescence, (ii) providing an innovative paradigm for energy transfer in photovoltaic

  6. Consequences of plasma oxidation and vacuum annealing on the chemical properties and electron accumulation of In2O3 surfaces

    NASA Astrophysics Data System (ADS)

    Berthold, Theresa; Rombach, Julius; Stauden, Thomas; Polyakov, Vladimir; Cimalla, Volker; Krischok, Stefan; Bierwagen, Oliver; Himmerlich, Marcel

    2016-12-01

    The influence of oxygen plasma treatments on the surface chemistry and electronic properties of unintentionally doped and Mg-doped In2O3(111) films grown by plasma-assisted molecular beam epitaxy or metal-organic chemical vapor deposition is studied by photoelectron spectroscopy. We evaluate the impact of semiconductor processing technology relevant treatments by an inductively coupled oxygen plasma on the electronic surface properties. In order to determine the underlying reaction processes and chemical changes during film surface-oxygen plasma interaction and to identify reasons for the induced electron depletion, in situ characterization was performed implementing a dielectric barrier discharge oxygen plasma as well as vacuum annealing. The strong depletion of the initial surface electron accumulation layer is identified to be caused by adsorption of reactive oxygen species, which induce an electron transfer from the semiconductor to localized adsorbate states. The chemical modification is found to be restricted to the topmost surface and adsorbate layers. The change in band bending mainly depends on the amount of attached oxygen adatoms and the film bulk electron concentration as confirmed by calculations of the influence of surface state density on the electron concentration and band edge profile using coupled Schrödinger-Poisson calculations. During plasma oxidation, hydrocarbon surface impurities are effectively removed and surface defect states, attributed to oxygen vacancies, vanish. The recurring surface electron accumulation after subsequent vacuum annealing can be consequently explained by surface oxygen vacancies.

  7. Electron Tunneling in Lithium Ammonia Solutions Probed by Frequency-Dependent Electron-Spin Relaxation Studies

    PubMed Central

    Maeda, Kiminori; Lodge, Matthew T.J.; Harmer, Jeffrey; Freed, Jack H.; Edwards, Peter P.

    2012-01-01

    Electron transfer or quantum tunneling dynamics for excess or solvated electrons in dilute lithium-ammonia solutions have been studied by pulse electron paramagnetic resonance (EPR) spectroscopy at both X- (9.7 GHz) and W-band (94 GHz) frequencies. The electron spin-lattice (T1) and spin-spin (T2) relaxation data indicate an extremely fast transfer or quantum tunneling rate of the solvated electron in these solutions which serves to modulate the hyperfine (Fermi-contact) interaction with nitrogen nuclei in the solvation shells of ammonia molecules surrounding the localized, solvated electron. The donor and acceptor states of the solvated electron in these solutions are the initial and final electron solvation sites found before, and after, the transfer or tunneling process. To interpret and model our electron spin relaxation data from the two observation EPR frequencies requires a consideration of a multi-exponential correlation function. The electron transfer or tunneling process that we monitor through the correlation time of the nitrogen Fermi-contact interaction has a time scale of (1–10)×10−12 s over a temperature range 230–290K in our most dilute solution of lithium in ammonia. Two types of electron-solvent interaction mechanisms are proposed to account for our experimental findings. The dominant electron spin relaxation mechanism results from an electron tunneling process characterized by a variable donor-acceptor distance or range (consistent with such a rapidly fluctuating liquid structure) in which the solvent shell that ultimately accepts the transferring electron is formed from random, thermal fluctuations of the liquid structure in, and around, a natural hole or Bjerrum-like defect vacancy in the liquid. Following transfer and capture of the tunneling electron, further solvent-cage relaxation with a timescale of ca. 10−13 s results in a minor contribution to the electron spin relaxation times. This investigation illustrates the great potential of multi-frequency EPR measurements to interrogate the microscopic nature and dynamics of ultra fast electron transfer or quantum-tunneling processes in liquids. Our results also impact on the universal issue of the role of a host solvent (or host matrix, e.g. a semiconductor) in mediating long-range electron transfer processes and we discuss the implications of our results with a range of other materials and systems exhibiting the phenomenon of electron transfer. PMID:22568866

  8. Opto-electronic conversion logic behaviour through dynamic modulation of electron/energy transfer states at the TiO2-carbon quantum dot interface.

    PubMed

    Wang, Fang; Zhang, Yonglai; Liu, Yang; Wang, Xuefeng; Shen, Mingrong; Lee, Shuit-Tong; Kang, Zhenhui

    2013-03-07

    Here we show a bias-mediated electron/energy transfer process at the CQDs-TiO(2) interface for the dynamic modulation of opto-electronic properties. Different energy and electron transfer states have been observed in the CQDs-TNTs system due to the up-conversion photoluminescence and the electron donation/acceptance properties of the CQDs decorated on TNTs.

  9. Experimental insights on the electron transfer and energy transfer processes between Ce{sup 3+}-Yb{sup 3+} and Ce{sup 3+}-Tb{sup 3+} in borate glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sontakke, Atul D., E-mail: sontakke.atul.55a@st.kyoto-u.ac.jp; Katayama, Yumiko; Tanabe, Setsuhisa

    2015-03-30

    A facile method to describe the electron transfer and energy transfer processes among lanthanide ions is presented based on the temperature dependent donor luminescence decay kinetics. The electron transfer process in Ce{sup 3+}-Yb{sup 3+} exhibits a steady rise with temperature, whereas the Ce{sup 3+}-Tb{sup 3+} energy transfer remains nearly unaffected. This feature has been investigated using the rate equation modeling and a methodology for the quantitative estimation of interaction parameters is presented. Moreover, the overall consequences of electron transfer and energy transfer process on donor-acceptor luminescence behavior, quantum efficiency, and donor luminescence decay kinetics are discussed in borate glass host.more » The results in this study propose a straight forward approach to distinguish the electron transfer and energy transfer processes between lanthanide ions in dielectric hosts, which is highly advantageous in view of the recent developments on lanthanide doped materials for spectral conversion, persistent luminescence, and related applications.« less

  10. Lateral engineering of surface states - towards surface-state nanoelectronics.

    PubMed

    García de Abajo, F J; Cordón, J; Corso, M; Schiller, F; Ortega, J E

    2010-05-01

    Patterned metal surfaces can host electron quantum waves that display interference phenomena over distances of a few nanometres, thus providing excellent information carriers for future atomic-scale devices. Here we demonstrate that collimation and waveguiding of surface electrons can be realized in silver-induced strain dislocation networks on Cu(111) surfaces, as a conceptual proof-of-principle of surface-state nanoelectronics (SSNE). The Ag/Cu(111) system exhibits featured surface bands with gaps at the Fermi energy, which are basic requirements for a potential SSNE material. We establish a solid analogy between the behavior of surface-state electrons and surface plasmons in patterned metal surfaces, thus facilitating the transfer of existing knowledge on plasmonic structures to the new scenario presented by engineered electronic surface-state nanostructures, with the advantage of a 1000-fold reduction in wavelength and geometrical parameters.

  11. A new route to nanoscale tomographic chemical analysis: Focused ion beam-induced auger electron spectrosocpy

    NASA Astrophysics Data System (ADS)

    Parvaneh, Hamed

    This research project is aimed to study the application of ion-induced Auger electron spectroscopy (IAES) in combination with the characteristics of focused ion beam (FIB) microscopy for performing chemical spectroscopy and further evaluate its potential for 3-dimensional chemical tomography applications. The mechanism for generation of Auger electrons by bombarding ions is very different from its electron induced counterpart. In the conventional electron-induced Auger electron spectroscopy (EAES), an electron beam with energy typically in the range 1-10kV is used to excite inner-shell (core) electrons of the solid. An electron from a higher electron energy state then de-excites to fill the hole and the extra energy is then transferred to either another electron, i.e. the Auger electron, or generation of an X-ray (photon). In both cases the emitting particles have charac-teristic energies and could be used to identify the excited target atoms. In IAES, however, large excitation cross sections can occur by promotion of in-ner shell electrons through crossing of molecular orbitals. Originally such phenomenological excitation processes were first proposed [3] for bi-particle gas phase collision systems to explain the generation of inner shell vacancies in violent collisions. In addition to excitation of incident or target atoms, due to a much heavier mass of ions compared to electrons, there would also be a substantial momentum transfer from the incident to the target atoms. This may cause the excited target atom to recoil from the lattice site or alternatively sputter off the surface with the possibility of de-excitation while the atom is either in motion in the matrix or traveling in vacuum. As a result, one could expect differences between the spectra induced by incident electrons and ions and interpretation of the IAE spectra requires separate consideration of both excitation and decay processes. In the first stage of the project, a state-of-the-art mass-filtered FIB (MS-FIB) from Orsay Physics has been integrated with a VersaProbe 5000 XPS instrument from ULVAC-PHI. The integration process involved overcoming major mechanical and electrical obstacles and numerous problem-solving situations. The major reason for choosing the VersaProbe was to utilize its analytical concentric hemispherical analyzer (CHA) to measure the kinetic energy of the Auger electrons induced by the ions generated from a gold-silicon liquid alloy source. Subsequently the acquisition and detection parameters of both MS-FIB and the electron energy analyzer were successfully optimized and IAES of selected elements in third-row of the periodic table, namely Mg, Al, Si, and the ones in the fourth-row, namely Ti, V, Cr, Mn, Fe, Co, Ni and Cu acquired using Si++ and Au+ incident ions. As a result of energetic collisions between the incident and target atoms, in addition to plasmon excitations, Auger electrons from both colliding particles were generated and detected. Different components of the electron energy spectra acquired were carefully analyzed and the origin of different features observed identified. Then the relative efficiencies of Auger electron generation by ion impact from the above mentioned targets, acquired under the same conditions, were compared with each other and the origin of the differences in line shape were explained. The elements on the third row of periodic table in particular show narrow peaks emanat-ed mainly from the decay of excited atoms. For heavier elements, however, the increase of fluorescence yield by increasing atomic number and smaller lifetime for the inner shell vacancies result in reduction of atomic contribution to the spectrum. The absolute yield of Auger electrons were also evaluated using an indirect method using the ion-induced electron emission yield and, in particular, estimation for Al and Cr, where the values of ion-induced electron emission were available in the literature, was provided. The resolution of the technique both spatially (x-y) and in depth (z) were also evaluated. For spatial resolution mainly the Monte Carlo simulations were utilized to estimate the area from which the excited target atoms with inner shell vacancies originate. Attention was paid to the relationship between the Auger electron infor-mation depth and the depth-dependency of various energy-loss mechanisms for the incoming ions. In particular, an area from which target atoms with energies higher than a threshold energy sputter off the surface, was concluded to be an estimate for lateral spatial resolution. Finally the effects of hardware parameters, in particular the solid angle of the detector and the transmission of the electron energy analyzer, on the collected signal were characterized and used to put together an estimate for the edge length of an information cube representing the minimum amount of material that has to be removed before a meaningful signal can be collected.

  12. Verification of the electron/proton coupled mechanism for phenolic H-atom transfer using a triplet π,π ∗ carbonyl

    NASA Astrophysics Data System (ADS)

    Yamaji, Minoru; Oshima, Juro; Hidaka, Motohiko

    2009-06-01

    Evidence for the coupled electron/proton transfer mechanism of the phenolic H-atom transfer between triplet π,π ∗ 3,3'-carbonylbis(7-diethylaminocoumarin) and phenol derivatives is obtained by using laser photolysis techniques. It was confirmed that the quenching rate constants of triplet CBC by phenols having positive Hammett constants do not follow the Rehm-Weller equation for electron transfer while those by phenols with negative Hammett constants do it. From the viewpoint of thermodynamic parameters for electron transfer, the crucial factors for phenolic H-atom transfer to π,π ∗ triplet are discussed.

  13. Alternative mitochondrial electron transfer as a novel strategy for neuroprotection.

    PubMed

    Wen, Yi; Li, Wenjun; Poteet, Ethan C; Xie, Luokun; Tan, Cong; Yan, Liang-Jun; Ju, Xiaohua; Liu, Ran; Qian, Hai; Marvin, Marian A; Goldberg, Matthew S; She, Hua; Mao, Zixu; Simpkins, James W; Yang, Shao-Hua

    2011-05-06

    Neuroprotective strategies, including free radical scavengers, ion channel modulators, and anti-inflammatory agents, have been extensively explored in the last 2 decades for the treatment of neurological diseases. Unfortunately, none of the neuroprotectants has been proved effective in clinical trails. In the current study, we demonstrated that methylene blue (MB) functions as an alternative electron carrier, which accepts electrons from NADH and transfers them to cytochrome c and bypasses complex I/III blockage. A de novo synthesized MB derivative, with the redox center disabled by N-acetylation, had no effect on mitochondrial complex activities. MB increases cellular oxygen consumption rates and reduces anaerobic glycolysis in cultured neuronal cells. MB is protective against various insults in vitro at low nanomolar concentrations. Our data indicate that MB has a unique mechanism and is fundamentally different from traditional antioxidants. We examined the effects of MB in two animal models of neurological diseases. MB dramatically attenuates behavioral, neurochemical, and neuropathological impairment in a Parkinson disease model. Rotenone caused severe dopamine depletion in the striatum, which was almost completely rescued by MB. MB rescued the effects of rotenone on mitochondrial complex I-III inhibition and free radical overproduction. Rotenone induced a severe loss of nigral dopaminergic neurons, which was dramatically attenuated by MB. In addition, MB significantly reduced cerebral ischemia reperfusion damage in a transient focal cerebral ischemia model. The present study indicates that rerouting mitochondrial electron transfer by MB or similar molecules provides a novel strategy for neuroprotection against both chronic and acute neurological diseases involving mitochondrial dysfunction.

  14. Electron transfer driven decomposition of adenine and selected analogs as probed by experimental and theoretical methods

    NASA Astrophysics Data System (ADS)

    Cunha, T.; Mendes, M.; Ferreira da Silva, F.; Eden, S.; García, G.; Bacchus-Montabonel, M.-C.; Limão-Vieira, P.

    2018-04-01

    We report on a combined experimental and theoretical study of electron-transfer-induced decomposition of adenine (Ad) and a selection of analog molecules in collisions with potassium (K) atoms. Time-of-flight negative ion mass spectra have been obtained in a wide collision energy range (6-68 eV in the centre-of-mass frame), providing a comprehensive investigation of the fragmentation patterns of purine (Pu), adenine (Ad), 9-methyl adenine (9-mAd), 6-dimethyl adenine (6-dimAd), and 2-D adenine (2-DAd). Following our recent communication about selective hydrogen loss from the transient negative ions (TNIs) produced in these collisions [T. Cunha et al., J. Chem. Phys. 148, 021101 (2018)], this work focuses on the production of smaller fragment anions. In the low-energy part of the present range, several dissociation channels that are accessible in free electron attachment experiments are absent from the present mass spectra, notably NH2 loss from adenine and 9-methyl adenine. This can be understood in terms of a relatively long transit time of the K+ cation in the vicinity of the TNI tending to enhance the likelihood of intramolecular electron transfer. In this case, the excess energy can be redistributed through the available degrees of freedom inhibiting fragmentation pathways. Ab initio theoretical calculations were performed for 9-methyl adenine (9-mAd) and adenine (Ad) in the presence of a potassium atom and provided a strong basis for the assignment of the lowest unoccupied molecular orbitals accessed in the collision process.

  15. Bridge-mediated hopping or superexchange electron-transfer processes in bis(triarylamine) systems

    NASA Astrophysics Data System (ADS)

    Lambert, Christoph; Nöll, Gilbert; Schelter, Jürgen

    2002-09-01

    Hopping and superexchange are generally considered to be alternative electron-transfer mechanisms in molecular systems. In this work we used mixed-valence radical cations as model systems for the investigation of electron-transfer pathways. We show that substituents attached to a conjugated bridge connecting two triarylamine redox centres have a marked influence on the near-infrared absorption spectra of the corresponding cations. Spectral analysis, followed by evaluation of the electron-transfer parameters using the Generalized Mulliken-Hush theory and simulation of the potential energy surfaces, indicate that hopping and superexchange are not alternatives, but are both present in the radical cation with a dimethoxybenzene bridge. We found that the type of electron-transfer mechanism depends on the bridge-reorganization energy as well as on the bridge-state energy. Because superexchange and hopping follow different distance laws, our findings have implications for the design of new molecular and polymeric electron-transfer materials.

  16. Ruthenium based metallopolymer grafted reduced graphene oxide as a new hybrid solar light harvester in polymer solar cells

    PubMed Central

    Vinoth, R.; Babu, S. Ganesh; Bharti, Vishal; Gupta, V.; Navaneethan, M.; Bhat, S. Venkataprasad; Muthamizhchelvan, C.; Ramamurthy, Praveen C.; Sharma, Chhavi; Aswal, Dinesh K.; Hayakawa, Yasuhiro; Neppolian, B.

    2017-01-01

    A new class of pyridyl benzimdazole based Ru complex decorated polyaniline assembly (PANI-Ru) was covalently grafted onto reduced graphene oxide sheets (rGO) via covalent functionalization approach. The covalent attachment of PANI-Ru with rGO was confirmed from XPS analysis and Raman spectroscopy. The chemical bonding between PANI-Ru and rGO induced the electron transfer from Ru complex to rGO via backbone of the conjugated PANI chain. The resultant hybrid metallopolymer assembly was successfully demonstrated as an electron donor in bulk heterojunction polymer solar cells (PSCs). A PSC device fabricated with rGO/PANI-Ru showed an utmost ~6 fold and 2 fold enhancement in open circuit potential (Voc) and short circuit current density (Jsc) with respect to the standard device made with PANI-Ru (i.e., without rGO) under the illumination of AM 1.5 G. The excellent electronic properties of rGO significantly improved the electron injection from PANI-Ru to PCBM and in turn the overall performance of the PSC device was enhanced. The ultrafast excited state charge separation and electron transfer role of rGO sheet in hybrid metallopolymer was confirmed from ultrafast spectroscopy measurements. This covalent modification of rGO with metallopolymer assembly may open a new strategy for the development of new hybrid nanomaterials for light harvesting applications. PMID:28225039

  17. Photoinduced charge separation in a colloidal system of exfoliated layered semiconductor controlled by coexisting aluminosilicate clay.

    PubMed

    Nakato, Teruyuki; Yamada, Yoshimi; Miyamoto, Nobuyoshi

    2009-02-05

    We investigated photoinduced charge separation occurring in a multicomponent colloidal system composed of oxide nanosheets of photocatalytically active niobate and photochemically inert clay and electron accepting methylviologen dications (MV2+). The inorganic nanosheets were obtained by exfoliation of layered hexaniobate and hectorite clay. The niobate and clay nanosheets were spatially separated in the colloidally dispersed state, and the MV2+ molecules were selectively adsorbed on the clay platelets. UV irradiation of the colloids led to electron transfer from the niobate nanosheets to the MV2+ molecules adsorbed on clay. The photoinduced electron transfer produced methylviologen radical cations (MV*+), which was characterized by high yield and long lifetime. The yield and stability of the MV*+ species were found to depend strongly on the clay content of the colloid: from a few mol % to approximately 70 mol % of the yield and several tens of minutes to more than 40 h of the lifetime. The contents of the niobate nanosheets and MV2+ molecules and the aging of the colloid also affected the photoinduced charge separation. In the absence of MV2+ molecules in the colloid, UV irradiation induced electron accumulation in the niobate nanosheets. The stability of the electron-accumulated state also depended on the clay content. The variation in the photochemical behavior is discussed in relation to the viscosity of the colloid.

  18. Photoelectron spectroscopy study of the electronic structures at CoPc/Bi(111) interface

    NASA Astrophysics Data System (ADS)

    Sun, Haoliang; Liang, Zhaofeng; Shen, Kongchao; Hu, Jinbang; Ji, Gengwu; Li, Zheshen; Li, Haiyang; Zhu, Zhiyuan; Li, Jiong; Gao, Xingyu; Han, Huang; Jiang, Zheng; Song, Fei

    2017-07-01

    Self-assembly of functional molecules on solid substrate has been recognized as an appealing approach for the fabrication of diverse nanostructures for nanoelectronics. Herein, we investigate the growth of cobalt phthalocyanine (CoPc) on a Bi(111) surface with focus on the interface electronic structures utilizing photoelectron spectroscopy. While charge transfer from bismuth substrate to the molecule results in the emergence of an interface component in the Co 3p core level at lower binding energy, core-levels associated to the molecular ligand (C 1s and N 1s) are less influenced by the adsorption. In addition, density functional theory (DFT) calculations also support the empirical inference that the molecule-substrate interaction mainly involves the out-of-plane empty Co 3d orbital and bismuth states. Finally, valence band spectra demonstrate the molecule-substrate interaction is induced by interface charge transfer, agreeing well with core level measurements. Charge transfer is shown to be mainly from the underlying bismuth substrate to the empty states located at the central Co atom in the CoPc molecules. This report may provide a fundamental basis to the on-surface engineering of interfaces for molecular devices and spintronics.

  19. Impact of undamped and damped intramolecular vibrations on the efficiency of photosynthetic exciton energy transfer

    NASA Astrophysics Data System (ADS)

    Juhász, Imre Benedek; Csurgay, Árpád I.

    2018-04-01

    In recent years, the role of molecular vibrations in exciton energy transfer taking place during the first stage of photosynthesis attracted increasing interest. Here, we present a model formulated as a Lindblad-type master equation that enables us to investigate the impact of undamped and especially damped intramolecular vibrational modes on the exciton energy transfer, particularly its efficiency. Our simulations confirm the already reported effects that the presence of an intramolecular vibrational mode can compensate the energy detuning of electronic states, thus promoting the energy transfer; and, moreover, that the damping of such a vibrational mode (in other words, vibrational relaxation) can further enhance the efficiency of the process by generating directionality in the energy flow. As a novel result, we show that this enhancement surpasses the one caused by pure dephasing, and we present its dependence on various system parameters (time constants of the environment-induced relaxation and excitation processes, detuning of the electronic energy levels, frequency of the intramolecular vibrational modes, Huang-Rhys factors, temperature) in dimer model systems. We demonstrate that vibrational-relaxation-enhanced exciton energy transfer (VREEET) is robust against the change of these characteristics of the system and occurs in wide ranges of the investigated parameters. With simulations performed on a heptamer model inspired by the Fenna-Matthews-Olson (FMO) complex, we show that this mechanism can be even more significant in larger systems at T = 300 K. Our results suggests that VREEET might be prevalent in light-harvesting complexes.

  20. Direct Electron Transfer of Dehydrogenases for Development of 3rd Generation Biosensors and Enzymatic Fuel Cells.

    PubMed

    Bollella, Paolo; Gorton, Lo; Antiochia, Riccarda

    2018-04-24

    Dehydrogenase based bioelectrocatalysis has been increasingly exploited in recent years in order to develop new bioelectrochemical devices, such as biosensors and biofuel cells, with improved performances. In some cases, dehydrogeases are able to directly exchange electrons with an appropriately designed electrode surface, without the need for an added redox mediator, allowing bioelectrocatalysis based on a direct electron transfer process. In this review we briefly describe the electron transfer mechanism of dehydrogenase enzymes and some of the characteristics required for bioelectrocatalysis reactions via a direct electron transfer mechanism. Special attention is given to cellobiose dehydrogenase and fructose dehydrogenase, which showed efficient direct electron transfer reactions. An overview of the most recent biosensors and biofuel cells based on the two dehydrogenases will be presented. The various strategies to prepare modified electrodes in order to improve the electron transfer properties of the device will be carefully investigated and all analytical parameters will be presented, discussed and compared.

  1. Studies Of Oxidation And Thermal Reduction Of The Cu(100) Surface Using Positron Annihilation Induced Auger Electron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Nadesalingam, M. P.; Maddox, W.; Weiss, A. H.

    2011-06-01

    Positron annihilation induced Auger electron spectroscopy (PAES) measurements from the surface of an oxidized Cu(100) single crystal show a large increase in the intensity of the annihilation induced Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 °C. The PAES intensity then decreases monotonically as the annealing temperature is increased to ˜550 °C. Experimental positron annihilation probabilities with Cu 3p and O 1s core electrons are estimated from the measured intensities of the positron annihilation induced Cu M2,3VV and O KLL Auger transitions. PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of the surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface and various surface structures associated with low and high oxygen coverages. The variations in atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface are found to affect localization and spatial extent of the positron surface state wave function. The computed positron binding energy and annihilation characteristics reveal their sensitivity to charge transfer effects, atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface. Theoretical positron annihilation probabilities with Cu 3p and O 1s core electrons computed for the oxidized Cu(100) surface are compared with experimental ones. The obtained results provide a demonstration of thermal reduction of the copper oxide surface after annealing at 300 °C followed by re-oxidation of the Cu(100) surface at higher annealing temperatures presumably due to diffusion of subsurface oxygen to the surface.

  2. Studies Of Oxidation And Thermal Reduction Of The Cu(100) Surface Using Positron Annihilation Induced Auger Electron Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fazleev, N. G.; Department of Physics, Kazan State University, Kazan 420008; Nadesalingam, M. P.

    2011-06-01

    Positron annihilation induced Auger electron spectroscopy (PAES) measurements from the surface of an oxidized Cu(100) single crystal show a large increase in the intensity of the annihilation induced Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 deg. C. The PAES intensity then decreases monotonically as the annealing temperature is increased to {approx}550 deg. C. Experimental positron annihilation probabilities with Cu 3p and O 1s core electrons are estimated from the measured intensities of the positron annihilation induced Cu M{sub 2,3}VV and O KLL Auger transitions. PAESmore » results are analyzed by performing calculations of positron surface states and annihilation probabilities of the surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface and various surface structures associated with low and high oxygen coverages. The variations in atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface are found to affect localization and spatial extent of the positron surface state wave function. The computed positron binding energy and annihilation characteristics reveal their sensitivity to charge transfer effects, atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface. Theoretical positron annihilation probabilities with Cu 3p and O 1s core electrons computed for the oxidized Cu(100) surface are compared with experimental ones. The obtained results provide a demonstration of thermal reduction of the copper oxide surface after annealing at 300 deg. C followed by re-oxidation of the Cu(100) surface at higher annealing temperatures presumably due to diffusion of subsurface oxygen to the surface.« less

  3. Study of ring influence and electronic response to proton transfer reactions. Reaction electronic flux analysis.

    PubMed

    Herrera, Barbara

    2011-05-01

    In this article, a theoretical study of 1-5 proton transfers is presented. Two model systems which represent 1-5 proton transfer, 3-hidroxy-2-propenimine and salicyldenaniline have been studied as shown in Fig. 1. For this purpose, a DFT/B3LYP/6-311+G**, reaction force and reaction electronic flux analysis is made. The obtained results indicate that both proton transfers exhibit energetic and electronic differences emphasizing the role of the neighbor ring and the impact of conjugation on electronic properties.

  4. Measurement of laser activated electron tunneling from semiconductor zinc oxide to adsorbed organic molecules by a matrix assisted laser desorption ionization mass spectrometer.

    PubMed

    Zhong, Hongying; Fu, Jieying; Wang, Xiaoli; Zheng, Shi

    2012-06-04

    Measurement of light induced heterogeneous electron transfer is important for understanding of fundamental processes involved in chemistry, physics and biology, which is still challenging by current techniques. Laser activated electron tunneling (LAET) from semiconductor metal oxides was observed and characterized by a MALDI (matrix assisted laser desorption ionization) mass spectrometer in this work. Nanoparticles of ZnO were placed on a MALDI sample plate. Free fatty acids and derivatives were used as models of organic compounds and directly deposited on the surface of ZnO nanoparticles. Irradiation of UV laser (λ=355 nm) with energy more than the band gap of ZnO produces ions that can be detected in negative mode. When TiO(2) nanoparticles with similar band gap but much lower electron mobility were used, these ions were not observed unless the voltage on the sample plate was increased. The experimental results indicate that laser induced electron tunneling is dependent on the electron mobility and the strength of the electric field. Capture of low energy electrons by charge-deficient atoms of adsorbed organic molecules causes unpaired electron-directed cleavages of chemical bonds in a nonergodic pathway. In positive detection mode, electron tunneling cannot be observed due to the reverse moving direction of electrons. It should be able to expect that laser desorption ionization mass spectrometry is a new technique capable of probing the dynamics of electron tunneling. LAET offers advantages as a new ionization dissociation method for mass spectrometry. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Coherent Electron Transfer at the Ag / Graphite Heterojunction Interface

    NASA Astrophysics Data System (ADS)

    Tan, Shijing; Dai, Yanan; Zhang, Shengmin; Liu, Liming; Zhao, Jin; Petek, Hrvoje

    2018-03-01

    Charge transfer in transduction of light to electrical or chemical energy at heterojunctions of metals with semiconductors or semimetals is believed to occur by photogenerated hot electrons in metal undergoing incoherent internal photoemission through the heterojunction interface. Charge transfer, however, can also occur coherently by dipole coupling of electronic bands at the heterojunction interface. Microscopic physical insights into how transfer occurs can be elucidated by following the coherent polarization of the donor and acceptor states on the time scale of electronic dephasing. By time-resolved multiphoton photoemission spectroscopy (MPP), we investigate the coherent electron transfer from an interface state that forms upon chemisorption of Ag nanoclusters onto graphite to a σ symmetry interlayer band of graphite. Multidimensional MPP spectroscopy reveals a resonant two-photon transition, which dephases within 10 fs completing the coherent transfer.

  6. On generalized Mulliken-Hush approach of electronic transfer: Inclusion of non-zero off-diagonal diabatic dipole moment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kryachko, E.S.

    1999-06-03

    The electronic coupling between the initial and final diabatic states is the major factor that determines the rate of electron transfer. A general formula for the adiabatic-to-diabatic mixing angle in terms of the electronic dipole moments is derived within a two-state model. It expresses the electronic coupling determining the rate of electronic transfer in terms of the off-diagonal diabatic dipole moment.

  7. Radiation-Induced Chemical Dynamics in Ar Clusters Exposed to Strong X-Ray Pulses.

    PubMed

    Kumagai, Yoshiaki; Jurek, Zoltan; Xu, Weiqing; Fukuzawa, Hironobu; Motomura, Koji; Iablonskyi, Denys; Nagaya, Kiyonobu; Wada, Shin-Ichi; Mondal, Subhendu; Tachibana, Tetsuya; Ito, Yuta; Sakai, Tsukasa; Matsunami, Kenji; Nishiyama, Toshiyuki; Umemoto, Takayuki; Nicolas, Christophe; Miron, Catalin; Togashi, Tadashi; Ogawa, Kanade; Owada, Shigeki; Tono, Kensuke; Yabashi, Makina; Son, Sang-Kil; Ziaja, Beata; Santra, Robin; Ueda, Kiyoshi

    2018-06-01

    We show that electron and ion spectroscopy reveals the details of the oligomer formation in Ar clusters exposed to an x-ray free electron laser (XFEL) pulse, i.e., chemical dynamics triggered by x rays. With guidance from a dedicated molecular dynamics simulation tool, we find that van der Waals bonding, the oligomer formation mechanism, and charge transfer among the cluster constituents significantly affect ionization dynamics induced by an XFEL pulse of moderate fluence. Our results clearly demonstrate that XFEL pulses can be used not only to "damage and destroy" molecular assemblies but also to modify and transform their molecular structure. The accuracy of the predictions obtained makes it possible to apply the cluster spectroscopy, in connection with the respective simulations, for estimation of the XFEL pulse fluence in the fluence regime below single-atom multiple-photon absorption, which is hardly accessible with other diagnostic tools.

  8. Radiation-Induced Chemical Dynamics in Ar Clusters Exposed to Strong X-Ray Pulses

    NASA Astrophysics Data System (ADS)

    Kumagai, Yoshiaki; Jurek, Zoltan; Xu, Weiqing; Fukuzawa, Hironobu; Motomura, Koji; Iablonskyi, Denys; Nagaya, Kiyonobu; Wada, Shin-ichi; Mondal, Subhendu; Tachibana, Tetsuya; Ito, Yuta; Sakai, Tsukasa; Matsunami, Kenji; Nishiyama, Toshiyuki; Umemoto, Takayuki; Nicolas, Christophe; Miron, Catalin; Togashi, Tadashi; Ogawa, Kanade; Owada, Shigeki; Tono, Kensuke; Yabashi, Makina; Son, Sang-Kil; Ziaja, Beata; Santra, Robin; Ueda, Kiyoshi

    2018-06-01

    We show that electron and ion spectroscopy reveals the details of the oligomer formation in Ar clusters exposed to an x-ray free electron laser (XFEL) pulse, i.e., chemical dynamics triggered by x rays. With guidance from a dedicated molecular dynamics simulation tool, we find that van der Waals bonding, the oligomer formation mechanism, and charge transfer among the cluster constituents significantly affect ionization dynamics induced by an XFEL pulse of moderate fluence. Our results clearly demonstrate that XFEL pulses can be used not only to "damage and destroy" molecular assemblies but also to modify and transform their molecular structure. The accuracy of the predictions obtained makes it possible to apply the cluster spectroscopy, in connection with the respective simulations, for estimation of the XFEL pulse fluence in the fluence regime below single-atom multiple-photon absorption, which is hardly accessible with other diagnostic tools.

  9. Prompt Disappearance and Emergence of Radiation Belt Magnetosonic Waves Induced by Solar Wind Dynamic Pressure Variations

    NASA Astrophysics Data System (ADS)

    Liu, Nigang; Su, Zhenpeng; Zheng, Huinan; Wang, Yuming; Wang, Shui

    2018-01-01

    Magnetosonic waves are highly oblique whistler mode emissions transferring energy from the ring current protons to the radiation belt electrons in the inner magnetosphere. Here we present the first report of prompt disappearance and emergence of magnetosonic waves induced by the solar wind dynamic pressure variations. The solar wind dynamic pressure reduction caused the magnetosphere expansion, adiabatically decelerated the ring current protons for the Bernstein mode instability, and produced the prompt disappearance of magnetosonic waves. On the contrary, because of the adiabatic acceleration of the ring current protons by the solar wind dynamic pressure enhancement, magnetosonic waves emerged suddenly. In the absence of impulsive injections of hot protons, magnetosonic waves were observable even only during the time period with the enhanced solar wind dynamic pressure. Our results demonstrate that the solar wind dynamic pressure is an essential parameter for modeling of magnetosonic waves and their effect on the radiation belt electrons.

  10. Ultrafast photo-induced dynamics across the metal-insulator transition of VO2

    NASA Astrophysics Data System (ADS)

    Wang, Siming; Ramírez, Juan Gabriel; Jeffet, Jonathan; Bar-Ad, Shimshon; Huppert, Dan; Schuller, Ivan K.

    2017-04-01

    The transient reflectivity of VO2 films across the metal-insulator transition clearly shows that with low-fluence excitation, when insulating domains are dominant, energy transfer from the optically excited electrons to the lattice is not instantaneous, but precedes the superheating-driven expansion of the metallic domains. This implies that the phase transition in the coexistence regime is lattice-, not electronically-driven, at weak laser excitation. The superheated phonons provide the latent heat required for the propagation of the optically-induced phase transition. For VO2 this transition path is significantly different from what has been reported in the strong-excitation regime. We also observe a slow-down of the superheating-driven expansion of the metallic domains around the metal-insulator transition, which is possibly due to the competition among several co-existing phases, or an emergent critical-like behavior.

  11. Electronic structure and bonding properties of potassium (K) on graphite under external electric field.

    NASA Astrophysics Data System (ADS)

    Tapia, Alejandro; Canto, Gabriel

    2005-03-01

    The effect of an external electric field on the potassium (K) adsorption on the graphite surface, are studied by means of first-principles total-energy calculations. The results were obtained with the pseudopotentials LCAO method (SIESTA code) and the Generalized Gradient Approximation (GGA) for the exchange-correlation potential. The structural parameters, bonding properties, and electronic structure of the K-graphite system are studied in the triangular (2x2) overlayer phase as a function of the external electric field magnitude. We find an important change in the K-graphite bonding as a consequence of the charge transfer from the adatom towards the substrate induced by the electric field. The results are discussed in the light of the experimental observed difussion of K into graphite induced by external electric fields. This work was supported by Consejo Nacional de Ciencia y Tecnolog'ia (CONACYT, M'exico) under Grants No. 43830-F and No. 44831-F.

  12. Application of Electron-Transfer Theory to Several Systems of Biological Interest

    DOE R&D Accomplishments Database

    Marcus, R. A.; Sutin, N.

    1985-03-23

    Electron-transfer reaction rates are compared with theoretically calculated values for several reactions in the bacterial photosynthetic reaction center. A second aspect of the theory, the cross-relation, is illustrated using protein-protein electron transfers.

  13. Doping-induced spectral shifts in two-dimensional metal oxides

    NASA Astrophysics Data System (ADS)

    Ylvisaker, E. R.; Pickett, W. E.

    2013-03-01

    Doping of strongly layered ionic oxides is an established paradigm for creating novel electronic behavior. This is nowhere more apparent than in superconductivity, where doping gives rise to high-temperature superconductivity in cuprates (hole doped) and to surprisingly high Tc in HfNCl (Tc = 25.5 K, electron doped). First-principles calculations of hole doping of the layered delafossite CuAlO2 reveal unexpectedly large doping-induced shifts in spectral density, strongly in opposition to the rigid-band picture that is widely used as an accepted guideline. These spectral shifts, of similar origin as the charge transfer used to produce negative electron affinity surfaces and adjust Schottky barrier heights, drastically alter the character of the Fermi level carriers, leading in this material to an O-Cu-O molecule-based carrier (or polaron, at low doping) rather than a nearly pure-Cu hole as in a rigid-band picture. First-principles linear response electron-phonon coupling (EPC) calculations reveal, as a consequence, net weak EPC and no superconductivity rather than the high Tc obtained previously using rigid-band expectations. These specifically two-dimensional dipole-layer-driven spectral shifts provide new insights into materials design in layered materials for functionalities besides superconductivity.

  14. Study of montmorillonite nanoparticles and electron beam irradiation interaction of ethylene vinyl acetate (EVA)/de-vulcanized waste rubber thermoplastic composites

    NASA Astrophysics Data System (ADS)

    Bee, Soo-Tueen; Sin, Lee Tin; Hoe, Tie Teck; Ratnam, C. T.; Bee, Soo Ling; Rahmat, A. R.

    2018-05-01

    The purpose of this work was to investigate the effects of montmorillonite (MMT) loading level and electron beam irradiation on the physical-mechanical properties and thermal stability of ethylene vinyl acetate (EVA)- devulcanised waste rubber blends. The addition of MMT particles has significantly increased the d-spacing and interchain separation of deflection peak (0 0 2) of MMT particles. This indicates that MMT particles have effectively intercalated in polymer matrix of EVA-devulcanised waste rubber blends. Besides, the application of electron beam irradiation dosages <150 kGy could also significantly induce the effective intercalation effect of MMT particles in polymer matrix by introducing crosslinking networks. The increasing of electron beam irradiation dosages up to 250 kGy has gradually increased the gel content of all EVA-devulcanized rubber blends by inducing the formation of crosslinking networks in polymer matrix. Also, the tensile strength of all EVA-devulcanized waste rubber blends was gradually increased when irradiated up to 150 kGy. This is due to the occurrence of crosslinking networks by irradiation could significantly provide reinforcement effect to polymer matrix by effectively transferring the stress applied on polymer matrix throughout the whole polymer matrix.

  15. Efficiency of photochemical stages of photosynthesis in purple bacteria (a critical survey).

    PubMed

    Borisov, A Yu

    2014-03-01

    Based on currently available data, the energy transfer efficiency in the successive photophysical and photochemical stages has been analyzed for purple bacteria. This analysis covers the stages starting from migration of the light-induced electronic excitations from the bulk antenna pigments to the reaction centers up to irreversible stage of the electron transport along the transmembrane chain of cofactors-carriers. Some natural factors are revealed that significantly increase the rates of efficient processes in these stages. The influence on their efficiency by the "bottleneck" in the energy migration chain is established. The overall quantum yield of photosynthesis in these stages is determined.

  16. Synergistic electron transfer effect-based signal amplification strategy for the ultrasensitive detection of dopamine.

    PubMed

    Lu, Qiujun; Chen, Xiaogen; Liu, Dan; Wu, Cuiyan; Liu, Meiling; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo

    2018-05-15

    The selective and sensitive detection of dopamine (DA) is of great significance for the identification of schizophrenia, Huntington's disease, and Parkinson's disease from the perspective of molecular diagnostics. So far, most of DA fluorescence sensors are based on the electron transfer from the fluorescence nanomaterials to DA-quinone. However, the limited electron transfer ability of the DA-quinone affects the level of detection sensitivity of these sensors. In this work, based on the DA can reduce Ag + into AgNPs followed by oxidized to DA-quinone, we developed a novel silicon nanoparticles-based electron transfer fluorescent sensor for the detection of DA. As electron transfer acceptor, the AgNPs and DA-quinone can quench the fluorescence of silicon nanoparticles effectively through the synergistic electron transfer effect. Compared with traditional fluorescence DA sensors, the proposed synergistic electron transfer-based sensor improves the detection sensitivity to a great extent (at least 10-fold improvement). The proposed sensor shows a low detection limit of DA, which is as low as 0.1 nM under the optimal conditions. This sensor has potential applicability for the detection of DA in practical sample. This work has been demonstrated to contribute to a substantial improvement in the sensitivity of the sensors. It also gives new insight into design electron transfer-based sensors. Copyright © 2018. Published by Elsevier B.V.

  17. Quantifying electron transfer reactions in biological systems: what interactions play the major role?

    NASA Astrophysics Data System (ADS)

    Sjulstok, Emil; Olsen, Jógvan Magnus Haugaard; Solov'Yov, Ilia A.

    2015-12-01

    Various biological processes involve the conversion of energy into forms that are usable for chemical transformations and are quantum mechanical in nature. Such processes involve light absorption, excited electronic states formation, excitation energy transfer, electrons and protons tunnelling which for example occur in photosynthesis, cellular respiration, DNA repair, and possibly magnetic field sensing. Quantum biology uses computation to model biological interactions in light of quantum mechanical effects and has primarily developed over the past decade as a result of convergence between quantum physics and biology. In this paper we consider electron transfer in biological processes, from a theoretical view-point; namely in terms of quantum mechanical and semi-classical models. We systematically characterize the interactions between the moving electron and its biological environment to deduce the driving force for the electron transfer reaction and to establish those interactions that play the major role in propelling the electron. The suggested approach is seen as a general recipe to treat electron transfer events in biological systems computationally, and we utilize it to describe specifically the electron transfer reactions in Arabidopsis thaliana cryptochrome-a signaling photoreceptor protein that became attractive recently due to its possible function as a biological magnetoreceptor.

  18. Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridium pasteurianum

    PubMed Central

    Choi, Okkyoung; Kim, Taeyeon; Woo, Han Min; Um, Youngsoon

    2014-01-01

    Although microbes directly accepting electrons from a cathode have been applied for CO2 reduction to produce multicarbon-compounds, a high electron demand and low product concentration are critical limitations. Alternatively, the utilization of electrons as a co-reducing power during fermentation has been attempted, but there must be exogenous mediators due to the lack of an electroactive heterotroph. Here, we show that Clostridium pasteurianum DSM 525 simultaneously utilizes both cathode and substrate as electron donors through direct electron transfer. In a cathode compartment poised at +0.045 V vs. SHE, a metabolic shift in C. pasteurianum occurs toward NADH-consuming metabolite production such as butanol from glucose (20% shift in terms of NADH consumption) and 1,3-propandiol from glycerol (21% shift in terms of NADH consumption). Notably, a small amount of electron uptake significantly induces NADH-consuming pathways over the stoichiometric contribution of the electrons as reducing equivalents. Our results demonstrate a previously unknown electroactivity and metabolic shift in the biochemical-producing heterotroph, opening up the possibility of efficient and enhanced production of electron-dense metabolites using electricity. PMID:25376371

  19. On the electron affinity of cytosine in bulk water and at hydrophobic aqueous interfaces.

    PubMed

    Vöhringer-Martinez, Esteban; Dörner, Ciro; Abel, Bernd

    2014-10-01

    In the past one possible mechanism of DNA damage in bulk water has been attributed to the presence of hydrated electrons in water. Recently, one important property of hydrated electrons, namely their binding energy, was reported to be smaller at hydrophobic interfaces than in bulk aqueous solution. This possibly opens up new reaction possibilities with different solutes such as the DNA at hydrophobic, aqueous interfaces. Here, we use QM/MM molecular dynamics simulation to study how the molecular environment at the vacuum-water interface and in the bulk alters the electron affinity of cytosine being a characteristic part of the DNA. The electron affinity at the interface is closer to the corresponding binding energy of the partially hydrated electron. The increased energy resonance makes the electron capture process more probable and suggests that hydrated electrons at hydrophobic interfaces may be more reactive than the fully hydrated ones. Additionally, we found that the relaxation of the anionic form after electron attachment also induces a proton transfer from the surrounding solvent that was confirmed by comparison with the experimental reduction potential.

  20. Nanoparticle Selective Laser Processing for a Flexible Display Fabrication

    NASA Astrophysics Data System (ADS)

    Seung Hwan Ko,; Heng Pan,; Daeho Lee,; Costas P. Grigoropoulos,; Hee K. Park,

    2010-05-01

    To demonstrate a first step for a novel fabrication method of a flexible display, nanomaterial based laser processing schemes to demonstrate organic light emitting diode (OLED) pixel transfer and organic field effect transistor (OFET) fabrication on a polymer substrate without using any conventional vacuum or photolithography processes were developed. The unique properties of nanomaterials allow laser induced forward transfer of organic light emitting material at low laser energy while maintaining good fluorescence and also allow high resolution transistor electrode patterning at plastic compatible low temperature. These novel processes enable an environmentally friendly and cost effective process as well as a low temperature manufacturing sequence to realize inexpensive, large area, flexible electronics on polymer substrates.

  1. Hydration induced material transfer in membranes of osmotic pump tablets measured by synchrotron radiation based FTIR.

    PubMed

    Wu, Li; Yin, Xianzhen; Guo, Zhen; Tong, Yajun; Feng, Jing; York, Peter; Xiao, Tiqiao; Chen, Min; Gu, Jingkai; Zhang, Jiwen

    2016-03-10

    Osmotic pump tablets are reliable oral controlled drug delivery systems based on their semipermeable membrane coating. This research used synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy and imaging to investigate the hydration induced material transfer in the membranes of osmotic pump tablets. SR-FTIR was applied to record and map the chemical information of a micro-region of the membranes, composed of cellulose acetate (CA, as the water insoluble matrix) and polyethylene glycol (PEG, as the soluble pore forming agent and plasticizing agent). The microstructure and chemical change of membranes hydrated for 0, 5, 10 and 30min were measured using SR-FTIR, combined with scanning electronic microscopy and atom force microscopy. The SR-FTIR microspectroscopy results indicated that there was a major change at the absorption range of 2700-3100cm(-1) in the membranes after different periods of hydration time. The absorption bands at 2870-2880cm(-1) and 2950-2960cm(-1) were assigned to represent CA and PEG, respectively. The chemical group signal distribution illustrated by the ratio of PEG to CA demonstrated that the trigger of drug release in the preliminary stage was due to the rapid transfer of PEG into liquid medium with a sharp decrease of PEG in the membranes. The SR-FTIR mapping results have demonstrated the hydration induced material transfer in the membranes of osmotic pump tablets and enabled reassessment of the drug release mechanism of membrane controlled osmotic pump systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. ELECTRON TRANSFER MECHANISM AT THE SOLID-LIQUID INTERFACE OF PHYLLOSILICATES

    EPA Science Inventory

    Interfacial electron transfer processes on clay minerals have significant impact in natural environments and geochemical systems. Nitrobenzene was used as molecular probes to study the electron transfer mechanism at the solid-water interfaces of Fe-containing phyllosicates. For...

  3. X.400: The Standard for Message Handling Systems.

    ERIC Educational Resources Information Center

    Swain, Leigh; Tallim, Paula

    1990-01-01

    Profiles X.400, the Open Systems Interconnection (OSI) Application layer standard that supports interpersonal electronic mail services, facsimile transfer, electronic data interchange, electronic funds transfer, electronic publishing, and electronic invoicing. Also discussed are an electronic directory to support message handling, compatibility…

  4. Application of Degenerately Doped Metal Oxides in the Study of Photoinduced Interfacial Electron Transfer.

    PubMed

    Farnum, Byron H; Morseth, Zachary A; Brennaman, M Kyle; Papanikolas, John M; Meyer, Thomas J

    2015-06-18

    Degenerately doped In2O3:Sn semiconductor nanoparticles (nanoITO) have been used to study the photoinduced interfacial electron-transfer reactivity of surface-bound [Ru(II)(bpy)2(4,4'-(PO3H2)2-bpy)](2+) (RuP(2+)) molecules as a function of driving force over a range of 1.8 eV. The metallic properties of the ITO nanoparticles, present within an interconnected mesoporous film, allowed for the driving force to be tuned by controlling their Fermi level with an external bias while their optical transparency allowed for transient absorption spectroscopy to be used to monitor electron-transfer kinetics. Photoinduced electron transfer from excited-state -RuP(2+*) molecules to nanoITO was found to be dependent on applied bias and competitive with nonradiative energy transfer to nanoITO. Back electron transfer from nanoITO to oxidized -RuP(3+) was also dependent on the applied bias but without complication from inter- or intraparticle electron diffusion in the oxide nanoparticles. Analysis of the electron injection kinetics as a function of driving force using Marcus-Gerischer theory resulted in an experimental estimate of the reorganization energy for the excited-state -RuP(3+/2+*) redox couple of λ* = 0.83 eV and an electronic coupling matrix element, arising from electronic wave function overlap between the donor orbital in the molecule and the acceptor orbital(s) in the nanoITO electrode, of Hab = 20-45 cm(-1). Similar analysis of the back electron-transfer kinetics yielded λ = 0.56 eV for the ground-state -RuP(3+/2+) redox couple and Hab = 2-4 cm(-1). The use of these wide band gap, degenerately doped materials provides a unique experimental approach for investigating single-site electron transfer at the surface of oxide nanoparticles.

  5. Tyrosine gated electron transfer is key to the toxic mechanism of Alzheimer's disease beta-amyloid.

    PubMed

    Barnham, Kevin J; Haeffner, Fredrik; Ciccotosto, Giuseppe D; Curtain, Cyril C; Tew, Deborah; Mavros, Christine; Beyreuther, Konrad; Carrington, Darryl; Masters, Colin L; Cherny, Robert A; Cappai, Roberto; Bush, Ashley I

    2004-09-01

    Alzheimer's disease (AD) is characterized by the presence of neurofibrillary tangles and amyloid plaques, which are abnormal protein deposits. The major constituent of the plaques is the neurotoxic beta-amyloid peptide (Abeta); the genetics of familial AD support a direct role for this peptide in AD. Abeta neurotoxicity is linked to hydrogen peroxide formation. Abeta coordinates the redox active transition metals, copper and iron, to catalytically generate reactive oxygen species. The chemical mechanism underlying this process is not well defined. With the use of density functional theory calculations to delineate the chemical mechanisms that drive the catalytic production of H2O2 by Abeta/Cu, tyrosine10 (Y10) was identified as a pivotal residue for this reaction to proceed. The relative stability of tyrosyl radicals facilitates the electron transfers that are required to drive the reaction. Confirming the theoretical results, mutation of the tyrosine residue to alanine inhibited H2O2 production, Cu-induced radicalization, dityrosine cross-linking, and neurotoxicity.

  6. Interaction mechanisms and biological effects of static magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tenforde, T.S.

    1994-06-01

    Mechanisms through which static magnetic fields interact with living systems are described and illustrated by selected experimental observations. These mechanisms include electrodynamic interactions with moving, ionic charges (blood flow and nerve impulse conduction), magnetomechanical interactions (orientation and translation of molecules structures and magnetic particles), and interactions with electronic spin states in charge transfer reactions (photo-induced electron transfer in photosynthesis). A general summary is also presented of the biological effects of static magnetic fields. There is convincing experimental evidence for magnetoreception mechanisms in several classes of lower organisms, including bacteria and marine organisms. However, in more highly evolved species of animals,more » there is no evidence that the interactions of static magnetic fields with flux densities up to 2 Tesla (1 Tesla [T] = 10{sup 4} Gauss) produce either behavioral or physiolocical alterations. These results, based on controlled studies with laboratory animals, are consistent with the outcome of recent epidemiological surveys on human populations exposed occupationally to static magnetic fields.« less

  7. Acentric 2-D ensembles of D-br-A electron-transfer chromophores via vectorial orientation within amphiphilic n-helix bundle peptides for photovoltaic device applications.

    PubMed

    Koo, Jaseung; Park, Jaehong; Tronin, Andrey; Zhang, Ruili; Krishnan, Venkata; Strzalka, Joseph; Kuzmenko, Ivan; Fry, H Christopher; Therien, Michael J; Blasie, J Kent

    2012-02-14

    We show that simply designed amphiphilic 4-helix bundle peptides can be utilized to vectorially orient a linearly extended donor-bridge-acceptor (D-br-A) electron transfer (ET) chromophore within its core. The bundle's interior is shown to provide a unique solvation environment for the D-br-A assembly not accessible in conventional solvents and thereby control the magnitudes of both light-induced ET and thermal charge recombination rate constants. The amphiphilicity of the bundle's exterior was employed to vectorially orient the peptide-chromophore complex at a liquid-gas interface, and its ends were tailored for subsequent covalent attachment to an inorganic surface, via a "directed assembly" approach. Structural data, combined with evaluation of the excited state dynamics exhibited by these peptide-chromophore complexes, demonstrate that densely packed, acentrically ordered 2-D monolayer ensembles of such complexes at high in-plane chromophore densities approaching 1/200 Å(2) offer unique potential as active layers in binary heterojunction photovoltaic devices.

  8. Chemical and charge transfer studies on interfaces of a conjugated polymer and ITO

    NASA Astrophysics Data System (ADS)

    David, Tanya M. S.; Arasho, Wondwosson; Smith, O'Neil; Hong, Kunlun; Bonner, Carl; Sun, Sam-Shajing

    2017-08-01

    Conjugated oligomers and polymers are very attractive for potential future plastic electronic and opto-electronic device applications such as plastic photo detectors and solar cells, thermoelectric devices, field effect transistors, and light emitting diodes. Understanding and optimizing charge transport between an active polymer layer and conductive substrate is critical to the optimization of polymer based electronic and opto-electronic devices. This study focused on the design, synthesis, self-assembly, and electron transfers and transports of a phosphonic acid end-functionalized polyphenylenevinylene (PPV) that was covalently attached and self-assembled onto an Indium Tin Oxide (ITO) substrate. This study demonstrated how atomic force microscopy (AFM) can be an effective characterization technique in conjunction with conventional electron transfer methods, including cyclic voltammetry (CV), towards determining electron transfer rates in polymer and polymer/conductor interface systems. This study found that the electron transfer rates of covalently attached and self-assembled films were much faster than the spin coated films. The knowledge from this study can be very useful for designing potential polymer based electronic and opto-electronic thin film devices.

  9. Electron transfer by excited benzoquinone anions: slow rates for two-electron transitions.

    PubMed

    Zamadar, Matibur; Cook, Andrew R; Lewandowska-Andralojc, Anna; Holroyd, Richard; Jiang, Yan; Bikalis, Jin; Miller, John R

    2013-09-05

    Electron transfer (ET) rate constants from the lowest excited state of the radical anion of benzoquinone, BQ(-•)*, were measured in THF solution. Rate constants for bimolecular electron transfer reactions typically reach the diffusion-controlled limit when the free-energy change, ΔG°, reaches -0.3 eV. The rate constants for ET from BQ(-•)* are one-to-two decades smaller at this energy and do not reach the diffusion-controlled limit until -ΔG° is 1.5-2.0 eV. The rates are so slow probably because a second electron must also undergo a transition to make use of the energy of the excited state. Similarly, ET, from solvated electrons to neutral BQ to form the lowest excited state, is slow, while fast ET is observed at a higher excited state, which can be populated in a transition involving only one electron. A simple picture based on perturbation theory can roughly account for the control of electron transfer by the need for transition of a second electron. The picture also explains how extra driving force (-ΔG°) can restore fast rates of electron transfer.

  10. Scalable High-Performance Ultraminiature Graphene Micro-Supercapacitors by a Hybrid Technique Combining Direct Writing and Controllable Microdroplet Transfer.

    PubMed

    Shen, Daozhi; Zou, Guisheng; Liu, Lei; Zhao, Wenzheng; Wu, Aiping; Duley, Walter W; Zhou, Y Norman

    2018-02-14

    Miniaturization of energy storage devices can significantly decrease the overall size of electronic systems. However, this miniaturization is limited by the reduction of electrode dimensions and the reproducible transfer of small electrolyte drops. This paper reports first a simple scalable direct writing method for the production of ultraminiature microsupercapacitor (MSC) electrodes, based on femtosecond laser reduced graphene oxide (fsrGO) interlaced pads. These pads, separated by 2 μm spacing, are 100 μm long and 8 μm wide. A second stage involves the accurate transfer of an electrolyte microdroplet on top of each individual electrode, which can avoid any interference of the electrolyte with other electronic components. Abundant in-plane mesopores in fsrGO induced by a fs laser together with ultrashort interelectrode spacing enables MSCs to exhibit a high specific capacitance (6.3 mF cm -2 and 105 F cm -3 ) and ∼100% retention after 1000 cycles. An all graphene resistor-capacitor (RC) filter is also constructed by combining the MSC and a fsrGO resistor, which is confirmed to exhibit highly enhanced performance characteristics. This new hybrid technique combining fs laser direct writing and precise microdroplet transfer easily enables scalable production of ultraminiature MSCs, which is believed to be significant for practical application of micro-supercapacitor microelectronic systems.

  11. Tunneling dynamics of double proton transfer in formic acid and benzoic acid dimers

    NASA Astrophysics Data System (ADS)

    Smedarchina, Zorka; Fernández-Ramos, Antonio; Siebrand, Willem

    2005-04-01

    Direct dynamics calculations based on instanton techniques are reported of tunneling splittings due to double proton transfer in formic and benzoic acid dimers. The results are used to assign the observed splittings to levels for which the authors of the high-resolution spectra could not provide a definitive assignment. In both cases the splitting is shown to be due mainly to the zero-point level rather than to the vibrationally or electronically excited level whose spectrum was investigated. This leads to zero-point splittings of 375MHz for (DCOOH)2 and 1107MHz for the benzoic acid dimer. Thus, contrary to earlier calculations, it is found that the splitting is considerably larger in the benzoic than in the formic acid dimer. The calculations are extended to solid benzoic acid where the asymmetry of the proton-transfer potential induced by the crystal can be overcome by suitable doping. This has allowed direct measurement of the interactions responsible for double proton transfer, which were found to be much larger than those in the isolated dimer. To account for this observation both static and dynamic effects of the crystal forces on the intradimer hydrogen bonds are included in the calculations. The same methodology, extended to higher temperatures, is used to calculate rate constants for HH, HD, and DD transfers in neat benzoic acid crystals. The results are in good agreement with reported experimental rate constants measured by NMR relaxometry and, if allowance is made for small structural changes induced by doping, with the transfer matrix elements observed in doped crystals. Hence the method used allows a unified description of tunneling splittings in the gas phase and in doped crystals as well as of transfer rates in neat crystals.

  12. APPARATUS FOR HEATING IONS

    DOEpatents

    Chambers, E.S.; Garren, A.A.; Kippenhan, D.O.; Lamb, W.A.S.; Riddell, R.J. Jr.

    1960-01-01

    The heating of ions in a magnetically confined plasma is accomplished by the application of an azimuthal radiofrequency electric field to the plasma at ion cyclotron resonance. The principal novelty resides in the provision of an output tank coil of a radiofrequency driver to induce the radiofrequency field in the plasma and of electron current bridge means at the ends of the plasma for suppressing radial polarization whereby the radiofrequency energy is transferred to the ions with high efficiency.

  13. Relaxation model of radiation-induced conductivity in polymers

    NASA Astrophysics Data System (ADS)

    Zhutayeva, Yu. R.; Khatipov, S. A.

    1999-05-01

    The paper suggests a relaxation model of radiation-induced conductivity (RIC) in polymers. According to the model, the transfer of charges generated in the polymer volume by ionizing radiation takes place with the participation of molecular relaxation processes. The mechanism of electron transport consists in the transfer of the charge directly between traps when they draw close to one another due to the rotation of macromolecule segments. The numerical solutions of the corresponding kinetic equations for different distribution functions Q( τ) of the times of molecular relaxation and for different functions of the probability P( τ, τ') of charge transfer in the `overlapping' regions of the diffusion spheres of the segments are analyzed. The relaxation model provides an explanation of the non-Arrhenius behavior of the RIC temperature dependence, the power dependence of RIC on the dose rate with a power index in the interval 0.5-1.0, the appearance of maxima in the curves of the RIC temporal dependence and their irreversible character in the region of large dose rates (more than 1 Gy/s). The model can be used for interpreting polymer RIC in conditions of kinetic mobility of macromolecules.

  14. Charge Transfer Processes in OPV Materials as Revealed by EPR Spectroscopy

    DOE PAGES

    Niklas, Jens; Poluektov, Oleg

    2017-03-03

    Understanding charge separation and charge transport at a molecular level is crucial for improving the efficiency of organic photovoltaic (OPV) cells. Under illumination of Bulk Heterojunction (BHJ) blends of polymers and fullerenes, various paramagnetic species are formed including polymer and fullerene radicals, radical pairs, and photoexcited triplet states. Light-induced Electron Paramagnetic Resonance (EPR) spectroscopy is ideally suited to study these states in BHJ due to its selectivity in probing the paramagnetic intermediates. Some advanced EPR techniques like light-induced ENDOR spectroscopy and pulsed techniques allow the determination of hyperfine coupling tensors, while high-frequency EPR allows the EPR signals of the individualmore » species to be resolved and their g-tensors to be determined. In these magnetic resonance parameters reveal details about the delocalization of the positive polaron on the various polymer donors which is important for the efficient charge separation in BHJ systems. Time-resolved EPR can contribute to the study of the dynamics of charge separation, charge transfer and recombination in BHJ by probing the unique spectral signatures of charge transfer and triplet states. Furthermore, the potential of the EPR also allows characterization of the intermediates and products of BHJ degradation.« less

  15. pH-induced vesicle-to-micelle transition in amphiphilic diblock copolymer: investigation by energy transfer between in situ formed polymer embedded gold nanoparticles and fluorescent dye.

    PubMed

    Maiti, Chiranjit; Banerjee, Rakesh; Maiti, Saikat; Dhara, Dibakar

    2015-01-01

    The ability to regulate the formation of nanostructures through self-assembly of amphiphilic block copolymers is of immense significance in the field of biology and medicine. In this work, a new block copolymer synthesized by using reversible addition-fragmentation chain transfer (RAFT) polymerization technique from poly(ethylene glycol) monomethyl ether acrylate (PEGMA) and Boc-l-tryptophan acryloyloxyethyl ester (Boc-l-trp-HEA) was found to spontaneously form pH-responsive water-soluble nanostructures after removal of the Boc group. While polymer vesicles or polymerosomes were formed at physiological pH, the micelles were formed at acidic pH (< 5.2), and this facilitated a pH-induced reversible vesicle-to-micelle transition. Formation of these nanostructures was confirmed by different characterization techniques, viz. transmission electron microscopy, dynamic light scattering, and steady-state fluorescence measurements. Further, these vesicles were successfully utilized to reduce HAuCl4 and stabilize the resulting gold nanoparticles (AuNPs). These AuNPs, confined within the hydrophobic shell of the vesicles, could participate in energy transfer process with fluorescent dye molecules encapsulated in the core of the vesicles, thus forming a nanometal surface energy transfer (NSET) pair. Subsequently, following the efficiency of energy transfer between this pair, it was possible to monitor the process of transition from vesicles to micelles. Thus, in this work, we have successfully demonstrated that NSET can be used to follow the transition between nanostructures formed by amphiphilic block copolymers.

  16. Low-energy plasma immersion ion implantation to induce DNA transfer into bacterial E. coli

    NASA Astrophysics Data System (ADS)

    Sangwijit, K.; Yu, L. D.; Sarapirom, S.; Pitakrattananukool, S.; Anuntalabhochai, S.

    2015-12-01

    Plasma immersion ion implantation (PIII) at low energy was for the first time applied as a novel biotechnology to induce DNA transfer into bacterial cells. Argon or nitrogen PIII at low bias voltages of 2.5, 5 and 10 kV and fluences ranging from 1 × 1012 to 1 × 1017 ions/cm2 treated cells of Escherichia coli (E. coli). Subsequently, DNA transfer was operated by mixing the PIII-treated cells with DNA. Successes in PIII-induced DNA transfer were demonstrated by marker gene expressions. The induction of DNA transfer was ion-energy, fluence and DNA-size dependent. The DNA transferred in the cells was confirmed functioning. Mechanisms of the PIII-induced DNA transfer were investigated and discussed in terms of the E. coli cell envelope anatomy. Compared with conventional ion-beam-induced DNA transfer, PIII-induced DNA transfer was simpler with lower cost but higher efficiency.

  17. Evidence that Additions of Grignard Reagents to Aliphatic Aldehydes Do Not Involve Single-Electron-Transfer Processes.

    PubMed

    Otte, Douglas A L; Woerpel, K A

    2015-08-07

    Addition of allylmagnesium reagents to an aliphatic aldehyde bearing a radical clock gave only addition products and no evidence of ring-opened products that would suggest single-electron-transfer reactions. The analogous Barbier reaction also did not provide evidence for a single-electron-transfer mechanism in the addition step. Other Grignard reagents (methyl-, vinyl-, t-Bu-, and triphenylmethylmagnesium halides) also do not appear to add to an alkyl aldehyde by a single-electron-transfer mechanism.

  18. Enhanced electron transfer kinetics through hybrid graphene-carbon nanotube films.

    PubMed

    Henry, Philémon A; Raut, Akshay S; Ubnoske, Stephen M; Parker, Charles B; Glass, Jeffrey T

    2014-11-01

    We report the first study of the electrochemical reactivity of a graphenated carbon nanotube (g-CNT) film. The electron transfer kinetics of the ferri-ferrocyanide couple were examined for a g-CNT film and compared to the kinetics to standard carbon nanotubes (CNTs). The g-CNT film exhibited much higher catalytic activity, with a heterogeneous electron-transfer rate constant, k 0 , approximately two orders of magnitude higher than for standard CNTs. Scanning electron microscopy and Raman spectroscopy were used to correlate the higher electron transfer kinetics with the higher edge-density of the g-CNT film.

  19. Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer

    PubMed Central

    Westereng, Bjørge; Cannella, David; Wittrup Agger, Jane; Jørgensen, Henning; Larsen Andersen, Mogens; Eijsink, Vincent G.H.; Felby, Claus

    2015-01-01

    Enzymatic oxidation of cell wall polysaccharides by lytic polysaccharide monooxygenases (LPMOs) plays a pivotal role in the degradation of plant biomass. While experiments have shown that LPMOs are copper dependent enzymes requiring an electron donor, the mechanism and origin of the electron supply in biological systems are only partly understood. We show here that insoluble high molecular weight lignin functions as a reservoir of electrons facilitating LPMO activity. The electrons are donated to the enzyme by long-range electron transfer involving soluble low molecular weight lignins present in plant cell walls. Electron transfer was confirmed by electron paramagnetic resonance spectroscopy showing that LPMO activity on cellulose changes the level of unpaired electrons in the lignin. The discovery of a long-range electron transfer mechanism links the biodegradation of cellulose and lignin and sheds new light on how oxidative enzymes present in plant degraders may act in concert. PMID:26686263

  20. Experimental validation of tunable features in laser-induced plasma resonators

    NASA Astrophysics Data System (ADS)

    Colón Quiñones, Roberto A.; Cappelli, Mark A.

    2017-08-01

    Measurements are presented which examine the use of gaseous plasma elements as highly-tunable resonators. The resonator considered here is a laser-induced plasma kernel generated by focusing the fundamental output from a Q-switched Nd:YAG laser through a lens and into a gas at constant pressure. The near-ellipsoidal plasma element interacts with incoming microwave radiation through excitation of low-order, electric-dipole resonances similar to those seen in metallic spheres. The tunability of these elements stems from the dispersive nature of plasmas arising from their variable electron density, electron momentum transfer collision frequency, and the concomitant e↵ect of these properties on the excited surface plasmon resonance. Experiments were carried out in the Ku band of the microwave spectrum to characterize the scattering properties of these resonators for di↵erent values of electron density. The experimental results are compared with results from theoretical approximations and finite element method electromagnetic simulations. The described tunable resonators have the potential to be used as the building blocks in a new class of all-plasma metamaterials with fully three-dimensional structural flexibility.

Top