Sample records for electron transfer probed

  1. Electronic and Vibrational Coherence in Charge-Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Scherer, Norbert

    1996-03-01

    The ultrafast dynamics associated with optically-induced intervalence charge-transfer reactions in solution and protein environments are reported. These studies include the Fe^(II)-Fe^(III) MMCT complex Prussian blue and the mixed valence dimer (CN)_5Ru^(II)CNRuRu^(III)(NH_3)_5. The protein systems include blue copper proteins and the bacterial photosynthetic reaction center. The experimental approaches include photon echo, wavelength-resolved pump-probe and anisotropy measurements performed with 12-16fs duration optical pulses. Complicated time-domain waveforms reflect the several different p[rocesses and time scales for relaxation of coherences (both electronic and vibrational) and populations within these systems. The photon echo and anisotropy results probe electronic coherence and dephasing prior to back electron transfer. Wavelength-resolved pump-probe results reveal vibrational modes coupled to the CT-coordinate as well as formation of new product states or vibrational cooling in the ground state following back electron transfer.

  2. Mediated Electron Transfer at Vertically Aligned Single-Walled Carbon Nanotube Electrodes During Detection of DNA Hybridization.

    PubMed

    Wallen, Rachel; Gokarn, Nirmal; Bercea, Priscila; Grzincic, Elissa; Bandyopadhyay, Krisanu

    2015-12-01

    Vertically aligned single-walled carbon nanotube (VASWCNT) assemblies are generated on cysteamine and 2-mercaptoethanol (2-ME)-functionalized gold surfaces through amide bond formation between carboxylic groups generated at the end of acid-shortened single-walled carbon nanotubes (SWCNTs) and amine groups present on the gold surfaces. Atomic force microscopy (AFM) imaging confirms the vertical alignment mode of SWCNT attachment through significant changes in surface roughness compared to bare gold surfaces and the lack of any horizontally aligned SWCNTs present. These SWCNT assemblies are further modified with an amine-terminated single-stranded probe-DNA. Subsequent hybridization of the surface-bound probe-DNA in the presence of complementary strands in solution is followed using impedance measurements in the presence of Fe(CN)6 (3-/4-) as the redox probe in solution, which show changes in the interfacial electrochemical properties, specifically the charge-transfer resistance, due to hybridization. In addition, hybridization of the probe-DNA is also compared when it is attached directly to the gold surfaces without any intermediary SWCNTs. Contrary to our expectations, impedance measurements show a decrease in charge-transfer resistance with time due to hybridization with 300 nM complementary DNA in solution with the probe-DNA attached to SWCNTs. In contrast, an increase in charge-transfer resistance is observed with time during hybridization when the probe-DNA is attached directly to the gold surfaces. The decrease in charge-transfer resistance during hybridization in the presence of VASWCNTs indicates an enhancement in the electron transfer process of the redox probe at the VASWCNT-modified electrode. The results suggest that VASWCNTs are acting as mediators of electron transfer, which facilitate the charge transfer of the redox probe at the electrode-solution interface.

  3. Mediated Electron Transfer at Vertically Aligned Single-Walled Carbon Nanotube Electrodes During Detection of DNA Hybridization

    NASA Astrophysics Data System (ADS)

    Wallen, Rachel; Gokarn, Nirmal; Bercea, Priscila; Grzincic, Elissa; Bandyopadhyay, Krisanu

    2015-06-01

    Vertically aligned single-walled carbon nanotube (VASWCNT) assemblies are generated on cysteamine and 2-mercaptoethanol (2-ME)-functionalized gold surfaces through amide bond formation between carboxylic groups generated at the end of acid-shortened single-walled carbon nanotubes (SWCNTs) and amine groups present on the gold surfaces. Atomic force microscopy (AFM) imaging confirms the vertical alignment mode of SWCNT attachment through significant changes in surface roughness compared to bare gold surfaces and the lack of any horizontally aligned SWCNTs present. These SWCNT assemblies are further modified with an amine-terminated single-stranded probe-DNA. Subsequent hybridization of the surface-bound probe-DNA in the presence of complementary strands in solution is followed using impedance measurements in the presence of Fe(CN)6 3-/4- as the redox probe in solution, which show changes in the interfacial electrochemical properties, specifically the charge-transfer resistance, due to hybridization. In addition, hybridization of the probe-DNA is also compared when it is attached directly to the gold surfaces without any intermediary SWCNTs. Contrary to our expectations, impedance measurements show a decrease in charge-transfer resistance with time due to hybridization with 300 nM complementary DNA in solution with the probe-DNA attached to SWCNTs. In contrast, an increase in charge-transfer resistance is observed with time during hybridization when the probe-DNA is attached directly to the gold surfaces. The decrease in charge-transfer resistance during hybridization in the presence of VASWCNTs indicates an enhancement in the electron transfer process of the redox probe at the VASWCNT-modified electrode. The results suggest that VASWCNTs are acting as mediators of electron transfer, which facilitate the charge transfer of the redox probe at the electrode-solution interface.

  4. Protein Conformational Dynamics Probed by Single-Molecule Electron Transfer

    NASA Astrophysics Data System (ADS)

    Yang, Haw; Luo, Guobin; Karnchanaphanurach, Pallop; Louie, Tai-Man; Rech, Ivan; Cova, Sergio; Xun, Luying; Xie, X. Sunney

    2003-10-01

    Electron transfer is used as a probe for angstrom-scale structural changes in single protein molecules. In a flavin reductase, the fluorescence of flavin is quenched by a nearby tyrosine residue by means of photo-induced electron transfer. By probing the fluorescence lifetime of the single flavin on a photon-by-photon basis, we were able to observe the variation of flavin-tyrosine distance over time. We could then determine the potential of mean force between the flavin and the tyrosine, and a correlation analysis revealed conformational fluctuation at multiple time scales spanning from hundreds of microseconds to seconds. This phenomenon suggests the existence of multiple interconverting conformers related to the fluctuating catalytic reactivity.

  5. ELECTRON TRANSFER MECHANISM AT THE SOLID-LIQUID INTERFACE OF PHYLLOSILICATES

    EPA Science Inventory

    Interfacial electron transfer processes on clay minerals have significant impact in natural environments and geochemical systems. Nitrobenzene was used as molecular probes to study the electron transfer mechanism at the solid-water interfaces of Fe-containing phyllosicates. For...

  6. Super-quenched Molecular Probe Based on Aggregation-Induced Emission and Photoinduced Electron Transfer Mechanisms for Formaldehyde Detection in Human Serum.

    PubMed

    Yang, Haitao; Wang, Fujia; Zheng, Jilin; Lin, Hao; Liu, Bin; Tang, Yi-Da; Zhang, Chong-Jing

    2018-06-04

    Energy transfer between fluorescent dyes and quenchers is widely used in the design of light-up probes. Although dual quenchers are more effective in offering lower background signals and higher turn-on ratios than one quencher, such probes are less explored in practice as they require both quenchers to be within the proximity of the fluorescent core. In this contribution, we utilized intramolecular motion and photoinduced electron transfer (PET) as quenching mechanisms to build super-quenched light-up probes based on fluorogens with aggregation-induced emission. The optimized light-up probe possesses negligible background and is able to detect not only free formaldehyde (FA) but also polymeric FA, with an unprecedented turn-on ratio of >4900. We envision that this novel dual quenching strategy will help to develop various light-up probes for analyte sensing. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Development of a Portable DNA Sensor System

    DTIC Science & Technology

    2008-12-01

    limited by the rate of collision of the redox label with the electrode. Sensor data collected using both methylene blue and ferrocene were very...results using ferrocene exhibit flatter baselines. Also ferrocene’s single electron transfer reaction makes a probe that is more easily modeled...Therefore, electron transfer rates were measured in the presence and absence of target using ferrocene -modified probes. The measurements and model

  8. Communication: Probing non-equilibrium vibrational relaxation pathways of highly excited C≡N stretching modes following ultrafast back-electron transfer.

    PubMed

    Lynch, Michael S; Slenkamp, Karla M; Khalil, Munira

    2012-06-28

    Fifth-order nonlinear visible-infrared spectroscopy is used to probe coherent and incoherent vibrational energy relaxation dynamics of highly excited vibrational modes indirectly populated via ultrafast photoinduced back-electron transfer in a trinuclear cyano-bridged mixed-valence complex. The flow of excess energy deposited into four C≡N stretching (ν(CN)) modes of the molecule is monitored by performing an IR pump-probe experiment as a function of the photochemical reaction (τ(vis)). Our results provide experimental evidence that the nuclear motions of the molecule are both coherently and incoherently coupled to the electronic charge transfer process. We observe that intramolecular vibrational relaxation dynamics among the highly excited ν(CN) modes change significantly en route to equilibrium. The experiment also measures a 7 cm(-1) shift in the frequency of a ∼57 cm(-1) oscillation reflecting a modulation of the coupling between the probed high-frequency ν(CN) modes for τ(vis) < 500 fs.

  9. Probe-based measurement of lateral single-electron transfer between individual molecules

    PubMed Central

    Steurer, Wolfram; Fatayer, Shadi; Gross, Leo; Meyer, Gerhard

    2015-01-01

    The field of molecular electronics aims at using single molecules as functional building blocks for electronics components, such as switches, rectifiers or transistors. A key challenge is to perform measurements with atomistic control over the alignment of the molecule and its contacting electrodes. Here we use atomic force microscopy to examine charge transfer between weakly coupled pentacene molecules on insulating films with single-electron sensitivity and control over the atomistic details. We show that, in addition to the imaging capability, the probe tip can be used to control the charge state of individual molecules and to detect charge transfers to/from the tip, as well as between individual molecules. Our approach represents a novel route for molecular charge transfer studies with a host of opportunities, especially in combination with single atom/molecule manipulation and nanopatterning techniques. PMID:26387533

  10. Recent patents on self-quenching DNA probes.

    PubMed

    Knemeyer, Jens-Peter; Marmé, Nicole

    2007-01-01

    In this review, we report on patents concerning self-quenching DNA probes for assaying DNA during or after amplification as well as for direct assaying DNA or RNA, for example in living cells. Usually the probes consist of fluorescently labeled oligonucleotides whose fluorescence is quenched in the absence of the matching target DNA. Thereby the fluorescence quenching is based on fluorescence resonance energy transfer (FRET), photoinduced electron transfer (PET), or electronically interactions between dye and quencher. However, upon hybridization to the target or after the degradation during a PCR, the fluorescence of the dye is restored. Although the presented probes were originally developed for use in homogeneous assay formats, most of them are also appropriate to improve surface-based assay methods. In particular we describe patents for self-quenching primers, self-quenching probes for TaqMan assays, probes based on G-quartets, Molecular Beacons, Smart Probes, and Pleiades Probes.

  11. USING MOLECULAR PROBES TO STUDY INTERFACIAL REDOX REACTION AT FE-BEARING SMECTITES

    EPA Science Inventory

    The interfacial electron transfer of clay-water systems has a wide range of significance in geochemical and biogeochernical environments. However the mechanism of interfacial electron transport is poorly understood. The electron transfer mechanism at the solid-water interfaces of...

  12. Quantitative Probes of Electron-Phonon Coupling in an Organic Charge-Transfer Material

    NASA Astrophysics Data System (ADS)

    Rury, Aaron; Sorenson, Shayne; Driscoll, Eric; Dawlaty, Jahan

    While organic charge transfer (CT) materials may provide alternatives to inorganic materials in electronics and photonics applications, properties central to applications remain understudied in these organic materials. Specifically, electron-phonon coupling plays a pivotal role in electronic applications yet this coupling in CT materials remains difficult to directly characterize. To better understand the suitability of organic CT materials for electronic applications, we have devised an experimental technique that can directly assess electron-phonon coupling in a model organic CT material. Upon non-resonant interaction with an ultrafast laser pulse, we show that coherent excitation of Raman-active lattice vibrations of quinhydrone, a 1:1 co-crystal of the hydroquinone and p-benzoquinone, modulates the energies of electronic transitions probed by a white light pulse. Using a well-established theoretical framework of vibrational quantum beat spectra across the probe bandwidth, we quantitatively extract the parameters describing these electronic transitions to characterize electron-phonon coupling in this material. In conjunction with temperature-dependent resonance Raman measurements, we assess the hypothesis that several sharp transitions in the near-IR correspond to previously unknown excitonic states of this material. These results and their interpretation set the foundation for further elucidation of the one of the most important parameters in the application of organic charge-transfer materials to electronics and photonics.

  13. A theoretical investigation of two typical two-photon pH fluorescent probes.

    PubMed

    Xu, Zhong; Ren, Ai-Min; Guo, Jing-Fu; Liu, Xiao-Ting; Huang, Shuang; Feng, Ji-Kang

    2013-01-01

    Intracellular pH plays an important role in many cellular events, such as cell growth, endocytosis, cell adhesion and so on. Some pH fluorescent probes have been reported, but most of them are one-photon fluorescent probes, studies about two-photon fluorescent probes are very rare. In this work, the geometrical structure, electronic structure and one-photon properties of a series of two-photon pH fluorescent probes have been theoretically studied by using density functional theory (DFT) method. Their two-photon absorption (TPA) properties are calculated using the method of ZINDO/sum-over-states method. Two types of two-photon pH fluorescent probes have been investigated by theoretical methods. The mechanisms of the Photoinduced Charge Transfer (PCT) probes and the Photoinduced Electron Transfer (PET) probes are verified specifically. Some designed strategies of good two-photon pH fluorescent probes are suggested on the basis of the investigated results of two mechanisms. For the PCT probes, substituting a stronger electron-donating group for the terminal methoxyl group is an advisable choice to increase the TPA cross section. For the PET probes, the TPA cross sections increase upon protonation. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  14. Transfer doping of single isolated nanodiamonds, studied by scanning probe microscopy techniques.

    PubMed

    Bolker, Asaf; Saguy, Cecile; Kalish, Rafi

    2014-09-26

    The transfer doping of diamond surfaces has been applied in various novel two-dimensional electronic devices. Its extension to nanodiamonds (ND) is essential for ND-based applications in many fields. In particular, understanding the influence of the crystallite size on transfer doping is desirable. Here, we report the results of a detailed study of the electronic energetic band structure of single, isolated transfer-doped nanodiamonds with nanometric resolution using a combination of scanning tunneling spectroscopy and Kelvin force microscopy measurements. The results show how the band gap, the valence band maximum, the electron affinity and the work function all depend on the ND's size and nanoparticle surface properties. The present analysis, which combines information from both scanning tunneling spectroscopy and Kelvin force microscopy, should be applicable to any nanoparticle or surface that can be measured with scanning probe techniques.

  15. Photoinduced electron transfer in a molecular dyad by nanosecond pump-pump-probe spectroscopy.

    PubMed

    Ha-Thi, M-H; Pham, V-T; Pino, T; Maslova, V; Quaranta, A; Lefumeux, C; Leibl, W; Aukauloo, A

    2018-06-01

    The design of robust and inexpensive molecular photocatalysts for the conversion of abundant stable molecules like H2O and CO2 into an energetic carrier is one of the major fundamental questions for scientists nowadays. The outstanding challenge is to couple single photoinduced charge separation events with the sequential accumulation of redox equivalents at the catalytic unit for performing multielectronic catalytic reactions. Herein, double excitation by nanosecond pump-pump-probe experiments was used to interrogate the photoinduced charge transfer and charge accumulation on a molecular dyad composed of a porphyrin chromophore and a ruthenium-based catalyst in the presence of a reversible electron acceptor. An accumulative charge transfer state is unattainable because of rapid reverse electron transfer to the photosensitizer upon the second excitation and the low driving force of the forward photodriven electron transfer reaction. Such a method allows the fundamental understanding of the relaxation mechanism after two sequential photon absorptions, deciphering the undesired electron transfer reactions that limit the charge accumulation efficiency. This study is a step toward the improvement of synthetic strategies of molecular photocatalysts for light-induced charge accumulation and more generally, for solar energy conversion.

  16. The mechanism and regularity of quenching the effect of bases on fluorophores: the base-quenched probe method.

    PubMed

    Mao, Huihui; Luo, Guanghua; Zhan, Yuxia; Zhang, Jun; Yao, Shuang; Yu, Yang

    2018-04-30

    The base-quenched probe method for detecting single nucleotide polymorphisms (SNPs) relies on real-time PCR and melting-curve analysis, which might require only one pair of primers and one probe. At present, it has been successfully applied to detect SNPs of multiple genes. However, the mechanism of the base-quenched probe method remains unclear. Therefore, we investigated the possible mechanism of fluorescence quenching by DNA bases in aqueous solution using spectroscopic techniques. It showed that the possible mechanism might be photo-induced electron transfer. We next analyzed electron transfer or transmission between DNA bases and fluorophores. The data suggested that in single-stranded DNA, the electrons of the fluorophore are transferred to the orbital of pyrimidine bases (thymine (T) and cytosine (C)), or that the electron orbitals of the fluorophore are occupied by electrons from purine bases (guanine (G) and adenine (A)), which lead to fluorescence quenching. In addition, the electrons of a fluorophore excited by light can be transmitted along double-stranded DNA, which gives rise to stronger fluorescence quenching. Furthermore, we demonstrated that the quenching efficiency of bases is in the order of G > C ≥ A ≥ T and the capability of electron transmission of base-pairs in double-stranded DNA is in the order of CG[combining low line] ≥ GC[combining low line] > TA[combining low line] ≥ AT[combining low line] (letters representing bases on the complementary strand of the probe are bold and underlined), and the most common commercial fluorophores including FAM, HEX, TET, JOE, and TAMRA could be influenced by bases and are in line with this mechanism and regularity.

  17. Transfer doping of single isolated nanodiamonds, studied by scanning probe microscopy techniques

    NASA Astrophysics Data System (ADS)

    Bolker, Asaf; Saguy, Cecile; Kalish, Rafi

    2014-09-01

    The transfer doping of diamond surfaces has been applied in various novel two-dimensional electronic devices. Its extension to nanodiamonds (ND) is essential for ND-based applications in many fields. In particular, understanding the influence of the crystallite size on transfer doping is desirable. Here, we report the results of a detailed study of the electronic energetic band structure of single, isolated transfer-doped nanodiamonds with nanometric resolution using a combination of scanning tunneling spectroscopy and Kelvin force microscopy measurements. The results show how the band gap, the valence band maximum, the electron affinity and the work function all depend on the ND’s size and nanoparticle surface properties. The present analysis, which combines information from both scanning tunneling spectroscopy and Kelvin force microscopy, should be applicable to any nanoparticle or surface that can be measured with scanning probe techniques.

  18. Conductive scanning probe microscopy of the semicontinuous gold film and its SERS enhancement toward two-step photo-induced charge transfer and effect of the supportive layer

    NASA Astrophysics Data System (ADS)

    Sinthiptharakoon, K.; Sapcharoenkun, C.; Nuntawong, N.; Duong, B.; Wutikhun, T.; Treetong, A.; Meemuk, B.; Kasamechonchung, P.; Klamchuen, A.

    2018-05-01

    The semicontinuous gold film, enabling various electronic applications including development of surface-enhanced Raman scattering (SERS) substrate, is investigated using conductive atomic force microscopy (CAFM) and Kelvin probe force microscopy (KPFM) to reveal and investigate local electronic characteristics potentially associated with SERS generation of the film material. Although the gold film fully covers the underlying silicon surface, CAFM results reveal that local conductivity of the film is not continuous with insulating nanoislands appearing throughout the surface due to incomplete film percolation. Our analysis also suggests the two-step photo-induced charge transfer (CT) play the dominant role in the enhancement of SERS intensity with strong contribution from free electrons of the silicon support. Silicon-to-gold charge transport is illustrated by KPFM results showing that Fermi level of the gold film is slightly inhomogeneous and far below the silicon conduction band. We propose that inhomogeneity of the film workfunction affecting chemical charge transfer between gold and Raman probe molecule is associated with the SERS intensity varying across the surface. These findings provide deeper understanding of charge transfer mechanism for SERS which can help in design and development of the semicontinuous gold film-based SERS substrate and other electronic applications.

  19. In-Situ Probing Plasmonic Energy Transfer in Cu(In, Ga)Se2 Solar Cells by Ultrabroadband Femtosecond Pump-Probe Spectroscopy.

    PubMed

    Chen, Shih-Chen; Wu, Kaung-Hsiung; Li, Jia-Xing; Yabushita, Atsushi; Tang, Shih-Han; Luo, Chih Wei; Juang, Jenh-Yih; Kuo, Hao-Chung; Chueh, Yu-Lun

    2015-12-18

    In this work, we demonstrated a viable experimental scheme for in-situ probing the effects of Au nanoparticles (NPs) incorporation on plasmonic energy transfer in Cu(In, Ga)Se2 (CIGS) solar cells by elaborately analyzing the lifetimes and zero moment for hot carrier relaxation with ultrabroadband femtosecond pump-probe spectroscopy. The signals of enhanced photobleach (PB) and waned photoinduced absorption (PIA) attributable to surface plasmon resonance (SPR) of Au NPs were in-situ probed in transient differential absorption spectra. The results suggested that substantial carriers can be excited from ground state to lower excitation energy levels, which can reach thermalization much faster with the existence of SPR. Thus, direct electron transfer (DET) could be implemented to enhance the photocurrent of CIGS solar cells. Furthermore, based on the extracted hot carrier lifetimes, it was confirmed that the improved electrical transport might have been resulted primarily from the reduction in the surface recombination of photoinduced carriers through enhanced local electromagnetic field (LEMF). Finally, theoretical calculation for resonant energy transfer (RET)-induced enhancement in the probability of exciting electron-hole pairs was conducted and the results agreed well with the enhanced PB peak of transient differential absorption in plasmonic CIGS film. These results indicate that plasmonic energy transfer is a viable approach to boost high-efficiency CIGS solar cells.

  20. Theoretical Design of a Two-Photon Fluorescent Probe for Nitric Oxide with Enhanced Emission Induced by Photoninduced Electron Transfer.

    PubMed

    Zhang, Yujin; Leng, Jiancai; Hu, Wei

    2018-04-25

    In the present work, we systematically investigate the sensing abilities of two recently literature-reported two-photon fluorescent NO probes, i.e., the o-phenylenediamine derivative of Nile Red and the p-phenylenediamine derivative of coumarin. The recognition mechanisms of these probes are studied by using the molecular orbital classifying method, which demonstrates the photoinduced electron transfer process. In addition, we have designed two new probes by swapping receptor units present on fluorophores, i.e., the p-phenylenediamine derivative of Nile Red and the o-phenylenediamine derivative of coumarin. However, it illustrates that only the latter has ability to function as off-on typed fluorescent probe for NO. More importantly, calculations on the two-photon absorption properties of the probes demonstrate that both receptor derivatives of coumarin possess larger TPA cross-sections than Nile Red derivatives, which makes a better two photon fluorescent probe. Our theoretical investigations reveal that the underlying mechanism satisfactorily explain the experimental results, providing a theoretical basis on the structure-property relationships which is beneficial to developing new two-photon fluorescent probes for NO.

  1. Two-Photon Antenna-Core Oxygen Probe with Enhanced Performance

    PubMed Central

    2015-01-01

    Recent development of two-photon phosphorescence lifetime microscopy (2PLM) of oxygen enabled first noninvasive high-resolution measurements of tissue oxygenation in vivo in 3D, providing valuable physiological information. The so far developed two-photon-enhanced phosphorescent probes comprise antenna-core constructs, in which two-photon absorbing chromophores (antenna) capture and channel excitation energy to a phosphorescent core (metalloporphyrin) via intramolecular excitation energy transfer (EET). These probes allowed demonstration of the methods’ potential; however, they suffer from a number of limitations, such as partial loss of emissivity to competing triplet state deactivation pathways (e.g., electron transfer) and suboptimal sensitivity to oxygen, thereby limiting spatial and temporal resolution of the method. Here we present a new probe, PtTCHP-C307, designed to overcome these limitations. The key improvements include significant increase in the phosphorescence quantum yield, higher efficiency of the antenna-core energy transfer, minimized quenching of the phosphorescence by electron transfer and increased signal dynamic range. For the same excitation flux, the new probe is able to produce up to 6-fold higher signal output than previously reported molecules. Performance of PtTCHP-C307 was demonstrated in vivo in pO2 measurements through the intact mouse skull into the bone marrow, where all blood cells are made from hematopoietic stem cells. PMID:24848643

  2. Role of cation size in the energy of electron transfer to 1:1 polyoxometalate ion pairs {(M+)(Xn+VW11O40)}(8–n)–(M=Li, Na, K)

    Treesearch

    Vladimir A. Grigoriev; Craig L. Hill; Ira A. Weinstock

    2000-01-01

    The use of soluble salts of polyoxometalates (d0-early-transition metal oxygen-anion clusters or POMs) as selective oxidation or electron-transfer catalysts, as probes in physical-organic and biological chemistry, and in the study of electron-and energy-transfer phenomena constitutes a substantial and rapidly growing literature. While rarely addressed, however, POM...

  3. Charge Transfer Dynamics at Dye-Sensitized ZnO and TiO2 Interfaces Studied by Ultrafast XUV Photoelectron Spectroscopy

    PubMed Central

    Borgwardt, Mario; Wilke, Martin; Kampen, Thorsten; Mähl, Sven; Xiao, Manda; Spiccia, Leone; Lange, Kathrin M.; Kiyan, Igor Yu.; Aziz, Emad F.

    2016-01-01

    Interfacial charge transfer from photoexcited ruthenium-based N3 dye molecules into ZnO thin films received controversial interpretations. To identify the physical origin for the delayed electron transfer in ZnO compared to TiO2, we probe directly the electronic structure at both dye-semiconductor interfaces by applying ultrafast XUV photoemission spectroscopy. In the range of pump-probe time delays between 0.5 to 1.0 ps, the transient signal of the intermediate states was compared, revealing a distinct difference in their electron binding energies of 0.4 eV. This finding strongly indicates the nature of the charge injection at the ZnO interface associated with the formation of an interfacial electron-cation complex. It further highlights that the energetic alignment between the dye donor and semiconductor acceptor states appears to be of minor importance for the injection kinetics and that the injection efficiency is dominated by the electronic coupling. PMID:27073060

  4. Two-dimensional vibrational-electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira

    2015-10-01

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.

  5. Two-dimensional vibrational-electronic spectroscopy.

    PubMed

    Courtney, Trevor L; Fox, Zachary W; Slenkamp, Karla M; Khalil, Munira

    2015-10-21

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([Fe(III)(CN)6](3-) dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5Fe(II)CNRu(III)(NH3)5](-) dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.

  6. Charge transport in molecular junctions: From tunneling to hopping with the probe technique

    NASA Astrophysics Data System (ADS)

    Kilgour, Michael; Segal, Dvira

    2015-07-01

    We demonstrate that a simple phenomenological approach can be used to simulate electronic conduction in molecular wires under thermal effects induced by the surrounding environment. This "Landauer-Büttiker's probe technique" can properly replicate different transport mechanisms, phase coherent nonresonant tunneling, ballistic behavior, and hopping conduction. Specifically, our simulations with the probe method recover the following central characteristics of charge transfer in molecular wires: (i) the electrical conductance of short wires falls off exponentially with molecular length, a manifestation of the tunneling (superexchange) mechanism. Hopping dynamics overtakes superexchange in long wires demonstrating an ohmic-like behavior. (ii) In off-resonance situations, weak dephasing effects facilitate charge transfer, but under large dephasing, the electrical conductance is suppressed. (iii) At high enough temperatures, kBT/ɛB > 1/25, with ɛB as the molecular-barrier height, the current is enhanced by a thermal activation (Arrhenius) factor. However, this enhancement takes place for both coherent and incoherent electrons and it does not readily indicate on the underlying mechanism. (iv) At finite-bias, dephasing effects may impede conduction in resonant situations. We further show that memory (non-Markovian) effects can be implemented within the Landauer-Büttiker's probe technique to model the interaction of electrons with a structured environment. Finally, we examine experimental results of electron transfer in conjugated molecular wires and show that our computational approach can reasonably reproduce reported values to provide mechanistic information.

  7. TanA: a fluorogenic probe for thiaminase activity

    USGS Publications Warehouse

    Zhu, Wanjun; Zajicek, James L.; Tillitt, Donald E.; Glass, Timothy E.

    2013-01-01

    A fluorogenic thiamine analogue is presented as a fluorescent probe for thiaminase activity. The emission of the fluorophore is quenched by photoinduced electron transfer (PET) to the N-substituted pyridinium portion of the probe. Action of the enzyme releases the free pyridine group causing a substantial increase in fluorescence.

  8. Is back-electron transfer process in Betaine-30 coherent?

    NASA Astrophysics Data System (ADS)

    Rafiq, Shahnawaz; Scholes, Gregory D.

    2017-09-01

    The possible role of coherent vibrational motion in ultrafast photo-induced electron transfer remains unclear despite considerable experimental and theoretical advances. We revisited this problem by tracking the back-electron transfer (bET) process in Betaine-30 with broadband pump-probe spectroscopy. Dephasing time constant of certain high-frequency vibrations as a function of solvent shows a trend similar to the ET rates. In the purview of Bixon-Jortner model, high-frequency quantum vibrations bridge the reactant-product energy gap by providing activationless vibronic channels. Such interaction reduces the effective coupling significantly and thereby the coherence effects are eliminated due to energy gap fluctuations, making the back-electron transfer incoherent.

  9. Hypochlorite-Mediated Modulation of Photoinduced Electron Transfer in a Phenothiazine-Boron dipyrromethene Electron Donor-Acceptor Dyad: A Highly Water Soluble "Turn-On" Fluorescent Probe for Hypochlorite.

    PubMed

    Soni, Disha; Duvva, Naresh; Badgurjar, Deepak; Roy, Tapta Kanchan; Nimesh, Surendra; Arya, Geeta; Giribabu, Lingamallu; Chitta, Raghu

    2018-04-16

    A highly water-soluble phenothiazine (PTZ)-boron dipyrromethene (BODIPY)-based electron donor-acceptor dyad (WS-Probe), which contains BODIPY as the signaling antennae and PTZ as the OCl - reactive group, was designed and used as a fluorescent chemosensor for the detection of OCl - . Upon addition of incremental amounts of NaOCl, the quenched fluorescence of WS-Probe was enhanced drastically, which indicated the inhibition of reductive photoinduced electron transfer (PET) from PTZ to 1 BODIPY*; the detection limit was calculated to be 26.7 nm. Selectivity studies with various reactive oxygen species, cations, and anions revealed that WS-Probe was able to detect OCl - selectively. Steady-state fluorescence studies performed at varied pH suggested that WS-Probe can detect NaOCl and exhibits maximum fluorescence in the pH range of 7 to 8, similar to physiological conditions. ESI-MS analysis and 1 H NMR spectroscopy titrations showed the formation of sulfoxide as the major oxidized product upon addition of hypochlorite. More interestingly, when WS-Probe was treated with real water samples, the fluorescence response was clearly visible with tap water and disinfectant, which indicated the presence of OCl - in these samples. The in vitro cell viability assay performed with human embryonic kidney 293 (HEK 293) cells suggested that WS-probe is non-toxic up to 10 μm and implicates the use of the probe for biological applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A Critical Evaluation of Studies Employing Alkenyl Halide ’Mechanistic Probe’ as Indicators of Single Electron Transfer Processes.

    DTIC Science & Technology

    1987-07-07

    College Station, TX 77843 Pittsburgh, PA 15260 Introduction: Chemical reactions come about through the reorganization of valence electrons. The notion...Contmnue on reverie of necessary and odentify 0)’ Wooc ,7umor r) Recently it has been suggested that many reaction traditionally classed in polar terms may...evaluates the utility of these alkenyl halide probes as mechanistic probes for SET. Reactions which interfere with the standard analysis ~ include the

  11. Intermolecular electron transfer from intramolecular excitation and coherent acoustic phonon generation in a hydrogen-bonded charge-transfer solid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rury, Aaron S., E-mail: arury@usc.edu; Sorenson, Shayne; Dawlaty, Jahan M.

    2016-03-14

    Organic materials that produce coherent lattice phonon excitations in response to external stimuli may provide next generation solutions in a wide range of applications. However, for these materials to lead to functional devices in technology, a full understanding of the possible driving forces of coherent lattice phonon generation must be attained. To facilitate the achievement of this goal, we have undertaken an optical spectroscopic study of an organic charge-transfer material formed from the ubiquitous reduction-oxidation pair hydroquinone and p-benzoquinone. Upon pumping this material, known as quinhydrone, on its intermolecular charge transfer resonance as well as an intramolecular resonance of p-benzoquinone,more » we find sub-cm{sup −1} oscillations whose dispersion with probe energy resembles that of a coherent acoustic phonon that we argue is coherently excited following changes in the electron density of quinhydrone. Using the dynamical information from these ultrafast pump-probe measurements, we find that the fastest process we can resolve does not change whether we pump quinhydrone at either energy. Electron-phonon coupling from both ultrafast coherent vibrational and steady-state resonance Raman spectroscopies allows us to determine that intramolecular electronic excitation of p-benzoquinone also drives the electron transfer process in quinhydrone. These results demonstrate the wide range of electronic excitations of the parent of molecules found in many functional organic materials that can drive coherent lattice phonon excitations useful for applications in electronics, photonics, and information technology.« less

  12. Intermolecular electron transfer from intramolecular excitation and coherent acoustic phonon generation in a hydrogen-bonded charge-transfer solid

    NASA Astrophysics Data System (ADS)

    Rury, Aaron S.; Sorenson, Shayne; Dawlaty, Jahan M.

    2016-03-01

    Organic materials that produce coherent lattice phonon excitations in response to external stimuli may provide next generation solutions in a wide range of applications. However, for these materials to lead to functional devices in technology, a full understanding of the possible driving forces of coherent lattice phonon generation must be attained. To facilitate the achievement of this goal, we have undertaken an optical spectroscopic study of an organic charge-transfer material formed from the ubiquitous reduction-oxidation pair hydroquinone and p-benzoquinone. Upon pumping this material, known as quinhydrone, on its intermolecular charge transfer resonance as well as an intramolecular resonance of p-benzoquinone, we find sub-cm-1 oscillations whose dispersion with probe energy resembles that of a coherent acoustic phonon that we argue is coherently excited following changes in the electron density of quinhydrone. Using the dynamical information from these ultrafast pump-probe measurements, we find that the fastest process we can resolve does not change whether we pump quinhydrone at either energy. Electron-phonon coupling from both ultrafast coherent vibrational and steady-state resonance Raman spectroscopies allows us to determine that intramolecular electronic excitation of p-benzoquinone also drives the electron transfer process in quinhydrone. These results demonstrate the wide range of electronic excitations of the parent of molecules found in many functional organic materials that can drive coherent lattice phonon excitations useful for applications in electronics, photonics, and information technology.

  13. Two-dimensional vibrational-electronic spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.

    2015-10-21

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE)more » to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (ν{sub CN}) and either a ligand-to-metal charge transfer transition ([Fe{sup III}(CN){sub 6}]{sup 3−} dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN){sub 5}Fe{sup II}CNRu{sup III}(NH{sub 3}){sub 5}]{sup −} dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific ν{sub CN} modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.« less

  14. An excited state intramolecular proton transfer dye based fluorescence turn-on probe for fast detection of thiols and its applications in bioimaging

    NASA Astrophysics Data System (ADS)

    Zhao, Yun; Xue, Yuanyuan; Li, Haoyang; Zhu, Ruitao; Ren, Yuehong; Shi, Qinghua; Wang, Song; Guo, Wei

    2017-03-01

    In this study, a new fluorescent probe 2-(2‧-hydroxy-5‧-N-maleimide phenyl)-benzothiazole (probe 1), was designed and synthesized by linking the excited state intramolecular proton transfer (ESIPT) fluorophore to the maleimide group for selective detection of thiols in aqueous solution. The fluorescence of probe 1 is strongly quenched by maleimide group through the photo-induced electron transfer (PET) mechanism, but after reaction with thiol, the fluorescence of ESIPT fluorophore is restored, affording a large Stokes shifts. Upon addition of cysteine (Cys), probe 1 exhibited a fast response time (complete within 30 s) and a high signal-to-noise ratio (up to 23-fold). It showed a high selectivity and excellent sensitivity to thiols over other relevant biological species, with a detection limit of 3.78 × 10- 8 M (S/N = 3). Moreover, the probe was successfully applied to the imaging of thiols in living cells.

  15. Development and application of a ruthenium(II) complex-based photoluminescent and electrochemiluminescent dual-signaling probe for nitric oxide.

    PubMed

    Zhang, Wenzhu; Zhang, Jingmei; Zhang, Hailei; Cao, Liyan; Zhang, Run; Ye, Zhiqiang; Yuan, Jingli

    2013-11-15

    A ruthenium(II) complex, [Ru(bpy)2(DA-phen)](PF6)2 (bpy: 2,2'-bipyridine; DA-phen: 5,6-diamino-1,10-phenanthroline), has been developed as a photoluminescent (PL) and electrochemiluminescent (ECL) dual-signaling probe for the highly sensitive and selective detection of nitric oxide (NO) in aqueous and biological samples. Due to the presence of electron transfer process from diamino group to the excited-state of the Ru(II) complex, the PL and ECL intensities of the probe are very weak. After the probe was reacted with NO in physiological pH aqueous media under aerobic conditions to afford its triazole derivative, [Ru(bpy)2(TA-phen)](2+) (TA-phen: 5,6-triazole-1,10-phenanthroline), the electron transfer process was inhibited, so that the PL and ECL efficiency of the Ru(II) complex was remarkably increased. The PL and ECL responses of the probe to NO in physiological pH media are highly sensitive with the detection limits at low micromolar concentration level, and highly specific without the interferences of other reactive oxygen/nitrogen species (ROS/RNS) and metal ions. Moreover, the probe has good cell-membrane permeability, and can be rapidly transferred into living cells for trapping the intracellular NO molecules. These features enabled the probe to be successfully used for the monitoring of the endogenous NO production in living biological cell and tissue samples with PL and ECL dual-modes. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Chemical and physical investigations on the charge transfer interaction of organic donors with iodine and its application as non-traditional organic conductors

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Sharshar, T.; Adam, Abdel Majid A.; Elsabawy, Khaled M.; Hemeda, O. M.

    2014-09-01

    The iso-leucine-iodide and methionine-iodide charge-transfer complexes were prepared and characterized using different spectroscopic techniques. The iodide charge-transfer complexes were synthesized by grinding KI-I2-amino acid with 1:1:1 M ratio in presence of few drops of methanol solvent. The structures of both solid amino acid iodide charge-transfer complexes are discussed with the help of the obtained results of the infrared and Raman laser spectra, Uv-vis. electronic spectra and thermal analyses. The electrical properties (AC resistivity and dielectric constant) of both complexes were investigated. The positron annihilation Doppler broadening (PADB) spectroscopies were also used to probe the structural changes of both complexes. The PADB line-shape parameters (S and W) were found to be dependent on the structure, electronic configuration of the charge transfer complex. The PADB technique is a powerful tool to probe the structural features of the KI-I2-amino acid complexes.

  17. Highly water-soluble BODIPY-based fluorescent probe for sensitive and selective detection of nitric oxide in living cells.

    PubMed

    Vegesna, Giri K; Sripathi, Srinivas R; Zhang, Jingtuo; Zhu, Shilei; He, Weilue; Luo, Fen-Tair; Jahng, Wan Jin; Frost, Megan; Liu, Haiying

    2013-05-22

    A highly water-soluble BODIPY dye bearing electron-rich o-diaminophenyl groups at 2,6-positions was prepared as a highly sensitive and selective fluorescent probe for detection of nitric oxide (NO) in living cells. The fluorescent probe displays an extremely weak fluorescence with fluorescence quantum yield of 0.001 in 10 mM phosphate buffer (pH 7.0) in the absence of NO as two electron-rich o-diaminophenyl groups at 2,6-positions significantly quench the fluorescence of the BODIPY dye via photoinduced electron transfer mechanism. The presence of NO in cells enhances the dye fluorescence dramatically. The fluorescent probe demonstrates excellent water solubility, membrane permeability, and compatibility with living cells for sensitive detection of NO.

  18. Recent Advances in Macrocyclic Fluorescent Probes for Ion Sensing.

    PubMed

    Wong, Joseph K-H; Todd, Matthew H; Rutledge, Peter J

    2017-01-25

    Small-molecule fluorescent probes play a myriad of important roles in chemical sensing. Many such systems incorporating a receptor component designed to recognise and bind a specific analyte, and a reporter or transducer component which signals the binding event with a change in fluorescence output have been developed. Fluorescent probes use a variety of mechanisms to transmit the binding event to the reporter unit, including photoinduced electron transfer (PET), charge transfer (CT), Förster resonance energy transfer (FRET), excimer formation, and aggregation induced emission (AIE) or aggregation caused quenching (ACQ). These systems respond to a wide array of potential analytes including protons, metal cations, anions, carbohydrates, and other biomolecules. This review surveys important new fluorescence-based probes for these and other analytes that have been reported over the past five years, focusing on the most widely exploited macrocyclic recognition components, those based on cyclam, calixarenes, cyclodextrins and crown ethers; other macrocyclic and non-macrocyclic receptors are also discussed.

  19. Charge transfer in dissociating iodomethane and fluoromethane molecules ionized by intense femtosecond X-ray pulses

    PubMed Central

    Boll, Rebecca; Erk, Benjamin; Coffee, Ryan; Trippel, Sebastian; Kierspel, Thomas; Bomme, Cédric; Bozek, John D.; Burkett, Mitchell; Carron, Sebastian; Ferguson, Ken R.; Foucar, Lutz; Küpper, Jochen; Marchenko, Tatiana; Miron, Catalin; Patanen, Minna; Osipov, Timur; Schorb, Sebastian; Simon, Marc; Swiggers, Michelle; Techert, Simone; Ueda, Kiyoshi; Bostedt, Christoph; Rolles, Daniel; Rudenko, Artem

    2016-01-01

    Ultrafast electron transfer in dissociating iodomethane and fluoromethane molecules was studied at the Linac Coherent Light Source free-electron laser using an ultraviolet-pump, X-ray-probe scheme. The results for both molecules are discussed with respect to the nature of their UV excitation and different chemical properties. Signatures of long-distance intramolecular charge transfer are observed for both species, and a quantitative analysis of its distance dependence in iodomethane is carried out for charge states up to I21+. The reconstructed critical distances for electron transfer are in good agreement with a classical over-the-barrier model and with an earlier experiment employing a near-infrared pump pulse. PMID:27051675

  20. Design strategy for photoinduced electron transfer-based small-molecule fluorescent probes of biomacromolecules.

    PubMed

    Zhang, Wei; Ma, Zhao; Du, Lupei; Li, Minyong

    2014-06-07

    As the cardinal support of innumerable biological processes, biomacromolecules such as proteins, nucleic acids and polysaccharides are of importance to living systems. The key to understanding biological processes is to realize the role of these biomacromolecules in thte localization, distribution, conformation and interaction with other molecules. With the current development and adaptation of fluorescent technologies in biomedical and pharmaceutical fields, the fluorescence imaging (FLI) approach of using small-molecule fluorescent probes is becoming an up-to-the-minute method for the detection and monitoring of these imperative biomolecules in life sciences. However, conventional small-molecule fluorescent probes may provide undesirable results because of their intrinsic deficiencies such as low signal-to-noise ratio (SNR) and false-positive errors. Recently, small-molecule fluorescent probes with a photoinduced electron transfer (PET) "on/off" switch for biomacromolecules have been thoroughly considered. When recognized by the biomacromolecules, these probes turn on/off the PET switch and change the fluorescence intensity to present a high SNR result. It should be emphasized that these PET-based fluorescent probes could be advantageous for understanding the pathogenesis of various diseases caused by abnormal expression of biomacromolecules. The discussion of this successful strategy involved in this review will be a valuable guide for the further development of new PET-based small-molecule fluorescent probes for biomacromolecules.

  1. Monitoring Chemical and Biological Electron Transfer Reactions with a Fluorogenic Vitamin K Analogue Probe.

    PubMed

    Belzile, Mei-Ni; Godin, Robert; Durantini, Andrés M; Cosa, Gonzalo

    2016-12-21

    We report herein the design, synthesis, and characterization of a two-segment fluorogenic analogue of vitamin K, B-VK Q , prepared by coupling vitamin K 3 , also known as menadione (a quinone redox center), to a boron-dipyrromethene (BODIPY) fluorophore (a lipophilic reporter segment). Oxidation-reduction reactions, spectroelectrochemical studies, and enzymatic assays conducted in the presence of DT-diaphorase illustrate that the new probe shows reversible redox behavior on par with that of vitamin K, provides a high-sensitivity fluorescence signal, and is compatible with biological conditions, opening the door to monitor remotely (i.e., via imaging) redox processes in real time. In its oxidized form, B-VK Q is non-emissive, while upon reduction to the hydroquinone form, B-VK QH 2 , BODIPY fluorescence is restored, with emission quantum yield values of ca. 0.54 in toluene. Density functional theory studies validate a photoinduced electron transfer intramolecular switching mechanism, active in the non-emissive quinone form and deactivated upon reduction to the emissive dihydroquinone form. Our results highlight the potential of B-VK Q as a fluorogenic probe to study electron transfer and transport in model systems and biological structures with optimal sensitivity and desirable chemical specificity. Use of such a probe may enable a better understanding of the role that vitamin K plays in biological redox reactions ubiquitous in key cellular processes, and help elucidate the mechanism and pathological significance of these reactions in biological systems.

  2. A fluorescent probe for ecstasy.

    PubMed

    Masseroni, D; Biavardi, E; Genovese, D; Rampazzo, E; Prodi, L; Dalcanale, E

    2015-08-18

    A nanostructure formed by the insertion in silica nanoparticles of a pyrene-derivatized cavitand, which is able to specifically recognize ecstasy in water, is presented. The absence of effects from interferents and an efficient electron transfer process occurring after complexation of ecstasy, makes this system an efficient fluorescent probe for this popular drug.

  3. Imaging the motion of electrons in 2D semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Dani, Keshav

    Technological progress since the late 20th century has centered on semiconductor devices, such as transistors, diodes, and solar cells. At the heart of these devices, is the internal motion of electrons through semiconductor materials due to applied electric fields or by the excitation of photocarriers. Imaging the motion of these electrons would provide unprecedented insight into this important phenomenon, but requires high spatial and temporal resolution. Current studies of electron dynamics in semiconductors are generally limited by the spatial resolution of optical probes, or by the temporal resolution of electronic probes. In this talk, we combine femtosecond pump-probe techniques with spectroscopic photoemission electron microscopy to image the motion of photoexcited electrons from high-energy to low-energy states in a 2D InSe/GaAs heterostructure exhibiting a type-II band alignment. At the instant of photoexcitation, energy-resolved photoelectron images reveal a highly non-equilibrium distribution of photocarriers in space and energy. Thereafter, in response to the out-of-equilibrium photocarriers, we observe the spatial redistribution of charges, thus forming internal electric fields, bending the semiconductor bands, and finally impeding further charge transfer. By assembling images taken at different time-delays, we make a movie lasting a few tens of picoseconds of the electron transfer process in the photoexcited type-II heterostructure - a fundamental phenomenon in semiconductor devices like solar cells. Quantitative analysis and theoretical modeling of spatial variations in the video provide insight into future solar cells, electron dynamics in 2D materials, and other semiconductor devices.

  4. Coherent fifth-order visible-infrared spectroscopies: ultrafast nonequilibrium vibrational dynamics in solution.

    PubMed

    Lynch, Michael S; Slenkamp, Karla M; Cheng, Mark; Khalil, Munira

    2012-07-05

    Obtaining a detailed description of photochemical reactions in solution requires measuring time-evolving structural dynamics of transient chemical species on ultrafast time scales. Time-resolved vibrational spectroscopies are sensitive probes of molecular structure and dynamics in solution. In this work, we develop doubly resonant fifth-order nonlinear visible-infrared spectroscopies to probe nonequilibrium vibrational dynamics among coupled high-frequency vibrations during an ultrafast charge transfer process using a heterodyne detection scheme. The method enables the simultaneous collection of third- and fifth-order signals, which respectively measure vibrational dynamics occurring on electronic ground and excited states on a femtosecond time scale. Our data collection and analysis strategy allows transient dispersed vibrational echo (t-DVE) and dispersed pump-probe (t-DPP) spectra to be extracted as a function of electronic and vibrational population periods with high signal-to-noise ratio (S/N > 25). We discuss how fifth-order experiments can measure (i) time-dependent anharmonic vibrational couplings, (ii) nonequilibrium frequency-frequency correlation functions, (iii) incoherent and coherent vibrational relaxation and transfer dynamics, and (iv) coherent vibrational and electronic (vibronic) coupling as a function of a photochemical reaction.

  5. Probing and Exploiting the Interplay between Nuclear and Electronic Motion in Charge Transfer Processes.

    PubMed

    Delor, Milan; Sazanovich, Igor V; Towrie, Michael; Weinstein, Julia A

    2015-04-21

    The Born-Oppenheimer approximation refers to the assumption that the nuclear and electronic wave functions describing a molecular system evolve and can be determined independently. It is now well-known that this approximation often breaks down and that nuclear-electronic (vibronic) coupling contributes greatly to the ultrafast photophysics and photochemistry observed in many systems ranging from simple molecules to biological organisms. In order to probe vibronic coupling in a time-dependent manner, one must use spectroscopic tools capable of correlating the motions of electrons and nuclei on an ultrafast time scale. Recent developments in nonlinear multidimensional electronic and vibrational spectroscopies allow monitoring both electronic and structural factors with unprecedented time and spatial resolution. In this Account, we present recent studies from our group that make use of different variants of frequency-domain transient two-dimensional infrared (T-2DIR) spectroscopy, a pulse sequence combining electronic and vibrational excitations in the form of a UV-visible pump, a narrowband (12 cm(-1)) IR pump, and a broadband (400 cm(-1)) IR probe. In the first example, T-2DIR is used to directly compare vibrational dynamics in the ground and relaxed electronic excited states of Re(Cl)(CO)3(4,4'-diethylester-2,2'-bipyridine) and Ru(4,4'-diethylester-2,2'-bipyridine)2(NCS)2, prototypical charge transfer complexes used in photocatalytic CO2 reduction and electron injection in dye-sensitized solar cells. The experiments show that intramolecular vibrational redistribution (IVR) and vibrational energy transfer (VET) are up to an order of magnitude faster in the triplet charge transfer excited state than in the ground state. These results show the influence of electronic arrangement on vibrational coupling patterns, with direct implications for vibronic coupling mechanisms in charge transfer excited states. In the second example, we show unambiguously that electronic and vibrational movement are coupled in a donor-bridge-acceptor complex based on a Pt(II) trans-acetylide design motif. Time-resolved IR (TRIR) spectroscopy reveals that the rate of electron transfer (ET) is highly dependent on the amount of excess energy localized on the bridge following electronic excitation. Using an adaptation of T-2DIR, we are able to selectively perturb bridge-localized vibrational modes during charge separation, resulting in the donor-acceptor charge separation pathway being completely switched off, with all excess energy redirected toward the formation of a long-lived intraligand triplet state. A series of control experiments reveal that this effect is mode specific: it is only when the high-frequency bridging C≡C stretching mode is pumped that radical changes in photoproduct yields are observed. These experiments therefore suggest that one may perturb electronic movement by stimulating structural motion along the reaction coordinate using IR light. These studies add to a growing body of evidence suggesting that controlling the pathways and efficiency of charge transfer may be achieved through synthetic and perturbative approaches aiming to modulate vibronic coupling. Achieving such control would represent a breakthrough for charge transfer-based applications such as solar energy conversion and molecular electronics.

  6. Imaging the motion of electrons across semiconductor heterojunctions.

    PubMed

    Man, Michael K L; Margiolakis, Athanasios; Deckoff-Jones, Skylar; Harada, Takaaki; Wong, E Laine; Krishna, M Bala Murali; Madéo, Julien; Winchester, Andrew; Lei, Sidong; Vajtai, Robert; Ajayan, Pulickel M; Dani, Keshav M

    2017-01-01

    Technological progress since the late twentieth century has centred on semiconductor devices, such as transistors, diodes and solar cells. At the heart of these devices is the internal motion of electrons through semiconductor materials due to applied electric fields or by the excitation of photocarriers. Imaging the motion of these electrons would provide unprecedented insight into this important phenomenon, but requires high spatial and temporal resolution. Current studies of electron dynamics in semiconductors are generally limited by the spatial resolution of optical probes, or by the temporal resolution of electronic probes. Here, by combining femtosecond pump-probe techniques with spectroscopic photoemission electron microscopy, we imaged the motion of photoexcited electrons from high-energy to low-energy states in a type-II 2D InSe/GaAs heterostructure. At the instant of photoexcitation, energy-resolved photoelectron images revealed a highly non-equilibrium distribution of photocarriers in space and energy. Thereafter, in response to the out-of-equilibrium photocarriers, we observed the spatial redistribution of charges, thus forming internal electric fields, bending the semiconductor bands, and finally impeding further charge transfer. By assembling images taken at different time-delays, we produced a movie lasting a few trillionths of a second of the electron-transfer process in the photoexcited type-II heterostructure-a fundamental phenomenon in semiconductor devices such as solar cells. Quantitative analysis and theoretical modelling of spatial variations in the movie provide insight into future solar cells, 2D materials and other semiconductor devices.

  7. Imaging the motion of electrons across semiconductor heterojunctions

    NASA Astrophysics Data System (ADS)

    Man, Michael K. L.; Margiolakis, Athanasios; Deckoff-Jones, Skylar; Harada, Takaaki; Wong, E. Laine; Krishna, M. Bala Murali; Madéo, Julien; Winchester, Andrew; Lei, Sidong; Vajtai, Robert; Ajayan, Pulickel M.; Dani, Keshav M.

    2017-01-01

    Technological progress since the late twentieth century has centred on semiconductor devices, such as transistors, diodes and solar cells. At the heart of these devices is the internal motion of electrons through semiconductor materials due to applied electric fields or by the excitation of photocarriers. Imaging the motion of these electrons would provide unprecedented insight into this important phenomenon, but requires high spatial and temporal resolution. Current studies of electron dynamics in semiconductors are generally limited by the spatial resolution of optical probes, or by the temporal resolution of electronic probes. Here, by combining femtosecond pump-probe techniques with spectroscopic photoemission electron microscopy, we imaged the motion of photoexcited electrons from high-energy to low-energy states in a type-II 2D InSe/GaAs heterostructure. At the instant of photoexcitation, energy-resolved photoelectron images revealed a highly non-equilibrium distribution of photocarriers in space and energy. Thereafter, in response to the out-of-equilibrium photocarriers, we observed the spatial redistribution of charges, thus forming internal electric fields, bending the semiconductor bands, and finally impeding further charge transfer. By assembling images taken at different time-delays, we produced a movie lasting a few trillionths of a second of the electron-transfer process in the photoexcited type-II heterostructure—a fundamental phenomenon in semiconductor devices such as solar cells. Quantitative analysis and theoretical modelling of spatial variations in the movie provide insight into future solar cells, 2D materials and other semiconductor devices.

  8. Excited state dynamics can be used to probe donor-acceptor distances for H-tunneling reactions catalyzed by flavoproteins.

    PubMed

    Hardman, Samantha J O; Pudney, Christopher R; Hay, Sam; Scrutton, Nigel S

    2013-12-03

    In enzyme systems where fast motions are thought to contribute to H-transfer efficiency, the distance between hydrogen donor and acceptor is a very important factor. Sub-ångstrom changes in donor-acceptor distance can have a large effect on the rate of reaction, so a sensitive probe of these changes is a vital tool in our understanding of enzyme function. In this study we use ultrafast transient absorption spectroscopy to investigate the photoinduced electron transfer rates, which are also very sensitive to small changes in distance, between coenzyme analog, NAD(P)H4, and the isoalloxazine center in the model flavoenzymes morphinone reductase (wild-type and selected variants) and pentaerythritol tetranitrate reductase (wild-type). It is shown that upon addition of coenzyme to the protein the rate of photoinduced electron transfer is increased. By comparing the magnitude of this increase with existing values for NAD(P)H4-FMN distances, based on charge-transfer complex absorbance and experimental kinetic isotope effect reaction data, we show that this method can be used as a sensitive probe of donor-acceptor distance in a range of enzyme systems. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Kelvin probe force microscopy studies of the charge effects upon adsorption of carbon nanotubes and C60 fullerenes on hydrogen-terminated diamond

    NASA Astrophysics Data System (ADS)

    Kölsch, S.; Fritz, F.; Fenner, M. A.; Kurch, S.; Wöhrl, N.; Mayne, A. J.; Dujardin, G.; Meyer, C.

    2018-01-01

    Hydrogen-terminated diamond is known for its unusually high surface conductivity that is ascribed to its negative electron affinity. In the presence of acceptor molecules, electrons are expected to transfer from the surface to the acceptor, resulting in p-type surface conductivity. Here, we present Kelvin probe force microscopy (KPFM) measurements on carbon nanotubes and C60 adsorbed onto a hydrogen-terminated diamond(001) surface. A clear reduction in the Kelvin signal is observed at the position of the carbon nanotubes and C60 molecules as compared with the bare, air-exposed surface. This result can be explained by the high positive electron affinity of carbon nanotubes and C60, resulting in electron transfer from the surface to the adsorbates. When an oxygen-terminated diamond(001) is used instead, no reduction in the Kelvin signal is obtained. While the presence of a charged adsorbate or a difference in work function could induce a change in the KPFM signal, a charge transfer effect of the hydrogen-terminated diamond surface, by the adsorption of the carbon nanotubes and the C60 fullerenes, is consistent with previous theoretical studies.

  10. Engineering coherence among excited states in synthetic heterodimer systems.

    PubMed

    Hayes, Dugan; Griffin, Graham B; Engel, Gregory S

    2013-06-21

    The design principles that support persistent electronic coherence in biological light-harvesting systems are obscured by the complexity of such systems. Some electronic coherences in these systems survive for hundreds of femtoseconds at physiological temperatures, suggesting that coherent dynamics may play a role in photosynthetic energy transfer. Coherent effects may increase energy transfer efficiency relative to strictly incoherent transfer mechanisms. Simple, tractable, manipulable model systems are required in order to probe the fundamental physics underlying these persistent electronic coherences, but to date, these quantum effects have not been observed in small molecules. We have engineered a series of rigid synthetic heterodimers that can serve as such a model system and observed quantum beating signals in their two-dimensional electronic spectra consistent with the presence of persistent electronic coherences.

  11. Atomic bonding effects in annular dark field scanning transmission electron microscopy. I. Computational predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odlyzko, Michael L.; Mkhoyan, K. Andre, E-mail: mkhoyan@umn.edu; Himmetoglu, Burak

    2016-07-15

    Annular dark field scanning transmission electron microscopy (ADF-STEM) image simulations were performed for zone-axis-oriented light-element single crystals, using a multislice method adapted to include charge redistribution due to chemical bonding. Examination of these image simulations alongside calculations of the propagation of the focused electron probe reveal that the evolution of the probe intensity with thickness exhibits significant sensitivity to interatomic charge transfer, accounting for observed thickness-dependent bonding sensitivity of contrast in all ADF-STEM imaging conditions. Because changes in image contrast relative to conventional neutral atom simulations scale directly with the net interatomic charge transfer, the strongest effects are seen inmore » crystals with highly polar bonding, while no effects are seen for nonpolar bonding. Although the bonding dependence of ADF-STEM image contrast varies with detector geometry, imaging parameters, and material temperature, these simulations predict the bonding effects to be experimentally measureable.« less

  12. Elucidating the design principles of photosynthetic electron-transfer proteins by site-directed spin labeling EPR spectroscopy.

    PubMed

    Ishara Silva, K; Jagannathan, Bharat; Golbeck, John H; Lakshmi, K V

    2016-05-01

    Site-directed spin labeling electron paramagnetic resonance (SDSL EPR) spectroscopy is a powerful tool to determine solvent accessibility, side-chain dynamics, and inter-spin distances at specific sites in biological macromolecules. This information provides important insights into the structure and dynamics of both natural and designed proteins and protein complexes. Here, we discuss the application of SDSL EPR spectroscopy in probing the charge-transfer cofactors in photosynthetic reaction centers (RC) such as photosystem I (PSI) and the bacterial reaction center (bRC). Photosynthetic RCs are large multi-subunit proteins (molecular weight≥300 kDa) that perform light-driven charge transfer reactions in photosynthesis. These reactions are carried out by cofactors that are paramagnetic in one of their oxidation states. This renders the RCs unsuitable for conventional nuclear magnetic resonance spectroscopy investigations. However, the presence of native paramagnetic centers and the ability to covalently attach site-directed spin labels in RCs makes them ideally suited for the application of SDSL EPR spectroscopy. The paramagnetic centers serve as probes of conformational changes, dynamics of subunit assembly, and the relative motion of cofactors and peptide subunits. In this review, we describe novel applications of SDSL EPR spectroscopy for elucidating the effects of local structure and dynamics on the electron-transfer cofactors of photosynthetic RCs. Because SDSL EPR Spectroscopy is uniquely suited to provide dynamic information on protein motion, it is a particularly useful method in the engineering and analysis of designed electron transfer proteins and protein networks. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. Copyright © 2016. Published by Elsevier B.V.

  13. Single-molecule interfacial electron transfer dynamics in solar energy conversion

    NASA Astrophysics Data System (ADS)

    Dhital, Bharat

    This dissertation work investigated the parameters affecting the interfacial electron transfer (ET) dynamics in dye-semiconductor nanoparticles (NPs) system by using single-molecule fluorescence spectroscopy and imaging combined with electrochemistry. The influence of the molecule-substrate electronic coupling, the molecular structure, binding geometry on the surface and the molecule-attachment surface chemistry on interfacial charge transfer processes was studied on zinc porphyrin-TiO2 NP systems. The fluorescence blinking measurement on TiO2 NP demonstrated that electronic coupling regulates dynamics of charge transfer processes at the interface depending on the conformation of molecule on the surface. Moreover, semiconductor surface charge induced electronic coupling of molecule which is electrostatically adsorbed on the semiconductor surface also predominantly alters the ET dynamics. Furthermore, interfacial electric field and electron accepting state density dependent ET dynamics has been dissected in zinc porphyrin-TiO2 NP system by observing the single-molecule fluorescence blinking dynamics and fluorescence lifetime with and without applied bias. The significant difference in fluorescence fluctuation and lifetime suggested the modulation of charge transfer dynamics at the interface with external electric field perturbation. Quasi-continuous distribution of fluorescence intensity with applied negative potential was attributed to the faster charge recombination due to reduced density of electron accepting states. The driving force and electron accepting state density ET dependent dynamics has also been probed in zinc porphyrin-TiO2 NP and zinc porphyrin-indium tin oxide (ITO) systems. Study of a molecule adsorbed on two different semiconductors (ITO and TiO2), with large difference in electron densities and distinct driving forces, allows us to observe the changes in rates of back electron transfer process reflected by the suppressed fluorescence blinking of molecule on ITO surface. Finally, the electric field effect on the interface properties has been probed by using surface-enhanced Raman spectroscopy and supported by density functional theory calculations in alizarin-TiO2 system. The perturbation, created by the external potential, has been observed to cause a shift and/or splitting interfacial bond vibrational mode, typical indicator of the coupling energy changes between alizarin and TiO2. Such splitting provides evidence for electric field-dependent electronic coupling changes that have a significant impact on the interfacial electron transfer dynamics.

  14. Redox probing study of the potential dependence of charge transport through Li 2O 2

    DOE PAGES

    Knudsen, Kristian B.; Luntz, Alan C.; Jensen, Søren H.; ...

    2015-11-20

    In the field of energy storage devices the pursuit for cheap, high energy density, reliable secondary batteries is at the top of the agenda. The Li–O 2 battery is one of the possible technologies that, in theory, should be able to close the gap, which exists between the present state-of-the-art Li-ion technologies and the demand placed on batteries by technologies such as electrical vehicles. Here we present a redox probing study of the charge transfer across the main deposition product lithium peroxide, Li 2O 2, in the Li–O 2 battery using outer-sphere redox shuttles. The change in heterogeneous electron transfermore » exchange rate as a function of the potential and the Li 2O 2 layer thickness (~depth-of-discharge) was determined using electrochemical impedance spectroscopy. In addition, the attenuation of the electron transfer exchange rate with film thickness is dependent on the probing potential, providing evidence that hole transport is the dominant process for charge transfer through Li 2O 2 and showing that the origin of the sudden death observed upon discharge is due to charge transport limitations.« less

  15. Probing Electron Transfer Mechanisms in Shewanella oneidensis MR-1 using a Nanoelectrode Platform and Single-Cell Imaging

    DTIC Science & Technology

    2010-01-01

    investigate extracellu- lar electron transfer in Shewanella oneidensisMR-1,where an array of nanoholes precludes or single window allows for direct...the single-cell level (Fig. 1B) highlights the re- lative sizes of the nanohole and window openings in the insulating layer deposited over electrodes...relative to individual bacteria such as Shewanella. The nanoholes are sufficiently small to preclude direct contact of the bacterial cell body to the

  16. A photometric high-throughput method for identification of electrochemically active bacteria using a WO3 nanocluster probe.

    PubMed

    Yuan, Shi-Jie; He, Hui; Sheng, Guo-Ping; Chen, Jie-Jie; Tong, Zhong-Hua; Cheng, Yuan-Yuan; Li, Wen-Wei; Lin, Zhi-Qi; Zhang, Feng; Yu, Han-Qing

    2013-01-01

    Electrochemically active bacteria (EAB) are ubiquitous in environment and have important application in the fields of biogeochemistry, environment, microbiology and bioenergy. However, rapid and sensitive methods for EAB identification and evaluation of their extracellular electron transfer ability are still lacking. Herein we report a novel photometric method for visual detection of EAB by using an electrochromic material, WO(3) nanoclusters, as the probe. This method allowed a rapid identification of EAB within 5 min and a quantitative evaluation of their extracellular electron transfer abilities. In addition, it was also successfully applied for isolation of EAB from environmental samples. Attributed to its rapidness, high reliability, easy operation and low cost, this method has high potential for practical implementation of EAB detection and investigations.

  17. Low-loss electron energy loss spectroscopy: An atomic-resolution complement to optical spectroscopies and application to graphene

    DOE PAGES

    Kapetanakis, Myron; Zhou, Wu; Oxley, Mark P.; ...

    2015-09-25

    Photon-based spectroscopies have played a central role in exploring the electronic properties of crystalline solids and thin films. They are a powerful tool for probing the electronic properties of nanostructures, but they are limited by lack of spatial resolution. On the other hand, electron-based spectroscopies, e.g., electron energy loss spectroscopy (EELS), are now capable of subangstrom spatial resolution. Core-loss EELS, a spatially resolved analog of x-ray absorption, has been used extensively in the study of inhomogeneous complex systems. In this paper, we demonstrate that low-loss EELS in an aberration-corrected scanning transmission electron microscope, which probes low-energy excitations, combined with amore » theoretical framework for simulating and analyzing the spectra, is a powerful tool to probe low-energy electron excitations with atomic-scale resolution. The theoretical component of the method combines density functional theory–based calculations of the excitations with dynamical scattering theory for the electron beam. We apply the method to monolayer graphene in order to demonstrate that atomic-scale contrast is inherent in low-loss EELS even in a perfectly periodic structure. The method is a complement to optical spectroscopy as it probes transitions entailing momentum transfer. The theoretical analysis identifies the spatial and orbital origins of excitations, holding the promise of ultimately becoming a powerful probe of the structure and electronic properties of individual point and extended defects in both crystals and inhomogeneous complex nanostructures. The method can be extended to probe magnetic and vibrational properties with atomic resolution.« less

  18. Electron transfer and conformational change in complexes of trimethylamine dehydrogenase and electron transferring flavoprotein.

    PubMed

    Jones, Matthew; Talfournier, Francois; Bobrov, Anton; Grossmann, J Günter; Vekshin, Nikolai; Sutcliffe, Michael J; Scrutton, Nigel S

    2002-03-08

    The trimethylamine dehydrogenase-electron transferring flavoprotein (TMADH.ETF) electron transfer complex has been studied by fluorescence and absorption spectroscopies. These studies indicate that a series of conformational changes occur during the assembly of the TMADH.ETF electron transfer complex and that the kinetics of assembly observed with mutant TMADH (Y442F/L/G) or ETF (alpha R237A) complexes are much slower than are the corresponding rates of electron transfer in these complexes. This suggests that electron transfer does not occur in the thermodynamically most favorable state (which takes too long to form), but that one or more metastable states (which are formed more rapidly) are competent in transferring electrons from TMADH to ETF. Additionally, fluorescence spectroscopy studies of the TMADH.ETF complex indicate that ETF undergoes a stable conformational change (termed structural imprinting) when it interacts transiently with TMADH to form a second, distinct, structural form. The mutant complexes compromise imprinting of ETF, indicating a dependence on the native interactions present in the wild-type complex. The imprinted form of semiquinone ETF exhibits an enhanced rate of electron transfer to the artificial electron acceptor, ferricenium. Overall molecular conformations as probed by small-angle x-ray scattering studies are indistinguishable for imprinted and non-imprinted ETF, suggesting that changes in structure likely involve confined reorganizations within the vicinity of the FAD. Our results indicate a series of conformational events occur during the assembly of the TMADH.ETF electron transfer complex, and that the properties of electron transfer proteins can be affected lastingly by transient interaction with their physiological redox partners. This may have significant implications for our understanding of biological electron transfer reactions in vivo, because ETF encounters TMADH at all times in the cell. Our studies suggest that caution needs to be exercised in extrapolating the properties of in vitro interprotein electron transfer reactions to those occurring in vivo.

  19. Assignment of Etfdh, Etfb, and Etfa to chromosomes 3, 7, and 13: The mouse homologs of genes respondible for glutaric acidemia type II in human

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, R.A.; Dowler, L.L.; Angeloni, S.V.

    Electron transfer flavoprotein (composed of {alpha} and {beta} subunits) is an obligatory electron acceptor for several dehydrogenases and is located in the mitochondrial matrix. Electrons accepted by electron transfer flavo-protein (ETF) are transferred to the main mitochondrial respiratory chain by the way of ETF dehydrogenase (ETFDH). In humans, deficiency of ETF or ETFDH leads to glutaric acidemia type II, an inherited metabolic disorder that can be fatal in its neonatal form and is characterized by severe hypoketotic hypoglycemia and acidosis. We used cDNA probes for the Etfdh, Etfb, and Etfa genes to determine localization of these mouse genes to chromosomesmore » 3, 7, and 13. 18 refs., 3 figs.« less

  20. Photoemission into water adsorbed on metals: Probing dissociative electron transfer using theory

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Whitten, J. L.

    The photoinduced dissociation of water adsorbed on a silver nanoparticle is explored using theory to probe reaction pathways that produce hydrogen. Ab initio configuration theory is used to describe the systems. A formulation that allows excited electronic states embedded in a near continuum of lower energy states to be calculated accurately is described. Electron attachment of a photoemitted electron to adsorbed water can lead to the formation of H2 at a very low energy barrier with oxygen remaining on the Ag surface. A large energy barrier to form H2 plus adsorbed O is found for the ground state. The excited state has a much smaller barrier to OH stretch; however, to dissociate, the system must cross over from the excited state to the ground state potential energy surface. The cross over point is near the transition state for a ground state process. A characteristic feature of the excited state potential curve is an increase in energy in the early stages of OH stretch as the charge transfer state evolves from a state with considerable Rydberg character to one that has a typical OH antibonding molecular orbital. Another pathway releases a H atom leaving OH on the surface. Effects due to doping of a Ag nanoparticle with a K electron donor atom are compared with those caused by a Fermi level shift due to an applied potential. Results are also reported for electron transfer to a solvated lithium ion, Li(H2O) 6+, near the surface of a silver particle. A steering mechanism is found that involves the interaction of a hydridic hydrogen formed after electron transfer with an acidic hydrogen of a second solvated water molecule.

  1. Novel electronic ferroelectricity in an organic charge-order insulator investigated with terahertz-pump optical-probe spectroscopy

    PubMed Central

    Yamakawa, H.; Miyamoto, T.; Morimoto, T.; Yada, H.; Kinoshita, Y.; Sotome, M.; Kida, N.; Yamamoto, K.; Iwano, K.; Matsumoto, Y.; Watanabe, S.; Shimoi, Y.; Suda, M.; Yamamoto, H. M.; Mori, H.; Okamoto, H.

    2016-01-01

    In electronic-type ferroelectrics, where dipole moments produced by the variations of electron configurations are aligned, the polarization is expected to be rapidly controlled by electric fields. Such a feature can be used for high-speed electric-switching and memory devices. Electronic-type ferroelectrics include charge degrees of freedom, so that they are sometimes conductive, complicating dielectric measurements. This makes difficult the exploration of electronic-type ferroelectrics and the understanding of their ferroelectric nature. Here, we show unambiguous evidence for electronic ferroelectricity in the charge-order (CO) phase of a prototypical ET-based molecular compound, α-(ET)2I3 (ET:bis(ethylenedithio)tetrathiafulvalene), using a terahertz pulse as an external electric field. Terahertz-pump second-harmonic-generation(SHG)-probe and optical-reflectivity-probe spectroscopy reveal that the ferroelectric polarization originates from intermolecular charge transfers and is inclined 27° from the horizontal CO stripe. These features are qualitatively reproduced by the density-functional-theory calculation. After sub-picosecond polarization modulation by terahertz fields, prominent oscillations appear in the reflectivity but not in the SHG-probe results, suggesting that the CO is coupled with molecular displacements, while the ferroelectricity is electronic in nature. The results presented here demonstrate that terahertz-pump optical-probe spectroscopy is a powerful tool not only for rapidly controlling polarizations, but also for clarifying the mechanisms of ferroelectricity. PMID:26864779

  2. Novel electronic ferroelectricity in an organic charge-order insulator investigated with terahertz-pump optical-probe spectroscopy.

    PubMed

    Yamakawa, H; Miyamoto, T; Morimoto, T; Yada, H; Kinoshita, Y; Sotome, M; Kida, N; Yamamoto, K; Iwano, K; Matsumoto, Y; Watanabe, S; Shimoi, Y; Suda, M; Yamamoto, H M; Mori, H; Okamoto, H

    2016-02-11

    In electronic-type ferroelectrics, where dipole moments produced by the variations of electron configurations are aligned, the polarization is expected to be rapidly controlled by electric fields. Such a feature can be used for high-speed electric-switching and memory devices. Electronic-type ferroelectrics include charge degrees of freedom, so that they are sometimes conductive, complicating dielectric measurements. This makes difficult the exploration of electronic-type ferroelectrics and the understanding of their ferroelectric nature. Here, we show unambiguous evidence for electronic ferroelectricity in the charge-order (CO) phase of a prototypical ET-based molecular compound, α-(ET)2I3 (ET:bis(ethylenedithio)tetrathiafulvalene), using a terahertz pulse as an external electric field. Terahertz-pump second-harmonic-generation(SHG)-probe and optical-reflectivity-probe spectroscopy reveal that the ferroelectric polarization originates from intermolecular charge transfers and is inclined 27° from the horizontal CO stripe. These features are qualitatively reproduced by the density-functional-theory calculation. After sub-picosecond polarization modulation by terahertz fields, prominent oscillations appear in the reflectivity but not in the SHG-probe results, suggesting that the CO is coupled with molecular displacements, while the ferroelectricity is electronic in nature. The results presented here demonstrate that terahertz-pump optical-probe spectroscopy is a powerful tool not only for rapidly controlling polarizations, but also for clarifying the mechanisms of ferroelectricity.

  3. Tuning the driving force for exciton dissociation in single-walled carbon nanotube heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ihly, Rachelle; Mistry, Kevin S.; Ferguson, Andrew J.

    2016-04-25

    Understanding the kinetics and energetics of interfacial electron transfer in molecular systems is crucial for the development of a broad array of technologies, including photovoltaics, solar fuel systems and energy storage. The Marcus formulation for electron transfer relates the thermodynamic driving force and reorganization energy for charge transfer between a given donor/acceptor pair to the kinetics and yield of electron transfer. Here we investigated the influence of the thermodynamic driving force for photoinduced electron transfer (PET) between single-walled carbon nanotubes (SWCNTs) and fullerene derivatives by employing time-resolved microwave conductivity as a sensitive probe of interfacial exciton dissociation. For the firstmore » time, we observed the Marcus inverted region (in which driving force exceeds reorganization energy) and quantified the reorganization energy for PET for a model SWCNT/acceptor system. The small reorganization energies (about 130 meV, most of which probably arises from the fullerene acceptors) are beneficial in minimizing energy loss in photoconversion schemes.« less

  4. Ultrafast forward and backward electron transfer dynamics of coumarin 337 in hydrogen-bonded anilines as studied with femtosecond UV-pump/IR-probe spectroscopy.

    PubMed

    Ghosh, Hirendra N; Verma, Sandeep; Nibbering, Erik T J

    2011-02-10

    Femtosecond infrared spectroscopy is used to study both forward and backward electron transfer (ET) dynamics between coumarin 337 (C337) and the aromatic amine solvents aniline (AN), N-methylaniline (MAN), and N,N-dimethylaniline (DMAN), where all the aniline solvents can donate an electron but only AN and MAN can form hydrogen bonds with C337. The formation of a hydrogen bond with AN and MAN is confirmed with steady state FT-IR spectroscopy, where the C═O stretching vibration is a direct marker mode for hydrogen bond formation. Transient IR absorption measurements in all solvents show an absorption band at 2166 cm(-1), which has been attributed to the C≡N stretching vibration of the C337 radical anion formed after ET. Forward electron transfer dynamics is found to be biexponential with time constants τ(ET)(1) = 500 fs, τ(ET)(2) = 7 ps in all solvents. Despite the presence of hydrogen bonds of C337 with the solvents AN and MAN, no effect has been found on the forward electron transfer step. Because of the absence of an H/D isotope effect on the forward electron transfer reaction of C337 in AN, hydrogen bonds are understood to play a minor role in mediating electron transfer. In contrast, direct π-orbital overlap between C337 and the aromatic amine solvents causes ultrafast forward electron transfer dynamics. Backward electron transfer dynamics, in contrast, is dependent on the solvent used. Standard Marcus theory explains the observed backward electron transfer rates.

  5. Fluorescent Sensing of Fluoride in Cellular System

    PubMed Central

    Jiao, Yang; Zhu, Baocun; Chen, Jihua; Duan, Xiaohong

    2015-01-01

    Fluoride ions have the important roles in a lot of physiological activities related with biological and medical system, such as water fluoridation, caries treatment, and bone disease treatment. Great efforts have been made to develop new methods and strategies for F- detection in the past decades. Traditional methods for the detection of F- including ion chromatography, ion-selective electrodes, and spectroscopic techniques have the limitations in the biomedicine research. The fluorescent probes for F- are very promising that overcome some drawbacks of traditional fluoride detection methods. These probes exhibit high selectivity, high sensitivity as well as quick response to the detection of fluoride anions. The review commences with a brief description of photophysical mechanisms for fluorescent probes for fluoride, including photo induced electron transfer (PET), intramolecular charge transfer (ICT), fluorescence resonance energy transfer (FRET), and excited-state intramolecular proton transfer (ESIPT). Followed by a discussion about common dyes for fluorescent fluoride probes, such as anthracene, naphalimide, pyrene, BODIPY, fluorescein, rhodamine, resorufin, coumarin, cyanine, and near-infrared (NIR) dyes. We divide the fluorescent probes for fluoride in cellular application systems into nine groups, for example, type of hydrogen bonds, type of cleavage of Si-O bonds, type of Si-O bond cleavage and cylization reactions, etc. We also review the recent reported carriers in the delivery of fluorescent fluoride probes. Seventy-four typical fluorescent fluoride probes are listed and compared in detail, including quantum yield, reaction medium, excitation and emission wavelengths, linear detection range, selectivity for F-, mechanism, and analytical applications. Finally, we discuss the future challenges of the application of fluorescent fluoride probes in cellular system and in vivo. We wish that more and more excellent fluorescent fluoride probes will be developed and applied in the biomedicine field in the future. PMID:25553106

  6. Creating and optimizing interfaces for electric-field and photon-induced charge transfer.

    PubMed

    Park, Byoungnam; Whitham, Kevin; Cho, Jiung; Reichmanis, Elsa

    2012-11-27

    We create and optimize a structurally well-defined electron donor-acceptor planar heterojunction interface in which electric-field and/or photon-induced charge transfer occurs. Electric-field-induced charge transfer in the dark and exciton dissociation at a pentacene/PCBM interface were probed by in situ thickness-dependent threshold voltage shift measurements in field-effect transistor devices during the formation of the interface. Electric-field-induced charge transfer at the interface in the dark is correlated with development of the pentacene accumulation layer close to PCBM, that is, including interface area, and dielectric relaxation time in PCBM. Further, we demonstrate an in situ test structure that allows probing of both exciton diffusion length and charge transport properties, crucial for optimizing optoelectronic devices. Competition between the optical absorption length and the exciton diffusion length in pentacene governs exciton dissociation at the interface. Charge transfer mechanisms in the dark and under illumination are detailed.

  7. Energy transfer dynamics in Light-Harvesting Dendrimers

    NASA Astrophysics Data System (ADS)

    Melinger, Joseph S.; McMorrow, Dale; Kleiman, Valeria D.

    2002-03-01

    We explore energy transfer dynamics in light-harvesting phenylacetylene symmetric and asymmetric dendrimers. Femtosecond pump-probe spectroscopy is used to probe the ultrafast dynamics of electronic excitations in these dendrimers. The backbone of the macromolecule consists of branches of increasing conjugation length, creating an energy gradient, which funnels energy to an accepting perylene trap. In the case of the symmetric dendrimer (nanostar), the energy transfer efficiency is known to approach nearly unity, although the nature and timescale of the energy transfer process is still unknown. For the asymmetric dendrimers, energy transfer efficiencies are very high, with the possibility of more complex transfer processes. We experimentally monitor the transport of excitons through the light-harvesting dendrimer. The transients show a number of components, with timescales ranging from <300fs to several tens of picoseconds, revealing the complex photophysics taking place in these macromolecules. We interpret our results in terms of the Förster mechanism in which energy transfer occurs through dipole-dipole interactions.

  8. Quantized spin-momentum transfer in atom-sized magnetic systems

    NASA Astrophysics Data System (ADS)

    Loth, Sebastian

    2010-03-01

    Our ability to quickly access the vast amounts of information linked in the internet is owed to the miniaturization of magnetic data storage. In modern disk drives the tunnel magnetoresistance effect (TMR) serves as sensitive reading mechanism for the nanoscopic magnetic bits [1]. At its core lies the ability to control the flow of electrons with a material's magnetization. The inverse effect, spin transfer torque (STT), allows one to influence a magnetic layer by high current densities of spin-polarized electrons and carries high hopes for applications in non-volatile magnetic memory [2]. We show that equivalent processes are active in quantum spin systems. We use a scanning tunneling microscope (STM) operating at low temperature and high magnetic field to address individual magnetic structures and probe their spin excitations by inelastic electron tunneling [3]. As model system we investigate transition metal atoms adsorbed to a copper nitride layer grown on a Cu crystal. The magnetic atoms on the surface possess well-defined spin states [4]. Transfer of one magnetic atom to the STM tip's apex creates spin-polarization in the probe tip. The combination of functionalized tip and surface adsorbed atom resembles a TMR structure where the magnetic layers now consist of one magnetic atom each. Spin-polarized current emitted from the probe tip not only senses the magnetic orientation of the atomic spin system, it efficiently transfers spin angular momentum and pumps the quantum spin system between the different spin states. This enables further exploration of the microscopic mechanisms for spin-relaxation and stability of quantum spin systems. [4pt] [1] Zhu and Park, Mater. Today 9, 36 (2006).[0pt] [2] Huai, AAPPS Bulletin 18, 33 (2008).[0pt] [3] Heinrich et al., Science 306, 466 (2004).[0pt] [4] Hirjibehedin et al., Science 317, 1199 (2007).

  9. Langmuir probe diagnostics of an atmospheric pressure, vortex-stabilized nitrogen plasma jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prevosto, L.; Mancinelli, B. R.; Kelly, H.

    Langmuir probe measurements in an atmospheric pressure direct current (dc) plasma jet are reported. Sweeping probes were used. The experiment was carried out using a dc non-transferred arc torch with a rod-type cathode and an anode of 5 mm diameter. The torch was operated at a nominal power level of 15 kW with a nitrogen flow rate of 25 Nl min{sup -1}. A flat ion saturation region was found in the current-voltage curve of the probe. The ion saturation current to a cylindrical probe in a high-pressure non local thermal equilibrium (LTE) plasma was modeled. Thermal effects and ionization/recombination processesmore » inside the probe perturbed region were taken into account. Averaged radial profiles of the electron and heavy particle temperatures as well as the electron density were obtained. An electron temperature around 11 000 K, a heavy particle temperature around 9500 K and an electron density of about 4 Multiplication-Sign 10{sup 22} m{sup -3}, were found at the jet centre at 3.5 mm downstream from the torch exit. Large deviations from kinetic equilibrium were found throughout the plasma jet. The electron and heavy particle temperature profiles showed good agreement with those reported in the literature by using spectroscopic techniques. It was also found that the temperature radial profile based on LTE was very close to that of the electrons. The calculations have shown that this method is particularly useful for studying spraying-type plasma jets characterized by electron temperatures in the range 9000-14 000 K.« less

  10. Electronic properties of conductive pili of the metal-reducing bacterium Geobacter sulfurreducens probed by scanning tunneling microscopy.

    PubMed

    Veazey, Joshua P; Reguera, Gemma; Tessmer, Stuart H

    2011-12-01

    The metal-reducing bacterium Geobacter sulfurreducens produces conductive protein appendages known as "pilus nanowires" to transfer electrons to metal oxides and to other cells. These processes can be harnessed for the bioremediation of toxic metals and the generation of electricity in bioelectrochemical cells. Key to these applications is a detailed understanding of how these nanostructures conduct electrons. However, to the best of our knowledge, their mechanism of electron transport is not known. We used the capability of scanning tunneling microscopy (STM) to probe conductive materials with higher spatial resolution than other scanning probe methods to gain insights into the transversal electronic behavior of native, cell-anchored pili. Despite the presence of insulating cellular components, the STM topography resolved electronic molecular substructures with periodicities similar to those reported for the pilus shaft. STM spectroscopy revealed electronic states near the Fermi level, consistent with a conducting material, but did not reveal electronic states expected for cytochromes. Furthermore, the transversal conductance was asymmetric, as previously reported for assemblies of helical peptides. Our results thus indicate that the Geobacter pilus shaft has an intrinsic electronic structure that could play a role in charge transport.

  11. Electron transfer in a virtual quantum state of LiBH4 induced by strong optical fields and mapped by femtosecond x-ray diffraction.

    PubMed

    Stingl, J; Zamponi, F; Freyer, B; Woerner, M; Elsaesser, T; Borgschulte, A

    2012-10-05

    Transient polarizations connected with a spatial redistribution of electronic charge in a mixed quantum state are induced by optical fields of high amplitude. We determine for the first time the related transient electron density maps, applying femtosecond x-ray powder diffraction as a structure probe. The prototype ionic material LiBH4 driven nonresonantly by an intense sub-40 fs optical pulse displays a large-amplitude fully reversible electron transfer from the BH4(-) anion to the Li+ cation during excitation. Our results establish this mechanism as the source of the strong optical polarization which agrees quantitatively with theoretical estimates.

  12. Direct Observation of Individual Charges and Their Dynamics on Graphene by Low-Energy Electron Holography.

    PubMed

    Latychevskaia, Tatiana; Wicki, Flavio; Longchamp, Jean-Nicolas; Escher, Conrad; Fink, Hans-Werner

    2016-09-14

    Visualizing individual charges confined to molecules and observing their dynamics with high spatial resolution is a challenge for advancing various fields in science, ranging from mesoscopic physics to electron transfer events in biological molecules. We show here that the high sensitivity of low-energy electrons to local electric fields can be employed to directly visualize individual charged adsorbates and to study their behavior in a quantitative way. This makes electron holography a unique probing tool for directly visualizing charge distributions with a sensitivity of a fraction of an elementary charge. Moreover, spatial resolution in the nanometer range and fast data acquisition inherent to lens-less low-energy electron holography allows for direct visual inspection of charge transfer processes.

  13. Pump-Probe Noise Spectroscopy of Molecular Junctions.

    PubMed

    Ochoa, Maicol A; Selzer, Yoram; Peskin, Uri; Galperin, Michael

    2015-02-05

    The slow response of electronic components in junctions limits the direct applicability of pump-probe type spectroscopy in assessing the intramolecular dynamics. Recently the possibility of getting information on a sub-picosecond time scale from dc current measurements was proposed. We revisit the idea of picosecond resolution by pump-probe spectroscopy from dc measurements and show that any intramolecular dynamics not directly related to charge transfer in the current direction is missed by current measurements. We propose a pump-probe dc shot noise spectroscopy as a suitable alternative. Numerical examples of time-dependent and average responses of junctions are presented for generic models.

  14. Probing the location of displayed cytochrome b562 on amyloid by scanning tunnelling microscopy

    NASA Astrophysics Data System (ADS)

    Forman, C. J.; Wang, N.; Yang, Z. Y.; Mowat, C. G.; Jarvis, S.; Durkan, C.; Barker, P. D.

    2013-05-01

    Amyloid fibres displaying cytochrome b562 were probed using scanning tunnelling microscopy (STM) in vacuo. The cytochromes are electron transfer proteins containing a haem cofactor and could, in principle, mediate electron transfer between the tip and the gold substrate. If the core fibres were insulating and electron transfer within the 3D haem network was detected, then the electron transport properties of the fibre could be controlled by genetic engineering. Three kinds of STM images were obtained. At a low bias (<1.5 V) the fibres appeared as regions of low conductivity with no evidence of cytochrome mediated electron transfer. At a high bias, stable peaks in tunnelling current were observed for all three fibre species containing haem and one species of fibre that did not contain haem. In images of this kind, some of the current peaks were collinear and spaced around 10 nm apart over ranges longer than 100 nm, but background monomers complicate interpretation. Images of the third kind were rare (1 in 150 fibres); in these, fully conducting structures with the approximate dimensions of fibres were observed, suggesting the possibility of an intermittent conduction mechanism, for which a precedent exists in DNA. To test the conductivity, some fibres were immobilized with sputtered gold, and no evidence of conduction between the grains of gold was seen. In control experiments, a variation of monomeric cytochrome b562 was not detected by STM, which was attributed to low adhesion, whereas a monomeric multi-haem protein, GSU1996, was readily imaged. We conclude that the fibre superstructure may be intermittently conducting, that the cytochromes have been seen within the fibres and that they are too far apart for detectable current flow between sites to occur. We predict that GSU1996, being 10 nm long, is more likely to mediate successful electron transfer along the fibre as well as being more readily detectable when displayed from amyloid.

  15. Electrochemistry of redox-active self-assembled monolayers

    PubMed Central

    Eckermann, Amanda L.; Feld, Daniel J.; Shaw, Justine A.; Meade, Thomas J.

    2010-01-01

    Redox-active self-assembled monolayers (SAMs) provide an excellent platform for investigating electron transfer kinetics. Using a well-defined bridge, a redox center can be positioned at a fixed distance from the electrode and electron transfer kinetics probed using a variety of electrochemical techniques. Cyclic voltammetry, AC voltammetry, electrochemical impedance spectroscopy, and chronoamperometry are most commonly used to determine the rate of electron transfer of redox-activated SAMs. A variety of redox species have been attached to SAMs, and include transition metal complexes (e.g., ferrocene, ruthenium pentaammine, osmium bisbipyridine, metal clusters) and organic molecules (e.g., galvinol, C60). SAMs offer an ideal environment to study the outer-sphere interactions of redox species. The composition and integrity of the monolayer and the electrode material influence the electron transfer kinetics and can be investigated using electrochemical methods. Theoretical models have been developed for investigating SAM structure. This review discusses methods and monolayer compositions for electrochemical measurements of redox-active SAMs. PMID:20563297

  16. Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction.

    PubMed

    Müller, Knut; Krause, Florian F; Béché, Armand; Schowalter, Marco; Galioit, Vincent; Löffler, Stefan; Verbeeck, Johan; Zweck, Josef; Schattschneider, Peter; Rosenauer, Andreas

    2014-12-15

    By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field-induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright-field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms.

  17. Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction

    NASA Astrophysics Data System (ADS)

    Müller, Knut; Krause, Florian F.; Béché, Armand; Schowalter, Marco; Galioit, Vincent; Löffler, Stefan; Verbeeck, Johan; Zweck, Josef; Schattschneider, Peter; Rosenauer, Andreas

    2014-12-01

    By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field-induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright-field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms.

  18. Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction

    PubMed Central

    Müller, Knut; Krause, Florian F.; Béché, Armand; Schowalter, Marco; Galioit, Vincent; Löffler, Stefan; Verbeeck, Johan; Zweck, Josef; Schattschneider, Peter; Rosenauer, Andreas

    2014-01-01

    By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field-induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright-field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms. PMID:25501385

  19. Real Time Quantification of Ultrafast Photoinduced Bimolecular Electron Transfer Rate: Direct Probing of the Transient Intermediate.

    PubMed

    Mukherjee, Puspal; Biswas, Somnath; Sen, Pratik

    2015-08-27

    Fluorescence quenching studies through steady-state and time-resolved measurements are inadequate to quantify the bimolecular electron transfer rate in bulk homogeneous solution due to constraints from diffusion. To nullify the effect of diffusion, direct evaluation of the rate of formation of a transient intermediate produced upon the electron transfer is essential. Methyl viologen, a well-known electron acceptor, produces a radical cation after accepting an electron, which has a characteristic strong and broad absorption band centered at 600 nm. Hence it is a good choice to evaluate the rate of photoinduced electron transfer reaction employing femtosecond broadband transient absorption spectroscopy. The time constant of the aforementioned process between pyrene and methyl viologen in methanol has been estimated to be 2.5 ± 0.4 ps using the same technique. The time constant for the backward reaction was found to be 14 ± 1 ps. These values did not change with variation of concentration of quencher, i.e., methyl viologen. Hence, we can infer that diffusion has no contribution in the estimation of rate constants. However, on changing the solvent from methanol to ethanol, the time constant of the electron transfer reaction has been found to increase and has accounted for the change in solvent reorganization energy.

  20. Watching Electrons at Conical Intersections and Funnels

    NASA Astrophysics Data System (ADS)

    Jonas, David M.; Smith, Eric R.; Peters, William K.; Kitney, Katherine A.

    2009-06-01

    The electronic motion at conical intersections and funnels is probed after polarized excitation of aligned electronic wavepackets. The pulses have bandwidth sufficient to observe vibrations mainly through their effect on the electrons. Vibrational symmetry can be identified by the polarization anisotropy of vibrational quantum beats. The polarized transients show signatures of electronic wavepacket motion (due to the energy gaps) and of electron transfer between orbitals (due to the couplings) driven by the conical intersection. For a conical intersection in a four-fold symmetric symmetry silicon naphthalocyanine molecule, electronic motions on a 100 fs timescale are driven by couplings of 1 meV. In the lower symmetry free-base naphthalocyanine, the conical intersection may be missed or missing (conical funnel), and the motions are nearly as rapid, but electronic equilibration is incomplete for red-edge excitation. These experiments probe non-adiabatic electronic dynamics with near-zero nuclear momentum - the electronic motions are determined by the principal slopes of the conical intersection and the width of the vibrational wavepacket.

  1. Probing charge transfer during metal-insulator transitions in graphene-LaAlO3/SrTiO3 systems

    NASA Astrophysics Data System (ADS)

    Aliaj, I.; Sambri, A.; Miseikis, V.; Stornaiuolo, D.; di Gennaro, E.; Coletti, C.; Pellegrini, V.; Miletto Granozio, F.; Roddaro, S.

    2018-06-01

    Two-dimensional electron systems (2DESs) at the interface between LaAlO3 (LAO) and SrTiO3 (STO) perovskite oxides display a wide class of tunable phenomena ranging from superconductivity to metal-insulator transitions. Most of these effects are strongly sensitive to surface physics and often involve charge transfer mechanisms, which are, however, hard to detect. In this work, we realize hybrid field-effect devices where graphene is used to modulate the transport properties of the LAO/STO 2DES. Different from a conventional gate, graphene is semimetallic and allows us to probe charge transfer with the oxide structure underneath the field-effect electrode. In LAO/STO samples with a low initial carrier density, graphene-covered regions turn insulating when the temperature is lowered to 3 K, but conduction can be restored in the oxide structure by increasing the temperature or by field effect. The evolution of graphene's electron density is found to be inconsistent with a depletion of LAO/STO, but it rather points to a localization of interfacial carriers in the oxide structure.

  2. Origin of Plasmon Lineshape and Enhanced Hot Electron Generation in Metal Nanoparticles.

    PubMed

    You, Xinyuan; Ramakrishna, S; Seideman, Tamar

    2018-01-04

    Plasmon-generated hot carriers are currently being studied intensively for their role in enhancing the efficiency of photovoltaic and photocatalytic processes. Theoretical studies of the hot electrons subsystem have generated insight, but we show that a unified quantum-mechanical treatment of the plasmon and hot electrons reveals new physical phenomena. Instead of a unidirectional energy transfer process in Landau damping, back energy transfer is predicted in small metal nanoparticles (MNPs) within a model-Hamiltonian approach. As a result, the single Lorentzian plasmonic line shape is modulated by a multipeak structure, whose individual line width provides a direct way to probe the electronic dephasing. More importantly, the hot electron generation can be enhanced greatly by matching the incident energy to the peaks of the modulated line shape.

  3. Monitoring long-range electron transfer pathways in proteins by stimulated attosecond broadband X-ray Raman spectroscopy

    DOE PAGES

    Zhang, Yu; Biggs, Jason D.; Govind, Niranjan; ...

    2014-10-09

    In this study, long-range electron transfer (ET) plays a key role in many biological energy conversion and synthesis processes. We show that nonlinear spectroscopy with attosecond X-ray pulses provides a real time movie of the evolving oxidation states and electron densities around atoms, and can probe these processes with high spatial and temporal resolution. This is demonstrated in a simulation study of the stimulated X-ray Raman (SXRS) signals in Re-modified azurin, which had long served as a benchmark for long-range ET in proteins. Nonlinear SXRS signals are sensitive to the local electronic structure and should offer a novel window formore » long-range ET.« less

  4. Probing Ion Transfer across Liquid-Liquid Interfaces by Monitoring Collisions of Single Femtoliter Oil Droplets on Ultramicroelectrodes.

    PubMed

    Deng, Haiqiang; Dick, Jeffrey E; Kummer, Sina; Kragl, Udo; Strauss, Steven H; Bard, Allen J

    2016-08-02

    We describe a method of observing collisions of single femtoliter (fL) oil (i.e., toluene) droplets that are dispersed in water on an ultramicroelectrode (UME) to probe the ion transfer across the oil/water interface. The oil-in-water emulsion was stabilized by an ionic liquid, in which the oil droplet trapped a highly hydrophobic redox probe, rubrene. The ionic liquid also functions as the supporting electrolyte in toluene. When the potential of the UME was biased such that rubrene oxidation would be possible when a droplet collided with the electrode, no current spikes were observed. This implies that the rubrene radical cation is not hydrophilic enough to transfer into the aqueous phase. We show that current spikes are observed when tetrabutylammonium trifluoromethanesulfonate or tetrahexylammonium hexafluorophosphate are introduced into the toluene phase and when tetrabutylammonium perchlorate is introduced into the water phase, implying that the ion transfer facilitates electron transfer in the droplet collisions. The current (i)-time (t) behavior was evaluated quantitatively, which indicated the ion transfer is fast and reversible. Furthermore, the size of these emulsion droplets can also be calculated from the electrochemical collision. We further investigated the potential dependence on the electrochemical collision response in the presence of tetrabutylammonium trifluoromethanesulfonate in toluene to obtain the formal ion transfer potential of tetrabutylammonium across the toluene/water interface, which was determined to be 0.754 V in the inner potential scale. The results yield new physical insights into the charge balance mechanism in emulsion droplet collisions and indicate that the electrochemical collision technique can be used to probe formal ion transfer potentials between water and solvents with very low (ε < 5) dielectric constants.

  5. Triplet state dissolved organic matter in aquatic photochemistry: reaction mechanisms, substrate scope, and photophysical properties.

    PubMed

    McNeill, Kristopher; Canonica, Silvio

    2016-11-09

    Excited triplet states of chromophoric dissolved organic matter ( 3 CDOM*) play a major role among the reactive intermediates produced upon absorption of sunlight by surface waters. After more than two decades of research on the aquatic photochemistry of 3 CDOM*, the need for improving the knowledge about the photophysical and photochemical properties of these elusive reactive species remains considerable. This critical review examines the efforts to date to characterize 3 CDOM*. Information on 3 CDOM* relies mainly on the use of probe compounds because of the difficulties associated with directly observing 3 CDOM* using transient spectroscopic methods. Singlet molecular oxygen ( 1 O 2 ), which is a product of the reaction between 3 CDOM* and dissolved oxygen, is probably the simplest indicator that can be used to estimate steady-state concentrations of 3 CDOM*. There are two major modes of reaction of 3 CDOM* with substrates, namely triplet energy transfer or oxidation (via electron transfer, proton-coupled electron transfer or related mechanisms). Organic molecules, including several environmental contaminants, that are susceptible to degradation by these two different reaction modes are reviewed. It is proposed that through the use of appropriate sets of probe compounds and model photosensitizers an improved estimation of the distribution of triplet energies and one-electron reduction potentials of 3 CDOM* can be achieved.

  6. Projectile-charge dependence of the differential cross section for the ionization of argon atoms at 1 keV

    NASA Astrophysics Data System (ADS)

    Purohit, G.; Kato, D.

    2017-10-01

    The single ionization triple differential cross sections (TDCS) of the Ar (3 p ) atoms are reported for the positron and electron impact at 1 keV. The calculated cross sections have been obtained using distorted wave Born approximation (DWBA) approach for the average ejected electron energies 13 and 26 eV at different momentum transfer conditions. The present attempt is helpful to probe the information on the TDCS trends for the particle-matter and antiparticle-matter interactions and to analyze the recent measurements [Phy. Rev. A 95, 062703 (2017), 10.1103/PhysRevA.95.062703]. The binary electron emission is enhanced while the recoil emission is decreased for the positron impact relative to the electron impact in the DWBA calculation results. Systematic shift of peaks, shifting away from the momentum transfer direction for positron impact and shifting towards each other for electron impact, is observed with increasing momentum transfer.

  7. Electron exchange between r-keggin tungstoaluminates and a well-defined cluster-anion probe for studies in electron transfer

    Treesearch

    Yurii V. Geletii; Craig L. Hill; Alan J. Bailey; Kenneth I. Hardcastle; Rajai H. Atalla; Ira A. Weinstock

    2005-01-01

    Fully oxidized [alpha]-AlIIIW12O405-(1ox), and one-electron-reduced [alpha]-AlIIIW12O406-(1red), are well-behaved (stable and free of ion pairing) over a wide range of pH and ionic-strength values at room temperature in water. Having established this, 27Al NMR spectroscopy is used to measure rates of electron exchange between 1ox (27Al NMR: 72.2 ppm relative to Al(H2O)...

  8. Atomic scale real-space mapping of holes in YBa2Cu3O(6+δ).

    PubMed

    Gauquelin, N; Hawthorn, D G; Sawatzky, G A; Liang, R X; Bonn, D A; Hardy, W N; Botton, G A

    2014-07-15

    The high-temperature superconductor YBa2Cu3O(6+δ) consists of two main structural units--a bilayer of CuO2 planes that are central to superconductivity and a CuO(2+δ) chain layer. Although the functional role of the planes and chains has long been established, most probes integrate over both, which makes it difficult to distinguish the contribution of each. Here we use electron energy loss spectroscopy to directly resolve the plane and chain contributions to the electronic structure in YBa2Cu3O6 and YBa2Cu3O7. We directly probe the charge transfer of holes from the chains to the planes as a function of oxygen content, and show that the change in orbital occupation of Cu is large in the chain layer but modest in CuO2 planes, with holes in the planes doped primarily into the O 2p states. These results provide direct insight into the local electronic structure and charge transfers in this important high-temperature superconductor.

  9. Spacecraft Charging in Geostationary Transfer Orbit

    NASA Technical Reports Server (NTRS)

    Parker, Linda Neergaard; Minow, Joseph I.

    2014-01-01

    The 700 km x 5.8 Re orbit of the two Van Allen Probes spacecraft provide a unique opportunity to investigate spacecraft charging in geostationary transfer orbits. We use records from the Helium Oxygen Proton Electron (HOPE) plasma spectrometer to identify candidate surface charging events based on the "ion line" charging signature in the ion records. We summarize the energetic particle environment and the conditions necessary for charging to occur in this environment. We discuss the altitude, duration, and magnitude of events observed in the Van Allen Probes from the beginning of the mission to present time. In addition, we explore what information the dual satellites provide on the spatial and temporal variations in the charging environments.

  10. A flavone-based turn-on fluorescent probe for intracellular cysteine/homocysteine sensing with high selectivity.

    PubMed

    Zhang, Jian; Lv, Yanlin; Zhang, Wei; Ding, Hui; Liu, Rongji; Zhao, Yongsheng; Zhang, Guangjin; Tian, Zhiyuan

    2016-01-01

    A new type of flavone-based fluorescent probe (DMAF) capable of cysteine (Cys)/homocysteine (Hcy) sensing with high selectivity over other amino acids was developed. Such type of probe undergoes Cys/Hcy-mediated cyclization reaction with the involvement of its aldehyde group, which suppresses of the photoinduced electron transfer (PET) process of the probe molecule and consequently leads to the enhancement of fluorescence emission upon excitation using visible light. The formation of product of the Cys/Hcy-mediated cyclization reaction was confirmed and the preliminary fluorescence imaging experiments revealed the biocompatibility of the as-prepared probe and validated its practicability for intracellular Cys/Hcy sensing. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Pathways of energy transfer in LHCII revealed by room-temperature 2D electronic spectroscopy.

    PubMed

    Wells, Kym L; Lambrev, Petar H; Zhang, Zhengyang; Garab, Gyözö; Tan, Howe-Siang

    2014-06-21

    We present here the first room-temperature 2D electronic spectroscopy study of energy transfer in the plant light-harvesting complex II, LHCII. Two-dimensional electronic spectroscopy has been used to study energy transfer dynamics in LHCII trimers from the chlorophyll b Qy band to the chlorophyll a Qy band. Observing cross-peak regions corresponding to couplings between different excitonic states reveals partially resolved fine structure at the exciton level that cannot be isolated by pump-probe or linear spectroscopy measurements alone. Global analysis of the data has been performed to identify the pathways and time constants of energy transfer. The measured waiting time (Tw) dependent 2D spectra are found to be composed of 2D decay-associated spectra with three timescales (0.3 ps, 2.3 ps and >20 ps). Direct and multistep cascading pathways from the high-energy chlorophyll b states to the lowest-energy chlorophyll a states have been resolved occurring on time scales of hundreds of femtoseconds to picoseconds.

  12. Holographic Reconstruction of Photoelectron Diffraction and Its Circular Dichroism for Local Structure Probing

    NASA Astrophysics Data System (ADS)

    Matsui, Fumihiko; Matsushita, Tomohiro; Daimon, Hiroshi

    2018-06-01

    The local atomic structure around a specific element atom can be recorded as a photoelectron diffraction pattern. Forward focusing peaks and diffraction rings around them indicate the directions and distances from the photoelectron emitting atom to the surrounding atoms. The state-of-the-art holography reconstruction algorithm enables us to image the local atomic arrangement around the excited atom in a real space. By using circularly polarized light as an excitation source, the angular momentum transfer from the light to the photoelectron induces parallax shifts in these diffraction patterns. As a result, stereographic images of atomic arrangements are obtained. These diffraction patterns can be used as atomic-site-resolved probes for local electronic structure investigation in combination with spectroscopy techniques. Direct three-dimensional atomic structure visualization and site-specific electronic property analysis methods are reviewed. Furthermore, circular dichroism was also found in valence photoelectron and Auger electron diffraction patterns. The investigation of these new phenomena provides hints for the development of new techniques for local structure probing.

  13. Single-Molecule Interfacial Electron Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Wilson

    Interfacial electron transfer (ET) plays an important role in many chemical and biological processes. Specifically, interfacial ET in TiO 2-based systems is important to solar energy technology, catalysis, and environmental remediation technology. However, the microscopic mechanism of interfacial ET is not well understood with regard to atomic surface structure, molecular structure, bonding, orientation, and motion. In this project, we used two complementary methodologies; single-molecule fluorescence spectroscopy, and scanning-tunneling microscopy and spectroscopy (STM and STS) to address this scientific need. The goal of this project was to integrate these techniques and measure the molecular dependence of ET between adsorbed molecules andmore » TiO 2 semiconductor surfaces and the ET induced reactions such as the splitting of water. The scanning probe techniques, STM and STS, are capable of providing the highest spatial resolution but not easily time-resolved data. Single-molecule fluorescence spectroscopy is capable of good time resolution but requires further development to match the spatial resolution of the STM. The integrated approach involving Peter Lu at Bowling Green State University (BGSU) and Wilson Ho at the University of California, Irvine (UC Irvine) produced methods for time and spatially resolved chemical imaging of interfacial electron transfer dynamics and photocatalytic reactions. An integral aspect of the joint research was a significant exchange of graduate students to work at the two institutions. This project bridged complementary approaches to investigate a set of common problems by working with the same molecules on a variety of solid surfaces, but using appropriate techniques to probe under ambient (BGSU) and ultrahigh vacuum (UCI) conditions. The molecular level understanding of the fundamental interfacial electron transfer processes obtained in this joint project will be important for developing efficient light harvesting, solar energy conversion, and broadly applicable to problems in interface chemistry and surface physics.« less

  14. Electron Heating and Acceleration from High Amplitude Driven Alfvén Waves in the LAPD

    NASA Astrophysics Data System (ADS)

    Auerbach, David; Carter, Troy; Brugman, Brian

    2006-10-01

    High amplitude (δB/B ˜1 %) shear Alfvén waves are generated in the Large Plasma Device Upgrade (LAPD) at UCLA, and elevated electron temperatures and high energy electrons are observed using triple probes and Langmuir current traces. The Poynting flux of the observed waves is calculated, and wave power is compared to estimates of power input required to cause the observed heating. Theoretical calculations of power transfer from wave to plasma due to Landau damping and collisional heating are also presented and compared to experimental measurements. Heating by antenna near field effects is also being explored. The density and potential structures of these waves are explored using interferometer and triple probe measurements. Applications to Auroral generation and plasma heating are discussed.

  15. Scalable transfer of vertical graphene nanosheets for flexible supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Sahoo, Gopinath; Ghosh, Subrata; Polaki, S. R.; Mathews, Tom; Kamruddin, M.

    2017-10-01

    Vertical graphene nanosheets (VGN) are the material of choice for application in next-generation electronic devices. The growing demand for VGN-based flexible devices for the electronics industry brings in restriction on VGN growth temperature. The difficulty associated with the direct growth of VGN on flexible substrates can be overcome by adopting an effective strategy of transferring the well-grown VGN onto arbitrary flexible substrates through a soft chemistry route. In the present study, we report an inexpensive and scalable technique for the polymer-free transfer of VGN onto arbitrary substrates without disrupting its morphology, structure, and properties. After transfer, the morphology, chemical structure, and electrical properties are analyzed by scanning electron microscopy, Raman spectroscopy, x-ray photoelectron spectroscopy, and four-probe resistive methods, respectively. The wetting properties are studied from the water contact angle measurements. The observed results indicate the retention of morphology, surface chemistry, structure, and electronic properties. Furthermore, the storage capacity of the transferred VGN-based binder-free and current collector-free flexible symmetric supercapacitor device is studied. A very low sheet resistance of 670 Ω/□ and excellent supercapacitance of 158 μF cm-2 with 86% retention after 10 000 cycles show the prospect of the damage-free VGN transfer approach for the fabrication of flexible nanoelectronic devices.

  16. Electron Tunneling in Lithium Ammonia Solutions Probed by Frequency-Dependent Electron-Spin Relaxation Studies

    PubMed Central

    Maeda, Kiminori; Lodge, Matthew T.J.; Harmer, Jeffrey; Freed, Jack H.; Edwards, Peter P.

    2012-01-01

    Electron transfer or quantum tunneling dynamics for excess or solvated electrons in dilute lithium-ammonia solutions have been studied by pulse electron paramagnetic resonance (EPR) spectroscopy at both X- (9.7 GHz) and W-band (94 GHz) frequencies. The electron spin-lattice (T1) and spin-spin (T2) relaxation data indicate an extremely fast transfer or quantum tunneling rate of the solvated electron in these solutions which serves to modulate the hyperfine (Fermi-contact) interaction with nitrogen nuclei in the solvation shells of ammonia molecules surrounding the localized, solvated electron. The donor and acceptor states of the solvated electron in these solutions are the initial and final electron solvation sites found before, and after, the transfer or tunneling process. To interpret and model our electron spin relaxation data from the two observation EPR frequencies requires a consideration of a multi-exponential correlation function. The electron transfer or tunneling process that we monitor through the correlation time of the nitrogen Fermi-contact interaction has a time scale of (1–10)×10−12 s over a temperature range 230–290K in our most dilute solution of lithium in ammonia. Two types of electron-solvent interaction mechanisms are proposed to account for our experimental findings. The dominant electron spin relaxation mechanism results from an electron tunneling process characterized by a variable donor-acceptor distance or range (consistent with such a rapidly fluctuating liquid structure) in which the solvent shell that ultimately accepts the transferring electron is formed from random, thermal fluctuations of the liquid structure in, and around, a natural hole or Bjerrum-like defect vacancy in the liquid. Following transfer and capture of the tunneling electron, further solvent-cage relaxation with a timescale of ca. 10−13 s results in a minor contribution to the electron spin relaxation times. This investigation illustrates the great potential of multi-frequency EPR measurements to interrogate the microscopic nature and dynamics of ultra fast electron transfer or quantum-tunneling processes in liquids. Our results also impact on the universal issue of the role of a host solvent (or host matrix, e.g. a semiconductor) in mediating long-range electron transfer processes and we discuss the implications of our results with a range of other materials and systems exhibiting the phenomenon of electron transfer. PMID:22568866

  17. Unusual Fluorescent Responses of Morpholine-functionalized Fluorescent Probes to pH via Manipulation of BODIPY’s HOMO and LUMO Energy Orbitals for Intracellular pH Detection

    PubMed Central

    Zhang, Jingtuo; Yang, Mu; Mazi, Wafa; Adhikari, Kapil; Fang, Mingxi; Xie, Fei; Valenzano, Loredana; Tiwari, Ashutosh; Luo, Fen-Tair; Liu, Haiying

    2016-01-01

    Three uncommon morpholine-based fluorescent probes (A, B and C) for pH were prepared by introducing morpholine residues to BODIPY dyes at 4,4’- and 2,6-positions, respectively. In contrast to morpholine-based fluorescent probes for pH reported in literature, these fluorescent probes display high fluorescence in a basic condition while they exhibit very weak fluorescence in an acidic condition. The theoretical calculation confirmed that morpholine is unable to function as either an electron donor or an electron acceptor to quench the BODIPY fluorescence in the neutral and basic condition via photo-induced electron transfer (PET) mechanism because the LUMO energy of morpholine is higher than those of the BODIPY dyes while its HOMO energy is lower than those of the BODIPY dyes. However, the protonation of tertiary amines of the morpholine residues in an acidic environment leads to fluorescence quenching of the BODIPY dyes via d-PET mechanism. The fluorescence quenching is because the protonation effectively decreases the LUMO energy which locates between the HOMO and LUMO energies of the BODIPY dyes. Fluorescent probe C with deep-red emission has been successfully used to detect pH changes in mammalian cells. PMID:27547822

  18. Mapping Photoemission and Hot-Electron Emission from Plasmonic Nanoantennas

    DOE PAGES

    Hobbs, Richard G.; Putnam, William P.; Fallahi, Arya; ...

    2017-09-19

    Understanding plasmon-mediated electron emission and energy transfer on the nanometer length scale is critical to controlling light–matter interactions at nanoscale dimensions. In a high-resolution lithographic material, electron emission and energy transfer lead to chemical transformations. Here, we employ such chemical transformations in two different high-resolution electron-beam lithography resists, poly(methyl methacrylate) (PMMA) and hydrogen silsesquioxane (HSQ), to map local electron emission and energy transfer with nanometer resolution from plasmonic nanoantennas excited by femtosecond laser pulses. We observe exposure of the electron-beam resists (both PMMA and HSQ) in regions on the surface of nanoantennas where the local field is significantly enhanced. Exposuremore » in these regions is consistent with previously reported optical-field-controlled electron emission from plasmonic hotspots as well as earlier work on low-electron-energy scanning probe lithography. For HSQ, in addition to exposure in hotspots, we observe resist exposure at the centers of rod-shaped nanoantennas in addition to exposure in plasmonic hotspots. Optical field enhancement is minimized at the center of nanorods suggesting that exposure in these regions involves a different mechanism to that in plasmonic hotspots. Our simulations suggest that exposure at the center of nanorods results from the emission of hot electrons produced via plasmon decay in the nanorods. Our results provide a means to map both optical-field-controlled electron emission and hot-electron transfer from nanoparticles via chemical transformations produced locally in lithographic materials.« less

  19. Mapping Photoemission and Hot-Electron Emission from Plasmonic Nanoantennas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobbs, Richard G.; Putnam, William P.; Fallahi, Arya

    Understanding plasmon-mediated electron emission and energy transfer on the nanometer length scale is critical to controlling light–matter interactions at nanoscale dimensions. In a high-resolution lithographic material, electron emission and energy transfer lead to chemical transformations. Here, we employ such chemical transformations in two different high-resolution electron-beam lithography resists, poly(methyl methacrylate) (PMMA) and hydrogen silsesquioxane (HSQ), to map local electron emission and energy transfer with nanometer resolution from plasmonic nanoantennas excited by femtosecond laser pulses. We observe exposure of the electron-beam resists (both PMMA and HSQ) in regions on the surface of nanoantennas where the local field is significantly enhanced. Exposuremore » in these regions is consistent with previously reported optical-field-controlled electron emission from plasmonic hotspots as well as earlier work on low-electron-energy scanning probe lithography. For HSQ, in addition to exposure in hotspots, we observe resist exposure at the centers of rod-shaped nanoantennas in addition to exposure in plasmonic hotspots. Optical field enhancement is minimized at the center of nanorods suggesting that exposure in these regions involves a different mechanism to that in plasmonic hotspots. Our simulations suggest that exposure at the center of nanorods results from the emission of hot electrons produced via plasmon decay in the nanorods. Our results provide a means to map both optical-field-controlled electron emission and hot-electron transfer from nanoparticles via chemical transformations produced locally in lithographic materials.« less

  20. Pump-Probe Fragmentation Action Spectroscopy: A Powerful Tool to Unravel Light-Induced Processes in Molecular Photocatalysts.

    PubMed

    Imanbaew, Dimitri; Lang, Johannes; Gelin, Maxim F; Kaufhold, Simon; Pfeffer, Michael G; Rau, Sven; Riehn, Christoph

    2017-05-08

    We present a proof of concept that ultrafast dynamics combined with photochemical stability information of molecular photocatalysts can be acquired by electrospray ionization mass spectrometry combined with time-resolved femtosecond laser spectroscopy in an ion trap. This pump-probe "fragmentation action spectroscopy" gives straightforward access to information that usually requires high purity compounds and great experimental efforts. Results of gas-phase studies on the electronic dynamics of two supramolecular photocatalysts compare well to previous findings in solution and give further evidence for a directed electron transfer, a key process for photocatalytic hydrogen generation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Type IV pili of Acidithiobacillus ferrooxidans can transfer electrons from extracellular electron donors.

    PubMed

    Li, Yongquan; Li, Hongyu

    2014-03-01

    Studies on Acidithiobacillus ferrooxidans accepting electrons from Fe(II) have previously focused on cytochrome c. However, we have discovered that, besides cytochrome c, type IV pili (Tfp) can transfer electrons. Here, we report conduction by Tfp of A. ferrooxidans analyzed with a conducting-probe atomic force microscope (AFM). The results indicate that the Tfp of A. ferrooxidans are highly conductive. The genome sequence of A. ferrooxidans ATCC 23270 contains two genes, pilV and pilW, which code for pilin domain proteins with the conserved amino acids characteristic of Tfp. Multiple alignment analysis of the PilV and PilW (pilin) proteins indicated that pilV is the adhesin gene while pilW codes for the major protein element of Tfp. The likely function of Tfp is to complete the circuit between the cell surface and Fe(II) oxides. These results indicate that Tfp of A. ferrooxidans might serve as biological nanowires transferring electrons from the surface of Fe(II) oxides to the cell surface. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The Use of Chemical Probes for the Characterization of the Predominant Abiotic Reductants in Anaerobic Sediments

    EPA Science Inventory

    Identifying the predominant chemical reductants and pathways for electron transfer in anaerobic systems is paramount to the development of environmental fate models that incorporate pathways for abiotic reductive transformations. Currently, such models do not exist. In this chapt...

  3. Quantitative measurements of magnetic vortices using position resolved diffraction in Lorentz STEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaluzec, N. J.

    2002-03-05

    A number of electron column techniques have been developed over the last forty years to permit visualization of magnetic fields in specimens. These include: Fresnel imaging, Differential Phase Contrast, Electron Holography and Lorentz STEM. In this work we have extended the LSTEM methodology using Position Resolved Diffraction (PRD) to quantitatively measure the in-plane electromagnetic fields of thin film materials. The experimental work reported herein has been carried out using the ANL AAEM HB603Z 300 kV FEG instrument 5. In this instrument, the electron optical column was operated in a zero field mode, at the specimen, where the objective lens ismore » turned off and the probe forming lens functions were reallocated to the C1, C2, and C3 lenses. Post specimen lenses (P1, P2, P3, P4) were used to magnify the transmitted electrons to a YAG screen, which was then optically transferred to a Hamamatsu ORCA ER CCD array. This CCD was interfaced to an EmiSpec Data Acquisition System and the data was subsequently transferred to an external computer system for detailed quantitative analysis. In Position Resolved Diffraction mode, we digitally step a focused electron probe across the region of interest of the specimen while at the same time recording the complete diffraction pattern at each point in the scan.« less

  4. Insights into electrode/electrolyte interfacial processes and the effect of nanostructured cobalt oxides loading on graphene-based hybrids by scanning electrochemical microscopy

    NASA Astrophysics Data System (ADS)

    Gupta, Sanju; Carrizosa, Sara B.

    2016-12-01

    Nanostructured cobalt oxide polymorphs (CoO and Co3O4) deposited via electrodeposition allowed optimal loading on supercapacitive graphene nanosheets producing a set of graphene-based hybrids namely, CoO/GO, CoO/ErGO, Co3O4/GO, Co3O4/rGO, and Co3O4/ErGO, as pseudocapacitive electrochemical electrodes. We gained fundamental insights into the complex physicochemical interfacial processes at electrode surfaces and electrode/electrolyte (or solid/liquid) interfaces by scanning electrochemical microscopy operating in the feedback probe approach and imaging modes while monitoring and mapping the redox probe (re)activity behavior. We determined the various experimental descriptors including diffusion coefficient, electron transfer rate, and electroactive site distribution on electrodes. We emphasize the interplay of (1) heterogeneous basal and edge plane active sites, (2) graphene surface functional moieties (conducting/semiconducting), and (3) crystalline spinel cobalt oxides (semiconducting/insulating) coated graphene, reinforcing the available electron density of states in the vicinity of the Fermi level contributing to higher electroactivity, faster interfacial diffusion, and shorter distances for electron transfer, facilitated through molecular and chemical bridges obtained by electrodeposition as compared with the physical deposition.

  5. Open Probe fast GC-MS - combining ambient sampling ultra-fast separation and in-vacuum ionization for real-time analysis.

    PubMed

    Keshet, U; Alon, T; Fialkov, A B; Amirav, A

    2017-07-01

    An Open Probe inlet was combined with a low thermal mass ultra-fast gas chromatograph (GC), in-vacuum electron ionization ion source and a mass spectrometer (MS) of GC-MS for obtaining real-time analysis with separation. The Open Probe enables ambient sampling via sample vaporization in an oven that is open to room air, and the ultra-fast GC provides ~30-s separation, while if no separation is required, it can act as a transfer line with 2 to 3-s sample transfer time. Sample analysis is as simple as touching the sample, pushing the sample holder into the Open Probe oven and obtaining the results in 30 s. The Open Probe fast GC was mounted on a standard Agilent 7890 GC that was coupled with an Agilent 5977A MS. Open Probe fast GC-MS provides real-time analysis combined with GC separation and library identification, and it uses the low-cost MS of GC-MS. The operation of Open Probe fast GC-MS is demonstrated in the 30-s separation and 50-s full analysis cycle time of tetrahydrocannabinol and cannabinol in Cannabis flower, sub 1-min analysis of trace trinitrotoluene transferred from a finger onto a glass surface, vitamin E in canola oil, sterols in olive oil, polybrominated flame retardants in plastics, alprazolam in Xanax drug pill and free fatty acids and cholesterol in human blood. The extrapolated limit of detection for pyrene is <1 fg, but the concentration is too high and the software noise calculation is untrustworthy. The broad range of compounds amenable for analysis is demonstrated in the analysis of reserpine. The possible use with alternate standard GC-MS and Open Probe fast GC-MS is demonstrated in the analysis of heroin in its street drug powder. The use of Open Probe with the fast GC acting as a transfer line is demonstrated in <10-s analysis without separation of ibuprofen and estradiol. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Ligand electronic parameters as a measure of the polarization of the C≡O bond in [M(CO)(x)L(y)]n complexes and of the relative stabilization of [M(CO)(x)L(y)](n/n+1) species.

    PubMed

    Zobi, Fabio

    2010-11-15

    The electronic description of octahedral (fac-[M(CO)(3)L(3)](n), with M = Re, Ru, and Mn, and [Cr(CO)(5)L](n)), square-planar (cis-[Pt(CO)(2)L(2)](n)), and tetrahedral ([Ni(CO)(3)L](n)) carbonyl complexes (where L = monodentate ligand) was obtained via density functional theory and natural population analyses in order to understand what effects are probed in these species by vibrational spectroscopy and electrochemistry as a function of the ligand electronic parameter of the associated L. The analysis indicates that while ligand electronic parameters may be considered as a measure of the net donor power of the ligand, the net transfer of the electron density (or charge) does not occur from the ligand to the metal ion. In [M(CO)(x)L(y)](n) carbonyl species, the charge transfer occurs from the ligand L to the oxygen atom of the bound carbon monoxides. This charge transfer translates into changes of the polarization (or permanent dipole) and the covalency of the C≡O bonds, and it is this effect that is probed in IR spectroscopy. As the analysis shifts from IR radiations to electrochemical potentials, the parameters best describe the relative thermodynamic stability of the oxidized and reduced [M(CO)(x)L(y)](n/n+1) species. No relationship is found between the metal natural charge of the [M(CO)(x)L(y)](n) fragments analyzed and the parameters. Brief considerations are given on the possible design of CO-releasing molecules.

  7. Probing resonant energy transfer in collisions of ammonia with Rydberg helium atoms by microwave spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhelyazkova, V.; Hogan, S. D.

    2017-12-01

    We present the results of experiments demonstrating the spectroscopic detection of Förster resonance energy transfer from NH3 in the X1A1 ground electronic state to helium atoms in 1sns 3S1 Rydberg levels, where n = 37 and n = 40. For these values of n, the 1sns 3S1 → 1snp 3PJ transitions in helium lie close to resonance with the ground-state inversion transitions in NH3 and can be tuned through resonance using electric fields of less than 10 V/cm. In the experiments, energy transfer was detected by direct state-selective electric field ionization of the 3S1 and 3PJ Rydberg levels and by monitoring the population of the 3DJ levels following pulsed microwave transfer from the 3PJ levels. Detection by microwave spectroscopic methods represents a highly state selective, low-background approach to probing the collisional energy transfer process and the environment in which the atom-molecule interactions occur. The experimentally observed electric-field dependence of the resonant energy transfer process, probed both by direct electric field ionization and by microwave transfer, agrees well with the results of calculations performed using a simple theoretical model of the energy transfer process. For measurements performed in zero electric field with atoms prepared in the 1s40s 3S1 level, the transition from a regime in which a single energy transfer channel can be isolated for detection to one in which multiple collision channels begin to play a role has been identified as the NH3 density was increased.

  8. Inhibited proton transfer enhances Au-catalyzed CO2-to-fuels selectivity.

    PubMed

    Wuttig, Anna; Yaguchi, Momo; Motobayashi, Kenta; Osawa, Masatoshi; Surendranath, Yogesh

    2016-08-09

    CO2 reduction in aqueous electrolytes suffers efficiency losses because of the simultaneous reduction of water to H2 We combine in situ surface-enhanced IR absorption spectroscopy (SEIRAS) and electrochemical kinetic studies to probe the mechanistic basis for kinetic bifurcation between H2 and CO production on polycrystalline Au electrodes. Under the conditions of CO2 reduction catalysis, electrogenerated CO species are irreversibly bound to Au in a bridging mode at a surface coverage of ∼0.2 and act as kinetically inert spectators. Electrokinetic data are consistent with a mechanism of CO production involving rate-limiting, single-electron transfer to CO2 with concomitant adsorption to surface active sites followed by rapid one-electron, two-proton transfer and CO liberation from the surface. In contrast, the data suggest an H2 evolution mechanism involving rate-limiting, single-electron transfer coupled with proton transfer from bicarbonate, hydronium, and/or carbonic acid to form adsorbed H species followed by rapid one-electron, one-proton, or H recombination reactions. The disparate proton coupling requirements for CO and H2 production establish a mechanistic basis for reaction selectivity in electrocatalytic fuel formation, and the high population of spectator CO species highlights the complex heterogeneity of electrode surfaces under conditions of fuel-forming electrocatalysis.

  9. Shewanella secretes flavins that mediate extracellular electron transfer

    PubMed Central

    Marsili, Enrico; Baron, Daniel B.; Shikhare, Indraneel D.; Coursolle, Dan; Gralnick, Jeffrey A.; Bond, Daniel R.

    2008-01-01

    Bacteria able to transfer electrons to metals are key agents in biogeochemical metal cycling, subsurface bioremediation, and corrosion processes. More recently, these bacteria have gained attention as the transfer of electrons from the cell surface to conductive materials can be used in multiple applications. In this work, we adapted electrochemical techniques to probe intact biofilms of Shewanella oneidensis MR-1 and Shewanella sp. MR-4 grown by using a poised electrode as an electron acceptor. This approach detected redox-active molecules within biofilms, which were involved in electron transfer to the electrode. A combination of methods identified a mixture of riboflavin and riboflavin-5′-phosphate in supernatants from biofilm reactors, with riboflavin representing the dominant component during sustained incubations (>72 h). Removal of riboflavin from biofilms reduced the rate of electron transfer to electrodes by >70%, consistent with a role as a soluble redox shuttle carrying electrons from the cell surface to external acceptors. Differential pulse voltammetry and cyclic voltammetry revealed a layer of flavins adsorbed to electrodes, even after soluble components were removed, especially in older biofilms. Riboflavin adsorbed quickly to other surfaces of geochemical interest, such as Fe(III) and Mn(IV) oxy(hydr)oxides. This in situ demonstration of flavin production, and sequestration at surfaces, requires the paradigm of soluble redox shuttles in geochemistry to be adjusted to include binding and modification of surfaces. Moreover, the known ability of isoalloxazine rings to act as metal chelators, along with their electron shuttling capacity, suggests that extracellular respiration of minerals by Shewanella is more complex than originally conceived. PMID:18316736

  10. Probing electronic binding potentials with attosecond photoelectron wavepackets

    NASA Astrophysics Data System (ADS)

    Kiesewetter, D.; Jones, R. R.; Camper, A.; Schoun, S. B.; Agostini, P.; Dimauro, L. F.

    2018-01-01

    The central goal of attosecond science is to visualize, understand and ultimately control electron dynamics in matter over the fastest relevant timescales. To date, numerous schemes have demonstrated exquisite temporal resolution, on the order of ten attoseconds, in measurements of the response of photo-excited electrons to time-delayed probes. However, attributing this response to specific dynamical mechanisms is difficult, requiring guidance from advanced calculations. Here we show that energy transfer between an oscillating field and low-energy attosecond photoelectron wavepackets directly provides coarse-grained information on the effective binding potential from which the electrons are liberated. We employ a dense extreme ultraviolet (XUV) harmonic comb to photoionize He, Ne and Ar atoms and record the electron spectra as a function of the phase of a mid-infrared dressing field. The amplitude and phase of the resulting interference modulations in the electron spectra reveal the average momentum and change in momentum of the electron wavepackets during the first quarter-period of the dressing field after their creation, reflecting the corresponding coarse characteristics of the binding potential.

  11. What have we learned about the energetic particle dynamics in the inner belt and slot region from Van Allen Probes and CSSWE missions?

    NASA Astrophysics Data System (ADS)

    Li, Xinlin; Baker, Daniel N.; Kanekal, Shrikanth; Fennell, Joseph; Selesnick, Richard; Claudepierre, Seth; Blake, Bernard; Zhao, Hong; Jaynes, Allison

    2016-07-01

    Comprehensive measurements of energetic protons (10s of MeV) in the inner belt (L<2) and slot region (21.6 MeV) measurements cannot be distinguished from the background. Analysis on sub-MeV electrons data in the inner belt and slot region from the Magnetic Electron Ion Spectrometer (MagEIS) on board Van Allen Probes revealed rather complicated pitch angle distribution of these energetic electrons, with the 90 deg-minimum (butterfly) pitch angle distribution dominating near the magnetic equator. These are part of a summary of the most recent measurements and understanding of the dynamics of energetic particles in the inner zone and slot region to be exhibited and discussed in this presentation.

  12. Electrostatic Steepening of Whistler Waves

    NASA Astrophysics Data System (ADS)

    Vasko, I. Y.; Agapitov, O. V.; Mozer, F. S.; Bonnell, J. W.; Artemyev, A. V.; Krasnoselskikh, V. V.; Tong, Y.

    2018-05-01

    We present surprising observations by the NASA Van Allen Probes spacecraft of whistler waves with substantial electric field power at harmonics of the whistler wave fundamental frequency. The wave power at harmonics is due to a nonlinearly steepened whistler electrostatic field that becomes possible in the two-temperature electron plasma due to the whistler wave coupling to the electron-acoustic mode. The simulation and analytical estimates show that the steepening takes a few tens of milliseconds. The hydrodynamic energy cascade to higher frequencies facilitates efficient energy transfer from cyclotron resonant electrons, driving the whistler waves, to lower energy electrons.

  13. Imaging Plasmon Hybridization of Fano Resonances via Hot-Electron-Mediated Absorption Mapping.

    PubMed

    Simoncelli, Sabrina; Li, Yi; Cortés, Emiliano; Maier, Stefan A

    2018-06-13

    The inhibition of radiative losses in dark plasmon modes allows storing electromagnetic energy more efficiently than in far-field excitable bright-plasmon modes. As such, processes benefiting from the enhanced absorption of light in plasmonic materials could also take profit of dark plasmon modes to boost and control nanoscale energy collection, storage, and transfer. We experimentally probe this process by imaging with nanoscale precision the hot-electron driven desorption of thiolated molecules from the surface of gold Fano nanostructures, investigating the effect of wavelength and polarization of the incident light. Spatially resolved absorption maps allow us to show the contribution of each element of the nanoantenna in the hot-electron driven process and their interplay in exciting a dark plasmon mode. Plasmon-mode engineering allows control of nanoscale reactivity and offers a route to further enhance and manipulate hot-electron driven chemical reactions and energy-conversion and transfer at the nanoscale.

  14. Single-particle studies of band alignment effects on electron transfer dynamics from semiconductor hetero-nanostructures to single-walled carbon nanotubes.

    PubMed

    Yuan, Chi-Tsu; Wang, Yong-Gang; Huang, Kuo-Yen; Chen, Ting-Yu; Yu, Pyng; Tang, Jau; Sitt, Amit; Banin, Uri; Millo, Oded

    2012-01-24

    We utilize single-molecule spectroscopy combined with time-correlated single-photon counting to probe the electron transfer (ET) rates from various types of semiconductor hetero-nanocrystals, having either type-I or type-II band alignment, to single-walled carbon nanotubes. A significantly larger ET rate was observed for type-II ZnSe/CdS dot-in-rod nanostructures as compared to type-I spherical CdSe/ZnS core/shell quantum dots and to CdSe/CdS dot-in-rod structures. Furthermore, such rapid ET dynamics can compete with both Auger and radiative recombination processes, with significance for effective photovoltaic operation. © 2011 American Chemical Society

  15. Interaction of proflavin with aromatic amines in homogeneous and micellar media: Photoinduced electron transfer probed by magnetic field effect

    NASA Astrophysics Data System (ADS)

    Chakraborty, Brotati; Basu, Samita

    2010-02-01

    Photoinduced electron transfer (PET) between proflavin (PF +) and two aromatic amines viz., dimethylaniline (DMA) and 4,4'-bis(dimethylamino)diphenylmethane (DMDPM) is studied in homogeneous and heterogeneous media using steady-state as well as time-resolved fluorescence spectroscopy and laser flash photolysis with an associated magnetic field. Ionic micelles have been used to study the effect of charge of proflavin on PET with amines. Magnetic field effect on PET reactions reveals that the parent spin-state of precursors of PET for DMA-PF + system is singlet while for DMDPM-PF + system is triplet, implying that the dynamics of PET is influenced by the structure of the donor.

  16. GPU-accelerated computation of electron transfer.

    PubMed

    Höfinger, Siegfried; Acocella, Angela; Pop, Sergiu C; Narumi, Tetsu; Yasuoka, Kenji; Beu, Titus; Zerbetto, Francesco

    2012-11-05

    Electron transfer is a fundamental process that can be studied with the help of computer simulation. The underlying quantum mechanical description renders the problem a computationally intensive application. In this study, we probe the graphics processing unit (GPU) for suitability to this type of problem. Time-critical components are identified via profiling of an existing implementation and several different variants are tested involving the GPU at increasing levels of abstraction. A publicly available library supporting basic linear algebra operations on the GPU turns out to accelerate the computation approximately 50-fold with minor dependence on actual problem size. The performance gain does not compromise numerical accuracy and is of significant value for practical purposes. Copyright © 2012 Wiley Periodicals, Inc.

  17. A simple and selective resonance Rayleigh scattering-energy transfer spectral method for determination of trace neomycin sulfate using Cu2O particle as probe

    NASA Astrophysics Data System (ADS)

    Ouyang, Huixiang; Liang, Aihui; Jiang, Zhiliang

    2018-02-01

    The stable Cu2O nanocubic (Cu2ONC) sol was prepared, based on graphene oxide (GO) catalysis of glucose-Fehling's reagent reaction, and its absorption and resonance Rayleigh scattering (RRS) spectra, transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) were examined. Using the as-prepared Cu2ONC as RRS probe, and coupling with the neomycin sulfate (NEO) complex reaction, a new, simple, sensitive and selective RRS-energy transfer (RRS-ET) method was established for detection of neomycin sulfate, with a linear range of 1.4-112 μM and a detection limit of 0.4 μM. The method has been applied to the detection of neomycin sulfate in samples with satisfactory results.

  18. A fluorescent pH probe for acidic organelles in living cells.

    PubMed

    Chen, Jyun-Wei; Chen, Chih-Ming; Chang, Cheng-Chung

    2017-09-26

    A water-soluble pH sensor, 2-(6-(4-aminostyryl)-1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)-N, N-dimethylethanamine (ADA), was synthesized based on the molecular design of photoinduced electron transfer (PET) and intramolecular charge transfer (ICT). The fluorescence emission response against a pH value is in the range 3-6, which is suitable for labelling intracellular pH-dependent microenvironments. After biological evolution, ADA is more than a pH biosensor because it is also an endocytosis pathway tracking biosensor that labels endosomes, late endosomes, and lysosome pH gradients. From this, the emissive aggregates of ADA and protonated-ADA in these organs were evaluated to explore how this probe stresses emission colour change to cause these unique cellular images.

  19. Enhancement of humidity sensitivity of graphene through functionalization with polyethylenimine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben Aziza, Zeineb; School of Electrical and Electronics Engineering, Nanyang Technological University, Block S1, 50 Nanyang Avenue, Singapore 639798; XLIM UMR 7252 Université de Limoges/CNRS, 123 Avenue Albert Thomas, 87060 Limoges

    2015-09-28

    In this work, we show that the sensing performance of graphene based humidity sensors can be largely improved through polymer functionalization. Chemical vapor deposited graphene is functionalized with amine rich polymer, leading to electron transfer from amine groups in the polymer to graphene. The functionalized graphene humidity sensor has demonstrated good sensitivity, recovery, and repeatability. Charge transfer between the functionalized graphene and water molecules and the sensing mechanism are studied systemically using field effect transistor geometry and scanning Kelvin probe microscopy.

  20. What Controls the Rate of Ultrafast Charge Transfer and Charge Separation Efficiency in Organic Photovoltaic Blends.

    PubMed

    Jakowetz, Andreas C; Böhm, Marcus L; Zhang, Jiangbin; Sadhanala, Aditya; Huettner, Sven; Bakulin, Artem A; Rao, Akshay; Friend, Richard H

    2016-09-14

    In solar energy harvesting devices based on molecular semiconductors, such as organic photovoltaics (OPVs) and artificial photosynthetic systems, Frenkel excitons must be dissociated via charge transfer at heterojunctions to yield free charges. What controls the rate and efficiency of charge transfer and charge separation is an important question, as it determines the overall power conversion efficiency (PCE) of these systems. In bulk heterojunctions between polymer donor and fullerene acceptors, which provide a model system to understand the fundamental dynamics of electron transfer in molecular systems, it has been established that the first step of photoinduced electron transfer can be fast, of order 100 fs. But here we report the first study which correlates differences in the electron transfer rate with electronic structure and morphology, achieved with sub-20 fs time resolution pump-probe spectroscopy. We vary both the fullerene substitution and donor/fullerene ratio which allow us to control both aggregate size and the energetic driving force for charge transfer. We observe a range of electron transfer times from polymer to fullerene, from 240 fs to as short as 37 fs. Using ultrafast electro-optical pump-push-photocurrent spectroscopy, we find the yield of free versus bound charges to be weakly dependent on the energetic driving force, but to be very strongly dependent on fullerene aggregate size and packing. Our results point toward the importance of state accessibility and charge delocalization and suggest that energetic offsets between donor and acceptor levels are not an important criterion for efficient charge generation. This provides design rules for next-generation materials to minimize losses related to driving energy and boost PCE.

  1. Interdigitated Array microelectrode-based electrochemical impedance immunosensor for detection of Escherichia coli O157:H7.

    PubMed

    Yang, Liju; Li, Yanbin; Erf, Gisela F

    2004-02-15

    A label-free electrochemical impedance immunosensor for rapid detection of Escherichia coli O157:H7 was developed by immobilizing anti-E. coli antibodies onto an indium-tin oxide interdigitated array (IDA) microelectrode. Based on the general electronic equivalent model of an electrochemical cell and the behavior of the IDA microelectrode, an equivalent circuit, consisting of an ohmic resistor of the electrolyte between two electrodes and a double layer capacitor, an electron-transfer resistor, and a Warburg impedance around each electrode, was introduced for interpretation of the impedance components of the IDA microelectrode system. The results showed that the immobilization of antibodies and the binding of E. coli cells to the IDA microelectrode surface increased the electron-transfer resistance, which was directly measured with electrochemical impedance spectroscopy in the presence of [Fe(CN)(6)](3-/4-) as a redox probe. The electron-transfer resistance was correlated with the concentration of E. coli cells in a range from 4.36 x 10(5) to 4.36 x 10(8) cfu/mL with the detection limit of 10(6) cfu/mL.

  2. Tyrosine oxidation in heme oxygenase: examination of long-range proton-coupled electron transfer.

    PubMed

    Smirnov, Valeriy V; Roth, Justine P

    2014-10-01

    Heme oxygenase is responsible for the degradation of a histidine-ligated ferric protoporphyrin IX (Por) to biliverdin, CO, and the free ferrous ion. Described here are studies of tyrosyl radical formation reactions that occur after oxidizing Fe(III)(Por) to Fe(IV)=O(Por(·+)) in human heme oxygenase isoform-1 (hHO-1) and the structurally homologous protein from Corynebacterium diphtheriae (cdHO). Site-directed mutagenesis on hHO-1 probes the reduction of Fe(IV)=O(Por(·+)) by tyrosine residues within 11 Å of the prosthetic group. In hHO-1, Y58· is implicated as the most likely site of oxidation, based on the pH and pD dependent kinetics. The absence of solvent deuterium isotope effects in basic solutions of hHO-1 and cdHO contrasts with the behavior of these proteins in the acidic solution, suggesting that long-range proton-coupled electron transfer predominates over electron transfer.

  3. Probing the coupling between proton and electron transfer in Photosystem II core complexes containing a 3-fluorotyrosine

    PubMed Central

    Rappaport, Fabrice; Boussac, Alain; Force, Dee Ann; Peloquin, Jeffrey; Brynda, Marcin; Sugiura, Miwa; Un, Sun; Britt, R. David; Diner, Bruce A.

    2009-01-01

    The catalytic cycle of numerous enzymes involves the coupling between proton transfer and electron transfer. Yet, the understanding of this coordinated transfer in biological systems remains limited, likely because its characterization relies on the controlled but experimentally challenging modifications of the free energy changes associated with either the electron or proton transfer. We have performed such a study here in Photosystem II. The driving force for electron transfer from TyrZ to P680•+ has been decreased by ~ 80 meV by mutating the axial ligand of P680, and that for proton transfer upon oxidation of TyrZ by substituting a 3-fluorotyrosine (3F-TyrZ) for TyrZ. In Mn-depleted Photosystem II, the dependence upon pH of the oxidation rates of TyrZ and 3F-TyrZ were found to be similar. However, in the pH range where the phenolic hydroxyl of TyrZ is involved in a H-bond with a proton acceptor, the activation energy of the oxidation of 3F-TyrZ is decreased by 110 meV, a value which correlates with the in vitro finding of a 90 meV stabilization energy to the phenolate form of 3F-Tyr when compared to Tyr (Seyedsayamdost et al., 2006, JACS 128:1569–79). Thus, when the phenol of YZ acts as a H-bond-donor, its oxidation by P680•+ is controlled by its prior deprotonation. This contrasts with the situation prevailing at lower pH, where the proton acceptor is protonated and therefore unavailable, in which the oxidation-induced proton transfer from the phenolic hydroxyl of TyrZ has been proposed to occur concertedly with the electron transfer to P680•+. This suggests a switch between a concerted proton/electron transfer at pHs < 7.5 to a sequential one at pHs > 7.5 and illustrates the roles of the H-bond and of the likely salt-bridge existing between the phenolate and the nearby proton acceptor in determining the coupling between proton and electron transfer. PMID:19265377

  4. Evolution of group 14 rhodamines as platforms for near-infrared fluorescence probes utilizing photoinduced electron transfer.

    PubMed

    Koide, Yuichiro; Urano, Yasuteru; Hanaoka, Kenjiro; Terai, Takuya; Nagano, Tetsuo

    2011-06-17

    The absorption and emission wavelengths of group 14 pyronines and rhodamines, which contain silicon, germanium, or tin at the 10 position of the xanthene chromophore, showed large bathochromic shifts compared to the original rhodamines, owing to stabilization of the LUMO energy levels by σ*-π* conjugation between group 14 atom-C (methyl) σ* orbitals and a π* orbital of the fluorophore. These group 14 pyronines and rhodamines retain the advantages of the original rhodamines, including high quantum efficiency in aqueous media (Φ(fl) = 0.3-0.45), tolerance to photobleaching, and high water solubility. Group 14 rhodamines have higher values of reduction potential than other NIR light-emitting original rhodamines, and therefore, we speculated their NIR fluorescence could be controlled through the photoinduced electron transfer (PeT) mechanism. Indeed, we found that the fluorescence quantum yield (Φ(fl)) of Si-rhodamine (SiR) and Ge-rhodamine (GeR) could be made nearly equal to zero, and the threshold level for fluorescence on/off switching lies at around 1.3-1.5 V for the SiRs. This is about 0.1 V lower than in the case of TokyoGreens, in which the fluorophore is well established to be effective for PeT-based probes. That is to say, the fluorescence of SiR and GeR can be drastically activated by more than 100-fold through a PeT strategy. To confirm the validity of this strategy for developing NIR fluorescence probes, we employed this approach to design two kinds of novel fluorescence probes emitting in the far-red to NIR region, i.e., a series of pH-sensors for use in acidic environments and a Zn(2+) sensor. We synthesized these probes and confirmed that they work well.

  5. Probe activities. Annual report, July 1, 1975--June 30, 1976. [Veterinary medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanders, W.M.; Saunders, G.C.; Bartlett, M.L.

    1976-12-01

    Small-scale experiments and feasibility studies were performed for the Animal and Plant Health Inspection Service (APHIS) of the United States Department of Agriculture (USDA). Included were computer support for the payment of indemnity for brucellosis in Texas; the measurement of cattle ear canal temperatures and its automation was continued at the Veterinary Services Laboratory (VSL), Ames, IA; and two short serological probes experiments were supported. Also funds were transferred to support the Electronic Identification Project to enable this work to continue without interruption.

  6. The X-ray Pump–Probe instrument at the Linac Coherent Light Source

    DOE PAGES

    Chollet, Matthieu; Alonso-Mori, Roberto; Cammarata, Marco; ...

    2015-04-21

    The X-ray Pump–Probe instrument achieves femtosecond time-resolution with hard X-ray methods using a free-electron laser source. It covers a photon energy range of 4–24 keV. A femtosecond optical laser system is available across a broad spectrum of wavelengths for generating transient states of matter. The instrument is designed to emphasize versatility and the scientific goals encompass ultrafast physical, chemical and biological processes involved in the transformation of matter and transfer of energy at the atomic scale.

  7. The X-ray Pump-Probe instrument at the Linac Coherent Light Source.

    PubMed

    Chollet, Matthieu; Alonso-Mori, Roberto; Cammarata, Marco; Damiani, Daniel; Defever, Jim; Delor, James T; Feng, Yiping; Glownia, James M; Langton, J Brian; Nelson, Silke; Ramsey, Kelley; Robert, Aymeric; Sikorski, Marcin; Song, Sanghoon; Stefanescu, Daniel; Srinivasan, Venkat; Zhu, Diling; Lemke, Henrik T; Fritz, David M

    2015-05-01

    The X-ray Pump-Probe instrument achieves femtosecond time-resolution with hard X-ray methods using a free-electron laser source. It covers a photon energy range of 4-24 keV. A femtosecond optical laser system is available across a broad spectrum of wavelengths for generating transient states of matter. The instrument is designed to emphasize versatility and the scientific goals encompass ultrafast physical, chemical and biological processes involved in the transformation of matter and transfer of energy at the atomic scale.

  8. Low-energy (< 200 eV) electron acceleration by ULF waves in the plasmaspheric boundary layer: Van Allen Probes observation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Jie; Zong, Q. G.; Miyoshi, Y.

    Here, we report observational evidence of cold plamsmaspheric electron (< 200 eV) acceleration by ultra-low-frequency (ULF) waves in the plasmaspheric boundary layer on 10 September 2015. Strongly enhanced cold electron fluxes in the energy spectrogram were observed along with second harmonic mode waves with a period of about 1 minute which lasted several hours during two consecutive Van Allen Probe B orbits. Cold electron (<200 eV) and energetic proton (10-20 keV) bi-directional pitch angle signatures observed during the event are suggestive of the drift-bounce resonance mechanism. The correlation between enhanced energy fluxes and ULF waves leads to the conclusions thatmore » plasmaspheric dynamics is strongly affected by ULF waves. Van Allen Probe A and B, GOES 13, GOES 15 and MMS 1 observations suggest ULF waves in the event were strongest on the dusk-side magnetosphere. Measurements from MMS 1 contain no evidence of an external wave source during the period when ULF waves and injected energetic protons with a bump-on-tail distribution were detected by Van Allen Probe B. This suggests that the observed ULF waves were probably excited by a localized drift-bounce resonant instability, with the free energy supplied by substorm-injected energetic protons. The observations by Van Allen Probe B suggest that energy transfer between particle species in different energy ranges can take place through the action of ULF waves, demonstrating the important role of these waves in the dynamical processes of the inner magnetosphere.« less

  9. Low-energy (< 200 eV) electron acceleration by ULF waves in the plasmaspheric boundary layer: Van Allen Probes observation

    DOE PAGES

    Ren, Jie; Zong, Q. G.; Miyoshi, Y.; ...

    2017-08-30

    Here, we report observational evidence of cold plamsmaspheric electron (< 200 eV) acceleration by ultra-low-frequency (ULF) waves in the plasmaspheric boundary layer on 10 September 2015. Strongly enhanced cold electron fluxes in the energy spectrogram were observed along with second harmonic mode waves with a period of about 1 minute which lasted several hours during two consecutive Van Allen Probe B orbits. Cold electron (<200 eV) and energetic proton (10-20 keV) bi-directional pitch angle signatures observed during the event are suggestive of the drift-bounce resonance mechanism. The correlation between enhanced energy fluxes and ULF waves leads to the conclusions thatmore » plasmaspheric dynamics is strongly affected by ULF waves. Van Allen Probe A and B, GOES 13, GOES 15 and MMS 1 observations suggest ULF waves in the event were strongest on the dusk-side magnetosphere. Measurements from MMS 1 contain no evidence of an external wave source during the period when ULF waves and injected energetic protons with a bump-on-tail distribution were detected by Van Allen Probe B. This suggests that the observed ULF waves were probably excited by a localized drift-bounce resonant instability, with the free energy supplied by substorm-injected energetic protons. The observations by Van Allen Probe B suggest that energy transfer between particle species in different energy ranges can take place through the action of ULF waves, demonstrating the important role of these waves in the dynamical processes of the inner magnetosphere.« less

  10. Electron-rich triphenylamine-based sensors for picric acid detection.

    PubMed

    Chowdhury, Aniket; Mukherjee, Partha Sarathi

    2015-04-17

    This paper demonstrates the role of solvent in selectivity and sensitivity of a series of electron-rich compounds for the detection of trace amounts of picric acid. Two new electron-rich fluorescent esters (6, 7) containing a triphenylamine backbone as well as their analogous carboxylic acids (8, 9) have been synthesized and characterized. Fluorescent triphenylamine coupled with an ethynyl moiety constitutes π-electron-rich selective and sensitive probes for electron-deficient picric acid (PA). In solution, the high sensitivity of all the sensors toward PA can be attributed to a combined effect of the ground-state charge-transfer complex formation and resonance energy transfer between the sensor and analyte. The acids 8 and 9 also showed enhanced sensitivity for nitroaromatics in the solid state, and their enhanced sensitivity could be attributed to exciton migration due to close proximity of the neighboring acid molecules, as evident from the X-ray diffraction study. The compounds were found to be quite sensitive for the detection of trace amount of nitroaromatics in solution, solid, and contact mode.

  11. The dipole moment of the electron carrier adrenodoxin is not critical for redox partner interaction and electron transfer.

    PubMed

    Hannemann, Frank; Guyot, Arnaud; Zöllner, Andy; Müller, Jürgen J; Heinemann, Udo; Bernhardt, Rita

    2009-07-01

    Dipole moments of proteins arise from helical dipoles, hydrogen bond networks and charged groups at the protein surface. High protein dipole moments were suggested to contribute to the electrostatic steering between redox partners in electron transport chains of respiration, photosynthesis and steroid biosynthesis, although so far experimental evidence for this hypothesis was missing. In order to probe this assumption, we changed the dipole moment of the electron transfer protein adrenodoxin and investigated the influence of this on protein-protein interactions and electron transfer. In bovine adrenodoxin, the [2Fe-2S] ferredoxin of the adrenal glands, a dipole moment of 803 Debye was calculated for a full-length adrenodoxin model based on the Adx(4-108) and the wild type adrenodoxin crystal structures. Large distances and asymmetric distribution of the charged residues in the molecule mainly determine the observed high value. In order to analyse the influence of the resulting inhomogeneous electric field on the biological function of this electron carrier the molecular dipole moment was systematically changed. Five recombinant adrenodoxin mutants with successively reduced dipole moment (from 600 to 200 Debye) were analysed for their redox properties, their binding affinities to the redox partner proteins and for their function during electron transfer-dependent steroid hydroxylation. None of the mutants, not even the quadruple mutant K6E/K22Q/K24Q/K98E with a dipole moment reduced by about 70% showed significant changes in the protein function as compared with the unmodified adrenodoxin demonstrating that neither the formation of the transient complex nor the biological activity of the electron transfer chain of the endocrine glands was affected. This is the first experimental evidence that the high dipole moment observed in electron transfer proteins is not involved in electrostatic steering among the proteins in the redox chain.

  12. Electrostatic transfer of epitaxial graphene to glass.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohta, Taisuke; Pan, Wei; Howell, Stephen Wayne

    2010-12-01

    We report on a scalable electrostatic process to transfer epitaxial graphene to arbitrary glass substrates, including Pyrex and Zerodur. This transfer process could enable wafer-level integration of graphene with structured and electronically-active substrates such as MEMS and CMOS. We will describe the electrostatic transfer method and will compare the properties of the transferred graphene with nominally-equivalent 'as-grown' epitaxial graphene on SiC. The electronic properties of the graphene will be measured using magnetoresistive, four-probe, and graphene field effect transistor geometries [1]. To begin, high-quality epitaxial graphene (mobility 14,000 cm2/Vs and domains >100 {micro}m2) is grown on SiC in an argon-mediated environmentmore » [2,3]. The electrostatic transfer then takes place through the application of a large electric field between the donor graphene sample (anode) and the heated acceptor glass substrate (cathode). Using this electrostatic technique, both patterned few-layer graphene from SiC(000-1) and chip-scale monolayer graphene from SiC(0001) are transferred to Pyrex and Zerodur substrates. Subsequent examination of the transferred graphene by Raman spectroscopy confirms that the graphene can be transferred without inducing defects. Furthermore, the strain inherent in epitaxial graphene on SiC(0001) is found to be partially relaxed after the transfer to the glass substrates.« less

  13. Photocatalytic events of CdSe quantum dots in confined media. Electrodic behavior of coupled platinum nanoparticles.

    PubMed

    Harris, Clifton; Kamat, Prashant V

    2010-12-28

    The electrodic behavior of platinum nanoparticles (2.8 nm diameter) and their role in influencing the photocatalytic behavior of CdSe quantum dots (3.4 nm diameter) has been evaluated by confining both nanoparticles together in heptane/dioctyl sulphosuccinate/water reverse micelles. The particles spontaneously couple together within the micelles via micellar exchange processes and thus facilitate experimental observation of electron transfer reactions inside the water pools. Electron transfer from CdSe to Pt is found to occur with a rate constant of 1.22 × 10(9) s(-1). With the use of methyl viologen (MV(2+)) as a probe molecule, the role of Pt in the photocatalytic process is established. Ultrafast oxidation of the photogenerated MV(+•) radicals indicates that Pt acts as an electron sink, scavenging electrons from MV(+•) with a rate constant of 3.1 × 10(9) s(-1). The electron transfer between MV(+•) and Pt, and a drastically lower yield of MV(+•) under steady state irradiation, confirms the ability of Pt nanoparticles to discharge electrons quickly. The kinetic details of photoinduced processes in CdSe-Pt assemblies and the electrodic behavior of Pt nanoparticles provide important information for the development of light energy conversion devices.

  14. Probing biological redox chemistry with large amplitude Fourier transformed ac voltammetry

    PubMed Central

    Adamson, Hope

    2017-01-01

    Biological electron-exchange reactions are fundamental to life on earth. Redox reactions underpin respiration, photosynthesis, molecular biosynthesis, cell signalling and protein folding. Chemical, biomedical and future energy technology developments are also inspired by these natural electron transfer processes. Further developments in techniques and data analysis are required to gain a deeper understanding of the redox biochemistry processes that power Nature. This review outlines the new insights gained from developing Fourier transformed ac voltammetry as a tool for protein film electrochemistry. PMID:28804798

  15. Evidence of short-range electron transfer of a redox enzyme on graphene oxide electrodes.

    PubMed

    Martins, Marccus V A; Pereira, Andressa R; Luz, Roberto A S; Iost, Rodrigo M; Crespilho, Frank N

    2014-09-07

    Direct electron transfer (DET) between redox enzymes and electrode surfaces is of growing interest and an important strategy in the development of biofuel cells and biosensors. Among the nanomaterials utilized at electrode/enzyme interfaces to enhance the electronic communication, graphene oxide (GO) has been identified as a highly promising candidate. It is postulated that GO layers decrease the distance between the flavin cofactor (FAD/FADH2) of the glucose oxidase enzyme (GOx) and the electrode surface, though experimental evidence concerning the distance dependence of the rate constant for heterogeneous electron-transfer (k(het)) has not yet been observed. In this work, we report the experimentally observed DET of the GOx enzyme adsorbed on flexible carbon fiber (FCF) electrodes modified with GO (FCF-GO), where the k(het) between GO and electroactive GOx has been measured at a structurally well-defined interface. The curves obtained from the Marcus theory were used to obtain k(het), by using the model proposed by Chidsey. In agreement with experimental data, this model proved to be useful to systematically probe the dependence of electron transfer rates on distance, in order to provide an empirical basis to understand the origin of interfacial DET between GO and GOx. We also demonstrate that the presence of GO at the enzyme/electrode interface diminishes the activation energy by decreasing the distance between the electrode surface and FAD/FADH2.

  16. In Vivo Application of Proton-Electron Double-Resonance Imaging

    PubMed Central

    Kishimoto, Shun; Krishna, Murali C.; Khramtsov, Valery V.; Utsumi, Hideo

    2018-01-01

    Abstract Significance: Proton-electron double-resonance imaging (PEDRI) employs electron paramagnetic resonance irradiation with low-field magnetic resonance imaging so that the electron spin polarization is transferred to nearby protons, resulting in higher signals. PEDRI provides information about free radical distribution and, indirectly, about the local microenvironment such as partial pressure of oxygen (pO2), tissue permeability, redox status, and acid-base balance. Recent Advances: Local acid-base balance can be imaged by exploiting the different resonance frequency of radical probes between R and RH+ forms. Redox status can also be imaged by using the loss of radical-related signal after reduction. These methods require optimized radical probes and pulse sequences. Critical Issues: High-power radio frequency irradiation is needed for optimum signal enhancement, which may be harmful to living tissue by unwanted heat deposition. Free radical probes differ depending on the purpose of PEDRI. Some probes are less effective for enhancing signal than others, which can reduce image quality. It is so far not possible to image endogenous radicals by PEDRI because low concentrations and broad line widths of the radicals lead to negligible signal enhancement. Future Directions: PEDRI has similarities with electron paramagnetic resonance imaging (EPRI) because both techniques observe the EPR signal, directly in the case of EPRI and indirectly with PEDRI. PEDRI provides information that is vital to research on homeostasis, development of diseases, or treatment responses in vivo. It is expected that the development of new EPR techniques will give insights into novel PEDRI applications and vice versa. Antioxid. Redox Signal. 28, 1345–1364. PMID:28990406

  17. Probing the electronic and local structural changes across the pressure-induced insulator-to-metal transition in VO2

    NASA Astrophysics Data System (ADS)

    Marini, C.; Bendele, M.; Joseph, B.; Kantor, I.; Mitrano, M.; Mathon, O.; Baldini, M.; Malavasi, L.; Pascarelli, S.; Postorino, P.

    2014-11-01

    Local and electronic structures of vanadium in \\text{VO}2 are studied across the high-pressure insulator-to-metal (IMT) transition using V K-edge x-ray absorption spectroscopy. Unlike the temperature-induced IMT, pressure-induced metallization leads to only subtle changes in the V K-edge prepeak structure, indicating a different mechanism involving smaller electronic spectral weight transfer close to the chemical potential. Intriguingly, upon application of the hydrostatic pressure, the electronic structure begins to show substantial changes well before the occurrence of the IMT and the associated structural transition to an anisotropic compression of the monoclinic metallic phase.

  18. Electron temperatures and densities in the venus ionosphere: pioneer venus orbiter electron temperature probe results.

    PubMed

    Brace, L H; Theis, R F; Krehbiel, J P; Nagy, A F; Donahue, T M; McElroy, M B; Pedersen, A

    1979-02-23

    Altitude profiles of electron temperature and density in the ionosphere of Venus have been obtained by the Pioneer Venus orbiter electron temperatutre probe. Elevated temperatutres observed at times of low solar wind flux exhibit height profiles that are consistent with a model in which less than 5 percent of the solar wind energy is deposited at the ionopause and is conducted downward through an unmagnetized ionosphere to the region below 200 kilomneters where electron cooling to the neutral atmosphere proceeds rapidly. When solar wind fluxes are higher, the electron temperatures and densities are highly structured and the ionopause moves to lower altitudes. The ionopause height in the late afternoon sector observed thus far varies so widely from day to (day that any height variation with solar zenith angle is not apparent in the observations. In the neighborhood of the ionopause, measuremnents of plasma temperatures and densities and magnetic field strength indicate that an induced magnetic barrier plays an important role in the pressure transfer between the solar wind and the ionosphere. The bow, shock is marked by a distinct increase in electron current collected by the instrument, a featutre that provides a convenient identification of the bow shock location.

  19. Biointerfacial Property of Plasma-Treated Single-Walled Carbon Nanotube Film Electrodes for Electrochemical Biosensors

    NASA Astrophysics Data System (ADS)

    Kim, Joon Hyub; Lee, Jun-Yong; Jin, Joon-Hyung; Park, Eun Jin; Min, Nam Ki

    2013-01-01

    The single-walled carbon nanotube (SWCNT)-based thin film was spray-coated on the Pt support and functionalized using O2 plasma. The effects of plasma treatment on the biointerfacial properties of the SWCNT films were analyzed by cyclic voltammogram (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). The plasma-functionalized (pf) SWCNT electrodes modified with Legionella pneumophila-specific probe DNA strands showed a much higher peak current and a smaller peak separation in differential pulse voltammetry and a lower charge transfer resistance, compared to the untreated samples. These results suggest that the pf-SWCNT films have a better electrocatalytic character and an electron transfer capability faster than the untreated SWCNTs, due to the fact that the oxygen-containing functional groups promote direct electron transfer in the biointerfacial region of the electrocatalytic activity of redox-active biomolecules.

  20. Light and colour as analytical detection tools: a journey into the periodic table using polyamines to bio-inspired systems as chemosensors.

    PubMed

    Lodeiro, Carlos; Capelo, José Luis; Mejuto, Juan Carlos; Oliveira, Elisabete; Santos, Hugo M; Pedras, Bruno; Nuñez, Cristina

    2010-08-01

    This critical review describes some developments on the chemistry of fluorescent and colorimetric molecular probes or chemosensors, based on polyamines and associated compounds having oxygen and/or sulfur as donor atoms. The reported systems are essentially based on some selected published work in this field in the last five years, and in the work developed by the authors from 2000 onwards. Some interesting properties beyond sensing molecules, ions or/and cations by fluorescence, colorimetry as well as by MALDI-TOF MS spectrometry can arise from these systems. A short brief on different examples activated by PET (photoinduced electron transfer), ICT (internal charge transfer) and EET (electronic energy transfer) phenomena will be provided. Finally the introduction of bio-inspired compounds derived from emissive amino acid or short peptide systems and nanoparticle devices to detect metal ions will be reviewed (202 references).

  1. Hybridization and electron-phonon coupling in ferroelectric BaTiO3 probed by resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Fatale, S.; Moser, S.; Miyawaki, J.; Harada, Y.; Grioni, M.

    2016-11-01

    We investigated the ferroelectric perovskite material BaTiO3 by resonant inelastic x-ray scattering (RIXS) at the Ti L3 edge. We observe with decreasing temperature a transfer of spectral weight from the elastic to the charge-transfer spectral features, indicative of increasing Ti 3 d -O 2 p hybridization. When the incident photon energy selects transitions to the Ti 3 d eg manifold, the quasielastic RIXS response exhibits a tail indicative of phonon excitations. A fit of the spectral line shape by a theoretical model allows us to estimate the electron-phonon coupling strength M ˜0.25 eV, which places BaTiO3 in the intermediate coupling regime.

  2. Real-time observation of intramolecular proton transfer in the electronic ground state of chloromalonaldehyde: an ab initio study of time-resolved photoelectron spectra.

    PubMed

    do N Varella, Márcio T; Arasaki, Yasuki; Ushiyama, Hiroshi; Takatsuka, Kazuo; Wang, Kwanghsi; McKoy, Vincent

    2007-02-07

    The authors report on studies of time-resolved photoelectron spectra of intramolecular proton transfer in the ground state of chloromalonaldehyde, employing ab initio photoionization matrix elements and effective potential surfaces of reduced dimensionality, wherein the couplings of proton motion to the other molecular vibrational modes are embedded by averaging over classical trajectories. In the simulations, population is transferred from the vibrational ground state to vibrationally hot wave packets by pumping to an excited electronic state and dumping with a time-delayed pulse. These pump-dump-probe simulations demonstrate that the time-resolved photoelectron spectra track proton transfer in the electronic ground state well and, furthermore, that the geometry dependence of the matrix elements enhances the tracking compared with signals obtained with the Condon approximation. Photoelectron kinetic energy distributions arising from wave packets localized in different basins are also distinguishable and could be understood, as expected, on the basis of the strength of the optical couplings in different regions of the ground state potential surface and the Franck-Condon overlaps of the ground state wave packets with the vibrational eigenstates of the ion potential surface.

  3. Femtosecond Pump-Push-Probe and Pump-Dump-Probe Spectroscopy of Conjugated Polymers: New Insight and Opportunities.

    PubMed

    Kee, Tak W

    2014-09-18

    Conjugated polymers are an important class of soft materials that exhibit a wide range of applications. The excited states of conjugated polymers, often referred to as excitons, can either deactivate to yield the ground state or dissociate in the presence of an electron acceptor to form charge carriers. These interesting properties give rise to their luminescence and the photovoltaic effect. Femtosecond spectroscopy is a crucial tool for studying conjugated polymers. Recently, more elaborate experimental configurations utilizing three optical pulses, namely, pump-push-probe and pump-dump-probe, have been employed to investigate the properties of excitons and charge-transfer states of conjugated polymers. These studies have revealed new insight into femtosecond torsional relaxation and detrapping of bound charge pairs of conjugated polymers. This Perspective highlights (1) the recent achievements by several research groups in using pump-push-probe and pump-dump-probe spectroscopy to study conjugated polymers and (2) future opportunities and potential challenges of these techniques.

  4. A new fluorescent probe for distinguishing Zn2+ and Cd2+ with high sensitivity and selectivity.

    PubMed

    Tan, Yiqun; Gao, Junkuo; Yu, Jiancan; Wang, Ziqi; Cui, Yuanjing; Yang, Yu; Qian, Guodong

    2013-08-28

    A new fluorescence probe for distinguishing Zn(2+) and Cd(2+) is designed and synthesized. For the first time to our knowledge, this probe can recognize similar metal ions by coherently utilizing intramolecular charge transfer (ICT) and different electronic affinities of various metal ions, instead of by selective coordination alone, which may be interfered with and lose its selectivity easily in a complicated environment, providing a distinct recognition even by the naked eye for Zn(2+) and Cd(2+) with the sensitivity at the ppb level. This design strategy may initiate a straightforward approach for the selective detection of various metal ions with similar chemical properties in extensive applications such as environmental, industrial, and bio-science.

  5. Molecularly "engineered" anode adsorbates for probing OLED interfacial structure-charge injection/luminance relationships: large, structure-dependent effects.

    PubMed

    Huang, Qinglan; Evmenenko, Guennadi; Dutta, Pulak; Marks, Tobin J

    2003-12-03

    Molecule-scale structure effects at organic light-emitting diodes (OLED) anode-organic transport layer interfaces are probed via a self-assembly approach. A series of ITO anode-linked silyltriarylamine molecules differing in aryl group and linker density are synthesized for this purpose and used to probe the relationship between nanoscale interfacial chemical structure, charge injection and electroluminescence properties. Dramatic variations in hole injection magnitude and OLED performance can be correlated with the molecular structures and electrochemically derived heterogeneous electron-transfer rates of such triarylamine fragments, placed precisely at the anode-hole transport layer interface. Very bright and efficient ( approximately 70 000 cd/m2 and approximately 2.5% forward external quantum efficiency) OLEDs have thereby been fabricated.

  6. FEL investigations of energy transfer in condensed phase systems

    NASA Astrophysics Data System (ADS)

    Henderson, Don O.; Mu, Richard; Silberman, Enrique; Johnson, J. B.; Edwards, Glenn S.

    1993-07-01

    The vibrational dynamics of O-H groups in fused silica have been examined by a time- resolved pump-probe technique using the Vanderbilt Free Electron Laser (FEL). We consider two effects, local heating and transient thermal lensing, which can influence measured T1 values in one color pump-probe measurements. The dependence of these two effects on both the micropulse spacing and the total number of micropulses delivered to the sample are analyzed in detail for the O-H/SiO2 system. The results indicate that transient thermal lensing can significantly influence the measured probe signal. The local heating may cause thermally induced changes in the ground state population of the absorber, thereby complicating the analysis of the relaxation dynamics.

  7. Electronic Interactions of Size-Selected Oxide Clusters on Metallic and Thin Film Oxide Supports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Meng; Nakayama, Miki; Liu, Ping

    The interfacial electronic structure of various size-selected metal oxide nanoclusters (M 3O x; M = Mo, Nb, Ti) on Cu(111) and a thin film of Cu 2O supports were investigated in this paper by a combination of experimental methods and density functional theory (DFT). These systems explore electron transfer at the metal–metal oxide interface which can modify surface structure, metal oxidation states, and catalytic activity. Electron transfer was probed by measurements of surface dipoles derived from coverage dependent work function measurements using two-photon photoemission (2PPE) and metal core level binding energy spectra from X-ray photoelectron spectroscopy (XPS). The measured surfacemore » dipoles are negative for all clusters on Cu(111) and Cu 2O/Cu(111), but those on the Cu 2O surface are much larger in magnitude. In addition, sub-stoichiometric or “reduced” clusters exhibit smaller surface dipoles on both the Cu(111) and Cu 2O surfaces. Negative surface dipoles for clusters on Cu(111) suggest Cu → cluster electron transfer, which is generally supported by DFT-calculated Bader charge distributions. For Cu 2O/Cu(111), calculations of the surface electrostatic potentials show that the charge distributions associated with cluster adsorption structures or distortions at the cluster–Cu 2O–Cu(111) interface are largely responsible for the observed negative surface dipoles. Changes observed in the XPS spectra for the Mo 3d, Nb 3d, and Ti 2p core levels of the clusters on Cu(111) and Cu 2O/Cu(111) are interpreted with help from the calculated Bader charges and cluster adsorption structures, the latter providing information about the presence of inequivalent cation sites. Finally, the results presented in this work illustrate how the combined use of different experimental probes along with theoretical calculations can result in a more realistic picture of cluster–support interactions and bonding.« less

  8. Electronic Interactions of Size-Selected Oxide Clusters on Metallic and Thin Film Oxide Supports

    DOE PAGES

    Xue, Meng; Nakayama, Miki; Liu, Ping; ...

    2017-09-13

    The interfacial electronic structure of various size-selected metal oxide nanoclusters (M 3O x; M = Mo, Nb, Ti) on Cu(111) and a thin film of Cu 2O supports were investigated in this paper by a combination of experimental methods and density functional theory (DFT). These systems explore electron transfer at the metal–metal oxide interface which can modify surface structure, metal oxidation states, and catalytic activity. Electron transfer was probed by measurements of surface dipoles derived from coverage dependent work function measurements using two-photon photoemission (2PPE) and metal core level binding energy spectra from X-ray photoelectron spectroscopy (XPS). The measured surfacemore » dipoles are negative for all clusters on Cu(111) and Cu 2O/Cu(111), but those on the Cu 2O surface are much larger in magnitude. In addition, sub-stoichiometric or “reduced” clusters exhibit smaller surface dipoles on both the Cu(111) and Cu 2O surfaces. Negative surface dipoles for clusters on Cu(111) suggest Cu → cluster electron transfer, which is generally supported by DFT-calculated Bader charge distributions. For Cu 2O/Cu(111), calculations of the surface electrostatic potentials show that the charge distributions associated with cluster adsorption structures or distortions at the cluster–Cu 2O–Cu(111) interface are largely responsible for the observed negative surface dipoles. Changes observed in the XPS spectra for the Mo 3d, Nb 3d, and Ti 2p core levels of the clusters on Cu(111) and Cu 2O/Cu(111) are interpreted with help from the calculated Bader charges and cluster adsorption structures, the latter providing information about the presence of inequivalent cation sites. Finally, the results presented in this work illustrate how the combined use of different experimental probes along with theoretical calculations can result in a more realistic picture of cluster–support interactions and bonding.« less

  9. A combined electrochemical and optical trapping platform for measuring single cell respiration rates at electrode interfaces.

    PubMed

    Gross, Benjamin J; El-Naggar, Mohamed Y

    2015-06-01

    Metal-reducing bacteria gain energy by extracellular electron transfer to external solids, such as naturally abundant minerals, which substitute for oxygen or the other common soluble electron acceptors of respiration. This process is one of the earliest forms of respiration on earth and has significant environmental and technological implications. By performing electron transfer to electrodes instead of minerals, these microbes can be used as biocatalysts for conversion of diverse chemical fuels to electricity. Understanding such a complex biotic-abiotic interaction necessitates the development of tools capable of probing extracellular electron transfer down to the level of single cells. Here, we describe an experimental platform for single cell respiration measurements. The design integrates an infrared optical trap, perfusion chamber, and lithographically fabricated electrochemical chips containing potentiostatically controlled transparent indium tin oxide microelectrodes. Individual bacteria are manipulated using the optical trap and placed on the microelectrodes, which are biased at a suitable oxidizing potential in the absence of any chemical electron acceptor. The potentiostat is used to detect the respiration current correlated with cell-electrode contact. We demonstrate the system with single cell measurements of the dissimilatory-metal reducing bacterium Shewanella oneidensis MR-1, which resulted in respiration currents ranging from 15 fA to 100 fA per cell under our measurement conditions. Mutants lacking the outer-membrane cytochromes necessary for extracellular respiration did not result in any measurable current output upon contact. In addition to the application for extracellular electron transfer studies, the ability to electronically measure cell-specific respiration rates may provide answers for a variety of fundamental microbial physiology questions.

  10. A combined electrochemical and optical trapping platform for measuring single cell respiration rates at electrode interfaces

    NASA Astrophysics Data System (ADS)

    Gross, Benjamin J.; El-Naggar, Mohamed Y.

    2015-06-01

    Metal-reducing bacteria gain energy by extracellular electron transfer to external solids, such as naturally abundant minerals, which substitute for oxygen or the other common soluble electron acceptors of respiration. This process is one of the earliest forms of respiration on earth and has significant environmental and technological implications. By performing electron transfer to electrodes instead of minerals, these microbes can be used as biocatalysts for conversion of diverse chemical fuels to electricity. Understanding such a complex biotic-abiotic interaction necessitates the development of tools capable of probing extracellular electron transfer down to the level of single cells. Here, we describe an experimental platform for single cell respiration measurements. The design integrates an infrared optical trap, perfusion chamber, and lithographically fabricated electrochemical chips containing potentiostatically controlled transparent indium tin oxide microelectrodes. Individual bacteria are manipulated using the optical trap and placed on the microelectrodes, which are biased at a suitable oxidizing potential in the absence of any chemical electron acceptor. The potentiostat is used to detect the respiration current correlated with cell-electrode contact. We demonstrate the system with single cell measurements of the dissimilatory-metal reducing bacterium Shewanella oneidensis MR-1, which resulted in respiration currents ranging from 15 fA to 100 fA per cell under our measurement conditions. Mutants lacking the outer-membrane cytochromes necessary for extracellular respiration did not result in any measurable current output upon contact. In addition to the application for extracellular electron transfer studies, the ability to electronically measure cell-specific respiration rates may provide answers for a variety of fundamental microbial physiology questions.

  11. Ligand-induced dependence of charge transfer in nanotube–quantum dot heterostructures

    DOE PAGES

    Wang, Lei; Han, Jinkyu; Sundahl, Bryan; ...

    2016-07-01

    As a model system to probe ligand-dependent charge transfer in complex composite heterostructures, we fabricated double-walled carbon nanotube (DWNT) – CdSe quantum dot (QD) composites. Whereas the average diameter of the QDs probed was kept fixed at ~4.1 nm and the nanotubes analyzed were similarly oxidatively processed, by contrast, the ligands used to mediate the covalent attachment between the QDs and DWNTs were systematically varied to include p-phenylenediamine (PPD), 2-aminoethanethiol (AET), and 4-aminothiophenol (ATP). Herein, we have put forth a unique compilation of complementary data from experiment and theory, including results from transmission electron microscopy (TEM), near-edge X-ray absorption finemore » structure (NEXAFS) spectroscopy, Raman spectroscopy, electrical transport measurements, and theoretical modeling studies, in order to fundamentally assess the nature of the charge transfer between CdSe QDs and DWNTs, as a function of the structure of various, intervening bridging ligand molecules. Specifically, we correlated evidence of charge transfer as manifested by changes and shifts associated with NEXAFS intensities, Raman peak positions, and threshold voltages both before and after CdSe QD deposition onto the underlying DWNT surface. Importantly, for the first time ever in these types of nanoscale composite systems, we have sought to use theoretical modeling to justify and account for our experimental results. Finally, our overall data suggest that (i) QD coverage density on the DWNTs varies, based upon the different ligand pendant groups used and that (ii) the presence of a π-conjugated carbon framework within the ligands themselves and the electron affinity of the pendant groups collectively play important roles in the resulting charge transfer from QDs to the underlying CNTs.« less

  12. Ultrafast charge transfer between MoTe2 and MoS2 monolayers

    NASA Astrophysics Data System (ADS)

    Pan, Shudi; Ceballos, Frank; Bellus, Matthew Z.; Zereshki, Peymon; Zhao, Hui

    2017-03-01

    High quality and stable electrical contact between metal and two-dimensional materials, such as transition metal dichalcogenides, is a necessary requirement that has yet to be achieved in order to successfully exploit the advantages that these materials offer to electronics and optoelectronics. MoTe2, owing to its phase changing property, can potentially offer a solution. A recent study demonstrated that metallic phase of MoTe2 connects its semiconducting phase with very low resistance. To utilize this property to connect other two-dimensional materials, it is important to achieve efficient charge transfer between MoTe2 and other semiconducting materials. Using MoS2 as an example, we report ultrafast and efficient charge transfer between MoTe2 and MoS2 monolayers. In the transient absorption measurements, an ultrashort pump pulse is used to selectively excite electrons in MoTe2. The appearance of the excited electrons in the conduction band of MoS2 is monitored by using a probe pulse that is tuned to the resonance of MoS2. We found that electrons transfer to MoS2 on a time scale of at most 0.3 ps. The transferred electrons give rise to a large transient absorption signal at both A-exciton and B-exciton resonances due to the screening effect. We also observed ultrafast transfer of holes from MoS2 to MoTe2. Our results suggest the feasibility of using MoTe2 as a bridge material to connect MoS2 and other transition metal dichalcogenides, and demonstrate a new transition metal dichalcogenide heterostructure involving MoTe2, which extends the spectral range of such structures to infrared.

  13. Ultrafast optical excitations in supramolecular metallacycles with charge transfer properties.

    PubMed

    Flynn, Daniel C; Ramakrishna, Guda; Yang, Hai-Bo; Northrop, Brian H; Stang, Peter J; Goodson, Theodore

    2010-02-03

    New organometallic materials such as two-dimensional metallacycles and three-dimensional metallacages are important for the development of novel optical, electronic, and energy related applications. In this article, the ultrafast dynamics of two different platinum-containing metallacycles have been investigated by femtosecond fluorescence upconversion and transient absorption. These measurements were carried out in an effort to probe the charge transfer dynamics and the rate of intersystem crossing in metallacycles of different geometries and dimensions. The processes of ultrafast intersystem crossing and charge transfer vary between the two different classes of metallacyclic systems studied. For rectangular anthracene-containing metallacycles, the electronic coupling between adjacent ligands was relatively weak, whereas for the triangular phenanthrene-containing structures, there was a clear interaction between the conjugated ligand and the metal complex center. The transient lifetimes increased with increasing conjugation in that case. The results show that differences in the dimensionality and structure of metallacycles result in different optical properties, which may be utilized in the design of nonlinear optical materials and potential new, longer-lived excited state materials for further electronic applications.

  14. Cooperative inter- and intra-layer lattice dynamics of photoexcited multi-walled carbon nanotubes studied by ultrafast electron diffraction.

    PubMed

    Sun, Shuaishuai; Li, Zhongwen; Li, Zi-An; Xiao, Ruijuan; Zhang, Ming; Tian, Huanfang; Yang, Huaixin; Li, Jianqi

    2018-04-26

    Optical tuning and probing ultrafast structural response of nanomaterials driven by electronic excitation constitute a challenging but promising approach for understanding microscopic mechanisms and applications in microelectromechanical systems and optoelectrical devices. Here we use pulsed electron diffraction in a transmission electron microscope to investigate laser-induced tubular lattice dynamics of multi-walled carbon nanotubes (MWCNTs) with varying laser fluence and initial specimen temperature. Our photoexcitation experiments demonstrate cooperative and inverse collective atomic motions in intralayer and interlayer directions, whose strengths and rates depend on pump fluence. The electron-driven and thermally driven structural responses with opposite amplitudes cause a crossover between intralayer and interlayer directions. Our ab initio calculations support these findings and reveal that electrons excited from π to π* orbitals in a carbon tube weaken the intralayer bonds while strengthening the interlayer bonds along the radial direction. Moreover, by probing the structural dynamics of MWCNTs at initial temperatures of 300 and 100 K, we uncover the concomitance of thermal and nonthermal dynamical processes and their mutual influence in MWCNTs. Our results illustrate the nature of electron-driven nonthermal process and electron-phonon thermalization in the MWCNTs, and bear implications for the intricate energy conversion and transfer in materials at the nanoscale.

  15. Photoinduced electron transfer and fluorophore motion as a probe of the conformational dynamics of membrane proteins: application to the influenza a M2 proton channel.

    PubMed

    Rogers, Julie M G; Polishchuk, Alexei L; Guo, Lin; Wang, Jun; DeGrado, William F; Gai, Feng

    2011-04-05

    The structure and function of the influenza A M2 proton channel have been the subject of intensive investigations in recent years because of their critical role in the life cycle of the influenza virus. Using a truncated version of the M2 proton channel (i.e., M2TM) as a model, here we show that fluctuations in the fluorescence intensity of a dye reporter that arise from both fluorescence quenching via the mechanism of photoinduced electron transfer (PET) by an adjacent tryptophan (Trp) residue and local motions of the dye molecule can be used to probe the conformational dynamics of membrane proteins. Specifically, we find that the dynamics of the conformational transition between the N-terminal open and C-terminal open states of the M2TM channel occur on a timescale of about 500 μs and that the binding of either amantadine or rimantadine does not inhibit the pH-induced structural equilibrium of the channel. These results are consistent with the direct occluding mechanism of inhibition which suggests that the antiviral drugs act by sterically occluding the channel pore.

  16. What have we learned about the energetic particle dynamics in the inner belt and slot region from Van Allen Probes and CSSWE missions?

    NASA Astrophysics Data System (ADS)

    Li, Xinlin; Selesnick, Richard; Zhao, Hong; Baker, Dan; Jaynes, Allison; Kanekal, Shrikanth; Bern Blake, J.

    2017-04-01

    Comprehensive measurements of energetic protons (10s of MeV) in the inner belt (L<2) and slot region (21.6 MeV) measurements cannot be distinguished from the background. Analysis on sub-MeV electrons data in the inner belt and slot region from the Magnetic Electron Ion Spectrometer (MagEIS) on board Van Allen Probes revealed rather complex pitch angle distribution of these energetic electrons, with the 90 deg-minimum (butterfly) pitch angle distribution dominating near the magnetic equator, which has inspired a great deal of theoretical interest in an attempt to explain such a peculiar pitch angle distribution. These are part of a summary of the most recent measurements and understanding of the dynamics of energetic particles in the inner zone and slot region to be exhibited and discussed in this presentation.

  17. Influence of Nanostructure on the Exciton Dynamics of Multichromophore Donor–Acceptor Block Copolymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Jianlong; Busby, Erik; Sanders, Samuel N.

    Here, we explore the synthesis and photophysics of nanostructured block copolymers that mimic light-harvesting complexes. We find that the combination of a polar and electron-rich boron dipyrromethene (BODIPY) block with a nonpolar electron-poor perylene diimide (PDI) block yields a polymer that self-assembles into ordered “nanoworms”. Numerical simulations are used to determine optimal compositions to achieve robust self-assembly. Photoluminescence spectroscopy is used to probe the rich exciton dynamics in these systems. Using controls, such as homopolymers and random copolymers, we analyze the mechanisms of the photoluminescence from these polymers. With this understanding it allows us to probe in detail the photophysicsmore » of the block copolymers, including the effects of their self-assembly into nanostructures on their excited-state properties. Similar to natural systems, ordered nanostructures result in properties that are starkly different than the properties of free polymers in solution, such as enhanced rates of electronic energy transfer and elimination of excitonic emission from disordered PDI trap states.« less

  18. Influence of Nanostructure on the Exciton Dynamics of Multichromophore Donor–Acceptor Block Copolymers

    DOE PAGES

    Xia, Jianlong; Busby, Erik; Sanders, Samuel N.; ...

    2017-03-27

    Here, we explore the synthesis and photophysics of nanostructured block copolymers that mimic light-harvesting complexes. We find that the combination of a polar and electron-rich boron dipyrromethene (BODIPY) block with a nonpolar electron-poor perylene diimide (PDI) block yields a polymer that self-assembles into ordered “nanoworms”. Numerical simulations are used to determine optimal compositions to achieve robust self-assembly. Photoluminescence spectroscopy is used to probe the rich exciton dynamics in these systems. Using controls, such as homopolymers and random copolymers, we analyze the mechanisms of the photoluminescence from these polymers. With this understanding it allows us to probe in detail the photophysicsmore » of the block copolymers, including the effects of their self-assembly into nanostructures on their excited-state properties. Similar to natural systems, ordered nanostructures result in properties that are starkly different than the properties of free polymers in solution, such as enhanced rates of electronic energy transfer and elimination of excitonic emission from disordered PDI trap states.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrik, Nikolay G.; Kimmel, Gregory A.

    Weakly bound (physisorbed) atoms and molecules such as Ar, Kr, Xe, CO, CH4, CH3OH, CO2 and N2 are used to probe the photochemical interactions of O2 on rutile TiO2(110). UV irradiation of chemisorbed O2 along with the physisorbed probe species leads to photon-stimulated desorption (PSD) of Ar, Kr, CO, CH4 and N2. Without co-adsorbed O2, the PSD yields of the probe species are very low or not observed. No PSD was observed for CO2, N2O, CH3OH and the PSD yield for Xe is very low compared to the other probe atoms or molecules. The angular distribution of the photo-desorbing Kr,more » which is broad and cosine, is quite different from the O2 PSD angular distribution, which is sharply peaked along the surface normal. The Kr PSD yields increase with increasing coverage of Kr and of chemisorbed O2. We propose a mechanism for the observed phenomena where the chemisorbed O2 serves as photoactive center, excited via electronic excitations (electrons and/or holes) created in the TiO2 substrate by UV photon irradiation. The photo-excited O2 may transfer its energy to neighboring co-adsorbed atom or molecule resulting in desorption of the latter. Simple momentum transfer considerations suggest that heavier adsorbates (like Xe) and adsorbates with higher binding energy (like CO2) should desorb less efficiently according to the proposed mechanism. Various forms of chemisorbed O2 appeared photoactive in such stimulated desorption of Kr atoms: molecular anions (O22-, O2-), adatoms (Oa), and others. The observed phenomenon provides a new tool for study of photocatalysis.« less

  20. Direct Observation of Photoexcited Hole Localization in CdSe Nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ye; Wu, Kaifeng; Shabaev, Andrew

    Quantum-confined 1D semiconductor nanostructures are being investigated for hydrogen generation photocatalysts. In the photoreaction, after fast electron transfer, holes that remain in the nanostructure play an important role in the total quantum yield of hydrogen production. Unfortunately, knowledge of hole dynamics is limited due to lack of convenient spectroscopic signatures. Here, we directly probe hole localization dynamics within CdSe nanorods (NRs) by combining transient absorption (TA) and time-resolved terahertz (TRTS) spectroscopy. We show that when methylene blue is used as an electron acceptor, the resulting electron transfer occurs with a time constant of 3.5 +/- 0.1 ps and leaves behindmore » a delocalized hole. However, the hole quickly localizes in the Coulomb potential well generated by the reduced electron acceptor near the NR surface with time constant of 11.7 +/- 0.2 ps. Our theoretical investigation suggests that the hole becomes confined to a ~ +/-0.8 nm region near the reduced electron acceptor and the activation energy to detrap the hole from the potential well can be as large as 235 meV.« less

  1. A Novel "Off-On" Fluorescent Probe Based on Carbon Nitride Nanoribbons for the Detection of Citrate Anion and Live Cell Imaging.

    PubMed

    Hu, Yanling; Yang, Donlgliang; Yang, Chen; Feng, Ning; Shao, Zhouwei; Zhang, Lei; Wang, Xiaodong; Weng, Lixing; Luo, Zhimin; Wang, Lianhui

    2018-04-11

    A novel fluorescent "off-on" probe based on carbon nitride (C₃N₄) nanoribbons was developed for citrate anion (C₆H₅O₇ 3- ) detection. The fluorescence of C₃N₄ nanoribbons can be quenched by Cu 2+ and then recovered by the addition of C₆H₅O₇ 3- , because the chelation between C₆H₅O₇ 3- and Cu 2+ blocks the electron transfer between Cu 2+ and C₃N₄ nanoribbons. The turn-on fluorescent sensor using this fluorescent "off-on" probe can detect C₆H₅O₇ 3- rapidly and selectively, showing a wide detection linear range (1~400 μM) and a low detection limit (0.78 μM) in aqueous solutions. Importantly, this C₃N₄ nanoribbon-based "off-on" probe exhibits good biocompatibility and can be used as fluorescent visualizer for exogenous C₆H₅O₇ 3- in HeLa cells.

  2. Aminoquinoline based highly sensitive fluorescent sensor for lead(II) and aluminum(III) and its application in live cell imaging.

    PubMed

    Anand, Thangaraj; Sivaraman, Gandhi; Mahesh, Ayyavu; Chellappa, Duraisamy

    2015-01-01

    We have synthesized a new probe 5-((anthracen-9-ylmethylene) amino)quinolin-10-ol (ANQ) based on anthracene platform. The probe was tested for its sensing behavior toward heavy metal ions Hg(2+), Pb(2+), light metal Al(3+) ion, alkali, alkaline earth, and transition metal ions by UV-visible and fluorescent techniques in ACN/H2O mixture buffered with HEPES (pH 7.4). It shows high selectivity toward sensing Pb(2+)/Al(3+) metal ions. Importantly, 10-fold and 5- fold fluorescence enhancement at 429 nm was observed for probe upon complexation with Pb(2+) and Al(3+) ions, respectively. This fluorescence enhancement is attributable to the prevention of photoinduced electron transfer. The photonic studies indicate that the probe can be adopted as a sensitive fluorescent chemosensor for Pb(2+) and Al(3+) ions. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Time-resolved photoelectron spectroscopy of IR-driven electron dynamics in a charge transfer model system.

    PubMed

    Falge, Mirjam; Fröbel, Friedrich Georg; Engel, Volker; Gräfe, Stefanie

    2017-08-02

    If the adiabatic approximation is valid, electrons smoothly adapt to molecular geometry changes. In contrast, as a characteristic of diabatic dynamics, the electron density does not follow the nuclear motion. Recently, we have shown that the asymmetry in time-resolved photoelectron spectra serves as a tool to distinguish between these dynamics [Falge et al., J. Phys. Chem. Lett., 2012, 3, 2617]. Here, we investigate the influence of an additional, moderately intense infrared (IR) laser field, as often applied in attosecond time-resolved experiments, on such asymmetries. This is done using a simple model for coupled electronic-nuclear motion. We calculate time-resolved photoelectron spectra and their asymmetries and demonstrate that the spectra directly map the bound electron-nuclear dynamics. From the asymmetries, we can trace the IR field-induced population transfer and both the field-driven and intrinsic (non-)adiabatic dynamics. This holds true when considering superposition states accompanied by electronic coherences. The latter are observable in the asymmetries for sufficiently short XUV pulses to coherently probe the coupled states. It is thus documented that the asymmetry is a measure for phases in bound electron wave packets and non-adiabatic dynamics.

  4. Femtosecond transient absorption, Raman, and electrochemistry studies of tetrasulfonated copper phthalocyanine in water solutions.

    PubMed

    Abramczyk, H; Brozek-Płuska, B; Kurczewski, K; Kurczewska, M; Szymczyk, I; Krzyczmonik, P; Błaszczyk, T; Scholl, H; Czajkowski, W

    2006-07-20

    Ultrafast time-resolved electronic spectra of the primary events induced in the copper tetrasulfonated phthalocyanine Cu(tsPc)4-) in aqueous solution has been measured by femtosecond pump-probe transient absorption spectroscopy. The primary events initiated by the absorption of a photon occurring within the femtosecond time scale are discussed on the basis of the electron transfer mechanism between the adjacent phthalocyanine rings proposed recently in our laboratory. The femtosecond transient absorption results are compared with the low temperature emission spectra obtained with Raman spectroscopy and the voltammetric curves.

  5. Charge dynamics of 57Fe probe atoms in La2Li0.5Cu0.5O4

    NASA Astrophysics Data System (ADS)

    Presniakov, I. A.; Sobolev, A. V.; Rusakov, V. S.; Moskvin, A. S.; Baranov, A. V.

    2018-06-01

    The objective of this study is to characterize the electronic state and local surrounding of 57Fe Mössbauer probe atoms within iron-doped layered perovskite La2Li0.5Cu0.5O4 containing transition metal in unusual formal oxidation states "+3". An approach based on the qualitative energy diagrams analysis and the calculations within the cluster configuration interaction method have been developed. It was shown that a large amount of charge is transferred via Cu-O bonds from the O: 2p bands to the Cu: 3d orbitals and the ground state is dominated by the d9L configuration ("Cu2+-O-" state). The dominant d9L ground state for the (CuO6) sublattice induces in the environment of the 57Fe probe cations a charge transfer Fe3+ + O-(L) → Fe4+ + O2-, which transforms "Fe3+" into "Fe4+" state. The experimental spectra in the entire temperature range 77-300 K were described with the use of the stochastic two-level model based on the assumption of dynamic equilibrium between two Fe3+↔Fe4+ valence states related to the iron atom in the [Fe(1)O4]4- center. The relaxation frequencies and activation energies of the corresponding charge fluctuations were estimated based on Mössbauer data. The results are discussed assuming a temperature-induced change in the electronic state of the [CuO4]5- clusters in the layered perovskite.

  6. An environmental transfer hub for multimodal atom probe tomography.

    PubMed

    Perea, Daniel E; Gerstl, Stephan S A; Chin, Jackson; Hirschi, Blake; Evans, James E

    2017-01-01

    Environmental control during transfer between instruments is required for samples sensitive to air or thermal exposure to prevent morphological or chemical changes prior to analysis. Atom probe tomography is a rapidly expanding technique for three-dimensional structural and chemical analysis, but commercial instruments remain limited to loading specimens under ambient conditions. In this study, we describe a multifunctional environmental transfer hub allowing controlled cryogenic or room-temperature transfer of specimens under atmospheric or vacuum pressure conditions between an atom probe and other instruments or reaction chambers. The utility of the environmental transfer hub is demonstrated through the acquisition of previously unavailable mass spectral analysis of an intact organic molecule made possible via controlled cryogenic transfer into the atom probe using the hub. The ability to prepare and transfer specimens in precise environments promises a means to access new science across many disciplines from untainted samples and allow downstream time-resolved in situ atom probe studies.

  7. A NBD-based simple but effective fluorescent pH probe for imaging of lysosomes in living cells.

    PubMed

    Cao, Xiang-Jian; Chen, Li-Na; Zhang, Xuan; Liu, Jin-Ting; Chen, Ming-Yu; Wu, Qiu-Rong; Miao, Jun-Ying; Zhao, Bao-Xiang

    2016-05-12

    NBDlyso with lysosome-locating morpholine moiety has been developed as a high selective and sensitive fluorescent pH probe. This probe can respond to acidic pH (2.0-7.0) in a short time (less than 1 min) and not almost change after continuously illuminated for an extended period by ultraviolet light. The fluorescence intensity of NBDlyso enhanced 100-fold in acidic solution, with very good linear relationship (R(2) = 0.996). The pKa of probe NBDlyso is 4.10. Therefore, NBDlyso was used to detect lysosomal pH changes successfully. Besides, X-ray crystallography was used to verify the structure of NBDlyso, and the recognition mechanism involving photo-induced electron transfer was interpreted theoretically by means of DFT and TDDFT calculations skillfully when NBDlyso comes into play under the acidic condition. This probe showed good ability to sense pH change in living cell image. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Kelvin probe microscopy and electronic transport measurements in reduced graphene oxide chemical sensors

    NASA Astrophysics Data System (ADS)

    Kehayias, Christopher E.; MacNaughton, Samuel; Sonkusale, Sameer; Staii, Cristian

    2013-06-01

    Reduced graphene oxide (RGO) is an electronically hybrid material that displays remarkable chemical sensing properties. Here, we present a quantitative analysis of the chemical gating effects in RGO-based chemical sensors. The gas sensing devices are patterned in a field-effect transistor geometry, by dielectrophoretic assembly of RGO platelets between gold electrodes deposited on SiO2/Si substrates. We show that these sensors display highly selective and reversible responses to the measured analytes, as well as fast response and recovery times (tens of seconds). We use combined electronic transport/Kelvin probe microscopy measurements to quantify the amount of charge transferred to RGO due to chemical doping when the device is exposed to electron-acceptor (acetone) and electron-donor (ammonia) analytes. We demonstrate that this method allows us to obtain high-resolution maps of the surface potential and local charge distribution both before and after chemical doping, to identify local gate-susceptible areas on the RGO surface, and to directly extract the contact resistance between the RGO and the metallic electrodes. The method presented is general, suggesting that these results have important implications for building graphene and other nanomaterial-based chemical sensors.

  9. Kelvin probe microscopy and electronic transport measurements in reduced graphene oxide chemical sensors.

    PubMed

    Kehayias, Christopher E; MacNaughton, Samuel; Sonkusale, Sameer; Staii, Cristian

    2013-06-21

    Reduced graphene oxide (RGO) is an electronically hybrid material that displays remarkable chemical sensing properties. Here, we present a quantitative analysis of the chemical gating effects in RGO-based chemical sensors. The gas sensing devices are patterned in a field-effect transistor geometry, by dielectrophoretic assembly of RGO platelets between gold electrodes deposited on SiO2/Si substrates. We show that these sensors display highly selective and reversible responses to the measured analytes, as well as fast response and recovery times (tens of seconds). We use combined electronic transport/Kelvin probe microscopy measurements to quantify the amount of charge transferred to RGO due to chemical doping when the device is exposed to electron-acceptor (acetone) and electron-donor (ammonia) analytes. We demonstrate that this method allows us to obtain high-resolution maps of the surface potential and local charge distribution both before and after chemical doping, to identify local gate-susceptible areas on the RGO surface, and to directly extract the contact resistance between the RGO and the metallic electrodes. The method presented is general, suggesting that these results have important implications for building graphene and other nanomaterial-based chemical sensors.

  10. An off-on fluorescence probe targeting mitochondria based on oxidation-reduction response for tumor cell and tissue imaging

    NASA Astrophysics Data System (ADS)

    Yao, Hanchun; Cao, Li; Zhao, Weiwei; Zhang, Suge; Zeng, Man; Du, Bin

    2017-10-01

    In this study, a tumor-targeting poly( d, l-lactic-co-glycolic acid) (PLGA) loaded "off-on" fluorescent probe nanoparticle (PFN) delivery system was developed to evaluate the region of tumor by off-on fluorescence. The biodegradability of the nanosize PFN delivery system readily released the probe under tumor acidic conditions. The probe with good biocompatibility was used to monitor the intracellular glutathione (GSH) of cancer cells and selectively localize to mitochondria for tumor imaging. The incorporated tumor-targeting probe was based on the molecular photoinduced electron transfer (PET) mechanism preventing fluorescence ("off" state) and could be easily released under tumor acidic conditions. However, the released tumor-targeting fluorescence probe molecule was selective towards GSH with high selectivity and an ultra-sensitivity for the mitochondria of cancer cells and tissues significantly increasing the probe molecule fluorescence signal ("on" state). The tumor-targeting fluorescence probe showed sensitivity to GSH avoiding interference from cysteine and homocysteine. The PFNs could enable fluorescence-guided cancer imaging during cancer therapy. This work may expand the biological applications of PFNs as a diagnostic reagent, which will be beneficial for fundamental research in tumor imaging. [Figure not available: see fulltext.

  11. Characterization of photo-induced valence tautomerism in a cobalt-dioxolene complex by ultrafast spectroscopy

    NASA Astrophysics Data System (ADS)

    Beni, A.; Bogani, L.; Bussotti, L.; Dei, A.; Gentili, P. L.; Righini, R.

    2005-01-01

    The valence tautomerism of low-spin CoIII(Cat-N-BQ)(Cat-N-SQ) was investigated by means of UV-vis pump-probe transient absorption spectroscopy in chloroform. By exciting the CT transition of the complex at 480 nm, an intramolecular electron transfer process is selectively triggered. The photo-induced charge transfer is pursued by a cascade of two main molecular events characterized by the ultrafast transient absorption spectroscopy: the first gives rise to the metastable high-spin CoII(Cat-N-BQ)2 that, secondly, reaches the chemical equilibrium with the reactant species.

  12. Substorm Related ULF waves Observed in the Magnetosphere by BD-IES and Van Allan Probes

    NASA Astrophysics Data System (ADS)

    Zong, Q.

    2017-12-01

    By using the data return from the BD-IES instrument onboard an inclined (55°) geosynchronous orbit (IGSO) satellite together with geo-transfer orbit (GTO) Van Allen Probe A&B satellite, we analysis a substorm related ULF waves occurred on Feb 5, 2016 in the dawnside of the magnetosphere. Immediately after the substorm injection followed by energetic electron drift echoes, the electron flux was clearly and strongly varying on the ULF wave time scale. It is found that both toroidal and poloidal mode ULF waves with a period of 320 s. During the substorm injection, the IES onboard IGSO is outbound while both Van Allen Probe A&B satellites are inbound. This configuration of multiple satellite trajectories provides an unique opportunity to investigate substorm related ULF waves. When substorm injections are observed simultaneously with multiple spacecraft, they help elucidate potential mechanisms for particle transport and energization, a topic of great importance for understanding and modeling the magnetosphere. Two possible scenaria on ULF wave triggering are discussed: fast-mode compressional waves -driven field line resonance and ULF wave growth through drift resonance.

  13. Thermal cycling fatigue of organic thermal interface materials using a thermal-displacement measurement technique

    NASA Astrophysics Data System (ADS)

    Steill, Jason Scott

    The long term reliability of polymer-based thermal interface materials (TIM) is essential for modern electronic packages which require robust thermal management. The challenge for today's materials scientists and engineers is to maximize the heat flow from integrated circuits through a TIM and out the heat sink. Thermal cycling of the electronic package and non-uniformity in the heat flux with respect to the plan area can lead to void formation and delamination which re-introduces inefficient heat transfer. Measurement and understanding at the nano-scale is essential for TIM development. Finding and documenting the evolution of the defects is dependent upon a full understanding of the thermal probes response to changing environmental conditions and the effects of probe usage. The response of the thermal-displacement measurement technique was dominated by changes to the environment. Accurate measurement of the thermal performance was hindered by the inability to create a model system and control the operating conditions. This research highlights the need for continued study into the probe's thermal and mechanical response using tightly controlled test conditions.

  14. Applications of free-electron lasers to measurements of energy transfer in biopolymers and materials

    NASA Astrophysics Data System (ADS)

    Edwards, Glenn S.; Johnson, J. B.; Kozub, John A.; Tribble, Jerri A.; Wagner, Katrina

    1992-08-01

    Free-electron lasers (FELs) provide tunable, pulsed radiation in the infrared. Using the FEL as a pump beam, we are investigating the mechanisms for energy transfer between localized vibrational modes and between vibrational modes and lattice or phonon modes. Either a laser-Raman system or a Fourier transform infrared (FTIR) spectrometer will serve as the probe beam, with the attribute of placing the burden of detection on two conventional spectroscopic techniques that circumvent the limited response of infrared detectors. More specifically, the Raman effect inelastically shifts an exciting laser line, typically a visible frequency, by the energy of the vibrational mode; however, the shifted Raman lines also lie in the visible, allowing for detection with highly efficient visible detectors. With regards to FTIR spectroscopy, the multiplex advantage yields a distinct benefit for infrared detector response. Our group is investigating intramolecular and intermolecular energy transfer processes in both biopolymers and more traditional materials. For example, alkali halides contain a number of defect types that effectively transfer energy in an intermolecular process. Similarly, the functioning of biopolymers depends on efficient intramolecular energy transfer. Understanding these mechanisms will enhance our ability to modify biopolymers and materials with applications to biology, medecine, and materials science.

  15. Probing the dynamic interface between trimethylamine dehydrogenase (TMADH) and electron transferring flavoprotein (ETF) in the TMADH-2ETF complex: role of the Arg-alpha237 (ETF) and Tyr-442 (TMADH) residue pair.

    PubMed

    Burgess, Selena G; Messiha, Hanan Latif; Katona, Gergely; Rigby, Stephen E J; Leys, David; Scrutton, Nigel S

    2008-05-06

    We have used multiple solution state techniques and crystallographic analysis to investigate the importance of a putative transient interaction formed between Arg-alpha237 in electron transferring flavoprotein (ETF) and Tyr-442 in trimethylamine dehydrogenase (TMADH) in complex assembly, electron transfer, and structural imprinting of ETF by TMADH. We have isolated four mutant forms of ETF altered in the identity of the residue at position 237 (alphaR237A, alphaR237K, alphaR237C, and alphaR237E) and with each form studied electron transfer from TMADH to ETF, investigated the reduction potentials of the bound ETF cofactor, and analyzed complex formation. We show that mutation of Arg-alpha237 substantially destabilizes the semiquinone couple of the bound FAD and impedes electron transfer from TMADH to ETF. Crystallographic structures of the mutant ETF proteins indicate that mutation does not perturb the overall structure of ETF, but leads to disruption of an electrostatic network at an ETF domain boundary that likely affects the dynamic properties of ETF in the crystal and in solution. We show that Arg-alpha237 is required for TMADH to structurally imprint the as-purified semiquinone form of wild-type ETF and that the ability of TMADH to facilitate this structural reorganization is lost following (i) redox cycling of ETF, or simple conversion to the oxidized form, and (ii) mutagenesis of Arg-alpha237. We discuss this result in light of recent apparent conflict in the literature relating to the structural imprinting of wild-type ETF. Our studies support a mechanism of electron transfer by conformational sampling as advanced from our previous analysis of the crystal structure of the TMADH-2ETF complex [Leys, D. , Basran, J. , Sutcliffe, M. J., and Scrutton, N. S. (2003) Nature Struct. Biol. 10, 219-225] and point to a key role for the Tyr-442 (TMADH) and Arg-alpha237 (ETF) residue pair in transiently stabilizing productive electron transfer configurations. Our work also points to the importance of Arg-alpha237 in controlling the thermodynamics of electron transfer, the dynamics of ETF, and the protection of reducing equivalents following disassembly of the TMADH-2ETF complex.

  16. A combined electrochemical and optical trapping platform for measuring single cell respiration rates at electrode interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gross, Benjamin J.; El-Naggar, Mohamed Y., E-mail: mnaggar@usc.edu; Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-0484

    2015-06-15

    Metal-reducing bacteria gain energy by extracellular electron transfer to external solids, such as naturally abundant minerals, which substitute for oxygen or the other common soluble electron acceptors of respiration. This process is one of the earliest forms of respiration on earth and has significant environmental and technological implications. By performing electron transfer to electrodes instead of minerals, these microbes can be used as biocatalysts for conversion of diverse chemical fuels to electricity. Understanding such a complex biotic-abiotic interaction necessitates the development of tools capable of probing extracellular electron transfer down to the level of single cells. Here, we describe anmore » experimental platform for single cell respiration measurements. The design integrates an infrared optical trap, perfusion chamber, and lithographically fabricated electrochemical chips containing potentiostatically controlled transparent indium tin oxide microelectrodes. Individual bacteria are manipulated using the optical trap and placed on the microelectrodes, which are biased at a suitable oxidizing potential in the absence of any chemical electron acceptor. The potentiostat is used to detect the respiration current correlated with cell-electrode contact. We demonstrate the system with single cell measurements of the dissimilatory-metal reducing bacterium Shewanella oneidensis MR-1, which resulted in respiration currents ranging from 15 fA to 100 fA per cell under our measurement conditions. Mutants lacking the outer-membrane cytochromes necessary for extracellular respiration did not result in any measurable current output upon contact. In addition to the application for extracellular electron transfer studies, the ability to electronically measure cell-specific respiration rates may provide answers for a variety of fundamental microbial physiology questions.« less

  17. Optical Antenna Arrays on a Fiber Facet for In Situ Surface Enhanced Raman Scattering Detection

    PubMed Central

    Smythe, Elizabeth J.; Dickey, Michael D.; Bao, Jiming; Whitesides, George M.

    2009-01-01

    This paper reports a bidirectional fiber optic probe for the detection of surface enhanced Raman scattering (SERS). One facet of the probe features an array of gold optical antennas designed to enhance Raman signal, while the other facet of the fiber is used for the input and collection of light. Simultaneous detection of benzenethiol and 2-[(E)-2-pyridin-4-ylethenyl]pyridine is demonstrated through a 35 cm long fiber. The array of nanoscale optical antennas was first defined by electron-beam lithography on a silicon wafer. The array was subsequently stripped from the wafer and then transferred to the facet of a fiber. Lithographic definition of the antennas provides a method for producing two-dimensional arrays with well-defined geometry, which allows (i) the optical response of the probe to be tuned and (ii) the density of ‘hot spots’ generating the enhanced Raman signal to be controlled. It is difficult to determine the Raman signal enhancement factor (EF) of most fiber optic Raman sensors featuring ‘hot spots’ because the geometry of the Raman enhancing nanostructures is poorly defined. The ability to control the size and spacing of the antennas enables the EF of the transferred array to be estimated. EF values estimated after focusing a laser directly onto the transferred array ranged from 2.6 × 105 to 5.1 × 105. PMID:19236032

  18. Electrochemical current rectification-a novel signal amplification strategy for highly sensitive and selective aptamer-based biosensor.

    PubMed

    Feng, Lingyan; Sivanesan, Arumugam; Lyu, Zhaozi; Offenhäusser, Andreas; Mayer, Dirk

    2015-04-15

    Electrochemical aptamer-based (E-AB) sensors represent an emerging class of recently developed sensors. However, numerous of these sensors are limited by a low surface density of electrode-bound redox-oligonucleotides which are used as probe. Here we propose to use the concept of electrochemical current rectification (ECR) for the enhancement of the redox signal of E-AB sensors. Commonly, the probe-DNA performs a change in conformation during target binding and enables a nonrecurring charge transfer between redox-tag and electrode. In our system, the redox-tag of the probe-DNA is continuously replenished by solution-phase redox molecules. A unidirectional electron transfer from electrode via surface-linked redox-tag to the solution-phase redox molecules arises that efficiently amplifies the current response. Using this robust and straight-forward strategy, the developed sensor showed a substantial signal amplification and consequently improved sensitivity with a calculated detection limit of 114nM for ATP, which was improved by one order of magnitude compared with the amplification-free detection and superior to other previous detection results using enzymes or nanomaterials-based signal amplification. To the best of our knowledge, this is the first demonstration of an aptamer-based electrochemical biosensor involving electrochemical rectification, which can be presumably transferred to other biomedical sensor systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. A novel acidic pH fluorescent probe based on a benzothiazole derivative

    NASA Astrophysics Data System (ADS)

    Ma, Qiujuan; Li, Xian; Feng, Suxiang; Liang, Beibei; Zhou, Tiqiang; Xu, Min; Ma, Zhuoyi

    2017-04-01

    A novel acidic pH fluorescent probe 1 based on a benzothiazole derivative has been designed, synthesized and developed. The linear response range covers the acidic pH range from 3.44 to 6.46, which is valuable for pH researches in acidic environment. The evaluated pKa value of the probe 1 is 4.23. The fluorescence enhancement of the studied probe 1 with an increase in hydrogen ions concentration is based on the hindering of enhanced photo-induced electron transfer (PET) process. Moreover, the pH sensor possesses a highly selective response to H+ in the presence of metal ions, anions and other bioactive small molecules which would be interfere with its fluorescent pH response. Furthermore, the probe 1 responds to acidic pH with short response time that was less than 1 min. The probe 1 has been successfully applied to confocal fluorescence imaging in live HeLa cells and can selectively stain lysosomes. All of such good properties prove it can be used to monitoring pH fluctuations in acidic environment with high sensitivity, pH dependence and short response time.

  20. A coumarin-based two-photon probe for hydrogen peroxide.

    PubMed

    Zhang, Kai-Ming; Dou, Wei; Li, Peng-Xuan; Shen, Rong; Ru, Jia-Xi; Liu, Wei; Cui, Yu-Mei; Chen, Chun-Yang; Liu, Wei-Sheng; Bai, De-Cheng

    2015-02-15

    A new fluorescence probe was developed for hydrogen peroxide (H2O2) detection based on donor-excited photo induced electron transfer (D-PET) mechanism, together with the benzil as a quenching and recognizing moiety. The benzil could convert to benzoic anhydride via a Baeyer-Villiger type reaction in the presence of H2O2, followed by hydrolysis of benzoicanhydride to give benzoic acid, and the fluorophore released. The probe was synthesized by a 6-step procedure starting from 4-(diethylamino)salicylaldehyde. A density functional theory (DFT) calculation was performed to demonstrate that the benzil was a fluorescence quencher. The probe was evaluated in both one-photon and two-photon mode, and it exhibited high selectivity toward H2O2 over other reactive oxygen species and high sensitivity with a detection limit of 0.09 μM. Furthermore, the probe was successfully applied to cell imaging of intracellular H2O2 levels with one-photon microscopy and two-photon microscopy. The superior properties of the probe made it of great potential use in more chemical and biological researches. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Cold denaturation induces inversion of dipole and spin transfer in chiral peptide monolayers

    PubMed Central

    Eckshtain-Levi, Meital; Capua, Eyal; Refaely-Abramson, Sivan; Sarkar, Soumyajit; Gavrilov, Yulian; Mathew, Shinto P.; Paltiel, Yossi; Levy, Yaakov; Kronik, Leeor; Naaman, Ron

    2016-01-01

    Chirality-induced spin selectivity is a recently-discovered effect, which results in spin selectivity for electrons transmitted through chiral peptide monolayers. Here, we use this spin selectivity to probe the organization of self-assembled α-helix peptide monolayers and examine the relation between structural and spin transfer phenomena. We show that the α-helix structure of oligopeptides based on alanine and aminoisobutyric acid is transformed to a more linear one upon cooling. This process is similar to the known cold denaturation in peptides, but here the self-assembled monolayer plays the role of the solvent. The structural change results in a flip in the direction of the electrical dipole moment of the adsorbed molecules. The dipole flip is accompanied by a concomitant change in the spin that is preferred in electron transfer through the molecules, observed via a new solid-state hybrid organic–inorganic device that is based on the Hall effect, but operates with no external magnetic field or magnetic material. PMID:26916536

  2. Cold denaturation induces inversion of dipole and spin transfer in chiral peptide monolayers

    NASA Astrophysics Data System (ADS)

    Eckshtain-Levi, Meital; Capua, Eyal; Refaely-Abramson, Sivan; Sarkar, Soumyajit; Gavrilov, Yulian; Mathew, Shinto P.; Paltiel, Yossi; Levy, Yaakov; Kronik, Leeor; Naaman, Ron

    2016-02-01

    Chirality-induced spin selectivity is a recently-discovered effect, which results in spin selectivity for electrons transmitted through chiral peptide monolayers. Here, we use this spin selectivity to probe the organization of self-assembled α-helix peptide monolayers and examine the relation between structural and spin transfer phenomena. We show that the α-helix structure of oligopeptides based on alanine and aminoisobutyric acid is transformed to a more linear one upon cooling. This process is similar to the known cold denaturation in peptides, but here the self-assembled monolayer plays the role of the solvent. The structural change results in a flip in the direction of the electrical dipole moment of the adsorbed molecules. The dipole flip is accompanied by a concomitant change in the spin that is preferred in electron transfer through the molecules, observed via a new solid-state hybrid organic-inorganic device that is based on the Hall effect, but operates with no external magnetic field or magnetic material.

  3. Target-cancer cell specific activatable fluorescence imaging Probes: Rational Design and in vivo Applications

    PubMed Central

    Kobayashi, Hisataka; Choyke, Peter L.

    2010-01-01

    CONSPECTUS Conventional imaging methods, such as angiography, computed tomography, magnetic resonance imaging and radionuclide imaging, rely on contrast agents (iodine, gadolinium, radioisotopes) that are “always on”. While these agents have proven clinically useful, they are not sufficiently sensitive because of the inadequate target to background ratio. A unique aspect of optical imaging is that fluorescence probes can be designed to be activatable, i.e. only “turned on” under certain conditions. These probes can be designed to emit signal only after binding a target tissue, greatly increasing sensitivity and specificity in the detection of disease. There are two basic types of activatable fluorescence probes; 1) conventional enzymatically activatable probes, which exist in the quenched state until activated by enzymatic cleavage mostly outside of the cells, and 2) newly designed target-cell specific activatable probes, which are quenched until activated in targeted cells by endolysosomal processing that results when the probe binds specific cell-surface receptors and is subsequently internalized. Herein, we present a review of the rational design and in vivo applications of target-cell specific activatable probes. Designing these probes based on their photo-chemical (e.g. activation strategy), pharmacological (e.g. biodistribution), and biological (e.g. target specificity) properties has recently allowed the rational design and synthesis of target-cell specific activatable fluorescence imaging probes, which can be conjugated to a wide variety of targeting molecules. Several different photo-chemical mechanisms have been utilized, each of which offers a unique capability for probe design. These include: self-quenching, homo- and hetero-fluorescence resonance energy transfer (FRET), H-dimer formation and photon-induced electron transfer (PeT). In addition, the repertoire is further expanded by the option for reversibility or irreversibility of the signal emitted using the aforementioned mechanisms. Given the wide range of photochemical mechanisms and properties, target-cell specific activatable probes possess considerable flexibility and can be adapted to specific diagnostic needs. Herein, we summarize the chemical, pharmacological, and biological basis of target-cell specific activatable imaging probes and discuss methods to successfully design such target-cell specific activatable probes for in vivo cancer imaging. PMID:21062101

  4. Probing electron transfer mechanisms in Shewanella oneidensis MR-1 using a nanoelectrode platform and single-cell imaging

    PubMed Central

    Jiang, Xiaocheng; Hu, Jinsong; Fitzgerald, Lisa A.; Biffinger, Justin C.; Xie, Ping; Ringeisen, Bradley R.; Lieber, Charles M.

    2010-01-01

    Microbial fuel cells (MFCs) represent a promising approach for sustainable energy production as they generate electricity directly from metabolism of organic substrates without the need for catalysts. However, the mechanisms of electron transfer between microbes and electrodes, which could ultimately limit power extraction, remain controversial. Here we demonstrate optically transparent nanoelectrodes as a platform to investigate extracellular electron transfer in Shewanella oneidensis MR-1, where an array of nanoholes precludes or single window allows for direct microbe-electrode contacts. Following addition of cells, short-circuit current measurements showed similar amplitude and temporal response for both electrode configurations, while in situ optical imaging demonstrates that the measured currents were uncorrelated with the cell number on the electrodes. High-resolution imaging showed the presence of thin, 4- to 5-nm diameter filaments emanating from cell bodies, although these filaments do not appear correlated with current generation. Both types of electrodes yielded similar currents at longer times in dense cell layers and exhibited a rapid drop in current upon removal of diffusible mediators. Reintroduction of the original cell-free media yielded a rapid increase in current to ∼80% of original level, whereas imaging showed that the positions of > 70% of cells remained unchanged during solution exchange. Together, these measurements show that electron transfer occurs predominantly by mediated mechanism in this model system. Last, simultaneous measurements of current and cell positions showed that cell motility and electron transfer were inversely correlated. The ability to control and image cell/electrode interactions down to the single-cell level provide a powerful approach for advancing our fundamental understanding of MFCs. PMID:20837546

  5. Robust Stacking-Independent Ultrafast Charge Transfer in MoS2/WS2 Bilayers.

    PubMed

    Ji, Ziheng; Hong, Hao; Zhang, Jin; Zhang, Qi; Huang, Wei; Cao, Ting; Qiao, Ruixi; Liu, Can; Liang, Jing; Jin, Chuanhong; Jiao, Liying; Shi, Kebin; Meng, Sheng; Liu, Kaihui

    2017-12-26

    Van der Waals-coupled two-dimensional (2D) heterostructures have attracted great attention recently due to their high potential in the next-generation photodetectors and solar cells. The understanding of charge-transfer process between adjacent atomic layers is the key to design optimal devices as it directly determines the fundamental response speed and photon-electron conversion efficiency. However, general belief and theoretical studies have shown that the charge transfer behavior depends sensitively on interlayer configurations, which is difficult to control accurately, bringing great uncertainties in device designing. Here we investigate the ultrafast dynamics of interlayer charge transfer in a prototype heterostructure, the MoS 2 /WS 2 bilayer with various stacking configurations, by optical two-color ultrafast pump-probe spectroscopy. Surprisingly, we found that the charge transfer is robust against varying interlayer twist angles and interlayer coupling strength, in time scale of ∼90 fs. Our observation, together with atomic-resolved transmission electron characterization and time-dependent density functional theory simulations, reveals that the robust ultrafast charge transfer is attributed to the heterogeneous interlayer stretching/sliding, which provides additional channels for efficient charge transfer previously unknown. Our results elucidate the origin of transfer rate robustness against interlayer stacking configurations in optical devices based on 2D heterostructures, facilitating their applications in ultrafast and high-efficient optoelectronic and photovoltaic devices in the near future.

  6. A colorimetric and fluorogenic probe for bisulfite using benzopyrylium as the recognition unit.

    PubMed

    Zhang, Yun; Zhang, Xiangwen; Yang, Xiao-Feng; Zhang, Juan

    2017-11-01

    A coumarin-benzopyrylium (CB) platform has been developed for the colorimetric and fluorogenic detection of bisulfite. The proposed probe utilizes coumarin as the fluorophore and positively charged benzopyrylium as the reaction site. The method employs the nucleophilic addition of bisulfite to the benzopyrylium moiety of CB to inactivate the electron-deficient oxonium ion. The driving force for photo-induced electron transfer is considerably diminished, thereby promoting the emission intensity of the coumarin fluorophore. The fluorescence intensity at 510 nm is linear with bisulfite concentration over a range of 0.2-7.5 μM with a detection limit of 42 nM (3δ). CB shows a rapid response (within 30 s) and high selectivity and sensitivity for bisulfite. Preliminary studies show that CB has great potential for bisulfite detection in real samples and in living cells. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Theoretical study of chromophores for biological sensing: Understanding the mechanism of rhodol based multi-chromophoric systems

    NASA Astrophysics Data System (ADS)

    Rivera-Jacquez, Hector J.; Masunov, Artëm E.

    2018-06-01

    Development of two-photon fluorescent probes can aid in visualizing the cellular environment. Multi-chromophore systems display complex manifolds of electronic transitions, enabling their use for optical sensing applications. Time-Dependent Density Functional Theory (TDDFT) methods allow for accurate predictions of the optical properties. These properties are related to the electronic transitions in the molecules, which include two-photon absorption cross-sections. Here we use TDDFT to understand the mechanism of aza-crown based fluorescent probes for metals sensing applications. Our findings suggest changes in local excitation in the rhodol chromophore between unbound form and when bound to the metal analyte. These changes are caused by a charge transfer from the aza-crown group and pyrazol units toward the rhodol unit. Understanding this mechanism leads to an optimized design with higher two-photon excited fluorescence to be used in medical applications.

  8. Theoretical study of chromophores for biological sensing: Understanding the mechanism of rhodol based multi-chromophoric systems.

    PubMed

    Rivera-Jacquez, Hector J; Masunov, Artëm E

    2018-06-05

    Development of two-photon fluorescent probes can aid in visualizing the cellular environment. Multi-chromophore systems display complex manifolds of electronic transitions, enabling their use for optical sensing applications. Time-Dependent Density Functional Theory (TDDFT) methods allow for accurate predictions of the optical properties. These properties are related to the electronic transitions in the molecules, which include two-photon absorption cross-sections. Here we use TDDFT to understand the mechanism of aza-crown based fluorescent probes for metals sensing applications. Our findings suggest changes in local excitation in the rhodol chromophore between unbound form and when bound to the metal analyte. These changes are caused by a charge transfer from the aza-crown group and pyrazol units toward the rhodol unit. Understanding this mechanism leads to an optimized design with higher two-photon excited fluorescence to be used in medical applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Biotic stress induced demolition of thylakoid structure and loss in photoelectron transport of chloroplasts in papaya leaves.

    PubMed

    Nanda, Rashmi Madhumita; Biswal, Basanti

    2008-04-01

    Papaya mosaic virus (PMV) causes severe mosaic symptoms in the papaya (Carica papaya L.) leaves. The PMV-induced alterations in photosystem II (PS II) structure and photochemical functions were probed. An increase in chlorophyll a (Chl a) fluorescence polarization suggests pathogen-induced transformation of thylakoid membrane to a gel phase. This transformation in physical state of thylakoid membrane may result in alteration in topology of pigments on pigment-binding proteins as reflected in pathogen-induced loss in the efficiency of energy transfer from carotenoids to chlorophylls. The fast Chl a fluorescence induction kinetics of healthy and PMV-infected plants by F(O)-F(J)-F(I)-F(P) transients revealed pathogen-induced perturbation on PS II acceptor side electron transfer equilibrium between Q(A) and Q(B) and in the pool size of electron transport acceptors. Pathogen-induced loss in photosynthetic pigments, changes in thylakoid structure and decrease in the ratio of F(V)/F(M) (photochemical potential of PS II) further correlate with the loss in photoelectron transport of PS II as probed by 2,6-dichlorophenol indophenol (DCPIP)-Hill reaction. Restoration of the loss by 1,5-diphenyl carbazide (DPC), an exogenous electron donor, that donates electron directly to reaction centre II bypassing the oxygen evolving system (OES), leads towards the conclusion that OES is one of the major targets of biotic stress. Further, the data suggest that chlorophyll fluorescence could be used as a non-invasive handy tool to assess the loss in photosynthetic efficiency and symptom severity in infected green tissues vis-a-vis the healthy ones.

  10. Photoinduced Oxidative DNA Damage Revealed by an Agarose Gel Nicking Assay: A Biophysical Chemistry Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Shafirovich, Vladimir; Singh, Carolyn; Geacintov, Nicholas E.

    2003-11-01

    Oxidative damage of DNA molecules associated with electron-transfer reactions is an important phenomenon in living cells, which can lead to mutations and contribute to carcinogenesis and the aging processes. This article describes the design of several simple experiments to explore DNA damage initiated by photoinduced electron-transfer reactions sensitized by the acridine derivative, proflavine (PF). A supercoiled DNA agarose gel nicking assay is employed as a sensitive probe of DNA strand cleavage. A low-cost experimental and computer-interfaced imaging apparatus is described allowing for the digital recording and analysis of the gel electrophoresis results. The first experiment describes the formation of direct strand breaks in double-stranded DNA induced by photoexcitation of the intercalated PF molecules. The second experiment demonstrates that the addition of the well-known electron acceptor, methylviologen, gives rise to a significant enhancement of the photochemical DNA strand cleavage effect. This occurs by an electron transfer step to methylviologen that renders the inital photoinduced charge separation between photoexcited PF and DNA irreversible. The third experiment demonstrates that the action spectrum of the DNA photocleavage matches the absorption spectrum of DNA-bound, intercalated PF molecules, which differs from that of free PF molecules. This result demonstrates that the photoinduced DNA strand cleavage is initiated by intercalated rather than free PF molecules.

  11. Elaborately Tuning Intramolecular Electron Transfer Through Varying Oligoacene Linkers in the Bis(diarylamino) Systems

    PubMed Central

    Zhang, Jing; Chen, Zhao; Yang, Lan; Pan, Fang-Fang; Yu, Guang-Ao; Yin, Jun; Liu, Sheng Hua

    2016-01-01

    The research efforts on oligoacene systems are still relatively limited mainly due to the synthetic challenge and the extreme instability of longer acenes. Herein, these two issues have been overcome through elaborative modification and the stable pentacene species has been successfully synthesized. Additionally, a series of bis(diarylamino) compounds linked by variable-length oligoacene bridges ranging from one to five fused rings (benzene (1a), naphthalene (1b), anthracene (1c), tetracene (1d) and pentacene (1e)) have been prepared to probe the effect of the extent of π-conjugation on the electron transfer properties. Compound 1c exhibits a high planarity between the anthracyl bridge and the two nitrogen cores and the molecular packing shows a two-dimensional herringbone characteristic. Combined studies based on electrochemistry and spectroelectrochemistry demonstrate that (i) the electronic coupling across the oligoacene linkers between two diarylamine termini exponentially decrease with a moderate attenuation constant (β) of 0.14 Å−1 in these length-modulated systems and (ii) the associated radical cations [1a]+–[1e]+ are classified as the class II Robin–Day mixed-valence systems. Furthermore, density functional theory (DFT) calculations have been conducted to gain insight into the nature of electron transfer processes in these oligoacene systems. PMID:27805023

  12. Communication: Coherences observed in vivo in photosynthetic bacteria using two-dimensional electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Dahlberg, Peter D.; Norris, Graham J.; Wang, Cheng; Viswanathan, Subha; Singh, Ved P.; Engel, Gregory S.

    2015-09-01

    Energy transfer through large disordered antenna networks in photosynthetic organisms can occur with a quantum efficiency of nearly 100%. This energy transfer is facilitated by the electronic structure of the photosynthetic antennae as well as interactions between electronic states and the surrounding environment. Coherences in time-domain spectroscopy provide a fine probe of how a system interacts with its surroundings. In two-dimensional electronic spectroscopy, coherences can appear on both the ground and excited state surfaces revealing detailed information regarding electronic structure, system-bath coupling, energy transfer, and energetic coupling in complex chemical systems. Numerous studies have revealed coherences in isolated photosynthetic pigment-protein complexes, but these coherences have not been observed in vivo due to the small amplitude of these signals and the intense scatter from whole cells. Here, we present data acquired using ultrafast video-acquisition gradient-assisted photon echo spectroscopy to observe quantum beating signals from coherences in vivo. Experiments were conducted on isolated light harvesting complex II (LH2) from Rhodobacter sphaeroides, whole cells of R. sphaeroides, and whole cells of R. sphaeroides grown in 30% deuterated media. A vibronic coherence was observed following laser excitation at ambient temperature between the B850 and the B850∗ states of LH2 in each of the 3 samples with a lifetime of ˜40-60 fs.

  13. Photoinduced electron-transfer in perylenediimide triphenylamine-based dendrimers: single photon timing and femtosecond transient absorption spectroscopy.

    PubMed

    Fron, Eduard; Pilot, Roberto; Schweitzer, Gerd; Qu, Jianqiang; Herrmann, Andreas; Müllen, Klaus; Hofkens, Johan; Van der Auweraer, Mark; De Schryver, Frans C

    2008-05-01

    The excited state dynamics of two generations perylenediimide chromophores substituted in the bay area with dendritic branches bearing triphenylamine units as well as those of the respective reference compounds are investigated. Using single photon timing and multi-pulse femtosecond transient absorption experiments a direct proof of a reversible charge transfer occurring from the peripheral triphenylamine to the electron acceptor perylenediimide core is revealed. Femtosecond pump-dump-probe experiments provide evidence for the ground state dynamics by populating excited vibronic levels. It is found by the means of both techniques that the rotational isomerization of the dendritic branches occurs on a time scale that ranges up to 1 ns. This time scale of the isomerization depends on the size of the dendritic arms and is similar both in the ground and excited state.

  14. Electron Mobility and Trapping in Ferrihydrite Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soltis, Jennifer A.; Schwartzberg, Adam M.; Zarzycki, Piotr

    Iron is the most abundant transition metal in the Earth's crust, and naturally occurring iron oxide minerals play a commanding role in environmental redox reactions. Although iron oxide redox reactions are well studied, their precise mechanisms are not fully understood. Recent work has shown that these involve electron transfer pathways within the solid, suggesting that overall reaction rates could be dependent on electron mobility. Initial ultrafast spectroscopy studies of iron oxide nanoparticles sensitized by fluorescein derivatives supported a model for electron mobility based on polaronic hopping of electron charge carriers between iron sites, but the constitutive relationships between hopping mobilitiesmore » and interfacial charge transfer processes has remained obscured. We developed a coarse-grained lattice Monte Carlo model to simulate the collective mobilities and lifetimes of these photoinjected electrons with respect to recombination with adsorbed dye molecules for the essential nanophase ferrihydrite, and tested predictions made by the simulations using pump-probe spectroscopy. We acquired optical transient absorption spectra as a function of particle size and under a variety of solution conditions, and used cryogenic transmission electron microscopy to determine the aggregation state of the nanoparticles. We observed biphasic electron recombination kinetics over timescales that spanned picoseconds to microseconds, the slower regime of which was fit with a stretched exponential decay function. The recombination rates were weakly affected by nanoparticle size and aggregation state, suspension pH, and the injection of multiple electrons per nanoparticle. We conclude that electron mobility indeed limits the rate of interfacial electron transfer in these systems with the slowest processes relating to escape from deep traps, the presence of which outweighs the influence of environmental factors such as pH-dependent surface charge.« less

  15. Electron Mobility and Trapping in Ferrihydrite Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soltis, Jennifer A.; Schwartzberg, Adam M.; Zarzycki, Piotr

    Iron is the most abundant transition metal in the Earth’s crust, and naturally occurring iron oxide minerals play a commanding role in environmental redox reactions. Although iron oxide redox reactions are well-studied, their precise mechanisms are not fully understood. Recent work has shown that these involve electron transfer pathways within the solid, suggesting that overall reaction rates could be dependent upon electron mobility. Initial ultrafast spectroscopy studies of iron oxide nanoparticles sensitized by fluorescein derivatives supported a model for electron mobility based on polaronic hopping of electron charge carriers between iron sites, but the constitutive relationships between hopping mobilities andmore » interfacial charge transfer processes has remained obscured. In this paper, we developed a coarse-grained lattice Monte Carlo model to simulate the collective mobilities and lifetimes of these photoinjected electrons with respect to recombination with adsorbed dye molecules for essential nanophase ferrihydrite and tested predictions made by the simulations using pump–probe spectroscopy. We acquired optical transient absorption spectra as a function of the particle size and under a variety of solution conditions and used cryogenic transmission electron microscopy to determine the aggregation state of the nanoparticles. We observed biphasic electron recombination kinetics over time scales that spanned from picoseconds to microseconds, the slower regime of which was fit with a stretched exponential decay function. The recombination rates were weakly affected by the nanoparticle size and aggregation state, suspension pH, and injection of multiple electrons per nanoparticle. Finally, we conclude that electron mobility indeed limits the rate of interfacial electron transfer in these systems, with the slowest processes relating to escape from deep traps, the presence of which outweighs the influence of environmental factors, such as pH-dependent surface charge.« less

  16. Electron Mobility and Trapping in Ferrihydrite Nanoparticles

    DOE PAGES

    Soltis, Jennifer A.; Schwartzberg, Adam M.; Zarzycki, Piotr; ...

    2017-05-18

    Iron is the most abundant transition metal in the Earth’s crust, and naturally occurring iron oxide minerals play a commanding role in environmental redox reactions. Although iron oxide redox reactions are well-studied, their precise mechanisms are not fully understood. Recent work has shown that these involve electron transfer pathways within the solid, suggesting that overall reaction rates could be dependent upon electron mobility. Initial ultrafast spectroscopy studies of iron oxide nanoparticles sensitized by fluorescein derivatives supported a model for electron mobility based on polaronic hopping of electron charge carriers between iron sites, but the constitutive relationships between hopping mobilities andmore » interfacial charge transfer processes has remained obscured. In this paper, we developed a coarse-grained lattice Monte Carlo model to simulate the collective mobilities and lifetimes of these photoinjected electrons with respect to recombination with adsorbed dye molecules for essential nanophase ferrihydrite and tested predictions made by the simulations using pump–probe spectroscopy. We acquired optical transient absorption spectra as a function of the particle size and under a variety of solution conditions and used cryogenic transmission electron microscopy to determine the aggregation state of the nanoparticles. We observed biphasic electron recombination kinetics over time scales that spanned from picoseconds to microseconds, the slower regime of which was fit with a stretched exponential decay function. The recombination rates were weakly affected by the nanoparticle size and aggregation state, suspension pH, and injection of multiple electrons per nanoparticle. Finally, we conclude that electron mobility indeed limits the rate of interfacial electron transfer in these systems, with the slowest processes relating to escape from deep traps, the presence of which outweighs the influence of environmental factors, such as pH-dependent surface charge.« less

  17. First qualification and selection of the eROSITA PNCCDs

    NASA Astrophysics Data System (ADS)

    Schächner, G.; Andritschke, R.; Hälker, O.; Herrmann, S.; Kimmel, N.; Meidinger, N.; Strüder, L.

    2010-12-01

    For the X-ray astronomy instrument eROSITA a framestore PNCCD was developed by the MPI Halbleiterlabor. The PNCCD has an image area of 384×384 pixels with a size of 75 μm×75 μm. Each channel of the PNCCD has an own readout anode which allows parallel amplification and signal processing of the CCD signals of one row. The first measurements for the spectroscopic characterization of the PNCCDs are made with a special measurement setup—the so-called Cold Chuck Probe Station. The Cold Chuck Probe Station allows to fully operate the CCD without mounting and bonding the chip on a PCB as the CCD is contacted only with needles. Thus all eROSITA PNCCDs can be qualified under the same measurement conditions and with an identical electronic setup. Therefore the results can be compared directly. The spectroscopic properties of the PNCCDs, like the charge transfer efficiency and the energy resolution are measured. Also pixel defects such as bright pixels or non-transferring pixels are detected. With the Cold Chuck Probe Station a readout noise of 2.7 e - ENC can be achieved and reliable measurement results obtained. Based on these results the best PNCCDs will be selected for eROSITA.

  18. Robust forests of vertically aligned carbon nanotubes chemically assembled on carbon substrates.

    PubMed

    Garrett, David J; Flavel, Benjamin S; Shapter, Joseph G; Baronian, Keith H R; Downard, Alison J

    2010-02-02

    Forests of vertically aligned carbon nanotubes (VACNTs) have been chemically assembled on carbon surfaces. The structures show excellent stability over a wide potential range and are resistant to degradation from sonication in acid, base, and organic solvent. Acid-treated single-walled carbon nanotubes (SWCNTs) were assembled on amine-terminated tether layers covalently attached to pyrolyzed photoresist films. Tether layers were electrografted to the carbon substrate by reduction of the p-aminobenzenediazonium cation and oxidation of ethylenediamine. The amine-modified surfaces were incubated with cut SWCNTs in the presence of N,N'-dicyclohexylcarbodiimide (DCC), giving forests of vertically aligned carbon nanotubes (VACNTs). The SWCNT assemblies were characterized by scanning electron microscopy, atomic force microscopy, and electrochemistry. Under conditions where the tether layers slow electron transfer between solution-based redox probes and the underlying electrode, the assembly of VACNTs on the tether layer dramatically increases the electron-transfer rate at the surface. The grafting procedure, and hence the preparation of VACNTs, is applicable to a wide range of materials including metals and semiconductors.

  19. Solving Kinetic Equations for the Laser Flash Photolysis Experiment on Nitric Oxide Synthases: Effect of Conformational Dynamics on the Interdomain Electron Transfer.

    PubMed

    Astashkin, Andrei V; Feng, Changjian

    2015-11-12

    The production of nitric oxide by the nitric oxide synthase (NOS) enzyme depends on the interdomain electron transfer (IET) between the flavin mononucleotide (FMN) and heme domains. Although the rate of this IET has been measured by laser flash photolysis (LFP) for various NOS proteins, no rigorous analysis of the relevant kinetic equations was performed so far. In this work, we provide an analytical solution of the kinetic equations underlying the LFP approach. The derived expressions reveal that the bulk IET rate is significantly affected by the conformational dynamics that determines the formation and dissociation rates of the docking complex between the FMN and heme domains. We show that in order to informatively study the electron transfer across the NOS enzyme, LFP should be used in combination with other spectroscopic methods that could directly probe the docking equilibrium and the conformational change rate constants. The implications of the obtained analytical expressions for the interpretation of the LFP results from various native and modified NOS proteins are discussed. The mathematical formulas derived in this work should also be applicable for interpreting the IET kinetics in other modular redox enzymes.

  20. Stimulated Raman adiabatic passage preparation of a coherent superposition of ThO H3Δ1 states for an improved electron electric-dipole-moment measurement

    NASA Astrophysics Data System (ADS)

    Panda, C. D.; O'Leary, B. R.; West, A. D.; Baron, J.; Hess, P. W.; Hoffman, C.; Kirilov, E.; Overstreet, C. B.; West, E. P.; DeMille, D.; Doyle, J. M.; Gabrielse, G.

    2016-05-01

    Experimental searches for the electron electric-dipole moment (EDM) probe new physics beyond the standard model. The current best EDM limit was set by the ACME Collaboration [Science 343, 269 (2014), 10.1126/science.1248213], constraining time-reversal symmetry (T ) violating physics at the TeV energy scale. ACME used optical pumping to prepare a coherent superposition of ThO H3Δ1 states that have aligned electron spins. Spin precession due to the molecule's internal electric field was measured to extract the EDM. We report here on an improved method for preparing this spin-aligned state of the electron by using stimulated Raman adiabatic passage (STIRAP). We demonstrate a transfer efficiency of 75 %±5 % , representing a significant gain in signal for a next-generation EDM experiment. We discuss the particularities of implementing STIRAP in systems such as ours, where molecular ensembles with large phase-space distributions are transferred via weak molecular transitions with limited laser power and limited optical access.

  1. Van Allen Probes observations of intense parallel Poynting flux associated with magnetic dipolarization, conjugate discrete auroral arcs, and energetic particle injection

    NASA Astrophysics Data System (ADS)

    Wygant, J. R.; Thaller, S. A.; Breneman, A. W.; Tian, S.; Cattell, C. A.; Chaston, C. C.; Mozer, F.; Bonnell, J. W.; Kistler, L. M.; Mouikis, C.; Hudson, M. K.; Claudepierre, S. G.; Fennell, J. F.; Reeves, G. D.; Baker, D. N.; Donovan, E.; Spanswick, E.; Kletzing, C.

    2015-12-01

    We present measurements from the Van Allen Probes, in the near Earth tail, at the outer boundary of the plasma sheet, of a magnetic dipolarization/injection event characterized by unusually strong earthward poynting flux flowing along magnetic field lines with amplitudes of 200 mW/m2 lasting ~ 1 minute. The Poynting flux was conjugate to a 30 km wide discrete auroral arc observed by the THEMIS auroral array. The observations were obtained at 5.8 Re in the pre-midnight sector during the main phase of a geomagnetic storm on 5/01/2013. This brief interval transferred more electromagnetic energy (at the spacecraft position) than that transferred during entire remainder of the main phase of the storm. The parallel Poynting flux coincided with a local section of the "cross tail current sheet" which generated the dipolarization signature. The latitudinal width of the arc, mapped along magnetic field lines, provides an estimate of the spatial scale of the Poynting flux, the electric fields, and the current sheets (parallel and perpendicular). It is estimated that the latitudinal width of the Poynting flux "sheet" was ~600 km or ~1-2 H+ inertial lengths. An estimate of the ∫E·dl across the current sheet along the direction normal to the plasma sheet is ~20-40 kilovolts. The "normal" to the plasma sheet component of the electric field (~70 mV/m) strongly dominated the azimuthal component(which is reponsible for drift energetization). The dipolarization event resulted in the local dispersion-less injection of electrons between 50 keV and ~2 MeV at the Van Allen Probe position. The injection event involved brief (factor of two) local spike in ~2 MeV electron fluxes. Measurements from the Los Alamos geosynchronous spacecraft, displaced eastward from the Van Allen probes, provided evidence for dispersive energy-time electron signatures consistent with injection and energization at the RBSP position. The Poynting flux also coincided with the energy peak in the up-flowing dispersive ion energy-time profile and the onset of earthward ExB convection. A similar injection event during the storm on 6/1/2013 will be discussed.

  2. Isotopic Probe Illuminates the Role of the Electrode Surface in Proton Coupled Hydride Transfer Electrochemical Reduction of Pyridinium on Pt(111)

    DOE PAGES

    Zeitler, Elizabeth L.; Ertem, Mehmed Z.; Pander, III, James E.; ...

    2015-10-21

    A recently proposed mechanism for electrochemical CO 2 reduction on Pt (111) catalyzed by aqueous acidic pyridine solutions suggests that the observed redox potential of ca. -600 mV vs. SCE is due to the one-electron reduction of pyridinium through proton coupled electron transfer (PCET) to form H atoms adsorbed on the Pt surface (H ads). The initial pyridinium reduction was probed isotopically via deuterium substitution. A combined experimental and theoretical analysis found equilibrium isotope effects (EIE) due to deuterium substitution at the acidic pyridinium site. A shift in the cathodic cyclic voltammetric half wave potential of -25 mV was observed,more » consistent with the theoretical prediction of -40 mV based on the recently proposed reaction mechanism where pyridinium is essential to establish a high concentration of Bronsted acid in contact with the substrate CO 2 and with the Pt surface. A prefeature in the cyclic voltammogram was examined under isotopic substitution and indicated an H-ads intermediate in pyridinium reduction. In conclusion, the theoretical prediction and observation of an BM supported the assignment of the cathodic wave to the proposed reduction of pyridinium through PCET forming H ads and eventually H 2 on the Pt surface.« less

  3. Electronic structural dependence of the photophysical properties of fluorescent heteroditopic ligands - implications in designing molecular fluorescent indicators.

    PubMed

    Younes, Ali H; Zhang, Lu; Clark, Ronald J; Davidson, Michael W; Zhu, Lei

    2010-12-07

    Two fluorescent heteroditopic ligands (2a and 2b) for zinc ion were synthesized and studied. The efficiencies of two photophysical processes, intramolecular charge transfer (ICT) and photoinduced electron transfer (PET), determine the magnitudes of emission bathochromic shift and enhancement, respectively, when a heteroditopic ligand forms mono- or dizinc complexes. The electron-rich 2b is characterized by a high degree of ICT in the excited state with little propensity for PET, which is manifested in a large bathochromic shift of emission upon Zn(2+) coordination without enhancement in fluorescence quantum yield. The electron-poor 2a displays the opposite photophysical consequence where Zn(2+) binding results in greatly enhanced emission without significant spectral shift. The electronic structural effects on the relative efficiencies of ICT and PET in 2a and 2b as well as the impact of Zn(2+)-coordination are probed using experimental and computational approaches. This study reveals that the delicate balance between various photophysical pathways (e.g. ICT and PET) engineered in a heteroditopic ligand is sensitively dependent on the electronic structure of the ligand, i.e. whether the fluorophore is electron-rich or poor, whether it possesses a donor-acceptor type of structure, and where the metal binding occurs.

  4. Forster resonance energy transfer in the system of human serum albumin-xanthene dyes

    NASA Astrophysics Data System (ADS)

    Kochubey, V. I.; Pravdin, A. B.; Melnikov, A. G.; Konstantinova, I.; Alonova, I. V.

    2016-04-01

    The processes of interaction of fluorescent probes: eosin and erythrosine with human serum albumin (HSA) were studied by the methods of absorption and fluorescence spectroscopy. Extinction coefficients of probes were determined. Critical transfer radius and the energy transfer efficiency were defined by fluorescence quenching of HSA. Analysis of the excitation spectra of HSA revealed that the energy transfer process is carried out mainly between tryptophanyl and probes.

  5. An environmental transfer hub for multimodal atom probe tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perea, Daniel E.; Gerstl, Stephan S. A.; Chin, Jackson

    Environmental control during transfer between instruments is required for specimens sensitive to air or thermal exposure to prevent morphological or chemical changes. Atom Probe Tomography is an expanding technique but commercial instruments remain limited to loading under ambient conditions. Here we describe a multifunctional environmental transfer hub allowing controlled cryogenic, atmospheric and vacuum transfer between an Atom Probe and other instruments containing separate chambers to allow downstream time-resolved in-situ studies.

  6. Respiratory chain components involved in the glycerophosphate dehydrogenase-dependent ROS production by brown adipose tissue mitochondria.

    PubMed

    Vrbacký, Marek; Drahota, Zdenek; Mrácek, Tomás; Vojtísková, Alena; Jesina, Pavel; Stopka, Pavel; Houstek, Josef

    2007-07-01

    Involvement of mammalian mitochondrial glycerophosphate dehydrogenase (mGPDH, EC 1.1.99.5) in reactive oxygen species (ROS) generation was studied in brown adipose tissue mitochondria by different spectroscopic techniques. Spectrofluorometry using ROS-sensitive probes CM-H2DCFDA and Amplex Red was used to determine the glycerophosphate- or succinate-dependent ROS production in mitochondria supplemented with respiratory chain inhibitors antimycin A and myxothiazol. In case of glycerophosphate oxidation, most of the ROS originated directly from mGPDH and coenzyme Q while complex III was a typical site of ROS production in succinate oxidation. Glycerophosphate-dependent ROS production monitored by KCN-insensitive oxygen consumption was highly activated by one-electron acceptor ferricyanide, whereas succinate-dependent ROS production was unaffected. In addition, superoxide anion radical was detected as a mGPDH-related primary ROS species by fluorescent probe dihydroethidium, as well as by electron paramagnetic resonance (EPR) spectroscopy with DMPO spin trap. Altogether, the data obtained demonstrate pronounced differences in the mechanism of ROS production originating from oxidation of glycerophosphate and succinate indicating that electron transfer from mGPDH to coenzyme Q is highly prone to electron leak and superoxide generation.

  7. Modification of graphene electronic properties via controllable gas-phase doping with copper chloride

    NASA Astrophysics Data System (ADS)

    Rybin, Maxim G.; Islamova, Vera R.; Obraztsova, Ekaterina A.; Obraztsova, Elena D.

    2018-01-01

    Molecular doping is an efficient, non-destructive, and simple method for changing the electronic structure of materials. Here, we present a simple air ambient vapor deposition method for functionalization of pristine graphene with a strong electron acceptor: copper chloride. The doped graphene was characterized by Raman spectroscopy, UV-vis-NIR optical absorption spectroscopy, scanning electron microscopy, and electro-physical measurements performed using the 4-probe method. The effect of charge transfer from graphene to a dopant results in shifting the Fermi level in doped graphene. The change of the electronic structure of doped graphene was confirmed by the tangential Raman peak (G-peak) shift and by the appearance of the gap in the UV-vis-NIR spectrum after doping. Moreover, the charge transfer resulted in a substantial decrease in electrical sheet resistance depending on the doping level. At the highest concentration of copper chloride, a Fermi level shift into the valence band up to 0.64 eV and a decrease in the sheet resistance value by 2.36 times were observed (from 888 Ω/sq to 376 Ω/sq for a single graphene layer with 97% of transparency).

  8. Charge transfer excitons and image potential states on organic semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Yang, Qingxin; Muntwiler, Matthias; Zhu, X.-Y.

    2009-09-01

    We report two types of excited electronic states on organic semiconductor surfaces: image potential states (IPS) and charge transfer excitons (CTE). In the former, an excited electron is localized in the surface-normal direction by the image potential and delocalized in the surface plane. In the latter, the electron is localized in all directions by both the image potential and the Coulomb potential from a photogenerated hole on an organic molecule. We use crystalline pentacene and tetracene surfaces as model systems, and time- and angle-resolved two-photon photoemission spectroscopy to probe the energetics and dynamics of both the IPS and the CTE states. On either pentacene or tetracene surfaces, we observe delocalized image bands and a series of CT excitons with binding energies <0.5eV below the image-band minimum. The binding energies of these CT excitons agree well with solutions to the atomic-H-like Schrödinger equation based on the image potential and the electron-hole Coulomb potential. We hypothesize that the formation of CT excitons should be general to the surfaces of organic semiconductors where the relatively narrow valance-band width facilitates the localization of the hole and the low dielectric constant ensures strong electron-hole attraction.

  9. Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butorin, S.M.; Guo, J.; Magnuson, M.

    1997-04-01

    Resonant soft X-ray emission spectroscopy has been demonstrated to possess interesting abilities for studies of electronic structure in various systems, such as symmetry probing, alignment and polarization dependence, sensitivity to channel interference, etc. In the present abstract the authors focus on the feasibility of resonant soft X-ray emission to probe low energy excitations by means of resonant electronic X-ray Raman scattering. Resonant X-ray emission can be regarded as an inelastic scattering process where a system in the ground state is transferred to a low excited state via a virtual core excitation. The energy closeness to a core excitation of themore » exciting radiation enhances the (generally) low probability for inelastic scattering at these wavelengths. Therefore soft X-ray emission spectroscopy (in resonant electronic Raman mode) can be used to study low energy d-d excitations in transition metal systems. The involvement of the intermediate core state allows one to use the selection rules of X-ray emission, and the appearance of the elastically scattered line in the spectra provides the reference to the ground state.« less

  10. Real-Time Detection of Telomerase Activity in Cancer Cells using a Label-Free Electrochemical Impedimetric Biosensing Microchip.

    PubMed

    Cunci, Lisandro; Vargas, Marina Martinez; Cunci, Roman; Gomez-Moreno, Ramon; Perez, Ivan; Baerga-Ortiz, Abel; Gonzalez, Carlos I; Cabrera, Carlos R

    2014-10-15

    The enzyme telomerase is present in about 85% of human cancers which makes it not only a good target for cancer treatment but also an excellent marker for cancer detection. Using a single stranded DNA probe specific for telomerase binding and reverse transcription tethered to an interdigital gold electrode array surface, the chromosome protection provided by the telomerase was replicated and followed by Electrochemical Impedance Spectroscopy as an unlabeled biosensor. Using this system designed in-house, easy and affordable, impedance measurements were taken while incubating at 37 °C and promoting the probe elongation. This resulted in up to 14-fold increase in the charge transfer resistance when testing a telomerase-positive nuclear extract from Jurkat cells compared to the heat-inactivated telomerase-negative nuclear extract. The electron transfer process at the Au electrodes was studied before the elongation, at different times after the elongation, and after desorption of non-specific binding.

  11. Charge Transfer Processes in OPV Materials as Revealed by EPR Spectroscopy

    DOE PAGES

    Niklas, Jens; Poluektov, Oleg

    2017-03-03

    Understanding charge separation and charge transport at a molecular level is crucial for improving the efficiency of organic photovoltaic (OPV) cells. Under illumination of Bulk Heterojunction (BHJ) blends of polymers and fullerenes, various paramagnetic species are formed including polymer and fullerene radicals, radical pairs, and photoexcited triplet states. Light-induced Electron Paramagnetic Resonance (EPR) spectroscopy is ideally suited to study these states in BHJ due to its selectivity in probing the paramagnetic intermediates. Some advanced EPR techniques like light-induced ENDOR spectroscopy and pulsed techniques allow the determination of hyperfine coupling tensors, while high-frequency EPR allows the EPR signals of the individualmore » species to be resolved and their g-tensors to be determined. In these magnetic resonance parameters reveal details about the delocalization of the positive polaron on the various polymer donors which is important for the efficient charge separation in BHJ systems. Time-resolved EPR can contribute to the study of the dynamics of charge separation, charge transfer and recombination in BHJ by probing the unique spectral signatures of charge transfer and triplet states. Furthermore, the potential of the EPR also allows characterization of the intermediates and products of BHJ degradation.« less

  12. A regenerated electrochemical biosensor for label-free detection of glucose and urea based on conformational switch of i-motif oligonucleotide probe.

    PubMed

    Gao, Zhong Feng; Chen, Dong Mei; Lei, Jing Lei; Luo, Hong Qun; Li, Nian Bing

    2015-10-15

    Improving the reproducibility of electrochemical signal remains a great challenge over the past decades. In this work, i-motif oligonucleotide probe-based electrochemical DNA (E-DNA) sensor is introduced for the first time as a regenerated sensing platform, which enhances the reproducibility of electrochemical signal, for label-free detection of glucose and urea. The addition of glucose or urea is able to activate glucose oxidase-catalyzed or urease-catalyzed reaction, inducing or destroying the formation of i-motif oligonucleotide probe. The conformational switch of oligonucleotide probe can be recorded by electrochemical impedance spectroscopy. Thus, the difference of electron transfer resistance is utilized for the quantitative determination of glucose and urea. We further demonstrate that the E-DNA sensor exhibits high selectivity, excellent stability, and remarkable regenerated ability. The human serum analysis indicates that this simple and regenerated strategy holds promising potential in future biosensing applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Direct Detection of Potential Pyrethroids in Yangtze River via an Imprinted Multilayer Phosphorescence Probe.

    PubMed

    Chen, Li; Lv, Xiaodong; Dai, Jiangdong; Sun, Lin; Huo, Pengwei; Li, Chunxiang; Yan, Yongsheng

    2018-01-01

    A novel tailored multilayer probe for monitoring potential pyrethroids in the Yangtze River was proposed. The room-temperature phosphorescence method was applied to realize a detection strategy that is superior to the fluorescence method. Efficient Mn-doped ZnS quantum dots with uniform size of 4.6 nm were firstly coated with a mesoporous silica to obtain a suitable intermediate transition layer, then an imprinted layer containing bifenthrin specific recognition sites was anchored. Characterizations verified the multilayer structure convincingly and the detection process relied on the electron transfer-induced fluorescence quenching mechanism. Optional detection time and standard detection curve were obtained within a concentration range from 5.0 to 50 μmol L -1 . The stability was verified to be good after 12 replicates. Feasibility of the probe was proved by monitoring water samples from the Zhenjiang reach of the Yangtze River. The probe offers promise for direct bifenthrin detection in unknown environmental water with an accurate and stable phosphorescence analysis strategy.

  14. Ultrafast Plasmon-Enhanced Hot Electron Generation at Ag Nanocluster/Graphite Heterojunctions.

    PubMed

    Tan, Shijing; Liu, Liming; Dai, Yanan; Ren, Jindong; Zhao, Jin; Petek, Hrvoje

    2017-05-03

    Hot electron processes at metallic heterojunctions are central to optical-to-chemical or electrical energy transduction. Ultrafast nonlinear photoexcitation of graphite (Gr) has been shown to create hot thermalized electrons at temperatures corresponding to the solar photosphere in less than 25 fs. Plasmonic resonances in metallic nanoparticles are also known to efficiently generate hot electrons. Here we deposit Ag nanoclusters (NC) on Gr to study the ultrafast hot electron generation and dynamics in their plasmonic heterojunctions by means of time-resolved two-photon photoemission (2PP) spectroscopy. By tuning the wavelength of p-polarized femtosecond excitation pulses, we find an enhancement of 2PP yields by 2 orders of magnitude, which we attribute to excitation of a surface-normal Mie plasmon mode of Ag/Gr heterojunctions at 3.6 eV. The 2PP spectra include contributions from (i) coherent two-photon absorption of an occupied interface state (IFS) 0.2 eV below the Fermi level, which electronic structure calculations assign to chemisorption-induced charge transfer, and (ii) hot electrons in the π*-band of Gr, which are excited through the coherent screening response of the substrate. Ultrafast pump-probe measurements show that the IFS photoemission occurs via virtual intermediate states, whereas the characteristic lifetimes attribute the hot electrons to population of the π*-band of Gr via the plasmon dephasing. Our study directly probes the mechanisms for enhanced hot electron generation and decay in a model plasmonic heterojunction.

  15. “Turn-on” fluorescence probe integrated polymer nanoparticles for sensing biological thiol molecules

    NASA Astrophysics Data System (ADS)

    Ang, Chung Yen; Tan, Si Yu; Lu, Yunpeng; Bai, Linyi; Li, Menghuan; Li, Peizhou; Zhang, Quan; Selvan, Subramanian Tamil; Zhao, Yanli

    2014-11-01

    A ``turn-on'' thiol-responsive fluorescence probe was synthesized and integrated into polymeric nanoparticles for sensing intracellular thiols. There is a photo-induced electron transfer process in the off state of the probe, and this process is terminated upon the reaction with thiol compounds. Configuration interaction singles (CIS) calculation was performed to confirm the mechanism of this process. A series of sensing studies were carried out, showing that the probe-integrated nanoparticles were highly selective towards biological thiol compounds over non-thiolated amino acids. Kinetic studies were also performed to investigate the relative reaction rate between the probe and the thiolated amino acids. Subsequently, the Gibbs free energy of the reactions was explored by means of the electrochemical method. Finally, the detection system was employed for sensing intracellular thiols in cancer cells, and the sensing selectivity could be further enhanced with the use of a cancer cell-targeting ligand in the nanoparticles. This development paves a path for the sensing and detection of biological thiols, serving as a potential diagnostic tool in the future.

  16. Ultrafast Intramolecular Electron and Proton Transfer in Bis(imino)isoindole Derivatives.

    PubMed

    Driscoll, Eric; Sorenson, Shayne; Dawlaty, Jahan M

    2015-06-04

    Concerted motion of electrons and protons in the excited state is pertinent to a wide range of chemical phenomena, including those relevant for solar-to-fuel light harvesting. The excited state dynamics of small proton-bearing molecules are expected to serve as models for better understanding such phenomena. In particular, for designing the next generation of multielectron and multiproton redox catalysts, understanding the dynamics of more than one proton in the excited state is important. Toward this goal, we have measured the ultrafast dynamics of intramolecular excited state proton transfer in a recently synthesized dye with two equivalent transferable protons. We have used a visible ultrafast pump to initiate the proton transfer in the excited state, and have probed the transient absorption of the molecule over a wide bandwidth in the visible range. The measurement shows that the signal which is characteristic of proton transfer emerges within ∼710 fs. To identify whether both protons were transferred in the excited state, we have measured the ultrafast dynamics of a related derivative, where only a single proton was available for transfer. The measured proton transfer time in that molecule was ∼427 fs. The observed dynamics in both cases were reasonably fit with single exponentials. Supported by the ultrafast observations, steady-state fluorescence, and preliminary computations of the relaxed excited states, we argue that the doubly protonated derivative most likely transfers only one of its two protons in the excited state. We have performed calculations of the frontier molecular orbitals in the Franck-Condon region. The calculations show that in both derivatives, the excitation is primarily from the HOMO to LUMO causing a large rearrangement of the electronic charge density immediately after photoexcitation. In particular, charge density is shifted away from the phenolic protons and toward the proton acceptor nitrogens. The proton transfer is hypothesized to occur both due to enhanced acidity of the phenolic proton and enhanced basicity of the nitrogen in the excited state. We hope this study can provide insight for better understanding of the general class of excited state concerted electron-proton dynamics.

  17. Probing conformational dynamics by photoinduced electron transfer

    NASA Astrophysics Data System (ADS)

    Neuweiler, Hannes; Herten, Dirk P.; Marme, N.; Knemeyer, J. P.; Piestert, Oliver; Tinnefeld, Philip; Sauer, Marcus

    2004-07-01

    We demonstrate how photoinduced electron transfer (PET) reactions can be successfully applied to monitor conformational dynamics in individual biopolymers. Single-pair fluorescence resonance energy transfer (FRET) experiments are ideally suited to study conformational dynamics occurring on the nanometer scale, e.g. during protein folding or unfolding. In contrast, conformational dynamics with functional significance, for example occurring in enzymes at work, often appear on much smaller spatial scales of up to several Angströms. Our results demonstrate that selective PET-reactions between fluorophores and amino acids or DNA nucleotides represent a versatile tool to measure small-scale conformational dynamics in biopolymers on a wide range of time scales, extending from nanoseconds to seconds, at the single-molecule level under equilibrium conditions. That is, the monitoring of conformational dynamics of biopolymers with temporal resolutions comparable to those within reach using new techniques of molecular dynamic simulations. We present data about structural changes of single biomolecules like DNA hairpins and peptides by using quenching electron transfer reactions between guanosine or tryptophan residues in close proximity to fluorescent dyes. Furthermore, we demonstrate that the strong distance dependence of charge separation reactions on the sub-nanometer scale can be used to develop conformationally flexible PET-biosensors. These sensors enable the detection of specific target molecules in the sub-picomolar range and allow one to follow their molecular binding dynamics with temporal resolution.

  18. Hybridization-controlled charge transfer and induced magnetism at correlated oxide interfaces

    PubMed Central

    Grisolia, M.N.; Arora, A.; Valencia, S.; Varela, M.; Abrudan, R.; Weschke, E.; Schierle, E.; Rault, J.E.; Rueff, J.-P.; Barthélémy, A.; Santamaria, J.; Bibes, M.

    2015-01-01

    At interfaces between conventional materials, band bending and alignment are classically controlled by differences in electrochemical potential. Applying this concept to oxides in which interfaces can be polar and cations may adopt a mixed valence has led to the discovery of novel two-dimensional states between simple band insulators such as LaAlO3 and SrTiO3. However, many oxides have a more complex electronic structure, with charge, orbital and/or spin orders arising from strong Coulomb interactions between transition metal and oxygen ions. Such electronic correlations offer a rich playground to engineer functional interfaces but their compatibility with the classical band alignment picture remains an open question. Here we show that beyond differences in electron affinities and polar effects, a key parameter determining charge transfer at correlated oxide interfaces is the energy required to alter the covalence of the metal-oxygen bond. Using the perovskite nickelate (RNiO3) family as a template, we probe charge reconstruction at interfaces with gadolinium titanate GdTiO3. X-ray absorption spectroscopy shows that the charge transfer is thwarted by hybridization effects tuned by the rare-earth (R) size. Charge transfer results in an induced ferromagnetic-like state in the nickelate, exemplifying the potential of correlated interfaces to design novel phases. Further, our work clarifies strategies to engineer two-dimensional systems through the control of both doping and covalence. PMID:27158255

  19. Hybridization-controlled charge transfer and induced magnetism at correlated oxide interfaces

    NASA Astrophysics Data System (ADS)

    Grisolia, M. N.; Varignon, J.; Sanchez-Santolino, G.; Arora, A.; Valencia, S.; Varela, M.; Abrudan, R.; Weschke, E.; Schierle, E.; Rault, J. E.; Rueff, J.-P.; Barthélémy, A.; Santamaria, J.; Bibes, M.

    2016-05-01

    At interfaces between conventional materials, band bending and alignment are classically controlled by differences in electrochemical potential. Applying this concept to oxides in which interfaces can be polar and cations may adopt a mixed valence has led to the discovery of novel two-dimensional states between simple band insulators such as LaAlO3 and SrTiO3. However, many oxides have a more complex electronic structure, with charge, orbital and/or spin orders arising from strong Coulomb interactions at and between transition metal and oxygen ions. Such electronic correlations offer a rich playground to engineer functional interfaces but their compatibility with the classical band alignment picture remains an open question. Here we show that beyond differences in electron affinities and polar effects, a key parameter determining charge transfer at correlated oxide interfaces is the energy required to alter the covalence of the metal-oxygen bond. Using the perovskite nickelate (RNiO3) family as a template, we probe charge reconstruction at interfaces with gadolinium titanate GdTiO3. X-ray absorption spectroscopy shows that the charge transfer is thwarted by hybridization effects tuned by the rare-earth (R) size. Charge transfer results in an induced ferromagnetic-like state in the nickelate, exemplifying the potential of correlated interfaces to design novel phases. Further, our work clarifies strategies to engineer two-dimensional systems through the control of both doping and covalence.

  20. Watching the electronic motions driven by a conical intersection

    NASA Astrophysics Data System (ADS)

    Jonas, David

    2007-03-01

    In chemistry, the fastest electronic rearrangements proceed through ``conical intersections'' between electronic potential energy surfaces. With sufficiently short pulses, the electronic motion can be isolated by polarized excitation of aligned electronic wavepackets at a conical intersection. Polarized femtosecond probing reveals signatures of electronic wavepacket motion (due to the energy gaps) and of electron transfer between orbitals (due to the couplings) driven by the conical intersection. After exciting a D4h symmetry silicon naphthalocyanine molecule onto a Jahn-Teller conical intersection in the first excited state, electronic motions cause a ˜100 fs drop in the pump-probe polarization anisotropy. The polarized vibrational modulations of the signal can be used to deduce the symmetry and stabilization energies for each vibration. The initial decay of the polarization anisotropy can be quantitatively predicted from these vibrational parameters. Both coupling and energy gap variations are important on the ˜100 fs timescale. A 1 meV stabilization drives electrons from orbital to orbital in 100 fs, and the theory indicates that a chemically reactive conical intersection with 1000x greater stabilization energy could cause electronic equilibration within 2 fs. We have recently carried out experiments on a nominally D2h symmetry free-base naphthalocyanine for which the splitting between x and y polarized transitions is not resolved in the linear spectrum. For this molecule, the anisotropy also decays on a similar timescale and exhibits damped modulations whose origin (vibrational or electronic) has not yet been determined. The role of the central protons and nominal D2h symmetry in the electronic dynamics will be discussed.

  1. Consecutive Fragmentation Mechanisms of Protonated Ferulic Acid Probed by Infrared Multiple Photon Dissociation Spectroscopy and Electronic Structure Calculations

    NASA Astrophysics Data System (ADS)

    Martens, Sabrina M.; Marta, Rick A.; Martens, Jonathan K.; McMahon, Terry B.

    2012-10-01

    Protonated ferulic acid and its principle fragment ion have been characterized using infrared multiple photon dissociation spectroscopy and electronic structure calculations at the B3LYP/6-311 + G(d,p) level of theory. Due to its extensively conjugated structure, protonated ferulic acid is observed to yield three stable fragment ions in IRMPD experiments. It is proposed that two parallel fragmentation pathways of protonated ferulic acid are being observed. The first pathway involves proton transfer, resulting in the loss of water and subsequently carbon monoxide, producing fragment ions m/z 177 and 149, respectively. Optimization of m/z 177 yields a species containing an acylium group, which is supported by a diagnostic peak in the IRMPD spectrum at 2168 cm-1. The second pathway involves an alternate proton transfer leading to loss of methanol and rearrangement to a five-membered ring.

  2. Mapping Protein Surface Accessibility via an Electron Transfer Dissociation Selectively Cleavable Hydrazone Probe*

    PubMed Central

    Vasicek, Lisa; O'Brien, John P.; Browning, Karen S.; Tao, Zhihua; Liu, Hung-Wen; Brodbelt, Jennifer S.

    2012-01-01

    A protein's surface influences its role in protein-protein interactions and protein-ligand binding. Mass spectrometry can be used to give low resolution structural information about protein surfaces and conformations when used in combination with derivatization methods that target surface accessible amino acid residues. However, pinpointing the resulting modified peptides upon enzymatic digestion of the surface-modified protein is challenging because of the complexity of the peptide mixture and low abundance of modified peptides. Here a novel hydrazone reagent (NN) is presented that allows facile identification of all modified surface residues through a preferential cleavage upon activation by electron transfer dissociation coupled with a collision activation scan to pinpoint the modified residue in the peptide sequence. Using this approach, the correlation between percent reactivity and surface accessibility is demonstrated for two biologically active proteins, wheat eIF4E and PARP-1 Domain C. PMID:22393264

  3. Vertically aligned carbon nanotube probes for monitoring blood cholesterol

    NASA Astrophysics Data System (ADS)

    Roy, Somenath; Vedala, Harindra; Choi, Wonbong

    2006-02-01

    Detection of blood cholesterol is of great clinical significance. The amperometric detection technique was used for the enzymatic assay of total cholesterol. Multiwall carbon nanotubes (MWNTs), vertically aligned on a silicon platform, promote heterogeneous electron transfer between the enzyme and the working electrode. Surface modification of the MWNT with a biocompatible polymer, polyvinyl alcohol (PVA), converted the hydrophobic nanotube surface into a highly hydrophilic one, which facilitates efficient attachment of biomolecules. The fabricated working electrodes showed a linear relationship between cholesterol concentration and the output signal. The efficacy of the multiwall carbon nanotubes in promoting heterogeneous electron transfer was evident by distinct electrochemical peaks and higher signal-to-noise ratio as compared to the Au electrode with identical enzyme immobilization protocol. The selectivity of the cholesterol sensor in the presence of common interferents present in human blood, e.g. uric acid, ascorbic acid and glucose, is also reported.

  4. Photoinduced intercomponent excited-state decays in a molecular dyad made of a dinuclear rhenium(I) chromophore and a fullerene electron acceptor unit.

    PubMed

    Nastasi, Francesco; Puntoriero, Fausto; Natali, Mirco; Mba, Miriam; Maggini, Michele; Mussini, Patrizia; Panigati, Monica; Campagna, Sebastiano

    2015-05-01

    A novel molecular dyad, 1, made of a dinuclear {[Re2(μ-X)2(CO)6(μ-pyridazine)]} component covalently-linked to a fullerene unit by a carbocyclic molecular bridge has been prepared and its redox, spectroscopic, and photophysical properties - including pump-probe transient absorption spectroscopy in the visible and near-infrared region - have been investigated, along with those of its model species. Photoinduced, intercomponent electron transfer occurs in 1 from the thermally-equilibrated, triplet metal/ligand-to-ligand charge-transfer ((3)MLLCT) state of the dinuclear rhenium(I) subunit to the fullerene acceptor, with a time constant of about 100 ps. The so-formed triplet charge-separated state recombines in a few nanoseconds by a spin-selective process yielding, rather than the ground state, the locally-excited, triplet fullerene state, which finally decays to the ground state by intersystem crossing in about 290 ns.

  5. Temperature gradients due to adiabatic plasma expansion in a magnetic nozzle

    NASA Astrophysics Data System (ADS)

    Sheehan, J. P.; Longmier, B. W.; Bering, E. A.; Olsen, C. S.; Squire, J. P.; Ballenger, M. G.; Carter, M. D.; Cassady, L. D.; Díaz, F. R. Chang; Glover, T. W.; Ilin, A. V.

    2014-08-01

    A mechanism for ambipolar ion acceleration in a magnetic nozzle is proposed. The plasma is adiabatic (i.e., does not exchange energy with its surroundings) in the diverging section of a magnetic nozzle so any energy lost by the electrons must be transferred to the ions via the electric field. Fluid theory indicates that the change in plasma potential is proportional to the change in average electron energy. These predictions were compared to measurements in the VX-200 experiment which has conditions conducive to ambipolar ion acceleration. A planar Langmuir probe was used to measure the plasma potential, electron density, and electron temperature for a range of mass flow rates and power levels. Axial profiles of those parameters were also measured, showing consistency with the adiabatic ambipolar fluid theory.

  6. Laser-induced electron dynamics including photoionization: A heuristic model within time-dependent configuration interaction theory.

    PubMed

    Klinkusch, Stefan; Saalfrank, Peter; Klamroth, Tillmann

    2009-09-21

    We report simulations of laser-pulse driven many-electron dynamics by means of a simple, heuristic extension of the time-dependent configuration interaction singles (TD-CIS) approach. The extension allows for the treatment of ionizing states as nonstationary states with a finite, energy-dependent lifetime to account for above-threshold ionization losses in laser-driven many-electron dynamics. The extended TD-CIS method is applied to the following specific examples: (i) state-to-state transitions in the LiCN molecule which correspond to intramolecular charge transfer, (ii) creation of electronic wave packets in LiCN including wave packet analysis by pump-probe spectroscopy, and, finally, (iii) the effect of ionization on the dynamic polarizability of H(2) when calculated nonperturbatively by TD-CIS.

  7. Mechanistic Study of the Validity of Using Hydroxyl Radical Probes To Characterize Electrochemical Advanced Oxidation Processes.

    PubMed

    Jing, Yin; Chaplin, Brian P

    2017-02-21

    The detection of hydroxyl radicals (OH • ) is typically accomplished by using reactive probe molecules, but prior studies have not thoroughly investigated the suitability of these probes for use in electrochemical advanced oxidation processes (EAOPs), due to the neglect of alternative reaction mechanisms. In this study, we investigated the suitability of four OH • probes (coumarin, p-chlorobenzoic acid, terephthalic acid, and p-benzoquinone) for use in EAOPs. Experimental results indicated that both coumarin and p-chlorobenzoic acid are oxidized via direct electron transfer reactions, while p-benzoquinone and terephthalic acid are not. Coumarin oxidation to form the OH • adduct product 7-hydroxycoumarin was found at anodic potentials lower than that necessary for OH • formation. Density functional theory (DFT) simulations found a thermodynamically favorable and non-OH • mediated pathway for 7-hydroxycoumarin formation, which is activationless at anodic potentials > 2.10 V/SHE. DFT simulations also provided estimates of E° values for a series of OH • probe compounds, which agreed with voltammetry results. Results from this study indicated that terephthalic acid is the most appropriate OH • probe compound for the characterization of electrochemical and catalytic systems.

  8. Thermoelectric Transport in Surface- and Antimony-Doped Bismuth Telluride Nanoplates

    DTIC Science & Technology

    2016-07-25

    0.50) using two different electron microscopes with two different high sensitivity energy dispersive x-ray spectroscopy (EDS) detectors (FEI Nova...Figure 1(b)) using an electrochemically sharpened probe. Transfer was performed in ambient conditions under an optical microscope . Samples were then...attributed to additional alloy scattering in the (Bi1−xSbx)2Te3 samples studied here. Additionally, the room temperature κlattice for bulk compounds Reuse of

  9. Amplification of Dynamic Nuclear Polarization at 200 GHz by Arbitrary Pulse Shaping of the Electron Spin Saturation Profile.

    PubMed

    Kaminker, Ilia; Han, Songi

    2018-06-07

    Dynamic nuclear polarization (DNP) takes center stage in nuclear magnetic resonance (NMR) as a tool to amplify its signal by orders of magnitude through the transfer of polarization from electron to nuclear spins. In contrast to modern NMR and electron paramagnetic resonance (EPR) that extensively rely on pulses for spin manipulation in the time domain, the current mainstream DNP technology exclusively relies on monochromatic continuous wave (CW) irradiation. This study introduces arbitrary phase shaped pulses that constitute a train of coherent chirp pulses in the time domain at 200 GHz (7 T) to dramatically enhance the saturation bandwidth and DNP performance compared to CW DNP, yielding up to 500-fold in NMR signal enhancements. The observed improvement is attributed to the recruitment of additional electron spins contributing to DNP via the cross-effect mechanism, as experimentally confirmed by two-frequency pump-probe electron-electron double resonance (ELDOR).

  10. Applications of biochar in redox-mediated reactions.

    PubMed

    Yuan, Yong; Bolan, Nanthi; Prévoteau, Antonin; Vithanage, Meththika; Biswas, Jayanta Kumar; Ok, Yong Sik; Wang, Hailong

    2017-12-01

    Biochar is chemically more reduced and reactive than the original feedstock biomass. Graphite regions, functional groups, and redox-active metals in biochar contribute to its redox characteristics. While the functional groups such as phenolic species in biochar are the main electron donating moieties (i.e., reducers), the quinones and polycondensed aromatic functional groups are the components accepting electrons (oxidants). The redox capacity of biochar depends on feedstock properties and pyrolysis conditions. This paper aims to review and summarize the various synthesis techniques for biochars and the methods for probing their redox characteristics. We review the abiotic and microbial applications of biochars as electron donors, electron acceptors, or electron shuttles for pollutant degradation, metal(loid)s (im)mobilization, nutrient transformation, and discuss the underlying mechanisms. Furthermore, knowledge gaps that exist in the exploration and differentiation of the electron transfer mechanisms involving biochars are also identified. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Wear and interfacial transport of material

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1975-01-01

    Bonding across the interface for two solids in contact and the subsequent transfer of material from one surface to another is a direct result of the interfacial bonds being stronger than the cohesive bonds in either of the two solids. Surface tools such as LEED, Auger emission spectroscopy, field ion microscopy, and the atom probe are used to examine adhesive contacts and to determine the direction, nature, quantity of material transfer and properties of the solids which effect transfer and wear. The electronic nature, cohesive binding energies, surface structure, lattice disregistry and distribution of species in surface layers are all found to effect adhesion and transfer or transport for clean surfaces in solid state contact. The influence of adsorbed and reacted surface films from fractions of a monolayer to multilayer reactive films are considered. It is shown that even fractions of a monolayer of surface active species such as oxygen and sulfur can markedly inhibit adhesion and transport.

  12. Electrochemical reverse engineering: A systems-level tool to probe the redox-based molecular communication of biology.

    PubMed

    Li, Jinyang; Liu, Yi; Kim, Eunkyoung; March, John C; Bentley, William E; Payne, Gregory F

    2017-04-01

    The intestine is the site of digestion and forms a critical interface between the host and the outside world. This interface is composed of host epithelium and a complex microbiota which is "connected" through an extensive web of chemical and biological interactions that determine the balance between health and disease for the host. This biology and the associated chemical dialogues occur within a context of a steep oxygen gradient that provides the driving force for a variety of reduction and oxidation (redox) reactions. While some redox couples (e.g., catecholics) can spontaneously exchange electrons, many others are kinetically "insulated" (e.g., biothiols) allowing the biology to set and control their redox states far from equilibrium. It is well known that within cells, such non-equilibrated redox couples are poised to transfer electrons to perform reactions essential to immune defense (e.g., transfer from NADH to O 2 for reactive oxygen species, ROS, generation) and protection from such oxidative stresses (e.g., glutathione-based reduction of ROS). More recently, it has been recognized that some of these redox-active species (e.g., H 2 O 2 ) cross membranes and diffuse into the extracellular environment including lumen to transmit redox information that is received by atomically-specific receptors (e.g., cysteine-based sulfur switches) that regulate biological functions. Thus, redox has emerged as an important modality in the chemical signaling that occurs in the intestine and there have been emerging efforts to develop the experimental tools needed to probe this modality. We suggest that electrochemistry provides a unique tool to experimentally probe redox interactions at a systems level. Importantly, electrochemistry offers the potential to enlist the extensive theories established in signal processing in an effort to "reverse engineer" the molecular communication occurring in this complex biological system. Here, we review our efforts to develop this electrochemical tool for in vitro redox-probing. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Low frequency dynamics of the nitrogenase MoFe protein via femtosecond pump probe spectroscopy - Observation of a candidate promoting vibration.

    PubMed

    Maiuri, Margherita; Delfino, Ines; Cerullo, Giulio; Manzoni, Cristian; Pelmenschikov, Vladimir; Guo, Yisong; Wang, Hongxin; Gee, Leland B; Dapper, Christie H; Newton, William E; Cramer, Stephen P

    2015-12-01

    We have used femtosecond pump-probe spectroscopy (FPPS) to study the FeMo-cofactor within the nitrogenase (N2ase) MoFe protein from Azotobacter vinelandii. A sub-20-fs visible laser pulse was used to pump the sample to an excited electronic state, and a second sub-10-fs pulse was used to probe changes in transmission as a function of probe wavelength and delay time. The excited protein relaxes to the ground state with a ~1.2ps time constant. With the short laser pulse we coherently excited the vibrational modes associated with the FeMo-cofactor active site, which are then observed in the time domain. Superimposed on the relaxation dynamics, we distinguished a variety of oscillation frequencies with the strongest band peaks at ~84, 116, 189, and 226cm(-1). Comparison with data from nuclear resonance vibrational spectroscopy (NRVS) shows that the latter pair of signals comes predominantly from the FeMo-cofactor. The frequencies obtained from the FPPS experiment were interpreted with normal mode calculations using both an empirical force field (EFF) and density functional theory (DFT). The FPPS data were also compared with the first reported resonance Raman (RR) spectrum of the N2ase MoFe protein. This approach allows us to outline and assign vibrational modes having relevance to the catalytic activity of N2ase. In particular, the 226cm(-1) band is assigned as a potential 'promoting vibration' in the H-atom transfer (or proton-coupled electron transfer) processes that are an essential feature of N2ase catalysis. The results demonstrate that high-quality room-temperature solution data can be obtained on the MoFe protein by the FPPS technique and that these data provide added insight to the motions and possible operation of this protein and its catalytic prosthetic group. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Ultrafast molecular processes mapped by femtosecond x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Elsaesser, Thomas

    2012-02-01

    X-ray diffraction with a femtosecond time resolution allows for mapping photoinduced structural dynamics on the length scale of a chemical bond and in the time domain of atomic and molecular motion. In a pump-probe approach, a femtosecond excitation pulse induces structural changes which are probed by diffracting a femtosecond hard x-ray pulse from the excited sample. The transient angular positions and intensities of diffraction peaks give insight into the momentary atomic or molecular positions and into the distribution of electronic charge density. The simultaneous measurement of changes on different diffraction peaks is essential for determining atom positions and charge density maps with high accuracy. Recent progress in the generation of ultrashort hard x-ray pulses (Cu Kα, wavelength λ=0.154 nm) in laser-driven plasma sources has led to the implementation of the powder diffraction and the rotating crystal method with a time resolution of 100 fs. In this contribution, we report new results from powder diffraction studies of molecular materials. A first series of experiments gives evidence of a so far unknown concerted transfer of electrons and protons in ammonium sulfate [(NH4)2SO4], a centrosymmetric structure. Charge transfer from the sulfate groups results in the sub-100 fs generation of a confined electron channel along the c-axis of the unit cell which is stabilized by transferring protons from the adjacent ammonium groups into the channel. Time-dependent charge density maps display a periodic modulation of the channel's charge density by low-frequency lattice motions with a concerted electron and proton motion between the channel and the initial proton binding site. A second study addresses atomic rearrangements and charge dislocations in the non-centrosymmetric potassium dihydrogen phosphate [KH2PO4, KDP]. Photoexcitation generates coherent low-frequency motions along the LO and TO phonon coordinates, leaving the average atomic positions unchanged. The time-dependent maps of electron density demonstrate a concomitant oscillatory relocation of electronic charge with a spatial amplitude of the order of a chemical bond length, two orders of magnitude larger than the vibrational amplitudes. The coherent phonon motions drive the charge relocation, similar to a soft mode driven phase transition between the ferro- and paraelectric phase of KDP.

  15. Gas Phase Molecular Spectroscopy: Electronic Spectroscopy of Combustion Intermediates, Chlorine Azide kinetics, and Rovibrational Energy Transfer in Acetylene

    NASA Astrophysics Data System (ADS)

    Freel, Keith A.

    This dissertation is composed of three sections. The first deals with the electronic spectroscopy of combustion intermediates that are related to the formation of polycyclic aromatic hydrocarbons. Absorption spectra for phenyl, phenoxy, benzyl, and phenyl peroxy radicals were recorded using the technique of cavity ring-down spectroscopy. When possible, molecular constants, vibrational frequencies, and excited state lifetimes for these radicals were derived from these data. The results were supported by theoretical predictions. The second section presents a study of electron attachment to chlorine azide (ClN3) using a flowing-afterglow Langmuir-probe apparatus. Electron attachment rates were measured to be 3.5x10-8 and 4.5x10-8 cm3s-1 at 298 and 400 K respectively. The reactions of ClN3 with eighteen cations and seventeen anions were characterized. Rate constants were measured using a selected ion flow tube. The ionization energy (>9.6eV), proton affinity (713+/-41 kJ mol-1), and electron affinity (2.48+/-0.2 eV) for ClN 3 were determined from these data. The third section demonstrates the use of double resonance spectroscopy to observe state-selected rovibrational energy transfer from the first overtone asymmetric stretch of acetylene. The total population removal rate constants from various rotational levels of the (1,0,1,00,00) vibrational state were determined to be in the range of (9-17) x 10 -10 cm3s-1. Rotational energy transfer accounted for approximately 90% of the total removal rate from each state. Therefore, the upper limit of vibrational energy transfer from the (1,0,1,0 0,00) state was 10%.

  16. Synthesis of novel β-cyclodextrin functionalized S, N codoped carbon dots for selective detection of testosterone.

    PubMed

    Luo, Mai; Hua, Yifan; Liang, Yiran; Han, Jiajun; Liu, Donghui; Zhao, Wenting; Wang, Peng

    2017-12-15

    A novel functionalized carbon dot has been synthesized by covalently linking β-cyclodextrin to the surface of N, S codoped carbon dots (β-CD-CDs). The characterization was confirmed by transmission electron microscopy, X-ray photoelectron spectroscopy, infrared spectra, ultraviolet-visible, and fluorescence emission spectra. On the basis of this carbon dot and (ferrocenylmethyl) trimethylammonium iodide (Fc + ), a photo-induced electron transfer (PET) fluorescent probe system was developed to determine the concentration of testosterone in water and identify testosterone in cell by fluorescence imaging as a visible biomarker. Under the optimum condition, the fluorescent intensity of the probe system linearly responded to the concentration of testosterone from 0μM to 280μM and the limit of detection was 0.51μM. This probe system also performed well at determining testosterone in groundwater with average recoveries of testosterone ranging from 96% to 107% at spiking levels of 0.5-100μM, and the relative standard deviation remained below 13%, which provided a reliable, rapid and easy method to determine testosterone in environmental water. Furthermore, the low cytotoxicity, high anti-interference ability, and excellent biocompatibility of β-CD-CDs made this probe system successfully used in cell fluorescence imaging to monitor levels of testosterone in the cytoplasm of cells with a promising application value in medical research. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Probing the dependence of electron transfer on size and coverage in carbon nanotube-quantum dot heterostructures

    DOE PAGES

    Wang, Lei; Wong, Stanislaus S.; Han, Jinkyu; ...

    2015-11-16

    As a model system for understanding charge transfer in novel architectural designs for solar cells, double-walled carbon nanotube (DWNT)–CdSe quantum dot (QD) (QDs with average diameters of 2.3, 3.0, and 4.1 nm) heterostructures have been fabricated. The individual nanoscale building blocks were successfully attached and combined using a hole-trapping thiol linker molecule, i.e., 4-mercaptophenol (MTH), through a facile, noncovalent π–π stacking attachment strategy. Transmission electron microscopy confirmed the attachment of QDs onto the external surfaces of the DWNTs. We herein demonstrate a meaningful and unique combination of near-edge X-ray absorption fine structure (NEXAFS) and Raman spectroscopies bolstered by complementary electricalmore » transport measurements in order to elucidate the synergistic interactions between CdSe QDs and DWNTs, which are facilitated by the bridging MTH molecules that can scavenge photoinduced holes and potentially mediate electron redistribution between the conduction bands in CdSe QDs and the C 2p-derived states of the DWNTs. Specifically, we correlated evidence of charge transfer as manifested by (i) changes in the NEXAFS intensities of π* resonance in the C K-edge and Cd M3-edge spectra, (ii) a perceptible outer tube G-band downshift in frequency in Raman spectra, as well as (iii) alterations in the threshold characteristics present in transport data as a function of CdSe QD deposition onto the DWNT surface. Furthermore, the separate effects of (i) varying QD sizes and (ii) QD coverage densities on the electron transfer were independently studied.« less

  18. A highly sensitive and selective fluorimetric probe for intracellular peroxynitrite based on photoinduced electron transfer from ferrocene to carbon dots.

    PubMed

    Zhu, Jiali; Sun, Shan; Jiang, Kai; Wang, Yuhui; Liu, Wenqing; Lin, Hengwei

    2017-11-15

    Herein, a highly sensitive and selective fluorimetric nanoprobe for peroxynitrite (ONOO - ) detection based on photoinduced electron transfer (PET) from ferrocene (Fc) to carbon dots (CDs) is reported. The nanoprobe (named CDs-Fc) can be facilely constructed through covalently conjugating CDs and ferrocenecarboxylic acid. Further studies reveal that the energy level of highest occupied molecular orbital (HOMO) of the CDs is lowered with the addition of ONOO - due to its oxidation and nitration capabilities. Thus, an efficient electron transfer from Fc to the excited states of CDs could occur, leading to obvious fluorescence quenching. The fluorescence quenching of the nanoprobe was determined to be peroxynitrite concentrations dependence with a linear range between 4nM to 0.12μM. Thanks to the excellent optical properties of the CDs and efficient electron transfer efficiency from Fc to the excited CDs, the nanoprobe exhibits very high sensitivity to ONOO - with a limit of detection (LOD) of 2.9nM. To the best of our knowledge, this LOD is the highest reported value till today for the detection of peroxynitrite. Besides, the nanoprobe also shows excellent selectivity to ONOO - among a broad range of substances, even including other reactive oxygen/nitrogen species (ROS/RNS). Finally, the nanoprobe was verified to be very low cytotoxicity, and was successfully applied for intracellular ONOO - detection. This work would provide a promising tool for the research of ONOO - in cytobiology and disease diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. "Intact" Carrier Doping by Pump-Pump-Probe Spectroscopy in Combination with Interfacial Charge Transfer: A Case Study of CsPbBr3 Nanocrystals.

    PubMed

    Wang, Junhui; Ding, Tao; Leng, Jing; Jin, Shengye; Wu, Kaifeng

    2018-06-21

    Carrier doping is important for semiconductor nanocrystals (NCs) as it offers a new knob to tune NCs' functionalities, in addition to size and shape control. Also, extensive studies on NC devices have revealed that under operating conditions NCs are often unintentionally doped with electrons or holes. Thus, it is essential to be able to control the doping of NCs and study the carrier dynamics of doped NCs. The extension of previously reported redox-doping methods to chemically sensitive materials, such as recently introduced perovskite NCs, has remained challenging. We introduce an "intact" carrier-doping method by performing pump-pump-probe transient absorption spectroscopy on NC-acceptor complexes. The first pump pulse is used to trigger charge transfer from the NC to the acceptor, leading to NCs doped with a band edge carrier; the following pump-probe pulses measure the dynamics of carrier-doped NCs. We performed this measurement on CsPbBr 3 NCs and deduced positive and negative trion lifetimes of 220 ± 50 and 150 ± 40 ps, respectively, for 10 nm diameter NCs, both dominated by Auger recombination. It also allowed us to identify randomly photocharged excitons in CsPbBr 3 NCs as positive trions.

  20. Situ soil sampling probe system with heated transfer line

    DOEpatents

    Robbat, Jr., Albert

    2002-01-01

    The present invention is directed both to an improved in situ penetrometer probe and to a heated, flexible transfer line. The line and probe may be implemented together in a penetrometer system in which the transfer line is used to connect the probe to a collector/analyzer at the surface. The probe comprises a heater that controls a temperature of a geologic medium surrounding the probe. At least one carrier gas port and vapor collection port are located on an external side wall of the probe. The carrier gas port provides a carrier gas into the geologic medium, and the collection port captures vapors from the geologic medium for analysis. In the transfer line, a flexible collection line that conveys a collected fluid, i.e., vapor, sample to a collector/analyzer. A flexible carrier gas line conveys a carrier gas to facilitate the collection of the sample. A system heating the collection line is also provided. Preferably the collection line is electrically conductive so that an electrical power source can generate a current through it so that the internal resistance generates heat.

  1. Photoinduced electron transfer between Fe(III) and adenosine triphosphate-BODIPY conjugates: Application to alkaline-phosphatase-linked immunoassay.

    PubMed

    Lin, Jia-Hui; Yang, Ya-Chun; Shih, Ya-Chen; Hung, Szu-Ying; Lu, Chi-Yu; Tseng, Wei-Lung

    2016-03-15

    Fluorescent boron dipyrromethene (BODIPY) analogs are often used as sensors for detecting various species because of their relatively high extinction coefficients, outstanding fluorescence quantum yields, photostability, and pH-independent fluorescence. However, there is little-to-no information in the literature that describes the use of BODIPY analogs for detecting alkaline phosphatase (ALP) activity and inhibition. This study discovered that the fluorescence of BODIPY-conjugated adenosine triphosphate (BODIPY-ATP) was quenched by Fe(III) ions through photoinduced electron transfer. The ALP-catalyzed hydrolysis of BODIPY-ATP resulted in the formation of BODIPY-adenosine and phosphate ions. The fluorescence of the generated BODIPY-adenosine was insensitive to the change in the concentration of Fe(III) ions. Thus, the Fe(III)-induced fluorescence quenching of BODIPY-ATP can be paired with its ALP-mediated dephosphorylation to design a turn-on fluorescence probe for ALP sensing. A method detection limit at a signal-to-noise ratio of 3 for ALP was estimated to be 0.02 units/L (~6 pM; 1 ng/mL). This probe was used for the screening of ALP inhibitors, including Na3VO4, imidazole, and arginine. Because ALP is widely used in enzyme-linked immunosorbent assays, the probe was coupled to an ALP-linked immunosorbent assay for the sensitive and selective detection of immunoglobulin G (IgG). The lowest detectable concentration for IgG in this system was 5 ng/mL. Compared with the use of 3,6-fluorescein diphosphate as a signal reporter in an ALP-linked immunosorbent assay, the proposed system provided comparable sensitivity, large linear range, and high stability over temperature and pH changes. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Utilizing the dynamic stark shift as a probe for dielectric relaxation in photosynthetic reaction centers during charge separation.

    PubMed

    Guo, Zhi; Lin, Su; Woodbury, Neal W

    2013-09-26

    In photosynthetic reaction centers, the electric field generated by light-induced charge separation produces electrochromic shifts in the transitions of reaction center pigments. The extent of this Stark shift indirectly reflects the effective field strength at a particular cofactor in the complex. The dynamics of the effective field strength near the two monomeric bacteriochlorophylls (BA and BB) in purple photosynthetic bacterial reaction centers has been explored near physiological temperature by monitoring the time-dependent Stark shift during charge separation (dynamic Stark shift). This dynamic Stark shift was determined through analysis of femtosecond time-resolved absorbance change spectra recorded in wild type reaction centers and in four mutants at position M210. In both wild type and the mutants, the kinetics of the dynamic Stark shift differ from those of electron transfer, though not in the same way. In wild type, the initial electron transfer and the increase in the effective field strength near the active-side monomer bacteriochlorophyll (BA) occur in synchrony, but the two signals diverge on the time scale of electron transfer to the quinone. In contrast, when tyrosine is replaced by aspartic acid at M210, the kinetics of the BA Stark shift and the initial electron transfer differ, but transfer to the quinone coincides with the decay of the Stark shift. This is interpreted in terms of differences in the dynamics of the local dielectric environment between the mutants and the wild type. In wild type, comparison of the Stark shifts associated with BA and BB on the two quasi-symmetric halves of the reaction center structure confirm that the effective dielectric constants near these cofactors are quite different when the reaction center is in the state P(+)QA(-), as previously determined by Steffen et al. at 1.5 K (Steffen, M. A.; et al. Science 1994, 264, 810-816). However, it is not possible to determine from static, low-temperature measurments if the difference in the effective dielectric constant between the two sides of the reaction center is manifest on the time scale of initial electron transfer. By comparing directly the Stark shift dynamics of the ground-state spectra of the two monomer bacteriochlorophylls, it is evident that there is, in fact, a large dielectric difference between protein environments of the two quasi-symmetric electron-transfer branches on the time scale of initial electron transfer and that the effective dielectric constant in the region continues to evolve on a time scale of hundreds of picoseconds.

  3. Asymmetric Nanopore Electrode-Based Amplification for Electron Transfer Imaging in Live Cells.

    PubMed

    Ying, Yi-Lun; Hu, Yong-Xu; Gao, Rui; Yu, Ru-Jia; Gu, Zhen; Lee, Luke P; Long, Yi-Tao

    2018-04-25

    Capturing real-time electron transfer, enzyme activity, molecular dynamics, and biochemical messengers in living cells is essential for understanding the signaling pathways and cellular communications. However, there is no generalizable method for characterizing a broad range of redox-active species in a single living cell at the resolution of cellular compartments. Although nanoelectrodes have been applied in the intracellular detection of redox-active species, the fabrication of nanoelectrodes to maximize the signal-to-noise ratio of the probe remains challenging because of the stringent requirements of 3D fabrication. Here, we report an asymmetric nanopore electrode-based amplification mechanism for the real-time monitoring of NADH in a living cell. We used a two-step 3D fabrication process to develop a modified asymmetric nanopore electrode with a diameter down to 90 nm, which allowed for the detection of redox metabolism in living cells. Taking advantage of the asymmetric geometry, the above 90% potential drop at the two terminals of the nanopore electrode converts the faradaic current response into an easily distinguishable bubble-induced transient ionic current pattern. Therefore, the current signal was amplified by at least 3 orders of magnitude, which was dynamically linked to the presence of trace redox-active species. Compared to traditional wire electrodes, this wireless asymmetric nanopore electrode exhibits a high signal-to-noise ratio by increasing the current resolution from nanoamperes to picoamperes. The asymmetric nanopore electrode achieves the highly sensitive and selective probing of NADH concentrations as low as 1 pM. Moreover, it enables the real-time nanopore monitoring of the respiration chain (i.e., NADH) in a living cell and the evaluation of the effects of anticancer drugs in an MCF-7 cell. We believe that this integrated wireless asymmetric nanopore electrode provides promising building blocks for the future imaging of electron transfer dynamics in live cells.

  4. Carbon dot-Au(i)Ag(0) assembly for the construction of an artificial light harvesting system.

    PubMed

    Jana, Jayasmita; Aditya, Teresa; Pal, Tarasankar

    2018-03-06

    Artificial light harvesting systems (LHS) with inorganic counterparts are considered to be robust as well as mechanistically simple, where the system follows the donor-acceptor principle with an unchanged structural pattern. Plasmonic gold or silver nanoparticles are mostly chosen as inorganic counterparts to design artificial LHS. To capitalize on its electron accepting capability, Au(i) has been considered in this work for the synergistic stabilization of a system with intriguingly fluorescing silver(0) clusters produced in situ. Thus a stable fluorescent Au(i)Ag(0) assembly is generated with electron accepting capabilities. On the other hand, carbon dots have evolved as new fluorescent probes due to their unique physicochemical properties. Utilizing the simple electronic behavior of carbon dots, an electronic interaction between the fluorescent Au(i)Ag(0) and a carbon dot has been investigated for the construction of a new artificial light harvesting system. This coinage metal assembly allows surface energy transfer where it acts as an acceptor, while the carbon dot behaves as a good donor. The energy transfer efficiency has been calculated experimentally to be significant (81.3%) and the Au(i)Ag(0)-carbon dot assembly paves the way for efficient artificial LHS.

  5. Unraveling the charge transfer/electron transport in mesoporous semiconductive TiO2 films by voltabsorptometry.

    PubMed

    Renault, Christophe; Nicole, Lionel; Sanchez, Clément; Costentin, Cyrille; Balland, Véronique; Limoges, Benoît

    2015-04-28

    In this work, we demonstrate that chronoabsorptometry and more specifically cyclic voltabsorptometry are particularly well suited techniques for acquiring a comprehensive understanding of the dynamics of electron transfer/charge transport within a transparent mesoporous semiconductive metal oxide film loaded with a redox-active dye. This is illustrated with the quantitative analysis of the spectroelectrochemical responses of two distinct heme-based redox probes adsorbed in highly-ordered mesoporous TiO2 thin films (prepared from evaporation-induced self-assembly, EISA). On the basis of a finite linear diffusion-reaction model as well as the establishment of the analytical expressions governing the limiting cases, it was possible to quantitatively analyse, predict and interpret the unusual voltabsorptometric responses of the adsorbed redox species as a function of the potential applied to the semiconductive film (i.e., as a function of the transition from an insulating to a conductive state or vice versa). In particular, we were able to accurately determine the interfacial charge transfer rates between the adsorbed redox species and the porous semiconductor. Another important and unexpected finding, inferred from the voltabsorptograms, is an interfacial electron transfer process predominantly governed by the extended conduction band states of the EISA TiO2 film and not by the localized traps in the bandgap. This is a significant result that contrasts those previously observed for dye-sensitized solar cells formed of randomly sintered TiO2 nanoparticles, a behaviour that was ascribed to a particularly low density of localized surface states in EISA TiO2. The present methodology also provides a unique and straightforward access to an activation-driving force relationship according to the Marcus theory, thus opening new opportunities not only to investigate the driving-force effects on electron recombination dynamics in dye-sensitized solar cells but also to study the electron transfer/transport mechanisms in heterogeneous photoelectrocatalytic systems combining nanostructured semiconductor electrodes and heterogeneous redox-active catalysts.

  6. Detecting RNA/DNA hybridization using double-labeled donor probes with enhanced fluorescence resonance energy transfer signals.

    PubMed

    Okamura, Yukio; Watanabe, Yuichiro

    2006-01-01

    Fluorescence resonance energy transfer (FRET) occurs when two fluorophores are in close proximity, and the emission energy of a donor fluorophore is transferred to excite an acceptor fluorophore. Using such fluorescently labeled oligonucleotides as FRET probes, makes possible specific detection of RNA molecules even if similar sequences are present in the environment. A higher ratio of signal to background fluorescence is required for more sensitive probe detection. We found that double-labeled donor probes labeled with BODIPY dye resulted in a remarkable increase in fluorescence intensity compared to single-labeled donor probes used in conventional FRET. Application of this double-labeled donor system can improve a variety of FRET techniques.

  7. Electron Transfer as a Probe of the Interfacial Quantum Dot-Organic Molecule Interaction

    NASA Astrophysics Data System (ADS)

    Peterson, Mark D.

    This dissertation describes a set of experimental and theoretical studies of the interaction between small organic molecules and the surfaces of semiconductor nanoparticles, also called quantum dots (QDs). Chapter 1 reviews the literature on the influence of ligands on exciton relaxation dynamics following photoexcitation of semiconductor QDs, and describes how ligands promote or inhibit processes such as emission, nonradiative relaxation, and charge transfer to redox active adsorbates. Chapter 2 investigates the specific interaction of alkylcarboxylated viologen derivatives with CdS QDs, and shows how a combination of steady-state photoluminescence (PL) and transient absorption (TA) experiments can be used to reveal the specific binding geometry of redox active organic molecules on QD surfaces. Chapter 3 expands on Chapter 2 by using PL and TA to provide information about the mechanisms through which methyl viologen (MV 2+) associates with CdS QDs to form a stable QD/MV2+ complex, suggesting two chemically distinct reactions. We use our understanding of the QD/molecule interaction to design a drug delivery system in Chapter 4, which employs PL and TA experiments to show that conformational changes in a redox active adsorbate may follow electron transfer, "activating" a biologically inert Schiff base to a protein inhibitor form. The protein inhibitor limits cell motility and may be used to prevent tumor metastasis in cancer patients. Chapter 5 discusses future applications of QD/molecule redox couples with an emphasis on efficient multiple charge-transfer reactions -- a process facilitated by the high degeneracy of band-edge states in QDs. These multiple charge-transfer reactions may potentially increase the thermodynamic efficiency of solar cells, and may also facilitate the splitting of water into fuel. Multiple exciton generation procedures, multi-electron transfer experiments, and future directions are discussed.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, L. X.; Zhang, X.; Lockard, J. V.

    Transient molecular structures along chemical reaction pathways are important for predicting molecular reactivity, understanding reaction mechanisms, as well as controlling reaction pathways. During the past decade, X-ray transient absorption spectroscopy (XTA, or LITR-XAS, laser-initiated X-ray absorption spectroscopy), analogous to the commonly used optical transient absorption spectroscopy, has been developed. XTA uses a laser pulse to trigger a fundamental chemical process, and an X-ray pulse(s) to probe transient structures as a function of the time delay between the pump and probe pulses. Using X-ray pulses with high photon flux from synchrotron sources, transient electronic and molecular structures of metal complexes havemore » been studied in disordered media from homogeneous solutions to heterogeneous solution-solid interfaces. Several examples from the studies at the Advanced Photon Source in Argonne National Laboratory are summarized, including excited-state metalloporphyrins, metal-to-ligand charge transfer (MLCT) states of transition metal complexes, and charge transfer states of metal complexes at the interface with semiconductor nanoparticles. Recent developments of the method are briefly described followed by a future prospective of XTA. It is envisioned that concurrent developments in X-ray free-electron lasers and synchrotron X-ray facilities as well as other table-top laser-driven femtosecond X-ray sources will make many breakthroughs and realise dreams of visualizing molecular movies and snapshots, which ultimately enable chemical reaction pathways to be controlled.« less

  9. Sparse sampling and reconstruction for electron and scanning probe microscope imaging

    DOEpatents

    Anderson, Hyrum; Helms, Jovana; Wheeler, Jason W.; Larson, Kurt W.; Rohrer, Brandon R.

    2015-07-28

    Systems and methods for conducting electron or scanning probe microscopy are provided herein. In a general embodiment, the systems and methods for conducting electron or scanning probe microscopy with an undersampled data set include: driving an electron beam or probe to scan across a sample and visit a subset of pixel locations of the sample that are randomly or pseudo-randomly designated; determining actual pixel locations on the sample that are visited by the electron beam or probe; and processing data collected by detectors from the visits of the electron beam or probe at the actual pixel locations and recovering a reconstructed image of the sample.

  10. Excited-state dynamics of size-dependent colloidal TiO2-Au nanocomposites

    NASA Astrophysics Data System (ADS)

    Karam, Tony E.; Khoury, Rami A.; Haber, Louis H.

    2016-03-01

    The ultrafast excited-state dynamics of size-dependent TiO2-Au nanocomposites synthesized by reducing gold nanoclusters to the surface of colloidal TiO2 nanoparticles are studied using pump-probe transient absorption spectroscopy with 400 nm excitation pulses. The results show that the relaxation processes of the plasmon depletion band, which are described by electron-phonon and phonon-phonon scattering lifetimes, are independent of the gold nanocluster shell size surrounding the TiO2 nanoparticle core. The dynamics corresponding to interfacial electron transfer between the gold nanoclusters and the TiO2 bandgap are observed to spectrally overlap with the gold interband transition signal, and the electron transfer lifetimes are shown to significantly decrease as the nanocluster shell size increases. Additionally, size-dependent periodic oscillations are observed and are attributed to acoustic phonons of a porous shell composed of aggregated gold nanoclusters around the TiO2 core, with frequencies that decrease and damping times that remain constant as the nanocluster shell size increases. These results are important for the development of improved catalytic nanomaterial applications.

  11. Time-domain ab initio modeling of photoinduced dynamics at nanoscale interfaces.

    PubMed

    Wang, Linjun; Long, Run; Prezhdo, Oleg V

    2015-04-01

    Nonequilibrium processes involving electronic and vibrational degrees of freedom in nanoscale materials are under active experimental investigation. Corresponding theoretical studies are much scarcer. The review starts with the basics of time-dependent density functional theory, recent developments in nonadiabatic molecular dynamics, and the fusion of the two techniques. Ab initio simulations of this kind allow us to directly mimic a great variety of time-resolved experiments performed with pump-probe laser spectroscopies. The focus is on the ultrafast photoinduced charge and exciton dynamics at interfaces formed by two complementary materials. We consider purely inorganic materials, inorganic-organic hybrids, and all organic interfaces, involving bulk semiconductors, metallic and semiconducting nanoclusters, graphene, carbon nanotubes, fullerenes, polymers, molecular crystals, molecules, and solvent. The detailed atomistic insights available from time-domain ab initio studies provide a unique description and a comprehensive understanding of the competition between electron transfer, thermal relaxation, energy transfer, and charge recombination processes. These advances now make it possible to directly guide the development of organic and hybrid solar cells, as well as photocatalytic, electronic, spintronic, and other devices relying on complex interfacial dynamics.

  12. Excitation energy transfer from the bacteriochlorophyll Soret band to carotenoids in the LH2 light-harvesting complex from Ectothiorhodospira haloalkaliphila is negligible.

    PubMed

    Razjivin, A P; Lukashev, E P; Kompanets, V O; Kozlovsky, V S; Ashikhmin, A A; Chekalin, S V; Moskalenko, A A; Paschenko, V Z

    2017-09-01

    Pathways of intramolecular conversion and intermolecular electronic excitation energy transfer (EET) in the photosynthetic apparatus of purple bacteria remain subject to debate. Here we experimentally tested the possibility of EET from the bacteriochlorophyll (BChl) Soret band to the singlet S 2 level of carotenoids using femtosecond pump-probe measurements and steady-state fluorescence excitation and absorption measurements in the near-ultraviolet and visible spectral ranges. The efficiency of EET from the Soret band of BChl to S 2 of the carotenoids in light-harvesting complex LH2 from the purple bacterium Ectothiorhodospira haloalkaliphila appeared not to exceed a few percent.

  13. The Role of Electronic and Phononic Excitation in the Optical Response of Monolayer WS 2 after Ultrafast Excitation

    DOE PAGES

    Ruppert, Claudia; Chernikov, Alexey; Hill, Heather M.; ...

    2017-01-06

    We study transient changes of the optical response of WS 2 monolayers by femtosecond broadband pump–probe spectroscopy. Time-dependent absorption spectra are analyzed by tracking the line width broadening, bleaching, and energy shift of the main exciton resonance as a function of time delay after the excitation. Two main sources for the pump-induced changes of the optical response are identified. Specifically, we find an interplay between modifications induced by many-body interactions from photoexcited carriers and by the subsequent transfer of the excitation to the phonon system followed by cooling of the material through the heat transfer to the substrate.

  14. The Role of Electronic and Phononic Excitation in the Optical Response of Monolayer WS 2 after Ultrafast Excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruppert, Claudia; Chernikov, Alexey; Hill, Heather M.

    We study transient changes of the optical response of WS 2 monolayers by femtosecond broadband pump–probe spectroscopy. Time-dependent absorption spectra are analyzed by tracking the line width broadening, bleaching, and energy shift of the main exciton resonance as a function of time delay after the excitation. Two main sources for the pump-induced changes of the optical response are identified. Specifically, we find an interplay between modifications induced by many-body interactions from photoexcited carriers and by the subsequent transfer of the excitation to the phonon system followed by cooling of the material through the heat transfer to the substrate.

  15. Ultrafast electron transfer processes studied by pump-repump-probe spectroscopy.

    PubMed

    Fischer, Martin K; Gliserin, Alexander; Laubereau, Alfred; Iglev, Hristo

    2011-03-01

    The photodetachment of Br(-), I(-) and OH(-) in aqueous solution is studied by 2- and 3-pulse femtosecond spectroscopy. The UV excitation leads to fast electron separation followed by formation of a donor-electron pairs. An additional repump pulse is used for secondary excitation of the intermediates. The 3-pulse technique allows distinguishing the pair-intermediate from the fully separated electron. Using this method we observe a novel geminate recombination channel of .OH with adjacent hydrated electrons. The process leads to an ultrafast quenching (0.7 ps) of almost half the initial number of radicals. The phenomenon is not observed in Br(-) and I(-). Our results demonstrate the potential of the 3-pulse spectroscopy to elucidate the mechanism of ultrafast ET reactions. Photodetachment of aqueous anions studied by two- and three pulse spectroscopy. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Simulation vs. Reality: A Comparison of In Silico Distance Predictions with DEER and FRET Measurements

    PubMed Central

    Klose, Daniel; Klare, Johann P.; Grohmann, Dina; Kay, Christopher W. M.; Werner, Finn; Steinhoff, Heinz-Jürgen

    2012-01-01

    Site specific incorporation of molecular probes such as fluorescent- and nitroxide spin-labels into biomolecules, and subsequent analysis by Förster resonance energy transfer (FRET) and double electron-electron resonance (DEER) can elucidate the distance and distance-changes between the probes. However, the probes have an intrinsic conformational flexibility due to the linker by which they are conjugated to the biomolecule. This property minimizes the influence of the label side chain on the structure of the target molecule, but complicates the direct correlation of the experimental inter-label distances with the macromolecular structure or changes thereof. Simulation methods that account for the conformational flexibility and orientation of the probe(s) can be helpful in overcoming this problem. We performed distance measurements using FRET and DEER and explored different simulation techniques to predict inter-label distances using the Rpo4/7 stalk module of the M. jannaschii RNA polymerase. This is a suitable model system because it is rigid and a high-resolution X-ray structure is available. The conformations of the fluorescent labels and nitroxide spin labels on Rpo4/7 were modeled using in vacuo molecular dynamics simulations (MD) and a stochastic Monte Carlo sampling approach. For the nitroxide probes we also performed MD simulations with explicit water and carried out a rotamer library analysis. Our results show that the Monte Carlo simulations are in better agreement with experiments than the MD simulations and the rotamer library approach results in plausible distance predictions. Because the latter is the least computationally demanding of the methods we have explored, and is readily available to many researchers, it prevails as the method of choice for the interpretation of DEER distance distributions. PMID:22761805

  17. Fast probe of local electronic states in nanostructures utilizing a single-lead quantum dot

    PubMed Central

    Otsuka, Tomohiro; Amaha, Shinichi; Nakajima, Takashi; Delbecq, Matthieu R.; Yoneda, Jun; Takeda, Kenta; Sugawara, Retsu; Allison, Giles; Ludwig, Arne; Wieck, Andreas D.; Tarucha, Seigo

    2015-01-01

    Transport measurements are powerful tools to probe electronic properties of solid-state materials. To access properties of local electronic states in nanostructures, such as local density of states, electronic distribution and so on, micro-probes utilizing artificial nanostructures have been invented to perform measurements in addition to those with conventional macroscopic electronic reservoirs. Here we demonstrate a new kind of micro-probe: a fast single-lead quantum dot probe, which utilizes a quantum dot coupled only to the target structure through a tunneling barrier and fast charge readout by RF reflectometry. The probe can directly access the local electronic states with wide bandwidth. The probe can also access more electronic states, not just those around the Fermi level, and the operations are robust against bias voltages and temperatures. PMID:26416582

  18. Structural phase transitions and time-resolved dynamics of solid-supported interfacial methanol observed by reflection electron diffraction

    NASA Astrophysics Data System (ADS)

    Yang, Ding-Shyue; He, Xing; Wu, Chengyi

    Due to their large scattering cross sections with matter, electrons are suitable for contactless probing of solid-supported surface assemblies, especially in a reflection geometry. Direct visualization of assembly structures through electron diffraction further enables studies of ultrafast structural dynamics through the pump-probe scheme as well as discoveries of hidden phase changes in equilibrium that have been obscure in spectroscopic measurements. In this presentation, we report our first observation of unique two-stage transformations of interfacial methanol on smooth hydrophobic surfaces. The finding may reconcile the inconsistent previous reports of the crystallization temperature using various indirect methods. Dynamically, energy transfer across a solid-molecule interface following photoexcitation of the substrate is found to be highly dependent on the structure of interfacial methanol. If it is only 2-dimensionally ordered, as the film thickness increases, a prolonged time in the decrease of diffraction intensity is seen, signifying an inefficient vibrational coupling in the surface normal direction. Implications of the dynamics results and an outlook of interfacial studies using time-resolved and averaged electron diffraction will be discussed. We gratefully acknowledge the support from the R. A. Welch Foundation (Grant No. E-1860), the Donors of the American Chemical Society Petroleum Research Fund (ACS-PRF), and the University of Houston.

  19. Measurement of the electron-impact transfer rate coefficients between the Kr(1s) states in an afterglow discharge

    NASA Astrophysics Data System (ADS)

    Qiu, Jie; Cheng, Zhi-Wen; Zhu, Xi-Ming; Pu, Yi-Kang

    2018-04-01

    The rate coefficients for the electron-impact transfer from Kr(1s5) to Kr(1s4) and from Kr(1s3) to Kr(1s2) are measured in the electron temperature (T e) range between 0.07 eV and 1 eV. In the afterglow of a capacitive krypton discharge at a fixed pressure of 20 mTorr and a peak rf power ranging from 4 to 128 W, the densities of four krypton 1s states, the electron temperature and the electron density are measured by diode laser absorption, a Langmuir probe and a microwave interferometer, respectively. With these measured quantities, the rate coefficients are obtained from a population model for krypton metastable states. The measured rate coefficients are compared with those derived from the excitation cross sections of Kr metastable states calculated by different R-matrix models. It is found that our results agree best with that from Allan et al [1]. Moreover, we analyze the assumptions made in the population model and discuss their possible impact on the accuracy of the measured rate coefficients, especially for the low T e (0.1-0.2 eV) range and a higher T e (0.4-1 eV) range.

  20. Energy transfer dynamics in trimers and aggregates of light-harvesting complex II probed by 2D electronic spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enriquez, Miriam M.; Zhang, Cheng; Tan, Howe-Siang, E-mail: howesiang@ntu.edu.sg

    2015-06-07

    The pathways and dynamics of excitation energy transfer between the chlorophyll (Chl) domains in solubilized trimeric and aggregated light-harvesting complex II (LHCII) are examined using two-dimensional electronic spectroscopy (2DES). The LHCII trimers and aggregates exhibit the unquenched and quenched excitonic states of Chl a, respectively. 2DES allows direct correlation of excitation and emission energies of coupled states over population time delays, hence enabling mapping of the energy flow between Chls. By the excitation of the entire Chl b Q{sub y} band, energy transfer from Chl b to Chl a states is monitored in the LHCII trimers and aggregates. Global analysismore » of the two-dimensional (2D) spectra reveals that energy transfer from Chl b to Chl a occurs on fast and slow time scales of 240–270 fs and 2.8 ps for both forms of LHCII. 2D decay-associated spectra resulting from the global analysis identify the correlation between Chl states involved in the energy transfer and decay at a given lifetime. The contribution of singlet–singlet annihilation on the kinetics of Chl energy transfer and decay is also modelled and discussed. The results show a marked change in the energy transfer kinetics in the time range of a few picoseconds. Owing to slow energy equilibration processes, long-lived intermediate Chl a states are present in solubilized trimers, while in aggregates, the population decay of these excited states is significantly accelerated, suggesting that, overall, the energy transfer within the LHCII complexes is faster in the aggregated state.« less

  1. Ultrafast photoinduced charge separation in metal-semiconductor nanohybrids.

    PubMed

    Mongin, Denis; Shaviv, Ehud; Maioli, Paolo; Crut, Aurélien; Banin, Uri; Del Fatti, Natalia; Vallée, Fabrice

    2012-08-28

    Hybrid nano-objects formed by two or more disparate materials are among the most promising and versatile nanosystems. A key parameter in their properties is interaction between their components. In this context we have investigated ultrafast charge separation in semiconductor-metal nanohybrids using a model system of gold-tipped CdS nanorods in a matchstick architecture. Experiments are performed using an optical time-resolved pump-probe technique, exciting either the semiconductor or the metal component of the particles, and probing the light-induced change of their optical response. Electron-hole pairs photoexcited in the semiconductor part of the nanohybrids are shown to undergo rapid charge separation with the electron transferred to the metal part on a sub-20 fs time scale. This ultrafast gold charging leads to a transient red-shift and broadening of the metal surface plasmon resonance, in agreement with results for free clusters but in contrast to observation for static charging of gold nanoparticles in liquid environments. Quantitative comparison with a theoretical model is in excellent agreement with the experimental results, confirming photoexcitation of one electron-hole pair per nanohybrid followed by ultrafast charge separation. The results also point to the utilization of such metal-semiconductor nanohybrids in light-harvesting applications and in photocatalysis.

  2. Epitaxial growth of pentacene on alkali halide surfaces studied by Kelvin probe force microscopy.

    PubMed

    Neff, Julia L; Milde, Peter; León, Carmen Pérez; Kundrat, Matthew D; Eng, Lukas M; Jacob, Christoph R; Hoffmann-Vogel, Regina

    2014-04-22

    In the field of molecular electronics, thin films of molecules adsorbed on insulating surfaces are used as the functional building blocks of electronic devices. Control of the structural and electronic properties of the thin films is required for reliably operating devices. Here, noncontact atomic force and Kelvin probe force microscopies have been used to investigate the growth and electrostatic landscape of pentacene on KBr(001) and KCl(001) surfaces. We have found that, together with molecular islands of upright standing pentacene, a new phase of tilted molecules appears near step edges on KBr. Local contact potential differences (LCPD) have been studied with both Kelvin experiments and density functional theory calculations. Our images reveal that differently oriented molecules display different LCPD and that their value is independent of the number of molecular layers. These results point to the formation of an interface dipole, which may be explained by a partial charge transfer from the pentacene to the surface. Moreover, the monitoring of the evolution of the pentacene islands shows that they are strongly affected by dewetting: Multilayers build up at the expense of monolayers, and in the Kelvin images, previously unknown line defects appear, which reveal the epitaxial growth of pentacene crystals.

  3. Probing the Locality of Excited States with Linear Algebra.

    PubMed

    Etienne, Thibaud

    2015-04-14

    This article reports a novel theoretical approach related to the analysis of molecular excited states. The strategy introduced here involves gathering two pieces of physical information, coming from Hilbert and direct space operations, into a general, unique quantum mechanical descriptor of electronic transitions' locality. Moreover, the projection of Hilbert and direct space-derived indices in an Argand plane delivers a straightforward way to visually probe the ability of a dye to undergo a long- or short-range charge-transfer. This information can be applied, for instance, to the analysis of the electronic response of families of dyes to light absorption by unveiling the trend of a given push-pull chromophore to increase the electronic cloud polarization magnitude of its main transition with respect to the size extension of its conjugated spacer. We finally demonstrate that all the quantities reported in this article can be reliably approximated by a linear algebraic derivation, based on the contraction of detachment/attachment density matrices from canonical to atomic space. This alternative derivation has the remarkable advantage of a very low computational cost with respect to the previously used numerical integrations, making fast and accurate characterization of large molecular systems' excited states easily affordable.

  4. Quantum coherence selective 2D Raman–2D electronic spectroscopy

    PubMed Central

    Spencer, Austin P.; Hutson, William O.; Harel, Elad

    2017-01-01

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational–vibrational, electronic–vibrational and electronic–electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment–protein complexes. PMID:28281541

  5. A novel "Turn-On" fluorescent probe for F(-) detection in aqueous solution and its application in live-cell imaging.

    PubMed

    Xu, Jian; Sun, Shaobo; Li, Qian; Yue, Ying; Li, Yingdong; Shao, Shijun

    2014-11-07

    A novel probe incorporating quaternized 4-pyridinium group into a BODIPY molecule was synthesized and studied for the selective detection of fluoride ions (F(-)) in aqueous solution. The design was based on a fluoride-specific desilylation reaction and the "Turn-On" fluorescent response of probe 1 to F(-) was ascribed to the inhibition of photoinduced electron transfer (PET) process. The probe displayed many desired properties such as high specificity, appreciable solubility, desirable response time and low toxicity to mammalian cells. There was a good linearity between the fluorescence intensity and the concentrations of F(-) in the range of 0.1-1mM with a detection limit of 0.02 mM. The sensing mechanism was confirmed by the NMR, electrospray ionization mass spectrum, optical spectroscopy and the mechanism of "Turn-On" fluorescent response was also determinated by a density functional theory (DFT) calculation using Gaussian 03 program. Moreover, the probe was successfully applied for the fluorescence imaging of F(-) in human epithelial lung cancer (A549) cells and alveolar type II (ATII) cells under physiological conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Highly sensitive DNA sensors based on cerium oxide nanorods

    NASA Astrophysics Data System (ADS)

    Nguyet, Nguyen Thi; Hai Yen, Le Thi; Van Thu, Vu; lan, Hoang; Trung, Tran; Vuong, Pham Hung; Tam, Phuong Dinh

    2018-04-01

    In this work, a CeO2 nanorod (NR)-based electrochemical DNA sensor was developed to identify Salmonella that causes food-borne infections. CeO2 NRs were synthesized without templates via a simple and unexpensive hydrothermal approach at 170 °C for 12 h by using CeO(NO3)3·6H2O as a Ce source. The DNA probe was immobilized onto the CeO2 NR-modified electrode through covalent attachment. The characteristics of the hybridized DNA were analyzed through electrochemical impedance spectroscopy (EIS) with [Fe(CN)6]3-/4- as a redox probe. Experimental results showed that electron transfer resistance (Ret) increased after the DNA probe was attached to the electrode surface and increased further after the DNA probe hybridized with its complementary sequence. A linear response of Ret to the target DNA concentration was found from 0.01 μM to 2 μM. The detection limit and sensitivity of the DNA sensor were 0.01 μM and 3362.1 Ω μM-1 cm-2, respectively. Various parameters, such as pH value, ionic strength, DNA probe concentration, and hybridization time, influencing DNA sensor responses were also investigated.

  7. New fluorescent probes for visual proteins. Part II. 5-(Oxo)penta-2,4-dienyl-p-(N,N-dimethylamino)benzoate.

    PubMed

    Papper, Vladislav; Kharlanov, Vladimir; Schädel, Sandra; Maretzki, Dieter; Rettig, Wolfgang

    2003-12-01

    A new dual-fluorescent compound, 5-(oxo)penta-2,4-dienyl-p-(N,N-dimethylamino)benzoate (1), a derivative of dimethylaminobenzoic acid, has been synthesised and studied photophysically. This compound continues the series of potential fluorescent probes for visual and proton-pumping opsin proteins. The photophysical behaviour of this molecule, including charge-transfer interaction in the ground state and dual-fluorescence emission, is similar to that of the previously studied analogue cis-3-(oxo)propenyl-p-(N,N-dimethylamino)benzoate (cis-2). The presence of several theoretically calculated conformers of compound 2 was suggested to be responsible for the observed strongly red-shifted absorption and excitation wavelength dependence. These photophysical anomalies were also observed for molecule 1, though the models put forward to explain them in the cases of 1 and 2 are rather different. Based on theoretical calculations and experimental results, we propose that some of the stable conformers might be connected with either a charge-transfer complex or mesomeric interactions in the ground state. Upon changing the electronic nature of the oxo-pentadienyl acceptor moiety, e.g. protonation, chemical or biochemical reaction, the charge-transfer absorption disappears, which leads to a dramatic increase in the fluorescence quantum yield.

  8. Rotationally inelastic collisions of He and Ar with NaK: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Malenda, R. F.; Jones, J.; Faust, C.; Richter, K.; Wolfe, C. M.; Hickman, A. P.; Huennekens, J.; Talbi, D.; Gatti, F.

    2012-06-01

    We are investigating collisions of the ground (X^1&+circ;) and first excited (A^1&+circ;) electronic states of NaK using both experimental and theoretical methods. Potential surfaces for HeNaK (fixed NaK bond length) are used for coupled channel calculations of cross sections for rotational energy transfer and also for collisional transfer of orientation and alignment. Additional calculations use the MCTDH wavepacket method. The measurements of the A state collisions involve a pump--probe excitation scheme using polarization labeling and laser-induced fluorescence spectroscopy. The pump excites a particular ro-vibrational level (v,J) of the A state from the X state, and the probe laser is scanned over various transitions to the 3^1π state. In addition to strong direct transitions, weak satellite lines are observed that arise from collisionally-induced transitions from the (v,J) level to (v,J'=J+δJ). This method provides information about the cross sections for transfer of population and orientation for A state levels, and it can be adapted to transitions starting in the X state. For the A state we observe a strong δJ=even propensity for both He and Ar perturbers. Preliminary results for the X state do not show this propensity.

  9. Charge transfer at the interface between ferromagnetic La0.7Sr0.3MnO3 and superconducting EuBa2Cu3O7 probed by STM/STS

    NASA Astrophysics Data System (ADS)

    Liu, Yinghao; Xiong, Jie

    2012-02-01

    La0.7Sr0.3MnO3 (LSMO) is a ferromagnetic half-metallic compound with nearly 100% spin polarization at room temperature, making it an ideal candidate for applications in spintronic devices. However, this useful functionality disappears when the thickness of LSMO film grown on SrTiO3 substrate is reduced to below 4 nm, limiting its application in nanoscale devices. Here, we show that metallic and ferromagnetic properties of ultrathin (< 4nm) LSMO film can be restored by interfacing it with a superconductor EuBa2Cu3O7- δ (EBCO). We use scanning tunneling microscopy and spectroscopy to probe the evolution of the electronic structure of LSMO film grown on EBCO as functions of LSMO layer thickness and aging of bilayer LSMO/EBCO. Our results reveal that the charge (hole) transfer at LSMO/EBCO interface is responsible for driving LSMO film (of only five-unit-cell thickness) to metallic state. The conductive behavior of aged LSMO/EBCO bilayers varies systematically with the thickness of LSMO layer, allowing us to estimate the charge-transfer depth to be 4˜5 nm on the LSMO side.

  10. Upper limit on the inner radiation belt MeV electron intensity.

    PubMed

    Li, X; Selesnick, R S; Baker, D N; Jaynes, A N; Kanekal, S G; Schiller, Q; Blum, L; Fennell, J; Blake, J B

    2015-02-01

    No instruments in the inner radiation belt are immune from the unforgiving penetration of the highly energetic protons (tens of MeV to GeV). The inner belt proton flux level, however, is relatively stable; thus, for any given instrument, the proton contamination often leads to a certain background noise. Measurements from the Relativistic Electron and Proton Telescope integrated little experiment on board Colorado Student Space Weather Experiment CubeSat, in a low Earth orbit, clearly demonstrate that there exist sub-MeV electrons in the inner belt because their flux level is orders of magnitude higher than the background, while higher-energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Detailed analysis of high-quality measurements from the Relativistic Electron and Proton Telescope on board Van Allen Probes, in a geo-transfer-like orbit, provides, for the first time, quantified upper limits on MeV electron fluxes in various energy ranges in the inner belt. These upper limits are rather different from flux levels in the AE8 and AE9 models, which were developed based on older data sources. For 1.7, 2.5, and 3.3 MeV electrons, the upper limits are about 1 order of magnitude lower than predicted model fluxes. The implication of this difference is profound in that unless there are extreme solar wind conditions, which have not happened yet since the launch of Van Allen Probes, significant enhancements of MeV electrons do not occur in the inner belt even though such enhancements are commonly seen in the outer belt. Quantified upper limit of MeV electrons in the inner beltActual MeV electron intensity likely much lower than the upper limitMore detailed understanding of relativistic electrons in the magnetosphere.

  11. Upper limit on the inner radiation belt MeV electron intensity

    PubMed Central

    Li, X; Selesnick, RS; Baker, DN; Jaynes, AN; Kanekal, SG; Schiller, Q; Blum, L; Fennell, J; Blake, JB

    2015-01-01

    No instruments in the inner radiation belt are immune from the unforgiving penetration of the highly energetic protons (tens of MeV to GeV). The inner belt proton flux level, however, is relatively stable; thus, for any given instrument, the proton contamination often leads to a certain background noise. Measurements from the Relativistic Electron and Proton Telescope integrated little experiment on board Colorado Student Space Weather Experiment CubeSat, in a low Earth orbit, clearly demonstrate that there exist sub-MeV electrons in the inner belt because their flux level is orders of magnitude higher than the background, while higher-energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Detailed analysis of high-quality measurements from the Relativistic Electron and Proton Telescope on board Van Allen Probes, in a geo-transfer-like orbit, provides, for the first time, quantified upper limits on MeV electron fluxes in various energy ranges in the inner belt. These upper limits are rather different from flux levels in the AE8 and AE9 models, which were developed based on older data sources. For 1.7, 2.5, and 3.3 MeV electrons, the upper limits are about 1 order of magnitude lower than predicted model fluxes. The implication of this difference is profound in that unless there are extreme solar wind conditions, which have not happened yet since the launch of Van Allen Probes, significant enhancements of MeV electrons do not occur in the inner belt even though such enhancements are commonly seen in the outer belt. Key Points Quantified upper limit of MeV electrons in the inner belt Actual MeV electron intensity likely much lower than the upper limit More detailed understanding of relativistic electrons in the magnetosphere PMID:26167446

  12. A G-quadruplex based fluorescent oligonucleotide turn-on probe towards iodides detection in real samples.

    PubMed

    Li, Qian; Li, Shuaihua; Chen, Xiu; Bian, Liujiao

    2017-09-01

    A basket-type G-quadruplex (GQ) fluorescent oligonucleotide (OND) probe is designed to detect iodides dependent on thymine-Hg(II)-thymine (T-Hg(II)-T) base pairs and the intrinsic fluorescence quenching capacity of GQ. In the presence of Hg(II) ions (Hg 2+ ), the two hexachloro-fluorescein-labeled ONDs form a hairpin structure and the fluorophores are dragged close to the GQ, leading to fluorescence quenching of the probe due to photoinduced electron transfer. Upon addition of iodide anions, Hg 2+ are extracted from T-Hg(II)-T complexes which attributes to the stronger binding with iodide anions, resulting in the fluorescence recovery. Through performing the fluorescence quenching and recovery processes, this probe developed a fluorescence turn-on sensor for iodide anions determination over a linear range of 20-200nmol/L with a limit of detection of 5nmol/L. The practical use of the turn-on technology was demonstrated by its application in determination of iodides in water, food, pharmaceutical products and biological samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Probing interfacial energetics and charge transfer kinetics in semiconductor nanocomposites: New insights into heterostructured TiO 2/BiVO 4 photoanodes

    DOE PAGES

    Hess, Lucas H.; Cooper, Jason K.; Loiudice, Anna; ...

    2017-02-28

    Heterostructured nanocomposites offer promise for creating systems exhibiting functional properties that exceed those of the isolated components. For solar energy conversion, such combinations of semiconducting nanomaterials can be used to direct charge transfer along pathways that reduce recombination and promote efficient charge extraction. However, interfacial energetics and associated kinetic pathways often differ significantly from predictions derived from the characteristics of pure component materials, particularly at the nanoscale. Here, the emergent properties of TiO 2/BiVO 4 nanocomposite photoanodes are explored using a combination of X-ray and optical spectroscopies, together with photoelectrochemical (PEC) characterization. Application of these methods to both the puremore » components and the fully assembled nanocomposites reveals unpredicted interfacial energetic alignment, which promotes ultrafast injection of electrons from BiVO 4 into TiO 2. Physical charge separation yields extremely long-lived photoexcited states and correspondingly enhanced photoelectrochemical functionality. This work highlights the importance of probing emergent interfacial energetic alignment and kinetic processes for understanding mechanisms of solar energy conversion in complex nanocomposites.« less

  14. Probing Protein Structure in Vivo with FRET

    PubMed Central

    Davis, Trisha; Muller, Eric

    2012-01-01

    Fluorescence resonance energy transfer (FRET) is widely used to construct probes for cellular activities and to complement two-hybrid results that predict protein-protein interactions. The Yeast Resource Center promotes an underutilized potential of FRET as an in vivo tool to position proteins within low resolution structures derived from electron microscopy. The success of this approach using widefield microscopy depends upon the choice of filter sets, standardized image acquisition, a robust metric and controls matched to the structure under investigation. A comparison of various CFP and YFP filter combinations from Chroma and Semrock demonstrated the strength of the Chroma filters when coupled with our FRET metric, termed FretR. Coupling CFP and YFP to a selection of proteins of known structure allowed us to create a standard curve of FretR versus distance. How well other FRET metrics conform was also evaluated. Finally FretR was linked to an approximation of the efficiency of energy transfer. Together this feature set has allowed us to contribute to our understanding of the organization of the yeast spindle pole body, cohesin complex and gamma-tubulin complex.

  15. Ensemble and Single-Molecule Studies on Fluorescence Quenching in Transition Metal Bipyridine-Complexes

    PubMed Central

    Brox, Dominik; Kiel, Alexander; Wörner, Svenja Johanna; Pernpointner, Markus; Comba, Peter; Martin, Bodo; Herten, Dirk-Peter

    2013-01-01

    Beyond their use in analytical chemistry fluorescent probes continuously gain importance because of recent applications of single-molecule fluorescence spectroscopy to monitor elementary reaction steps. In this context, we characterized quenching of a fluorescent probe by different metal ions with fluorescence spectroscopy in the bulk and at the single-molecule level. We apply a quantitative model to explain deviations from existing standard models for fluorescence quenching. The model is based on a reversible transition from a bright to a dim state upon binding of the metal ion. We use the model to estimate the stability constants of complexes with different metal ions and the change of the relative quantum yield of different reporter dye labels. We found ensemble data to agree widely with results from single-molecule experiments. Our data indicates a mechanism involving close molecular contact of dye and quenching moiety which we also found in molecular dynamics simulations. We close the manuscript with a discussion of possible mechanisms based on Förster distances and electrochemical potentials which renders photo-induced electron transfer to be more likely than Förster resonance energy transfer. PMID:23483966

  16. Upper limit on the inner radiation belt MeV electron intensity

    NASA Astrophysics Data System (ADS)

    Li, X.; Selesnick, R. S.; Baker, D. N.; Jaynes, A. N.; Kanekal, S. G.; Schiller, Q.; Blum, L.; Fennell, J.; Blake, J. B.

    2015-02-01

    No instruments in the inner radiation belt are immune from the unforgiving penetration of the highly energetic protons (tens of MeV to GeV). The inner belt proton flux level, however, is relatively stable; thus, for any given instrument, the proton contamination often leads to a certain background noise. Measurements from the Relativistic Electron and Proton Telescope integrated little experiment on board Colorado Student Space Weather Experiment CubeSat, in a low Earth orbit, clearly demonstrate that there exist sub-MeV electrons in the inner belt because their flux level is orders of magnitude higher than the background, while higher-energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Detailed analysis of high-quality measurements from the Relativistic Electron and Proton Telescope on board Van Allen Probes, in a geo-transfer-like orbit, provides, for the first time, quantified upper limits on MeV electron fluxes in various energy ranges in the inner belt. These upper limits are rather different from flux levels in the AE8 and AE9 models, which were developed based on older data sources. For 1.7, 2.5, and 3.3 MeV electrons, the upper limits are about 1 order of magnitude lower than predicted model fluxes. The implication of this difference is profound in that unless there are extreme solar wind conditions, which have not happened yet since the launch of Van Allen Probes, significant enhancements of MeV electrons do not occur in the inner belt even though such enhancements are commonly seen in the outer belt.

  17. Recent Advances in Understanding Radiation Belt Dynamics in the Earth's Inner Zone and Slot Region

    NASA Astrophysics Data System (ADS)

    Li, X.

    2015-12-01

    Comprehensive measurements of the inner belt protons from the Relativistic Electron and Proton Telescope (REPT) onboard Van Allen Probes, in a geo-transfer-like orbit, revealed new features of inner belt protons in terms of their spectrum distribution, spatial distribution, pitch angle distribution, and their different source populations. Concurrent measurements from the Relativistic Electron and Proton Telescope integrated little experiment (REPTile) on board Colorado Student Space Weather Experiment (CSSWE) CubeSat, in a highly inclined low Earth orbit, and REPT demonstrated that there exist sub-MeV electrons in the inner belt and their flux level is orders of magnitude higher than the background associated with the inner belt protons, while higher energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Analysis on sub-MeV electrons data in the inner belt and slot region from the Magnetic Electron Ion Spectrometer (MagEIS) on board Van Allen Probes revealed rather complicated pitch angle distribution of these energetic electrons, with the 90 deg-minimum (butterfly) pitch angle distribution dominating near the magnetic equator. Furthermore, it is clearly shown from MagEIS measurements that 10s - 100s keV electrons are commonly seen penetrating into the inner belt region during geomagnetic active times while protons of similar energies are hardly seen there. These are part of a summary of the most recent measurements and understanding of the dynamics of energetic particles in the inner zone and slot region to be exhibited and discussed in this presentation.

  18. Unified description of H-atom-induced chemicurrents and inelastic scattering.

    PubMed

    Kandratsenka, Alexander; Jiang, Hongyan; Dorenkamp, Yvonne; Janke, Svenja M; Kammler, Marvin; Wodtke, Alec M; Bünermann, Oliver

    2018-01-23

    The Born-Oppenheimer approximation (BOA) provides the foundation for virtually all computational studies of chemical binding and reactivity, and it is the justification for the widely used "balls and springs" picture of molecules. The BOA assumes that nuclei effectively stand still on the timescale of electronic motion, due to their large masses relative to electrons. This implies electrons never change their energy quantum state. When molecules react, atoms must move, meaning that electrons may become excited in violation of the BOA. Such electronic excitation is clearly seen for: ( i ) Schottky diodes where H adsorption at Ag surfaces produces electrical "chemicurrent;" ( ii ) Au-based metal-insulator-metal (MIM) devices, where chemicurrents arise from H-H surface recombination; and ( iii ) Inelastic energy transfer, where H collisions with Au surfaces show H-atom translation excites the metal's electrons. As part of this work, we report isotopically selective hydrogen/deuterium (H/D) translational inelasticity measurements in collisions with Ag and Au. Together, these experiments provide an opportunity to test new theories that simultaneously describe both nuclear and electronic motion, a standing challenge to the field. Here, we show results of a recently developed first-principles theory that quantitatively explains both inelastic scattering experiments that probe nuclear motion and chemicurrent experiments that probe electronic excitation. The theory explains the magnitude of chemicurrents on Ag Schottky diodes and resolves an apparent paradox--chemicurrents exhibit a much larger isotope effect than does H/D inelastic scattering. It also explains why, unlike Ag-based Schottky diodes, Au-based MIM devices are insensitive to H adsorption.

  19. Selective and nonselective transfer: positive and negative priming in a multiple-task environment.

    PubMed

    Leboe, Jason P; Whittlesea, Bruce W A; Milliken, Bruce

    2005-09-01

    Processing of a probe stimulus can be affected either positively or negatively by presenting a related stimulus immediately before it. According to structural accounts, such effects occur because processing of the prime activates or inhibits the mental representation of the probe before it is presented. In contrast, transfer-appropriate processing accounts suggest that success in processing a probe depends on resources made available by earlier experiences of related stimuli. The authors manipulated the similarity between the prime and probe on color, lexical status, and orthographic structure, requiring either lexical decision or color identification on each. The authors observed a complex pattern of positive and negative transfer that cannot easily be explained through activation-inhibition of mental structures. Instead, that pattern provides evidence in favor of transfer-appropriate processing.

  20. Novel Electron-Phonon Relaxation Pathway in Graphite Revealed by Time-Resolved Raman Scattering and Angle-Resolved Photoemission Spectroscopy.

    PubMed

    Yang, Jhih-An; Parham, Stephen; Dessau, Daniel; Reznik, Dmitry

    2017-01-19

    Time dynamics of photoexcited electron-hole pairs is important for a number of technologies, in particular solar cells. We combined ultrafast pump-probe Raman scattering and photoemission to directly follow electron-hole excitations as well as the G-phonon in graphite after an excitation by an intense laser pulse. This phonon is known to couple relatively strongly to electrons. Cross-correlating effective electronic and phonon temperatures places new constraints on model-based fits. The accepted two-temperature model predicts that G-phonon population should start to increase as soon as excited electron-hole pairs are created and that the rate of increase should not depend strongly on the pump fluence. Instead we found that the increase of the G-phonon population occurs with a delay of ~65 fs. This time-delay is also evidenced by the absence of the so-called self-pumping for G phonons. It decreases with increased pump fluence. We show that these observations imply a new relaxation pathway: Instead of hot carriers transferring energy to G-phonons directly, the energy is first transferred to optical phonons near the zone boundary K-points, which then decay into G-phonons via phonon-phonon scattering. Our work demonstrates that phonon-phonon interactions must be included in any calculations of hot carrier relaxation in optical absorbers even when only short timescales are considered.

  1. Ultrafast Charge Transfer and Hybrid Exciton Formation in 2D/0D Heterostructures

    DOE PAGES

    Boulesbaa, Abdelaziz; Wang, Kai; Mahjouri-Samani, Masoud; ...

    2016-10-18

    We report that photoinduced interfacial charge transfer is at the heart of many applications, including photovoltaics, photocatalysis, and photodetection. With the emergence of a new class of semiconductors such as monolayer two-dimensional transition metal dichalcogenides (2D-TMDs), charge transfer at the 2D/2D heterojunctions attracted several efforts due to the remarkable optical and electrical properties of 2D-TMDs. Unfortunately, in 2D/2D heterojunctions, for a given combination of two materials, the relative energy band alignment and the charge transfer efficiency are locked. Due to their large variety and broad size tunability, semiconductor quantum dots (0D-QDs) interfaced with 2D-TMDs may become an attractive heterostructure formore » optoelectronic applications. Here, we incorporate femtosecond pump-probe spectroscopy to reveal the sub-45 fs charge transfer at a 2D/0D heterostructure composed of tungsten disulfide monolayers (2D-WS 2) and a single layer of cadmium selenide (CdSe)/zinc sulfide (ZnS) core/shell 0D-QDs. Furthermore, ultrafast dynamics and steady-state measurements suggested that following electron transfer from the 2D to the 0D, hybrid excitons (HXs), wherein the electron resides in the 0D and hole resides in the 2D-TMD monolayer, are formed with a binding energy on the order of ~140 meV, which is several times lower than that of tightly bound excitons in 2D-TMDs.« less

  2. Ultrafast Charge Transfer and Hybrid Exciton Formation in 2D/0D Heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boulesbaa, Abdelaziz; Wang, Kai; Mahjouri-Samani, Masoud

    We report that photoinduced interfacial charge transfer is at the heart of many applications, including photovoltaics, photocatalysis, and photodetection. With the emergence of a new class of semiconductors such as monolayer two-dimensional transition metal dichalcogenides (2D-TMDs), charge transfer at the 2D/2D heterojunctions attracted several efforts due to the remarkable optical and electrical properties of 2D-TMDs. Unfortunately, in 2D/2D heterojunctions, for a given combination of two materials, the relative energy band alignment and the charge transfer efficiency are locked. Due to their large variety and broad size tunability, semiconductor quantum dots (0D-QDs) interfaced with 2D-TMDs may become an attractive heterostructure formore » optoelectronic applications. Here, we incorporate femtosecond pump-probe spectroscopy to reveal the sub-45 fs charge transfer at a 2D/0D heterostructure composed of tungsten disulfide monolayers (2D-WS 2) and a single layer of cadmium selenide (CdSe)/zinc sulfide (ZnS) core/shell 0D-QDs. Furthermore, ultrafast dynamics and steady-state measurements suggested that following electron transfer from the 2D to the 0D, hybrid excitons (HXs), wherein the electron resides in the 0D and hole resides in the 2D-TMD monolayer, are formed with a binding energy on the order of ~140 meV, which is several times lower than that of tightly bound excitons in 2D-TMDs.« less

  3. Review of the Theoretical Description of Time-Resolved Angle-Resolved Photoemission Spectroscopy in Electron-Phonon Mediated Superconductors

    DOE PAGES

    Kemper, A. F.; Sentef, M. A.; Moritz, B.; ...

    2017-07-13

    Here. we review recent work on the theory for pump/probe photoemission spectroscopy of electron-phonon mediated superconductors in both the normal and the superconducting states. We describe the formal developments that allow one to solve the Migdal-Eliashberg theory in nonequilibrium for an ultrashort laser pumping field, and explore the solutions which illustrate the relaxation as energy is transferred from electrons to phonons. We also focus on exact results emanating from sum rules and approximate numerical results which describe rules of thumb for relaxation processes. Additionally, in the superconducting state, we describe how Anderson-Higgs oscillations can be excited due to the nonlinearmore » coupling with the electric field and describe mechanisms where pumping the system enhances superconductivity.« less

  4. Review of the Theoretical Description of Time-Resolved Angle-Resolved Photoemission Spectroscopy in Electron-Phonon Mediated Superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kemper, A. F.; Sentef, M. A.; Moritz, B.

    Here. we review recent work on the theory for pump/probe photoemission spectroscopy of electron-phonon mediated superconductors in both the normal and the superconducting states. We describe the formal developments that allow one to solve the Migdal-Eliashberg theory in nonequilibrium for an ultrashort laser pumping field, and explore the solutions which illustrate the relaxation as energy is transferred from electrons to phonons. We also focus on exact results emanating from sum rules and approximate numerical results which describe rules of thumb for relaxation processes. Additionally, in the superconducting state, we describe how Anderson-Higgs oscillations can be excited due to the nonlinearmore » coupling with the electric field and describe mechanisms where pumping the system enhances superconductivity.« less

  5. Measurement of Electron Density Using the Multipole Resonance Probe, Langmuir Probe and Optical Emission Spectroscopy in Low Pressure Plasmas with Different Electron Energy Distribution Functions

    NASA Astrophysics Data System (ADS)

    Oberberg, Moritz; Bibinov, Nikita; Ries, Stefan; Awakowicz, Peter; Institute of Electrical Engineering; Plasma Technology Team

    2016-09-01

    In recently publication, the young diagnostic tool Multipole Resonance Probe (MRP) for electron density measurements was introduced. It is based on active plasma resonance spectroscopy (APRS). The probe was simulated und evaluated for different devices. The geometrical and electrical symmetry simplifies the APRS model, so that the electron density can be easily calculated from the measured resonance. In this work, low pressure nitrogen mixture plasmas with different electron energy distribution functions (EEDF) are investigated. The results of the MRP measurement are compared with measurements of a Langmuir Probe (LP) and Optical Emission Spectroscopy (OES). Probes and OES measure in different regimes of kinetic electron energy. Both probes measure electrons with low kinetic energy (<10 eV), whereas the OES is influenced by electrons with high kinetic energy which are needed for transitions of molecule bands. By the determination of the absolute intensity of N2(C-B) and N2+(B-X)electron temperature and density can be calculated. In a non-maxwellian plasma, all plasma diagnostics need to be combined.

  6. Hunting the Gluon Orbital Angular Momentum at the Electron-Ion Collider.

    PubMed

    Ji, Xiangdong; Yuan, Feng; Zhao, Yong

    2017-05-12

    Applying the connection between the parton Wigner distribution and orbital angular momentum (OAM), we investigate the probe of the gluon OAM in hard scattering processes at the planned electron-ion collider. We show that the single longitudinal target-spin asymmetry in the hard diffractive dijet production is very sensitive to the gluon OAM distribution. The associated spin asymmetry leads to a characteristic azimuthal angular correlation of sin(ϕ_{q}-ϕ_{Δ}), where ϕ_{Δ} and ϕ_{q} are the azimuthal angles of the proton momentum transfer and the relative transverse momentum between the quark-antiquark pair. This study may motivate a first measurement of the gluon OAM in the proton spin sum rule.

  7. Phosphorescent quantum dots/ethidium bromide nanohybrids based on photoinduced electron transfer for DNA detection.

    PubMed

    Bi, Lin; Yu, Yuan-Hua

    2015-04-05

    Mercaptopropionic acid-capped Mn-doped ZnS quantum dots/ethidium bromide (EB) nanohybrids were constructed for photoinduced electron transfer (PIET) and then used as a room-temperature phosphorescence (RTP) probe for DNA detection. EB could quench the RTP of Mn-doped ZnS QDs by PIET, thereby forming Mn-doped ZnS QDs/EB nanohybrids and storing RTP. Meanwhile, EB could be inserted into DNA and EB could be competitively desorbed from the surface of Mn-doped ZnS QDs by DNA, thereby releasing the RTP of Mn-doped ZnS QDs. Based on this mechanism, a RTP sensor for DNA detection was developed. Under optimal conditions, the detection limit for DNA was 0.045 mg L(-1), the relative standard deviation was 1.7%, and the method linear ranged from 0.2 to 20 mg L(-1). The proposed method was applied to biological fluids, in which satisfactory results were obtained. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Solution-Synthesized Chevron Graphene Nanoribbons Exfoliated onto H:Si(100).

    PubMed

    Radocea, Adrian; Sun, Tao; Vo, Timothy H; Sinitskii, Alexander; Aluru, Narayana R; Lyding, Joseph W

    2017-01-11

    There has been tremendous progress in designing and synthesizing graphene nanoribbons (GNRs). The ability to control the width, edge structure, and dopant level with atomic precision has created a large class of accessible electronic landscapes for use in logic applications. One of the major limitations preventing the realization of GNR devices is the difficulty of transferring GNRs onto nonmetallic substrates. In this work, we developed a new approach for clean deposition of solution-synthesized atomically precise chevron GNRs onto H:Si(100) under ultrahigh vacuum. A clean transfer allowed ultrahigh-vacuum scanning tunneling microscopy (STM) to provide high-resolution imaging and spectroscopy and reveal details of the electronic structure of chevron nanoribbons that have not been previously reported. We also demonstrate STM nanomanipulation of GNRs, characterization of multilayer GNR cross-junctions, and STM nanolithography for local depassivation of H:Si(100), which allowed us to probe GNR-Si interactions and revealed a semiconducting-to-metallic transition. The results of STM measurements were shown to be in good agreement with first-principles computational modeling.

  9. Quinone 1 e – and 2 e – /2 H + Reduction Potentials: Identification and Analysis of Deviations from Systematic Scaling Relationships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huynh, Mioy T.; Anson, Colin W.; Cavell, Andrew C.

    Quinones participate in diverse electron transfer and proton-coupled electron transfer processes in chemistry and biology. An experimental study of common quinones reveals a non-linear correlation between the 1 e – and 2 e –/2 H + reduction potentials. This unexpected observation prompted a computational study of 128 different quinones, probing their 1 e – reduction potentials, pKa values, and 2 e –/2 H + reduction potentials. The density functional theory calculations reveal an approximately linear correlation between these three properties and an effective Hammett constant associated with the quinone substituent(s). However, deviations from this linear scaling relationship are evident formore » quinones that feature halogen substituents, charged substituents, intramolecular hydrogen bonding in the hydroquinone, and/or sterically bulky substituents. These results, particularly the different substituent effects on the 1 e – versus 2 e – /2 H + reduction potentials, have important implications for designing quinones with tailored redox properties.« less

  10. 5,5'-Dithiobis-(2-nitrobenzoic acid) as a probe for a non-essential cysteine residue at the medium chain acyl-coenzyme A dehydrogenase binding site of the human 'electron transferring flavoprotein' (ETF).

    PubMed

    Parker, A; Engel, P C

    1999-01-01

    Human 'electron transferring flavoprotein' (ETF) was inactivated by the thiol-specific reagent 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB). The kinetic profile showed the reaction followed pseudo-first-order kinetics during the initial phase of inactivation. Monitoring the release of 5-thio-2-nitrobenzoate (TNB) showed that modification of 1 cysteine residue was responsible for the loss of activity. The inactivation of ETF by DTNB could be reversed upon incubation with thiol-containing reagents. The loss of activity was prevented by the inclusion of medium chain acyl-CoA dehydrogenase (MCAD) and octanoyl-CoA. Cyanolysis of the DTNB modified-ETF with KCN led to the release of TNB accompanied presumably by the formation of the thio-cyano enzyme and with almost full recovery of activity. Conservation studies and the lack of 100% inactivation, however, suggested that this cysteine residue is not essential for the interaction with MCAD.

  11. A metal-organic cage incorporating multiple light harvesting and catalytic centres for photochemical hydrogen production

    NASA Astrophysics Data System (ADS)

    Chen, Sha; Li, Kang; Zhao, Fang; Zhang, Lei; Pan, Mei; Fan, Yan-Zhong; Guo, Jing; Shi, Jianying; Su, Cheng-Yong

    2016-11-01

    Photocatalytic water splitting is a natural but challenging chemical way of harnessing renewable solar power to generate clean hydrogen energy. Here we report a potential hydrogen-evolving photochemical molecular device based on a self-assembled ruthenium-palladium heterometallic coordination cage, incorporating multiple photo- and catalytic metal centres. The photophysical properties are investigated by absorption/emission spectroscopy, electrochemical measurements and preliminary DFT calculations and the stepwise electron transfer processes from ruthenium-photocentres to catalytic palladium-centres is probed by ultrafast transient absorption spectroscopy. The photocatalytic hydrogen production assessments reveal an initial reaction rate of 380 μmol h-1 and a turnover number of 635 after 48 h. The efficient hydrogen production may derive from the directional electron transfers through multiple channels owing to proper organization of the photo- and catalytic multi-units within the octahedral cage, which may open a new door to design photochemical molecular devices with well-organized metallosupramolecules for homogenous photocatalytic applications.

  12. Metallic surface states in elemental electrides

    NASA Astrophysics Data System (ADS)

    Naumov, Ivan I.; Hemley, Russell J.

    2017-07-01

    Recent high-pressure studies have uncovered an alternative class of materials, insulating electride phases created by compression of simple metals. These exotic insulating phases develop an unusual electronic structure: the valence electrons move away from the nuclei and condense at interstitial sites, thereby acquiring the role of atomic anions or even molecules. We show that they are also topological phases as they exhibit a wide diversity of metallic surface states (SSs) that are controlled by the bulk electronic structure. The electronic reconstruction occurs that involves charge transfer between the surfaces of opposite polarity making both of them metallic, resembling the appearance of the two-dimensional gas at the renowned SrTi O3 /LaAl O3 interface. Remarkably, these materials thus embody seemingly disparate physical concepts—chemical electron localization, topological control of bulk-surface conductivity, and the two-dimensional electron gas. Such metallic SSs could be probed by direct electrical resistance or by standard photoemission measurements on recovery to ambient conditions.

  13. Tracing Single Electrons in a Disordered Polymer Film at Room Temperature.

    PubMed

    Wilma, Kevin; Issac, Abey; Chen, Zhijian; Würthner, Frank; Hildner, Richard; Köhler, Jürgen

    2016-04-21

    The transport of charges lies at the heart of essentially all modern (opto-) electronic devices. Although inorganic semiconductors built the basis for current technologies, organic materials have become increasingly important in recent years. However, organic matter is often highly disordered, which directly impacts the charge carrier dynamics. To understand and optimize device performance, detailed knowledge of the transport mechanisms of charge carriers in disordered matter is therefore of crucial importance. Here we report on the observation of the motion of single electrons within a disordered polymer film at room temperature, using single organic chromophores as probe molecules. The migration of a single electron gives rise to a varying electric field in its vicinity, which is registered via a shift of the emission spectra (Stark shift) of a chromophore. The spectral shifts allow us to determine the electron mobility and reveal for each nanoenvironment a distinct number of different possible electron-transfer pathways within the rugged energy landscape of the disordered polymer matrix.

  14. Electron-flux infrared response to varying π-bond topology in charged aromatic monomers

    PubMed Central

    Álvaro Galué, Héctor; Oomens, Jos; Buma, Wybren Jan; Redlich, Britta

    2016-01-01

    The interaction of delocalized π-electrons with molecular vibrations is key to charge transport processes in π-conjugated organic materials based on aromatic monomers. Yet the role that specific aromatic motifs play on charge transfer is poorly understood. Here we show that the molecular edge topology in charged catacondensed aromatic hydrocarbons influences the Herzberg-Teller coupling of π-electrons with molecular vibrations. To this end, we probe the radical cations of picene and pentacene with benchmark armchair- and zigzag-edges using infrared multiple-photon dissociation action spectroscopy and interpret the recorded spectra via quantum-chemical calculations. We demonstrate that infrared bands preserve information on the dipolar π-electron-flux mode enhancement, which is governed by the dynamical evolution of vibronically mixed and correlated one-electron configuration states. Our results reveal that in picene a stronger charge π-flux is generated than in pentacene, which could justify the differences of electronic properties of armchair- versus zigzag-type families of technologically relevant organic molecules. PMID:27577323

  15. Nonlocal Polarization Feedback in a Fractional Quantum Hall Ferromagnet.

    PubMed

    Hennel, Szymon; Braem, Beat A; Baer, Stephan; Tiemann, Lars; Sohi, Pirouz; Wehrli, Dominik; Hofmann, Andrea; Reichl, Christian; Wegscheider, Werner; Rössler, Clemens; Ihn, Thomas; Ensslin, Klaus; Rudner, Mark S; Rosenow, Bernd

    2016-04-01

    In a quantum Hall ferromagnet, the spin polarization of the two-dimensional electron system can be dynamically transferred to nuclear spins in its vicinity through the hyperfine interaction. The resulting nuclear field typically acts back locally, modifying the local electronic Zeeman energy. Here we report a nonlocal effect arising from the interplay between nuclear polarization and the spatial structure of electronic domains in a ν=2/3 fractional quantum Hall state. In our experiments, we use a quantum point contact to locally control and probe the domain structure of different spin configurations emerging at the spin phase transition. Feedback between nuclear and electronic degrees of freedom gives rise to memristive behavior, where electronic transport through the quantum point contact depends on the history of current flow. We propose a model for this effect which suggests a novel route to studying edge states in fractional quantum Hall systems and may account for so-far unexplained oscillatory electronic-transport features observed in previous studies.

  16. Novel Luminescent Probe Based on a Terbium(III) Complex for Hemoglobin Determination

    NASA Astrophysics Data System (ADS)

    Yegorova, A. V.; Leonenko, I. I.; Aleksandrova, D. I.; Scrypynets, Yu. V.; Antonovich, V. P.; Ukrainets, I. V.

    2014-09-01

    We have studied the spectral luminescent properties of Tb(III) and Eu(III) complexes with a number of novel derivatives of oxoquinoline-3-carboxylic acid amides (L1-L5 ). We have observed quenching of the luminescence of 1:1 Tb(III)-L1-5 complexes by hemoglobin (Hb), which is explained by resonance energy transfer of electronic excitation from the donor (Tb(III)-L1-5 ) to the acceptor (Hb). Using the novel luminescent probe Tb(III)-L1, we have developed a method for determining Hb in human blood. The calibration Stern-Volmer plot is linear in the Hb concentration range 0.6-36.0 μg/mL, detection limit 0.2 μg/mL (3·10-9 mol/L).

  17. Fabrication of sub-12 nm thick silicon nanowires by processing scanning probe lithography masks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyoung Ryu, Yu; Garcia, Ricardo, E-mail: r.garcia@csic.es; Aitor Postigo, Pablo

    2014-06-02

    Silicon nanowires are key elements to fabricate very sensitive mechanical and electronic devices. We provide a method to fabricate sub-12 nm silicon nanowires in thickness by combining oxidation scanning probe lithography and anisotropic dry etching. Extremely thin oxide masks (0.3–1.1 nm) are transferred into nanowires of 2–12 nm in thickness. The width ratio between the mask and the silicon nanowire is close to one which implies that the nanowire width is controlled by the feature size of the nanolithography. This method enables the fabrication of very small single silicon nanowires with cross-sections below 100 nm{sup 2}. Those values are the smallest obtained withmore » a top-down lithography method.« less

  18. Dendritic polymer imaging systems for the evaluation of conjugate uptake and cleavage

    NASA Astrophysics Data System (ADS)

    Krüger, Harald R.; Nagel, Gregor; Wedepohl, Stefanie; Calderón, Marcelo

    2015-02-01

    Fluorescent turn-on probes combined with polymers have a broad range of applications, e.g. for intracellular sensing of ions, small molecules, or DNA. In the field of polymer therapeutics, these probes can be applied to extend the in vitro characterization of novel conjugates beyond cytotoxicity and cellular uptake studies. This is particularly true in cases in which polymer conjugates contain drugs attached by cleavable linkers. Better information on the intracellular linker cleavage and drug release would allow a faster evaluation and optimization of novel polymer therapeutic concepts. We therefore developed a fluorescent turn-on probe that enables direct monitoring of pH-mediated cleavage processes over time. This is achieved by exploiting the fluorescence resonance energy transfer (FRET) between two dyes that have been coupled to a dendritic polymer. We demonstrate the use of this probe to evaluate polymer uptake and intracellular release of cargo in a cell based microplate assay that is suitable for high throughput screening.Fluorescent turn-on probes combined with polymers have a broad range of applications, e.g. for intracellular sensing of ions, small molecules, or DNA. In the field of polymer therapeutics, these probes can be applied to extend the in vitro characterization of novel conjugates beyond cytotoxicity and cellular uptake studies. This is particularly true in cases in which polymer conjugates contain drugs attached by cleavable linkers. Better information on the intracellular linker cleavage and drug release would allow a faster evaluation and optimization of novel polymer therapeutic concepts. We therefore developed a fluorescent turn-on probe that enables direct monitoring of pH-mediated cleavage processes over time. This is achieved by exploiting the fluorescence resonance energy transfer (FRET) between two dyes that have been coupled to a dendritic polymer. We demonstrate the use of this probe to evaluate polymer uptake and intracellular release of cargo in a cell based microplate assay that is suitable for high throughput screening. Electronic supplementary information (ESI) available: Including detailed synthetic procedures of the dye and conjugate synthesis, as well as cellular uptake and inhibitor studies. See DOI: 10.1039/c4nr04467c

  19. In Situ Solid-State Reactions Monitored by X-ray Absorption Spectroscopy: Temperature-Induced Proton Transfer Leads to Chemical Shifts.

    PubMed

    Stevens, Joanna S; Walczak, Monika; Jaye, Cherno; Fischer, Daniel A

    2016-10-24

    The dramatic colour and phase alteration with the solid-state, temperature-dependent reaction between squaric acid and 4,4'-bipyridine has been probed in situ with X-ray absorption spectroscopy. The electronic and chemical sensitivity to the local atomic environment through chemical shifts in the near-edge X-ray absorption fine structure (NEXAFS) revealed proton transfer from the acid to the bipyridine base through the change in nitrogen protonation state in the high-temperature form. Direct detection of proton transfer coupled with structural analysis elucidates the nature of the solid-state process, with intermolecular proton transfer occurring along an acid-base chain followed by a domino effect to the subsequent acid-base chains, leading to the rapid migration along the length of the crystal. NEXAFS thereby conveys the ability to monitor the nature of solid-state chemical reactions in situ, without the need for a priori information or long-range order. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Evidences For Charge Transfer-Induced Conformational Changes In Carbon Nanostructure-Protein Corona

    PubMed Central

    Podila, R.; Vedantam, P.; Ke, P. C.; Brown, J. M.; Rao, A. M.

    2012-01-01

    The binding of proteins to a nanostructure often alters protein secondary and tertiary structures. However, the main physical mechanisms that elicit protein conformational changes in the presence of the nanostructure have not yet been fully established. Here we performed a comprehensive spectroscopic study to probe the interactions between bovine serum albumin (BSA) and carbon-based nanostructures of graphene and single-walled carbon nanotubes (SWNTs). Our results showed that the BSA “corona” acted as a weak acceptor to facilitate charge transfer from the carbon nanostructures. Notably, we observed that charge transfer occurred only in the case of SWNTs but not in graphene, resulting from the sharp and discrete electronic density of states of the former. Furthermore, the relaxation of external α–helices in BSA secondary structure increased concomitantly with the charge transfer. These results may help guide controlled nanostructure-biomolecular interactions and prove beneficial for developing novel drug delivery systems, biomedical devices and engineering of safe nanomaterials. PMID:23243478

  1. Utility of positron annihilation lifetime technique for the assessment of spectroscopic data of some charge-transfer complexes derived from N-(1-Naphthyl)ethylenediamine dihydrochloride

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Adam, Abdel Majid A.; Sharshar, T.; Saad, Hosam A.; Eldaroti, Hala H.

    2014-03-01

    In this work, structural, thermal, morphological, pharmacological screening and positron annihilation lifetime measurements were performed on the interactions between a N-(1-Naphthyl)ethylenediamine dihydrochloride (NEDA·2HCl) donor and three types of acceptors to characterize these CT complexes. The three types of acceptors include π-acceptors (quinol and picric acid), σ-acceptors (iodine) and vacant orbital acceptors (tin(IV) tetrachloride and zinc chloride). The positron annihilation lifetime parameters were found to be dependent on the structure, electronic configuration, the power of acceptors and molecular weight of the CT complexes. The positron annihilation lifetime spectroscopy can be used as a probe for the formation of charge-transfer (CT) complexes.

  2. Excitation transfer and trapping kinetics in plant photosystem I probed by two-dimensional electronic spectroscopy.

    PubMed

    Akhtar, Parveen; Zhang, Cheng; Liu, Zhengtang; Tan, Howe-Siang; Lambrev, Petar H

    2018-03-01

    Photosystem I is a robust and highly efficient biological solar engine. Its capacity to utilize virtually every absorbed photon's energy in a photochemical reaction generates great interest in the kinetics and mechanisms of excitation energy transfer and charge separation. In this work, we have employed room-temperature coherent two-dimensional electronic spectroscopy and time-resolved fluorescence spectroscopy to follow exciton equilibration and excitation trapping in intact Photosystem I complexes as well as core complexes isolated from Pisum sativum. We performed two-dimensional electronic spectroscopy measurements with low excitation pulse energies to record excited-state kinetics free from singlet-singlet annihilation. Global lifetime analysis resolved energy transfer and trapping lifetimes closely matches the time-correlated single-photon counting data. Exciton energy equilibration in the core antenna occurred on a timescale of 0.5 ps. We further observed spectral equilibration component in the core complex with a 3-4 ps lifetime between the bulk Chl states and a state absorbing at 700 nm. Trapping in the core complex occurred with a 20 ps lifetime, which in the supercomplex split into two lifetimes, 16 ps and 67-75 ps. The experimental data could be modelled with two alternative models resulting in equally good fits-a transfer-to-trap-limited model and a trap-limited model. However, the former model is only possible if the 3-4 ps component is ascribed to equilibration with a "red" core antenna pool absorbing at 700 nm. Conversely, if these low-energy states are identified with the P 700 reaction centre, the transfer-to-trap-model is ruled out in favour of a trap-limited model.

  3. Direct Experimental Probe of the Ni(II)/Ni(III)/Ni(IV) Redox Evolution in LiNi 0.5Mn 1.5O 4 Electrodes

    DOE PAGES

    Qiao, Ruimin; Wray, L. Andrew; Kim, Jung -Hyun; ...

    2015-11-11

    The LiNi 0.5Mn 1.5O 4 spinel is an appealing cathode material for next generation rechargeable Li-ion batteries due to its high operating voltage of ~4.7 V (vs Li/Li +). Although it is widely believed that the full range of electrochemical cycling involves the redox of Ni(II)/(IV), it has not been experimentally clarified whether Ni(III) exists as the intermediate state or a double-electron transfer takes place. Here, combined with theoretical calculations, we show unambiguous spectroscopic evidence of the Ni(III) state when the LiNi 0.5Mn 1.5O 4 electrode is half charged. This provides a direct verification of single-electron-transfer reactions in LiNi 0.5Mnmore » 1.5O 4 upon cycling, namely, from Ni(II) to Ni(III), then to Ni(IV). Additionally, by virtue of its surface sensitivity, soft X-ray absorption spectroscopy also reveals the electrochemically inactive Ni 2+ and Mn 2+ phases on the electrode surface. Our work provides the long-awaited clarification of the single-electron transfer mechanism in LiNi 0.5Mn 1.5O 4 electrodes. Furthermore, the experimental results serve as a benchmark for further spectroscopic characterizations of Ni-based battery electrodes.« less

  4. Method-Unifying View of Loop-Formation Kinetics in Peptide and Protein Folding.

    PubMed

    Jacob, Maik H; D'Souza, Roy N; Schwarzlose, Thomas; Wang, Xiaojuan; Huang, Fang; Haas, Elisha; Nau, Werner M

    2018-04-26

    Protein folding can be described as a probabilistic succession of events in which the peptide chain forms loops closed by specific amino acid residue contacts, herein referred to as loop nodes. To measure loop rates, several photophysical methods have been introduced where a pair of optically active probes is incorporated at selected chain positions and the excited probe undergoes contact quenching (CQ) upon collision with the second probe. The quenching mechanisms involved triplet-triplet energy transfer, photoinduced electron transfer, and collision-induced fluorescence quenching, where the fluorescence of Dbo, an asparagine residue conjugated to 2,3-diazabicyclo[2.2.2]octane, is quenched by tryptophan. The discrepancy between the loop rates afforded from these three CQ techniques has, however, remained unresolved. In analyzing this discrepancy, we now report two short-distance FRET methods where Dbo acts as an energy acceptor in combination with tryptophan and naphtylalanine, two donors with largely different fluorescence lifetimes of 1.3 and 33 ns, respectively. Despite the different quenching mechanisms, the rates from FRET and CQ methods were, surprisingly, of comparable magnitude. This combination of FRET and CQ data led to a unifying physical model and to the conclusion that the rate of loop formation in folding reactions varies not only with the kind and number of residues that constitute the chain but also in particular with the size and properties of the residues that constitute the loop node.

  5. Tryptophan and ATTO 590: mutual fluorescence quenching and exciplex formation.

    PubMed

    Bhattacharjee, Ujjal; Beck, Christie; Winter, Arthur; Wells, Carson; Petrich, Jacob W

    2014-07-24

    Investigation of fluorescence quenching of probes, such as ATTO dyes, is becoming an increasingly important topic owing to the use of these dyes in super-resolution microscopies and in single-molecule studies. Photoinduced electron transfer is their most important nonradiative pathway. Because of the increasing frequency of the use of ATTO and related dyes to investigate biological systems, studies are presented for inter- and intramolecular quenching of ATTO 590 with tryptophan. In order to examine intramolecular quenching, an ATTO 590-tryptophan conjugate was synthesized. It was determined that tryptophan is efficiently quenching ATTO 590 fluorescence by excited-state charge transfer and two charge transfer complexes are forming. In addition, it was discovered that an exciplex (whose lifetime is 5.6 ns) can be formed between tryptophan and ATTO 590, and it is suggested that the possibility of such exciplex formation should be taken into account when protein fluorescence is monitored in a system tagged with ATTO dyes.

  6. The solar probe and coronal dynamics

    NASA Technical Reports Server (NTRS)

    Belcher, J.; Heinemann, M.; Goodrich, C.

    1978-01-01

    The discovery of coronal holes led to basic changes in ideas about the structure of the low corona and its expansion into the solar wind. The nature of the energy flux is not understood. Current ideas include enhanced thermal conductivities, extended MHD wave heating, and wave momentum transfer, all in rapidly diverging geometries. There is little feel for the relative importance of these processes. The Solar Probe, with its penetration deep into the solar corona, could lead to observational constraints on their relative importance, and thus to an understanding of the origin of the solar wind. Observations from the Solar Probe will also bear on such questions as to whether small scale "intrastream" structure is common close to the Sun in open field-line regions, whether the properties of the wind are pronouncedly different over closed and open field-line regions at five solar radii, and many others. The resolution of these questions requires measurements of the magnetic field and of the proton and electron distribution functions.

  7. Target-cancer-cell-specific activatable fluorescence imaging probes: rational design and in vivo applications.

    PubMed

    Kobayashi, Hisataka; Choyke, Peter L

    2011-02-15

    Conventional imaging methods, such as angiography, computed tomography (CT), magnetic resonance imaging (MRI), and radionuclide imaging, rely on contrast agents (iodine, gadolinium, and radioisotopes, for example) that are "always on." Although these indicators have proven clinically useful, their sensitivity is lacking because of inadequate target-to-background signal ratio. A unique aspect of optical imaging is that fluorescence probes can be designed to be activatable, that is, only "turned on" under certain conditions. These probes are engineered to emit signal only after binding a target tissue; this design greatly increases sensitivity and specificity in the detection of disease. Current research focuses on two basic types of activatable fluorescence probes. The first developed were conventional enzymatically activatable probes. These fluorescent molecules exist in the quenched state until activated by enzymatic cleavage, which occurs mostly outside of the cells. However, more recently, researchers have begun designing target-cell-specific activatable probes. These fluorophores exist in the quenched state until activated within targeted cells by endolysosomal processing, which results when the probe binds specific receptors on the cell surface and is subsequently internalized. In this Account, we present a review of the rational design and in vivo applications of target-cell-specific activatable probes. In engineering these probes, researchers have asserted control over a variety of factors, including photochemistry, pharmacological profile, and biological properties. Their progress has recently allowed the rational design and synthesis of target-cell-specific activatable fluorescence imaging probes, which can be conjugated to a wide variety of targeting molecules. Several different photochemical mechanisms have been utilized, each of which offers a unique capability for probe design. These include self-quenching, homo- and hetero-fluorescence resonance energy transfer (FRET), H-dimer formation, and photon-induced electron transfer (PeT). In addition, the repertoire is further expanded by the option for reversibility or irreversibility of the signal emitted through these mechanisms. Given the wide range of photochemical mechanisms and properties, target-cell-specific activatable probes have considerable flexibility and can be adapted to specific diagnostic needs. A multitude of cell surface molecules, such as overexpressed growth factor receptors, are directly related to carcinogenesis and thus provide numerous targets highly specific for cancer. This discussion of the chemical, pharmacological, and biological basis of target-cell-specific activatable imaging probes, and methods for successfully designing them, underscores the systematic, rational basis for further developing in vivo cancer imaging.

  8. Plasma potential and electron temperature evaluated by ball-pen and Langmuir probes in the COMPASS tokamak

    NASA Astrophysics Data System (ADS)

    Dimitrova, M.; Popov, Tsv K.; Adamek, J.; Kovačič, J.; Ivanova, P.; Hasan, E.; López-Bruna, D.; Seidl, J.; Vondráček, P.; Dejarnac, R.; Stöckel, J.; Imríšek, M.; Panek, R.; the COMPASS Team

    2017-12-01

    The radial distributions of the main plasma parameters in the scrape-off-layer of the COMPASS tokamak are measured during L-mode and H-mode regimes by using both Langmuir and ball-pen probes mounted on a horizontal reciprocating manipulator. The radial profile of the plasma potential derived previously from Langmuir probes data by using the first derivative probe technique is compared with data derived using ball-pen probes. A good agreement can be seen between the data acquired by the two techniques during the L-mode discharge and during the H-mode regime within the inter-ELM periods. In contrast with the first derivative probe technique, the ball-pen probe technique does not require a swept voltage and, therefore, the temporal resolution is only limited by the data acquisition system. In the electron temperature evaluation, in the far scrape-off layer and in the limiter shadow, where the electron energy distribution is Maxwellian, the results from both techniques match well. In the vicinity of the last closed flux surface, where the electron energy distribution function is bi-Maxwellian, the ball-pen probe technique results are in agreement with the high-temperature components of the electron distribution only. We also discuss the application of relatively large Langmuir probes placed in parallel and perpendicularly to the magnetic field lines to studying the main plasma parameters. The results obtained by the two types of the large probes agree well. They are compared with Thomson scattering data for electron temperatures and densities. The results for the electron densities are compared also with the results from ASTRA code calculation of the electron source due to the ionization of the neutrals by fast electrons and the origin of the bi-Maxwellian electron energy distribution function is briefly discussed.

  9. Excited state proton transfer in strongly enhanced GFP (sGFP2).

    PubMed

    van Oort, Bart; ter Veer, Mirelle J T; Groot, Marie Louise; van Stokkum, Ivo H M

    2012-07-07

    Proton transfer is an elementary process in biology. Green fluorescent protein (GFP) has served as an important model system to elucidate the mechanistic details of this reaction, because in GFP proton transfer can be induced by light absorption. We have used pump-dump-probe spectroscopy to study how proton transfer through the 'proton-wire' around the chromophore is affected by a combination of mutations in a modern GFP variety (sGFP2). The results indicate that in H(2)O, after absorption of a photon, a proton is transferred (A* → I*) in 5 ps, and back-transferred from a ground state intermediate (I → A) in 0.3 ns, similar to time constants found with GFPuv, although sGFP2 shows less heterogeneous proton transfer. This suggests that the mutations left the proton-transfer largely unchanged, indicating the robustness of the proton-wire. We used pump-dump-probe spectroscopy in combination with target analysis to probe suitability of the sGFP2 fluorophore for super-resolution microscopy.

  10. A biofilm microreactor system for simultaneous electrochemical and nuclear magnetic resonance techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renslow, Ryan S.; Babauta, Jerome T.; Majors, Paul D.

    2014-03-01

    In order to fully understand electrochemically active biofilms and the limitations to their scale-up in industrial biofilm reactors, a complete picture of the microenvironments inside the biofilm is needed. Nuclear magnetic resonance (NMR) techniques are ideally suited for the study of biofilms and for probing their microenvironments because these techniques allow for non-invasive interrogation and in situ monitoring with high resolution. By combining NMR with simultaneous electrochemical techniques, it is possible to sustain and study live electrochemically active biofilms. Here, we introduce a novel biofilm microreactor system that allows for simultaneous electrochemical and NMR techniques (EC-NMR) at the microscale. Microreactorsmore » were designed with custom radiofrequency resonator coils, which allowed for NMR measurements of biofilms growing on polarized gold electrodes. For an example application of this system, we grew Geobacter sulfurreducens biofilms. NMR was used to investigate growth media flow velocities, which were compared to simulated laminar flow, and electron donor concentrations inside the biofilms. We use Monte Carlo error analysis to estimate standard deviations of the electron donor concentration measurements within the biofilm. The EC-NMR biofilm microreactor system can ultimately be used to correlate extracellular electron transfer rates with metabolic reactions and explore extracellular electron transfer mechanisms.« less

  11. Image simulation for electron energy loss spectroscopy

    DOE PAGES

    Oxley, Mark P.; Pennycook, Stephen J.

    2007-10-22

    In this paper, aberration correction of the probe forming optics of the scanning transmission electron microscope has allowed the probe-forming aperture to be increased in size, resulting in probes of the order of 1 Å in diameter. The next generation of correctors promise even smaller probes. Improved spectrometer optics also offers the possibility of larger electron energy loss spectrometry detectors. The localization of images based on core-loss electron energy loss spectroscopy is examined as function of both probe-forming aperture and detector size. The effective ionization is nonlocal in nature, and two common local approximations are compared to full nonlocal calculations.more » Finally, the affect of the channelling of the electron probe within the sample is also discussed.« less

  12. Comparative evaluation of methods for the determination of heat transfer coefficients of liquid and gaseous quenching media

    NASA Astrophysics Data System (ADS)

    Shevchenko, Svetlana Yu.; Melnik, Yury A.; Smirnov, Andrey E.; Htet, Wai Yan Min

    2018-03-01

    Temperature dependences of heat transfer coefficients of liquid and gaseous quenching media were determined using a gradient probe and prismatic probe of more simple design. The probes of two different designs were tested in the same conditions. Analysis of heat transfer coefficients showed good agreement between the data obtained. The tests were carried out with liquid and gaseous quenching media: water, polymer quenchant, quenching oil and high-pressure nitrogen. Methods of mathematical modeling of steel samples quenching show the adequacy of the results.

  13. Probing the interaction of Rh, Co and bimetallic Rh-Co nanoparticles with the CeO2 support: catalytic materials for alternative energy generation.

    PubMed

    Varga, E; Pusztai, P; Óvári, L; Oszkó, A; Erdőhelyi, A; Papp, C; Steinrück, H-P; Kónya, Z; Kiss, J

    2015-10-28

    The interaction of CeO2-supported Rh, Co and bimetallic Rh-Co nanoparticles, which are active catalysts in hydrogen production via steam reforming of ethanol, a process related to renewable energy generation, was studied by X-ray diffraction (XRD), high resolution electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and low energy ion scattering (LEIS). Furthermore, diffuse reflectance infrared spectroscopy (DRIFTS) of adsorbed CO as a probe molecule was used to characterize the morphology of metal particles. At small loadings (0.1%), Rh is in a much dispersed state on ceria, while at higher contents (1-5%), Rh forms 2-8 nm particles. Between 473-673 K pronounced oxygen transfer from ceria to Rh is observed and at 773 K significant agglomeration of Rh occurs. On reduced ceria, XPS indicates a possible electron transfer from Rh to ceria. The formation of smaller ceria crystallites upon loading with Co was concluded from XRD and HRTEM; for 10% Co, the CeO2 particle size decreased from 27.6 to 10.7 nm. A strong dissolution of Co into ceria and a certain extent of encapsulation by ceria were deduced by XRD, XPS and LEIS. In the bimetallic system, the presence of Rh enhances the reduction of cobalt and ceria. During thermal treatments, reoxidation of Co occurs, and Rh agglomeration as well as oxygen migration from ceria to Rh are hindered in the presence of cobalt.

  14. Probing energy transfer events in the light harvesting complex 2 (LH2) of Rhodobacter sphaeroides with two-dimensional spectroscopy.

    PubMed

    Fidler, Andrew F; Singh, Ved P; Long, Phillip D; Dahlberg, Peter D; Engel, Gregory S

    2013-10-21

    Excitation energy transfer events in the photosynthetic light harvesting complex 2 (LH2) of Rhodobacter sphaeroides are investigated with polarization controlled two-dimensional electronic spectroscopy. A spectrally broadened pulse allows simultaneous measurement of the energy transfer within and between the two absorption bands at 800 nm and 850 nm. The phased all-parallel polarization two-dimensional spectra resolve the initial events of energy transfer by separating the intra-band and inter-band relaxation processes across the two-dimensional map. The internal dynamics of the 800 nm region of the spectra are resolved as a cross peak that grows in on an ultrafast time scale, reflecting energy transfer between higher lying excitations of the B850 chromophores into the B800 states. We utilize a polarization sequence designed to highlight the initial excited state dynamics which uncovers an ultrafast transfer component between the two bands that was not observed in the all-parallel polarization data. We attribute the ultrafast transfer component to energy transfer from higher energy exciton states to lower energy states of the strongly coupled B850 chromophores. Connecting the spectroscopic signature to the molecular structure, we reveal multiple relaxation pathways including a cyclic transfer of energy between the two rings of the complex.

  15. Electron localization of anions probed by nitrile vibrations

    DOE PAGES

    Mani, Tomoyasu; Grills, David C.; Newton, Marshall D.; ...

    2015-08-02

    Localization and delocalization of electrons is a key concept in chemistry, and is one of the important factors determining the efficiency of electron transport through organic conjugated molecules, which have potential to act as “molecular wires”. This, in turn, substantially influences the efficiencies of organic solar cells and other molecular electronic devices. It is also necessary to understand the electronic energy landscape and the dynamics of electrons through molecular chain that govern their transport capabilities in one-dimensional conjugated chains so that we can better define the design principles of conjugated molecules for their applications. We show that nitrile ν(C≡N) vibrationsmore » respond to the degree of electron localization in nitrile-substituted organic anions by utilizing time-resolved infrared (TRIR) detection combined with pulse radiolysis. Measurements of a series of aryl nitrile anions allow us to construct a semi-empirical calibration curve between the changes in the ν(C≡N) IR shifts and the changes in the electronic charges from the neutral to the anion states in the nitriles; more electron localization in the nitrile anion results in larger IR shifts. Furthermore, the IR linewidth in anions can report a structural change accompanying changes in the electronic density distribution. Probing the shift of the nitrile ν(C≡N) IR vibrational bands enables us to determine how the electron is localized in anions of nitrile-functionalized oligofluorenes, considered as organic mixed-valence compounds. We estimate the diabatic electron transfer distance, electronic coupling strengths, and energy barriers in these organic mixed-valence compounds. The analysis reveals a dynamic picture, showing that the electron is moving back and forth within the oligomers with a small activation energy of ≤ k BT, likely controlled by the movement of dihedral angles between monomer units. Thus, implications for the electron transport capability in "molecular wires" are discussed.« less

  16. Suprathermal plasma analyzer for the measurement of low-energy electron distribution in the ionosphere.

    PubMed

    Shimoyama, M; Oyama, K-I; Abe, T; Yau, A W

    2011-07-01

    It is commonly believed that an energy transfer from thermal to suprathermal electrons (

  17. Photodissociation of aligned CH3I and C6H3F2I molecules probed with time-resolved Coulomb explosion imaging by site-selective extreme ultraviolet ionization

    PubMed Central

    Amini, Kasra; Savelyev, Evgeny; Brauße, Felix; Berrah, Nora; Bomme, Cédric; Brouard, Mark; Burt, Michael; Christensen, Lauge; Düsterer, Stefan; Erk, Benjamin; Höppner, Hauke; Kierspel, Thomas; Krecinic, Faruk; Lauer, Alexandra; Lee, Jason W. L.; Müller, Maria; Müller, Erland; Mullins, Terence; Redlin, Harald; Schirmel, Nora; Thøgersen, Jan; Techert, Simone; Toleikis, Sven; Treusch, Rolf; Trippel, Sebastian; Ulmer, Anatoli; Vallance, Claire; Wiese, Joss; Johnsson, Per; Küpper, Jochen; Rudenko, Artem; Rouzée, Arnaud; Stapelfeldt, Henrik; Rolles, Daniel; Boll, Rebecca

    2018-01-01

    We explore time-resolved Coulomb explosion induced by intense, extreme ultraviolet (XUV) femtosecond pulses from a free-electron laser as a method to image photo-induced molecular dynamics in two molecules, iodomethane and 2,6-difluoroiodobenzene. At an excitation wavelength of 267 nm, the dominant reaction pathway in both molecules is neutral dissociation via cleavage of the carbon–iodine bond. This allows investigating the influence of the molecular environment on the absorption of an intense, femtosecond XUV pulse and the subsequent Coulomb explosion process. We find that the XUV probe pulse induces local inner-shell ionization of atomic iodine in dissociating iodomethane, in contrast to non-selective ionization of all photofragments in difluoroiodobenzene. The results reveal evidence of electron transfer from methyl and phenyl moieties to a multiply charged iodine ion. In addition, indications for ultrafast charge rearrangement on the phenyl radical are found, suggesting that time-resolved Coulomb explosion imaging is sensitive to the localization of charge in extended molecules. PMID:29430482

  18. Photodissociation of aligned CH3I and C6H3F2I molecules probed with time-resolved Coulomb explosion imaging by site-selective extreme ultraviolet ionization.

    PubMed

    Amini, Kasra; Savelyev, Evgeny; Brauße, Felix; Berrah, Nora; Bomme, Cédric; Brouard, Mark; Burt, Michael; Christensen, Lauge; Düsterer, Stefan; Erk, Benjamin; Höppner, Hauke; Kierspel, Thomas; Krecinic, Faruk; Lauer, Alexandra; Lee, Jason W L; Müller, Maria; Müller, Erland; Mullins, Terence; Redlin, Harald; Schirmel, Nora; Thøgersen, Jan; Techert, Simone; Toleikis, Sven; Treusch, Rolf; Trippel, Sebastian; Ulmer, Anatoli; Vallance, Claire; Wiese, Joss; Johnsson, Per; Küpper, Jochen; Rudenko, Artem; Rouzée, Arnaud; Stapelfeldt, Henrik; Rolles, Daniel; Boll, Rebecca

    2018-01-01

    We explore time-resolved Coulomb explosion induced by intense, extreme ultraviolet (XUV) femtosecond pulses from a free-electron laser as a method to image photo-induced molecular dynamics in two molecules, iodomethane and 2,6-difluoroiodobenzene. At an excitation wavelength of 267 nm, the dominant reaction pathway in both molecules is neutral dissociation via cleavage of the carbon-iodine bond. This allows investigating the influence of the molecular environment on the absorption of an intense, femtosecond XUV pulse and the subsequent Coulomb explosion process. We find that the XUV probe pulse induces local inner-shell ionization of atomic iodine in dissociating iodomethane, in contrast to non-selective ionization of all photofragments in difluoroiodobenzene. The results reveal evidence of electron transfer from methyl and phenyl moieties to a multiply charged iodine ion. In addition, indications for ultrafast charge rearrangement on the phenyl radical are found, suggesting that time-resolved Coulomb explosion imaging is sensitive to the localization of charge in extended molecules.

  19. Development of Simple Designs of Multitip Probe Diagnostic Systems for RF Plasma Characterization

    PubMed Central

    Naz, M. Y.; Shukrullah, S.; Ghaffar, A.; Rehman, N. U.

    2014-01-01

    Multitip probes are very useful diagnostics for analyzing and controlling the physical phenomena occurring in low temperature discharge plasmas. However, DC biased probes often fail to perform well in processing plasmas. The objective of the work was to deduce simple designs of DC biased multitip probes for parametric study of radio frequency plasmas. For this purpose, symmetric double probe, asymmetric double probe, and symmetric triple probe diagnostic systems and their driving circuits were designed and tested in an inductively coupled plasma (ICP) generated by a 13.56 MHz radio frequency (RF) source. Using I-V characteristics of these probes, electron temperature, electron number density, and ion saturation current was measured as a function of input power and filling gas pressure. An increasing trend was noticed in electron temperature and electron number density for increasing input RF power whilst a decreasing trend was evident in these parameters when measured against filling gas pressure. In addition, the electron energy probability function (EEPF) was also studied by using an asymmetric double probe. These studies confirmed the non-Maxwellian nature of the EEPF and the presence of two groups of the energetic electrons at low filling gas pressures. PMID:24683326

  20. Nonlinear X-Ray and Auger Spectroscopy at X-Ray Free-Electron Laser Sources

    NASA Astrophysics Data System (ADS)

    Rohringer, Nina

    2015-05-01

    X-ray free-electron lasers (XFELs) open the pathway to transfer non-linear spectroscopic techniques to the x-ray domain. A promising all x-ray pump probe technique is based on coherent stimulated electronic x-ray Raman scattering, which was recently demonstrated in atomic neon. By tuning the XFEL pulse to core-excited resonances, a few seed photons in the spectral tail of the XFEL pulse drive an avalanche of resonant inelastic x-ray scattering events, resulting in exponential amplification of the scattering signal by of 6-7 orders of magnitude. Analysis of the line profile of the emitted radiation permits to demonstrate the cross over from amplified spontaneous emission to coherent stimulated resonance scattering. In combination with statistical covariance mapping, a high-resolution spectrum of the resonant inelastic scattering process can be obtained, opening the path to coherent stimulated x-ray Raman spectroscopy. An extension of these ideas to molecules and a realistic feasibility study of stimulated electronic x-ray Raman scattering in CO will be presented. Challenges to realizing stimulated electronic x-ray Raman scattering at present-day XFEL sources will be discussed, corroborated by results of a recent experiment at the LCLS XFEL. Due to the small gain cross section in molecular targets, other nonlinear spectroscopic techniques such as nonlinear Auger spectroscopy could become a powerful alternative. Theory predictions of a novel pump probe technique based on resonant nonlinear Auger spectroscopic will be discussed and the method will be compared to stimulated x-ray Raman spectroscopy.

  1. Measuring Fluxes Of Heat To A Plasma-Arc Anode

    NASA Technical Reports Server (NTRS)

    Sankovic, John M.; Menart, James A.; Pfender, Emil; Heberlein, Joachim

    1995-01-01

    Three probes constructed to provide measurements indicative of conductive, convective, and radiative transfer of heat from free-burning plasma arc to water-cooled copper anode used in generating arc. Each probe consists mainly of copper body with two thermocouples embedded at locations 4 mm apart along length. Thermocouples provide measure of rate of conduction of heat along probe and transfers of heat from plasma to sensing surface at tip of probe. Probes identical except sensing surface of one uncoated and other two coated with different materials to make them sensitive to different components of overall flux of heat.

  2. Submolecular Gates Self-Assemble for Hot-Electron Transfer in Proteins.

    PubMed

    Filip-Granit, Neta; Goldberg, Eran; Samish, Ilan; Ashur, Idan; van der Boom, Milko E; Cohen, Hagai; Scherz, Avigdor

    2017-07-27

    Redox reactions play key roles in fundamental biological processes. The related spatial organization of donors and acceptors is assumed to undergo evolutionary optimization facilitating charge mobilization within the relevant biological context. Experimental information from submolecular functional sites is needed to understand the organization strategies and driving forces involved in the self-development of structure-function relationships. Here we exploit chemically resolved electrical measurements (CREM) to probe the atom-specific electrostatic potentials (ESPs) in artificial arrays of bacteriochlorophyll (BChl) derivatives that provide model systems for photoexcited (hot) electron donation and withdrawal. On the basis of computations we show that native BChl's in the photosynthetic reaction center (RC) self-assemble at their ground-state as aligned gates for functional charge transfer. The combined computational and experimental results further reveal how site-specific polarizability perpendicular to the molecular plane enhances the hot-electron transport. Maximal transport efficiency is predicted for a specific, ∼5 Å, distance above the center of the metalized BChl, which is in remarkably close agreement with the distance and mutual orientation of corresponding native cofactors. These findings provide new metrics and guidelines for analysis of biological redox centers and for designing charge mobilizing machines such as artificial photosynthesis.

  3. Relationship between the structures of flavonoids and oxygen radical absorbance capacity values: a quantum chemical analysis.

    PubMed

    Zhang, Di; Liu, Yixiang; Chu, Le; Wei, Ying; Wang, Dan; Cai, Shengbao; Zhou, Feng; Ji, Baoping

    2013-02-28

    Various radical-scavenging activities (RSA) assessment assays are based on discrete mechanisms and on using different radical sources. Few studies have analyzed the structural significance of flavonoids in their peroxyl radical activities in the oxygen radical absorbance capacity (ORAC) assay. In this study, the RSA of 13 flavonoids in two ORAC assays with different probes (fluorescein and pyrogallol red) were investigated. Neither O-H bond dissociation enthalpy nor ionization potential values of flavonoids correlated with ORAC values. The proton affinity (PA) and electron transfer enthalpy (ETE) values, which were obtained via the sequential proton-loss electron-transfer mechanism, were significantly associated with the ORAC(pyrogallol Red) and ORAC(fluorescein) assays, respectively. Thus, PA represented the kinetic aspect of RSA, whereas ETE reflected the RSA extent. The PA values and the most acidic sites of flavonoids were affected by intramolecular electronic interactions, H-bonding, 3-hydroxyl group in the C ring, and conjugation systems. The stability of the deprotonated flavonoid determined the ETE value. Apart from the PA and ETE values in the first oxidation step of flavonoids, the PA and ETE values in the second oxidation step also affected the ORAC values of flavonoids.

  4. Langmuir-Probe Measurements in Flowing-Afterglow Plasmas

    NASA Technical Reports Server (NTRS)

    Johnsen, R.; Shunko, E. V.; Gougousi, T.; Golde, M. F.

    1994-01-01

    The validity of the orbital-motion theory for cylindrical Langmuir probes immersed in flowing- afterglow plasmas is investigated experimentally. It is found that the probe currents scale linearly with probe area only for electron-collecting but not for ion-collecting probes. In general, no agreement is found between the ion and electron densities derived from the probe currents. Measurements in recombining plasmas support the conclusion that only the electron densities derived from probe measurements can be trusted to be of acceptable accuracy. This paper also includes a brief derivation of the orbital-motion theory, a discussion of perturbations of the plasma by the probe current, and the interpretation of plasma velocities obtained from probe measurements.

  5. Single turnover studies of oxidative halophenol dehalogenation by horseradish peroxidase reveal a mechanism involving two consecutive one electron steps: toward a functional halophenol bioremediation catalyst.

    PubMed

    Sumithran, Suganya; Sono, Masanori; Raner, Gregory M; Dawson, John H

    2012-12-01

    Horseradish peroxidase (HRP) catalyzes the oxidative para-dechlorination of the environmental pollutant/carcinogen 2,4,6-trichlorophenol (2,4,6-TCP). A possible mechanism for this reaction is a direct oxygen atom transfer from HRP compound I (HRP I) to trichlorophenol to generate 2,6-dichloro 1,4-benzoquinone, a two-electron transfer process. An alternative mechanism involves two consecutive one-electron transfer steps in which HRP I is reduced to compound II (HRP II) and then to the ferric enzyme as first proposed by Wiese et al. [F.W. Wiese, H.C. Chang, R.V. Lloyd, J.P. Freeman, V.M. Samokyszyn, Arch. Environ. Contam. Toxicol. 34 (1998) 217-222]. To probe the mechanism of oxidative halophenol dehalogenation, the reactions between 2,4,6-TCP and HRP compounds I or II have been investigated under single turnover conditions (i.e., without excess H(2)O(2)) using rapid scan stopped-flow spectroscopy. Addition of 2,4,6-TCP to HRP I leads rapidly to HRP II and then more slowly to the ferric resting state, consistent with a mechanism involving two consecutive one-electron oxidations of the substrate via a phenoxy radical intermediate. HRP II can also directly dechlorinate 2,4,6-TCP as judged by rapid scan stopped-flow and mass spectrometry. This observation is particularly significant since HRP II can only carry out one-electron oxidations. A more detailed understanding of the mechanism of oxidative halophenol dehalogenation will facilitate the use of HRP as a halophenol bioremediation catalyst. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Unconventional molecule-resolved current rectification in diamondoid–fullerene hybrids

    PubMed Central

    Randel, Jason C.; Niestemski, Francis C.; Botello-Mendez, Andrés R.; Mar, Warren; Ndabashimiye, Georges; Melinte, Sorin; Dahl, Jeremy E. P.; Carlson, Robert M. K.; Butova, Ekaterina D.; Fokin, Andrey A.; Schreiner, Peter R.; Charlier, Jean-Christophe; Manoharan, Hari C.

    2014-01-01

    The unimolecular rectifier is a fundamental building block of molecular electronics. Rectification in single molecules can arise from electron transfer between molecular orbitals displaying asymmetric spatial charge distributions, akin to p–n junction diodes in semiconductors. Here we report a novel all-hydrocarbon molecular rectifier consisting of a diamantane–C60 conjugate. By linking both sp3 (diamondoid) and sp2 (fullerene) carbon allotropes, this hybrid molecule opposingly pairs negative and positive electron affinities. The single-molecule conductances of self-assembled domains on Au(111), probed by low-temperature scanning tunnelling microscopy and spectroscopy, reveal a large rectifying response of the molecular constructs. This specific electronic behaviour is postulated to originate from the electrostatic repulsion of diamantane–C60 molecules due to positively charged terminal hydrogen atoms on the diamondoid interacting with the top electrode (scanning tip) at various bias voltages. Density functional theory computations scrutinize the electronic and vibrational spectroscopic fingerprints of this unique molecular structure and corroborate the unconventional rectification mechanism. PMID:25202942

  7. Vibrational and Nonadiabatic Coherence in 2D Electronic Spectroscopy, the Jahn-Teller Effect, and Energy Transfer

    NASA Astrophysics Data System (ADS)

    Jonas, David M.

    2018-04-01

    Femtosecond two-dimensional (2D) Fourier transform spectroscopy generates and probes several types of coherence that characterize the couplings between vibrational and electronic motions. These couplings have been studied in molecules with Jahn-Teller conical intersections, pseudo-Jahn-Teller funnels, dimers, molecular aggregates, photosynthetic light harvesting complexes, and photosynthetic reaction centers. All have closely related Hamiltonians and at least two types of vibrations, including one that is decoupled from the electronic dynamics and one that is nonadiabatically coupled. Polarized pulse sequences can often be used to distinguish these types of vibrations. Electronic coherences are rapidly obscured by inhomogeneous dephasing. The longest-lived coherences in these systems arise from delocalized vibrations on the ground electronic state that are enhanced by a nonadiabatic Raman excitation process. These characterize the initial excited-state dynamics. 2D oscillation maps are beginning to isolate the medium lifetime vibronic coherences that report on subsequent stages of the excited-state dynamics.

  8. Counterion effects on the ultrafast dynamics of charge-transfer-to-solvent electrons.

    PubMed

    Rivas, N; Moriena, G; Domenianni, L; Hodak, J H; Marceca, E

    2017-12-06

    We performed femtosecond transient absorption (TA) experiments to monitor the solvation dynamics of charge-transfer-to-solvent (CTTS) electrons originating from UV photoexcitation of ammoniated iodide in close proximity to the counterions. Solutions of KI were prepared in liquid ammonia and TA experiments were carried out at different temperatures and densities, along the liquid-gas coexistence curve of the fluid. The results complement previous femtosecond TA work by P. Vöhringer's group in neat ammonia via multiphoton ionization. The dynamics of CTTS-detached electrons in ammonia was found to be strongly affected by ion pairing. Geminate recombination time constants as well as escape probabilities were determined from the measured temporal profiles and analysed as a function of the medium density. A fast unresolved (τ < 250 fs) increase of absorption related to the creation/thermalization of solvated electron species was followed by two decay components: one with a characteristic time around 10 ps, and a slower one that remains active for hundreds of picoseconds. While the first process is attributed to an early recombination of (I, e - ) pairs, the second decay and its asymptote reflects the effect of the K + counterion on the geminate recombination dynamics, rate and yield. The cation basically acts as an electron anchor that restricts the ejection distance, leading to solvent-separated counterion-electron species. The formation of (K + , NH 3 , e - ) pairs close to the parent iodine atom brings the electron escape probability to very low values. Transient spectra of the electron species have also been estimated as a function of time by probing the temporal profiles at different wavelengths.

  9. β-Cyclodextrin functionalised gold nanoclusters as luminescence probes for the ultrasensitive detection of dopamine.

    PubMed

    Ban, Rui; Abdel-Halim, E S; Zhang, Jianrong; Zhu, Jun-Jie

    2015-02-21

    A novel luminescence probe based on mono-6-amino-β-cyclodextrin (NH2-β-CD) functionalised gold nanoclusters (β-CD-AuNC) was designed for dopamine (DA) detection. The NH2-β-CD molecules were conjugated onto the surface of 11-mercaptoundecanoic acid capped AuNCs (11-MUA-AuNC) via a carbodiimide coupling reaction. The integrity of the β-CD cavities was preserved on the surface of AuNCs and they retained their capability for molecular DA host-guest recognition. DA could be captured by the β-CD cavities to form an inclusion complex in which the oxidised DA could quench the fluorescence of the β-CD-AuNC probe by electron transfer. The probe could be used to quantify DA in the range of 5-1000 nM with a detection limit of 2 nM. This sensitivity was 1-2 orders of magnitude higher than that in previously reported methods. Interference by both ascorbic acid (AA) and uric acid (UA) was not observed. Therefore, the β-CD-AuNC probe could be directly used to determine the DA content in biological samples without further separation. This strategy was successfully applied to a DA assay in spiked human serum samples and it exhibited remarkable accuracy, sensitivity and selectivity.

  10. d-PET-controlled “off-on” Polarity-sensitive Probes for Reporting Local Hydrophilicity within Lysosomes

    NASA Astrophysics Data System (ADS)

    Zhu, Hao; Fan, Jiangli; Mu, Huiying; Zhu, Tao; Zhang, Zhen; Du, Jianjun; Peng, Xiaojun

    2016-10-01

    Polarity-sensitive fluorescent probes are powerful chemical tools for studying biomolecular structures and activities both in vitro and in vivo. However, the lack of “off-on” polarity-sensing probes has limited the accurate monitoring of biological processes that involve an increase in local hydrophilicity. Here, we design and synthesize a series of “off-on” polarity-sensitive fluorescent probes BP series consisting of the difluoroboron dippyomethene (BODIPY) fluorophore connected to a quaternary ammonium moiety via different carbon linkers. All these probes showed low fluorescence quantum yields in nonpolar solution but became highly fluorescent in polar media. BP-2, which contains a two-carbon linker and a trimethyl quaternary ammonium, displayed a fluorescence intensity and quantum yield that were both linearly correlated with solvent polarity. In addition, BP-2 exhibited high sensitivity and selectivity for polarity over other environmental factors and a variety of biologically relevant species. BP-2 can be synthesized readily via an unusual Mannich reaction followed by methylation. Using electrochemistry combined with theoretical calculations, we demonstrated that the “off-on” sensing behavior of BP-2 is primarily due to the polarity-dependent donor-excited photoinduced electron transfer (d-PET) effect. Live-cell imaging established that BP-2 enables the detection of local hydrophilicity within lysosomes under conditions of lysosomal dysfunction.

  11. Facile construction of a highly sensitive DNA biosensor by in-situ assembly of electro-active tags on hairpin-structured probe fragment

    PubMed Central

    Wang, Qingxiang; Gao, Feng; Ni, Jiancong; Liao, Xiaolei; Zhang, Xuan; Lin, Zhenyu

    2016-01-01

    An ultrasensitive DNA biosensor has been developed through in-situ labeling of electroactive melamine-Cu2+ complex (Mel-Cu2+) on the end of hairpin-like probe using gold nanoparticles (AuNPs) as the signal amplification platform. The 3′-thiolated hairpin-like probe was first immobilized to the gold electrode surface by the Au-S bond. The AuNPs were then tethered on the free 5′-end of the immobilized probe via the special affinity between Au and the modified -NH2. Followed by, the Mel and Cu2+ were assembled on the AuNPs surface through Au-N bond and Cu2+-N bond, respectively. Due to the surface area and electrocatalytic effects of the AuNPs, the loading amount and electron transfer kinetic of the Mel-Cu2+ were enhanced greatly, resulting in significantly enhanced electrochemical response of the developed biosensor. Compared with the synthesis process of conventional electroactive probe DNA accomplished by homogeneous method, the method presented in this work is more reagent- and time-saving. The proposed biosensor showed high selectivity, wide linear range and low detection limit. This novel strategy could also be extended to the other bioanalysis platforms such as immunosensors and aptasensors. PMID:26931160

  12. A new visible-light-excitable ICT-CHEF-mediated fluorescence 'turn-on' probe for the selective detection of Cd(2+) in a mixed aqueous system with live-cell imaging.

    PubMed

    Goswami, Shyamaprosad; Aich, Krishnendu; Das, Sangita; Das Mukhopadhyay, Chitrangada; Sarkar, Deblina; Mondal, Tapan Kumar

    2015-03-28

    A new quinoline based sensor was developed and applied for the selective detection of Cd(2+) both in vitro and in vivo. The designed probe displays a straightforward approach for the selective detection of Cd(2+) with a prominent fluorescence enhancement along with a large red shift (∼38 nm), which may be because of the CHEF (chelation-enhanced fluorescence) and ICT (internal charge transfer) processes after interaction with Cd(2+). The interference from other biologically important competing metal ions, particularly Zn(2+), has not been observed. The visible-light excitability of the probe merits in the viewpoint of its biological application. The probe enables the detection of intracellular Cd(2+) with non-cytotoxic effects, which was demonstrated with the live RAW cells. The experimentally observed change in the structure and electronic properties of the sensor after the addition of Cd(2+) were modelled by the density functional theory (DFT) and time-dependent density functional theory (TDDFT) computational calculations, respectively. Moreover, the test strip experiment with this sensor exhibits both absorption and fluorescence color changes when exposed to Cd(2+) in a mixed aqueous solution, which also makes the probe more useful. The minimum limit of detection of Cd(2+) by the probe was in the range of 9.9 × 10(-8) M level.

  13. Use of ultrafast dispersed pump-dump-probe and pump-repump-probe spectroscopies to explore the light-induced dynamics of peridinin in solution.

    PubMed

    Papagiannakis, Emmanouil; Vengris, Mikas; Larsen, Delmar S; van Stokkum, Ivo H M; Hiller, Roger G; van Grondelle, Rienk

    2006-01-12

    Optical pump-induced dynamics of the highly asymmetric carotenoid peridinin in methanol was studied by dispersed pump-probe, pump-dump-probe, and pump-repump-probe transient absorption spectroscopy in the visible region. Dispersed pump-probe measurements show that the decay of the initially excited S2 state populates two excited states, the S1 and the intramolecular charge-transfer (ICT) state, at a ratio determined by the excitation wavelength. The ensuing spectral evolution occurs on the time scale of a few picoseconds and suggests the equilibration of these states. Dumping the stimulated emission of the ICT state with an additional 800-nm pulse after 400- and 530-nm excitation preferentially removes the ICT state contribution from the broad excited-state absorption, allowing for its spectral characterization. At the same time, an unrelaxed ground-state species, which has a subpicosecond lifetime, is populated. The application of the 800-nm pulse at early times, when the S2 state is still populated, led to direct generation of the peridinin cation, observed for the first time in a transient absorption experiment. The excited and ground electronic states manifold of peridinin has been reconstructed using target analysis; this approach combined with the measured multipulse spectroscopic data allows us to estimate the spectra and time scales of the corresponding transient states.

  14. Studies of rotationally inelastic collisions of NaK and NaCs with Ar and He perturbers

    NASA Astrophysics Data System (ADS)

    Jones, J.; Faust, C.; Richter, K.; Wolfe, C. M.; Ashman, S.; Malenda, R. F.; Weiser, P.; Carlus, S.; Fragale, A.; Hickman, A. P.; Huennekens, J.

    2013-05-01

    We report studies of rotationally inelastic collisions of Ar and He atoms with the molecules NaK and NaCs prepared in various ro-vibrational levels of the A1Σ+ electronic state. We use laser induced fluorescence (LIF) and polarization labeling (PL) spectroscopy in a pump-probe, two step excitation process. The pump excites the molecule to a ro-vibrational level (v , J) in the A state. The probe laser is scanned over transitions to the 31 Π state in NaK or the 53 Π state in NaCs. In addition to strong direct lines, we observe weak satellite lines that arise from collision-induced transitions of the A state level (v , J) to (v , J + ΔJ) . The ratio of intensities of the satellite line to the direct line in LIF and PL yields information about population and orientation transfer. Preliminary results show a strong propensity for collisions with ΔJ =even for NaK; the propensity is larger for He than for Ar. Collisions of NaCs with He show a similar propensity, but collisions of NaCs with Ar do not. Theoretical calculations are also underway. For He-NaK, we have completed potential surface calculations using GAMESS and coupled channel scattering calculations of rotational energy transfer and transfer of orientation. Work supported by NSF and XSEDE.

  15. An acidic pH independent piperazine–TPE AIEgen as a unique bioprobe for lysosome tracing† †Electronic supplementary information (ESI) available: NMR, single crystal X-ray crystallography of PIP–TPE, live cell and fixed cell fluorescence imaging, MTT, photostability, and theoretical calculations. CCDC 1555412. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc03515b

    PubMed Central

    Cai, Yuanjing; Gui, Chen; Samedov, Kerim; Su, Huifang; Gu, Xinggui; Li, Shiwu; Luo, Wenwen; Sung, Herman H. Y.; Lam, Jacky W. Y.; Kwok, Ryan T. K.; Williams, Ian D.

    2017-01-01

    Lysosomes are involved in a multitude of cellular processes and their dysfunction is associated with various diseases. They are the most acidic organelles (pH 3.8–6.6, size 0.1–1.2 μm) with the highest viscosity (47–190 cP at 25 °C) in the cell. Because of their acidity, pH dependent non-AIE active fluorescent lysosomal probes have been developed that rely on protonation inhibited photoinduced electron transfer (PET). In this work, an acidic pH independent lysosome targetable piperazine–TPE (PIP–TPE) AIEgen has been designed with unique photophysical properties making it a suitable probe for quantifying viscosity. In a non-aggregated state PIP–TPE shows deep-blue emission as opposed to its yellowish-green emission in the bulk. It possesses high specificity for lysosomes with negligible cytotoxicity and good tracing ability due to its better photostability compared to LysoTracker Red. In contrast to most known lysosome probes that rely solely on PET, restriction of intramolecular motion (RIM) due to the larger viscosity inside the lysosomes is the mechanism responsible for PIP–TPE’s fluorescence. PIP–TPE’s high selectivity is attributed to its unique molecular design that features piperazine fragments providing a perfect balance between lipophilicity and polarity. PMID:29568423

  16. Electronics Demonstrated for Low- Temperature Operation

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammond, Ahmad; Gerber, Scott S.

    2000-01-01

    The operation of electronic systems at cryogenic temperatures is anticipated for many NASA spacecraft, such as planetary explorers and deep space probes. For example, an unheated interplanetary probe launched to explore the rings of Saturn would experience an average temperature near Saturn of about 183 C. Electronics capable of low-temperature operation in the harsh deep space environment also would help improve circuit performance, increase system efficiency, and reduce payload development and launch costs. An ongoing research and development program on low-temperature electronics at the NASA Glenn Research Center at Lewis Field is focusing on the design of efficient power systems that can survive and exploit the advantages of low-temperature environments. The targeted systems, which are mission driven, include converters, inverters, controls, digital circuits, and special-purpose circuits. Initial development efforts successfully demonstrated the low-temperature operation and cold-restart of several direct-current/direct-current (dc/dc) converters based on different types of circuit design, some with superconducting inductors. The table lists some of these dc/dc converters with their properties, and the photograph shows a high-voltage, high-power dc/dc converter designed for an ion propulsion system for low-temperature operation. The development efforts of advanced electronic systems and the supporting technologies for low-temperature operation are being carried out in-house and through collaboration with other Government agencies, industry, and academia. The Low Temperature Electronics Program supports missions and development programs at NASA s Jet Propulsion Laboratory and Goddard Space Flight Center. The developed technologies will be transferred to commercial end users for applications such as satellite infrared sensors and medical diagnostic equipment.

  17. Photoinduced Electron Transfer from Various Aniline Derivatives to Graphene Quantum Dots.

    PubMed

    Ghosh, Tufan; Chatterjee, Swarupa; Prasad, Edamana

    2015-12-10

    The present study utilizes the luminescence nature of the graphene quantum dots (GQDs) to analyze the mechanistic aspects of the photoinduced electron transfer (PET) processes between GQDs and aniline derivatives. A systematic investigation of PET from various aniline derivatives to GQDs has been presented. Solution-processable GQDs have been synthesized from graphene oxide (GO) at 200 °C. The as-synthesized GQDs exhibit a strong green luminescence at 510 nm, upon photoexcitation at 440 nm. Various aniline derivatives (aniline, N-methylaniline, N,N'-dimethylaniline, N-ethylaniline, N,N'-diethylaniline, and N,N'-diphenylaniline) have been utilized as electron donors to probe the PET process. Results from UV-visible absorption and steady-state and time-resolve luminescence spectroscopy suggest that the GQDs interact with the aniline derivatives in the excited state, which results in a significant luminescence quenching of the GQDs. The bimolecular rate constants of the dynamic quenching have been deduced for various donor-acceptor systems, and the values are in the range of (1.06-2.68) × 10(9) M(-1) s(-1). The negative values of the free energy change of the electron transfer process suggest that PET from aniline derivatives to GQDs is feasible and could be responsible for the luminescence quenching. The PET has been confirmed by detecting radical cations for certain aniline derivatives, using a nanosecond laser flash photolysis setup. The present study shows that among the various types of graphene systems, GQDs are better candidates for understanding the mechanism of PET in graphene-based donor-acceptor systems.

  18. Electron transfer driven decomposition of adenine and selected analogs as probed by experimental and theoretical methods

    NASA Astrophysics Data System (ADS)

    Cunha, T.; Mendes, M.; Ferreira da Silva, F.; Eden, S.; García, G.; Bacchus-Montabonel, M.-C.; Limão-Vieira, P.

    2018-04-01

    We report on a combined experimental and theoretical study of electron-transfer-induced decomposition of adenine (Ad) and a selection of analog molecules in collisions with potassium (K) atoms. Time-of-flight negative ion mass spectra have been obtained in a wide collision energy range (6-68 eV in the centre-of-mass frame), providing a comprehensive investigation of the fragmentation patterns of purine (Pu), adenine (Ad), 9-methyl adenine (9-mAd), 6-dimethyl adenine (6-dimAd), and 2-D adenine (2-DAd). Following our recent communication about selective hydrogen loss from the transient negative ions (TNIs) produced in these collisions [T. Cunha et al., J. Chem. Phys. 148, 021101 (2018)], this work focuses on the production of smaller fragment anions. In the low-energy part of the present range, several dissociation channels that are accessible in free electron attachment experiments are absent from the present mass spectra, notably NH2 loss from adenine and 9-methyl adenine. This can be understood in terms of a relatively long transit time of the K+ cation in the vicinity of the TNI tending to enhance the likelihood of intramolecular electron transfer. In this case, the excess energy can be redistributed through the available degrees of freedom inhibiting fragmentation pathways. Ab initio theoretical calculations were performed for 9-methyl adenine (9-mAd) and adenine (Ad) in the presence of a potassium atom and provided a strong basis for the assignment of the lowest unoccupied molecular orbitals accessed in the collision process.

  19. A hot tip: imaging phenomena using in situ multi-stimulus probes at high temperatures

    NASA Astrophysics Data System (ADS)

    Nonnenmann, Stephen S.

    2016-02-01

    Accurate high temperature characterization of materials remains a critical challenge to the continued advancement of various important energy, nuclear, electronic, and aerospace applications. Future experimental studies must assist these communities to progress past empiricism and derive deliberate, predictable designs of material classes functioning within active, extreme environments. Successful realization of systems ranging from fuel cells and batteries to electromechanical nanogenerators and turbines requires a dynamic understanding of the excitation, surface-mediated, and charge transfer phenomena which occur at heterophase interfaces (i.e. vapor-solid, liquid-solid, solid-solid) and impact overall performance. Advancing these frontiers therefore necessitates in situ (operando) characterization methods capable of resolving, both spatially and functionally, the coherence between these complex, collective excitations, and their respective response dynamics, through studies within the operating regime. This review highlights recent developments in scanning probe microscopy in performing in situ imaging at high elevated temperatures. The influence of and evolution from vacuum-based electron and tunneling microscopy are briefly summarized and discussed. The scope includes the use of high temperature imaging to directly observe critical phase transition, electronic, and electrochemical behavior under dynamic temperature settings, thus providing key physical parameters. Finally, both challenges and directions in combined instrumentation are proposed and discussed towards the end.

  20. Advanced electron microscopy characterization of tri-layer rare-earth oxide superlattices

    NASA Astrophysics Data System (ADS)

    Phillips, Patrick; Disa, Ankit; Ismail-Beigi, Sohrab; Klie, Robert; University of Illinois-Chicago Team; Yale University Team

    2015-03-01

    Rare-earth nickelates are known to display complex electronic and magnetic behaviors owed to a very localized and sensitive Ni-site atomic and electronic structure. Toward realizing the goal of manipulating of the energetic ordering of Ni d orbitals and 2D conduction, the present work focuses on the experimental characterization of thin film superlattice structures consisting of alternating layers of LaTiO3 and LaNiO3 sandwiched between a dull insulator, LaAlO3. Using advanced scanning transmission electron microscopy (STEM)-based methods, properties such as interfacial sharpness, electron transfer, O presence, and local electronic structure can be probed at the atomic scale, and will be discussed at length. By combining both energy dispersive X-ray (EDX) and electronic energy loss (EEL) spectroscopies in an aberration-corrected STEM, it is possible to attain energy and spatial resolutions of 0.35 eV and 100 pm, respectively. Focus of the talk will remain not only on the aforementioned properties, but will also include details and parameters of the acquisitions to facilitate future characterization at this level.

  1. Probing ultrafast changes of spin and charge density profiles with resonant XUV magnetic reflectivity at the free-electron laser FERMI.

    PubMed

    Gutt, C; Sant, T; Ksenzov, D; Capotondi, F; Pedersoli, E; Raimondi, L; Nikolov, I P; Kiskinova, M; Jaiswal, S; Jakob, G; Kläui, M; Zabel, H; Pietsch, U

    2017-09-01

    We report the results of resonant magnetic XUV reflectivity experiments performed at the XUV free-electron laser FERMI. Circularly polarized XUV light with the photon energy tuned to the Fe M 2,3 edge is used to measure resonant magnetic reflectivities and the corresponding Q -resolved asymmetry of a Permalloy/Ta/Permalloy trilayer film. The asymmetry exhibits ultrafast changes on 240 fs time scales upon pumping with ultrashort IR laser pulses. Depending on the value of the wavevector transfer Q z , we observe both decreasing and increasing values of the asymmetry parameter, which is attributed to ultrafast changes in the vertical spin and charge density profiles of the trilayer film.

  2. Response functions for dimers and square-symmetric molecules in four-wave-mixing experiments with polarized light

    NASA Astrophysics Data System (ADS)

    Smith, Eric Ryan; Farrow, Darcie A.; Jonas, David M.

    2005-07-01

    Four-wave-mixing nonlinear-response functions are given for intermolecular and intramolecular vibrations of a perpendicular dimer and intramolecular vibrations of a square-symmetric molecule containing a doubly degenerate state. A two-dimensional particle-in-a-box model is used to approximate the electronic wave functions and obtain harmonic potentials for nuclear motion. Vibronic interactions due to symmetry-lowering distortions along Jahn-Teller active normal modes are discussed. Electronic dephasing due to nuclear motion along both symmetric and asymmetric normal modes is included in these response functions, but population transfer between states is not. As an illustration, these response functions are used to predict the pump-probe polarization anisotropy in the limit of impulsive excitation.

  3. Accurate potential drop sheet resistance measurements of laser-doped areas in semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinrich, Martin, E-mail: mh.seris@gmail.com; NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore 117456; Kluska, Sven

    2014-10-07

    It is investigated how potential drop sheet resistance measurements of areas formed by laser-assisted doping in crystalline Si wafers are affected by typically occurring experimental factors like sample size, inhomogeneities, surface roughness, or coatings. Measurements are obtained with a collinear four point probe setup and a modified transfer length measurement setup to measure sheet resistances of laser-doped lines. Inhomogeneities in doping depth are observed from scanning electron microscope images and electron beam induced current measurements. It is observed that influences from sample size, inhomogeneities, surface roughness, and coatings can be neglected if certain preconditions are met. Guidelines are given onmore » how to obtain accurate potential drop sheet resistance measurements on laser-doped regions.« less

  4. Prospects of high-resolution resonant X-ray inelastic scattering studies on solid materials, liquids and gases at diffraction-limited storage rings.

    PubMed

    Schmitt, Thorsten; de Groot, Frank M F; Rubensson, Jan Erik

    2014-09-01

    The spectroscopic technique of resonant inelastic X-ray scattering (RIXS) will particularly profit from immensely improved brilliance of diffraction-limited storage rings (DLSRs). In RIXS one measures the intensities of excitations as a function of energy and momentum transfer. DLSRs will allow for pushing the achievable energy resolution, signal intensity and the sampled spot size to new limits. With RIXS one nowadays probes a broad range of electronic systems reaching from simple molecules to complex materials displaying phenomena like peculiar magnetism, two-dimensional electron gases, superconductivity, photovoltaic energy conversion and heterogeneous catalysis. In this article the types of improved RIXS studies that will become possible with X-ray beams from DLSRs are envisioned.

  5. A versatile setup for ultrafast broadband optical spectroscopy of coherent collective modes in strongly correlated quantum systems

    PubMed Central

    Baldini, Edoardo; Mann, Andreas; Borroni, Simone; Arrell, Christopher; van Mourik, Frank; Carbone, Fabrizio

    2016-01-01

    A femtosecond pump-probe setup is described that is optimised for broadband transient reflectivity experiments on solid samples over a wide temperature range. By combining high temporal resolution and a broad detection window, this apparatus can investigate the interplay between coherent collective modes and high-energy electronic excitations, which is a distinctive characteristic of correlated electron systems. Using a single-shot readout array detector at frame rates of 10 kHz allows resolving coherent oscillations with amplitudes <10−4. We demonstrate its operation on the charge-transfer insulator La2CuO4, revealing coherent phonons with frequencies up to 13 THz and providing access into their Raman matrix elements. PMID:27990455

  6. Role of Au(NPs) in the enhanced response of Au(NPs)-decorated MWCNT electrochemical biosensor

    PubMed Central

    Mehmood, Shahid; Ciancio, Regina; Carlino, Elvio; Bhatti, Arshad S

    2018-01-01

    Background The combination of Au-metallic-NPs and CNTs are a new class of hybrid nanomaterials for the development of electrochemical biosensor. Concentration of Au(nanoparticles [NPs]) in the electrochemical biosensor is crucial for the efficient charge transfer between the Au-NPs-MWCNTs modified electrode and electrolytic solution. Methods In this work, the charge transfer kinetics in the glassy carbon electrode (GCE) modified with Au(NPs)–multiwalled carbon nanotube (MWCNT) nanohybrid with varied concentrations of Au(NPs) in the range 40–100 nM was studied using electrochemical impedance spectroscopy (EIS). Field emission scanning electron microscopy and transmission electron microscopy confirmed the attachment of Au(NPs) on the surface of MWCNTs. Results The cyclic voltammetry and EIS results showed that the charge transfer mechanism was diffusion controlled and the rate of charge transfer was dependent on the concentration of Au(NPs) in the nanohybrid. The formation of spherical diffusion zone, which was dependent on the concentration of Au(NPs) in nanohybrids, was attributed to result in 3 times the increase in the charge transfer rate ks, 5 times increase in mass transfer, and 5% (9%) increase in Ipa (Ipc) observed in cyclic voltammetry in 80 nM Au(NP) nanohybrid-modified GCE from MWCNT-modified GCE. The work was extended to probe the effect of charge transfer rates at various concentrations of Au(NPs) in the nanohybrid-modified electrodes in the presence of Escherichia coli. The cyclic voltammetry results clearly showed the best results for 80 nM Au(NPs) in nanohybrid electrode. Conclusion The present study suggested that the formation of spherical diffusion zone in nanohybrid-modified electrodes is critical for the enhanced electrochemical biosensing applications. PMID:29713161

  7. Spectroscopic study of active phase-support interactions on a RhO{sub x}/CeO{sub 2} catalyst: Evidence for electronic interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Arias, A.; Soria, J.; Conesa, J.C.

    The effects of thermal treatments under vacuum, used as a way to generate reduced centers on Rh{sub 2}O{sub 3} and RhO{sub x}/CeO{sub 2}, have been studied by ESR and FTIR, using respectively oxygen and carbon monoxide as probe molecules. The results obtained for the outgassed samples reveal the presence of ceria-rhodia interactions favoring the stabilization of paramagnetic Rh{sup 2+} cations in rhodium oxide clusters on the ceria surface. Subsequent O{sub 2} adsorption leads to the formation of different oxygen-related paramagnetic species located on ceria, on rhodium oxide clusters and at the boundary between both oxides; their contribution to the spectramore » depends on outgassing conditions and O{sub 2} adsorption temperature. The unexpected absence of O{sub 2}{sup -}-Ce{sup 4+} species after O{sub 2} contact at 77 K with RhO{sub x}/CeO{sub 2} outgassed above 573 K evidences the existence of electronic interactions between the RhO{sub x}, and CeO{sub 2} phases, being explained on the basis of electron transfer to the mixed valence RhO{sub x}, phase from the surface-reduced ceria, leading to electron depletion of the latter. This effect is inhibited by CO adsorption, showing the dependence between the electron-accepting properties of the rhodia clusters and the presence of vacant coordination sites at the surface Rh ions. An effect of similar kind may be responsible for shifts observed in the IR bands of rhodium dicarbonyls formed in the RhO{sub x}/CeO{sub 2} system. The latter results suggest the possibility that thermal enhancement of surface reactions in complex systems could depend on electron transfer between adjacent phases and that adsorption on one phase may influence the surface reactivity of another phase by affecting to the electron transfer between them. 34 refs., 8 figs., 2 tabs.« less

  8. Effect of Molecular Crowding on the Response of an Electrochemical DNA Sensor

    PubMed Central

    Ricci, Francesco; Lai, Rebecca Y.; Heeger, Alan J.; Plaxco, Kevin W.; Sumner, James J.

    2009-01-01

    E-DNA sensors, the electrochemical equivalent of molecular beacons, appear to be a promising means of detecting oligonucleotides. E-DNA sensors are comprised of a redox-modified (here, methylene blue or ferrocene) DNA stem-loop covalently attached to an interrogating electrode. Because E-DNA signaling arises due to binding-induced changes in the conformation of the stem-loop probe, it is likely sensitive to the nature of the molecular packing on the electrode surface. Here we detail the effects of probe density, target length, and other aspects of molecular crowding on the signaling properties, specificity, and response time of a model E-DNA sensor. We find that the highest signal suppression is obtained at the highest probe densities investigated, and that greater suppression is observed with longer and bulkier targets. In contrast, sensor equilibration time slows monotonically with increasing probe density, and the specificity of hybridization is not significantly affected. In addition to providing insight into the optimization of electrochemical DNA sensors, these results suggest that E-DNA signaling arises due to hybridization-linked changes in the rate, and thus efficiency, with which the redox moiety collides with the electrode and transfers electrons. PMID:17488132

  9. HAADF-STEM atom counting in atom probe tomography specimens: Towards quantitative correlative microscopy.

    PubMed

    Lefebvre, W; Hernandez-Maldonado, D; Moyon, F; Cuvilly, F; Vaudolon, C; Shinde, D; Vurpillot, F

    2015-12-01

    The geometry of atom probe tomography tips strongly differs from standard scanning transmission electron microscopy foils. Whereas the later are rather flat and thin (<20 nm), tips display a curved surface and a significantly larger thickness. As far as a correlative approach aims at analysing the same specimen by both techniques, it is mandatory to explore the limits and advantages imposed by the particular geometry of atom probe tomography specimens. Based on simulations (electron probe propagation and image simulations), the possibility to apply quantitative high angle annular dark field scanning transmission electron microscopy to of atom probe tomography specimens has been tested. The influence of electron probe convergence and the benefice of deconvolution of electron probe point spread function electron have been established. Atom counting in atom probe tomography specimens is for the first time reported in this present work. It is demonstrated that, based on single projections of high angle annular dark field imaging, significant quantitative information can be used as additional input for refining the data obtained by correlative analysis of the specimen in APT, therefore opening new perspectives in the field of atomic scale tomography. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. A lysosome-targetable turn-on fluorescent probe for the detection of thiols in living cells based on a 1,8-naphthalimide derivative

    NASA Astrophysics Data System (ADS)

    Liang, Beibei; Wang, Baiyan; Ma, Qiujuan; Xie, Caixia; Li, Xian; Wang, Suiping

    2018-03-01

    Biological thiols, like cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), play crucial roles in biological systems and in lysosomal processes. Highly selective probes for detecting biological thiols in lysomes of living cells are rare. In this work, a lysosome-targetable turn-on fluorescent probe for the detection of thiols in living cells was designed and synthesized based on a 1,8-naphthalimide derivative. The probe has a 4-(2-aminoethyl)morpholine unit as a lysosome-targetable group and an acrylate group as the thiol recognition unit as well as a fluorescence quencher. In the absence of biothiols, the probe displayed weak fluorescence due to the photoinduced electron transfer (PET) process. Upon the addition of biothiols, the probe exhibited an enhanced fluorescence emission centered at 550 nm due to cleavage of the acrylate moiety. The probe had high selectivity toward biothiols. Moreover, the probe features fast response time, excitation in the visible region and ability of working in a wide pH range. The linear response range covers a concentration range of Cys from 1.5 × 10- 7 to 1.0 × 10- 5 mol·L- 1 and the detection limit is 6.9 × 10- 8 mol·L- 1 for Cys. The probe has been successfully applied to the confocal imaging of biothiols in lysosomes of A549 cells with low cell toxicity. Furthermore, the method was successfully applied to the determination of thiols in a complex multicomponent mixture such as human serum, which suggests our proposed method has great potential for diagnostic purposes. All of such good properties prove it can be used to monitor biothiols in lysosomes of living cells and to be a good fluorescent probe for the selective detection of thiols.

  11. Confocal ultrafast pump-probe spectroscopy: a new technique to explore nanoscale composites.

    PubMed

    Virgili, Tersilla; Grancini, Giulia; Molotokaite, Egle; Suarez-Lopez, Inma; Rajendran, Sai Kiran; Liscio, Andrea; Palermo, Vincenzo; Lanzani, Guglielmo; Polli, Dario; Cerullo, Giulio

    2012-04-07

    This article is devoted to the exploration of the benefits of a new ultrafast confocal pump-probe technique, able to study the photophysics of different structured materials with nanoscale resolution. This tool offers many advantages over standard stationary microscopy techniques because it directly interrogates excited state dynamics in molecules, providing access to both radiative and non-radiative deactivation processes at a local scale. In this paper we present a few different examples of its application to organic semiconductor systems. The first two are focussed on the study of the photophysics of phase-separated polymer blends: (i) a blue-emitting polyfluorene (PFO) in an inert matrix of PMMA and (ii) an electron donor polythiophene (P3HT) mixed with an electron acceptor fullerene derivative (PCBM). The experimental results on these samples demonstrate the capability of the technique to unveil peculiar interfacial dynamics at the border region between phase-segregated domains, which would be otherwise averaged out using conventional pump-probe spectroscopy. The third example is the study of the photophysics of isolated mesoscopic crystals of the PCBM molecule. Our ultrafast microscope could evidence the presence of two distinctive regions within the crystals. In particular, we could pinpoint for the first time areas within the crystals showing photobleaching/stimulated emission signals from a charge-transfer state. This journal is © The Royal Society of Chemistry 2012

  12. The hairpin resonator: A plasma density measuring technique revisited

    NASA Astrophysics Data System (ADS)

    Piejak, R. B.; Godyak, V. A.; Garner, R.; Alexandrovich, B. M.; Sternberg, N.

    2004-04-01

    A microwave resonator probe is a resonant structure from which the relative permittivity of the surrounding medium can be determined. Two types of microwave resonator probes (referred to here as hairpin probes) have been designed and built to determine the electron density in a low-pressure gas discharge. One type, a transmission probe, is a functional equivalent of the original microwave resonator probe introduced by R. L. Stenzel [Rev. Sci. Instrum. 47, 603 (1976)], modified to increase coupling to the hairpin structure and to minimize plasma perturbation. The second type, a reflection probe, differs from the transmission probe in that it requires only one coaxial feeder cable. A sheath correction, based on the fluid equations for collisionless ions in a cylindrical electron-free sheath, is presented here to account for the sheath that naturally forms about the hairpin structure immersed in plasma. The sheath correction extends the range of electron density that can be accurately measured with a particular wire separation of the hairpin structure. Experimental measurements using the hairpin probe appear to be highly reproducible. Comparisons with Langmuir probes show that the Langmuir probe determines an electron density that is 20-30% lower than the hairpin. Further comparisons, with both an interferometer and a Langmuir probe, show hairpin measurements to be in good agreement with the interferometer while Langmuir probe measurements again result in a lower electron density.

  13. Micro-RNA detection based on fluorescence resonance energy transfer of DNA-carbon quantum dots probes.

    PubMed

    Khakbaz, Faeze; Mahani, Mohamad

    2017-04-15

    Carbon quantum dots have been proposed as an effective platform for miRNA detection. Carbon dots were synthesized by citric acid. The synthesized dots were characterized by dynamic light scattering, UV-Vis spectrophotometry, spectrofluorimetry, transmission electron microscopy and FT-IR spectrophotometry. The fluorescence quantum yield of the synthesized dots was determined using quinine sulfate as the standard. The FAM-labeled single stranded DNA, as sensing element, was adsorbed on dots by π-π interaction. The quenching of the dots fluorescence due to fluorescence resonance energy transfer (FRET) was used for mir 9-1 detection. In the presence of the complementary miRNA, the FRET did not take place and the fluorescence was recovered. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Chirality transfer effects in proline-substituted coumarin compounds.

    PubMed

    Park, Eun-Kyung; Park, Bongjeong; Choi, Jun-Ho; Choi, Kihang; Cho, Minhaeng

    2009-08-13

    Conformations of proline-substituted chromophores are determined by using circular dichroism (CD) spectroscopy and quantum chemistry calculation method. Coumarin is chosen for the optical chromophore and proline amino acid is attached to its C7 position. The coumarin-proline conjugate considered contains both fluorophore and peptide linker where any polypeptides or biomolecules can be additionally connected to the free carboxyl group of the proline. Thus, the coumarin-proline is a potentially useful composite chirality-probe system for studies of protein dynamics in solution. However, detailed conformation of coumarin ring with respect to the proline ring has to be determined first. We found that there are two possible conformers, which differ from each other by the relative orientation of the coumarin ring. Comparing the measured CD spectra with the calculated ones, we directly show that only one of the two conformers is dominant in polar solvents except for water. The present study suggests that the local structure around an optical chromophore, when it is introduced to polypeptides or other biomolecules, can be studied by examining the electronic optical activity of the probe chromophore, as long as the chirality transfer from the attached amino acid to the chromophore is significantly large.

  15. Aggregation-Induced Emission-Active Ruthenium(II) Complex of 4,7-Dichloro Phenanthroline for Selective Luminescent Detection and Ribosomal RNA Imaging.

    PubMed

    Sheet, Sanjoy Kumar; Sen, Bhaskar; Patra, Sumit Kumar; Rabha, Monosh; Aguan, Kripamoy; Khatua, Snehadrinarayan

    2018-05-02

    The development of red emissive aggregation-induced emission (AIE) active probes for organelle-specific imaging is of great importance. Construction of metal complex-based AIE-active materials with metal-to-ligand charge transfer (MLCT), ligand-to-metal charge transfer (LMCT) emission together with the ligand-centered and intraligand (LC/ILCT) emission is a challenging task. We developed a red emissive ruthenium(II) complex, 1[PF 6 ] 2 , and its perchlorate analogues of the 4,7-dichloro phenanthroline ligand. 1[PF 6 ] 2 has been characterized by spectroscopic and single-crystal X-ray diffraction. Complex 1 showed AIE enhancement in water, highly dense polyethylene glycol media, and also in the solid state. The possible reason behind the AIE property may be the weak supramolecular π···π, C-H···π, and C-Cl···H interactions between neighboring phen ligands as well as C-Cl···O halogen bonding (XB). The crystal structures of the two perchlorate analogues revealed C-Cl···O distances shorter than the sum of the van der Waals radii, which confirmed the XB interaction. The AIE property was supported by scanning electron microscopy, transmission electron microscopy, dynamic light scattering, and atomic force microscopy studies. Most importantly, the probe was found to be low cytotoxicity and to efficiently permeate the cell membrane. The cell-imaging experiments revealed rapid staining of the nucleolus in HeLa cells via the interaction with nucleolar ribosomal ribonucleic acid (rRNA). It is expected that the supramolecular interactions as well as C-Cl···O XB interaction with rRNA is the origin of aggregation and possible photoluminescence enhancement. To the best of our knowledge, this is the first report of red emissive ruthenium(II) complex-based probes with AIE characteristics for selective rRNA detection and nucleolar imaging.

  16. Electron storage in single wall carbon nanotubes. Fermi level equilibration in semiconductor-SWCNT suspensions.

    PubMed

    Kongkanand, Anusorn; Kamat, Prashant V

    2007-08-01

    The use of single wall carbon nanotubes (SWCNTs) as conduits for transporting electrons in a photoelectrochemical solar cell and electronic devices requires better understanding of their electron-accepting properties. When in contact with photoirradiated TiO(2) nanoparticles, SWCNTs accept and store electrons. The Fermi level equilibration with photoirradiated TiO(2) particles indicates storage of up to 1 electron per 32 carbon atoms in the SWCNT. The stored electrons are readily discharged on demand upon addition of electron acceptors such as thiazine and oxazine dyes (reduction potential less negative than that of the SWCNT conduction band) to the TiO(2)-SWCNT suspension. The stepwise electron transfer from photoirradiated TiO(2) nanoparticles --> SWCNT --> redox couple has enabled us to probe the electron equilibration process and determine the apparent Fermi level of the TiO(2)-SWCNT system. A positive shift in apparent Fermi level (20-30 mV) indicates the ability of SWCNTs to undergo charge equilibration with photoirradiated TiO(2) particles. The dependence of discharge capacity on the reduction potential of the dye redox couple is compared for TiO(2) and TiO(2)-SWCNT systems under equilibration conditions.

  17. Selenium- and tellurium-containing fluorescent molecular probes for the detection of biologically important analytes.

    PubMed

    Manjare, Sudesh T; Kim, Youngsam; Churchill, David G

    2014-10-21

    As scientists in recent decades have discovered, selenium is an important trace element in life. The element is now known to play an important role in biology as an enzymatic antioxidant. In this case, it sits at the active site and converts biological hydrogen peroxides to water. Mimicking this reaction, chemists have synthesized several organoselenium compounds that undergo redox transformations. As such, these types of compounds are important in the future of both medicinal and materials chemistry. One main challenge for organochalcogen chemists has been to synthesize molecular probes that are soluble in water where a selenium or tellurium center can best modify electronics of the molecule based on a chemical oxidation or reduction event. In this Account, we discuss chemists' recent efforts to create chalcogen-based chemosensors through synthetic means and current photophysical understanding. Our work has focused on small chromophoric or fluorophoric molecules, in which we incorporate discrete organochalcogen atoms (e.g., R-Se-R, R-Te-R) in predesigned sites. These synthetic molecules, involving rational synthetic pathways, allow us to chemoselectively oxidize compounds and to study the level of analyte selectivity by way of their optical responses. All the reports we discussed here deal with well-defined and small synthetic molecular systems. With a large number of reports published over the last few years, many have notably originated from the laboratory of K. Han (P. R. China). This growing body of research has given chemists new ideas for the previously untenable reversible reactive oxygen species detection. While reversibility of the probe is technically important from the stand-point of the chalcogen center, facile regenerability of the probe using a secondary analyte to recover the initial probe is a very promising avenue. This is because (bio)chalcogen chemistry is extremely rich and bioinspired and continues to yield important developments across many scientific fields. Organochalcogen (R-E-R) chemistry in such chemical recognition and supramolecular pursuits is a fundamental tool to allow chemists to explore stable organic-based probe modalities of interest to develop better spectroscopic tools for (neuro)biological applications. Chalcogen donor sites also provide sites where metals can coordinate, and facile oxidation may extend to the sulfone analogues (R-EO2-R) or beyond. Consequently, chemists can then make use of reliable reversible chemical probing platforms based on the chemical redox properties valence state switching principally from 2 to 4 (and back to 2) of selenium and tellurium atoms. The main organic molecular skeletons have involved chemical frames including boron-dipyrromethene (BODIPY) systems, extended cyanine groups, naphthalimide, rhodamine, and fluorescein cores, and isoselenazolone, pyrene, coumarin, benzoselenadiazole, and selenoguanine systems. Our group has tested many such molecular probe systems in cellular milieu and under a series of conditions and competitive environments. We have found that the most important analytes have been reactive oxygen species (ROS) such as superoxide and hypochlorite. Reactive nitrogen species (RNS) such as peroxynitrite are also potential targets. In addition, we have also considered Fenton chemistry systems. Our research and that of others shows that the action of ROS is often reversible with H2S or biothiols such as glutathione (GSH). We have also found that a second class of analytes are the thiols (RSH), in particular, biothiols. Here, the target group might involve an R-Se-Se-R group. The study of analytes also extends to metal ions, for example, Hg(2+), and anions such as fluoride (F(-)), and we have developed NIR-based systems as well. These work through various photomechanisms, including photoinduced electron transfer (PET), twisted internal charge transfer (TICT), and internal charge transfer (ICT). The growing understanding of this class of probe suggests that there is much room for creative thinking regarding modular designs or unexpected organic chemical synthesis designs, interplay between analytes, new analyte selectivity, biological targeting, and chemical switching, which can also serve to further the neurological probing and molecular logic gating frontiers.

  18. Development of broad bandwidth nonlinear spectroscopies for characterization of electronic states in materials systems

    NASA Astrophysics Data System (ADS)

    Mehlenbacher, Randy D.

    Carbon nanotubes are an interesting class of materials with many exceptional properties that make them appealing for optoelectronic devices. Their optical properties, particularly when cast in thin films, are not well understood. In this thesis, I describe the development of spectroscopic techniques for measuring energy and charge transport processes in thin films of semiconducting carbon nanotubes. Using transient absorption spectroscopy, I observe energy transport on two time scales in these films, with 20% of nanotubes transferring energy to smaller bandgap nanotubes within 300 fs. After 3 ps, 70% of the photoexcitation resides on small bandgap nanotubes. To study the complete landscape of energy transport in thin films of carbon nanotubes, I developed two dimensional white light spectroscopy (2D-WL). In 2D-WL spectroscopy, a broadband, white light supercontinuum is used to both excite and probe the sample. This technique has a bandwidth spanning > 500-1500 nm, a far broader bandwidth than previously reported in 2D electronic spectra. I take advantage of this large bandwidth to study the interactions and evolution of S1 and S2 excitons in a thin film of carbon nanotubes. I find that energy transfers between S1 excitons on a 2 ps time scale and occurs by a non-Forster energy transfer mechanism. In contrast, the energy in the S2 states redistributes on an ultrafast time scale, <100 fs, and undergoes autoionization producing free electrons and holes. I use 2D-WL spectroscopy to study the electronic states in thin films of bare, semiconducting carbon nanotubes. In these films, energy transfer occurs in <100 fs between bare carbon nanotubes and this energy transfer is between parallel nanotubes. By taking advantage of the laser pulse polarization for each interaction, I resolve otherwise difficult to observe couplings between electronic states. To facilitate data interpretation, the orientational response for isotropic two dimensional samples to polarized electric fields is developed. Using polarization control 2D-WL spectroscopy, I measure the coupling between nanotube S1 transitions and radial breathing modes. The doped tubes form trions with transition dipoles that are not parallel to the S1 transition and energy transfer from the S1 exciton to the trion occurs within 1 ps.

  19. Nuclear resonance scattering of synchrotron radiation as a unique electronic, structural and thermodynamic probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alp, E. Ercan; Sturhahn, Wolfgang; Toellner, Thomas S.

    2012-05-09

    Discovery of Moessbauer effect in a nuclear transition was a remarkable development. It revealed how long-lived nuclear states with relatively low energies in the kiloelectron volt (keV) region can be excited without recoil. This new effect had a unique feature involving a coupling between nuclear physics and solid-state physics, both in terms of physics and sociology. Physics coupling originates from the fact that recoilless emission and absorption or resonance is only possible if the requirement that nuclei have to be bound in a lattice with quantized vibrational states is fulfilled, and that the finite electron density on the nucleus couplesmore » to nuclear degrees of freedom leading to hyperfine interactions. thus, Moessbauer spectroscopy allows peering into solid-state effects using unique nuclear transitions. Sociological aspects of this coupling had been equally startling and fruitful. The interaction between diverse scientific communities, who learned to use Moessbauer spectroscopy proved to be very valuable. For example, biologists, geologists, chemists, physics, materials scientists, and archeologists, all sharing a common spectroscopic technique, also learned to appreciate the beauty and intricacies of each other's fields. As a laboratory-based technique, Moessbauer spectroscopy matured by the end of the 1970s. Further exciting developments took place when accelerator-based techniques were employed, like synchrotron radiation or 'in-beam'Moessbauer experiments with implanted radioactive ions. More recently, two Moessbauer spectrometers on the surface of the Mars kept the technique vibrant and viable up until present time. In this chapter, the authors look into some of the unique aspects of nuclear resonance excited with synchrotron radiation as a probe of condensed matter, including magnetism, valence, vibrations, and lattice dynamics, and review the development of nuclear resonance inelastic x-ray scattering (NRIXS) and synchrotron Moessbauer spectroscopy (SMS). However, to place these two techniques into some perspective with respect to other methods that yield related information, they display their version of a frequently used map of momentum and energy transfer diagram in figure 17.1. Here, various probes like electrons, neutrons, or light, i.e., Brillouin or Raman, and relatively newer forms of X-ray scattering are placed according to their range of energy and momentum transfer taking place during the measurements. Accordingly, NRIXS is a method that needs to be considered as a complementary probe to inelastic neutron and X-ray scattering, while SMS occupies a unique space due to its sensitivity to magnetism, structural deformations, valence, and spin states.« less

  20. Non-invasive probe diagnostic method for electron temperature and ion current density in atmospheric pressure plasma jet source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Young-Cheol; Kim, Yu-Sin; Lee, Hyo-Chang

    2015-08-15

    The electrical probe diagnostics are very hard to be applied to atmospheric plasmas due to severe perturbation by the electrical probes. To overcome this, the probe for measuring electron temperature and ion current density is indirectly contacted with an atmospheric jet source. The plasma parameters are obtained by using floating harmonic analysis. The probe is mounted on the quartz tube that surrounds plasma. When a sinusoidal voltage is applied to a probe contacting on a quartz tube, the electrons near the sheath at dielectric tube are collected and the probe current has harmonic components due to probe sheath nonlinearity. Frommore » the relation of the harmonic currents and amplitude of the sheath voltage, the electron temperature near the wall can be obtained with collisional sheath model. The electron temperatures and ion current densities measured at the discharge region are in the ranges of 2.7–3.4 eV and 1.7–5.2 mA/cm{sup 2} at various flow rates and input powers.« less

  1. Structure analysis of the single-domain Si(111)4 × 1-In surface by μ-probe Auger electron diffraction and μ-probe reflection high energy electron diffraction

    NASA Astrophysics Data System (ADS)

    Nakamura, N.; Anno, K.; Kono, S.

    1991-10-01

    A single-domain Si(111)4 × 1-In surface has been studied by μ-probe reflection high-energy electron diffraction (RHEED) to elucidate the symmetry of the 4 × 1 surface. Azimuthal diffraction patterns of In MNN Auger electron have been obtained by a μ-probe Auger electron diffraction (AED) apparatus from the single-domain Si(111)4 × 1-In surface. On the basis of information from scanning tunneling microscopy [J. Microsc. 152 (1988) 727] and under the assumption that the 4 × 1 surface is composed of In-overlayers, the μ-probe AED patterns were kinematically analyzed to reach a concrete model of indium arrangement.

  2. Measurement of electron density using reactance cutoff probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, K. H.; Seo, B. H.; Kim, J. H.

    2016-05-15

    This paper proposes a new measurement method of electron density using the reactance spectrum of the plasma in the cutoff probe system instead of the transmission spectrum. The highly accurate reactance spectrum of the plasma-cutoff probe system, as expected from previous circuit simulations [Kim et al., Appl. Phys. Lett. 99, 131502 (2011)], was measured using the full two-port error correction and automatic port extension methods of the network analyzer. The electron density can be obtained from the analysis of the measured reactance spectrum, based on circuit modeling. According to the circuit simulation results, the reactance cutoff probe can measure themore » electron density more precisely than the previous cutoff probe at low densities or at higher pressure. The obtained results for the electron density are presented and discussed for a wide range of experimental conditions, and this method is compared with previous methods (a cutoff probe using the transmission spectrum and a single Langmuir probe).« less

  3. Optimization of a reusable, DNA pseudoknot-based electrochemical sensor for sequence-specific DNA detection in blood serum.

    PubMed

    Cash, Kevin J; Heeger, Alan J; Plaxco, Kevin W; Xiao, Yi

    2009-01-15

    We describe in detail a new electrochemical DNA (E-DNA) sensing platform based on target-induced conformation changes in an electrode-bound DNA pseudoknot. The pseudoknot, a DNA structure containing two stem-loops in which the first stem's loop forms part of the second stem, is modified with a methylene blue redox tag at its 3' terminus and covalently attached to a gold electrode via the 5' terminus. In the absence of a target, the structure of the pseudoknot probe minimizes collisions between the redox tag and the electrode, thus reducing faradaic current. Target binding disrupts the pseudoknot structure, liberating a flexible, single-stranded element that can strike the electrode and efficiently transfer electrons. In this article we report further characterization and optimization of this new E-DNA architecture. We find that optimal signaling is obtained at an intermediate probe density ( approximately 1.8 x 10(13) molecules/cm(2) apparent density), which presumably represents a balance between steric and electrostatic blocking at high probe densities and increased background currents arising from transfer from the pseudoknot probe at lower densities. We also find that optimal 3' stem length, which appears to be 7 base pairs, represents a balance between pseudoknot structural stability and target affinity. Finally, a 3' loop comprised of poly(A) exhibits better mismatch discrimination than the equivalent poly(T) loop, but at the cost of decreased gain. Optimization over this parameter space significantly improves the signaling of the pseudoknot-based E-DNA architecture, leading to the ability to sensitively and specifically detect DNA targets even when challenged in complex, multicomponent samples such as blood serum.

  4. Optimization of a Reusable, DNA Pseudoknot-Based Electrochemical Sensor for Sequence-Specific DNA Detection in Blood Serum

    PubMed Central

    Cash, Kevin J.; Heeger, Alan J.; Plaxco, Kevin W.; Xiao, Yi

    2010-01-01

    We describe in detail a new electrochemical DNA (E-DNA) sensing platform based on target-induced conformation changes in an electrode-bound DNA pseudoknot. The pseudoknot, a DNA structure containing two stem-loops in which the first stem’s loop forms part of the second stem, is modified with a methylene blue redox tag at its 3′ terminus and covalently attached to a gold electrode via the 5′ terminus. In the absence of a target, the structure of the pseudoknot probe minimizes collisions between the redox tag and the electrode, thus reducing faradaic current. Target binding disrupts the pseudoknot structure, liberating a flexible, single-stranded element that can strike the electrode and efficiently transfer electrons. In this article we report further characterization and optimization of this new E-DNA architecture. We find that optimal signaling is obtained at an intermediate probe density (~1.8 × 1013 molecules/cm2 apparent density), which presumably represents a balance between steric and electrostatic blocking at high probe densities and increased background currents arising from transfer from the pseudoknot probe at lower densities. We also find that optimal 3′ stem length, which appears to be 7 base pairs, represents a balance between pseudoknot structural stability and target affinity. Finally, a 3′ loop comprised of poly(A) exhibits better mismatch discrimination than the equivalent poly(T) loop, but at the cost of decreased gain. Optimization over this parameter space significantly improves the signaling of the pseudoknot-based E-DNA architecture, leading to the ability to sensitively and specifically detect DNA targets even when challenged in complex, multicomponent samples such as blood serum. PMID:19093760

  5. Elucidating ultrafast electron dynamics at surfaces using extreme ultraviolet (XUV) reflection-absorption spectroscopy.

    PubMed

    Biswas, Somnath; Husek, Jakub; Baker, L Robert

    2018-04-24

    Here we review the recent development of extreme ultraviolet reflection-absorption (XUV-RA) spectroscopy. This method combines the benefits of X-ray absorption spectroscopy, such as element, oxidation, and spin state specificity, with surface sensitivity and ultrafast time resolution, having a probe depth of only a few nm and an instrument response less than 100 fs. Using this technique we investigated the ultrafast electron dynamics at a hematite (α-Fe2O3) surface. Surface electron trapping and small polaron formation both occur in 660 fs following photoexcitation. These kinetics are independent of surface morphology indicating that electron trapping is not mediated by defects. Instead, small polaron formation is proposed as the likely driving force for surface electron trapping. We also show that in Fe2O3, Co3O4, and NiO, band gap excitation promotes electron transfer from O 2p valence band states to metal 3d conduction band states. In addition to detecting the photoexcited electron at the metal M2,3-edge, the valence band hole is directly observed as transient signal at the O L1-edge. The size of the resulting charge transfer exciton is on the order of a single metal-oxygen bond length. Spectral shifts at the O L1-edge correlate with metal-oxygen bond covalency, confirming the relationship between valence band hybridization and the overpotential for water oxidation. These examples demonstrate the unique ability to measure ultrafast electron dynamics with element and chemical state resolution using XUV-RA spectroscopy. Accordingly, this method is poised to play an important role to reveal chemical details of previously unseen surface electron dynamics.

  6. In situ electronic probing of semiconducting nanowires in an electron microscope.

    PubMed

    Fauske, V T; Erlbeck, M B; Huh, J; Kim, D C; Munshi, A M; Dheeraj, D L; Weman, H; Fimland, B O; Van Helvoort, A T J

    2016-05-01

    For the development of electronic nanoscale structures, feedback on its electronic properties is crucial, but challenging. Here, we present a comparison of various in situ methods for electronically probing single, p-doped GaAs nanowires inside a scanning electron microscope. The methods used include (i) directly probing individual as-grown nanowires with a sharp nano-manipulator, (ii) contacting dispersed nanowires with two metal contacts and (iii) contacting dispersed nanowires with four metal contacts. For the last two cases, we compare the results obtained using conventional ex situ litho-graphy contacting techniques and by in situ, direct-write electron beam induced deposition of a metal (Pt). The comparison shows that 2-probe measurements gives consistent results also with contacts made by electron beam induced deposition, but that for 4-probe, stray deposition can be a problem for shorter nanowires. This comparative study demonstrates that the preferred in situ method depends on the required throughput and reliability. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  7. ProbeZT: Simulation of transport coefficients of molecular electronic junctions under environmental effects using Büttiker's probes

    NASA Astrophysics Data System (ADS)

    Korol, Roman; Kilgour, Michael; Segal, Dvira

    2018-03-01

    We present our in-house quantum transport package, ProbeZT. This program provides linear response coefficients: electrical and electronic thermal conductances, as well as the thermopower of molecular junctions in which electrons interact with the surrounding thermal environment. Calculations are performed based on the Büttiker probe method, which introduces decoherence, energy exchange and dissipation effects phenomenologically using virtual electrode terminals called probes. The program can realize different types of probes, each introducing various environmental effects, including elastic and inelastic scattering of electrons. The molecular system is described by an arbitrary tight-binding Hamiltonian, allowing the study of different geometries beyond simple one-dimensional wires. Applications of the program to study the thermoelectric performance of molecular junctions are illustrated. The program also has a built-in functionality to simulate electron transport in double-stranded DNA molecules based on a tight-binding (ladder) description of the junction.

  8. Northern blots: capillary transfer of RNA from agarose gels and filter hybridization using standard stringency conditions.

    PubMed

    Rio, Donald C

    2015-03-02

    In this protocol, an RNA sample, fractionated by gel electrophoresis, is transferred from the gel onto a membrane by capillary transfer. Short-wave UV light is used to fix the transferred RNA to the membrane. The membrane is then pretreated to block nonspecific probe-binding sites, and hybridization of the immobilized RNA to a (32)P-labeled DNA or RNA probe specific for the mRNA of interest is performed. Finally, the membrane is washed and subjected to autoradiography or phosphorimaging. Because exposure to UV cross-links the RNA to the membrane, the membrane can be stripped and hybridized with other probes. The procedure is suitable for detecting poly(A)(+)-selected mRNA or mRNA in total cellular RNA if the target transcript is relatively abundant. Using DNA or RNA probes labeled to 1 × 10(8)-10 × 10(8) cpm/µg, it should be possible to detect ∼5 pg of a specific RNA. © 2015 Cold Spring Harbor Laboratory Press.

  9. Kinetic and thermodynamic hysteresis imposed by intercalation of proflavine in ferrocene-modified double-stranded DNA.

    PubMed

    Gebala, Magdalena; La Mantia, Fabio; Schuhmann, Wolfgang

    2013-07-22

    Surface-confined immobilized redox species often do not show the expected zero peak separation in slow-scan cyclic voltammograms. This phenomenon is frequently associated to experimental drawbacks and hence neglected. However, a nonzero peak separation, which is common to many electrochemical systems with high structural flexibility, can be rationally assigned to a thermodynamic hysteresis. To study this phenomenon, a surface-confined redox species was used. Specifically, a DNA strand which is tagged with ferrocene (Fc) moieties at its 5' end and its complementary capture probe is thiolated at the 3' end was self-assembled in a monolayer at a Au electrode with the Fc moieties being located at the bottom plane of the double-stranded DNA (dsDNA). The DNA-bound Fc undergoes rapid electron transfer with the electrode surface as evaluated by fast scan cyclic voltammetry. The electron transfer is sensitive to the ion transport along the DNA strands, a phenomenon which is modulated upon specific intercalation of proflavine into surface-bound dsDNA. The electron transfer rate of the Fc(0/+) redox process is influenced by the cationic permselectivity of the DNA monolayer. In addition to the kinetic hindrance, a thermodynamic effect correlated with changes in the activity coefficients of the Fc(0/+) moieties near the gold-dsDNA interface is observed and discussed as source of the observed hysteresis causing the non-zero peak separation in the voltammograms. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Ultrafast dynamics of photogenerated electrons in CdS nanocluster multilayers assembled on solid substrates: effects of assembly and electrode potential.

    PubMed

    Yagi, Ichizo; Mikami, Kensuke; Okamura, Masayuki; Uosaki, Kohei

    2013-07-22

    The ultrafast dynamics of photogenerated electrons in multilayer assemblies of CdS nanoparticles prepared on quartz and indium-tin oxide (ITO) substrates were followed by femtosecond (fs) visible-pump/mid-IR probe spectroscopy. Based on the observation of the photoinduced transient absorption spectra in the broad mid-IR range at the multilayer assembly of CdS nanoparticles, the occupation and fast relaxation of higher electronic states (1P(e)) were clarified. As compared with the electron dynamics of isolated (dispersed in solution) nanoparticles, the decay of photoexcited electrons in the multilayer assembly was clearly accelerated probably due to both electron hopping and scattering during interparticle electron tunneling. By using an ITO electrode as a substrate, the effect of the electric field on the photoelectron dynamics in the multilayer assembly was also investigated in situ. Both the amplitude and lifetime of photoexcited electrons gradually reduced as the potential became more positive. This result was explained by considering the reduction of the interparticle tunneling probability and the increase in the electron-transfer rate from the CdS nanoparticle assembly to the ITO electrode. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Resolving an anomaly in electron temperature measurement using double and triple Langmuir probes

    NASA Astrophysics Data System (ADS)

    Ghosh, Soumen; Barada, K. K.; Chattopadhyay, P. K.; Ghosh, J.; Bora, D.

    2015-02-01

    Langmuir probes with variants such as single, double and triple probes remain the most common method of electron temperature measurement in low-temperature laboratory plasmas. However, proper estimation of electron temperature mainly using triple probe configuration requires the proper choice of compensation factor (W). Determination of the compensating factor is not very straightforward as it depends heavily on plasma floating potential (Vf), electron temperature (Te), the type of gas used for plasma production and the bias voltage applied to probe pins, especially in cases where there are substantial variations in floating potential. In this paper we highlight the anomaly in electron temperature measurement using double and triple Langmuir probe techniques as well as the proper determination of the compensation factor (W) to overcome this anomaly. Experiments are carried out with helicon antenna producing inductive radiofrequency plasmas, where significant variation of floating potential along the axis enables a detailed study of deviations introduced in Te measurements using triple probes compared to double and single probes. It is observed that the bias voltage between the probe pins of the triple probes plays an important role in the accurate determination of the compensating factor (W) and should be in the range (5Vd2 < Vd3 < 10Vd2), where Vd2 and Vd3 are the voltage between floating probe pins 2 and 1 and the bias voltage, respectively.

  12. Combining state-of-the-art experiment and ab initio calculations for a better understanding of the interplay between valence, magnetism and structure in Eu compounds at high pressure

    DOE PAGES

    Souza-Neto, N. M.; Haskel, D.; dos Reis, R. D.; ...

    2016-07-26

    Here, we describe how first principle calculations can play a key role in the interpretation of X-ray absorption near-edge structure (XANES) and X-ray magnetic circular dichroism (XMCD) spectra for a better understanding of emergent phenomena in condensed matter physics at high applied pressure. Eu compounds are used as case study to illustrate the advantages of this methodology, ranging from studies of electronic charge transfer probed by quadrupolar and dipolar contributions, to accurately determining electronic valence, and to inform about the influence of pressure on RKKY interactions and magnetism. This description should help advance studies where the pressure dependence of XANESmore » and XMCD data must be tackled with the support of theoretical calculations for a proper understanding of the electronic properties of materials.« less

  13. Studies on electronic structure of interfaces between Ag and gelatin for stabilization of Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Tani, Tadaaki; Uchida, Takayuki

    2015-06-01

    Extremely high stability of Ag nanoparticles in photographic materials has forced us to study the electronic structures of the interfaces between thin layers of Ag, Au, and Pt and their surface membranes in ambient atmosphere by photoelectron yield spectroscopy in air and Kelvin probe method. Owing to the Fermi level equalization between a metal layer and a membrane coming from air, the electron transfer took place from the membrane to Pt and Au layers and from an Ag layer to the membrane, giving the reason for poor stability of Ag nanoparticles in air. The control of the Fermi level of an Ag layer with respect to that of a gelatin membrane in air could be widely made according to Nernst’s equation by changing the pH and pAg values of an aqueous gelatin solution used to form the membrane, and thus available to stabilize Ag nanoparticles in a gelatin matrix.

  14. Study of protein-probe interaction and protective action of surfactant sodium dodecyl sulphate in urea-denatured HSA using charge transfer fluorescence probe methyl ester of N,N-dimethylamino naphthyl acrylic acid.

    PubMed

    Mahanta, Subrata; Singh, Rupashree Balia; Guchhait, Nikhil

    2009-03-01

    We have demonstrated that the intramolecular charge transfer (ICT) probe Methyl ester of N,N-dimethylamino naphthyl acrylic acid (MDMANA) serves as an efficient reporter of the proteinous microenvironment of Human Serum Albumin (HSA). This work reports the binding phenomenon of MDMANA with HSA and spectral modulation thereupon. The extent of binding and free energy change for complexation reaction along with efficient fluorescence resonance energy transfer from Trp-214 of HSA to MDMANA indicates strong binding between probe and protein. Fluorescence anisotropy, red edge excitation shift, acrylamide quenching and time resolved measurements corroborate the binding nature of the probe with protein and predicts that the probe molecule is located at the hydrophobic site of the protein HSA. Due to the strong binding ability of MDMANA with HSA, it is successfully utilized for the study of stabilizing action of anionic surfactant Sodium Dodecyl Sulphate to the unfolding and folding of protein with denaturant urea in concentration range 1M to 9M.

  15. Aberrated electron probes for magnetic spectroscopy with atomic resolution: Theory and practical aspects

    DOE PAGES

    Rusz, Ján; Idrobo, Juan Carlos

    2016-03-24

    It was recently proposed that electron magnetic circular dichroism (EMCD) can be measured in scanning transmission electron microscopy (STEM) with atomic resolution by tuning the phase distribution of a electron beam. Here, we describe the theoretical and practical aspects for the detection of out-of-plane and in-plane magnetization utilizing atomic size electron probes. Here we present the calculated optimized astigmatic probes and discuss how to achieve them experimentally.

  16. One-Step Synthesis of Water-Soluble MoS2 Quantum Dots via a Hydrothermal Method as a Fluorescent Probe for Hyaluronidase Detection.

    PubMed

    Gu, Wei; Yan, Yinghan; Zhang, Cuiling; Ding, Caiping; Xian, Yuezhong

    2016-05-11

    In this work, a bottom-up strategy is developed to synthesize water-soluble molybdenum disulfide quantum dots (MoS2 QDs) through a simple, one-step hydrothermal method using ammonium tetrathiomolybdate [(NH4)2MoS4] as the precursor and hydrazine hydrate as the reducing agent. The as-synthesized MoS2 QDs are few-layered with a narrow size distribution, and the average diameter is about 2.8 nm. The resultant QDs show excitation-dependent blue fluorescence due to the polydispersity of the QDs. Moreover, the fluorescence can be quenched by hyaluronic acid (HA)-functionalized gold nanoparticles through a photoinduced electron-transfer mechanism. Hyaluronidase (HAase), an endoglucosidase, can cleave HA into proangiogenic fragments and lead to the aggregation of gold nanoparticles. As a result, the electron transfer is blocked and fluorescence is recovered. On the basis of this principle, a novel fluorescence sensor for HAase is developed with a linear range from 1 to 50 U/mL and a detection limit of 0.7 U/mL.

  17. Dispersion of bamboo type multi-wall carbon nanotubes in calf-thymus double stranded DNA.

    PubMed

    Primo, Emiliano N; Cañete-Rosales, Paulina; Bollo, Soledad; Rubianes, María D; Rivas, Gustavo A

    2013-08-01

    We report for the first time the use of double stranded calf-thymus DNA (dsDNA) to successfully disperse bamboo-like multi-walled carbon nanotubes (bCNT). The dispersion and the modified electrodes were studied by different spectroscopic, microscopic and electrochemical techniques. The drastic treatment for dispersing the bCNT (45min sonication in a 50% (v/v) ethanol:water solution), produces a partial denaturation and a decrease in the length of dsDNA that facilitates the dispersion of CNT and makes possible an efficient electron transfer of guanine residues to the electrode. A critical analysis of the influence of different experimental conditions on the efficiency of the dispersion and on the performance of glassy carbon electrodes (GCE) modified with bCNT-dsDNA dispersion is also reported. The electron transfer of redox probes and guanine residues was more efficient at GCE modified with bCNT dispersed in dsDNA than at GCE modified with hollow CNT (hCNT) dispersed in dsDNA, demonstrating the importance of the presence of bCNT. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. To Tunnel or not to Tunnel, Proton Transfer is the Question.

    NASA Astrophysics Data System (ADS)

    Chew, Kathryn; Nemchick, Deacon; Vaccaro, Patrick

    2014-06-01

    The transduction of protons between donor and acceptor sites, as mediated by the action of adjoining hydrogen bonds, represents one of the most ubiquitous of chemical transformations. While the basic mechanisms underlying such phenomena often can be ascribed to simple acid-base chemistry, the putative roles of selective nuclear and electronic displacements should not be discounted, especially when the presence of a sizeable potential barrier impedes classical hydron-migration pathways. The vibrational and isotopic specificity of hindered intramolecular proton transfer taking place within the ground (˜{X1}{A}1) and the lowest-lying excited (˜{A1}B2 (π *π) electronic states of the prototypical tropolone (TrOH) system has been probed by implementing multiple-color variants of resonant four-wave mixing (RFWM) spectroscopy, with polarization-resolved detection allowing for the extraction of quantitative rotation-tunneling information. The marked dependence of unimolecular dynamics on the extent and the type of excitation deposited into TrOH internal degrees of freedom will be discussed. Experimentally observed trends and propensities for tunneling-mediated reactivity will be interpreted through use of accompanying quantum-chemical calculations.

  19. Virtual scanning tunneling microscopy: A local spectroscopic probe of two-dimensional electron systems

    NASA Astrophysics Data System (ADS)

    Sciambi, A.; Pelliccione, M.; Bank, S. R.; Gossard, A. C.; Goldhaber-Gordon, D.

    2010-09-01

    We propose a probe technique capable of performing local low-temperature spectroscopy on a two-dimensional electron system (2DES) in a semiconductor heterostructure. Motivated by predicted spatially-structured electron phases, the probe uses a charged metal tip to induce electrons to tunnel locally, directly below the tip, from a "probe" 2DES to a "subject" 2DES of interest. We test this concept with large-area (nonscanning) tunneling measurements, and predict a high spatial resolution and spectroscopic capability, with minimal influence on the physics in the subject 2DES.

  20. Electronic communication across diamagnetic metal bridges: a homoleptic gallium(III) complex of a redox-active diarylamido-based ligand and its oxidized derivatives

    PubMed Central

    Liddle, Brendan J.; Wanniarachchi, Sarath; Hewage, Jeewantha S.; Lindeman, Sergey V.; Bennett, Brian; Gardinier, James R.

    2012-01-01

    Complexes with cations of the type [Ga(L)2]n+ where L = bis(4-methyl-2-(1H-pyrazol-1-yl)phenyl)amido and n = 1, 2, 3 have been prepared and structurally characterized. The electronic properties of each were probed by electrochemical and spectroscopic means and were interpreted with the aid of DFT calculations. The dication, best described as [Ga(L−)(L0)]2+, and is a Robin-Day class II mixed-valence species. As such, a broad, weak, solvent-dependent intervalence charge transfer (IVCT) band was found in the NIR spectrum in the range 6390 to 6925 cm−1, depending on solvent. Band shape analyses and the use of Hush and Marcus relations revealed a modest electronic coupling, Hab of about 200 cm−1, and a large rate constant for electron transfer, ket, on the order of 1010 s−1 between redox active ligands. The di-oxidized complex [Ga(L0)2]3+ shows a half-field ΔMs = 2 transition in its solid-state X-Band EPR spectrum at 5 K which indicates that the triplet state is thermally populated. DFT calculations (M06/Def2-SV(P)) suggest that the singlet state is 21.7 cm−1 lower in energy than the triplet state. PMID:23163736

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, Casey N.; Hadt, Ryan G.; Hayes, Dugan

    The Co 4O 4 cubane is a representative structural model of oxidic cobalt oxygen evolving catalysts (Co-OECs). The Co-OECs are active when residing at two oxidation levels above an all Co(III) resting state. This doubly oxidized Co(IV) 2 state may be captured in a Co(III) 2(IV) 2 cubane. We demonstrate that the Co(III) 2(IV) 2 cubane may be electrochemically generated and the electronic properties of this unique high-valent state may be probed by in situ spectroscopy. Intervalence charge transfer (IVCT) bands in the near-IR are observed for the Co(III) 2(IV) 2 cubane, and spectroscopic analysis together with electrochemical kinetics measurementsmore » reveal a larger reorganization energy and a smaller electron transfer rate constant for the doubly versus singly oxidized cubane. Spectroelectrochemical X-ray absorption data further reveal systematic spectral changes with successive oxidations from the cubane resting state. Electronic structure calculations correlated to experimental data suggest that this state is best represented as a localized, antiferromagnetically coupled Co(IV) 2 dimer. The exchange coupling in the cofacial Co(IV) 2 site allows for parallels to be drawn between the electronic structure of the Co 4O 4 cubane model system and the high valent active site of the Co-OEC, with specific emphasis on the manifestation of a doubly oxidized Co(IV) 2 center on O–O bond formation.« less

  2. Chloroplast biogenesis 89: development of analytical tools for probing the biosynthetic topography of photosynthetic membranes by determination of resonance excitation energy transfer distances separating metabolic tetrapyrrole donors from chlorophyll a acceptors.

    PubMed

    Kopetz, Karen J; Kolossov, Vladimir L; Rebeiz, Constantin A

    2004-06-15

    The thorough understanding of photosynthetic membrane assembly requires a deeper knowledge of the coordination and regulation of the chlorophyll (Chl) and thylakoid apoprotein biosynthetic pathways. As a working hypothesis we have recently proposed three different Chl-thylakoid apoprotein biosynthesis models: a single-branched Chl biosynthetic pathway (SBP)-single location model, a SBP-multilocation model, and a multibranched Chl biosynthetic pathway (MBP)-sublocation model. The detection of resonance excitation energy transfer between tetrapyrrole precursors of Chl, and several Chl-protein complexes, has made it possible to test the validity of the proposed Chl-thylakoid apoprotein biosynthesis models by resonance excitation energy transfer determinations. In this work, resonance excitation energy transfer techniques that allow the determination of distances separating tetrapyrrole donors from Chl-protein acceptors in green plants by using readily available electronic spectroscopic instrumentation are developed. It is concluded that the calculated distances are compatible with the MBP-sublocation model and incompatible with the operation of the SBP-single location Chl-protein biosynthesis model.

  3. Measurement and analysis of electron-neutral collision frequency in the calibrated cutoff probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, K. H.; Seo, B. H.; Kim, J. H.

    2016-03-15

    As collisions between electrons and neutral particles constitute one of the most representative physical phenomena in weakly ionized plasma, the electron-neutral (e-n) collision frequency is a very important plasma parameter as regards understanding the physics of this material. In this paper, we measured the e-n collision frequency in the plasma using a calibrated cutoff-probe. A highly accurate reactance spectrum of the plasma/cutoff-probe system, which is expected based on previous cutoff-probe circuit simulations [Kim et al., Appl. Phys. Lett. 99, 131502 (2011)], is obtained using the calibrated cutoff-probe method, and the e-n collision frequency is calculated based on the cutoff-probe circuitmore » model together with the high-frequency conductance model. The measured e-n collision frequency (by the calibrated cutoff-probe method) is compared and analyzed with that obtained using a Langmuir probe, with the latter being calculated from the measured electron-energy distribution functions, in wide range of gas pressure.« less

  4. First measurements of electron temperature in the D region with a symmetric double probe

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, E. P.

    1973-01-01

    Measurement of the altitude profile of electron temperature in the ionospheric D region with the aid of a symmetric double probe flown on a Nike-Cajun payload launched on Oct. 13, 1971. The procedure for determining the electron temperature from the parameters of the double probe's current-voltage characteristic under conditions of nonnegligible ion-atom collision frequencies is described. It is shown that in its first lower ionospheric application the technique of the symmetric double probe has yielded the lowest values of electron temperature yet measured and has provided the very first direct measurement of electron temperature in the D region.

  5. Kinetic consequences of introducing a proximal selenocysteine ligand into cytochrome P450cam.

    PubMed

    Vandemeulebroucke, An; Aldag, Caroline; Stiebritz, Martin T; Reiher, Markus; Hilvert, Donald

    2015-11-10

    The structural, electronic, and catalytic properties of cytochrome P450cam are subtly altered when the cysteine that coordinates to the heme iron is replaced with a selenocysteine. To map the effects of the sulfur-to-selenium substitution on the individual steps of the catalytic cycle, we conducted a comparative kinetic analysis of the selenoenzyme and its cysteine counterpart. Our results show that the more electron-donating selenolate ligand has only negligible effects on substrate, product, and oxygen binding, electron transfer, catalytic turnover, and coupling efficiency. Off-pathway reduction of oxygen to give superoxide is the only step significantly affected by the mutation. Incorporation of selenium accelerates this uncoupling reaction approximately 50-fold compared to sulfur, but because the second electron transfer step is much faster, the impact on overall catalytic turnover is minimal. Density functional theory calculations with pure and hybrid functionals suggest that superoxide formation is governed by a delicate interplay of spin distribution, spin state, and structural effects. In light of the remarkably similar electronic structures and energies calculated for the sulfur- and selenium-containing enzymes, the ability of the heavier atom to enhance the rate of spin crossover may account for the experimental observations. Because the selenoenzyme closely mimics wild-type P450cam, even at the level of individual steps in the reaction cycle, selenium represents a unique mechanistic probe for analyzing the role of the proximal ligand and spin crossovers in P450 chemistry.

  6. Influence of metallic surface states on electron affinity of epitaxial AlN films

    NASA Astrophysics Data System (ADS)

    Mishra, Monu; Krishna, Shibin; Aggarwal, Neha; Gupta, Govind

    2017-06-01

    The present article investigates surface metallic states induced alteration in the electron affinity of epitaxial AlN films. AlN films grown by plasma-assisted molecular beam epitaxy system with (30% and 16%) and without metallic aluminium on the surface were probed via photoemission spectroscopic measurements. An in-depth analysis exploring the influence of metallic aluminium and native oxide on the electronic structure of the films is performed. It was observed that the metallic states pinned the Fermi Level (FL) near valence band edge and lead to the reduction of electron affinity (EA). These metallic states initiated charge transfer and induced changes in surface and interface dipoles strength. Therefore, the EA of the films varied between 0.6-1.0 eV due to the variation in contribution of metallic states and native oxide. However, the surface barrier height (SBH) increased (4.2-3.5 eV) adversely due to the availability of donor-like surface states in metallic aluminium rich films.

  7. Electron density and electron temperature measurement in a bi-Maxwellian electron distribution using a derivative method of Langmuir probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Ikjin; Chung, ChinWook; Youn Moon, Se

    2013-08-15

    In plasma diagnostics with a single Langmuir probe, the electron temperature T{sub e} is usually obtained from the slope of the logarithm of the electron current or from the electron energy probability functions of current (I)-voltage (V) curve. Recently, Chen [F. F. Chen, Phys. Plasmas 8, 3029 (2001)] suggested a derivative analysis method to obtain T{sub e} by the ratio between the probe current and the derivative of the probe current at a plasma potential where the ion current becomes zero. Based on this method, electron temperatures and electron densities were measured and compared with those from the electron energymore » distribution function (EEDF) measurement in Maxwellian and bi-Maxwellian electron distribution conditions. In a bi-Maxwellian electron distribution, we found the electron temperature T{sub e} obtained from the method is always lower than the effective temperatures T{sub eff} derived from EEDFs. The theoretical analysis for this is presented.« less

  8. Electron launching voltage monitor

    DOEpatents

    Mendel, Clifford W.; Savage, Mark E.

    1992-01-01

    An electron launching voltage monitor measures MITL voltage using a relationship between anode electric field and electron current launched from a cathode-mounted perturbation. An electron launching probe extends through and is spaced from the edge of an opening in a first MITL conductor, one end of the launching probe being in the gap between the MITL conductor, the other end being adjacent a first side of the first conductor away from the second conductor. A housing surrounds the launching probe and electrically connects the first side of the first conductor to the other end of the launching probe. A detector detects the current passing through the housing to the launching probe, the detected current being representative of the voltage between the conductors.

  9. Syringe-injectable mesh electronics integrate seamlessly with minimal chronic immune response in the brain

    PubMed Central

    Zhou, Tao; Hong, Guosong; Fu, Tian-Ming; Yang, Xiao; Schuhmann, Thomas G.; Viveros, Robert D.; Lieber, Charles M.

    2017-01-01

    Implantation of electrical probes into the brain has been central to both neuroscience research and biomedical applications, although conventional probes induce gliosis in surrounding tissue. We recently reported ultraflexible open mesh electronics implanted into rodent brains by syringe injection that exhibit promising chronic tissue response and recording stability. Here we report time-dependent histology studies of the mesh electronics/brain-tissue interface obtained from sections perpendicular and parallel to probe long axis, as well as studies of conventional flexible thin-film probes. Confocal fluorescence microscopy images of the perpendicular and parallel brain slices containing mesh electronics showed that the distribution of astrocytes, microglia, and neurons became uniform from 2–12 wk, whereas flexible thin-film probes yield a marked accumulation of astrocytes and microglia and decrease of neurons for the same period. Quantitative analyses of 4- and 12-wk data showed that the signals for neurons, axons, astrocytes, and microglia are nearly the same from the mesh electronics surface to the baseline far from the probes, in contrast to flexible polymer probes, which show decreases in neuron and increases in astrocyte and microglia signals. Notably, images of sagittal brain slices containing nearly the entire mesh electronics probe showed that the tissue interface was uniform and neurons and neurofilaments penetrated through the mesh by 3 mo postimplantation. The minimal immune response and seamless interface with brain tissue postimplantation achieved by ultraflexible open mesh electronics probes provide substantial advantages and could enable a wide range of opportunities for in vivo chronic recording and modulation of brain activity in the future. PMID:28533392

  10. Syringe-injectable mesh electronics integrate seamlessly with minimal chronic immune response in the brain.

    PubMed

    Zhou, Tao; Hong, Guosong; Fu, Tian-Ming; Yang, Xiao; Schuhmann, Thomas G; Viveros, Robert D; Lieber, Charles M

    2017-06-06

    Implantation of electrical probes into the brain has been central to both neuroscience research and biomedical applications, although conventional probes induce gliosis in surrounding tissue. We recently reported ultraflexible open mesh electronics implanted into rodent brains by syringe injection that exhibit promising chronic tissue response and recording stability. Here we report time-dependent histology studies of the mesh electronics/brain-tissue interface obtained from sections perpendicular and parallel to probe long axis, as well as studies of conventional flexible thin-film probes. Confocal fluorescence microscopy images of the perpendicular and parallel brain slices containing mesh electronics showed that the distribution of astrocytes, microglia, and neurons became uniform from 2-12 wk, whereas flexible thin-film probes yield a marked accumulation of astrocytes and microglia and decrease of neurons for the same period. Quantitative analyses of 4- and 12-wk data showed that the signals for neurons, axons, astrocytes, and microglia are nearly the same from the mesh electronics surface to the baseline far from the probes, in contrast to flexible polymer probes, which show decreases in neuron and increases in astrocyte and microglia signals. Notably, images of sagittal brain slices containing nearly the entire mesh electronics probe showed that the tissue interface was uniform and neurons and neurofilaments penetrated through the mesh by 3 mo postimplantation. The minimal immune response and seamless interface with brain tissue postimplantation achieved by ultraflexible open mesh electronics probes provide substantial advantages and could enable a wide range of opportunities for in vivo chronic recording and modulation of brain activity in the future.

  11. Label-free electrochemical aptasensor constructed by layer-by-layer technology for sensitive and selective detection of cancer cells.

    PubMed

    Wang, Tianshu; Liu, Jiyang; Gu, Xiaoxiao; Li, Dan; Wang, Jin; Wang, Erkang

    2015-07-02

    Here, a cytosensor was constructed with ferrocene-appended poly(allylamine hydrochloride) (Fc-PAH) functionalized graphene (Fc-PAH-G), poly(sodium-p-styrenesulfonate) (PSS) and aptamer (AS1411) by layer-by-layer assembly technology. The hybrid nanocomposite Fc-PAH-G not only brings probes on the electrode and also promotes electron transfer between the probes and the substrate electrode. Meanwhile, LBL technology provides more effective probes to enhance amplified signal for improving the sensitivity of the detection. While AS1411 forming G-quardruplex structure and binding cancer cells, the current response of the sensing electrode decreased due to the insulating properties of cellular membrane. Differential pulse voltammetry (DPV) was performed to investigate the electrochemical detection of HeLa cells attributing to its sensitivity of the current signal change. The as-prepared aptasensor showed a high sensitivity and good stability, a widely detection range from 10 to 10(6) cells/mL with a detection limit as low as 10 cells/mL for the detection of cancer cells. Copyright © 2015. Published by Elsevier B.V.

  12. High-order multipole radiation from quantum Hall states in Dirac materials

    NASA Astrophysics Data System (ADS)

    Gullans, Michael J.; Taylor, Jacob M.; Imamoǧlu, Ataç; Ghaemi, Pouyan; Hafezi, Mohammad

    2017-06-01

    We investigate the optical response of strongly disordered quantum Hall states in two-dimensional Dirac materials and find qualitatively different effects in the radiation properties of the bulk versus the edge. We show that the far-field radiation from the edge is characterized by large multipole moments (>50 ) due to the efficient transfer of angular momentum from the electrons into the scattered light. The maximum multipole transition moment is a direct measure of the coherence length of the edge states. Accessing these multipole transitions would provide new tools for optical spectroscopy and control of quantum Hall edge states. On the other hand, the far-field radiation from the bulk appears as random dipole emission with spectral properties that vary with the local disorder potential. We determine the conditions under which this bulk radiation can be used to image the disorder landscape. Such optical measurements can probe submicron-length scales over large areas and provide complementary information to scanning probe techniques. Spatially resolving this bulk radiation would serve as a novel probe of the percolation transition near half filling.

  13. Experimental plasma studies

    NASA Technical Reports Server (NTRS)

    Dunn, M. G.

    1972-01-01

    The rate coefficients for the reactions C(+) + e(-) + e(-) yields C + e(-) and CO(+) + e(-) yields C + O were measured over the electron temperature range of approximately 1500 deg K to 7000 deg K. The measurements were performed in CO that had expanded from equilibrium reservoir conditions of 7060 deg K at 17.3 atm pressure and from 6260 deg K at 10.0 atm pressure. Two RAM flight probes were used to measure electron density and electron temperature in the expanding flow of a shock tunnel. Experiments were performed in the inviscid flow with both probes and in the nozzle-wall boundary layer with the constant bias-voltage probe. The distributions of electron density and electron temperature were independently measured using voltage-swept thin-wire probes. Thin-wire Langmuir probes were also used to measure the electron-density and electron-temperature distributions in the boundary layer of a sharp flat plate located on the nozzle centerline. Admittance measurements were performed with the RAM C and RAM C-C S-band antennas in the presence of an ionized boundary layer.

  14. Spin-dependent recombination probed through the dielectric polarizability

    PubMed Central

    Bayliss, Sam L.; Greenham, Neil C.; Friend, Richard H.; Bouchiat, Hélène; Chepelianskii, Alexei D

    2015-01-01

    Despite residing in an energetically and structurally disordered landscape, the spin degree of freedom remains a robust quantity in organic semiconductor materials due to the weak coupling of spin and orbital states. This enforces spin-selectivity in recombination processes which plays a crucial role in optoelectronic devices, for example, in the spin-dependent recombination of weakly bound electron-hole pairs, or charge-transfer states, which form in a photovoltaic blend. Here, we implement a detection scheme to probe the spin-selective recombination of these states through changes in their dielectric polarizability under magnetic resonance. Using this technique, we access a regime in which the usual mixing of spin-singlet and spin-triplet states due to hyperfine fields is suppressed by microwave driving. We present a quantitative model for this behaviour which allows us to estimate the spin-dependent recombination rate, and draw parallels with the Majorana–Brossel resonances observed in atomic physics experiments. PMID:26439933

  15. Mechanical gate control for atom-by-atom cluster assembly with scanning probe microscopy.

    PubMed

    Sugimoto, Yoshiaki; Yurtsever, Ayhan; Hirayama, Naoki; Abe, Masayuki; Morita, Seizo

    2014-07-11

    Nanoclusters supported on substrates are of great importance in physics and chemistry as well as in technical applications, such as single-electron transistors and nanocatalysts. The properties of nanoclusters differ significantly from those of either the constituent atoms or the bulk solid, and are highly sensitive to size and chemical composition. Here we propose a novel atom gating technique to assemble various atom clusters composed of a defined number of atoms at room temperature. The present gating operation is based on the transfer of single diffusing atoms among nanospaces governed by gates, which can be opened in response to the chemical interaction force with a scanning probe microscope tip. This method provides an alternative way to create pre-designed atom clusters with different chemical compositions and to evaluate their chemical stabilities, thus enabling investigation into the influence that a single dopant atom incorporated into the host clusters has on a given cluster stability.

  16. Negative differential resistance observation in complex convoluted fullerene junctions

    NASA Astrophysics Data System (ADS)

    Kaur, Milanpreet; Sawhney, Ravinder Singh; Engles, Derick

    2018-04-01

    In this work, we simulated the smallest fullerene molecule, C20 in a two-probe device model with gold electrodes. The gold electrodes comprised of (011) miller planes were carved to construct the novel geometry based four unique shapes, which were strung to fullerene molecules through mechanically controlled break junction techniques. The organized devices were later scrutinized using non-equilibrium Green's function based on the density functional theory to calculate their molecular orbitals, energy levels, charge transfers, and electrical parameters. After intense scrutiny, we concluded that five-edged and six-edged devices have the lowest and highest current-conductance values, which result from their electrode-dominating and electrode-subsidiary effects, respectively. However, an interesting observation was that the three-edged and four-edged electrodes functioned as semi-metallic in nature, allowing the C20 molecule to demonstrate its performance with the complementary effect of these electrodes in the electron conduction process of a two-probe device.

  17. A turn-on fluorescent probe for endogenous formaldehyde in the endoplasmic reticulum of living cells

    NASA Astrophysics Data System (ADS)

    Tang, Yonghe; Ma, Yanyan; Xu, An; Xu, Gaoping; Lin, Weiying

    2017-06-01

    As the simplest aldehyde compounds, formaldehyde (FA) is implicated in nervous system diseases and cancer. Endoplasmic reticulum is an organelle that plays important functions in living cells. Accordingly, the development of efficient methods for FA detection in the endoplasmic reticulum (ER) is of great biomedical importance. In this work, we developed the first ER-targeted fluorescent FA probe Na-FA-ER. The detection is based on the condensation reaction of the hydrazine group and FA to suppress the photo-induced electron transfer (PET) pathway, resulting in a fluorescence increase. The novel Na-FA-ER showed high sensitivity to FA. In addition, the Na-FA-ER enabled the bio-imaging of exogenous and endogenous FA in living HeLa cells. Most significantly, the new Na-FA-ER was employed to visualize the endogenous FA in the ER in living cells for the first time.

  18. A high brightness probe of polymer nanoparticles for biological imaging

    NASA Astrophysics Data System (ADS)

    Zhou, Sirong; Zhu, Jiarong; Li, Yaping; Feng, Liheng

    2018-03-01

    Conjugated polymer nanoparticles (CPNs) with high brightness in long wavelength region were prepared by the nano-precipitation method. Based on fluorescence resonance energy transfer (FRET) mechanism, the high brightness property of the CPNs was realized by four different emission polymers. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) displayed that the CPNs possessed a spherical structure and an average diameter of 75 nm. Analysis assays showed that the CPNs had excellent biocompatibility, good photostability and low cytotoxicity. The CPNs were bio-modified with a cell penetrating peptide (Tat, a targeted element) through covalent link. Based on the entire wave fluorescence emission, the functionalized CPNs1-4 can meet multichannel and high throughput assays in cell and organ imaging. The contribution of the work lies in not only providing a new way to obtain a high brightness imaging probe in long wavelength region, but also using targeted cell and organ imaging.

  19. Stepwise O-Atom Transfer in Heme-Based Tryptophan Dioxygenase: Role of Substrate Ammonium in Epoxide Ring Opening.

    PubMed

    Shin, Inchul; Ambler, Brett R; Wherritt, Daniel; Griffith, Wendell P; Maldonado, Amanda C; Altman, Ryan A; Liu, Aimin

    2018-03-28

    Heme-based tryptophan dioxygenases are established immunosuppressive metalloproteins with significant biomedical interest. Here, we synthesized two mechanistic probes to specifically test if the α-amino group of the substrate directly participates in a critical step of the O atom transfer during catalysis in human tryptophan 2,3-dioxygenase (TDO). Substitution of the nitrogen atom of the substrate to a carbon (probe 1) or oxygen (probe 2) slowed the catalytic step following the first O atom transfer such that transferring the second O atom becomes less likely to occur, although the dioxygenated products were observed with both probes. A monooxygenated product was also produced from probe 2 in a significant quantity. Analysis of this new product by HPLC coupled UV-vis spectroscopy, high-resolution mass spectrometry, 1 H NMR, 13 C NMR, HSQC, HMBC, and infrared (IR) spectroscopies concluded that this monooxygenated product is a furoindoline compound derived from an unstable epoxyindole intermediate. These results prove that small molecules can manipulate the stepwise O atom transfer reaction of TDO and provide a showcase for a tunable mechanism by synthetic compounds. The product analysis results corroborate the presence of a substrate-based epoxyindole intermediate during catalysis and provide the first substantial experimental evidence for the involvement of the substrate α-amino group in the epoxide ring-opening step during catalysis. This combined synthetic, biochemical, and biophysical study establishes the catalytic role of the α-amino group of the substrate during the O atom transfer reactions and thus represents a substantial advance to the mechanistic comprehension of the heme-based tryptophan dioxygenases.

  20. Layer-by-layer films and colloidal dispersions of graphene oxide nanosheets for efficient control of the fluorescence and aggregation properties of the cationic dye acridine orange.

    PubMed

    Hansda, Chaitali; Chakraborty, Utsav; Hussain, Syed Arshad; Bhattacharjee, Debajyoti; Paul, Pabitra Kumar

    2016-03-15

    Chemically derived graphene oxide (GO) nanosheets have received great deal of interest for technological application such as optoelectronic and biosensors. Aqueous dispersions of GO become an efficient template to induce the association of cationic dye namely Acridine Orange (AO). Interactions of AO with colloidal GO was governed by both electrostatic and π-π stacking cooperative interactions. The type of dye aggregations was found to depend on the concentration of GO in the mixed ensemble. Spectroscopic calculations revealed the formation of both H and J-type dimers, but H-type aggregations were predominant. Preparation of layer-by-layer (LbL) electrostatic self-assembled films of AO and GO onto poly (allylamine hydrochloride) (PAH) coated quartz substrate is also reported in this article. UV-Vis absorption, steady state and time resolve fluorescence and Raman spectroscopic techniques have been employed to explore the detail photophysical properties of pure AO, AO/GO mixed solution and AO/GO LbL films. Scanning electron microscopy was also used for visual evidence of the synthesized nanodimensional GO sheets. The fluorescence quenching of AO in the presence of GO in aqueous solution was due to the interfacial photoinduced electron transfer (PET) from photoexcited AO to GO i.e. GO acts as an efficient quenching agent for the fluorescence emission of AO. The quenching is found to be static in nature. Raman spectroscopic results also confirmed the interaction of AO with GO and the electron transfer. The formation of AO/GO complex via very fast excited state electron transfer mechanism may be proposed as to prepare GO-based fluorescence sensor for biomolecular detection without direct labeling the biomolecules by fluorescent probe. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Layer-by-layer films and colloidal dispersions of graphene oxide nanosheets for efficient control of the fluorescence and aggregation properties of the cationic dye acridine orange

    NASA Astrophysics Data System (ADS)

    Hansda, Chaitali; Chakraborty, Utsav; Hussain, Syed Arshad; Bhattacharjee, Debajyoti; Paul, Pabitra Kumar

    2016-03-01

    Chemically derived graphene oxide (GO) nanosheets have received great deal of interest for technological application such as optoelectronic and biosensors. Aqueous dispersions of GO become an efficient template to induce the association of cationic dye namely Acridine Orange (AO). Interactions of AO with colloidal GO was governed by both electrostatic and π-π stacking cooperative interactions. The type of dye aggregations was found to depend on the concentration of GO in the mixed ensemble. Spectroscopic calculations revealed the formation of both H and J-type dimers, but H-type aggregations were predominant. Preparation of layer-by-layer (LbL) electrostatic self-assembled films of AO and GO onto poly (allylamine hydrochloride) (PAH) coated quartz substrate is also reported in this article. UV-Vis absorption, steady state and time resolve fluorescence and Raman spectroscopic techniques have been employed to explore the detail photophysical properties of pure AO, AO/GO mixed solution and AO/GO LbL films. Scanning electron microscopy was also used for visual evidence of the synthesized nanodimensional GO sheets. The fluorescence quenching of AO in the presence of GO in aqueous solution was due to the interfacial photoinduced electron transfer (PET) from photoexcited AO to GO i.e. GO acts as an efficient quenching agent for the fluorescence emission of AO. The quenching is found to be static in nature. Raman spectroscopic results also confirmed the interaction of AO with GO and the electron transfer. The formation of AO/GO complex via very fast excited state electron transfer mechanism may be proposed as to prepare GO-based fluorescence sensor for biomolecular detection without direct labeling the biomolecules by fluorescent probe.

  2. Characterization of a fluorescent hydrogel synthesized using chitosan, polyvinyl alcohol and 9-anthraldehyde for the selective detection and discrimination of trace Fe3+ and Fe2+ in water for live-cell imaging.

    PubMed

    Maity, Santu; Parshi, Nira; Prodhan, Chandraday; Chaudhuri, Keya; Ganguly, Jhuma

    2018-08-01

    A three-dimensional fluorescent hydrogel based on chitosan, polyvinyl alcohol and 9-anthraldehyde (ChPA) has been successfully designed and synthesized for the selective detection and discrimination of Fe 3+ and Fe 2+ in aqueous environment. The unique characteristics of ChPA has been confirmed by the Fourier-transform infrared spectroscopy (FTIR), rheological measurement, scanning electron microscopy (SEM), thermogravimetry and differential thermogravimetry (TG-DTG), ultraviolet-visible spectroscopy (UV-vis), fluorescence studies, transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDX), x-ray diffraction (XRD) and dynamic light scattering (DLS). The emission intensity at 516 nm of the hydrogel has been enhanced remarkably with the addition of Fe 3+ due to the inhibition of the photoinduced electron transfer (PET) process. However, it gets strongly quenched in the case of Fe 2+ owing to chelation enhanced quenching (CHEQ). The probe (ChPA) causes no significant change in the fluorescence and becomes highly specific and sensitive towards Fe 3+ and Fe 2+ compared to other interfering heavy and transition metal ions (HTM). The detection limits of the sensor for the Fe 3+ and Fe 2+ are 0.124 nM and 0.138 nM, respectively. The probe is also promising as a selective sensor for the Fe 3+ and Fe 2+ in the fluorescence imaging of living cells. Thus, such a probe opens up new opportunities to improve the chitosan based fluorescent chemosensor having biocompatibility, biodegradability, sufficient thermal stability and stability in a wide pH range. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. AIE active multianalyte fluorescent probe for the detection of Cu2+, Ni2+ and Hg2+ ions.

    PubMed

    Pannipara, Mehboobali; Al-Sehemi, Abdullah G; Irfan, Ahmad; Assiri, Mohammed; Kalam, Abul; Al-Ammari, Yahya S

    2018-08-05

    A novel pyrazolyl chromene derivative (Probe 1) displaying aggregation induced emission (AIE) properties that capable of sensing of multiple metal ions has been designed and synthesized. The multi analyte probe exhibits selective sensing for Cu 2+ and Ni 2+ ions via fluorescence turn-off mechanism and ratiometric selectivity for Hg 2+ ions in aqueous media. The extent of binding of the probe with sensitive metal ions has been demonstrated. The experimental results were further investigated by computational means by optimizing the ground state geometries of Probe 1 and its various metal complexes for Probe 1-Ni, Probe 1-Hg and Probe 1-Cu using density functional theory (DFT) at B3LYP/6-31+g(d,p) (LANL2DZ) level. On the basis of binding energies, the stability of metal complexes has been studied. In Probe 1-Ni and Probe 1-Cu complexes, charge transfer has been observed from Probe 1 to metal ions revealing ligand to metal charge transfer (LMCT) while in Probe1-Hg complex LMCT as well as intra-molecular charge tranfer (ICT) within Probe 1. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Towards atomically precise manipulation of 2D nanostructures in the electron microscope

    NASA Astrophysics Data System (ADS)

    Susi, Toma; Kepaptsoglou, Demie; Lin, Yung-Chang; Ramasse, Quentin M.; Meyer, Jannik C.; Suenaga, Kazu; Kotakoski, Jani

    2017-12-01

    Despite decades of research, the ultimate goal of nanotechnology—top-down manipulation of individual atoms—has been directly achieved with only one technique: scanning probe microscopy. In this review, we demonstrate that scanning transmission electron microscopy (STEM) is emerging as an alternative method for the direct assembly of nanostructures, with possible applications in plasmonics, quantum technologies, and materials science. Atomically precise manipulation with STEM relies on recent advances in instrumentation that have enabled non-destructive atomic-resolution imaging at lower electron energies. While momentum transfer from highly energetic electrons often leads to atom ejection, interesting dynamics can be induced when the transferable kinetic energies are comparable to bond strengths in the material. Operating in this regime, very recent experiments have revealed the potential for single-atom manipulation using the Ångström-sized electron beam. To truly enable control, however, it is vital to understand the relevant atomic-scale phenomena through accurate dynamical simulations. Although excellent agreement between experiment and theory for the specific case of atomic displacements from graphene has been recently achieved using density functional theory molecular dynamics, in many other cases quantitative accuracy remains a challenge. We provide a comprehensive reanalysis of available experimental data on beam-driven dynamics in light of the state-of-the-art in simulations, and identify important targets for improvement. Overall, the modern electron microscope has great potential to become an atom-scale fabrication platform, especially for covalently bonded 2D nanostructures. We review the developments that have made this possible, argue that graphene is an ideal starting material, and assess the main challenges moving forward.

  5. Microwave Driven Magnetic Plasma Accelerator Studies (CYCLOPS)

    NASA Technical Reports Server (NTRS)

    Crimi, G. F.; Eckert, A. C.; Miller, D. B.

    1967-01-01

    A microwave-driven cyclotron resonance plasma acceleration device was investigated using argon, krypton, xenon, and mercury as propellants. Limited ranges of propellant flow rate, input power, and magnetic field strength were used. Over-all efficiencies (including the 65% efficiency of the input polarizer) less than 10% were obtained for specific impulse values between 500 and 1500 sec. Power transfer efficiencies, however, approached 100% of the input power available in the right-hand component of the incident circularly polarized radiation. Beam diagnostics using Langmuir probes, cold gas mapping, r-f mapping and ion energy analyses were performed in conjunction with an engine operating in a pulsed mode. Measurements of transverse electron energies at the position of cyclotron resonant absorption yielded energy values more than an order of magnitude lower than anticipated. The measured electron energies were, however, consistent with the low values of average ion energy measured by retarding potential techniques. The low values of average ion energy were also consistent with the measured thrust values. It is hypothesized that ionization and radiation limit the electron kinetic energy to low-values thus limiting the energy which is finally transferred to the ion. Thermalization by electron-electron collision was also identified as an additional loss mechanism. The use of light alkali metals, which have relatively few low lying energy levels to excite, with the input power to mass ratio selected so as to limit the electron energies to less than the second ionization potential, is suggested. It is concluded, however, that the over-all efficiency for such propellants would be less than 40 per cent.

  6. Prospects of high-resolution resonant X-ray inelastic scattering studies on solid materials, liquids and gases at diffraction-limited storage rings

    PubMed Central

    Schmitt, Thorsten; de Groot, Frank M. F.; Rubensson, Jan-Erik

    2014-01-01

    The spectroscopic technique of resonant inelastic X-ray scattering (RIXS) will particularly profit from immensely improved brilliance of diffraction-limited storage rings (DLSRs). In RIXS one measures the intensities of excitations as a function of energy and momentum transfer. DLSRs will allow for pushing the achievable energy resolution, signal intensity and the sampled spot size to new limits. With RIXS one nowadays probes a broad range of electronic systems reaching from simple molecules to complex materials displaying phenomena like peculiar magnetism, two-dimensional electron gases, superconductivity, photovoltaic energy conversion and heterogeneous catalysis. In this article the types of improved RIXS studies that will become possible with X-ray beams from DLSRs are envisioned. PMID:25177995

  7. Dynamical control of Mn spin-system cooling by photogenerated carriers in a (Zn,Mn)Se/BeTe heterostructure

    NASA Astrophysics Data System (ADS)

    Debus, J.; Maksimov, A. A.; Dunker, D.; Yakovlev, D. R.; Tartakovskii, I. I.; Waag, A.; Bayer, M.

    2010-08-01

    The magnetization dynamics of the Mn spin system in an undoped (Zn,Mn)Se/BeTe type-II quantum well was studied by a time-resolved pump-probe photoluminescence technique. The Mn spin temperature was evaluated from the giant Zeeman shift of the exciton line in an external magnetic field of 3 T. The relaxation dynamics of the Mn spin temperature to the equilibrium temperature of the phonon bath after the pump-laser-pulse heating can be accelerated by the presence of free electrons. These electrons, generated by a control laser pulse, mediate the spin and energy transfer from the Mn spin system to the lattice and bypass the relatively slow direct spin-lattice relaxation of the Mn ions.

  8. Peptide-based biosensors: From self-assembled interfaces to molecular probes in electrochemical assays.

    PubMed

    Puiu, Mihaela; Bala, Camelia

    2018-04-01

    Redox-tagged peptides have emerged as functional materials with multiple applications in the area of sensing and biosensing applications due to their high stability, excellent redox properties and versatility of biomolecular interactions. They allow direct observation of molecular interactions in a wide range of affinity and enzymatic assays and act as electron mediators. Short helical peptides possess the ability to self-assemble in specific configurations with the possibility to develop in highly-ordered, stable 1D, 2D and 3D architectures in a hierarchical controlled manner. We provide here a brief overview of the electrochemical techniques available to study the electron transfer in peptide films with particular interest in developing biosensors with immobilized peptide motifs, for biological and clinical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Effect of lateral mobility of fluorescent probes in lipid mixing assays of cell fusion.

    PubMed

    Huang, S K; Cheng, M; Hui, S W

    1990-11-01

    Monolayers of human erythrocytes, immobilized on a cover slip, were induced to fuse by polyethylene glycol (mol wt 8,000). The mobility of fluorescent probes, 1-oleoyl-2-[12-[(7-nitro-2,1,3-benzoxadizol-4-yl)amino]dodecanoyl] phosphatidyl-choline (C12-NBD-PC), from labeled cells to unlabeled cells was monitored by video-enhanced fluorescence microscopy. A dequenching curve was obtained from the measurement of fluorescence intensities of pairs of fused cells over time. The dequenching curve and the curve obtained from macroscopic measurements of a cell monolayer (described in the preceding article) were compared and discussed. The slow probe transfer rate between a pair of fused cells was explained by a diffusion model based on membrane area conservation and the geometry of the fusion lumen. An equivalent lumen between two fused cells, thought to be the main rate limitation of probe mobility after fusion, was calculated to be approximately 130 nm in diameter. Lumens of 75 nm in diameter were observed by electron microscopy. Thus, the rate of macroscopic fluorescence dequenching depends not only upon the fusion efficiency, but also upon the number of simultaneous fusion partners, the geometry of their contact points, and the lateral mobility of the fluorescent probes through these points. The relative fusion efficiency can be derived only from the saturation dequenching values.

  10. Periodic unsteady effects on turbulent boundary layer transport and heat transfer: An experimental investigation in a cylinder-wall junction flow

    NASA Astrophysics Data System (ADS)

    Xie, Qi

    Heat transfer in a turbulent boundary layer downstream of junction with a cylinder has many engineering applications including controlling heat transfer to the endwall in gas turbine passages and cooling of protruding electronic chips. The main objective of this research is to study the fundamental process of heat transport and wall heat transfer in a turbulent three-dimensional flow superimposed with local large-scale periodic unsteadiness generated by vortex shedding from the cylinder. Direct measurements of the Reynolds heat fluxes (/line{utheta},\\ /line{vtheta}\\ and\\ /line{wtheta}) and time-resolved wall heat transfer rate will provide insight into unsteady flow behavior and data for advanced turbulence models for numerical simulation of complex engineering flows. Experiments were conducted in an open-circuit, low-speed wind tunnel. Reynolds stresses and heat fluxes were obtained from turbulent heat-flux probes which consisted of two hot wires, arranged in an X-wire configuration, and a cold wire located in front of the X-wire. Thin-film surface heat flux sensors were designed for measuring time-resolved wall heat flux. A reference probe and conditional-sampling technique connected the flow field dynamics to wall heat transfer. An event detecting and ensemble-averaging method was developed to separate effects of unsteadiness from those of background turbulence. Results indicate that unsteadiness affects both heat transport and wall heat transfer. The flow behind the cylinder can be characterized by three regions: (1) Wake region, where unsteadiness is observed to have modest effect; (2) Unsteady region, where the strongest unsteadiness effect is found; (3) Outer region, where the flow approaches the two-dimensional boundary-layer behavior. Vortex shedding from both sides of the cylinder contributes to mixing enhancement in the wake region. Unsteadiness contributes up to 51% of vertical and 59% of spanwise turbulent heat fluxes in the unsteady region. The instantaneous wall Stanton number increased up to 100% compared with an undisturbed flow. Large-scale fluctuations of wall Stanton number were due to the periodic thinning and thickening of the thermal layer caused by periodic vertical velocity fluctuations. This suggests that the outerlayer motion affects near-wall flow behavior and wall heat transfer.

  11. Theoretical Studies on Two-Photon Fluorescent Hg2+ Probes Based on the Coumarin-Rhodamine System.

    PubMed

    Zhang, Yujin; Leng, Jiancai

    2017-07-20

    The development of fluorescent sensors for Hg 2+ has attracted much attention due to the well-known adverse effects of mercury on biological health. In the present work, the optical properties of two newly-synthesized Hg 2+ chemosensors based on the coumarin-rhodamine system (named Pro1 and Pro2) were systematically investigated using time-dependent density functional theory. It is shown that Pro1 and Pro2 are effective ratiometric fluorescent Hg 2+ probes, which recognize Hg 2+ by Förster resonance energy transfer and through bond energy transfer mechanisms, respectively. To further understand the mechanisms of the two probes, we have developed an approach to predict the energy transfer rate between the donor and acceptor. Using this approach, it can be inferred that Pro1 has a six times higher energy transfer rate than Pro2. Thus the influence of spacer group between the donor and acceptor on the sensing performance of the probe is demonstrated. Specifically, two-photon absorption properties of these two probes are calculated. We have found that both probes show significant two-photon responses in the near-infrared light region. However, only the maximum two-photon absorption cross section of Pro1 is greatly enhanced with the presence of Hg 2+ , indicating that Pro1 can act as a potential two-photon excited fluorescent probe for Hg 2+ . The theoretical investigations would be helpful to build a relationship between the structure and the optical properties of the probes, providing information on the design of efficient two-photon fluorescent sensors that can be used for biological imaging of Hg 2+ in vivo.

  12. The Radio Plasma Imager Investigation on the IMAGE Spacecraft

    NASA Technical Reports Server (NTRS)

    Reinisch, Bodo W.; Haines, D. M.; Bibl, K.; Cheney, G.; Galkin, I. A.; Huang, X.; Myers, S. H.; Sales, G. S.; Benson, R. F.; Fung, S. F.

    1999-01-01

    Radio plasma imaging uses total reflection of electromagnetic waves from plasmas whose plasma frequencies equal the radio sounding frequency and whose electron density gradients are parallel to the wave normals. The Radio Plasma Imager (RPI) has two orthogonal 500-m long dipole antennas in the spin plane for near omni-directional transmission. The third antenna is a 20-m dipole. Echoes from the magnetopause, plasmasphere and cusp will be received with three orthogonal antennas, allowing the determination of their angle-of-arrival. Thus it will be possible to create image fragments of the reflecting density structures. The instrument can execute a large variety of programmable measuring programs operating at frequencies between 3 kHz and 3 MHz. Tuning of the transmit antennas provides optimum power transfer from the 10 W transmitter to the antennas. The instrument can operate in three active sounding modes: (1) remote sounding to probe magnetospheric boundaries, (2) local (relaxation) sounding to probe the local plasma, and (3) whistler stimulation sounding. In addition, there is a passive mode to record natural emissions, and to determine the local electron density and temperature by using a thermal noise spectroscopy technique.

  13. Electron collection theory for a D-region subsonic blunt electrostatic probe

    NASA Technical Reports Server (NTRS)

    Wai-Kwong Lai, T.

    1974-01-01

    Blunt probe theory for subsonic flow in a weakly ionized and collisional gas is reviewed, and an electron collection theory for the relatively unexplored case, Deybye length approximately 1, which occurs in the lower ionosphere (D-region), is developed. It is found that the dimensionless Debye length is no longer an electric field screening parameter, and the space charge field effect can be negelected. For ion collection, Hoult-Sonin theory is recognized as a correct description of the thin, ion density-perturbed layer adjacent the blunt probe surface. The large volume with electron density perturbed by a positively biased probe renders the usual thin boundary layer analysis inapplicable. Theories relating free stream conditions to the electron collection rate for both stationary and moving blunt probes are obtained. A model based on experimental nonlinear electron drift velocity data is proposed. For a subsonically moving probe, it is found that the perturbed region can be divided into four regions with distinct collection mechanisms.

  14. Turbulent shear stresses in compressible boundary layers

    NASA Technical Reports Server (NTRS)

    Laderman, A. J.; Demetriades, A.

    1979-01-01

    Hot-wire anemometer measurements of turbulent shear stresses in a Mach 3 compressible boundary layer were performed in order to investigate the effects of heat transfer on turbulence. Measurements were obtained by an x-probe in a flat plate, zero pressure gradient, two dimensional boundary layer in a wind tunnel with wall to freestream temperature ratios of 0.94 and 0.71. The measured shear stress distributions are found to be in good agreement with previous results, supporting the contention that the shear stress distribution is essentially independent of Mach number and heat transfer for Mach numbers from incompressible to hypersonic and wall to freestream temperature ratios of 0.4 to 1.0. It is also found that corrections for frequency response limitations of the electronic equipment are necessary to determine the correct shear stress distribution, particularly at the walls.

  15. Determination of ground-state hole-transfer rates between equivalent sites in oxidized multiporphyrin arrays using time-resolved optical spectroscopy.

    PubMed

    Song, Hee-eun; Kirmaier, Christine; Taniguchi, Masahiko; Diers, James R; Bocian, David F; Lindsey, Jonathan S; Holten, Dewey

    2008-11-19

    Excited-state charge separation in molecular architectures has been widely explored, yet ground-state hole (or electron) transfer, particularly involving equivalent pigments, has been far less studied, and direct quantitation of the rate of transfer often has proved difficult. Prior studies of ground-state hole transfer between equivalent zinc porphyrins using electron paramagnetic resonance techniques give a lower limit of approximately (50 ns)(-1) on the rates. Related transient optical studies of hole transfer between inequivalent sites [zinc porphyrin (Zn) and free base porphyrin (Fb)] give an upper limit of approximately (20 ps)(-1). Thus, a substantial window remains for the unknown rates of ground-state hole transfer between equivalent sites. Herein, the ground-state hole-transfer processes are probed in a series of oxidized porphyrin triads (ZnZnFb) with the focus being on determination of the rates between the nominally equivalent sites (Zn/Zn). The strategy builds upon recent time-resolved optical studies of the photodynamics of dyads wherein a zinc porphyrin is electrochemically oxidized and the attached free base porphyrin is photoexcited. The resulting energy- and hole-transfer processes in the oxidized ZnFb dyads are typically complete within 100 ps of excitation. Such processes are also present in the triads and serve as a starting point for determining the rates of ground-state hole transfer between equivalent sites in the triads. The rate constant of the Zn/Zn hole transfer is found to be (0.8 ns)(-1) for diphenylethyne-linked zinc porphyrins and increases only slightly to (0.6 ns)(-1) when a shorter phenylene linker is utilized. The rate decreases slightly to (1.1 ns)(-1) when steric constraints are introduced in the diarylethyne linker. In general, the rate constants for ground-state Zn/Zn hole transfer in oxidized arrays are a factor of 40 slower than those for Zn/Fb transfer. Collectively, the findings should aid the design of next-generation molecular architectures for applications in solar-energy conversion.

  16. Nonadiabatic Photo-Process Involving the πσ* State in Intramolecular Charge Transfer: a Concerted Spectroscopic and Computational Study 4-(DIMETHYLAMINO)BENZETHYNE and 4-(DIMETHYLAMINO)BENZONITRILE.

    NASA Astrophysics Data System (ADS)

    Fujiwara, Takashige; Segarra-Martí, Javier; Coto, Pedro B.

    2014-06-01

    The ubiquitous nature of the low-lying πσ* state in the photo-excited aromatic molecules or biomolecules is widely recognized to play an important role in nonadiabatic photo-process such as photodissociation or intramolecular charge transfer (ICT). For instance, the O--H elimination channel in phenol is attributed to the state-cross of the repulsive πσ* state that exhibits a conical intersection with the lowest bright ππ* state and with the ground state, leading to ultrafast electronic deactivation. A similar decay pathway has been found in the ICT formation of 4-(dialkylamino)benzonitriles in a polar environment, where an initially photoexcited Frank-Condon state bifurcates in the presence of a dark intermediate πσ* state that crosses the fluorescent ππ* state, followed by a conical intersection with the twisted intramolecular charge transfer (TICT) state. We proposed such a two-fold decay mechanism that πσ*-state highly mediates intramolecular charge transfer in 4-(dialkylamino)benzonitriles, which is supported from both our high-level ab initio calculations and ultrafast laser spectroscopies in the previous study. 4-(Dimethylamino)benzethyne (DMABE) is isoelectronic with 4-(dimethylamino)benzonitrile (DMABN), and the electronic structures and electronic spectra of the two molecules bear very close resemblance. However, DMABN does show the ICT formation in a polar environment, whereas DMABE does not. To probe the photophysical differences among the low-lying excited-state configurations, we performed concerted time-resolved laser spectroscopies and high level ab initio multireference perturbation theory quantum-chemical (CASPT2//CASSCF) computations on the two molecules. In this paper we demonstrate the importance of the bound excited-state of a πσ* configuration that induce highly πσ*-state mediated intramolecular charge transfer in 4-(dialkylamino)benzonitriles.

  17. Electron launching voltage monitor

    DOEpatents

    Mendel, C.W.; Savage, M.E.

    1992-03-17

    An electron launching voltage monitor measures MITL voltage using a relationship between anode electric field and electron current launched from a cathode-mounted perturbation. An electron launching probe extends through and is spaced from the edge of an opening in a first MITL conductor, one end of the launching probe being in the gap between the MITL conductor, the other end being adjacent a first side of the first conductor away from the second conductor. A housing surrounds the launching probe and electrically connects the first side of the first conductor to the other end of the launching probe. A detector detects the current passing through the housing to the launching probe, the detected current being representative of the voltage between the conductors. 5 figs.

  18. Ultrafast spatiotemporal relaxation dynamics of excited electrons in a metal nanostructure detected by femtosecond-SNOM.

    PubMed

    Li, Zhi; Yue, Song; Chen, Jianjun; Gong, Qihuang

    2010-06-21

    Ultrahigh spatiotemporal resolved pump-probe signal near a gold nano-slit is detected by femtosecond-SNOM. By employing two-color pump-probe configuration and probing at the interband transition wavelength of the gold, signal contributed by surface plasmon polariton is avoided and spatiotemporal evolvement of excited electrons is successfully observed. From the contrast decaying of the periodical distribution of the pump-probe signal, ultrafast diffusion of excited electrons with a time scale of a few hundred femtoseconds is clearly identified. For comparison, such phenomenon cannot be observed by the one-color pump-probe configuration.

  19. Local electric field direct writing – Electron-beam lithography and mechanism

    DOE PAGES

    Jiang, Nan; Su, Dong; Spence, John C. H.

    2017-08-24

    Local electric field induced by a focused electron probe in silicate glass thin films is evaluated in this paper by the migration of cations. Extremely strong local electric fields can be obtained by the focused electron probe from a scanning transmission electron microscope. As a result, collective atomic displacements occur. This newly revised mechanism provides an efficient tool to write patterned nanostructures directly, and thus overcome the low efficiency of the conventional electron-beam lithography. Applying this technique to silicate glass thin films, as an example, a grid of rods of nanometer dimension can be efficiently produced by rapidly scanning amore » focused electron probe. This nanopatterning is achieved through swift phase separation in the sample, without any post-development processes. The controlled phase separation is induced by massive displacements of cations (glass modifiers) within the glass-former network, driven by the strong local electric fields. The electric field is induced by accumulated charge within the electron probed region, which is generated by the excitation of atomic electrons by the incident electron. Throughput is much improved compared to other scanning probe techniques. Finally, the half-pitch spatial resolution of nanostructure in this particular specimen is 2.5 nm.« less

  20. Local electric field direct writing – Electron-beam lithography and mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Nan; Su, Dong; Spence, John C. H.

    Local electric field induced by a focused electron probe in silicate glass thin films is evaluated in this paper by the migration of cations. Extremely strong local electric fields can be obtained by the focused electron probe from a scanning transmission electron microscope. As a result, collective atomic displacements occur. This newly revised mechanism provides an efficient tool to write patterned nanostructures directly, and thus overcome the low efficiency of the conventional electron-beam lithography. Applying this technique to silicate glass thin films, as an example, a grid of rods of nanometer dimension can be efficiently produced by rapidly scanning amore » focused electron probe. This nanopatterning is achieved through swift phase separation in the sample, without any post-development processes. The controlled phase separation is induced by massive displacements of cations (glass modifiers) within the glass-former network, driven by the strong local electric fields. The electric field is induced by accumulated charge within the electron probed region, which is generated by the excitation of atomic electrons by the incident electron. Throughput is much improved compared to other scanning probe techniques. Finally, the half-pitch spatial resolution of nanostructure in this particular specimen is 2.5 nm.« less

  1. Interfacial Chemical Composition and Molecular Order in Organic Photovoltaic Blend Thin Films Probed by Surface-Enhanced Raman Spectroscopy.

    PubMed

    Razzell-Hollis, Joseph; Thiburce, Quentin; Tsoi, Wing C; Kim, Ji-Seon

    2016-11-16

    Organic electronic devices invariably involve transfer of charge carriers between the organic layer and at least one metal electrode, and they are sensitive to the local properties of the organic film at those interfaces. Here, we demonstrate a new approach for using an advanced technique called surface-enhanced raman spectroscopy (SERS) to quantitatively probe interfacial properties relevant to charge injection/extraction. Exploiting the evanescent electric field generated by a ∼7 nm thick layer of evaporated silver, Raman scattering from nearby molecules is enhanced by factors of 10-1000× and limited by a distance dependence with a measured decay length of only 7.6 nm. When applied to the study of an all-polymer 1:1 blend of P3HT and F8TBT used in organic solar cells, we find that the as-cast film is morphologically suited to charge extraction in inverted devices, with a top (anode) interface very rich in hole-transporting P3HT (74.5%) and a bottom (cathode) interface slightly rich in electron-transporting F8TBT (55%). While conventional, uninverted P3HT:F8TBT devices are reported to perform poorly compared to inverted devices, their efficiency can be improved by thermal annealing but only after evaporation of a metallic top electrode. This is explained by changes in composition at the top interface: annealing prior to silver evaporation leads to a greater P3HT concentration at the top interface to 83.3%, exaggerating the original distribution that favored inverted devices, while postevaporation annealing increases the concentration of F8TBT at the top interface to 34.8%, aiding the extraction of electrons in a conventional device. By nondestructively probing buried interfaces, SERS is a powerful tool for understanding the performance of organic electronic devices.

  2. Quantum Theory of Atoms in Molecules Charge-Charge Transfer-Dipolar Polarization Classification of Infrared Intensities.

    PubMed

    Duarte, Leonardo J; Richter, Wagner E; Silva, Arnaldo F; Bruns, Roy E

    2017-10-26

    Fundamental infrared vibrational transition intensities of gas-phase molecules are sensitive probes of changes in electronic structure accompanying small molecular distortions. Models containing charge, charge transfer, and dipolar polarization effects are necessary for a successful classification of the C-H, C-F, and C-Cl stretching and bending intensities. C-H stretching and in-plane bending vibrations involving sp 3 carbon atoms have small equilibrium charge contributions and are accurately modeled by the charge transfer-counterpolarization contribution and its interaction with equilibrium charge movement. Large C-F and C═O stretching intensities have dominant equilibrium charge movement contributions compared to their charge transfer-dipolar polarization ones and are accurately estimated by equilibrium charge and the interaction contribution. The C-F and C-Cl bending modes have charge and charge transfer-dipolar polarization contribution sums that are of similar size but opposite sign to their interaction values resulting in small intensities. Experimental in-plane C-H bends have small average intensities of 12.6 ± 10.4 km mol -1 owing to negligible charge contributions and charge transfer-counterpolarization cancellations, whereas their average out-of-plane experimental intensities are much larger, 65.7 ± 20.0 km mol -1 , as charge transfer is zero and only dipolar polarization takes place. The C-F bending intensities have large charge contributions but very small intensities. Their average experimental out-of-plane intensity of 9.9 ± 12.6 km mol -1 arises from the cancellation of large charge contributions by dipolar polarization contributions. The experimental average in-plane C-F bending intensity, 5.8 ± 7.3 km mol -1 , is also small owing to charge and charge transfer-counterpolarization sums being canceled by their interaction contributions. Models containing only atomic charges and their fluxes are incapable of describing electronic structure changes for simple molecular distortions that are of interest in classifying infrared intensities. One can expect dipolar polarization effects to also be important for larger distortions of chemical interest.

  3. Investigation on Fluorescence Quenching Mechanism of Perylene Diimide Dyes by Graphene Oxide.

    PubMed

    Zhao, Yuzhen; Li, Kexuan; He, Zemin; Zhang, Yongming; Zhao, Yang; Zhang, Haiquan; Miao, Zongcheng

    2016-11-30

    Perylene diimide derivatives were used as probes to investigate the effect of the molecular structures on the fluorescence quenching mechanism in a perylene diimide/graphene oxide system. The electrons transferred from the excited state of dyes to the conductive band of graphene oxide with different concentrations were determined by fluorescence spectra. The results indicated that the quenching efficiency of perylene diimides by graphene oxide was not only dependent on the difference between the lowest unoccupied molecular orbital level of dyes and the conduction band of the graphene oxide, but also mainly on the difference in the molecular structures.

  4. Ultrafast relaxation dynamics of nitric oxide synthase studied by visible broadband transient absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hung, Chih-Chang; Yabushita, Atsushi; Kobayashi, Takayoshi; Chen, Pei-Feng; Liang, Keng S.

    2017-09-01

    Ultrafast dynamics of endothelial nitric oxide synthase (eNOS) oxygenase domain was studied by transient absorption spectroscopy pumping at Soret band. The broadband visible probe spectrum has visualized the relaxation dynamics from the Soret band to Q-band and charge transfer (CT) band. Supported by two-dimensional correlation spectroscopy, global fitting analysis has successfully concluded the relaxation dynamics from the Soret band to be (1) electronic transition to Q-band (0.16 ps), (2) ligand dissociation and CT (0.94 ps), (3) relaxation of the CT state (4.0 ps), and (4) ligand rebinding (59 ps).

  5. Probing the ionization wave packet and recollision dynamics with an elliptically polarized strong laser field in the nondipole regime

    NASA Astrophysics Data System (ADS)

    Maurer, J.; Willenberg, B.; Daněk, J.; Mayer, B. W.; Phillips, C. R.; Gallmann, L.; Klaiber, M.; Hatsagortsyan, K. Z.; Keitel, C. H.; Keller, U.

    2018-01-01

    We explore ionization and rescattering in strong mid-infrared laser fields in the nondipole regime over the full range of polarization ellipticity. In three-dimensional photoelectron momentum distributions (3D PMDs) measured with velocity map imaging spectroscopy, we observe the appearance of a sharp ridge structure along the major polarization axis. Within a certain range of ellipticity, the electrons in this ridge are clearly separated from the two lobes that commonly appear in the PMD with elliptically polarized laser fields. In contrast to the well-known lobes of direct electrons, the sharp ridge is created by Coulomb focusing of the softly recolliding electrons. These ridge electrons are directly related to a counterintuitive shift of the PMD peak opposite to the laser beam propagation direction when the dipole approximation breaks down. The ellipticity-dependent 3D PMDs give access to different ionization and recollision dynamics with appropriate filters in the momentum space. For example, we can extract information about the spread of the initial wave packet and the Coulomb momentum transfer of the rescattering electrons.

  6. Zero Quantum Coherence in a Series of Covalent Spin-Correlated Radical Pairs.

    PubMed

    Nelson, Jordan N; Krzyaniak, Matthew D; Horwitz, Noah E; Rugg, Brandon K; Phelan, Brian T; Wasielewski, Michael R

    2017-03-23

    Photoinitiated subnanosecond electron transfer within covalently linked electron donor-acceptor molecules can result in the formation of a spin-correlated radical pair (SCRP) with a well-defined initial singlet spin configuration. Subsequent coherent mixing between the SCRP singlet and triplet m s = 0 spin states, the so-called zero quantum coherence (ZQC), is of potential interest in quantum information processing applications because the ZQC can be probed using pulse electron paramagnetic resonance (pulse-EPR) techniques. Here, pulse-EPR spectroscopy is utilized to examine the ZQC oscillation frequencies and ZQC dephasing in three structurally well-defined D-A systems. While transitions between the singlet and triplet m s = 0 spin states are formally forbidden (Δm s = 0), they can be addressed using specific microwave pulse turning angles to map information from the ZQC onto observable single quantum coherences. In addition, by using structural variations to tune the singlet-triplet energy gap, the ZQC frequencies determined for this series of molecules indicate a stronger dependence on the electronic g-factor than on electron-nuclear hyperfine interactions.

  7. Innovative SPM Probes for Energy-Storage Science: MWCNT-Nanopipettes to Nanobattery Probes

    NASA Astrophysics Data System (ADS)

    Larson, Jonathan; Talin, Alec; Pearse, Alexander; Kozen, Alexander; Reutt-Robey, Janice

    As energy-storage materials and designs continue to advance, new tools are needed to direct and explore ion insertion/de-insertion at well-defined battery materials interfaces. Scanned probe tips, assembled from actual energy-storage materials, permit SPM measures of local cathode-anode (tip-sample) interactions, including ion transfer. We present examples of ``cathode'' MWCNT-terminated STM probe tips interacting with Li(s)/Si(111) anode substrates. The MWCNT tip functions as both SPM probe and Li-nanopipette,[1] for controlled transport and manipulation of Li. Local field conditions for lithium ionization and transfer are determined and compared to electrostatic models. Additional lithium metallic and oxide tips have been prepared by thin film deposition on conventional W tips, the latter of which effectively functions as a nanobattery. We demonstrate use of these novel probe materials in the local lithiation of low-index Si anode interfaces, probing local barriers for lithium insertion. Prospects and limitations of these novel SPM probes will be discussed. U.S. Department of Energy Award Number DESC0001160.

  8. Electrochemical properties of nanostructured porous gold electrodes in biofouling solutions.

    PubMed

    Patel, Jay; Radhakrishnan, Logudurai; Zhao, Bo; Uppalapati, Badharinadh; Daniels, Rodney C; Ward, Kevin R; Collinson, Maryanne M

    2013-12-03

    The effect of electrode porosity on the electrochemical response of redox active molecules (potassium ferricyanide, ruthenium(III) hexammine, and ferrocene methanol) in the presence of bovine serum albumin or fibrinogen was studied at macroporous (pore diameter: 1200 nm), hierarchical (1200/60 nm), and nanoporous (<50 nm) gold. These electrodes were prepared using standard templating or dealloying techniques, and cyclic voltammetry (CV) was utilized to evaluate the effect of protein adsorption on the electron transfer of the diffusing redox probes. Following exposure to albumin (or fibrinogen) under near neutral pH conditions, planar gold electrodes showed an immediate reduction in Faradaic peak current and increase in peak splitting for potassium ferricyanide. The rate at which the CV curves changed was highly dependent on the morphology of the electrode. For example, the time required for the Faradaic current to drop to one-half of its original value was 3, 12, and 38 min for planar gold, macroporous gold, and hierarchical gold, respectively. Remarkably, for nanoporous gold, only a few percent drop in the peak Faradaic current was observed after an hour in solution. A similar suppression in the voltammetry at planar gold was also noted for ruthenium hexammine at pH 3 after exposure to albumin for several hours. At nanoporous gold, no significant loss in response was observed. The order of performance of the electrodes as judged by their ability to efficiently transfer electrons in the presence of biofouling agents tracked porosity with the electrode having the smallest pore size and largest surface area, providing near ideal results. Nanoporous gold electrodes when immersed in serum or heparinized blood containing potassium ferricyanide showed ideal voltammetry while significant fouling was evident in the electrochemical response at planar gold. The small nanopores in this 3D open framework are believed to restrict the transport of large biomolecules, thus minimizing passivation of the inner surfaces while permitting access to small redox probes to efficiently exchange electrons.

  9. The improved electrochemical performance of cross-linked 3D graphene nanoribbon monolith electrodes

    NASA Astrophysics Data System (ADS)

    Vineesh, Thazhe Veettil; Alwarappan, Subbiah; Narayanan, Tharangattu N.

    2015-04-01

    Technical advancement in the field of ultra-small sensors and devices demands the development of novel micro- or nano-based architectures. Here we report the design and assembly of cross-linked three dimensional graphene nanoribbons (3D GNRs) using solution based covalent binding of individual 2D GNRs and demonstrate its electrochemical application as a 3D electrode. The enhanced performance of 3D GNRs over individual 2D GNRs is established using standard redox probes - [Ru(NH3)6]3+/2+, [Fe(CN)6]3-/4- and important bio-analytes - dopamine and ascorbic acid. 3D GNRs are found to have high double layer capacitance (2482 μF cm-2) and faster electron transfer kinetics; their exceptional electrocatalytic activity towards the oxygen reduction reaction is indicative of their potential over a wide range of electrochemical applications. Moreover, this study opens a new platform for the design of novel point-of-care devices and electrodes for energy devices.Technical advancement in the field of ultra-small sensors and devices demands the development of novel micro- or nano-based architectures. Here we report the design and assembly of cross-linked three dimensional graphene nanoribbons (3D GNRs) using solution based covalent binding of individual 2D GNRs and demonstrate its electrochemical application as a 3D electrode. The enhanced performance of 3D GNRs over individual 2D GNRs is established using standard redox probes - [Ru(NH3)6]3+/2+, [Fe(CN)6]3-/4- and important bio-analytes - dopamine and ascorbic acid. 3D GNRs are found to have high double layer capacitance (2482 μF cm-2) and faster electron transfer kinetics; their exceptional electrocatalytic activity towards the oxygen reduction reaction is indicative of their potential over a wide range of electrochemical applications. Moreover, this study opens a new platform for the design of novel point-of-care devices and electrodes for energy devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07315k

  10. Probing Novel Properties of Nucleons and Nuclei via Parity Violating Electron Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mercado, Luis

    2012-05-01

    This thesis reports on two experiments conducted by the HAPPEx (Hall A Proton Parity Experiment) collaboration at the Thomas Jefferson National Accelerator Facility. For both, the weak neutral current interaction (WNC, mediated by the Z 0 boson) is used to probe novel properties of hadronic targets. The WNC interaction amplitude is extracted by measuring the parity-violating asymmetry in the elastic scattering of longitudinally polarized electrons o unpolarized target hadrons. HAPPEx-III, conducted in the Fall of 2009, used a liquid hydrogen target at a momentum transfer of Q 2 = 0.62 GeV 2. The measured asymmetry was used to set newmore » constraints on the contribution of strange quark form factors (G s E,M ) to the nucleon electromagnetic form factors. A value of A PV = -23.803±} 0.778 (stat)± 0.359 (syst) ppm resulted in G s E + 0.517G s M = 0.003± 0.010 (stat)± 0.004 (syst)± 0.009 (FF). PREx, conducted in the Spring of 2010, used a polarized electron beam on a 208Pb target at a momentum transfer of Q 2 = 0.009 GeV 2. This parity-violating asymmetry can be used to obtain a clean measurement of the root-mean-square radius of the neutrons in the 208Pb nucleus. The Z 0 boson couples mainly to neutrons; the neutron weak charge is much larger than that of the proton. The value of this asymmetry is at the sub-ppm level and has a projected experimental fractional precision of 3%. We will describe the accelerator setup used to set controls on helicity-correlated beam asymmetries and the analysis methods for finding the raw asymmetry for HAPPEx-III. We will also discuss in some detail the preparations to meet the experimental challenges associated with measuring such a small asymmetry with the degree of precision required for PREx.« less

  11. Rydberg gas theory of a glow discharge plasma: I. Application to the electrical behaviour of a fast flowing glow discharge plasma.

    PubMed

    Mason, Rod S; Mitchell, David J; Dickinson, Paul M

    2010-04-21

    Current-voltage (I-V) curves have been measured, independent of the main discharge, for electricity passing through the steady state fast flowing 'afterglow' plasma of a low power dc glow discharge in Ar. Voltage profiles along the axial line of conduction have been mapped using fixed probes and potentiometry, and the mass spectra of cations emerging from the downstream sampling Cone, also acting as a probe anode, were recorded simultaneously. Floating double probe experiments were also carried out. The electrical behavior is consistent with the well established I-V characteristics of such discharges, but does not comply with classical plasma theory predictions. The plasma decays along the line of conduction, with a lifetime of approximately 1 ms, despite carrying a steady state current, and its potential is below that of the large surface area anode voltage; a situation which cannot exist in the presence of a conventional free ion-electron plasma, unless the electron temperature is super cold. Currents, large by comparison with the main discharge current, and independent of it, are induced to flow through the downstream plasma, from the Anode (acting as a cathode) to the anodic ion exit Cone, induced by electron impact ionisation at the anode, but without necessarily increasing the plasma density. It appears to be conducted by direct charge transfer between a part of the anode surface (acting as cathode to the auxiliary circuit) and the plasma, without secondary electron emission or heating, which suggests the direct involvement of Rydberg atom intermediates. The reaction energy defect (= the work function of the electrode surface) fits with the plasma potential threshold observed for the cathodic reaction to occur. A true free ion-electron plasma is readily detected by the observation of cations at the anode surface, when induced at the downstream anode, at high bias voltages, by the electron impact ionisation in the boundary region. In contrast to the classical model, the complex electrical (and mass spectrometric) behaviour fits qualitatively, but can be understood well, with the Rydberg gas model described in papers II and III (R. S. Mason, and R. S. Mason and P. Douglas, PCCP, 2010, DOI: 10.1039/b918081h and b918083d) over a wide range of probe bias voltages. The full cycle of behavior is then described for the development of a true secondary discharge within the downstream plasma.

  12. Ultrafast non-radiative dynamics of atomically thin MoSe 2

    DOE PAGES

    Lin, Ming -Fu; Kochat, Vidya; Krishnamoorthy, Aravind; ...

    2017-10-17

    Non-radiative energy dissipation in photoexcited materials and resulting atomic dynamics provide a promising pathway to induce structural phase transitions in two-dimensional materials. However, these dynamics have not been explored in detail thus far because of incomplete understanding of interaction between the electronic and atomic degrees of freedom, and a lack of direct experimental methods to quantify real-time atomic motion and lattice temperature. Here, we explore the ultrafast conversion of photoenergy to lattice vibrations in a model bi-layered semiconductor, molybdenum diselenide, MoSe 2. Specifically, we characterize sub-picosecond lattice dynamics initiated by the optical excitation of electronic charge carriers in the highmore » electron-hole plasma density regime. Our results focuses on the first ten picosecond dynamics subsequent to photoexcitation before the onset of heat transfer to the substrate, which occurs on a ~100 picosecond time scale. Photoinduced atomic motion is probed by measuring the time dependent Bragg diffraction of a delayed mega-electronvolt femtosecond electron beam. Transient lattice temperatures are characterized through measurement of Bragg peak intensities and calculation of the Debye-Waller factor (DWF). These measurements show a sub-picosecond decay of Bragg diffraction and a correspondingly rapid rise in lattice temperatures. We estimate a high quantum yield for the conversion of excited charge carrier energy to lattice motion under our experimental conditions, indicative of a strong electron-phonon interaction. First principles nonadiabatic quantum molecular dynamics simulations (NAQMD) on electronically excited MoSe 2 bilayers reproduce the observed picosecond-scale increase in lattice temperature and ultrafast conversion of photoenergy to lattice vibrations. Calculation of excited-state phonon dispersion curves suggests that softened vibrational modes in the excited state are involved in efficient and rapid energy transfer between the electronic system and the lattice.« less

  13. Ultrafast non-radiative dynamics of atomically thin MoSe 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Ming -Fu; Kochat, Vidya; Krishnamoorthy, Aravind

    Non-radiative energy dissipation in photoexcited materials and resulting atomic dynamics provide a promising pathway to induce structural phase transitions in two-dimensional materials. However, these dynamics have not been explored in detail thus far because of incomplete understanding of interaction between the electronic and atomic degrees of freedom, and a lack of direct experimental methods to quantify real-time atomic motion and lattice temperature. Here, we explore the ultrafast conversion of photoenergy to lattice vibrations in a model bi-layered semiconductor, molybdenum diselenide, MoSe 2. Specifically, we characterize sub-picosecond lattice dynamics initiated by the optical excitation of electronic charge carriers in the highmore » electron-hole plasma density regime. Our results focuses on the first ten picosecond dynamics subsequent to photoexcitation before the onset of heat transfer to the substrate, which occurs on a ~100 picosecond time scale. Photoinduced atomic motion is probed by measuring the time dependent Bragg diffraction of a delayed mega-electronvolt femtosecond electron beam. Transient lattice temperatures are characterized through measurement of Bragg peak intensities and calculation of the Debye-Waller factor (DWF). These measurements show a sub-picosecond decay of Bragg diffraction and a correspondingly rapid rise in lattice temperatures. We estimate a high quantum yield for the conversion of excited charge carrier energy to lattice motion under our experimental conditions, indicative of a strong electron-phonon interaction. First principles nonadiabatic quantum molecular dynamics simulations (NAQMD) on electronically excited MoSe 2 bilayers reproduce the observed picosecond-scale increase in lattice temperature and ultrafast conversion of photoenergy to lattice vibrations. Calculation of excited-state phonon dispersion curves suggests that softened vibrational modes in the excited state are involved in efficient and rapid energy transfer between the electronic system and the lattice.« less

  14. Polarization-controlled optimal scatter suppression in transient absorption spectroscopy

    PubMed Central

    Malý, Pavel; Ravensbergen, Janneke; Kennis, John T. M.; van Grondelle, Rienk; Croce, Roberta; Mančal, Tomáš; van Oort, Bart

    2017-01-01

    Ultrafast transient absorption spectroscopy is a powerful technique to study fast photo-induced processes, such as electron, proton and energy transfer, isomerization and molecular dynamics, in a diverse range of samples, including solid state materials and proteins. Many such experiments suffer from signal distortion by scattered excitation light, in particular close to the excitation (pump) frequency. Scattered light can be effectively suppressed by a polarizer oriented perpendicular to the excitation polarization and positioned behind the sample in the optical path of the probe beam. However, this introduces anisotropic polarization contributions into the recorded signal. We present an approach based on setting specific polarizations of the pump and probe pulses, combined with a polarizer behind the sample. Together, this controls the signal-to-scatter ratio (SSR), while maintaining isotropic signal. We present SSR for the full range of polarizations and analytically derive the optimal configuration at angles of 40.5° between probe and pump and of 66.9° between polarizer and pump polarizations. This improves SSR by (or compared to polarizer parallel to probe). The calculations are validated by transient absorption experiments on the common fluorescent dye Rhodamine B. This approach provides a simple method to considerably improve the SSR in transient absorption spectroscopy. PMID:28262765

  15. A rapid microwave synthesis of nitrogen-sulfur co-doped carbon nanodots as highly sensitive and selective fluorescence probes for ascorbic acid.

    PubMed

    Duan, Junxia; Yu, Jie; Feng, Suling; Su, Li

    2016-06-01

    A ultrafast one-step microwave-assisted method was developed for the synthesis of nitrogen-sulfur co-doped carbon nanodots (N,S-CDs) by using ethylenediamine as the carbon source and sulfamic acid as the surface passivation reagent. The morphology and the properties of N,S-CDs were explored by a series of techniques, such as high-resolution transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, UV-vis absorption and fluorescence spectroscopy. The prepared N,S-CDs exhibit bright blue photoluminescence with a high fluorescence quantum yield (FLQY) up to 28%, and high stability and excellent water solubility. A N,S-CDs-based fluorescent probe was developed for sensitive detection ascorbic acid (AA) in the presence of Cu(2+), based on the mechanism that AA reduces Cu(2+) to Cu(+), then Cu(+) quenches the fluorescence of N,S-CDs through electron or energy transfer due to the interaction between Cu(+) and thiol ligand on the N,S-CDs surface. The observed linear response concentration range was from 0.057 to 4.0μM to AA with a detection limit as low as 18nM. The probe exhibited a highly selective response toward AA even in the presence of possible interfering substances, such as uric acid and citric acid. Moreover, these promising features made the sensing system used for the analysis of human serum and urine samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Effect of the magnetic field on measurements of the electron density and temperature by cylindrical probes in the Earth's ionosphere

    NASA Astrophysics Data System (ADS)

    Gubsky, V. F.

    2009-12-01

    In the 1960s and 1970s, quite simply produced cylindrical Langmuir probes were used in the USSR both on satellites (Kosmos-378, Intercosmos-2, -4, -8, -10, -19) and to measure the electron density and temperature on vertical launched rockets (Vertical’-4, -6, -10) within the Intercosmos program. These measurements were first made at middle latitudes. With increasing inclination of the orbits of launched satellites (satellites had no stabilization), falling sections were sometimes observed on probe characteristics in the electron saturation region. The Intercosmos-Bulgaria-1300 satellite, which was stabilized along three axes and was equipped with a cylindrical probe whose longitudinal axis was always directed downward to the Earth, was launched in 1981. This satellite allowed definite conclusions on the effect of the geomagnetic field on the form of the probe characteristic and, hence, on the determination of the electron density and temperature. Probe characteristics with falling sections are presented. These measurements are compared with those performed in a laboratory plasma. The appearance of negative sections on the probe characteristics is shown to be due to the effect of the geomagnetic field. The degree of this effect depends both on the electron density and temperature and on the probe voltage.

  17. Simplifying Electron Beam Channeling in Scanning Transmission Electron Microscopy (STEM).

    PubMed

    Wu, Ryan J; Mittal, Anudha; Odlyzko, Michael L; Mkhoyan, K Andre

    2017-08-01

    Sub-angstrom scanning transmission electron microscopy (STEM) allows quantitative column-by-column analysis of crystalline specimens via annular dark-field images. The intensity of electrons scattered from a particular location in an atomic column depends on the intensity of the electron probe at that location. Electron beam channeling causes oscillations in the STEM probe intensity during specimen propagation, which leads to differences in the beam intensity incident at different depths. Understanding the parameters that control this complex behavior is critical for interpreting experimental STEM results. In this work, theoretical analysis of the STEM probe intensity reveals that intensity oscillations during specimen propagation are regulated by changes in the beam's angular distribution. Three distinct regimes of channeling behavior are observed: the high-atomic-number (Z) regime, in which atomic scattering leads to significant angular redistribution of the beam; the low-Z regime, in which the probe's initial angular distribution controls intensity oscillations; and the intermediate-Z regime, in which the behavior is mixed. These contrasting regimes are shown to exist for a wide range of probe parameters. These results provide a new understanding of the occurrence and consequences of channeling phenomena and conditions under which their influence is strengthened or weakened by characteristics of the electron probe and sample.

  18. Langmuir Probe Measurements in an Inductively Coupled GEC Reference Cell Plasma

    NASA Technical Reports Server (NTRS)

    Ji, J. S.; Kim, J. S.; Cappelli, M. A.; Sharma, S. P.; Arnold, J. O. (Technical Monitor)

    1998-01-01

    Measurements of electron number density, electron temperature, and electron energy distribution function (EEDF) using a compensated Langmuir probe have been performed on an inductively (transformer ) coupled Gaseous Electronics Conference (GEC) reference cell plasma. The plasma source is operated with CH4, CF4, or their mixtures with argon. The effect of independently driving the electrode supporting the wafer on the probe data is studied. In particular, we find that the plasma structure depends on the phase in addition to the magnitude of the power coupled to the electrode relative to that of the transformer coil. The Langmuir probe is translated in a plane parallel to the electrode to investigate the spatial structure of the plasma. The probe data is also compared with fluid model predictions.

  19. Orange-red emitting Gd2Zr2O7:Sm3+: Structure-property correlation, optical properties and defect spectroscopy

    NASA Astrophysics Data System (ADS)

    Gupta, Santosh K.; Reghukumar, C.; Sudarshan, K.; Ghosh, P. S.; Pathak, Nimai; Kadam, R. M.

    2018-05-01

    Local structure analysis of dopant ion, understanding host to dopant energy transfer dynamics and defects characterization in a doped material which plays an important role in the designing a highly efficient opto-electronic material. In this connection a new Sm3+ doped Gd2Zr2O7 pyrochlore material was synthesized using gel-combustion technique and was characterized systematically using X-ray diffraction (XRD), time resolved photoluminescence spectroscopy (TRPLS), positron annihilation lifetime spectroscopy (PALS) and density functional theory (DFT) based ab-initio calculation. Based on DFT site selective energetics calculation and luminescence decay measurement, it was observed that the Sm3+ was distributed at both Gd3+ and Zr4+ site with higher Sm3+ fraction at the Gd3+ site. PALS was used to probe the presence of defects in the phosphor. In this work intense orange-red emission is realized through manipulating the energy transfer from host defect emission (oxygen vacancies) to Sm3+ which allows color emission from green in undoped to orange-red in doped samples. Effect of dopant concentration and annealing temperature was probed using TRPLS and PALS. These all information is highly important for researcher looking to achieve pyrochlore based phosphor materials with high quantum yield.

  20. Langmuir probe measurements in a time-fluctuating-highly ionized non-equilibrium cutting arc: analysis of the electron retarding part of the time-averaged current-voltage characteristic of the probe.

    PubMed

    Prevosto, L; Kelly, H; Mancinelli, B

    2013-12-01

    This work describes the application of Langmuir probe diagnostics to the measurement of the electron temperature in a time-fluctuating-highly ionized, non-equilibrium cutting arc. The electron retarding part of the time-averaged current-voltage characteristic of the probe was analysed, assuming that the standard exponential expression describing the electron current to the probe in collision-free plasmas can be applied under the investigated conditions. A procedure is described which allows the determination of the errors introduced in time-averaged probe data due to small-amplitude plasma fluctuations. It was found that the experimental points can be gathered into two well defined groups allowing defining two quite different averaged electron temperature values. In the low-current region the averaged characteristic was not significantly disturbed by the fluctuations and can reliably be used to obtain the actual value of the averaged electron temperature. In particular, an averaged electron temperature of 0.98 ± 0.07 eV (= 11400 ± 800 K) was found for the central core of the arc (30 A) at 3.5 mm downstream from the nozzle exit. This average included not only a time-average over the time fluctuations but also a spatial-average along the probe collecting length. The fitting of the high-current region of the characteristic using such electron temperature value together with the corrections given by the fluctuation analysis showed a relevant departure of local thermal equilibrium in the arc core.

  1. Vibronic Wavepackets and Energy Transfer in Cryptophyte Light-Harvesting Complexes.

    PubMed

    Jumper, Chanelle C; van Stokkum, Ivo H M; Mirkovic, Tihana; Scholes, Gregory D

    2018-06-21

    Determining the key features of high-efficiency photosynthetic energy transfer remains an ongoing task. Recently, there has been evidence for the role of vibronic coherence in linking donor and acceptor states to redistribute oscillator strength for enhanced energy transfer. To gain further insights into the interplay between vibronic wavepackets and energy-transfer dynamics, we systematically compare four structurally related phycobiliproteins from cryptophyte algae by broad-band pump-probe spectroscopy and extend a parametric model based on global analysis to include vibrational wavepacket characterization. The four phycobiliproteins isolated from cryptophyte algae are two "open" structures and two "closed" structures. The closed structures exhibit strong exciton coupling in the central dimer. The dominant energy-transfer pathway occurs on the subpicosecond timescale across the largest energy gap in each of the proteins, from central to peripheral chromophores. All proteins exhibit a strong 1585 cm -1 coherent oscillation whose relative amplitude, a measure of vibronic intensity borrowing from resonance between donor and acceptor states, scales with both energy-transfer rates and damping rates. Central exciton splitting may aid in bringing the vibronically linked donor and acceptor states into better resonance resulting in the observed doubled rate in the closed structures. Several excited-state vibrational wavepackets persist on timescales relevant to energy transfer, highlighting the importance of further investigation of the interplay between electronic coupling and nuclear degrees of freedom in studies on high-efficiency photosynthesis.

  2. Solving the Capacitive Effect in the High-Frequency sweep for Langmuir Probe in SYMPLE

    NASA Astrophysics Data System (ADS)

    Pramila; Patel, J. J.; Rajpal, R.; Hansalia, C. J.; Anitha, V. P.; Sathyanarayana, K.

    2017-04-01

    Langmuir Probe based measurements need to be routinely carried out to measure various plasma parameters such as the electron density (ne), the electron temperature (Te), the floating potential (Vf), and the plasma potential (Vp). For this, the diagnostic electronics along with the biasing power supplies is installed in standard industrial racks with a 2KV isolation transformer. The Signal Conditioning Electronics (SCE) system is populated inside the 4U-chassis based system with the front-end electronics, designed using high common mode differential amplifiers which can measure small differential signal in presence of high common mode dc- bias or ac ramp voltage used for biasing the probes. DC-biasing of the probe is most common method for getting its I-V characteristic but method of biasing the probe with a sweep at high frequency encounters the problem of corruption of signal due to capacitive effect specially when the sweep period and the discharge time is very fast and die down in the order of μs or lesser. This paper presents and summarises the method of removing such effects encountered while measuring the probe current.

  3. Carrier Dynamics and Application of the Phase Coherent Photorefractive Effect in ZnSe Quantum Wells

    NASA Astrophysics Data System (ADS)

    Dongol, Amit

    The intensity dependent diffraction efficiency of a phase coherent photorefractive (PCP) ZnSe quantum well (QW) is investigated at 80 K in a two-beam four-wave mixing (FWM) configuration using 100 fs laser pulses with a repetition rate of 80 MHz. The observed diffraction efficiencies of the first and second-order diffracted beam are on the order of 10-3 and 10-5, respectively, revealing nearly no intensity dependence. The first-order diffraction is caused by the PCP effect where the probe-pulse is diffracted due to a long-living incoherent electron density grating in the QW. The second-order diffraction is created by a combination of diffraction processes. For negative probe-pulse delay, the exciton polarization is diffracted at the electron grating twice by a cascade effect. For positive delay, the diffracted signal is modified by the destructive interference with a chi(5) generated signal due to a dynamical screening effect. Model calculations of the signal traces based on the optical Bloch equations considering inhomogeneous broadening of exciton energies are in good agreement with the experimental data. To study the carrier dynamics responsible for the occurrence of the PCP effect, threebeam FWM experiments are carried out. The non-collinear wave-vectors k1 , k2 and k3 at central wavelength of 441 nm (~2.81 eV) were resonantly tuned to the heavy-hole exciton transition energy at 20 K. In the FWM experiment the time coincident strong pump pulses k1 and k2 create both an exciton density grating in the QW and an electron-hole pair grating in the GaAs while the delayed weak pulse k3 simultaneously probes the exciton lifetime as well as the electron grating capture time. The model calculations are in good agreement with the experimental results also providing information about the transfer delay of electrons arriving from the substrate to the QW. For negative probe-pulse delay we still observe a diffracted signal due to the long living electron density grating in the QW. The electron grating build-up and decay times are also studied with the modified three-beam FWM set-up. Using an optical shutter for pump pulses k1and k2, the dynamics of the electron grating formation and its decay is continuously probed by a delayed pulse k3. The obtained build-up and decay times are found to depend nearly linearly on the intensity of incident pulses k1 and k2 being on the order of several microseconds at low pump intensities. The PCP effect in ZnSe QW possesses a time-gating capability which can be used for real-time holographic imaging. In this work we demonstrate contrast enhanced real time holographic imaging (CEHI) of floating glass beads and of living unicellular animals (Paramecium and Euglena cells) in aqueous solution. We also demonstrate CEHI of a ~100 im thick wire concealed behind a layer of chicken skin. The results demonstrate the potential of PCP QWs for real-time and depth-resolved imaging of moving micrometer sized biological objects in transparent media or of obscured objects in turbid media.

  4. Laurate Biosensors Image Brain Neurotransmitters In Vivo: Can an Antihypertensive Medication Alter Psychostimulant Behavior?

    PubMed

    Broderick, Patricia A; Ho, Helen; Wat, Karyn; Murthy, Vivek

    2008-07-04

    Neuromolecular Imaging (NMI) with novel biosensors enables the selective detection of neurotransmitters in vivo within seconds, on line and in real time. Biosensors remain in place for continuing studies over a period of months. This biotechnological advance is based on conventional electrochemistry; the biosensors detect neurotransmitters by electron transfer. Simply stated, biosensors adsorb electrons from each neurotransmitter at specific oxidation potentials; the current derived from electron transfer is proportional to neurotransmitter concentration. Selective electron transfer properties of these biosensors permit the imaging of neurotransmitters, metabolites and precursors. The novel BRODERICK PROBE ® biosensors we have developed, differ in formulation and detection capabilities from biosensors/electrodes used in conventional electrochemistry/ voltammetry. In these studies, NMI, specifically, the BRODERICK PROBE ® laurate biosensor images neurotransmitter signals within mesolimbic neuronal terminals, nucleus accumbens (NAc); dopamine (DA), serotonin (5-HT), homovanillic acid (HVA) and Ltryptophan (L-TP) are selectively imaged. Simultaneously, we use infrared photobeams to monitor open-field movement behaviors on line with NMI in the same animal subjects. The goals are to investigate integrated neurochemical and behavioral effects of cocaine and caffeine alone and co-administered and further, to use ketanserin to decipher receptor profiles for these psychostimulants, alone and co-administered. The rationale for selecting this medication is: ketanserin (a) is an antihypertensive and cocaine and caffeine produce hypertension and (b) acts at 5-HT 2A/2C receptors, prevalent in NAc and implicated in hypertension and cocaine addiction. Key findings are: (a) the moderate dose of caffeine simultaneously potentiates cocaine's neurochemical and behavioral responses. (b) ketanserin simultaneously inhibits cocaine-increased DA and 5-HT release in NAc and open-field behaviors and (c) ketanserin inhibits 5-HT release in NAc and open-field behaviors produced by caffeine, but, surprisingly, acts to increase DA release in NAc. Importantly, the latter effect may be a possible adverse effect of the moderate dose of caffeine in hypertensive patients. Thus, an antihypertensive medication is shown here to play a role in inhibiting brain reward possibly via antihypertensive mechanisms at DA and 5-HT receptor subtypes within DA motor neurons. An explanatory note for the results obtained, is the role likely played by the G Protein Receptor Complex (GPRC) family of proteins. Empirical evidence shows that GPRC dimers, heteromers and heterotrimers may cause cross-talk between distinct signalling cascade pathways in the actions of cocaine and caffeine. Ligand-directed functional selectivity, particularly for ketanserin, in addition to GPRCs, may also cause differential responses. The results promise new therapeutic strategies for drug addiction, brain reward and cardiovascular medicine.

  5. Solution-processed all-oxide bulk heterojunction solar cells based on CuO nanaorod array and TiO2 nanocrystals.

    PubMed

    Wu, Fan; Qiao, Qiquan; Bahrami, Behzad; Chen, Ke; Pathak, Rajesh; Tong, Yanhua; Li, Xiaoyi; Zhang, Tiansheng; Jian, Ronghua

    2018-05-25

    We present a method to synthesize CuO nanorod array/TiO 2 nanocrystals bulk heterojunction (BHJ) on fluorine-tin-oxide (FTO) glass, in which single-crystalline p-type semiconductor of the CuO nanorod array is grown on the FTO glass by hydrothermal reaction and the n-type semiconductor of the TiO 2 precursor is filled into the CuO nanorods to form well-organized nano-interpenetrating BHJ after air annealing. The interface charge transfer in CuO nanorod array/TiO 2 heterojunction is studied by Kelvin probe force microscopy (KPFM). KPFM results demonstrate that the CuO nanorod array/TiO 2 heterojunction can realize the transfer of photo-generated electrons from the CuO nanorod array to TiO 2 . In this work, a solar cell with the structure FTO/CuO nanoarray/TiO 2 /Al is successfully fabricated, which exhibits an open-circuit voltage (V oc ) of 0.20 V and short-circuit current density (J sc ) of 0.026 mA cm -2 under AM 1.5 illumination. KPFM studies indicate that the very low performance is caused by an undesirable interface charge transfer. The interfacial surface potential (SP) shows that the electron concentration in the CuO nanorod array changes considerably after illumination due to increased photo-generated electrons, but the change in the electron concentration in TiO 2 is much less than in CuO, which indicates that the injection efficiency of the photo-generated electrons from CuO to TiO 2 is not satisfactory, resulting in an undesirable J sc in the solar cell. The interface photovoltage from the KPFM measurement shows that the low V oc results from the small interfacial SP difference between CuO and TiO 2 because the low injected electron concentration cannot raise the Fermi level significantly in TiO 2 . This conclusion agrees with the measured work function results under illumination. Hence, improvement of the interfacial electron injection is primary for the CuO nanorod array/TiO 2 heterojunction solar cells.

  6. Solution-processed all-oxide bulk heterojunction solar cells based on CuO nanaorod array and TiO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Wu, Fan; Qiao, Qiquan; Bahrami, Behzad; Chen, Ke; Pathak, Rajesh; Tong, Yanhua; Li, Xiaoyi; Zhang, Tiansheng; Jian, Ronghua

    2018-05-01

    We present a method to synthesize CuO nanorod array/TiO2 nanocrystals bulk heterojunction (BHJ) on fluorine-tin-oxide (FTO) glass, in which single-crystalline p-type semiconductor of the CuO nanorod array is grown on the FTO glass by hydrothermal reaction and the n-type semiconductor of the TiO2 precursor is filled into the CuO nanorods to form well-organized nano-interpenetrating BHJ after air annealing. The interface charge transfer in CuO nanorod array/TiO2 heterojunction is studied by Kelvin probe force microscopy (KPFM). KPFM results demonstrate that the CuO nanorod array/TiO2 heterojunction can realize the transfer of photo-generated electrons from the CuO nanorod array to TiO2. In this work, a solar cell with the structure FTO/CuO nanoarray/TiO2/Al is successfully fabricated, which exhibits an open-circuit voltage (V oc) of 0.20 V and short-circuit current density (J sc) of 0.026 mA cm‑2 under AM 1.5 illumination. KPFM studies indicate that the very low performance is caused by an undesirable interface charge transfer. The interfacial surface potential (SP) shows that the electron concentration in the CuO nanorod array changes considerably after illumination due to increased photo-generated electrons, but the change in the electron concentration in TiO2 is much less than in CuO, which indicates that the injection efficiency of the photo-generated electrons from CuO to TiO2 is not satisfactory, resulting in an undesirable J sc in the solar cell. The interface photovoltage from the KPFM measurement shows that the low V oc results from the small interfacial SP difference between CuO and TiO2 because the low injected electron concentration cannot raise the Fermi level significantly in TiO2. This conclusion agrees with the measured work function results under illumination. Hence, improvement of the interfacial electron injection is primary for the CuO nanorod array/TiO2 heterojunction solar cells.

  7. Ultrafast charge-transfer-to-solvent dynamics of iodide in tetrahydrofuran. 2. Photoinduced electron transfer to counterions in solution.

    PubMed

    Bragg, Arthur E; Schwartz, Benjamin J

    2008-04-24

    The excited states of atomic anions in liquids are bound only by the polarization of the surrounding solvent. Thus, the electron-detachment process following excitation to one of these solvent-bound states, known as charge-transfer-to-solvent (CTTS) states, provides a useful probe of solvent structure and dynamics. These transitions and subsequent relaxation dynamics also are influenced by other factors that alter the solution environment local to the CTTS anion, including the presence of cosolutes, cosolvents, and other ions. In this paper, we examine the ultrafast CTTS dynamics of iodide in liquid tetrahydrofuran (THF) with a particular focus on how the solvent dynamics and the CTTS electron-ejection process are altered in the presence of various counterions. In weakly polar solvents such as THF, iodide salts can be strongly ion-paired in solution; the steady-state UV-visible absorption spectroscopy of various iodide salts in liquid THF indicates that the degree of ion-pairing changes from strong to weak to none as the counterion is switched from Na+ to tetrabutylammonium (t-BA+) to crown-ether-complexed Na+, respectively. In our ultrafast experiments, we have excited the I- CTTS transition of these various iodide salts at 263 nm and probed the dynamics of the CTTS-detached electrons throughout the visible and near-IR. In the previous paper of this series (Bragg, A. E.; Schwartz, B. J. J. Phys. Chem. B 2008, 112, 483-494), we found that for "counterion-free" I- (obtained by complexing Na+ with a crown ether) the CTTS electrons were ejected approximately 6 nm from their partner iodine atoms, the result of significant nonadiabatic coupling between the CTTS excited state and extended electronic states supported by the naturally existing solvent cavities in liquid THF, which also serve as pre-existing electron traps. In contrast, for the highly ion-paired NaI/THF system, we find that approximately 90% of the CTTS electrons are "captured" by a nearby Na+ to form (Na+, e-)THF "tight-contact pairs" (TCPs), which are chemically and spectroscopically distinct from both solvated neutral sodium atoms and free solvated electrons. A simple kinetic model is able to reproduce the details of the electron capture process, with 63% of the electrons captured quickly in approximately 2.3 ps, 26% captured diffusively in approximately 63 ps, and the remaining 11% escaping out into the solution on subnanosecond time scales. We also find that the majority of the CTTS electrons are ejected to within 1 or 2 nm of the Na+. This demonstrates that the presence of the nearby cation biases the relocalization of CTTS-generated electrons from I- in THF, changing the nonadiabatic coupling to the extended, cavity-supported electronic states in THF to produce a much tighter distribution of electron-ejection distances. In the case of the more loosely ion-paired t-BA+-I-/THF system, we find that only 10-15% of the CTTS-ejected electrons associate with t-BA+ to form "loose-contact pairs" (LCPs), which are characterized by a much weaker interaction between the electron and cation than occurs in TCPs. The formation of (t-BA+, e-)THF LCPs is characterized by a Coulombically induced blue shift of the free eTHF- spectrum on a approximately 5-ps time scale. We argue that the weaker interaction between t-BA+ and the parent I- results in little change to the CTTS-ejection process, so that only those electrons that happen to localize in the vicinity of t-BA+ are captured to form LCPs. Finally, we interpret the correlation between electron capture yield and counterion-induced perturbation of the I- CTTS transition as arising from changes in the distribution of ion-pair separations with cation identity, and we discuss our results in the context of relevant solution conductivity measurements.

  8. A lysosome-targetable turn-on fluorescent probe for the detection of thiols in living cells based on a 1,8-naphthalimide derivative.

    PubMed

    Liang, Beibei; Wang, Baiyan; Ma, Qiujuan; Xie, Caixia; Li, Xian; Wang, Suiping

    2018-03-05

    Biological thiols, like cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), play crucial roles in biological systems and in lysosomal processes. Highly selective probes for detecting biological thiols in lysomes of living cells are rare. In this work, a lysosome-targetable turn-on fluorescent probe for the detection of thiols in living cells was designed and synthesized based on a 1,8-naphthalimide derivative. The probe has a 4-(2-aminoethyl)morpholine unit as a lysosome-targetable group and an acrylate group as the thiol recognition unit as well as a fluorescence quencher. In the absence of biothiols, the probe displayed weak fluorescence due to the photoinduced electron transfer (PET) process. Upon the addition of biothiols, the probe exhibited an enhanced fluorescence emission centered at 550nm due to cleavage of the acrylate moiety. The probe had high selectivity toward biothiols. Moreover, the probe features fast response time, excitation in the visible region and ability of working in a wide pH range. The linear response range covers a concentration range of Cys from 1.5×10 -7 to 1.0×10 -5 mol·L -1 and the detection limit is 6.9×10 -8 mol·L -1 for Cys. The probe has been successfully applied to the confocal imaging of biothiols in lysosomes of A549 cells with low cell toxicity. Furthermore, the method was successfully applied to the determination of thiols in a complex multicomponent mixture such as human serum, which suggests our proposed method has great potential for diagnostic purposes. All of such good properties prove it can be used to monitor biothiols in lysosomes of living cells and to be a good fluorescent probe for the selective detection of thiols. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Tuning Electron-Transfer Properties in 5,10,15,20-Tetra(1'-hexanoylferrocenyl)porphyrins as Prospective Systems for Quantum Cellular Automata and Platforms for Four-Bit Information Storage.

    PubMed

    Erickson, Nathan R; Holstrom, Cole D; Rhoda, Hannah M; Rohde, Gregory T; Zatsikha, Yuriy V; Galloni, Pierluca; Nemykin, Victor N

    2017-04-17

    Metal-free (1) and zinc (2) 5,10,15,20-tetra(1'-hexanoylferrocenyl)porphyrins were prepared using an acid-catalyzed tetramerization reaction between pyrrole and 1'-(1-hexanoyl)ferrocencarboxaldehyde. New organometallic compounds were characterized by combination of 1 H, 13 C, and variable-temperature NMR, UV-vis, magnetic circular dichroism, and high-resolution electrospray ionization mass spectrometry methods. The redox properties of 1 and 2 were probed by electrochemical (cyclic voltammetry and differential pulse voltammetry), spectroelectrochemical, and chemical oxidation approaches coupled with UV-vis-near-IR and Mössbauer spectroscopy. Electrochemical data recorded in the dichloromethane/TBA[B(C 6 F 5 ) 4 ] system (TBA[B(C 6 F 5 ) 4 ] is a weakly coordinating tetrabutylammonium tetrakis(pentafluorophenyl)borate electrolyte) are suggestive of "1e - + 1e - + 2e - " oxidation sequence for four ferrocene groups in 1 and 2, which followed by oxidation process centered at the porphyrin core. The separation between all ferrocene-centered oxidation electrochemical waves is very large (510-660 mV). The nature of mixed-valence [1] n+ and [2] n+ (n = 1 or 2) complexes was probed by the spectroelectrochemical and chemical oxidation methods. Analysis of the intervalence charge-transfer band in [1] + and [2] + is suggestive of the Class II (in Robin-Day classification) behavior of all mixed-valence species, which correlate well with Mössbauer data. Density functional theory-polarized continuum model (DFT-PCM) and time-dependent (TD) DFT-PCM methods were applied to correlate redox and optical properties of organometallic complexes 1 and 2 with their electronic structures.

  10. An electrochemical aptasensor for thrombin detection based on direct electrochemistry of glucose oxidase using a functionalized graphene hybrid for amplification.

    PubMed

    Bai, Lijuan; Yan, Bin; Chai, Yaqin; Yuan, Ruo; Yuan, Yali; Xie, Shunbi; Jiang, Liping; He, Ying

    2013-11-07

    In this work, we reported a new label-free electrochemical aptasensor for highly sensitive detection of thrombin using direct electron transfer of glucose oxidase (GOD) as a redox probe and a gold nanoparticle-polyaniline-graphene (Au-PANI-Gra) hybrid for amplification. The Au-PANI-Gra hybrid with large surface area provided a biocompatible sensing platform for the immobilization of GOD. GOD was encapsulated into the three-dimensional netlike (3-mercaptopropyl)trimethoxysilane (MPTS) to form the MPTS-GOD biocomposite, which not only retained the native functions and properties, but also exhibited tunable porosity, high thermal stability, and chemical inertness. With abundant thiol tail groups on MPTS, MPTS-GOD was able to chemisorb onto the surface of the Au-PANI-Gra modified electrode through the strong affinity of the Au-S bond. The electrochemical signal originated from GOD, avoiding the addition or labeling of other redox mediators. After immobilizing the thiolated thrombin binding aptamer through gold nanoparticles (AuNPs), GOD as a blocking reagent was employed to block the remaining active sites of the AuNPs and avoid the nonspecific adsorption. The proposed method avoided the labeling process of redox probes and increased the amount of electroactive GOD. The concentration of thrombin was monitored based on the decrease of current response through cyclic voltammetry (CV) in 0.1 M PBS (pH 7.4). With the excellent direct electron transfer of double layer GOD membranes, the resulting aptasensor exhibited high sensitivity for detection of thrombin with a wide linear range from 1.0 × 10(-12) to 3.0 × 10(-8) M. The proposed aptasensor also showed good stability, satisfactory reproducibility and high specificity, which provided a promising strategy for electrochemical aptamer-based detection of other biomolecules.

  11. 5' modification of duplex DNA with a ruthenium electron donor-acceptor pair using solid-phase DNA synthesis

    NASA Technical Reports Server (NTRS)

    Frank, Natia L.; Meade, Thomas J.

    2003-01-01

    Incorporation of metalated nucleosides into DNA through covalent modification is crucial to measurement of thermal electron-transfer rates and the dependence of these rates with structure, distance, and position. Here, we report the first synthesis of an electron donor-acceptor pair of 5' metallonucleosides and their subsequent incorporation into oligonucleotides using solid-phase DNA synthesis techniques. Large-scale syntheses of metal-containing oligonucleotides are achieved using 5' modified phosporamidites containing [Ru(acac)(2)(IMPy)](2+) (acac is acetylacetonato; IMPy is 2'-iminomethylpyridyl-2'-deoxyuridine) (3) and [Ru(bpy)(2)(IMPy)](2+) (bpy is 2,2'-bipyridine; IMPy is 2'-iminomethylpyridyl-2'-deoxyuridine) (4). Duplexes formed with the metal-containing oligonucleotides exhibit thermal stability comparable to the corresponding unmetalated duplexes (T(m) of modified duplex = 49 degrees C vs T(m) of unmodified duplex = 47 degrees C). Electrochemical (3, E(1/2) = -0.04 V vs NHE; 4, E(1/2) = 1.12 V vs NHE), absorption (3, lambda(max) = 568, 369 nm; 4, lambda(max) = 480 nm), and emission (4, lambda(max) = 720 nm, tau = 55 ns, Phi = 1.2 x 10(-)(4)) data for the ruthenium-modified nucleosides and oligonucleotides indicate that incorporation into an oligonucleotide does not perturb the electronic properties of the ruthenium complex or the DNA significantly. In addition, the absence of any change in the emission properties upon metalated duplex formation suggests that the [Ru(bpy)(2)(IMPy)](2+)[Ru(acac)(2)(IMPy)](2+) pair will provide a valuable probe for DNA-mediated electron-transfer studies.

  12. Surface Redox Chemistry of Immobilized Nanodiamond: Effects of Particle Size and Electrochemical Environment

    NASA Astrophysics Data System (ADS)

    Gupta, S.; McDonald, B.; Carrizosa, S. B.

    2017-07-01

    The size of the diamond particle is tailored to nanoscale (nanodiamond, ND), and the ND surface is engineered targeting specific (electrochemical and biological) applications. In this work, we investigated the complex surface redox chemistry of immobilized ND layer on conductive boron-doped diamond electrode with a broad experimental parameter space such as particle size (nano versus micron), scan rate, pH (cationic/acidic versus anionic/basic), electrolyte KCl concentration (four orders of magnitude), and redox agents (neutral and ionic). We reported on the significant enhancement of ionic currents while recording reversible oxidation of neutral ferrocene methanol (FcMeOH) by almost one order of magnitude than traditional potassium ferricyanide (K3Fe(CN)6) redox agent. The current enhancement is inversely related to ND particle diameter in the following order: 1 μm << 1000 nm < 100 nm < 10 nm ≤ 5 nm < 2 nm. We attribute the current enhancement to concurrent electrocatalytic processes, i.e. the electron transfer between redox probes and electroactive surface functional (e.g. hydroxyl, carboxyl, epoxy) moieties and the electron transfer mediated by adsorbed FcMeOH+ (or Fe(CN) 6 3+ ) ions onto ND surface. The first process is pH dependent since it depends upon ND surface functionalities for which the electron transfer is coupled to proton transfer. The adsorption mediated process is observed most apparently at slower scan rates owing to self-exchange between adsorbed FcMeOH+ ions and FcMeOH redox agent molecules in diffusion-limited bulk electrolyte solution. Alternatively, it is hypothesized that the surface functionality and defect sites ( sp 2-bonded C shell and unsaturated bonds) give rise to surface electronic states with energies within the band gap (midgap states) in undoped ND. These surface states serve as electron donors (and acceptors) depending upon their bonding (and antibonding) character and, therefore, they can support electrocatalytic redox processes in the presence of specific redox-active molecules via feedback mechanism. Apparently, FcMeOH+ tended to have electrostatic affinity for negatively charged ND surface functionalities, corroborated by present experiments. We also attempted to study biocatalytic process using model metalloprotein (cytochrome c; Cyt c) immobilized on ND particles for investigating interfacial electron transfer kinetics and compared with those of functionalized graphene (graphene oxide; GO and reduced GO). The findings are discussed in terms of interplay of sp 3-bonded C (ND core) and sp 2-bonded C (ND shell and graphene-based systems).

  13. Demonstration of Confined Electron Gas and Steep-Slope Behavior in Delta-Doped GaAs-AlGaAs Core-Shell Nanowire Transistors.

    PubMed

    Morkötter, S; Jeon, N; Rudolph, D; Loitsch, B; Spirkoska, D; Hoffmann, E; Döblinger, M; Matich, S; Finley, J J; Lauhon, L J; Abstreiter, G; Koblmüller, G

    2015-05-13

    Strong surface and impurity scattering in III-V semiconductor-based nanowires (NW) degrade the performance of electronic devices, requiring refined concepts for controlling charge carrier conductivity. Here, we demonstrate remote Si delta (δ)-doping of radial GaAs-AlGaAs core-shell NWs that unambiguously exhibit a strongly confined electron gas with enhanced low-temperature field-effect mobilities up to 5 × 10(3) cm(2) V(-1) s(-1). The spatial separation between the high-mobility free electron gas at the NW core-shell interface and the Si dopants in the shell is directly verified by atom probe tomographic (APT) analysis, band-profile calculations, and transport characterization in advanced field-effect transistor (FET) geometries, demonstrating powerful control over the free electron gas density and conductivity. Multigated NW-FETs allow us to spatially resolve channel width- and crystal phase-dependent variations in electron gas density and mobility along single NW-FETs. Notably, dc output and transfer characteristics of these n-type depletion mode NW-FETs reveal excellent drain current saturation and record low subthreshold slopes of 70 mV/dec at on/off ratios >10(4)-10(5) at room temperature.

  14. Controlled Vectorial Electron Transfer and Photoelectrochemical Applications of Layered Relay/Photosensitizer-Imprinted Au Nanoparticle Architectures on Electrodes.

    PubMed

    Metzger, Tzuriel S; Tel-Vered, Ran; Willner, Itamar

    2016-03-23

    Two configurations of molecularly imprinted bis-aniline-bridged Au nanoparticles (NPs) for the specific binding of the electron acceptor N,N'-dimethyl-4,4'-bipyridinium (MV(2+) ) and for the photosensitizer Zn(II)-protoporphyrin IX (Zn(II)-PP-IX) are assembled on electrodes, and the photoelectrochemical features of the two configurations are discussed. Configuration I includes the MV(2+) -imprinted Au NPs matrix as a base layer, on which the Zn(II)-PP-IX-imprinted Au NPs layer is deposited, while configuration II consists of a bilayer corresponding to the reversed imprinting order. Irradiation of the two electrodes in the presence of a benzoquinone/benzohydroquinone redox probe yields photocurrents of unique features: (i) Whereas configuration I yields an anodic photocurrent, the photocurrent generated by configuration II is cathodic. (ii) The photocurrents obtained upon irradiation of the imprinted electrodes are substantially higher as compared to the nonimprinted surfaces. The high photocurrents generated by the imprinted Au NPs-modified electrodes are attributed to the effective loading of the imprinted matrices with the MV(2+) and Zn(II)-PP-IX units and to the effective charge separation proceeding in the systems. The directional anodic/cathodic photocurrents are rationalized in terms of vectorial electron transfer processes dictated by the imprinting order and by the redox potentials of the photosensitizer/electron acceptor units associated with the imprinted sites in the two configurations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. In situ characterization of cofacial Co(IV) centers in Co4O4 cubane: Modeling the high-valent active site in oxygen-evolving catalysts.

    PubMed

    Brodsky, Casey N; Hadt, Ryan G; Hayes, Dugan; Reinhart, Benjamin J; Li, Nancy; Chen, Lin X; Nocera, Daniel G

    2017-04-11

    The Co 4 O 4 cubane is a representative structural model of oxidic cobalt oxygen-evolving catalysts (Co-OECs). The Co-OECs are active when residing at two oxidation levels above an all-Co(III) resting state. This doubly oxidized Co(IV) 2 state may be captured in a Co(III) 2 (IV) 2 cubane. We demonstrate that the Co(III) 2 (IV) 2 cubane may be electrochemically generated and the electronic properties of this unique high-valent state may be probed by in situ spectroscopy. Intervalence charge-transfer (IVCT) bands in the near-IR are observed for the Co(III) 2 (IV) 2 cubane, and spectroscopic analysis together with electrochemical kinetics measurements reveal a larger reorganization energy and a smaller electron transfer rate constant for the doubly versus singly oxidized cubane. Spectroelectrochemical X-ray absorption data further reveal systematic spectral changes with successive oxidations from the cubane resting state. Electronic structure calculations correlated to experimental data suggest that this state is best represented as a localized, antiferromagnetically coupled Co(IV) 2 dimer. The exchange coupling in the cofacial Co(IV) 2 site allows for parallels to be drawn between the electronic structure of the Co 4 O 4 cubane model system and the high-valent active site of the Co-OEC, with specific emphasis on the manifestation of a doubly oxidized Co(IV) 2 center on O-O bond formation.

  16. In situ characterization of cofacial Co(IV) centers in Co 4O 4 cubane: Modeling the high-valent active site in oxygen-evolving catalysts

    DOE PAGES

    Brodsky, Casey N.; Hadt, Ryan G.; Hayes, Dugan; ...

    2017-03-27

    The Co 4O 4 cubane is a representative structural model of oxidic cobalt oxygen evolving catalysts (Co-OECs). The Co-OECs are active when residing at two oxidation levels above an all Co(III) resting state. This doubly oxidized Co(IV) 2 state may be captured in a Co(III) 2(IV) 2 cubane. We demonstrate that the Co(III) 2(IV) 2 cubane may be electrochemically generated and the electronic properties of this unique high-valent state may be probed by in situ spectroscopy. Intervalence charge transfer (IVCT) bands in the near-IR are observed for the Co(III) 2(IV) 2 cubane, and spectroscopic analysis together with electrochemical kinetics measurementsmore » reveal a larger reorganization energy and a smaller electron transfer rate constant for the doubly versus singly oxidized cubane. Spectroelectrochemical X-ray absorption data further reveal systematic spectral changes with successive oxidations from the cubane resting state. Electronic structure calculations correlated to experimental data suggest that this state is best represented as a localized, antiferromagnetically coupled Co(IV) 2 dimer. The exchange coupling in the cofacial Co(IV) 2 site allows for parallels to be drawn between the electronic structure of the Co 4O 4 cubane model system and the high valent active site of the Co-OEC, with specific emphasis on the manifestation of a doubly oxidized Co(IV) 2 center on O–O bond formation.« less

  17. Final Technical Report for the Energy Frontier Research Center Understanding Charge Separation and Transfer at Interfaces in Energy Materials (EFRC:CST)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanden Bout, David A.

    2015-09-14

    Our EFRC was founded with the vision of creating a broadly collaborative and synergistic program that would lead to major breakthroughs in the molecular-level understanding of the critical interfacial charge separation and charge transfer (CST) processes that underpin the function of candidate materials for organic photovoltaic (OPV) and electrical-energy-storage (EES) applications. Research in these energy contexts shares an imposing challenge: How can we understand charge separation and transfer mechanisms in the presence of immense materials complexity that spans multiple length scales? To address this challenge, our 50-member Center undertook a total of 28 coordinated research projects aimed at unraveling themore » CST mechanisms that occur at interfaces in these nanostructured materials. This rigorous multi-year study of CST interfaces has greatly illuminated our understanding of early-timescale processes (e.g., exciton generation and dissociation dynamics at OPV heterojunctions; control of Li+-ion charging kinetics by surface chemistry) occurring in the immediate vicinity of interfaces. Program outcomes included: training of 72 graduate student and postdoctoral energy researchers at 5 institutions and spanning 7 academic disciplines in science and engineering; publication of 94 peer-reviewed journal articles; and dissemination of research outcomes via 340 conference, poster and other presentations. Major scientific outcomes included: implementation of a hierarchical strategy for understanding the electronic communication mechanisms and ultimate fate of charge carriers in bulk heterojunction OPV materials; systematic investigation of ion-coupled electron transfer processes in model Li-ion battery electrode/electrolyte systems; and the development and implementation of 14 unique technologies and instrumentation capabilities to aid in probing sub-ensemble charge separation and transfer mechanisms.« less

  18. Structural and vibrational characteristics of a non-linear optical material 3-(4-nitrophenyl)-1-(pyridine-3-yl) prop-2-en-1-one probed by quantum chemical computation and spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Kumar, Ram; Karthick, T.; Tandon, Poonam; Agarwal, Parag; Menezes, Anthoni Praveen; Jayarama, A.

    2018-07-01

    Chalcone and its derivatives are well-known for their high non-linear optical behavior and charge transfer characteristics. The effectiveness of charge transfer via ethylenic group and increase in NLO response of the chalcone upon substitutions are of great interest. The present study focuses the structural, charge transfer and non-linear optical properties of a new chalcone derivative "3-(4-nitrophenyl)-1-(pyridine-3-yl) prop-2-en-1-one" (hereafter abbreviated as 4 NP3AP). To accomplish this task, we have incorporated the experimental FT-IR, FT-Raman and UV-vis spectroscopic studies along with quantum chemical calculations. The frequency assignments of peaks in IR and Raman have been done on the basis of potential energy distribution and the results were compared with the earlier reports on similar kind of molecules. For obtaining the electronic transition details of 4 NP3AP, UV-vis spectrum has been simulated by considering both gaseous and solvent phase using time-dependent density functional theory (TD-DFT). The HOMO-LUMO energy gap, most important factor to be considered for studying charge transfer properties of the molecule has been calculated. The electron density surface map corresponding to the net electrostatic point charges has been generated to obtain the electrophilic and nucleophilic sites. The charge transfer originating from the occupied (donor) and unoccupied (acceptor) molecular orbitals have been analyzed with the help of natural bond orbital theory. Moreover, the estimation of second-hyperpolarizability of the molecule confirms the non-linear optical behavior of the molecule.

  19. Trigger probe for determining the orientation of the power distribution of an electron beam

    DOEpatents

    Elmer, John W [Danville, CA; Palmer, Todd A [Livermore, CA; Teruya, Alan T [Livermore, CA

    2007-07-17

    The present invention relates to a probe for determining the orientation of electron beams being profiled. To accurately time the location of an electron beam, the probe is designed to accept electrons from only a narrowly defined area. The signal produced from the probe is then used as a timing or triggering fiducial for an operably coupled data acquisition system. Such an arrangement eliminates changes in slit geometry, an additional signal feedthrough in the wall of a welding chamber and a second timing or triggering channel on a data acquisition system. As a result, the present invention improves the accuracy of the resulting data by minimizing the adverse effects of current slit triggering methods so as to accurately reconstruct electron or ion beams.

  20. In-flight calibration of mesospheric rocket plasma probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Havnes, Ove; University Studies Svalbard; Hartquist, Thomas W.

    Many effects and factors can influence the efficiency of a rocket plasma probe. These include payload charging, solar illumination, rocket payload orientation and rotation, and dust impact induced secondary charge production. As a consequence, considerable uncertainties can arise in the determination of the effective cross sections of plasma probes and measured electron and ion densities. We present a new method for calibrating mesospheric rocket plasma probes and obtaining reliable measurements of plasma densities. This method can be used if a payload also carries a probe for measuring the dust charge density. It is based on that a dust probe's effectivemore » cross section for measuring the charged component of dust normally is nearly equal to its geometric cross section, and it involves the comparison of variations in the dust charge density measured with the dust detector to the corresponding current variations measured with the electron and/or ion probes. In cases in which the dust charge density is significantly smaller than the electron density, the relation between plasma and dust charge density variations can be simplified and used to infer the effective cross sections of the plasma probes. We illustrate the utility of the method by analysing the data from a specific rocket flight of a payload containing both dust and electron probes.« less

  1. In-flight calibration of mesospheric rocket plasma probes.

    PubMed

    Havnes, Ove; Hartquist, Thomas W; Kassa, Meseret; Morfill, Gregor E

    2011-07-01

    Many effects and factors can influence the efficiency of a rocket plasma probe. These include payload charging, solar illumination, rocket payload orientation and rotation, and dust impact induced secondary charge production. As a consequence, considerable uncertainties can arise in the determination of the effective cross sections of plasma probes and measured electron and ion densities. We present a new method for calibrating mesospheric rocket plasma probes and obtaining reliable measurements of plasma densities. This method can be used if a payload also carries a probe for measuring the dust charge density. It is based on that a dust probe's effective cross section for measuring the charged component of dust normally is nearly equal to its geometric cross section, and it involves the comparison of variations in the dust charge density measured with the dust detector to the corresponding current variations measured with the electron and/or ion probes. In cases in which the dust charge density is significantly smaller than the electron density, the relation between plasma and dust charge density variations can be simplified and used to infer the effective cross sections of the plasma probes. We illustrate the utility of the method by analysing the data from a specific rocket flight of a payload containing both dust and electron probes.

  2. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction.

    PubMed

    Scheller, Silvan; Yu, Hang; Chadwick, Grayson L; McGlynn, Shawn E; Orphan, Victoria J

    2016-02-12

    The oxidation of methane with sulfate is an important microbial metabolism in the global carbon cycle. In marine methane seeps, this process is mediated by consortia of anaerobic methanotrophic archaea (ANME) that live in syntrophy with sulfate-reducing bacteria (SRB). The underlying interdependencies within this uncultured symbiotic partnership are poorly understood. We used a combination of rate measurements and single-cell stable isotope probing to demonstrate that ANME in deep-sea sediments can be catabolically and anabolically decoupled from their syntrophic SRB partners using soluble artificial oxidants. The ANME still sustain high rates of methane oxidation in the absence of sulfate as the terminal oxidant, lending support to the hypothesis that interspecies extracellular electron transfer is the syntrophic mechanism for the anaerobic oxidation of methane. Copyright © 2016, American Association for the Advancement of Science.

  3. Direct probing of electron and hole trapping into nano-floating-gate in organic field-effect transistor nonvolatile memories

    NASA Astrophysics Data System (ADS)

    Cui, Ze-Qun; Wang, Shun; Chen, Jian-Mei; Gao, Xu; Dong, Bin; Chi, Li-Feng; Wang, Sui-Dong

    2015-03-01

    Electron and hole trapping into the nano-floating-gate of a pentacene-based organic field-effect transistor nonvolatile memory is directly probed by Kelvin probe force microscopy. The probing is straightforward and non-destructive. The measured surface potential change can quantitatively profile the charge trapping, and the surface characterization results are in good accord with the corresponding device behavior. Both electrons and holes can be trapped into the nano-floating-gate, with a preference of electron trapping than hole trapping. The trapped charge quantity has an approximately linear relation with the programming/erasing gate bias, indicating that the charge trapping in the device is a field-controlled process.

  4. Coherent Multidimensional Core Spectroscopy of Molecules with Multiple X-ray pulses

    NASA Astrophysics Data System (ADS)

    Mukamel, Shaul

    2017-04-01

    Multidimensional spectroscopy uses sequences of optical pulses to study dynamical processes in complex molecules through correlation plots involving several time delay periods. Extensions of these techniques to the x-ray regime will be discussed. Ultrafast nonlinear x-ray spectroscopy is made possible by newly developed free electron laser and high harmonic generation sources. The attosecond duration of X-ray pulses and the atomic selectivity of core X-ray excitations offer a uniquely high spatial and temporal resolution. We demonstrate how stimulated Raman detection of an X-ray probe may be used to monitor the phase and dynamics of the nonequilibrium valence electronic state wavepacket created by e.g. photoexcitation, photoionization and Auger processes. Spectroscopy of multiplecore excitations provides a new window into electron correlations. Applications will be presented to long-range charge transfer in proteins and to excitation energy transfer in porphyrin arrays. Conical intersections (CoIn) dominate the pathways and outcomes of virtually all photophysical and photochemical molecular processes. Despite extensive experimental and theoretical effort CoIns have not been directly observed yet and the experimental evidence is being inferred from fast reaction rates and some vibrational signatures. Novel ultrafast X ray probes for these processes will be presented. Short X-ray pulses can directly detect the passage through a CoIn with the adequate temporal and spectral sensitivity. The technique is based on a coherent Raman process that employs a composite femtosecond/attosecond X-ray pulse to directly detect the electronic coherences (rather than populations) that are generated as the system passes through the CoIn. Streaking of time-resolved photoelectron spectroscopy (TRPES) signals offers another powerful window into the joint electronic/vibrational dynamics at concial intersections. Strong coupling of molecules to the vacuum field of micro cavities can modify the potential energy surfaces thereby manipulating the photophysical and photochemical reaction pathways. The photonic vacuum state of a localized cavity mode can be strongly mixed with the molecular degrees of freedom to create hybrid field-matter states known as polaritons. Simulations of the avoided crossing of sodium iodide in a cavity which incorporate the quantized cavity field into the nuclear wave packet dynamics will be presented. Numerical results show how the branching ratio between the covalent and ionic dissociation channels can be strongly manipulated by the optical cavity.

  5. Electron Tunneling, a Quantum Probe for the Quantum World of Nanotechnology

    ERIC Educational Resources Information Center

    Hipps, K. W.; Scudiero, L.

    2005-01-01

    A quantum-mechanical probe is essential to study the quantum world, which is provided by electron tunneling. A spectroscopic mapping to image the electron-transport pathways on a sub-molecular scale is used.

  6. Switch-on fluorescent/FRET probes to study human histidine triad nucleotide binding protein 1 (hHint1), a novel target for opioid tolerance and neuropathic pain.

    PubMed

    Shah, Rachit; Zhou, Andrew; Wagner, Carston R

    2017-12-13

    Histidine Triad Nucleotide Binding Protein 1 (Hint1) has emerged to be an important post-synaptic protein associated with a variety of central nervous system disorders such as pain, addiction, and schizophrenia. Recently, inhibition of histidine nucleotide binding protein 1 (Hint1) with a small nucleoside inhibitor has shown promise as a new therapeutic strategy for the treatment of neuropathic pain. Herein, we describe the first rationally designed small molecule switch-on probes with dual fluorescence and FRET properties to study Hint1. Two non-natural fluorescent nucleosides with a fluorescent lifetime of 20 and 25 ns were each coupled through a linker to the indole ring, i.e. probes 7 and 8. Both probes were found to be water soluble and quenched intramolecularly via photoinduced electron transfer (PET) resulting in minimal background fluorescence. Upon incubating with Hint1, compound 7 and 8 exhibited a 40- and 16-fold increase in the fluorescence intensity compared to the control. Compounds 7 and 8 bind Hint1 with a dissociation constant of 0.121 ± 0.02 and 2.2 ± 0.36 μM, respectively. We demonstrate that probe 8 exhibits a switch-on FRET property with an active site tryptophan residue (W123). We show the utility of probes in performing quantitative ligand displacement studies, as well as in selective detection of Hint1 in the cell lysates. These probes should be useful for studying the dynamics of the active site, as well as for the development of fluorescence lifetime based high throughput screening assay to identify novel inhibitors for Hint1 in future.

  7. Scaling within the spectral function approach

    NASA Astrophysics Data System (ADS)

    Sobczyk, J. E.; Rocco, N.; Lovato, A.; Nieves, J.

    2018-03-01

    Scaling features of the nuclear electromagnetic response functions unveil aspects of nuclear dynamics that are crucial for interpreting neutrino- and electron-scattering data. In the large momentum-transfer regime, the nucleon-density response function defines a universal scaling function, which is independent of the nature of the probe. In this work, we analyze the nucleon-density response function of 12C, neglecting collective excitations. We employ particle and hole spectral functions obtained within two distinct many-body methods, both widely used to describe electroweak reactions in nuclei. We show that the two approaches provide compatible nucleon-density scaling functions that for large momentum transfers satisfy first-kind scaling. Both methods yield scaling functions characterized by an asymmetric shape, although less pronounced than that of experimental scaling functions. This asymmetry, only mildly affected by final state interactions, is mostly due to nucleon-nucleon correlations, encoded in the continuum component of the hole spectral function.

  8. Investigation of reliability of the cutoff probe by a comparison with Thomson scattering in high density processing plasmas

    NASA Astrophysics Data System (ADS)

    Seo, Byonghoon; Kim, Dae-Woong; Kim, Jung-Hyung; You, Shinjae

    2017-12-01

    A "cutoff probe" uses microwaves to measure the electron density in a plasma. It is particularly attractive because it is easy to fabricate and use, its measurement is immune to surface contamination by dielectric materials, and it has a straightforward analysis to measure electron density in real time. In this work, we experimentally investigate the accuracy of the cutoff probe through a detailed comparison with Thomson scattering in a low temperature, high density processing plasma. The result shows that the electron density measured by the cutoff probe is lower than that by Thomson scattering and that the discrepancy of the two results becomes smaller as the gap between the two tips increases and/or the neutral gas pressure decreases. The underestimated electron density found by the cutoff probe can be explained by the influence of the probe holder, which becomes important as the pressure increases and the gap gets closer.

  9. Quantum Nuclear Dynamics Pumped and Probed by Ultrafast Polarization Controlled Steering of a Coherent Electronic State in LiH.

    PubMed

    Nikodem, Astrid; Levine, R D; Remacle, F

    2016-05-19

    The quantum wave packet dynamics following a coherent electronic excitation of LiH by an ultrashort, polarized, strong one-cycle infrared optical pulse is computed on several electronic states using a grid method. The coupling to the strong field of the pump and the probe pulses is included in the Hamiltonian used to solve the time-dependent Schrodinger equation. The polarization of the pump pulse allows us to control the localization in time and in space of the nonequilibrium coherent electronic motion and the subsequent nuclear dynamics. We show that transient absorption, resulting from the interaction of the total molecular dipole with the electric fields of the pump and the probe, is a very versatile probe of the different time scales of the vibronic dynamics. It allows probing both the ultrashort, femtosecond time scale of the electronic coherences as well as the longer dozens of femtoseconds time scales of the nuclear motion on the excited electronic states. The ultrafast beatings of the electronic coherences in space and in time are shown to be modulated by the different periods of the nuclear motion.

  10. Electronegative plasma diagnostic by laser photo-detachment combined with negatively biased Langmuir probe

    NASA Astrophysics Data System (ADS)

    Oudini, N.; Sirse, N.; Taccogna, F.; Ellingboe, A. R.; Bendib, A.

    2018-05-01

    We propose a new technique for diagnosing negative ion properties using Langmuir probe assisted pulsed laser photo-detachment. While the classical technique uses a laser pulse to convert negative ions into electron-atom pairs and a positively biased Langmuir probe tracking the change of electron saturation current, the proposed method uses a negatively biased Langmuir probe to track the temporal evolution of positive ion current. The negative bias aims to avoid the parasitic electron current inherent to probe tip surface ablation. In this work, we show through analytical and numerical approaches that, by knowing electron temperature and performing photo-detachment at two different laser wavelengths, it is possible to deduce plasma electronegativity (ratio of negative ion to electron densities) α, and anisothermicity (ratio of electron to negative ion temperatures) γ-. We present an analytical model that links the change in the collected positive ion current to plasma electronegativity and anisothermicity. Particle-In-Cell simulation is used as a numerical experiment covering a wide range of α and γ- to test the new analysis technique. The new technique is sensitive to α in the range 0.5 < α < 10 and yields γ- for large α, where negative ion flux affects the probe sheath behavior, typically α > 1.

  11. A biofilm microreactor system for simultaneous electrochemical and nuclear magnetic resonance techniques.

    PubMed

    Renslow, R S; Babauta, J T; Majors, P D; Mehta, H S; Ewing, R J; Ewing, T W; Mueller, K T; Beyenal, H

    2014-01-01

    Nuclear magnetic resonance (NMR) techniques are ideally suited for the study of biofilms and for probing their microenvironments because these techniques allow for noninvasive interrogation and in situ monitoring with high resolution. By combining NMR with simultaneous electrochemical techniques, it is possible to sustain and study live biofilms respiring on electrodes. Here, we describe a biofilm microreactor system, including a reusable and a disposable reactor, that allows for simultaneous electrochemical and NMR techniques (EC-NMR) at the microscale. Microreactors were designed with custom radio frequency resonator coils, which allowed for NMR measurements of biofilms growing on polarized gold electrodes. For an example application of this system we grew Geobacter sulfurreducens biofilms on electrodes. EC-NMR was used to investigate growth medium flow velocities and depth-resolved acetate concentration inside the biofilm. As a novel contribution we used Monte Carlo error analysis to estimate the standard deviations of the acetate concentration measurements. Overall, we found that the disposable EC-NMR microreactor provided a 9.7 times better signal-to-noise ratio over the reusable reactor. The EC-NMR biofilm microreactor system can ultimately be used to correlate extracellular electron transfer rates with metabolic reactions and explore extracellular electron transfer mechanisms.

  12. Mechanism of Ferric Oxalate Photolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangiante, David. M.; Schaller, Richard D.; Zarzycki, Piotr

    Iron(III) oxalate, Fe 3+(C 2O 4) 3 3–, is a photoactive metal organic complex found in natural systems and used to quantify photon flux as a result of its high absorbance and reaction quantum yield. It also serves as a model complex to understand metal carboxylate complex photolysis because the mechanism of photolysis and eventual production of CO 2 is not well understood for any system. Here, we employed pump/probe mid-infrared transient absorption spectroscopy to study the photolysis reaction of the iron(III) oxalate ion in D 2O and H 2O up to 3 ns following photoexcitation. We find that intramolecularmore » electron transfer from oxalate to iron occurs on a sub-picosecond time scale, creating iron(II) complexed by one oxidized and two spectator oxalate ligands. Within 40 ps following electron transfer, the oxidized oxalate molecule dissociates to form free solvated CO 2(aq) and a species inferred to be CO 2 •– based on the appearance of a new vibrational absorption band and ab initio simulation. Our work provides direct spectroscopic evidence for the first mechanistic steps in the photolysis reaction and presents a technique to analyze other environmentally relevant metal carboxylate photolysis reactions.« less

  13. Analysis of charge injection and contact resistance as a function of electrode surface treatment in ambipolar polymer transistors

    NASA Astrophysics Data System (ADS)

    Lee, Seon Jeng; Kim, Chaewon; Jung, Seok-Heon; Di Pietro, Riccardo; Lee, Jin-Kyun; Kim, Jiyoung; Kim, Miso; Lee, Mi Jung

    2018-01-01

    Ambipolar organic field-effect transistors (OFETs) have both of hole and electron enhancements in charge transport. The characteristics of conjugated diketopyrrolopyrrole ambipolar OFETs depend on the metal-contact surface treatment for charge injection. To investigate the charge-injection characteristics of ambipolar transistors, these devices are processed via various types of self-assembled monolayer treatments and annealing. We conclude that treatment by the self-assembled monolayer 1-decanethiol gives the best enhancement of electron charge injection at both 100 and 300 °C annealing temperature. In addition, the contact resistance is calculated by using two methods: One is the gated four-point probe (gFPP) method that gives the voltage drop between channels, and the other is the simultaneous contact resistance extraction method, which extracts the contact resistance from the general transfer curve. We confirm that the gFPP method and the simultaneous extraction method give similar contact resistance, which means that we can extract contact resistance from the general transfer curve without any special contact pattern. Based on these characteristics of ambipolar p- and n-type transistors, we fabricate inverter devices with only one active layer. [Figure not available: see fulltext.

  14. Mechanism of Ferric Oxalate Photolysis

    DOE PAGES

    Mangiante, David. M.; Schaller, Richard D.; Zarzycki, Piotr; ...

    2017-06-08

    Iron(III) oxalate, Fe 3+(C 2O 4) 3 3–, is a photoactive metal organic complex found in natural systems and used to quantify photon flux as a result of its high absorbance and reaction quantum yield. It also serves as a model complex to understand metal carboxylate complex photolysis because the mechanism of photolysis and eventual production of CO 2 is not well understood for any system. Here, we employed pump/probe mid-infrared transient absorption spectroscopy to study the photolysis reaction of the iron(III) oxalate ion in D 2O and H 2O up to 3 ns following photoexcitation. We find that intramolecularmore » electron transfer from oxalate to iron occurs on a sub-picosecond time scale, creating iron(II) complexed by one oxidized and two spectator oxalate ligands. Within 40 ps following electron transfer, the oxidized oxalate molecule dissociates to form free solvated CO 2(aq) and a species inferred to be CO 2 •– based on the appearance of a new vibrational absorption band and ab initio simulation. Our work provides direct spectroscopic evidence for the first mechanistic steps in the photolysis reaction and presents a technique to analyze other environmentally relevant metal carboxylate photolysis reactions.« less

  15. Mathematical study of probe arrangement and nanoparticle injection effects on heat transfer during cryosurgery.

    PubMed

    Mirkhalili, Seyyed Mostafa; Ramazani S A, Ahmad; Nazemidashtarjandi, Saeed

    2015-11-01

    Blood vessels, especially large vessels have a greater thermal effect on freezing tissue during cryosurgery. Vascular networks act as heat sources in tissue, and cause failure in cryosurgery and reappearance of cancer. The aim of this study is to numerically simulate the effect of probe location and multiprobe on heat transfer distribution. Furthermore, the effect of nanoparticles injection is studied. It is shown that the small probes location near large blood vessels could help to reduce the necessary time for tissue freezing. Nanoparticles injection shows that the thermal effect of blood vessel in tissue is improved. Using Au, Ag and diamond nanoparticles have the most growth of ice ball during cryosurgery. However, polytetrafluoroethylene (PTFE) nanoparticle can be used to protect normal tissue around tumor cell due to its influence on reducing heat transfer in tissue. Introduction of Au, Ag and diamond nanoparticles combined with multicryoprobe in this model causes reduction of tissue average temperature about 50% compared to the one probe. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Probing the localization of magnetic dichroism by atomic-size astigmatic and vortex electron beams.

    PubMed

    Negi, Devendra Singh; Idrobo, Juan Carlos; Rusz, Ján

    2018-03-05

    We report localization of a magnetic dichroic signal on atomic columns in electron magnetic circular dichroism (EMCD), probed by beam distorted by four-fold astigmatism and electron vortex beam. With astigmatic probe, magnetic signal to noise ratio can be enhanced by blocking the intensity from the central part of probe. However, the simulations show that for atomic resolution magnetic measurements, vortex beam is a more effective probe, with much higher magnetic signal to noise ratio. For all considered beam shapes, the optimal SNR constrains the signal detection at low collection angles of approximately 6-8 mrad. Irrespective of the material thickness, the magnetic signal remains strongly localized within the probed atomic column with vortex beam, whereas for astigmatic probes, the magnetic signal originates mostly from the nearest neighbor atomic columns. Due to excellent signal localization at probing individual atomic columns, vortex beams are predicted to be a strong candidate for studying the crystal site specific magnetic properties, magnetic properties at interfaces, or magnetism arising from individual atomic impurities.

  17. Capillary electrophoresis, a method for the determination of nucleic acid ligands covalently attached to quantum dots representing a donor of Förster resonance energy transfer.

    PubMed

    Datinská, Vladimíra; Klepárník, Karel; Belšánová, Barbora; Minárik, Marek; Foret, František

    2018-05-09

    The synthesis and determination of the structure of a Förster resonance energy transfer probe intended for the detection of specific nucleic acid sequences are described here. The probe is based on the hybridization of oligonucleotide modified quantum dots with a fluorescently labeled nucleic acid sample resulting in changes of the fluorescence emission due to the energy transfer effect. The stoichiometry distribution of oligonucleotides conjugated to quantum dots was determined by capillary electrophoresis separation. The results indicate that one to four molecules of oligonucleotide are conjugated to the surface of a single nanoparticle. This conclusion is confirmed by the course of the dependence of Förster resonance energy transfer efficiency on the concentration of fluorescently labeled complementary single-stranded nucleic acid, showing saturation. While the energy transfer efficiency of the probe hybridized with complementary nucleic acid strands was 30%, negligible efficiency was observed with a non-complementary strands. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Revealing Nucleic Acid Mutations Using Förster Resonance Energy Transfer-Based Probes

    PubMed Central

    Junager, Nina P. L.; Kongsted, Jacob; Astakhova, Kira

    2016-01-01

    Nucleic acid mutations are of tremendous importance in modern clinical work, biotechnology and in fundamental studies of nucleic acids. Therefore, rapid, cost-effective and reliable detection of mutations is an object of extensive research. Today, Förster resonance energy transfer (FRET) probes are among the most often used tools for the detection of nucleic acids and in particular, for the detection of mutations. However, multiple parameters must be taken into account in order to create efficient FRET probes that are sensitive to nucleic acid mutations. In this review; we focus on the design principles for such probes and available computational methods that allow for their rational design. Applications of advanced, rationally designed FRET probes range from new insights into cellular heterogeneity to gaining new knowledge of nucleic acid structures directly in living cells. PMID:27472344

  19. Note: A calibration method to determine the lumped-circuit parameters of a magnetic probe.

    PubMed

    Li, Fuming; Chen, Zhipeng; Zhu, Lizhi; Liu, Hai; Wang, Zhijiang; Zhuang, Ge

    2016-06-01

    This paper describes a novel method to determine the lumped-circuit parameters of a magnetic inductive probe for calibration by using Helmholtz coils with high frequency power supply (frequency range: 10 kHz-400 kHz). The whole calibration circuit system can be separated into two parts: "generator" circuit and "receiver" circuit. By implementing the Fourier transform, two analytical lumped-circuit models, with respect to these separated circuits, are constructed to obtain the transfer function between each other. Herein, the precise lumped-circuit parameters (including the resistance, inductance, and capacitance) of the magnetic probe can be determined by fitting the experimental data to the transfer function. Regarding the fitting results, the finite impedance of magnetic probe can be used to analyze the transmission of a high-frequency signal between magnetic probes, cables, and acquisition system.

  20. Coexistence of ferromagnetism and superconductivity in iron based pnictides: a time resolved magnetooptical study.

    PubMed

    Pogrebna, A; Mertelj, T; Vujičić, N; Cao, G; Xu, Z A; Mihailovic, D

    2015-01-13

    Ferromagnetism and superconductivity are antagonistic phenomena. Their coexistence implies either a modulated ferromagnetic order parameter on a lengthscale shorter than the superconducting coherence length or a weak exchange coupling between the itinerant superconducting electrons and the localized ordered spins. In some iron based pnictide superconductors the coexistence of ferromagnetism and superconductivity has been clearly demonstrated. The nature of the coexistence, however, remains elusive since no clear understanding of the spin structure in the superconducting state has been reached and the reports on the coupling strength are controversial. We show, by a direct optical pump-probe experiment, that the coupling is weak, since the transfer of the excess energy from the itinerant electrons to ordered localized spins is much slower than the electron-phonon relaxation, implying the coexistence without the short-lengthscale ferromagnetic order parameter modulation. Remarkably, the polarization analysis of the coherently excited spin wave response points towards a simple ferromagnetic ordering of spins with two distinct types of ferromagnetic domains.

  1. Fingerprints of electronic, spin and structural dynamics from resonant inelastic soft X-ray scattering in transient photo-chemical species

    DOE PAGES

    Norell, Jesper; Jay, Raphael M.; Hantschmann, Markus; ...

    2018-02-20

    Here, we describe how inversion symmetry separation of electronic state manifolds in resonant inelastic soft X-ray scattering (RIXS) can be applied to probe excited-state dynamics with compelling selectivity. In a case study of Fe L 3-edge RIXS in the ferricyanide complex Fe(CN) 6 3-, we demonstrate with multi-configurational restricted active space spectrum simulations how the information content of RIXS spectral fingerprints can be used to unambiguously separate species of different electronic configurations, spin multiplicities, and structures, with possible involvement in the decay dynamics of photo-excited ligand-to-metal charge-transfer. Specifically, we propose that this could be applied to confirm or reject themore » presence of a hitherto elusive transient Quartet species. Thus, RIXS offers a particular possibility to settle a recent controversy regarding the decay pathway, and we expect the technique to be similarly applicable in other model systems of photo-induced dynamics.« less

  2. Sea spray aerosol structure and composition using cryogenic transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, Joseph P.; Collins, Douglas B.; Michaud, Jennifer M.

    The surface properties of atmospheric aerosol particles largely control their impact on climate by affecting their ability to uptake water, react heterogeneously, and nucleate ice in clouds. However, in the vacuum of a conventional electron microscope, the native surface structure often undergoes chemical rearrangement resulting in surfaces that are quite different from their atmospheric configurations. Herein, we report the development of a cryo-TEM approach where sea spray aerosol particles are flash frozen in their native state and then probed by electron microscopy. This unique approach allows for the detection of not only mixed salts, but also soft materials including wholemore » hydrated bacteria, diatoms, virus particles, marine vesicles, as well as gel networks within hydrated salt droplets. As a result, we anticipate this method will open up a new avenue of analysis for aerosol particles, not only for ocean-derived aerosols, but for those produced from other sources where there is interest in the transfer of organic or biological species from the biosphere to the atmosphere.« less

  3. Sea spray aerosol structure and composition using cryogenic transmission electron microscopy

    DOE PAGES

    Patterson, Joseph P.; Collins, Douglas B.; Michaud, Jennifer M.; ...

    2016-01-15

    The surface properties of atmospheric aerosol particles largely control their impact on climate by affecting their ability to uptake water, react heterogeneously, and nucleate ice in clouds. However, in the vacuum of a conventional electron microscope, the native surface structure often undergoes chemical rearrangement resulting in surfaces that are quite different from their atmospheric configurations. Herein, we report the development of a cryo-TEM approach where sea spray aerosol particles are flash frozen in their native state and then probed by electron microscopy. This unique approach allows for the detection of not only mixed salts, but also soft materials including wholemore » hydrated bacteria, diatoms, virus particles, marine vesicles, as well as gel networks within hydrated salt droplets. As a result, we anticipate this method will open up a new avenue of analysis for aerosol particles, not only for ocean-derived aerosols, but for those produced from other sources where there is interest in the transfer of organic or biological species from the biosphere to the atmosphere.« less

  4. Fingerprints of electronic, spin and structural dynamics from resonant inelastic soft X-ray scattering in transient photo-chemical species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norell, Jesper; Jay, Raphael M.; Hantschmann, Markus

    Here, we describe how inversion symmetry separation of electronic state manifolds in resonant inelastic soft X-ray scattering (RIXS) can be applied to probe excited-state dynamics with compelling selectivity. In a case study of Fe L 3-edge RIXS in the ferricyanide complex Fe(CN) 6 3-, we demonstrate with multi-configurational restricted active space spectrum simulations how the information content of RIXS spectral fingerprints can be used to unambiguously separate species of different electronic configurations, spin multiplicities, and structures, with possible involvement in the decay dynamics of photo-excited ligand-to-metal charge-transfer. Specifically, we propose that this could be applied to confirm or reject themore » presence of a hitherto elusive transient Quartet species. Thus, RIXS offers a particular possibility to settle a recent controversy regarding the decay pathway, and we expect the technique to be similarly applicable in other model systems of photo-induced dynamics.« less

  5. Electrochemistry and electron paramagnetic resonance spectroscopy of cytochrome c and its heme-disrupted analogs.

    PubMed

    Novak, David; Mojovic, Milos; Pavicevic, Aleksandra; Zatloukalova, Martina; Hernychova, Lenka; Bartosik, Martin; Vacek, Jan

    2018-02-01

    Cytochrome c (cyt c) is one of the most studied conjugated proteins due to its electron-transfer properties and ability to regulate the processes involved in homeostasis or apoptosis. Here we report an electrochemical strategy for investigating the electroactivity of cyt c and its analogs with a disrupted heme moiety, i.e. apocytochrome c (acyt c) and porphyrin cytochrome c (pcyt c). The electrochemical data are supplemented with low-temperature and spin-probe electron paramagnetic resonance (EPR) spectroscopy. The main contribution of this report is a complex evaluation of cyt c reduction and oxidation at the level of surface-localized amino acid residues and the heme moiety in a single electrochemical scan. The electrochemical pattern of cyt c is substantially different to both analogs acyt c and pcyt c, which could be applicable in further studies on the redox properties and structural stability of cytochromes and other hemeproteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Ultrafast lithium diffusion in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Kühne, Matthias; Paolucci, Federico; Popovic, Jelena; Ostrovsky, Pavel M.; Maier, Joachim; Smet, Jurgen H.

    2017-09-01

    Solids that simultaneously conduct electrons and ions are key elements for the mass transfer and storage required in battery electrodes. Single-phase materials with a high electronic and high ionic conductivity at room temperature are hard to come by, and therefore multiphase systems with separate ion and electron channels have been put forward instead. Here we report on bilayer graphene as a single-phase mixed conductor that demonstrates Li diffusion faster than in graphite and even surpassing the diffusion of sodium chloride in liquid water. To measure Li diffusion, we have developed an on-chip electrochemical cell architecture in which the redox reaction that forces Li intercalation is localized only at a protrusion of the device so that the graphene bilayer remains unperturbed from the electrolyte during operation. We performed time-dependent Hall measurements across spatially displaced Hall probes to monitor the in-plane Li diffusion kinetics within the graphene bilayer and measured a diffusion coefficient as high as 7 × 10-5 cm2 s-1.

  7. Coverage dependent non-adiabaticity of CO on a copper surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omiya, Takuma; Surface and Interface Science Laboratory, RIKEN, Wako 351-0198; Arnolds, Heike

    2014-12-07

    We have studied the coverage-dependent energy transfer dynamics between hot electrons and CO on Cu(110) with femtosecond visible pump, sum frequency probe spectroscopy. We find that transients of the C–O stretch frequency display a red shift, which increases from 3 cm{sup −1} at 0.1 ML to 9 cm{sup −1} at 0.77 ML. Analysis of the transients reveals that the non-adiabatic coupling between the adsorbate vibrational motion and the electrons becomes stronger with increasing coverage. This trend requires the frustrated rotational mode to be the cause of the non-adiabatic behavior, even for relatively weak laser excitation of the adsorbate. We attributemore » the coverage dependence to both an increase in the adsorbate electronic density of states and an increasingly anharmonic potential energy surface caused by repulsive interactions between neighboring CO adsorbates. This work thus reveals adsorbate-adsorbate interactions as a new way to control adsorbate non-adiabaticity.« less

  8. On the use of electrokinetic phenomena of the second kind for probing electrode kinetic properties of modified electron-conducting surfaces.

    PubMed

    Duval, Jérôme F L; Sorrenti, Estelle; Waldvogel, Yves; Görner, Tatiana; De Donato, Philippe

    2007-04-14

    The electrokinetic features of electron-conducting substrates, as measured in a conventional thin-layer electrokinetic cell, strongly depend on the extent of bipolar faradaic depolarisation of the interface formed with the adjacent electrolytic solution. Streaming potential versus applied pressure data obtained for metallic substrates must generally be interpreted on the basis of a modified Helmholtz-Smoluchowski equation corrected by an electronic conduction term-non linear with respect to the lateral potential and applied pressure gradient-that stems from the bipolar electrodic behavior of the metallic surface. In the current study, streaming potential measurements have been performed in KNO(3) solutions on porous plugs made of electron-conducting grains of pyrite (FeS(2)) covered by humic acids. For zero coverage, the extensive bipolar electronic conduction taking place in the plug-depolarized by concomitant and spatially distributed oxidation and reduction reactions of Fe(2+) and Fe(3+) species-leads to the complete extinction of the streaming potential over the entire range of applied pressure examined. For low to intermediate coverage, the local electron-transfer kinetics on the covered regions of the plug becomes more sluggish. The overall bipolar electronic conduction is then diminished which leads to an increase in the streaming potential with a non-linear dependence on the pressure. For significant coverage, a linear response is observed which basically reflects the interfacial double layer properties of the humics surface layer. A tractable, semi-analytical model is presented that reproduces the electrokinetic peculiarities of the complex and composite system FeS(2)/humics investigated. The study demonstrates that the streaming potential technique is a fast and valuable tool for establishing how well the electron transfer kinetics at a partially or completely depolarised bare electron-conducting substrate/electrolyte solution interface is either promoted (catalysis) or blocked (passivation) by the presence of a discontinuous surface layer.

  9. Interfaces between strongly correlated oxides: controlling charge transfer and induced magnetism by hybridization

    NASA Astrophysics Data System (ADS)

    Bibes, Manuel

    At interfaces between conventional materials, band bending and alignment are controlled by differences in electrochemical potential. Applying this concept to oxides in which interfaces can be polar and cations may adopt a mixed valence has led to the discovery of novel two-dimensional states between simple band insulators such as LaAlO3 and SrTiO3. However, many oxides have a more complex electronic structure, with charge, orbital and/or spin orders arising from correlations between transition metal and oxygen ions. Strong correlations thus offer a rich playground to engineer functional interfaces but their compatibility with the classical band alignment picture remains an open question. In this talk we will show that beyond differences in electron affinities and polar effects, a key parameter determining charge transfer at correlated oxide interfaces is the energy required to alter the covalence of the metal-oxygen bond. Using the perovskite nickelate (RNiO3) family as a template, we have probed charge reconstruction at interfaces with gadolinium titanate GdTiO3 using soft X-ray absorption spectroscopy and hard X-ray photoemission spectroscopy. We show that the charge transfer is thwarted by hybridization effects tuned by the rare-earth (R) size. Charge transfer results in an induced ferromagnetic-like state in the nickelate (observed by XMCD), exemplifying the potential of correlated interfaces to design novel phases. Further, our work clarifies strategies to engineer two-dimensional systems through the control of both doping and covalence. Work supported by ERC CoG MINT #615759.

  10. Magnetic and electric field meters developed for the US Department of Energy

    NASA Technical Reports Server (NTRS)

    Kirkham, H.; Johnson, A.

    1988-01-01

    This report describes work done at the Jet Propulsion Laboratory for the Office of Energy Storage and Distribution of DOE on the measurement of power line fields. A magnetic field meter is discussed that uses fiber optics to couple a small measuring probe to a remote readout device. The use of fiber optics minimizes electric field perturbation due to the presence of the probe and provides electric isolation for the probe, so that it could be used in a high field or high voltage environment. Power to operate the sensor electronics is transferred via an optical fiber, and converted to electrical form by a small photodiode array. The fundamental, the second and third harmonics of the field are filtered and separately measured, as well as the broadband rms level of the field. The design of the meter is described in detail and data from laboratory tests are presented. The report also describes work done to improve the performance of a DC bushing in a Swedish factory, using the improved meter. The DC electric fields are measured with synchronous detection to provide field magnitude data in two component directions.

  11. Detection of alien chromatin introgression from Thinopyrum into wheat using S genomic DNA as a probe--a landmark approach for Thinopyrum genome research.

    PubMed

    Chen, Q

    2005-01-01

    The introduction of alien genetic variation from the genus Thinopyrum through chromosome engineering into wheat is a valuable and proven technique for wheat improvement. A number of economically important traits have been transferred into wheat as single genes, chromosome arms or entire chromosomes. Successful transfers can be greatly assisted by the precise identification of alien chromatin in the recipient progenies. Chromosome identification and characterization are useful for genetic manipulation and transfer in wheat breeding following chromosome engineering. Genomic in situ hybridization (GISH) using an S genomic DNA probe from the diploid species Pseudoroegneria has proven to be a powerful diagnostic cytogenetic tool for monitoring the transfer of many promising agronomic traits from Thinopyrum. This specific S genomic probe not only allows the direct determination of the chromosome composition in wheat-Thinopyrum hybrids, but also can separate the Th. intermedium chromosomes into the J, J(S) and S genomes. The J(S) genome, which consists of a modified J genome chromosome distinguished by S genomic sequences of Pseudoroegneria near the centromere and telomere, carries many disease and mite resistance genes. Utilization of this S genomic probe leads to a better understanding of genomic affinities between Thinopyrum and wheat, and provides a molecular cytogenetic marker for monitoring the transfer of alien Thinopyrum agronomic traits into wheat recipient lines. Copyright 2005 S. Karger AG, Basel.

  12. Improved understanding of the ball-pen probe through particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Murphy-Sugrue, S.; Harrison, J.; Walkden, N. R.; Bryant, P.; Bradley, J. W.

    2017-05-01

    Ball-pen probes (BPP) have been deployed in the SOL of numerous tokamak experiments and low-temperature magnetised plasmas to make direct measurements of the plasma potential and electron temperature. Despite strong empirical evidence for the success of the BPP it lacks a theoretical underpinning of its collection mechanism. In this paper we investigate the capability of the probe to measure the plasma potential by means of particle-in-cell simulations. The BPP is found to float at a potential offset from the plasma potential by a factor {T}{{e}}{α }{{BPP}}. By simulating BPPs and Langmuir probes, excellent agreement has been found between the measured electron temperature and the specified source temperature. The transport mechanism for both ions and electrons has been determined. E × B drifts are observed to drive electrons and ions down the tunnel. This mechanism is sensitive to the diameter of the probe.

  13. Achieving atomic resolution magnetic dichroism by controlling the phase symmetry of an electron probe

    DOE PAGES

    Rusz, Jan; Idrobo, Juan -Carlos; Bhowmick, Somnath

    2014-09-30

    The calculations presented here reveal that an electron probe carrying orbital angular momentum is just a particular case of a wider class of electron beams that can be used to measure electron magnetic circular dichroism (EMCD) with atomic resolution. It is possible to obtain an EMCD signal with atomic resolution by simply breaking the symmetry of the electron probe phase front using the aberration-corrected optics of a scanning transmission electron microscope. The probe’s required phase distribution depends on the sample’s magnetic symmetry and crystal structure. The calculations indicate that EMCD signals that use the electron probe’s phase are as strongmore » as those obtained by nanodiffraction methods.« less

  14. Comparison of Langmuir probe and multipole resonance probe measurements in argon, hydrogen, nitrogen, and oxygen mixtures in a double ICP discharge

    NASA Astrophysics Data System (ADS)

    Fiebrandt, Marcel; Oberberg, Moritz; Awakowicz, Peter

    2017-07-01

    The results of a Multipole Resonance Probe (MRP) are compared to a Langmuir probe in measuring the electron density in Ar, H2, N2, and O2 mixtures. The MRP was designed for measurements in industry processes, i.e., coating or etching. To evaluate a possible influence on the MRP measurement due to molecular gases, different plasmas with increasing molecular gas content in a double inductively coupled plasma at 5 Pa and 10 Pa at 500 W are used. The determined electron densities from the MRP and the Langmuir probe slightly differ in H2 and N2 diluted argon plasmas, but diverge significantly with oxygen. In pure molecular gas plasmas, electron densities measured with the MRP are always higher than those measured with the Langmuir Probe, in particular, in oxygen containing mixtures. The differences can be attributed to etching of the tungsten wire in the Ar:O2 mixtures and rf distortion in the pure molecular discharges. The influence of a non-Maxwellian electron energy distribution function, negative ions or secondary electron emission seems to be of no or only minor importance.

  15. Ultrafast electron-optical phonon scattering and quasiparticle lifetime in CVD-grown graphene.

    PubMed

    Shang, Jingzhi; Yu, Ting; Lin, Jianyi; Gurzadyan, Gagik G

    2011-04-26

    Ultrafast quasiparticle dynamics in graphene grown by chemical vapor deposition (CVD) has been studied by UV pump/white-light probe spectroscopy. Transient differential transmission spectra of monolayer graphene are observed in the visible probe range (400-650 nm). Kinetics of the quasiparticle (i.e., low-energy single-particle excitation with renormalized energy due to electron-electron Coulomb, electron-optical phonon (e-op), and optical phonon-acoustic phonon (op-ap) interactions) was monitored with 50 fs resolution. Extending the probe range to near-infrared, we find the evolution of quasiparticle relaxation channels from monoexponential e-op scattering to double exponential decay due to e-op and op-ap scattering. Moreover, quasiparticle lifetimes of mono- and randomly stacked graphene films are obtained for the probe photon energies continuously from 1.9 to 2.3 eV. Dependence of quasiparticle decay rate on the probe energy is linear for 10-layer stacked graphene films. This is due to the dominant e-op intervalley scattering and the linear density of states in the probed electronic band. A dimensionless coupling constant W is derived, which characterizes the scattering strength of quasiparticles by lattice points in graphene.

  16. Nanostructured aptamer-based sensing platform for highly sensitive recognition of myoglobin.

    PubMed

    Nia, Neda Ghafori; Azadbakht, Azadeh

    2018-06-21

    A composite was prepared from PtSn nanoparticles and carbon nanotubes (PtSnNP/CNTs) and applied to the electrochemical determination of myoglobin (Mb). An Mb-aptamer was immobilized on a glassy carbon electrode (GCE), and hexcyanoferrate was used as an electrochemical probe. The PtSnNP/CNTs were synthesized by a microwave-aided ethylene glycol reduction method. Detection is based on electron transfer inhibition that is caused by the folding and conformational change of the Mb-aptamer in the presence of Mb. The amperometric signal for hexacyanoferrate, best measured at 0.2 V vs. Ag/AgCl depends on the concentration of Mb that interacts with the aptamer on the GCE. This approach is selective and sensitive for Mb due to (a) the highly specific recognition ability of the aptamer for Mb, (b) the powerful electronic properties of carbon nanotubes, (c) the arranged decoration of CNTs with PtSnNPs, and (d), the superior electron transfer to hexacyanoferrate. The assay is highly selective, with linear relationships from 0.01-1 nM and 10 nM-200 nM, and a limit of detection as low as 2.2 ± 0.1 pM. The modified GCE was applied to the quantitation of Mb in spiked human serum samples. Graphical abstract Schematic illustration of the method for Mb detection.

  17. Challenges in photon-starved space astronomy in a harsh radiation environment using CCDs

    NASA Astrophysics Data System (ADS)

    Hall, David J.; Bush, Nathan; Murray, Neil; Gow, Jason; Clarke, Andrew; Burgon, Ross; Holland, Andrew

    2015-09-01

    The Charge Coupled Device (CCD) has a long heritage for imaging and spectroscopy in many space astronomy missions. However, the harsh radiation environment experienced in orbit creates defects in the silicon that capture the signal being transferred through the CCD. This radiation damage has a detrimental impact on the detector performance and requires carefully planned mitigation strategies. The ESA Gaia mission uses 106 CCDs, now orbiting around the second Lagrange point as part of the largest focal-plane ever launched. Following readout, signal electrons will be affected by the traps generated in the devices from the radiation environment and this degradation will be corrected for using a charge distortion model. ESA's Euclid mission will contain a focal plane of 36 CCDs in the VIS instrument. Moving further forwards, the World Space Observatory (WSO) UV spectrographs and the WFIRST-AFTA coronagraph intend to look at very faint sources in which mitigating the impact of traps on the transfer of single electron signals will be of great interest. Following the development of novel experimental and analysis techniques, one is now able to study the impact of radiation on the detector to new levels of detail. Through a combination of TCAD simulations, defect studies and device testing, we are now probing the interaction of single electrons with individual radiation-induced traps to analyse the impact of radiation in photon-starved applications.

  18. Effect of structure variation of the aptamer-DNA duplex probe on the performance of displacement-based electrochemical aptamer sensors.

    PubMed

    Pang, Jie; Zhang, Ziping; Jin, Haizhu

    2016-03-15

    Electrochemical aptamer-based (E-AB) sensors employing electrode-immobilized, redox-tagged aptamer probes have emerged as a promising platform for the sensitive and quick detection of target analytes ranging from small molecules to proteins. Signal generation in this class of sensor is linked to change in electron transfer efficiency upon binding-induced change in flexibility/conformation of the aptamer probe. Because of this signaling mechanism, signal gains of these sensors can be improved by employing a displacement-based recognition system, which links target binding with a large-scale flexibility/conformation shift from the aptamer-DNA duplex to the single-stranded DNA or the native aptamer. Despite the relatively large number of displacement-based E-AB sensor samples, little attention has been paid to the structure variation of the aptamer-DNA duplex probe. Here we detail the effects of complementary length and position of the aptamer-DNA duplex probe on the performance of a model displacement-based E-AB sensor for ATP. We find that, greater background suppression and signal gain are observed with longer complementary length of the aptamer-DNA duplex probe. However, sensor equilibration time slows monotonically with increasing complementary length; and with too many target binding sites in aptamer sequence being occupied by the complementary DNA, the aptamer-target binding does not occur and no signal gain observed. We also demonstrate that signal gain of the displacement-based E-AB sensor is strongly dependent on the complementary position of the aptamer-DNA duplex probe, with complementary position located at the electrode-attached or redox-tagged end of the duplex probe, larger background suppression and signal increase than that of the middle position are observed. These results highlight the importance of rational structure design of the aptamer-DNA duplex probe and provide new insights into the optimization of displacement-based E-AB sensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Probe Measures Fouling As In Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Marner, Wilbur J.; Macdavid, Kenton S.

    1990-01-01

    Combustion deposits reduce transfer of heat. Instrument measures fouling like that on gas side of heat exchanger in direct-fired boiler or heat-recovery system. Heat-flux probe includes tube with embedded meter in outer shell. Combustion gases flow over probe, and fouling accumulates on it, just as fouling would on heat exchanger. Embedded heat-flow meter is sandwich structure in which thin Chromel layers and middle alloy form thermopile. Users determine when fouling approaches unacceptable levels so they schedule cleaning and avoid decreased transfer of heat and increased drop in pressure fouling causes. Avoids cost of premature, unnecessary maintenance.

  20. Effects of strain relaxation in Pr 0.67Sr 0.33MnO 3 films probed by polarization dependent X-ray absorption near edge structure

    DOE PAGES

    zhang, Bangmin; Chen, Jingsheng; Venkatesan, T.; ...

    2016-01-28

    In this study, the Mn K edge X-ray absorption near edge structure (XANES) of Pr 0.67Sr 0.33MnO 3 films with different thicknesses on (001) LaAlO 3 substrate were measured, and the effects of strain relaxation on film properties were investigated. The films experienced in-plane compressive strain and out-of-plane tensile strain. Strain relaxation evolved with the film thickness. In the polarization dependent XANES measurements, the in-plane (parallel) and out-of-plane (perpendicular) XANES spectrocopies were anisotropic with different absorption energy E r. The resonance energy Er along two directions shifted towards each other with increasing film thickness. Based on the X-ray diffraction results,more » it was suggested that the strain relaxation weakened the difference of the local environment and probability of electronic charge transfer (between Mn 3d and O 2p orbitals) along the in-plane and out-of-plane directions, which was responsible for the change of E r. XANES is a useful tool to probe the electronic structures, of which the effects on magnetic properties with the strain relaxation was also been studied.« less

Top