Sample records for electron transfer patterns

  1. Phylogenetic analysis of proteins associated in the four major energy metabolism systems: photosynthesis, aerobic respiration, denitrification, and sulfur respiration.

    PubMed

    Tomiki, Takeshi; Saitou, Naruya

    2004-08-01

    The four electron transfer energy metabolism systems, photosynthesis, aerobic respiration, denitrification, and sulfur respiration, are thought to be evolutionarily related because of the similarity of electron transfer patterns and the existence of some homologous proteins. How these systems have evolved is elusive. We therefore conducted a comprehensive homology search using PSI-BLAST, and phylogenetic analyses were conducted for the three homologous groups (groups 1-3) based on multiple alignments of domains defined in the Pfam database. There are five electron transfer types important for catalytic reaction in group 1, and many proteins bind molybdenum. Deletions of two domains led to loss of the function of binding molybdenum and ferredoxin, and these deletions seem to be critical for the electron transfer pattern changes in group 1. Two types of electron transfer were found in group 2, and all its member proteins bind siroheme and ferredoxin. Insertion of the pyridine nucleotide disulfide oxidoreductase domain seemed to be the critical point for the electron transfer pattern change in this group. The proteins belonging to group 3 are all flavin enzymes, and they bind flavin adenine dinucleotide (FAD) or flavin mononucleotide (FMN). Types of electron transfer in this group are divergent, but there are two common characteristics. NAD(P)H works as an electron donor or acceptor, and FAD or FMN transfers electrons from/to NAD(P)H. Electron transfer functions might be added to these common characteristics by the addition of functional domains through the evolution of group 3 proteins. Based on the phylogenetic analyses in this study and previous studies, we inferred the phylogeny of the energy metabolism systems as follows: photosynthesis (and possibly aerobic respiration) and the sulfur/nitrogen assimilation system first diverged, then the sulfur/nitrogen dissimilation system was produced from the latter system.

  2. Tape transfer atomization patterning of liquid alloys for microfluidic stretchable wireless power transfer.

    PubMed

    Jeong, Seung Hee; Hjort, Klas; Wu, Zhigang

    2015-02-12

    Stretchable electronics offers unsurpassed mechanical compliance on complex or soft surfaces like the human skin and organs. To fully exploit this great advantage, an autonomous system with a self-powered energy source has been sought for. Here, we present a new technology to pattern liquid alloys on soft substrates, targeting at fabrication of a hybrid-integrated power source in microfluidic stretchable electronics. By atomized spraying of a liquid alloy onto a soft surface with a tape transferred adhesive mask, a universal fabrication process is provided for high quality patterns of liquid conductors in a meter scale. With the developed multilayer fabrication technique, a microfluidic stretchable wireless power transfer device with an integrated LED was demonstrated, which could survive cycling between 0% and 25% strain over 1,000 times.

  3. Tape Transfer Atomization Patterning of Liquid Alloys for Microfluidic Stretchable Wireless Power Transfer

    PubMed Central

    Jeong, Seung Hee; Hjort, Klas; Wu, Zhigang

    2015-01-01

    Stretchable electronics offers unsurpassed mechanical compliance on complex or soft surfaces like the human skin and organs. To fully exploit this great advantage, an autonomous system with a self-powered energy source has been sought for. Here, we present a new technology to pattern liquid alloys on soft substrates, targeting at fabrication of a hybrid-integrated power source in microfluidic stretchable electronics. By atomized spraying of a liquid alloy onto a soft surface with a tape transferred adhesive mask, a universal fabrication process is provided for high quality patterns of liquid conductors in a meter scale. With the developed multilayer fabrication technique, a microfluidic stretchable wireless power transfer device with an integrated LED was demonstrated, which could survive cycling between 0% and 25% strain over 1,000 times. PMID:25673261

  4. Energy-resolved coherent diffraction from laser-driven electronic motion in atoms

    NASA Astrophysics Data System (ADS)

    Shao, Hua-Chieh; Starace, Anthony F.

    2017-10-01

    We investigate theoretically the use of energy-resolved ultrafast electron diffraction to image laser-driven electronic motion in atoms. A chirped laser pulse is used to transfer the valence electron of the lithium atom from the ground state to the first excited state. During this process, the electronic motion is imaged by 100-fs and 1-fs electron pulses in energy-resolved diffraction measurements. Simulations show that the angle-resolved spectra reveal the time evolution of the energy content and symmetry of the electronic state. The time-dependent diffraction patterns are further interpreted in terms of the momentum transfer. For the case of incident 1-fs electron pulses, the rapid 2 s -2 p quantum beat motion of the target electron is imaged as a time-dependent asymmetric oscillation of the diffraction pattern.

  5. Fabrication and single-electron-transfer operation of a triple-dot single-electron transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jo, Mingyu, E-mail: mingyujo@eis.hokudai.ac.jp; Uchida, Takafumi; Tsurumaki-Fukuchi, Atsushi

    2015-12-07

    A triple-dot single-electron transistor was fabricated on silicon-on-insulator wafer using pattern-dependent oxidation. A specially designed one-dimensional silicon wire having small constrictions at both ends was converted to a triple-dot single-electron transistor by means of pattern-dependent oxidation. The fabrication of the center dot involved quantum size effects and stress-induced band gap reduction, whereas that of the two side dots involved thickness modulation because of the complex edge structure of two-dimensional silicon. Single-electron turnstile operation was confirmed at 8 K when a 100-mV, 1-MHz square wave was applied. Monte Carlo simulations indicated that such a device with inhomogeneous tunnel and gate capacitances canmore » exhibit single-electron transfer.« less

  6. Global Access-controlled Transfer e-frame (GATe)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2012-05-30

    Global Access-controlled Transfer e-frame (GATe) was designed to take advantage of the patterns that occur during an electronic record transfer process. The e-frame (or electronic framework or platform) is the foundation for developing secure information transfer to meet classified and unclassified business processes and is particularly useful when there is a need to share information with various entities in a controlled and secure environment. It can share, search, upload, download and retrieve sensitive information, as well as provides reporting capabilities.

  7. Dynamic Pattern Formation in Electron-Beam-Induced Etching [Emergent formation of dynamic topographic patterns in electron beam induced etching

    DOE PAGES

    Martin, Aiden A.; Bahm, Alan; Bishop, James; ...

    2015-12-15

    Here, we report highly ordered topographic patterns that form on the surface of diamond, span multiple length scales, and have a symmetry controlled by the precursor gas species used in electron-beam-induced etching (EBIE). The pattern formation dynamics reveals an etch rate anisotropy and an electron energy transfer pathway that is overlooked by existing EBIE models. Therefore, we, modify established theory such that it explains our results and remains universally applicable to EBIE. Furthermore, the patterns can be exploited in controlled wetting, optical structuring, and other emerging applications that require nano- and microscale surface texturing of a wide band-gap material.

  8. What Hinders Electron Transfer Dissociation (ETD) of DNA Cations?

    NASA Astrophysics Data System (ADS)

    Hari, Yvonne; Leumann, Christian J.; Schürch, Stefan

    2017-12-01

    Radical activation methods, such as electron transfer dissociation (ETD), produce structural information complementary to collision-induced dissociation. Herein, electron transfer dissociation of 3-fold protonated DNA hexamers was studied to gain insight into the fragmentation mechanism. The fragmentation patterns of a large set of DNA hexamers confirm cytosine as the primary target of electron transfer. The reported data reveal backbone cleavage by internal electron transfer from the nucleobase to the phosphate linker leading either to a•/ w or d/ z• ion pairs. This reaction pathway contrasts with previous findings on the dissociation processes after electron capture by DNA cations, suggesting multiple, parallel dissociation channels. However, all these channels merely result in partial fragmentation of the precursor ion because the charge-reduced DNA radical cations are quite stable. Two hypotheses are put forward to explain the low dissociation yield of DNA radical cations: it is either attributed to non-covalent interactions between complementary fragments or to the stabilization of the unpaired electron in stacked nucleobases. MS3 experiments suggest that the charge-reduced species is the intact oligonucleotide. Moreover, introducing abasic sites significantly increases the dissociation yield of DNA cations. Consequently, the stabilization of the unpaired electron by π-π-stacking provides an appropriate rationale for the high intensity of DNA radical cations after electron transfer. [Figure not available: see fulltext.

  9. Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography

    NASA Astrophysics Data System (ADS)

    Wang, Qing Hua; Jin, Zhong; Kim, Ki Kang; Hilmer, Andrew J.; Paulus, Geraldine L. C.; Shih, Chih-Jen; Ham, Moon-Ho; Sanchez-Yamagishi, Javier D.; Watanabe, Kenji; Taniguchi, Takashi; Kong, Jing; Jarillo-Herrero, Pablo; Strano, Michael S.

    2012-09-01

    Graphene has exceptional electronic, optical, mechanical and thermal properties, which provide it with great potential for use in electronic, optoelectronic and sensing applications. The chemical functionalization of graphene has been investigated with a view to controlling its electronic properties and interactions with other materials. Covalent modification of graphene by organic diazonium salts has been used to achieve these goals, but because graphene comprises only a single atomic layer, it is strongly influenced by the underlying substrate. Here, we show a stark difference in the rate of electron-transfer reactions with organic diazonium salts for monolayer graphene supported on a variety of substrates. Reactions proceed rapidly for graphene supported on SiO2 and Al2O3 (sapphire), but negligibly on alkyl-terminated and hexagonal boron nitride (hBN) surfaces, as shown by Raman spectroscopy. We also develop a model of reactivity based on substrate-induced electron-hole puddles in graphene, and achieve spatial patterning of chemical reactions in graphene by patterning the substrate.

  10. Pattern transfer with stabilized nanoparticle etch masks

    NASA Astrophysics Data System (ADS)

    Hogg, Charles R.; Picard, Yoosuf N.; Narasimhan, Amrit; Bain, James A.; Majetich, Sara A.

    2013-03-01

    Self-assembled nanoparticle monolayer arrays are used as an etch mask for pattern transfer into Si and SiOx substrates. Crack formation within the array is prevented by electron beam curing to fix the nanoparticles to the substrate, followed by a brief oxygen plasma to remove excess carbon. This leaves a dot array of nanoparticle cores with a minimum gap of 2 nm. Deposition and liftoff can transform the dot array mask into an antidot mask, where the gap is determined by the nanoparticle core diameter. Reactive ion etching is used to transfer the dot and antidot patterns into the substrate. The effect of the gap size on the etching rate is modeled and compared with the experimental results.

  11. Theoretical study of dynamic electron-spin-polarization via the doublet-quartet quantum-mixed state and time-resolved ESR spectra of the quartet high-spin state.

    PubMed

    Teki, Yoshio; Matsumoto, Takafumi

    2011-04-07

    The mechanism of the unique dynamic electron polarization of the quartet (S = 3/2) high-spin state via a doublet-quartet quantum-mixed state and detail theoretical calculations of the population transfer are reported. By the photo-induced electron transfer, the quantum-mixed charge-separate state is generated in acceptor-donor-radical triad (A-D-R). This mechanism explains well the unique dynamic electron polarization of the quartet state of A-D-R. The generation of the selectively populated quantum-mixed state and its transfer to the strongly coupled pure quartet and doublet states have been treated both by a perturbation approach and by exact numerical calculations. The analytical solutions show that generation of the quantum-mixed states with the selective populations after de-coherence and/or accompanying the (complete) dephasing during the charge-recombination are essential for the unique dynamic electron polarization. Thus, the elimination of the quantum coherence (loss of the quantum information) is the key process for the population transfer from the quantum-mixed state to the quartet state. The generation of high-field polarization on the strongly coupled quartet state by the charge-recombination process can be explained by a polarization transfer from the quantum-mixed charge-separate state. Typical time-resolved ESR patterns of the quantum-mixed state and of the strongly coupled quartet state are simulated based on the generation mechanism of the dynamic electron polarization. The dependence of the spectral pattern of the quartet high-spin state has been clarified for the fine-structure tensor and the exchange interaction of the quantum-mixed state. The spectral pattern of the quartet state is not sensitive towards the fine-structure tensor of the quantum-mixed state, because this tensor contributes only as a perturbation in the population transfer to the spin-sublevels of the quartet state. Based on the stochastic Liouville equation, it is also discussed why the selective population in the quantum-mixed state is generated for the "finite field" spin-sublevels. The numerical calculations of the elimination of the quantum coherence (de-coherence and/or dephasing) are demonstrated. A new possibility of the enhanced intersystem crossing pathway in solution is also proposed.

  12. Quantum coherent π-electron rotations in a non-planar chiral molecule induced by using a linearly polarized UV laser pulse

    NASA Astrophysics Data System (ADS)

    Mineo, Hirobumi; Fujimura, Yuichi

    2015-06-01

    We propose an ultrafast quantum switching method of π-electron rotations, which are switched among four rotational patterns in a nonplanar chiral aromatic molecule (P)-2,2’- biphenol and perform the sequential switching among four rotational patterns which are performed by the overlapped pump-dump laser pulses. Coherent π-electron dynamics are generated by applying the linearly polarized UV pulse laser to create a pair of coherent quasidegenerated excited states. We also plot the time-dependent π-electron ring current, and discussed ring current transfer between two aromatic rings.

  13. Development of template and mask replication using jet and flash imprint lithography

    NASA Astrophysics Data System (ADS)

    Brooks, Cynthia; Selinidis, Kosta; Doyle, Gary; Brown, Laura; LaBrake, Dwayne; Resnick, Douglas J.; Sreenivasan, S. V.

    2010-09-01

    The Jet and Flash Imprint Lithography (J-FILTM)1-7 process uses drop dispensing of UV curable resists to assist high resolution patterning for subsequent dry etch pattern transfer. The technology is actively being used to develop solutions for memory markets including Flash memory and patterned media for hard disk drives. It is anticipated that the lifetime of a single template (for patterned media) or mask (for semiconductor) will be on the order of 104 - 105 imprints. This suggests that tens of thousands of templates/masks will be required. It is not feasible to employ electronbeam patterning directly to deliver these volumes. Instead, a "master" template - created by directly patterning with an electron-beam tool - will be replicated many times with an imprint lithography tool to produce the required supply of "working" templates/masks. In this paper, we review the development of the pattern transfer process for both template and mask replicas. Pattern transfer of resolutions down to 25nm has been demonstrated for bit patterned media replication. In addition, final resolution on a semiconductor mask of 28nm has been confirmed. The early results on both etch depth and CD uniformity are promising, but more extensive work is required to characterize the pattern transfer process.

  14. Conjugate Heat Transfer and Thermal Mechanical Analysis for Liquid Metal Targets for High Power Electron Beams.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olivas, Eric Richard

    2016-02-26

    A conjugate heat transfer and thermal structural analysis was completed, with the objective of determining the following: Lead bismuth eutectic (LBE) peak temperature, free convective velocity patterns in the LBE, peak beam window temperature, and thermal stress/deformation in the window.

  15. NV Diamond Micro-Magnetometer Baseline Studies

    DTIC Science & Technology

    2009-08-12

    to define circular masks of diameters ranging from 100-250nm on the surface. An anisotropic etch was used to transfer the pattern into the crystal...between NV and nearby 13C. (b) Pulse sequence for transfer of electron spin coherence to nuclear spin and repetitive readout. (c) Cumulative Rabi

  16. Nanofabrication on unconventional substrates using transferred hard masks

    DOE PAGES

    Li, Luozhou; Bayn, Igal; Lu, Ming; ...

    2015-01-15

    Here, a major challenge in nanofabrication is to pattern unconventional substrates that cannot be processed for a variety of reasons, such as incompatibility with spin coating, electron beam lithography, optical lithography, or wet chemical steps. Here, we present a versatile nanofabrication method based on re-usable silicon membrane hard masks, patterned using standard lithography and mature silicon processing technology. These masks, transferred precisely onto targeted regions, can be in the millimetre scale. They allow for fabrication on a wide range of substrates, including rough, soft, and non-conductive materials, enabling feature linewidths down to 10 nm. Plasma etching, lift-off, and ion implantationmore » are realized without the need for scanning electron/ion beam processing, UV exposure, or wet etching on target substrates.« less

  17. Roll-to-roll continuous patterning and transfer of graphene via dispersive adhesion

    NASA Astrophysics Data System (ADS)

    Choi, Taejun; Kim, Sang Jin; Park, Subeom; Hwang, Taek Yong; Jeon, Youngro; Hong, Byung Hee

    2015-04-01

    We present a roll-to-roll, continuous patterning and transfer of graphene sheets capable of residue-free and fast patterning. The graphene sheet is supported with dispersive adhesion. Graphene is continuously patterned by the difference in adhesion forces with a pre-defined embossed roller. The patterned graphene sheet adheres to the polyethylene terephthalate (PET)/silicone with very low strength and can be easily transferred to various substrates without the aid of any heating mechanism. The width of the patterned film was 120 mm and a production rate of 15 m min-1 for patterning was achieved. Large-area uniformity was confirmed by observing the optical images on 4 inch Si wafer and Raman mapping spectra for 50 × 50 mm2.We present a roll-to-roll, continuous patterning and transfer of graphene sheets capable of residue-free and fast patterning. The graphene sheet is supported with dispersive adhesion. Graphene is continuously patterned by the difference in adhesion forces with a pre-defined embossed roller. The patterned graphene sheet adheres to the polyethylene terephthalate (PET)/silicone with very low strength and can be easily transferred to various substrates without the aid of any heating mechanism. The width of the patterned film was 120 mm and a production rate of 15 m min-1 for patterning was achieved. Large-area uniformity was confirmed by observing the optical images on 4 inch Si wafer and Raman mapping spectra for 50 × 50 mm2. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06991a

  18. Multicomponent patterned ultrathin carbon nanomembranes by laser ablation

    NASA Astrophysics Data System (ADS)

    Frese, Natalie; Scherr, Julian; Beyer, André; Terfort, Andreas; Gölzhäuser, Armin; Hampp, Norbert; Rhinow, Daniel

    2018-01-01

    Carbon nanomembranes (CNMs) are a class of two-dimensional materials, which are obtained by electron beam-induced crosslinking of aromatic self-assembled monolayers (SAMs) on solid substrates. CNMs made from a single type of precursor molecule are uniform with homogeneous chemical and physical properties. We have developed a method for the fabrication of internally patterned CNMs resembling a key feature of biological membranes. Direct laser patterning is used to obtain multicomponent patterned SAMs on gold, which are subsequently crosslinked by electron irradiation. We demonstrate that the structure of internally patterned CNMs is preserved upon transfer to different substrates. The method enables rapid fabrication of patterned 2D materials with local variations in chemical and physical properties on the micrometer to centimeter scale.

  19. The role of electron transfer in DNA building blocks: Evaluation of strand breaks and their implications

    NASA Astrophysics Data System (ADS)

    Almeida, Diogo Alexandre Fialho de

    Radiation-induced damage to biological systems, both direct and indirect processes, has increasingly come under scrutiny by the international scientific community due to recent findings that electrons are a very effective agent in damaging DNA/RNA. Indeed, much remains to be discovered regarding the exact physico-chemical processes that occur in the nascent stages of DNA/RNA damage by incident radiation. However, it is also known that electrons do not exist freely in the physiological medium, but rather solvated and/or pre-solvated states. This leads to the need for new techniques that can better explore the damaging role of "bound" electrons to DNA/RNA. The work presented in this thesis consists on the study of electron transfer in collisions of atomic species with molecules of biological relevance. In order to study these processes, two experimental setups were used. One setup consists of a crossed beam experiment where a neutral potassium beam is created and made to collide with an effusive molecular target beam. The anionic products that stem from electron transfer in potassium atom to the molecular target collisions are then extracted and time-of-flight (TOF) mass analysed. In the second setup a beam of anionic species is formed and made to collide with a molecular target. Collisions with three different anionic beams were performed (H-, O- and OH-), as well as with different simple organic molecules, by measuring the positive and negative ion fragmentation patterns with a quadrupole mass spectrometer (QMS). A comparison between these two collisional systems can greatly help to understand the underlying mechanisms of the electron transfer processes. Finally, studies of potassium collisions with sugar surrogates D-Ribose and THF were performed. These studies show very different fragmentation patterns from DEA, although in the case of THF, it is suggested that the initially accessed states are the same as in DEA. With these studies was also possible to show for the first time collision induced site and bond selectivity breaking, where the electron is transferred into a given state of the acceptor molecule and the resulting fragmentation pathways are exclusive to the initial anionic state. Furthermore, the role of the potassium cation post collisionwas explored and indeed its presence is suggested to induce at least partial suppression of auto-detachment. The implications that ensue from this degradation are analysed in the light of the obtained fragmentation patterns.

  20. Three-dimensional tertiary structure of yeast phenylalanine transfer RNA

    NASA Technical Reports Server (NTRS)

    Kim, S. H.; Sussman, J. L.; Suddath, F. L.; Quigley, G. J.; Mcpherson, A.; Wang, A. H. J.; Seeman, N. C.; Rich, A.

    1974-01-01

    Results of an analysis and interpretation of a 3-A electron density map of yeast phenylalanine transfer RNA. Some earlier detailed assignments of nucleotide residues to electron density peaks are found to be in error, even though the overall tracing of the backbone conformation of yeast phenylalanine transfer RNA was generally correct. A new, more comprehensive interpretation is made which makes it possible to define the tertiary interactions in the molecule. The new interpretation makes it possible to visualize a number of tertiary interactions which not only explain the structural role of most of the bases which are constant in transfer RNAs, but also makes it possible to understand in a direct and simple fashion the chemical modification data on transfer RNA. In addition, this pattern of tertiary interactions provides a basis for understanding the general three-dimensional folding of all transfer RNA molecules.

  1. Absolute Negative Resistance Induced by Directional Electron-Electron Scattering in a Two-Dimensional Electron Gas

    NASA Astrophysics Data System (ADS)

    Kaya, Ismet I.; Eberl, Karl

    2007-05-01

    A three-terminal device formed by two electrostatic barriers crossing an asymmetrically patterned two-dimensional electron gas displays an unusual potential depression at the middle contact, yielding absolute negative resistance. The device displays momentum and current transfer ratios that far exceed unity. The observed reversal of the current or potential in the middle terminal can be interpreted as the analog of Bernoulli’s effect in a Fermi liquid. The results are explained by directional scattering of electrons in two dimensions.

  2. 7 CFR 246.12 - Food delivery systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... operational requirements for food delivery systems. In recognition of emergent electronic benefits transfer... incidence of a violation for which a pattern of incidences must be established in order to impose a sanction...

  3. Extremely Robust and Patternable Electrodes for Copy-Paper-Based Electronics.

    PubMed

    Ahn, Jaeho; Seo, Ji-Won; Lee, Tae-Ik; Kwon, Donguk; Park, Inkyu; Kim, Taek-Soo; Lee, Jung-Yong

    2016-07-27

    We propose a fabrication process for extremely robust and easily patternable silver nanowire (AgNW) electrodes on paper. Using an auxiliary donor layer and a simple laminating process, AgNWs can be easily transferred to copy paper as well as various other substrates using a dry process. Intercalating a polymeric binder between the AgNWs and the substrate through a simple printing technique enhances adhesion, not only guaranteeing high foldability of the electrodes, but also facilitating selective patterning of the AgNWs. Using the proposed process, extremely crease-tolerant electronics based on copy paper can be fabricated, such as a printed circuit board for a 7-segment display, portable heater, and capacitive touch sensor, demonstrating the applicability of the AgNWs-based electrodes to paper electronics.

  4. Printing Highly Controlled Suspended Carbon Nanotube Network on Micro-patterned Superhydrophobic Flexible Surface

    PubMed Central

    Li, Bo; Wang, Xin; Jung, Hyun Young; Kim, Young Lae; Robinson, Jeremy T.; Zalalutdinov, Maxim; Hong, Sanghyun; Hao, Ji; Ajayan, Pulickel M.; Wan, Kai-Tak; Jung, Yung Joon

    2015-01-01

    Suspended single-walled carbon nanotubes (SWCNTs) offer unique functionalities for electronic and electromechanical systems. Due to their outstanding flexible nature, suspended SWCNT architectures have great potential for integration into flexible electronic systems. However, current techniques for integrating SWCNT architectures with flexible substrates are largely absent, especially in a manner that is both scalable and well controlled. Here, we present a new nanostructured transfer paradigm to print scalable and well-defined suspended nano/microscale SWCNT networks on 3D patterned flexible substrates with micro- to nanoscale precision. The underlying printing/transfer mechanism, as well as the mechanical, electromechanical, and mechanical resonance properties of the suspended SWCNTs are characterized, including identifying metrics relevant for reliable and sensitive device structures. Our approach represents a fast, scalable and general method for building suspended nano/micro SWCNT architectures suitable for flexible sensing and actuation systems. PMID:26511284

  5. Printing Highly Controlled Suspended Carbon Nanotube Network on Micro-patterned Superhydrophobic Flexible Surface.

    PubMed

    Li, Bo; Wang, Xin; Jung, Hyun Young; Kim, Young Lae; Robinson, Jeremy T; Zalalutdinov, Maxim; Hong, Sanghyun; Hao, Ji; Ajayan, Pulickel M; Wan, Kai-Tak; Jung, Yung Joon

    2015-10-29

    Suspended single-walled carbon nanotubes (SWCNTs) offer unique functionalities for electronic and electromechanical systems. Due to their outstanding flexible nature, suspended SWCNT architectures have great potential for integration into flexible electronic systems. However, current techniques for integrating SWCNT architectures with flexible substrates are largely absent, especially in a manner that is both scalable and well controlled. Here, we present a new nanostructured transfer paradigm to print scalable and well-defined suspended nano/microscale SWCNT networks on 3D patterned flexible substrates with micro- to nanoscale precision. The underlying printing/transfer mechanism, as well as the mechanical, electromechanical, and mechanical resonance properties of the suspended SWCNTs are characterized, including identifying metrics relevant for reliable and sensitive device structures. Our approach represents a fast, scalable and general method for building suspended nano/micro SWCNT architectures suitable for flexible sensing and actuation systems.

  6. 1.5 nm fabrication of test patterns for characterization of metrological systems

    DOE PAGES

    Babin, Sergey; Calafiore, Giuseppe; Peroz, Christophe; ...

    2015-11-06

    Any metrology tool is only as good as it is calibrated. The characterization of metrology systems requires test patterns at a scale about ten times smaller than the measured features. The fabrication of patterns with linewidths down to 1.5 nm is described. The test sample was designed in such a way that the distribution of linewidths appears to be random at any location. This pseudorandom test pattern is used to characterize dimensional metrology equipment over its entire dynamic range by extracting the modulation transfer function of the system. The test pattern contains alternating lines of silicon and tungsten silicide, eachmore » according to its designed width. As a result, the fabricated test samples were imaged using a transmission electron microscope, a scanning electron microscope, and an atomic force microscope. (C) 2015 American Vacuum Society.« less

  7. Water Activated Graphene Oxide Transfer Using Wax Printed Membranes for Fast Patterning of a Touch Sensitive Device.

    PubMed

    Baptista-Pires, Luis; Mayorga-Martínez, Carmen C; Medina-Sánchez, Mariana; Montón, Helena; Merkoçi, Arben

    2016-01-26

    We demonstrate a graphene oxide printing technology using wax printed membranes for the fast patterning and water activation transfer using pressure based mechanisms. The wax printed membranes have 50 μm resolution, longtime stability and infinite shaping capability. The use of these membranes complemented with the vacuum filtration of graphene oxide provides the control over the thickness. Our demonstration provides a solvent free methodology for printing graphene oxide devices in all shapes and all substrates using the roll-to-roll automatized mechanism present in the wax printing machine. Graphene oxide was transferred over a wide variety of substrates as textile or PET in between others. Finally, we developed a touch switch sensing device integrated in a LED electronic circuit.

  8. Silicon on insulator achieved using electrochemical etching

    DOEpatents

    McCarthy, A.M.

    1997-10-07

    Bulk crystalline silicon wafers are transferred after the completion of circuit fabrication to form thin films of crystalline circuitry on almost any support, such as metal, semiconductor, plastic, polymer, glass, wood, and paper. In particular, this technique is suitable to form silicon-on-insulator (SOI) wafers, whereby the devices and circuits formed exhibit superior performance after transfer due to the removal of the silicon substrate. The added cost of the transfer process to conventional silicon fabrication is insignificant. No epitaxial, lift-off, release or buried oxide layers are needed to perform the transfer of single or multiple wafers onto support members. The transfer process may be performed at temperatures of 50 C or less, permits transparency around the circuits and does not require post-transfer patterning. Consequently, the technique opens up new avenues for the use of integrated circuit devices in high-brightness, high-resolution video-speed color displays, reduced-thickness increased-flexibility intelligent cards, flexible electronics on ultrathin support members, adhesive electronics, touch screen electronics, items requiring low weight materials, smart cards, intelligent keys for encryption systems, toys, large area circuits, flexible supports, and other applications. The added process flexibility also permits a cheap technique for increasing circuit speed of market driven technologies such as microprocessors at little added expense. 57 figs.

  9. Silicon on insulator achieved using electrochemical etching

    DOEpatents

    McCarthy, Anthony M.

    1997-01-01

    Bulk crystalline silicon wafers are transferred after the completion of circuit fabrication to form thin films of crystalline circuitry on almost any support, such as metal, semiconductor, plastic, polymer, glass, wood, and paper. In particular, this technique is suitable to form silicon-on-insulator (SOI) wafers, whereby the devices and circuits formed exhibit superior performance after transfer due to the removal of the silicon substrate. The added cost of the transfer process to conventional silicon fabrication is insignificant. No epitaxial, lift-off, release or buried oxide layers are needed to perform the transfer of single or multiple wafers onto support members. The transfer process may be performed at temperatures of 50.degree. C. or less, permits transparency around the circuits and does not require post-transfer patterning. Consequently, the technique opens up new avenues for the use of integrated circuit devices in high-brightness, high-resolution video-speed color displays, reduced-thickness increased-flexibility intelligent cards, flexible electronics on ultrathin support members, adhesive electronics, touch screen electronics, items requiring low weight materials, smart cards, intelligent keys for encryption systems, toys, large area circuits, flexible supports, and other applications. The added process flexibility also permits a cheap technique for increasing circuit speed of market driven technologies such as microprocessors at little added expense.

  10. Properties of copper (fluoro-)phthalocyanine layers deposited on epitaxial graphene.

    PubMed

    Ren, Jun; Meng, Sheng; Wang, Yi-Lin; Ma, Xu-Cun; Xue, Qi-Kun; Kaxiras, Efthimios

    2011-05-21

    We investigate the atomic structure and electronic properties of monolayers of copper phthalocyanines (CuPc) deposited on epitaxial graphene substrate. We focus in particular on hexadecafluorophthalocyanine (F(16)CuPc), using both theoretical and experimental (scanning tunneling microscopy - STM) studies. For the individual CuPc and F(16)CuPc molecules, we calculated the electronic and optical properties using density functional theory (DFT) and time-dependent DFT and found a red-shift in the absorption peaks of F(16)CuPc relative to those of CuPc. In F(16)CuPc, the electronic wavefunctions are more polarized toward the electronegative fluorine atoms and away from the Cu atom at the center of the molecule. When adsorbed on graphene, the molecules lie flat and form closely packed patterns: F(16)CuPc forms a hexagonal pattern with two well-ordered alternating α and β stripes while CuPc arranges into a square lattice. The competition between molecule-substrate and intermolecular van der Waals interactions plays a crucial role in establishing the molecular patterns leading to tunable electron transfer from graphene to the molecules. This transfer is controlled by the layer thickness of, or the applied voltage on, epitaxial graphene resulting in selective F(16)CuPc adsorption, as observed in STM experiments. In addition, phthalocyanine adsorption modifies the electronic structure of the underlying graphene substrate introducing intensity smoothing in the range of 2-3 eV below the Dirac point (E(D)) and a small peak in the density of states at ∼0.4 eV above E(D). © 2011 American Institute of Physics.

  11. Plasmon-enhanced scattering and charge transfer in few-layer graphene interacting with buried printed 2D-pattern of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Carles, R.; Bayle, M.; Bonafos, C.

    2018-04-01

    Hybrid structures combing silver nanoparticles and few-layer graphene have been synthetized by combining low-energy ion beam synthesis and stencil techniques. A single plane of metallic nanoparticles plays the role of an embedded plasmonic enhancer located in dedicated areas at a controlled nanometer distance from deposited graphene layers. Optical imaging, reflectance and Raman scattering mapping are used to measure the enhancement of electronic and vibrational properties of these layers. In particular electronic Raman scattering is shown as notably efficient to analyze the optical transfer of charge carriers between the systems and the presence of intrinsic and extrinsic defects.

  12. Plasmon-enhanced scattering and charge transfer in few-layer graphene interacting with buried printed 2D-pattern of silver nanoparticles.

    PubMed

    Carles, R; Bayle, M; Bonafos, C

    2018-04-27

    Hybrid structures combing silver nanoparticles and few-layer graphene have been synthetized by combining low-energy ion beam synthesis and stencil techniques. A single plane of metallic nanoparticles plays the role of an embedded plasmonic enhancer located in dedicated areas at a controlled nanometer distance from deposited graphene layers. Optical imaging, reflectance and Raman scattering mapping are used to measure the enhancement of electronic and vibrational properties of these layers. In particular electronic Raman scattering is shown as notably efficient to analyze the optical transfer of charge carriers between the systems and the presence of intrinsic and extrinsic defects.

  13. Pattern transfer printing by kinetic control of adhesion to an elastomeric stamp

    DOEpatents

    Nuzzo, Ralph G [Champaign, IL; Rogers, John A [Champaign, IL; Menard, Etienne [Urbana, IL; Lee, Keon Jae [Tokyo, JP; Khang, Dahl-Young [Urbana, IL; Sun, Yugang [Champaign, IL; Meitl, Matthew [Champaign, IL; Zhu, Zhengtao [Urbana, IL

    2011-05-17

    The present invention provides methods, systems and system components for transferring, assembling and integrating features and arrays of features having selected nanosized and/or microsized physical dimensions, shapes and spatial orientations. Methods of the present invention utilize principles of `soft adhesion` to guide the transfer, assembly and/or integration of features, such as printable semiconductor elements or other components of electronic devices. Methods of the present invention are useful for transferring features from a donor substrate to the transfer surface of an elastomeric transfer device and, optionally, from the transfer surface of an elastomeric transfer device to the receiving surface of a receiving substrate. The present methods and systems provide highly efficient, registered transfer of features and arrays of features, such as printable semiconductor element, in a concerted manner that maintains the relative spatial orientations of transferred features.

  14. Hierarchical Materials Design by Pattern Transfer Printing of Self-Assembled Binary Nanocrystal Superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paik, Taejong; Yun, Hongseok; Fleury, Blaise

    We demonstrate the fabrication of hierarchical materials by controlling the structure of highly ordered binary nanocrystal superlattices (BNSLs) on multiple length scales. Combinations of magnetic, plasmonic, semiconducting, and insulating colloidal nanocrystal (NC) building blocks are self-assembled into BNSL membranes via the liquid–interfacial assembly technique. Free-standing BNSL membranes are transferred onto topographically structured poly(dimethylsiloxane) molds via the Langmuir–Schaefer technique and then deposited in patterns onto substrates via transfer printing. BNSLs with different structural motifs are successfully patterned into various meso- and microstructures such as lines, circles, and even three-dimensional grids across large-area substrates. A combination of electron microscopy and grazing incidencemore » small-angle X-ray scattering (GISAXS) measurements confirm the ordering of NC building blocks in meso- and micropatterned BNSLs. This technique demonstrates structural diversity in the design of hierarchical materials by assembling BNSLs from NC building blocks of different composition and size by patterning BNSLs into various size and shape superstructures of interest for a broad range of applications.« less

  15. Holographic Reconstruction of Photoelectron Diffraction and Its Circular Dichroism for Local Structure Probing

    NASA Astrophysics Data System (ADS)

    Matsui, Fumihiko; Matsushita, Tomohiro; Daimon, Hiroshi

    2018-06-01

    The local atomic structure around a specific element atom can be recorded as a photoelectron diffraction pattern. Forward focusing peaks and diffraction rings around them indicate the directions and distances from the photoelectron emitting atom to the surrounding atoms. The state-of-the-art holography reconstruction algorithm enables us to image the local atomic arrangement around the excited atom in a real space. By using circularly polarized light as an excitation source, the angular momentum transfer from the light to the photoelectron induces parallax shifts in these diffraction patterns. As a result, stereographic images of atomic arrangements are obtained. These diffraction patterns can be used as atomic-site-resolved probes for local electronic structure investigation in combination with spectroscopy techniques. Direct three-dimensional atomic structure visualization and site-specific electronic property analysis methods are reviewed. Furthermore, circular dichroism was also found in valence photoelectron and Auger electron diffraction patterns. The investigation of these new phenomena provides hints for the development of new techniques for local structure probing.

  16. Monolayer graphene-insulator-semiconductor emitter for large-area electron lithography

    NASA Astrophysics Data System (ADS)

    Kirley, Matthew P.; Aloui, Tanouir; Glass, Jeffrey T.

    2017-06-01

    The rapid adoption of nanotechnology in fields as varied as semiconductors, energy, and medicine requires the continual improvement of nanopatterning tools. Lithography is central to this evolving nanotechnology landscape, but current production systems are subject to high costs, low throughput, or low resolution. Herein, we present a solution to these problems with the use of monolayer graphene in a graphene-insulator-semiconductor (GIS) electron emitter device for large-area electron lithography. Our GIS device displayed high emission efficiency (up to 13%) and transferred large patterns (500 × 500 μm) with high fidelity (<50% spread). The performance of our device demonstrates a feasible path to dramatic improvements in lithographic patterning systems, enabling continued progress in existing industries and opening opportunities in nanomanufacturing.

  17. Electrostatic transfer of epitaxial graphene to glass.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohta, Taisuke; Pan, Wei; Howell, Stephen Wayne

    2010-12-01

    We report on a scalable electrostatic process to transfer epitaxial graphene to arbitrary glass substrates, including Pyrex and Zerodur. This transfer process could enable wafer-level integration of graphene with structured and electronically-active substrates such as MEMS and CMOS. We will describe the electrostatic transfer method and will compare the properties of the transferred graphene with nominally-equivalent 'as-grown' epitaxial graphene on SiC. The electronic properties of the graphene will be measured using magnetoresistive, four-probe, and graphene field effect transistor geometries [1]. To begin, high-quality epitaxial graphene (mobility 14,000 cm2/Vs and domains >100 {micro}m2) is grown on SiC in an argon-mediated environmentmore » [2,3]. The electrostatic transfer then takes place through the application of a large electric field between the donor graphene sample (anode) and the heated acceptor glass substrate (cathode). Using this electrostatic technique, both patterned few-layer graphene from SiC(000-1) and chip-scale monolayer graphene from SiC(0001) are transferred to Pyrex and Zerodur substrates. Subsequent examination of the transferred graphene by Raman spectroscopy confirms that the graphene can be transferred without inducing defects. Furthermore, the strain inherent in epitaxial graphene on SiC(0001) is found to be partially relaxed after the transfer to the glass substrates.« less

  18. Farbrication of diffractive optical elements on a Si chip by an imprint lithography using nonsymmetrical silicon mold

    NASA Astrophysics Data System (ADS)

    Hirai, Yoshihiko; Okano, Masato; Okuno, Takayuki; Toyota, Hiroshi; Yotsuya, Tsutomu; Kikuta, Hisao; Tanaka, Yoshio

    2001-11-01

    Fabrication of a fine diffractive optical element on a Si chip is demonstrated using imprint lithography. A chirped diffraction grating, which has modulated pitched pattern with curved cross section is fabricated by an electron beam lithography, where the exposure dose profile is automatically optimized by computer aided system. Using the resist pattern as an etching mask, anisotropic dry etching is performed to transfer the resist pattern profile to the Si chip. The etched Si substrate is used as a mold in the imprint lithography. The Si mold is pressed to a thin polymer (poly methyl methacrylate) on a Si chip. After releasing the mold, a fine diffractive optical pattern is successfully transferred to the thin polymer. This method is exceedingly useful for fabrication of integrated diffractive optical elements with electric circuits on a Si chip.

  19. Lateral engineering of surface states - towards surface-state nanoelectronics.

    PubMed

    García de Abajo, F J; Cordón, J; Corso, M; Schiller, F; Ortega, J E

    2010-05-01

    Patterned metal surfaces can host electron quantum waves that display interference phenomena over distances of a few nanometres, thus providing excellent information carriers for future atomic-scale devices. Here we demonstrate that collimation and waveguiding of surface electrons can be realized in silver-induced strain dislocation networks on Cu(111) surfaces, as a conceptual proof-of-principle of surface-state nanoelectronics (SSNE). The Ag/Cu(111) system exhibits featured surface bands with gaps at the Fermi energy, which are basic requirements for a potential SSNE material. We establish a solid analogy between the behavior of surface-state electrons and surface plasmons in patterned metal surfaces, thus facilitating the transfer of existing knowledge on plasmonic structures to the new scenario presented by engineered electronic surface-state nanostructures, with the advantage of a 1000-fold reduction in wavelength and geometrical parameters.

  20. Carbon nanotube substrates and catalyzed hot stamp for polishing and patterning the substrates

    DOEpatents

    Wang, Yuhuang [Evanston, IL; Hauge, Robert H [Houston, TX; Schmidt, Howard K [Houston, TX; Kim, Myung Jong [Houston, TX; Kittrell, W Carter [Houston, TX

    2009-09-08

    The present invention is generally directed to catalyzed hot stamp methods for polishing and/or patterning carbon nanotube-containing substrates. In some embodiments, the substrate, as a carbon nanotube fiber end, is brought into contact with a hot stamp (typically at 200-800.degree. C.), and is kept in contact with the hot stamp until the morphology/patterns on the hot stamp have been transferred to the substrate. In some embodiments, the hot stamp is made of material comprising one or more transition metals (Fe, Ni, Co, Pt, Ag, Au, etc.), which can catalyze the etching reaction of carbon with H.sub.2, CO.sub.2, H.sub.2O, and/or O.sub.2. Such methods can (1) polish the carbon nanotube-containing substrate with a microscopically smooth finish, and/or (2) transfer pre-defined patterns from the hot stamp to the substrate. Such polished or patterned carbon nanotube substrates can find application as carbon nanotube electrodes, field emitters, and field emitter arrays for displays and electron sources.

  1. Defining the origins of electron transfer at screen-printed graphene-like and graphite electrodes: MoO2 nanowire fabrication on edge plane sites reveals electrochemical insights.

    PubMed

    Rowley-Neale, Samuel J; Brownson, Dale A C; Banks, Craig E

    2016-08-18

    Molybdenum (di)oxide (MoO2) nanowires are fabricated onto graphene-like and graphite screen-printed electrodes (SPEs) for the first time, revealing crucial insights into the electrochemical properties of carbon/graphitic based materials. Distinctive patterns observed in the electrochemical process of nanowire decoration show that electron transfer occurs predominantly on edge plane sites when utilising SPEs fabricated/comprised of graphitic materials. Nanowire fabrication along the edge plane sites (and on edge plane like-sites/defects) of graphene/graphite is confirmed with Cyclic Voltammetry, Scanning Electron Microscopy (SEM) and Raman Spectroscopy. Comparison of the heterogeneous electron transfer (HET) rate constants (k°) at unmodified and nanowire coated SPEs show a reduction in the electrochemical reactivity of SPEs when the edge plane sites are effectively blocked/coated with MoO2. Throughout the process, the basal plane sites of the graphene/graphite electrodes remain relatively uncovered; except when the available edge plane sites have been utilised, in which case MoO2 deposition grows from the edge sites covering the entire surface of the electrode. This work clearly illustrates the distinct electron transfer properties of edge and basal plane sites on graphitic materials, indicating favourable electrochemical reactivity at the edge planes in contrast to limited reactivity at the basal plane sites. In addition to providing fundamental insights into the electron transfer properties of graphite and graphene-like SPEs, the reported simple, scalable, and cost effective formation of unique and intriguing MoO2 nanowires realised herein is of significant interest for use in both academic and commercial applications.

  2. Printable, flexible and stretchable diamond for thermal management

    DOEpatents

    Rogers, John A; Kim, Tae Ho; Choi, Won Mook; Kim, Dae Hyeong; Meitl, Matthew; Menard, Etienne; Carlisle, John

    2013-06-25

    Various heat-sinked components and methods of making heat-sinked components are disclosed where diamond in thermal contact with one or more heat-generating components are capable of dissipating heat, thereby providing thermally-regulated components. Thermally conductive diamond is provided in patterns capable of providing efficient and maximum heat transfer away from components that may be susceptible to damage by elevated temperatures. The devices and methods are used to cool flexible electronics, integrated circuits and other complex electronics that tend to generate significant heat. Also provided are methods of making printable diamond patterns that can be used in a range of devices and device components.

  3. Transfer printing of thermoreversible ion gels for flexible electronics.

    PubMed

    Lee, Keun Hyung; Zhang, Sipei; Gu, Yuanyan; Lodge, Timothy P; Frisbie, C Daniel

    2013-10-09

    Thermally assisted transfer printing was employed to pattern thin films of high capacitance ion gels on polyimide, poly(ethylene terephthalate), and SiO2 substrates. The ion gels consisted of 20 wt % block copolymer poly(styrene-b-ethylene oxide-b-styrene and 80 wt % ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)amide. Patterning resolution was on the order of 10 μm. Importantly, ion gels containing the block polymer with short PS end blocks (3.4 kg/mol) could be transfer-printed because of thermoreversible gelation that enabled intimate gel-substrate contact at 100 °C, while gels with long PS blocks (11 kg/mol) were not printable at the same temperature due to poor wetting contact between the gel and substrates. By using printed ion gels as high-capacitance gate insulators, electrolyte-gated thin-film transistors were fabricated that operated at low voltages (<1 V) with high on/off current ratios (∼10(5)). Statistical analysis of carrier mobility, turn-on voltage, and on/off ratio for an array of printed transistors demonstrated the excellent reproducibility of the printing technique. The results show that transfer printing is an attractive route to pattern high-capacitance ion gels for flexible thin-film devices.

  4. Two-center interference effects in (e, 2e) ionization of H2 and CO2 at large momentum transfer

    NASA Astrophysics Data System (ADS)

    Yamazaki, Masakazu; Nakajima, Isao; Satoh, Hironori; Watanabe, Noboru; Jones, Darryl; Takahashi, Masahiko

    2015-09-01

    In recent years, there has been considerable interest in understanding quantum mechanical interference effects in molecular ionization. Since this interference appears as a consequence of coherent electron emission from the different molecular centers, it should depend strongly on the nature of the ionized molecular orbital. Such molecular orbital patterns can be investigated by means of binary (e, 2e) spectroscopy, which is a kinematically-complete electron-impact ionization experiment performed under the high-energy Bethe ridge conditions. In this study, two-center interference effects in the (e, 2e) cross sections of H2 and CO2 at large momentum transfer are demonstrated with a high-statistics experiment, in order to elucidate the relationship between molecular orbital patterns and the interference structure. It is shown that the two-center interference is highly sensitive to the phase, spatial pattern, symmetry of constituent atomic orbital, and chemical bonding nature of the molecular orbital. This work was partially supported by Grant-in-Aids for Scientific Research (S) (No. 20225001) and for Young Scientists (B) (No. 21750005) from the Ministry of Education, Culture, Sports, Science and Technology.

  5. Pattern fidelity improvement of chemo-epitaxy DSA process for high-volume manufacturing

    NASA Astrophysics Data System (ADS)

    Muramatsu, Makoto; Nishi, Takanori; You, Gen; Saito, Yusuke; Ido, Yasuyuki; Ito, Kiyohito; Tobana, Toshikatsu; Hosoya, Masanori; Chen, Weichien; Nakamura, Satoru; Somervell, Mark; Kitano, Takahiro

    2016-03-01

    Directed self-assembly (DSA) is one of the candidates for next generation lithography. Over the past few years, cylindrical and lamellar structures dictated by the block co-polymer (BCP) composition have been investigated for use in patterning contact holes or lines, and, Tokyo Electron Limited (TEL is a registered trademark or a trademark of Tokyo Electron Limited in Japan and /or other countries.) has presented the evaluation results and the advantages of each-1-5. In this report, we will present the latest results regarding the defect reduction work on a model line/space system. Especially it is suggested that the defectivity of the neutral layer has a large impact on the defectivity of the DSA patterns. Also, LER/LWR reduction results will be presented with a focus on the improvements made during the etch transferring the DSA patterns into the underlayer.

  6. Performance measurement of commercial electronic still picture cameras

    NASA Astrophysics Data System (ADS)

    Hsu, Wei-Feng; Tseng, Shinn-Yih; Chiang, Hwang-Cheng; Cheng, Jui-His; Liu, Yuan-Te

    1998-06-01

    Commercial electronic still picture cameras need a low-cost, systematic method for evaluating the performance. In this paper, we present a measurement method to evaluating the dynamic range and sensitivity by constructing the opto- electronic conversion function (OECF), the fixed pattern noise by the peak S/N ratio (PSNR) and the image shading function (ISF), and the spatial resolution by the modulation transfer function (MTF). The evaluation results of individual color components and the luminance signal from a PC camera using SONY interlaced CCD array as the image sensor are then presented.

  7. Value-added Synthesis of Graphene: Recycling Industrial Carbon Waste into Electrodes for High-Performance Electronic Devices

    PubMed Central

    Seo, Hong-Kyu; Kim, Tae-Sik; Park, Chibeom; Xu, Wentao; Baek, Kangkyun; Bae, Sang-Hoon; Ahn, Jong-Hyun; Kim, Kimoon; Choi, Hee Cheul; Lee, Tae-Woo

    2015-01-01

    We have developed a simple, scalable, transfer-free, ecologically sustainable, value-added method to convert inexpensive coal tar pitch to patterned graphene films directly on device substrates. The method, which does not require an additional transfer process, enables direct growth of graphene films on device substrates in large area. To demonstrate the practical applications of the graphene films, we used the patterned graphene grown on a dielectric substrate directly as electrodes of bottom-contact pentacene field-effect transistors (max. field effect mobility ~0.36 cm2·V−1·s−1), without using any physical transfer process. This use of a chemical waste product as a solid carbon source instead of commonly used explosive hydrocarbon gas sources for graphene synthesis has the dual benefits of converting the waste to a valuable product, and reducing pollution. PMID:26567845

  8. A Biomimetic-Computational Approach to Optimizing the Quantum Efficiency of Photovoltaics

    NASA Astrophysics Data System (ADS)

    Perez, Lisa M.; Holzenburg, Andreas

    The most advanced low-cost organic photovoltaic cells have a quantum efficiency of 10%. This is in stark contrast to plant/bacterial light-harvesting systems which offer quantum efficiencies close to unity. Of particular interest is the highly effective quantum coherence-enabled energy transfer (Fig. 1). Noting that quantum coherence is promoted by charged residues and local dielectrics, classical atomistic simulations and time-dependent density functional theory (DFT) are used to identify charge/dielectric patterns and electronic coupling at exactly defined energy transfer interfaces. The calculations make use of structural information obtained on photosynthetic protein-pigment complexes while still in the native membrane making it possible to establish a link between supramolecular organization and quantum coherence in terms of what length scales enable fast energy transport and prevent quenching. Calculating energy transfer efficiencies between components based on different proximities will permit the search for patterns that enable defining material properties suitable for advanced photovoltaics.

  9. Value-added Synthesis of Graphene: Recycling Industrial Carbon Waste into Electrodes for High-Performance Electronic Devices

    NASA Astrophysics Data System (ADS)

    Seo, Hong-Kyu; Kim, Tae-Sik; Park, Chibeom; Xu, Wentao; Baek, Kangkyun; Bae, Sang-Hoon; Ahn, Jong-Hyun; Kim, Kimoon; Choi, Hee Cheul; Lee, Tae-Woo

    2015-11-01

    We have developed a simple, scalable, transfer-free, ecologically sustainable, value-added method to convert inexpensive coal tar pitch to patterned graphene films directly on device substrates. The method, which does not require an additional transfer process, enables direct growth of graphene films on device substrates in large area. To demonstrate the practical applications of the graphene films, we used the patterned graphene grown on a dielectric substrate directly as electrodes of bottom-contact pentacene field-effect transistors (max. field effect mobility ~0.36 cm2·V-1·s-1), without using any physical transfer process. This use of a chemical waste product as a solid carbon source instead of commonly used explosive hydrocarbon gas sources for graphene synthesis has the dual benefits of converting the waste to a valuable product, and reducing pollution.

  10. Value-added Synthesis of Graphene: Recycling Industrial Carbon Waste into Electrodes for High-Performance Electronic Devices.

    PubMed

    Seo, Hong-Kyu; Kim, Tae-Sik; Park, Chibeom; Xu, Wentao; Baek, Kangkyun; Bae, Sang-Hoon; Ahn, Jong-Hyun; Kim, Kimoon; Choi, Hee Cheul; Lee, Tae-Woo

    2015-11-16

    We have developed a simple, scalable, transfer-free, ecologically sustainable, value-added method to convert inexpensive coal tar pitch to patterned graphene films directly on device substrates. The method, which does not require an additional transfer process, enables direct growth of graphene films on device substrates in large area. To demonstrate the practical applications of the graphene films, we used the patterned graphene grown on a dielectric substrate directly as electrodes of bottom-contact pentacene field-effect transistors (max. field effect mobility ~0.36 cm(2)·V(-1)·s(-1)), without using any physical transfer process. This use of a chemical waste product as a solid carbon source instead of commonly used explosive hydrocarbon gas sources for graphene synthesis has the dual benefits of converting the waste to a valuable product, and reducing pollution.

  11. Soft lithographic functionalization and patterning oxide-free silicon and germanium.

    PubMed

    Bowers, Carleen M; Toone, Eric J; Clark, Robert L; Shestopalov, Alexander A

    2011-12-16

    The development of hybrid electronic devices relies in large part on the integration of (bio)organic materials and inorganic semiconductors through a stable interface that permits efficient electron transport and protects underlying substrates from oxidative degradation. Group IV semiconductors can be effectively protected with highly-ordered self-assembled monolayers (SAMs) composed of simple alkyl chains that act as impervious barriers to both organic and aqueous solutions. Simple alkyl SAMs, however, are inert and not amenable to traditional patterning techniques. The motivation for immobilizing organic molecular systems on semiconductors is to impart new functionality to the surface that can provide optical, electronic, and mechanical function, as well as chemical and biological activity. Microcontact printing (μCP) is a soft-lithographic technique for patterning SAMs on myriad surfaces. Despite its simplicity and versatility, the approach has been largely limited to noble metal surfaces and has not been well developed for pattern transfer to technologically important substrates such as oxide-free silicon and germanium. Furthermore, because this technique relies on the ink diffusion to transfer pattern from the elastomer to substrate, the resolution of such traditional printing is essentially limited to near 1 μm. In contrast to traditional printing, inkless μCP patterning relies on a specific reaction between a surface-immobilized substrate and a stamp-bound catalyst. Because the technique does not rely on diffusive SAM formation, it significantly expands the diversity of patternable surfaces. In addition, the inkless technique obviates the feature size limitations imposed by molecular diffusion, facilitating replication of very small (<200 nm) features. However, up till now, inkless μCP has been mainly used for patterning relatively disordered molecular systems, which do not protect underlying surfaces from degradation. Here, we report a simple, reliable high-throughput method for patterning passivated silicon and germanium with reactive organic monolayers and demonstrate selective functionalization of the patterned substrates with both small molecules and proteins. The technique utilizes a preformed NHS-reactive bilayered system on oxide-free silicon and germanium. The NHS moiety is hydrolyzed in a pattern-specific manner with a sulfonic acid-modified acrylate stamp to produce chemically distinct patterns of NHS-activated and free carboxylic acids. A significant limitation to the resolution of many μCP techniques is the use of PDMS material which lacks the mechanical rigidity necessary for high fidelity transfer. To alleviate this limitation we utilized a polyurethane acrylate polymer, a relatively rigid material that can be easily functionalized with different organic moieties. Our patterning approach completely protects both silicon and germanium from chemical oxidation, provides precise control over the shape and size of the patterned features, and gives ready access to chemically discriminated patterns that can be further functionalized with both organic and biological molecules. The approach is general and applicable to other technologically-relevant surfaces.

  12. Ice-assisted transfer of carbon nanotube arrays.

    PubMed

    Wei, Haoming; Wei, Yang; Lin, Xiaoyang; Liu, Peng; Fan, Shoushan; Jiang, Kaili

    2015-03-11

    Decoupling the growth and the application of nanomaterials by transfer is an important issue in nanotechnology. Here, we developed an efficient transfer technique for carbon nanotube (CNT) arrays by using ice as a binder to temporarily bond the CNT array and the target substrate. Ice makes it an ultraclean transfer because the evaporation of ice ensures that no contaminants are introduced. The transferred superaligned carbon nanotube (SACNT) arrays not only keep their original appearance and initial alignment but also inherit their spinnability, which is the most desirable feature. The transfer-then-spin strategy can be employed to fabricate patterned CNT arrays, which can act as 3-dimensional electrodes in CNT thermoacoustic chips. Besides, the flip-chipped CNTs are promising field electron emitters. Furthermore, the ice-assisted transfer technique provides a cost-effective solution for mass production of SACNTs, giving CNT technologies a competitive edge, and this method may inspire new ways to transfer other nanomaterials.

  13. Aberration-Corrected Electron Beam Lithography at the One Nanometer Length Scale

    DOE PAGES

    Manfrinato, Vitor R.; Stein, Aaron; Zhang, Lihua; ...

    2017-04-18

    Patterning materials efficiently at the smallest length scales has been a longstanding challenge in nanotechnology. Electron-beam lithography (EBL) is the primary method for patterning arbitrary features, but EBL has not reliably provided sub-4 nm patterns. The few competing techniques that have achieved this resolution are orders of magnitude slower than EBL. In this work, we employed an aberration-corrected scanning transmission electron microscope for lithography to achieve unprecedented resolution. Here we show aberration-corrected EBL at the one nanometer length scale using poly(methyl methacrylate) (PMMA) and have produced both the smallest isolated feature in any conventional resist (1.7 ± 0.5 nm) andmore » the highest density patterns in PMMA (10.7 nm pitch for negative-tone and 17.5 nm pitch for positive-tone PMMA). We also demonstrate pattern transfer from the resist to semiconductor and metallic materials at the sub-5 nm scale. These results indicate that polymer-based nanofabrication can achieve feature sizes comparable to the Kuhn length of PMMA and ten times smaller than its radius of gyration. Use of aberration-corrected EBL will increase the resolution, speed, and complexity in nanomaterial fabrication.« less

  14. Direct patterning of highly-conductive graphene@copper composites using copper naphthenate as a resist for graphene device applications.

    PubMed

    Bi, Kaixi; Xiang, Quan; Chen, Yiqin; Shi, Huimin; Li, Zhiqin; Lin, Jun; Zhang, Yongzhe; Wan, Qiang; Zhang, Guanhua; Qin, Shiqiao; Zhang, Xueao; Duan, Huigao

    2017-11-09

    We report an electron-beam lithography process to directly fabricate graphene@copper composite patterns without involving metal deposition, lift-off and etching processes using copper naphthenate as a high-resolution negative-tone resist. As a commonly used industrial painting product, copper naphthenate is extremely cheap with a long shelf time but demonstrates an unexpected patterning resolution better than 10 nm. With appropriate annealing under a hydrogen atmosphere, the produced graphene@copper composite patterns show high conductivity of ∼400 S cm -1 . X-ray diffraction, conformal Raman spectroscopy and X-ray photoelectron spectroscopy were used to analyze the chemical composition of the final patterns. With the properties of high resolution and high conductivity, the patterned graphene@copper composites could be used as conductive pads and interconnects for graphene electronic devices with ohmic contacts. Compared to common fabrication processes involving metal evaporation and lift-off steps, this pattern-transfer-free fabrication process using copper naphthenate resist is direct and simple but allows comparable device performance in practical device applications.

  15. Nanofabrication and Nanopatterning of Carbon Nanomaterials for Flexible Electronics

    NASA Astrophysics Data System (ADS)

    Ding, Junjun

    Stretchable electrodes have increasingly drawn attention as a vital component for flexible electronic devices. Carbon nanomaterials such as graphene and carbon nanotubes (CNTs) exhibit properties such as high mechanical flexibility and strength, optical transparency, and electrical conductivity which are naturally required for stretchable electrodes. Graphene growth, nanopatterning, and transfer processes are important steps to use graphene as flexible electrodes. However, advances in the large-area nanofabrication and nanopatterning of carbon nanomaterials such as graphene are necessary to realize the full potential of this technology. In particular, laser interference lithography (LIL), a fast and low cost large-area nanoscale patterning technique, shows tremendous promise for the patterning of graphene and other nanostructures for numerous applications. First, it was demonstrated that large-area nanopatterning and the transfer of chemical vapor deposition (CVD) grown graphene via LIL and plasma etching provide a reliable method to provide large area nanoengineered graphene on various target substrates. Then, to improve the electrode performance under large strain (naturally CVD grown graphene sheet will crack at tensile strains larger than 1%), a corrugated graphene structure on PDMS was designed, fabricated, and tested, with experimental results indicating that this approach successfully allows the graphene sheets to withstand cyclic tensile strains up to 15%. Lastly, to further enhance the performance of carbon-based stretchable electrodes, an approach was developed which coupled graphene and vertically aligned CNT (VACNT) on a flexible PDMS substrate. Characterization of the graphene-VACNT hybrid shows high electrical conductivity and durability through 50 cycles of loading up to 100% tensile strain. While flexible electronics promise tremendous advances in important technological areas such as healthcare, sensing, energy, and wearable electronics, continued advances in the nanofabrication, nanopatterning, and transfer of carbon nanomaterials such as those pursued here are necessary to fully realize this vision.

  16. Fabrication of high aspect ratio tungsten nanostructures on ultrathin c-Si membranes for extreme UV applications

    NASA Astrophysics Data System (ADS)

    Delachat, F.; Le Drogoff, B.; Constancias, C.; Delprat, S.; Gautier, E.; Chaker, M.; Margot, J.

    2016-01-01

    In this work, we demonstrate a full process for fabricating high aspect ratio diffraction optics for extreme ultraviolet lithography. The transmissive optics consists in nanometer scale tungsten patterns standing on flat, ultrathin (100 nm) and highly transparent (>85% at 13.5 nm) silicon membranes (diameter of 1 mm). These tungsten patterns were achieved using an innovative pseudo-Bosch etching process based on an inductively coupled plasma ignited in a mixture of SF6 and C4F8. Circular ultra-thin Si membranes were fabricated through a state-of-the-art method using direct-bonding with thermal difference. The silicon membranes were sputter-coated with a few hundred nanometers (100-300 nm) of stress-controlled tungsten and a very thin layer of chromium. Nanoscale features were written in a thin resist layer by electron beam lithography and transferred onto tungsten by plasma etching of both the chromium hard mask and the tungsten layer. This etching process results in highly anisotropic tungsten features at room temperature. The homogeneity and the aspect ratio of the advanced pattern transfer on the membranes were characterized with scanning electron microscopy after focus ion beam milling. An aspect ratio of about 6 for 35 nm size pattern is successfully obtained on a 1 mm diameter 100 nm thick Si membrane. The whole fabrication process is fully compatible with standard industrial semiconductor technology.

  17. Mask replication using jet and flash imprint lithography

    NASA Astrophysics Data System (ADS)

    Selinidis, Kosta S.; Jones, Chris; Doyle, Gary F.; Brown, Laura; Imhof, Joseph; LaBrake, Dwayne L.; Resnick, Douglas J.; Sreenivasan, S. V.

    2011-11-01

    The Jet and Flash Imprint Lithography (J-FILTM) process uses drop dispensing of UV curable resists to assist high resolution patterning for subsequent dry etch pattern transfer. The technology is actively being used to develop solutions for memory markets including Flash memory and patterned media for hard disk drives. It is anticipated that the lifetime of a single template (for patterned media) or mask (for semiconductor) will be on the order of 104 - 105imprints. This suggests that tens of thousands of templates/masks will be required to satisfy the needs of a manufacturing environment. Electron-beam patterning is too slow to feasibly deliver these volumes, but instead can provide a high quality "master" mask which can be replicated many times with an imprint lithography tool. This strategy has the capability to produce the required supply of "working" templates/masks. In this paper, we review the development of the mask form factor, imprint replication tools and the semiconductor mask replication process. A PerfectaTM MR5000 mask replication tool has been developed specifically to pattern replica masks from an ebeam written master. Performance results, including image placement, critical dimension uniformity, and pattern transfer are covered in detail.

  18. Conformational Space and Stability of ETD Charge Reduction Products of Ubiquitin

    NASA Astrophysics Data System (ADS)

    Lermyte, Frederik; Łącki, Mateusz Krzysztof; Valkenborg, Dirk; Gambin, Anna; Sobott, Frank

    2017-01-01

    Owing to its versatility, electron transfer dissociation (ETD) has become one of the most commonly utilized fragmentation techniques in both native and non-native top-down mass spectrometry. However, several competing reactions—primarily different forms of charge reduction—occur under ETD conditions, as evidenced by the distorted isotope patterns usually observed. In this work, we analyze these isotope patterns to compare the stability of nondissociative electron transfer (ETnoD) products, specifically noncovalent c/ z fragment complexes, across a range of ubiquitin conformational states. Using ion mobility, we find that more extended states are more prone to fragment release. We obtain evidence that for a given charge state, populations of ubiquitin ions formed either directly by electrospray ionization or through collapse of more extended states upon charge reduction, span a similar range of collision cross-sections. Products of gas-phase collapse are, however, less stabilized towards unfolding than the native conformation, indicating that the ions retain a memory of previous conformational states. Furthermore, this collapse of charge-reduced ions is promoted if the ions are `preheated' using collisional activation, with possible implications for the kinetics of gas-phase compaction.

  19. Laser-induced Forward Transfer of Ag Nanopaste.

    PubMed

    Breckenfeld, Eric; Kim, Heungsoo; Auyeung, Raymond C Y; Piqué, Alberto

    2016-03-31

    Over the past decade, there has been much development of non-lithographic methods(1-3) for printing metallic inks or other functional materials. Many of these processes such as inkjet(3) and laser-induced forward transfer (LIFT)(4) have become increasingly popular as interest in printable electronics and maskless patterning has grown. These additive manufacturing processes are inexpensive, environmentally friendly, and well suited for rapid prototyping, when compared to more traditional semiconductor processing techniques. While most direct-write processes are confined to two-dimensional structures and cannot handle materials with high viscosity (particularly inkjet), LIFT can transcend both constraints if performed properly. Congruent transfer of three dimensional pixels (called voxels), also referred to as laser decal transfer (LDT)(5-9), has recently been demonstrated with the LIFT technique using highly viscous Ag nanopastes to fabricate freestanding interconnects, complex voxel shapes, and high-aspect-ratio structures. In this paper, we demonstrate a simple yet versatile process for fabricating a variety of micro- and macroscale Ag structures. Structures include simple shapes for patterning electrical contacts, bridging and cantilever structures, high-aspect-ratio structures, and single-shot, large area transfers using a commercial digital micromirror device (DMD) chip.

  20. Laser-induced Forward Transfer of Ag Nanopaste

    PubMed Central

    Breckenfeld, Eric; Kim, Heungsoo; Auyeung, Raymond C. Y.; Piqué, Alberto

    2016-01-01

    Over the past decade, there has been much development of non-lithographic methods1-3 for printing metallic inks or other functional materials. Many of these processes such as inkjet3 and laser-induced forward transfer (LIFT)4 have become increasingly popular as interest in printable electronics and maskless patterning has grown. These additive manufacturing processes are inexpensive, environmentally friendly, and well suited for rapid prototyping, when compared to more traditional semiconductor processing techniques. While most direct-write processes are confined to two-dimensional structures and cannot handle materials with high viscosity (particularly inkjet), LIFT can transcend both constraints if performed properly. Congruent transfer of three dimensional pixels (called voxels), also referred to as laser decal transfer (LDT)5-9, has recently been demonstrated with the LIFT technique using highly viscous Ag nanopastes to fabricate freestanding interconnects, complex voxel shapes, and high-aspect-ratio structures. In this paper, we demonstrate a simple yet versatile process for fabricating a variety of micro- and macroscale Ag structures. Structures include simple shapes for patterning electrical contacts, bridging and cantilever structures, high-aspect-ratio structures, and single-shot, large area transfers using a commercial digital micromirror device (DMD) chip. PMID:27077645

  1. Growth of high-aspect ratio horizontally-aligned ZnO nanowire arrays.

    PubMed

    Soman, Pranav; Darnell, Max; Feldman, Marc D; Chen, Shaochen

    2011-08-01

    A method of fabricating horizontally-aligned zinc-oxide (ZnO) nanowire (NW) arrays with full control over the width and length is demonstrated. SEM images reveal the hexagonal structure typical of zinc oxide NWs. Arrays of high-aspect ratio horizontal ZnO NWs are fabricated by making use of the lateral overgrowth from dot patterns created by electron beam lithography (EBL). An array of patterned wires are lifted off and transferred to a flexible PDMS substrate with possible applications in several key nanotechnology areas.

  2. Probing and Exploiting the Interplay between Nuclear and Electronic Motion in Charge Transfer Processes.

    PubMed

    Delor, Milan; Sazanovich, Igor V; Towrie, Michael; Weinstein, Julia A

    2015-04-21

    The Born-Oppenheimer approximation refers to the assumption that the nuclear and electronic wave functions describing a molecular system evolve and can be determined independently. It is now well-known that this approximation often breaks down and that nuclear-electronic (vibronic) coupling contributes greatly to the ultrafast photophysics and photochemistry observed in many systems ranging from simple molecules to biological organisms. In order to probe vibronic coupling in a time-dependent manner, one must use spectroscopic tools capable of correlating the motions of electrons and nuclei on an ultrafast time scale. Recent developments in nonlinear multidimensional electronic and vibrational spectroscopies allow monitoring both electronic and structural factors with unprecedented time and spatial resolution. In this Account, we present recent studies from our group that make use of different variants of frequency-domain transient two-dimensional infrared (T-2DIR) spectroscopy, a pulse sequence combining electronic and vibrational excitations in the form of a UV-visible pump, a narrowband (12 cm(-1)) IR pump, and a broadband (400 cm(-1)) IR probe. In the first example, T-2DIR is used to directly compare vibrational dynamics in the ground and relaxed electronic excited states of Re(Cl)(CO)3(4,4'-diethylester-2,2'-bipyridine) and Ru(4,4'-diethylester-2,2'-bipyridine)2(NCS)2, prototypical charge transfer complexes used in photocatalytic CO2 reduction and electron injection in dye-sensitized solar cells. The experiments show that intramolecular vibrational redistribution (IVR) and vibrational energy transfer (VET) are up to an order of magnitude faster in the triplet charge transfer excited state than in the ground state. These results show the influence of electronic arrangement on vibrational coupling patterns, with direct implications for vibronic coupling mechanisms in charge transfer excited states. In the second example, we show unambiguously that electronic and vibrational movement are coupled in a donor-bridge-acceptor complex based on a Pt(II) trans-acetylide design motif. Time-resolved IR (TRIR) spectroscopy reveals that the rate of electron transfer (ET) is highly dependent on the amount of excess energy localized on the bridge following electronic excitation. Using an adaptation of T-2DIR, we are able to selectively perturb bridge-localized vibrational modes during charge separation, resulting in the donor-acceptor charge separation pathway being completely switched off, with all excess energy redirected toward the formation of a long-lived intraligand triplet state. A series of control experiments reveal that this effect is mode specific: it is only when the high-frequency bridging C≡C stretching mode is pumped that radical changes in photoproduct yields are observed. These experiments therefore suggest that one may perturb electronic movement by stimulating structural motion along the reaction coordinate using IR light. These studies add to a growing body of evidence suggesting that controlling the pathways and efficiency of charge transfer may be achieved through synthetic and perturbative approaches aiming to modulate vibronic coupling. Achieving such control would represent a breakthrough for charge transfer-based applications such as solar energy conversion and molecular electronics.

  3. Progress and process improvements for multiple electron-beam direct write

    NASA Astrophysics Data System (ADS)

    Servin, Isabelle; Pourteau, Marie-Line; Pradelles, Jonathan; Essomba, Philippe; Lattard, Ludovic; Brandt, Pieter; Wieland, Marco

    2017-06-01

    Massively parallel electron beam direct write (MP-EBDW) lithography is a cost-effective patterning solution, complementary to optical lithography, for a variety of applications ranging from 200 to 14 nm. This paper will present last process/integration results to achieve targets for both 28 and 45 nm nodes. For 28 nm node, we mainly focus on line-width roughness (LWR) mitigation by playing with stack, new resist platform and bias design strategy. The lines roughness was reduced by using thicker spin-on-carbon (SOC) hardmask (-14%) or non-chemically amplified (non-CAR) resist with bias writing strategy implementation (-20%). Etch transfer into trilayer has been demonstrated by preserving pattern fidelity and profiles for both CAR and non-CAR resists. For 45 nm node, we demonstrate the electron-beam process integration within optical CMOS flows. Resists based on KrF platform show a full compatibility with multiple stacks to fit with conventional optical flow used for critical layers. Electron-beam resist performances have been optimized to fit the specifications in terms of resolution, energy latitude, LWR and stack compatibility. The patterning process overview showing the latest achievements is mature enough to enable starting the multi-beam technology pre-production mode.

  4. Low-cost optical fabrication of flexible copper electrode via laser-induced reductive sintering and adhesive transfer

    NASA Astrophysics Data System (ADS)

    Back, Seunghyun; Kang, Bongchul

    2018-02-01

    Fabricating copper electrodes on heat-sensitive polymer films in air is highly challenging owing to the need of expensive copper nanoparticles, rapid oxidation of precursor during sintering, and limitation of sintering temperature to prevent the thermal damage of the polymer film. A laser-induced hybrid process of reductive sintering and adhesive transfer is demonstrated to cost-effectively fabricate copper electrode on a polyethylene film with a thermal resistance below 100 °C. A laser-induced reductive sintering process directly fabricates a high-conductive copper electrode onto a glass donor from copper oxide nanoparticle solution via photo-thermochemical reduction and agglomeration of copper oxide nanoparticles. The sintered copper patterns were transferred in parallel to a heat-sensitive polyethylene film through self-selective surface adhesion of the film, which was generated by the selective laser absorption of the copper pattern. The method reported here could become one of the most important manufacturing technologies for fabricating low-cost wearable and disposable electronics.

  5. Glutaric aciduria type 2, late onset type in Thai siblings with myopathy.

    PubMed

    Wasant, Pornswan; Kuptanon, Chulaluck; Vattanavicharn, Nithiwat; Liammongkolkul, Somporn; Ratanarak, Pisanu; Sangruchi, Tumtip; Yamaguchi, Seiji

    2010-10-01

    Reported here is a novel presentation of late onset glutaric aciduria type 2 in two Thai siblings. A 9-year-old boy presented with gradual onset of proximal muscle weakness for 6 weeks. The initial diagnosis was postviral myositis, and then polymyositis. Electromyography and nerve conduction velocity testing indicated a myopathic pattern. Muscle biopsy revealed excessive accumulation of fat. Acylcarnitine profiling led to the diagnosis of glutaric aciduria type 2. Immunoblot analysis of electron-transferring-flavoprotein and its dehydrogenase electron-transferring-flavoprotein dehydrogenase led to mutation analysis of the ETFDH gene, which revealed two different pathogenic mutations in both alleles and confirmed the diagnosis of glutaric aciduria type 2 caused by electron-transferring-flavoprotein dehydrogenase deficiency. The boy recovered completely after treatment. Later, his younger sibling became symptomatic; the same diagnosis was confirmed, and treatment was similarly effective. Acylcarnitine profiling was a crucial investigation in making this diagnosis in the presence of normal urine organic acid findings. Late onset glutaric aciduria type 2, a rare cause of muscle weakness in children, should be included in the differential diagnosis of myopathy. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manfrinato, Vitor R.; Stein, Aaron; Zhang, Lihua

    Patterning materials efficiently at the smallest length scales has been a longstanding challenge in nanotechnology. Electron-beam lithography (EBL) is the primary method for patterning arbitrary features, but EBL has not reliably provided sub-4 nm patterns. The few competing techniques that have achieved this resolution are orders of magnitude slower than EBL. In this work, we employed an aberration-corrected scanning transmission electron microscope for lithography to achieve unprecedented resolution. Here we show aberration-corrected EBL at the one nanometer length scale using poly(methyl methacrylate) (PMMA) and have produced both the smallest isolated feature in any conventional resist (1.7 ± 0.5 nm) andmore » the highest density patterns in PMMA (10.7 nm pitch for negative-tone and 17.5 nm pitch for positive-tone PMMA). We also demonstrate pattern transfer from the resist to semiconductor and metallic materials at the sub-5 nm scale. These results indicate that polymer-based nanofabrication can achieve feature sizes comparable to the Kuhn length of PMMA and ten times smaller than its radius of gyration. Use of aberration-corrected EBL will increase the resolution, speed, and complexity in nanomaterial fabrication.« less

  7. Transfer and alignment of random single-walled carbon nanotube films by contact printing.

    PubMed

    Liu, Huaping; Takagi, Daisuke; Chiashi, Shohei; Homma, Yoshikazu

    2010-02-23

    We present a simple method to transfer large-area random single-walled carbon nanotube (SWCNT) films grown on SiO(2) substrates onto another surface through a simple contact printing process. The transferred random SWCNT films can be assembled into highly ordered, dense regular arrays with high uniformity and reproducibility by sliding the growth substrate during the transfer process. The position of the transferred SWCNT film can be controlled by predefined patterns on the receiver substrates. The process is compatible with a variety of substrates, and even metal meshes for transmission electron microscopy (TEM) can be used as receiver substrates. Thus, suspended web-like SWCNT networks and aligned SWCNT arrays can be formed over the grids of TEM meshes, so that the structures of the transferred SWCNTs can be directly observed by TEM. This simple technique can be used to controllably transfer SWCNTs for property studies, for the fabrication of devices, or even as support films for TEM meshes.

  8. Development of flange and reticulate wall ingrowths in maize (Zea mays L.) endosperm transfer cells.

    PubMed

    Monjardino, Paulo; Rocha, Sara; Tavares, Ana C; Fernandes, Rui; Sampaio, Paula; Salema, Roberto; da Câmara Machado, Artur

    2013-04-01

    Maize (Zea mays L.) endosperm transfer cells are essential for kernel growth and development so they have a significant impact on grain yield. Although structural and ultrastructural studies have been published, little is known about the development of these cells, and prior to this study, there was a general consensus that they contain only flange ingrowths. We characterized the development of maize endosperm transfer cells by bright field microscopy, transmission electron microscopy, and confocal laser scanning microscopy. The most basal endosperm transfer cells (MBETC) have flange and reticulate ingrowths, whereas inner transfer cells only have flange ingrowths. Reticulate and flange ingrowths are mostly formed in different locations of the MBETC as early as 5 days after pollination, and they are distinguishable from each other at all stages of development. Ingrowth structure and ultrastructure and cellulose microfibril compaction and orientation patterns are discussed during transfer cell development. This study provides important insights into how both types of ingrowths are formed in maize endosperm transfer cells.

  9. Cation Recombination Energy/Coulomb Repulsion Effects in ETD/ECD as Revealed by Variation of Charge per Residue at Fixed Total Charge

    PubMed Central

    Mentinova, Marija; Crizer, David M.; Baba, Takashi; McGee, William M.; Glish, Gary L.; McLuckey, Scott A.

    2013-01-01

    Electron capture dissociation (ECD) and electron transfer dissociation (ETD) experiments in electrodynamic ion traps operated in the presence of a bath gas in the 1–10 mTorr range have been conducted on a common set of doubly protonated model peptides of the form X(AG)nX (X = lysine, arginine, or histidine, n=1, 2, or 4). The partitioning of reaction products was measured using thermal electrons, anions of azobenzene, and anions of 1,3-dinitrobenzene as reagents. Variation of n alters the charge per residue of the peptide cation, which affects recombination energy. The ECD experiments showed that H-atom loss is greatest for the n=1 peptides and decreases as n increases. Proton transfer in ETD, on the other hand, is expected to increase as charge per residue decreases (i.e., as n increases). These opposing tendencies were apparent in the data for the K(AG)nK peptides. H-atom loss appeared to be more prevalent in ECD than in ETD and is rationalized on the basis of either internal energy differences, differences in angular momentum transfer associated with the electron capture versus electron transfer processes, or a combination of the two. The histidine peptides showed the greatest extent of charge reduction without dissociation, the arginine peptides showed the greatest extent of side-chain cleavages, and the lysine peptides generally showed the greatest extent of partitioning into the c/z•-product ion channels. The fragmentation patterns for the complementary c- and z•-ions for ETD and ECD were found to be remarkably similar, particularly for the peptides with X = lysine. PMID:23568028

  10. Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, John A.; Nuzzo, Ralph; Kim, Hoon-sik

    Described herein are printable structures and methods for making, assembling and arranging electronic devices. A number of the methods described herein are useful for assembling electronic devices where one or more device components are embedded in a polymer which is patterned during the embedding process with trenches for electrical interconnects between device components. Some methods described herein are useful for assembling electronic devices by printing methods, such as by dry transfer contact printing methods. Also described herein are GaN light emitting diodes and methods for making and arranging GaN light emitting diodes, for example for display or lighting systems.

  11. Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays

    DOEpatents

    Rogers, John A; Nuzzo, Ralph; Kim, Hoon-sik; Brueckner, Eric; Park, Sang Il; Kim, Rak Hwan

    2014-10-21

    Described herein are printable structures and methods for making, assembling and arranging electronic devices. A number of the methods described herein are useful for assembling electronic devices where one or more device components are embedded in a polymer which is patterned during the embedding process with trenches for electrical interconnects between device components. Some methods described herein are useful for assembling electronic devices by printing methods, such as by dry transfer contact printing methods. Also described herein are GaN light emitting diodes and methods for making and arranging GaN light emitting diodes, for example for display or lighting systems.

  12. Integration of Indium Phosphide Based Devices with Flexible Substrates

    NASA Astrophysics Data System (ADS)

    Chen, Wayne Huai

    2011-12-01

    Flexible substrates have many advantages in applications where bendability, space, or weight play important roles or where rigid circuits are undesirable. However, conventional flexible thin film transistors are typically characterized as having low carrier mobility as compared to devices used in the electronics industry. This is in part due to the limited temperature tolerance of plastic flexible substrates, which commonly reduces the highest processing temperature to below 200°C. Common approaches of implementation include low temperature deposition of organic, amorphous, or polycrystalline semiconductors, all of which result in carrier mobility well below 100 cm2V -1s-1. High quality, single crystalline III-V semiconductors such as indium phosphide (InP), on the other hand, have carrier mobility well over 1000 cm 2V-1s-1 at room temperature, depending on carrier concentration. Recently, the ion-cut process has been used in conjunction with wafer bonding to integrate thin layers of III-V material onto silicon for optoelectronic applications. This approach has the advantage of high scalability, reusability of the initial III-V substrate, and the ability to tailor the location (depth) of the layer splitting. However, the transferred substrate usually suffers from hydrogen implantation damage. This dissertation demonstrates a new approach to enable integration of InP with various substrates, called the double-flip transfer process. The process combines ion-cutting with adhesive bonding. The problem of hydrogen implantation was overcome by patterned ion-cut transfer. In this type of transfer, areas of interest are shielded from implantation but still transferred by surrounding implanted regions. We found that patterned ion-cut transfer is strongly dependent upon crystal orientation and that using cleavage-plane oriented donors can be beneficial in transferring large areas of high quality semiconductor material. InP-based devices were fabricated to demonstrate the transfer process and test functionality following transfer. Passive devices (photodetectors) as well as active transistors were transferred and fabricated on various substrates. The transferred device layers were either implanted through with a blanket implant or protected with an ion-mask during implantation. Results demonstrate the viability of the double-flip ion-cut process in achieving very high electron mobility (˜2800 cm2V-1s-1) transistors on plastic flexible substrates.

  13. Coherent exciton-vibrational dynamics and energy transfer in conjugated organics

    DOE PAGES

    Nelson, Tammie R.; Ondarse-Alvarez, Dianelys; Oldani, Nicolas; ...

    2018-06-13

    Coherence, signifying concurrent electron-vibrational dynamics in complex natural and man-made systems, is currently a subject of intense study. Understanding this phenomenon is important when designing carrier transport in optoelectronic materials. Here, excited state dynamics simulations reveal a ubiquitous pattern in the evolution of photoexcitations for a broad range of molecular systems. Symmetries of the wavefunctions define a specific form of the non-adiabatic coupling that drives quantum transitions between excited states, leading to a collective asymmetric vibrational excitation coupled to the electronic system. This promotes periodic oscillatory evolution of the wavefunctions, preserving specific phase and amplitude relations across the ensemble ofmore » trajectories. The simple model proposed here explains the appearance of coherent exciton-vibrational dynamics due to non-adiabatic transitions, which is universal across multiple molecular systems. The observed relationships between electronic wavefunctions and the resulting functionalities allows us to understand, and potentially manipulate, excited state dynamics and energy transfer in molecular materials.« less

  14. Novel x-ray silicon detector for 2D imaging and high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Castoldi, Andrea; Gatti, Emilio; Guazzoni, Chiara; Longoni, Antonio; Rehak, Pavel; Strueder, Lothar

    1999-10-01

    A novel x-ray silicon detector for 2D imaging has been recently proposed. The detector, called Controlled-Drift Detector, is operated in integrate-readout mode. Its basic feature is the fast transport of the integrated charge to the output electrode by means of a uniform drift field. The drift time of the charge packet identifies the pixel of incidence. A new architecture to implement the Controlled- Drift Detector concept will be presented. The potential wells for the integration of the signal charge are obtained by means of a suitable pattern of deep n-implants and deep p-implants. During the readout mode the signal electrons are transferred in the drift channel that flanks each column of potential wells where they drift towards the collecting electrode at constant velocity. The first experimental measurements demonstrate the successful integration, transfer and drift of the signal electrons. The low output capacitance of the readout electrode together with the on- chip front-end electronics allows high resolution spectroscopy of the detected photons.

  15. Coherent exciton-vibrational dynamics and energy transfer in conjugated organics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Tammie R.; Ondarse-Alvarez, Dianelys; Oldani, Nicolas

    Coherence, signifying concurrent electron-vibrational dynamics in complex natural and man-made systems, is currently a subject of intense study. Understanding this phenomenon is important when designing carrier transport in optoelectronic materials. Here, excited state dynamics simulations reveal a ubiquitous pattern in the evolution of photoexcitations for a broad range of molecular systems. Symmetries of the wavefunctions define a specific form of the non-adiabatic coupling that drives quantum transitions between excited states, leading to a collective asymmetric vibrational excitation coupled to the electronic system. This promotes periodic oscillatory evolution of the wavefunctions, preserving specific phase and amplitude relations across the ensemble ofmore » trajectories. The simple model proposed here explains the appearance of coherent exciton-vibrational dynamics due to non-adiabatic transitions, which is universal across multiple molecular systems. The observed relationships between electronic wavefunctions and the resulting functionalities allows us to understand, and potentially manipulate, excited state dynamics and energy transfer in molecular materials.« less

  16. Rapid Characterization of Bacterial Electrogenicity Using a Single-Sheet Paper-Based Electrofluidic Array

    PubMed Central

    Gao, Yang; Hassett, Daniel J.; Choi, Seokheun

    2017-01-01

    Electrogenicity, or bacterial electron transfer capacity, is an important application which offers environmentally sustainable advances in the fields of biofuels, wastewater treatment, bioremediation, desalination, and biosensing. Significant boosts in this technology can be achieved with the growth of synthetic biology that manipulates microbial electron transfer pathways, thereby potentially significantly improving their electrogenic potential. There is currently a need for a high-throughput, rapid, and highly sensitive test array to evaluate the electrogenic properties of newly discovered and/or genetically engineered bacterial species. In this work, we report a single-sheet, paper-based electrofluidic (incorporating both electronic and fluidic structure) screening platform for rapid, sensitive, and potentially high-throughput characterization of bacterial electrogenicity. This novel screening array uses (i) a commercially available wax printer for hydrophobic wax patterning on a single sheet of paper and (ii) water-dispersed electrically conducting polymer mixture, poly(3,4-ethylenedioxythiophene):polystyrene sulfonate, for full integration of electronic and fluidic components into the paper substrate. The engineered 3-D, microporous, hydrophilic, and conductive paper structure provides a large surface area for efficient electron transfer. This results in rapid and sensitive power assessment of electrogenic bacteria from a microliter sample volume. We validated the effectiveness of the sensor array using hypothesis-driven genetically modified Pseudomonas aeruginosa mutant strains. Within 20 min, we observed that the sensor platform successfully measured the electricity-generating capacities of five isogenic mutants of P. aeruginosa while distinguishing their differences from genetically unmodified bacteria. PMID:28798914

  17. Laser-induced forward transfer (LIFT) of congruent voxels

    NASA Astrophysics Data System (ADS)

    Piqué, Alberto; Kim, Heungsoo; Auyeung, Raymond C. Y.; Beniam, Iyoel; Breckenfeld, Eric

    2016-06-01

    Laser-induced forward transfer (LIFT) of functional materials offers unique advantages and capabilities for the rapid prototyping of electronic, optical and sensor elements. The use of LIFT for printing high viscosity metallic nano-inks and nano-pastes can be optimized for the transfer of voxels congruent with the shape of the laser pulse, forming thin film-like structures non-lithographically. These processes are capable of printing patterns with excellent lateral resolution and thickness uniformity typically found in 3-dimensional stacked assemblies, MEMS-like structures and free-standing interconnects. However, in order to achieve congruent voxel transfer with LIFT, the particle size and viscosity of the ink or paste suspensions must be adjusted to minimize variations due to wetting and drying effects. When LIFT is carried out with high-viscosity nano-suspensions, the printed voxel size and shape become controllable parameters, allowing the printing of thin-film like structures whose shape is determined by the spatial distribution of the laser pulse. The result is a new level of parallelization beyond current serial direct-write processes whereby the geometry of each printed voxel can be optimized according to the pattern design. This work shows how LIFT of congruent voxels can be applied to the fabrication of 2D and 3D microstructures by adjusting the viscosity of the nano-suspension and laser transfer parameters.

  18. Foundations of low-temperature plasma enhanced materials synthesis and etching

    NASA Astrophysics Data System (ADS)

    Oehrlein, Gottlieb S.; Hamaguchi, Satoshi

    2018-02-01

    Low temperature plasma (LTP)-based synthesis of advanced materials has played a transformational role in multiple industries, including the semiconductor industry, liquid crystal displays, coatings and renewable energy. Similarly, the plasma-based transfer of lithographically defined resist patterns into other materials, e.g. silicon, SiO2, Si3N4 and other electronic materials, has led to the production of nanometer scale devices that are the basis of the information technology, microsystems, and many other technologies based on patterned films or substrates. In this article we review the scientific foundations of both LTP-based materials synthesis at low substrate temperature and LTP-based isotropic and directional etching used to transfer lithographically produced resist patterns into underlying materials. We cover the fundamental principles that are the basis of successful application of the LTP techniques to technological uses and provide an understanding of technological factors that may control or limit material synthesis or surface processing with the use of LTP. We precede these sections with a general discussion of plasma surface interactions, the LTP-generated particle fluxes including electrons, ions, radicals, excited neutrals and photons that simultaneously contact and modify surfaces. The surfaces can be in the line of sight of the discharge or hidden from direct interaction for structured substrates. All parts of the article are extensively referenced, which is intended to help the reader study the topics discussed here in more detail.

  19. Electron Transfer Dissociation of iTRAQ Labeled Peptide Ions

    PubMed Central

    Han, Hongling; Pappin, Darryl J.; Ross, Philip L; McLuckey, Scott A.

    2009-01-01

    Triply and doubly charged iTRAQ (isobaric tagging for relative and absolute quantitation) labeled peptide cations from a tryptic peptide mixture of bovine carbonic anhydrase II were subjected to electron transfer ion/ion reactions to investigate the effect of charge bearing modifications associated with iTRAQ on the fragmentation pattern. It was noted that electron transfer dissociation (ETD) of triply charged or activated ETD (ETD + supplemental collisional activation of intact electron transfer species) of doubly charged iTRAQ tagged peptide ions yielded extensive sequence information, in analogy with ETD of unmodified peptide ions. That is, addition of the fixed charge iTRAQ tag showed relatively little deleterious effect on the ETD performance of the modified peptides. ETD of the triply charged iTRAQ labeled peptide ions followed by collision-induced dissociation (CID) of the product ion at m/z 162 yielded the reporter ion at m/z 116, which is the reporter ion used for quantitation via CID of the same precursor ions. The reporter ion formed via the two-step activation process is expected to provide quantitative information similar to that directly produced from CID. A 103 Da neutral loss species observed in the ETD spectra of all the triply and doubly charged iTRAQ labeled peptide ions is unique to the 116 Da iTRAQ reagent, which implies that this process also has potential for quantitation of peptides/proteins. Therefore, ETD with or without supplemental collisional activation, depending on the precursor ion charge state, has the potential to directly identify and quantify the peptides/proteins simultaneously using existing iTRAQ reagents. PMID:18646790

  20. Sub-micron lines patterning into silica using water developable chitosan bioresist films for eco-friendly positive tone e-beam and UV lithography

    NASA Astrophysics Data System (ADS)

    Caillau, Mathieu; Chevalier, Céline; Crémillieu, Pierre; Delair, Thierry; Soppera, Olivier; Leuschel, Benjamin; Ray, Cédric; Moulin, Christophe; Jonin, Christian; Benichou, Emmanuel; Brevet, Pierre-François; Yeromonahos, Christelle; Laurenceau, Emmanuelle; Chevolot, Yann; Leclercq, Jean-Louis

    2018-03-01

    Biopolymers represent natural, renewable and abundant materials. Their use is steadily growing in various areas (food, health, building …) but, in lithography, despite some works, resists, solvents and developers are still oil-based and hazardous chemicals. In this work, we replaced synthetic resist by chitosan, a natural, abundant and hydrophilic polysaccharide. High resolution sub-micron patterns were obtained through chitosan films as water developable, chemically unmodified, positive tone mask resist for an eco-friendly electron beam and deep-UV (193 nm) lithography process. Sub-micron patterns were also successfully obtained using a 248 nm photomasker thanks to the addition of biosourced photoactivator, riboflavin. Patterns were then transferred by plasma etching into silica even for high resolution patterns.

  1. Patterned self-assembled monolayers of alkanethiols on copper nanomembranes by submerged laser ablation

    NASA Astrophysics Data System (ADS)

    Rhinow, Daniel; Hampp, Norbert A.

    2012-06-01

    Self-assembled monolayers (SAMs) of alkanethiols are major building blocks for nanotechnology. SAMs provide a functional interface between electrodes and biomolecules, which makes them attractive for biochip fabrication. Although gold has emerged as a standard, copper has several advantages, such as compatibility with semiconductors. However, as copper is easily oxidized in air, patterning SAMs on copper is a challenging task. In this work we demonstrate that submerged laser ablation (SLAB) is well-suited for this purpose, as thiols are exchanged in-situ, avoiding air exposition. Using different types of ω-substituted alkanethiols we show that alkanethiol SAMs on copper surfaces can be patterned using SLAB. The resulting patterns were analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Both methods indicate that the intense laser beam promotes the exchange of thiols at the copper surface. Furthermore, we present a procedure for the production of free-standing copper nanomembranes, oxidation-protected by alkanethiol SAMs. Incubation of copper-coated mica in alkanethiol solutions leads to SAM formation on both surfaces of the copper film due to intercalation of the organic molecules. Corrosion-protected copper nanomembranes were floated onto water, transferred to electron microscopy grids, and subsequently analyzed by electron energy loss spectroscopy (EELS).

  2. Tribological interaction between polytetrafluoroethylene and silicon oxide surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uçar, A.; Çopuroğlu, M.; Suzer, S., E-mail: suzer@fen.bilkent.edu.tr

    2014-10-28

    We investigated the tribological interaction between polytetrafluoroethylene (PTFE) and silicon oxide surfaces. A simple rig was designed to bring about a friction between the surfaces via sliding a piece of PTFE on a thermally oxidized silicon wafer specimen. A very mild inclination (∼0.5°) along the sliding motion was also employed in order to monitor the tribological interaction in a gradual manner as a function of increasing contact force. Additionally, some patterns were sketched on the silicon oxide surface using the PTFE tip to investigate changes produced in the hydrophobicity of the surface, where the approximate water contact angle was 45°more » before the transfer. The nature of the transferred materials was characterized by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). XPS results revealed that PTFE was faithfully transferred onto the silicon oxide surface upon even at the slightest contact and SEM images demonstrated that stable morphological changes could be imparted onto the surface. The minimum apparent contact pressure to realize the PTFE transfer is estimated as 5 kPa, much lower than reported previously. Stability of the patterns imparted towards many chemical washing processes lead us to postulate that the interaction is most likely to be chemical. Contact angle measurements, which were carried out to characterize and monitor the hydrophobicity of the silicon oxide surface, showed that upon PTFE transfer the hydrophobicity of the SiO{sub 2} surface could be significantly enhanced, which might also depend upon the pattern sketched onto the surface. Contact angle values above 100° were obtained.« less

  3. 12 CFR 1005.14 - Electronic fund transfer service provider not holding consumer's account.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 8 2012-01-01 2012-01-01 false Electronic fund transfer service provider not... PROTECTION ELECTRONIC FUND TRANSFERS (REGULATION E) § 1005.14 Electronic fund transfer service provider not holding consumer's account. (a) Provider of electronic fund transfer service. A person that provides an...

  4. 12 CFR 1005.14 - Electronic fund transfer service provider not holding consumer's account.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 8 2013-01-01 2013-01-01 false Electronic fund transfer service provider not... PROTECTION ELECTRONIC FUND TRANSFERS (REGULATION E) General § 1005.14 Electronic fund transfer service provider not holding consumer's account. (a) Provider of electronic fund transfer service. A person that...

  5. 12 CFR 1005.14 - Electronic fund transfer service provider not holding consumer's account.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 8 2014-01-01 2014-01-01 false Electronic fund transfer service provider not... PROTECTION ELECTRONIC FUND TRANSFERS (REGULATION E) General § 1005.14 Electronic fund transfer service provider not holding consumer's account. (a) Provider of electronic fund transfer service. A person that...

  6. Ion Trap Collisional Activation of c and z• Ions Formed via Gas-Phase Ion/Ion Electron Transfer Dissociation

    PubMed Central

    Han, Hongling; Xia, Yu; McLuckey, Scott A.

    2008-01-01

    A series of c- and z•-type product ions formed via gas-phase electron transfer ion/ion reactions between protonated polypeptides with azobenzene radical anions are subjected to ion trap collision activation in a linear ion trap. Fragment ions including a-, b-, y-type and ammonia-loss ions are typically observed in collision induced dissociation (CID) of c ions, showing almost identical CID patterns as those of the C-terminal amidated peptides consisting of the same sequences. Collisional activation of z• species mainly gives rise to side-chain losses and peptide backbone cleavages resulting in a-, b-, c-, x-, y-and z-type ions. Most of the fragmentation pathways of z• species upon ion trap CID can be accounted for by radical driven processes. The side-chain losses from z• species are different from the small losses observed from the charge-reduced peptide molecular species in electron transfer dissociation (ETD), which indicates rearrangement of the radical species. Characteristic side-chain losses are observed for several amino acid residues, which are useful to predict their presence in peptide/protein ions. Furthermore, the unique side-chain losses from leucine and isoleucine residues allow facile distinction of these two isomeric residues. PMID:17608403

  7. Reflection high-energy electron diffraction measurements of reciprocal space structure of 2D materials.

    PubMed

    Xiang, Y; Guo, F-W; Lu, T-M; Wang, G-C

    2016-12-02

    Knowledge on the symmetry and perfection of a 2D material deposited or transferred to a surface is very important and valuable. We demonstrate a method to map the reciprocal space structure of 2D materials using reflection high energy diffraction (RHEED). RHEED from a 2D material gives rise to 'streaks' patterns. It is shown that from these streaks patterns at different azimuthal rotation angles that the reciprocal space intensity distribution can be constructed as a function of momentum transfer parallel to the surface. To illustrate the principle, we experimentally constructed the reciprocal space structure of a commercial graphene/SiO 2 /Si sample in which the graphene layer was transferred to the SiO 2 /Si substrate after it was deposited on a Cu foil by chemical vapor deposition. The result reveals a 12-fold symmetry of the graphene layer which is a result of two dominant orientation domains with 30° rotation relative to each other. We show that the graphene can serve as a template to grow other materials such as a SnS film that follows the symmetry of graphene.

  8. Tape transfer printing of a liquid metal alloy for stretchable RF electronics.

    PubMed

    Jeong, Seung Hee; Hjort, Klas; Wu, Zhigang

    2014-09-03

    In order to make conductors with large cross sections for low impedance radio frequency (RF) electronics, while still retaining high stretchability, liquid-alloy-based microfluidic stretchable electronics offers stretchable electronic systems the unique opportunity to combine various sensors on our bodies or organs with high-quality wireless communication with the external world (devices/systems), without sacrificing enhanced user comfort. This microfluidic approach, based on printed circuit board technology, allows large area processing of large cross section conductors and robust contacts, which can handle a lot of stretching between the embedded rigid active components and the surrounding system. Although it provides such benefits, further development is needed to realize its potential as a high throughput, cost-effective process technology. In this paper, tape transfer printing is proposed to supply a rapid prototyping batch process at low cost, albeit at a low resolution of 150 μm. In particular, isolated patterns can be obtained in a simple one-step process. Finally, a stretchable radio frequency identification (RFID) tag is demonstrated. The measured results show the robustness of the hybrid integrated system when the tag is stretched at 50% for 3000 cycles.

  9. Carbon dot-Au(i)Ag(0) assembly for the construction of an artificial light harvesting system.

    PubMed

    Jana, Jayasmita; Aditya, Teresa; Pal, Tarasankar

    2018-03-06

    Artificial light harvesting systems (LHS) with inorganic counterparts are considered to be robust as well as mechanistically simple, where the system follows the donor-acceptor principle with an unchanged structural pattern. Plasmonic gold or silver nanoparticles are mostly chosen as inorganic counterparts to design artificial LHS. To capitalize on its electron accepting capability, Au(i) has been considered in this work for the synergistic stabilization of a system with intriguingly fluorescing silver(0) clusters produced in situ. Thus a stable fluorescent Au(i)Ag(0) assembly is generated with electron accepting capabilities. On the other hand, carbon dots have evolved as new fluorescent probes due to their unique physicochemical properties. Utilizing the simple electronic behavior of carbon dots, an electronic interaction between the fluorescent Au(i)Ag(0) and a carbon dot has been investigated for the construction of a new artificial light harvesting system. This coinage metal assembly allows surface energy transfer where it acts as an acceptor, while the carbon dot behaves as a good donor. The energy transfer efficiency has been calculated experimentally to be significant (81.3%) and the Au(i)Ag(0)-carbon dot assembly paves the way for efficient artificial LHS.

  10. Metal hierarchical patterning by direct nanoimprint lithography

    PubMed Central

    Radha, Boya; Lim, Su Hui; Saifullah, Mohammad S. M.; Kulkarni, Giridhar U.

    2013-01-01

    Three-dimensional hierarchical patterning of metals is of paramount importance in diverse fields involving photonics, controlling surface wettability and wearable electronics. Conventionally, this type of structuring is tedious and usually involves layer-by-layer lithographic patterning. Here, we describe a simple process of direct nanoimprint lithography using palladium benzylthiolate, a versatile metal-organic ink, which not only leads to the formation of hierarchical patterns but also is amenable to layer-by-layer stacking of the metal over large areas. The key to achieving such multi-faceted patterning is hysteretic melting of ink, enabling its shaping. It undergoes transformation to metallic palladium under gentle thermal conditions without affecting the integrity of the hierarchical patterns on micro- as well as nanoscale. A metallic rice leaf structure showing anisotropic wetting behavior and woodpile-like structures were thus fabricated. Furthermore, this method is extendable for transferring imprinted structures to a flexible substrate to make them robust enough to sustain numerous bending cycles. PMID:23446801

  11. Characterization of a unique [FeS] cluster in the electron transfer chain of the oxygen tolerant [NiFe] hydrogenase from Aquifex aeolicus.

    PubMed

    Pandelia, Maria-Eirini; Nitschke, Wolfgang; Infossi, Pascale; Giudici-Orticoni, Marie-Thérèse; Bill, Eckhard; Lubitz, Wolfgang

    2011-04-12

    Iron-sulfur clusters are versatile electron transfer cofactors, ubiquitous in metalloenzymes such as hydrogenases. In the oxygen-tolerant Hydrogenase I from Aquifex aeolicus such electron "wires" form a relay to a diheme cytb, an integral part of a respiration pathway for the reduction of O(2) to water. Amino acid sequence comparison with oxygen-sensitive hydrogenases showed conserved binding motifs for three iron-sulfur clusters, the nature and properties of which were unknown so far. Electron paramagnetic resonance spectra exhibited complex signals that disclose interesting features and spin-coupling patterns; by redox titrations three iron-sulfur clusters were identified in their usual redox states, a [3Fe4S] and two [4Fe4S], but also a unique high-potential (HP) state was found. On the basis of (57)Fe Mössbauer spectroscopy we attribute this HP form to a superoxidized state of the [4Fe4S] center proximal to the [NiFe] site. The unique environment of this cluster, characterized by a surplus cysteine coordination, is able to tune the redox potentials and make it compliant with the [4Fe4S](3+) state. It is actually the first example of a biological [4Fe4S] center that physiologically switches between 3+, 2+, and 1+ oxidation states within a very small potential range. We suggest that the (1 + /2+) redox couple serves the classical electron transfer reaction, whereas the superoxidation step is associated with a redox switch against oxidative stress.

  12. Characterization of a unique [FeS] cluster in the electron transfer chain of the oxygen tolerant [NiFe] hydrogenase from Aquifex aeolicus

    PubMed Central

    Pandelia, Maria-Eirini; Nitschke, Wolfgang; Infossi, Pascale; Giudici-Orticoni, Marie-Thérèse; Bill, Eckhard; Lubitz, Wolfgang

    2011-01-01

    Iron-sulfur clusters are versatile electron transfer cofactors, ubiquitous in metalloenzymes such as hydrogenases. In the oxygen-tolerant Hydrogenase I from Aquifex aeolicus such electron “wires” form a relay to a diheme cytb, an integral part of a respiration pathway for the reduction of O2 to water. Amino acid sequence comparison with oxygen-sensitive hydrogenases showed conserved binding motifs for three iron-sulfur clusters, the nature and properties of which were unknown so far. Electron paramagnetic resonance spectra exhibited complex signals that disclose interesting features and spin-coupling patterns; by redox titrations three iron-sulfur clusters were identified in their usual redox states, a [3Fe4S] and two [4Fe4S], but also a unique high-potential (HP) state was found. On the basis of 57Fe Mössbauer spectroscopy we attribute this HP form to a superoxidized state of the [4Fe4S] center proximal to the [NiFe] site. The unique environment of this cluster, characterized by a surplus cysteine coordination, is able to tune the redox potentials and make it compliant with the [4Fe4S]3+ state. It is actually the first example of a biological [4Fe4S] center that physiologically switches between 3+, 2+, and 1+ oxidation states within a very small potential range. We suggest that the (1 + /2+) redox couple serves the classical electron transfer reaction, whereas the superoxidation step is associated with a redox switch against oxidative stress. PMID:21444783

  13. Absolute Negative Resistance Induced by Directional Electron-Electron Scattering in a Two-Dimensional Electron Gas

    NASA Astrophysics Data System (ADS)

    Kaya, Ismet I.

    2007-03-01

    A ballistic conductor is restricted to have positive three terminal resistance just as a Drude conductor. Intercarrier scattering does not influence the conductivity of the latter transport regime and does not exist in the former. However, as the electron energies increased, in the intermediate regime, single or few intercarrier scattering events starts to dominate the transport properties of a conductor with sufficiently small dimensions. A three-terminal device formed by two electrostatic barriers crossing an asymmetrically patterned two dimensional electron gas displays an unusual potential depression at the middle contact, yielding absolute negative resistance. The device displays momentum and current transfer ratios that far exceed unity. The observed reversal of the current or potential in the middle terminal is interpreted as the analog of Bernoulli's effect in a Fermi liquid. The results are explained by directional scattering of electrons in two dimensions.

  14. Quantum tunneling resonant electron transfer process in Lorentzian plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Woo-Pyo; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791

    The quantum tunneling resonant electron transfer process between a positive ion and a neutral atom collision is investigated in nonthermal generalized Lorentzian plasmas. The result shows that the nonthermal effect enhances the resonant electron transfer cross section in Lorentzian plasmas. It is found that the nonthermal effect on the classical resonant electron transfer cross section is more significant than that on the quantum tunneling resonant charge transfer cross section. It is shown that the nonthermal effect on the resonant electron transfer cross section decreases with an increase of the Debye length. In addition, the nonthermal effect on the quantum tunnelingmore » resonant electron transfer cross section decreases with increasing collision energy. The variation of nonthermal and plasma shielding effects on the quantum tunneling resonant electron transfer process is also discussed.« less

  15. Ultrafast direct electron transfer at organic semiconductor and metal interfaces.

    PubMed

    Xiang, Bo; Li, Yingmin; Pham, C Huy; Paesani, Francesco; Xiong, Wei

    2017-11-01

    The ability to control direct electron transfer can facilitate the development of new molecular electronics, light-harvesting materials, and photocatalysis. However, control of direct electron transfer has been rarely reported, and the molecular conformation-electron dynamics relationships remain unclear. We describe direct electron transfer at buried interfaces between an organic polymer semiconductor film and a gold substrate by observing the first dynamical electric field-induced vibrational sum frequency generation (VSFG). In transient electric field-induced VSFG measurements on this system, we observe dynamical responses (<150 fs) that depend on photon energy and polarization, demonstrating that electrons are directly transferred from the Fermi level of gold to the lowest unoccupied molecular orbital of organic semiconductor. Transient spectra further reveal that, although the interfaces are prepared without deliberate alignment control, a subensemble of surface molecules can adopt conformations for direct electron transfer. Density functional theory calculations support the experimental results and ascribe the observed electron transfer to a flat-lying polymer configuration in which electronic orbitals are found to be delocalized across the interface. The present observation of direct electron transfer at complex interfaces and the insights gained into the relationship between molecular conformations and electron dynamics will have implications for implementing novel direct electron transfer in energy materials.

  16. Crystal structure refinement of the electron-transfer-active potassium manganese hexacyanoferrates and isomorphous potassium manganese hexacyanocobaltates

    NASA Astrophysics Data System (ADS)

    Rykov, Alexandre I.; Li, Xuning; Wang, Junhu

    2015-07-01

    We report on the crystal structure refinements in the novel electron-transfer-active Prussian Blue analogs (PBA) KMn4II [Co1-xIII FexIII (CN)6 ]3 · nH2 O (n ≃ 12). The series of novel PBA with the end members of KMn4[ Co(CN)6]3 · 11.8H2 O and KMn4[ Fe(CN)6 ]3 · 10.5H2 O have been synthesized for the first time, all showing a number of extra-reflections incompatible with ordinary face-centered cell of the Fm-3m symmetry group. We have analyzed the Rietveld patterns for x = 0 , 0.53 , 1 and found that the extra-reflections could be well fitted using several primitive (P) cell symmetries. The best fitting quality was obtained using the noncentrosymmetric space group (S.G.) P 4 bar 3 m (Z=1) with the origin of coordinate system shifted into a zeolitic site. In this structure model, the Co-CN-Mn entities are bent owing to the charge introduced by the K+ insertion that induces also the electron transfer between Mn and Fe. Using Mössbauer spectroscopy the electron transfer activity is identified with the appearance of unsplit resonance at the isomer shift of typically -0.15 mm/s evidencing the low-spin state for Fe3+ and Fe2+ species. In the same P 4 bar 3 m phases doped with 2+57Fe into the Mn site, a sequence of discrete values of quadrupole splitting (0 mm/s, 0.9 mm/s, 1.8 mm/s) is observed and attributed to different conformations of the polyhedra, in which the ground states are orbital triplet, doublet and singlet, respectively.

  17. Contribution of direct electron transfer mechanisms to overall electron transfer in microbial fuel cells utilising Shewanella oneidensis as biocatalyst.

    PubMed

    Fapetu, Segun; Keshavarz, Taj; Clements, Mark; Kyazze, Godfrey

    2016-09-01

    To investigate the contribution of direct electron transfer mechanisms to electricity production in microbial fuel cells by physically retaining Shewanella oneidensis cells close to or away from the anode electrode. A maximum power output of 114 ± 6 mWm(-2) was obtained when cells were retained close to the anode using a dialysis membrane. This was 3.5 times more than when the cells were separated away from the anode. Without the membrane the maximum power output was 129 ± 6 mWm(-2). The direct mechanisms of electron transfer contributed significantly to overall electron transfer from S. oneidensis to electrodes, a result that was corroborated by another experiment where S. oneidensis cells were entrapped in alginate gels. S. oneidensis transfers electrons primarily by direct electron transfer as opposed to mediated electron transfer.

  18. Suppression of BRCA2 by Mutant Mitochondrial DNA in Prostate Cancer

    DTIC Science & Technology

    2011-05-01

    Briefly, the electron transfer activities of complex I/III (NADH dehydrogenase/cytochrome bc1 complex: catalyzes the electron transfer from NADH to...ferricytochrome c) and complex II/III (succinate dehydrogenase/cytochrome bc1 complex: catalyzes the electron transfer from succinate to ferricytochrome...The electron transfer activity of complex IV (cytochrome c oxidase: catalyzes the final step of the respiratory chain by transferring electrons from

  19. Sub-second carbon-nanotube-mediated microwave sintering for high-conductivity silver patterns on plastic substrates

    NASA Astrophysics Data System (ADS)

    Jung, Sunshin; Chun, Su Jin; Han, Joong Tark; Woo, Jong Seok; Shon, Cha-Hwa; Lee, Geon-Woong

    2016-02-01

    A method of microwave sintering that is mediated by carbon nanotubes (CNTs) has been developed to obtain high-conductivity Ag patterns on the top of heat-sensitive plastic substrates within a short time. The Ag patterns are printed on CNTs formed on plastic substrates and rapidly heated to a great extent by the heat transferred from the microwave-heated CNTs. The conductivity of the microwave-sintered Ag patterns reaches ~39% that of bulk Ag within 1 s without substrate deformation. Furthermore, microwave sintering enhances the adhesion of Ag patterns to the thermoplastic substrates because the sintering causes interfacial fusion between the Ag patterns and the substrates, and CNTs physically connect the patterns with the substrates.A method of microwave sintering that is mediated by carbon nanotubes (CNTs) has been developed to obtain high-conductivity Ag patterns on the top of heat-sensitive plastic substrates within a short time. The Ag patterns are printed on CNTs formed on plastic substrates and rapidly heated to a great extent by the heat transferred from the microwave-heated CNTs. The conductivity of the microwave-sintered Ag patterns reaches ~39% that of bulk Ag within 1 s without substrate deformation. Furthermore, microwave sintering enhances the adhesion of Ag patterns to the thermoplastic substrates because the sintering causes interfacial fusion between the Ag patterns and the substrates, and CNTs physically connect the patterns with the substrates. Electronic supplementary information (ESI) available: Temperature difference in Ag/CNT/PC samples; the carbon content and electrical performance after microwave sintering; microwave sintering of Ag/CNT patterns; physical connection between the substrate and sintered Ag lines; touch-piano (figure and movie). See DOI: 10.1039/c5nr08082g

  20. Nuclear conversion theory: molecular hydrogen in non-magnetic insulators

    NASA Astrophysics Data System (ADS)

    Ilisca, Ernest; Ghiglieno, Filippo

    2016-09-01

    The hydrogen conversion patterns on non-magnetic solids sensitively depend upon the degree of singlet/triplet mixing in the intermediates of the catalytic reaction. Three main `symmetry-breaking' interactions are brought together. In a typical channel, the electron spin-orbit (SO) couplings introduce some magnetic excitations in the non-magnetic solid ground state. The electron spin is exchanged with a molecular one by the electric molecule-solid electron repulsion, mixing the bonding and antibonding states and affecting the molecule rotation. Finally, the magnetic hyperfine contact transfers the electron spin angular momentum to the nuclei. Two families of channels are considered and a simple criterion based on the SO coupling strength is proposed to select the most efficient one. The denoted `electronic' conversion path involves an emission of excitons that propagate and disintegrate in the bulk. In the other denoted `nuclear', the excited electron states are transients of a loop, and the electron system returns to its fundamental ground state. The described model enlarges previous studies by extending the electron basis to charge-transfer states and `continui' of band states, and focuses on the broadening of the antibonding molecular excited state by the solid conduction band that provides efficient tunnelling paths for the hydrogen conversion. After working out the general conversion algebra, the conversion rates of hydrogen on insulating and semiconductor solids are related to a few molecule-solid parameters (gap width, ionization and affinity potentials) and compared with experimental measures.

  1. Electrochemical Measurement of Electron Transfer Kinetics by Shewanella oneidensis MR-1*

    PubMed Central

    Baron, Daniel; LaBelle, Edward; Coursolle, Dan; Gralnick, Jeffrey A.; Bond, Daniel R.

    2009-01-01

    Shewanella oneidensis strain MR-1 can respire using carbon electrodes and metal oxyhydroxides as electron acceptors, requiring mechanisms for transferring electrons from the cell interior to surfaces located beyond the cell. Although purified outer membrane cytochromes will reduce both electrodes and metals, S. oneidensis also secretes flavins, which accelerate electron transfer to metals and electrodes. We developed techniques for detecting direct electron transfer by intact cells, using turnover and single turnover voltammetry. Metabolically active cells attached to graphite electrodes produced thin (submonolayer) films that demonstrated both catalytic and reversible electron transfer in the presence and absence of flavins. In the absence of soluble flavins, electron transfer occurred in a broad potential window centered at ∼0 V (versus standard hydrogen electrode), and was altered in single (ΔomcA, ΔmtrC) and double deletion (ΔomcA/ΔmtrC) mutants of outer membrane cytochromes. The addition of soluble flavins at physiological concentrations significantly accelerated electron transfer and allowed catalytic electron transfer to occur at lower applied potentials (−0.2 V). Scan rate analysis indicated that rate constants for direct electron transfer were slower than those reported for pure cytochromes (∼1 s−1). These observations indicated that anodic current in the higher (>0 V) window is due to activation of a direct transfer mechanism, whereas electron transfer at lower potentials is enabled by flavins. The electrochemical dissection of these activities in living cells into two systems with characteristic midpoint potentials and kinetic behaviors explains prior observations and demonstrates the complementary nature of S. oneidensis electron transfer strategies. PMID:19661057

  2. Cost-effective, transfer-free, flexible resistive random access memory using laser-scribed reduced graphene oxide patterning technology.

    PubMed

    Tian, He; Chen, Hong-Yu; Ren, Tian-Ling; Li, Cheng; Xue, Qing-Tang; Mohammad, Mohammad Ali; Wu, Can; Yang, Yi; Wong, H-S Philip

    2014-06-11

    Laser scribing is an attractive reduced graphene oxide (rGO) growth and patterning technology because the process is low-cost, time-efficient, transfer-free, and flexible. Various laser-scribed rGO (LSG) components such as capacitors, gas sensors, and strain sensors have been demonstrated. However, obstacles remain toward practical application of the technology where all the components of a system are fabricated using laser scribing. Memory components, if developed, will substantially broaden the application space of low-cost, flexible electronic systems. For the first time, a low-cost approach to fabricate resistive random access memory (ReRAM) using laser-scribed rGO as the bottom electrode is experimentally demonstrated. The one-step laser scribing technology allows transfer-free rGO synthesis directly on flexible substrates or non-flat substrates. Using this time-efficient laser-scribing technology, the patterning of a memory-array area up to 100 cm(2) can be completed in 25 min. Without requiring the photoresist coating for lithography, the surface of patterned rGO remains as clean as its pristine state. Ag/HfOx/LSG ReRAM using laser-scribing technology is fabricated in this work. Comprehensive electrical characteristics are presented including forming-free behavior, stable switching, reasonable reliability performance and potential for 2-bit storage per memory cell. The results suggest that laser-scribing technology can potentially produce more cost-effective and time-effective rGO-based circuits and systems for practical applications.

  3. Spatially modulated laser pulses for printing electronics.

    PubMed

    Auyeung, Raymond C Y; Kim, Heungsoo; Mathews, Scott; Piqué, Alberto

    2015-11-01

    The use of a digital micromirror device (DMD) in laser-induced forward transfer (LIFT) is reviewed. Combining this technique with high-viscosity donor ink (silver nanopaste) results in laser-printed features that are highly congruent in shape and size to the incident laser beam spatial profile. The DMD empowers LIFT to become a highly parallel, rapidly reconfigurable direct-write technology. By adapting half-toning techniques to the DMD bitmap image, the laser transfer threshold fluence for 10 μm features can be reduced using an edge-enhanced beam profile. The integration of LIFT with this beam-shaping technique allows the printing of complex large-area patterns with a single laser pulse.

  4. Possibility to Use Hydrothermally Synthesized CuFeS2 Nanocomposite as an Acceptor in Hybrid Solar Cell

    NASA Astrophysics Data System (ADS)

    Sil, Sayantan; Dey, Arka; Halder, Soumi; Datta, Joydeep; Ray, Partha Pratim

    2018-01-01

    Here we have approached the plausible use of CuFeS2 nanocomposite as an acceptor in organic-inorganic hybrid solar cell. To produce CuFeS2 nanocomposite, hydrothermal strategy was employed. The room-temperature XRD pattern approves the synthesized material as CuFeS2 with no phase impurity (JCPDS Card no: 37-0471). The elemental composition of the material was analyzed from the TEM-EDX data. The obtained selected area electron diffraction (SAED) planes harmonized with the XRD pattern of the synthesized product. Optical band gap (4.14 eV) of the composite from UV-Vis analysis depicts that the synthesized material is belonging to wide band gap semiconductor family. The HOMO (- 6.97 eV) and LUMO (- 2.93 eV) positions from electrochemical study reveal that there is a possibility of electron transfer from MEH-PPV to CuFeS2. The optical absorption and photoluminescence spectra of MEH-PPV:CuFeS2 (donor:acceptor) composite were recorded sequentially by varying weight ratios. The monotonic blue shifting of the absorption peak position indicated the interaction between donor and acceptor materials. The possibility of electron transfer from donor (MEH-PPV) to acceptor (CuFeS2) was approved with photoluminescence analysis. Subsequently, we have fabricated a hybrid solar cell by incorporating CuFeS2 nanocomposite with MEH-PPV in open atmosphere and obtained 0.3% power conversion efficiency.

  5. Hydrated Electron Transfer to Nucleobases in Aqueous Solutions Revealed by Ab Initio Molecular Dynamics Simulations.

    PubMed

    Zhao, Jing; Wang, Mei; Fu, Aiyun; Yang, Hongfang; Bu, Yuxiang

    2015-08-03

    We present an ab initio molecular dynamics (AIMD) simulation study into the transfer dynamics of an excess electron from its cavity-shaped hydrated electron state to a hydrated nucleobase (NB)-bound state. In contrast to the traditional view that electron localization at NBs (G/A/C/T), which is the first step for electron-induced DNA damage, is related only to dry or prehydrated electrons, and a fully hydrated electron no longer transfers to NBs, our AIMD simulations indicate that a fully hydrated electron can still transfer to NBs. We monitored the transfer dynamics of fully hydrated electrons towards hydrated NBs in aqueous solutions by using AIMD simulations and found that due to solution-structure fluctuation and attraction of NBs, a fully hydrated electron can transfer to a NB gradually over time. Concurrently, the hydrated electron cavity gradually reorganizes, distorts, and even breaks. The transfer could be completed in about 120-200 fs in four aqueous NB solutions, depending on the electron-binding ability of hydrated NBs and the structural fluctuation of the solution. The transferring electron resides in the π*-type lowest unoccupied molecular orbital of the NB, which leads to a hydrated NB anion. Clearly, the observed transfer of hydrated electrons can be attributed to the strong electron-binding ability of hydrated NBs over the hydrated electron cavity, which is the driving force, and the transfer dynamics is structure-fluctuation controlled. This work provides new insights into the evolution dynamics of hydrated electrons and provides some helpful information for understanding the DNA-damage mechanism in solution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Crystal growth, structure and characterization of p-Toluidinium picrate

    NASA Astrophysics Data System (ADS)

    Muthu, K.; Meenakshisundaram, Subbiah

    2012-08-01

    p-Toluidinium picrate (PTP), is a proton transfer complex of 2,4,6-trinitrophenol as an electron acceptor with p-toluidine as electron donor, crystallizing in the monoclinic system with four molecules in the unit cell (space group P21/c). The vibrational patterns of the organic crystal PTP in comparison with that of the parent compound clearly evidences the complex formation. Loss of hydroxyl proton at O1 leading to specific electron delocalization around C1 is observed. Crystallographic data are reported as a=12.9304(6) Å, b=15.7176(7) Å, c=7.5403(4) Å, β=101.837(5)°. The crystalline cohesion is achieved by N-H…O and C-H…O hydrogen bonds and the ions are linked into three dimensional network. Intermolecular hydrogen bonding between nitrogen of p-toluidine and phenolate ion of picric acid results in charge transfer. A sharp endotherm in the DSC curve, no decomposition up to the melting point and poor absorbance in the visible region indicate the suitability of the material for potential applications.

  7. Hierarchically Patterned Noncovalent Functionalization of 2D Materials by Controlled Langmuir-Schaefer Conversion.

    PubMed

    Davis, Tyson C; Bang, Jae Jin; Brooks, Jacob T; McMillan, David G; Claridge, Shelley A

    2018-01-30

    Noncovalent monolayer chemistries are often used to functionalize 2D materials. Nanoscopic ligand ordering has been widely demonstrated (e.g., lying-down lamellar phases of functional alkanes); however, combining this control with micro- and macroscopic patterning for practical applications remains a significant challenge. A few reports have demonstrated that standing phase Langmuir films on water can be converted into nanoscopic lying-down molecular domains on 2D substrates (e.g., graphite), using horizontal dipping (Langmuir-Schaefer, LS, transfer). Molecular patterns are known to form at scales up to millimeters in Langmuir films, suggesting the possibility of transforming such structures into functional patterns on 2D materials. However, to our knowledge, this approach has not been investigated, and the rules governing LS conversion are not well understood. In part, this is because the conversion process is mechanistically very different from classic LS transfer of standing phases; challenges also arise due to the need to characterize structure in noncovalently adsorbed ligand layers <0.5 nm thick, at scales ranging from millimeters to nanometers. Here, we show that scanning electron microscopy enables diynoic acid lying-down phases to be imaged across this range of scales; using this structural information, we establish conditions for LS conversion to create hierarchical microscopic and nanoscopic functional patterns. Such control opens the door to tailoring noncovalent surface chemistry of 2D materials to pattern local interactions with the environment.

  8. Electron transfer and conformational change in complexes of trimethylamine dehydrogenase and electron transferring flavoprotein.

    PubMed

    Jones, Matthew; Talfournier, Francois; Bobrov, Anton; Grossmann, J Günter; Vekshin, Nikolai; Sutcliffe, Michael J; Scrutton, Nigel S

    2002-03-08

    The trimethylamine dehydrogenase-electron transferring flavoprotein (TMADH.ETF) electron transfer complex has been studied by fluorescence and absorption spectroscopies. These studies indicate that a series of conformational changes occur during the assembly of the TMADH.ETF electron transfer complex and that the kinetics of assembly observed with mutant TMADH (Y442F/L/G) or ETF (alpha R237A) complexes are much slower than are the corresponding rates of electron transfer in these complexes. This suggests that electron transfer does not occur in the thermodynamically most favorable state (which takes too long to form), but that one or more metastable states (which are formed more rapidly) are competent in transferring electrons from TMADH to ETF. Additionally, fluorescence spectroscopy studies of the TMADH.ETF complex indicate that ETF undergoes a stable conformational change (termed structural imprinting) when it interacts transiently with TMADH to form a second, distinct, structural form. The mutant complexes compromise imprinting of ETF, indicating a dependence on the native interactions present in the wild-type complex. The imprinted form of semiquinone ETF exhibits an enhanced rate of electron transfer to the artificial electron acceptor, ferricenium. Overall molecular conformations as probed by small-angle x-ray scattering studies are indistinguishable for imprinted and non-imprinted ETF, suggesting that changes in structure likely involve confined reorganizations within the vicinity of the FAD. Our results indicate a series of conformational events occur during the assembly of the TMADH.ETF electron transfer complex, and that the properties of electron transfer proteins can be affected lastingly by transient interaction with their physiological redox partners. This may have significant implications for our understanding of biological electron transfer reactions in vivo, because ETF encounters TMADH at all times in the cell. Our studies suggest that caution needs to be exercised in extrapolating the properties of in vitro interprotein electron transfer reactions to those occurring in vivo.

  9. 31 CFR 208.3 - Payment by electronic funds transfer.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 2 2011-07-01 2011-07-01 false Payment by electronic funds transfer... DISBURSEMENTS § 208.3 Payment by electronic funds transfer. Subject to § 208.4, and notwithstanding any other... electronic funds transfer. ...

  10. 48 CFR 18.124 - Electronic funds transfer.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Electronic funds transfer. 18.124 Section 18.124 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION... Electronic funds transfer. Electronic funds transfer payments may be waived for acquisitions to support...

  11. 48 CFR 18.124 - Electronic funds transfer.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Electronic funds transfer. 18.124 Section 18.124 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION... Electronic funds transfer. Electronic funds transfer payments may be waived for acquisitions to support...

  12. 31 CFR 208.3 - Payment by electronic funds transfer.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 2 2012-07-01 2012-07-01 false Payment by electronic funds transfer... DISBURSEMENTS § 208.3 Payment by electronic funds transfer. Subject to § 208.4, and notwithstanding any other... electronic funds transfer. ...

  13. 48 CFR 18.123 - Electronic funds transfer.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Electronic funds transfer. 18.123 Section 18.123 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION... Electronic funds transfer. Electronic funds transfer payments may be waived for acquisitions to support...

  14. 48 CFR 18.124 - Electronic funds transfer.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Electronic funds transfer. 18.124 Section 18.124 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION... Electronic funds transfer. Electronic funds transfer payments may be waived for acquisitions to support...

  15. 48 CFR 18.124 - Electronic funds transfer.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Electronic funds transfer. 18.124 Section 18.124 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION... Electronic funds transfer. Electronic funds transfer payments may be waived for acquisitions to support...

  16. Mechanistic Insights into the Oxidation of Substituted Phenols via Hydrogen Atom Abstraction by a Cupric–Superoxo Complex

    PubMed Central

    2015-01-01

    To obtain mechanistic insights into the inherent reactivity patterns for copper(I)–O2 adducts, a new cupric–superoxo complex [(DMM-tmpa)CuII(O2•–)]+ (2) [DMM-tmpa = tris((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)amine] has been synthesized and studied in phenol oxidation–oxygenation reactions. Compound 2 is characterized by UV–vis, resonance Raman, and EPR spectroscopies. Its reactions with a series of para-substituted 2,6-di-tert-butylphenols (p-X-DTBPs) afford 2,6-di-tert-butyl-1,4-benzoquinone (DTBQ) in up to 50% yields. Significant deuterium kinetic isotope effects and a positive correlation of second-order rate constants (k2) compared to rate constants for p-X-DTBPs plus cumylperoxyl radical reactions indicate a mechanism that involves rate-limiting hydrogen atom transfer (HAT). A weak correlation of (kBT/e) ln k2 versus Eox of p-X-DTBP indicates that the HAT reactions proceed via a partial transfer of charge rather than a complete transfer of charge in the electron transfer/proton transfer pathway. Product analyses, 18O-labeling experiments, and separate reactivity employing the 2,4,6-tri-tert-butylphenoxyl radical provide further mechanistic insights. After initial HAT, a second molar equiv of 2 couples to the phenoxyl radical initially formed, giving a CuII–OO–(ArO′) intermediate, which proceeds in the case of p-OR-DTBP substrates via a two-electron oxidation reaction involving hydrolysis steps which liberate H2O2 and the corresponding alcohol. By contrast, four-electron oxygenation (O–O cleavage) mainly occurs for p-R-DTBP which gives 18O-labeled DTBQ and elimination of the R group. PMID:24953129

  17. Single-walled carbon nanotubes/polymer composite electrodes patterned directly from solution.

    PubMed

    Chang, Jingbo; Najeeb, Choolakadavil Khalid; Lee, Jae-Hyeok; Kim, Jae-Ho

    2011-06-07

    This work describes a simple technique for direct patterning of single-walled carbon nanotube (SWNT)/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) composite electrodes in a large area on a substrate based on the solution transfer process by microcontact printing using poly(dimethylsiloxane) (PDMS) stamps. Various shapes of SWNT/PEDOT-PSS composite patterns, such as line, circle, and square, can be easily fabricated with high pattern fidelity and structural integrity. The single parallel line pattern device exhibits high electrical conductivity (0.75 × 10(5) S/m) and electronic stability because of alignment of nanotubes and big-size SWNT bundles (∼5 nm). The electromechanical study reveals that the composite patterns show ∼1% resistance change along SWNT alignment direction and ∼5% resistance change along vertical alignment direction after 200 bend cycles. Our approach provides a facile, low-cost method to pattern transparent conductive SWNT/polymer composite electrodes and demonstrates a novel platform for future integration of conducting SWNT/polymer composite patterns for optoelectronic applications.

  18. Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles

    PubMed Central

    Tvrdy, Kevin; Frantsuzov, Pavel A.; Kamat, Prashant V.

    2011-01-01

    Quantum dot-metal oxide junctions are an integral part of next-generation solar cells, light emitting diodes, and nanostructured electronic arrays. Here we present a comprehensive examination of electron transfer at these junctions, using a series of CdSe quantum dot donors (sizes 2.8, 3.3, 4.0, and 4.2 nm in diameter) and metal oxide nanoparticle acceptors (SnO2, TiO2, and ZnO). Apparent electron transfer rate constants showed strong dependence on change in system free energy, exhibiting a sharp rise at small driving forces followed by a modest rise further away from the characteristic reorganization energy. The observed trend mimics the predicted behavior of electron transfer from a single quantum state to a continuum of electron accepting states, such as those present in the conduction band of a metal oxide nanoparticle. In contrast with dye-sensitized metal oxide electron transfer studies, our systems did not exhibit unthermalized hot-electron injection due to relatively large ratios of electron cooling rate to electron transfer rate. To investigate the implications of these findings in photovoltaic cells, quantum dot-metal oxide working electrodes were constructed in an identical fashion to the films used for the electron transfer portion of the study. Interestingly, the films which exhibited the fastest electron transfer rates (SnO2) were not the same as those which showed the highest photocurrent (TiO2). These findings suggest that, in addition to electron transfer at the quantum dot-metal oxide interface, other electron transfer reactions play key roles in the determination of overall device efficiency. PMID:21149685

  19. Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles.

    PubMed

    Tvrdy, Kevin; Frantsuzov, Pavel A; Kamat, Prashant V

    2011-01-04

    Quantum dot-metal oxide junctions are an integral part of next-generation solar cells, light emitting diodes, and nanostructured electronic arrays. Here we present a comprehensive examination of electron transfer at these junctions, using a series of CdSe quantum dot donors (sizes 2.8, 3.3, 4.0, and 4.2 nm in diameter) and metal oxide nanoparticle acceptors (SnO(2), TiO(2), and ZnO). Apparent electron transfer rate constants showed strong dependence on change in system free energy, exhibiting a sharp rise at small driving forces followed by a modest rise further away from the characteristic reorganization energy. The observed trend mimics the predicted behavior of electron transfer from a single quantum state to a continuum of electron accepting states, such as those present in the conduction band of a metal oxide nanoparticle. In contrast with dye-sensitized metal oxide electron transfer studies, our systems did not exhibit unthermalized hot-electron injection due to relatively large ratios of electron cooling rate to electron transfer rate. To investigate the implications of these findings in photovoltaic cells, quantum dot-metal oxide working electrodes were constructed in an identical fashion to the films used for the electron transfer portion of the study. Interestingly, the films which exhibited the fastest electron transfer rates (SnO(2)) were not the same as those which showed the highest photocurrent (TiO(2)). These findings suggest that, in addition to electron transfer at the quantum dot-metal oxide interface, other electron transfer reactions play key roles in the determination of overall device efficiency.

  20. Modular electron transfer circuits for synthetic biology

    PubMed Central

    Agapakis, Christina M

    2010-01-01

    Electron transfer is central to a wide range of essential metabolic pathways, from photosynthesis to fermentation. The evolutionary diversity and conservation of proteins that transfer electrons makes these pathways a valuable platform for engineered metabolic circuits in synthetic biology. Rational engineering of electron transfer pathways containing hydrogenases has the potential to lead to industrial scale production of hydrogen as an alternative source of clean fuel and experimental assays for understanding the complex interactions of multiple electron transfer proteins in vivo. We designed and implemented a synthetic hydrogen metabolism circuit in Escherichia coli that creates an electron transfer pathway both orthogonal to and integrated within existing metabolism. The design of such modular electron transfer circuits allows for facile characterization of in vivo system parameters with applications toward further engineering for alternative energy production. PMID:21468209

  1. Electrochemical control over photoinduced electron transfer and trapping in CdSe-CdTe quantum-dot solids.

    PubMed

    Boehme, Simon C; Walvis, T Ardaan; Infante, Ivan; Grozema, Ferdinand C; Vanmaekelbergh, Daniël; Siebbeles, Laurens D A; Houtepen, Arjan J

    2014-07-22

    Understanding and controlling charge transfer between different kinds of colloidal quantum dots (QDs) is important for devices such as light-emitting diodes and solar cells and for thermoelectric applications. Here we study photoinduced electron transfer between CdTe and CdSe QDs in a QD film. We find that very efficient electron trapping in CdTe QDs obstructs electron transfer to CdSe QDs under most conditions. Only the use of thiol ligands results in somewhat slower electron trapping; in this case the competition between trapping and electron transfer results in a small fraction of electrons being transferred to CdSe. However, we demonstrate that electron trapping can be controlled and even avoided altogether by using the unique combination of electrochemistry and transient absorption spectroscopy. When the Fermi level is raised electrochemically, traps are filled with electrons and electron transfer from CdTe to CdSe QDs occurs with unity efficiency. These results show the great importance of knowing and controlling the Fermi level in QD films and open up the possibility of studying the density of trap states in QD films as well as the systematic investigation of the intrinsic electron transfer rates in donor-acceptor films.

  2. Overview of microoptics: Past, present, and future

    NASA Technical Reports Server (NTRS)

    Veldkamp, Wilfrid B.

    1993-01-01

    Through advances in semiconductor miniaturization technology, microrelief patterns, with characteristic dimensions as small as the wavelength of light, can now be mass reproduced to form high-quality and low-cost optical components. In a unique example of technology transfer, from electronics to optics, this capability is allowing optics designers to create innovative optical components that promise to solve key problems in optical sensors, optical communication channels, and optical processors.

  3. Charge Separation and Triplet Exciton Formation Pathways in Small-Molecule Solar Cells as Studied by Time-Resolved EPR Spectroscopy

    DOE PAGES

    Thomson, Stuart A. J.; Niklas, Jens; Mardis, Kristy L.; ...

    2017-09-13

    Organic solar cells are a promising renewable energy technology, offering the advantages of mechanical flexibility and solution processability. An understanding of the electronic excited states and charge separation pathways in these systems is crucial if efficiencies are to be further improved. Here we use light induced electron paramagnetic resonance (LEPR) spectroscopy and density functional theory calculations (DFT) to study the electronic excited states, charge transfer (CT) dynamics and triplet exciton formation pathways in blends of the small molecule donors (DTS(FBTTh 2) 2, DTS(F2BTTh 2) 2, DTS(PTTh 2) 2, DTG(FBTTh 2) 2 and DTG(F2BTTh 2) 2) with the fullerene derivative PCmore » 61BM. Using high frequency EPR the g-tensor of the positive polaron on the donor molecules was determined. The experimental results are compared with DFT calculations which reveal that the spin density of the polaron is distributed over a dimer or trimer. Time-resolved EPR (TR-EPR) spectra attributed to singlet CT states were identified and the polarization patterns revealed similar charge separation dynamics in the four fluorobenzothiadiazole donors, while charge separation in the DTS(PTTh 2) 2 blend is slower. Using TR-EPR we also investigated the triplet exciton formation pathways in the blend. The polarization patterns reveal that the excitons originate from both intersystem crossing (ISC) and back electron transfer (BET) processes. The DTS(PTTh 2) 2 blend was found to contain substantially more triplet excitons formed by BET than the fluorobenzothiadiazole blends. As a result, the higher BET triplet exciton population in the DTS(PTTh 2) 2 blend is in accordance with the slower charge separation dynamics observed in this blend.« less

  4. Charge Separation and Triplet Exciton Formation Pathways in Small Molecule Solar Cells as Studied by Time-resolved EPR Spectroscopy.

    PubMed

    Thomson, Stuart A J; Niklas, Jens; Mardis, Kristy L; Mallares, Christopher; Samuel, Ifor D W; Poluektov, Oleg G

    2017-10-19

    Organic solar cells are a promising renewable energy technology, offering the advantages of mechanical flexibility and solution processability. An understanding of the electronic excited states and charge separation pathways in these systems is crucial if efficiencies are to be further improved. Here we use light induced electron paramagnetic resonance (LEPR) spectroscopy and density functional theory calculations (DFT) to study the electronic excited states, charge transfer (CT) dynamics and triplet exciton formation pathways in blends of the small molecule donors (DTS(FBTTh 2 ) 2 , DTS(F 2 BTTh 2 ) 2 , DTS(PTTh 2 ) 2 , DTG(FBTTh 2 ) 2 and DTG(F 2 BTTh 2 ) 2 ) with the fullerene derivative PC 61 BM. Using high frequency EPR the g-tensor of the positive polaron on the donor molecules was determined. The experimental results are compared with DFT calculations which reveal that the spin density of the polaron is distributed over a dimer or trimer. Time-resolved EPR (TR-EPR) spectra attributed to singlet CT states were identified and the polarization patterns revealed similar charge separation dynamics in the four fluorobenzothiadiazole donors, while charge separation in the DTS(PTTh 2 ) 2 blend is slower. Using TR-EPR we also investigated the triplet exciton formation pathways in the blend. The polarization patterns reveal that the excitons originate from both intersystem crossing (ISC) and back electron transfer (BET) processes. The DTS(PTTh 2 ) 2 blend was found to contain substantially more triplet excitons formed by BET than the fluorobenzothiadiazole blends. The higher BET triplet exciton population in the DTS(PTTh 2 ) 2 blend is in accordance with the slower charge separation dynamics observed in this blend.

  5. Charge Separation and Triplet Exciton Formation Pathways in Small-Molecule Solar Cells as Studied by Time-Resolved EPR Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomson, Stuart A. J.; Niklas, Jens; Mardis, Kristy L.

    Organic solar cells are a promising renewable energy technology, offering the advantages of mechanical flexibility and solution processability. An understanding of the electronic excited states and charge separation pathways in these systems is crucial if efficiencies are to be further improved. Here we use light induced electron paramagnetic resonance (LEPR) spectroscopy and density functional theory calculations (DFT) to study the electronic excited states, charge transfer (CT) dynamics and triplet exciton formation pathways in blends of the small molecule donors (DTS(FBTTh 2) 2, DTS(F2BTTh 2) 2, DTS(PTTh 2) 2, DTG(FBTTh 2) 2 and DTG(F2BTTh 2) 2) with the fullerene derivative PCmore » 61BM. Using high frequency EPR the g-tensor of the positive polaron on the donor molecules was determined. The experimental results are compared with DFT calculations which reveal that the spin density of the polaron is distributed over a dimer or trimer. Time-resolved EPR (TR-EPR) spectra attributed to singlet CT states were identified and the polarization patterns revealed similar charge separation dynamics in the four fluorobenzothiadiazole donors, while charge separation in the DTS(PTTh 2) 2 blend is slower. Using TR-EPR we also investigated the triplet exciton formation pathways in the blend. The polarization patterns reveal that the excitons originate from both intersystem crossing (ISC) and back electron transfer (BET) processes. The DTS(PTTh 2) 2 blend was found to contain substantially more triplet excitons formed by BET than the fluorobenzothiadiazole blends. As a result, the higher BET triplet exciton population in the DTS(PTTh 2) 2 blend is in accordance with the slower charge separation dynamics observed in this blend.« less

  6. Hot-electron transfer in quantum-dot heterojunction films.

    PubMed

    Grimaldi, Gianluca; Crisp, Ryan W; Ten Brinck, Stephanie; Zapata, Felipe; van Ouwendorp, Michiko; Renaud, Nicolas; Kirkwood, Nicholas; Evers, Wiel H; Kinge, Sachin; Infante, Ivan; Siebbeles, Laurens D A; Houtepen, Arjan J

    2018-06-13

    Thermalization losses limit the photon-to-power conversion of solar cells at the high-energy side of the solar spectrum, as electrons quickly lose their energy relaxing to the band edge. Hot-electron transfer could reduce these losses. Here, we demonstrate fast and efficient hot-electron transfer between lead selenide and cadmium selenide quantum dots assembled in a quantum-dot heterojunction solid. In this system, the energy structure of the absorber material and of the electron extracting material can be easily tuned via a variation of quantum-dot size, allowing us to tailor the energetics of the transfer process for device applications. The efficiency of the transfer process increases with excitation energy as a result of the more favorable competition between hot-electron transfer and electron cooling. The experimental picture is supported by time-domain density functional theory calculations, showing that electron density is transferred from lead selenide to cadmium selenide quantum dots on the sub-picosecond timescale.

  7. Electron-transfer oxidation properties of DNA bases and DNA oligomers.

    PubMed

    Fukuzumi, Shunichi; Miyao, Hiroshi; Ohkubo, Kei; Suenobu, Tomoyoshi

    2005-04-21

    Kinetics for the thermal and photoinduced electron-transfer oxidation of a series of DNA bases with various oxidants having the known one-electron reduction potentials (E(red)) in an aqueous solution at 298 K were examined, and the resulting electron-transfer rate constants (k(et)) were evaluated in light of the free energy relationship of electron transfer to determine the one-electron oxidation potentials (E(ox)) of DNA bases and the intrinsic barrier of the electron transfer. Although the E(ox) value of GMP at pH 7 is the lowest (1.07 V vs SCE) among the four DNA bases, the highest E(ox) value (CMP) is only 0.19 V higher than that of GMP. The selective oxidation of GMP in the thermal electron-transfer oxidation of GMP results from a significant decrease in the pH dependent oxidation potential due to the deprotonation of GMP*+. The one-electron reduced species of the photosensitizer produced by photoinduced electron transfer are observed as the transient absorption spectra when the free energy change of electron transfer is negative. The rate constants of electron-transfer oxidation of the guanine moieties in DNA oligomers with Fe(bpy)3(3+) and Ru(bpy)3(3+) were also determined using DNA oligomers containing different guanine (G) sequences from 1 to 10 G. The rate constants of electron-transfer oxidation of the guanine moieties in single- and double-stranded DNA oligomers with Fe(bpy)3(2+) and Ru(bpy)3(3+) are dependent on the number of sequential guanine molecules as well as on pH.

  8. 14 CFR 1274.931 - Electronic funds transfer payment methods.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Electronic funds transfer payment methods... COOPERATIVE AGREEMENTS WITH COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.931 Electronic funds transfer payment methods. Electronic Funds Transfer Payment Methods July 2002 Payments under this...

  9. 77 FR 40459 - Electronic Fund Transfers (Regulation E); Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ... Electronic Fund Transfers (Regulation E); Correction AGENCY: Bureau of Consumer Financial Protection. ACTION... published the Final Rule (77 FR 6194), which implements the Electronic Fund Transfer Act, and the official... Sec. 1005.3(a) in the interim final rule, Electronic Fund Transfers (Regulation E), published on...

  10. 14 CFR 1274.931 - Electronic funds transfer payment methods.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Electronic funds transfer payment methods... COOPERATIVE AGREEMENTS WITH COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.931 Electronic funds transfer payment methods. Electronic Funds Transfer Payment Methods July 2002 Payments under this...

  11. Method for nanomachining high aspect ratio structures

    DOEpatents

    Yun, Wenbing; Spence, John; Padmore, Howard A.; MacDowell, Alastair A.; Howells, Malcolm R.

    2004-11-09

    A nanomachining method for producing high-aspect ratio precise nanostructures. The method begins by irradiating a wafer with an energetic charged-particle beam. Next, a layer of patterning material is deposited on one side of the wafer and a layer of etch stop or metal plating base is coated on the other side of the wafer. A desired pattern is generated in the patterning material on the top surface of the irradiated wafer using conventional electron-beam lithography techniques. Lastly, the wafer is placed in an appropriate chemical solution that produces a directional etch of the wafer only in the area from which the resist has been removed by the patterning process. The high mechanical strength of the wafer materials compared to the organic resists used in conventional lithography techniques with allows the transfer of the precise patterns into structures with aspect ratios much larger than those previously achievable.

  12. Nuclear conversion theory: molecular hydrogen in non-magnetic insulators

    PubMed Central

    Ghiglieno, Filippo

    2016-01-01

    The hydrogen conversion patterns on non-magnetic solids sensitively depend upon the degree of singlet/triplet mixing in the intermediates of the catalytic reaction. Three main ‘symmetry-breaking’ interactions are brought together. In a typical channel, the electron spin–orbit (SO) couplings introduce some magnetic excitations in the non-magnetic solid ground state. The electron spin is exchanged with a molecular one by the electric molecule–solid electron repulsion, mixing the bonding and antibonding states and affecting the molecule rotation. Finally, the magnetic hyperfine contact transfers the electron spin angular momentum to the nuclei. Two families of channels are considered and a simple criterion based on the SO coupling strength is proposed to select the most efficient one. The denoted ‘electronic’ conversion path involves an emission of excitons that propagate and disintegrate in the bulk. In the other denoted ‘nuclear’, the excited electron states are transients of a loop, and the electron system returns to its fundamental ground state. The described model enlarges previous studies by extending the electron basis to charge-transfer states and ‘continui’ of band states, and focuses on the broadening of the antibonding molecular excited state by the solid conduction band that provides efficient tunnelling paths for the hydrogen conversion. After working out the general conversion algebra, the conversion rates of hydrogen on insulating and semiconductor solids are related to a few molecule–solid parameters (gap width, ionization and affinity potentials) and compared with experimental measures. PMID:27703681

  13. Characterization of TEM Moiré Patterns Originating from Two Monolayer Graphenes Grown on the Front and Back Sides of a Copper Substrate by CVD Method

    NASA Astrophysics Data System (ADS)

    Yamazaki, Kenji; Maehara, Yosuke; Gohara, Kazutoshi

    2018-06-01

    The number of layers affects the electronic properties of graphene owing to its unique band structure, called the Dirac corn. Raman spectroscopy is a key diagnostic tool for identifying the number of graphene layers and for determining their physical properties. Here, we observed moiré structures in transmission electron microscopy (TEM) observations; these are signature patterns in multilayer, although Raman spectra showed the typical intensity of the 2D/G peak in the monolayer. We also performed a multi-slice TEM image simulation to compare the 3D atomic structures of the two graphene membranes with experimental TEM images. We found that the experimental moiré image was constructed with a 9-12 Å interlayer distance between graphene membranes. This structure was constructed by transferring CVD-grown graphene films that formed on both sides of the Cu substrate at once.

  14. Electron-beam patterned self-assembled monolayers as templates for Cu electrodeposition and lift-off.

    PubMed

    She, Zhe; Difalco, Andrea; Hähner, Georg; Buck, Manfred

    2012-01-01

    Self-assembled monolayers (SAMs) of 4'-methylbiphenyl-4-thiol (MBP0) adsorbed on polycrystalline gold substrates served as templates to control electrochemical deposition of Cu structures from acidic solution, and enabled the subsequent lift-off of the metal structures by attachment to epoxy glue. By exploiting the negative-resist behaviour of MBP0, the SAM was patterned by means of electron-beam lithography. For high deposition contrast a two-step procedure was employed involving a nucleation phase around -0.7 V versus Cu(2+)/Cu and a growth phase at around -0.35 V versus Cu(2+)/Cu. Structures with features down to 100 nm were deposited and transferred with high fidelity. By using substrates with different surface morphologies, AFM measurements revealed that the roughness of the substrate is a crucial factor but not the only one determining the roughness of the copper surface that is exposed after lift-off.

  15. 14 CFR § 1260.69 - Electronic funds transfer payment methods.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Electronic funds transfer payment methods... GRANTS AND COOPERATIVE AGREEMENTS General Special Conditions § 1260.69 Electronic funds transfer payment methods. Electronic Funds Transfer Payment Methods October 2000 (a) Payments under this grant will be made...

  16. 14 CFR 1260.69 - Electronic funds transfer payment methods.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Electronic funds transfer payment methods... COOPERATIVE AGREEMENTS General Special Conditions § 1260.69 Electronic funds transfer payment methods. Electronic Funds Transfer Payment Methods October 2000 (a) Payments under this grant will be made by the...

  17. 14 CFR 1260.69 - Electronic funds transfer payment methods.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Electronic funds transfer payment methods... COOPERATIVE AGREEMENTS General Special Conditions § 1260.69 Electronic funds transfer payment methods. Electronic Funds Transfer Payment Methods October 2000 (a) Payments under this grant will be made by the...

  18. 14 CFR 1260.69 - Electronic funds transfer payment methods.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Electronic funds transfer payment methods... COOPERATIVE AGREEMENTS General Special Conditions § 1260.69 Electronic funds transfer payment methods. Electronic Funds Transfer Payment Methods October 2000 (a) Payments under this grant will be made by the...

  19. The influence of dielectric relaxation on intramolecular electron transfer

    NASA Astrophysics Data System (ADS)

    Heitele, H.; Michel-Beyerle, M. E.; Finckh, P.

    1987-07-01

    An unusually strong temperature dependence on the intramolecular electron-transfer rate has been observed for bridged donor-acceptor compounds in propylene glycol solution. In the frame of recent electron-transfer theories this effect reflects the influence of dielectric relaxation dynamics on electron transfer. With increasing dielectric relaxation time a smooth transition from non-adiabatic to solvent-controlled adiabatic behaviour is observed. The electron transfer rate in the solvent-controlled adiabatic limit is dominated by an inhomogeneous distribution of relaxation times.

  20. How does tunneling contribute to counterintuitive H-abstraction reactivity of nonheme Fe(IV)O oxidants with alkanes?

    PubMed

    Mandal, Debasish; Ramanan, Rajeev; Usharani, Dandamudi; Janardanan, Deepa; Wang, Binju; Shaik, Sason

    2015-01-21

    This article addresses the intriguing hydrogen-abstraction (H-abstraction) and oxygen-transfer (O-transfer) reactivity of a series of nonheme [Fe(IV)(O)(TMC)(Lax)](z+) complexes, with a tetramethyl cyclam ligand and a variable axial ligand (Lax), toward three substrates: 1,4-cyclohexadiene, 9,10-dihydroanthracene, and triphenyl phosphine. Experimentally, O-transfer-reactivity follows the relative electrophilicity of the complexes, whereas the corresponding H-abstraction-reactivity generally increases as the axial ligand becomes a better electron donor, hence exhibiting an antielectrophilic trend. Our theoretical results show that the antielectrophilic trend in H-abstraction is affected by tunneling contributions. Room-temperature tunneling increases with increase of the electron donation power of the axial-ligand, and this reverses the natural electrophilic trend, as revealed through calculations without tunneling, and leads to the observed antielectrophilic trend. By contrast, O-transfer-reactivity, not being subject to tunneling, retains an electrophilic-dependent reactivity trend, as revealed experimentally and computationally. Tunneling-corrected kinetic-isotope effect (KIE) calculations matched the experimental KIE values only if all of the H-abstraction reactions proceeded on the quintet state (S = 2) surface. As such, the present results corroborate the initially predicted two-state reactivity (TSR) scenario for these reactions. The increase of tunneling with the electron-releasing power of the axial ligand, and the reversal of the "natural" reactivity pattern, support the "tunneling control" hypothesis (Schreiner et al., ref 19). Should these predictions be corroborated, the entire field of C-H bond activation in bioinorganic chemistry would lay open to reinvestigation.

  1. Triboelectricity: macroscopic charge patterns formed by self-arraying ions on polymer surfaces.

    PubMed

    Burgo, Thiago A L; Ducati, Telma R D; Francisco, Kelly R; Clinckspoor, Karl J; Galembeck, Fernando; Galembeck, Sergio E

    2012-05-15

    Tribocharged polymers display macroscopically patterned positive and negative domains, verifying the fractal geometry of electrostatic mosaics previously detected by electric probe microscopy. Excess charge on contacting polyethylene (PE) and polytetrafluoroethylene (PTFE) follows the triboelectric series but with one caveat: net charge is the arithmetic sum of patterned positive and negative charges, as opposed to the usual assumption of uniform but opposite signal charging on each surface. Extraction with n-hexane preferentially removes positive charges from PTFE, while 1,1-difluoroethane and ethanol largely remove both positive and negative charges. Using suitable analytical techniques (electron energy-loss spectral imaging, infrared microspectrophotometry and carbonization/colorimetry) and theoretical calculations, the positive species were identified as hydrocarbocations and the negative species were identified as fluorocarbanions. A comprehensive model is presented for PTFE tribocharging with PE: mechanochemical chain homolytic rupture is followed by electron transfer from hydrocarbon free radicals to the more electronegative fluorocarbon radicals. Polymer ions self-assemble according to Flory-Huggins theory, thus forming the experimentally observed macroscopic patterns. These results show that tribocharging can only be understood by considering the complex chemical events triggered by mechanical action, coupled to well-established physicochemical concepts. Patterned polymers can be cut and mounted to make macroscopic electrets and multipoles.

  2. Exploring routes to tailor the physical and chemical properties of oxides via doping: an STM study

    NASA Astrophysics Data System (ADS)

    Nilius, Niklas

    2015-08-01

    Doping opens fascinating possibilities for tailoring the electronic, optical, magnetic, and chemical properties of oxides. The dopants perturb the intrinsic behavior of the material by generating charge centers for electron transfer into adsorbates, by inducing new energy levels for electronic and optical excitations, and by altering the surface morphology and hence the adsorption and reactivity pattern. Despite a vivid scientific interest, knowledge on doped oxides is limited when compared to semiconductors, which reflects the higher complexity and the insulating nature of many oxides. In fact, atomic-scale studies, aiming at a mechanistic understanding of dopant-related processes, are still scarce. In this article, we review our scanning tunneling microscopy (STM) experiments on thin, crystalline oxide films with a defined doping level. We demonstrate how the impurities alter the surface morphology and produce cationic/anionic vacancies in order to keep the system charge neutral. We discuss how individual dopants can be visualized in the lattice, even if they reside in subsurface layers. By means of STM-conductance and x-ray photoelectron spectroscopy, we determine the electronic impact of dopants, including the energies of their eigen states and local band-bending effects in the host oxide. Electronic transitions between dopant-induced gap states give rise to new optical modes, as detected with STM luminescence spectroscopy. From a chemical perspective, dopants are introduced to improve the redox potential of oxide materials. Electron transfer from Mo-donors, for example, alters the growth behavior of gold and activates O2 molecules on a wide-gap CaO surface. Such results demonstrate the enormous potential of doped oxides in heterogeneous catalysis. Our experiments address the issue of doping from a fundamental viewpoint, posing questions on the lattice position, charge state, and electron-transfer potential of the impurity ions. Whether doped oxides are suitable to catalyze surface reactions needs to be explored in more applied studies in the future.

  3. 12 CFR 205.15 - Electronic fund transfer of government benefits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 2 2011-01-01 2011-01-01 false Electronic fund transfer of government benefits. 205.15 Section 205.15 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.15 Electronic fund transfer of government...

  4. 12 CFR 1005.3 - Coverage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...-time electronic fund transfer from a consumer's account. The consumer must authorize the transfer. (ii... one-time electronic fund transfer (in providing a check to a merchant or other payee for the MICR... transfer. A consumer authorizes a one-time electronic fund transfer from his or her account to pay the fee...

  5. Communication: Identification of daughter ions through their electronic spectroscopy at low temperature

    NASA Astrophysics Data System (ADS)

    Dedonder, Claude; Féraud, Géraldine; Jouvet, Christophe

    2014-10-01

    We present experimental results on photofragmentation of cooled fragments issued from the photofragmentation of cold parent ions. The cooling of the daughter ions at a few K allows its characterization not only through its fragmentation pattern but also through its well resolved electronic spectroscopy. The proof of principle of the method is demonstrated on the photofragment resulting from Cα-Cβ bond rupture in protonated tyrosine (TyrH+). The analysis of the daughter ion (m/z 108) photofragmentation spectrum is in agreement with the proposed mechanism implying a proton transfer to the phenyl ring as the first step of the fragmentation mechanism of TyrH+.

  6. Process margin enhancement for 0.25-μm metal etch process

    NASA Astrophysics Data System (ADS)

    Lee, Chung Y.; Ma, Wei Wen; Lim, Eng H.; Cheng, Alex T.; Joy, Raymond; Ross, Matthew F.; Wong, Selmer S.; Marlowe, Trey

    2000-06-01

    This study evaluates electron beam stabilization of UV6, a positive tone Deep-UV (DUV) resist from Shipley, for a 0.25 micrometer metal etch application. Results are compared between untreated resist and resist treated with different levels of electron beam stabilization. The electron beam processing was carried out in an ElectronCureTM flood electron beam exposure system from Honeywell International Inc., Electron Vision. The ElectronCureTM system utilizes a flood electron beam source which is larger in diameter than the substrate being processed, and is capable of variable energy so that the electron range is matched to the resist film thickness. Changes in the UV6 resist material as a result of the electron beam stabilization are monitored via spectroscopic ellipsometry for film thickness and index of refraction changes and FTIR for analysis of chemical changes. Thermal flow stability is evaluated by applying hot plate bakes of 150 degrees Celsius and 200 degrees Celsius, to patterned resist wafers with no treatment and with an electron beam dose level of 2000 (mu) C/cm2. A significant improvement in the thermal flow stability of the patterned UV6 resist features is achieved with the electron beam stabilization process. Etch process performance of the UV6 resist was evaluated by performing a metal pattern transfer process on wafers with untreated resist and comparing these with etch results on wafers with different levels of electron beam stabilization. The etch processing was carried out in an Applied Materials reactor with an etch chemistry including BCl3 and Cl2. All wafers were etched under the same conditions and the resist was treated after etch to prevent further erosion after etch but before SEM analysis. Post metal etch SEM cross-sections show the enhancement in etch resistance provided by the electron beam stabilization process. Enhanced process margin is achieved as a result of the improved etch resistance, and is observed in reduced resist side-wall angles after etch. Only a slight improvement is observed in the isolated to dense bias effects of the etch process. Improved CD control is also achieved by applying the electron beam process, as more consistent CDs are observed after etch.

  7. Generation of Viable Cell and Biomaterial Patterns by Laser Transfer

    NASA Astrophysics Data System (ADS)

    Ringeisen, Bradley

    2001-03-01

    In order to fabricate and interface biological systems for next generation applications such as biosensors, protein recognition microarrays, and engineered tissues, it is imperative to have a method of accurately and rapidly depositing different active biomaterials in patterns or layered structures. Ideally, the biomaterial structures would also be compatible with many different substrates including technologically relevant platforms such as electronic circuits or various detection devices. We have developed a novel laser-based technique, termed matrix assisted pulsed laser evaporation direct write (MAPLE DW), that is able to direct write patterns and three-dimensional structures of numerous biologically active species ranging from proteins and antibodies to living cells. Specifically, we have shown that MAPLE DW is capable of forming mesoscopic patterns of living prokaryotic cells (E. coli bacteria), living mammalian cells (Chinese hamster ovaries), active proteins (biotinylated bovine serum albumin, horse radish peroxidase), and antibodies specific to a variety of classes of cancer related proteins including intracellular and extracellular matrix proteins, signaling proteins, cell cycle proteins, growth factors, and growth factor receptors. In addition, patterns of viable cells and active biomolecules were deposited on different substrates including metals, semiconductors, nutrient agar, and functionalized glass slides. We will present an explanation of the laser-based transfer mechanism as well as results from our recent efforts to fabricate protein recognition microarrays and tissue-based microfluidic networks.

  8. Nanoparticle Selective Laser Processing for a Flexible Display Fabrication

    NASA Astrophysics Data System (ADS)

    Seung Hwan Ko,; Heng Pan,; Daeho Lee,; Costas P. Grigoropoulos,; Hee K. Park,

    2010-05-01

    To demonstrate a first step for a novel fabrication method of a flexible display, nanomaterial based laser processing schemes to demonstrate organic light emitting diode (OLED) pixel transfer and organic field effect transistor (OFET) fabrication on a polymer substrate without using any conventional vacuum or photolithography processes were developed. The unique properties of nanomaterials allow laser induced forward transfer of organic light emitting material at low laser energy while maintaining good fluorescence and also allow high resolution transistor electrode patterning at plastic compatible low temperature. These novel processes enable an environmentally friendly and cost effective process as well as a low temperature manufacturing sequence to realize inexpensive, large area, flexible electronics on polymer substrates.

  9. Quantitative measurements of magnetic vortices using position resolved diffraction in Lorentz STEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaluzec, N. J.

    2002-03-05

    A number of electron column techniques have been developed over the last forty years to permit visualization of magnetic fields in specimens. These include: Fresnel imaging, Differential Phase Contrast, Electron Holography and Lorentz STEM. In this work we have extended the LSTEM methodology using Position Resolved Diffraction (PRD) to quantitatively measure the in-plane electromagnetic fields of thin film materials. The experimental work reported herein has been carried out using the ANL AAEM HB603Z 300 kV FEG instrument 5. In this instrument, the electron optical column was operated in a zero field mode, at the specimen, where the objective lens ismore » turned off and the probe forming lens functions were reallocated to the C1, C2, and C3 lenses. Post specimen lenses (P1, P2, P3, P4) were used to magnify the transmitted electrons to a YAG screen, which was then optically transferred to a Hamamatsu ORCA ER CCD array. This CCD was interfaced to an EmiSpec Data Acquisition System and the data was subsequently transferred to an external computer system for detailed quantitative analysis. In Position Resolved Diffraction mode, we digitally step a focused electron probe across the region of interest of the specimen while at the same time recording the complete diffraction pattern at each point in the scan.« less

  10. Plasmonic integrated circuits comprising metal waveguides, multiplexer/demultiplexer, detectors, and logic circuits on a silicon substrate

    NASA Astrophysics Data System (ADS)

    Fukuda, M.; Ota, M.; Sumimura, A.; Okahisa, S.; Ito, M.; Ishii, Y.; Ishiyama, T.

    2017-05-01

    A plasmonic integrated circuit configuration comprising plasmonic and electronic components is presented and the feasibility for high-speed signal processing applications is discussed. In integrated circuits, plasmonic signals transmit data at high transfer rates with light velocity. Plasmonic and electronic components such as wavelength-divisionmultiplexing (WDM) networks comprising metal wires, plasmonic multiplexers/demultiplexers, and crossing metal wires are connected via plasmonic waveguides on the nanometer or micrometer scales. To merge plasmonic and electronic components, several types of plasmonic components were developed. To ensure that the plasmonic components could be easily fabricated and monolithically integrated onto a silicon substrate using silicon complementary metal-oxide-semiconductor (CMOS)-compatible processes, the components were fabricated on a Si substrate and made from silicon, silicon oxides, and metal; no other materials were used in the fabrication. The plasmonic components operated in the 1300- and 1550-nm-wavelength bands, which are typically employed in optical fiber communication systems. The plasmonic logic circuits were formed by patterning a silicon oxide film on a metal film, and the operation as a half adder was confirmed. The computed plasmonic signals can propagate through the plasmonic WDM networks and be connected to electronic integrated circuits at high data-transfer rates.

  11. Reduced graphene oxide-mediated Z-scheme BiVO4/CdS nanocomposites for boosted photocatalytic decomposition of harmful organic pollutants.

    PubMed

    Clament Sagaya Selvam, N; Kim, Yeong Gyeong; Kim, Dong Jin; Hong, Won-Hwa; Kim, Woong; Park, Sung Hyuk; Jo, Wan-Kuen

    2018-09-01

    The efficient photocatalytic degradation of harmful organic pollutants (isoniazid (ISN) and 1,4-dioxane (DX)) via the Z-scheme electron transfer mechanism was accomplished using a photostable composite photocatalyst consisting of BiVO 4 , CdS, and reduced graphene oxide (RGO). Compared to their pristine counterparts, the RGO-mediated Z-scheme CdS/BiVO 4 (CdS/RGO-BiVO 4 ) nanocomposites exhibited superior degradation activities, mainly attributed to the prolonged charge separation. RGO was found to be involved in visible-light harvesting and acted as a solid-state electron mediator at the CdS/BiVO 4 interface to realize an effective Z-scheme electron transfer pathway, avoid photocatalyst self-oxidation, and lengthen the life span of charge carriers. The results of reactive species scavenging experiments, photoluminescence measurements, and transient photocurrent measurements, as well as the calculated band potentials of the synthesized photocatalysts, supported the Z-scheme electron/hole pair separation mechanism. Additionally, the intermediates formed during the degradation of ISN and DX were identified, and a possible fragmentation pattern was proposed. This systematic work aims to develop photostable Z-scheme composites as unique photocatalytic systems for the efficient removal of harmful organic pollutants. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Enhancing Mo:BiVO 4 Solar Water Splitting with Patterned Au Nanospheres by Plasmon-Induced Energy Transfer [Rational Nanopositioning for BiVO 4 Solar Water Splitting by Plasmon-induced Energy Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jung Kyu; Shi, Xinjian; Jeong, Myung Jin

    Here, plasmonic metal nanostructures have been extensively investigated to improve the performance of metal oxide photoanodes for photoelectrochemical (PEC) solar water splitting cells. Most of these studies have focused on the effects of those metal nanostructures on enhancing light absorption and enabling direct energy transfer via hot electrons. However, several recent studies have shown that plasmonic metal nanostructures can improve the PEC performance of metal oxide photoanodes via another mechanism known as plasmon–induced resonant energy transfer (PIRET). However, this PIRET effect has not yet been tested for the molybdenum–doped bismuth vanadium oxide (Mo:BiVO 4), regarded as one of the bestmore » metal oxide photoanode candidates. Here, this study constructs a hybrid Au nanosphere/Mo:BiVO 4 photoanode interwoven in a hexagonal pattern to investigate the PIRET effect on the PEC performance of Mo:BiVO 4. This study finds that the Au nanosphere array not only increases light absorption of the photoanode as expected, but also improves both its charge transport and charge transfer efficiencies via PIRET, as confirmed by time–correlated single photon counting and transient absorption studies. As a result, incorporating the Au nanosphere array increases the photocurrent density of Mo:BiVO 4 at 1.23 V versus RHE by ≈2.2–fold (2.83 mA cm –2).« less

  13. Enhancing Mo:BiVO 4 Solar Water Splitting with Patterned Au Nanospheres by Plasmon-Induced Energy Transfer [Rational Nanopositioning for BiVO 4 Solar Water Splitting by Plasmon-induced Energy Transfer

    DOE PAGES

    Kim, Jung Kyu; Shi, Xinjian; Jeong, Myung Jin; ...

    2017-10-04

    Here, plasmonic metal nanostructures have been extensively investigated to improve the performance of metal oxide photoanodes for photoelectrochemical (PEC) solar water splitting cells. Most of these studies have focused on the effects of those metal nanostructures on enhancing light absorption and enabling direct energy transfer via hot electrons. However, several recent studies have shown that plasmonic metal nanostructures can improve the PEC performance of metal oxide photoanodes via another mechanism known as plasmon–induced resonant energy transfer (PIRET). However, this PIRET effect has not yet been tested for the molybdenum–doped bismuth vanadium oxide (Mo:BiVO 4), regarded as one of the bestmore » metal oxide photoanode candidates. Here, this study constructs a hybrid Au nanosphere/Mo:BiVO 4 photoanode interwoven in a hexagonal pattern to investigate the PIRET effect on the PEC performance of Mo:BiVO 4. This study finds that the Au nanosphere array not only increases light absorption of the photoanode as expected, but also improves both its charge transport and charge transfer efficiencies via PIRET, as confirmed by time–correlated single photon counting and transient absorption studies. As a result, incorporating the Au nanosphere array increases the photocurrent density of Mo:BiVO 4 at 1.23 V versus RHE by ≈2.2–fold (2.83 mA cm –2).« less

  14. Structural development of wheat nutrient transfer tissues and their relationships with filial tissues development.

    PubMed

    Xurun, Yu; Xinyu, Chen; Liang, Zhou; Jing, Zhang; Heng, Yu; Shanshan, Shao; Fei, Xiong; Zhong, Wang

    2015-03-01

    Nutrients from spikelet phloem are commonly delivered to endosperm via caryopsis nutrient transfer tissues (NTTs). Elucidation of NTTs development is paramount to developing an understanding of the control of assimilate partitioning. Little information was available on the structural development of the entire NTTs and their functions, particularly those involved in the relationship between development of NTTs and growth of filial tissues including endosperm and embryo. In this study, wheat caryopses at different development stages were collected for observation of the NTTs by light microscopy, stereoscopic microscopy, and scanning electron microscopy. The cytological features of NTTs in the developing wheat caryopsis were clearly elucidated. The results were as follows: NTTs in the wheat caryopsis include maternal transfer tissues that are composed of vascular bundle, chalaza and nucellar projection transfer cells, and endosperm transfer tissues that consist of the aleurone transfer cells, starchy endosperm transfer cells, and endosperm conducting cells. The initiation, development, and apoptosis of these NTTs revealed the pattern of temporal and spatial gradient and were closely coordinated with endosperm and embryo development. These results may give us a further understanding about the functions of NTTs and their relationships with endosperm and embryo development.

  15. Electron transfer driven decomposition of adenine and selected analogs as probed by experimental and theoretical methods

    NASA Astrophysics Data System (ADS)

    Cunha, T.; Mendes, M.; Ferreira da Silva, F.; Eden, S.; García, G.; Bacchus-Montabonel, M.-C.; Limão-Vieira, P.

    2018-04-01

    We report on a combined experimental and theoretical study of electron-transfer-induced decomposition of adenine (Ad) and a selection of analog molecules in collisions with potassium (K) atoms. Time-of-flight negative ion mass spectra have been obtained in a wide collision energy range (6-68 eV in the centre-of-mass frame), providing a comprehensive investigation of the fragmentation patterns of purine (Pu), adenine (Ad), 9-methyl adenine (9-mAd), 6-dimethyl adenine (6-dimAd), and 2-D adenine (2-DAd). Following our recent communication about selective hydrogen loss from the transient negative ions (TNIs) produced in these collisions [T. Cunha et al., J. Chem. Phys. 148, 021101 (2018)], this work focuses on the production of smaller fragment anions. In the low-energy part of the present range, several dissociation channels that are accessible in free electron attachment experiments are absent from the present mass spectra, notably NH2 loss from adenine and 9-methyl adenine. This can be understood in terms of a relatively long transit time of the K+ cation in the vicinity of the TNI tending to enhance the likelihood of intramolecular electron transfer. In this case, the excess energy can be redistributed through the available degrees of freedom inhibiting fragmentation pathways. Ab initio theoretical calculations were performed for 9-methyl adenine (9-mAd) and adenine (Ad) in the presence of a potassium atom and provided a strong basis for the assignment of the lowest unoccupied molecular orbitals accessed in the collision process.

  16. 12 CFR 205.14 - Electronic fund transfer service provider not holding consumer's account.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... consumer learns of the loss or theft; and extends the time periods for reporting unauthorized transfers or... 12 Banks and Banking 2 2010-01-01 2010-01-01 false Electronic fund transfer service provider not... GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.14 Electronic fund...

  17. 12 CFR 205.14 - Electronic fund transfer service provider not holding consumer's account.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... consumer learns of the loss or theft; and extends the time periods for reporting unauthorized transfers or... 12 Banks and Banking 2 2013-01-01 2013-01-01 false Electronic fund transfer service provider not... GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.14 Electronic fund...

  18. 12 CFR 205.14 - Electronic fund transfer service provider not holding consumer's account.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... consumer learns of the loss or theft; and extends the time periods for reporting unauthorized transfers or... 12 Banks and Banking 2 2014-01-01 2014-01-01 false Electronic fund transfer service provider not... GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.14 Electronic fund...

  19. 12 CFR 205.14 - Electronic fund transfer service provider not holding consumer's account.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... consumer learns of the loss or theft; and extends the time periods for reporting unauthorized transfers or... 12 Banks and Banking 2 2011-01-01 2011-01-01 false Electronic fund transfer service provider not... GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.14 Electronic fund...

  20. 12 CFR 205.14 - Electronic fund transfer service provider not holding consumer's account.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... consumer learns of the loss or theft; and extends the time periods for reporting unauthorized transfers or... 12 Banks and Banking 2 2012-01-01 2012-01-01 false Electronic fund transfer service provider not... GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.14 Electronic fund...

  1. Anomalous single-electron transfer in common-gate quadruple-dot single-electron devices with asymmetric junction capacitances

    NASA Astrophysics Data System (ADS)

    Imai, Shigeru; Ito, Masato

    2018-06-01

    In this paper, anomalous single-electron transfer in common-gate quadruple-dot turnstile devices with asymmetric junction capacitances is revealed. That is, the islands have the same total number of excess electrons at high and low gate voltages of the swing that transfers a single electron. In another situation, two electrons enter the islands from the source and two electrons leave the islands for the source and drain during a gate voltage swing cycle. First, stability diagrams of the turnstile devices are presented. Then, sequences of single-electron tunneling events by gate voltage swings are investigated, which demonstrate the above-mentioned anomalous single-electron transfer between the source and the drain. The anomalous single-electron transfer can be understood by regarding the four islands as “three virtual islands and a virtual source or drain electrode of a virtual triple-dot device”. The anomalous behaviors of the four islands are explained by the normal behavior of the virtual islands transferring a single electron and the behavior of the virtual electrode.

  2. Apparatus and method of direct water cooling several parallel circuit cards each containing several chip packages

    DOEpatents

    Cipolla, Thomas M [Katonah, NY; Colgan, Evan George [Chestnut Ridge, NY; Coteus, Paul W [Yorktown Heights, NY; Hall, Shawn Anthony [Pleasantville, NY; Tian, Shurong [Mount Kisco, NY

    2011-12-20

    A cooling apparatus, system and like method for an electronic device includes a plurality of heat producing electronic devices affixed to a wiring substrate. A plurality of heat transfer assemblies each include heat spreaders and thermally communicate with the heat producing electronic devices for transferring heat from the heat producing electronic devices to the heat transfer assemblies. The plurality of heat producing electronic devices and respective heat transfer assemblies are positioned on the wiring substrate having the regions overlapping. A heat conduit thermally communicates with the heat transfer assemblies. The heat conduit circulates thermally conductive fluid therethrough in a closed loop for transferring heat to the fluid from the heat transfer assemblies via the heat spreader. A thermally conductive support structure supports the heat conduit and thermally communicates with the heat transfer assemblies via the heat spreader transferring heat to the fluid of the heat conduit from the support structure.

  3. Acid/base-regulated reversible electron transfer disproportionation of N–N linked bicarbazole and biacridine derivatives† †Electronic supplementary information (ESI) available: Experimental information, synthesis and characterization data, NMR spectra, solid state NMR data, X-ray data, ESR spectra, UV-Vis-NIR spectra, fluorescence spectra, kinetic experiments, theoretical calculations, Tables S1–S8, Scheme S1, Fig. S1–12, References. CCDC 1025063, 1038914, 1049677 and 1040722. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5sc00946d

    PubMed Central

    Pandit, Palash; Yamamoto, Koji; Nakamura, Toshikazu; Nishimura, Katsuyuki; Kurashige, Yuki; Yanai, Takeshi; Nakamura, Go; Masaoka, Shigeyuki; Furukawa, Ko; Yakiyama, Yumi; Kawano, Masaki

    2015-01-01

    Regulation of electron transfer on organic substances by external stimuli is a fundamental issue in science and technology, which affects organic materials, chemical synthesis, and biological metabolism. Nevertheless, acid/base-responsive organic materials that exhibit reversible electron transfer have not been well studied and developed, owing to the difficulty in inventing a mechanism to associate acid/base stimuli and electron transfer. We discovered a new phenomenon in which N–N linked bicarbazole (BC) and tetramethylbiacridine (TBA) derivatives undergo electron transfer disproportionation by acid stimulus, forming their stable radical cations and reduced species. The reaction occurs through a biradical intermediate generated by the acid-triggered N–N bond cleavage reaction of BC or TBA, which acts as a two electron acceptor to undergo electron transfer reactions with two equivalents of BC or TBA. In addition, in the case of TBA the disproportionation reaction is highly reversible through neutralization with NEt3, which recovers TBA through back electron transfer and N–N bond formation reactions. This highly reversible electron transfer reaction is possible due to the association between the acid stimulus and electron transfer via the acid-regulated N–N bond cleavage/formation reactions which provide an efficient switching mechanism, the ability of the organic molecules to act as multi-electron donors and acceptors, the extraordinary stability of the radical species, the highly selective reactivity, and the balance of the redox potentials. This discovery provides new design concepts for acid/base-regulated organic electron transfer systems, chemical reagents, or organic materials. PMID:29218181

  4. Scalable patterning using laser-induced shock waves

    NASA Astrophysics Data System (ADS)

    Ilhom, Saidjafarzoda; Kholikov, Khomidkhodza; Li, Peizhen; Ottman, Claire; Sanford, Dylan; Thomas, Zachary; San, Omer; Karaca, Haluk E.; Er, Ali O.

    2018-04-01

    An advanced direct imprinting method with low cost, quick, and minimal environmental impact to create a thermally controllable surface pattern using the laser pulses is reported. Patterned microindents were generated on Ni50Ti50 shape memory alloys and aluminum using an Nd: YAG laser operating at 1064 nm combined with a suitable transparent overlay, a sacrificial layer of graphite, and copper grid. Laser pulses at different energy densities, which generate pressure pulses up to a few GPa on the surface, were focused through the confinement medium, ablating the copper grid to create plasma and transferring the grid pattern onto the surface. Scanning electron microscope and optical microscope images show that various patterns were obtained on the surface with high fidelity. One-dimensional profile analysis indicates that the depth of the patterned sample initially increases with the laser energy and later levels off. Our simulations of laser irradiation process also confirm that high temperature and high pressure could be generated when the laser energy density of 2 J/cm2 is used.

  5. Rate of Interfacial Electron Transfer through the 1,2,3-Triazole Linkage

    PubMed Central

    Devaraj, Neal K.; Decreau, Richard A.; Ebina, Wataru; Collman, James P.; Chidsey, Christopher E. D.

    2012-01-01

    The rate of electron transfer is measured to two ferrocene and one iron tetraphenylporphyrin redox species coupled through terminal acetylenes to azide-terminated thiol monolayers by the Cu(I)-catalyzed azide–alkyne cycloaddition (a Sharpless “click” reaction) to form the 1,2,3-triazole linkage. The high yield, chemoselectivity, convenience, and broad applicability of this triazole formation reaction make such a modular assembly strategy very attractive. Electron-transfer rate constants from greater than 60,000 to 1 s−1 are obtained by varying the length and conjugation of the electron-transfer bridge and by varying the surrounding diluent thiols in the monolayer. Triazole and the triazole carbonyl linkages provide similar electronic coupling for electron transfer as esters. The ability to vary the rate of electron transfer to many different redox species over many orders of magnitude by using modular coupling chemistry provides a convenient way to study and control the delivery of electrons to multielectron redox catalysts and similar interfacial systems that require controlled delivery of electrons. PMID:16898751

  6. On the physics of electron transfer (drift) in the substance: about the reason of “abnormal” fast transfer of electrons in the plasma of tokamak and at known Bohm’s diffusion

    NASA Astrophysics Data System (ADS)

    Boriev, I. A.

    2018-03-01

    An analysis of the problem of so-called “abnormal” fast transfer of electrons in tokamak plasma, which turned out much faster than the result of accepted calculation, is given. Such transfer of hot electrons leads to unexpectedly fast destruction of the inner tokamak wall with ejection of its matter in plasma volume, what violates a condition of plasma confinement for controlled thermonuclear fusion. It is shown, taking into account real physics of electron drift in the gas (plasma) and using the conservation law for momentum of electron transfer (drift), that the drift velocity of elastically scattered electrons should be significantly greater than that of accepted calculation. The reason is that the relaxation time of the momentum of electron transfer, to which the electron drift velocity is proportional, is significantly greater (from 16 up to 4 times) than the electron free path time. Therefore, generally accepted replacement of the relaxation time, which is unknown a priori, by the electron free path time, leads to significant (16 times for thermal electrons) underestimation of electron drift velocity (mobility). This result means, that transfer of elastically (and isotropically) scattered electrons in the gas phase should be so fast, and corresponds to multiplying coefficient (16), introduced by D. Bohm to explain the observed by him “abnormal” fast diffusion of electrons.

  7. Resolution of Transverse Electron Beam Measurements using Optical Transition Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ischebeck, Rasmus; Decker, Franz-Josef; Hogan, Mark

    2005-06-22

    In the plasma wakefield acceleration experiment E-167, optical transition radiation is used to measure the transverse profile of the electron bunches before and after the plasma acceleration. The distribution of the electric field from a single electron does not give a point-like distribution on the detector, but has a certain extension. Additionally, the resolution of the imaging system is affected by aberrations. The transverse profile of the bunch is thus convolved with a point spread function (PSF). Algorithms that deconvolve the image can help to improve the resolution. Imaged test patterns are used to determine the modulation transfer function ofmore » the lens. From this, the PSF can be reconstructed. The Lucy-Richardson algorithm is used to deconvolute this PSF from test images.« less

  8. Marcus equation

    DOE R&D Accomplishments Database

    1998-09-21

    In the late 1950s to early 1960s Rudolph A. Marcus developed a theory for treating the rates of outer-sphere electron-transfer reactions. Outer-sphere reactions are reactions in which an electron is transferred from a donor to an acceptor without any chemical bonds being made or broken. (Electron-transfer reactions in which bonds are made or broken are referred to as inner-sphere reactions.) Marcus derived several very useful expressions, one of which has come to be known as the Marcus cross-relation or, more simply, as the Marcus equation. It is widely used for correlating and predicting electron-transfer rates. For his contributions to the understanding of electron-transfer reactions, Marcus received the 1992 Nobel Prize in Chemistry. This paper discusses the development and use of the Marcus equation. Topics include self-exchange reactions; net electron-transfer reactions; Marcus cross-relation; and proton, hydride, atom and group transfers.

  9. Fabrication of ultra-fine nanostructures using edge transfer printing.

    PubMed

    Xue, Mianqi; Li, Fengwang; Cao, Tingbing

    2012-03-21

    The exploration of new methods and techniques for application in diverse fields, such as photonics, microfluidics, biotechnology and flexible electronics is of increasing scientific and technical interest for multiple uses over distance of 10-100 nm. This article discusses edge transfer printing--a series of unconventional methods derived from soft lithography for nanofabrication. It possesses the advantages of easy fabrication, low-cost and great serviceability. In this paper, we show how to produce exposed edges and use various materials for edge transfer printing, while nanoskiving, nanotransfer edge printing and tunable cracking for nanogaps are introduced. Besides this, different functional materials, such as metals, inorganic semiconductors and polymers, as well as localised heating and charge patterning, are described here as unconventional "inks" for printing. Edge transfer printing, which can effectively produce sub-100 nm scale ultra-fine structures, has broad applications, including metallic nanowires as nanoelectrodes, semiconductor nanowires for chemical sensors, heterostructures of organic semiconductors, plasmonic devices and so forth. This journal is © The Royal Society of Chemistry 2012

  10. Coupled sensitizer-catalyst dyads: electron-transfer reactions in a perylene-polyoxometalate conjugate.

    PubMed

    Odobel, Fabrice; Séverac, Marjorie; Pellegrin, Yann; Blart, Errol; Fosse, Céline; Cannizzo, Caroline; Mayer, Cédric R; Elliott, Kristopher J; Harriman, Anthony

    2009-01-01

    Ultrafast discharge of a single-electron capacitor: A variety of intramolecular electron-transfer reactions are apparent for polyoxometalates functionalized with covalently attached perylene monoimide chromophores, but these are restricted to single-electron events. (et=electron transfer, cr=charge recombination, csr=charge-shift reaction, PER=perylene, POM=polyoxometalate).A new strategy is introduced that permits covalent attachment of an organic chromophore to a polyoxometalate (POM) cluster. Two examples are reported that differ according to the nature of the anchoring group and the flexibility of the linker. Both POMs are functionalized with perylene monoimide units, which function as photon collectors and form a relatively long-lived charge-transfer state under illumination. They are reduced to a stable pi-radical anion by electrolysis or to a protonated dianion under photolysis in the presence of aqueous triethanolamine. The presence of the POM opens up an intramolecular electron-transfer route by which the charge-transfer state reduces the POM. The rate of this process depends on the molecular conformation and appears to involve through-space interactions. Prior reduction of the POM leads to efficient fluorescence quenching, again due to intramolecular electron transfer. In most cases, it is difficult to resolve the electron-transfer products because of relatively fast reverse charge shift that occurs within a closed conformer. Although the POM can store multiple electrons, it has not proved possible to use these systems as molecular-scale capacitors because of efficient electron transfer from the one-electron-reduced POM to the excited singlet state of the perylene monoimide.

  11. Directing the path of light-induced electron transfer at a molecular fork using vibrational excitation

    NASA Astrophysics Data System (ADS)

    Delor, Milan; Archer, Stuart A.; Keane, Theo; Meijer, Anthony J. H. M.; Sazanovich, Igor V.; Greetham, Gregory M.; Towrie, Michael; Weinstein, Julia A.

    2017-11-01

    Ultrafast electron transfer in condensed-phase molecular systems is often strongly coupled to intramolecular vibrations that can promote, suppress and direct electronic processes. Recent experiments exploring this phenomenon proved that light-induced electron transfer can be strongly modulated by vibrational excitation, suggesting a new avenue for active control over molecular function. Here, we achieve the first example of such explicit vibrational control through judicious design of a Pt(II)-acetylide charge-transfer donor-bridge-acceptor-bridge-donor 'fork' system: asymmetric 13C isotopic labelling of one of the two -C≡C- bridges makes the two parallel and otherwise identical donor→acceptor electron-transfer pathways structurally distinct, enabling independent vibrational perturbation of either. Applying an ultrafast UVpump(excitation)-IRpump(perturbation)-IRprobe(monitoring) pulse sequence, we show that the pathway that is vibrationally perturbed during UV-induced electron transfer is dramatically slowed down compared to its unperturbed counterpart. One can thus choose the dominant electron transfer pathway. The findings deliver a new opportunity for precise perturbative control of electronic energy propagation in molecular devices.

  12. Preparation of nanocrystals and nanocomposites of nanocrystal-conjugated polymer, and their photophysical properties in confined geometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Jun

    2007-01-01

    Semiconductors nanocrystals (NCs), also called quantum dots (QDs), have attracted tremendous interest over the past decade in the fields of physics, chemistry, and engineering. Due to the quantum-confined nature of QDs, the variation of particle size provides continuous and predictable changes in fluorescence emission. On the other hand, conjugated polymers (CPs) have been extensively studied for two decades due to their semiconductor-like optical and electronic properties. The electron and energy transfer between NCs and CPs occur in solar cells and light emitting diodes (LEDs), respectively. Placing CPs in direct contact with a NC (i.e., preparing NC-CP nanocomposites) carries advantage overmore » cases where NC aggregation dominates. Such NC-CP nanocomposites possess a well-defined interface that significantly promotes the charge or energy transfer between these two components. However, very few studies have centered on such direct integration. We prepared NCs and NC-CP nanocomposites based on heck coupling and investigated the energy and charge transfer between semiconductor NCs (i.e., CdSe QDs), CPs (i.e., poly(3-hexyl thiophene) (P3HT)) in the nanocomposites in confined geometries. Two novel strategies were used to confine NC and/or NC-CP nanocomposites: (a) directly immobilizing nanohybrids, QDs and nanorods in nanoscopic porous alumina membrane (PAM) , and (b) confining the QDs and CPs in sphere-on-flat geometry to induce self-assembly. While investigating the confinement effect, gradient concentric ring patterns of high regularity form spontaneously simply by allowing a droplet of solution containing either conjugated polymer or semiconductor nanocrystal in a consecutive stick-slip mothion in a confined geometry. Such constrained evaporation can be utilized as a simple, cheap, and robust strategy for self-assembling various materials with easily tailored optical and electronic properties into spatially ordered, two-dimensional patterns. These self-organized patterns of functional nanoscale materials over large areas offer a tremendous potential for applications in optoelectronic devices, LEDs, solar cells, and biosensors. Meanwhile, spherical nanocrystals (i.e. CdSe/ZnS core/shell QDs) were placed in a hexagonal array of highly ordered cylindrical nanopores of PAMs by a simple dip-coating method and vacuum suction process, respectively. The fluorescence of CdSe/ZnS QD was retained after being filled inside PAMs and the filling contents were obtained via transmission UV-vis measurements.« less

  13. On matching the anode ring with the magnetic field in an ATON-type Hall effect thruster

    NASA Astrophysics Data System (ADS)

    Liu, Jinwen; Li, Hong; Zhang, Xu; Ding, Yongjie; Wei, Liqiu; Li, Jianzhi; Yu, Daren; Wang, Xiaogang

    2018-06-01

    In an ATON-type Hall effect thruster, a ring-shaped anode and a cusped magnetic field intersect the match between the anode shape and the field topology thus must be clarified to optimize the electron transport to the anode and consequently the design of a high-efficiency thruster. By changing the match pattern with both the change in the length of the anode ring and the axial displacement of the cusp magnetic field, this study experimentally investigated the influence of the match pattern on the discharge characteristics of an ATON-type thruster—P100—under the condition of a moderate discharge voltage. The experimental results show that there is a match pattern that always optimizes the performance of the P100 thruster. At the rated operation parameters (300 V of discharge voltage and 5 mg/s of propellant mass flow rate) and the rated magnetic field strength, the observed improvements on thrust (˜79 mN to ˜85 mN) and anode efficiency (˜46% to ˜55%) are significant. Through further theoretical analysis, this study revealed that the change in the characteristics of electron momentum and energy transfer in the near-anode region, induced by the change of the match pattern, is the basic reason. The findings of this work are instructive for both understanding the electron motion in a cusp magnetic field and guiding the design of the anode ring intersecting with a cusp magnetic field in an ATON-type Hall effect thruster.

  14. Two temperature approach to femtosecond laser oxidation of molybdenum and morphological study

    NASA Astrophysics Data System (ADS)

    Kotsedi, L.; Kaviyarasu, K.; Fuku, X. G.; Eaton, S. M.; Amara, E. H.; Bireche, F.; Ramponi, R.; Maaza, M.

    2017-11-01

    The two-temperature model was used to gain insight into the thermal evolution of the hot electrons and the crystal lattice of the molybdenum thin coating during femtosecond laser treatment. The heat from the laser raised the bulk temperature of the sample through heat transfer from the hot electron to the crystal lattice of the material, which then led to the melting of the top layer of the film. This process resulted in the hot melt reacting ambient oxygen, which in turn oxidized the surface of molybdenum coating. The topological study and morphology of the oxidized film was conducted using high-resolution scanning electron microscope, with micrographs taken in both the cross-sectional geometry and normal incidence to the electron beam. The molybdenum oxide nanorods were clearly observed and the x-ray diffraction patterns showed the diffraction peaks due to molybdenum oxide.

  15. Tunneling explains efficient electron transport via protein junctions.

    PubMed

    Fereiro, Jerry A; Yu, Xi; Pecht, Israel; Sheves, Mordechai; Cuevas, Juan Carlos; Cahen, David

    2018-05-15

    Metalloproteins, proteins containing a transition metal ion cofactor, are electron transfer agents that perform key functions in cells. Inspired by this fact, electron transport across these proteins has been widely studied in solid-state settings, triggering the interest in examining potential use of proteins as building blocks in bioelectronic devices. Here, we report results of low-temperature (10 K) electron transport measurements via monolayer junctions based on the blue copper protein azurin (Az), which strongly suggest quantum tunneling of electrons as the dominant charge transport mechanism. Specifically, we show that, weakening the protein-electrode coupling by introducing a spacer, one can switch the electron transport from off-resonant to resonant tunneling. This is a consequence of reducing the electrode's perturbation of the Cu(II)-localized electronic state, a pattern that has not been observed before in protein-based junctions. Moreover, we identify vibronic features of the Cu(II) coordination sphere in transport characteristics that show directly the active role of the metal ion in resonance tunneling. Our results illustrate how quantum mechanical effects may dominate electron transport via protein-based junctions.

  16. Thermal transfer structures coupling electronics card(s) to coolant-cooled structure(s)

    DOEpatents

    David, Milnes P; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Parida, Pritish R; Schmidt, Roger R

    2014-12-16

    Cooling apparatuses and coolant-cooled electronic systems are provided which include thermal transfer structures configured to engage with a spring force one or more electronics cards with docking of the electronics card(s) within a respective socket(s) of the electronic system. A thermal transfer structure of the cooling apparatus includes a thermal spreader having a first thermal conduction surface, and a thermally conductive spring assembly coupled to the conduction surface of the thermal spreader and positioned and configured to reside between and physically couple a first surface of an electronics card to the first surface of the thermal spreader with docking of the electronics card within a socket of the electronic system. The thermal transfer structure is, in one embodiment, metallurgically bonded to a coolant-cooled structure and facilitates transfer of heat from the electronics card to coolant flowing through the coolant-cooled structure.

  17. Electron transfer with self-assembled copper ions at Au-deposited biomimetic films: mechanistic ‘anomalies’ disclosed by temperature- and pressure-assisted fast-scan voltammetry

    NASA Astrophysics Data System (ADS)

    Khoshtariya, Dimitri E.; Dolidze, Tinatin D.; Tretyakova, Tatyana; van Eldik, Rudi

    2015-06-01

    It has been suggested that electron transfer (ET) processes occurring in complex environments capable of glass transitions, specifically in biomolecules, under certain conditions may experience the medium’s nonlinear response and nonergodic kinetic patterns. The interiors of self-assembled organic films (SAMs) deposited on solid conducting platforms (electrodes) are known to undergo glassy dynamics as well, hence they may also exhibit the abovementioned ‘irregularities’. We took advantage of Cu2+ ions as redox-active probes trapped in the Au-deposited  -COOH-terminated SAMs, either L-cysteine, or 3-mercaptopropionic acid diluted by the inert 2-mercaptoethanol, to systematically study the impact of glassy dynamics on ET using the fast-scan voltammetry technique and its temperature and high-pressure extensions. We found that respective kinetic data can be rationalized within the extended Marcus theory, taking into account the frictionally controlled (adiabatic) mechanism for short-range ET, and complications due to the medium’s nonlinear response and broken ergodicity. This combination shows up in essential deviations from the conventional energy gap (overpotential) dependence and in essentially nonlinear temperature (Arrhenius) and high-pressure patterns, respectively. Biomimetic aspects for these systems are also discussed in the context of recently published results for interfacial ET involving self-assembled blue copper protein (azurin) placed in contact with a glassy environment.

  18. Patterns produced when soil is transferred to bras by placing and dragging actions: The application of digital photography and image processing to support visible observations.

    PubMed

    Murray, Kathleen R; Fitzpatrick, Robert W; Bottrill, Ralph; Kobus, Hilton

    2017-07-01

    A series of soil transference experiments (STEs) were undertaken to determine whether patterns identified in laboratory experiments could also be recognised at a simulated crime scene in the field. A clothed 55kg human rescue dummy dressed in a padded bra was either dragged or merely placed on a soil surface at sites with natural and anthropogenic soil types under both wet and dry soil conditions. Transfer patterns produced by dragging compared favourably with those of laboratory experiments. Twelve patterns were identified when a clothed human rescue dummy was dragged across the two soil types in the field. This expanded the original set of eight soil transfer patterns identified from dragging weighted fabric across soil samples in the laboratory. Soil transferred by placing the human rescue dummy resulted in a set of six transfer patterns that were different to those produced by dragging. By comparing trace soil patterns transferred to bras using each transfer method, it was revealed that certain transfer patterns on bras could indicate how the fabric had made contact with a soil surface. A photographic method was developed for crime scene examiners to capture this often subtle soil evidence before a body is transported or the clothing removed. This improved understanding of the dynamics of soil transference to bras and related clothing fabric may assist forensic investigators reconstruct the circumstances of a variety of forensic events. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Ultrafast forward and backward electron transfer dynamics of coumarin 337 in hydrogen-bonded anilines as studied with femtosecond UV-pump/IR-probe spectroscopy.

    PubMed

    Ghosh, Hirendra N; Verma, Sandeep; Nibbering, Erik T J

    2011-02-10

    Femtosecond infrared spectroscopy is used to study both forward and backward electron transfer (ET) dynamics between coumarin 337 (C337) and the aromatic amine solvents aniline (AN), N-methylaniline (MAN), and N,N-dimethylaniline (DMAN), where all the aniline solvents can donate an electron but only AN and MAN can form hydrogen bonds with C337. The formation of a hydrogen bond with AN and MAN is confirmed with steady state FT-IR spectroscopy, where the C═O stretching vibration is a direct marker mode for hydrogen bond formation. Transient IR absorption measurements in all solvents show an absorption band at 2166 cm(-1), which has been attributed to the C≡N stretching vibration of the C337 radical anion formed after ET. Forward electron transfer dynamics is found to be biexponential with time constants τ(ET)(1) = 500 fs, τ(ET)(2) = 7 ps in all solvents. Despite the presence of hydrogen bonds of C337 with the solvents AN and MAN, no effect has been found on the forward electron transfer step. Because of the absence of an H/D isotope effect on the forward electron transfer reaction of C337 in AN, hydrogen bonds are understood to play a minor role in mediating electron transfer. In contrast, direct π-orbital overlap between C337 and the aromatic amine solvents causes ultrafast forward electron transfer dynamics. Backward electron transfer dynamics, in contrast, is dependent on the solvent used. Standard Marcus theory explains the observed backward electron transfer rates.

  20. Photo-induced electron transfer method

    DOEpatents

    Wohlgemuth, R.; Calvin, M.

    1984-01-24

    The efficiency of photo-induced electron transfer reactions is increased and the back transfer of electrons in such reactions is greatly reduced when a photo-sensitizer zinc porphyrin-surfactant and an electron donor manganese porphyrin-surfactant are admixed into phospholipid membranes. The phospholipids comprising said membranes are selected from phospholipids whose head portions are negatively charged. Said membranes are contacted with an aqueous medium in which an essentially neutral viologen electron acceptor is admixed. Catalysts capable of transferring electrons from reduced viologen electron acceptor to hydrogen to produce elemental hydrogen are also included in the aqueous medium. An oxidizable olefin is also admixed in the phospholipid for the purpose of combining with oxygen that coordinates with oxidized electron donor manganese porphyrin-surfactant.

  1. Allosteric control of internal electron transfer in cytochrome cd1 nitrite reductase

    PubMed Central

    Farver, Ole; Kroneck, Peter M. H.; Zumft, Walter G.; Pecht, Israel

    2003-01-01

    Cytochrome cd1 nitrite reductase is a bifunctional multiheme enzyme catalyzing the one-electron reduction of nitrite to nitric oxide and the four-electron reduction of dioxygen to water. Kinetics and thermodynamics of the internal electron transfer process in the Pseudomonas stutzeri enzyme have been studied and found to be dominated by pronounced interactions between the c and the d1 hemes. The interactions are expressed both in dramatic changes in the internal electron-transfer rates between these sites and in marked cooperativity in their electron affinity. The results constitute a prime example of intraprotein control of the electron-transfer rates by allosteric interactions. PMID:12802018

  2. Dynamics driving function: new insights from electron transferring flavoproteins and partner complexes.

    PubMed

    Toogood, Helen S; Leys, David; Scrutton, Nigel S

    2007-11-01

    Electron transferring flavoproteins (ETFs) are soluble heterodimeric FAD-containing proteins that function primarily as soluble electron carriers between various flavoprotein dehydrogenases. ETF is positioned at a key metabolic branch point, responsible for transferring electrons from up to 10 primary dehydrogenases to the membrane-bound respiratory chain. Clinical mutations of ETF result in the often fatal disease glutaric aciduria type II. Structural and biophysical studies of ETF in complex with partner proteins have shown that ETF partitions the functions of partner binding and electron transfer between (a) a 'recognition loop', which acts as a static anchor at the ETF-partner interface, and (b) a highly mobile redox-active FAD domain. Together, this enables the FAD domain of ETF to sample a range of conformations, some compatible with fast interprotein electron transfer. This 'conformational sampling' enables ETF to recognize structurally distinct partners, whilst also maintaining a degree of specificity. Complex formation triggers mobility of the FAD domain, an 'induced disorder' mechanism contrasting with the more generally accepted models of protein-protein interaction by induced fit mechanisms. We discuss the implications of the highly dynamic nature of ETFs in biological interprotein electron transfer. ETF complexes point to mechanisms of electron transfer in which 'dynamics drive function', a feature that is probably widespread in biology given the modular assembly and flexible nature of biological electron transfer systems.

  3. Parallel Large-scale Semidefinite Programming for Strong Electron Correlation: Using Correlation and Entanglement in the Design of Efficient Energy-Transfer Mechanisms

    DTIC Science & Technology

    2014-09-24

    which nature uses strong electron correlation for efficient energy transfer, particularly in photosynthesis and bioluminescence, (ii) providing an...strong electron correlation for efficient energy transfer, particularly in photosynthesis and bioluminescence, (ii) providing an innovative paradigm...efficient energy transfer, particularly in photosynthesis and bioluminescence, (ii) providing an innovative paradigm for energy transfer in photovoltaic

  4. Systems approach to excitation-energy and electron transfer reaction networks in photosystem II complex: model studies for chlorophyll a fluorescence induction kinetics.

    PubMed

    Matsuoka, Takeshi; Tanaka, Shigenori; Ebina, Kuniyoshi

    2015-09-07

    Photosystem II (PS II) is a protein complex which evolves oxygen and drives charge separation for photosynthesis employing electron and excitation-energy transfer processes over a wide timescale range from picoseconds to milliseconds. While the fluorescence emitted by the antenna pigments of this complex is known as an important indicator of the activity of photosynthesis, its interpretation was difficult because of the complexity of PS II. In this study, an extensive kinetic model which describes the complex and multi-timescale characteristics of PS II is analyzed through the use of the hierarchical coarse-graining method proposed in the authors׳ earlier work. In this coarse-grained analysis, the reaction center (RC) is described by two states, open and closed RCs, both of which consist of oxidized and neutral special pairs being in quasi-equilibrium states. Besides, the PS II model at millisecond scale with three-state RC, which was studied previously, could be derived by suitably adjusting the kinetic parameters of electron transfer between tyrosine and RC. Our novel coarse-grained model of PS II can appropriately explain the light-intensity dependent change of the characteristic patterns of fluorescence induction kinetics from O-J-I-P, which shows two inflection points, J and I, between initial point O and peak point P, to O-J-D-I-P, which shows a dip D between J and I inflection points. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Electron Tunneling in Lithium Ammonia Solutions Probed by Frequency-Dependent Electron-Spin Relaxation Studies

    PubMed Central

    Maeda, Kiminori; Lodge, Matthew T.J.; Harmer, Jeffrey; Freed, Jack H.; Edwards, Peter P.

    2012-01-01

    Electron transfer or quantum tunneling dynamics for excess or solvated electrons in dilute lithium-ammonia solutions have been studied by pulse electron paramagnetic resonance (EPR) spectroscopy at both X- (9.7 GHz) and W-band (94 GHz) frequencies. The electron spin-lattice (T1) and spin-spin (T2) relaxation data indicate an extremely fast transfer or quantum tunneling rate of the solvated electron in these solutions which serves to modulate the hyperfine (Fermi-contact) interaction with nitrogen nuclei in the solvation shells of ammonia molecules surrounding the localized, solvated electron. The donor and acceptor states of the solvated electron in these solutions are the initial and final electron solvation sites found before, and after, the transfer or tunneling process. To interpret and model our electron spin relaxation data from the two observation EPR frequencies requires a consideration of a multi-exponential correlation function. The electron transfer or tunneling process that we monitor through the correlation time of the nitrogen Fermi-contact interaction has a time scale of (1–10)×10−12 s over a temperature range 230–290K in our most dilute solution of lithium in ammonia. Two types of electron-solvent interaction mechanisms are proposed to account for our experimental findings. The dominant electron spin relaxation mechanism results from an electron tunneling process characterized by a variable donor-acceptor distance or range (consistent with such a rapidly fluctuating liquid structure) in which the solvent shell that ultimately accepts the transferring electron is formed from random, thermal fluctuations of the liquid structure in, and around, a natural hole or Bjerrum-like defect vacancy in the liquid. Following transfer and capture of the tunneling electron, further solvent-cage relaxation with a timescale of ca. 10−13 s results in a minor contribution to the electron spin relaxation times. This investigation illustrates the great potential of multi-frequency EPR measurements to interrogate the microscopic nature and dynamics of ultra fast electron transfer or quantum-tunneling processes in liquids. Our results also impact on the universal issue of the role of a host solvent (or host matrix, e.g. a semiconductor) in mediating long-range electron transfer processes and we discuss the implications of our results with a range of other materials and systems exhibiting the phenomenon of electron transfer. PMID:22568866

  6. Opto-electronic conversion logic behaviour through dynamic modulation of electron/energy transfer states at the TiO2-carbon quantum dot interface.

    PubMed

    Wang, Fang; Zhang, Yonglai; Liu, Yang; Wang, Xuefeng; Shen, Mingrong; Lee, Shuit-Tong; Kang, Zhenhui

    2013-03-07

    Here we show a bias-mediated electron/energy transfer process at the CQDs-TiO(2) interface for the dynamic modulation of opto-electronic properties. Different energy and electron transfer states have been observed in the CQDs-TNTs system due to the up-conversion photoluminescence and the electron donation/acceptance properties of the CQDs decorated on TNTs.

  7. Transfer-free, lithography-free, and micrometer-precision patterning of CVD graphene on SiO2 toward all-carbon electronics

    NASA Astrophysics Data System (ADS)

    Dong, Yibo; Xie, Yiyang; Xu, Chen; Li, Xuejian; Deng, Jun; Fan, Xing; Pan, Guanzhong; Wang, Qiuhua; Xiong, Fangzhu; Fu, Yafei; Sun, Jie

    2018-02-01

    A method of producing large area continuous graphene directly on SiO2 by chemical vapor deposition is systematically developed. Cu thin film catalysts are sputtered onto the SiO2 and pre-patterned. During graphene deposition, high temperature induces evaporation and balling of the Cu, and the graphene "lands onto" SiO2. Due to the high heating and growth rate, continuous graphene is largely completed before the Cu evaporation and balling. 60 nm is identified as the optimal thickness of the Cu for a successful graphene growth and μm-large feature size in the graphene. An all-carbon device is demonstrated based on this technique.

  8. Tight-binding model of the photosystem II reaction center: application to two-dimensional electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Gelzinis, Andrius; Valkunas, Leonas; Fuller, Franklin D.; Ogilvie, Jennifer P.; Mukamel, Shaul; Abramavicius, Darius

    2013-07-01

    We propose an optimized tight-binding electron-hole model of the photosystem II (PSII) reaction center (RC). Our model incorporates two charge separation pathways and spatial correlations of both static disorder and fast fluctuations of energy levels. It captures the main experimental features observed in time-resolved two-dimensional (2D) optical spectra at 77 K: peak pattern, lineshapes and time traces. Analysis of 2D spectra kinetics reveals that specific regions of the 2D spectra of the PSII RC are sensitive to the charge transfer states. We find that the energy disorder of two peripheral chlorophylls is four times larger than the other RC pigments.

  9. Few-layered MnO2/SWCNT hybrid in-plane supercapacitor with high energy density

    NASA Astrophysics Data System (ADS)

    Dutta, Shibsankar; Pal, Shreyasi; De, Sukanta

    2018-05-01

    In this present work we have synthesized few layered MnO2 nanosheets by mixed solvent exfoliation process for the application as electrode material of in-plane supercapacitor. The Structure and surface morphology of the as prepared samples are characterized by Raman, Transmission electron microscopy and Scanning electron microscopy. The patterns of the hybrids were directly fabricated by (50: 50 wt %) mixture of MnO2 and SWCNT dispersions with the help of a customized mask, and directly transferred onto a flexible PET substrate. Remarkably, the prepared in-plane supercapacitors deliver high energy density of 2.62mWh/cm2. Furthermore, our supercapacitors shows exceptional flexibility and stable performance under bending conditions

  10. Experimental insights on the electron transfer and energy transfer processes between Ce{sup 3+}-Yb{sup 3+} and Ce{sup 3+}-Tb{sup 3+} in borate glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sontakke, Atul D., E-mail: sontakke.atul.55a@st.kyoto-u.ac.jp; Katayama, Yumiko; Tanabe, Setsuhisa

    2015-03-30

    A facile method to describe the electron transfer and energy transfer processes among lanthanide ions is presented based on the temperature dependent donor luminescence decay kinetics. The electron transfer process in Ce{sup 3+}-Yb{sup 3+} exhibits a steady rise with temperature, whereas the Ce{sup 3+}-Tb{sup 3+} energy transfer remains nearly unaffected. This feature has been investigated using the rate equation modeling and a methodology for the quantitative estimation of interaction parameters is presented. Moreover, the overall consequences of electron transfer and energy transfer process on donor-acceptor luminescence behavior, quantum efficiency, and donor luminescence decay kinetics are discussed in borate glass host.more » The results in this study propose a straight forward approach to distinguish the electron transfer and energy transfer processes between lanthanide ions in dielectric hosts, which is highly advantageous in view of the recent developments on lanthanide doped materials for spectral conversion, persistent luminescence, and related applications.« less

  11. Verification of the electron/proton coupled mechanism for phenolic H-atom transfer using a triplet π,π ∗ carbonyl

    NASA Astrophysics Data System (ADS)

    Yamaji, Minoru; Oshima, Juro; Hidaka, Motohiko

    2009-06-01

    Evidence for the coupled electron/proton transfer mechanism of the phenolic H-atom transfer between triplet π,π ∗ 3,3'-carbonylbis(7-diethylaminocoumarin) and phenol derivatives is obtained by using laser photolysis techniques. It was confirmed that the quenching rate constants of triplet CBC by phenols having positive Hammett constants do not follow the Rehm-Weller equation for electron transfer while those by phenols with negative Hammett constants do it. From the viewpoint of thermodynamic parameters for electron transfer, the crucial factors for phenolic H-atom transfer to π,π ∗ triplet are discussed.

  12. Bridge-mediated hopping or superexchange electron-transfer processes in bis(triarylamine) systems

    NASA Astrophysics Data System (ADS)

    Lambert, Christoph; Nöll, Gilbert; Schelter, Jürgen

    2002-09-01

    Hopping and superexchange are generally considered to be alternative electron-transfer mechanisms in molecular systems. In this work we used mixed-valence radical cations as model systems for the investigation of electron-transfer pathways. We show that substituents attached to a conjugated bridge connecting two triarylamine redox centres have a marked influence on the near-infrared absorption spectra of the corresponding cations. Spectral analysis, followed by evaluation of the electron-transfer parameters using the Generalized Mulliken-Hush theory and simulation of the potential energy surfaces, indicate that hopping and superexchange are not alternatives, but are both present in the radical cation with a dimethoxybenzene bridge. We found that the type of electron-transfer mechanism depends on the bridge-reorganization energy as well as on the bridge-state energy. Because superexchange and hopping follow different distance laws, our findings have implications for the design of new molecular and polymeric electron-transfer materials.

  13. Direct Electron Transfer of Dehydrogenases for Development of 3rd Generation Biosensors and Enzymatic Fuel Cells.

    PubMed

    Bollella, Paolo; Gorton, Lo; Antiochia, Riccarda

    2018-04-24

    Dehydrogenase based bioelectrocatalysis has been increasingly exploited in recent years in order to develop new bioelectrochemical devices, such as biosensors and biofuel cells, with improved performances. In some cases, dehydrogeases are able to directly exchange electrons with an appropriately designed electrode surface, without the need for an added redox mediator, allowing bioelectrocatalysis based on a direct electron transfer process. In this review we briefly describe the electron transfer mechanism of dehydrogenase enzymes and some of the characteristics required for bioelectrocatalysis reactions via a direct electron transfer mechanism. Special attention is given to cellobiose dehydrogenase and fructose dehydrogenase, which showed efficient direct electron transfer reactions. An overview of the most recent biosensors and biofuel cells based on the two dehydrogenases will be presented. The various strategies to prepare modified electrodes in order to improve the electron transfer properties of the device will be carefully investigated and all analytical parameters will be presented, discussed and compared.

  14. Direct comparison of the performance of commonly used e-beam resists during nano-scale plasma etching of Si, SiO2, and Cr

    NASA Astrophysics Data System (ADS)

    Goodyear, Andy; Boettcher, Monika; Stolberg, Ines; Cooke, Mike

    2015-03-01

    Electron beam writing remains one of the reference pattern generation techniques, and plasma etching continues to underpin pattern transfer. We report a systematic study of the plasma etch resistance of several e-beam resists, both negative and positive as well as classical and Chemically Amplified Resists: HSQ[1,2] (Dow Corning), PMMA[3] (Allresist GmbH), AR-P6200 (Allresist GmbH), ZEP520 (Zeon Corporation), CAN028 (TOK), CAP164 (TOK), and an additional pCAR (non-disclosed provider). Their behaviour under plasma exposure to various nano-scale plasma etch chemistries was examined (SF6/C4F8 ICP silicon etch, CHF3/Ar RIE SiO2 etch, Cl2/O2 RIE and ICP chrome etch, and HBr ICP silicon etch). Samples of each resist type were etched simultaneously to provide a direct comparison of their etch resistance. Resist thicknesses (and hence resist erosion rates) were measured by spectroscopic ellipsometer in order to provide the highest accuracy for the resist comparison. Etch selectivities (substrate:mask etch rate ratio) are given, with recommendations for the optimum resist choice for each type of etch chemistry. Silicon etch profiles are also presented, along with the exposure and etch conditions to obtain the most vertical nano-scale pattern transfer. We identify one resist that gave an unusually high selectivity for chlorinated and brominated etches which could enable pattern transfer below 10nm without an additional hard mask. In this case the resist itself acts as a hard mask. We also highlight the differing effects of fluorine and bromine-based Silicon etch chemistries on resist profile evolution and hence etch fidelity.

  15. Study of ring influence and electronic response to proton transfer reactions. Reaction electronic flux analysis.

    PubMed

    Herrera, Barbara

    2011-05-01

    In this article, a theoretical study of 1-5 proton transfers is presented. Two model systems which represent 1-5 proton transfer, 3-hidroxy-2-propenimine and salicyldenaniline have been studied as shown in Fig. 1. For this purpose, a DFT/B3LYP/6-311+G**, reaction force and reaction electronic flux analysis is made. The obtained results indicate that both proton transfers exhibit energetic and electronic differences emphasizing the role of the neighbor ring and the impact of conjugation on electronic properties.

  16. Coherent Electron Transfer at the Ag / Graphite Heterojunction Interface

    NASA Astrophysics Data System (ADS)

    Tan, Shijing; Dai, Yanan; Zhang, Shengmin; Liu, Liming; Zhao, Jin; Petek, Hrvoje

    2018-03-01

    Charge transfer in transduction of light to electrical or chemical energy at heterojunctions of metals with semiconductors or semimetals is believed to occur by photogenerated hot electrons in metal undergoing incoherent internal photoemission through the heterojunction interface. Charge transfer, however, can also occur coherently by dipole coupling of electronic bands at the heterojunction interface. Microscopic physical insights into how transfer occurs can be elucidated by following the coherent polarization of the donor and acceptor states on the time scale of electronic dephasing. By time-resolved multiphoton photoemission spectroscopy (MPP), we investigate the coherent electron transfer from an interface state that forms upon chemisorption of Ag nanoclusters onto graphite to a σ symmetry interlayer band of graphite. Multidimensional MPP spectroscopy reveals a resonant two-photon transition, which dephases within 10 fs completing the coherent transfer.

  17. Food Antioxidants: Chemical Insights at the Molecular Level.

    PubMed

    Galano, Annia; Mazzone, Gloria; Alvarez-Diduk, Ruslán; Marino, Tiziana; Alvarez-Idaboy, J Raúl; Russo, Nino

    2016-01-01

    In this review, we briefly summarize the reliability of the density functional theory (DFT)-based methods to accurately predict the main antioxidant properties and the reaction mechanisms involved in the free radical-scavenging reactions of chemical compounds present in food. The analyzed properties are the bond dissociation energies, in particular those involving OH bonds, electron transfer enthalpies, adiabatic ionization potentials, and proton affinities. The reaction mechanisms are hydrogen-atom transfer, proton-coupled electron transfer, radical adduct formation, single electron transfer, sequential electron proton transfer, proton-loss electron transfer, and proton-loss hydrogen-atom transfer. Furthermore, the chelating ability of these compounds and its role in decreasing or inhibiting the oxidative stress induced by Fe(III) and Cu(II) are considered. Comparisons between theoretical and experimental data confirm that modern theoretical tools are not only able to explain controversial experimental facts but also to predict chemical behavior.

  18. On generalized Mulliken-Hush approach of electronic transfer: Inclusion of non-zero off-diagonal diabatic dipole moment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kryachko, E.S.

    1999-06-03

    The electronic coupling between the initial and final diabatic states is the major factor that determines the rate of electron transfer. A general formula for the adiabatic-to-diabatic mixing angle in terms of the electronic dipole moments is derived within a two-state model. It expresses the electronic coupling determining the rate of electronic transfer in terms of the off-diagonal diabatic dipole moment.

  19. Photo-induced electron transfer method

    DOEpatents

    Wohlgemuth, Roland; Calvin, Melvin

    1984-01-01

    The efficiency of photo-induced electron transfer reactions is increased and the back transfer of electrons in such reactions is greatly reduced when a photo-sensitizer zinc porphyrin-surfactant and an electron donor manganese porphyrin-surfactant are admixed into phospho-lipid membranes. The phospholipids comprising said membranes are selected from phospholipids whose head portions are negatively charged. Said membranes are contacted with an aqueous medium in which an essentially neutral viologen electron acceptor is admixed. Catalysts capable of transfering electrons from reduced viologen electron acceptor to hydrogen to produce elemental hydrogen are also included in the aqueous medium. An oxidizable olefin is also admixed in the phospholipid for the purpose of combining with oxygen that coordinates with oxidized electron donor manganese porphyrin-surfactant.

  20. Barrier-free proton transfer in the valence anion of 2'-deoxyadenosine-5'-monophosphate. II. A computational study.

    PubMed

    Kobyłecka, Monika; Gu, Jiande; Rak, Janusz; Leszczynski, Jerzy

    2008-01-28

    The propensity of four representative conformations of 2(')-deoxyadenosine-5(')-monophosphate (5(')-dAMPH) to bind an excess electron has been studied at the B3LYP6-31++G(d,p) level. While isolated canonical adenine does not support stable valence anions in the gas phase, all considered neutral conformations of 5(')-dAMPH form adiabatically stable anions. The type of an anionic 5(')-dAMPH state, i.e., the valence, dipole bound, or mixed (valence/dipole bound), depends on the internal hydrogen bond(s) pattern exhibited by a particular tautomer. The most stable anion results from an electron attachment to the neutral syn-south conformer. The formation of this anion is associated with a barrier-free proton transfer triggered by electron attachment and the internal rotation around the C4(')-C5(') bond. The adiabatic electron affinity of the a_south-syn anion is 1.19 eV, while its vertical detachment energy is 1.89 eV. Our results are compared with the photoelectron spectrum (PES) of 5(')-dAMPH(-) measured recently by Stokes et al., [J. Chem. Phys. 128, 044314 (2008)]. The computational VDE obtained for the most stable anionic structure matches well with the experimental electron binding energy region of maximum intensity. A further understanding of DNA damage might require experimental and computational studies on the systems in which purine nucleotides are engaged in hydrogen bonding.

  1. Barrier-free proton transfer in the valence anion of 2'-deoxyadenosine-5'-monophosphate. II. A computational study

    NASA Astrophysics Data System (ADS)

    Kobyłecka, Monika; Gu, Jiande; Rak, Janusz; Leszczynski, Jerzy

    2008-01-01

    The propensity of four representative conformations of 2'-deoxyadenosine-5'-monophosphate (5'-dAMPH) to bind an excess electron has been studied at the B3LYP /6-31++G(d,p) level. While isolated canonical adenine does not support stable valence anions in the gas phase, all considered neutral conformations of 5'-dAMPH form adiabatically stable anions. The type of an anionic 5'-dAMPH state, i.e., the valence, dipole bound, or mixed (valence/dipole bound), depends on the internal hydrogen bond(s) pattern exhibited by a particular tautomer. The most stable anion results from an electron attachment to the neutral syn-south conformer. The formation of this anion is associated with a barrier-free proton transfer triggered by electron attachment and the internal rotation around the C4'-C5' bond. The adiabatic electron affinity of the a&barbelow;south-syn anion is 1.19eV, while its vertical detachment energy is 1.89eV. Our results are compared with the photoelectron spectrum (PES) of 5'-dAMPH- measured recently by Stokes et al., [J. Chem. Phys. 128, 044314 (2008)]. The computational VDE obtained for the most stable anionic structure matches well with the experimental electron binding energy region of maximum intensity. A further understanding of DNA damage might require experimental and computational studies on the systems in which purine nucleotides are engaged in hydrogen bonding.

  2. Low-energy electron scattering from C{sub 4}H{sub 9}OH isomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bettega, M. H. F.; Winstead, C.; McKoy, V.

    2010-12-15

    We present differential, integral, and momentum-transfer cross sections for elastic scattering of low-energy electrons by three butanol isomers, isobutanol, t-butanol, and 2-butanol. Our results were calculated with the Schwinger multichannel method in the static-exchange plus polarization approximation for collision energies from 1 to 50 eV. The present results are compared with previous calculations and measurements for the remaining C{sub 4}H{sub 9}OH isomer, n-butanol [Khakoo et al., Phys. Rev. A 78, 062714 (2008)]. Distinctive behavior is observed in the differential cross sections at collision energies between 5 and 10 eV. In particular, whereas n-butanol exhibits an f-wave scattering pattern, the othermore » isomers exhibit d-wave behavior. A similar pattern is found in the related alkanes when comparing straight-chain versus branched isomers. We discuss the possible connection of this behavior to shape resonances that influence the scattering.« less

  3. Electron-beam patterned self-assembled monolayers as templates for Cu electrodeposition and lift-off

    PubMed Central

    She, Zhe; DiFalco, Andrea; Hähner, Georg

    2012-01-01

    Summary Self-assembled monolayers (SAMs) of 4'-methylbiphenyl-4-thiol (MBP0) adsorbed on polycrystalline gold substrates served as templates to control electrochemical deposition of Cu structures from acidic solution, and enabled the subsequent lift-off of the metal structures by attachment to epoxy glue. By exploiting the negative-resist behaviour of MBP0, the SAM was patterned by means of electron-beam lithography. For high deposition contrast a two-step procedure was employed involving a nucleation phase around −0.7 V versus Cu2+/Cu and a growth phase at around −0.35 V versus Cu2+/Cu. Structures with features down to 100 nm were deposited and transferred with high fidelity. By using substrates with different surface morphologies, AFM measurements revealed that the roughness of the substrate is a crucial factor but not the only one determining the roughness of the copper surface that is exposed after lift-off. PMID:22428101

  4. Application of Electron-Transfer Theory to Several Systems of Biological Interest

    DOE R&D Accomplishments Database

    Marcus, R. A.; Sutin, N.

    1985-03-23

    Electron-transfer reaction rates are compared with theoretically calculated values for several reactions in the bacterial photosynthetic reaction center. A second aspect of the theory, the cross-relation, is illustrated using protein-protein electron transfers.

  5. Synergistic electron transfer effect-based signal amplification strategy for the ultrasensitive detection of dopamine.

    PubMed

    Lu, Qiujun; Chen, Xiaogen; Liu, Dan; Wu, Cuiyan; Liu, Meiling; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo

    2018-05-15

    The selective and sensitive detection of dopamine (DA) is of great significance for the identification of schizophrenia, Huntington's disease, and Parkinson's disease from the perspective of molecular diagnostics. So far, most of DA fluorescence sensors are based on the electron transfer from the fluorescence nanomaterials to DA-quinone. However, the limited electron transfer ability of the DA-quinone affects the level of detection sensitivity of these sensors. In this work, based on the DA can reduce Ag + into AgNPs followed by oxidized to DA-quinone, we developed a novel silicon nanoparticles-based electron transfer fluorescent sensor for the detection of DA. As electron transfer acceptor, the AgNPs and DA-quinone can quench the fluorescence of silicon nanoparticles effectively through the synergistic electron transfer effect. Compared with traditional fluorescence DA sensors, the proposed synergistic electron transfer-based sensor improves the detection sensitivity to a great extent (at least 10-fold improvement). The proposed sensor shows a low detection limit of DA, which is as low as 0.1 nM under the optimal conditions. This sensor has potential applicability for the detection of DA in practical sample. This work has been demonstrated to contribute to a substantial improvement in the sensitivity of the sensors. It also gives new insight into design electron transfer-based sensors. Copyright © 2018. Published by Elsevier B.V.

  6. Additive and Photochemical Manufacturing of Copper

    PubMed Central

    Yung, Winco K. C.; Sun, Bo; Meng, Zhengong; Huang, Junfeng; Jin, Yingdi; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung

    2016-01-01

    In recent years, 3D printing technologies have been extensively developed, enabling rapid prototyping from a conceptual design to an actual product. However, additive manufacturing of metals in the existing technologies is still cost-intensive and time-consuming. Herein a novel platform for low-cost additive manufacturing is introduced by simultaneously combining the laser-induced forward transfer (LIFT) method with photochemical reaction. Using acrylonitrile butadiene styrene (ABS) polymer as the sacrificial layer, sufficient ejection momentum can be generated in the LIFT method. A low-cost continuous wave (CW) laser diode at 405 nm was utilized and proved to be able to transfer the photochemically synthesized copper onto the target substrate. The wavelength-dependent photochemical behaviour in the LIFT method was verified and characterized by both theoretical and experimental studies compared to 1064 nm fiber laser. The conductivity of the synthesized copper patterns could be enhanced using post electroless plating while retaining the designed pattern shapes. Prototypes of electronic circuits were accordingly built and demonstrated for powering up LEDs. Apart from pristine PDMS materials with low surface energies, the proposed method can simultaneously perform laser-induced forward transfer and photochemical synthesis of metals, starting from their metal oxide forms, onto various target substrates such as polyimide, glass and thermoplastics. PMID:28000733

  7. Additive and Photochemical Manufacturing of Copper

    NASA Astrophysics Data System (ADS)

    Yung, Winco K. C.; Sun, Bo; Meng, Zhengong; Huang, Junfeng; Jin, Yingdi; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung

    2016-12-01

    In recent years, 3D printing technologies have been extensively developed, enabling rapid prototyping from a conceptual design to an actual product. However, additive manufacturing of metals in the existing technologies is still cost-intensive and time-consuming. Herein a novel platform for low-cost additive manufacturing is introduced by simultaneously combining the laser-induced forward transfer (LIFT) method with photochemical reaction. Using acrylonitrile butadiene styrene (ABS) polymer as the sacrificial layer, sufficient ejection momentum can be generated in the LIFT method. A low-cost continuous wave (CW) laser diode at 405 nm was utilized and proved to be able to transfer the photochemically synthesized copper onto the target substrate. The wavelength-dependent photochemical behaviour in the LIFT method was verified and characterized by both theoretical and experimental studies compared to 1064 nm fiber laser. The conductivity of the synthesized copper patterns could be enhanced using post electroless plating while retaining the designed pattern shapes. Prototypes of electronic circuits were accordingly built and demonstrated for powering up LEDs. Apart from pristine PDMS materials with low surface energies, the proposed method can simultaneously perform laser-induced forward transfer and photochemical synthesis of metals, starting from their metal oxide forms, onto various target substrates such as polyimide, glass and thermoplastics.

  8. Quantifying electron transfer reactions in biological systems: what interactions play the major role?

    NASA Astrophysics Data System (ADS)

    Sjulstok, Emil; Olsen, Jógvan Magnus Haugaard; Solov'Yov, Ilia A.

    2015-12-01

    Various biological processes involve the conversion of energy into forms that are usable for chemical transformations and are quantum mechanical in nature. Such processes involve light absorption, excited electronic states formation, excitation energy transfer, electrons and protons tunnelling which for example occur in photosynthesis, cellular respiration, DNA repair, and possibly magnetic field sensing. Quantum biology uses computation to model biological interactions in light of quantum mechanical effects and has primarily developed over the past decade as a result of convergence between quantum physics and biology. In this paper we consider electron transfer in biological processes, from a theoretical view-point; namely in terms of quantum mechanical and semi-classical models. We systematically characterize the interactions between the moving electron and its biological environment to deduce the driving force for the electron transfer reaction and to establish those interactions that play the major role in propelling the electron. The suggested approach is seen as a general recipe to treat electron transfer events in biological systems computationally, and we utilize it to describe specifically the electron transfer reactions in Arabidopsis thaliana cryptochrome-a signaling photoreceptor protein that became attractive recently due to its possible function as a biological magnetoreceptor.

  9. Modeling and Performance Simulation of the Mass Storage Network Environment

    NASA Technical Reports Server (NTRS)

    Kim, Chan M.; Sang, Janche

    2000-01-01

    This paper describes the application of modeling and simulation in evaluating and predicting the performance of the mass storage network environment. Network traffic is generated to mimic the realistic pattern of file transfer, electronic mail, and web browsing. The behavior and performance of the mass storage network and a typical client-server Local Area Network (LAN) are investigated by modeling and simulation. Performance characteristics in throughput and delay demonstrate the important role of modeling and simulation in network engineering and capacity planning.

  10. Nanoamplifiers synthesized from gadolinium and gold nanocomposites for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Tian, Xiumei; Shao, Yuanzhi; He, Haoqiang; Liu, Huan; Shen, Yingying; Huang, Wenlin; Li, Li

    2013-03-01

    We have synthesized an efficient and highly sensitive nanoamplifier composed of gadolinium-doped silica nanoparticles and gold nanoparticles (AuNPs). Magnetic resonance imaging (MRI) in vitro and in vivo assays revealed enhancement of signal sensitivity, which may be explained by electron transfer between water and gadolinium-doped nanoparticles, apparent in the presence of gold. In vitro and in vivo evaluation demonstrated nanoamplifier incurred minimal cytotoxicity and immunotoxicity, increased stability, and gradual excretion patterns. Tumor targeted properties were preliminarily determined when the nanoamplifier was injected into mouse models of colon cancer liver metastasis. Furthermore, although AuNPs departed from the nanoamplifiers in specific mice tissues, optical and magnetic resonance imaging was efficient, especially in metastatic tumors. These assays validate our nanoamplifier as an effective MRI signal enhancer with sensitive cancer diagnosis potential.We have synthesized an efficient and highly sensitive nanoamplifier composed of gadolinium-doped silica nanoparticles and gold nanoparticles (AuNPs). Magnetic resonance imaging (MRI) in vitro and in vivo assays revealed enhancement of signal sensitivity, which may be explained by electron transfer between water and gadolinium-doped nanoparticles, apparent in the presence of gold. In vitro and in vivo evaluation demonstrated nanoamplifier incurred minimal cytotoxicity and immunotoxicity, increased stability, and gradual excretion patterns. Tumor targeted properties were preliminarily determined when the nanoamplifier was injected into mouse models of colon cancer liver metastasis. Furthermore, although AuNPs departed from the nanoamplifiers in specific mice tissues, optical and magnetic resonance imaging was efficient, especially in metastatic tumors. These assays validate our nanoamplifier as an effective MRI signal enhancer with sensitive cancer diagnosis potential. Electronic supplementary information (ESI) available: Protocols for the characterization, immunotoxicity and pharmacokinetics analyses. Additional supporting figures. See DOI: 10.1039/c3nr00170a

  11. An artificial light-harvesting array constructed from multiple Bodipy dyes.

    PubMed

    Ziessel, Raymond; Ulrich, Gilles; Haefele, Alexandre; Harriman, Anthony

    2013-07-31

    An artificial light-harvesting array, comprising 21 discrete chromophores arranged in a rational manner, has been synthesized and characterized fully. The design strategy follows a convergent approach that leads to a molecular-scale funnel, having an effective chromophore concentration of 0.6 M condensed into ca. 55 nm(3), able to direct the excitation energy to a focal point. A cascade of electronic energy-transfer steps occurs from the rim to the focal point, with the rate slowing down as the exciton moves toward its ultimate target. Situated midway along each branch of the V-shaped array, two chromophoric relays differ only slightly in terms of their excitation energies, and this situation facilitates reverse energy transfer. Thus, the excitation energy becomes spread around the array, a situation reminiscent of a giant holding pattern for the photon that can sample many different chromophores before being trapped by the terminal acceptor. At high photon flux under conditions of relatively slow off-load to a device, such as a solar cell, electronic energy transfer encounters one or more barriers that hinder forward progress of the exciton and thereby delays arrival of the second photon. Preliminary studies have addressed the ability of the array to function as a sensitizer for amorphous silicon solar cells.

  12. Synthesis, spectroscopic, thermal and antimicrobial investigations of charge-transfer complexes formed from the drug procaine hydrochloride with quinol, picric acid and TCNQ

    NASA Astrophysics Data System (ADS)

    Adam, Abdel Majid A.

    2012-12-01

    Intermolecular charge-transfer or proton-transfer complexes between the drug procaine hydrochloride (PC-HCl) as a donor and quinol (QL), picric acid (PA) or 7,7',8,8'-tetracyanoquinodimethane (TCNQ) as a π-acceptor have been synthesized and spectroscopically studied in methanol at room temperature. Based on elemental analyses and photometric titrations, the stoichiometry of the complexes (donor:acceptor molar ratios) was determined to be 1:1 for all three complexes. The formation constant (KCT), molar extinction coefficient (ɛCT) and other spectroscopic data have been determined using the Benesi-Hildebrand method and its modifications. The newly synthesized CT complexes have been characterized via elemental analysis, IR, Raman, 1H NMR, and electronic absorption spectroscopy. The morphological features of these complexes were investigated using scanning electron microscopy (SEM), and the sharp, well-defined Bragg reflections at specific 2θ angles have been identified from the powder X-ray diffraction patterns. Thermogravimetric analyses (TGAs) and kinetic thermodynamic parameters were also used to investigate the thermal stability of the synthesized solid CT complexes. Finally, the CT complexes were screened for their antibacterial and antifungal activities against various bacterial and fungal strains, and only the complex obtained using picric acid exhibited moderate antibacterial activity against all of the tested strains.

  13. ELECTRON TRANSFER MECHANISM AT THE SOLID-LIQUID INTERFACE OF PHYLLOSILICATES

    EPA Science Inventory

    Interfacial electron transfer processes on clay minerals have significant impact in natural environments and geochemical systems. Nitrobenzene was used as molecular probes to study the electron transfer mechanism at the solid-water interfaces of Fe-containing phyllosicates. For...

  14. Tunneling induced electron transfer between separated protons

    NASA Astrophysics Data System (ADS)

    Vindel-Zandbergen, Patricia; Meier, Christoph; Sola, Ignacio R.

    2018-04-01

    We study electron transfer between two separated protons using local control theory. In this symmetric system one can favour a slow transfer by biasing the algorithm, achieving high efficiencies for fixed nuclei. The solution can be parametrized using a sequence of a pump followed by a dump pulse that lead to tunneling-induced electron transfer. Finally, we study the effect of the nuclear kinetic energy on the efficiency. Even in the absence of relative motion between the protons, the spreading of the nuclear wave function is enough to reduce the yield of electronic transfer to less than one half.

  15. Identification of a c-Type Cytochrome Specific for Manganese Dioxide (MnO2) Reduction in Anaeromyxobacter dehalogenans Strain 2CP-C

    NASA Astrophysics Data System (ADS)

    Pfiffner, S. M.; Nissen, S.; Liu, X.; Chourey, K.; Vishnivetskaya, T. A.; Hettich, R.; Loeffler, F.

    2014-12-01

    Anaeromyxobacter dehalogenans is a metabolically versatile Deltaproteobacterium and conserves energy from the reduction of various electron acceptors, including insoluble MnO2 and ferric oxides/oxyhydroxides (FeOOH). The goal of this study was to identify c-type cytochromes involved in electron transfer to MnO2. The characterization of deletion mutants has revealed a number of c-type cytochromes involved in electron transfer to solid metal oxides in Shewanella spp. and Geobacter spp; however, a genetic system for Anaeromyxobacter is not available. The A. dehalogenans str. 2CP-C genome encodes 68 putative c-type cytochromes, which all lack functional assignments. To identify c-type cytochromes involved in electron transfer to solid MnO2, protein expression profiles of A. dehalogenans str. 2CP-C cells grown with acetate as electron donor and MnO2, ferric citrate, FeOOH, nitrate or fumarate as electron acceptors were compared. Whole cell proteomes were analyzed after trypsin proteolysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Distinct c-type cytochrome expression patterns were observed with cells grown with different electron acceptors. A. dehalogenans str. 2CP-C grown with MnO2 expressed 25 out of the 68 c-type cytochromes encoded on the genome. The c-type cytochrome Adeh_1278 was only expressed in strain 2CP-C grown with MnO2. Reverse transcription PCR confirmed that the Adeh_1278 gene was transcribed in MnO2-grown cells but not in cells grown with other terminal electron acceptors. The expression of the Adeh_1278 gene correlated with Mn(IV) reduction activity. Adeh_1278 has three heme binding motifs and is predicted to be located in the periplasm. The identification of Adeh_1278 as a protein uniquely expressed when MnO2 serves as electron acceptor suggests its utility as a biomarker for MnO2 reduction. This example demonstrates the value of the LC-MS/MS approach for identifying specific proteins of interest and making functional assignments to proteins, including c-type cytochromes that have not been characterized. The distinctive expression of c-type cytochromes in response to growth with different terminal electron acceptors offers opportunities for functional (i.e., activity) in situ monitoring using metaproteomics or transcript-targeted approaches.

  16. Formation of Au nano-patterns on various substrates using simplified nano-transfer printing method

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Woo; Yang, Ki-Yeon; Hong, Sung-Hoon; Lee, Heon

    2008-06-01

    For future device applications, fabrication of the metal nano-patterns on various substrates, such as Si wafer, non-planar glass lens and flexible plastic films become important. Among various nano-patterning technologies, nano-transfer print method is one of the simplest techniques to fabricate metal nano-patterns. In nano-transfer printing process, thin Au layer is deposited on flexible PDMS mold, containing surface protrusion patterns, and the Au layer is transferred from PDMS mold to various substrates due to the difference of bonding strength of Au layer to PDMS mold and to the substrate. For effective transfer of Au layer, self-assembled monolayer, which has strong bonding to Au, is deposited on the substrate as a glue layer. In this study, complicated SAM layer coating process was replaced to simple UV/ozone treatment, which can activates the surface and form the -OH radicals. Using simple UV/ozone treatments on both Au and substrate, Au nano-pattern can be successfully transferred to as large as 6 in. diameter Si wafer, without SAM coating process. High fidelity transfer of Au nano-patterns to non-planar glass lens and flexible PET film was also demonstrated.

  17. X.400: The Standard for Message Handling Systems.

    ERIC Educational Resources Information Center

    Swain, Leigh; Tallim, Paula

    1990-01-01

    Profiles X.400, the Open Systems Interconnection (OSI) Application layer standard that supports interpersonal electronic mail services, facsimile transfer, electronic data interchange, electronic funds transfer, electronic publishing, and electronic invoicing. Also discussed are an electronic directory to support message handling, compatibility…

  18. Application of Degenerately Doped Metal Oxides in the Study of Photoinduced Interfacial Electron Transfer.

    PubMed

    Farnum, Byron H; Morseth, Zachary A; Brennaman, M Kyle; Papanikolas, John M; Meyer, Thomas J

    2015-06-18

    Degenerately doped In2O3:Sn semiconductor nanoparticles (nanoITO) have been used to study the photoinduced interfacial electron-transfer reactivity of surface-bound [Ru(II)(bpy)2(4,4'-(PO3H2)2-bpy)](2+) (RuP(2+)) molecules as a function of driving force over a range of 1.8 eV. The metallic properties of the ITO nanoparticles, present within an interconnected mesoporous film, allowed for the driving force to be tuned by controlling their Fermi level with an external bias while their optical transparency allowed for transient absorption spectroscopy to be used to monitor electron-transfer kinetics. Photoinduced electron transfer from excited-state -RuP(2+*) molecules to nanoITO was found to be dependent on applied bias and competitive with nonradiative energy transfer to nanoITO. Back electron transfer from nanoITO to oxidized -RuP(3+) was also dependent on the applied bias but without complication from inter- or intraparticle electron diffusion in the oxide nanoparticles. Analysis of the electron injection kinetics as a function of driving force using Marcus-Gerischer theory resulted in an experimental estimate of the reorganization energy for the excited-state -RuP(3+/2+*) redox couple of λ* = 0.83 eV and an electronic coupling matrix element, arising from electronic wave function overlap between the donor orbital in the molecule and the acceptor orbital(s) in the nanoITO electrode, of Hab = 20-45 cm(-1). Similar analysis of the back electron-transfer kinetics yielded λ = 0.56 eV for the ground-state -RuP(3+/2+) redox couple and Hab = 2-4 cm(-1). The use of these wide band gap, degenerately doped materials provides a unique experimental approach for investigating single-site electron transfer at the surface of oxide nanoparticles.

  19. Chemical and charge transfer studies on interfaces of a conjugated polymer and ITO

    NASA Astrophysics Data System (ADS)

    David, Tanya M. S.; Arasho, Wondwosson; Smith, O'Neil; Hong, Kunlun; Bonner, Carl; Sun, Sam-Shajing

    2017-08-01

    Conjugated oligomers and polymers are very attractive for potential future plastic electronic and opto-electronic device applications such as plastic photo detectors and solar cells, thermoelectric devices, field effect transistors, and light emitting diodes. Understanding and optimizing charge transport between an active polymer layer and conductive substrate is critical to the optimization of polymer based electronic and opto-electronic devices. This study focused on the design, synthesis, self-assembly, and electron transfers and transports of a phosphonic acid end-functionalized polyphenylenevinylene (PPV) that was covalently attached and self-assembled onto an Indium Tin Oxide (ITO) substrate. This study demonstrated how atomic force microscopy (AFM) can be an effective characterization technique in conjunction with conventional electron transfer methods, including cyclic voltammetry (CV), towards determining electron transfer rates in polymer and polymer/conductor interface systems. This study found that the electron transfer rates of covalently attached and self-assembled films were much faster than the spin coated films. The knowledge from this study can be very useful for designing potential polymer based electronic and opto-electronic thin film devices.

  20. Electron transfer by excited benzoquinone anions: slow rates for two-electron transitions.

    PubMed

    Zamadar, Matibur; Cook, Andrew R; Lewandowska-Andralojc, Anna; Holroyd, Richard; Jiang, Yan; Bikalis, Jin; Miller, John R

    2013-09-05

    Electron transfer (ET) rate constants from the lowest excited state of the radical anion of benzoquinone, BQ(-•)*, were measured in THF solution. Rate constants for bimolecular electron transfer reactions typically reach the diffusion-controlled limit when the free-energy change, ΔG°, reaches -0.3 eV. The rate constants for ET from BQ(-•)* are one-to-two decades smaller at this energy and do not reach the diffusion-controlled limit until -ΔG° is 1.5-2.0 eV. The rates are so slow probably because a second electron must also undergo a transition to make use of the energy of the excited state. Similarly, ET, from solvated electrons to neutral BQ to form the lowest excited state, is slow, while fast ET is observed at a higher excited state, which can be populated in a transition involving only one electron. A simple picture based on perturbation theory can roughly account for the control of electron transfer by the need for transition of a second electron. The picture also explains how extra driving force (-ΔG°) can restore fast rates of electron transfer.

  1. Modulation of ICT probability in bi(polyarene)-based O-BODIPYs: towards the development of low-cost bright arene-BODIPY dyads.

    PubMed

    Gartzia-Rivero, Leire; Sánchez-Carnerero, Esther M; Jiménez, Josue; Bañuelos, Jorge; Moreno, Florencio; Maroto, Beatriz L; López-Arbeloa, Iñigo; de la Moya, Santiago

    2017-09-12

    We report the synthesis, and spectroscopic and electrochemical properties of a selected library of novel spiranic O-BODIPYs bearing a phenol-based bi(polyarene) unit tethered to the boron center through oxygen atoms. These dyes constitute an interesting family of arene-BODIPY dyads useful for the development of photonic applications due to their synthetic accessibility and tunable photonic properties. It is demonstrated that the electron-donor capability of the involved arene moiety switches on a non-emissive intramolecular charge transfer (ICT) state, which restricts the fluorescence efficiency of the dyad. Interestingly, the influence of this non-radiative deactivation channel can be efficiently modulated by the substitution pattern, either at the dipyrrin ligand or at the polyarene moiety. Thus, dyads featuring electron-rich dipyrrin and electron-poor polyarene show lower or almost negligible ICT probability, and hence display bright fluorescence upon dual excitation at far-away spectral regions. This synthetic approach has allowed the easy development of low-cost efficient ultraviolet-absorbing visible-emitting cassettes by selecting properly the substitution pattern of the involved key units, dipyrrin and bi(polyarene), to modulate not only absorption and emission wavelengths, but also fluorescence efficiencies.

  2. The domination of Saturn's low-latitude ionosphere by ring 'rain'.

    PubMed

    O'Donoghue, J; Stallard, T S; Melin, H; Jones, G H; Cowley, S W H; Miller, S; Baines, K H; Blake, J S D

    2013-04-11

    Saturn's ionosphere is produced when the otherwise neutral atmosphere is exposed to a flow of energetic charged particles or solar radiation. At low latitudes the solar radiation should result in a weak planet-wide glow in the infrared, corresponding to the planet's uniform illumination by the Sun. The observed electron density of the low-latitude ionosphere, however, is lower and its temperature higher than predicted by models. A planet-to-ring magnetic connection has been previously suggested, in which an influx of water from the rings could explain the lower-than-expected electron densities in Saturn's atmosphere. Here we report the detection of a pattern of features, extending across a broad latitude band from 25 to 60 degrees, that is superposed on the lower-latitude background glow, with peaks in emission that map along the planet's magnetic field lines to gaps in Saturn's rings. This pattern implies the transfer of charged species derived from water from the ring-plane to the ionosphere, an influx on a global scale, flooding between 30 to 43 per cent of the surface of Saturn's upper atmosphere. This ring 'rain' is important in modulating ionospheric emissions and suppressing electron densities.

  3. Density-functional theory study of the geometries, stabilities, and electronic properties of Au n Rb (n = 1-10) clusters: comparison with pure gold clusters

    NASA Astrophysics Data System (ADS)

    Hu, Yan-Fei; Jiang, Gang; Meng, Da-Qiao

    2012-01-01

    The density functional method with the relativistic effective core potential has been employed to investigate systematically the geometric structures, relative stabilities, growth-pattern behavior, and electronic properties of small bimetallic Au n Rb (n = 1-10) and pure gold Au n (n ≤ 11) clusters. For the geometric structures of the Au n Rb (n = 1-10) clusters, the dominant growth pattern is for a Rb-substituted Au n +1 cluster or one Au atom capped on a Au n -1Rb cluster, and the turnover point from a two-dimensional to a three-dimensional structure occurs at n = 4. Moreover, the stability of the ground-state structures of these clusters has been examined via an analysis of the average atomic binding energies, fragmentation energies, and the second-order difference of energies as a function of cluster size. The results exhibit a pronounced even-odd alternation phenomenon. The same pronounced even-odd alternations are found for the HOMO-LUMO gap, VIPs, VEAs, and the chemical hardness. In addition, about one electron charge transfers from the Au n host to the Rb atom in each corresponding Au n Rb cluster.

  4. Specimen preparation for cryogenic coherent X-ray diffraction imaging of biological cells and cellular organelles by using the X-ray free-electron laser at SACLA

    PubMed Central

    Kobayashi, Amane; Sekiguchi, Yuki; Oroguchi, Tomotaka; Okajima, Koji; Fukuda, Asahi; Oide, Mao; Yamamoto, Masaki; Nakasako, Masayoshi

    2016-01-01

    Coherent X-ray diffraction imaging (CXDI) allows internal structures of biological cells and cellular organelles to be analyzed. CXDI experiments have been conducted at 66 K for frozen-hydrated biological specimens at the SPring-8 Angstrom Compact Free-Electron Laser facility (SACLA). In these cryogenic CXDI experiments using X-ray free-electron laser (XFEL) pulses, specimen particles dispersed on thin membranes of specimen disks are transferred into the vacuum chamber of a diffraction apparatus. Because focused single XFEL pulses destroy specimen particles at the atomic level, diffraction patterns are collected through raster scanning the specimen disks to provide fresh specimen particles in the irradiation area. The efficiency of diffraction data collection in cryogenic experiments depends on the quality of the prepared specimens. Here, detailed procedures for preparing frozen-hydrated biological specimens, particularly thin membranes and devices developed in our laboratory, are reported. In addition, the quality of the frozen-hydrated specimens are evaluated by analyzing the characteristics of the collected diffraction patterns. Based on the experimental results, the internal structures of the frozen-hydrated specimens and the future development for efficient diffraction data collection are discussed. PMID:27359147

  5. Specimen preparation for cryogenic coherent X-ray diffraction imaging of biological cells and cellular organelles by using the X-ray free-electron laser at SACLA.

    PubMed

    Kobayashi, Amane; Sekiguchi, Yuki; Oroguchi, Tomotaka; Okajima, Koji; Fukuda, Asahi; Oide, Mao; Yamamoto, Masaki; Nakasako, Masayoshi

    2016-07-01

    Coherent X-ray diffraction imaging (CXDI) allows internal structures of biological cells and cellular organelles to be analyzed. CXDI experiments have been conducted at 66 K for frozen-hydrated biological specimens at the SPring-8 Angstrom Compact Free-Electron Laser facility (SACLA). In these cryogenic CXDI experiments using X-ray free-electron laser (XFEL) pulses, specimen particles dispersed on thin membranes of specimen disks are transferred into the vacuum chamber of a diffraction apparatus. Because focused single XFEL pulses destroy specimen particles at the atomic level, diffraction patterns are collected through raster scanning the specimen disks to provide fresh specimen particles in the irradiation area. The efficiency of diffraction data collection in cryogenic experiments depends on the quality of the prepared specimens. Here, detailed procedures for preparing frozen-hydrated biological specimens, particularly thin membranes and devices developed in our laboratory, are reported. In addition, the quality of the frozen-hydrated specimens are evaluated by analyzing the characteristics of the collected diffraction patterns. Based on the experimental results, the internal structures of the frozen-hydrated specimens and the future development for efficient diffraction data collection are discussed.

  6. Evidence that Additions of Grignard Reagents to Aliphatic Aldehydes Do Not Involve Single-Electron-Transfer Processes.

    PubMed

    Otte, Douglas A L; Woerpel, K A

    2015-08-07

    Addition of allylmagnesium reagents to an aliphatic aldehyde bearing a radical clock gave only addition products and no evidence of ring-opened products that would suggest single-electron-transfer reactions. The analogous Barbier reaction also did not provide evidence for a single-electron-transfer mechanism in the addition step. Other Grignard reagents (methyl-, vinyl-, t-Bu-, and triphenylmethylmagnesium halides) also do not appear to add to an alkyl aldehyde by a single-electron-transfer mechanism.

  7. Evidence for protein conformational change at a Au(110)/protein interface

    NASA Astrophysics Data System (ADS)

    Messiha, H. L.; Smith, C. I.; Scrutton, N. S.; Weightman, P.

    2008-07-01

    Evidence is presented that reflection anisotropy spectroscopy (RAS) can provide real-time measurements of conformational change in proteins induced by electron transfer reactions. A bacterial electron transferring flavoprotein (ETF) has been modified so as to adsorb on an Au(110) electrode and enable reversible electron transfer to the protein cofactor in the absence of mediators. Reversible changes are observed in the RAS of this protein that are interpreted as arising from conformational changes accompanying the transfer of electrons.

  8. Enhanced electron transfer kinetics through hybrid graphene-carbon nanotube films.

    PubMed

    Henry, Philémon A; Raut, Akshay S; Ubnoske, Stephen M; Parker, Charles B; Glass, Jeffrey T

    2014-11-01

    We report the first study of the electrochemical reactivity of a graphenated carbon nanotube (g-CNT) film. The electron transfer kinetics of the ferri-ferrocyanide couple were examined for a g-CNT film and compared to the kinetics to standard carbon nanotubes (CNTs). The g-CNT film exhibited much higher catalytic activity, with a heterogeneous electron-transfer rate constant, k 0 , approximately two orders of magnitude higher than for standard CNTs. Scanning electron microscopy and Raman spectroscopy were used to correlate the higher electron transfer kinetics with the higher edge-density of the g-CNT film.

  9. Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer

    PubMed Central

    Westereng, Bjørge; Cannella, David; Wittrup Agger, Jane; Jørgensen, Henning; Larsen Andersen, Mogens; Eijsink, Vincent G.H.; Felby, Claus

    2015-01-01

    Enzymatic oxidation of cell wall polysaccharides by lytic polysaccharide monooxygenases (LPMOs) plays a pivotal role in the degradation of plant biomass. While experiments have shown that LPMOs are copper dependent enzymes requiring an electron donor, the mechanism and origin of the electron supply in biological systems are only partly understood. We show here that insoluble high molecular weight lignin functions as a reservoir of electrons facilitating LPMO activity. The electrons are donated to the enzyme by long-range electron transfer involving soluble low molecular weight lignins present in plant cell walls. Electron transfer was confirmed by electron paramagnetic resonance spectroscopy showing that LPMO activity on cellulose changes the level of unpaired electrons in the lignin. The discovery of a long-range electron transfer mechanism links the biodegradation of cellulose and lignin and sheds new light on how oxidative enzymes present in plant degraders may act in concert. PMID:26686263

  10. Experimental verification of multilevel spatial pattern generation from binary data page with four-step phase pattern (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Barada, Daisuke; Yatagai, Toyohiko

    2016-09-01

    Holographic memory is expected for cold storage because of the features of huge data capacity, high data transfer rate, and long life time. In holographic memory, a signal beam is modulated by a spatial light modulator according to data pages. The recording density is dependent on information amount per pixel in a data page. However, a binary spatial light modulator is used to realize high data transfer rate in general. In our previous study, an optical conversion method from binary data to multilevel data has been proposed. In this paper, the principle of the method is experimentally verified. In the proposed method, a data page consists of symbols with 2x2 pixels and a four-step phase mask is used. Then, the complex amplitudes of four pixels in a symbol become positive real, positive imaginary, negative real, and negative imaginary values, respectively. A square pixel pattern is spread by spatial frequency filtering with a square aperture in a Fourier plane. When the aperture size is too small, the complex amplitude of four pixels in a symbol is superposed and a symbol is regarded as a pixel with a complex number. In this work, a data page pattern with a four-step phase pattern was generated by using a computer-generated circular polarization hologram (CGCPH). The CGCPH was prepared by electron beam lithography. The page data pattern is Fourier transformed by a lens and spatially filtered by a variable rectangular aperture. The complex amplitude of the spatial filtered data page pattern was measured by digital holography and the principle was experimentally verified.

  11. CymA and Exogenous Flavins Improve Extracellular Electron Transfer and Couple It to Cell Growth in Mtr-Expressing Escherichia coli

    DOE PAGES

    Jensen, Heather M.; TerAvest, Michaela A.; Kokish, Mark G.; ...

    2016-03-22

    Introducing extracellular electron transfer pathways into heterologous organisms offers the opportunity to explore fundamental biogeochemical processes and to biologically alter redox states of exogenous metals for various applications. While expression of the MtrCAB electron nanoconduit from Shewanella oneidensis MR-1 permits extracellular electron transfer in Escherichia coli, the low electron flux and absence of growth in these cells limits their practicality for such applications. In this paper, we investigate how the rate of electron transfer to extracellular Fe(III) and cell survival in engineered E. coli are affected by mimicking different features of the S. oneidensis pathway: the number of electron nanoconduits,more » the link between the quinol pool and MtrA, and the presence of flavin-dependent electron transfer. While increasing the number of pathways does not significantly improve the extracellular electron transfer rate or cell survival, using the native inner membrane component, CymA, significantly improves the reduction rate of extracellular acceptors and increases cell viability. Strikingly, introducing both CymA and riboflavin to Mtr-expressing E. coli also allowed these cells to couple metal reduction to growth, which is the first time an increase in biomass of an engineered E. coli has been observed under Fe 2O 3 (s) reducing conditions. Overall and finally, this work provides engineered E. coli strains for modulating extracellular metal reduction and elucidates critical factors for engineering extracellular electron transfer in heterologous organisms.« less

  12. CymA and Exogenous Flavins Improve Extracellular Electron Transfer and Couple It to Cell Growth in Mtr-Expressing Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Heather M.; TerAvest, Michaela A.; Kokish, Mark G.

    Introducing extracellular electron transfer pathways into heterologous organisms offers the opportunity to explore fundamental biogeochemical processes and to biologically alter redox states of exogenous metals for various applications. While expression of the MtrCAB electron nanoconduit from Shewanella oneidensis MR-1 permits extracellular electron transfer in Escherichia coli, the low electron flux and absence of growth in these cells limits their practicality for such applications. In this paper, we investigate how the rate of electron transfer to extracellular Fe(III) and cell survival in engineered E. coli are affected by mimicking different features of the S. oneidensis pathway: the number of electron nanoconduits,more » the link between the quinol pool and MtrA, and the presence of flavin-dependent electron transfer. While increasing the number of pathways does not significantly improve the extracellular electron transfer rate or cell survival, using the native inner membrane component, CymA, significantly improves the reduction rate of extracellular acceptors and increases cell viability. Strikingly, introducing both CymA and riboflavin to Mtr-expressing E. coli also allowed these cells to couple metal reduction to growth, which is the first time an increase in biomass of an engineered E. coli has been observed under Fe 2O 3 (s) reducing conditions. Overall and finally, this work provides engineered E. coli strains for modulating extracellular metal reduction and elucidates critical factors for engineering extracellular electron transfer in heterologous organisms.« less

  13. Flavin Charge Transfer Transitions Assist DNA Photolyase Electron Transfer

    NASA Astrophysics Data System (ADS)

    Skourtis, Spiros S.; Prytkova, Tatiana; Beratan, David N.

    2007-12-01

    This contribution describes molecular dynamics, semi-empirical and ab-initio studies of the primary photo-induced electron transfer reaction in DNA photolyase. DNA photolyases are FADH--containing proteins that repair UV-damaged DNA by photo-induced electron transfer. A DNA photolyase recognizes and binds to cyclobutatne pyrimidine dimer lesions of DNA. The protein repairs a bound lesion by transferring an electron to the lesion from FADH-, upon photo-excitation of FADH- with 350-450 nm light. We compute the lowest singlet excited states of FADH- in DNA photolyase using INDO/S configuration interaction, time-dependent density-functional, and time-dependent Hartree-Fock methods. The calculations identify the lowest singlet excited state of FADH- that is populated after photo-excitation and that acts as the electron donor. For this donor state we compute conformationally-averaged tunneling matrix elements to empty electron-acceptor states of a thymine dimer bound to photolyase. The conformational averaging involves different FADH--thymine dimer confromations obtained from molecular dynamics simulations of the solvated protein with a thymine dimer docked in its active site. The tunneling matrix element computations use INDO/S-level Green's function, energy splitting, and Generalized Mulliken-Hush methods. These calculations indicate that photo-excitation of FADH- causes a π→π* charge-transfer transition that shifts electron density to the side of the flavin isoalloxazine ring that is adjacent to the docked thymine dimer. This shift in electron density enhances the FADH--to-dimer electronic coupling, thus inducing rapid electron transfer.

  14. Photoinduced electron transfer between benzyloxy dendrimer phthalocyanine and benzoquinone

    NASA Astrophysics Data System (ADS)

    Zhang, Tiantian; Ma, Dongdong; Pan, Sujuan; Wu, Shijun; Jiang, Yufeng; Zeng, Di; Yang, Hongqin; Peng, Yiru

    2016-10-01

    Photo-induced electron transfer (PET) is an important and fundamental process in natural photosynthesis. To mimic such interesting PET process, a suitable donor and acceptor couple were properly chosen. Dendrimer phthalocyanines and their derivatives have emerged as promising materials for artificial photosynthesis systems. In this paper, the electron transfer between the light harvest dendrimer phthalocyanine (donor) and the 1,4-benzoquinone (acceptor) was studied by UV/Vis and fluorescence spectroscopic methods. It was found that fluorescence of phthalocyanine was quenched by benzoquinone (BQ) via excited state electron transfer, from the phthalocyanine to the BQ upon excitation at 610 nm. The Stern-Volmer constant (KSV) of electron transfer was calculated. Our study suggests that this dendritic phthalocyanine is an effective new electron donor and transmission complex and could be used as a potential artificial photosynthesis system.

  15. Long-range electron transfer in porphyrin-containing [2]-rotaxanes: tuning the rate by metal cation coordination.

    PubMed

    Andersson, Mikael; Linke, Myriam; Chambron, Jean-Claude; Davidsson, Jan; Heitz, Valérie; Hammarström, Leif; Sauvage, Jean-Pierre

    2002-04-24

    A series of [2]-rotaxanes has been synthesized in which two Zn(II)-porphyrins (ZnP) electron donors were attached as stoppers on the rod. A macrocycle attached to a Au(III)-porphyrin (AuP+) acceptor was threaded on the rod. By selective excitation of either porphyrin, we could induce an electron transfer from the ZnP to the AuP+ unit that generated the same ZnP*+-AuP* charge-transfer state irrespective of which porphyrin was excited. Although the reactants were linked only by mechanical or coordination bonds, electron-transfer rate constants up to 1.2x10(10) x s(-1) were obtained over a 15-17 A edge-to-edge distance between the porphyrins. The resulting charge-transfer state had a relatively long lifetime of 10-40 ns and was formed in high yield (>80%) in most cases. By a simple variation of the link between the reactants, viz. a coordination of the phenanthroline units on the rotaxane rod and ring by either Ag+ or Cu+, we could enhance the electron-transfer rate from the ZnP to the excited 3AuP+. We interpret our data in terms of an enhanced superexchange mechanism with Ag+ and a change to a stepwise hopping mechanism with Cu+, involving the oxidized Cu(phen)22+ unit as a real intermediate. When the ZnP unit was excited instead, electron transfer from the excited 1ZnP to AuP+ was not affected, or even slowed, by Ag+ or Cu+. We discuss this asymmetry in terms of the different orbitals involved in mediating the reaction in an electron- and a hole-transfer mechanism. Our results show the possibility to tune the rates of electron transfer between noncovalently linked reactants by a convenient modification of the link. The different effect of Ag+ and Cu+ on the rate with ZnP and AuP+ excitation shows an additional possibility to control the electron-transfer reactions by selective excitation. We also found that coordination of the Cu+ introduced an energy-transfer reaction from 1ZnP to Cu(phen)2+ (k = 5.1x10(9) x s(-1)) that proceeded in competition with electron transfer to AuP+ and was followed by a quantitative energy transfer to give the 3ZnP state (k = 1.5x10(9) x s(-1)).

  16. A molecular shift register based on electron transfer

    NASA Technical Reports Server (NTRS)

    Hopfield, J. J.; Onuchic, Josenelson; Beratan, David N.

    1988-01-01

    An electronic shift-register memory at the molecular level is described. The memory elements are based on a chain of electron-transfer molecules and the information is shifted by photoinduced electron-transfer reactions. This device integrates designed electronic molecules onto a very large scale integrated (silicon microelectronic) substrate, providing an example of a 'molecular electronic device' that could actually be made. The design requirements for such a device and possible synthetic strategies are discussed. Devices along these lines should have lower energy usage and enhanced storage density.

  17. Laser shock wave assisted patterning on NiTi shape memory alloy surfaces

    NASA Astrophysics Data System (ADS)

    Seyitliyev, Dovletgeldi; Li, Peizhen; Kholikov, Khomidkhodza; Grant, Byron; Karaca, Haluk E.; Er, Ali O.

    2017-02-01

    An advanced direct imprinting method with low cost, quick, and less environmental impact to create thermally controllable surface pattern using the laser pulses is reported. Patterned micro indents were generated on Ni50Ti50 shape memory alloys (SMA) using an Nd:YAG laser operating at 1064 nm combined with suitable transparent overlay, a sacrificial layer of graphite, and copper grid. Laser pulses at different energy densities which generates pressure pulses up to 10 GPa on the surface was focused through the confinement medium, ablating the copper grid to create plasma and transferring the grid pattern onto the NiTi surface. Scanning electron microscope (SEM) and optical microscope images of square pattern with different sizes were studied. One dimensional profile analysis shows that the depth of the patterned sample initially increase linearly with the laser energy until 125 mJ/pulse where the plasma further absorbs and reflects the laser beam. In addition, light the microscope image show that the surface of NiTi alloy was damaged due to the high power laser energy which removes the graphite layer.

  18. 12 CFR 1005.6 - Liability of consumer for unauthorized transfers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... transfers. 1005.6 Section 1005.6 Banks and Banking BUREAU OF CONSUMER FINANCIAL PROTECTION ELECTRONIC FUND TRANSFERS (REGULATION E) § 1005.6 Liability of consumer for unauthorized transfers. (a) Conditions for..., for an unauthorized electronic fund transfer involving the consumer's account only if the financial...

  19. Stabilization of non-productive conformations underpins rapid electron transfer to electron-transferring flavoprotein.

    PubMed

    Toogood, Helen S; van Thiel, Adam; Scrutton, Nigel S; Leys, David

    2005-08-26

    Crystal structures of protein complexes with electron-transferring flavoprotein (ETF) have revealed a dual protein-protein interface with one region serving as anchor while the ETF FAD domain samples available space within the complex. We show that mutation of the conserved Glu-165beta in human ETF leads to drastically modulated rates of interprotein electron transfer with both medium chain acyl-CoA dehydrogenase and dimethylglycine dehydrogenase. The crystal structure of free E165betaA ETF is essentially identical to that of wild-type ETF, but the crystal structure of the E165betaA ETF.medium chain acyl-CoA dehydrogenase complex reveals clear electron density for the FAD domain in a position optimal for fast interprotein electron transfer. Based on our observations, we present a dynamic multistate model for conformational sampling that for the wild-type ETF. medium chain acyl-CoA dehydrogenase complex involves random motion between three distinct positions for the ETF FAD domain. ETF Glu-165beta plays a key role in stabilizing positions incompatible with fast interprotein electron transfer, thus ensuring high rates of complex dissociation.

  20. 77 FR 34127 - Financial Management Service; Proposed Collection of Information: Electronic Transfer Account...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-08

    ... Information: Electronic Transfer Account (ETA) Financial Agency Agreement AGENCY: Financial Management Service... of information described below: Title: Electronic Transfer Account (ETA) Financial Agency Agreement... public and other Federal agencies to take this opportunity to comment on a continuing information...

  1. 31 CFR 208.4 - Waivers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Payment by electronic funds transfer is not required in the following cases: (1) Where an individual: (i... are not required to be made by electronic funds transfer, unless and until such payments become... waiver request with Treasury certifying that payment by electronic funds transfer would impose a hardship...

  2. 12 CFR 1005.7 - Initial disclosures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... disclosures required by this section at the time a consumer contracts for an electronic fund transfer service or before the first electronic fund transfer is made involving the consumer's account. (b) Content of... Banks and Banking BUREAU OF CONSUMER FINANCIAL PROTECTION ELECTRONIC FUND TRANSFERS (REGULATION E...

  3. Solvent effects on the oxidation (electron transfer) reaction of [Fe(CN) 6] 4- by [Co(NH 3) 5pz] 3+

    NASA Astrophysics Data System (ADS)

    Muriel, F.; Jiménez, R.; López, M.; Prado-Gotor, R.; Sánchez, F.

    2004-03-01

    Solvent effects on the title reaction were studied in different reaction media constituted by water and organic cosolvents (methanol, tert-butyl alcohol, ethyleneglycol and glucose) at 298.2 K. The results are considered in light of the Marcus-Hush approach for electron transfer reactions. Variations of the electron transfer rate constant are shown to be mainly due to changes in the reaction free energy. On the other hand the energies of the MMCT band, corresponding to the optical electron transfer within the ion pair [Fe(CN) 6] 4-/[Co(NH 3) 5pz] 3+, in the different reaction media, have been obtained. The activation free energies of the thermal electron transfer process have been calculated from the band ( Eop) data, and compared with those obtained from the kinetic study. Quantitative agreement is found between the two series of data. This shows the possibility of estimating activation free energies for electron transfer reactions from static (optical) measurements.

  4. Bidirectional Photoinduced Electron Transfer in Ruthenium(II)-Tris-bipyridyl-Modified PpcA, a Multi-heme c -Type Cytochrome from Geobacter sulfurreducens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokhan, Oleksandr; Ponomarenko, Nina S.; Pokkuluri, P. Raj

    PpcA, a tri-heme cytochrome c7 from Geobacter sulfurreducens was investigated as a model for photosensitizer-initiated electron transfer within a multi-heme "molecular wire" protein architecture. E. coli expression of PpcA was found to be tolerant of cysteine site-directed mutagenesis, demonstrated by the successful expression of natively folded proteins bearing cysteine mutations at a series of sites selected to vary characteristically with respect to the three -CXXCH- heme binding domains. A preliminary survey of 5 selected mutants found that the introduced cysteines can be readily covalently linked to a Ru(II)-(2,2'-bpy)2(4-bromomethyl-4’-methyl-2,2'-bpy) photosensitizer (where bpy = bipyridine), and that the linked constructs support bothmore » photo-oxidative and photo-reductive quenching of the photosensitizer excited-state, depending upon the initial heme redox state. For photo-oxidative electron transfer, apparent heme reduction risetimes were found to vary from 7 x 10-12 s to 5 x 10-8 s, depending upon the site of photosensitizer linking. The excited-state electron transfers are about 103-fold faster than any previously reported photosensitizer-redox protein covalently linked construct. Preliminary conformational analysis using molecular dynamics simulations shows that rates for electron transfer track both the distance and pathways for electron transfer. Two mutants with the fastest charge transfer rates, A23C and K29C, showed a significant role of specific paths for electron transfer. While K29C labeled mutant was expected to have approximately 0.8Å greater donor-acceptor distance, it showed 20-fold faster charge separation rate. Clear evidence for inter-heme electron transfer within the multi-heme protein is not detected within the lifetimes of the charge separated states. These results demonstrate an opportunity to develop multi-heme c-cytochromes for investigation of electron transfer in protein "molecular wires" and to serve as frameworks for metalloprotein designs that support multiple electron transfer redox chemistry.« less

  5. Photoemission of Energetic Hot Electrons Produced via Up-Conversion in Doped Quantum Dots.

    PubMed

    Dong, Yitong; Parobek, David; Rossi, Daniel; Son, Dong Hee

    2016-11-09

    The benefits of the hot electrons from semiconductor nanostructures in photocatalysis or photovoltaics result from their higher energy compared to that of the band-edge electrons facilitating the electron-transfer process. The production of high-energy hot electrons usually requires short-wavelength UV or intense multiphoton visible excitation. Here, we show that highly energetic hot electrons capable of above-threshold ionization are produced via exciton-to-hot-carrier up-conversion in Mn-doped quantum dots under weak band gap excitation (∼10 W/cm 2 ) achievable with the concentrated solar radiation. The energy of hot electrons is as high as ∼0.4 eV above the vacuum level, much greater than those observed in other semiconductor or plasmonic metal nanostructures, which are capable of performing energetically and kinetically more-challenging electron transfer. Furthermore, the prospect of generating solvated electron is unique for the energetic hot electrons from up-conversion, which can open a new door for long-range electron transfer beyond short-range interfacial electron transfer.

  6. Impact of season, weekends and bank holidays on emergency department transfers of nursing home residents.

    PubMed

    Fan, C W; Keating, T; Brazil, E; Power, D; Duggan, J

    2016-08-01

    For urgent, unexpected clinical events, nursing home (NH) residents are transferred to the acute hospital emergency department (ED). A previous study showed that a third of transfers occurred during working hours. Our aims were to profile a one-year NH transfers to the ED and to examine the re-presentation, patient-oriented outcome and the impact of season, weekends and bank holidays on NH transfers. All NH transfers from a catchment to an ED over one year were identified using electronic patient record. Age, gender, reason for presentation, patient-oriented outcome and date and time of presentation were recorded. Representation and the interval between transfers were calculated. Number of transfers was calculated for season, weekdays/weekends and bank holidays. Student t test, Chi-square statistics and one-way ANOVA were used. Significance was set at 0.05. There were 802 transfers from 465 NH residents over a year; 501 (62.5 %) resulted in admissions, 189 (40.6 %) residents represent to the service and 80 episodes occurred within a fortnight of the last attendance. The highest transfers occurred in May (2.81 patients/day), during working hours and on Wednesdays and Thursdays (>2.5 transfers/day). 'Unwell adult' and 'falls' were the two commonest reasons for presentation. Our study showed that NH transfers occurred mainly within working hours and during weekdays. Insights into the transfer pattern and the reasons for NH patients to utilise ED will facilitate improved design and operation of the department by creating care pathways for these patients.

  7. Quantum Calculations of Electron Tunneling in Respiratory Complex III.

    PubMed

    Hagras, Muhammad A; Hayashi, Tomoyuki; Stuchebrukhov, Alexei A

    2015-11-19

    The most detailed and comprehensive to date study of electron transfer reactions in the respiratory complex III of aerobic cells, also known as bc1 complex, is reported. In the framework of the tunneling current theory, electron tunneling rates and atomistic tunneling pathways between different redox centers were investigated for all electron transfer reactions comprising different stages of the proton-motive Q-cycle. The calculations reveal that complex III is a smart nanomachine, which under certain conditions undergoes conformational changes gating electron transfer, or channeling electrons to specific pathways. One-electron tunneling approximation was adopted in the tunneling calculations, which were performed using hybrid Broken-Symmetry (BS) unrestricted DFT/ZINDO levels of theory. The tunneling orbitals were determined using an exact biorthogonalization scheme that uniquely separates pairs of tunneling orbitals with small overlaps out of the remaining Franck-Condon orbitals with significant overlap. Electron transfer rates in different redox pairs show exponential distance dependence, in agreement with the reported experimental data; some reactions involve coupled proton transfer. Proper treatment of a concerted two-electron bifurcated tunneling reaction at the Q(o) site is given.

  8. Charge transfer from TiO2 into adsorbed benzene diazonium compounds

    NASA Astrophysics Data System (ADS)

    Merson, A.; Dittrich, Th.; Zidon, Y.; Rappich, J.; Shapira, Yoram

    2004-08-01

    Electron transfer from sol-gel-prepared TiO2 into adsorbed benzene diazonium compounds has been investigated using cyclic voltammetry, x-ray photoelectron spectroscopy, contact potential difference, and surface photovoltage spectroscopy. The results show that the potential of maximum electron transfer depends strongly on the dipole moment of the benzene compound. Two reactive surface sites at which electron transfer occurs have been identified.

  9. RIE-based Pattern Transfer Using Nanoparticle Arrays as Etch Masks

    NASA Astrophysics Data System (ADS)

    Hogg, Chip; Majetich, Sara A.; Bain, James A.

    2009-03-01

    Nanomasking is used to transfer the pattern of a self-assembled array of nanoparticles into an underlying thin film, for potential use as bit-patterned media. We have used this process to investigate the limits of pattern transfer, as a function of gap size in the pattern. Reactive Ion Etching (RIE) is our chosen process, since the gaseous reaction products and high chemical selectivity are ideal features for etching very small gaps. Interstitial surfactant is removed with an O2 plasma, allowing the etchants to penetrate between the particles. Their pattern is transferred into an intermediate SiO2 mask using a CH4-based RIE. This patterned SiO2 layer is finally used as a mask for the MeOH-based RIE which patterns the magnetic film. We present cross-sectional TEM characterization of the etch profiles, as well as magnetic characterization of the film before and after patterning.

  10. Direct Observation of Excimer-Mediated Intramolecular Electron Transfer in a Cofacially-Stacked Perylene Bisimide Pair.

    PubMed

    Sung, Jooyoung; Nowak-Król, Agnieszka; Schlosser, Felix; Fimmel, Benjamin; Kim, Woojae; Kim, Dongho; Würthner, Frank

    2016-07-27

    We have elucidated excimer-mediated intramolecular electron transfer in cofacially stacked PBIs tethered by two phenylene-butadiynylene loops. The electron transfer between energetically equivalent PBIs is revealed by the simultaneous observation of the PBI radical anion and cation bands in the transient absorption spectra. The fluorescence decay time of the excimer states is in good agreement with the rise time of PBI radical bands in transient absorption spectra suggesting that the electron transfer dynamics proceed via the excimer state. We can conclude that the excimer state effectuates the efficient charge transfer in the cofacially stacked PBI dimer.

  11. 12 CFR 1005.6 - Liability of consumer for unauthorized transfers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... transfers. 1005.6 Section 1005.6 Banks and Banking BUREAU OF CONSUMER FINANCIAL PROTECTION ELECTRONIC FUND TRANSFERS (REGULATION E) General § 1005.6 Liability of consumer for unauthorized transfers. (a) Conditions... this section, for an unauthorized electronic fund transfer involving the consumer's account only if the...

  12. 12 CFR 1005.6 - Liability of consumer for unauthorized transfers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... transfers. 1005.6 Section 1005.6 Banks and Banking BUREAU OF CONSUMER FINANCIAL PROTECTION ELECTRONIC FUND TRANSFERS (REGULATION E) General § 1005.6 Liability of consumer for unauthorized transfers. (a) Conditions... this section, for an unauthorized electronic fund transfer involving the consumer's account only if the...

  13. Self-assembled nanoparticle arrays as nanomasks for pattern transfer

    NASA Astrophysics Data System (ADS)

    Sachan, M.; Bonnoit, C.; Hogg, C.; Evarts, E.; Bain, J. A.; Majetich, S. A.; Park, J.-H.; Zhu, J.-G.

    2008-07-01

    Argon ion milling was used to transfer the pattern of sparse 12 nm iron oxide nanoparticles into underlying thin films of Pt and magnetic tunnel junction stacks and quantify their etching rates and morphological evolution. Under typical milling conditions, Pt milled at 10 nm min-1, while the isolated particles of iron oxide used for the mask milled at 5 nm min-1. Dilute dispersions of nanoparticles were used to produce the sparse nanomasks, and high resolution scanning electron microscopy (SEM) and atomic force microscopy were used to monitor the evolution of etched structures as a function of milling time. SEM measurements indicate an apparent 20% increase in feature diameter before the features began to diminish under additional milling, suggesting redeposition as a limiting feature in the milling of dense arrays. Simulations of the milling process in nanoparticle arrays that include redeposition are consistent with this observation. These simulations predict that an edge-to-edge spacing of 3 nm in a dense array is feasible, but that redeposition reduces the final structure aspect ratio from that of the masking array by as much as a factor of two.

  14. Fabrication and Theoretical Evaluation of Microlens Arrays on Layered Polymers

    NASA Astrophysics Data System (ADS)

    Oder, Tom; McMaster, Michael; Merlo, Corey; Bagheri, Camron; Reakes, Clayton; Petrus, Joshua; Li, Dingqiang; Crescimanno, Michael; Andrews, James

    2014-03-01

    Arrays of microlens were fabricated on nano-layered polymers using reactive ion etching. Semi hemispherical patterns with diameters ranging from 20 to 80 micrometers were first formed on a thick photoresist film that was spin-coated on the layered polymers using standard photolithographic process employing a gray scale glass mask. These patterns were then transferred to the polymers using dry etching in a reactive ion etching system. The optimized etch condition included a mixture of sulfur hexafluoride and oxygen, which resulted in an etch depth of 5 micrometers and successfully exposed the individual sub-micron thick layers in the polymers. Physical characterization of the microlens arrays was done using atomic force microscope and scanning electron microscope. We combine basic physical optics theory with the transfer matrix analysis of optical transport in nano-layered polymers to address subtleties in the chromatic response of microlenses made from these materials. In particular this method explains the len's behavior in and around the reflection band of the materials. We wish to acknowledge support of funds from NSF through its Center for Layered Polymeric Systems (CLiPS) at Case Western Reserve University.

  15. Single-Molecule Interfacial Electron Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, H. Peter

    This project is focused on the use of single-molecule high spatial and temporal resolved techniques to study molecular dynamics in condensed phase and at interfaces, especially, the complex reaction dynamics associated with electron and energy transfer rate processes. The complexity and inhomogeneity of the interfacial ET dynamics often present a major challenge for a molecular level comprehension of the intrinsically complex systems, which calls for both higher spatial and temporal resolutions at ultimate single-molecule and single-particle sensitivities. Combined single-molecule spectroscopy and electrochemical atomic force microscopy approaches are unique for heterogeneous and complex interfacial electron transfer systems because the static andmore » dynamic inhomogeneities can be identified and characterized by studying one molecule at a specific nanoscale surface site at a time. The goal of our project is to integrate and apply these spectroscopic imaging and topographic scanning techniques to measure the energy flow and electron flow between molecules and substrate surfaces as a function of surface site geometry and molecular structure. We have been primarily focusing on studying interfacial electron transfer under ambient condition and electrolyte solution involving both single crystal and colloidal TiO 2 and related substrates. The resulting molecular level understanding of the fundamental interfacial electron transfer processes will be important for developing efficient light harvesting systems and broadly applicable to problems in fundamental chemistry and physics. We have made significant advancement on deciphering the underlying mechanism of the complex and inhomogeneous interfacial electron transfer dynamics in dyesensitized TiO 2 nanoparticle systems that strongly involves with and regulated by molecule-surface interactions. We have studied interfacial electron transfer on TiO 2 nanoparticle surfaces by using ultrafast single-molecule spectroscopy and electrochemical AFM metal tip scanning microscopy, focusing on understanding the interfacial electron transfer dynamics at specific nanoscale electron transfer sites with high-spatially and temporally resolved topographic-and-spectroscopic characterization at individual molecule basis, characterizing single-molecule rate processes, reaction driving force, and molecule-substrate electronic coupling. One of the most significant characteristics of our new approach is that we are able to interrogate the complex interfacial electron transfer dynamics by actively pin-point energetic manipulation of the surface interaction and electronic couplings, beyond the conventional excitation and observation.« less

  16. Thrombin-Binding Aptamer Quadruplex Formation: AFM and Voltammetric Characterization

    PubMed Central

    Diculescu, Victor Constantin; Chiorcea-Paquim, Ana-Maria; Eritja, Ramon; Oliveira-Brett, Ana Maria

    2010-01-01

    The adsorption and the redox behaviour of thrombin-binding aptamer (TBA) and extended TBA (eTBA) were studied using atomic force microscopy and voltammetry at highly oriented pyrolytic graphite and glassy carbon. The different adsorption patterns and degree of surface coverage were correlated with the sequence base composition, presence/absence of K+, and voltammetric behaviour of TBA and eTBA. In the presence of K+, only a few single-stranded sequences present adsorption, while the majority of the molecules forms stable and rigid quadruplexes with no adsorption. Both TBA and eTBA are oxidized and the only anodic peak corresponds to guanine oxidation. Upon addition of K+ ions, TBA and eTBA fold into a quadruplex, causing the decrease of guanine oxidation peak and occurrence of a new peak at a higher potential due to the oxidation of G-quartets. The higher oxidation potential of G-quartets is due to the greater difficulty of electron transfer from the inside of the quadruplex to the electrode surface than electron transfer from the more flexible single strands. PMID:20798847

  17. 75 FR 33681 - Electronic Fund Transfers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ... FEDERAL RESERVE SYSTEM 12 CFR Part 205 [Regulation E; Docket No. R-1343] Electronic Fund Transfers June 4, 2010. AGENCY: Board of Governors of the Federal Reserve System. ACTION: Final rule; correction..., published on June 4, 2010 (75 FR 31665) make the following correction: PART 205--ELECTRONIC FUND TRANSFERS...

  18. Facile electrocatalytic redox of hemoglobin by flower-like gold nanoparticles on boron-doped diamond surface.

    PubMed

    Li, Mingfang; Zhao, Guohua; Geng, Rong; Hu, Huikang

    2008-11-01

    The flower-like gold nanoparticles together with spherical and convex polyhedron gold nanoparticles were fabricated on boron-doped diamond (BDD) surface by one-step and simple electrochemical method through easily controlling the applied potential and the concentration of HAuCl(4). The recorded X-ray diffraction (XRD) patterns confirmed that these three shapes of gold nanoparticles were dominated by different crystal facets. The cyclic voltammetric results indicated that the morphology of gold nanoparticles plays big role in their electrochemical behaviors. The direct electrochemistry of hemoglobin (Hb) was realized on all the three different shapes of nanogold-attached BDD surface without the aid of any electron mediator. In pH 4.5 acetate buffer solutions (ABS), Hb showed a pair of well defined and quasi-reversible redox peaks. However, the results obtained demonstrated that the redox peak potential, the average surface concentration of electroactive heme, and the electron transfer rates of Hb are greatly dependent upon the surface morphology of gold nanoparticles. The electron transfer rate constant of hemoglobin over flower-like nanogold/BDD electrode was more than two times higher than that over spherical and convex polyhedron nanogold. The observed differences may be ascribed to the difference in gold particle characteristics including surface roughness, exposed surface area, and crystal structure.

  19. De Novo Construction of Redox Active Proteins.

    PubMed

    Moser, C C; Sheehan, M M; Ennist, N M; Kodali, G; Bialas, C; Englander, M T; Discher, B M; Dutton, P L

    2016-01-01

    Relatively simple principles can be used to plan and construct de novo proteins that bind redox cofactors and participate in a range of electron-transfer reactions analogous to those seen in natural oxidoreductase proteins. These designed redox proteins are called maquettes. Hydrophobic/hydrophilic binary patterning of heptad repeats of amino acids linked together in a single-chain self-assemble into 4-alpha-helix bundles. These bundles form a robust and adaptable frame for uncovering the default properties of protein embedded cofactors independent of the complexities introduced by generations of natural selection and allow us to better understand what factors can be exploited by man or nature to manipulate the physical chemical properties of these cofactors. Anchoring of redox cofactors such as hemes, light active tetrapyrroles, FeS clusters, and flavins by His and Cys residues allow cofactors to be placed at positions in which electron-tunneling rates between cofactors within or between proteins can be predicted in advance. The modularity of heptad repeat designs facilitates the construction of electron-transfer chains and novel combinations of redox cofactors and new redox cofactor assisted functions. Developing de novo designs that can support cofactor incorporation upon expression in a cell is needed to support a synthetic biology advance that integrates with natural bioenergetic pathways. © 2016 Elsevier Inc. All rights reserved.

  20. In-situ sequential laser transfer and laser reduction of graphene oxide films

    NASA Astrophysics Data System (ADS)

    Papazoglou, S.; Petridis, C.; Kymakis, E.; Kennou, S.; Raptis, Y. S.; Chatzandroulis, S.; Zergioti, I.

    2018-04-01

    Achieving high quality transfer of graphene on selected substrates is a priority in device fabrication, especially where drop-on-demand applications are involved. In this work, we report an in-situ, fast, simple, and one step process that resulted in the reduction, transfer, and fabrication of reduced graphene oxide-based humidity sensors, using picosecond laser pulses. By tuning the laser illumination parameters, we managed to implement the sequential printing and reduction of graphene oxide flakes. The overall process lasted only a few seconds compared to a few hours that our group has previously published. DC current measurements, X-Ray Photoelectron Spectroscopy, X-Ray Diffraction, and Raman Spectroscopy were employed in order to assess the efficiency of our approach. To demonstrate the applicability and the potential of the technique, laser printed reduced graphene oxide humidity sensors with a limit of detection of 1700 ppm are presented. The results demonstrated in this work provide a selective, rapid, and low-cost approach for sequential transfer and photochemical reduction of graphene oxide micro-patterns onto various substrates for flexible electronics and sensor applications.

  1. Transparent Flexible Electronics By Directed Integration of Inorganic Micro and Nanomaterials

    NASA Astrophysics Data System (ADS)

    Cole, Jesse J.

    This thesis focuses on nanomanufacturing processes for the heterogeneous integration of nanomaterials. Our approaches involved local adjustment of electrostatics at the surfaces to control material flux. Templating of surface electrostatics was implemented differently for three broad concepts resulting in control over nanomaterial synthesis, deposition, and printing. These three general concepts are: (A) Tailored ZnO nanowire synthesis and integration out of the liquid phase; (B) Arc discharge synthesis and continuous nanocluster deposition from the gas phase; (C) Contact electrification and xerographic printing of nanoparticles from the gas phase. Concept (A): We report a method to fabricate and transfer crystalline ZnO with control over location, orientation, size, and shape. The process uses an oxygen plasma treatment in combination with a photoresist pattern on Magnesium-doped GaN substrates to define narrow nucleation regions and attachment points with 100 nanometer scale dimensions. Lateral epitaxial overgrowth follows nucleation to produce single crystalline ZnO which were fabricated into LEDs and photovoltaic cells. Concept (B): We report a gas phase nanoparticle deposition system which shares characteristics with liquid phase electrodeposition. Clusters of charged nanoparticles selectively deposit onto electrically grounded surfaces. Similar to electroplating, the continued deposition of Au nanoparticles onto underlying resistive traces increased overall line conductivity. Alternatively, semiconducting ZnO and Ge nanomaterial sequentially deposited between interdigitated electrodes and served as addressable sensor active areas. Concept (C): We report patterned transfer of charge between conformal material interfaces through a concept referred to as nanocontact electrification. Nanocontacts of different size and shape are formed between surface functionalized polydimethylsiloxane (PDMS) stamps and other dielectric materials (PMMA, SiO 2). Forced delamination and cleavage of the interface yields a well defined charge pattern with a minimal feature size of 100 nm. The process produces charged surfaces and associated fields that exceed the breakdown strength of air leading to strong long range adhesive forces and force distance curves which are recorded over macroscopic distances. The process is applied to fabricate charge patterned surfaces for nanoxerography demonstrating 200 nm resolution nanoparticle prints and applied to thin film electronics where the patterned charges are used to shift the threshold voltages of underlying transistors by over 500 mV.

  2. Experimental, theoretical, and device application development of nanoscale focused electron-beam-induced deposition

    NASA Astrophysics Data System (ADS)

    Randolph, Steven Jeffrey

    Electron-beam-induced deposition (EBID) is a highly versatile nanofabrication technique that allows for growth of a variety of materials with nanoscale precision and resolution. While several applications and studies of EBID have been reported and published, there is still a significant lack of understanding of the complex mechanisms involved in the process. Consequently, EBID process control is, in general, limited and certain common experimental results regarding nanofiber growth have yet to be fully explained. Such anomalous results have been addressed in this work both experimentally and by computer simulation. Specifically, a correlation between SiOx nanofiber deposition observations and the phenomenon of electron beam heating (EBH) was shown by comparison of thermal computer models and experimental results. Depending on the beam energy, beam current, and nanostructure geometry, the heat generated can be substantial and may influence the deposition rate. Temperature dependent EBID growth experiments qualitatively verified the results of the EBH model. Additionally, EBID was used to produce surface image layers for maskless, direct-write lithography (MDL). A single layer process used directly written SiOx features as a masking layer for amorphous silicon thin films. A bilayer process implemented a secondary masking layer consisting of standard photoresist into which a pattern---directly written by EBID tungsten---was transferred. The single layer process was found to be extremely sensitive to the etch selectivity of the plasma etch. In the bilayer process, EBID tungsten was written onto photoresist and the pattern transferred by means of oxygen plasma dry development following a brief refractory descum. Conditions were developed to reduce the spatial spread of electrons in the photoresist layer and obtain ˜ 35 nm lines. Finally, an EBID-based technique for field emitter repair was applied to the Digital Electrostatically focused e-beam Array Lithography (DEAL) parallel electron beam lithography configuration to repair damaged or missing carbon nanofiber cathodes. The I-V response and lithography results from EBID tungsten-based devices were comparable to CNF-based DEAL devices indicating a successful repair technique.

  3. Inner reorganization limiting electron transfer controlled hydrogen bonding: intra- vs. intermolecular effects.

    PubMed

    Martínez-González, Eduardo; Frontana, Carlos

    2014-05-07

    In this work, experimental evidence of the influence of the electron transfer kinetics during electron transfer controlled hydrogen bonding between anion radicals of metronidazole and ornidazole, derivatives of 5-nitro-imidazole, and 1,3-diethylurea as the hydrogen bond donor, is presented. Analysis of the variations of voltammetric EpIcvs. log KB[DH], where KB is the binding constant, allowed us to determine the values of the binding constant and also the electron transfer rate k, confirmed by experiments obtained at different scan rates. Electronic structure calculations at the BHandHLYP/6-311++G(2d,2p) level for metronidazole, including the solvent effect by the Cramer/Truhlar model, suggested that the minimum energy conformer is stabilized by intramolecular hydrogen bonding. In this structure, the inner reorganization energy, λi,j, contributes significantly (0.5 eV) to the total reorganization energy of electron transfer, thus leading to a diminishment of the experimental k.

  4. Development of a Simple Electron Transfer and Polarization Model and Its Application to Biological Systems.

    PubMed

    Diller, David J

    2017-01-10

    Here we present a new method for point charge calculation which we call Q ET (charges by electron transfer). The intent of this work is to develop a method that can be useful for studying charge transfer in large biological systems. It is based on the intuitive framework of the Q EQ method with the key difference being that the Q ET method tracks all pairwise electron transfers by augmenting the Q EQ pseudoenergy function with a distance dependent cost function for each electron transfer. This approach solves the key limitation of the Q EQ method which is its handling of formally charged groups. First, we parametrize the Q ET method by fitting to electrostatic potentials calculated using ab initio quantum mechanics on over 11,000 small molecules. On an external test set of over 2500 small molecules the Q ET method achieves a mean absolute error of 1.37 kcal/mol/electron when compared to the ab initio electrostatic potentials. Second, we examine the conformational dependence of the charges on over 2700 tripeptides. With the tripeptide data set, we show that the conformational effects account for approximately 0.4 kcal/mol/electron on the electrostatic potentials. Third, we test the Q ET method for its ability to reproduce the effects of polarization and electron transfer on 1000 water clusters. For the water clusters, we show that the Q ET method captures about 50% of the polarization and electron transfer effects. Finally, we examine the effects of electron transfer and polarizability on the electrostatic interaction between p38 and 94 small molecule ligands. When used in conjunction with the Generalized-Born continuum solvent model, polarization and electron transfer with the Q ET model lead to an average change of 17 kcal/mol on the calculated electrostatic component of ΔG.

  5. Predicting the Rate Constant of Electron Tunneling Reactions at the CdSe-TiO2 Interface.

    PubMed

    Hines, Douglas A; Forrest, Ryan P; Corcelli, Steven A; Kamat, Prashant V

    2015-06-18

    Current interest in quantum dot solar cells (QDSCs) motivates an understanding of the electron transfer dynamics at the quantum dot (QD)-metal oxide (MO) interface. Employing transient absorption spectroscopy, we have monitored the electron transfer rate (ket) at this interface as a function of the bridge molecules that link QDs to TiO2. Using mercaptoacetic acid, 3-mercaptopropionic acid, 8-mercaptooctanoic acid, and 16-mercaptohexadecanoic acid, we observe an exponential attenuation of ket with increasing linker length, and attribute this to the tunneling of the electron through the insulating linker molecule. We model the electron transfer reaction using both rectangular and trapezoidal barrier models that have been discussed in the literature. The one-electron reduction potential (equivalent to the lowest unoccupied molecular orbital) of each molecule as determined by cyclic voltammetry (CV) was used to estimate the effective barrier height presented by each ligand at the CdSe-TiO2 interface. The electron transfer rate (ket) calculated for each CdSe-ligand-TiO2 interface using both models showed the results in agreement with the experimentally determined trend. This demonstrates that electron transfer between CdSe and TiO2 can be viewed as electron tunneling through a layer of linking molecules and provides a useful method for predicting electron transfer rate constants.

  6. Proton-coupled electron transfer versus hydrogen atom transfer: generation of charge-localized diabatic states.

    PubMed

    Sirjoosingh, Andrew; Hammes-Schiffer, Sharon

    2011-03-24

    The distinction between proton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) mechanisms is important for the characterization of many chemical and biological processes. PCET and HAT mechanisms can be differentiated in terms of electronically nonadiabatic and adiabatic proton transfer, respectively. In this paper, quantitative diagnostics to evaluate the degree of electron-proton nonadiabaticity are presented. Moreover, the connection between the degree of electron-proton nonadiabaticity and the physical characteristics distinguishing PCET from HAT, namely, the extent of electronic charge redistribution, is clarified. In addition, a rigorous diabatization scheme for transforming the adiabatic electronic states into charge-localized diabatic states for PCET reactions is presented. These diabatic states are constructed to ensure that the first-order nonadiabatic couplings with respect to the one-dimensional transferring hydrogen coordinate vanish exactly. Application of these approaches to the phenoxyl-phenol and benzyl-toluene systems characterizes the former as PCET and the latter as HAT. The diabatic states generated for the phenoxyl-phenol system possess physically meaningful, localized electronic charge distributions that are relatively invariant along the hydrogen coordinate. These diabatic electronic states can be combined with the associated proton vibrational states to generate the reactant and product electron-proton vibronic states that form the basis of nonadiabatic PCET theories. Furthermore, these vibronic states and the corresponding vibronic couplings may be used to calculate rate constants and kinetic isotope effects of PCET reactions.

  7. 49 CFR 225.37 - Optical media transfer and electronic submission.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Optical media transfer and electronic submission..., AND INVESTIGATIONS § 225.37 Optical media transfer and electronic submission. (a) A railroad has the option of submitting the following reports, updates, and amendments by way of optical media (CD-ROM), or...

  8. 49 CFR 225.37 - Optical media transfer and electronic submission.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Optical media transfer and electronic submission..., AND INVESTIGATIONS § 225.37 Optical media transfer and electronic submission. (a) A railroad has the option of submitting the following reports, updates, and amendments by way of optical media (CD-ROM), or...

  9. 49 CFR 225.37 - Optical media transfer and electronic submission.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Optical media transfer and electronic submission..., AND INVESTIGATIONS § 225.37 Optical media transfer and electronic submission. (a) A railroad has the option of submitting the following reports, updates, and amendments by way of optical media (CD-ROM), or...

  10. 49 CFR 225.37 - Optical media transfer and electronic submission.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Optical media transfer and electronic submission..., AND INVESTIGATIONS § 225.37 Optical media transfer and electronic submission. (a) A railroad has the option of submitting the following reports, updates, and amendments by way of optical media (CD-ROM), or...

  11. 76 FR 708 - Electronic Funds Transfer of Depository Taxes; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-06

    ... DEPARTMENT OF THE TREASURY Internal Revenue Service 26 CFR Parts 1, 31, 40, and 301 [TD 9507] RIN 1545-BJ13 Electronic Funds Transfer of Depository Taxes; Correction AGENCY: Internal Revenue Service... Electronic Funds Transfer (EFT). The temporary and final regulations provide rules under which depositors...

  12. 76 FR 709 - Electronic Funds Transfer of Depository Taxes; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-06

    ... DEPARTMENT OF THE TREASURY Internal Revenue Service 26 CFR Parts 40 and 301 [TD 9507] RIN 1545-BJ13 Electronic Funds Transfer of Depository Taxes; Correction AGENCY: Internal Revenue Service (IRS...) providing guidance relating to Federal tax deposits (FTDs) by Electronic Funds Transfer (EFT). The temporary...

  13. 78 FR 49365 - Electronic Fund Transfers (Regulation E); Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ... BUREAU OF CONSUMER FINANCIAL PROTECTION 12 CFR Part 1005 [Docket No. CFPB-2012-0050] RIN 3170-AA33 Electronic Fund Transfers (Regulation E); Correction AGENCY: Bureau of Consumer Financial Protection. ACTION... 2013 Final Rule, which along with three other final rules \\1\\ implements the Electronic Fund Transfer...

  14. 75 FR 52485 - Electronic Funds Transfer of Depository Taxes; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    ... DEPARTMENT OF THE TREASURY Internal Revenue Service 26 CFR Parts 1, 31, 40, and 301 [REG-153340-09] RIN 1545-BJ13 Electronic Funds Transfer of Depository Taxes; Correction AGENCY: Internal Revenue... to Federal tax deposits (FTDs) by Electronic Funds Transfer (EFT). FOR FURTHER INFORMATION CONTACT...

  15. 76 FR 67153 - Federal Acquisition Regulation; Submission for OMB Review; Payment by Electronic Fund Transfer

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ...; Submission for OMB Review; Payment by Electronic Fund Transfer AGENCY: Department of Defense (DOD), General... collection requirement concerning payment by electronic fund transfer. A notice was published in the Federal... technological collection techniques or other forms of information technology. DATES: Submit comments on or...

  16. 40 CFR Table I-2 to Subpart I - Examples of Fluorinated GHGs and Fluorinated Heat Transfer Fluids Used by the Electronics Industry

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Fluorinated Heat Transfer Fluids Used by the Electronics Industry I Table I-2 to Subpart I Protection of... REPORTING Electronics Manufacturing Pt. 98, Subpt. I, Table I-2 Table I-2 to Subpart I—Examples of Fluorinated GHGs and Fluorinated Heat Transfer Fluids Used by the Electronics Industry Product type...

  17. On judgement of electron transfer between two regions divided by the separatrix of confronting divergent magnetic fields applied to an inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Sugawara, Hirotake; Yamamoto, Tappei

    2016-09-01

    In order to quantitatively evaluate the electron confinement effect of the confronting divergent magnetic fields (CDMFs) applied to an inductively coupled plasma, we analyzed the electron transfer between two regions divided by the separatrix of the CDMFs in Ar at 0.67 Pa at 300 K using a Monte Carlo method. A conventional transfer judgement was simply based on the electron passage across the separatrix from the upstream source region to the downstream diffusion region. An issue was an overestimation of the transfer due to temporary stay of electrons in the downstream region. Electrons may pass the downstream region during their gyration even in case they are effectively bound to the upstream region, where their guiding magnetic flux lines run. More than half of the transfers were temporary ones and such seeming transfers were relevantly excluded from the statistics by introducing a newly chosen criterion based on the passage of electron gyrocenters across the separatrix and collisional events in the downstream region. Simulation results showed a tendency that the ratio of the temporary transfers excluded was higher under stronger magnetic fields because of higher cyclotron frequency. Work supported by JSPS Kakenhi Grant Number 16K05626.

  18. The role of defects in Fe(II) – goethite electron transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrade de Notini, Luiza; Latta, Drew; Neumann, Anke

    Despite accumulating experimental evidence for Fe(II)-Fe(III) oxide electron transfer, computational chemical calculations suggest that oxidation of sorbed Fe(II) is not energetically feasible unless defects are present. Here we used isotope specific 57Fe Mössbauer spectroscopy to investigate whether Fe(II)-goethite electron transfer is influenced by defects. Specifically, we heated the mineral to try to anneal the goethite surface and ground goethite to try to create defects. We found that heating goethite results in less oxidation of sorbed Fe(II) by goethite. When goethite was re-ground after heating, electron transfer was partially restored. X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) ofmore » heated and ground goethite confirm that heating and grinding alter the surface structure of the goethite. We propose that the heating process annealed the surface and decreased the number of sites where electron transfer could occur. Our experimental findings suggest that surface defects play an important role in Fe(II)-goethite electron transfer as suggested by computational calculations. Our finding that defects influence heterogeneous Fe(II)-goethite electron transfer has important implications for Fe(II) driven recrystallization of Fe oxides, as well as X and Y.« less

  19. Graphene Charge Transfer, Spectroscopy, and Photochemical Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brus, Louis

    This project focused on the special electronic and optical properties of graphene and adsorbed molecular species. Graphene makes an excellent substrate for current collection in nanostructured photovoltaic designs. Graphene is almost transparent, and can be used as a solar cell window. It also has no surface states, and thus current is efficiently transported over long distances. Progress in graphene synthesis indicates that there will soon be practical methods for making large pieces of graphene for devices. We now need to understand exactly what happens to both ground state and electronically excited molecules and Qdots near graphene, if we are goingmore » to use them to absorb light in a nano-structured photovoltaic device using graphene to collect photocurrent. We also need to understand how to shift the graphene Fermi level, to optimize the kinetics of electron transfer to graphene. And we need to learn how to convert local graphene areas to semiconductor structure, to make useful spatially patterned graphenes. In this final report, we describe how we addressed these goals. We explored the question of possible Surface Enhanced Raman spectroscopy from molecular Charge Transfer onto Graphene substrates. We observed strong hole doping of graphene by adsorbed halogens as indicated by the shift of the graphene G Raman band. In the case of iodine adsorption, we also observed the anionic species made by hole doping. At low frequency in the Raman spectrum, we saw quite intense lines from I 3 - and I 5 - , suggesting possible SERS. We reported on Fresnel calculations on this thin film system, which did not show any net electromagnetic field enhancement.« less

  20. Effect of group electronegativity on electron transfer in bis(hydrazine) radical cations.

    PubMed

    Qin, Haimei; Zhong, Xinxin; Si, Yubing; Zhang, Weiwei; Zhao, Yi

    2011-04-14

    The radical cation of 4,10-ditert-butyl-5,9-diisopropyl-4,5,9,10-tetraazatetracyclo[6.2.2.2]-tetradecane (sBI4T(+)), as well as its substituted bis(hydrazine) radical cations, is chosen for the investigation of the electronegativity dependence of its intramolecular electron transfer. To do so, two parameters, reorganization energy and electronic coupling, are calculated with several ab initio approaches. It is found that the electronic couplings decrease with the increase of the group electronegativity while the reorganization energies do not show an explicit dependency. Furthermore, Marcus formula is employed to reveal those effect on the electron transfer rates. The predicted rates of electron transfer generally decrease with increasing group electronegativity, although not monotonically.

  1. Near-infrared light-responsive dynamic wrinkle patterns.

    PubMed

    Li, Fudong; Hou, Honghao; Yin, Jie; Jiang, Xuesong

    2018-04-01

    Dynamic micro/nanopatterns provide an effective approach for on-demand tuning of surface properties to realize a smart surface. We report a simple yet versatile strategy for the fabrication of near-infrared (NIR) light-responsive dynamic wrinkles by using a carbon nanotube (CNT)-containing poly(dimethylsiloxane) (PDMS) elastomer as the substrate for the bilayer systems, with various functional polymers serving as the top stiff layers. The high photon-to-thermal energy conversion of CNT leads to the NIR-controlled thermal expansion of the elastic CNT-PDMS substrate, resulting in dynamic regulation of the applied strain (ε) of the bilayer system by the NIR on/off cycle to obtain a reversible wrinkle pattern. The switchable surface topological structures can transfer between the wrinkled state and the wrinkle-free state within tens of seconds via NIR irradiation. As a proof-of-concept application, this type of NIR-driven dynamic wrinkle pattern was used in smart displays, dynamic gratings, and light control electronics.

  2. A biosensor for cadmium based on bioconvective patterns

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Matsos, Helen C.

    1990-01-01

    An 'in vitro' method for monitoring cadmium, one of the most lethal bivalent heavy metals, can detect biologically active levels. The effects of cadmium tend to concentrate in protozoa far above natural levels and therein begin transferring through freshwater food chains to animals and humans. In a small sample volume (approximately 5 ml) the method uses the toxic response to the protozoa, Tetrahymena pyriformis, to cadmium. The assay relies on macroscopic bioconvective patterns to measure the toxic response, giving a sensitivity better than 1 micro-g/1 and a toxicity threshold to 7 micro-g/1 for Cd(2+). Cadmium hinders pattern formation in a dose-dependent manner. Arrested organism growth arises from slowed division and mutation to non-dividing classes. Unlike previous efforts, this method can be performed in a shallow flow device and does not require electronic or chemical analyses to monitor toxicity.

  3. Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction.

    PubMed

    Müller, Knut; Krause, Florian F; Béché, Armand; Schowalter, Marco; Galioit, Vincent; Löffler, Stefan; Verbeeck, Johan; Zweck, Josef; Schattschneider, Peter; Rosenauer, Andreas

    2014-12-15

    By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field-induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright-field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms.

  4. Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction

    NASA Astrophysics Data System (ADS)

    Müller, Knut; Krause, Florian F.; Béché, Armand; Schowalter, Marco; Galioit, Vincent; Löffler, Stefan; Verbeeck, Johan; Zweck, Josef; Schattschneider, Peter; Rosenauer, Andreas

    2014-12-01

    By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field-induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright-field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms.

  5. Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction

    PubMed Central

    Müller, Knut; Krause, Florian F.; Béché, Armand; Schowalter, Marco; Galioit, Vincent; Löffler, Stefan; Verbeeck, Johan; Zweck, Josef; Schattschneider, Peter; Rosenauer, Andreas

    2014-01-01

    By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field-induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright-field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms. PMID:25501385

  6. Dynamics and mechanism of UV-damaged DNA repair in indole-thymine dimer adduct: molecular origin of low repair quantum efficiency.

    PubMed

    Guo, Xunmin; Liu, Zheyun; Song, Qinhua; Wang, Lijuan; Zhong, Dongping

    2015-02-26

    Many biomimetic chemical systems for repair of UV-damaged DNA showed very low repair efficiency, and the molecular origin is still unknown. Here, we report our systematic characterization of the repair dynamics of a model compound of indole-thymine dimer adduct in three solvents with different polarity. By resolving all elementary steps including three electron-transfer processes and two bond-breaking and bond-formation dynamics with femtosecond resolution, we observed the slow electron injection in 580 ps in water, 4 ns in acetonitrile, and 1.38 ns in dioxane, the fast back electron transfer without repair in 120, 150, and 180 ps, and the slow bond splitting in 550 ps, 1.9 ns, and 4.5 ns, respectively. The dimer bond cleavage is clearly accelerated by the solvent polarity. By comparing with the biological repair machine photolyase with a slow back electron transfer (2.4 ns) and a fast bond cleavage (90 ps), the low repair efficiency in the biomimetic system is mainly determined by the fast back electron transfer and slow bond breakage. We also found that the model system exists in a dynamic heterogeneous C-clamped conformation, leading to a stretched dynamic behavior. In water, we even identified another stacked form with ultrafast cyclic electron transfer, significantly reducing the repair efficiency. Thus, the comparison of the repair efficiency in different solvents is complicated and should be cautious, and only the dynamics by resolving all elementary steps can finally determine the total repair efficiency. Finally, we use the Marcus electron-transfer theory to analyze all electron-transfer reactions and rationalize all observed electron-transfer dynamics.

  7. Electron shuttles in biotechnology.

    PubMed

    Watanabe, Kazuya; Manefield, Mike; Lee, Matthew; Kouzuma, Atsushi

    2009-12-01

    Electron-shuttling compounds (electron shuttles [ESs], or redox mediators) are essential components in intracellular electron transfer, while microbes also utilize self-produced and naturally present ESs for extracellular electron transfer. These compounds assist in microbial energy metabolism by facilitating electron transfer between microbes, from electron-donating substances to microbes, and/or from microbes to electron-accepting substances. Artificially supplemented ESs can create new routes of electron flow in the microbial energy metabolism, thereby opening up new possibilities for the application of microbes to biotechnology processes. Typical examples of such processes include halogenated-organics bioremediation, azo-dye decolorization, and microbial fuel cells. Herein we suggest that ESs can be applied widely to create new microbial biotechnology processes.

  8. Incorporation of charge transfer into the explicit polarization fragment method by grand canonical density functional theory.

    PubMed

    Isegawa, Miho; Gao, Jiali; Truhlar, Donald G

    2011-08-28

    Molecular fragmentation algorithms provide a powerful approach to extending electronic structure methods to very large systems. Here we present a method for including charge transfer between molecular fragments in the explicit polarization (X-Pol) fragment method for calculating potential energy surfaces. In the conventional X-Pol method, the total charge of each fragment is preserved, and charge transfer between fragments is not allowed. The description of charge transfer is made possible by treating each fragment as an open system with respect to the number of electrons. To achieve this, we applied Mermin's finite temperature method to the X-Pol wave function. In the application of this method to X-Pol, the fragments are open systems that partially equilibrate their number of electrons through a quasithermodynamics electron reservoir. The number of electrons in a given fragment can take a fractional value, and the electrons of each fragment obey the Fermi-Dirac distribution. The equilibrium state for the electrons is determined by electronegativity equalization with conservation of the total number of electrons. The amount of charge transfer is controlled by re-interpreting the temperature parameter in the Fermi-Dirac distribution function as a coupling strength parameter. We determined this coupling parameter so as to reproduce the charge transfer energy obtained by block localized energy decomposition analysis. We apply the new method to ten systems, and we show that it can yield reasonable approximations to potential energy profiles, to charge transfer stabilization energies, and to the direction and amount of charge transferred. © 2011 American Institute of Physics

  9. Incorporation of charge transfer into the explicit polarization fragment method by grand canonical density functional theory

    PubMed Central

    Isegawa, Miho; Gao, Jiali; Truhlar, Donald G.

    2011-01-01

    Molecular fragmentation algorithms provide a powerful approach to extending electronic structure methods to very large systems. Here we present a method for including charge transfer between molecular fragments in the explicit polarization (X-Pol) fragment method for calculating potential energy surfaces. In the conventional X-Pol method, the total charge of each fragment is preserved, and charge transfer between fragments is not allowed. The description of charge transfer is made possible by treating each fragment as an open system with respect to the number of electrons. To achieve this, we applied Mermin's finite temperature method to the X-Pol wave function. In the application of this method to X-Pol, the fragments are open systems that partially equilibrate their number of electrons through a quasithermodynamics electron reservoir. The number of electrons in a given fragment can take a fractional value, and the electrons of each fragment obey the Fermi–Dirac distribution. The equilibrium state for the electrons is determined by electronegativity equalization with conservation of the total number of electrons. The amount of charge transfer is controlled by re-interpreting the temperature parameter in the Fermi–Dirac distribution function as a coupling strength parameter. We determined this coupling parameter so as to reproduce the charge transfer energy obtained by block localized energy decomposition analysis. We apply the new method to ten systems, and we show that it can yield reasonable approximations to potential energy profiles, to charge transfer stabilization energies, and to the direction and amount of charge transferred. PMID:21895159

  10. Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene.

    PubMed

    Hoggard, Anneli; Wang, Lin-Yung; Ma, Lulu; Fang, Ying; You, Ge; Olson, Jana; Liu, Zheng; Chang, Wei-Shun; Ajayan, Pulickel M; Link, Stephan

    2013-12-23

    We present a quantitative analysis of the electron transfer between single gold nanorods and monolayer graphene under no electrical bias. Using single-particle dark-field scattering and photoluminescence spectroscopy to access the homogeneous linewidth, we observe broadening of the surface plasmon resonance for gold nanorods on graphene compared to nanorods on a quartz substrate. Because of the absence of spectral plasmon shifts, dielectric interactions between the gold nanorods and graphene are not important and we instead assign the plasmon damping to charge transfer between plasmon-generated hot electrons and the graphene that acts as an efficient acceptor. Analysis of the plasmon linewidth yields an average electron transfer time of 160 ± 30 fs, which is otherwise difficult to measure directly in the time domain with single-particle sensitivity. In comparison to intrinsic hot electron decay and radiative relaxation, we furthermore calculate from the plasmon linewidth that charge transfer between the gold nanorods and the graphene support occurs with an efficiency of ∼10%. Our results are important for future applications of light harvesting with metal nanoparticle plasmons and efficient hot electron acceptors as well as for understanding hot electron transfer in plasmon-assisted chemical reactions.

  11. Sensitization of ultra-long-range excited-state electron transfer by energy transfer in a polymerized film

    PubMed Central

    Ito, Akitaka; Stewart, David J.; Fang, Zhen; Brennaman, M. Kyle; Meyer, Thomas J.

    2012-01-01

    Distance-dependent energy transfer occurs from the Metal-to-Ligand Charge Transfer (MLCT) excited state to an anthracene-acrylate derivative (Acr-An) incorporated into the polymer network of a semirigid poly(ethyleneglycol)dimethacrylate monolith. Following excitation, to Acr-An triplet energy transfer occurs followed by long-range, Acr-3An—Acr-An → Acr-An—Acr-3An, energy migration. With methyl viologen dication (MV2+) added as a trap, Acr-3An + MV2+ → Acr-An+ + MV+ electron transfer results in sensitized electron transfer quenching over a distance of approximately 90 Å. PMID:22949698

  12. 40 CFR Table I-2 to Subpart I of... - Examples of Fluorinated GHGs and Fluorinated Heat Transfer Fluids Used by the Electronics Industry

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Fluorinated Heat Transfer Fluids Used by the Electronics Industry I Table I-2 to Subpart I of Part 98... GREENHOUSE GAS REPORTING Electronics Manufacturing Pt. 98, Subpt. I, Table I-2 Table I-2 to Subpart I of Part 98—Examples of Fluorinated GHGs and Fluorinated Heat Transfer Fluids Used by the Electronics Industry...

  13. 48 CFR 252.232-7011 - Payments in Support of Emergencies and Contingency Operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... Internal Revenue Code. (ix) Electronic funds transfer banking information. (A) The Contractor shall include electronic funds transfer banking information on the invoice only if required elsewhere in this contract. (B) If electronic funds transfer banking information is not required to be on the invoice, in order for...

  14. 76 FR 52862 - Time for Payment of Certain Excise Taxes, and Quarterly Excise Tax Payments for Small Alcohol...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-24

    ... 40 Cigars and cigarettes, Claims, Electronic fund transfers, Excise taxes, Labeling, Packaging and... that are not required to pay taxes through electronic funds transfer (EFT), this first payment period..., Electronic funds transfers, Excise taxes, Exports, Food additives, Fruit juices, Labeling, Liquors, Packaging...

  15. Co-adsorption of water and oxygen on GaN: Effects of charge transfer and formation of electron depletion layer.

    PubMed

    Wang, Qi; Puntambekar, Ajinkya; Chakrapani, Vidhya

    2017-09-14

    Species from ambient atmosphere such as water and oxygen are known to affect electronic and optical properties of GaN, but the underlying mechanism is not clearly known. In this work, we show through careful measurement of electrical resistivity and photoluminescence intensity under various adsorbates that the presence of oxygen or water vapor alone is not sufficient to induce electron transfer to these species. Rather, the presence of both water and oxygen is necessary to induce electron transfer from GaN that leads to the formation of an electron depletion region on the surface. Exposure to acidic gases decreases n-type conductivity due to increased electron transfer from GaN, while basic gases increase n-type conductivity and PL intensity due to reduced charge transfer from GaN. These changes in the electrical and optical properties, as explained using a new electrochemical framework based on the phenomenon of surface transfer doping, suggest that gases interact with the semiconductor surface through electrochemical reactions occurring in an adsorbed water layer present on the surface.

  16. The interaction of trimethylamine dehydrogenase and electron-transferring flavoprotein.

    PubMed

    Shi, Weiwei; Mersfelder, John; Hille, Russ

    2005-05-27

    The interaction between the physiological electron transfer partners trimethylamine dehydrogenase (TMADH) and electron-transferring flavoprotein (ETF) from Methylophilus methylotrophus has been examined with particular regard to the proposal that the former protein "imprints" a conformational change on the latter. The results indicate that the absorbance change previously attributed to changes in the environment of the FAD of ETF upon binding to TMADH is instead caused by electron transfer from partially reduced, as-isolated TMADH to ETF. Prior treatment of the as-isolated enzyme with the oxidant ferricenium essentially abolishes the observed spectral change. Further, when the semiquinone form of ETF is used instead of the oxidized form, the mirror image of the spectral change seen with as-isolated TMADH and oxidized ETF is observed. This is attributable to a small amount of electron transfer in the reverse of the physiological direction. Kinetic determination of the dissociation constant and limiting rate constant for electron transfer within the complex of (reduced) TMADH with (oxidized) ETF is reconfirmed and discussed in the context of a recently proposed model for the interaction between the two proteins that involves "structural imprinting" of ETF.

  17. Protein electron transfer: Dynamics and statistics

    NASA Astrophysics Data System (ADS)

    Matyushov, Dmitry V.

    2013-07-01

    Electron transfer between redox proteins participating in energy chains of biology is required to proceed with high energetic efficiency, minimizing losses of redox energy to heat. Within the standard models of electron transfer, this requirement, combined with the need for unidirectional (preferably activationless) transitions, is translated into the need to minimize the reorganization energy of electron transfer. This design program is, however, unrealistic for proteins whose active sites are typically positioned close to the polar and flexible protein-water interface to allow inter-protein electron tunneling. The high flexibility of the interfacial region makes both the hydration water and the surface protein layer act as highly polar solvents. The reorganization energy, as measured by fluctuations, is not minimized, but rather maximized in this region. Natural systems in fact utilize the broad breadth of interfacial electrostatic fluctuations, but in the ways not anticipated by the standard models based on equilibrium thermodynamics. The combination of the broad spectrum of static fluctuations with their dispersive dynamics offers the mechanism of dynamical freezing (ergodicity breaking) of subsets of nuclear modes on the time of reaction/residence of the electron at a redox cofactor. The separation of time-scales of nuclear modes coupled to electron transfer allows dynamical freezing. In particular, the separation between the relaxation time of electro-elastic fluctuations of the interface and the time of conformational transitions of the protein caused by changing redox state results in dynamical freezing of the latter for sufficiently fast electron transfer. The observable consequence of this dynamical freezing is significantly different reorganization energies describing the curvature at the bottom of electron-transfer free energy surfaces (large) and the distance between their minima (Stokes shift, small). The ratio of the two reorganization energies establishes the parameter by which the energetic efficiency of protein electron transfer is increased relative to the standard expectations, thus minimizing losses of energy to heat. Energetically efficient electron transfer occurs in a chain of conformationally quenched cofactors and is characterized by flattened free energy surfaces, reminiscent of the flat and rugged landscape at the stability basin of a folded protein.

  18. Protein electron transfer: Dynamics and statistics.

    PubMed

    Matyushov, Dmitry V

    2013-07-14

    Electron transfer between redox proteins participating in energy chains of biology is required to proceed with high energetic efficiency, minimizing losses of redox energy to heat. Within the standard models of electron transfer, this requirement, combined with the need for unidirectional (preferably activationless) transitions, is translated into the need to minimize the reorganization energy of electron transfer. This design program is, however, unrealistic for proteins whose active sites are typically positioned close to the polar and flexible protein-water interface to allow inter-protein electron tunneling. The high flexibility of the interfacial region makes both the hydration water and the surface protein layer act as highly polar solvents. The reorganization energy, as measured by fluctuations, is not minimized, but rather maximized in this region. Natural systems in fact utilize the broad breadth of interfacial electrostatic fluctuations, but in the ways not anticipated by the standard models based on equilibrium thermodynamics. The combination of the broad spectrum of static fluctuations with their dispersive dynamics offers the mechanism of dynamical freezing (ergodicity breaking) of subsets of nuclear modes on the time of reaction/residence of the electron at a redox cofactor. The separation of time-scales of nuclear modes coupled to electron transfer allows dynamical freezing. In particular, the separation between the relaxation time of electro-elastic fluctuations of the interface and the time of conformational transitions of the protein caused by changing redox state results in dynamical freezing of the latter for sufficiently fast electron transfer. The observable consequence of this dynamical freezing is significantly different reorganization energies describing the curvature at the bottom of electron-transfer free energy surfaces (large) and the distance between their minima (Stokes shift, small). The ratio of the two reorganization energies establishes the parameter by which the energetic efficiency of protein electron transfer is increased relative to the standard expectations, thus minimizing losses of energy to heat. Energetically efficient electron transfer occurs in a chain of conformationally quenched cofactors and is characterized by flattened free energy surfaces, reminiscent of the flat and rugged landscape at the stability basin of a folded protein.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imani, Mohammadreza F., E-mail: mohamad.imani@gmail.com; Grbic, Anthony

    One of the obstacles preventing wireless power transfer from becoming ubiquitous is their leakage of power: high-amplitude electromagnetic fields that can interfere with other electronic devices, increase health concerns, or hinder power metering. In this paper, we present near-field plates (NFPs) as a novel method to tailor the electromagnetic fields generated by a wireless power transfer system while maintaining high efficiency. NFPs are modulated arrays or surfaces designed to form prescribed near-field patterns. The NFP proposed in this paper consists of an array of loaded loops that are designed to confine the electromagnetic fields of a resonant transmitting loop tomore » the desired direction (receiving loop) while suppressing fields in other directions. The step-by-step design procedure for this device is outlined. Two NFPs are designed and examined in full-wave simulation. Their performance is shown to be in close agreement with the design predictions, thereby verifying the proposed design and operation. A NFP is also fabricated and experimentally shown to form a unidirectional wireless power transfer link with high efficiency.« less

  20. Optical determination of charge transfer times from indoline dyes to ZnO in solid state dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Meyenburg, I.; Hofeditz, N.; Ruess, R.; Rudolph, M.; Schlettwein, D.; Heimbrodt, W.

    2018-05-01

    We studied the electron transfer at the interface of organic-inorganic hybrids consisting of indoline derivatives (D149 and D131) on ZnO substrates using a new optical method. We revealed the electron transfer times from the excited dye, e.g. the excitons formed in the dye aggregates to the ZnO substrate by analyzing the photoluminescence transients of the excitons after femtosecond excitation and applying kinetic model calculations. We reveal the changes of the electron transfer times by applying electrical bias. Pushing the Fermi energy of the ZnO substrate towards the excited dye level the transfer time gets longer and eventually the electron transfer is suppressed. The level alignment between the excited dye state and the ZnO Fermi-level is estimated. The excited state of D131 is about 100 meV higher than the respective state of D149 compared to the ZnO conduction band. This leads to shorter electron transfer times and eventually to higher quantum efficiencies of the solar cells.

  1. Multiple electron injection dynamics in linearly-linked two dye co-sensitized nanocrystalline metal oxide electrodes for dye-sensitized solar cells.

    PubMed

    Shen, Qing; Ogomi, Yuhei; Park, Byung-wook; Inoue, Takafumi; Pandey, Shyam S; Miyamoto, Akari; Fujita, Shinsuke; Katayama, Kenji; Toyoda, Taro; Hayase, Shuzi

    2012-04-07

    Understanding the electron transfer dynamics at the interface between dye sensitizer and semiconductor nanoparticle is very important for both a fundamental study and development of dye-sensitized solar cells (DSCs), which are a potential candidate for next generation solar cells. In this study, we have characterized the ultrafast photoexcited electron dynamics in a newly produced linearly-linked two dye co-sensitized solar cell using both a transient absorption (TA) and an improved transient grating (TG) technique, in which tin(IV) 2,11,20,29-tetra-tert-butyl-2,3-naphthalocyanine (NcSn) and cis-diisothiocyanato-bis(2,2'-bipyridyl-4,4'-dicarboxylato)ruthenium(II) bis(tetrabutylammonium) (N719) are molecularly and linearly linked and are bonded to the surface of a nanocrystalline tin dioxide (SnO(2)) electrode by a metal-O-metal linkage (i.e. SnO(2)-NcSn-N719). By comparing the TA and TG kinetics of NcSn, N719, and hybrid NcSn-N719 molecules adsorbed onto both of the SnO(2) and zirconium dioxide (ZrO(2)) nanocrystalline films, the forward and backward electron transfer dynamics in SnO(2)-NcSn-N719 were clarified. We found that there are two pathways for electron injection from the linearly-linked two dye molecules (NcSn-N719) to SnO(2). The first is a stepwise electron injection, in which photoexcited electrons first transfer from N719 to NcSn with a transfer time of 0.95 ps and then transfer from NcSn to the conduction band (CB) of SnO(2) with two timescales of 1.6 ps and 4.2 ps. The second is direct photoexcited electron transfer from N719 to the CB of SnO(2) with a timescale of 20-30 ps. On the other hand, back electron transfer from SnO(2) to NcSn is on a timescale of about 2 ns, which is about three orders of magnitude slower compared to the forward electron transfer from NcSn to SnO(2). The back electron transfer from NcSn to N719 is on a timescale of about 40 ps, which is about one order slower compared to the forward electron transfer from N719 to NcSn. These results demonstrate that photoexcited electrons can be effectively injected into SnO(2) from both of the N719 and NcSn dyes.

  2. 12 CFR 205.9 - Receipts at electronic terminals; periodic statements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.9 Receipts at electronic terminals; periodic..., a financial institution shall make a receipt available to a consumer at the time the consumer initiates an electronic fund transfer at an electronic terminal. The receipt shall set forth the following...

  3. 12 CFR 205.9 - Receipts at electronic terminals; periodic statements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.9 Receipts at electronic terminals; periodic..., a financial institution shall make a receipt available to a consumer at the time the consumer initiates an electronic fund transfer at an electronic terminal. The receipt shall set forth the following...

  4. 12 CFR 205.9 - Receipts at electronic terminals; periodic statements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.9 Receipts at electronic terminals; periodic..., a financial institution shall make a receipt available to a consumer at the time the consumer initiates an electronic fund transfer at an electronic terminal. The receipt shall set forth the following...

  5. 12 CFR 205.9 - Receipts at electronic terminals; periodic statements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.9 Receipts at electronic terminals; periodic..., a financial institution shall make a receipt available to a consumer at the time the consumer initiates an electronic fund transfer at an electronic terminal. The receipt shall set forth the following...

  6. 12 CFR 205.9 - Receipts at electronic terminals; periodic statements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.9 Receipts at electronic terminals; periodic..., a financial institution shall make a receipt available to a consumer at the time the consumer initiates an electronic fund transfer at an electronic terminal. The receipt shall set forth the following...

  7. Ultrafast above-threshold dynamics of the radical anion of a prototypical quinone electron-acceptor.

    PubMed

    Horke, Daniel A; Li, Quansong; Blancafort, Lluís; Verlet, Jan R R

    2013-08-01

    Quinones feature prominently as electron acceptors in nature. Their electron-transfer reactions are often highly exergonic, for which Marcus theory predicts reduced electron-transfer rates because of a free-energy barrier that occurs in the inverted region. However, the electron-transfer kinetics that involve quinones can appear barrierless. Here, we consider the intrinsic properties of the para-benzoquinone radical anion, which serves as the prototypical electron-transfer reaction product involving a quinone-based acceptor. Using time-resolved photoelectron spectroscopy and ab initio calculations, we show that excitation at 400 and 480 nm yields excited states that are unbound with respect to electron loss. These excited states are shown to decay on a sub-40 fs timescale through a series of conical intersections with lower-lying excited states, ultimately to form the ground anionic state and avoid autodetachment. From an isolated electron-acceptor perspective, this ultrafast stabilization mechanism accounts for the ability of para-benzoquinone to capture and retain electrons.

  8. Photocatalytic Conversion of Nitrobenzene to Aniline through Sequential Proton-Coupled One-Electron Transfers from a Cadmium Sulfide Quantum Dot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Stephen C.; Bettis Homan, Stephanie; Weiss, Emily A.

    2016-01-28

    This paper describes the use of cadmium sulfide quantum dots (CdS QDs) as visible-light photocatalysts for the reduction of nitrobenzene to aniline through six sequential photoinduced, proton-coupled electron transfers. At pH 3.6–4.3, the internal quantum yield of photons-to-reducing electrons is 37.1% over 54 h of illumination, with no apparent decrease in catalyst activity. Monitoring of the QD exciton by transient absorption reveals that, for each step in the catalytic cycle, the sacrificial reductant, 3-mercaptopropionic acid, scavenges the excitonic hole in ~5 ps to form QD•–; electron transfer to nitrobenzene or the intermediates nitrosobenzene and phenylhydroxylamine then occurs on the nanosecondmore » time scale. The rate constants for the single-electron transfer reactions are correlated with the driving forces for the corresponding proton-coupled electron transfers. This result suggests, but does not prove, that electron transfer, not proton transfer, is rate-limiting for these reactions. Nuclear magnetic resonance analysis of the QD–molecule systems shows that the photoproduct aniline, left unprotonated, serves as a poison for the QD catalyst by adsorbing to its surface. Performing the reaction at an acidic pH not only encourages aniline to desorb but also increases the probability of protonated intermediates; the latter effect probably ensures that recruitment of protons is not rate-limiting.« less

  9. Quantum state transfer in double-quantum-well devices

    NASA Technical Reports Server (NTRS)

    Jakumeit, Jurgen; Tutt, Marcel; Pavlidis, Dimitris

    1994-01-01

    A Monte Carlo simulation of double-quantum-well (DQW) devices is presented in view of analyzing the quantum state transfer (QST) effect. Different structures, based on the AlGaAs/GaAs system, were simulated at 77 and 300 K and optimized in terms of electron transfer and device speed. The analysis revealed the dominant role of the impurity scattering for the QST. Different approaches were used for the optimization of QST devices and basic physical limitations were found in the electron transfer between the QWs. The maximum transfer of electrons from a high to a low mobility well was at best 20%. Negative differential resistance is hampered by the almost linear rather than threshold dependent relation of electron transfer on electric field. By optimizing the doping profile the operation frequency limit could be extended to 260 GHz.

  10. Dioxygen in Polyoxometalate Mediated Reactions.

    PubMed

    Weinstock, Ira A; Schreiber, Roy E; Neumann, Ronny

    2018-03-14

    In this review article, we consider the use of molecular oxygen in reactions mediated by polyoxometalates. Polyoxometalates are anionic metal oxide clusters of a variety of structures that are soluble in liquid phases and therefore amenable to homogeneous catalytic transformations. Often, they are active for electron transfer oxidations of a myriad of substrates and upon reduction can be reoxidized by molecular oxygen. For example, the phosphovanadomolybdate, H 5 PV 2 Mo 10 O 40 , can oxidize Pd(0) thereby enabling aerobic reactions catalyzed by Pd and H 5 PV 2 Mo 10 O 40 . In a similar vein, polyoxometalates can stabilize metal nanoparticles, leading to additional transformations. Furthermore, electron transfer oxidation of other substrates such as halides and sulfur-containing compounds is possible. More uniquely, H 5 PV 2 Mo 10 O 40 and its analogues can mediate electron transfer-oxygen transfer reactions where oxygen atoms are transferred from the polyoxometalate to the substrate. This unique property has enabled correspondingly unique transformations involving carbon-carbon, carbon-hydrogen, and carbon-metal bond activation. The pathway for the reoxidation of vanadomolybdates with O 2 appears to be an inner-sphere reaction, but the oxidation of one-electron reduced polyoxotungstates has been shown through intensive research to be an outer-sphere reaction. Beyond electron transfer and electron transfer-oxygen transfer aerobic transformations, there a few examples of apparent dioxygenase activity where both oxygen atoms are donated to a substrate.

  11. Transfer molding processes for nanoscale patterning of poly-L-lactic acid (PLLA) films

    NASA Astrophysics Data System (ADS)

    Dhakal, Rabin; Peer, Akshit; Biswas, Rana; Kim, Jaeyoun

    2016-03-01

    Nanoscale patterned structures composed of biomaterials exhibit great potential for the fabrication of functional biostructures. In this paper, we report cost-effective, rapid, and highly reproducible soft lithographic transfer-molding techniques for creating periodic micro- and nano-scale textures on poly (L-lactic acid) (PLLA) surface. These artificial textures can increase the overall surface area and change the release dynamics of the therapeutic agents coated on it. Specifically, we use the double replication technique in which the master pattern is first transferred to the PDMS mold and the pattern on PDMS is then transferred to the PLLA films through drop-casting as well as nano-imprinting. The ensuing comparison studies reveal that the drop-cast PLLA allows pattern transfer at higher levels of fidelity, enabling the realization of nano-hole and nano-cone arrays with pitch down to ~700 nm. The nano-patterned PLLA film was then coated with rapamycin to make it drug-eluting.

  12. Optics in engineering measurement; Proceedings of the Meeting, Cannes, France, December 3-6, 1985

    NASA Technical Reports Server (NTRS)

    Fagan, William F. (Editor)

    1986-01-01

    The present conference on optical measurement systems considers topics in the fields of holographic interferometry, speckle techniques, moire fringe and grating methods, optical surface gaging, laser- and fiber-optics-based measurement systems, and optics for engineering data evaluation. Specific attention is given to holographic NDE for aerospace composites, holographic interferometry of rotating components, new developments in computer-aided holography, electronic speckle pattern interferometry, mass transfer measurements using projected fringes, nuclear reactor photogrammetric inspection, a laser Doppler vibrometer, and optoelectronic measurements of the yaw angle of projectiles.

  13. Picture of the Week: Hacking the bio-nano interface for better biofuels

    Science.gov Websites

    ) influence electron transfer between the enzyme and the electrode to determine the best placement of enzymes compounds) influence electron transfer between the enzyme and the electrode to determine the best placement studied how three quinones (a class of organic compounds) influence electron transfer between the enzyme

  14. Intramolecular electron-transfer rates in mixed-valence triarylamines: measurement by variable-temperature ESR spectroscopy and comparison with optical data.

    PubMed

    Lancaster, Kelly; Odom, Susan A; Jones, Simon C; Thayumanavan, S; Marder, Seth R; Brédas, Jean-Luc; Coropceanu, Veaceslav; Barlow, Stephen

    2009-02-11

    The electron spin resonance spectra of the radical cations of 4,4'-bis[di(4-methoxyphenyl)amino]tolane, E-4,4'-bis[di(4-methoxyphenyl)amino]stilbene, and E,E-1,4-bis{4-[di(4-methoxyphenyl)amino]styryl}benzene in dichloromethane exhibit five lines over a wide temperature range due to equivalent coupling to two 14N nuclei, indicating either delocalization between both nitrogen atoms or rapid intramolecular electron transfer on the electron spin resonance time scale. In contrast, those of the radical cations of 1,4-bis{4-[di(4-methoxyphenyl)amino]phenylethynyl}benzene and E,E-1,4-bis{4-[di(4-n-butoxyphenyl)amino]styryl}-2,5-dicyanobenzene exhibit line shapes that vary strongly with temperature, displaying five lines at room temperature and only three lines at ca. 190 K, indicative of slow electron transfer on the electron spin resonance time scale at low temperatures. The rates of intramolecular electron transfer in the latter compounds were obtained by simulation of the electron spin resonance spectra and display an Arrhenius temperature dependence. The activation barriers obtained from Arrhenius plots are significantly less than anticipated from Hush analyses of the intervalence bands when the diabatic electron-transfer distance, R, is equated to the N[symbol: see text]N distance. Comparison of optical and electron spin resonance data suggests that R is in fact only ca. 40% of the N[symbol: see text]N distance, while the Arrhenius prefactor indicates that the electron transfer falls in the adiabatic regime.

  15. Wireless power transfer to deep-tissue microimplants

    PubMed Central

    Yeh, Alexander J.; Neofytou, Evgenios; Kim, Sanghoek; Tanabe, Yuji; Patlolla, Bhagat; Beygui, Ramin E.; Poon, Ada S. Y.

    2014-01-01

    The ability to implant electronic systems in the human body has led to many medical advances. Progress in semiconductor technology paved the way for devices at the scale of a millimeter or less (“microimplants”), but the miniaturization of the power source remains challenging. Although wireless powering has been demonstrated, energy transfer beyond superficial depths in tissue has so far been limited by large coils (at least a centimeter in diameter) unsuitable for a microimplant. Here, we show that this limitation can be overcome by a method, termed midfield powering, to create a high-energy density region deep in tissue inside of which the power-harvesting structure can be made extremely small. Unlike conventional near-field (inductively coupled) coils, for which coupling is limited by exponential field decay, a patterned metal plate is used to induce spatially confined and adaptive energy transport through propagating modes in tissue. We use this method to power a microimplant (2 mm, 70 mg) capable of closed-chest wireless control of the heart that is orders of magnitude smaller than conventional pacemakers. With exposure levels below human safety thresholds, milliwatt levels of power can be transferred to a deep-tissue (>5 cm) microimplant for both complex electronic function and physiological stimulation. The approach developed here should enable new generations of implantable systems that can be integrated into the body at minimal cost and risk. PMID:24843161

  16. Wireless power transfer to deep-tissue microimplants.

    PubMed

    Ho, John S; Yeh, Alexander J; Neofytou, Evgenios; Kim, Sanghoek; Tanabe, Yuji; Patlolla, Bhagat; Beygui, Ramin E; Poon, Ada S Y

    2014-06-03

    The ability to implant electronic systems in the human body has led to many medical advances. Progress in semiconductor technology paved the way for devices at the scale of a millimeter or less ("microimplants"), but the miniaturization of the power source remains challenging. Although wireless powering has been demonstrated, energy transfer beyond superficial depths in tissue has so far been limited by large coils (at least a centimeter in diameter) unsuitable for a microimplant. Here, we show that this limitation can be overcome by a method, termed midfield powering, to create a high-energy density region deep in tissue inside of which the power-harvesting structure can be made extremely small. Unlike conventional near-field (inductively coupled) coils, for which coupling is limited by exponential field decay, a patterned metal plate is used to induce spatially confined and adaptive energy transport through propagating modes in tissue. We use this method to power a microimplant (2 mm, 70 mg) capable of closed-chest wireless control of the heart that is orders of magnitude smaller than conventional pacemakers. With exposure levels below human safety thresholds, milliwatt levels of power can be transferred to a deep-tissue (>5 cm) microimplant for both complex electronic function and physiological stimulation. The approach developed here should enable new generations of implantable systems that can be integrated into the body at minimal cost and risk.

  17. Role of protein fluctuation correlations in electron transfer in photosynthetic complexes.

    PubMed

    Nesterov, Alexander I; Berman, Gennady P

    2015-04-01

    We consider the dependence of the electron transfer in photosynthetic complexes on correlation properties of random fluctuations of the protein environment. The electron subsystem is modeled by a finite network of connected electron (exciton) sites. The fluctuations of the protein environment are modeled by random telegraph processes, which act either collectively (correlated) or independently (uncorrelated) on the electron sites. We derived an exact closed system of first-order linear differential equations with constant coefficients, for the average density matrix elements and for their first moments. Under some conditions, we obtained analytic expressions for the electron transfer rates and found the range of parameters for their applicability by comparing with the exact numerical simulations. We also compared the correlated and uncorrelated regimes and demonstrated numerically that the uncorrelated fluctuations of the protein environment can, under some conditions, either increase or decrease the electron transfer rates.

  18. Role of coherence and delocalization in photo-induced electron transfer at organic interfaces

    NASA Astrophysics Data System (ADS)

    Abramavicius, V.; Pranculis, V.; Melianas, A.; Inganäs, O.; Gulbinas, V.; Abramavicius, D.

    2016-09-01

    Photo-induced charge transfer at molecular heterojunctions has gained particular interest due to the development of organic solar cells (OSC) based on blends of electron donating and accepting materials. While charge transfer between donor and acceptor molecules can be described by Marcus theory, additional carrier delocalization and coherent propagation might play the dominant role. Here, we describe ultrafast charge separation at the interface of a conjugated polymer and an aggregate of the fullerene derivative PCBM using the stochastic Schrödinger equation (SSE) and reveal the complex time evolution of electron transfer, mediated by electronic coherence and delocalization. By fitting the model to ultrafast charge separation experiments, we estimate the extent of electron delocalization and establish the transition from coherent electron propagation to incoherent hopping. Our results indicate that even a relatively weak coupling between PCBM molecules is sufficient to facilitate electron delocalization and efficient charge separation at organic interfaces.

  19. Alternative ground states enable pathway switching in biological electron transfer

    DOE PAGES

    Abriata, Luciano A.; Alvarez-Paggi, Damian; Ledesma, Gabirela N.; ...

    2012-10-10

    Electron transfer is the simplest chemical reaction and constitutes the basis of a large variety of biological processes, such as photosynthesis and cellular respiration. Nature has evolved specific proteins and cofactors for these functions. The mechanisms optimizing biological electron transfer have been matter of intense debate, such as the role of the protein milieu between donor and acceptor sites. Here we propose a mechanism regulating long-range electron transfer in proteins. Specifically, we report a spectroscopic, electrochemical, and theoretical study on WT and single-mutant CuA redox centers from Thermus thermophilus, which shows that thermal fluctuations may populate two alternative ground-state electronicmore » wave functions optimized for electron entry and exit, respectively, through two different and nearly perpendicular pathways. In conclusion, these findings suggest a unique role for alternative or “invisible” electronic ground states in directional electron transfer. Moreover, it is shown that this energy gap and, therefore, the equilibrium between ground states can be fine-tuned by minor perturbations, suggesting alternative ways through which protein–protein interactions and membrane potential may optimize and regulate electron–proton energy transduction.« less

  20. Ultrafast Electron Transfer Kinetics in the LM Dimer of Bacterial Photosynthetic Reaction Center from Rhodobacter sphaeroides.

    PubMed

    Sun, Chang; Carey, Anne-Marie; Gao, Bing-Rong; Wraight, Colin A; Woodbury, Neal W; Lin, Su

    2016-06-23

    It has become increasingly clear that dynamics plays a major role in the function of many protein systems. One system that has proven particularly facile for studying the effects of dynamics on protein-mediated chemistry is the bacterial photosynthetic reaction center from Rhodobacter sphaeroides. Previous experimental and computational analysis have suggested that the dynamics of the protein matrix surrounding the primary quinone acceptor, QA, may be particularly important in electron transfer involving this cofactor. One can substantially increase the flexibility of this region by removing one of the reaction center subunits, the H-subunit. Even with this large change in structure, photoinduced electron transfer to the quinone still takes place. To evaluate the effect of H-subunit removal on electron transfer to QA, we have compared the kinetics of electron transfer and associated spectral evolution for the LM dimer with that of the intact reaction center complex on picosecond to millisecond time scales. The transient absorption spectra associated with all measured electron transfer reactions are similar, with the exception of a broadening in the QX transition and a blue-shift in the QY transition bands of the special pair of bacteriochlorophylls (P) in the LM dimer. The kinetics of the electron transfer reactions not involving quinones are unaffected. There is, however, a 4-fold decrease in the electron transfer rate from the reduced bacteriopheophytin to QA in the LM dimer compared to the intact reaction center and a similar decrease in the recombination rate of the resulting charge-separated state (P(+)QA(-)). These results are consistent with the concept that the removal of the H-subunit results in increased flexibility in the region around the quinone and an associated shift in the reorganization energy associated with charge separation and recombination.

  1. Photoinduced electron transfer in covalent ruthenium-anthraquinone dyads: relative importance of driving-force, solvent polarity, and donor-bridge energy gap.

    PubMed

    Hankache, Jihane; Wenger, Oliver S

    2012-02-28

    Four rigid rod-like molecules comprised of a Ru(bpy)(3)(2+) (bpy = 2,2'-bipyridine) photosensitizer, a 9,10-anthraquinone electron acceptor, and a molecular bridge connecting the two redox partners were synthesized and investigated by optical spectroscopic and electrochemical means. An attempt was made to assess the relative importance of driving-force, solvent polarity, and bridge variation on the rates of photoinduced electron transfer in these molecules. Expectedly, introduction of tert-butyl substituents in the bipyridine ligands of the ruthenium complex and a change in solvent from dichloromethane to acetonitrile lead to a significant acceleration of charge transfer rates. In dichloromethane, photoinduced electron transfer is not competitive with the inherent excited-state deactivation processes of the photosensitizer. In acetonitrile, an increase in driving-force by 0.2 eV through attachment of tert-butyl substituents to the bpy ancillary ligands causes an increase in electron transfer rates by an order of magnitude. Replacement of a p-xylene bridge by a p-dimethoxybenzene spacer entails an acceleration of charge transfer rates by a factor of 3.5. In the dyads from this study, the relative order of importance of individual influences on electron transfer rates is therefore as follows: solvent polarity ≥ driving-force > donor-bridge energy gap.

  2. CRADA Payment Options | NCI Technology Transfer Center | TTC

    Cancer.gov

    NCI TTC CRADA PAYMENT OPTIONS: Electronic Payments by Wire Transfer via Fedwire, Mail a check to the Institute or Center, or Automated Clearing House (ACH)/Electronic Funds Transfer (ETF) payments via Pay.gov (NCI ONLY).

  3. Transfer coefficients in ultracold strongly coupled plasma

    NASA Astrophysics Data System (ADS)

    Bobrov, A. A.; Vorob'ev, V. S.; Zelener, B. V.

    2018-03-01

    We use both analytical and molecular dynamic methods for electron transfer coefficients in an ultracold plasma when its temperature is small and the coupling parameter characterizing the interaction of electrons and ions exceeds unity. For these conditions, we use the approach of nearest neighbor to determine the average electron (ion) diffusion coefficient and to calculate other electron transfer coefficients (viscosity and electrical and thermal conductivities). Molecular dynamics simulations produce electronic and ionic diffusion coefficients, confirming the reliability of these results. The results compare favorably with experimental and numerical data from earlier studies.

  4. Soil transference patterns on bras: Image processing and laboratory dragging experiments.

    PubMed

    Murray, Kathleen R; Fitzpatrick, Robert W; Bottrill, Ralph S; Berry, Ron; Kobus, Hilton

    2016-01-01

    In a recent Australian homicide, trace soil on the victim's clothing suggested she was initially attacked in her front yard and not the park where her body was buried. However the important issue that emerged during the trial was how soil was transferred to her clothing. This became the catalyst for designing a range of soil transference experiments (STEs) to study, recognise and classify soil patterns transferred onto fabric when a body is dragged across a soil surface. Soil deposits of interest in this murder were on the victim's bra and this paper reports the results of anthropogenic soil transfer to bra-cups and straps caused by dragging. Transfer patterns were recorded by digital photography and photomicroscopy. Eight soil transfer patterns on fabric, specific to dragging as the transfer method, appeared consistently throughout the STEs. The distinctive soil patterns were largely dependent on a wide range of soil features that were measured and identified for each soil tested using X-ray Diffraction and Non-Dispersive Infra-Red analysis. Digital photographs of soil transfer patterns on fabric were analysed using image processing software to provide a soil object-oriented classification of all soil objects with a diameter of 2 pixels and above transferred. Although soil transfer patterns were easily identifiable by naked-eye alone, image processing software provided objective numerical data to support this traditional (but subjective) interpretation. Image software soil colour analysis assigned a range of Munsell colours to identify and compare trace soil on fabric to other trace soil evidence from the same location; without requiring a spectrophotometer. Trace soil from the same location was identified by linking soils with similar dominant and sub-dominant Munsell colour peaks. Image processing numerical data on the quantity of soil transferred to fabric, enabled a relationship to be discovered between soil type, clay mineralogy (smectite), particle size and soil moisture content that would not have been possible otherwise. Soil type (e.g. Anthropogenic, gravelly sandy loam soil or Natural, organic-rich soil), clay mineralogy (smectite) and soil moisture content were the greatest influencing factors in all the dragging soil transference tests (both naked eye and measured properties) to explain the eight categories of soil transference patterns recorded. This study was intended to develop a method for dragging soil transference laboratory experiments and create a baseline of preliminary soil type/property knowledge. Results confirm the need to better understand soil behaviour and properties of clothing fabrics by further testing of a wider range of soil types and clay mineral properties. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Visualization of natural convection heat transfer on a sphere

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Young; Chung, Bum-Jin

    2017-12-01

    Natural convection heat transfer phenomena on spheres were investigated by adopting mass transfer experiments based on analogy concept. The diameters of spheres were varied from 0.01 m to 0.12 m, which correspond to the Rayleigh numbers of 1.69×108-2.91×1011. The measured mass transfer coefficients agreed well with the existing correlations. The copper electroplating patterns on the spheres visualized the local heat transfer depending on angular distance. The streak plating patterns were observed on the upper part of the sphere, resulting from the wavy flow patterns caused by the instability.

  6. Theory for electron transfer from a mixed-valence dimer with paramagnetic sites to a mononuclear acceptor

    NASA Astrophysics Data System (ADS)

    Bominaar, E. L.; Achim, C.; Borshch, S. A.

    1999-06-01

    Polynuclear transition-metal complexes, such as Fe-S clusters, are the prosthetic groups in a large number of metalloproteins and serve as temporary electron storage units in a number of important redox-based biological processes. Polynuclearity distinguishes clusters from mononuclear centers and confers upon them unique properties, such as spin ordering and the presence of thermally accessible excited spin states in clusters with paramagnetic sites, and fractional valencies in clusters of the mixed-valence type. In an earlier study we presented an effective-mode (EM) analysis of electron transfer from a binuclear mixed-valence donor with paramagnetic sites to a mononuclear acceptor which revealed that the cluster-specific attributes have an important impact on the kinetics of long-range electron transfer. In the present study, the validity of these results is tested in the framework of more detailed theories which we have termed the multimode semiclassical (SC) model and the quantum-mechanical (QM) model. It is found that the qualitative trends in the rate constant are the same in all treatments and that the semiclassical models provide a good approximation of the more rigorous quantum-mechanical description of electron transfer under physiologically relevant conditions. In particular, the present results corroborate the importance of electron transfer via excited spin states in reactions with a low driving force and justify the use of semiclassical theory in cases in which the QM model is computationally too demanding. We consider cases in which either one or two donor sites of a dimer are electronically coupled to the acceptor. In the case of multiconnectivity, the rate constant for electron transfer from a valence-delocalized (class-III) donor is nonadditive with respect to transfer from individual metal sites of the donor and undergoes an order-of-magnitude change by reversing the sign of the intradimer metal-metal resonance parameter (β). In the case of single connectivity, the rate constant for electron transfer from a valence-localized (class-II) donor can readily be tuned over several orders of magnitude by introducing differences in the electronic potentials at the two metal sites of the donor. These results indicate that theories of cluster-based electron transfer, in order to be realistic, need to consider both intrinsic electronic structure and extrinsic interactions of the cluster with the protein environment.

  7. Understanding the Charge Transfer at the Interface of Electron Donors and Acceptors: TTF–TCNQ as an Example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Changwon; Atalla, Viktor; Smith, Sean

    Charge transfer between an electron donor and an electron acceptor is widely accepted as being independent of their relative configurations if the interaction between them is weak; however, the limit of this concept for an interacting system has not yet been well established. Our study of prototypical electron donor–acceptor molecules, tetrathiafulvalene–tetracyanoquinodimethane, using density functional theory based on an advanced functional, clearly demonstrates that for interacting molecules, their configurational arrangement is as important as their individual electronic properties in the asymptotic limit to determine the charge transfer direction. For the first time, we demonstrate that by changing their relative orientation, onemore » can reverse the charge transfer direction of the pair, causing the molecules to exchange roles as donor and acceptor. In conclusion, our theory has important implications for understanding the interfacial charge-transfer mechanism of hybrid systems and related phenomena.« less

  8. Sulfate-reducing bacteria: Microbiology and physiology

    NASA Technical Reports Server (NTRS)

    Peck, H. D.

    1985-01-01

    The sulfate reducing bacteria, the first nonphotosynthetic anaerobic bacteria demonstrated to contain c type cytochromes, perform electron transfer coupled to phosphorylation. A new bioenergetic scheme for the formation of a proton gradient for growth of Desulfovibrio on organic substrates and sulfate involving vectors electron transfer and consistent with the cellular localization of enzymes and electron transfer components was proposed. Hydrogen is produced in the cytoplasm from organic substrates and, as a permease molecule diffuses rapidly across the cytoplasmic membrane, it is oxidized to protons and electrons by the periplasmic hydrogenase. The electrons only are transferred across the cytoplasmic membrane to the cytoplasm where they are used to reduce sulfate to sulfide. The protons are used for transport or to drive a reversible ATPOSE. The net effect is the transfer of protons across the cytoplasmic membrane with the intervention of a proton pump. This type of H2 cycling is relevant to the bioenergetics of other types of anaerobic microorganisms.

  9. Understanding the Charge Transfer at the Interface of Electron Donors and Acceptors: TTF–TCNQ as an Example

    DOE PAGES

    Park, Changwon; Atalla, Viktor; Smith, Sean; ...

    2017-06-16

    Charge transfer between an electron donor and an electron acceptor is widely accepted as being independent of their relative configurations if the interaction between them is weak; however, the limit of this concept for an interacting system has not yet been well established. Our study of prototypical electron donor–acceptor molecules, tetrathiafulvalene–tetracyanoquinodimethane, using density functional theory based on an advanced functional, clearly demonstrates that for interacting molecules, their configurational arrangement is as important as their individual electronic properties in the asymptotic limit to determine the charge transfer direction. For the first time, we demonstrate that by changing their relative orientation, onemore » can reverse the charge transfer direction of the pair, causing the molecules to exchange roles as donor and acceptor. In conclusion, our theory has important implications for understanding the interfacial charge-transfer mechanism of hybrid systems and related phenomena.« less

  10. Nanoantioxidant-driven plasmon enhanced proton-coupled electron transfer

    NASA Astrophysics Data System (ADS)

    Sotiriou, Georgios A.; Blattmann, Christoph O.; Deligiannakis, Yiannis

    2015-12-01

    Proton-coupled electron transfer (PCET) reactions involve the transfer of a proton and an electron and play an important role in a number of chemical and biological processes. Here, we describe a novel phenomenon, plasmon-enhanced PCET, which is manifested using SiO2-coated Ag nanoparticles functionalized with gallic acid (GA), a natural antioxidant molecule that can perform PCET. These GA-functionalized nanoparticles show enhanced plasmonic response at near-IR wavelengths, due to particle agglomeration caused by the GA molecules. Near-IR laser irradiation induces strong local hot-spots on the SiO2-coated Ag nanoparticles, as evidenced by surface enhanced Raman scattering (SERS). This leads to plasmon energy transfer to the grafted GA molecules that lowers the GA-OH bond dissociation enthalpy by at least 2 kcal mol-1 and therefore facilitates PCET. The nanoparticle-driven plasmon-enhancement of PCET brings together the so far unrelated research domains of nanoplasmonics and electron/proton translocation with significant impact on applications based on interfacial electron/proton transfer.Proton-coupled electron transfer (PCET) reactions involve the transfer of a proton and an electron and play an important role in a number of chemical and biological processes. Here, we describe a novel phenomenon, plasmon-enhanced PCET, which is manifested using SiO2-coated Ag nanoparticles functionalized with gallic acid (GA), a natural antioxidant molecule that can perform PCET. These GA-functionalized nanoparticles show enhanced plasmonic response at near-IR wavelengths, due to particle agglomeration caused by the GA molecules. Near-IR laser irradiation induces strong local hot-spots on the SiO2-coated Ag nanoparticles, as evidenced by surface enhanced Raman scattering (SERS). This leads to plasmon energy transfer to the grafted GA molecules that lowers the GA-OH bond dissociation enthalpy by at least 2 kcal mol-1 and therefore facilitates PCET. The nanoparticle-driven plasmon-enhancement of PCET brings together the so far unrelated research domains of nanoplasmonics and electron/proton translocation with significant impact on applications based on interfacial electron/proton transfer. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04942c

  11. Electron energy distribution function, effective electron temperature, and dust charge in the temporal afterglow of a plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denysenko, I. B.; Azarenkov, N. A.; Kersten, H.

    2016-05-15

    Analytical expressions describing the variation of electron energy distribution function (EEDF) in an afterglow of a plasma are obtained. Especially, the case when the electron energy loss is mainly due to momentum-transfer electron-neutral collisions is considered. The study is carried out for different EEDFs in the steady state, including Maxwellian and Druyvesteyn distributions. The analytical results are not only obtained for the case when the rate for momentum-transfer electron-neutral collisions is independent on electron energy but also for the case when the collisions are a power function of electron energy. Using analytical expressions for the EEDF, the effective electron temperaturemore » and charge of the dust particles, which are assumed to be present in plasma, are calculated for different afterglow durations. An analytical expression for the rate describing collection of electrons by dust particles for the case when the rate for momentum-transfer electron-neutral collisions is independent on electron energy is also derived. The EEDF profile and, as a result, the effective electron temperature and dust charge are sufficiently different in the cases when the rate for momentum-transfer electron-neutral collisions is independent on electron energy and when the rate is a power function of electron energy.« less

  12. Decal transfer microfabrication

    DOEpatents

    Nuzzo, Ralph G.; Childs, William Robert

    2004-10-19

    A method of making a microstructure includes forming a pattern in a surface of a silicon-containing elastomer, oxidizing the pattern, contacting the pattern with a substrate; and bonding the oxidized pattern and the substrate such that the pattern and the substrate are irreversibly attached. The silicon-containing elastomer may be removably attached to a transfer pad.

  13. Molecular dynamics simulations give insight into the conformational change, complex formation, and electron transfer pathway for cytochrome P450 reductase

    PubMed Central

    Sündermann, Axel; Oostenbrink, Chris

    2013-01-01

    Cytochrome P450 reductase (CYPOR) undergoes a large conformational change to allow for an electron transfer to a redox partner to take place. After an internal electron transfer over its cofactors, it opens up to facilitate the interaction and electron transfer with a cytochrome P450. The open conformation appears difficult to crystallize. Therefore, a model of a human CYPOR in the open conformation was constructed to be able to investigate the stability and conformational change of this protein by means of molecular dynamics simulations. Since the role of the protein is to provide electrons to a redox partner, the interactions with cytochrome P450 2D6 (2D6) were investigated and a possible complex structure is suggested. Additionally, electron pathway calculations with a newly written program were performed to investigate which amino acids relay the electrons from the FMN cofactor of CYPOR to the HEME of 2D6. Several possible interacting amino acids in the complex, as well as a possible electron transfer pathway were identified and open the way for further investigation by site directed mutagenesis studies. PMID:23832577

  14. Evolution of roughness during the pattern transfer of high-chi, 10nm half-pitch, silicon-containing block copolymer structures

    NASA Astrophysics Data System (ADS)

    Blachut, Gregory; Sirard, Stephen M.; Liang, Andrew; Mack, Chris A.; Maher, Michael J.; Rincon-Delgadillo, Paulina A.; Chan, Boon Teik; Mannaert, Geert; Vandenberghe, Geert; Willson, C. Grant; Ellison, Christopher J.; Hymes, Diane

    2018-03-01

    A pattern transfer study was conducted to monitor the evolution of roughness in sub-10 nm half-pitch lines generated by the directed self-assembly (DSA) of a high-chi, silicon-containing block copolymer, poly(4-trimethylsilylstyrene)-block-poly(4-methoxystyrene). Unbiased roughness measurements were used to characterize the roughness of the structures before and after pattern transfer into silicon nitride. Parameters of the reactive ion etch process used as a dry development were systematically modified to minimize undesired line walking created by the DSA pre-pattern and to determine their impacts on roughness. The results of this study indicate that an optimized dry development can mitigate the effects of pre-pattern inhomogeneity, and that both dry development and pattern transfer steps effect the roughness of the final structures.

  15. Electron transfer across a thermal gradient

    PubMed Central

    Craven, Galen T.

    2016-01-01

    Charge transfer is a fundamental process that underlies a multitude of phenomena in chemistry and biology. Recent advances in observing and manipulating charge and heat transport at the nanoscale, and recently developed techniques for monitoring temperature at high temporal and spatial resolution, imply the need for considering electron transfer across thermal gradients. Here, a theory is developed for the rate of electron transfer and the associated heat transport between donor–acceptor pairs located at sites of different temperatures. To this end, through application of a generalized multidimensional transition state theory, the traditional Arrhenius picture of activation energy as a single point on a free energy surface is replaced with a bithermal property that is derived from statistical weighting over all configurations where the reactant and product states are equienergetic. The flow of energy associated with the electron transfer process is also examined, leading to relations between the rate of heat exchange among the donor and acceptor sites as functions of the temperature difference and the electronic driving bias. In particular, we find that an open electron transfer channel contributes to enhanced heat transport between sites even when they are in electronic equilibrium. The presented results provide a unified theory for charge transport and the associated heat conduction between sites at different temperatures. PMID:27450086

  16. Ultrafast Electron Transfer across a Nanocapsular Wall: Coumarins as Donors, Viologen as Acceptor, and Octa Acid Capsule as the Mediator.

    PubMed

    Chuang, Chi-Hung; Porel, Mintu; Choudhury, Rajib; Burda, Clemens; Ramamurthy, V

    2018-01-11

    Results of our study on ultrafast electron transfer (eT) dynamics from coumarins (coumarin-1, coumarin-480, and coumarin-153) incarcerated within octa acid (OA) capsules as electron donors to methyl viologen dissolved in water as acceptor are presented. Upon photoexcitation, coumarin inside the OA capsule transfers an electron to the acceptor electrostatically attached to the capsule leading to a long-lived radical-ion pair separated by the OA capsular wall. This charge-separated state returns to the neutral ground state via back electron transfer on the nanosecond time scale. This system allows for ultrafast electron transfer processes through a molecular wall from the apolar capsular interior to the highly polar (aqueous) environment on the femtosecond time scale. Employing femtosecond transient absorption spectroscopy, distinct rates of both forward (1-25 ps) and backward eT (700-1200 ps) processes were measured. Further understanding of the energetics is provided using Rehm-Weller analysis for the investigated photoinduced eT reactions. The results provide the rates of the eT across a molecular wall, akin to an isotropic solution, depending on the standard free energy of the reaction. The insights from this work could be utilized in the future design of efficient electron transfer processes across interfaces separating apolar and polar environments.

  17. A unified diabatic description for electron transfer reactions, isomerization reactions, proton transfer reactions, and aromaticity.

    PubMed

    Reimers, Jeffrey R; McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S

    2015-10-14

    While diabatic approaches are ubiquitous for the understanding of electron-transfer reactions and have been mooted as being of general relevance, alternate applications have not been able to unify the same wide range of observed spectroscopic and kinetic properties. The cause of this is identified as the fundamentally different orbital configurations involved: charge-transfer phenomena involve typically either 1 or 3 electrons in two orbitals whereas most reactions are typically closed shell. As a result, two vibrationally coupled electronic states depict charge-transfer scenarios whereas three coupled states arise for closed-shell reactions of non-degenerate molecules and seven states for the reactions implicated in the aromaticity of benzene. Previous diabatic treatments of closed-shell processes have considered only two arbitrarily chosen states as being critical, mapping these states to those for electron transfer. We show that such effective two-state diabatic models are feasible but involve renormalized electronic coupling and vibrational coupling parameters, with this renormalization being property dependent. With this caveat, diabatic models are shown to provide excellent descriptions of the spectroscopy and kinetics of the ammonia inversion reaction, proton transfer in N2H7(+), and aromaticity in benzene. This allows for the development of a single simple theory that can semi-quantitatively describe all of these chemical phenomena, as well as of course electron-transfer reactions. It forms a basis for understanding many technologically relevant aspects of chemical reactions, condensed-matter physics, chemical quantum entanglement, nanotechnology, and natural or artificial solar energy capture and conversion.

  18. Creating nanostructures on silicon using ion blistering and electron beam lithography

    NASA Astrophysics Data System (ADS)

    Giguère, Alexandre; Beerens, Jean; Terreault, Bernard

    2006-01-01

    We have investigated the patterning of silicon surfaces using ion blistering in conjunction with e-beam lithography. Variable width (150-5000 nm) trenches were first written in 500 nm thick PMMA resist spin coated on silicon, using an electron beam. Next, 10 keV H2+ ions were implanted to various fluences through the masks. The resist was then removed and the samples were rapidly thermally annealed at 900 °C. The resulting surface morphologies were investigated by atomic force microscopy. In the wider trenches, round blisters with 600-900 nm diameter are observed, which are similar to those observed on unmasked surfaces. In submicron trenches, there is a transition in morphology, caused by the proximity to the border. The blisters are smaller and they are densely aligned along the trench direction ('string of pearls' pattern). Unusual blister geometries are observed in the narrowest trenches (150 nm) at higher H doses (>=1 × 1017 H cm-2)—such as tubular blisters aligned along the trench. It was also found that for H doses of >=6 × 1016 H cm-2 the surface swells uniformly, which has implications for the blistering mechanism. The prospects for accomplishing ion cutting, layer transfer and bonding of finely delineated patterns of silicon onto another material are discussed in the light of the above results.

  19. Formation mechanism and mechanics of dip-pen nanolithography using molecular dynamics.

    PubMed

    Wu, Cheng-Da; Fang, Te-Hua; Lin, Jen-Fin

    2010-03-02

    Molecular dynamics simulations are used to investigate the mechanisms of molecular transference, pattern formation, and mechanical behavior in the dip-pen nanolithography (DPN) process. The effects of deposition temperature were studied using molecular trajectories, the meniscus characteristic, surface absorbed energy, and pattern formation analysis. At the first transferred stage (at the initial indentation depth), the conformation of SAM molecules lies almost on the substrate surface. The molecules start to stand on the substrate due to the pull and drag forces at the second transferred stage (after the tip is pulled up). According to the absorbed energy behavior, the second transferred stage has larger transferred amounts and the transfer rate is strongly related to temperature. When molecules were deposited at low temperature (e.g., room temperature), the pattern shape was more highly concentrated. The pattern shape at high temperatures expanded and the area increased because of good molecular diffusion.

  20. A method to transfer speckle patterns for digital image correlation

    NASA Astrophysics Data System (ADS)

    Chen, Zhenning; Quan, Chenggen; Zhu, Feipeng; He, Xiaoyuan

    2015-09-01

    A simple and repeatable speckle creation method based on water transfer printing (WTP) is proposed to reduce artificial measurement error for digital image correlation (DIC). This technique requires water, brush, and a piece of transfer paper that is made of prefabricated decal paper, a protected sheet, and printed speckle patterns. The speckle patterns are generated and optimized via computer simulations, and then printed on the decal paper. During the experiments, operators can moisten the basement with water and the brush, so that digital patterns can be simply transferred to the carriers’ surfaces. Tensile experiments with an extended three-dimensional (3D) DIC system are performed to test and verify the validity of WTP patterns. It is shown that by comparing with a strain gage, the strain error is less than 50μɛ in a uniform tensile test. From five carbon steel tensile experiments, Lüders bands in both WTP patterns and spray paint patterns are demonstrated to propagate symmetrically. In the necking part where the strain is up to 66%, WTP patterns are proved to adhere to the specimens well. Hence, WTP patterns are capable of maintaining coherence and adherence to the specimen surface. The transfer paper, working as the role of strain gage in the electrometric method, will contribute to speckle creation.

  1. Electronic Transfer of School Records.

    ERIC Educational Resources Information Center

    Yeagley, Raymond

    2001-01-01

    Describes the electronic transfer of student records, notably the use of a Web-server named CHARLOTTE sponsored by the National Forum on Education Statistics and an Electronic Data Exchange system named SPEEDE/ExPRESS. (PKP)

  2. Ru–protein–Co biohybrids designed for solar hydrogen production: understanding electron transfer pathways related to photocatalytic function† †Electronic supplementary information (ESI) available: Time traces of photocatalysis, additional EPR spectra and parameters, UV-visible spectroscopy data, and kinetic fits of TA traces. See DOI: 10.1039/c6sc03121h Click here for additional data file.

    PubMed Central

    Soltau, Sarah R.; Dahlberg, Peter D.; Niklas, Jens; Poluektov, Oleg G.; Mulfort, Karen L.

    2016-01-01

    A series of Ru–protein–Co biohybrids have been prepared using the electron transfer proteins ferredoxin (Fd) and flavodoxin (Fld) as scaffolds for photocatalytic hydrogen production. The light-generated charge separation within these hybrids has been monitored by transient optical and electron paramagnetic resonance spectroscopies. Two distinct electron transfer pathways are observed. The Ru–Fd–Co biohybrid produces up to 650 turnovers of H2 utilizing an oxidative quenching mechanism for Ru(ii)* and a sequential electron transfer pathway via the native [2Fe–2S] cluster to generate a Ru(iii)–Fd–Co(i) charge separated state that lasts for ∼6 ms. In contrast, a direct electron transfer pathway occurs for the Ru–ApoFld–Co biohybrid, which lacks an internal electron relay, generating Ru(i)–ApoFld–Co(i) charge separated state that persists for ∼800 μs and produces 85 turnovers of H2 by a reductive quenching mechanism for Ru(ii)*. This work demonstrates the utility of protein architectures for linking donor and catalytic function via direct or sequential electron transfer pathways to enable stabilized charge separation which facilitates photocatalysis for solar fuel production. PMID:28451142

  3. Preparation, characterization, physical properties, and photoconducting behaviour of anthracene derivative nanowires

    NASA Astrophysics Data System (ADS)

    Xiao, Jinchong; Yin, Zongyou; Yang, Bo; Liu, Yi; Ji, Li; Guo, Jun; Huang, Ling; Liu, Xuewei; Yan, Qingyu; Zhang, Hua; Zhang, Qichun

    2011-11-01

    Organic nanowires of 9,10-dibromoanthracene (DBA) and 9,10-dicyanoanthracene (DCNA) were obtained by adding the THF solution of DBA/DCNA into water containing P123 surfactants. The as-prepared nanowires were characterized by UV-vis, fluorescence spectra, Field Emission Scanning Electron Microscopy (FESEM), and Transmission Electron Microscopy (TEM). We found that DBA and DCNA nanowires emitted green light rather than blue light for molecules in THF solution. The red-shift UV and fluorescent spectra of DBA and DCNA nanowires implied that these nanowires were formed through J-aggregation. The photoconducting study of DBA/DCNA nanowire-based network on rGO/SiO2/Si shows different photocurrent behaviors upon irradiation, which displayed that electron transfer from DCNA nanowire to rGO was stronger than that of DBA nanowires to rGO.Organic nanowires of 9,10-dibromoanthracene (DBA) and 9,10-dicyanoanthracene (DCNA) were obtained by adding the THF solution of DBA/DCNA into water containing P123 surfactants. The as-prepared nanowires were characterized by UV-vis, fluorescence spectra, Field Emission Scanning Electron Microscopy (FESEM), and Transmission Electron Microscopy (TEM). We found that DBA and DCNA nanowires emitted green light rather than blue light for molecules in THF solution. The red-shift UV and fluorescent spectra of DBA and DCNA nanowires implied that these nanowires were formed through J-aggregation. The photoconducting study of DBA/DCNA nanowire-based network on rGO/SiO2/Si shows different photocurrent behaviors upon irradiation, which displayed that electron transfer from DCNA nanowire to rGO was stronger than that of DBA nanowires to rGO. Electronic supplementary information (ESI) available: XRD patterns and simulations, and FT-IR spectra. CCDC reference numbers 840471. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c1nr10655d

  4. Production of vibrationally excited N 2 by electron impact

    NASA Astrophysics Data System (ADS)

    Campbell, L.; Brunger, M. J.; Cartwright, D. C.; Teubner, P. J. O.

    2004-08-01

    Energy transfer from electrons to neutral gases and ions is one of the dominant electron cooling processes in the ionosphere, and the role of vibrationally excited N 2 in this is particularly significant. We report here the results from a new calculation of electron energy transfer rates ( Q) for vibrational excitation of N 2, as a function of the electron temperature Te. The present study was motivated by the development of a new cross-section compilation for vibrational excitation processes in N 2 which supercedes those used in the earlier calculations of the electron energy transfer rates. We show that the energy dependence and magnitude of these cross sections, particularly in the region of the well-known 2Π g resonance in N 2, significantly affect the calculated values of Q. A detailed comparison between the current and previous calculated electron energy transfer rates is made and coefficients are provided so that these rates for transitions from level 0 to levels 1-10 can be calculated for electron temperatures less than 6000 K.

  5. Photogeneration of Charge Carriers in Bilayer Assemblies of Conjugated Rigid-Rod Polymers

    DTIC Science & Technology

    1994-07-08

    photoinduced electron transfer and exciplex formation at the bilayer interface. Thus photocarrier generation on photoexcitation of the conjugated rigid...rod polymers in the bilayer occurs by photoinduced electron transfer, forming intermolecular exciplexes which dissociate efficiently in electric field...photogeneration, conjugated rigid-rod polymers, is. MACI COD bilayer assemblies, electron transfer, exciplexes . 11. SEOJUTY CLASUICA 10. 51(11MIE CLASSIMIAVION

  6. Telematics and satellites. Part 1: Information systems

    NASA Astrophysics Data System (ADS)

    Burke, W. R.

    1980-06-01

    Telematic systems are identified and described. The applications are examined emphasizing the role played by satellite links. The discussion includes file transfer, examples of distributed processor systems, terminal communication, information retrieval systems, office information systems, electronic preparation and publishing of information, electronic systems for transfer of funds, electronic mail systems, record file transfer characteristics, intra-enterprise networks, and inter-enterprise networks.

  7. Spectroscopic and Computational Investigations of a Mononuclear Manganese(IV)-Oxo Complex Reveal Electronic Structure Contributions to Reactivity

    DOE PAGES

    Leto, Domenick F.; Massie, Allyssa A.; Rice, Derek B.; ...

    2016-11-01

    The mononuclear Mn(IV)-oxo complex [Mn IV(O)(N4py)] 2+, where N4py is the pentadentate ligand N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine, we propose to attack C–H bonds by an excited-state reactivity pattern [Cho, K.-B.; Shaik, S.; Nam, W. J. Phys. Chem. Lett. 2012, 3, 2851-2856 (DOI: 10.1021/jz301241z)]. In this model, a 4E excited state is utilized to provide a lower-energy barrier for hydrogen-atom transfer. This proposal is intriguing, as it offers both a rationale for the relatively high hydrogen-atom-transfer reactivity of [Mn IV(O)(N4py)] 2+ and a guideline for creating more reactive complexes through ligand modification. Here we employ a combination of electronic absorption and variable-temperature magnetic circularmore » dichroism (MCD) spectroscopy to experimentally evaluate this excited-state reactivity model. Using these spectroscopic methods, in conjunction with time-dependent density functional theory (TD-DFT) and complete-active space self-consistent-field calculations (CASSCF), we define the ligand-field and charge-transfer excited states of [MnIV(O)(N4py)]2+. Through a graphical analysis of the signs of the experimental C-term MCD signals, we unambiguously assign a low-energy MCD feature of [Mn IV(O)(N4py)] 2+ as the 4E excited state predicted to be involved in hydrogen-atom-transfer reactivity. The CASSCF calculations predict enhanced Mn III-oxyl character on the excited-state 4E surface, consistent with previous DFT calculations. Potential-energy surfaces, developed using the CASSCF methods, are used to determine how the energies and wave functions of the ground and excited states evolved as a function of Mn=O distance. Furthermore, the unique insights into ground- and excited-state electronic structure offered by these spectroscopic and computational studies are harmonized with a thermodynamic model of hydrogen-atom-transfer reactivity, which predicts a correlation between transition-state barriers and driving force« less

  8. Spectroscopic and Computational Investigations of a Mononuclear Manganese(IV)-Oxo Complex Reveal Electronic Structure Contributions to Reactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leto, Domenick F.; Massie, Allyssa A.; Rice, Derek B.

    The mononuclear Mn(IV)-oxo complex [Mn IV(O)(N4py)] 2+, where N4py is the pentadentate ligand N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine, we propose to attack C–H bonds by an excited-state reactivity pattern [Cho, K.-B.; Shaik, S.; Nam, W. J. Phys. Chem. Lett. 2012, 3, 2851-2856 (DOI: 10.1021/jz301241z)]. In this model, a 4E excited state is utilized to provide a lower-energy barrier for hydrogen-atom transfer. This proposal is intriguing, as it offers both a rationale for the relatively high hydrogen-atom-transfer reactivity of [Mn IV(O)(N4py)] 2+ and a guideline for creating more reactive complexes through ligand modification. Here we employ a combination of electronic absorption and variable-temperature magnetic circularmore » dichroism (MCD) spectroscopy to experimentally evaluate this excited-state reactivity model. Using these spectroscopic methods, in conjunction with time-dependent density functional theory (TD-DFT) and complete-active space self-consistent-field calculations (CASSCF), we define the ligand-field and charge-transfer excited states of [MnIV(O)(N4py)]2+. Through a graphical analysis of the signs of the experimental C-term MCD signals, we unambiguously assign a low-energy MCD feature of [Mn IV(O)(N4py)] 2+ as the 4E excited state predicted to be involved in hydrogen-atom-transfer reactivity. The CASSCF calculations predict enhanced Mn III-oxyl character on the excited-state 4E surface, consistent with previous DFT calculations. Potential-energy surfaces, developed using the CASSCF methods, are used to determine how the energies and wave functions of the ground and excited states evolved as a function of Mn=O distance. Furthermore, the unique insights into ground- and excited-state electronic structure offered by these spectroscopic and computational studies are harmonized with a thermodynamic model of hydrogen-atom-transfer reactivity, which predicts a correlation between transition-state barriers and driving force« less

  9. Is back-electron transfer process in Betaine-30 coherent?

    NASA Astrophysics Data System (ADS)

    Rafiq, Shahnawaz; Scholes, Gregory D.

    2017-09-01

    The possible role of coherent vibrational motion in ultrafast photo-induced electron transfer remains unclear despite considerable experimental and theoretical advances. We revisited this problem by tracking the back-electron transfer (bET) process in Betaine-30 with broadband pump-probe spectroscopy. Dephasing time constant of certain high-frequency vibrations as a function of solvent shows a trend similar to the ET rates. In the purview of Bixon-Jortner model, high-frequency quantum vibrations bridge the reactant-product energy gap by providing activationless vibronic channels. Such interaction reduces the effective coupling significantly and thereby the coherence effects are eliminated due to energy gap fluctuations, making the back-electron transfer incoherent.

  10. Modeling time-coincident ultrafast electron transfer and solvation processes at molecule-semiconductor interfaces

    NASA Astrophysics Data System (ADS)

    Li, Lesheng; Giokas, Paul G.; Kanai, Yosuke; Moran, Andrew M.

    2014-06-01

    Kinetic models based on Fermi's Golden Rule are commonly employed to understand photoinduced electron transfer dynamics at molecule-semiconductor interfaces. Implicit in such second-order perturbative descriptions is the assumption that nuclear relaxation of the photoexcited electron donor is fast compared to electron injection into the semiconductor. This approximation breaks down in systems where electron transfer transitions occur on 100-fs time scale. Here, we present a fourth-order perturbative model that captures the interplay between time-coincident electron transfer and nuclear relaxation processes initiated by light absorption. The model consists of a fairly small number of parameters, which can be derived from standard spectroscopic measurements (e.g., linear absorbance, fluorescence) and/or first-principles electronic structure calculations. Insights provided by the model are illustrated for a two-level donor molecule coupled to both (i) a single acceptor level and (ii) a density of states (DOS) calculated for TiO2 using a first-principles electronic structure theory. These numerical calculations show that second-order kinetic theories fail to capture basic physical effects when the DOS exhibits narrow maxima near the energy of the molecular excited state. Overall, we conclude that the present fourth-order rate formula constitutes a rigorous and intuitive framework for understanding photoinduced electron transfer dynamics that occur on the 100-fs time scale.

  11. Microbial Biofilm Voltammetry: Direct Electrochemical Characterization of Catalytic Electrode-Attached Biofilms▿ †

    PubMed Central

    Marsili, Enrico; Rollefson, Janet B.; Baron, Daniel B.; Hozalski, Raymond M.; Bond, Daniel R.

    2008-01-01

    While electrochemical characterization of enzymes immobilized on electrodes has become common, there is still a need for reliable quantitative methods for study of electron transfer between living cells and conductive surfaces. This work describes growth of thin (<20 μm) Geobacter sulfurreducens biofilms on polished glassy carbon electrodes, using stirred three-electrode anaerobic bioreactors controlled by potentiostats and nondestructive voltammetry techniques for characterization of viable biofilms. Routine in vivo analysis of electron transfer between bacterial cells and electrodes was performed, providing insight into the main redox-active species participating in electron transfer to electrodes. At low scan rates, cyclic voltammetry revealed catalytic electron transfer between cells and the electrode, similar to what has been observed for pure enzymes attached to electrodes under continuous turnover conditions. Differential pulse voltammetry and electrochemical impedance spectroscopy also revealed features that were consistent with electron transfer being mediated by an adsorbed catalyst. Multiple redox-active species were detected, revealing complexity at the outer surfaces of this bacterium. These techniques provide the basis for cataloging quantifiable, defined electron transfer phenotypes as a function of potential, electrode material, growth phase, and culture conditions and provide a framework for comparisons with other species or communities. PMID:18849456

  12. Real-time electron transfer in respiratory complex I

    PubMed Central

    Verkhovskaya, Marina L.; Belevich, Nikolai; Euro, Liliya; Wikström, Mårten; Verkhovsky, Michael I.

    2008-01-01

    Electron transfer in complex I from Escherichia coli was investigated by an ultrafast freeze-quench approach. The reaction of complex I with NADH was stopped in the time domain from 90 μs to 8 ms and analyzed by electron paramagnetic resonance (EPR) spectroscopy at low temperatures. The data show that after binding of the first molecule of NADH, two electrons move via the FMN cofactor to the iron–sulfur (Fe/S) centers N1a and N2 with an apparent time constant of ≈90 μs, implying that these two centers should have the highest redox potential in the enzyme. The rate of reduction of center N2 (the last center in the electron transfer sequence) is close to that predicted by electron transfer theory, which argues for the absence of coupled proton transfer or conformational changes during electron transfer from FMN to N2. After fast reduction of N1a and N2, we observe a slow, ≈1-ms component of reduction of other Fe/S clusters. Because all elementary electron transfer rates between clusters are several orders of magnitude higher than this observed rate, we conclude that the millisecond component is limited by a single process corresponding to dissociation of the oxidized NAD+ molecule from its binding site, where it prevents entry of the next NADH molecule. Despite the presence of approximately one ubiquinone per enzyme molecule, no transient semiquinone formation was observed, which has mechanistic implications, suggesting a high thermodynamic barrier for ubiquinone reduction to the semiquinone radical. Possible consequences of these findings for the proton translocation mechanism are discussed. PMID:18316732

  13. Dexter energy transfer pathways

    PubMed Central

    Skourtis, Spiros S.; Liu, Chaoren; Antoniou, Panayiotis; Virshup, Aaron M.; Beratan, David N.

    2016-01-01

    Energy transfer with an associated spin change of the donor and acceptor, Dexter energy transfer, is critically important in solar energy harvesting assemblies, damage protection schemes of photobiology, and organometallic opto-electronic materials. Dexter transfer between chemically linked donors and acceptors is bridge mediated, presenting an enticing analogy with bridge-mediated electron and hole transfer. However, Dexter coupling pathways must convey both an electron and a hole from donor to acceptor, and this adds considerable richness to the mediation process. We dissect the bridge-mediated Dexter coupling mechanisms and formulate a theory for triplet energy transfer coupling pathways. Virtual donor–acceptor charge-transfer exciton intermediates dominate at shorter distances or higher tunneling energy gaps, whereas virtual intermediates with an electron and a hole both on the bridge (virtual bridge excitons) dominate for longer distances or lower energy gaps. The effects of virtual bridge excitons were neglected in earlier treatments. The two-particle pathway framework developed here shows how Dexter energy-transfer rates depend on donor, bridge, and acceptor energetics, as well as on orbital symmetry and quantum interference among pathways. PMID:27382185

  14. Dexter energy transfer pathways.

    PubMed

    Skourtis, Spiros S; Liu, Chaoren; Antoniou, Panayiotis; Virshup, Aaron M; Beratan, David N

    2016-07-19

    Energy transfer with an associated spin change of the donor and acceptor, Dexter energy transfer, is critically important in solar energy harvesting assemblies, damage protection schemes of photobiology, and organometallic opto-electronic materials. Dexter transfer between chemically linked donors and acceptors is bridge mediated, presenting an enticing analogy with bridge-mediated electron and hole transfer. However, Dexter coupling pathways must convey both an electron and a hole from donor to acceptor, and this adds considerable richness to the mediation process. We dissect the bridge-mediated Dexter coupling mechanisms and formulate a theory for triplet energy transfer coupling pathways. Virtual donor-acceptor charge-transfer exciton intermediates dominate at shorter distances or higher tunneling energy gaps, whereas virtual intermediates with an electron and a hole both on the bridge (virtual bridge excitons) dominate for longer distances or lower energy gaps. The effects of virtual bridge excitons were neglected in earlier treatments. The two-particle pathway framework developed here shows how Dexter energy-transfer rates depend on donor, bridge, and acceptor energetics, as well as on orbital symmetry and quantum interference among pathways.

  15. Effect of proton transfer on the electronic coupling in DNA

    NASA Astrophysics Data System (ADS)

    Rak, Janusz; Makowska, Joanna; Voityuk, Alexander A.

    2006-06-01

    The effects of single and double proton transfer within Watson-Crick base pairs on donor-acceptor electronic couplings, Vda, in DNA are studied on the bases of quantum chemical calculations. Four dimers [AT,AT], [GC,GC], [GC,AT] and [GC,TA)] are considered. Three techniques - the generalized Mulliken-Hush scheme, the fragment charge method and the diabatic states method - are employed to estimate Vda for hole transfer between base pairs. We show that both single- and double proton transfer (PT) reactions may substantially affect the electronic coupling in DNA. The electronic coupling in [AT,AT] is predicted to be most sensitive to PT. Single PT within the first base pair in the dimer leads to increase in the hole transfer efficiency by a factor of 4, while proton transfer within the second pair should substantially, by 2.7 times, decrease the rate of charge transfer. Thus, directional asymmetry of the PT effects on the electronic coupling is predicted. The changes in the Vda matrix elements correlate with the topological properties of orbitals of donor and acceptor and can be qualitatively rationalized in terms of resonance structures of donor and acceptor. Atomic pair contributions to the Vda matrix elements are also analyzed.

  16. Ultrafast electron and hole transfer dynamics of a solar cell dye containing hole acceptors on mesoporous TiO2 and Al2O3.

    PubMed

    Scholz, Mirko; Flender, Oliver; Boschloo, Gerrit; Oum, Kawon; Lenzer, Thomas

    2017-03-08

    The stability of dye cations against recombination with conduction band electrons in mesoporous TiO 2 electrodes is a key property for improving light harvesting in dye-sensitised solar cells. Using ultrafast transient broadband absorption spectroscopy, we monitor efficient intramolecular hole transfer in the solar cell dye E6 having two peripheral triarylamine acceptors. After photoexcitation, two hole transfer mechanisms are identified: a concerted mechanism for electron injection and hole transfer (2.4 ps) and a sequential mechanism with time constants of 3.9 ps and 30 ps. This way the dye retards unwanted recombination with a TiO 2 conduction band electron by quickly moving the hole further away from the surface. Contact of the E6/TiO 2 surface with the solvent acetonitrile has almost no influence on the electron injection and hole transfer kinetics. Fast hole transfer (2.8 ps) is also observed on a "non-injecting" Al 2 O 3 surface generating a radical cation-radical anion species with a lifetime of 530 ps. The findings confirm the good intramolecular hole transfer properties of this dye on both thin films. In contrast, intramolecular hole transfer does not occur in the mid-polar organic solvent methyl acetate. This is confirmed by TDDFT calculations suggesting a polarity-induced reduction of the driving force for hole transfer. In methyl acetate, only the relaxation of the initially photoexcited core chromophore is observed including solvent relaxation processes of the electronically excited state S 1 /ICT.

  17. Electronic Data Interchange: Using Technology to Exchange Transcripts.

    ERIC Educational Resources Information Center

    Stewart, John T.

    1994-01-01

    Describes the Florida Automated System for Transferring Educational Records (FASTER) project, which permits the electronic exchange of student transcripts; uses of similar electronic data interchange (EDI) programs in other states; and the national SPEEDE/ExPRESS project, which uses a standard format for transferring electronic transcripts.…

  18. Electronic coupling in long-range electron transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newton, M.D.

    1996-12-31

    One of the quantities crucial in controlling electron transfer (et) kinetics is the donor/acceptor electronic coupling integral (HDA). Recent theoretical models for HDA will be presented, and the results of ab initio computational implementation will be reported and analyzed for several metal-to-metal ligand charge transfer processes in complex molecular aggregates. New procedures for defining diabatic states, including a generalization of the Mulliken-Hush model, allow applications to optical and excited state as well as ground state et in a many-state framework.

  19. Modeling of the Effect of Path Planning on Thermokinetic Evolutions in Laser Powder Deposition Process

    NASA Astrophysics Data System (ADS)

    Foroozmehr, Ehsan; Kovacevic, Radovan

    2011-07-01

    A thermokinetic model coupling finite-element heat transfer with transformation kinetics is developed to determine the effect of deposition patterns on the phase-transformation kinetics of laser powder deposition (LPD) process of a hot-work tool steel. The finite-element model is used to define the temperature history of the process used in an empirical-based kinetic model to analyze the tempering effect of the heating and cooling cycles of the deposition process. An area is defined to be covered by AISI H13 on a substrate of AISI 1018 with three different deposition patterns: one section, two section, and three section. The two-section pattern divides the area of the one-section pattern into two sections, and the three-section pattern divides that area into three sections. The results show that dividing the area under deposition into smaller areas can influence the phase transformation kinetics of the process and, consequently, change the final hardness of the deposited material. The two-section pattern shows a higher average hardness than the one-section pattern, and the three-section pattern shows a fully hardened surface without significant tempered zones of low hardness. To verify the results, a microhardness test and scanning electron microscope were used.

  20. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; He, Zhi-Zhu; Yang, Jun; Liu, Jing

    2014-04-01

    Printed electronics is becoming increasingly important in a variety of newly emerging areas. However, restricted to the rather limited conductive inks and available printing strategies, the current electronics manufacture is usually confined to industry level. Here, we show a highly cost-effective and entirely automatic printing way towards personal electronics making, through introducing a tapping-mode composite fluid delivery system. Fundamental mechanisms regarding the reliable printing, transfer and adhesion of the liquid metal inks on the substrate were disclosed through systematic theoretical interpretation and experimental measurements. With this liquid metal printer, a series of representative electronic patterns spanning from single wires to desired complex configurations such as integrated circuit (IC), printed-circuits-on-board (PCB), electronic paintings, or more do-it-yourself (DIY) devices, were demonstrated to be printed out with high precision in a moment. And the total machine cost already reached personally affordable price. This is hard to achieve by a conventional PCB technology which generally takes long time and is material, water and energy consuming, while the existing printed electronics is still far away from the real direct printing goal. The present work opens the way for large scale personal electronics manufacture and is expected to generate important value for the coming society.

  1. Semiconductors Under Ion Radiation: Ultrafast Electron-Ion Dynamics in Perfect Crystals and the Effect of Defects

    NASA Astrophysics Data System (ADS)

    Lee, Cheng-Wei; Schleife, André

    Stability and safety issues have been challenging difficulties for materials and devices under radiation such as solar panels in outer space. On the other hand, radiation can be utilized to modify materials and increase their performance via focused-ion beam patterning at nano-scale. In order to grasp the underlying processes, further understanding of the radiation-material and radiation-defect interactions is required and inevitably involves the electron-ion dynamics that was traditionally hard to capture. By applying Ehrenfest dynamics based on time-dependent density functional theory, we have been able to perform real-time simulation of electron-ion dynamics in MgO and InP/GaP. By simulating a high-energy proton penetrating the material, the energy gain of electronic system can be interpreted as electronic stopping power and the result is compared to existing data. We also study electronic stopping in the vicinity of defects: for both oxygen vacancy in MgO and interface of InP/GaP superlattice, electronic stopping shows strong dependence on the velocity of the proton. To study the energy transfer from electronic system to lattice, simulations of about 100 femto-seconds are performed and we analyze the difference between Ehrenfest and Born-Oppenheimer molecular dynamics.

  2. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism.

    PubMed

    Zheng, Yi; He, Zhi-Zhu; Yang, Jun; Liu, Jing

    2014-04-04

    Printed electronics is becoming increasingly important in a variety of newly emerging areas. However, restricted to the rather limited conductive inks and available printing strategies, the current electronics manufacture is usually confined to industry level. Here, we show a highly cost-effective and entirely automatic printing way towards personal electronics making, through introducing a tapping-mode composite fluid delivery system. Fundamental mechanisms regarding the reliable printing, transfer and adhesion of the liquid metal inks on the substrate were disclosed through systematic theoretical interpretation and experimental measurements. With this liquid metal printer, a series of representative electronic patterns spanning from single wires to desired complex configurations such as integrated circuit (IC), printed-circuits-on-board (PCB), electronic paintings, or more do-it-yourself (DIY) devices, were demonstrated to be printed out with high precision in a moment. And the total machine cost already reached personally affordable price. This is hard to achieve by a conventional PCB technology which generally takes long time and is material, water and energy consuming, while the existing printed electronics is still far away from the real direct printing goal. The present work opens the way for large scale personal electronics manufacture and is expected to generate important value for the coming society.

  3. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism

    PubMed Central

    Zheng, Yi; He, Zhi-Zhu; Yang, Jun; Liu, Jing

    2014-01-01

    Printed electronics is becoming increasingly important in a variety of newly emerging areas. However, restricted to the rather limited conductive inks and available printing strategies, the current electronics manufacture is usually confined to industry level. Here, we show a highly cost-effective and entirely automatic printing way towards personal electronics making, through introducing a tapping-mode composite fluid delivery system. Fundamental mechanisms regarding the reliable printing, transfer and adhesion of the liquid metal inks on the substrate were disclosed through systematic theoretical interpretation and experimental measurements. With this liquid metal printer, a series of representative electronic patterns spanning from single wires to desired complex configurations such as integrated circuit (IC), printed-circuits-on-board (PCB), electronic paintings, or more do-it-yourself (DIY) devices, were demonstrated to be printed out with high precision in a moment. And the total machine cost already reached personally affordable price. This is hard to achieve by a conventional PCB technology which generally takes long time and is material, water and energy consuming, while the existing printed electronics is still far away from the real direct printing goal. The present work opens the way for large scale personal electronics manufacture and is expected to generate important value for the coming society. PMID:24699375

  4. Electron transfer statistics and thermal fluctuations in molecular junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goswami, Himangshu Prabal; Harbola, Upendra

    2015-02-28

    We derive analytical expressions for probability distribution function (PDF) for electron transport in a simple model of quantum junction in presence of thermal fluctuations. Our approach is based on the large deviation theory combined with the generating function method. For large number of electrons transferred, the PDF is found to decay exponentially in the tails with different rates due to applied bias. This asymmetry in the PDF is related to the fluctuation theorem. Statistics of fluctuations are analyzed in terms of the Fano factor. Thermal fluctuations play a quantitative role in determining the statistics of electron transfer; they tend tomore » suppress the average current while enhancing the fluctuations in particle transfer. This gives rise to both bunching and antibunching phenomena as determined by the Fano factor. The thermal fluctuations and shot noise compete with each other and determine the net (effective) statistics of particle transfer. Exact analytical expression is obtained for delay time distribution. The optimal values of the delay time between successive electron transfers can be lowered below the corresponding shot noise values by tuning the thermal effects.« less

  5. Extracellular electron transfer mechanisms between microorganisms and minerals.

    PubMed

    Shi, Liang; Dong, Hailiang; Reguera, Gemma; Beyenal, Haluk; Lu, Anhuai; Liu, Juan; Yu, Han-Qing; Fredrickson, James K

    2016-10-01

    Electrons can be transferred from microorganisms to multivalent metal ions that are associated with minerals and vice versa. As the microbial cell envelope is neither physically permeable to minerals nor electrically conductive, microorganisms have evolved strategies to exchange electrons with extracellular minerals. In this Review, we discuss the molecular mechanisms that underlie the ability of microorganisms to exchange electrons, such as c-type cytochromes and microbial nanowires, with extracellular minerals and with microorganisms of the same or different species. Microorganisms that have extracellular electron transfer capability can be used for biotechnological applications, including bioremediation, biomining and the production of biofuels and nanomaterials.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bose, A; Gardel, EJ; Vidoudez, C

    Oxidation-reduction reactions underlie energy generation in nearly all life forms. Although most organisms use soluble oxidants and reductants, some microbes can access solid-phase materials as electron-acceptors or -donors via extracellular electron transfer. Many studies have focused on the reduction of solid-phase oxidants. Far less is known about electron uptake via microbial extracellular electron transfer, and almost nothing is known about the associated mechanisms. Here we show that the iron-oxidizing photoautotroph Rhodopseudomonas palustris TIE-1 accepts electrons from a poised electrode, with carbon dioxide as the sole carbon source/electron acceptor. Both electron uptake and ruBisCo form I expression are stimulated by light.more » Electron uptake also occurs in the dark, uncoupled from photosynthesis. Notably, the pioABC operon, which encodes a protein system essential for photoautotrophic growth by ferrous iron oxidation, influences electron uptake. These data reveal a previously unknown metabolic versatility of photoferrotrophs to use extracellular electron transfer for electron uptake.« less

  7. Discovering the electronic circuit diagram of life: structural relationships among transition metal binding sites in oxidoreductases

    PubMed Central

    Kim, J. Dongun; Senn, Stefan; Harel, Arye; Jelen, Benjamin I.; Falkowski, Paul G.

    2013-01-01

    Oxidoreductases play a central role in catalysing enzymatic electron-transfer reactions across the tree of life. To first order, the equilibrium thermodynamic properties of these proteins are governed by protein folds associated with specific transition metals and ligands at the active site. A global analysis of holoenzyme structures and functions suggests that there are fewer than approximately 500 fundamental oxidoreductases, which can be further clustered into 35 unique groups. These catalysts evolved in prokaryotes early in the Earth's history and are largely responsible for the emergence of non-equilibrium biogeochemical cycles on the planet's surface. Although the evolutionary history of the amino acid sequences in the oxidoreductases is very difficult to reconstruct due to gene duplication and horizontal gene transfer, the evolution of the folds in the catalytic sites can potentially be used to infer the history of these enzymes. Using a novel, yet simple analysis of the secondary structures associated with the ligands in oxidoreductases, we developed a structural phylogeny of these enzymes. The results of this ‘composome’ analysis suggest an early split from a basal set of a small group of proteins dominated by loop structures into two families of oxidoreductases, one dominated by α-helices and the second by β-sheets. The structural evolutionary patterns in both clades trace redox gradients and increased hydrogen bond energy in the active sites. The overall pattern suggests that the evolution of the oxidoreductases led to decreased entropy in the transition metal folds over approximately 2.5 billion years, allowing the enzymes to use increasingly oxidized substrates with high specificity. PMID:23754810

  8. 77 FR 10373 - Greenhouse Gas Reporting Program: Electronics Manufacturing: Revisions to Heat Transfer Fluid...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ... Greenhouse Gas Reporting Program: Electronics Manufacturing: Revisions to Heat Transfer Fluid Provisions... technical revisions to the electronics manufacturing source category of the Greenhouse Gas Reporting Rule... related to the electronics manufacturing source category. DATES: This rule will be effective on March 23...

  9. 12 CFR 1005.9 - Receipts at electronic terminals; periodic statements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... TRANSFERS (REGULATION E) General § 1005.9 Receipts at electronic terminals; periodic statements. (a... institution shall make a receipt available to a consumer at the time the consumer initiates an electronic fund transfer at an electronic terminal. The receipt shall set forth the following information, as applicable...

  10. 12 CFR 1005.9 - Receipts at electronic terminals; periodic statements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRANSFERS (REGULATION E) General § 1005.9 Receipts at electronic terminals; periodic statements. (a... institution shall make a receipt available to a consumer at the time the consumer initiates an electronic fund transfer at an electronic terminal. The receipt shall set forth the following information, as applicable...

  11. 12 CFR 1005.9 - Receipts at electronic terminals; periodic statements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... TRANSFERS (REGULATION E) § 1005.9 Receipts at electronic terminals; periodic statements. (a) Receipts at... shall make a receipt available to a consumer at the time the consumer initiates an electronic fund transfer at an electronic terminal. The receipt shall set forth the following information, as applicable...

  12. 78 FR 48913 - Agency Information Collection Activities: Submission to OMB for Reinstatement, Without Change, of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ... electronic funds transfer information to maintain its vendor (credit union) records to make electronic... maintain current electronic funds transfer data for its vendor (credit union) electronic routing and... the information on the respondents such as through the use of automated collection techniques or other...

  13. Rapid electron transfer by the carbon matrix in natural pyrogenic carbon

    PubMed Central

    Sun, Tianran; Levin, Barnaby D. A.; Guzman, Juan J. L.; Enders, Akio; Muller, David A.; Angenent, Largus T.; Lehmann, Johannes

    2017-01-01

    Surface functional groups constitute major electroactive components in pyrogenic carbon. However, the electrochemical properties of pyrogenic carbon matrices and the kinetic preference of functional groups or carbon matrices for electron transfer remain unknown. Here we show that environmentally relevant pyrogenic carbon with average H/C and O/C ratios of less than 0.35 and 0.09 can directly transfer electrons more than three times faster than the charging and discharging cycles of surface functional groups and have a 1.5 V potential range for biogeochemical reactions that invoke electron transfer processes. Surface functional groups contribute to the overall electron flux of pyrogenic carbon to a lesser extent with greater pyrolysis temperature due to lower charging and discharging capacities, although the charging and discharging kinetics remain unchanged. This study could spur the development of a new generation of biogeochemical electron flux models that focus on the bacteria–carbon–mineral conductive network. PMID:28361882

  14. Laser-assisted simultaneous transfer and patterning of vertically aligned carbon nanotube arrays on polymer substrates for flexible devices.

    PubMed

    In, Jung Bin; Lee, Daeho; Fornasiero, Francesco; Noy, Aleksandr; Grigoropoulos, Costas P

    2012-09-25

    We demonstrate a laser-assisted dry transfer technique for assembling patterns of vertically aligned carbon nanotube arrays on a flexible polymeric substrate. A laser beam is applied to the interface of a nanotube array and a polycarbonate sheet in contact with one another. The absorbed laser heat promotes nanotube adhesion to the polymer in the irradiated regions and enables selective pattern transfer. A combination of the thermal transfer mechanism with rapid direct writing capability of focused laser beam irradiation allows us to achieve simultaneous material transfer and direct micropatterning in a single processing step. Furthermore, we demonstrate that malleability of the nanotube arrays transferred onto a flexible substrate enables post-transfer tailoring of electric conductance by collapsing the aligned nanotubes in different directions. This work suggests that the laser-assisted transfer technique provides an efficient route to using vertically aligned nanotubes as conductive elements in flexible device applications.

  15. Hybrid fusions show that inter-monomer electron transfer robustly supports cytochrome bc{sub 1} function in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekiert, Robert; Czapla, Monika; Sarewicz, Marcin

    2014-08-22

    Highlights: • We used hybrid fusion bc{sub 1} complex to test inter-monomer electron transfer in vivo. • Cross-inactivated complexes were able to sustain photoheterotrophic growth. • Inter-monomer electron transfer supports catalytic cycle in vivo. • bc{sub 1} dimer is functional even when cytochrome b subunits come from different species. - Abstract: Electronic connection between Q{sub o} and Q{sub i} quinone catalytic sites of dimeric cytochrome bc{sub 1} is a central feature of the energy-conserving Q cycle. While both the intra- and inter-monomer electron transfers were shown to connect the sites in the enzyme, mechanistic and physiological significance of the lattermore » remains unclear. Here, using a series of mutated hybrid cytochrome bc{sub 1}-like complexes, we show that inter-monomer electron transfer robustly sustains the function of the enzyme in vivo, even when the two subunits in a dimer come from different species. This indicates that minimal requirement for bioenergetic efficiency is to provide a chain of cofactors for uncompromised electron flux between the catalytic sites, while the details of protein scaffold are secondary.« less

  16. Distal [FeS]-Cluster Coordination in [NiFe]-Hydrogenase Facilitates Intermolecular Electron Transfer

    PubMed Central

    Petrenko, Alexander; Stein, Matthias

    2017-01-01

    Biohydrogen is a versatile energy carrier for the generation of electric energy from renewable sources. Hydrogenases can be used in enzymatic fuel cells to oxidize dihydrogen. The rate of electron transfer (ET) at the anodic side between the [NiFe]-hydrogenase enzyme distal iron–sulfur cluster and the electrode surface can be described by the Marcus equation. All parameters for the Marcus equation are accessible from Density Functional Theory (DFT) calculations. The distal cubane FeS-cluster has a three-cysteine and one-histidine coordination [Fe4S4](His)(Cys)3 first ligation sphere. The reorganization energy (inner- and outer-sphere) is almost unchanged upon a histidine-to-cysteine substitution. Differences in rates of electron transfer between the wild-type enzyme and an all-cysteine mutant can be rationalized by a diminished electronic coupling between the donor and acceptor molecules in the [Fe4S4](Cys)4 case. The fast and efficient electron transfer from the distal iron–sulfur cluster is realized by a fine-tuned protein environment, which facilitates the flow of electrons. This study enables the design and control of electron transfer rates and pathways by protein engineering. PMID:28067774

  17. Dissipation of Flonicamid in Honeysuckle and Its Transfer during Brewing Process.

    PubMed

    Wang, Yujie; Xue, Jian; Jin, Hongyu; Ma, Shuangcheng

    2017-05-01

    The dissipation of flonicamid in Honeysuckle and transfer pattern from Honeysuckle to its tea infusion were investigated. Flonicamid was applied on Honeysuckle crop at two dosages, 60 g of active gradient per hectare (g a.i. hm -2 ) and 180 g a.i. hm -2 (recommended and triple the recommended) in Fenqiu, Henan Province in 2015 and 2016. Gas Chromatography-Electron Capture Detector (GC-ECD) detection methods were developed for the analysis of flonicamid residues in honeysuckles and its infusion. The recoveries in both honeysuckles and its infusion ranged from 81.5 to 101.7% with relative standard deviations (RSDs) of 3.2-9.1%. The dissipations of flonicamid in Honeysuckle were found to follow the first order kinetics with half-life ranging between 2.8 and 3.2 d. After recommended dose pesticide application, contents of flonicamid residues were lower than theoretical maximum residue limit (tMRL). Flonicamid residues can easily transfer from Honeysuckle to its tea infusion and transfer rates of flonicamid decrease with the brewing temperature reduction or the brewing times increase. These results are helpful to establish maximum residue limit and develop guidance on the appropriate and secure use of flonicamid in Honeysuckle.

  18. Deducing the distribution of terminal electron-accepting processes in hydrologically diverse groundwater systems

    USGS Publications Warehouse

    Chapelle, Francis H.; McMahon, Peter B.; Dubrovsky, Neil M.; Fujii, Roger F.; Oaksford, Edward T.; Vroblesky, Don A.

    1995-01-01

    The distribution of microbially mediated terminal electron-accepting processes (TEAPs( was investigated in four hydrologically diverse groundwater systems by considering patterns of electron acceptor (nitrate, sulfate) consumption, intermediate product (hydrogen (H2)) concentrations, and final product (ferrous iron, sulfide, and methane) production. In each hydrologic system a determination of predominant TEAPs could be arrived at, but the level of confidence appropriate for each determination differed. In a portion of the lacustrine aquifer of the San Joaquin Valley, for example, all three indicators (sulfate concentrations decreasing, H2concentrations in the 1–2 nmol range, and sulfide concentrations increasing along flow paths identified sulfate reduction as the predominant TEAP, leading to a high degree of confidence in the determination. In portions of the Floridan aquifer and a petroleum hydrocarbon-contaminated aquifer, sulfate reduction and methanogenesis are indicated by production of sulfide and methane, and hydrogen oncentrations in the 1–4 nmol and 5–14 nmol range, respectively. However, because electron acceptor consumption could not be documented in these systems, less confidence is warranted in the TEAP determination. In the Black Creek aquifer, no pattern of sulfate consumption and sulfide production were observed, but H2 concentrations indicated sulfate reduction as the predominant TEAP. In this case, where just a single line of evidence is available, the least confidence in the TEAP diagnosis is justified. Because this methodology is based on measurable water chemistry parameters and upon the physiology of microbial electron transfer processes, it provides a better description of predominant redox processes in groundwater systems than more traditional Eh-based methods.

  19. Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm.

    PubMed

    Jia, Ru; Yang, Dongqing; Xu, Dake; Gu, Tingyue

    2017-12-01

    Electron transfer is a rate-limiting step in microbiologically influenced corrosion (MIC) caused by microbes that utilize extracellular electrons. Cross-cell wall electron transfer is necessary to transport the electrons released from extracellular iron oxidation into the cytoplasm of cells. Electron transfer mediators were found to accelerate the MIC caused by sulfate reducing bacteria. However, there is no publication in the literature showing the effect of electron transfer mediators on MIC caused by nitrate reducing bacteria (NRB). This work demonstrated that the corrosion of anaerobic Pseudomonas aeruginosa (PAO1) grown as a nitrate reducing bacterium biofilm on C1018 carbon steel was enhanced by two electron transfer mediators, riboflavin and flavin adenine dinucleotide (FAD) separately during a 7-day incubation period. The addition of either 10ppm (w/w) (26.6μM) riboflavin or 10ppm (12.7μM) FAD did not increase planktonic cell counts, but they increased the maximum pit depth on carbon steel coupons considerably from 17.5μm to 24.4μm and 25.0μm, respectively. Riboflavin and FAD also increased the specific weight loss of carbon steel from 2.06mg/cm 2 to 2.34mg/cm 2 and 2.61mg/cm 2 , respectively. Linear polarization resistance, electrochemical impedance spectroscopy and potentiodynamic polarization curves all corroborated the pitting and weight loss data. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Cytochromes and iron sulfur proteins in sulfur metabolism of phototrophic bacteria

    NASA Technical Reports Server (NTRS)

    Fischer, U.

    1985-01-01

    Dissimilatory sulfur metabolism in phototrophic sulfur bacteria provides the bacteria with electrons for photosynthetic electron transport chain and, with energy. Assimilatory sulfate reduction is necessary for the biosynthesis of sulfur-containing cell components. Sulfide, thiosulfate, and elemental sulfur are the sulfur compounds most commonly used by phototrophic bacteria as electron donors for anoxygenic photosynthesis. Cytochromes or other electron transfer proteins, like high-potential-iron-sulfur protein (HIPIP) function as electron acceptors or donors for most enzymatic steps during the oxidation pathways of sulfide or thiosulfate. Yet, heme- or siroheme-containing proteins themselves undergo enzymatic activities in sulfur metabolism. Sirohemes comprise a porphyrin-like prosthetic group of sulfate reductase. eenzymatic reactions involve electron transfer. Electron donors or acceptors are necessary for each reaction. Cytochromes and iron sulfur problems, are able to transfer electrons.

  1. Customization and design of directed self-assembly using hybrid prepatterns

    NASA Astrophysics Data System (ADS)

    Cheng, Joy; Doerk, Gregory S.; Rettner, Charles T.; Singh, Gurpreet; Tjio, Melia; Truong, Hoa; Arellano, Noel; Balakrishnan, Srinivasan; Brink, Markus; Tsai, Hsinyu; Liu, Chi-Chun; Guillorn, Michael; Sanders, Daniel P.

    2015-03-01

    Diminishing error tolerance renders the customization of patterns created through directed self-assembly (DSA) extremely challenging at tighter pitch. A self-aligned customization scheme can be achieved using a hybrid prepattern comprising both organic and inorganic regions that serves as a guiding prepattern to direct the self-assembly of the block copolymers as well as a cut mask pattern for the DSA arrays aligned to it. In this paper, chemoepitaxy-based self-aligned customization is demonstrated using two types of organic-inorganic prepatterns. CHEETAH prepattern for "CHemoepitaxy Etch Trim using a self-Aligned Hardmask" of preferential hydrogen silsesquioxane (HSQ, inorganic resist), non-preferential organic underlayer is fabricated using electron beam lithography. Customized trench or hole arrays can be achieved through co-transfer of DSA-formed arrays and CHEETAH prepattern. Herein, we also introduce a tone-reversed version called reverse-CHEETAH (or rCHEETAH) in which customized line segments can be achieved through co-transfer of DSA-formed arrays formed on a prepattern wherein the inorganic HSQ regions are nonpreferential and the organic regions are PMMA preferential. Examples of two-dimensional self-aligned customization including 25nm pitch fin structures and an 8-bar "IBM" illustrate the versatility of this customization scheme using rCHEETAH.

  2. Frenkel versus charge-transfer exciton dispersion in molecular crystals

    NASA Astrophysics Data System (ADS)

    Cudazzo, Pierluigi; Gatti, Matteo; Rubio, Angel; Sottile, Francesco

    2013-11-01

    By solving the many-body Bethe-Salpeter equation at finite momentum transfer, we characterize the exciton dispersion in two prototypical molecular crystals, picene and pentacene, in which localized Frenkel excitons compete with delocalized charge-transfer excitons. We explain the exciton dispersion on the basis of the interplay between electron and hole hopping and electron-hole exchange interaction, unraveling a simple microscopic description to distinguish Frenkel and charge-transfer excitons. This analysis is general and can be applied to other systems in which the electron wave functions are strongly localized, as in strongly correlated insulators.

  3. Extracellular Electron Uptake: Among Autotrophs and Mediated by Surfaces.

    PubMed

    Tremblay, Pier-Luc; Angenent, Largus T; Zhang, Tian

    2017-04-01

    Autotrophic microbes can acquire electrons from solid donors such as steel, other microbial cells, or electrodes. Based on this feature, bioprocesses are being developed for the microbial electrosynthesis (MES) of useful products from the greenhouse gas CO 2 . Extracellular electron-transfer mechanisms involved in the acquisition of electrons from metals by electrical microbially influenced corrosion (EMIC), from other living cells by interspecies electron transfer (IET), or from an electrode during MES rely on: (i) mediators such as H 2 ; (ii) physical contact through electron-transfer proteins; or (iii) mediator-generating enzymes detached from cells. This review explores the interactions of autotrophs with solid electron donors and their importance in nature and for biosustainable technologies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The Electronic Flux in Chemical Reactions. Insights on the Mechanism of the Maillard Reaction

    NASA Astrophysics Data System (ADS)

    Flores, Patricio; Gutiérrez-Oliva, Soledad; Herrera, Bárbara; Silva, Eduardo; Toro-Labbé, Alejandro

    2007-11-01

    The electronic transfer that occurs during a chemical process is analysed in term of a new concept, the electronic flux, that allows characterizing the regions along the reaction coordinate where electron transfer is actually taking place. The electron flux is quantified through the variation of the electronic chemical potential with respect to the reaction coordinate and is used, together with the reaction force, to shed light on reaction mechanism of the Schiff base formation in the Maillard reaction. By partitioning the reaction coordinate in regions in which different process might be taking place, electronic reordering associated to polarization and transfer has been identified and found to be localized at specific transition state regions where most bond forming and breaking occur.

  5. Protein-induced geometric constraints and charge transfer in bacteriochlorophyll-histidine complexes in LH2.

    PubMed

    Wawrzyniak, Piotr K; Alia, A; Schaap, Roland G; Heemskerk, Mattijs M; de Groot, Huub J M; Buda, Francesco

    2008-12-14

    Bacteriochlorophyll-histidine complexes are ubiquitous in nature and are essential structural motifs supporting the conversion of solar energy into chemically useful compounds in a wide range of photosynthesis processes. A systematic density functional theory study of the NMR chemical shifts for histidine and for bacteriochlorophyll-a-histidine complexes in the light-harvesting complex II (LH2) is performed using the BLYP functional in combination with the 6-311++G(d,p) basis set. The computed chemical shift patterns are consistent with available experimental data for positive and neutral(tau) (N(tau) protonated) crystalline histidines. The results for the bacteriochlorophyll-a-histidine complexes in LH2 provide evidence that the protein environment is stabilizing the histidine close to the Mg ion, thereby inducing a large charge transfer of approximately 0.5 electronic equivalent. Due to this protein-induced geometric constraint, the Mg-coordinated histidine in LH2 appears to be in a frustrated state very different from the formal neutral(pi) (N(pi) protonated) form. This finding could be important for the understanding of basic functional mechanisms involved in tuning the electronic properties and exciton coupling in LH2.

  6. A lithium-oxygen battery based on lithium superoxide.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Jun; Lee, Yun Jung; Luo, Xiangyi

    Although the superoxide of lithium (LiO2) is believed to be a key intermediate in Li-O2 batteries leading to the formation of lithium peroxide, LiO2 has never been observed in its pure state. In this work, we provide evidence that use of a cathode based on a reduced graphene oxide with Ir nanoparticles in a Li-O2 battery results in a LiO2 discharge product formed by single electron transfer without further electron transfer or disproportionation to form Li2O2. High energy X-ray diffraction (HE-XRD) patterns indicates the presence of crystalline LiO2 with no evidence of Li2O2 or Li2O. The HEXRD studies as amore » function of time also show that LiO2 can be stable in its crystalline form after one week of aging in the presence of electrolyte. The results provide evidence that LiO2 is stable enough that it can be repeatedly charged and discharged with a very low charge potential (~3.2 V) and may open the avenue for a lithium superoxide-based battery.« less

  7. Spin pumping and inverse spin Hall effects in heavy metal/antiferromagnet/Permalloy trilayers

    NASA Astrophysics Data System (ADS)

    Saglam, Hilal; Zhang, Wei; Jungfleisch, M. Benjamin; Jiang, Wanjun; Pearson, John E.; Hoffmann, Axel

    Recent work shows efficient spin transfer via spin waves in insulating antiferromagnets (AFMs), suggesting that AFMs can play a more active role in the manipulation of ferromagnets. We use spin pumping and inverse spin Hall effect experiments on heavy metal (Pt and W)/AFMs/Py (Ni80Fe20) trilayer structures, to examine the possible spin transfer phenomenon in metallic AFMs, i . e . , FeMn and PdMn. Previous work has studied electronic effects of the spin transport in these materials, yielding short spin diffusion length on the order of 1 nm. However, the work did not examine whether besides diffusive spin transport by the conduction electrons, there are additional spin transport contributions from spin wave excitations. We clearly observe spin transport from the Py spin reservoir to the heavy metal layer through the sandwiched AFMs with thicknesses well above the previously measured spin diffusion lengths, indicating that spin transport by spin waves may lead to non-negligible contributions This work was supported by US DOE, OS, Materials Sciences and Engineering Division. Lithographic patterning was carried out at the CNM, which is supported by DOE, OS under Contract No. DE-AC02-06CH11357.

  8. Analysis of charge injection and contact resistance as a function of electrode surface treatment in ambipolar polymer transistors

    NASA Astrophysics Data System (ADS)

    Lee, Seon Jeng; Kim, Chaewon; Jung, Seok-Heon; Di Pietro, Riccardo; Lee, Jin-Kyun; Kim, Jiyoung; Kim, Miso; Lee, Mi Jung

    2018-01-01

    Ambipolar organic field-effect transistors (OFETs) have both of hole and electron enhancements in charge transport. The characteristics of conjugated diketopyrrolopyrrole ambipolar OFETs depend on the metal-contact surface treatment for charge injection. To investigate the charge-injection characteristics of ambipolar transistors, these devices are processed via various types of self-assembled monolayer treatments and annealing. We conclude that treatment by the self-assembled monolayer 1-decanethiol gives the best enhancement of electron charge injection at both 100 and 300 °C annealing temperature. In addition, the contact resistance is calculated by using two methods: One is the gated four-point probe (gFPP) method that gives the voltage drop between channels, and the other is the simultaneous contact resistance extraction method, which extracts the contact resistance from the general transfer curve. We confirm that the gFPP method and the simultaneous extraction method give similar contact resistance, which means that we can extract contact resistance from the general transfer curve without any special contact pattern. Based on these characteristics of ambipolar p- and n-type transistors, we fabricate inverter devices with only one active layer. [Figure not available: see fulltext.

  9. Highly photostable near-infrared fluorescent pH indicators and sensors based on BF2-chelated tetraarylazadipyrromethene dyes.

    PubMed

    Jokic, Tijana; Borisov, Sergey M; Saf, Robert; Nielsen, Daniel A; Kühl, Michael; Klimant, Ingo

    2012-08-07

    In this study, a series of new BF(2)-chelated tetraarylazadipyrromethane dyes are synthesized and are shown to be suitable for the preparation of on/off photoinduced electron transfer modulated fluorescent sensors. The new indicators are noncovalently entrapped in polyurethane hydrogel D4 and feature absorption maxima in the range 660-710 nm and fluorescence emission maxima at 680-740 nm. Indicators have high molar absorption coefficients of ~80,000 M(-1) cm(-1), good quantum yields (up to 20%), excellent photostability and low cross-sensitivity to the ionic strength. pK(a) values of indicators are determined from absorbance and fluorescence measurements and range from 7 to 11, depending on the substitution pattern of electron-donating and -withdrawing functionalities. Therefore, the new indicators are suitable for exploitation and adaptation in a diverse range of analytical applications. Apparent pK(a) values in sensor films derived from fluorescence data show 0.5-1 pH units lower values in comparison with those derived from the absorption data due to Förster resonance energy transfer from protonated to deprotonated form. A dual-lifetime referenced sensor is prepared, and application for monitoring of pH in corals is demonstrated.

  10. Effect of annealing time and NH3 flow on GaN films deposited on amorphous SiO2 by MOCVD

    NASA Astrophysics Data System (ADS)

    Li, Tianbao; Liu, Chenyang; Zhang, Zhe; Yu, Bin; Dong, Hailiang; Jia, Wei; Jia, Zhigang; Yu, Chunyan; Xu, Bingshe

    2018-05-01

    GaN polycrystalline films were successfully grown on amorphous SiO2 by metal-organic chemical vapour deposition to fabricate transferable devices using inorganic films. Field-emission scanning electron microscopy images show that by prolonging the annealing time, re-evaporation is enhanced, which reduced the uniformity of the nucleation layer and GaN films. X-ray diffraction patterns indicate that the decomposition rate of the nucleation layer increases when the annealing flow rate of NH3 is 500 sccm, which makes the unstable plane and amorphous domains decompose rapidly, thereby improving the crystallinity of the GaN films. Photoluminescence spectra also indicate the presence of fewer defects when the annealing flow rate of NH3 is 500 sccm. The excellent crystal structure of the GaN films grown under optimized conditions was revealed by transmission electron microscopy analysis. More importantly, the crystal structure and orientation of GaN grown on SiO2 are the same as that of GaN grown on conventional sapphire substrate when a buffer layer is used. This work can aid in the development of transferable devices using GaN films.

  11. Polyethyleneimine patterns obtained by laser-transfer assisted by a Dynamic Release Layer onto Themanox soft substrates for cell adhesion study

    NASA Astrophysics Data System (ADS)

    Dinca, V.; Mattle, T.; Palla Papavlu, A.; Rusen, L.; Luculescu, C.; Lippert, T.; Dinescu, M.

    2013-08-01

    The use of LIFT (Laser Induced Forward Transfer) for localized and high spatial resolution printing of many types of functional organic and inorganic, biological or synthetic materials onto substrates is an effective method in various domains (electronics, sensors, and surface biofunctionalization). Although extensive research has been dedicated to the LIFT process in the last years, there is an increasing interest for combining the advantages of this technique with specific materials characteristics for obtaining localized structures or for creating physical guidance structures that could be used as biological scaffolds. Within this context, we aim to study a new aspect related to combining the advantages of Dynamic Release Layer assisted LIFT (DRL-LIFT) with a soft substrate (i.e. Thermanox) for obtaining surface functionalization with micro and nano "porous" polymeric structures. The structures obtained with different topographical properties were evaluated by scanning electron microscopy, atomic force microscopy, optical and fluorescence microscopy. Subsequently, the structures were used as a base for cellular behavior study platforms. Preliminary in vitro tests involving two types of cells, fibroblast and oligodendrocytes, were performed on these LIFT printed platforms.

  12. A molecular Debye-Hückel approach to the reorganization energy of electron transfer reactions in an electric cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Tiejun; Department of Chemistry, Iowa State University, Ames, Iowa 50011; Song, Xueyu

    2014-10-07

    Electron transfer near an electrode immersed in ionic fluids is studied using the linear response approximation, namely, mean value of the vertical energy gap can be used to evaluate the reorganization energy, and hence any linear response model that can treat Coulomb interactions successfully can be used for the reorganization energy calculation. Specifically, a molecular Debye-Hückel theory is used to calculate the reorganization energy of electron transfer reactions in an electric cell. Applications to electron transfer near an electrode in molten salts show that the reorganization energies from our molecular Debye-Hückel theory agree well with the results from MD simulations.

  13. Studying electron transfer through alkanethiol self-assembled monolayers on a hanging mercury drop electrode using potentiometric measurements.

    PubMed

    Cohen-Atiya, Meirav; Mandler, Daniel

    2006-10-14

    A new approach based on measuring the change of the open-circuit potential (OCP) of a hanging mercury drop electrode (HMDE), modified with alkanethiols of different chain length conducted in a solution containing a mixture of Ru(NH3)6(2+) and Ru(NH3)6(3+) is used for studying electron transfer across the monolayer. Following the time dependence of the OCP allowed the extraction of the kinetic parameters, such as the charge transfer resistance (R(ct)) and the electron transfer rate constant (k(et)), for different alkanethiol monolayers. An electron tunneling coefficient, beta, of 0.9 A(-1) was calculated for the monolayers on Hg.

  14. Photoinduced Bimolecular Electron Transfer in Ionic Liquids: Cationic Electron Donors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Boning; Liang, Min; Zmich, Nicole

    Recently, we have reported a systematic study of photoinduced electron-transfer reactions in ionic liquid solvents using neutral and anionic electron donors and a series of cyano-substituted anthracene acceptors [Wu, B.; Maroncelli, M.; Castner, E. W., Jr.Photoinduced Bimolecular Electron Transfer in Ionic Liquids. J. Am. Chem. Soc.139, 2017, 14568]. In this paper, we report complementary results for a cationic class of 1-alkyl-4-dimethylaminopyridinium electron donors. Reductive quenching of cyano-substituted anthracene fluorophores by these cationic quenchers is studied in solutions of acetonitrile and the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Varying the length of the alkyl chain permits tuning of the quencher diffusivities in solution.more » The observed quenching kinetics are interpreted using a diffusion-reaction analysis. Finally, together with results from the prior study, these results show that the intrinsic electron-transfer rate constant does not depend on the quencher charge in this family of reactions.« less

  15. Photoinduced Bimolecular Electron Transfer in Ionic Liquids: Cationic Electron Donors

    DOE PAGES

    Wu, Boning; Liang, Min; Zmich, Nicole; ...

    2018-01-29

    Recently, we have reported a systematic study of photoinduced electron-transfer reactions in ionic liquid solvents using neutral and anionic electron donors and a series of cyano-substituted anthracene acceptors [Wu, B.; Maroncelli, M.; Castner, E. W., Jr.Photoinduced Bimolecular Electron Transfer in Ionic Liquids. J. Am. Chem. Soc.139, 2017, 14568]. In this paper, we report complementary results for a cationic class of 1-alkyl-4-dimethylaminopyridinium electron donors. Reductive quenching of cyano-substituted anthracene fluorophores by these cationic quenchers is studied in solutions of acetonitrile and the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Varying the length of the alkyl chain permits tuning of the quencher diffusivities in solution.more » The observed quenching kinetics are interpreted using a diffusion-reaction analysis. Finally, together with results from the prior study, these results show that the intrinsic electron-transfer rate constant does not depend on the quencher charge in this family of reactions.« less

  16. Pattern transfer from nanoparticle arrays

    NASA Astrophysics Data System (ADS)

    Hogg, Charles R., III

    This project contributes to the long-term extensibility of bit-patterned media (BPM), by removing obstacles to using a new and smaller class of self-assembling materials: surfactant-coated nanoparticles. Self-assembly rapidly produces regular patterns of small features over large areas. If these patterns can be used as templates for magnetic bits, the resulting media would have both high capacity and high bit density. The data storage industry has identified block copolymers (BCP) as the self-assembling technology for the first generation of BPM. Arrays of surfactant-coated nanoparticles have long shown higher feature densities than BCP, but their patterns could not previously be transferred into underlying substrates. I identify one key obstacle that has prevented this pattern transfer: the particles undergo a disordering transition during etching which I have called "cracking". I compare several approaches to measuring the degree of cracking, and I develop two novel techniques for preventing it and allowing pattern transfer. I demonstrate two different kinds of pattern transfer: positive (dots) and negative (antidots). To make dots, I etch the substrate between the particles with a directional CF4-based reactive ion etch (RIE). I find the ultrasmall gaps (just 2 nm) cause a tremendous slowdown in the etch rate, by a factor of 10 or more---an observation of fundamental significance for any pattern transfer at ultrahigh bit densities. Antidots are made by depositing material in the interstices, then removing the particles to leave behind a contiguous inorganic lattice. This lattice can itself be used as an etch mask for CF4-based RIE, in order to increase the height contrast. The antidot process promises great generality in choice of materials, both for the antidot lattice and the particles themselves; here, I present lattices of Al and Cr, ternplated from arrays of 13.7 nm-diameter Fe3O4 or 30 nm-diameter MnO nanoparticles. The fidelity of transfer is also noticeably better for antidots than for dots, making antidots the more promising technique for industrial applications. The smallest period for which I have shown pattern transfer (15.7 nm) is comparable to (but slightly smaller than) the smallest period currently shown for pattern transfer from block copolymers (17 nm); hence, my results compare favorably with the state of the art. Ultimately, by demonstrating that surfactant-coated nanoparticles can be used as pattern masks, this work increases their viability as an option to continue the exponential growth of bit density in magnetic storage media.

  17. Feasibility study of electron transfer quantum well infrared photodetectors for spectral tuning in the long-wave infrared band

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jolley, Greg; Dehdashti Akhavan, Nima; Umana-Membreno, Gilberto

    An electron transfer quantum well infrared photodetector (QWIP) consisting of repeating units of two coupled quantum wells (QWs) is capable of exhibiting a two color voltage dependent spectral response. However, significant electron transfer between the coupled QWs is required for spectral tuning, which may require the application of relatively high electric fields. Also, the band structure of coupled quantum wells is more complicated in comparison to a regular quantum well and, therefore, it is not always obvious if an electron transfer QWIP can be designed such that it meets specific performance characteristics. This paper presents a feasibility study of themore » electron transfer QWIP and its suitability for spectral tuning. Self consistent calculations have been performed of the bandstructure and the electric field that results from electron population within the quantum wells, from which the optical characteristics have been obtained. The band structure, spectral response, and the resonant final state energy locations have been compared with standard QWIPs. It is shown that spectral tuning in the long-wave infrared band can be achieved over a wide wavelength range of several microns while maintaining a relatively narrow spectral response FWHM. However, the total absorption strength is more limited in comparison to a standard QWIP, since the higher QW doping densities require much higher electric fields for electron transfer.« less

  18. Excretion pattern of co-planar and non-planar tetra- and hexa-chlorobiphenyls in ovine milk and faeces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vrecl, Milka; Ursic, Matjaz; Pogacnik, Azra

    This study employed the gas chromatography with electron capture detection to determine residual levels and excretion patterns of two pairs of structurally diverse polychlorinated biphenyl (PCB) congeners (IUPAC Nos. 54, 80, 155, and 169) administered to lactating sheep by intramuscular injection. PCB levels and excretion patterns in blood, milk, and faeces were time-dependent and differed from the composition of PCB congeners administered. Lactational transfer substantially exceeded the faecal transfer. Between days 3 and 7, the amount of PCB congeners 54 and 169 excreted in milk was around 50- and 800-fold higher than the amount of these two congeners excreted viamore » faeces. During the same period, the relative contribution of co-planar PCB congeners (80 and 169) in PCB pattern decreased in blood and increased in milk and faeces compared with non-planar PCBs (54 and 155). On day 3, the ratio PCB 169 to 54 was 7-fold higher in milk than in faeces. PCB congeners with log K{sub ow} values under 6.5 reached peaks of their excretion in milk within the first three days after administration, while the super-lipophilic PCB 169 congener with log K{sub ow} value of over 7 has not reached the plateau until day 10, but afterwards, its level remained relatively high throughout the observation period. During the 57-day follow-up period, the excretion of PCB 80, 155, and 169 in milk was 4.5-, 14-, and 46-fold greater compared with PCB 54. Differences in levels and patterns were explained with some physico-chemical properties of individual PCB congeners, such as lipophilicity, planarity, metabolic stability, sorption/diffusion properties.« less

  19. Alternative quinone substrates and inhibitors of human electron-transfer flavoprotein-ubiquinone oxidoreductase.

    PubMed Central

    Simkovic, Martin; Frerman, Frank E

    2004-01-01

    Electron-transfer flavoprotein (ETF)-ubiquinone (2,3-dimethoxy-5-methyl-1,4-benzoquinone) oxidoreductase (ETF-QO) is a membrane-bound iron-sulphur flavoprotein that participates in an electron-transport pathway between eleven mitochondrial flavoprotein dehydrogenases and the ubiquinone pool. ETF is the intermediate electron carrier between the dehydrogenases and ETF-QO. The steady-state kinetic constants of human ETF-QO were determined with ubiquinone homologues and analogues that contained saturated n-alkyl substituents at the 6 position. These experiments show that optimal substrates contain a ten-carbon-atom side chain, consistent with a preliminary crystal structure that shows that only the first two of ten isoprene units of co-enzyme Q10 (CoQ10) interact with the protein. Derivatives with saturated alkyl side chains are very good substrates, indicating that, unlike other ubiquinone oxidoreductases, there is little preference for the methyl branches or rigidity of the CoQ side chain. Few of the compounds that inhibit ubiquinone oxidoreductases inhibit ETF-QO. Compounds found to act as inhibitors of ETF-QO include 2-n-heptyl-4-hydroxyquinoline N-oxide, a naphthoquinone analogue, 2-(3-methylpentyl)-4,6-dinitrophenol and pentachlorophenol. 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), which inhibits the mitochondrial bc1 complex and the chloroplast b6 f complex in redox-dependent fashion, can serve as an electron acceptor for human ETF-QO. The observation of simple Michaelis-Menten kinetic patterns and a single type of quinone-binding site, determined by fluorescence titrations of the protein with DBMIB and 6-(10-bromodecyl)ubiquinone, are consistent with one ubiquinone-binding site per ETF-QO monomer. PMID:14640977

  20. Alternative quinone substrates and inhibitors of human electron-transfer flavoprotein-ubiquinone oxidoreductase.

    PubMed

    Simkovic, Martin; Frerman, Frank E

    2004-03-01

    Electron-transfer flavoprotein (ETF)-ubiquinone (2,3-dimethoxy-5-methyl-1,4-benzoquinone) oxidoreductase (ETF-QO) is a membrane-bound iron-sulphur flavoprotein that participates in an electron-transport pathway between eleven mitochondrial flavoprotein dehydrogenases and the ubiquinone pool. ETF is the intermediate electron carrier between the dehydrogenases and ETF-QO. The steady-state kinetic constants of human ETF-QO were determined with ubiquinone homologues and analogues that contained saturated n-alkyl substituents at the 6 position. These experiments show that optimal substrates contain a ten-carbon-atom side chain, consistent with a preliminary crystal structure that shows that only the first two of ten isoprene units of co-enzyme Q10 (CoQ10) interact with the protein. Derivatives with saturated alkyl side chains are very good substrates, indicating that, unlike other ubiquinone oxidoreductases, there is little preference for the methyl branches or rigidity of the CoQ side chain. Few of the compounds that inhibit ubiquinone oxidoreductases inhibit ETF-QO. Compounds found to act as inhibitors of ETF-QO include 2-n-heptyl-4-hydroxyquinoline N-oxide, a naphthoquinone analogue, 2-(3-methylpentyl)-4,6-dinitrophenol and pentachlorophenol. 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), which inhibits the mitochondrial bc1 complex and the chloroplast b6 f complex in redox-dependent fashion, can serve as an electron acceptor for human ETF-QO. The observation of simple Michaelis-Menten kinetic patterns and a single type of quinone-binding site, determined by fluorescence titrations of the protein with DBMIB and 6-(10-bromodecyl)ubiquinone, are consistent with one ubiquinone-binding site per ETF-QO monomer.

  1. Toddlers' word learning and transfer from electronic and print books.

    PubMed

    Strouse, Gabrielle A; Ganea, Patricia A

    2017-04-01

    Transfer from symbolic media to the real world can be difficult for young children. A sample of 73 toddlers aged 17 to 23months were read either an electronic book displayed on a touchscreen device or a traditional print book in which a novel object was paired with a novel label. Toddlers in both conditions learned the label within the context of the book. However, only those who read the traditional format book generalized and transferred the label to other contexts. An older group of 28 toddlers aged 24 to 30months did generalize and transfer from the electronic book. Across ages, those children who primarily used screens to watch prerecorded video at home transferred less from the electronic book than those with more diverse home media experiences. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Interplay between barrier width and height in electron tunneling: photoinduced electron transfer in porphyrin-based donor-bridge-acceptor systems.

    PubMed

    Pettersson, Karin; Wiberg, Joanna; Ljungdahl, Thomas; Mårtensson, Jerker; Albinsson, Bo

    2006-01-12

    The rate of electron tunneling in molecular donor-bridge-acceptor (D-B-A) systems is determined both by the tunneling barrier width and height, that is, both by the distance between the donor and acceptor as well as by the energy gap between the donor and bridge moieties. These factors are therefore important to control when designing functional electron transfer systems, such as constructs for photovoltaics, artificial photosynthesis, and molecular scale electronics. In this paper we have investigated a set of D-B-A systems in which the distance and the energy difference between the donor and bridge states (DeltaEDB) are systematically varied. Zinc(II) and gold(III) porphyrins were chosen as electron donor and acceptor because of their suitable driving force for photoinduced electron transfer (-0.9 eV in butyronitrile) and well-characterized photophysics. We have previously shown, in accordance with the superexchange mechanism for electron transfer, that the electron transfer rate is proportional to the inverse of DeltaEDB in a series of zinc/gold porphyrin D-B-A systems with bridges of constant edge to edge distance (19.6 A) and varying DeltaEDB (3900-17 600 cm(-1)). Here, we use the same donor and acceptor but the bridge is shortened or extended giving a set of oligo-p-phenyleneethynylene bridges (OPE) with four different edge to edge distances ranging from 12.7 to 33.4 A. These two sets of D-B-A systems-ZnP-RB-AuP+ and ZnP-nB-AuP+-have one bridge in common, and hence, for the first time both the distance and DeltaEDB dependence of electron transfer can be studied simultaneously in a systematic way.

  3. Electron transfer dynamics and yield from gold nanoparticle to different semiconductors induced by plasmon band excitation

    NASA Astrophysics Data System (ADS)

    Du, L. C.; Xi, W. D.; Zhang, J. B.; Matsuzaki, H.; Furube, A.

    2018-06-01

    Photoinduced electron transfer from gold nanoparticles (NPs) to semiconductor under plasmon excitation is an important phenomenon in photocatalysis and solar cell applications. Femtosecond plasmon-induced electron transfer from gold NPs to the conduction band of different semiconductor like TiO2, SnO2, and ZnO was monitored at 3440 nm upon optical excitation of the surface plasmon band of gold NPs. It was found that electron injection was completed within 240 fs and the electron injection yield reached 10-30% under 570 nm excitation. It means TiO2 is not the only proper semiconductor as electron acceptors in such gold/semiconductor nanoparticle systems.

  4. Probing the coupling between proton and electron transfer in Photosystem II core complexes containing a 3-fluorotyrosine

    PubMed Central

    Rappaport, Fabrice; Boussac, Alain; Force, Dee Ann; Peloquin, Jeffrey; Brynda, Marcin; Sugiura, Miwa; Un, Sun; Britt, R. David; Diner, Bruce A.

    2009-01-01

    The catalytic cycle of numerous enzymes involves the coupling between proton transfer and electron transfer. Yet, the understanding of this coordinated transfer in biological systems remains limited, likely because its characterization relies on the controlled but experimentally challenging modifications of the free energy changes associated with either the electron or proton transfer. We have performed such a study here in Photosystem II. The driving force for electron transfer from TyrZ to P680•+ has been decreased by ~ 80 meV by mutating the axial ligand of P680, and that for proton transfer upon oxidation of TyrZ by substituting a 3-fluorotyrosine (3F-TyrZ) for TyrZ. In Mn-depleted Photosystem II, the dependence upon pH of the oxidation rates of TyrZ and 3F-TyrZ were found to be similar. However, in the pH range where the phenolic hydroxyl of TyrZ is involved in a H-bond with a proton acceptor, the activation energy of the oxidation of 3F-TyrZ is decreased by 110 meV, a value which correlates with the in vitro finding of a 90 meV stabilization energy to the phenolate form of 3F-Tyr when compared to Tyr (Seyedsayamdost et al., 2006, JACS 128:1569–79). Thus, when the phenol of YZ acts as a H-bond-donor, its oxidation by P680•+ is controlled by its prior deprotonation. This contrasts with the situation prevailing at lower pH, where the proton acceptor is protonated and therefore unavailable, in which the oxidation-induced proton transfer from the phenolic hydroxyl of TyrZ has been proposed to occur concertedly with the electron transfer to P680•+. This suggests a switch between a concerted proton/electron transfer at pHs < 7.5 to a sequential one at pHs > 7.5 and illustrates the roles of the H-bond and of the likely salt-bridge existing between the phenolate and the nearby proton acceptor in determining the coupling between proton and electron transfer. PMID:19265377

  5. ZnO-nanorods/graphene heterostructure: a direct electron transfer glucose biosensor

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Li, Wenbo; Pan, Lijia; Zhai, Dongyuan; Wang, Yu; Li, Lanlan; Cheng, Wen; Yin, Wei; Wang, Xinran; Xu, Jian-Bin; Shi, Yi

    2016-08-01

    ZnO-nanorods/graphene heterostructure was synthesized by hydrothermal growth of ZnO nanorods on chemically reduced graphene (CRG) film. The hybrid structure was demonstrated as a biosensor, where direct electron transfer between glucose oxidase (GOD) and electrode was observed. The charge transfer was attributed to the ZnO nanorod wiring between the redox center of GOD and electrode, and the ZnO/graphene heterostructure facilitated the transport of electrons on the hybride electrode. The glucose sensor based on the GOD-ZnO/CRG/Pt electrode had a high sensitivity of 17.64 μA mM-1, which is higher than most of the previously reported values for direct electron transfer based glucose biosensors. Moreover, this biosensor is linearly proportional to the concentration of glucose in the range of 0.2-1.6 mM. The study revealed that the band structure of electrode could affect the detection of direct electron transfer of GOD, which would be helpful for the design of the biosensor electrodes in the future.

  6. Role of pendant proton relays and proton-coupled electron transfer on the hydrogen evolution reaction by nickel hangman porphyrins

    DOE PAGES

    Bediako, D. Kwabena; Solis, Brian H.; Dogutan, Dilek K.; ...

    2014-10-08

    Here, the hangman motif provides mechanistic insights into the role of pendant proton relays in governing proton-coupled electron transfer (PCET) involved in the hydrogen evolution reaction (HER). We now show improved HER activity of Ni compared with Co hangman porphyrins. Cyclic voltammogram data and simulations, together with computational studies using density functional theory, implicate a shift in electrokinetic zone between Co and Ni hangman porphyrins due to a change in the PCET mechanism. Unlike the Co hangman porphyrin, the Ni hangman porphyrin does not require reduction to the formally metal(0) species before protonation by weak acids in acetonitrile. We concludemore » that protonation likely occurs at the Ni(I) state followed by reduction, in a stepwise proton transfer–electron transfer pathway. Spectroelectrochemical and computational studies reveal that upon reduction of the Ni(II) compound, the first electron is transferred to a metal-based orbital, whereas the second electron is transferred to a molecular orbital on the porphyrin ring.« less

  7. Role of pendant proton relays and proton-coupled electron transfer on the hydrogen evolution reaction by nickel hangman porphyrins

    PubMed Central

    Bediako, D. Kwabena; Solis, Brian H.; Dogutan, Dilek K.; Roubelakis, Manolis M.; Maher, Andrew G.; Lee, Chang Hoon; Chambers, Matthew B.; Hammes-Schiffer, Sharon; Nocera, Daniel G.

    2014-01-01

    The hangman motif provides mechanistic insights into the role of pendant proton relays in governing proton-coupled electron transfer (PCET) involved in the hydrogen evolution reaction (HER). We now show improved HER activity of Ni compared with Co hangman porphyrins. Cyclic voltammogram data and simulations, together with computational studies using density functional theory, implicate a shift in electrokinetic zone between Co and Ni hangman porphyrins due to a change in the PCET mechanism. Unlike the Co hangman porphyrin, the Ni hangman porphyrin does not require reduction to the formally metal(0) species before protonation by weak acids in acetonitrile. We conclude that protonation likely occurs at the Ni(I) state followed by reduction, in a stepwise proton transfer–electron transfer pathway. Spectroelectrochemical and computational studies reveal that upon reduction of the Ni(II) compound, the first electron is transferred to a metal-based orbital, whereas the second electron is transferred to a molecular orbital on the porphyrin ring. PMID:25298534

  8. Energy gap law of electron transfer in nonpolar solvents.

    PubMed

    Tachiya, M; Seki, Kazuhiko

    2007-09-27

    We investigate the energy gap law of electron transfer in nonpolar solvents for charge separation and charge recombination reactions. In polar solvents, the reaction coordinate is given in terms of the electrostatic potentials from solvent permanent dipoles at solutes. In nonpolar solvents, the energy fluctuation due to solvent polarization is absent, but the energy of the ion pair state changes significantly with the distance between the ions as a result of the unscreened strong Coulomb potential. The electron transfer occurs when the final state energy coincides with the initial state energy. For charge separation reactions, the initial state is a neutral pair state, and its energy changes little with the distance between the reactants, whereas the final state is an ion pair state and its energy changes significantly with the mutual distance; for charge recombination reactions, vice versa. We show that the energy gap law of electron-transfer rates in nonpolar solvents significantly depends on the type of electron transfer.

  9. Simulation-Based Approach to Determining Electron Transfer Rates Using Square-Wave Voltammetry.

    PubMed

    Dauphin-Ducharme, Philippe; Arroyo-Currás, Netzahualcóyotl; Kurnik, Martin; Ortega, Gabriel; Li, Hui; Plaxco, Kevin W

    2017-05-09

    The efficiency with which square-wave voltammetry differentiates faradic and charging currents makes it a particularly sensitive electroanalytical approach, as evidenced by its ability to measure nanomolar or even picomolar concentrations of electroactive analytes. Because of the relative complexity of the potential sweep it uses, however, the extraction of detailed kinetic and mechanistic information from square-wave data remains challenging. In response, we demonstrate here a numerical approach by which square-wave data can be used to determine electron transfer rates. Specifically, we have developed a numerical approach in which we model the height and the shape of voltammograms collected over a range of square-wave frequencies and amplitudes to simulated voltammograms as functions of the heterogeneous rate constant and the electron transfer coefficient. As validation of the approach, we have used it to determine electron transfer kinetics in both freely diffusing and diffusionless surface-tethered species, obtaining electron transfer kinetics in all cases in good agreement with values derived using non-square-wave methods.

  10. Chemical dynamics of the first proton-coupled electron transfer of water oxidation on TiO2 anatase.

    PubMed

    Chen, Jia; Li, Ye-Fei; Sit, Patrick; Selloni, Annabella

    2013-12-18

    Titanium dioxide (TiO2) is a prototype, water-splitting (photo)catalyst, but its performance is limited by the large overpotential for the oxygen evolution reaction (OER). We report here a first-principles density functional theory study of the chemical dynamics of the first proton-coupled electron transfer (PCET), which is considered responsible for the large OER overpotential on TiO2. We use a periodic model of the TiO2/water interface that includes a slab of anatase TiO2 and explicit water molecules, sample the solvent configurations by first principles molecular dynamics, and determine the energy profiles of the two electronic states involved in the electron transfer (ET) by hybrid functional calculations. Our results suggest that the first PCET is sequential, with the ET following the proton transfer. The ET occurs via an inner sphere process, which is facilitated by a state in which one electronic hole is shared by the two oxygen ions involved in the transfer.

  11. Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis.

    PubMed

    Deutzmann, Jörg S; Sahin, Merve; Spormann, Alfred M

    2015-04-21

    Direct, mediator-free transfer of electrons between a microbial cell and a solid phase in its surrounding environment has been suggested to be a widespread and ecologically significant process. The high rates of microbial electron uptake observed during microbially influenced corrosion of iron [Fe(0)] and during microbial electrosynthesis have been considered support for a direct electron uptake in these microbial processes. However, the underlying molecular mechanisms of direct electron uptake are unknown. We investigated the electron uptake characteristics of the Fe(0)-corroding and electromethanogenic archaeon Methanococcus maripaludis and discovered that free, surface-associated redox enzymes, such as hydrogenases and presumably formate dehydrogenases, are sufficient to mediate an apparent direct electron uptake. In genetic and biochemical experiments, we showed that these enzymes, which are released from cells during routine culturing, catalyze the formation of H2 or formate when sorbed to an appropriate redox-active surface. These low-molecular-weight products are rapidly consumed by M. maripaludis cells when present, thereby preventing their accumulation to any appreciable or even detectable level. Rates of H2 and formate formation by cell-free spent culture medium were sufficient to explain the observed rates of methane formation from Fe(0) and cathode-derived electrons by wild-type M. maripaludis as well as by a mutant strain carrying deletions in all catabolic hydrogenases. Our data collectively show that cell-derived free enzymes can mimic direct extracellular electron transfer during Fe(0) corrosion and microbial electrosynthesis and may represent an ecologically important but so far overlooked mechanism in biological electron transfer. The intriguing trait of some microbial organisms to engage in direct electron transfer is thought to be widespread in nature. Consequently, direct uptake of electrons into microbial cells from solid surfaces is assumed to have a significant impact not only on fundamental microbial and biogeochemical processes but also on applied bioelectrochemical systems, such as microbial electrosynthesis and biocorrosion. This study provides a simple mechanistic explanation for frequently observed fast electron uptake kinetics in microbiological systems without a direct transfer: free, cell-derived enzymes can interact with cathodic surfaces and catalyze the formation of intermediates that are rapidly consumed by microbial cells. This electron transfer mechanism likely plays a significant role in various microbial electron transfer reactions in the environment. Copyright © 2015 Deutzmann et al.

  12. Ultrafast Spectroscopy of Proton-Coupled Electron Transfer (PCET) in Photocatalysis

    DTIC Science & Technology

    2016-07-08

    AFRL-AFOSR-VA-TR-2016-0244 Ultrafast Spectroscopy of Proton-Coupled Electron Transfer (PCET) in Photocatalysis Jahan Dawlaty UNIVERSITY OF SOUTHERN...TITLE AND SUBTITLE Ultrafast Spectroscopy of Proton-Coupled Electron Transfer (PCET) in Photocatalysis 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550...298 Back (Rev. 8/98) DISTRIBUTION A: Distribution approved for public release. Final Report: AFOSR YIP Grant FA9550-13-1-0128: Ultrafast Spectroscopy

  13. Stimulated Electron Desorption Studies from Microwave Vacuum Electronics / High Power Microwave Materials

    DTIC Science & Technology

    2010-02-11

    purchase a new gun. Mr. Mike Ackeret ( Transfer Engineering Inc.) Transfer Engineering’s expertise in specialty UHV work and machining propelled...modifications they helped design for the test stand. With UNLV guidance, Transfer Engineering designed and built the original UNLV SEE Test Stand...Staib electron gun, an isolated beam drift tube, a hexanode delay line with a chevron microchannel plate (MCP) stack, an isolated grid, an isolated

  14. Electron-transfer and acid-base properties of a two-electron oxidized form of quaterpyrrole that acts as both an electron donor and an acceptor.

    PubMed

    Zhang, Min; E, Wenbo; Ohkubo, Kei; Sanchez-Garcia, David; Yoon, Dae-Wi; Sessler, Jonathan L; Fukuzumi, Shunichi; Kadish, Karl M

    2008-02-21

    Electron-transfer interconversion between the four-electron oxidized form of a quaterpyrrole (abbreviated as P4 for four pyrroles) and the two-electron oxidized form (P4H2) as well as between P4H2 and its fully reduced form (P4H4) bearing analogous substituents in the alpha- and beta-pyrrolic positions was studied by means of cyclic voltammetry and UV-visible spectroelectrochemistry combined with ESR and laser flash photolysis measurements. The two-electron oxidized form, P4H2, acts as both an electron donor and an electron acceptor. The radical cation (P4H2*+) and radical anion (P4H2*-) are both produced by photoinduced electron transfer from dimeric 1-benzyl-1,4-dihydronicotinamide to P4H2, whereas the cation radical form of the compound is also produced by electron-transfer oxidation of P4H2 with [Ru(bpy)3]3+. The ESR spectra of P4H2*+ and P4H2*- were recorded at low temperature and exhibit spin delocalization over all four pyrrole units. Thus, the two-electron oxidized form of the quaterpyrrole (P4H2) displays redox and electronic features analogous to those seen in the case of porphyrins and may be considered as a simple, open-chain model of this well-studied tetrapyrrolic macrocycle. The dynamics of deprotonation from P4H2*+ and disproportionation of P4H2 were examined by laser flash photolysis measurements of photoinduced electron-transfer oxidation and reduction of P4H2, respectively.

  15. Dependence of intramolecular electron-transfer rates on driving force, pH, and temperature in ammineruthenium-modified ferrocytochromes c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wishart, J.F.; Sun, J.; Su, C.

    1997-01-23

    Several ruthenium ammine complexes were used to modify horse-heart cytochrome c at histidine-33, creating a series of (NH{sub 3}){sub 4}(L)Ru-Cyt c derivatives (L = H{sub 2}O/OH{sup -}, ammonia, 4-ethylpyridine, 3,5-lutidine, pyridine, isonicotinamide, N-methylpyrazinium) with a wide range of driving forces for Fe-to-Ru electron transfer (-{Delta}G{degree} = -0.125 to +0.46 eV). Electron-transfer rates and activation parameters were measured by pulse radiolysis using azide or carbonate radicals. The driving-force dependence of electron-transfer rates between redox centers of the same charge types obeys Marcus-Hush theory. The activationless rate limit for all of the ruthenium derivatives except the N-methylpyrazinium complex is 3.9x10{sup 5} s{supmore » -1}. Thermodynamic parameters obtained from nonisothermal differential pulse voltammetry show that the electron-transfer reactions are entropy-driven. The thermodynamic and kinetic effects of phosphate ion binding to the ruthenium center are examined. The rate of intramolecular electron transfer in (NH{sub 3}){sub 4}(isn)Ru{sup III}-Cyt c{sup II} decreases at high pH, with a midpoint at pH 9.1. 28 refs., 4 figs., 3 tabs.« less

  16. Excitation energy transfer in the photosystem I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webber, Andrew N

    2012-09-25

    Photosystem I is a multimeric pigment protein complex in plants, green alage and cyanobacteria that functions in series with Photosystem II to use light energy to oxidize water and reduce carbon dioxide. The Photosystem I core complex contains 96 chlorophyll a molecules and 22 carotenoids that are involved in light harvesting and electron transfer. In eucaryotes, PSI also has a peripheral light harvesting complex I (LHCI). The role of specific chlorophylls in excitation and electron transfer are still unresolved. In particular, the role of so-called bridging chlorophylls, located between the bulk antenna and the core electron transfer chain, in themore » transfer of excitation energy to the reaction center are unknown. During the past funding period, site directed mutagenesis has been used to create mutants that effect the physical properties of these key chlorophylls, and to explore how this alters the function of the photosystem. Studying these mutants using ultrafast absorption spectroscopy has led to a better understanding of the process by which excitation energy is transferred from the antenna chlorophylls to the electron transfer chain chlorophylls, and what the role of connecting chlorophylls and A_0 chlorophylls is in this process. We have also used these mutants to investigate whch of the central group of six chlorophylls are involved in the primary steps of charge separation and electron transfer.« less

  17. Dynamics of charge-transfer excitons in type-II semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Stein, M.; Lammers, C.; Richter, P.-H.; Fuchs, C.; Stolz, W.; Koch, M.; Vänskä, O.; Weseloh, M. J.; Kira, M.; Koch, S. W.

    2018-03-01

    The formation, decay, and coherence properties of charge-transfer excitons in semiconductor heterostructures are investigated by applying four-wave-mixing and terahertz spectroscopy in combination with a predictive microscopic theory. A charge-transfer process is identified where the optically induced coherences decay directly into a charge-transfer electron-hole plasma and exciton states. It is shown that charge-transfer excitons are more sensitive to the fermionic electron-hole substructure than regular excitons.

  18. 36 CFR § 1235.44 - What general transfer requirements apply to electronic records?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements apply to electronic records? § 1235.44 Section § 1235.44 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT TRANSFER OF RECORDS TO THE NATIONAL... requirements apply to electronic records? (a) Each agency must retain a copy of permanent electronic records...

  19. Annealing-Induced Bi Bilayer on Bi2Te3 Investigated via Quasi-Particle-Interference Mapping.

    PubMed

    Schouteden, Koen; Govaerts, Kirsten; Debehets, Jolien; Thupakula, Umamahesh; Chen, Taishi; Li, Zhe; Netsou, Asteriona; Song, Fengqi; Lamoen, Dirk; Van Haesendonck, Chris; Partoens, Bart; Park, Kyungwha

    2016-09-27

    Topological insulators (TIs) are renowned for their exotic topological surface states (TSSs) that reside in the top atomic layers, and hence, detailed knowledge of the surface top atomic layers is of utmost importance. Here we present the remarkable morphology changes of Bi2Te3 surfaces, which have been freshly cleaved in air, upon subsequent systematic annealing in ultrahigh vacuum and the resulting effects on the local and area-averaging electronic properties of the surface states, which are investigated by combining scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and Auger electron spectroscopy (AES) experiments with density functional theory (DFT) calculations. Our findings demonstrate that the annealing induces the formation of a Bi bilayer atop the Bi2Te3 surface. The adlayer results in n-type doping, and the atomic defects act as scattering centers of the TSS electrons. We also investigated the annealing-induced Bi bilayer surface on Bi2Te3 via voltage-dependent quasi-particle-interference (QPI) mapping of the surface local density of states and via comparison with the calculated constant-energy contours and QPI patterns. We observed closed hexagonal patterns in the Fourier transform of real-space QPI maps with secondary outer spikes. DFT calculations attribute these complex QPI patterns to the appearance of a "second" cone due to the surface charge transfer between the Bi bilayer and the Bi2Te3. Annealing in ultrahigh vacuum offers a facile route for tuning of the topological properties and may yield similar results for other topological materials.

  20. Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters

    NASA Astrophysics Data System (ADS)

    Perlík, Václav; Seibt, Joachim; Cranston, Laura J.; Cogdell, Richard J.; Lincoln, Craig N.; Savolainen, Janne; Šanda, František; Mančal, Tomáš; Hauer, Jürgen

    2015-06-01

    The initial energy transfer steps in photosynthesis occur on ultrafast timescales. We analyze the carotenoid to bacteriochlorophyll energy transfer in LH2 Marichromatium purpuratum as well as in an artificial light-harvesting dyad system by using transient grating and two-dimensional electronic spectroscopy with 10 fs time resolution. We find that Förster-type models reproduce the experimentally observed 60 fs transfer times, but overestimate coupling constants, which lead to a disagreement with both linear absorption and electronic 2D-spectra. We show that a vibronic model, which treats carotenoid vibrations on both electronic ground and excited states as part of the system's Hamiltonian, reproduces all measured quantities. Importantly, the vibronic model presented here can explain the fast energy transfer rates with only moderate coupling constants, which are in agreement with structure based calculations. Counterintuitively, the vibrational levels on the carotenoid electronic ground state play the central role in the excited state population transfer to bacteriochlorophyll; resonance between the donor-acceptor energy gap and the vibrational ground state energies is the physical basis of the ultrafast energy transfer rates in these systems.

  1. Electron transfer from plastocyanin to photosystem I.

    PubMed Central

    Haehnel, W; Jansen, T; Gause, K; Klösgen, R B; Stahl, B; Michl, D; Huvermann, B; Karas, M; Herrmann, R G

    1994-01-01

    Mutant plastocyanins with Leu at position 10, 90 or 83 (Gly, Ala and Tyr respectively in wildtype) were constructed by site-specific mutagenesis of the spinach gene, and expressed in transgenic potato plants under the control of the authentic plastocyanin promoter, as well as in Escherichia coli as truncated precursor intermediates carrying the C-terminal 22 amino acid residues of the transit peptide, i.e. the thylakoid-targeting domain that acts as a bacterial export signal. The identity of the purified plastocyanins was verified by matrix-assisted laser desorption/ionization mass spectrometry. The formation of a complex between authentic or mutant spinach plastocyanin and isolated photosystem I and the electron transfer has been studied from the biphasic reduction kinetics of P700+ after excitation with laser flashes. The formation of the complex was abolished by the bulky hydrophobic group of Leu at the respective position of G10 or A90 which are part of the conserved flat hydrophobic surface around the copper ligand H87. The rate of electron transfer decreased by both mutations to < 20% of that found with wildtype plastocyanin. We conclude that the conserved flat surface of plastocyanin represents one of two crucial structural elements for both the docking at photosystem I and the efficient electron transfer via H87 to P700+. The Y83L mutant exhibited faster electron transfer to P700+ than did authentic plastocyanin. This proves that Y83 is not involved in electron transfer to P700 and suggests that electron transfer from cytochrome f and to P700 follows different routes in the plastocyanin molecule. Plastocyanin (Y83L) expressed in either E. coli or potato exhibited different isoelectric points and binding constants to photosystem I indicative of differences in the folding of the protein. The structure of the binding site at photosystem I and the mechanism of electron transfer are discussed. Images PMID:8131737

  2. 12 CFR 205.7 - Initial disclosures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... TRANSFERS (REGULATION E) § 205.7 Initial disclosures. (a) Timing of disclosures. A financial institution shall make the disclosures required by this section at the time a consumer contracts for an electronic fund transfer service or before the first electronic fund transfer is made involving the consumer's...

  3. 12 CFR 205.7 - Initial disclosures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSFERS (REGULATION E) § 205.7 Initial disclosures. (a) Timing of disclosures. A financial institution shall make the disclosures required by this section at the time a consumer contracts for an electronic fund transfer service or before the first electronic fund transfer is made involving the consumer's...

  4. Synthesis of monolithic graphene-graphite integrated electronics.

    PubMed

    Park, Jang-Ung; Nam, SungWoo; Lee, Mi-Sun; Lieber, Charles M

    2011-11-20

    Encoding electronic functionality into nanoscale elements during chemical synthesis has been extensively explored over the past decade as the key to developing integrated nanosystems with functions defined by synthesis. Graphene has been recently explored as a two-dimensional nanoscale material, and has demonstrated simple device functions based on conventional top-down fabrication. However, the synthetic approach to encoding electronic functionality and thus enabling an entire integrated graphene electronics in a chemical synthesis had not previously been demonstrated. Here we report an unconventional approach for the synthesis of monolithically integrated electronic devices based on graphene and graphite. Spatial patterning of heterogeneous metal catalysts permits the selective growth of graphene and graphite, with a controlled number of graphene layers. Graphene transistor arrays with graphitic electrodes and interconnects were formed from the synthesis. These functional, all-carbon structures were transferable onto a variety of substrates. The integrated transistor arrays were used to demonstrate real-time, multiplexed chemical sensing and more significantly, multiple carbon layers of the graphene-graphite device components were vertically assembled to form a three-dimensional flexible structure which served as a top-gate transistor array. These results represent substantial progress towards encoding electronic functionality through chemical synthesis and suggest the future promise of one-step integration of graphene-graphite based electronics.

  5. Extracellular electron transfer mechanisms between microorganisms and minerals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Liang; Dong, Hailiang; Reguera, Gemma

    Electrons can be transferred from microorganisms to multivalent metal ions that are associated with minerals and vice versa. As the microbial cell envelope is neither physically permeable to minerals nor electrically conductive, microorganisms have evolved strategies to exchange electrons with extracellular minerals. In this Review, we discuss the molecular mechanisms that underlie the ability of microorganisms to exchange electrons, such as c-type cytochromes and microbial nanowires, with extracellular minerals and with microorganisms of the same or different species. Microorganisms that have extracellular electron transfer capability can be used for biotechnological applications, including bioremediation, biomining and the production of biofuels andmore » nanomaterials.« less

  6. Quantum dynamical simulation of photoinduced electron transfer processes in dye-semiconductor systems: theory and application to coumarin 343 at TiO₂.

    PubMed

    Li, Jingrui; Kondov, Ivan; Wang, Haobin; Thoss, Michael

    2015-04-10

    A recently developed methodology to simulate photoinduced electron transfer processes at dye-semiconductor interfaces is outlined. The methodology employs a first-principles-based model Hamiltonian and accurate quantum dynamics simulations using the multilayer multiconfiguration time-dependent Hartree approach. This method is applied to study electron injection in the dye-semiconductor system coumarin 343-TiO2. Specifically, the influence of electronic-vibrational coupling is analyzed. Extending previous work, we consider the influence of Dushinsky rotation of the normal modes as well as anharmonicities of the potential energy surfaces on the electron transfer dynamics.

  7. All-printed capacitors with continuous solution dispensing technology

    NASA Astrophysics Data System (ADS)

    Ge, Yang; Plötner, Matthias; Berndt, Andreas; Kumar, Amit; Voit, Brigitte; Pospiech, Doris; Fischer, Wolf-Joachim

    2017-09-01

    Printed electronics have been introduced into the commercial markets in recent years. Various printing technologies have emerged aiming to process printed electronic devices with low cost, environmental friendliness, and compatibility with large areas and flexible substrates. The aim of this study is to propose a continuous solution dispensing technology for processing all-printed thin-film capacitors on glass substrates using a leading-edge printing instrument. Among all printing technologies, this study provides concrete proof of the following outstanding advantages of this technology: high tolerance to inks, high throughput, low cost, and precise pattern transfers. Ag nanoparticle ink based on glycol ethers was used to print the electrodes. To obtain dielectric ink, a copolymer powder of poly(methyl methacrylate-co-benzoylphenyl methacrylate) containing crosslinkable side groups was dissolved in anisole. Various layouts were designed to support multiple electronic applications. Scanning electron microscopy and atomic force microscopy were used to investigate the all-printed capacitor layers formed using the proposed process. Additionally, the printed capacitors were electrically characterized under direct current and alternating current. The measured electrical properties of the printed capacitors were consistent with the theoretical results.

  8. Density functional study of the structural, electronic, and magnetic properties of Mo n and Mo n S ( n = 1 - 10) clusters

    NASA Astrophysics Data System (ADS)

    Ziane, M.; Amitouche, F.; Bouarab, S.; Vega, A.

    2017-12-01

    Structural and electronic properties of pure molybdenum Mo n and molybdenum-sulfide Mo n S ( n = 1 - 10) clusters were investigated in the framework of the density functional theory within the generalized gradient approximation to exchange and correlation with the aim of addressing how doping with a single S atom affects the geometries, magnetic properties, and reactivity of pure molybdenum clusters. These clusters exhibit a less marked tendency to dimerization than their isoelectronic Cr counterparts despite sharing their half-filled valence shell configuration. Doping with a single S impurity is enough to change the structure of the host molybdenum cluster to a large extent, as well as to modify the bonding pattern, the magnetic state and the magnetic moment distribution in the Mo host. Vertical ionization potentials and electron affinities are calculated to determine global reactivity indicators like the electronegativity and the chemical hardness. The results are discussed in terms of the thermodynamical and relative stabilities, charge transfer effects, and spin-polarized densities of electronic states.

  9. On the origin of red and blue shifts of X-H and C-H stretching vibrations in formic acid (formate ion) and proton donor complexes.

    PubMed

    Tâme Parreira, Renato Luis; Galembeck, Sérgio Emanuel; Hobza, Pavel

    2007-01-08

    Complexes between formic acid or formate anion and various proton donors (HF, H(2)O, NH(3), and CH(4)) are studied by the MP2 and B3LYP methods with the 6-311++G(3df,3pd) basis set. Formation of a complex is characterized by electron-density transfer from electron donor to ligands. This transfer is much larger with the formate anion, for which it exceeds 0.1 e. Electron-density transfer from electron lone pairs of the electron donor is directed into sigma* antibonding orbitals of X--H bonds of the electron acceptor and leads to elongation of the bond and a red shift of the X--H stretching frequency (standard H-bonding). However, pronounced electron-density transfer from electron lone pairs of the electron donor also leads to reorganization of the electron density in the electron donor, which results in changes in geometry and vibrational frequency. These changes are largest for the C--H bonds of formic acid and formate anion, which do not participate in H-bonding. The resulting blue shift of this stretching frequency is substantial and amounts to almost 35 and 170 cm(-1), respectively.

  10. Do pattern recognition skills transfer across sports? A preliminary analysis.

    PubMed

    Smeeton, Nicholas J; Ward, Paul; Williams, A Mark

    2004-02-01

    The ability to recognize patterns of play is fundamental to performance in team sports. While typically assumed to be domain-specific, pattern recognition skills may transfer from one sport to another if similarities exist in the perceptual features and their relations and/or the strategies used to encode and retrieve relevant information. A transfer paradigm was employed to compare skilled and less skilled soccer, field hockey and volleyball players' pattern recognition skills. Participants viewed structured and unstructured action sequences from each sport, half of which were randomly represented with clips not previously seen. The task was to identify previously viewed action sequences quickly and accurately. Transfer of pattern recognition skill was dependent on the participant's skill, sport practised, nature of the task and degree of structure. The skilled soccer and hockey players were quicker than the skilled volleyball players at recognizing structured soccer and hockey action sequences. Performance differences were not observed on the structured volleyball trials between the skilled soccer, field hockey and volleyball players. The skilled field hockey and soccer players were able to transfer perceptual information or strategies between their respective sports. The less skilled participants' results were less clear. Implications for domain-specific expertise, transfer and diversity across domains are discussed.

  11. Wafer-scale layer transfer of GaAs and Ge onto Si wafers using patterned epitaxial lift-off

    NASA Astrophysics Data System (ADS)

    Mieda, Eiko; Maeda, Tatsuro; Miyata, Noriyuki; Yasuda, Tetsuji; Kurashima, Yuichi; Maeda, Atsuhiko; Takagi, Hideki; Aoki, Takeshi; Yamamoto, Taketsugu; Ichikawa, Osamu; Osada, Takenori; Hata, Masahiko; Ogawa, Arito; Kikuchi, Toshiyuki; Kunii, Yasuo

    2015-03-01

    We have developed a wafer-scale layer-transfer technique for transferring GaAs and Ge onto Si wafers of up to 300 mm in diameter. Lattice-matched GaAs or Ge layers were epitaxially grown on GaAs wafers using an AlAs release layer, which can subsequently be transferred onto a Si handle wafer via direct wafer bonding and patterned epitaxial lift-off (ELO). The crystal properties of the transferred GaAs layers were characterized by X-ray diffraction (XRD), photoluminescence, and the quality of the transferred Ge layers was characterized using Raman spectroscopy. We find that, after bonding and the wet ELO processes, the quality of the transferred GaAs and Ge layers remained the same compared to that of the as-grown epitaxial layers. Furthermore, we realized Ge-on-insulator and GaAs-on-insulator wafers by wafer-scale pattern ELO technique.

  12. USING MOLECULAR PROBES TO STUDY INTERFACIAL REDOX REACTION AT FE-BEARING SMECTITES

    EPA Science Inventory

    The interfacial electron transfer of clay-water systems has a wide range of significance in geochemical and biogeochernical environments. However the mechanism of interfacial electron transport is poorly understood. The electron transfer mechanism at the solid-water interfaces of...

  13. Redox Modulation of Flavin and Tyrosine Determines Photoinduced Proton-coupled Electron Transfer and Photoactivation of BLUF Photoreceptors

    PubMed Central

    Mathes, Tilo; van Stokkum, Ivo H. M.; Stierl, Manuela; Kennis, John T. M.

    2012-01-01

    Photoinduced electron transfer in biological systems, especially in proteins, is a highly intriguing matter. Its mechanistic details cannot be addressed by structural data obtained by crystallography alone because this provides only static information on a given redox system. In combination with transient spectroscopy and site-directed manipulation of the protein, however, a dynamic molecular picture of the ET process may be obtained. In BLUF (blue light sensors using FAD) photoreceptors, proton-coupled electron transfer between a tyrosine and the flavin cofactor is the key reaction to switch from a dark-adapted to a light-adapted state, which corresponds to the biological signaling state. Particularly puzzling is the fact that, although the various naturally occurring BLUF domains show little difference in the amino acid composition of the flavin binding pocket, the reaction rates of the forward reaction differ quite largely from a few ps up to several hundred ps. In this study, we modified the redox potential of the flavin/tyrosine redox pair by site-directed mutagenesis close to the flavin C2 carbonyl and fluorination of the tyrosine, respectively. We provide information on how changes in the redox potential of either reaction partner significantly influence photoinduced proton-coupled electron transfer. The altered redox potentials allowed us furthermore to experimentally describe an excited state charge transfer intermediately prior to electron transfer in the BLUF photocycle. Additionally, we show that the electron transfer rate directly correlates with the quantum yield of signaling state formation. PMID:22833672

  14. 12 CFR 205.11 - Procedures for resolving errors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... institution's findings and shall note the consumer's right to request the documents that the institution... transfer; (ii) An incorrect electronic fund transfer to or from the consumer's account; (iii) The omission... made by the financial institution relating to an electronic fund transfer; (v) The consumer's receipt...

  15. Photoinduced electron transfer in a molecular dyad by nanosecond pump-pump-probe spectroscopy.

    PubMed

    Ha-Thi, M-H; Pham, V-T; Pino, T; Maslova, V; Quaranta, A; Lefumeux, C; Leibl, W; Aukauloo, A

    2018-06-01

    The design of robust and inexpensive molecular photocatalysts for the conversion of abundant stable molecules like H2O and CO2 into an energetic carrier is one of the major fundamental questions for scientists nowadays. The outstanding challenge is to couple single photoinduced charge separation events with the sequential accumulation of redox equivalents at the catalytic unit for performing multielectronic catalytic reactions. Herein, double excitation by nanosecond pump-pump-probe experiments was used to interrogate the photoinduced charge transfer and charge accumulation on a molecular dyad composed of a porphyrin chromophore and a ruthenium-based catalyst in the presence of a reversible electron acceptor. An accumulative charge transfer state is unattainable because of rapid reverse electron transfer to the photosensitizer upon the second excitation and the low driving force of the forward photodriven electron transfer reaction. Such a method allows the fundamental understanding of the relaxation mechanism after two sequential photon absorptions, deciphering the undesired electron transfer reactions that limit the charge accumulation efficiency. This study is a step toward the improvement of synthetic strategies of molecular photocatalysts for light-induced charge accumulation and more generally, for solar energy conversion.

  16. Excited state electron transfer in systems with a well-defined geometry. [cyclophane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaufmann, K.J.

    1980-12-01

    The effect of temperature, dielectric strength and ligand on the structure of the mesopyropheophorbide cyclophanes will be studied. ESR, NMR, emission and absorption spectroscopy, as well as circular dichroism will be used. The changes in structure will be correlated with changes in the photochemical activity. Electron acceptors such as benzoquinone will be utilized to stabilize the charge separation. Charge separation in porphyrin quinone dimers will also be studied. It was found that electron transfer in the cyclophane system is relatively slow. This is presumably due to an orientation requirement for fast electron transfer. Solvent dielectric also is important in producingmore » a charge separation. Decreasing the temperature effects the yield of charge transfer, but not the kinetics.« less

  17. Laser singular Theta-pinch

    NASA Astrophysics Data System (ADS)

    Okulov, A. Yu.

    2010-10-01

    The interaction of the two counter-propagating ultrashort laser pulses with singular wavefronts in the thin slice of the underdense plasma is considered. It is shown that ion-acoustic wave is excited via Brillouin three-wave resonance by corkscrew interference pattern of paraxial singular laser beams. The orbital angular momentum carried by light is transferred to plasma ion-acoustic vortex. The rotation of the density perturbations of electron fluid is the cause of helical current which produces the kilogauss axial quasi-static magnetic field. The exact analytical configurations are presented for an ion-acoustic current field and magnetic induction. The range of experimentally accessible parameters is evaluated.

  18. Investigating molecule-semiconductor interfaces with nonlinear spectroscopies

    NASA Astrophysics Data System (ADS)

    Giokas, Paul George

    Knowledge of electronic structures and transport mechanisms at molecule-semiconductor interfaces is motivated by their ubiquity in photoelectrochemical cells. In this dissertation, optical spectroscopies are used uncover the influence of electronic coupling, coherent vibrational motion, and molecular geometry, and other factors on dynamics initiated by light absorption at such interfaces. These are explored for a family of ruthenium bipyridyl chromophores bound to titanium dioxide. Transient absorption measurements show molecular singlet state electron injection in 100 fs or less. Resonance Raman intensity analysis suggests the electronic excitations possess very little charge transfer character. The connections drawn in this work between molecular structure and photophysical behavior contribute to the general understanding of photoelectrochemical cells. Knowledge of binding geometry in nanocrystalline films is challenged by heterogeneity of semiconductor surfaces. Polarized resonance Raman spectroscopy is used to characterize the ruthenium chromophore family on single crystal titanium dioxide . Chromophores display a broad distribution of molecular geometries at the interface, with increased variation in binding angle due to the presence of a methylene bridge, as well as additional phosphonate anchors. This result implies multiple binding configurations for chromophores which incorporate multiple phosphonate ligands, and indicates the need for careful consideration when developing surface-assembled chromophore-catalyst cells. Electron transfer transitions occurring on the 100 fs time scale challenge conventional second-order approximations made when modeling these reactions. A fourth-order perturbative model which includes the relationship between coincident electron transfer and nuclear relaxation processes is presented. Insights provided by the model are illustrated for a two-level donor molecule. The presented fourth-order rate formula constitutes a rigorous and intuitive framework for understanding sub-picosecond photoinduced electron transfer dynamics. Charge transfer systems fit by this model include catechol-sensitized titanium dioxide nanoparticles and a closely-related molecular complex. These systems exhibit vibrational coherence coincident with back-electron transfer in the first picosecond after excitation, which suggests that intramolecular nuclear motion strongly influences the electronic transfer process and plays an important role in the dynamics of interfacial systems following light absorption.

  19. Near-infrared light–responsive dynamic wrinkle patterns

    PubMed Central

    Hou, Honghao; Yin, Jie

    2018-01-01

    Dynamic micro/nanopatterns provide an effective approach for on-demand tuning of surface properties to realize a smart surface. We report a simple yet versatile strategy for the fabrication of near-infrared (NIR) light–responsive dynamic wrinkles by using a carbon nanotube (CNT)–containing poly(dimethylsiloxane) (PDMS) elastomer as the substrate for the bilayer systems, with various functional polymers serving as the top stiff layers. The high photon-to-thermal energy conversion of CNT leads to the NIR-controlled thermal expansion of the elastic CNT-PDMS substrate, resulting in dynamic regulation of the applied strain (ε) of the bilayer system by the NIR on/off cycle to obtain a reversible wrinkle pattern. The switchable surface topological structures can transfer between the wrinkled state and the wrinkle-free state within tens of seconds via NIR irradiation. As a proof-of-concept application, this type of NIR-driven dynamic wrinkle pattern was used in smart displays, dynamic gratings, and light control electronics. PMID:29740615

  20. A Versatile High-Vacuum Cryo-transfer System for Cryo-microscopy and Analytics

    PubMed Central

    Tacke, Sebastian; Krzyzanek, Vladislav; Nüsse, Harald; Wepf, Roger Albert; Klingauf, Jürgen; Reichelt, Rudolf

    2016-01-01

    Cryogenic microscopy methods have gained increasing popularity, as they offer an unaltered view on the architecture of biological specimens. As a prerequisite, samples must be handled under cryogenic conditions below their recrystallization temperature, and contamination during sample transfer and handling must be prevented. We present a high-vacuum cryo-transfer system that streamlines the entire handling of frozen-hydrated samples from the vitrification process to low temperature imaging for scanning transmission electron microscopy and transmission electron microscopy. A template for cryo-electron microscopy and multimodal cryo-imaging approaches with numerous sample transfer steps is presented. PMID:26910419

  1. Electrochemistry and electron paramagnetic resonance spectroscopy of cytochrome c and its heme-disrupted analogs.

    PubMed

    Novak, David; Mojovic, Milos; Pavicevic, Aleksandra; Zatloukalova, Martina; Hernychova, Lenka; Bartosik, Martin; Vacek, Jan

    2018-02-01

    Cytochrome c (cyt c) is one of the most studied conjugated proteins due to its electron-transfer properties and ability to regulate the processes involved in homeostasis or apoptosis. Here we report an electrochemical strategy for investigating the electroactivity of cyt c and its analogs with a disrupted heme moiety, i.e. apocytochrome c (acyt c) and porphyrin cytochrome c (pcyt c). The electrochemical data are supplemented with low-temperature and spin-probe electron paramagnetic resonance (EPR) spectroscopy. The main contribution of this report is a complex evaluation of cyt c reduction and oxidation at the level of surface-localized amino acid residues and the heme moiety in a single electrochemical scan. The electrochemical pattern of cyt c is substantially different to both analogs acyt c and pcyt c, which could be applicable in further studies on the redox properties and structural stability of cytochromes and other hemeproteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A Human Tissue Culture Cell Line from a Transitional Cell Tumour of the Urinary Bladder: Growth, Chromosome Pattern and Ultrastructure

    PubMed Central

    Rigby, Carolyn C.; Franks, L. M.

    1970-01-01

    Cell cultures were made from 18 human bladder tumours. Three cell lines were maintained for seven transfer generations, but all had a “fibroblastic” morphology and a normal diploid karyotype. A fourth line has been maintained for over 80 transfer generations. This was derived from a well differentiated papillary tumour of bladder. Morphologically the light and electron microscopic structure of the cells resembled that of bladder tumours. The cells formed tumour nodules, with a similar structure, when transplanted into hamster cheek pouches. There is a stem line chromosome number of 48. Karyotypes of 60% of the stem line cells had one extra chromosome in Group C and one in Group D. ImagesFig. 11Figs. 12-15Fig. 16Fig. 17Figs. 1-4Fig. 18Figs. 5-8Figs. 9-10 PMID:5503601

  3. A system for the automated data-acquisition of fast transient signals in excitable membranes.

    PubMed

    Bustamante, J O

    1988-01-01

    This paper provides a description of a system for the acquisition of fast transient currents flowing across excitable membranes. The front end of the system consists of a CAMAC crate with plug-in modules. The modules provide control of CAMAC operations, analog to digital conversion, electronic memory storage and timing of events. The signals are transferred under direct memory access to an IBM PC microcomputer through a special-purpose interface. Voltage levels from a digital to analog board in the microcomputer are passed through multiplexers to produce the desired voltage pulse patterns to elicit the transmembrane currents. The dead time between consecutive excitatory voltage pulses is limited only by the computer data bus and the software characteristics. The dead time between data transfers can be reduced to the order of milliseconds, which is sufficient for most experiments with transmembrane ionic currents.

  4. Preparation, Single-Molecule Manipulation, and Energy Transfer Investigation of a Polyfluorene-graft-DNA polymer.

    PubMed

    Madsen, Mikael; Christensen, Rasmus S; Krissanaprasit, Abhichart; Bakke, Mette R; Riber, Camilla F; Nielsen, Karina S; Zelikin, Alexander N; Gothelf, Kurt V

    2017-08-04

    Conjugated polymers have been intensively studied due to their unique optical and electronic properties combined with their physical flexibility and scalable bottom up synthesis. Although the bulk qualities of conjugated polymers have been extensively utilized in research and industry, the ability to handle and manipulate conjugated polymers at the nanoscale lacks significantly behind. Here, the toolbox for controlled manipulation of conjugated polymers was expanded through the synthesis of a polyfluorene-DNA graft-type polymer (poly(F-DNA)). The polymer possesses the characteristics associated with the conjugated polyfluorene backbone, but the protruding single-stranded DNA provides the material with an exceptional addressability. This study demonstrates controlled single-molecule patterning of poly(F-DNA), as well as energy transfer between two different polymer-DNA conjugates. Finally, highly efficient DNA-directed quenching of polyfluorene fluorescence was shown. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Stabilization of Au Monatomic-High Islands on the (2 ×2 )-Nad Reconstructed Surface of Wurtzite AlN(0001)

    NASA Astrophysics Data System (ADS)

    Eydoux, Benoit; Baris, Bulent; Khoussa, Hassan; Guillermet, Olivier; Gauthier, Sébastien; Bouju, Xavier; Martrou, David

    2017-10-01

    Noncontact atomic force microscopy images show that gold grows on the (2 ×2 )-Nad reconstructed polar (0001) surface of AlN insulating films, in the form of large monatomic islands. High-resolution images and in situ reflection high-energy electron diffraction spectra reveal two moiré patterns from which an atomic model can be built. Density functional theory calculations confirm this model and give insight into the mechanisms that lead to the stabilization of the monolayer. Gold adsorption is accompanied, first, by a global vertical charge transfer from the AlN substrate that fulfills the electrostatic stability criterion for a polar material, and second, by lateral charge transfers that are driven by the local chemical properties of the (2 ×2 )-Nad reconstruction. These results present alternative strategies to grow metal electrodes onto nitride compounds with a better controlled interface, a crucial issue for applications.

  6. Role of Surface-Capping Ligands in Photoexcited Electron Transfer between CdS Nanorods and [FeFe] Hydrogenase and the Subsequent H 2 Generation

    DOE PAGES

    Wilker, Molly B.; Utterback, James K.; Greene, Sophie; ...

    2017-12-08

    Complexes of CdS nanorods and [FeFe] hydrogenase from Clostridium acetobutylicum have been shown to photochemically produce H 2. This study examines the role of the ligands that passivate the nanocrystal surfaces in the electron transfer from photoexcited CdS to hydrogenase and the H 2 generation that follows. We functionalized CdS nanorods with a series of mercaptocarboxylate surface-capping ligands of varying lengths and measured their photoexcited electron relaxation by transient absorption (TA) spectroscopy before and after hydrogenase adsorption. Rate constants for electron transfer from the nanocrystals to the enzyme, extracted by modeling of TA kinetics, decrease exponentially with ligand length, suggestingmore » that the ligand layer acts as a barrier to charge transfer and controls the degree of electronic coupling. Relative light-driven H 2 production efficiencies follow the relative quantum efficiencies of electron transfer, revealing the critical role of surface-capping ligands in determining the photochemical activity of these nanocrystal-enzyme complexes. Our results suggest that the H 2 production in this system could be maximized with a choice of a surface-capping ligand that decreases the distance between the nanocrystal surface and the electron injection site of the enzyme.« less

  7. Role of Surface-Capping Ligands in Photoexcited Electron Transfer between CdS Nanorods and [FeFe] Hydrogenase and the Subsequent H 2 Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilker, Molly B.; Utterback, James K.; Greene, Sophie

    Complexes of CdS nanorods and [FeFe] hydrogenase from Clostridium acetobutylicum have been shown to photochemically produce H 2. This study examines the role of the ligands that passivate the nanocrystal surfaces in the electron transfer from photoexcited CdS to hydrogenase and the H 2 generation that follows. We functionalized CdS nanorods with a series of mercaptocarboxylate surface-capping ligands of varying lengths and measured their photoexcited electron relaxation by transient absorption (TA) spectroscopy before and after hydrogenase adsorption. Rate constants for electron transfer from the nanocrystals to the enzyme, extracted by modeling of TA kinetics, decrease exponentially with ligand length, suggestingmore » that the ligand layer acts as a barrier to charge transfer and controls the degree of electronic coupling. Relative light-driven H 2 production efficiencies follow the relative quantum efficiencies of electron transfer, revealing the critical role of surface-capping ligands in determining the photochemical activity of these nanocrystal-enzyme complexes. Our results suggest that the H 2 production in this system could be maximized with a choice of a surface-capping ligand that decreases the distance between the nanocrystal surface and the electron injection site of the enzyme.« less

  8. Electron transfer between colloidal ZnO nanocrystals.

    PubMed

    Hayoun, Rebecca; Whitaker, Kelly M; Gamelin, Daniel R; Mayer, James M

    2011-03-30

    Colloidal ZnO nanocrystals capped with dodecylamine and dissolved in toluene can be charged photochemically to give stable solutions in which electrons are present in the conduction bands of the nanocrystals. These conduction-band electrons are readily monitored by EPR spectroscopy, with g* values that correlate with the nanocrystal sizes. Mixing a solution of charged small nanocrystals (e(-)(CB):ZnO-S) with a solution of uncharged large nanocrystals (ZnO-L) caused changes in the EPR spectrum indicative of quantitative electron transfer from small to large nanocrystals. EPR spectra of the reverse reaction, e(-)(CB):ZnO-L + ZnO-S, showed that electrons do not transfer from large to small nanocrystals. Stopped-flow kinetics studies monitoring the change in the UV band-edge absorption showed that reactions of 50 μM nanocrystals were complete within the 5 ms mixing time of the instrument. Similar results were obtained for the reaction of charged nanocrystals with methyl viologen (MV(2+)). These and related results indicate that the electron-transfer reactions of these colloidal nanocrystals are quantitative and very rapid, despite the presence of ~1.5 nm long dodecylamine capping ligands. These soluble ZnO nanocrystals are thus well-defined redox reagents suitable for studies of electron transfer involving semiconductor nanostructures.

  9. Real Time Quantification of Ultrafast Photoinduced Bimolecular Electron Transfer Rate: Direct Probing of the Transient Intermediate.

    PubMed

    Mukherjee, Puspal; Biswas, Somnath; Sen, Pratik

    2015-08-27

    Fluorescence quenching studies through steady-state and time-resolved measurements are inadequate to quantify the bimolecular electron transfer rate in bulk homogeneous solution due to constraints from diffusion. To nullify the effect of diffusion, direct evaluation of the rate of formation of a transient intermediate produced upon the electron transfer is essential. Methyl viologen, a well-known electron acceptor, produces a radical cation after accepting an electron, which has a characteristic strong and broad absorption band centered at 600 nm. Hence it is a good choice to evaluate the rate of photoinduced electron transfer reaction employing femtosecond broadband transient absorption spectroscopy. The time constant of the aforementioned process between pyrene and methyl viologen in methanol has been estimated to be 2.5 ± 0.4 ps using the same technique. The time constant for the backward reaction was found to be 14 ± 1 ps. These values did not change with variation of concentration of quencher, i.e., methyl viologen. Hence, we can infer that diffusion has no contribution in the estimation of rate constants. However, on changing the solvent from methanol to ethanol, the time constant of the electron transfer reaction has been found to increase and has accounted for the change in solvent reorganization energy.

  10. New approach for producing chemical templates over large area by Molecular Transfer Printing

    NASA Astrophysics Data System (ADS)

    Inoue, Takejiro; Janes, Dustin; Ren, Jiaxing; Willson, Grant; Ellison, Christopher; Nealey, Paul

    2014-03-01

    Fabrication of well-defined chemically patterned surfaces is crucially important to the development of next generation microprocessors, hard disk memory devices, photonic/plasmonic devices, separation membranes, and biological microarrays. One promising patterning method in these fields is Molecular Transfer Printing (MTP), which replicates chemical patterns with feature dimensions of the order of 10nm utilizing a master template defined by the microphase separated domains of a block copolymer thin film. The total transfer printing area achievable by MTP has so far been limited by the contact area between two rigid substrates. Therefore, strategies to make conformal contact between substrates could be practically useful because a single lithographically-defined starting pattern could be used to fabricate many replicates by a low-cost process. Here we show a new approach that utilizes a chemically deposited SiN layer and a liquid conformal layer to enable transfer printing of chemical patterns upon thermal annealing over large, continuous areas. We anticipate that our process could be integrated into Step and Flash Imprint Lithography (SFIL) tools to achieve conformal layer thicknesses thin and uniform enough to permit pattern transfer through a dry-etch protocol.

  11. Supramolecular networks with electron transfer in two dimensions

    DOEpatents

    Stupp, Samuel I.; Stoddart, J. Fraser; Shveyd, Alexander K.; Tayi, Alok S.; Sue, Chi-Hau; Narayanan, Ashwin

    2016-09-13

    Organic charge-transfer (CT) co-crystals in a crossed stack system are disclosed. The co-crystals exhibit bidirectional charge transfer interactions where one donor molecule shares electrons with two different acceptors, one acceptor face-to-face and the other edge-to-face. The assembly and charge transfer interaction results in a pleochroic material whereby the optical absorption continuously changes depending on the polarization angle of incident light.

  12. pH-dependent electron transfer reaction and direct bioelectrocatalysis of the quinohemoprotein pyranose dehydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeda, Kouta; Matsumura, Hirotoshi; Ishida, Takuya

    A pyranose dehydrogenase from Coprinopsis cinerea (CcPDH) is an extracellular quinohemoeprotein, which consists a b-type cytochrome domain, a pyrroloquinoline-quinone (PQQ) domain, and a family 1-type carbohydrate-binding module. The electron transfer reaction of CcPDH was studied using some electron acceptors and a carbon electrode at various pH levels. Phenazine methosulfate (PMS) reacted directly at the PQQ domain, whereas cytochrome c (cyt c) reacted via the cytochrome domain of intact CcPDH. Thus, electrons are transferred from reduced PQQ in the catalytic domain of CcPDH to heme b in the N-terminal cytochrome domain, which acts as a built-in mediator and transfers electron tomore » a heterogenous electron transfer protein. The optimal pH values of the PMS reduction (pH 6.5) and the cyt c reduction (pH 8.5) differ. The catalytic currents for the oxidation of L-fucose were observed within a range of pH 4.5 to 11. Bioelectrocatalysis of CcPDH based on direct electron transfer demonstrated that the pH profile of the biocatalytic current was similar to the reduction activity of cyt c characters. - Highlights: • pH dependencies of activity were different for the reduction of cyt c and DCPIP. • DET-based bioelectrocatalysis of CcPDH was observed. • The similar pH-dependent profile was found with cyt c and electrode. • The present results suggested that IET reaction of CcPDH shows pH dependence.« less

  13. Kelvin probe microscopy and electronic transport measurements in reduced graphene oxide chemical sensors

    NASA Astrophysics Data System (ADS)

    Kehayias, Christopher E.; MacNaughton, Samuel; Sonkusale, Sameer; Staii, Cristian

    2013-06-01

    Reduced graphene oxide (RGO) is an electronically hybrid material that displays remarkable chemical sensing properties. Here, we present a quantitative analysis of the chemical gating effects in RGO-based chemical sensors. The gas sensing devices are patterned in a field-effect transistor geometry, by dielectrophoretic assembly of RGO platelets between gold electrodes deposited on SiO2/Si substrates. We show that these sensors display highly selective and reversible responses to the measured analytes, as well as fast response and recovery times (tens of seconds). We use combined electronic transport/Kelvin probe microscopy measurements to quantify the amount of charge transferred to RGO due to chemical doping when the device is exposed to electron-acceptor (acetone) and electron-donor (ammonia) analytes. We demonstrate that this method allows us to obtain high-resolution maps of the surface potential and local charge distribution both before and after chemical doping, to identify local gate-susceptible areas on the RGO surface, and to directly extract the contact resistance between the RGO and the metallic electrodes. The method presented is general, suggesting that these results have important implications for building graphene and other nanomaterial-based chemical sensors.

  14. Kelvin probe microscopy and electronic transport measurements in reduced graphene oxide chemical sensors.

    PubMed

    Kehayias, Christopher E; MacNaughton, Samuel; Sonkusale, Sameer; Staii, Cristian

    2013-06-21

    Reduced graphene oxide (RGO) is an electronically hybrid material that displays remarkable chemical sensing properties. Here, we present a quantitative analysis of the chemical gating effects in RGO-based chemical sensors. The gas sensing devices are patterned in a field-effect transistor geometry, by dielectrophoretic assembly of RGO platelets between gold electrodes deposited on SiO2/Si substrates. We show that these sensors display highly selective and reversible responses to the measured analytes, as well as fast response and recovery times (tens of seconds). We use combined electronic transport/Kelvin probe microscopy measurements to quantify the amount of charge transferred to RGO due to chemical doping when the device is exposed to electron-acceptor (acetone) and electron-donor (ammonia) analytes. We demonstrate that this method allows us to obtain high-resolution maps of the surface potential and local charge distribution both before and after chemical doping, to identify local gate-susceptible areas on the RGO surface, and to directly extract the contact resistance between the RGO and the metallic electrodes. The method presented is general, suggesting that these results have important implications for building graphene and other nanomaterial-based chemical sensors.

  15. Electron Transfer Strategies Regulate Carbonate Mineral and Micropore Formation.

    PubMed

    Zeng, Zhirui; Tice, Michael M

    2018-01-01

    Some microbial carbonates are robust biosignatures due to their distinct morphologies and compositions. However, whether carbonates induced by microbial iron reduction have such features is unknown. Iron-reducing bacteria use various strategies to transfer electrons to iron oxide minerals (e.g., membrane-bound enzymes, soluble electron shuttles, nanowires, as well as different mechanisms for moving over or attaching to mineral surfaces). This diversity has the potential to create mineral biosignatures through manipulating the microenvironments in which carbonate precipitation occurs. We used Shewanella oneidensis MR-1, Geothrix fermentans, and Geobacter metallireducens GS-15, representing three different strategies, to reduce solid ferric hydroxide in order to evaluate their influence on carbonate and micropore formation (micro-size porosity in mineral rocks). Our results indicate that electron transfer strategies determined the morphology (rhombohedral, spherical, or long-chained) of precipitated calcium-rich siderite by controlling the level of carbonate saturation and the location of carbonate formation. Remarkably, electron transfer strategies also produced distinctive cell-shaped micropores in both carbonate and hydroxide minerals, thus producing suites of features that could potentially serve as biosignatures recording information about the sizes, shapes, and physiologies of iron-reducing organisms. Key Words: Microbial iron reduction-Micropore-Electron transfer strategies-Microbial carbonate. Astrobiology 18, 28-36.

  16. 36 CFR § 1235.50 - What specifications and standards for transfer apply to electronic records?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT TRANSFER OF RECORDS TO THE... Records Administration, Electronic/Special Media Records Services Division (NWME), 8601 Adelphi Road... and Records Administration, Electronic/Special Media Records Services Division (NWME), 8601 Adelphi...

  17. 36 CFR 1235.50 - What specifications and standards for transfer apply to electronic records?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT TRANSFER OF REC- ORDS TO THE... Records Administration, Electronic/Special Media Records Services Division (NWME), 8601 Adelphi Road... and Records Administration, Electronic/Special Media Records Services Division (NWME), 8601 Adelphi...

  18. Monte-Carlo modelling of nano-material photocatalysis: bridging photocatalytic activity and microscopic charge kinetics.

    PubMed

    Liu, Baoshun

    2016-04-28

    In photocatalysis, it is known that light intensity, organic concentration, and temperature affect the photocatalytic activity by changing the microscopic kinetics of holes and electrons. However, how the microscopic kinetics of holes and electrons relates to the photocatalytic activity was not well known. In the present research, we developed a Monte-Carlo random walking model that involved all of the charge kinetics, including the photo-generation, the recombination, the transport, and the interfacial transfer of holes and electrons, to simulate the overall photocatalytic reaction, which we called a "computer experiment" of photocatalysis. By using this model, we simulated the effect of light intensity, temperature, and organic surface coverage on the photocatalytic activity and the density of the free electrons that accumulate in the simulated system. It was seen that the increase of light intensity increases the electron density and its mobility, which increases the probability for a hole/electron to find an electron/hole for recombination, and consequently led to an apparent kinetics that the quantum yield (QY) decreases with the increase of light intensity. It was also seen that the increase of organic surface coverage could increase the rate of hole interfacial transfer and result in the decrease of the probability for an electron to recombine with a hole. Moreover, the increase of organic coverage on the nano-material surface can also increase the accumulation of electrons, which enhances the mobility for electrons to undergo interfacial transfer, and finally leads to the increase of photocatalytic activity. The simulation showed that the temperature had a more complicated effect, as it can simultaneously change the activation of electrons, the interfacial transfer of holes, and the interfacial transfer of electrons. It was shown that the interfacial transfer of holes might play a main role at low temperature, with the temperature-dependence of QY conforming to the Arrhenius model. The activation of electrons from the traps to the conduction band might become important at high temperature, which accelerates the electron movement for recombination and leads to a temperature dependence of QY that deviates from the Arrhenius model.

  19. 12 CFR 205.3 - Coverage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... to initiate a one-time electronic fund transfer from a consumer's account. The consumer must...-time electronic fund transfer (in providing a check to a merchant or other payee for the MICR encoding... information for the transfer shall also provide a notice to the consumer at the same time it provides the...

  20. 12 CFR 205.3 - Coverage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... to initiate a one-time electronic fund transfer from a consumer's account. The consumer must...-time electronic fund transfer (in providing a check to a merchant or other payee for the MICR encoding... information for the transfer shall also provide a notice to the consumer at the same time it provides the...

  1. 12 CFR 205.3 - Coverage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... to initiate a one-time electronic fund transfer from a consumer's account. The consumer must...-time electronic fund transfer (in providing a check to a merchant or other payee for the MICR encoding... information for the transfer shall also provide a notice to the consumer at the same time it provides the...

  2. Charge-transfer complexes and their role in exciplex emission and near-infrared photovoltaics.

    PubMed

    Ng, Tsz-Wai; Lo, Ming-Fai; Fung, Man-Keung; Zhang, Wen-Jun; Lee, Chun-Sing

    2014-08-20

    Charge transfer and interactions at organic heterojunctions (OHJs) are known to have critical influences on various properties of organic electronic devices. In this Research News article, a short review is given from the electronic viewpoint on how the local molecular interactions and interfacial energetics at P/N OHJs contribute to the recombination/dissociation of electron-hole pairs. Very often, the P-type materials donate electrons to the N-type materials, giving rise to charge-transfer complexes (CTCs) with a P(δ+) -N(δ-) configuration. A recently observed opposite charge-transfer direction in OHJs is also discussed (i.e., N-type material donates electrons to P-type material to form P(δ-) -N(δ+) ). Recent studies on the electronic structures of CTC-forming material pairs are also summarized. The formation of P(δ-) -N(δ+) -type CTCs and their correlations with exciplex emission are examined. Furthermore, the potential applications of CTCs in NIR photovoltaic devices are reviewed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Visualizing the non-equilibrium dynamics of photoinduced intramolecular electron transfer with femtosecond X-ray pulses

    PubMed Central

    Canton, Sophie E.; Kjær, Kasper S.; Vankó, György; van Driel, Tim B.; Adachi, Shin-ichi; Bordage, Amélie; Bressler, Christian; Chabera, Pavel; Christensen, Morten; Dohn, Asmus O.; Galler, Andreas; Gawelda, Wojciech; Gosztola, David; Haldrup, Kristoffer; Harlang, Tobias; Liu, Yizhu; Møller, Klaus B.; Németh, Zoltán; Nozawa, Shunsuke; Pápai, Mátyás; Sato, Tokushi; Sato, Takahiro; Suarez-Alcantara, Karina; Togashi, Tadashi; Tono, Kensuke; Uhlig, Jens; Vithanage, Dimali A.; Wärnmark, Kenneth; Yabashi, Makina; Zhang, Jianxin; Sundström, Villy; Nielsen, Martin M.

    2015-01-01

    Ultrafast photoinduced electron transfer preceding energy equilibration still poses many experimental and conceptual challenges to the optimization of photoconversion since an atomic-scale description has so far been beyond reach. Here we combine femtosecond transient optical absorption spectroscopy with ultrafast X-ray emission spectroscopy and diffuse X-ray scattering at the SACLA facility to track the non-equilibrated electronic and structural dynamics within a bimetallic donor–acceptor complex that contains an optically dark centre. Exploiting the 100-fold increase in temporal resolution as compared with storage ring facilities, these measurements constitute the first X-ray-based visualization of a non-equilibrated intramolecular electron transfer process over large interatomic distances. Experimental and theoretical results establish that mediation through electronically excited molecular states is a key mechanistic feature. The present study demonstrates the extensive potential of femtosecond X-ray techniques as diagnostics of non-adiabatic electron transfer processes in synthetic and biological systems, and some directions for future studies, are outlined. PMID:25727920

  4. Visualizing the non-equilibrium dynamics of photoinduced intramolecular electron transfer with femtosecond X-ray pulses

    DOE PAGES

    Canton, Sophie E.; Kjær, Kasper S.; Vankó, György; ...

    2015-03-02

    Ultrafast photoinduced electron transfer preceding energy equilibration still poses many experimental and conceptual challenges to the optimization of photoconversion since an atomic-scale description has so far been beyond reach. Here we combine femtosecond transient optical absorption spectroscopy with ultrafast X-ray emission spectroscopy and diffuse X-ray scattering at the SACLA facility to track the non-equilibrated electronic and structural dynamics within a bimetallic donor–acceptor complex that contains an optically dark centre. Exploiting the 100-fold increase in temporal resolution as compared with storage ring facilities, these measurements constitute the first X-ray-based visualization of a non-equilibrated intramolecular electron transfer process over large interatomic distances.more » Thus experimental and theoretical results establish that mediation through electronically excited molecular states is a key mechanistic feature. The present study demonstrates the extensive potential of femtosecond X-ray techniques as diagnostics of non-adiabatic electron transfer processes in synthetic and biological systems, and some directions for future studies, are outlined.« less

  5. Photosensitizing Electron Transfer Processes of Fullerenes, Carbon Nanotubes, and Carbon Nanohorns.

    PubMed

    Ito, Osamu

    2017-03-01

    In this account, studies on the photosensitizing electron transfer of nanocarbons, such as fullerenes, single-walled carbon nanotubes (SWCNTs), and carbon nanohorns (CNH), performed in our laboratory for about 15 years in the early 21st century have been briefly reviewed. These novel nanocarbons act as excellent electron acceptors, when they are linked to light-absorbing electron donors, such as porphyrins or phthalocyanines. For such molecule-nanocarbon hybrids, the direct confirmation of fast, transient, electron-transfer phenomena must be performed with time-resolved spectroscopic methods, such as transient absorption spectral measurements, in addition to fluorescence time-profile measurements in the wide-wavelength regions. Careful use of these methods affords useful information to understand photoinduced electron-transfer mechanisms. In addition, kinetic data obtained by these methods can assist in the construction of light-active devices, such as photovoltaic cells and solar H 2 -generation systems. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Experimental and Theoretical Demonstrations for the Mechanism behind Enhanced Microbial Electron Transfer by CNT Network

    NASA Astrophysics Data System (ADS)

    Liu, Xian-Wei; Chen, Jie-Jie; Huang, Yu-Xi; Sun, Xue-Fei; Sheng, Guo-Ping; Li, Dao-Bo; Xiong, Lu; Zhang, Yuan-Yuan; Zhao, Feng; Yu, Han-Qing

    2014-01-01

    Bioelectrochemical systems (BESs) share the principle of the microbially catalyzed anodic substrate oxidation. Creating an electrode interface to promote extracellular electron transfer from microbes to electrode and understanding such mechanisms are crucial for engineering BESs. In this study, significantly promoted electron transfer and a 10-times increase in current generation in a BES were achieved by the utilization of carbon nanotube (CNT) network, compared with carbon paper. The mechanisms for the enhanced current generation with the CNT network were elucidated with both experimental approach and molecular dynamic simulations. The fabricated CNT network was found to be able to substantially enhance the interaction between the c-type cytochromes and solid electron acceptor, indicating that the direct electron transfer from outer-membrane decaheme c-type cytochromes to electrode might occur. The results obtained in this study will benefit for the optimized design of new materials to target the outer membrane proteins for enhanced electron exchanges.

  7. Rapid Stencil Mask Fabrication Enabled One-Step Polymer-Free Graphene Patterning and Direct Transfer for Flexible Graphene Devices

    PubMed Central

    Yong, Keong; Ashraf, Ali; Kang, Pilgyu; Nam, SungWoo

    2016-01-01

    We report a one-step polymer-free approach to patterning graphene using a stencil mask and oxygen plasma reactive-ion etching, with a subsequent polymer-free direct transfer for flexible graphene devices. Our stencil mask is fabricated via a subtractive, laser cutting manufacturing technique, followed by lamination of stencil mask onto graphene grown on Cu foil for patterning. Subsequently, micro-sized graphene features of various shapes are patterned via reactive-ion etching. The integrity of our graphene after patterning is confirmed by Raman spectroscopy. We further demonstrate the rapid prototyping capability of a stretchable, crumpled graphene strain sensor and patterned graphene condensation channels for potential applications in sensing and heat transfer, respectively. We further demonstrate that the polymer-free approach for both patterning and transfer to flexible substrates allows the realization of cleaner graphene features as confirmed by water contact angle measurements. We believe that our new method promotes rapid, facile fabrication of cleaner graphene devices, and can be extended to other two dimensional materials in the future. PMID:27118249

  8. Phonon-electron coupling and tunneling effect on charge transport in organic semi-conductor crystals of Cn-BTBT.

    PubMed

    Zhou, Yecheng; Deng, Wei-Qiao; Zhang, Hao-Li

    2016-09-14

    Cn-[1]benzothieno[3,2-b][1]-benzothiophene (BTBT) crystals show very high hole mobilities in experiments. These high mobilities are beyond existing theory prediction. Here, we employed different quantum chemistry methods to investigate charge transfer in Cn-BTBT crystals and tried to find out the reasons for the underestimation in the theory. It was found that the hopping rate estimated by the Fermi Golden Rule is higher than that of the Marcus theory due to the high temperature approximation and failure at the classic limit. More importantly, molecular dynamics simulations revealed that the phonon induced fluctuation of electronic transfer integral is much larger than the average of the electronic transfer integral itself. Mobilities become higher if simulations implement the phonon-electron coupling. This conclusion indicates that the phonon-electron coupling promotes charge transfer in organic semi-conductors at room temperature.

  9. Phonon-electron coupling and tunneling effect on charge transport in organic semi-conductor crystals of Cn-BTBT

    NASA Astrophysics Data System (ADS)

    Zhou, Yecheng; Deng, Wei-Qiao; Zhang, Hao-Li

    2016-09-01

    Cn-[1]benzothieno[3,2-b][1]-benzothiophene (BTBT) crystals show very high hole mobilities in experiments. These high mobilities are beyond existing theory prediction. Here, we employed different quantum chemistry methods to investigate charge transfer in Cn-BTBT crystals and tried to find out the reasons for the underestimation in the theory. It was found that the hopping rate estimated by the Fermi Golden Rule is higher than that of the Marcus theory due to the high temperature approximation and failure at the classic limit. More importantly, molecular dynamics simulations revealed that the phonon induced fluctuation of electronic transfer integral is much larger than the average of the electronic transfer integral itself. Mobilities become higher if simulations implement the phonon-electron coupling. This conclusion indicates that the phonon-electron coupling promotes charge transfer in organic semi-conductors at room temperature.

  10. Electronic and Vibrational Coherence in Charge-Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Scherer, Norbert

    1996-03-01

    The ultrafast dynamics associated with optically-induced intervalence charge-transfer reactions in solution and protein environments are reported. These studies include the Fe^(II)-Fe^(III) MMCT complex Prussian blue and the mixed valence dimer (CN)_5Ru^(II)CNRuRu^(III)(NH_3)_5. The protein systems include blue copper proteins and the bacterial photosynthetic reaction center. The experimental approaches include photon echo, wavelength-resolved pump-probe and anisotropy measurements performed with 12-16fs duration optical pulses. Complicated time-domain waveforms reflect the several different p[rocesses and time scales for relaxation of coherences (both electronic and vibrational) and populations within these systems. The photon echo and anisotropy results probe electronic coherence and dephasing prior to back electron transfer. Wavelength-resolved pump-probe results reveal vibrational modes coupled to the CT-coordinate as well as formation of new product states or vibrational cooling in the ground state following back electron transfer.

  11. Electron Transfer Dissociation: Effects of Cation Charge State on Product Partitioning in Ion/Ion Electron Transfer to Multiply Protonated Polypeptides

    PubMed Central

    Liu, Jian; McLuckey, Scott A.

    2012-01-01

    The effect of cation charge state on product partitioning in the gas-phase ion/ion electron transfer reactions of multiply protonated tryptic peptides, model peptides, and relatively large peptides with singly charged radical anions has been examined. In particular, partitioning into various competing channels, such as proton transfer (PT) versus electron transfer (ET), electron transfer with subsequent dissociation (ETD) versus electron transfer with no dissociation (ET,noD), and fragmentation of backbone bonds versus fragmentation of side chains, was measured quantitatively as a function of peptide charge state to allow insights to be drawn about the fundamental aspects of ion/ion reactions that lead to ETD. The ET channel increases relative to the PT channel, ETD increases relative to ET,noD, and fragmentation at backbone bonds increases relative to side-chain cleavages as cation charge state increases. The increase in ET versus PT with charge state is consistent with a Landau-Zener based curve-crossing model. An optimum charge state for ET is predicted by the model for the ground state-to-ground state reaction. However, when the population of excited product ion states is considered, it is possible that a decrease in ET efficiency as charge state increases will not be observed due to the possibility of the population of excited electronic states of the products. Several factors can contribute to the increase in ETD versus ET,noD and backbone cleavage versus side-chain losses. These factors include an increase in reaction exothermicity and charge state dependent differences in precursor and product ion structures, stabilities, and sites of protonation. PMID:23264749

  12. Copper-Containing Nitrite Reductase Employing Proton-Coupled Spin-Exchanged Electron-Transfer and Multiproton Synchronized Transfer to Reduce Nitrite.

    PubMed

    Qin, Xin; Deng, Li; Hu, Caihong; Li, Li; Chen, Xiaohua

    2017-10-20

    The possible catalytic mechanism of the reduction of nitrite by copper-containing nitrite reductases (CuNiRs) is examined by using the M06 function according to two copper models, which include type-one copper (T1Cu) and type-two copper (T2Cu) sites. Examinations confirm that the protonation of two residues, His255 and Asp98, near the T2Cu site, can modulate the redox states of T1Cu and T2Cu, but cannot directly cause electron transfer from T1Cu to T2Cu. The electron hole remains at the T2Cu site when only one residue, His255 or Asp98, is protonated. However, the hole resides at the T1Cu site when both His255 and Asp98 are protonated. Then, the first protonation of nitrite takes place through indirect proton transfer from protonated His255 through the bridging H 2 O and Asp98 with three protons moving together, which cannot cause the cleavage of the HO-NO bond. Subsequently, the substrate is required to obtain another proton from reprotonated His255 through the bridging H 2 O. The reprotonation of nitrite induces the generation of nitric oxide (NO) and H 2 O at the T2Cu site through a special double-proton-coupled spin-exchanged electron-transfer mechanism with indirect proton transfer from His255 to the substrate, a beta-electron of T2Cu I shift to the NO cation, and the remaining alpha-electron changing spin direction at the same time. These results may provide useful information to better understand detailed proton-/electron-transfer reactions for the catalytic processes of CuNiR. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Constraint-based modeling of carbon fixation and the energetics of electron transfer in Geobacter metallireducens.

    PubMed

    Feist, Adam M; Nagarajan, Harish; Rotaru, Amelia-Elena; Tremblay, Pier-Luc; Zhang, Tian; Nevin, Kelly P; Lovley, Derek R; Zengler, Karsten

    2014-04-01

    Geobacter species are of great interest for environmental and biotechnology applications as they can carry out direct electron transfer to insoluble metals or other microorganisms and have the ability to assimilate inorganic carbon. Here, we report on the capability and key enabling metabolic machinery of Geobacter metallireducens GS-15 to carry out CO2 fixation and direct electron transfer to iron. An updated metabolic reconstruction was generated, growth screens on targeted conditions of interest were performed, and constraint-based analysis was utilized to characterize and evaluate critical pathways and reactions in G. metallireducens. The novel capability of G. metallireducens to grow autotrophically with formate and Fe(III) was predicted and subsequently validated in vivo. Additionally, the energetic cost of transferring electrons to an external electron acceptor was determined through analysis of growth experiments carried out using three different electron acceptors (Fe(III), nitrate, and fumarate) by systematically isolating and examining different parts of the electron transport chain. The updated reconstruction will serve as a knowledgebase for understanding and engineering Geobacter and similar species.

  14. Concerted electron-proton transfer in the optical excitation of hydrogen-bonded dyes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westlake, Brittany C.; Brennaman, Kyle M.; Concepcion, Javier J.

    2011-05-24

    The simultaneous, concerted transfer of electrons and protons—electron-proton transfer (EPT)—is an important mechanism utilized in chemistry and biology to avoid high energy intermediates. There are many examples of thermally activated EPT in ground-state reactions and in excited states following photoexcitation and thermal relaxation. Here we report application of ultrafast excitation with absorption and Raman monitoring to detect a photochemically driven EPT process (photo-EPT). In this process, both electrons and protons are transferred during the absorption of a photon. Photo-EPT is induced by intramolecular charge-transfer (ICT) excitation of hydrogen-bonded-base adducts with either a coumarin dye or 4-nitro-4'-biphenylphenol. Femtosecond transient absorption spectralmore » measurements following ICT excitation reveal the appearance of two spectroscopically distinct states having different dynamical signatures. One of these states corresponds to a conventional ICT excited state in which the transferring H⁺ is initially associated with the proton donor. Proton transfer to the base (B) then occurs on the picosecond time scale. The other state is an ICT-EPT photoproduct. Upon excitation it forms initially in the nuclear configuration of the ground state by application of the Franck–Condon principle. However, due to the change in electronic configuration induced by the transition, excitation is accompanied by proton transfer with the protonated base formed with a highly elongated ⁺H–B bond. Coherent Raman spectroscopy confirms the presence of a vibrational mode corresponding to the protonated base in the optically prepared state.« less

  15. Concerted electron-proton transfer in the optical excitation of hydrogen-bonded dyes.

    PubMed

    Westlake, Brittany C; Brennaman, M Kyle; Concepcion, Javier J; Paul, Jared J; Bettis, Stephanie E; Hampton, Shaun D; Miller, Stephen A; Lebedeva, Natalia V; Forbes, Malcolm D E; Moran, Andrew M; Meyer, Thomas J; Papanikolas, John M

    2011-05-24

    The simultaneous, concerted transfer of electrons and protons--electron-proton transfer (EPT)--is an important mechanism utilized in chemistry and biology to avoid high energy intermediates. There are many examples of thermally activated EPT in ground-state reactions and in excited states following photoexcitation and thermal relaxation. Here we report application of ultrafast excitation with absorption and Raman monitoring to detect a photochemically driven EPT process (photo-EPT). In this process, both electrons and protons are transferred during the absorption of a photon. Photo-EPT is induced by intramolecular charge-transfer (ICT) excitation of hydrogen-bonded-base adducts with either a coumarin dye or 4-nitro-4'-biphenylphenol. Femtosecond transient absorption spectral measurements following ICT excitation reveal the appearance of two spectroscopically distinct states having different dynamical signatures. One of these states corresponds to a conventional ICT excited state in which the transferring H(+) is initially associated with the proton donor. Proton transfer to the base (B) then occurs on the picosecond time scale. The other state is an ICT-EPT photoproduct. Upon excitation it forms initially in the nuclear configuration of the ground state by application of the Franck-Condon principle. However, due to the change in electronic configuration induced by the transition, excitation is accompanied by proton transfer with the protonated base formed with a highly elongated (+)H ─ B bond. Coherent Raman spectroscopy confirms the presence of a vibrational mode corresponding to the protonated base in the optically prepared state.

  16. Role of cation size in the energy of electron transfer to 1:1 polyoxometalate ion pairs {(M+)(Xn+VW11O40)}(8–n)–(M=Li, Na, K)

    Treesearch

    Vladimir A. Grigoriev; Craig L. Hill; Ira A. Weinstock

    2000-01-01

    The use of soluble salts of polyoxometalates (d0-early-transition metal oxygen-anion clusters or POMs) as selective oxidation or electron-transfer catalysts, as probes in physical-organic and biological chemistry, and in the study of electron-and energy-transfer phenomena constitutes a substantial and rapidly growing literature. While rarely addressed, however, POM...

  17. Special Inspector General for Iraq Reconstruction. Quarterly Report and Semiannual Report to the United States Congress

    DTIC Science & Technology

    2008-01-30

    Energy Fusion Cell, and allocations include $110 million for oil pipeline exclusion zones—which aim to prevent illegal tapping and sabotage of...sectors in Iraq. This quarter SIGIR highlights two of these programs: the electronic funds transfer ( EFT ) system and U.S. advisory support provided to...the Iraq Stock Exchange. eleCTroniC funds Transfer SIGIR noted last quarter that Iraq finally acti- vated an electronic funds transfer ( EFT ) system

  18. Special Inspector General for Iraq Reconstruction: Quarterly Report and Semiannual Report to the United States Congress

    DTIC Science & Technology

    2008-01-30

    Cell, and allocations include $110 million for oil pipeline exclusion zones—which aim to prevent illegal tapping and sabotage of pipelines—$51...This quarter SIGIR highlights two of these programs: the electronic funds transfer ( EFT ) system and U.S. advisory support provided to the Iraq Stock...Exchange. eleCTroniC funds Transfer SIGIR noted last quarter that Iraq finally acti- vated an electronic funds transfer ( EFT ) system. The United

  19. Extensive domain motion and electron transfer in the human electron transferring flavoprotein.medium chain Acyl-CoA dehydrogenase complex.

    PubMed

    Toogood, Helen S; van Thiel, Adam; Basran, Jaswir; Sutcliffe, Mike J; Scrutton, Nigel S; Leys, David

    2004-07-30

    The crystal structure of the human electron transferring flavoprotein (ETF).medium chain acyl-CoA dehydrogenase (MCAD) complex reveals a dual mode of protein-protein interaction, imparting both specificity and promiscuity in the interaction of ETF with a range of structurally distinct primary dehydrogenases. ETF partitions the functions of partner binding and electron transfer between (i) the recognition loop, which acts as a static anchor at the ETF.MCAD interface, and (ii) the highly mobile redox active FAD domain. Together, these enable the FAD domain of ETF to sample a range of conformations, some compatible with fast interprotein electron transfer. Disorders in amino acid or fatty acid catabolism can be attributed to mutations at the protein-protein interface. Crucially, complex formation triggers mobility of the FAD domain, an induced disorder that contrasts with general models of protein-protein interaction by induced fit mechanisms. The subsequent interfacial motion in the MCAD.ETF complex is the basis for the interaction of ETF with structurally diverse protein partners. Solution studies using ETF and MCAD with mutations at the protein-protein interface support this dynamic model and indicate ionic interactions between MCAD Glu(212) and ETF Arg alpha(249) are likely to transiently stabilize productive conformations of the FAD domain leading to enhanced electron transfer rates between both partners.

  20. Molecular implementation of molecular shift register memories

    NASA Technical Reports Server (NTRS)

    Beratan, David N. (Inventor); Onuchic, Jose N. (Inventor)

    1991-01-01

    An electronic shift register memory (20) at the molecular level is described. The memory elements are based on a chain of electron transfer molecules (22) and the information is shifted by photoinduced (26) electron transfer reactions. Thus, multi-step sequences of charge transfer reactions are used to move charge with high efficiency down a molecular chain. The device integrates compositions of the invention onto a VLSI substrate (36), providing an example of a molecular electronic device which may be fabricated. Three energy level schemes, molecular implementation of these schemes, optical excitation strategies, charge amplification strategies, and error correction strategies are described.

  1. Communication: Charge transfer dominates over proton transfer in the reaction of nitric acid with gas-phase hydrated electrons

    NASA Astrophysics Data System (ADS)

    Lengyel, Jozef; Med, Jakub; Slavíček, Petr; Beyer, Martin K.

    2017-09-01

    The reaction of HNO3 with hydrated electrons (H2O)n- (n = 35-65) in the gas phase was studied using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry and ab initio molecular dynamics simulations. Kinetic analysis of the experimental data shows that OH-(H2O)m is formed primarily via a reaction of the hydrated electron with HNO3 inside the cluster, while proton transfer is not observed and NO3-(H2O)m is just a secondary product. The reaction enthalpy was determined using nanocalorimetry, revealing a quite exothermic charge transfer with -241 ± 69 kJ mol-1. Ab initio molecular dynamics simulations indicate that proton transfer is an allowed reaction pathway, but the overall thermochemistry favors charge transfer.

  2. Robust and stretchable indium gallium zinc oxide-based electronic textiles formed by cilia-assisted transfer printing

    PubMed Central

    Yoon, Jongwon; Jeong, Yunkyung; Kim, Heeje; Yoo, Seonggwang; Jung, Hoon Sun; Kim, Yonghun; Hwang, Youngkyu; Hyun, Yujun; Hong, Woong-Ki; Lee, Byoung Hun; Choa, Sung-Hoon; Ko, Heung Cho

    2016-01-01

    Electronic textile (e-textile) allows for high-end wearable electronic devices that provide easy access for carrying, handling and using. However, the related technology does not seem to be mature because the woven fabric hampers not only the device fabrication process directly on the complex surface but also the transfer printing of ultrathin planar electronic devices. Here we report an indirect method that enables conformal wrapping of surface with arbitrary yet complex shapes. Artificial cilia are introduced in the periphery of electronic devices as adhesive elements. The cilia also play an important role in confining a small amount of glue and damping mechanical stress to maintain robust electronic performance under mechanical deformation. The example of electronic applications depicts the feasibility of cilia for ‘stick-&-play' systems, which provide electronic functions by transfer printing on unconventional complex surfaces. PMID:27248982

  3. Nonadiabatic one-electron transfer mechanism for the O-O bond formation in the oxygen-evolving complex of photosystem II

    NASA Astrophysics Data System (ADS)

    Shoji, Mitsuo; Isobe, Hiroshi; Shigeta, Yasuteru; Nakajima, Takahito; Yamaguchi, Kizashi

    2018-04-01

    The reaction mechanism of the O2 formation in the S4 state of the oxygen-evolving complex of photosystem II was clarified at the quantum mechanics/molecular mechanics (QM/MM) level. After the Yz (Y161) oxidation and the following proton transfer in the S3 state, five reaction steps are required to produce the molecular dioxygen. The highest barrier step is the first proton transfer reaction (0 → 1). The following reactions involving electron transfers were precisely analyzed in terms of their energies, structures and spin densities. We found that the one-electron transfer from the Mn4Ca cluster to Y161 triggers the O-O sigma bond formation.

  4. Fast electron microscopy via compressive sensing

    DOEpatents

    Larson, Kurt W; Anderson, Hyrum S; Wheeler, Jason W

    2014-12-09

    Various technologies described herein pertain to compressive sensing electron microscopy. A compressive sensing electron microscope includes a multi-beam generator and a detector. The multi-beam generator emits a sequence of electron patterns over time. Each of the electron patterns can include a plurality of electron beams, where the plurality of electron beams is configured to impart a spatially varying electron density on a sample. Further, the spatially varying electron density varies between each of the electron patterns in the sequence. Moreover, the detector collects signals respectively corresponding to interactions between the sample and each of the electron patterns in the sequence.

  5. 12 CFR 205.10 - Preauthorized transfers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 2 2011-01-01 2011-01-01 false Preauthorized transfers. 205.10 Section 205.10 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC...'s account—(1) Notice by financial institution. When a person initiates preauthorized electronic fund...

  6. Heterogeneous Electron-Transfer Dynamics through Dipole-Bridge Groups.

    PubMed

    Nieto-Pescador, Jesus; Abraham, Baxter; Li, Jingjing; Batarseh, Alberto; Bartynski, Robert A; Galoppini, Elena; Gundlach, Lars

    2016-01-14

    Heterogeneous electron transfer (HET) between photoexcited molecules and colloidal TiO 2 has been investigated for a set of Zn-porphyrin chromophores attached to the semiconductor via linkers that allow to change level alignment by 200 meV by reorientation of the dipole moment. These unique dye molecules have been studied by femtosecond transient absorption spectroscopy in solution and adsorbed on the TiO 2 colloidal film in vacuum. In solution energy transfer from the excited chromophore to the dipole group has been identified as a slow relaxation pathway competing with S 2 -S 1 internal conversion. On the film heterogeneous electron transfer occurred in 80 fs, much faster compared to all intramolecular pathways. Despite a difference of 200 meV in level alignment of the excited state with respect to the semiconductor conduction band, identical electron transfer times were measured for different linkers. The measurements are compared to a quantum-mechanical model that accounts for electronic-vibronic coupling and finite band width for the acceptor states. We conclude that HET occurs into a distribution of transition states that differs from regular surface states or bridge mediated states.

  7. Elucidating nitric oxide synthase domain interactions by molecular dynamics.

    PubMed

    Hollingsworth, Scott A; Holden, Jeffrey K; Li, Huiying; Poulos, Thomas L

    2016-02-01

    Nitric oxide synthase (NOS) is a multidomain enzyme that catalyzes the production of nitric oxide (NO) by oxidizing L-Arg to NO and L-citrulline. NO production requires multiple interdomain electron transfer steps between the flavin mononucleotide (FMN) and heme domain. Specifically, NADPH-derived electrons are transferred to the heme-containing oxygenase domain via the flavin adenine dinucleotide (FAD) and FMN containing reductase domains. While crystal structures are available for both the reductase and oxygenase domains of NOS, to date there is no atomic level structural information on domain interactions required for the final FMN-to-heme electron transfer step. Here, we evaluate a model of this final electron transfer step for the heme-FMN-calmodulin NOS complex based on the recent biophysical studies using a 105-ns molecular dynamics trajectory. The resulting equilibrated complex structure is very stable and provides a detailed prediction of interdomain contacts required for stabilizing the NOS output state. The resulting equilibrated complex model agrees well with previous experimental work and provides a detailed working model of the final NOS electron transfer step required for NO biosynthesis. © 2015 The Protein Society.

  8. ZnO-nanorods/graphene heterostructure: a direct electron transfer glucose biosensor

    PubMed Central

    Zhao, Yu; Li, Wenbo; Pan, Lijia; Zhai, Dongyuan; Wang, Yu; Li, Lanlan; Cheng, Wen; Yin, Wei; Wang, Xinran; Xu, Jian-Bin; Shi, Yi

    2016-01-01

    ZnO-nanorods/graphene heterostructure was synthesized by hydrothermal growth of ZnO nanorods on chemically reduced graphene (CRG) film. The hybrid structure was demonstrated as a biosensor, where direct electron transfer between glucose oxidase (GOD) and electrode was observed. The charge transfer was attributed to the ZnO nanorod wiring between the redox center of GOD and electrode, and the ZnO/graphene heterostructure facilitated the transport of electrons on the hybride electrode. The glucose sensor based on the GOD-ZnO/CRG/Pt electrode had a high sensitivity of 17.64 μA mM−1, which is higher than most of the previously reported values for direct electron transfer based glucose biosensors. Moreover, this biosensor is linearly proportional to the concentration of glucose in the range of 0.2–1.6 mM. The study revealed that the band structure of electrode could affect the detection of direct electron transfer of GOD, which would be helpful for the design of the biosensor electrodes in the future. PMID:27572675

  9. Ultrafast electronic dynamics driven by nuclear motion

    NASA Astrophysics Data System (ADS)

    Vendrell, Oriol

    2016-05-01

    The transfer of electrical charge on a microscopic scale plays a fundamental role in chemistry, in biology, and in technological applications. In this contribution, we will discuss situations in which nuclear motion plays a central role in driving the electronic dynamics of photo-excited or photo-ionized molecular systems. In particular, we will explore theoretically the ultrafast transfer of a double electron hole between the functional groups of glycine after K-shell ionization and subsequent Auger decay. Although a large energy gap of about 15 eV initially exists between the two electronic states involved and coherent electronic dynamics play no role in the hole transfer, we will illustrate how the double hole can be transferred within 3 to 4 fs between both functional ends of the glycine molecule driven solely by specific nuclear displacements and non-Born-Oppenheimer effects. This finding challenges the common wisdom that nuclear dynamics of the molecular skeleton are unimportant for charge transfer processes at the few-femtosecond time scale and shows that they can even play a prominent role. We thank the Hamburg Centre for Ultrafast Imaging and the Volkswagen Foundation for financial support.

  10. Effects of Charge-Transfer Excitons on the Photophysics of Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Hestand, Nicholas J.

    The field of organic electronics has received considerable attention over the past several years due to the promise of novel electronic materials that are cheap, flexible and light weight. While some devices based on organic materials have already emerged on the market (e.g. organic light emitting diodes), a deeper understanding of the excited states within the condensed phase is necessary both to improve current commercial products and to develop new materials for applications that are currently in the commercial pipeline (e.g. organic photovoltaics, wearable displays, and field effect transistors). To this end, a model for pi-conjugated molecular aggregates and crystals is developed and analyzed. The model considers two types of electronic excitations, namely Frenkel and charge-transfer excitons, both of which play a prominent role in determining the nature of the excited states within tightly-packed organic systems. The former consist of an electron-hole pair bound to the same molecule while in the later the electron and hole are located on different molecules. The model also considers the important nuclear reorganization that occurs when the system switches between electronic states. This is achieved using a Holstein-style Hamiltonian that includes linear vibronic coupling of the electronic states to the nuclear motion associated with the high frequency vinyl-stretching and ring-breathing modes. Analysis of the model reveals spectroscopic signatures of charge-transfer mediated J- and H-aggregation in systems where the photophysical properties are determined primarily by charge-transfer interactions. Importantly, such signatures are found to be sensitive to the relative phase of the intermolecular electron and hole transfer integrals, and the relative energy of the Frenkel and charge-transfer states. When the charge-transfer integrals are in phase and the energy of the charge-transfer state is higher than the Frenkel state, the system exhibits J-aggregate characteristics including a positive band curvature, a red shifted main absorption peak, and an increase in the ratio of the first two vibronic peaks relative to the monomer. On the other hand, when the charge-transfer integrals are out of phase and the energy of the charge-transfer state is higher than the Frenkel state, the system exhibits H-aggregate characteristics including a negative band curvature, a blue shifted main absorption peak, and a decrease in the ratio of the first two vibronic peaks relative to the monomer. Notably, these signatures are consistent with those exhibited by Coulombically coupled J- and H-aggregates. Additional signatures of charge-transfer J- and H-aggregation are also discovered, the most notable of which is the appearance of a second absorption band when the charge-transfer integrals are in phase and the charge-transfer and Frenkel excitons are near resonance. In such instances, the peak-to-peak spacing is found to be proportional to the sum of the electron and hole transfer integrals. Further analysis of the charge-transfer interactions within the context of an effective Frenkel exciton coupling reveals that the charge-transfer interactions interfere directly with the intermolecular Coulombic coupling. The interference can be either constructive or destructive resulting in either enhanced or suppressed J- or H- aggregate behavior relative to what is expected based on Coulombic coupling alone. Such interferences result in four new aggregate types, namely HH-, HJ-, JH-, and JJ-aggregates, where the first letter indicates the nature of the Coulombic coupling and the second indicates the nature of the charge-transfer coupling. Vibronic signatures of such aggregates are developed and provide a means by which to rapidly screen materials for certain electronic characteristics. Notably, a large total (Coulombic plus charge-transfer) exciton coupling is associated with an absorption spectrum in which the ratio of the first two vibronic peaks deviates significantly from that of the unaggregated monomer. Hence, strongly coupled, high exciton mobility aggregates can be readily distinguished from low mobility aggregates by the ratio of their first two vibronic peaks. (Abstract shortened by ProQuest.).

  11. Fast electron transfer through a single molecule natively structured redox protein

    NASA Astrophysics Data System (ADS)

    Della Pia, Eduardo Antonio; Chi, Qijin; MacDonald, J. Emyr; Ulstrup, Jens; Jones, D. Dafydd; Elliott, Martin

    2012-10-01

    The electron transfer properties of proteins are normally measured as molecularly averaged ensembles. Through these and related measurements, proteins are widely regarded as macroscopically insulating materials. Using scanning tunnelling microscopy (STM), we present new measurements of the conductance through single-molecules of the electron transfer protein cytochrome b562 in its native conformation, under pseudo-physiological conditions. This is achieved by thiol (SH) linker pairs at opposite ends of the molecule through protein engineering, resulting in defined covalent contact between a gold surface and a platinum-iridium STM tip. Two different orientations of the linkers were examined: a long-axis configuration (SH-LA) and a short-axis configuration (SH-SA). In each case, the molecular conductance could be `gated' through electrochemical control of the heme redox state. Reproducible and remarkably high conductance was observed in this relatively complex electron transfer system, with single-molecule conductance values peaking around 18 nS and 12 nS for the SH-SA and SH-LA cytochrome b562 molecules near zero electrochemical overpotential. This strongly points to the important role of the heme co-factor bound to the natively structured protein. We suggest that the two-step model of protein electron transfer in the STM geometry requires a multi-electron transfer to explain such a high conductance. The model also yields a low value for the reorganisation energy, implying that solvent reorganisation is largely absent.The electron transfer properties of proteins are normally measured as molecularly averaged ensembles. Through these and related measurements, proteins are widely regarded as macroscopically insulating materials. Using scanning tunnelling microscopy (STM), we present new measurements of the conductance through single-molecules of the electron transfer protein cytochrome b562 in its native conformation, under pseudo-physiological conditions. This is achieved by thiol (SH) linker pairs at opposite ends of the molecule through protein engineering, resulting in defined covalent contact between a gold surface and a platinum-iridium STM tip. Two different orientations of the linkers were examined: a long-axis configuration (SH-LA) and a short-axis configuration (SH-SA). In each case, the molecular conductance could be `gated' through electrochemical control of the heme redox state. Reproducible and remarkably high conductance was observed in this relatively complex electron transfer system, with single-molecule conductance values peaking around 18 nS and 12 nS for the SH-SA and SH-LA cytochrome b562 molecules near zero electrochemical overpotential. This strongly points to the important role of the heme co-factor bound to the natively structured protein. We suggest that the two-step model of protein electron transfer in the STM geometry requires a multi-electron transfer to explain such a high conductance. The model also yields a low value for the reorganisation energy, implying that solvent reorganisation is largely absent. Electronic supplementary information (ESI) available: Experimental methods, DNA and protein sequences, additional STM statistical analysis and images, electrochemical data and It-z data analysis. See DOI: 10.1039/c2nr32131a

  12. 2012 Gordon Research Conference, Electron donor-acceptor interactions, August 5-10 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCusker, James

    The upcoming incarnation of the Gordon Research Conference on Electron Donor Acceptor Interactions will feature sessions on classic topics including proton-coupled electron transfer, dye-sensitized solar cells, and biological electron transfer, as well as emerging areas such as quantum coherence effects in donor-acceptor interactions, spintronics, and the application of donor-acceptor interactions in chemical synthesis.

  13. Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perlík, Václav; Seibt, Joachim; Šanda, František

    The initial energy transfer steps in photosynthesis occur on ultrafast timescales. We analyze the carotenoid to bacteriochlorophyll energy transfer in LH2 Marichromatium purpuratum as well as in an artificial light-harvesting dyad system by using transient grating and two-dimensional electronic spectroscopy with 10 fs time resolution. We find that Förster-type models reproduce the experimentally observed 60 fs transfer times, but overestimate coupling constants, which lead to a disagreement with both linear absorption and electronic 2D-spectra. We show that a vibronic model, which treats carotenoid vibrations on both electronic ground and excited states as part of the system’s Hamiltonian, reproduces all measuredmore » quantities. Importantly, the vibronic model presented here can explain the fast energy transfer rates with only moderate coupling constants, which are in agreement with structure based calculations. Counterintuitively, the vibrational levels on the carotenoid electronic ground state play the central role in the excited state population transfer to bacteriochlorophyll; resonance between the donor-acceptor energy gap and the vibrational ground state energies is the physical basis of the ultrafast energy transfer rates in these systems.« less

  14. Defining Electron Bifurcation in the Electron-Transferring Flavoprotein Family.

    PubMed

    Garcia Costas, Amaya M; Poudel, Saroj; Miller, Anne-Frances; Schut, Gerrit J; Ledbetter, Rhesa N; Fixen, Kathryn R; Seefeldt, Lance C; Adams, Michael W W; Harwood, Caroline S; Boyd, Eric S; Peters, John W

    2017-11-01

    Electron bifurcation is the coupling of exergonic and endergonic redox reactions to simultaneously generate (or utilize) low- and high-potential electrons. It is the third recognized form of energy conservation in biology and was recently described for select electron-transferring flavoproteins (Etfs). Etfs are flavin-containing heterodimers best known for donating electrons derived from fatty acid and amino acid oxidation to an electron transfer respiratory chain via Etf-quinone oxidoreductase. Canonical examples contain a flavin adenine dinucleotide (FAD) that is involved in electron transfer, as well as a non-redox-active AMP. However, Etfs demonstrated to bifurcate electrons contain a second FAD in place of the AMP. To expand our understanding of the functional variety and metabolic significance of Etfs and to identify amino acid sequence motifs that potentially enable electron bifurcation, we compiled 1,314 Etf protein sequences from genome sequence databases and subjected them to informatic and structural analyses. Etfs were identified in diverse archaea and bacteria, and they clustered into five distinct well-supported groups, based on their amino acid sequences. Gene neighborhood analyses indicated that these Etf group designations largely correspond to putative differences in functionality. Etfs with the demonstrated ability to bifurcate were found to form one group, suggesting that distinct conserved amino acid sequence motifs enable this capability. Indeed, structural modeling and sequence alignments revealed that identifying residues occur in the NADH- and FAD-binding regions of bifurcating Etfs. Collectively, a new classification scheme for Etf proteins that delineates putative bifurcating versus nonbifurcating members is presented and suggests that Etf-mediated bifurcation is associated with surprisingly diverse enzymes. IMPORTANCE Electron bifurcation has recently been recognized as an electron transfer mechanism used by microorganisms to maximize energy conservation. Bifurcating enzymes couple thermodynamically unfavorable reactions with thermodynamically favorable reactions in an overall spontaneous process. Here we show that the electron-transferring flavoprotein (Etf) enzyme family exhibits far greater diversity than previously recognized, and we provide a phylogenetic analysis that clearly delineates bifurcating versus nonbifurcating members of this family. Structural modeling of proteins within these groups reveals key differences between the bifurcating and nonbifurcating Etfs. Copyright © 2017 American Society for Microbiology.

  15. Defining Electron Bifurcation in the Electron-Transferring Flavoprotein Family

    PubMed Central

    Garcia Costas, Amaya M.; Poudel, Saroj; Miller, Anne-Frances; Schut, Gerrit J.; Ledbetter, Rhesa N.; Seefeldt, Lance C.; Adams, Michael W. W.

    2017-01-01

    ABSTRACT Electron bifurcation is the coupling of exergonic and endergonic redox reactions to simultaneously generate (or utilize) low- and high-potential electrons. It is the third recognized form of energy conservation in biology and was recently described for select electron-transferring flavoproteins (Etfs). Etfs are flavin-containing heterodimers best known for donating electrons derived from fatty acid and amino acid oxidation to an electron transfer respiratory chain via Etf-quinone oxidoreductase. Canonical examples contain a flavin adenine dinucleotide (FAD) that is involved in electron transfer, as well as a non-redox-active AMP. However, Etfs demonstrated to bifurcate electrons contain a second FAD in place of the AMP. To expand our understanding of the functional variety and metabolic significance of Etfs and to identify amino acid sequence motifs that potentially enable electron bifurcation, we compiled 1,314 Etf protein sequences from genome sequence databases and subjected them to informatic and structural analyses. Etfs were identified in diverse archaea and bacteria, and they clustered into five distinct well-supported groups, based on their amino acid sequences. Gene neighborhood analyses indicated that these Etf group designations largely correspond to putative differences in functionality. Etfs with the demonstrated ability to bifurcate were found to form one group, suggesting that distinct conserved amino acid sequence motifs enable this capability. Indeed, structural modeling and sequence alignments revealed that identifying residues occur in the NADH- and FAD-binding regions of bifurcating Etfs. Collectively, a new classification scheme for Etf proteins that delineates putative bifurcating versus nonbifurcating members is presented and suggests that Etf-mediated bifurcation is associated with surprisingly diverse enzymes. IMPORTANCE Electron bifurcation has recently been recognized as an electron transfer mechanism used by microorganisms to maximize energy conservation. Bifurcating enzymes couple thermodynamically unfavorable reactions with thermodynamically favorable reactions in an overall spontaneous process. Here we show that the electron-transferring flavoprotein (Etf) enzyme family exhibits far greater diversity than previously recognized, and we provide a phylogenetic analysis that clearly delineates bifurcating versus nonbifurcating members of this family. Structural modeling of proteins within these groups reveals key differences between the bifurcating and nonbifurcating Etfs. PMID:28808132

  16. Screening of exciplex formation by distant electron transfer.

    PubMed

    Fedorenko, S G; Khokhlova, S S; Burshtein, A I

    2012-01-12

    The excitation quenching by reversible exciplex formation, combined with irreversible but distant electron transfer, is considered by means of the integral encounter theory (IET). Assuming that the quenchers are in great excess, the set of IET equations for the excitations, free ions, and exciplexes is derived. Solving these equations gives the Laplace images of all these populations, and these are used to specify the quantum yields of the corresponding reaction products. It appears that diffusion facilitates the exciplex production and the electron transfer. On the other hand the stronger the electron transfer is, the weaker is the exciplex production. At slow diffusion the distant quenching of excitations by ionization prevents their reaching the contact where they can turn into exciplexes. This is a screening effect that is most pronounced when the ionization rate is large.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, K.S.; Freilich, S.C.; Schaeffer, C.G.

    Studies were initiated utilizing picosecond (ps) absorption spectroscopy, to directly monitor the dynamics of electron transfer from 1,4-diazabicyclo(2.2.2)octane (Dabco) to the excited states of benzophenone and fluorenone. These two systems were chosen because of their contrasting photochemistry. The quantum yield for photoreduction of benzophenone in polar solvents is generally greater than 0.1, while that of fluorenone is zero. In polar solvents, the proposed mechanism dictates that an electron is transferred to the excited singlet state fluorenone, which then back-transfers the electron, regenerating ground-state fluorenone and amine. Photolysis of benzophenone in the presence of an amine transfers an electron to anmore » excited triplet state, forming an ion pair that is stable relative to diffusional separation. The results of this study verify this proposal.« less

  18. Experimental studies of fundamental issues in electron transfer through nanometer scale devices

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hiromichi

    Electron transfer reactions constitute many of the primary events in materials science, chemistry, physics, and biochemistry, e.g. the electron transport properties and photoexcited processes in solids and molecules, chemical reactions, corrosion, photosynthesis, respiration, and so forth. A self-assembled monolayer (SAM) film provides us with a unique environment not only to understand and manipulate the surface electronic properties of a solid, but also to control electron transfer processes at the interface. The first topic in this thesis describes the structure and electron tunneling characterization of alkanethiol SAMs on InP(100). Angle-resolved X-ray photoelectron spectroscopy was used to characterize the bonding of alkanethiols to n-InP surfaces and to measure the monolayer thickness. The results showed that the sulfur binds to In atoms on the surface, and provided film thicknesses of 6.4 A for C8H17SH, 11.1 A for C12H25SH, and 14.9 A for C16H 33SH, resulting in an average tilt angle of 55°. The analysis indicated that super-exchange coupling between the alkane chains plays an important role in defining electron tunneling barriers, especially for highly tilted chains. The second topic describes studies of cytochrome c bound to pure and mixed SAMs of o-terminated alkanethiol (terminated with pyridine, imidazole or nitrile groups) and alkanethiol on gold. Electrochemical methods are used to determine electron transfer rate constants of cytochrome c, and scanning tunneling microscopy to observe the cytochrome c on the SAM. Detailed analysis revealed direct association of the heme of cytochrome c with the terminal groups of the SAMs and a 'turning-over' of the electron transfer of cytochrome c from adiabatic to non-adiabatic regime. The third topic describes studies of oxidation and reduction of cytochrome c in solution through eleven different self-assembled monolayers (SAMs) on gold electrodes by cyclic voltammetry. Electron transfer rate constants of cytochrome c through the eleven SAMs ranged from ≤10-4 to ˜10-1 cm/sec. A strong correlation between the electron transfer rate constants and the hydrogen bonding ability of the SAM is identified. This correlation is discussed in terms of the dependence of the rate constant on the outer-sphere reorganization energy and the electronic coupling between the cytochrome and the differently terminated monolayer films.

  19. Single-molecule interfacial electron transfer dynamics in solar energy conversion

    NASA Astrophysics Data System (ADS)

    Dhital, Bharat

    This dissertation work investigated the parameters affecting the interfacial electron transfer (ET) dynamics in dye-semiconductor nanoparticles (NPs) system by using single-molecule fluorescence spectroscopy and imaging combined with electrochemistry. The influence of the molecule-substrate electronic coupling, the molecular structure, binding geometry on the surface and the molecule-attachment surface chemistry on interfacial charge transfer processes was studied on zinc porphyrin-TiO2 NP systems. The fluorescence blinking measurement on TiO2 NP demonstrated that electronic coupling regulates dynamics of charge transfer processes at the interface depending on the conformation of molecule on the surface. Moreover, semiconductor surface charge induced electronic coupling of molecule which is electrostatically adsorbed on the semiconductor surface also predominantly alters the ET dynamics. Furthermore, interfacial electric field and electron accepting state density dependent ET dynamics has been dissected in zinc porphyrin-TiO2 NP system by observing the single-molecule fluorescence blinking dynamics and fluorescence lifetime with and without applied bias. The significant difference in fluorescence fluctuation and lifetime suggested the modulation of charge transfer dynamics at the interface with external electric field perturbation. Quasi-continuous distribution of fluorescence intensity with applied negative potential was attributed to the faster charge recombination due to reduced density of electron accepting states. The driving force and electron accepting state density ET dependent dynamics has also been probed in zinc porphyrin-TiO2 NP and zinc porphyrin-indium tin oxide (ITO) systems. Study of a molecule adsorbed on two different semiconductors (ITO and TiO2), with large difference in electron densities and distinct driving forces, allows us to observe the changes in rates of back electron transfer process reflected by the suppressed fluorescence blinking of molecule on ITO surface. Finally, the electric field effect on the interface properties has been probed by using surface-enhanced Raman spectroscopy and supported by density functional theory calculations in alizarin-TiO2 system. The perturbation, created by the external potential, has been observed to cause a shift and/or splitting interfacial bond vibrational mode, typical indicator of the coupling energy changes between alizarin and TiO2. Such splitting provides evidence for electric field-dependent electronic coupling changes that have a significant impact on the interfacial electron transfer dynamics.

  20. Laser photolysis studies of the phenolic H-atom transfer mechanism for a triplet π,π ∗ ketone in solution revisited

    NASA Astrophysics Data System (ADS)

    Yamaji, Minoru; Aoyama, Yutaka; Furukawa, Takashi; Itoh, Takao; Tobita, Seiji

    2006-03-01

    The mechanism of the H-atom transfer from phenols or thiophenols to triplet π,π ∗ 5,12-naphthacenequinone (5,12-NQ) has been examined by means of laser flash photolysis at 295 K. Based on the Hammett plots and the Rehm-Weller equation for the quenching rate constants, the phenolic H-atom transfer from phenols or thiophenols to triplet π,π ∗ 5,12-NQ is shown to proceed via the electron transfer followed by proton transfer. The previously proposed mechanism for H-atom transfer of π,π ∗ triplets, that proton transfer is followed by electron transfer, was not verified in the present systems.

Top