Le, Nguyen-Quoc-Khanh; Ou, Yu-Yen
2016-07-30
Cellular respiration is a catabolic pathway for producing adenosine triphosphate (ATP) and is the most efficient process through which cells harvest energy from consumed food. When cells undergo cellular respiration, they require a pathway to keep and transfer electrons (i.e., the electron transport chain). Due to oxidation-reduction reactions, the electron transport chain produces a transmembrane proton electrochemical gradient. In case protons flow back through this membrane, this mechanical energy is converted into chemical energy by ATP synthase. The convert process is involved in producing ATP which provides energy in a lot of cellular processes. In the electron transport chain process, flavin adenine dinucleotide (FAD) is one of the most vital molecules for carrying and transferring electrons. Therefore, predicting FAD binding sites in the electron transport chain is vital for helping biologists understand the electron transport chain process and energy production in cells. We used an independent data set to evaluate the performance of the proposed method, which had an accuracy of 69.84 %. We compared the performance of the proposed method in analyzing two newly discovered electron transport protein sequences with that of the general FAD binding predictor presented by Mishra and Raghava and determined that the accuracy of the proposed method improved by 9-45 % and its Matthew's correlation coefficient was 0.14-0.5. Furthermore, the proposed method enabled reducing the number of false positives significantly and can provide useful information for biologists. We developed a method that is based on PSSM profiles and SAAPs for identifying FAD binding sites in newly discovered electron transport protein sequences. This approach achieved a significant improvement after we added SAAPs to PSSM features to analyze FAD binding proteins in the electron transport chain. The proposed method can serve as an effective tool for predicting FAD binding sites in electron transport proteins and can help biologists understand the functions of the electron transport chain, particularly those of FAD binding sites. We also developed a web server which identifies FAD binding sites in electron transporters available for academics.
Ou, Yu-Yen; Chen, Shu-An; Wu, Sheng-Cheng
2013-01-01
Background Cellular respiration is the process by which cells obtain energy from glucose and is a very important biological process in living cell. As cells do cellular respiration, they need a pathway to store and transport electrons, the electron transport chain. The function of the electron transport chain is to produce a trans-membrane proton electrochemical gradient as a result of oxidation–reduction reactions. In these oxidation–reduction reactions in electron transport chains, metal ions play very important role as electron donor and acceptor. For example, Fe ions are in complex I and complex II, and Cu ions are in complex IV. Therefore, to identify metal-binding sites in electron transporters is an important issue in helping biologists better understand the workings of the electron transport chain. Methods We propose a method based on Position Specific Scoring Matrix (PSSM) profiles and significant amino acid pairs to identify metal-binding residues in electron transport proteins. Results We have selected a non-redundant set of 55 metal-binding electron transport proteins as our dataset. The proposed method can predict metal-binding sites in electron transport proteins with an average 10-fold cross-validation accuracy of 93.2% and 93.1% for metal-binding cysteine and histidine, respectively. Compared with the general metal-binding predictor from A. Passerini et al., the proposed method can improve over 9% of sensitivity, and 14% specificity on the independent dataset in identifying metal-binding cysteines. The proposed method can also improve almost 76% sensitivity with same specificity in metal-binding histidine, and MCC is also improved from 0.28 to 0.88. Conclusions We have developed a novel approach based on PSSM profiles and significant amino acid pairs for identifying metal-binding sites from electron transport proteins. The proposed approach achieved a significant improvement with independent test set of metal-binding electron transport proteins. PMID:23405059
Ou, Yu-Yen; Chen, Shu-An; Wu, Sheng-Cheng
2013-01-01
Cellular respiration is the process by which cells obtain energy from glucose and is a very important biological process in living cell. As cells do cellular respiration, they need a pathway to store and transport electrons, the electron transport chain. The function of the electron transport chain is to produce a trans-membrane proton electrochemical gradient as a result of oxidation-reduction reactions. In these oxidation-reduction reactions in electron transport chains, metal ions play very important role as electron donor and acceptor. For example, Fe ions are in complex I and complex II, and Cu ions are in complex IV. Therefore, to identify metal-binding sites in electron transporters is an important issue in helping biologists better understand the workings of the electron transport chain. We propose a method based on Position Specific Scoring Matrix (PSSM) profiles and significant amino acid pairs to identify metal-binding residues in electron transport proteins. We have selected a non-redundant set of 55 metal-binding electron transport proteins as our dataset. The proposed method can predict metal-binding sites in electron transport proteins with an average 10-fold cross-validation accuracy of 93.2% and 93.1% for metal-binding cysteine and histidine, respectively. Compared with the general metal-binding predictor from A. Passerini et al., the proposed method can improve over 9% of sensitivity, and 14% specificity on the independent dataset in identifying metal-binding cysteines. The proposed method can also improve almost 76% sensitivity with same specificity in metal-binding histidine, and MCC is also improved from 0.28 to 0.88. We have developed a novel approach based on PSSM profiles and significant amino acid pairs for identifying metal-binding sites from electron transport proteins. The proposed approach achieved a significant improvement with independent test set of metal-binding electron transport proteins.
NASA Astrophysics Data System (ADS)
Garland, N. A.; Boyle, G. J.; Cocks, D. G.; White, R. D.
2018-02-01
This study reviews the neutral density dependence of electron transport in gases and liquids and develops a method to determine the nonlinear medium density dependence of electron transport coefficients and scattering rates required for modeling transport in the vicinity of gas-liquid interfaces. The method has its foundations in Blanc’s law for gas-mixtures and adapts the theory of Garland et al (2017 Plasma Sources Sci. Technol. 26) to extract electron transport data across the gas-liquid transition region using known data from the gas and liquid phases only. The method is systematically benchmarked against multi-term Boltzmann equation solutions for Percus-Yevick model liquids. Application to atomic liquids highlights the utility and accuracy of the derived method.
Hybrid transport and diffusion modeling using electron thermal transport Monte Carlo SNB in DRACO
NASA Astrophysics Data System (ADS)
Chenhall, Jeffrey; Moses, Gregory
2017-10-01
The iSNB (implicit Schurtz Nicolai Busquet) multigroup diffusion electron thermal transport method is adapted into an Electron Thermal Transport Monte Carlo (ETTMC) transport method to better model angular and long mean free path non-local effects. Previously, the ETTMC model had been implemented in the 2D DRACO multiphysics code and found to produce consistent results with the iSNB method. Current work is focused on a hybridization of the computationally slower but higher fidelity ETTMC transport method with the computationally faster iSNB diffusion method in order to maximize computational efficiency. Furthermore, effects on the energy distribution of the heat flux divergence are studied. Work to date on the hybrid method will be presented. This work was supported by Sandia National Laboratories and the Univ. of Rochester Laboratory for Laser Energetics.
Monte Carlo Transport for Electron Thermal Transport
NASA Astrophysics Data System (ADS)
Chenhall, Jeffrey; Cao, Duc; Moses, Gregory
2015-11-01
The iSNB (implicit Schurtz Nicolai Busquet multigroup electron thermal transport method of Cao et al. is adapted into a Monte Carlo transport method in order to better model the effects of non-local behavior. The end goal is a hybrid transport-diffusion method that combines Monte Carlo Transport with a discrete diffusion Monte Carlo (DDMC). The hybrid method will combine the efficiency of a diffusion method in short mean free path regions with the accuracy of a transport method in long mean free path regions. The Monte Carlo nature of the approach allows the algorithm to be massively parallelized. Work to date on the method will be presented. This work was supported by Sandia National Laboratory - Albuquerque and the University of Rochester Laboratory for Laser Energetics.
Numerical solution of the electron transport equation
NASA Astrophysics Data System (ADS)
Woods, Mark
The electron transport equation has been solved many times for a variety of reasons. The main difficulty in its numerical solution is that it is a very stiff boundary value problem. The most common numerical methods for solving boundary value problems are symmetric collocation methods and shooting methods. Both of these types of methods can only be applied to the electron transport equation if the boundary conditions are altered with unrealistic assumptions because they require too many points to be practical. Further, they result in oscillating and negative solutions, which are physically meaningless for the problem at hand. For these reasons, all numerical methods for this problem to date are a bit unusual because they were designed to try and avoid the problem of extreme stiffness. This dissertation shows that there is no need to introduce spurious boundary conditions or invent other numerical methods for the electron transport equation. Rather, there already exists methods for very stiff boundary value problems within the numerical analysis literature. We demonstrate one such method in which the fast and slow modes of the boundary value problem are essentially decoupled. This allows for an upwind finite difference method to be applied to each mode as is appropriate. This greatly reduces the number of points needed in the mesh, and we demonstrate how this eliminates the need to define new boundary conditions. This method is verified by showing that under certain restrictive assumptions, the electron transport equation has an exact solution that can be written as an integral. We show that the solution from the upwind method agrees with the quadrature evaluation of the exact solution. This serves to verify that the upwind method is properly solving the electron transport equation. Further, it is demonstrated that the output of the upwind method can be used to compute auroral light emissions.
Benchmark solution for the Spencer-Lewis equation of electron transport theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganapol, B.D.
As integrated circuits become smaller, the shielding of these sensitive components against penetrating electrons becomes extremely critical. Monte Carlo methods have traditionally been the method of choice in shielding evaluations primarily because they can incorporate a wide variety of relevant physical processes. Recently, however, as a result of a more accurate numerical representation of the highly forward peaked scattering process, S/sub n/ methods for one-dimensional problems have been shown to be at least as cost-effective in comparison with Monte Carlo methods. With the development of these deterministic methods for electron transport, a need has arisen to assess the accuracy ofmore » proposed numerical algorithms and to ensure their proper coding. It is the purpose of this presentation to develop a benchmark to the Spencer-Lewis equation describing the transport of energetic electrons in solids. The solution will take advantage of the correspondence between the Spencer-Lewis equation and the transport equation describing one-group time-dependent neutron transport.« less
Study on the Electronic Transport Properties of Zigzag GaN Nanotubes
NASA Astrophysics Data System (ADS)
Li, Enling; Wang, Xiqiang; Hou, Liping; Zhao, Danna; Dai, Yuanbin; Wang, Xuewen
2011-02-01
The electronic transport properties of zigzag GaN nanotubes (n, 0) (4 <= n <= 9) have been calculated using the density functional theory and non-equilibrium Green's functions method. Firstly, the density functional theory (DFT) is used to optimize and calculate the electronic structure of GaNNTs (n, 0) (4<=n<=9). Secondly, DFT and non-equilibrium Green function (NEGF) method are also used to predict the electronic transport properties of GaNNTs two-probe system. The results showed: there is a corresponding relation between the electronic transport properties and the valley of state density of each GaNNT. In addition, the volt-ampere curve of GaNNT is approximately linear.
Response Matrix Monte Carlo for electron transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballinger, C.T.; Nielsen, D.E. Jr.; Rathkopf, J.A.
1990-11-01
A Response Matrix Monte Carol (RMMC) method has been developed for solving electron transport problems. This method was born of the need to have a reliable, computationally efficient transport method for low energy electrons (below a few hundred keV) in all materials. Today, condensed history methods are used which reduce the computation time by modeling the combined effect of many collisions but fail at low energy because of the assumptions required to characterize the electron scattering. Analog Monte Carlo simulations are prohibitively expensive since electrons undergo coulombic scattering with little state change after a collision. The RMMC method attempts tomore » combine the accuracy of an analog Monte Carlo simulation with the speed of the condensed history methods. The combined effect of many collisions is modeled, like condensed history, except it is precalculated via an analog Monte Carol simulation. This avoids the scattering kernel assumptions associated with condensed history methods. Results show good agreement between the RMMC method and analog Monte Carlo. 11 refs., 7 figs., 1 tabs.« less
Method of making organic light emitting devices
Shiang, Joseph John [Niskayuna, NY; Janora, Kevin Henry [Schenectady, NY; Parthasarathy, Gautam [Saratoga Springs, NY; Cella, James Anthony [Clifton Park, NY; Chichak, Kelly Scott [Clifton Park, NY
2011-03-22
The present invention provides a method for the preparation of organic light-emitting devices comprising a bilayer structure made by forming a first film layer comprising an electroactive material and an INP precursor material, and exposing the first film layer to a radiation source under an inert atmosphere to generate an interpenetrating network polymer composition comprising the electroactive material. At least one additional layer is disposed on the reacted first film layer to complete the bilayer structure. The bilayer structure is comprised within an organic light-emitting device comprising standard features such as electrodes and optionally one or more additional layers serving as a bipolar emission layer, a hole injection layer, an electron injection layer, an electron transport layer, a hole transport layer, exciton-hole transporting layer, exciton-electron transporting layer, a hole transporting emission layer, or an electron transporting emission layer.
Dissipative time-dependent quantum transport theory.
Zhang, Yu; Yam, Chi Yung; Chen, GuanHua
2013-04-28
A dissipative time-dependent quantum transport theory is developed to treat the transient current through molecular or nanoscopic devices in presence of electron-phonon interaction. The dissipation via phonon is taken into account by introducing a self-energy for the electron-phonon coupling in addition to the self-energy caused by the electrodes. Based on this, a numerical method is proposed. For practical implementation, the lowest order expansion is employed for the weak electron-phonon coupling case and the wide-band limit approximation is adopted for device and electrodes coupling. The corresponding hierarchical equation of motion is derived, which leads to an efficient and accurate time-dependent treatment of inelastic effect on transport for the weak electron-phonon interaction. The resulting method is applied to a one-level model system and a gold wire described by tight-binding model to demonstrate its validity and the importance of electron-phonon interaction for the quantum transport. As it is based on the effective single-electron model, the method can be readily extended to time-dependent density functional theory.
Alivisatos, A. Paul; Colvin, Vickie
1996-01-01
An electroluminescent device is described, as well as a method of making same, wherein the device is characterized by a semiconductor nanocrystal electron transport layer capable of emitting visible light in response to a voltage applied to the device. The wavelength of the light emitted by the device may be changed by changing either the size or the type of semiconductor nanocrystals used in forming the electron transport layer. In a preferred embodiment the device is further characterized by the capability of emitting visible light of varying wavelengths in response to changes in the voltage applied to the device. The device comprises a hole processing structure capable of injecting and transporting holes, and usually comprising a hole injecting layer and a hole transporting layer; an electron transport layer in contact with the hole processing structure and comprising one or more layers of semiconductor nanocrystals; and an electron injecting layer in contact with the electron transport layer for injecting electrons into the electron transport layer. The capability of emitting visible light of various wavelengths is principally based on the variations in voltage applied thereto, but the type of semiconductor nanocrystals used and the size of the semiconductor nanocrystals in the layers of semiconductor nanometer crystals may also play a role in color change, in combination with the change in voltage.
NASA Astrophysics Data System (ADS)
Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek
2017-07-01
Standard computational methods used to take account of the Pauli Exclusion Principle into Monte Carlo (MC) simulations of electron transport in semiconductors may give unphysical results in low field regime, where obtained electron distribution function takes values exceeding unity. Modified algorithms were already proposed and allow to correctly account for electron scattering on phonons or impurities. Present paper extends this approach and proposes improved simulation scheme allowing including Pauli exclusion principle for electron-electron (e-e) scattering into MC simulations. Simulations with significantly reduced computational cost recreate correct values of the electron distribution function. Proposed algorithm is applied to study transport properties of degenerate electrons in graphene with e-e interactions. This required adapting the treatment of e-e scattering in the case of linear band dispersion relation. Hence, this part of the simulation algorithm is described in details.
Le, Nguyen-Quoc-Khanh; Nguyen, Trinh-Trung-Duong; Ou, Yu-Yen
2017-05-01
The electron transport proteins have an important role in storing and transferring electrons in cellular respiration, which is the most proficient process through which cells gather energy from consumed food. According to the molecular functions, the electron transport chain components could be formed with five complexes with several different electron carriers and functions. Therefore, identifying the molecular functions in the electron transport chain is vital for helping biologists understand the electron transport chain process and energy production in cells. This work includes two phases for discriminating electron transport proteins from transport proteins and classifying categories of five complexes in electron transport proteins. In the first phase, the performances from PSSM with AAIndex feature set were successful in identifying electron transport proteins in transport proteins with achieved sensitivity of 73.2%, specificity of 94.1%, and accuracy of 91.3%, with MCC of 0.64 for independent data set. With the second phase, our method can approach a precise model for identifying of five complexes with different molecular functions in electron transport proteins. The PSSM with AAIndex properties in five complexes achieved MCC of 0.51, 0.47, 0.42, 0.74, and 1.00 for independent data set, respectively. We suggest that our study could be a power model for determining new proteins that belongs into which molecular function of electron transport proteins. Copyright © 2017 Elsevier Inc. All rights reserved.
Unified Description of Inelastic Propensity Rules for Electron Transport through Nanoscale Junctions
NASA Astrophysics Data System (ADS)
Paulsson, Magnus; Frederiksen, Thomas; Ueba, Hiromu; Lorente, Nicolás; Brandbyge, Mads
2008-06-01
We present a method to analyze the results of first-principles based calculations of electronic currents including inelastic electron-phonon effects. This method allows us to determine the electronic and vibrational symmetries in play, and hence to obtain the so-called propensity rules for the studied systems. We show that only a few scattering states—namely those belonging to the most transmitting eigenchannels—need to be considered for a complete description of the electron transport. We apply the method on first-principles calculations of four different systems and obtain the propensity rules in each case.
Discrete Diffusion Monte Carlo for Electron Thermal Transport
NASA Astrophysics Data System (ADS)
Chenhall, Jeffrey; Cao, Duc; Wollaeger, Ryan; Moses, Gregory
2014-10-01
The iSNB (implicit Schurtz Nicolai Busquet electron thermal transport method of Cao et al. is adapted to a Discrete Diffusion Monte Carlo (DDMC) solution method for eventual inclusion in a hybrid IMC-DDMC (Implicit Monte Carlo) method. The hybrid method will combine the efficiency of a diffusion method in short mean free path regions with the accuracy of a transport method in long mean free path regions. The Monte Carlo nature of the approach allows the algorithm to be massively parallelized. Work to date on the iSNB-DDMC method will be presented. This work was supported by Sandia National Laboratory - Albuquerque.
NASA Astrophysics Data System (ADS)
Schauer, F.; Nádaždy, V.; Gmucová, K.
2018-04-01
There is potential in applying conjugated polymers in novel organic optoelectronic devices, where a comprehensive understanding of the fundamental processes and energetics involved during transport and recombination is still lacking, limiting further device optimization. The electronic transport modeling and its optimization need the energy distribution of transport and defect states, expressed by the energy distribution of the Density of States (DOS) function, as input/comparative parameters. We present the Energy Resolved-Electrochemical Impedance Spectroscopy (ER-EIS) method for the study of transport and defect electronic states in organic materials. The method allows mapping over unprecedentedly wide energy and DOS ranges. The ER-EIS spectroscopic method is based on the small signal interaction between the surface of the organic film and the liquid electrolyte containing reduction-oxidation (redox) species, which is similar to the extraction of an electron by an acceptor and capture of an electron by a donor at a semiconductor surface. The desired DOS of electronic transport and defect states can be derived directly from the measured redox response signal to the small voltage perturbation at the instantaneous position of the Fermi energy, given by the externally applied voltage. The theory of the ER-EIS method and conditions for its validity for solid polymers are presented in detail. We choose four case studies on poly(3-hexylthiophene-2,5-diyl) and poly[methyl(phenyl)silane] to show the possibilities of the method to investigate the electronic structure expressed by DOS of polymers with a high resolution of about 6 orders of magnitude and in a wide energy range of 6 eV.
NASA Astrophysics Data System (ADS)
Hoy, Erik P.; Mazziotti, David A.; Seideman, Tamar
2017-11-01
Can an electronic device be constructed using only a single molecule? Since this question was first asked by Aviram and Ratner in the 1970s [Chem. Phys. Lett. 29, 277 (1974)], the field of molecular electronics has exploded with significant experimental advancements in the understanding of the charge transport properties of single molecule devices. Efforts to explain the results of these experiments and identify promising new candidate molecules for molecular devices have led to the development of numerous new theoretical methods including the current standard theoretical approach for studying single molecule charge transport, i.e., the non-equilibrium Green's function formalism (NEGF). By pairing this formalism with density functional theory (DFT), a wide variety of transport problems in molecular junctions have been successfully treated. For some systems though, the conductance and current-voltage curves predicted by common DFT functionals can be several orders of magnitude above experimental results. In addition, since density functional theory relies on approximations to the exact exchange-correlation functional, the predicted transport properties can show significant variation depending on the functional chosen. As a first step to addressing this issue, the authors have replaced density functional theory in the NEGF formalism with a 2-electron reduced density matrix (2-RDM) method, creating a new approach known as the NEGF-RDM method. 2-RDM methods provide a more accurate description of electron correlation compared to density functional theory, and they have lower computational scaling compared to wavefunction based methods of similar accuracy. Additionally, 2-RDM methods are capable of capturing static electron correlation which is untreatable by existing NEGF-DFT methods. When studying dithiol alkane chains and dithiol benzene in model junctions, the authors found that the NEGF-RDM predicts conductances and currents that are 1-2 orders of magnitude below those of B3LYP and M06 DFT functionals. This suggests that the NEGF-RDM method could be a viable alternative to NEGF-DFT for molecular junction calculations.
Vertical electronic transport in van de waals heterostructures
NASA Astrophysics Data System (ADS)
Qiao, Zhenhua; Zhenhua Qiao's Group Team
In this work, we will introduce the theoretical investigation of the vertical electronic transport in various heterostructrues by using both tight-binding method and first-principles calculations. Counterintuitively, we find that the maximum electronic transport is achieved at very limited scattering regions but not at large overlapped catering regions. Based on this finding, we design a special setup to measure the tunneling effect in rotated bilayer systems.
On the interplay of morphology and electronic conductivity of rotationally spun carbon fiber mats
NASA Astrophysics Data System (ADS)
Opitz, Martin; Go, Dennis; Lott, Philipp; Müller, Sandra; Stollenwerk, Jochen; Kuehne, Alexander J. C.; Roling, Bernhard
2017-09-01
Carbon-based materials are used as electrode materials in a wide range of electrochemical applications, e.g., in batteries, supercapacitors, and fuel cells. For these applications, the electronic conductivity of the materials plays an important role. Currently, porous carbon materials with complex morphologies and hierarchical pore structures are in the focus of research. The complex morphologies influence the electronic transport and may lead to an anisotropic electronic conductivity. In this paper, we unravel the influence of the morphology of rotationally spun carbon fiber mats on their electronic conductivity. By combining experiments with finite-element simulations, we compare and evaluate different electrode setups for conductivity measurements. While the "bar-type method" with two parallel electrodes on the same face of the sample yields information about the intrinsic conductivity of the carbon fibers, the "parallel-plate method" with two electrodes on opposite faces gives information about the electronic transport orthogonal to the faces. Results obtained for the van-der-Pauw method suggest that this method is not well suited for understanding morphology-transport relations in these materials.
NASA Astrophysics Data System (ADS)
Iwase, Shigeru; Futamura, Yasunori; Imakura, Akira; Sakurai, Tetsuya; Tsukamoto, Shigeru; Ono, Tomoya
2018-05-01
We propose an efficient computational method for evaluating the self-energy matrices of electrodes to study ballistic electron transport properties in nanoscale systems. To reduce the high computational cost incurred in large systems, a contour integral eigensolver based on the Sakurai-Sugiura method combined with the shifted biconjugate gradient method is developed to solve an exponential-type eigenvalue problem for complex wave vectors. A remarkable feature of the proposed algorithm is that the numerical procedure is very similar to that of conventional band structure calculations. We implement the developed method in the framework of the real-space higher-order finite-difference scheme with nonlocal pseudopotentials. Numerical tests for a wide variety of materials validate the robustness, accuracy, and efficiency of the proposed method. As an illustration of the method, we present the electron transport property of the freestanding silicene with the line defect originating from the reversed buckled phases.
NASA Astrophysics Data System (ADS)
Korolev, A. M.; Shulga, V. M.; Turutanov, O. G.; Shnyrkov, V. I.
2016-07-01
A technically simple and physically clear method is suggested for direct measurement of the brightness temperature of two-dimensional electron gas (2DEG) in the channel of a high electron mobility transistor (HEMT). The usage of the method was demonstrated with the pseudomorphic HEMT as a specimen. The optimal HEMT dc regime, from the point of view of the "back action" problem, was found to belong to the unsaturated area of the static characteristics possibly corresponding to the ballistic electron transport mode. The proposed method is believed to be a convenient tool to explore the ballistic transport, electron diffusion, 2DEG properties and other electrophysical processes in heterostructures.
Spin-polarized electron transport in hybrid graphene-BN nanoribbons
NASA Astrophysics Data System (ADS)
Gao, Song; Lu, Wei; Zheng, Guo-Hui; Jia, Yalei; Ke, San-Huang
2017-05-01
The experimental realization of hybrid graphene and h-BN provides a new way to modify the electronic and transport properties of graphene-based materials. In this work, we investigate the spin-polarized electron transport in hybrid graphene-BN zigzag nanoribbons by performing first-principles nonequilibrium Green’s function method calculations. A 100% spin-polarized electron transport in a large energy window around the Fermi level is found and this behavior is independent of the ribbon width as long as there contain 3 zigzag carbon chains. This behavior may be useful in making perfect spin filters.
NASA Astrophysics Data System (ADS)
Cai, X. J.; Wang, X. X.; Zou, X. B.; Lu, Z. W.
2018-01-01
An understanding of electron kinetics is of importance in various applications of low temperature plasmas. We employ a series of model and real gases to investigate electron transport and relaxation properties based on improved multi-term approximation of the Boltzmann equation. First, a comparison of different methods to calculate the interaction integrals has been carried out; the effects of free parameters, such as vmax, lmax, and the arbitrary temperature Tb, on the convergence of electron transport coefficients are analyzed. Then, the modified attachment model of Ness et al. and SF6 are considered to investigate the effect of attachment on the electron transport properties. The deficiency of the pulsed Townsend technique to measure the electron transport and reaction coefficients in electronegative gases is highlighted when the reduced electric field is small. In order to investigate the effect of external magnetic field on the electron transport properties, Ar plasmas in high power impulse sputtering devices are considered. In the end, the electron relaxation properties of the Reid model under the influence of electric and magnetic fields are demonstrated.
Transport coefficients in nonequilibrium gas-mixture flows with electronic excitation.
Kustova, E V; Puzyreva, L A
2009-10-01
In the present paper, a one-temperature model of transport properties in chemically nonequilibrium neutral gas-mixture flows with electronic excitation is developed. The closed set of governing equations for the macroscopic parameters taking into account electronic degrees of freedom of both molecules and atoms is derived using the generalized Chapman-Enskog method. The transport algorithms for the calculation of the thermal-conductivity, diffusion, and viscosity coefficients are proposed. The developed theoretical model is applied for the calculation of the transport coefficients in the electronically excited N/N(2) mixture. The specific heats and transport coefficients are calculated in the temperature range 50-50,000 K. Two sets of data for the collision integrals are applied for the calculations. An important contribution of the excited electronic states to the heat transfer is shown. The Prandtl number of atomic species is found to be substantially nonconstant.
Development of Scanning Ultrafast Electron Microscope Capability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, Kimberlee Chiyoko; Talin, Albert Alec; Chandler, David W.
Modern semiconductor devices rely on the transport of minority charge carriers. Direct examination of minority carrier lifetimes in real devices with nanometer-scale features requires a measurement method with simultaneously high spatial and temporal resolutions. Achieving nanometer spatial resolutions at sub-nanosecond temporal resolution is possible with pump-probe methods that utilize electrons as probes. Recently, a stroboscopic scanning electron microscope was developed at Caltech, and used to study carrier transport across a Si p-n junction [ 1 , 2 , 3 ] . In this report, we detail our development of a prototype scanning ultrafast electron microscope system at Sandia National Laboratoriesmore » based on the original Caltech design. This effort represents Sandia's first exploration into ultrafast electron microscopy.« less
Li, Xiang-Guo; Chu, Iek-Heng; Zhang, X. -G.; ...
2015-05-28
Electron transport in graphene is along the sheet but junction devices are often made by stacking different sheets together in a “side-contact” geometry which causes the current to flow perpendicular to the sheets within the device. Such geometry presents a challenge to first-principles transport methods. We solve this problem by implementing a plane-wave-based multiple-scattering theory for electron transport. In this study, this implementation improves the computational efficiency over the existing plane-wave transport code, scales better for parallelization over large number of nodes, and does not require the current direction to be along a lattice axis. As a first application, wemore » calculate the tunneling current through a side-contact graphene junction formed by two separate graphene sheets with the edges overlapping each other. We find that transport properties of this junction depend strongly on the AA or AB stacking within the overlapping region as well as the vacuum gap between two graphene sheets. Finally, such transport behaviors are explained in terms of carbon orbital orientation, hybridization, and delocalization as the geometry is varied.« less
NASA Astrophysics Data System (ADS)
Yan, Jiawei; Wang, Shizhuo; Xia, Ke; Ke, Youqi
2017-03-01
Because disorders are inevitable in realistic nanodevices, the capability to quantitatively simulate the disorder effects on electron transport is indispensable for quantum transport theory. Here, we report a unified and effective first-principles quantum transport method for analyzing effects of chemical or substitutional disorder on transport properties of nanoelectronics, including averaged transmission coefficient, shot noise, and disorder-induced device-to-device variability. All our theoretical formulations and numerical implementations are worked out within the framework of the tight-binding linear muffin tin orbital method. In this method, we carry out the electronic structure calculation with the density functional theory, treat the nonequilibrium statistics by the nonequilbrium Green's function method, and include the effects of multiple impurity scattering with the generalized nonequilibrium vertex correction (NVC) method in coherent potential approximation (CPA). The generalized NVC equations are solved from first principles to obtain various disorder-averaged two-Green's-function correlators. This method provides a unified way to obtain different disorder-averaged transport properties of disordered nanoelectronics from first principles. To test our implementation, we apply the method to investigate the shot noise in the disordered copper conductor, and find all our results for different disorder concentrations approach a universal Fano factor 1 /3 . As the second test, we calculate the device-to-device variability in the spin-dependent transport through the disordered Cu/Co interface and find the conductance fluctuation is very large in the minority spin channel and negligible in the majority spin channel. Our results agree well with experimental measurements and other theories. In both applications, we show the generalized nonequilibrium vertex corrections play a determinant role in electron transport simulation. Our results demonstrate the effectiveness of the first-principles generalized CPA-NVC for atomistic analysis of disordered nanoelectronics, extending the capability of quantum transport simulation.
ICF target 2D modeling using Monte Carlo SNB electron thermal transport in DRACO
NASA Astrophysics Data System (ADS)
Chenhall, Jeffrey; Cao, Duc; Moses, Gregory
2016-10-01
The iSNB (implicit Schurtz Nicolai Busquet multigroup diffusion electron thermal transport method is adapted into a Monte Carlo (MC) transport method to better model angular and long mean free path non-local effects. The MC model was first implemented in the 1D LILAC code to verify consistency with the iSNB model. Implementation of the MC SNB model in the 2D DRACO code enables higher fidelity non-local thermal transport modeling in 2D implosions such as polar drive experiments on NIF. The final step is to optimize the MC model by hybridizing it with a MC version of the iSNB diffusion method. The hybrid method will combine the efficiency of a diffusion method in intermediate mean free path regions with the accuracy of a transport method in long mean free path regions allowing for improved computational efficiency while maintaining accuracy. Work to date on the method will be presented. This work was supported by Sandia National Laboratories and the Univ. of Rochester Laboratory for Laser Energetics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qian; University of the Chinese Academy of Sciences, Beijing 100039; Li, Bincheng, E-mail: bcli@uestc.ac.cn
2015-12-07
In this paper, photocarrier radiometry (PCR) technique with multiple pump beam sizes is employed to determine simultaneously the electronic transport parameters (the carrier lifetime, the carrier diffusion coefficient, and the front surface recombination velocity) of silicon wafers. By employing the multiple pump beam sizes, the influence of instrumental frequency response on the multi-parameter estimation is totally eliminated. A nonlinear PCR model is developed to interpret the PCR signal. Theoretical simulations are performed to investigate the uncertainties of the estimated parameter values by investigating the dependence of a mean square variance on the corresponding transport parameters and compared to that obtainedmore » by the conventional frequency-scan method, in which only the frequency dependences of the PCR amplitude and phase are recorded at single pump beam size. Simulation results show that the proposed multiple-pump-beam-size method can improve significantly the accuracy of the determination of the electronic transport parameters. Comparative experiments with a p-type silicon wafer with resistivity 0.1–0.2 Ω·cm are performed, and the electronic transport properties are determined simultaneously. The estimated uncertainties of the carrier lifetime, diffusion coefficient, and front surface recombination velocity are approximately ±10.7%, ±8.6%, and ±35.4% by the proposed multiple-pump-beam-size method, which is much improved than ±15.9%, ±29.1%, and >±50% by the conventional frequency-scan method. The transport parameters determined by the proposed multiple-pump-beam-size PCR method are in good agreement with that obtained by a steady-state PCR imaging technique.« less
Electron transport property of tetrathiafulvalene molecule
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mondal, Rajkumar; Bhattacharya, Barnali; Deb, Jyotirmoy
2016-05-23
We have investigated electron transport behavior of tetrathiafulvalene molecule connected with zigzag graphene nanoribbon (zGNR) using density functional theory combined with non-equilibrium Green’s function method. We have reported the transmission coefficient of the scattering region at different bias voltage to explain the nature of the current.
Treating electron transport in MCNP{sup trademark}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, H.G.
1996-12-31
The transport of electrons and other charged particles is fundamentally different from that of neutrons and photons. A neutron, in aluminum slowing down from 0.5 MeV to 0.0625 MeV will have about 30 collisions; a photon will have fewer than ten. An electron with the same energy loss will undergo 10{sup 5} individual interactions. This great increase in computational complexity makes a single- collision Monte Carlo approach to electron transport unfeasible for many situations of practical interest. Considerable theoretical work has been done to develop a variety of analytic and semi-analytic multiple-scattering theories for the transport of charged particles. Themore » theories used in the algorithms in MCNP are the Goudsmit-Saunderson theory for angular deflections, the Landau an theory of energy-loss fluctuations, and the Blunck-Leisegang enhancements of the Landau theory. In order to follow an electron through a significant energy loss, it is necessary to break the electron`s path into many steps. These steps are chosen to be long enough to encompass many collisions (so that multiple-scattering theories are valid) but short enough that the mean energy loss in any one step is small (for the approximations in the multiple-scattering theories). The energy loss and angular deflection of the electron during each step can then be sampled from probability distributions based on the appropriate multiple- scattering theories. This subsumption of the effects of many individual collisions into single steps that are sampled probabilistically constitutes the ``condensed history`` Monte Carlo method. This method is exemplified in the ETRAN series of electron/photon transport codes. The ETRAN codes are also the basis for the Integrated TIGER Series, a system of general-purpose, application-oriented electron/photon transport codes. The electron physics in MCNP is similar to that of the Integrated TIGER Series.« less
Theoretical Characterization of Charge Transport in Chromia (α-Cr2O3)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iordanova, Nellie I.; Dupuis, Michel; Rosso, Kevin M.
2005-08-15
Transport of conduction electrons and holes through the lattice of ?-Cr2O3 (chromia) is modeled as a valence alternation of chromium cations using ab initio electronic structure calculations and electron transfer theory. In the context of the small polaron model, a cluster approach was used to compute quantities controlling the mobility of localized electrons and holes, i.e. the reorganization energy and the electronic coupling matrix element that enter Marcus? theory. The calculation of the electronic coupling followed the Generalized Mulliken-Hush approach and the quasi-diabatic method using the complete active space self-consistent field (CASSCF) method. Our findings indicate that hole mobility ismore » more than three orders of magnitude larger than electron mobility in both (001) and [001] lattice directions. The difference arises mainly from the larger internal reorganization energy calculated for electron transport relative to hole transport processes while electronic couplings have similar magnitudes. The much larger hole mobility vs electron mobility in ?-Cr2O3 is in contrast to similar hole and electron mobility in hematite ?-Fe2O3 previously calculated. Our calculations also indicate that the electronic coupling for all charge transfer processes of interest is smaller than for the corresponding processes in hematite. This variation is attributed to weaker interaction between the metal 3d states and the O(2p) states in chromia than in hematite, leading to smaller overlap between the charge transfer donor and acceptor wavefunctions and smaller super-exchange coupling in chromia. Nevertheless, the weaker coupling in chromia is still sufficiently large to suggest that charge transport processes in chromia are adiabatic in nature. The electronic coupling is found to depend on both the superexchange interaction through the bridging oxygen atoms and the d-shell electron spin coupling within the Cr-Cr donor-acceptor pair, while the reorganization energy is essentially independent of the electron spin coupling.« less
Theoretical characterization of charge transport in chromia (α-Cr2O3)
NASA Astrophysics Data System (ADS)
Iordanova, N.; Dupuis, M.; Rosso, K. M.
2005-08-01
Transport of conduction electrons and holes through the lattice of α-Cr2O3 (chromia) is modeled as a valence alternation of chromium cations using ab initio electronic structure calculations and electron-transfer theory. In the context of the small polaron model, a cluster approach was used to compute quantities controlling the mobility of localized electrons and holes, i.e., the reorganization energy and the electronic coupling matrix element that enter Marcus' theory. The calculation of the electronic coupling followed the generalized Mulliken-Hush approach using the complete active space self-consistent-field (CASSCF) method and the quasidiabatic method. Our findings indicate that hole mobility is more than three orders of magnitude larger than electron mobility in both (001) and [001] lattice directions. The difference arises mainly from the larger internal reorganization energy calculated for electron-transport relative to hole-transport processes while electronic couplings have similar magnitudes. The much larger hole mobility versus electron mobility in α-Cr2O3 is in contrast to similar hole and electron mobilities in hematite α-Fe2O3 previously calculated. Our calculations also indicate that the electronic coupling for all charge-transfer processes of interest is smaller than for the corresponding processes in hematite. This variation is attributed to the weaker interaction between the metal 3d states and the O(2p ) states in chromia than in hematite, leading to a smaller overlap between the charge-transfer donor and acceptor wave functions and smaller superexchange coupling in chromia. Nevertheless, the weaker coupling in chromia is still sufficiently large to suggest that charge-transport processes in chromia are adiabatic in nature. The electronic coupling is found to depend on both the superexchange interaction through the bridging oxygen atoms and the d-shell electron-spin coupling within the Cr-Cr donor-acceptor pair, while the reorganization energy is essentially independent of the electron-spin coupling.
Diffusive transport of energetic electrons in the solar corona: X-ray and radio diagnostics
NASA Astrophysics Data System (ADS)
Musset, S.; Kontar, E. P.; Vilmer, N.
2018-02-01
Context. Imaging spectroscopy in X-rays with RHESSI provides the possibility to investigate the spatial evolution of X-ray emitting electron distribution and therefore, to study transport effects on energetic electrons during solar flares. Aims: We study the energy dependence of the scattering mean free path of energetic electrons in the solar corona. Methods: We used imaging spectroscopy with RHESSI to study the evolution of energetic electrons distribution in various parts of the magnetic loop during the 2004 May 21 flare. We compared these observations with the radio observations of the gyrosynchrotron radiation of the same flare and with the predictions of a diffusive transport model. Results: X-ray analysis shows a trapping of energetic electrons in the corona and a spectral hardening of the energetic electron distribution between the top of the loop and the footpoints. Coronal trapping of electrons is stronger for radio-emitting electrons than for X-ray-emitting electrons. These observations can be explained by a diffusive transport model. Conclusions: We show that the combination of X-ray and radio diagnostics is a powerful tool to study electron transport in the solar corona in different energy domains. We show that the diffusive transport model can explain our observations, and in the range 25-500 keV, the scattering mean free path of electrons decreases with electron energy. We can estimate for the first time the scattering mean free path dependence on energy in the corona.
Effect of Molecular Rotation on Charge Transport Phenomena
NASA Astrophysics Data System (ADS)
Garg, O. P.; Lamba, Vijay Kr; Kaushik, D. K.
2015-12-01
The study of electron transport properties of molecular systems could be explained on the basis of the Landauer formalism. Unfortunately, due to the complexity of the experimental setup, most of these measurements have no control over the details of the electrode geometry, rotation of molecules, variation in angle of contacts, effect of fano resonances associated with side groups attached to rigid backbones, which results in a spectrum of IV-characteristics. Theoretical models can therefore help to understand and helps to develop new applications such as molecular sensors, etc. Thus we used simulation methods that generate the required structural ensemble, which is then analyzed with Green’s function methods to characterize the electronic transport properties. In present work we had discussed applications of this approach to understand the conductance in molecular system in the direction of controlling electron transport through molecules and studied the effect of rotation of sandwiched molecule.
Olbrant, Edgar; Frank, Martin
2010-12-01
In this paper, we study a deterministic method for particle transport in biological tissues. The method is specifically developed for dose calculations in cancer therapy and for radiological imaging. Generalized Fokker-Planck (GFP) theory [Leakeas and Larsen, Nucl. Sci. Eng. 137 (2001), pp. 236-250] has been developed to improve the Fokker-Planck (FP) equation in cases where scattering is forward-peaked and where there is a sufficient amount of large-angle scattering. We compare grid-based numerical solutions to FP and GFP in realistic medical applications. First, electron dose calculations in heterogeneous parts of the human body are performed. Therefore, accurate electron scattering cross sections are included and their incorporation into our model is extensively described. Second, we solve GFP approximations of the radiative transport equation to investigate reflectance and transmittance of light in biological tissues. All results are compared with either Monte Carlo or discrete-ordinates transport solutions.
Trubitsin, Boris V; Vershubskii, Alexey V; Priklonskii, Vladimir I; Tikhonov, Alexander N
2015-11-01
In this work, using the EPR and PAM-fluorometry methods, we have studied induction events of photosynthetic electron transport in Hibiscus rosa-sinensis leaves. The methods used are complementary, providing efficient tools for in situ monitoring of P700 redox transients and photochemical activity of photosystem II (PSII). The induction of P700(+) in dark-adapted leaves is characterized by the multiphase kinetics with a lag-phase, which duration elongates with the dark-adaptation time. Analyzing effects of the uncoupler monensin and artificial electron carrier methylviologen (MV) on photooxidation of P700 and slow induction of chlorophyll a fluorescence (SIF), we could ascribe different phases of transient kinetics of electron transport processes in dark-adapted leaves to the following regulatory mechanisms: (i) acceleration of electron transfer on the acceptor side of PSI, (ii) pH-dependent modulation of the intersystem electron flow, and (iii) re-distribution of electron fluxes between alternative (linear, cyclic, and pseudocyclic) pathways. Monensin significantly decreases a level of P700(+) and inhibits SIF. MV, which mediates electron flow from PSI to O2 with consequent formation of H2O2, promotes a rapid photooxidation of P700 without any lag-phase peculiar to untreated leaves. MV-mediated water-water cycle (H2O→PSII→PSI→MV→O2→H2O2→H2O) is accompanied by generation of ascorbate free radicals. This suggests that the ascorbate peroxidase system of defense against reactive oxygen species is active in chloroplasts of H. rosa-sinensis leaves. In DCMU-treated chloroplasts with inhibited PSII, the contribution of cyclic electron flow is insignificant as compared to linear electron flow. For analysis of induction events, we have simulated electron transport processes within the framework of our generalized mathematical model of oxygenic photosynthesis, which takes into account pH-dependent mechanisms of electron transport control and re-distribution of electron fluxes between alternative pathways. The model adequately describes the main peculiarities of P700(+) induction and dynamics of the intersystem electron transport. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Schinabeck, C.; Erpenbeck, A.; Härtle, R.; Thoss, M.
2016-11-01
Within the hierarchical quantum master equation (HQME) framework, an approach is presented, which allows a numerically exact description of nonequilibrium charge transport in nanosystems with strong electronic-vibrational coupling. The method is applied to a generic model of vibrationally coupled transport considering a broad spectrum of parameters ranging from the nonadiabatic to the adiabatic regime and including both resonant and off-resonant transport. We show that nonequilibrium effects are important in all these regimes. In particular, in the off-resonant transport regime, the inelastic cotunneling signal is analyzed for a vibrational mode in full nonequilibrium, revealing a complex interplay of different transport processes and deviations from the commonly used G0/2 rule of thumb. In addition, the HQME approach is used to benchmark approximate master equation and nonequilibrium Green's function methods.
Telegraph noise in Markovian master equation for electron transport through molecular junctions
NASA Astrophysics Data System (ADS)
Kosov, Daniel S.
2018-05-01
We present a theoretical approach to solve the Markovian master equation for quantum transport with stochastic telegraph noise. Considering probabilities as functionals of a random telegraph process, we use Novikov's functional method to convert the stochastic master equation to a set of deterministic differential equations. The equations are then solved in the Laplace space, and the expression for the probability vector averaged over the ensemble of realisations of the stochastic process is obtained. We apply the theory to study the manifestations of telegraph noise in the transport properties of molecular junctions. We consider the quantum electron transport in a resonant-level molecule as well as polaronic regime transport in a molecular junction with electron-vibration interaction.
An Electron/Photon/Relaxation Data Library for MCNP6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, III, H. Grady
The capabilities of the MCNP6 Monte Carlo code in simulation of electron transport, photon transport, and atomic relaxation have recently been significantly expanded. The enhancements include not only the extension of existing data and methods to lower energies, but also the introduction of new categories of data and methods. Support of these new capabilities has required major additions to and redesign of the associated data tables. In this paper we present the first complete documentation of the contents and format of the new electron-photon-relaxation data library now available with the initial production release of MCNP6.
NASA Astrophysics Data System (ADS)
Sempau, Josep; Wilderman, Scott J.; Bielajew, Alex F.
2000-08-01
A new Monte Carlo (MC) algorithm, the `dose planning method' (DPM), and its associated computer program for simulating the transport of electrons and photons in radiotherapy class problems employing primary electron beams, is presented. DPM is intended to be a high-accuracy MC alternative to the current generation of treatment planning codes which rely on analytical algorithms based on an approximate solution of the photon/electron Boltzmann transport equation. For primary electron beams, DPM is capable of computing 3D dose distributions (in 1 mm3 voxels) which agree to within 1% in dose maximum with widely used and exhaustively benchmarked general-purpose public-domain MC codes in only a fraction of the CPU time. A representative problem, the simulation of 1 million 10 MeV electrons impinging upon a water phantom of 1283 voxels of 1 mm on a side, can be performed by DPM in roughly 3 min on a modern desktop workstation. DPM achieves this performance by employing transport mechanics and electron multiple scattering distribution functions which have been derived to permit long transport steps (of the order of 5 mm) which can cross heterogeneity boundaries. The underlying algorithm is a `mixed' class simulation scheme, with differential cross sections for hard inelastic collisions and bremsstrahlung events described in an approximate manner to simplify their sampling. The continuous energy loss approximation is employed for energy losses below some predefined thresholds, and photon transport (including Compton, photoelectric absorption and pair production) is simulated in an analogue manner. The δ-scattering method (Woodcock tracking) is adopted to minimize the computational costs of transporting photons across voxels.
Le, Nguyen-Quoc-Khanh; Ho, Quang-Thai; Ou, Yu-Yen
2017-09-05
In several years, deep learning is a modern machine learning technique using in a variety of fields with state-of-the-art performance. Therefore, utilization of deep learning to enhance performance is also an important solution for current bioinformatics field. In this study, we try to use deep learning via convolutional neural networks and position specific scoring matrices to identify electron transport proteins, which is an important molecular function in transmembrane proteins. Our deep learning method can approach a precise model for identifying of electron transport proteins with achieved sensitivity of 80.3%, specificity of 94.4%, and accuracy of 92.3%, with MCC of 0.71 for independent dataset. The proposed technique can serve as a powerful tool for identifying electron transport proteins and can help biologists understand the function of the electron transport proteins. Moreover, this study provides a basis for further research that can enrich a field of applying deep learning in bioinformatics. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Reis-Silva, J. C.; Ferreira, D. F. S.; Leal, J. F. P.; Pinheiro, F. A.; Del Nero, J.
2017-02-01
We investigate, by means of ab initio calculations based on non-equilibrium Green's function method coupled to density function theory, electronic transport in molecular junctions composed of biphenyl (BP) and biphenyl within (-2H+) defect (BP2D) molecules attached to metallic (9,0) carbon nanotubes. We demonstrate that the BP2D junction exhibits unprecedented electronic transport properties, and that its conductance can be up to three orders of magnitude higher than biphenyl single-molecule junctions. These findings are explained in terms of the non-planar molecular conformation of BP2D, and of the stronger electronic coupling between the BP2D molecule and the organic electrodes, which confers high stability to the junction. Our results suggest that BP2D attached to carbon nanotubes can be explored as an efficient and highly stable platform in single-molecule electronics with extraordinary transport properties.
A Monte Carlo method using octree structure in photon and electron transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogawa, K.; Maeda, S.
Most of the early Monte Carlo calculations in medical physics were used to calculate absorbed dose distributions, and detector responses and efficiencies. Recently, data acquisition in Single Photon Emission CT (SPECT) has been simulated by a Monte Carlo method to evaluate scatter photons generated in a human body and a collimator. Monte Carlo simulations in SPECT data acquisition are generally based on the transport of photons only because the photons being simulated are low energy, and therefore the bremsstrahlung productions by the electrons generated are negligible. Since the transport calculation of photons without electrons is much simpler than that withmore » electrons, it is possible to accomplish the high-speed simulation in a simple object with one medium. Here, object description is important in performing the photon and/or electron transport using a Monte Carlo method efficiently. The authors propose a new description method using an octree representation of an object. Thus even if the boundaries of each medium are represented accurately, high-speed calculation of photon transport can be accomplished because the number of voxels is much fewer than that of the voxel-based approach which represents an object by a union of the voxels of the same size. This Monte Carlo code using the octree representation of an object first establishes the simulation geometry by reading octree string, which is produced by forming an octree structure from a set of serial sections for the object before the simulation; then it transports photons in the geometry. Using the code, if the user just prepares a set of serial sections for the object in which he or she wants to simulate photon trajectories, he or she can perform the simulation automatically using the suboptimal geometry simplified by the octree representation without forming the optimal geometry by handwriting.« less
Fang, Yuan; Badal, Andreu; Allec, Nicholas; Karim, Karim S; Badano, Aldo
2012-01-01
The authors describe a detailed Monte Carlo (MC) method for the coupled transport of ionizing particles and charge carriers in amorphous selenium (a-Se) semiconductor x-ray detectors, and model the effect of statistical variations on the detected signal. A detailed transport code was developed for modeling the signal formation process in semiconductor x-ray detectors. The charge transport routines include three-dimensional spatial and temporal models of electron-hole pair transport taking into account recombination and trapping. Many electron-hole pairs are created simultaneously in bursts from energy deposition events. Carrier transport processes include drift due to external field and Coulombic interactions, and diffusion due to Brownian motion. Pulse-height spectra (PHS) have been simulated with different transport conditions for a range of monoenergetic incident x-ray energies and mammography radiation beam qualities. Two methods for calculating Swank factors from simulated PHS are shown, one using the entire PHS distribution, and the other using the photopeak. The latter ignores contributions from Compton scattering and K-fluorescence. Comparisons differ by approximately 2% between experimental measurements and simulations. The a-Se x-ray detector PHS responses simulated in this work include three-dimensional spatial and temporal transport of electron-hole pairs. These PHS were used to calculate the Swank factor and compare it with experimental measurements. The Swank factor was shown to be a function of x-ray energy and applied electric field. Trapping and recombination models are all shown to affect the Swank factor.
Vega-Poot, Alberto G; Macías-Montero, Manuel; Idígoras, Jesus; Borrás, Ana; Barranco, Angel; Gonzalez-Elipe, Agustín R; Lizama-Tzec, Francisco I; Oskam, Gerko; Anta, Juan A
2014-04-14
ZnO is an attractive material for applications in dye-sensitized solar cells and related devices. This material has excellent electron-transport properties in the bulk but its electron diffusion coefficient is much smaller in mesoporous films. In this work the electron-transport properties of two different kinds of dye-sensitized ZnO nanostructures are investigated by small-perturbation electrochemical techniques. For nanoparticulate ZnO photoanodes prepared via a wet-chemistry technique, the diffusion coefficient is found to reproduce the typical behavior predicted by the multiple-trapping and the hopping models, with an exponential increase with respect to the applied bias. In contrast, in ZnO nanostructured thin films of controlled texture and crystallinity prepared via a plasma chemical vapor deposition method, the diffusion coefficient is found to be independent of the electrochemical bias. This observation suggests a different transport mechanism not controlled by trapping and electron accumulation. In spite of the quite different transport features, the recombination kinetics, the electron-collection efficiency and the photoconversion efficiency are very similar for both kinds of photoanodes, an observation that indicates that surface properties rather than electron transport is the main efficiency-determining factor in solar cells based on ZnO nanostructured photoanodes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Inelastic transport theory from first principles: Methodology and application to nanoscale devices
NASA Astrophysics Data System (ADS)
Frederiksen, Thomas; Paulsson, Magnus; Brandbyge, Mads; Jauho, Antti-Pekka
2007-05-01
We describe a first-principles method for calculating electronic structure, vibrational modes and frequencies, electron-phonon couplings, and inelastic electron transport properties of an atomic-scale device bridging two metallic contacts under nonequilibrium conditions. The method extends the density-functional codes SIESTA and TRANSIESTA that use atomic basis sets. The inelastic conductance characteristics are calculated using the nonequilibrium Green’s function formalism, and the electron-phonon interaction is addressed with perturbation theory up to the level of the self-consistent Born approximation. While these calculations often are computationally demanding, we show how they can be approximated by a simple and efficient lowest order expansion. Our method also addresses effects of energy dissipation and local heating of the junction via detailed calculations of the power flow. We demonstrate the developed procedures by considering inelastic transport through atomic gold wires of various lengths, thereby extending the results presented in Frederiksen [Phys. Rev. Lett. 93, 256601 (2004)]. To illustrate that the method applies more generally to molecular devices, we also calculate the inelastic current through different hydrocarbon molecules between gold electrodes. Both for the wires and the molecules our theory is in quantitative agreement with experiments, and characterizes the system-specific mode selectivity and local heating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang Haiyan; Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC 28223-0001; Cai Wei
2010-06-20
In this paper, we conduct a study of quantum transport models for a two-dimensional nano-size double gate (DG) MOSFET using two approaches: non-equilibrium Green's function (NEGF) and Wigner distribution. Both methods are implemented in the framework of the mode space methodology where the electron confinements below the gates are pre-calculated to produce subbands along the vertical direction of the device while the transport along the horizontal channel direction is described by either approach. Each approach handles the open quantum system along the transport direction in a different manner. The NEGF treats the open boundaries with boundary self-energy defined by amore » Dirichlet to Neumann mapping, which ensures non-reflection at the device boundaries for electron waves leaving the quantum device active region. On the other hand, the Wigner equation method imposes an inflow boundary treatment for the Wigner distribution, which in contrast ensures non-reflection at the boundaries for free electron waves entering the device active region. In both cases the space-charge effect is accounted for by a self-consistent coupling with a Poisson equation. Our goals are to study how the device boundaries are treated in both transport models affects the current calculations, and to investigate the performance of both approaches in modeling the DG-MOSFET. Numerical results show mostly consistent quantum transport characteristics of the DG-MOSFET using both methods, though with higher transport current for the Wigner equation method, and also provide the current-voltage (I-V) curve dependence on various physical parameters such as the gate voltage and the oxide thickness.« less
Polymer-mediated tunneling transport between carbon nanotubes in nanocomposites.
Derosa, Pedro A; Michalak, Tyler
2014-05-01
Electron transport in nanocomposites has attracted a good deal of attention for some time now; furthermore, the ability to control its characteristics is a necessary step in the design of multifunctional materials. When conductive nanostructures (for example carbon nanotubes) are inserted in a non-conductive matrix, electron transport below the percolation threshold is dominated by tunneling and thus the conductive characteristics of the composite depends heavily on the characteristics of the tunneling currents between nanoinserts. A parameter-free approach to study tunneling transport between carbon nanotubes across a polymer matrix is presented. The calculation is done with a combination of Density Functional Theory and Green functions (an approach heavily used in molecular electronics) which is shown here to be effective in this non-resonant transport condition. The results show that the method can effectively capture the effect of a dielectric layer in tunneling transport. The current is found to exponentially decrease with the size of the gap for both vacuum and polymer, and that the polymer layer lowers the tunneling barrier enhancing tunneling conduction. For a polyacrylonitrile matrix, a four-fold decrease in the tunneling constant, compared to tunneling in vacuum, is observed, a result that is consistent with available information. The method is very versatile as any DFT functional (or any other quantum mechanics method) can be used and thus the most accurate method for each particular system can be chosen. Furthermore as more methods become available, the calculations can be revised and improved. This approach can be used to design functional materials for fine-tunning the tunneling transport, for instance, the effect of modifying the nanoinsert-matrix interface (for example, by adding functional groups to carbon nanotubes) can be captured and the comparative performance of each interface predicted by simulation.
Model Comparison for Electron Thermal Transport
NASA Astrophysics Data System (ADS)
Moses, Gregory; Chenhall, Jeffrey; Cao, Duc; Delettrez, Jacques
2015-11-01
Four electron thermal transport models are compared for their ability to accurately and efficiently model non-local behavior in ICF simulations. Goncharov's transport model has accurately predicted shock timing in implosion simulations but is computationally slow and limited to 1D. The iSNB (implicit Schurtz Nicolai Busquet electron thermal transport method of Cao et al. uses multigroup diffusion to speed up the calculation. Chenhall has expanded upon the iSNB diffusion model to a higher order simplified P3 approximation and a Monte Carlo transport model, to bridge the gap between the iSNB and Goncharov models while maintaining computational efficiency. Comparisons of the above models for several test problems will be presented. This work was supported by Sandia National Laboratory - Albuquerque and the University of Rochester Laboratory for Laser Energetics.
The electrical and thermal transport properties of hybrid zigzag graphene-BN nanoribbons
NASA Astrophysics Data System (ADS)
Gao, Song; Lu, Wei; Zheng, Guo-Hui; Jia, Yalei; Ke, San-Huang
2017-06-01
The electron and phonon transport in hybrid graphene-BN zigzag nanoribbons are investigated by the nonequilibrium Green’s function method combined with density functional theory calculations. A 100% spin-polarized electron transport in a large energy window around the Fermi level is found and this behavior is independent of the ribbon width as long as there contain 3 zigzag carbon chains. The phonon transport calculations show that the ratio of C-chain number to BN-chain number will modify the thermal conductance of the hybrid nanoribbon in a complicated manner.
Evaluation of True Power Luminous Efficiency from Experimental Luminance Values
NASA Astrophysics Data System (ADS)
Tsutsui, Tetsuo; Yamamato, Kounosuke
1999-05-01
A method for obtaining true external power luminous efficiencyfrom experimentally obtained luminance in organic light-emittingdiodes (LEDs) wasdemonstrated. Conventional two-layer organic LEDs with different electron-transport layer thicknesses wereprepared. Spatial distributions of emission intensities wereobserved. The large deviation in both emission spectra and spatialemission patterns were observed when the electron-transport layerthickness was varied. The deviation of emission patterns from thestandard Lambertian pattern was found to cause overestimations ofpower luminous efficiencies as large as 30%. A method for evaluatingcorrection factors was proposed.
Nanoscale thermal transport: Theoretical method and application
NASA Astrophysics Data System (ADS)
Zeng, Yu-Jia; Liu, Yue-Yang; Zhou, Wu-Xing; Chen, Ke-Qiu
2018-03-01
With the size reduction of nanoscale electronic devices, the heat generated by the unit area in integrated circuits will be increasing exponentially, and consequently the thermal management in these devices is a very important issue. In addition, the heat generated by the electronic devices mostly diffuses to the air in the form of waste heat, which makes the thermoelectric energy conversion also an important issue for nowadays. In recent years, the thermal transport properties in nanoscale systems have attracted increasing attention in both experiments and theoretical calculations. In this review, we will discuss various theoretical simulation methods for investigating thermal transport properties and take a glance at several interesting thermal transport phenomena in nanoscale systems. Our emphasizes will lie on the advantage and limitation of calculational method, and the application of nanoscale thermal transport and thermoelectric property. Project supported by the Nation Key Research and Development Program of China (Grant No. 2017YFB0701602) and the National Natural Science Foundation of China (Grant No. 11674092).
Khruschev, S S; Abaturova, A M; Diakonova, A N; Fedorov, V A; Ustinin, D M; Kovalenko, I B; Riznichenko, G Yu; Rubin, A B
2015-01-01
The application of Brownian dynamics for simulation of transient protein-protein interactions is reviewed. The review focuses on theoretical basics of Brownian dynamics method, its particular implementations, advantages and drawbacks of the method. The outlook for future development of Brownian dynamics-based simulation techniques is discussed. Special attention is given to analysis of Brownian dynamics trajectories. The second part of the review is dedicated to the role of Brownian dynamics simulations in studying photosynthetic electron transport. Interactions of mobile electron carriers (plastocyanin, cytochrome c6, and ferredoxin) with their reaction partners (cytochrome b6f complex, photosystem I, ferredoxin:NADP-reductase, and hydrogenase) are considered.
Electronic Structure and Transport in Solids from First Principles
NASA Astrophysics Data System (ADS)
Mustafa, Jamal Ibrahim
The focus of this dissertation is the determination of the electronic structure and trans- port properties of solids. We first review some of the theory and computational methodology used in the calculation of electronic structure and materials properties. Throughout the dissertation, we make extensive use of state-of-the-art software packages that implement density functional theory, density functional perturbation theory, and the GW approximation, in addition to specialized methods for interpolating matrix elements for extremely accurate results. The first application of the computational framework introduced is the determination of band offsets in semiconductor heterojunctions using a theory of quantum dipoles at the interface. This method is applied to the case of heterojunction formed between a new metastable phase of silicon, with a rhombohedral structure, and cubic silicon. Next, we introduce a novel method for the construction of localized Wannier functions, which we have named the optimized projection functions method (OPFM). We illustrate the method on a variety of systems and find that it can reliably construct localized Wannier functions with minimal user intervention. We further develop the OPFM to investigate a class of materials called topological insulators, which are insulating in the bulk but have conductive surface states. These properties are a result of a nontrivial topology in their band structure, which has interesting effects on the character of the Wannier functions. In the last sections of the main text, the noble metals are studied in great detail, including their electronic properties and carrier dynamics. In particular, we investigate, the Fermi surface properties of the noble metals, specifically electron-phonon scattering lifetimes, and subsequently the transport properties determined by carriers on the Fermi surface. To achieve this, a novel sampling technique is developed, with wide applicability to transport calculations. Additionally, the generation and transport of hot carriers is studied extensively. The distribution of hot carriers generated from the decay of plasmons is explored over a range of energy, and the transport properties, particularly the lifetimes and mean-free-paths, of the hot carriers are determined. Lastly, appendices detailing the implementation of the algorithms developed in the work is presented, along with a useful derivation of the electron-plasmon matrix elements.
Electron emission from condensed phase material induced by fast protons.
Shinpaugh, J L; McLawhorn, R A; McLawhorn, S L; Carnes, K D; Dingfelder, M; Travia, A; Toburen, L H
2011-02-01
Monte Carlo track simulation has become an important tool in radiobiology. Monte Carlo transport codes commonly rely on elastic and inelastic electron scattering cross sections determined using theoretical methods supplemented with gas-phase data; experimental condensed phase data are often unavailable or infeasible. The largest uncertainties in the theoretical methods exist for low-energy electrons, which are important for simulating electron track ends. To test the reliability of these codes to deal with low-energy electron transport, yields of low-energy secondary electrons ejected from thin foils have been measured following passage of fast protons. Fast ions, where interaction cross sections are well known, provide the initial spectrum of low-energy electrons that subsequently undergo elastic and inelastic scattering in the material before exiting the foil surface and being detected. These data, measured as a function of the energy and angle of the emerging electrons, can provide tests of the physics of electron transport. Initial measurements from amorphous solid water frozen to a copper substrate indicated substantial disagreement with MC simulation, although questions remained because of target charging. More recent studies, using different freezing techniques, do not exhibit charging, but confirm the disagreement seen earlier between theory and experiment. One now has additional data on the absolute differential electron yields from copper, aluminum and gold, as well as for thin films of frozen hydrocarbons. Representative data are presented.
Electron emission from condensed phase material induced by fast protons†
Shinpaugh, J. L.; McLawhorn, R. A.; McLawhorn, S. L.; Carnes, K. D.; Dingfelder, M.; Travia, A.; Toburen, L. H.
2011-01-01
Monte Carlo track simulation has become an important tool in radiobiology. Monte Carlo transport codes commonly rely on elastic and inelastic electron scattering cross sections determined using theoretical methods supplemented with gas-phase data; experimental condensed phase data are often unavailable or infeasible. The largest uncertainties in the theoretical methods exist for low-energy electrons, which are important for simulating electron track ends. To test the reliability of these codes to deal with low-energy electron transport, yields of low-energy secondary electrons ejected from thin foils have been measured following passage of fast protons. Fast ions, where interaction cross sections are well known, provide the initial spectrum of low-energy electrons that subsequently undergo elastic and inelastic scattering in the material before exiting the foil surface and being detected. These data, measured as a function of the energy and angle of the emerging electrons, can provide tests of the physics of electron transport. Initial measurements from amorphous solid water frozen to a copper substrate indicated substantial disagreement with MC simulation, although questions remained because of target charging. More recent studies, using different freezing techniques, do not exhibit charging, but confirm the disagreement seen earlier between theory and experiment. One now has additional data on the absolute differential electron yields from copper, aluminum and gold, as well as for thin films of frozen hydrocarbons. Representative data are presented. PMID:21183539
Monte Carlo calculation of large and small-angle electron scattering in air
NASA Astrophysics Data System (ADS)
Cohen, B. I.; Higginson, D. P.; Eng, C. D.; Farmer, W. A.; Friedman, A.; Grote, D. P.; Larson, D. J.
2017-11-01
A Monte Carlo method for angle scattering of electrons in air that accommodates the small-angle multiple scattering and larger-angle single scattering limits is introduced. The algorithm is designed for use in a particle-in-cell simulation of electron transport and electromagnetic wave effects in air. The method is illustrated in example calculations.
Electronic, thermoelectric and transport properties of cesium cadmium trifluoride: A DFT study
NASA Astrophysics Data System (ADS)
Abraham, Jisha Annie; Pagare, G.; Sanyal, Sankar P.
2018-04-01
The full potential linearized augmented plane wave method based on density functional theory is employed to investigate the electronic structure of CsCdF3. The electronic properties of this compound have been studied from the band structure plot and density of states. The presence of indirect energy gap reveals its insulating nature. Using constant relaxation time, the electrical conductivity, electronic thermal conductivity, Seebeck coefficient and figure of merit are calculated by using Boltzmann transport theory. We have also studied the temperature dependence of thermoelectric properties of this compound.
Multilevel acceleration of scattering-source iterations with application to electron transport
Drumm, Clif; Fan, Wesley
2017-08-18
Acceleration/preconditioning strategies available in the SCEPTRE radiation transport code are described. A flexible transport synthetic acceleration (TSA) algorithm that uses a low-order discrete-ordinates (S N) or spherical-harmonics (P N) solve to accelerate convergence of a high-order S N source-iteration (SI) solve is described. Convergence of the low-order solves can be further accelerated by applying off-the-shelf incomplete-factorization or algebraic-multigrid methods. Also available is an algorithm that uses a generalized minimum residual (GMRES) iterative method rather than SI for convergence, using a parallel sweep-based solver to build up a Krylov subspace. TSA has been applied as a preconditioner to accelerate the convergencemore » of the GMRES iterations. The methods are applied to several problems involving electron transport and problems with artificial cross sections with large scattering ratios. These methods were compared and evaluated by considering material discontinuities and scattering anisotropy. Observed accelerations obtained are highly problem dependent, but speedup factors around 10 have been observed in typical applications.« less
Electronic transport property in Weyl semimetal with local Weyl cone tilt
NASA Astrophysics Data System (ADS)
Jiang, Liwei; Feng, Lanting; Yao, Haibo; Zheng, Yisong
2018-03-01
In realistic materials of Weyl semimetal (WSM), the Weyl cone tilt (WCT) is allowed due to the absence of Lorentz invariance in condensed matter physics. In this context, we theoretically study the electronic transport property in WSM with the local WCT as the scattering mechanism. In so doing, we establish an electronic transport structure of WSM with the WCT occurring only in the central region sandwiched between two pieces of semi-infinite WSM without the WCT. By means of two complementary theoretical approaches, i.e. the continuum-model method and the lattice-model method, the electronic transmission probability, the conductivity and the Fano factor as functions of the incident electron energy are calculated respectively. We find that the WCT can give rise to nontrivial intervalley scattering, as a result, the Klein tunneling is notably suppressed. More importantly, the minimal conductivity of a WSM shifts in energy from the Weyl nodal point. The Fano factor of the shot noise deviates obviously from the sub-Poissonian value in a two dimensional WSM with the WCT.
Monte Carlo Modeling of Non-Local Electron Conduction in High Energy Density Plasmas
NASA Astrophysics Data System (ADS)
Chenhall, Jeffrey John
The implicit SNB (iSNB) non-local multigroup thermal electron conduction method of Schurtz et. al. [Phys. Plasmas 7, 4238 (2000)] and Cao et. al. [Phys. Plasmas 22, 082308 (2015)] is adapted into an electron thermal transport Monte Carlo (ETTMC) transport method to better model higher order angular and long mean free path non-local effects. The ETTMC model is used to simulate the electron thermal transport within inertial confinement fusion (ICF) type problems. The new model aims to improve upon the currently used iSNB, in particular by using finite particle ranges in comparison to the exponential solution of a diffusion method and by improved higher order angular modeling. The new method has been implemented in the 1D LILAC and 2D DRACO multiphysics production codes developed by the University of Rochester Laboratory for Laser Energetics. The ETTMC model is compared to iSNB for several direct drive ICF type simulations: Omega shot 60303 a shock timing experiment, Omega shot 59529 a shock timing experiment, Omega shot 68951 a cryogenic target implosion and a NIF polar direct drive phase plate design. Overall, the ETTMC method performs at least as well as the iSNB method and predicts lower preheating ahead of the shock fronts. This research was supported by University of Rochester Laboratory for Laser Energetics, Sandia National Laboratories and the University of Wisconsin-Madison Foundation.
Calculating the Responses of Self-Powered Radiation Detectors.
NASA Astrophysics Data System (ADS)
Thornton, D. A.
Available from UMI in association with The British Library. The aim of this research is to review and develop the theoretical understanding of the responses of Self -Powered Radiation Detectors (SPDs) in Pressurized Water Reactors (PWRs). Two very different models are considered. A simple analytic model of the responses of SPDs to neutrons and gamma radiation is presented. It is a development of the work of several previous authors and has been incorporated into a computer program (called GENSPD), the predictions of which have been compared with experimental and theoretical results reported in the literature. Generally, the comparisons show reasonable consistency; where there is poor agreement explanations have been sought and presented. Two major limitations of analytic models have been identified; neglect of current generation in insulators and over-simplified electron transport treatments. Both of these are developed in the current work. A second model based on the Explicit Representation of Radiation Sources and Transport (ERRST) is presented and evaluated for several SPDs in a PWR at beginning of life. The model incorporates simulation of the production and subsequent transport of neutrons, gamma rays and electrons, both internal and external to the detector. Neutron fluxes and fuel power ratings have been evaluated with core physics calculations. Neutron interaction rates in assembly and detector materials have been evaluated in lattice calculations employing deterministic transport and diffusion methods. The transport of the reactor gamma radiation has been calculated with Monte Carlo, adjusted diffusion and point-kernel methods. The electron flux associated with the reactor gamma field as well as the internal charge deposition effects of the transport of photons and electrons have been calculated with coupled Monte Carlo calculations of photon and electron transport. The predicted response of a SPD is evaluated as the sum of contributions from individual response mechanisms.
Critical thickness for the two-dimensional electron gas in LaTiO3/SrTiO3 superlattices
NASA Astrophysics Data System (ADS)
You, Jeong Ho; Lee, Jun Hee
2013-10-01
Transport dimensionality of Ti d electrons in (LaTiO3)1/(SrTiO3)N superlattices has been investigated using density functional theory with local spin-density approximation + U method. Different spatial distribution patterns have been found between Ti t2g orbital electrons. The dxy orbital electrons are highly localized near interfaces due to the potentials by positively charged LaO layers, while the degenerate dyz and dxz orbital electrons are more distributed inside SrTiO3 insulators. For N ≥ 3 unit cells (u.c.), the Ti dxy densities of state exhibit the staircaselike increments, which appear at the same energy levels as the dxy flat bands along the Γ-Z direction in band structures. The kz-independent discrete energy levels indicate that the electrons in dxy flat bands are two-dimensional electron gases (2DEGs) which can transport along interfaces, but they cannot transport perpendicularly to interfaces due to the confinements in the potential wells by LaO layers. Unlike the dxy orbital electrons, the dyz and dxz orbital electrons have three-dimensional (3D) transport characteristics, regardless of SrTiO3 thicknesses. The 2DEG formation by dxy orbital electrons, when N ≥ 3 u.c., indicates the existence of critical SrTiO3 thickness where the electron transport dimensionality starts to change from 3D to 2D in (LaTiO3)1/(SrTiO3)N superlattices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yu, E-mail: zhy@yangtze.hku.hk; Chen, GuanHua, E-mail: ghc@everest.hku.hk; Yam, ChiYung
2015-04-28
A time-dependent inelastic electron transport theory for strong electron-phonon interaction is established via the equations of motion method combined with the small polaron transformation. In this work, the dissipation via electron-phonon coupling is taken into account in the strong coupling regime, which validates the small polaron transformation. The corresponding equations of motion are developed, which are used to study the quantum interference effect and phonon-induced decoherence dynamics in molecular junctions. Numerical studies show clearly quantum interference effect of the transport electrons through two quasi-degenerate states with different couplings to the leads. We also found that the quantum interference can bemore » suppressed by the electron-phonon interaction where the phase coherence is destroyed by phonon scattering. This indicates the importance of electron-phonon interaction in systems with prominent quantum interference effect.« less
Self-consistent Monte Carlo study of high-field carrier transport in graded heterostructures
NASA Astrophysics Data System (ADS)
Al-Omar, A.; Krusius, J. P.
1987-11-01
Hot-electron transport over graded heterostructures was investigated. A new formulation of the carrier transport, based on the effective mass theorem, a position-dependent Hamiltonian, scattering rates that included overlap integrals with correct symmetry, and ohmic contact models preserving the stochastic nature of carrier injection, was developed and implemented into the self-consistent ensemble Monte Carlo method. Hot-carrier transport in a graded Al(x)Ga(1-x)As device was explored with the following results: (1) the transport across compositionally graded semiconductor structures cannot be described with drift and diffusion concepts; (2) although heterostructure launchers generate a ballistic electron fraction as high as 15 percent and 40 percent of the total electron population for 300 and 77 K, respectively, they simultaneously reduce macroscopic average currents and carrier velocities; and (3) the width of the ballistic electron distribution and the magnitude of the ballistic fraction are primarily determined by material parameters and operating voltages rather than details of the device structure.
Immobilization of Mitochondria on Graphene
2013-08-29
electron transport chain includes 4 complexes (Alberts B, et al ., 2002). The transport of electrons creates a proton gradient across the inner membrane...A.C., et al ., 2010). Various methods of synthesis of graphene include exfoliation and cleavage, thermal chemical vapor deposition, plasma enhanced...potential material for fabrication of glucose sensors. Using glucose oxide enzyme as a model, Shan et al . constructed a polyvinylpyrrolidone protected
Simulations of electron transport and ignition for direct-drive fast-ignition targets
NASA Astrophysics Data System (ADS)
Solodov, A. A.; Anderson, K. S.; Betti, R.; Gotcheva, V.; Myatt, J.; Delettrez, J. A.; Skupsky, S.; Theobald, W.; Stoeckl, C.
2008-11-01
The performance of high-gain, fast-ignition fusion targets is investigated using one-dimensional hydrodynamic simulations of implosion and two-dimensional (2D) hybrid fluid-particle simulations of hot-electron transport, ignition, and burn. The 2D/3D hybrid-particle-in-cell code LSP [D. R. Welch et al., Nucl. Instrum. Methods Phys. Res. A 464, 134 (2001)] and the 2D fluid code DRACO [P. B. Radha et al., Phys. Plasmas 12, 056307 (2005)] are integrated to simulate the hot-electron transport and heating for direct-drive fast-ignition targets. LSP simulates the transport of hot electrons from the place where they are generated to the dense fuel core where their energy is absorbed. DRACO includes the physics required to simulate compression, ignition, and burn of fast-ignition targets. The self-generated resistive magnetic field is found to collimate the hot-electron beam, increase the coupling efficiency of hot electrons with the target, and reduce the minimum energy required for ignition. Resistive filamentation of the hot-electron beam is also observed. The minimum energy required for ignition is found for hot electrons with realistic angular spread and Maxwellian energy-distribution function.
NASA Astrophysics Data System (ADS)
Gao, Lijuan; Yang, Zhao-Di; Zhang, Guiling
2017-06-01
The geometries, electronic and electron transport properties of a series of functionalized MoS2 monolayers were investigated using density-functional theory (DFT) and the non-equilibrium Green's function (NEGF) methods. n-Propyl, n-trisilicyl, phenyl, p-nitrophenyl and p-methoxyphenyl are chosen as electron-donating groups. The results show covalent functionalization with electron-donating groups could make a transformation from typical semiconducting to metallic properties for appearance of midgap level across the Fermi level (Ef). The calculations of transport properties for two-probe devices indicate that conductivities of functionalized systems are obviously enhanced relative to pristine MoS2 monolayer. Grafted groups contribute to the major transport path and play an important role in enhancing conductivity. The NDR effect is found. The influence of grafted density is also studied. Larger grafted density leads to wider bandwidth of midgap level, larger current response of I-V curves and larger current difference between peak and valley.
Umeyama, Tomokazu; Imahori, Hiroshi
2017-11-21
Over the past several years, organometal halide perovskite solar cells (PSCs) have attracted considerable interest from the scientific research community because of their potential as promising photovoltaic devices for use in renewable energy production. To date, high power conversion efficiencies (PCEs) of more than 20% have been primarily achieved with mesoscopic-structured PSCs, where a mesoporous TiO 2 (mTiO 2 ) layer is incorporated as an electron-transporting mesoporous scaffold into the perovskite crystal, in addition to a compact TiO 2 (cTiO 2 ) as an electron-transporting layer (ETL). In this Perspective, we first summarize recent research on the preparation strategies of the mTiO 2 layer with a high electron transport capability by facile sol-gel methods instead of the conventional nanoparticle approach. The importance of the control of the pore size and grain boundaries of the mTiO 2 in achieving high PCEs for PSCs is discussed. In addition, an alternative method to improve the electron transport in the mTiO 2 layer via the incorporation of highly conductive nanocarbon materials, such as two-dimensional (2D) graphene and one-dimensional (1D) carbon nanotubes, is also summarized. Finally, we highlight the utilization of zero-dimensional (0D) nanocarbon, i.e., fullerenes, as an n-type semiconducting material in mesostructure-free planar PSCs, which avoids high-temperature sintering during the fabrication of an ETL.
Organic field effect transistor composed by fullerene C60 and heterojunctions
NASA Astrophysics Data System (ADS)
Vasconcelos, Railson C.; Aleixo, Vicente F. P.; Del Nero, Jordan
2017-02-01
We present a study of the complex electronic behavior of a fullerene (C60) molecule attached to six leads (heterojunctions), which works as a three-dimension rectifier. In addition, we confirmed that the fullerene works not only as an electron donor, but also as barrier and transport channel to electrons through the molecule. Moreover, when the phenylpropanodinilla (PPP) lead is orthogonally subjected to bias voltage, the charge distribution and the current displays regions of saturation and resonance similar to semiconductor devices. In order to understand the electronic transport in the molecule, we applied non-equilibrium green function (NEGF) method and performed Fowler-Nordheim (FN) and Millikan-Lauritsen (ML) analyses. The ML curves proved to be sufficient to describe the FN characteristics. In this work, we report the theoretical design for electronic transport of a 3D device (6-terminal).
Monte Carlo calculation of large and small-angle electron scattering in air
Cohen, B. I.; Higginson, D. P.; Eng, C. D.; ...
2017-08-12
A Monte Carlo method for angle scattering of electrons in air that accommodates the small-angle multiple scattering and larger-angle single scattering limits is introduced. In this work, the algorithm is designed for use in a particle-in-cell simulation of electron transport and electromagnetic wave effects in air. The method is illustrated in example calculations.
Stress Associated with Transportation: A Survey of Persons with Visual Impairments
ERIC Educational Resources Information Center
Crudden, Adele; Cmar, Jennifer L.; McDonnall, Michele C.
2017-01-01
Introduction: This study evaluated transportation-related stress and factors predicting stress among persons with visual impairments. Methods: Participants with visual impairments completed electronic surveys rating their stress levels experienced when completing various walking and public transportation tasks. They also indicated activities they…
Study of optical and electronic properties of nickel from reflection electron energy loss spectra
NASA Astrophysics Data System (ADS)
Xu, H.; Yang, L. H.; Da, B.; Tóth, J.; Tőkési, K.; Ding, Z. J.
2017-09-01
We use the classical Monte Carlo transport model of electrons moving near the surface and inside solids to reproduce the measured reflection electron energy-loss spectroscopy (REELS) spectra. With the combination of the classical transport model and the Markov chain Monte Carlo (MCMC) sampling of oscillator parameters the so-called reverse Monte Carlo (RMC) method was developed, and used to obtain optical constants of Ni in this work. A systematic study of the electronic and optical properties of Ni has been performed in an energy loss range of 0-200 eV from the measured REELS spectra at primary energies of 1000 eV, 2000 eV and 3000 eV. The reliability of our method was tested by comparing our results with the previous data. Moreover, the accuracy of our optical data has been confirmed by applying oscillator strength-sum rule and perfect-screening-sum rule.
Theoretical modeling of electronic transport in molecular devices
NASA Astrophysics Data System (ADS)
Piccinin, Simone
In this thesis a novel approach for simulating electronic transport in nanoscale structures is introduced. We consider an open quantum system (the electrons of structure) accelerated by an external electromotive force and dissipating energy through inelastic scattering with a heat bath (phonons) acting on the electrons. This method can be regarded as a quantum-mechanical extension of the semi-classical Boltzmann transport equation. We use periodic boundary conditions and employ Density Functional Theory to recast the many-particle problem in an effective single-particle mean-field problem. By explicitly treating the dissipation in the electrodes, the behavior of the potential is an outcome of our method, at variance with the scattering approaches based on the Landauer formalism. We study the self-consistent steady-state solution, analyzing the out-of-equilibrium electron distribution, the electrical characteristics, the behavior of the self-consistent potential and the density of states of the system. We apply the method to the study of electronic transport in several molecular devices, consisting of small organic molecules or atomic wires sandwiched between gold surfaces. For gold wires we recover the experimental evidence that transport in short wires is ballistic, independent of the length of the wire and with conductance of one quantum. In benzene-1,4-dithiol we find that the delocalization of the frontier orbitals of the molecule is responsible for the high value of conductance and that, by inserting methylene groups to decouple the sulfur atoms from the carbon ring, the current is reduced, in agreement with the experimental measurements. We study the effect a geometrical distortion in a molecular device, namely the relative rotation of the carbon rings in a biphenyl-4,4'-dithiol molecule. We find that the reduced coupling between pi orbitals of the rings induced by the rotation leads to a reduction of the conductance and that this behavior is captured by a simple two level model. Finally the transport properties of alkanethiol monolayers are analyzed by means of the local density of states at the Fermi energy: we find an exponential dependence of the current on the length of the chain, in quantitative agreement with the corresponding experiments.
Thomson, R; Kawrakow, I
2012-06-01
Widely-used classical trajectory Monte Carlo simulations of low energy electron transport neglect the quantum nature of electrons; however, at sub-1 keV energies quantum effects have the potential to become significant. This work compares quantum and classical simulations within a simplified model of electron transport in water. Electron transport is modeled in water droplets using quantum mechanical (QM) and classical trajectory Monte Carlo (MC) methods. Water droplets are modeled as collections of point scatterers representing water molecules from which electrons may be isotropically scattered. The role of inelastic scattering is investigated by introducing absorption. QM calculations involve numerically solving a system of coupled equations for the electron wavefield incident on each scatterer. A minimum distance between scatterers is introduced to approximate structured water. The average QM water droplet incoherent cross section is compared with the MC cross section; a relative error (RE) on the MC results is computed. RE varies with electron energy, average and minimum distances between scatterers, and scattering amplitude. The mean free path is generally the relevant length scale for estimating RE. The introduction of a minimum distance between scatterers increases RE substantially (factors of 5 to 10), suggesting that the structure of water must be modeled for accurate simulations. Inelastic scattering does not improve agreement between QM and MC simulations: for the same magnitude of elastic scattering, the introduction of inelastic scattering increases RE. Droplet cross sections are sensitive to droplet size and shape; considerable variations in RE are observed with changing droplet size and shape. At sub-1 keV energies, quantum effects may become non-negligible for electron transport in condensed media. Electron transport is strongly affected by the structure of the medium. Inelastic scatter does not improve agreement between QM and MC simulations of low energy electron transport in condensed media. © 2012 American Association of Physicists in Medicine.
Electron energetics in the inner coma of Comet Halley
NASA Astrophysics Data System (ADS)
Gan, L.; Cravens, T. E.
1990-05-01
A quasi-two-dimensional model of the spatial and energy distribution of electrons in the inner coma of Comet Halley has been constructed from a spherically symmetric ion density profile based on Giotto measurements, using the two-stream electron transport method and the time-dependent electron energy equation. A sharp jump in the electron temperature was found to be present at a cometocentric distance of about 15,000 km. This thermal boundary separates an inner region where cooling processes are dominant from an outer region where heat transport is more important. Both thermal and suprathermal electron populations exist inside the thermal boundary with comparable kinetic pressures. Outside the thermal boundary, a cloud electron population does not exist, and the electrons are almost isothermal along the magnetic field lines.
Theoretical investigations of molecular wires: Electronic spectra and electron transport
NASA Astrophysics Data System (ADS)
Palma, Julio Leopoldo
The results of theoretical and computational research are presented for two promising molecular wires, the Nanostar dendrimer, and a series of substituted azobenzene derivatives connected to aluminum electrodes. The electronic absorption spectra of the Nanostar (a phenylene-ethynylene dendrimer attached to an ethynylperylene chromophore) were calculated using a sequential Molecular Dynamics/Quantum Mechanics (MD/QM) method to perform an analysis of the temperature dependence of the electronic absorption process. We modeled the Nanostar as a series of connected units, and performed MD simulations for each chromophore at 10 K and 300 K to study how the temperature affected the structures and, consequently, the spectra. The absorption spectra of the Nanostar were computed using an ensemble of 8000 structures for each chromophore. Quantum Mechanical (QM) ZINDO/S calculations were performed for each conformation in the ensemble, including 16 excited states, for a total of 128,000 excitation energies. The spectral intensity was then scaled linearly with the number of conjugated units. Our calculations for both the individual chromophores and the Nanostar, are in good agreement with experiments. We explain in detail the effects of temperature and the consequences for the absorption process. The second part of this thesis presents a study of the effects of chemical substituents on the electron transport properties of the azobenzene molecule, which has been proposed recently as a component of a light-driven molecular switch. This molecule has two stable conformations (cis and trans) in its electronic ground state, with considerable differences in their conductance. The electron transport properties were calculated using first-principles methods combining non-equilibrium Green's function (NEGF) techniques with density functional theory (DFT). For the azobenzene studies, we included electron-donating groups and electron-withdrawing groups in meta- and ortho-positions with respect to the azo group. The results showed that the molecular structure is crucial in optimizing the electron transport properties of chemical structures, and that the transport properties in electronic devices at the molecular level can be manipulated, enhanced or suppressed by a careful consideration of the effects of chemical modification.
Electronic and transport properties of a molecular junction with asymmetric contacts.
Tsai, M-H; Lu, T-H
2010-02-10
Asymmetric molecular junctions have been shown experimentally to exhibit a dual-conductance transport property with a pulse-like current-voltage characteristic, by Reed and co-workers. Using a recently developed first-principles integrated piecewise thermal equilibrium current calculation method and a gold-benzene-1-olate-4-thiolate-gold model molecular junction, this unusual transport property has been reproduced. Analysis of the electrostatics and the electronic structure reveals that the high-current state results from subtle bias induced charge transfer at the electrode-molecule contacts that raises molecular orbital energies and enhances the current-contributing molecular density of states and the probabilities of resonance tunneling of conduction electrons from one electrode to another.
NASA Astrophysics Data System (ADS)
Lu, Jian-Duo; Li, Yun-Bao; Liu, Hong-Yu; Peng, Shun-Jin; Zhao, Fei-Xiang
2016-09-01
Based on the transfer-matrix method, a systematic investigation of electron transport properties is done in a monolayer graphene modulated by the realistic magnetic field and the Schottky metal stripe. The strong dependence of the electron transmission and the conductance on the incident angle of carriers is clearly seen. The height, position as well as width of the barrier also play an important role on the electron transport properties. These interesting results are very useful for understanding the tunneling mechanism in the monolayer graphene and helpful for designing the graphene-based electrical device modulated by the realistic magnetic field and the electrical barrier.
NASA Astrophysics Data System (ADS)
Lee, Nien-En; Zhou, Jin-Jian; Agapito, Luis A.; Bernardi, Marco
2018-03-01
Predicting charge transport in organic molecular crystals is notoriously challenging. Carrier mobility calculations in organic semiconductors are dominated by quantum chemistry methods based on charge hopping, which are laborious and only moderately accurate. We compute from first principles the electron-phonon scattering and the phonon-limited hole mobility of naphthalene crystal in the framework of ab initio band theory. Our calculations combine GW electronic bandstructures, ab initio electron-phonon scattering, and the Boltzmann transport equation. The calculated hole mobility is in very good agreement with experiment between 100 -300 K , and we can predict its temperature dependence with high accuracy. We show that scattering between intermolecular phonons and holes regulates the mobility, though intramolecular phonons possess the strongest coupling with holes. We revisit the common belief that only rigid molecular motions affect carrier dynamics in organic molecular crystals. Our paper provides a quantitative and rigorous framework to compute charge transport in organic crystals and is a first step toward reconciling band theory and carrier hopping computational methods.
NASA Astrophysics Data System (ADS)
Korol, Roman; Kilgour, Michael; Segal, Dvira
2018-03-01
We present our in-house quantum transport package, ProbeZT. This program provides linear response coefficients: electrical and electronic thermal conductances, as well as the thermopower of molecular junctions in which electrons interact with the surrounding thermal environment. Calculations are performed based on the Büttiker probe method, which introduces decoherence, energy exchange and dissipation effects phenomenologically using virtual electrode terminals called probes. The program can realize different types of probes, each introducing various environmental effects, including elastic and inelastic scattering of electrons. The molecular system is described by an arbitrary tight-binding Hamiltonian, allowing the study of different geometries beyond simple one-dimensional wires. Applications of the program to study the thermoelectric performance of molecular junctions are illustrated. The program also has a built-in functionality to simulate electron transport in double-stranded DNA molecules based on a tight-binding (ladder) description of the junction.
Single Molecule Electronics and Devices
Tsutsui, Makusu; Taniguchi, Masateru
2012-01-01
The manufacture of integrated circuits with single-molecule building blocks is a goal of molecular electronics. While research in the past has been limited to bulk experiments on self-assembled monolayers, advances in technology have now enabled us to fabricate single-molecule junctions. This has led to significant progress in understanding electron transport in molecular systems at the single-molecule level and the concomitant emergence of new device concepts. Here, we review recent developments in this field. We summarize the methods currently used to form metal-molecule-metal structures and some single-molecule techniques essential for characterizing molecular junctions such as inelastic electron tunnelling spectroscopy. We then highlight several important achievements, including demonstration of single-molecule diodes, transistors, and switches that make use of electrical, photo, and mechanical stimulation to control the electron transport. We also discuss intriguing issues to be addressed further in the future such as heat and thermoelectric transport in an individual molecule. PMID:22969345
Vibronic coupling effect on the electron transport through molecules
NASA Astrophysics Data System (ADS)
Tsukada, Masaru; Mitsutake, Kunihiro
2007-03-01
Electron transport through molecular bridges or molecular layers connected to nano-electrodes is determined by the combination of coherent and dissipative processes, controlled by the electron-vibron coupling, transfer integrals between the molecular orbitals, applied electric field and temperature. We propose a novel theoretical approach, which combines ab initio molecular orbital method with analytical many-boson model. As a case study, the long chain model of the thiophene oligomer is solved by a variation approach. Mixed states of moderately extended molecular orbital states mediated and localised by dress of vibron cloud are found as eigen-states. All the excited states accompanied by multiple quanta of vibration can be solved, and the overall carrier transport properties including the conductance, mobility, dissipation spectra are analyzed by solving the master equation with the transition rates estimated by the golden rule. We clarify obtained in a uniform systematic way, how the transport mode changes from a dominantly coherent transport to the dissipative hopping transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanford, Michael; Noh, Joo Hyon; Koehler, Michael R.
Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe 2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe 2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe 2more » thereby locally tuning the resistivity and transport properties of the material. Hole transport in the few layer WSe 2 is degraded more severely relative to electron transport after helium ion irradiation. Moreover, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe 2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices.« less
Stanford, Michael; Noh, Joo Hyon; Koehler, Michael R.; ...
2016-06-06
Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe 2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe 2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe 2more » thereby locally tuning the resistivity and transport properties of the material. Hole transport in the few layer WSe 2 is degraded more severely relative to electron transport after helium ion irradiation. Moreover, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe 2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices.« less
NASA Astrophysics Data System (ADS)
Li, Xin; Zhang, Qi
2017-04-01
Understanding the natural electrical properties in semiconductor channels and the carrier transport across the metal-semiconductor contact is essential to improve the performance of nanowire devices. This work presents the true electronic characteristics of ZnO nanowire devices measured by a four-electrode method at a low-temperature environment. The temperature rise leads to the decrease in near-band-gap emission, which is attributed to two non-radiative recombination processes. For ZnO circuits, thermionic emission carrier transport mechanism plays a dominant role at Ti-Au/ZnO interface and the transport mechanism in ZnO nanowires is governed by two competitive thermal activation conduction processes: optical or acoustic phonons assisting hopping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, J.; Gajdos, F.; Blumberger, J., E-mail: j.blumberger@ucl.ac.uk
2016-08-14
We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on themore » adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.« less
NASA Astrophysics Data System (ADS)
Spencer, J.; Gajdos, F.; Blumberger, J.
2016-08-01
We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on the adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.
NASA Astrophysics Data System (ADS)
Bahk, Je-Hyeong
Electron transport in thin film ErAs:InGa(Al)As metal/semiconductor nanocomposite materials grown by molecular beam epitaxy is investigated experimentally and theoretically for efficient thermoelectric power generation. Thermoelectric properties such as the Seebeck coefficient, the electrical conductivity, and the thermal conductivity are measured for the various compositions of the material up to 840 K. A special sample preparation method is proposed to protect the thin films from damage and/or decomposition, and prevent the parasitic substrate conduction effect during the high temperature measurements. The sample preparation method includes surface passivation, high temperature metallization with a diffusion barrier, and the covalent oxide bonding technique for substrate removal. The experimental results for the nanocomposite materials are analyzed using the Boltzmann transport equation under the relaxation time approximation. The scattering characteristics of free electrons in the InGa(Al)As is defined by four major scattering mechanisms such as the polar optical phonon scattering, the ionized impurity scattering, the alloy scattering, and the acoustic phonon deformation potential scattering. Combining these scattering mechanisms, the electron transport model successfully fits the temperature-dependent thermoelectric properties of Si-doped InGaAlAs materials, and predicts the figure of merits at various doping levels in various Al compositions. The nanoparticle-electron interaction is modeled as a momentum scattering for free electrons caused by the electrostatic potential perturbation around nanoparticles and the band offset at the interface. The ErAs nanoparticles are assumed to be semi-metals that can donate electrons to the matrix, and positively charged after the charge transfer to build up the screened coulomb potential outside them. The nanoparticle scattering rate is calculated for this potential profile using the partial wave method, and used to analyze the enhancement of the Seebeck coefficient. Finally, the experimental results for the various compositions of the ErAs:InGa(Al)As nanocomposites are fit using the electron transport model and the nanoparticle scattering. It is shown that nanoparticle scattering can enhance the power factor via energy-dependent electron scattering in ErAs:InGaAs system. The figure of merit for the 0.6% ErAs:(InGaAs)0.8(InAlAs) 0.2 lattice matched to InP is measured to be 1.3 at 800 K, and the theory predicts that it can reach 1.9 at 1000 K.
A deterministic model of electron transport for electron probe microanalysis
NASA Astrophysics Data System (ADS)
Bünger, J.; Richter, S.; Torrilhon, M.
2018-01-01
Within the last decades significant improvements in the spatial resolution of electron probe microanalysis (EPMA) were obtained by instrumental enhancements. In contrast, the quantification procedures essentially remained unchanged. As the classical procedures assume either homogeneity or a multi-layered structure of the material, they limit the spatial resolution of EPMA. The possibilities of improving the spatial resolution through more sophisticated quantification procedures are therefore almost untouched. We investigate a new analytical model (M 1-model) for the quantification procedure based on fast and accurate modelling of electron-X-ray-matter interactions in complex materials using a deterministic approach to solve the electron transport equations. We outline the derivation of the model from the Boltzmann equation for electron transport using the method of moments with a minimum entropy closure and present first numerical results for three different test cases (homogeneous, thin film and interface). Taking Monte Carlo as a reference, the results for the three test cases show that the M 1-model is able to reproduce the electron dynamics in EPMA applications very well. Compared to classical analytical models like XPP and PAP, the M 1-model is more accurate and far more flexible, which indicates the potential of deterministic models of electron transport to further increase the spatial resolution of EPMA.
NASA Astrophysics Data System (ADS)
Lafleur, T.; Martorelli, R.; Chabert, P.; Bourdon, A.
2018-06-01
Kinetic drift instabilities have been implicated as a possible mechanism leading to anomalous electron cross-field transport in E × B discharges, such as Hall-effect thrusters. Such instabilities, which are driven by the large disparity in electron and ion drift velocities, present a significant challenge to modelling efforts without resorting to time-consuming particle-in-cell (PIC) simulations. Here, we test aspects of quasi-linear kinetic theory with 2D PIC simulations with the aim of developing a self-consistent treatment of these instabilities. The specific quantities of interest are the instability growth rate (which determines the spatial and temporal evolution of the instability amplitude), and the instability-enhanced electron-ion friction force (which leads to "anomalous" electron transport). By using the self-consistently obtained electron distribution functions from the PIC simulations (which are in general non-Maxwellian), we find that the predictions of the quasi-linear kinetic theory are in good agreement with the simulation results. By contrast, the use of Maxwellian distributions leads to a growth rate and electron-ion friction force that is around 2-4 times higher, and consequently significantly overestimates the electron transport. A possible method for self-consistently modelling the distribution functions without requiring PIC simulations is discussed.
Electronically Transparent Au-N Bonds for Molecular Junctions.
Zang, Yaping; Pinkard, Andrew; Liu, Zhen-Fei; Neaton, Jeffrey B; Steigerwald, Michael L; Roy, Xavier; Venkataraman, Latha
2017-10-25
We report a series of single-molecule transport measurements carried out in an ionic environment with oligophenylenediamine wires. These molecules exhibit three discrete conducting states accessed by electrochemically modifying the contacts. Transport in these junctions is defined by the oligophenylene backbone, but the conductance is increased by factors of ∼20 and ∼400 when compared to traditional dative junctions. We propose that the higher-conducting states arise from in situ electrochemical conversion of the dative Au←N bond into a new type of Au-N contact. Density functional theory-based transport calculations establish that the new contacts dramatically increase the electronic coupling of the oligophenylene backbone to the Au electrodes, consistent with experimental transport data. The resulting contact resistance is the lowest reported to date; more generally, our work demonstrates a facile method for creating electronically transparent metal-organic interfaces.
Nguyen, Minh T; Biberdorf, Joshua D; Holliday, Bradley J; Jones, Richard A
2017-11-01
A polymer consisting of a polynorbornene backbone with perylene diimide (PDI) pendant groups on each monomeric unit is synthesized via ring opening metathesis polymerization. The PDI pendant groups along the polymer backbone, studied by UV-vis absorption, fluorescence emission, and electron paramagnetic resonance spectroscopy in addition to electrochemical methods, show evidence of molecular aggregation and corresponding electronic coupling with neighboring groups, which forms pathways for efficient electron transport from one group to another in a specific reduced form. When n-doped, the title polymer shows redox conductivity of 5.4 × 10 -3 S cm -1 , comparable with crystalline PDI materials, and is therefore a promising material for use in organic electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Sadasivam, Sridhar; Ye, Ning; Feser, Joseph P.; Charles, James; Miao, Kai; Kubis, Tillmann; Fisher, Timothy S.
2017-02-01
Heat transfer across metal-semiconductor interfaces involves multiple fundamental transport mechanisms such as elastic and inelastic phonon scattering, and electron-phonon coupling within the metal and across the interface. The relative contributions of these different transport mechanisms to the interface conductance remains unclear in the current literature. In this work, we use a combination of first-principles calculations under the density functional theory framework and heat transport simulations using the atomistic Green's function (AGF) method to quantitatively predict the contribution of the different scattering mechanisms to the thermal interface conductance of epitaxial CoSi2-Si interfaces. An important development in the present work is the direct computation of interfacial bonding from density functional perturbation theory (DFPT) and hence the avoidance of commonly used "mixing rules" to obtain the cross-interface force constants from bulk material force constants. Another important algorithmic development is the integration of the recursive Green's function (RGF) method with Büttiker probe scattering that enables computationally efficient simulations of inelastic phonon scattering and its contribution to the thermal interface conductance. First-principles calculations of electron-phonon coupling reveal that cross-interface energy transfer between metal electrons and atomic vibrations in the semiconductor is mediated by delocalized acoustic phonon modes that extend on both sides of the interface, and phonon modes that are localized inside the semiconductor region of the interface exhibit negligible coupling with electrons in the metal. We also provide a direct comparison between simulation predictions and experimental measurements of thermal interface conductance of epitaxial CoSi2-Si interfaces using the time-domain thermoreflectance technique. Importantly, the experimental results, performed across a wide temperature range, only agree well with predictions that include all transport processes: elastic and inelastic phonon scattering, electron-phonon coupling in the metal, and electron-phonon coupling across the interface.
Analysis of electron beam induced deposition (EBID) of residual hydrocarbons in electron microscopy
NASA Astrophysics Data System (ADS)
Rykaczewski, Konrad; White, William B.; Fedorov, Andrei G.
2007-03-01
In this work we have developed a comprehensive dynamic model of electron beam induced deposition (EBID) of residual hydrocarbon coupling mass transport, electron transport and scattering, and species decomposition to predict the deposition of carbon nanopillars. The simulations predict the local species and electron density distributions, as well as the three-demensional morphology and the growth rate of the deposit. Since the process occurs in a high vacuum environment, surface diffusion is considered as the primary transport mode of surface-adsorbed hydrocarbon precursor. The governing surface transport equation (STE) of the adsorbed species is derived and solved numerically. The transport, scattering, and absorption of primary electron as well as secondary electron generation are treated using the Monte Carlo method. Low energy secondary electrons are the major contributors to hydrocarbon decomposition due to their energy range matching peak dissociation reaction cross section energies for precursor molecules. The deposit and substrate are treated as a continuous entity allowing the simulation of the growth of a realistically sized deposit rather than a large number of cells representing each individual atom as in previously published simulations [Mitsuishi et al., Ultramicroscopy 103, 17 (2005); Silvis-Cividjian, Ph.D. thesis, University of Delft, 2002]. Such formulation allows for simple coupling of the STE with the dynamic growth of the nanopillar. Three different growth regimes occurring in EBID are identified using scaling analysis, and simulations are used to describe the deposit morphology and precursor surface concentration specific for each growth regime.
Ponderomotive phase plate for transmission electron microscopes
Reed, Bryan W [Livermore, CA
2012-07-10
A ponderomotive phase plate system and method for controllably producing highly tunable phase contrast transfer functions in a transmission electron microscope (TEM) for high resolution and biological phase contrast imaging. The system and method includes a laser source and a beam transport system to produce a focused laser crossover as a phase plate, so that a ponderomotive potential of the focused laser crossover produces a scattering-angle-dependent phase shift in the electrons of the post-sample electron beam corresponding to a desired phase contrast transfer function.
Balance-Equation Approach to Nonuniform Electron Transport in Nonparabolic Semiconductors
NASA Astrophysics Data System (ADS)
Cao, Juncheng; Lei, Xiaolin
1998-10-01
On the basis of the Lei-Ting balance-equation transport theory recently developed for nonparabolic energy band, we propose a hydrodynamic approach to the spatially inhomogeneous electron transport in semiconductor devices. In the present approach, the momentum and energy collision terms are expressed by two nonlinear functions, the frictional acceleration and energy-loss rate, which give a detailed scattering-process-level description of nonstationary and nonlocal charge transport in the system. This approach allows one to calculate selfconsistently the transport parameters within the model itself based on the primary material data (band structure, deformation potential constant, etc.), thus it minimizes the uncertainty associated with the use of some empirical relations for transport coefficients. As a demonstration of the approach, we have carried out a numerical calculation for a submicrometer Si n^+nn^+ diode by assuming an isotropic Kane-type energy band. The results for electron velocity and energy, obtained at much less computing cost than the Monte-Carlo (MC) method, are in good agreement with MC prediction. The influence of heat-flow term on electron transport behaviour, especially on velocity overshoot, is also investigated. The project supported by National Natural Science Foundation of China, National and Shanghai Municipal Commission of Science and Technology, and the Shanghai Foundation for Research and Development of Applied Materials
NASA Astrophysics Data System (ADS)
Yan, Jiawei; Ke, Youqi
2016-07-01
Electron transport properties of nanoelectronics can be significantly influenced by the inevitable and randomly distributed impurities/defects. For theoretical simulation of disordered nanoscale electronics, one is interested in both the configurationally averaged transport property and its statistical fluctuation that tells device-to-device variability induced by disorder. However, due to the lack of an effective method to do disorder averaging under the nonequilibrium condition, the important effects of disorders on electron transport remain largely unexplored or poorly understood. In this work, we report a general formalism of Green's function based nonequilibrium effective medium theory to calculate the disordered nanoelectronics. In this method, based on a generalized coherent potential approximation for the Keldysh nonequilibrium Green's function, we developed a generalized nonequilibrium vertex correction method to calculate the average of a two-Keldysh-Green's-function correlator. We obtain nine nonequilibrium vertex correction terms, as a complete family, to express the average of any two-Green's-function correlator and find they can be solved by a set of linear equations. As an important result, the averaged nonequilibrium density matrix, averaged current, disorder-induced current fluctuation, and averaged shot noise, which involve different two-Green's-function correlators, can all be derived and computed in an effective and unified way. To test the general applicability of this method, we applied it to compute the transmission coefficient and its fluctuation with a square-lattice tight-binding model and compared with the exact results and other previously proposed approximations. Our results show very good agreement with the exact results for a wide range of disorder concentrations and energies. In addition, to incorporate with density functional theory to realize first-principles quantum transport simulation, we have also derived a general form of conditionally averaged nonequilibrium Green's function for multicomponent disorders.
Jesse, Stephen [Knoxville, TN; Geohegan, David B [Knoxville, TN; Guillorn, Michael [Brooktondale, NY
2009-02-17
Methods and apparatus are described for SEM imaging and measuring electronic transport in nanocomposites based on electric field induced contrast. A method includes mounting a sample onto a sample holder, the sample including a sample material; wire bonding leads from the sample holder onto the sample; placing the sample holder in a vacuum chamber of a scanning electron microscope; connecting leads from the sample holder to a power source located outside the vacuum chamber; controlling secondary electron emission from the sample by applying a predetermined voltage to the sample through the leads; and generating an image of the secondary electron emission from the sample. An apparatus includes a sample holder for a scanning electron microscope having an electrical interconnect and leads on top of the sample holder electrically connected to the electrical interconnect; a power source and a controller connected to the electrical interconnect for applying voltage to the sample holder to control the secondary electron emission from a sample mounted on the sample holder; and a computer coupled to a secondary electron detector to generate images of the secondary electron emission from the sample.
NASA Astrophysics Data System (ADS)
Rajamanickam, Govindaraj; Narendhiran, Santhosh; Muthu, Senthil Pandian; Mukhopadhyay, Sumita; Perumalsamy, Ramasamy
2017-12-01
Titanium dioxide is a promising wide band gap semiconducting material for dye-sensitized solar cell. The poor electron transport properties still remain a challenge with conventional nanoparticles. Here, we synthesized TiO2 nanorods/nanoparticles by hydrothermal method to improve the charge transport properties. The structural and morphological information of the prepared nanorods/nanoparticles was analysed with X-ray diffraction and electron microscopy analysis, respectively. A high power conversion efficiency of 7.7% is achieved with nanorods/nanoparticles employed device under 100 mW/cm2. From the electrochemical impedance analysis, superior electron transport properties have been found for synthesized TiO2 nanorods/nanoparticles employed device than commercial P25 nanoparticles based device.
Modeling charge transport in organic photovoltaic materials.
Nelson, Jenny; Kwiatkowski, Joe J; Kirkpatrick, James; Frost, Jarvist M
2009-11-17
The performance of an organic photovoltaic cell depends critically on the mobility of charge carriers within the constituent molecular semiconductor materials. However, a complex combination of phenomena that span a range of length and time scales control charge transport in disordered organic semiconductors. As a result, it is difficult to rationalize charge transport properties in terms of material parameters. Until now, efforts to improve charge mobilities in molecular semiconductors have proceeded largely by trial and error rather than through systematic design. However, recent developments have enabled the first predictive simulation studies of charge transport in disordered organic semiconductors. This Account describes a set of computational methods, specifically molecular modeling methods, to simulate molecular packing, quantum chemical calculations of charge transfer rates, and Monte Carlo simulations of charge transport. Using case studies, we show how this combination of methods can reproduce experimental mobilities with few or no fitting parameters. Although currently applied to material systems of high symmetry or well-defined structure, further developments of this approach could address more complex systems such anisotropic or multicomponent solids and conjugated polymers. Even with an approximate treatment of packing disorder, these computational methods simulate experimental mobilities within an order of magnitude at high electric fields. We can both reproduce the relative values of electron and hole mobility in a conjugated small molecule and rationalize those values based on the symmetry of frontier orbitals. Using fully atomistic molecular dynamics simulations of molecular packing, we can quantitatively replicate vertical charge transport along stacks of discotic liquid crystals which vary only in the structure of their side chains. We can reproduce the trends in mobility with molecular weight for self-organizing polymers using a cheap, coarse-grained structural simulation method. Finally, we quantitatively reproduce the field-effect mobility in disordered C60 films. On the basis of these results, we conclude that all of the necessary building blocks are in place for the predictive simulation of charge transport in macromolecular electronic materials and that such methods can be used as a tool toward the future rational design of functional organic electronic materials.
NASA Astrophysics Data System (ADS)
Thakur, Anil; Kashyap, Rajinder
2018-05-01
Single nanowire electrode devices have their application in variety of fields which vary from information technology to solar energy. Silver nanowires, made in an aqueous chemical reduction process, can be reacted with gold salt to create bimetallic nanowires. Silver nanowire can be used as electrodes in batteries and have many other applications. In this paper we investigated structural and electronic transport properties of Ag nanowire using density functional theory (DFT) with SIESTA code. Electronic transport properties of Ag nanowire have been studied theoretically. First of all an optimized geometry for Ag nanowire is obtained using DFT calculations, and then the transport relations are obtained using NEGF approach. SIESTA and TranSIESTA simulation codes are used in the calculations respectively. The electrodes are chosen to be the same as the central region where transport is studied, eliminating current quantization effects due to contacts and focusing the electronic transport study to the intrinsic structure of the material. By varying chemical potential in the electrode regions, an I-V curve is traced which is in agreement with the predicted behavior. Bulk properties of Ag are in agreement with experimental values which make the study of electronic and transport properties in silver nanowires interesting because they are promising materials as bridging pieces in nanoelectronics. Transmission coefficient and V-I characteristic of Ag nano wire reveals that silver nanowire can be used as an electrode device.
Track-structure simulations for charged particles.
Dingfelder, Michael
2012-11-01
Monte Carlo track-structure simulations provide a detailed and accurate picture of radiation transport of charged particles through condensed matter of biological interest. Liquid water serves as a surrogate for soft tissue and is used in most Monte Carlo track-structure codes. Basic theories of radiation transport and track-structure simulations are discussed and differences compared to condensed history codes highlighted. Interaction cross sections for electrons, protons, alpha particles, and light and heavy ions are required input data for track-structure simulations. Different calculation methods, including the plane-wave Born approximation, the dielectric theory, and semi-empirical approaches are presented using liquid water as a target. Low-energy electron transport and light ion transport are discussed as areas of special interest.
Melting of Wigner Crystal on Helium in Quasi-One-Dimensional Geometry
NASA Astrophysics Data System (ADS)
Ikegami, Hiroki; Akimoto, Hikota; Kono, Kimitoshi
2015-05-01
We discuss melting of a Wigner crystal formed on a free surface of superfluid He, in quasi-one-dimensional (Q1D) channels of width between 5 and 15 m. We reexamine our previous transport data (Ikegami et al. in Phys Rev B 82:201104(R), 2010), in particular, by estimating the number of electrons across the channel in a more accurate way with the aid of numerical calculations of distributions of the electrons in the channels. The results of reexamination indicate more convincingly that the melting of the Wigner crystal in the Q1D geometry is understood by the finite size effect on the Kosterlitz-Thouless-Halperin-Nelson-Young melting process. We also present technical details of the transport measurements of the electrons in a Q1D geometry, including a fabrication method of devices used for the transport measurements, numerical simulations of response of the devices, and a procedure for analyzing transport data.
Electron-phonon coupling from finite differences
NASA Astrophysics Data System (ADS)
Monserrat, Bartomeu
2018-02-01
The interaction between electrons and phonons underlies multiple phenomena in physics, chemistry, and materials science. Examples include superconductivity, electronic transport, and the temperature dependence of optical spectra. A first-principles description of electron-phonon coupling enables the study of the above phenomena with accuracy and material specificity, which can be used to understand experiments and to predict novel effects and functionality. In this topical review, we describe the first-principles calculation of electron-phonon coupling from finite differences. The finite differences approach provides several advantages compared to alternative methods, in particular (i) any underlying electronic structure method can be used, and (ii) terms beyond the lowest order in the electron-phonon interaction can be readily incorporated. But these advantages are associated with a large computational cost that has until recently prevented the widespread adoption of this method. We describe some recent advances, including nondiagonal supercells and thermal lines, that resolve these difficulties, and make the calculation of electron-phonon coupling from finite differences a powerful tool. We review multiple applications of the calculation of electron-phonon coupling from finite differences, including the temperature dependence of optical spectra, superconductivity, charge transport, and the role of defects in semiconductors. These examples illustrate the advantages of finite differences, with cases where semilocal density functional theory is not appropriate for the calculation of electron-phonon coupling and many-body methods such as the GW approximation are required, as well as examples in which higher-order terms in the electron-phonon interaction are essential for an accurate description of the relevant phenomena. We expect that the finite difference approach will play a central role in future studies of the electron-phonon interaction.
Efficient method for computing the electronic transport properties of a multiterminal system
NASA Astrophysics Data System (ADS)
Lima, Leandro R. F.; Dusko, Amintor; Lewenkopf, Caio
2018-04-01
We present a multiprobe recursive Green's function method to compute the transport properties of mesoscopic systems using the Landauer-Büttiker approach. By introducing an adaptive partition scheme, we map the multiprobe problem into the standard two-probe recursive Green's function method. We apply the method to compute the longitudinal and Hall resistances of a disordered graphene sample, a system of current interest. We show that the performance and accuracy of our method compares very well with other state-of-the-art schemes.
The merger of electrochemistry and molecular electronics.
McCreery, Richard L
2012-02-01
Molecular Electronics has the potential to greatly enhance existing silicon-based microelectronics to realize new functions, higher device density, lower power consumption, and lower cost. Although the investigation of electron transport through single molecules and molecular monolayers in "molecular junctions" is a recent development, many of the relevant concepts and phenomena are derived from electrochemistry, as practiced for the past several decades. The past 10+ years have seen an explosion of research activity directed toward how the structure of molecules affects electron transport in molecular junctions, with the ultimate objective of "rational design" of molecular components with new electronic functions, such as chemical sensing, interactions with light, and low-cost, low-power consumer electronics. In order to achieve these scientifically and commercially important objectives, the factors controlling charge transport in molecules "connected" to conducting contacts must be understood, and methods for massively parallel manufacturing of molecular circuits must be developed. This Personal Account describes the development of reproducible and robust molecular electronic devices, starting with modified electrodes used in electrochemistry and progressing to manufacturable molecular junctions. Although the field faced some early difficulties in reliability and characterization, the pieces are now in place for rapid advances in understanding charge transport at the molecular level. Inherent in the field of Molecular Electronics are many electrochemical concepts, including tunneling, redox exchange, activated electron transfer, and electron coupling between molecules and conducting contacts. Copyright © 2012 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.
Yang, Shuo; Schmidt, Dirk Oliver; Khetan, Abhishek; Schrader, Felix; Jakobi, Simon; Homberger, Melanie; Noyong, Michael; Paulus, Anja; Kungl, Hans; Eichel, Rüdiger-Albert; Pitsch, Heinz; Simon, Ulrich
2018-05-16
LiNi 0.5 Mn 1.5 O₄ (LNMO) spinel has been extensively investigated as one of the most promising high-voltage cathode candidates for lithium-ion batteries. The electrochemical performance of LNMO, especially its rate performance, seems to be governed by its crystallographic structure, which is strongly influenced by the preparation methods. Conventionally, LNMO materials are prepared via solid-state reactions, which typically lead to microscaled particles with only limited control over the particle size and morphology. In this work, we prepared Ni-doped LiMn₂O₄ (LMO) spinel via the polyol method. The cycling stability and rate capability of the synthesized material are found to be comparable to the ones reported in literature. Furthermore, its electronic charge transport properties were investigated by local electrical transport measurements on individual particles by means of a nanorobotics setup in a scanning electron microscope, as well as by performing DFT calculations. We found that the scarcity of Mn 3+ in the LNMO leads to a significant decrease in electronic conductivity as compared to undoped LMO, which had no obvious effect on the rate capability of the two materials. Our results suggest that the rate capability of LNMO and LMO materials is not limited by the electronic conductivity of the fully lithiated materials.
Hardware-software complex of informing passengers of forecasted route transport arrival at stop
NASA Astrophysics Data System (ADS)
Pogrebnoy, V. Yu; Pushkarev, M. I.; Fadeev, A. S.
2017-02-01
The paper presents the hardware-software complex of informing the passengers of the forecasted route transport arrival. A client-server architecture of the forecasting information system is represented and an electronic information board prototype is described. The scheme of information transfer and processing, starting with receiving navigating telemetric data from a transport vehicle and up to the time of passenger public transport arrival at the stop, as well as representation of the information on the electronic board is illustrated and described. Methods and algorithms of determination of the transport vehicle current location in the city route network are considered in detail. The description of the proposed forecasting model of transport vehicle arrival time at the stop is given. The obtained result is applied in Tomsk for forecasting and displaying the arrival time information at the stops.
NASA Astrophysics Data System (ADS)
Ernst, D. R.; Lang, J.; Nevins, W. M.; Hoffman, M.; Chen, Y.; Dorland, W.; Parker, S.
2009-05-01
Trapped electron mode (TEM) turbulence exhibits a rich variety of collisional and zonal flow physics. This work explores the parametric variation of zonal flows and underlying mechanisms through a series of linear and nonlinear gyrokinetic simulations, using both particle-in-cell and continuum methods. A new stability diagram for electron modes is presented, identifying a critical boundary at ηe=1, separating long and short wavelength TEMs. A novel parity test is used to separate TEMs from electron temperature gradient driven modes. A nonlinear scan of ηe reveals fine scale structure for ηe≳1, consistent with linear expectation. For ηe<1, zonal flows are the dominant saturation mechanism, and TEM transport is insensitive to ηe. For ηe>1, zonal flows are weak, and TEM transport falls inversely with a power law in ηe. The role of zonal flows appears to be connected to linear stability properties. Particle and continuum methods are compared in detail over a range of ηe=d ln Te/d ln ne values from zero to five. Linear growth rate spectra, transport fluxes, fluctuation wavelength spectra, zonal flow shearing spectra, and correlation lengths and times are in close agreement. In addition to identifying the critical parameter ηe for TEM zonal flows, this paper takes a challenging step in code verification, directly comparing very different methods of simulating simultaneous kinetic electron and ion dynamics in TEM turbulence.
Effect of interfaces on electron transport properties of MoS2-Au Contacts
NASA Astrophysics Data System (ADS)
Aminpour, Maral; Hapala, Prokop; Le, Duy; Jelinek, Pavel; Rahman, Talat S.; Rahman's Group Collaboration; Nanosurf Lab Collaboration
2014-03-01
Single layer MoS2 is a promising material for future electronic devices such as transistors since it has good transport characteristics with mobility greater than 200 cm-1V-1s-1 and on-off current ratios up to 108. However, before MoS2 can become a mainstream electronic material for the semiconductor industry, the design of low resistive metal-semiconductor junctions as contacts of the electronic devices needs to be addressed and studied systematically. We have examined the effect of Au contacts on the electronic transport properties of single layer MoS2 using density functional theory in combination with the non-equilibrium Green's function method. The Schottky barrier between Au contact and MoS2, transmission spectra, and I-V curves will be reported and discussed as a function of MoS2 and Au interfaces of varying geometry. This work is supported in part by the US Department of Energy under grant DE-FG02-07ER15842.
NASA Astrophysics Data System (ADS)
Zeng, Lang; He, Yu; Povolotskyi, Michael; Liu, XiaoYan; Klimeck, Gerhard; Kubis, Tillmann
2013-06-01
In this work, the low rank approximation concept is extended to the non-equilibrium Green's function (NEGF) method to achieve a very efficient approximated algorithm for coherent and incoherent electron transport. This new method is applied to inelastic transport in various semiconductor nanodevices. Detailed benchmarks with exact NEGF solutions show (1) a very good agreement between approximated and exact NEGF results, (2) a significant reduction of the required memory, and (3) a large reduction of the computational time (a factor of speed up as high as 150 times is observed). A non-recursive solution of the inelastic NEGF transport equations of a 1000 nm long resistor on standard hardware illustrates nicely the capability of this new method.
Sgobba, Vito; Guldi, Dirk M
2009-01-01
The fundamental chemical, redox, electrochemical, photoelectrochemical, optical and optoelectronic features of carbon nanotubes are surveyed with particular emphasis on the most relevant applications as electron donor/electron acceptor or as electron conductor/hole conductor materials, in solutions and in the solid state. Methods that aim at p- and n-doping as a means to favor hole or electron injection/transport are covered as well (critical review, 208 references).
NASA Astrophysics Data System (ADS)
Ikuta, Nobuaki; Takeda, Akihide
2017-12-01
Research on the flight behavior of electrons and ions in a gas under an electric field has recently moved in a direction of clarifying the mechanism of the spatiotemporal development of a swarm, but the symbolic unknown state function f(r,c,t) of the Boltzmann equation has not been obtained in an explicit form. However, a few papers on the spatiotemporal development of an electron swarm using the Monte Carlo simulation have been published. On the other hand, a new simulation procedure for obtaining the lifelong state function FfT(t,x,ɛ) and local transport quantities J(t,x,ɛ) of electrons in the three domains of time t, one-dimensional position x, and energy ɛ under arbitrary initial and boundary conditions has been developed by extending the flight-time-integral (FTI) methods previously reported and is named the 3D-FTI method. A preliminary calculation has shown that this method can extensively provide the flight behavior of individual electrons in a swarm and local transport quantities consistent in the three domains with reasonable accuracy and career dependences.
Time Dependent Predictive Modeling of DIII-D ITER Baseline Scenario using Predictive TRANSP
NASA Astrophysics Data System (ADS)
Grierson, B. A.; Andre, R. G.; Budny, R. V.; Solomon, W. M.; Yuan, X.; Candy, J.; Pinsker, R. I.; Staebler, G. M.; Holland, C.; Rafiq, T.
2015-11-01
ITER baseline scenario discharges on DIII-D are modeled with TGLF and MMM transitioning from combined ECH (3.3MW) +NBI(2.8MW) heating to NBI only (3.0 MW) heating maintaining βN = 2.0 on DIII-D predicting temperature, density and rotation for comparison to experimental measurements. These models capture the reduction of confinement associated with direct electron heating H98y2 = 0.89 vs. 1.0) consistent with stiff electron transport. Reasonable agreement between experimental and modeled temperature profiles is achieved for both heating methods, whereas density and momentum predictions differ significantly. Transport fluxes from TGLF indicate that on DIII-D the electron energy flux has reached a transition from low-k to high-k turbulence with more stiff high-k transport that inhibits an increase in core electron stored energy with additional electron heating. Projections to ITER also indicate high electron stiffness. Supported by US DOE DE-AC02-09CH11466, DE-FC02-04ER54698, DE-FG02-07ER54917, DE-FG02-92-ER54141.
NASA Astrophysics Data System (ADS)
Zhang, X.-G.; Varga, Kalman; Pantelides, Sokrates T.
2007-07-01
Band-theoretic methods with periodically repeated supercells have been a powerful approach for ground-state electronic structure calculations but have not so far been adapted for quantum transport problems with open boundary conditions. Here, we introduce a generalized Bloch theorem for complex periodic potentials and use a transfer-matrix formulation to cast the transmission probability in a scattering problem with open boundary conditions in terms of the complex wave vectors of a periodic system with absorbing layers, allowing a band technique for quantum transport calculations. The accuracy and utility of the method are demonstrated by the model problems of the transmission of an electron over a square barrier and the scattering of a phonon in an inhomogeneous nanowire. Application to the resistance of a twin boundary in nanocrystalline copper yields excellent agreement with recent experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borowik, Piotr, E-mail: pborow@poczta.onet.pl; Thobel, Jean-Luc, E-mail: jean-luc.thobel@iemn.univ-lille1.fr; Adamowicz, Leszek, E-mail: adamo@if.pw.edu.pl
Standard computational methods used to take account of the Pauli Exclusion Principle into Monte Carlo (MC) simulations of electron transport in semiconductors may give unphysical results in low field regime, where obtained electron distribution function takes values exceeding unity. Modified algorithms were already proposed and allow to correctly account for electron scattering on phonons or impurities. Present paper extends this approach and proposes improved simulation scheme allowing including Pauli exclusion principle for electron–electron (e–e) scattering into MC simulations. Simulations with significantly reduced computational cost recreate correct values of the electron distribution function. Proposed algorithm is applied to study transport propertiesmore » of degenerate electrons in graphene with e–e interactions. This required adapting the treatment of e–e scattering in the case of linear band dispersion relation. Hence, this part of the simulation algorithm is described in details.« less
Electron/Ion Transport Enhancer in High Capacity Li-Ion Battery Anodes
Kwon, Yo Han; Minnici, Krysten; Huie, Matthew M.; ...
2016-08-30
In this paper, magnetite (Fe 3O 4) was used as a model high capacity metal oxide active material to demonstrate advantages derived from consideration of both electron and ion transport in the design of composite battery electrodes. The conjugated polymer, poly[3-(potassium-4-butanoate) thiophene] (PPBT), was introduced as a binder component, while polyethylene glycol (PEG) was coated onto the surface of Fe 3O 4 nanoparticles. The introduction of PEG reduced aggregate size, enabled effective dispersion of the active materials and facilitated ionic conduction. As a binder for the composite electrode, PPBT underwent electrochemical doping which enabled the formation of effective electrical bridgesmore » between the carbon and Fe 3O 4 components, allowing for more efficient electron transport. Additionally, the PPBT carboxylic moieties effect a porous structure, and stable electrode performance. Finally, the methodical consideration of both enhanced electron and ion transport by introducing a carboxylated PPBT binder and PEG surface treatment leads to effectively reduced electrode resistance, which improved cycle life performance and rate capabilities.« less
Effect of room temperature lattice vibration on the electron transport in graphene nanoribbons
NASA Astrophysics Data System (ADS)
Liu, Yue-Yang; Li, Bo-Lin; Chen, Shi-Zhang; Jiang, Xiangwei; Chen, Ke-Qiu
2017-09-01
We observe directly the lattice vibration and its multifold effect on electron transport in zigzag graphene nanoribbons in simulation by utilizing an efficient combined method. The results show that the electron transport fluctuates greatly due to the incessant lattice vibration of the nanoribbons. More interestingly, the lattice vibration behaves like a double-edged sword that it boosts the conductance of symmetric zigzag nanoribbons (containing an even number of zigzag chains along the width direction) while weakens the conductance of asymmetric nanoribbons. As a result, the reported large disparity between the conductances of the two kinds of nanoribbons at 0 K is in fact much smaller at room temperature (300 K). We also find that the spin filter effect that exists in perfect two-dimensional symmetric zigzag graphene nanoribbons is destroyed to some extent by lattice vibrations. Since lattice vibrations or phonons are usually inevitable in experiments, the research is very meaningful for revealing the important role of lattice vibrations play in the electron transport properties of two-dimensional materials and guiding the application of ZGNRs in reality.
NASA Astrophysics Data System (ADS)
Antoni, Rodolphe; Bourgois, Laurent
2017-12-01
In this work, the calculation of specific dose distribution in water is evaluated in MCNP6.1 with the regular condensed history algorithm the "detailed electron energy-loss straggling logic" and the new electrons transport algorithm proposed the "single event algorithm". Dose Point Kernel (DPK) is calculated with monoenergetic electrons of 50, 100, 500, 1000 and 3000 keV for different scoring cells dimensions. A comparison between MCNP6 results and well-validated codes for electron-dosimetry, i.e., EGSnrc or Penelope, is performed. When the detailed electron energy-loss straggling logic is used with default setting (down to the cut-off energy 1 keV), we infer that the depth of the dose peak increases with decreasing thickness of the scoring cell, largely due to combined step-size and boundary crossing artifacts. This finding is less prominent for 500 keV, 1 MeV and 3 MeV dose profile. With an appropriate number of sub-steps (ESTEP value in MCNP6), the dose-peak shift is almost complete absent to 50 keV and 100 keV electrons. However, the dose-peak is more prominent compared to EGSnrc and the absorbed dose tends to be underestimated at greater depths, meaning that boundaries crossing artifact are still occurring while step-size artifacts are greatly reduced. When the single-event mode is used for the whole transport, we observe the good agreement of reference and calculated profile for 50 and 100 keV electrons. Remaining artifacts are fully vanished, showing a possible transport treatment for energies less than a hundred of keV and accordance with reference for whatever scoring cell dimension, even if the single event method initially intended to support electron transport at energies below 1 keV. Conversely, results for 500 keV, 1 MeV and 3 MeV undergo a dramatic discrepancy with reference curves. These poor results and so the current unreliability of the method is for a part due to inappropriate elastic cross section treatment from the ENDF/B-VI.8 library in those energy ranges. Accordingly, special care has to be taken in setting choice for calculating electron dose distribution with MCNP6, in particular with regards to dosimetry or nuclear medicine applications.
Wang, Gang; Huang, Wei; Eastham, Nicholas D.; Fabiano, Simone; Manley, Eric F.; Zeng, Li; Wang, Binghao; Zhang, Xinan; Chen, Zhihua; Li, Ran; Chang, Robert P. H.; Chen, Lin X.; Bedzyk, Michael J.; Melkonyan, Ferdinand S.; Facchetti, Antonio; Marks, Tobin J.
2017-01-01
Shear-printing is a promising processing technique in organic electronics for microstructure/charge transport modification and large-area film fabrication. Nevertheless, the mechanism by which shear-printing can enhance charge transport is not well-understood. In this study, a printing method using natural brushes is adopted as an informative tool to realize direct aggregation control of conjugated polymers and to investigate the interplay between printing parameters, macromolecule backbone alignment and aggregation, and charge transport anisotropy in a conjugated polymer series differing in architecture and electronic structure. This series includes (i) semicrystalline hole-transporting P3HT, (ii) semicrystalline electron-transporting N2200, (iii) low-crystallinity hole-transporting PBDTT-FTTE, and (iv) low-crystallinity conducting PEDOT:PSS. The (semi-)conducting films are characterized by a battery of morphology and microstructure analysis techniques and by charge transport measurements. We report that remarkably enhanced mobilities/conductivities, as high as 5.7×/3.9×, are achieved by controlled growth of nanofibril aggregates and by backbone alignment, with the adjusted R2 (R2adj) correlation between aggregation and charge transport as high as 95%. However, while shear-induced aggregation is important for enhancing charge transport, backbone alignment alone does not guarantee charge transport anisotropy. The correlations between efficient charge transport and aggregation are clearly shown, while mobility and degree of orientation are not always well-correlated. These observations provide insights into macroscopic charge transport mechanisms in conjugated polymers and suggest guidelines for optimization. PMID:29109282
Xie, Fengxian; Choy, Wallace C H; Wang, Chuandao; Li, Xinchen; Zhang, Shaoqing; Hou, Jianhui
2013-04-11
A simple one-step method is reported to synthesize low-temperature solution-processed transition metal oxides (TMOs) of molybdenum oxide and vanadium oxide with oxygen vacancies for a good hole-transport layer (HTL). The oxygen vacancy plays an essential role for TMOs when they are employed as HTLs: TMO films with excess oxygen are highly undesirable for their application in organic electronics. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dressed tunneling approximation for electronic transport through molecular transistors
NASA Astrophysics Data System (ADS)
Seoane Souto, R.; Yeyati, A. Levy; Martín-Rodero, A.; Monreal, R. C.
2014-02-01
A theoretical approach for the nonequilibrium transport properties of nanoscale systems coupled to metallic electrodes with strong electron-phonon interactions is presented. It consists of a resummation of the dominant Feynman diagrams from the perturbative expansion in the coupling to the leads. We show that this scheme eliminates the main pathologies found in previous simple analytical approaches for the polaronic regime. The results for the spectral and transport properties are compared with those from several other approaches for a wide range of parameters. The method can be formulated in a simple way to obtain the full counting statistics. Results for the shot and thermal noise are presented.
Efficient Planar Perovskite Solar Cells Using Passivated Tin Oxide as an Electron Transport Layer.
Lee, Yonghui; Lee, Seunghwan; Seo, Gabseok; Paek, Sanghyun; Cho, Kyung Taek; Huckaba, Aron J; Calizzi, Marco; Choi, Dong-Won; Park, Jin-Seong; Lee, Dongwook; Lee, Hyo Joong; Asiri, Abdullah M; Nazeeruddin, Mohammad Khaja
2018-06-01
Planar perovskite solar cells using low-temperature atomic layer deposition (ALD) of the SnO 2 electron transporting layer (ETL), with excellent electron extraction and hole-blocking ability, offer significant advantages compared with high-temperature deposition methods. The optical, chemical, and electrical properties of the ALD SnO 2 layer and its influence on the device performance are investigated. It is found that surface passivation of SnO 2 is essential to reduce charge recombination at the perovskite and ETL interface and show that the fabricated planar perovskite solar cells exhibit high reproducibility, stability, and power conversion efficiency of 20%.
Electronic properties of a molecular system with Platinum
NASA Astrophysics Data System (ADS)
Ojeda, J. H.; Medina, F. G.; Becerra-Alonso, David
2017-10-01
The electronic properties are studied using a finite homogeneous molecule called Trans-platinum-linked oligo(tetraethenylethenes). This system is composed of individual molecules such as benzene rings, platinum, Phosphore and Sulfur. The mechanism for the study of the electron transport through this system is based on placing the molecule between metal contacts to control the current through the molecular system. We study this molecule based on the tight-binding approach for the calculation of the transport properties using the Landauer-Büttiker formalism and the Fischer-Lee relationship, based on a semi-analytic Green's function method within a real-space renormalization approach. Our results show a significant agreement with experimental measurements.
NASA Astrophysics Data System (ADS)
Darancet, Pierre; Ferretti, Andrea; Mayou, Didier; Olevano, Valerio
2007-03-01
We present an ab initio approach to electronic transport in nanoscale systems which includes electronic correlations through the GW approximation. With respect to Landauer approaches based on density-functional theory (DFT), we introduce a physical quasiparticle electronic-structure into a non-equilibrium Green's function theory framework. We use an equilibrium non-selfconsistent G^0W^0 self-energy considering both full non-hermiticity and dynamical effects. The method is applied to a real system, a gold mono-atomic chain. With respect to DFT results, the conductance profile is modified and reduced by to the introduction of diffusion and loss-of-coherence effects. The linear response conductance characteristic appear to be in agreement with experimental results.
Bagdasarov, G. A.; Bobrova, N. A.; Boldarev, A. S.; ...
2017-12-27
A method for the asymmetric focusing of electron bunches, based on the active plasma lensing technique is proposed. Our method takes advantage of the strong inhomogeneous magnetic field generated inside the capillary discharge plasma to focus the ultrarelativistic electrons. The plasma and magnetic field parameters inside the capillary discharge are described theoretically and modeled with dissipative magnetohydrodynamic computer simulations enabling analysis of the capillaries of rectangle cross-sections. We could use large aspect ratio rectangular capillaries to transport electron beams with high emittance asymmetries, as well as assist in forming spatially flat electron bunches for final focusing before the interaction point.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagdasarov, G. A.; Bobrova, N. A.; Boldarev, A. S.
A method for the asymmetric focusing of electron bunches, based on the active plasma lensing technique is proposed. Our method takes advantage of the strong inhomogeneous magnetic field generated inside the capillary discharge plasma to focus the ultrarelativistic electrons. The plasma and magnetic field parameters inside the capillary discharge are described theoretically and modeled with dissipative magnetohydrodynamic computer simulations enabling analysis of the capillaries of rectangle cross-sections. We could use large aspect ratio rectangular capillaries to transport electron beams with high emittance asymmetries, as well as assist in forming spatially flat electron bunches for final focusing before the interaction point.
NASA Astrophysics Data System (ADS)
Bagdasarov, G. A.; Bobrova, N. A.; Boldarev, A. S.; Olkhovskaya, O. G.; Sasorov, P. V.; Gasilov, V. A.; Barber, S. K.; Bulanov, S. S.; Gonsalves, A. J.; Schroeder, C. B.; van Tilborg, J.; Esarey, E.; Leemans, W. P.; Levato, T.; Margarone, D.; Korn, G.; Kando, M.; Bulanov, S. V.
2017-12-01
A method for the asymmetric focusing of electron bunches, based on the active plasma lensing technique, is proposed. This method takes advantage of the strong inhomogeneous magnetic field generated inside the capillary discharge plasma to focus on the ultrarelativistic electrons. The plasma and magnetic field parameters inside the capillary discharge are described theoretically and modeled with dissipative magnetohydrodynamic computer simulations enabling analysis of the capillaries of rectangle cross-sections. Large aspect ratio rectangular capillaries might be used to transport electron beams with high emittance asymmetries, as well as assist in forming spatially flat electron bunches for final focusing before the interaction point.
NASA Astrophysics Data System (ADS)
Mante, Pierre-Adrien; Stoumpos, Constantinos C.; Kanatzidis, Mercouri G.; Yartsev, Arkady
2017-02-01
Despite the great amount of attention CH3NH3PbI3 has received for its solar cell application, intrinsic properties of this material are still largely unknown. Mobility of charges is a quintessential property in this aspect; however, there is still no clear understanding of electron transport, as reported values span over three orders of magnitude. Here we develop a method to measure the electron and hole deformation potentials using coherent acoustic phonons generated by femtosecond laser pulses. We apply this method to characterize a CH3NH3PbI3 single crystal. We measure the acoustic phonon properties and characterize electron-acoustic phonon scattering. Then, using the deformation potential theory, we calculate the carrier intrinsic mobility and compare it to the reported experimental and theoretical values. Our results reveal high electron and hole mobilities of 2,800 and 9,400 cm2 V-1 s-1, respectively. Comparison with literature values of mobility demonstrates the potential role played by polarons in charge transport in CH3NH3PbI3.
Tuning charge balance in PHOLEDs with ambipolar host materials to achieve high efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Padmaperuma, Asanga B.; Koech, Phillip K.; Cosimbescu, Lelia
2009-08-27
The efficiency and stability of blue organic light emitting devices (OLEDs) continue to be a primary roadblock to developing organic solid state white lighting. For OLEDs to meet the high power conversion efficiency goal, they will require both close to 100% internal quantum efficiency and low operating voltage in a white light emitting device.1 It is generally accepted that such high quantum efficiency, can only be achieved with the use of organometallic phosphor doped OLEDs. Blue OLEDs are particularly important for solid state lighting. The simplest (and therefore likely the lowest cost) method of generating white light is to downmore » convert part of the emission from a blue light source with a system of external phosphors.2 A second method of generating white light requires the superposition of the light from red, green and blue OLEDs in the correct ratio. Either of these two methods (and indeed any method of generating white light with a high color rendering index) critically depends on a high efficiency blue light component.3 A simple OLED generally consists of a hole-injecting anode, a preferentially hole transporting organic layer (HTL), an emissive layer that contains the recombination zone and ideally transports both holes and electrons, a preferentially electron-transporting layer (ETL) and an electron-injecting cathode. Color in state-of-the-art OLEDs is generated by an organometallic phosphor incorporated by co-sublimation into the emissive layer (EML).4 New materials functioning as hosts, emitters, charge transporting, and charge blocking layers have been developed along with device architectures leading to electrophosphorescent based OLEDs with high quantum efficiencies near the theoretical limit. However, the layers added to the device architecture to enable high quantum efficiencies lead to higher operating voltages and correspondingly lower power efficiencies. Achievement of target luminance power efficiencies will require new strategies for lowering operating voltages, particularly if this is to be achieved in a device that can be manufactured at low cost. To avoid the efficiency losses associated with phosphorescence quenching by back-energy transfer from the dopant onto the host, the triplet excited states of the host material must be higher in energy than the triplet excited state of the dopant.5 This must be accomplished without sacrificing the charge transporting properties of the composite.6 Similar problems limit the efficiency of OLED-based displays, where blue light emitters are the least efficient and least stable. We previously demonstrated the utility of organic phosphine oxide (PO) materials as electron transporting HMs for FIrpic in blue OLEDs.7 However, the high reluctance of PO materials to oxidation and thus, hole injection limits the ability to balance charge injection and transport in the EML without relying on charge transport by the phosphorescent dopant. PO host materials were engineered to transport both electrons and holes in the EML and still maintain high triplet exciton energy to ensure efficient energy transfer to the dopant (Figure 1). There are examples of combining hole transporting moieties (mainly aromatic amines) with electron transport moieties (e.g., oxadiazoles, triazines, boranes)8 to develop new emitter and host materials for small molecule and polymer9 OLEDs. The challenge is to combine the two moieties without lowering the triplet energy of the target molecule. For example, coupling of a dimesitylphenylboryl moiety with a tertiary aromatic amine (FIAMBOT) results in intramolecular electron transfer from the amine to the boron atom through the bridging phenyl. The mesomeric effect of the dimesitylphenylboryl unit acts to extend conjugation and lowers triplet exciton energies (< 2.8 eV) rendering such systems inadequate as ambipolar hosts for blue phosphors.« less
Büttiker probes for dissipative phonon quantum transport in semiconductor nanostructures
NASA Astrophysics Data System (ADS)
Miao, K.; Sadasivam, S.; Charles, J.; Klimeck, G.; Fisher, T. S.; Kubis, T.
2016-03-01
Theoretical prediction of phonon transport in modern semiconductor nanodevices requires atomic resolution of device features and quantum transport models covering coherent and incoherent effects. The nonequilibrium Green's function method is known to serve this purpose well but is numerically expensive in simulating incoherent scattering processes. This work extends the efficient Büttiker probe approach widely used in electron transport to phonons and considers salient implications of the method. Different scattering mechanisms such as impurity, boundary, and Umklapp scattering are included, and the method is shown to reproduce the experimental thermal conductivity of bulk Si and Ge over a wide temperature range. Temperature jumps at the lead/device interface are captured in the quasi-ballistic transport regime consistent with results from the Boltzmann transport equation. Results of this method in Si/Ge heterojunctions illustrate the impact of atomic relaxation on the thermal interface conductance and the importance of inelastic scattering to activate high-energy channels for phonon transport. The resultant phonon transport model is capable of predicting the thermal performance in the heterostructure efficiently.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lingerfelt, David B.; Lestrange, Patrick J.; Radler, Joseph J.
Materials and molecular systems exhibiting long-lived electronic coherence can facilitate coherent transport, opening the door to efficient charge and energy transport beyond traditional methods. Recently, signatures of a possible coherent, recurrent electronic motion were identified in femtosecond pump-probe spectroscopy experiments on a binuclear platinum complex, where a persistent periodic beating in the transient absorption signal’s anisotropy was observed. In this study, we investigate the excitonic dynamics that underlie the suspected electronic coherence for a series of binuclear platinum complexes exhibiting a range of interplatinum distances. Results suggest that the long-lived coherence can only result when competitive electronic couplings are inmore » balance. At longer Pt-Pt distances, the electronic couplings between the two halves of the binuclear system weaken, and exciton localization and recombination is favored on short time scales. For short Pt-Pt distances, electronic couplings between the states in the coherent superposition are stronger than the coupling with other excitonic states, leading to long-lived coherence.« less
Solid state photosensitive devices which employ isolated photosynthetic complexes
Peumans, Peter; Forrest, Stephen R.
2009-09-22
Solid state photosensitive devices including photovoltaic devices are provided which comprise a first electrode and a second electrode in superposed relation; and at least one isolated Light Harvesting Complex (LHC) between the electrodes. Preferred photosensitive devices comprise an electron transport layer formed of a first photoconductive organic semiconductor material, adjacent to the LHC, disposed between the first electrode and the LHC; and a hole transport layer formed of a second photoconductive organic semiconductor material, adjacent to the LHC, disposed between the second electrode and the LHC. Solid state photosensitive devices of the present invention may comprise at least one additional layer of photoconductive organic semiconductor material disposed between the first electrode and the electron transport layer; and at least one additional layer of photoconductive organic semiconductor material, disposed between the second electrode and the hole transport layer. Methods of generating photocurrent are provided which comprise exposing a photovoltaic device of the present invention to light. Electronic devices are provided which comprise a solid state photosensitive device of the present invention.
NASA Astrophysics Data System (ADS)
Uslu, Salih; Yarar, Zeki
2017-02-01
The Ensemble Monte Carlo method is used to calculate the transport characteristics of two dimensional electron gas (2DEG) at a ZnMgO/ZnO hetero structure. The spontaneous and piezoelectric polarizations are considered and there is no intentional doping in either material. Numerical Schrödinger and Poisson equations are solved self consistently to obtain the scattering rates of various scattering mechanisms. The density of carriers, each energy sub bands, potential profile and corresponding wave functions are obtained from the self consistent calculations. The self consistent sub band wave functions of acoustic and optic phonon scattering and interface roughness scattering are used in Monte Carlo method to obtain transport characteristics at ZnMgO/ZnO junction. Two dimensional electron gas confined to ZnMgO/ZnO hetero structure is studied and the effect of temperature and Mg content are investigated.
NASA Astrophysics Data System (ADS)
Papior, Nick; Lorente, Nicolás; Frederiksen, Thomas; García, Alberto; Brandbyge, Mads
2017-03-01
We present novel methods implemented within the non-equilibrium Green function code (NEGF) TRANSIESTA based on density functional theory (DFT). Our flexible, next-generation DFT-NEGF code handles devices with one or multiple electrodes (Ne ≥ 1) with individual chemical potentials and electronic temperatures. We describe its novel methods for electrostatic gating, contour optimizations, and assertion of charge conservation, as well as the newly implemented algorithms for optimized and scalable matrix inversion, performance-critical pivoting, and hybrid parallelization. Additionally, a generic NEGF "post-processing" code (TBTRANS/PHTRANS) for electron and phonon transport is presented with several novelties such as Hamiltonian interpolations, Ne ≥ 1 electrode capability, bond-currents, generalized interface for user-defined tight-binding transport, transmission projection using eigenstates of a projected Hamiltonian, and fast inversion algorithms for large-scale simulations easily exceeding 106 atoms on workstation computers. The new features of both codes are demonstrated and bench-marked for relevant test systems.
Electron beam transport in heterogeneous slab media from MeV down to eV.
Yousfi, M; Leger, J; Loiseau, J F; Held, B; Eichwald, O; Defoort, B; Dupillier, J M
2006-01-01
An optimized Monte Carlo method based on the null collision technique and on the treatment of individual interactions is used for the simulation of the electron transport in multilayer materials from high energies (MeV or several hundred of keV) down to low cutoff energies (between 1 and 10 eV). In order to better understand the electron transport and the energy deposition at the interface in the composite application framework, two layer materials are considered (carbon and polystyrene with densities of 1.7 g cm(-3) and 1.06 g cm(-3), respectively) under two slab or three slab configurations as, e.g. a thin layer of carbon sandwiched between two polystyrene layers. The electron-matter cross-sections (electron-carbon and electron-polystyrene) used in the case of pure material (carbon and polystyrene) as well as our Monte-Carlo code have been first validated. The boundary interface layer is considered without any mean free path truncation and with a rigorous treatment of the backscattered and also the forward scattered electrons from one layer to another. The large effect of the choice of a low cutoff energy and the dissociation process consideration are also clearly shown in the heterogeneous multi-layer media more particularly on the secondary electron emission, inelastic collision number and energy spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steirer, K. Xerxes; Berry, Joseph J.; Chesin, Jordan P.
2017-01-10
A method for the application of solution processed metal oxide hole transport layers in organic photovoltaic devices and related organic electronics devices is disclosed. The metal oxide may be derived from a metal-organic precursor enabling solution processing of an amorphous, p-type metal oxide. An organic photovoltaic device having solution processed, metal oxide, thin-film hole transport layer.
NASA Astrophysics Data System (ADS)
Hou, Yong; Fu, Yongsheng; Bredow, Richard; Kang, Dongdong; Redmer, Ronald; Yuan, Jianmin
2017-03-01
The average-atom model combined with the hyper-netted chain approximation is an efficient tool for electronic and ionic structure calculations for warm dense matter. Here we generalize this method in order to describe non-equilibrium states with different electron and ion temperature as produced in laser-matter interactions on ultra-short time scales. In particular, the electron-ion and ion-ion correlation effects are considered when calculating the electron structure. We derive an effective ion-ion pair-potential using the electron densities in the framework of temperature-depended density functional theory. Using this ion-ion potential we perform molecular dynamics simulations in order to determine the ionic transport properties such as the ionic diffusion coefficient and the shear viscosity through the ionic velocity autocorrelation functions.
Effect of electronic coupling of Watson-Crick hopping in DNA poly(dA)-poly(dT)
NASA Astrophysics Data System (ADS)
Risqi, A. M.; Yudiarsah, E.
2017-07-01
Charge transport properties of poly(dA)-poly(dT) DNA has been studied by using thigh binding Hamiltonian approach. Molecule DNA that we use consist of 32 base pair of adenine (A) and thymine (T) and backbone is consist of phosphate and sugar. The molecule DNA is contacted electrode at both ends. Charge transport in molecule DNA depend on the environment, we studied the effect of electronic coupling of Watson-Crick hopping in poly(dA)-poly(dT) DNA to transmission probability and characteristic I-V. The electronic coupling constant influence charge transport between adenine-thymine base pairs at the same site. Transmission probability is studied by using transfer matrix and scattering matrix method, and the result of transmission probability is used to calculate the characteristic I-V by using formula Landauer Buttiker. The result shows that when the electronic coupling increase then transmission probability and characteristic I-V increase slightly.
NASA Astrophysics Data System (ADS)
Shi, Yarui; Wei, Huiling; Liu, Yufang
2015-03-01
Tetraazaperopyrenes (TAPPs) derivatives are high-performance n-type organic semiconductor material families with the remarkable long-term stabilities. The charge carrier mobilities in TAPPs derivatives crystals were calculated by the density functional theory (DFT) method combined with the Marcus-Hush electron-transfer theory. The existence of considerable C-H…F-C bonding defines the conformation of the molecular structure and contributes to its stability. We illustrated how it is possible to control the electronic and charge-transport parameters of TAPPs derivatives as a function of the positions, a type of the substituents. It is found that the core substitution of TAPPs has a drastic influence on the charge-transport mobilities. The maximum electron mobility value of the core-brominated 2,9-bis (perfluoroalkyl)-substituted TAPPs is 0.521 cm2 V-1 s-1, which appear in the orientation angle 95° and 275°. The results demonstrate that the TAPPs with bromine substituents in ortho positions exhibit the best charge-transfer efficiency among the four different TAPP derivatives.
Electronic structure and charge transport in nonstoichiometric tantalum oxide
NASA Astrophysics Data System (ADS)
Perevalov, T. V.; Gritsenko, V. A.; Gismatulin, A. A.; Voronkovskii, V. A.; Gerasimova, A. K.; Aliev, V. Sh; Prosvirin, I. A.
2018-06-01
The atomic and electronic structure of nonstoichiometric oxygen-deficient tantalum oxide TaO x<2.5 grown by ion beam sputtering deposition was studied. The TaO x film content was analyzed by x-ray photoelectron spectroscopy and by quantum-chemistry simulation. TaO x is composed of Ta2O5, metallic tantalum clusters and tantalum suboxides. A method for evaluating the stoichiometry parameter of TaO x from the comparison of experimental and theoretical photoelectron valence band spectra is proposed. The charge transport properties of TaO x were experimentally studied and the transport mechanism was quantitatively analyzed with four theoretical dielectric conductivity models. It was found that the charge transport in almost stoichiometric and nonstoichiometric tantalum oxide can be consistently described by the phonon-assisted tunneling between traps.
Calculation of radiation therapy dose using all particle Monte Carlo transport
Chandler, William P.; Hartmann-Siantar, Christine L.; Rathkopf, James A.
1999-01-01
The actual radiation dose absorbed in the body is calculated using three-dimensional Monte Carlo transport. Neutrons, protons, deuterons, tritons, helium-3, alpha particles, photons, electrons, and positrons are transported in a completely coupled manner, using this Monte Carlo All-Particle Method (MCAPM). The major elements of the invention include: computer hardware, user description of the patient, description of the radiation source, physical databases, Monte Carlo transport, and output of dose distributions. This facilitated the estimation of dose distributions on a Cartesian grid for neutrons, photons, electrons, positrons, and heavy charged-particles incident on any biological target, with resolutions ranging from microns to centimeters. Calculations can be extended to estimate dose distributions on general-geometry (non-Cartesian) grids for biological and/or non-biological media.
Calculation of radiation therapy dose using all particle Monte Carlo transport
Chandler, W.P.; Hartmann-Siantar, C.L.; Rathkopf, J.A.
1999-02-09
The actual radiation dose absorbed in the body is calculated using three-dimensional Monte Carlo transport. Neutrons, protons, deuterons, tritons, helium-3, alpha particles, photons, electrons, and positrons are transported in a completely coupled manner, using this Monte Carlo All-Particle Method (MCAPM). The major elements of the invention include: computer hardware, user description of the patient, description of the radiation source, physical databases, Monte Carlo transport, and output of dose distributions. This facilitated the estimation of dose distributions on a Cartesian grid for neutrons, photons, electrons, positrons, and heavy charged-particles incident on any biological target, with resolutions ranging from microns to centimeters. Calculations can be extended to estimate dose distributions on general-geometry (non-Cartesian) grids for biological and/or non-biological media. 57 figs.
Beam transport program for FEL project
NASA Astrophysics Data System (ADS)
Sugimoto, Masayoshi; Takao, Masaru
1992-07-01
A beam transport program is developed to design the beam transport line of the free electron laser system at JAERI and to assist the beam diagnosis. The program traces a beam matrix through the elements in the beam transport line and the accelerators. The graphical user interface is employed to access the parameters and to represent the results. The basic computational method is based on the LANL-TRACE program and it is rewritten for personal computers in Pascal.
Length-dependent thermal transport in one-dimensional self-assembly of planar π-conjugated molecules
NASA Astrophysics Data System (ADS)
Tang, Hao; Xiong, Yucheng; Zu, Fengshuo; Zhao, Yang; Wang, Xiaomeng; Fu, Qiang; Jie, Jiansheng; Yang, Juekuan; Xu, Dongyan
2016-06-01
This work reports a thermal transport study in quasi-one-dimensional organic nanostructures self-assembled from conjugated planar molecules via π-π interactions. Thermal resistances of single crystalline copper phthalocyanine (CuPc) and perylenetetracarboxylic diimide (PTCDI) nanoribbons are measured via a suspended thermal bridge method. We experimentally observed the deviation from the linear length dependence for the thermal resistance of single crystalline β-phase CuPc nanoribbons, indicating possible subdiffusion thermal transport. Interestingly, a gradual transition to the linear length dependence is observed with the increase of the lateral dimensions of CuPc nanoribbons. The measured thermal resistance of single crystalline CuPc nanoribbons shows an increasing trend with temperature. However, the trend of temperature dependence of thermal resistance is reversed after electron irradiation, i.e., decreasing with temperature, indicating that the single crystalline CuPc nanoribbons become `amorphous'. Similar behavior is also observed for PTCDI nanoribbons after electron irradiation, proving that the electron beam can induce amorphization of single crystalline self-assembled nanostructures of planar π-conjugated molecules. The measured thermal resistance of the `amorphous' CuPc nanoribbon demonstrates a roughly linear dependence on the nanoribbon length, suggesting that normal diffusion dominates thermal transport.This work reports a thermal transport study in quasi-one-dimensional organic nanostructures self-assembled from conjugated planar molecules via π-π interactions. Thermal resistances of single crystalline copper phthalocyanine (CuPc) and perylenetetracarboxylic diimide (PTCDI) nanoribbons are measured via a suspended thermal bridge method. We experimentally observed the deviation from the linear length dependence for the thermal resistance of single crystalline β-phase CuPc nanoribbons, indicating possible subdiffusion thermal transport. Interestingly, a gradual transition to the linear length dependence is observed with the increase of the lateral dimensions of CuPc nanoribbons. The measured thermal resistance of single crystalline CuPc nanoribbons shows an increasing trend with temperature. However, the trend of temperature dependence of thermal resistance is reversed after electron irradiation, i.e., decreasing with temperature, indicating that the single crystalline CuPc nanoribbons become `amorphous'. Similar behavior is also observed for PTCDI nanoribbons after electron irradiation, proving that the electron beam can induce amorphization of single crystalline self-assembled nanostructures of planar π-conjugated molecules. The measured thermal resistance of the `amorphous' CuPc nanoribbon demonstrates a roughly linear dependence on the nanoribbon length, suggesting that normal diffusion dominates thermal transport. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr09043a
Liu, Chunyu; Zhang, Dezhong; Li, Zhiqi; Zhang, Xinyuan; Guo, Wenbin; Zhang, Liu; Ruan, Shengping; Long, Yongbing
2017-07-05
To overcome drawbacks of the electron transport layer, such as complex surface defects and unmatched energy levels, we successfully employed a smart semiconductor-metal interfacial nanojunciton in organic solar cells by evaporating an ultrathin Al interlayer onto annealing-free ZnO electron transport layer, resulting in a high fill factor of 73.68% and power conversion efficiency of 9.81%. The construction of ZnO-Al nanojunction could effectively fill the surface defects of ZnO and reduce its work function because of the electron transfer from Al to ZnO by Fermi level equilibrium. The filling of surface defects decreased the interfacial carrier recombination in midgap trap states. The reduced surface work function of ZnO-Al remodulated the interfacial characteristics between ZnO and [6,6]-phenyl C71-butyric acid methyl ester (PC 71 BM), decreasing or even eliminating the interfacial barrier against the electron transport, which is beneficial to improve the electron extraction capacity. The filled surface defects and reduced interfacial barrier were realistically observed by photoluminescence measurements of ZnO film and the performance of electron injection devices, respectively. This work provides a simple and effective method to simultaneously solve the problems of surface defects and unmatched energy level for the annealing-free ZnO or other metal oxide semiconductors, paving a way for the future popularization in photovoltaic devices.
Yang, Bin; Mahjouri-Samani, Masoud; Rouleau, Christopher M.; ...
2016-06-10
A promising way to advance perovskite solar cells is to improve the quality of the electron transport material e.g., titanium dioxide (TiO 2) in a direction that increases electron transport and extraction. Although dense TiO 2 films are easily grown in solution, efficient electron extraction suffers due to a lack of interfacial contact area with the perovskite. Conversely, mesoporous films do offer high surface-area-to-volume ratios, thereby promoting efficient electron extraction, but their morphology is relatively difficult to control via conventional solution synthesis methods. Here, a pulsed laser deposition method was used to assemble TiO 2 nanoparticles into TiO 2 hierarchicalmore » nanoarchitectures having the anatase crystal structure, and prototype solar cells employing these structures yielded power conversion efficiencies of ~ 14%. Our approach demonstrates a way to grow high aspect-ratio TiO 2 nanostructures for improved interfacial contact between TiO 2 and perovskite materials, leading to high electron-hole pair separation and electron extraction efficiencies for superior photovoltaic performance. In addition, compared to conventional solution-processed TiO 2 films that require 500 °C to obtain a good crystallinity, our relatively low temperature (300 °C) TiO 2 processing method may promote reduced energy-consumption during device fabrication as well as enable compatibility with various flexible polymer substrates.« less
Ford, Michael J; Wang, Ming; Bustillo, Karen C; Yuan, Jianyu; Nguyen, Thuc-Quyen; Bazan, Guillermo C
2018-06-18
Organic field-effect transistors (OFETs) that utilize ambipolar polymer semiconductors can benefit from the ability of both electron and hole conduction, which is necessary for complementary circuits. However, simultaneous hole and electron transport in organic field-effect transistors result in poor ON/OFF ratios, limiting potential applications. Solution processing methods have been developed to control charge transport properties and transform ambipolar conduction to hole-only conduction. The electron-acceptor phenyl-C61-butyric acid methyl ester (PC 61 BM), when mixed in solution with an ambipolar semiconducting polymer, can reduce electron conduction. Unipolar p-type OFETs with high, well-defined ON/OFF ratios and without detrimental effects on hole conduction are achieved for a wide range of blend compositions, from 95:5 to 5:95 wt % semiconductor polymer:PC 61 BM. When introducing the alternative acceptor N, N'-bis(1-ethylpropyl)-3,4:9,10-perylenediimide (PDI), high ON/OFF ratios are achieved for 95:5 wt % semiconductor polymer:PDI; however, electron conduction increases for 50:50 and 5:95 wt % semiconductor polymer:PDI. As described within, we show that electron conduction is practically eliminated when additive domains do not percolate across the OFET channel, that is, electrons are "morphologically trapped". Morphologies were characterized by optical, electron, and atomic force microscopy as well as X-ray scattering techniques. PC 61 BM was substituted with an endohedral Lu 3 N fullerene, which enhanced contrast in electron microscopy and allowed for more detailed insight into the blend morphologies. Blends with alternative, nonfullerene acceptors further emphasize the importance of morphology and acceptor percolation, providing insights for such blends that control ambipolar transport and ON/OFF ratios.
Probing plasmodesmata function with biochemical inhibitors.
White, Rosemary G
2015-01-01
To investigate plasmodesmata (PD) function, a useful technique is to monitor the effect on cell-to-cell transport of applying an inhibitor of a physiological process, protein, or other cell component of interest. Changes in PD transport can then be monitored in one of several ways, most commonly by measuring the cell-to-cell movement of fluorescent tracer dyes or of free fluorescent proteins. Effects on PD structure can be detected in thin sections of embedded tissue observed using an electron microscope, most commonly a Transmission Electron Microscope (TEM). This chapter outlines commonly used inhibitors, methods for treating different tissues, how to detect altered cell-to-cell transport and PD structure, and important caveats.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Abhishek, E-mail: cabhishek@rrcat.gov.in; Khamari, Shailesh K.; Kumar, R.
2015-01-12
GaN templates grown by hydride vapour phase epitaxy (HVPE) and metal organic vapour phase epitaxy (MOVPE) techniques are compared through electronic transport measurements. Carrier concentration measured by Hall technique is about two orders larger than the values estimated by capacitance voltage method for HVPE templates. It is learnt that there exists a critical thickness of HVPE templates below which the transport properties of epitaxial layers grown on top of them are going to be severely limited by the density of charged dislocations lying at layer-substrate interface. On the contrary MOVPE grown templates are found to be free from such limitations.
NASA Astrophysics Data System (ADS)
Michalak, Ł.; Canali, C. M.; Pederson, M. R.; Paulsson, M.; Benza, V. G.
2010-01-01
We consider tunneling transport through a Mn12 molecular magnet using spin density functional theory. A tractable methodology for constructing many-body wave functions from Kohn-Sham orbitals allows for the determination of spin-dependent matrix elements for use in transport calculations. The tunneling conductance at finite bias is characterized by peaks representing transitions between spin multiplets, separated by an energy on the order of the magnetic anisotropy. The energy splitting of the spin multiplets and the spatial part of their many-body wave functions, describing the orbital degrees of freedom of the excess charge, strongly affect the electronic transport, and can lead to negative differential conductance.
Michalak, Ł; Canali, C M; Pederson, M R; Paulsson, M; Benza, V G
2010-01-08
We consider tunneling transport through a Mn12 molecular magnet using spin density functional theory. A tractable methodology for constructing many-body wave functions from Kohn-Sham orbitals allows for the determination of spin-dependent matrix elements for use in transport calculations. The tunneling conductance at finite bias is characterized by peaks representing transitions between spin multiplets, separated by an energy on the order of the magnetic anisotropy. The energy splitting of the spin multiplets and the spatial part of their many-body wave functions, describing the orbital degrees of freedom of the excess charge, strongly affect the electronic transport, and can lead to negative differential conductance.
GSFC specification electronic data processing magnetic recording tape
NASA Technical Reports Server (NTRS)
Tinari, D. F.; Perry, J. L.
1980-01-01
The design requirements are given for magnetic oxide coated, electronic data processing tape, wound on reels. Magnetic recording tape types covered by this specification are intended for use on digital tape transports using the Non-Return-to-Zero-change-on-ones (NRZI) recording method for recording densities up to and including 800 characters per inch (cpi) and the Phase-Encoding (PE) recording method for a recording density of 1600 cpi.
10th International Conference of Computational Methods in Sciences and Engineering
2014-12-22
Density Modulation ", in the 10th International Conference of Computational Methods in Sciences and Engineering (ICCMSE 2014), April 4-7, 2014, Athens...ENGINEERING We organized the symposium, “Electronic Transport Properties in the Presence of Density Modulation ,” in the 10th International...Superlattices by Coplanar Waveguide Dr. Endo reported his recent experimental work on thermoelectric power of two-dimensional electron gases in the quantum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akande, Akinlolu, E-mail: akandea@tcd.ie; Bhattacharya, Sandip; Cathcart, Thomas
2014-02-21
We investigate with state of the art density functional theory the structural, electronic, and transport properties of a class of recently synthesized nanostructures based on triarylamine derivatives. First, we consider the single molecule precursors in the gas phase and calculate their static properties, namely (i) the geometrical structure of the neutral and cationic ions, (ii) the electronic structure of the frontier molecular orbitals, and (iii) the ionization potential, hole extraction potential, and internal reorganization energy. This initial study does not evidence any direct correlation between the properties of the individual molecules and their tendency to self-assembly. Subsequently, we investigate themore » charge transport characteristics of the triarylamine derivatives nanowires, by using Marcus theory. For one derivative we further construct an effective Hamiltonian including intermolecular vibrations and evaluate the mobility from the Kubo formula implemented with Monte Carlo sampling. These two methods, valid respectively in the sequential hopping and polaronic band limit, give us values for the room-temperature mobility in the range 0.1–12 cm{sup 2}/Vs. Such estimate confirms the superior transport properties of triarylamine-based nanowires, and make them an attracting materials platform for organic electronics.« less
Chemical and charge transfer studies on interfaces of a conjugated polymer and ITO
NASA Astrophysics Data System (ADS)
David, Tanya M. S.; Arasho, Wondwosson; Smith, O'Neil; Hong, Kunlun; Bonner, Carl; Sun, Sam-Shajing
2017-08-01
Conjugated oligomers and polymers are very attractive for potential future plastic electronic and opto-electronic device applications such as plastic photo detectors and solar cells, thermoelectric devices, field effect transistors, and light emitting diodes. Understanding and optimizing charge transport between an active polymer layer and conductive substrate is critical to the optimization of polymer based electronic and opto-electronic devices. This study focused on the design, synthesis, self-assembly, and electron transfers and transports of a phosphonic acid end-functionalized polyphenylenevinylene (PPV) that was covalently attached and self-assembled onto an Indium Tin Oxide (ITO) substrate. This study demonstrated how atomic force microscopy (AFM) can be an effective characterization technique in conjunction with conventional electron transfer methods, including cyclic voltammetry (CV), towards determining electron transfer rates in polymer and polymer/conductor interface systems. This study found that the electron transfer rates of covalently attached and self-assembled films were much faster than the spin coated films. The knowledge from this study can be very useful for designing potential polymer based electronic and opto-electronic thin film devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mondal, Rajkumar; Sarkar, Utpal, E-mail: utpalchemiitkgp@yahoo.com
2015-06-24
We have investigated the electron transport properties of Cobalt-centered (Co-centered) porphyrin molecule using the density functional theory and non-equilibrium greens function method. Here we have reported transmission coefficient as well as current voltage characteristics of Co-centered porphyrine molecule connected between armchair graphene nanoribbons. It has been found that at low bias region i.e., 0 V to 0.3 V it does not contribute any current. Gradual increase of bias voltage results different order of magnitude of current in different bias region.
Electron Correlation and Tranport Properties in Nuclear Fuel Materials
NASA Astrophysics Data System (ADS)
Yin, Quan; Haule, Kristjan; Kotliar, Gabriel; Savrasov, Sergey; Pickett, Warren
2011-03-01
Using first principle LDA+DMFT method, we conduct a systematic study on the correlated electronic structures and transport properties of select actinide carbides, nitrides, and oxides, many of which are nuclear fuel materials. Our results capture the metal--insulator Mott transition within the studied systems, and the appearance of the Zhang-Rice state in uranium dioxide. More importantly, by understanding the physics underlying their transport properties, we suggest ways to improve the efficiency of currently used fuels. This work is supported by the DOE Nuclear Energy University Program, contract No. 00088708.
NASA Astrophysics Data System (ADS)
Yin, Yiheng; Niu, Yanxiong; Zhang, Huiyun; Zhang, Yuping; Liu, Haiyue
2016-02-01
Utilizing the transfer matrix method, we develop the electronic band structure and transport properties in Thue-Morse aperiodic graphene superlattices with magnetic barriers. It is found that the normal transmission is blocked and the position of the Dirac point can be shifted along the wavevector axis by changing the height and width ratio of magnetic barriers, which is intrinsic different from electronic field modulated superlattices. In addition, the angular threshold property of the transmission spectra and the oscillatory property of the conductance have been studied.
Ab Initio Study of Electronic Structure, Elastic and Transport Properties of Fluoroperovskite LiBeF3
NASA Astrophysics Data System (ADS)
Benmhidi, H.; Rached, H.; Rached, D.; Benkabou, M.
2017-04-01
The aim of this work is to investigate the electronic, mechanical, and transport properties of the fluoroperovskite compound LiBeF3 by first-principles calculations using the full-potential linear muffin-tin orbital method based on density functional theory within the local density approximation. The independent elastic constants and related mechanical properties including the bulk modulus ( B), shear modulus ( G), Young's modulus ( E), and Poisson's ratio ( ν) have been studied, yielding the elastic moduli, shear wave velocities, and Debye temperature. According to the electronic properties, this compound is an indirect-bandgap material, in good agreement with available theoretical data. The electron effective mass, hole effective mass, and energy bandgaps with their volume and pressure dependence are investigated for the first time.
NASA Astrophysics Data System (ADS)
Yan, Jiawei; Ke, Youqi
In realistic nanoelectronics, disordered impurities/defects are inevitable and play important roles in electron transport. However, due to the lack of effective quantum transport method, the important effects of disorders remain poorly understood. Here, we report a generalized non-equilibrium vertex correction (NVC) method with coherent potential approximation to treat the disorder effects in quantum transport simulation. With this generalized NVC method, any averaged product of two single-particle Green's functions can be obtained by solving a set of simple linear equations. As a result, the averaged non-equilibrium density matrix and various important transport properties, including averaged current, disordered induced current fluctuation and the averaged shot noise, can all be efficiently computed in a unified scheme. Moreover, a generalized form of conditionally averaged non-equilibrium Green's function is derived to incorporate with density functional theory to enable first-principles simulation. We prove the non-equilibrium coherent potential equals the non-equilibrium vertex correction. Our approach provides a unified, efficient and self-consistent method for simulating non-equilibrium quantum transport through disorder nanoelectronics. Shanghaitech start-up fund.
Microwave emulations and tight-binding calculations of transport in polyacetylene
NASA Astrophysics Data System (ADS)
Stegmann, Thomas; Franco-Villafañe, John A.; Ortiz, Yenni P.; Kuhl, Ulrich; Mortessagne, Fabrice; Seligman, Thomas H.
2017-01-01
A novel approach to investigate the electron transport of cis- and trans-polyacetylene chains in the single-electron approximation is presented by using microwave emulation measurements and tight-binding calculations. In the emulation we take into account the different electronic couplings due to the double bonds leading to coupled dimer chains. The relative coupling constants are adjusted by DFT calculations. For sufficiently long chains a transport band gap is observed if the double bonds are present, whereas for identical couplings no band gap opens. The band gap can be observed also in relatively short chains, if additional edge atoms are absent, which cause strong resonance peaks within the band gap. The experimental results are in agreement with our tight-binding calculations using the nonequilibrium Green's function method. The tight-binding calculations show that it is crucial to include third nearest neighbor couplings to obtain the gap in the cis-polyacetylene.
NASA Astrophysics Data System (ADS)
Sudhi, Geethu; Rajina, S. R.; Praveen, S. G.; Xavier, T. S.; Kenny, Peter T. M.; Binoy, J.
2018-05-01
The reactivity of ester group plays key role in inducing bioactivity of many ferrocenyl biconjugated compounds. The ester reactivity can be explained, based on electron transport mechanism using vibrational spectroscopy, aided by DFT simulation. The FT IR and FT Raman spectral measurements have been carried out for N-(6-ferrocenyl-2-naphthoyl)-L-alanine-glycine ethyl ester (FNLAGEE) and the optimized geometry and vibrational spectra have been computed using DFT method, at B3LYP/LANL2DZ level of theory. The cis conformation of ester and electron transport mechanism, thus analyzed, has been correlated to the geometry and the spectral characteristics of ester. To investigate the bioactivity and binding interactions of the molecule, molecular docking simulations and UV-Vis absorption studies of FNLAGEE with BSA and DNA has been performed.
Gurbán, S; Petrik, P; Serényi, M; Sulyok, A; Menyhárd, M; Baradács, E; Parditka, B; Cserháti, C; Langer, G A; Erdélyi, Z
2018-02-01
Al 2 O 3 (5 nm)/Si (bulk) sample was subjected to irradiation of 5 keV electrons at room temperature, in a vacuum chamber (pressure 1 × 10 -9 mbar) and formation of amorphous SiO 2 around the interface was observed. The oxygen for the silicon dioxide growth was provided by the electron bombardment induced bond breaking in Al 2 O 3 and the subsequent production of neutral and/or charged oxygen. The amorphous SiO 2 rich layer has grown into the Al 2 O 3 layer showing that oxygen as well as silicon transport occurred during irradiation at room temperature. We propose that both transports are mediated by local electric field and charged and/or uncharged defects created by the electron irradiation. The direct modification of metal oxide/silicon interface by electron-beam irradiation is a promising method of accomplishing direct write electron-beam lithography at buried interfaces.
NASA Astrophysics Data System (ADS)
Paloma, Cynthia S.
The plasma electron temperature (Te) plays a critical role in a tokamak nu- clear fusion reactor since temperatures on the order of 108K are required to achieve fusion conditions. Many plasma properties in a tokamak nuclear fusion reactor are modeled by partial differential equations (PDE's) because they depend not only on time but also on space. In particular, the dynamics of the electron temperature is governed by a PDE referred to as the Electron Heat Transport Equation (EHTE). In this work, a numerical method is developed to solve the EHTE based on a custom finite-difference technique. The solution of the EHTE is compared to temperature profiles obtained by using TRANSP, a sophisticated plasma transport code, for specific discharges from the DIII-D tokamak, located at the DIII-D National Fusion Facility in San Diego, CA. The thermal conductivity (also called thermal diffusivity) of the electrons (Xe) is a plasma parameter that plays a critical role in the EHTE since it indicates how the electron temperature diffusion varies across the minor effective radius of the tokamak. TRANSP approximates Xe through a curve-fitting technique to match experimentally measured electron temperature profiles. While complex physics-based model have been proposed for Xe, there is a lack of a simple mathematical model for the thermal diffusivity that could be used for control design. In this work, a model for Xe is proposed based on a scaling law involving key plasma variables such as the electron temperature (Te), the electron density (ne), and the safety factor (q). An optimization algorithm is developed based on the Sequential Quadratic Programming (SQP) technique to optimize the scaling factors appearing in the proposed model so that the predicted electron temperature and magnetic flux profiles match predefined target profiles in the best possible way. A simulation study summarizing the outcomes of the optimization procedure is presented to illustrate the potential of the proposed modeling method.
Lin, Yen‐Hung; Faber, Hendrik; Labram, John G.; Stratakis, Emmanuel; Sygellou, Labrini; Kymakis, Emmanuel; Hastas, Nikolaos A.; Li, Ruipeng; Zhao, Kui; Amassian, Aram; Treat, Neil D.; McLachlan, Martyn
2015-01-01
High mobility thin‐film transistor technologies that can be implemented using simple and inexpensive fabrication methods are in great demand because of their applicability in a wide range of emerging optoelectronics. Here, a novel concept of thin‐film transistors is reported that exploits the enhanced electron transport properties of low‐dimensional polycrystalline heterojunctions and quasi‐superlattices (QSLs) consisting of alternating layers of In2O3, Ga2O3, and ZnO grown by sequential spin casting of different precursors in air at low temperatures (180–200 °C). Optimized prototype QSL transistors exhibit band‐like transport with electron mobilities approximately a tenfold greater (25–45 cm2 V−1 s−1) than single oxide devices (typically 2–5 cm2 V−1 s−1). Based on temperature‐dependent electron transport and capacitance‐voltage measurements, it is argued that the enhanced performance arises from the presence of quasi 2D electron gas‐like systems formed at the carefully engineered oxide heterointerfaces. The QSL transistor concept proposed here can in principle extend to a range of other oxide material systems and deposition methods (sputtering, atomic layer deposition, spray pyrolysis, roll‐to‐roll, etc.) and can be seen as an extremely promising technology for application in next‐generation large area optoelectronics such as ultrahigh definition optical displays and large‐area microelectronics where high performance is a key requirement. PMID:27660741
Exact Thermal Transport Properties of Gray-Arsenic using Electon-Phonon Coupling
NASA Astrophysics Data System (ADS)
Kang, Seoung-Hun; Kwon, Young-Kyun
Using various theoretical methods, we investigate the thermoelectric property of gray arsenic. Thermoelectric devices that utilize the Seebeck effect convert heat flow into electrical energy. The conversion efficiency of such a device is determined by its figure of merit or ZT value, which is related to various transport coefficients, such as Seebeck coefficient and the ratio of its electrical conductivity to its thermal counterpart for given temperature. To calculate various transport coefficients and thus the ZT values of gray arsenic, we apply the Boltzmann transport theory to its electronic and phononic structures obtained by density functional theory and density functional perturbation theory together with maximally locallized Wannier functions. During this procedure, we evaluate its relaxation time accurately by explicitly considering electron-phonon coupling. Our result reveals that gray arsenic may be used for a good p-type thermoelectric devices.
A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups.
Gittins, D I; Bethell, D; Schiffrin, D J; Nichols, R J
2000-11-02
So-called bottom-up fabrication methods aim to assemble and integrate molecular components exhibiting specific functions into electronic devices that are orders of magnitude smaller than can be fabricated by lithographic techniques. Fundamental to the success of the bottom-up approach is the ability to control electron transport across molecular components. Organic molecules containing redox centres-chemical species whose oxidation number, and hence electronic structure, can be changed reversibly-support resonant tunnelling and display promising functional behaviour when sandwiched as molecular layers between electrical contacts, but their integration into more complex assemblies remains challenging. For this reason, functionalized metal nanoparticles have attracted much interest: they exhibit single-electron characteristics (such as quantized capacitance charging) and can be organized through simple self-assembly methods into well ordered structures, with the nanoparticles at controlled locations. Here we report scanning tunnelling microscopy measurements showing that organic molecules containing redox centres can be used to attach metal nanoparticles to electrode surfaces and so control the electron transport between them. Our system consists of gold nanoclusters a few nanometres across and functionalized with polymethylene chains that carry a central, reversibly reducible bipyridinium moiety. We expect that the ability to electronically contact metal nanoparticles via redox-active molecules, and to alter profoundly their tunnelling properties by charge injection into these molecules, can form the basis for a range of nanoscale electronic switches.
Reverse electron transport effects on NADH formation and metmyoglobin reduction.
Belskie, K M; Van Buiten, C B; Ramanathan, R; Mancini, R A
2015-07-01
The objective was to determine if NADH generated via reverse electron flow in beef mitochondria can be used for electron transport-mediated reduction and metmyoglobin reductase pathways. Beef mitochondria were isolated from bovine hearts (n=5) and reacted with combinations of succinate, NAD, and mitochondrial inhibitors to measure oxygen consumption and NADH formation. Mitochondria and metmyoglobin were reacted with succinate, NAD, and mitochondrial inhibitors to measure electron transport-mediated metmyoglobin reduction and metmyoglobin reductase activity. Addition of succinate and NAD increased oxygen consumption, NADH formation, electron transport-mediated metmyoglobin reduction, and reductase activity (p<0.05). Addition of antimycin A prevented electron flow beyond complex III, therefore, decreasing oxygen consumption and electron transport-mediated metmyoglobin reduction. Addition of rotenone prevented reverse electron flow, increased oxygen consumption, increased electron transport-mediated metmyoglobin reduction, and decreased NADH formation. Succinate and NAD can generate NADH in bovine tissue postmortem via reverse electron flow and this NADH can be used by both electron transport-mediated and metmyoglobin reductase pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jovic, Vedran; Rettie, Alexander J E; Singh, Vijay R; Zhou, Jianshi; Lamoureux, Bethany; Buddie Mullins, C; Bluhm, Hendrik; Laverock, Jude; Smith, Kevin E
2016-11-23
Doped BiVO 4 is a promising photoelectrochemical water splitting anode, whose activity is hampered by poor charge transport. Here we use a set of X-ray spectroscopic methods to probe the origin and nature of localized electron states in W:BiVO 4 . Furthermore, using the polarized nature of the X-rays, we probe variations in the electronic structure along the crystal axes. In this manner, we reveal aspects of the electronic structure related to electron localization and observations consistent with conductivity anisotropy between the ab-plane and c-axis. We verify that tungsten substitutes as W 6+ for V 5+ in BiVO 4 . This is shown to result in the presence of inter-band gap states related to electrons at V 4+ sites of e symmetry. The energetic position of the states in the band gap suggest that they are highly localized and may act as recombination centres. Polarization dependent X-ray absorption spectra reveal anisotropy in the electronic structure between the ab-plane and c-axis. Results show the superior hybridization between V 3d and O 2p states, higher V wavefunction overlap and broader conduction bands in the ab-plane than in the c-axis. These insights into the electronic structure are discussed in the context of existing experimental and theoretical reports regarding charge transport in BiVO 4 .
NASA Astrophysics Data System (ADS)
Konovalov, Dmitry A.; Cocks, Daniel G.; White, Ronald D.
2017-10-01
The velocity distribution function and transport coefficients for charged particles in weakly ionized plasmas are calculated via a multi-term solution of Boltzmann's equation and benchmarked using a Monte-Carlo simulation. A unified framework for the solution of the original full Boltzmann's equation is presented which is valid for ions and electrons, avoiding any recourse to approximate forms of the collision operator in various limiting mass ratio cases. This direct method using Lebedev quadratures over the velocity and scattering angles avoids the need to represent the ion mass dependence in the collision operator through an expansion in terms of the charged particle to neutral mass ratio. For the two-temperature Burnett function method considered in this study, this amounts to avoiding the need for the complex Talmi-transformation methods and associated mass-ratio expansions. More generally, we highlight the deficiencies in the two-temperature Burnett function method for heavy ions at high electric fields to calculate the ion velocity distribution function, even though the transport coefficients have converged. Contribution to the Topical Issue "Physics of Ionized Gases (SPIG 2016)", edited by Goran Poparic, Bratislav Obradovic, Dragana Maric and Aleksandar Milosavljevic.
NASA Astrophysics Data System (ADS)
Kehayias, Christopher E.; MacNaughton, Samuel; Sonkusale, Sameer; Staii, Cristian
2013-06-01
Reduced graphene oxide (RGO) is an electronically hybrid material that displays remarkable chemical sensing properties. Here, we present a quantitative analysis of the chemical gating effects in RGO-based chemical sensors. The gas sensing devices are patterned in a field-effect transistor geometry, by dielectrophoretic assembly of RGO platelets between gold electrodes deposited on SiO2/Si substrates. We show that these sensors display highly selective and reversible responses to the measured analytes, as well as fast response and recovery times (tens of seconds). We use combined electronic transport/Kelvin probe microscopy measurements to quantify the amount of charge transferred to RGO due to chemical doping when the device is exposed to electron-acceptor (acetone) and electron-donor (ammonia) analytes. We demonstrate that this method allows us to obtain high-resolution maps of the surface potential and local charge distribution both before and after chemical doping, to identify local gate-susceptible areas on the RGO surface, and to directly extract the contact resistance between the RGO and the metallic electrodes. The method presented is general, suggesting that these results have important implications for building graphene and other nanomaterial-based chemical sensors.
Kehayias, Christopher E; MacNaughton, Samuel; Sonkusale, Sameer; Staii, Cristian
2013-06-21
Reduced graphene oxide (RGO) is an electronically hybrid material that displays remarkable chemical sensing properties. Here, we present a quantitative analysis of the chemical gating effects in RGO-based chemical sensors. The gas sensing devices are patterned in a field-effect transistor geometry, by dielectrophoretic assembly of RGO platelets between gold electrodes deposited on SiO2/Si substrates. We show that these sensors display highly selective and reversible responses to the measured analytes, as well as fast response and recovery times (tens of seconds). We use combined electronic transport/Kelvin probe microscopy measurements to quantify the amount of charge transferred to RGO due to chemical doping when the device is exposed to electron-acceptor (acetone) and electron-donor (ammonia) analytes. We demonstrate that this method allows us to obtain high-resolution maps of the surface potential and local charge distribution both before and after chemical doping, to identify local gate-susceptible areas on the RGO surface, and to directly extract the contact resistance between the RGO and the metallic electrodes. The method presented is general, suggesting that these results have important implications for building graphene and other nanomaterial-based chemical sensors.
Understanding the transport properties of YNiBi half- Heusler alloy: An Ab-initio study
NASA Astrophysics Data System (ADS)
Sharma, Sonu; Kumar, Pradeep
2017-05-01
In the present work, we have studied the electronic and transport properties of YNiBi half-Heusler alloy by combining the first principles methods with the Boltzmann transport theory. The electronic band structure and total density of states plot suggest the presence of semiconducting ground state in the compound. The value of indirect band gap is found to be ˜0.21 eV. The origin of the band gap is associated primarily with the interaction between the Ni 3d and the Y 4d states. The room temperature value of Seebeck coefficient is ˜230 µVK-1. A moderate power factor of about 12×1014 μ Wcm-1 K-2 s-1 is obtained at 980 k.
Park, Jong Hwan; Jung, Youngsuk; Yang, Yooseong; Shin, Hyun Suk; Kwon, Soonchul
2016-10-05
For efficient solar cells based on organic semiconductors, a good mixture of photoactive materials in the bulk heterojunction on the length scale of several tens of nanometers is an important requirement to prevent exciton recombination. Herein, we demonstrate that nanoporous titanium dioxide inverse opal structures fabricated using a self-assembled monolayer method and with enhanced infiltration of electron-donating polymers is an efficient electron-extracting layer, which enhances the photovoltaic performance. A calcination process generates an inverse opal structure of titanium dioxide (<70 nm of pore diameters) providing three-dimensional (3D) electron transport pathways. Hole-transporting polymers was successfully infiltrated into the pores of the surface-modified titanium dioxide under vacuum conditions at 200 °C. The resulting geometry expands the interfacial area between hole- and electron-transport materials, increasing the thickness of the active layer. The controlled polymer-coating process over titanium dioxide materials enhanced photocurrent of the solar cell device. Density functional theory calculations show improved interfacial adhesion between the self-assembled monolayer-modified surface and polymer molecules, supporting the experimental result of enhanced polymer infiltration into the voids. These results suggest that the 3D inverse opal structure of the surface-modified titanium dioxide can serve as a favorable electron-extracting layer in further enhancing optoelectronic performance based on organic or organic-inorganic hybrid solar cell.
Effect of temperature oscillation on thermal characteristics of an aluminum thin film
NASA Astrophysics Data System (ADS)
Ali, H.; Yilbas, B. S.
2014-12-01
Energy transport in aluminum thin film is examined due to temperature disturbance at the film edge. Thermal separation of electron and lattice systems is considered in the analysis, and temperature variation in each sub-system is formulated. The transient analysis of frequency-dependent and frequency-independent phonon radiative transport incorporating electron-phonon coupling is carried out in the thin film. The dispersion relations of aluminum are used in the frequency-dependent analysis. Temperature at one edge of the film is oscillated at various frequencies, and temporal response of phonon intensity distribution in the film is predicted numerically using the discrete ordinate method. To assess the phonon transport characteristics, equivalent equilibrium temperature is introduced. It is found that equivalent equilibrium temperature in the electron and lattice sub-systems oscillates due to temperature oscillation at the film edge. The amplitude of temperature oscillation reduces as the distance along the film thickness increases toward the low-temperature edge of the film. Equivalent equilibrium temperature attains lower values for the frequency-dependent solution of the phonon transport equation than that corresponding to frequency-independent solution.
NASA Astrophysics Data System (ADS)
Briones-Torres, J. A.; Pernas-Salomón, R.; Pérez-Álvarez, R.; Rodríguez-Vargas, I.
2016-05-01
Gapless bilayer graphene (GBG), like monolayer graphene, is a material system with unique properties, such as anti-Klein tunneling and intrinsic Fano resonances. These properties rely on the gapless parabolic dispersion relation and the chiral nature of bilayer graphene electrons. In addition, propagating and evanescent electron states coexist inherently in this material, giving rise to these exotic properties. In this sense, bilayer graphene is unique, since in most material systems in which Fano resonance phenomena are manifested an external source that provides extended states is required. However, from a numerical standpoint, the presence of evanescent-divergent states in the eigenfunctions linear superposition representing the Dirac spinors, leads to a numerical degradation (the so called Ωd problem) in the practical applications of the standard Coefficient Transfer Matrix (K) method used to study charge transport properties in Bilayer Graphene based multi-barrier systems. We present here a straightforward procedure based in the hybrid compliance-stiffness matrix method (H) that can overcome this numerical degradation. Our results show that in contrast to standard matrix method, the proposed H method is suitable to study the transmission and transport properties of electrons in GBG superlattice since it remains numerically stable regardless the size of the superlattice and the range of values taken by the input parameters: the energy and angle of the incident electrons, the barrier height and the thickness and number of barriers. We show that the matrix determinant can be used as a test of the numerical accuracy in real calculations.
Charge transport in metal oxide nanocrystal-based materials
NASA Astrophysics Data System (ADS)
Runnerstrom, Evan Lars
There is probably no class of materials more varied, more widely used, or more ubiquitous than metal oxides. Depending on their composition, metal oxides can exhibit almost any number of properties. Of particular interest are the ways in which charge is transported in metal oxides: devices such as displays, touch screens, and smart windows rely on the ability of certain metal oxides to conduct electricity while maintaining visible transparency. Smart windows, fuel cells, and other electrochemical devices additionally rely on efficient transport of ionic charge in and around metal oxides. Colloidal synthesis has enabled metal oxide nanocrystals to emerge as a relatively new but highly tunable class of materials. Certain metal oxide nanocrystals, particularly highly doped metal oxides, have been enjoying rapid development in the last decade. As in myriad other materials systems, structure dictates the properties of metal oxide nanocrystals, but a full understanding of how nanocrystal synthesis, the processing of nanocrystal-based materials, and the structure of nanocrystals relate to the resulting properties of nanocrystal-based materials is still nascent. Gaining a fundamental understanding of and control over these structure-property relationships is crucial to developing a holistic understanding of metal oxide nanocrystals. The unique ability to tune metal oxide nanocrystals by changing composition through the introduction of dopants or by changing size and shape affords a way to study the interplay between structure, processing, and properties. This overall goal of this work is to chemically synthesize colloidal metal oxide nanocrystals, process them into useful materials, characterize charge transport in materials based on colloidal metal oxide nanocrystals, and develop ways to manipulate charge transport. In particular, this dissertation characterizes how the charge transport properties of metal oxide nanocrystal-based materials depend on their processing and structure. Charge transport can obviously be taken to mean the conduction of electrons, but it also refers to the motion of ions, such as lithium ions and protons. In many cases, the transport of ions is married to the motion of electrons as well, either through an external electrical circuit, or within the same material in the case of mixed ionic electronic conductors. The collective motion of electrons over short length scales, that is, within single nanocrystals, is also a subject of study as it pertains to plasmonic nanocrystals. Finally, charge transport can also be coupled to or result from the formation of defects in metal oxides. All of these modes of charge transport in metal oxides gain further complexity when considered in nanocrystalline systems, where the introduction of numerous surfaces can change the character of charge transport relative to bulk systems, providing opportunities to exploit new physical phenomena. Part I of this dissertation explores the combination of electronic and ionic transport in electrochromic devices based on nanocrystals. Colloidal chemistry and solution processing are used to fabricate nanocomposites based on electrochromic tin-doped indium oxide (ITO) nanocrystals. The nanocomposites, which are completely synthesized using solution processing, consist of ITO nanocrystals and lithium bis(trifluoromethylsulfonyl)amide (LiTFSI) salt dispersed in a lithium ion-conducting polymer matrix of either poly(ethylene oxide) (PEO) or poly(methyl methacrylate) (PMMA). ITO nanocrystals are prepared by colloidal synthetic methods and the nanocrystal surface chemistry is modified to achieve favorable nanocrystal-polymer interactions. Homogeneous solutions containing polymer, ITO nanocrystals, and lithium salt are thus prepared and deposited by spin casting. Characterization by DC electronic measurements, microscopy, and x-ray scattering techniques show that the ITO nanocrystals form a complete, connected electrode within a polymer electrolyte matrix, and that the morphology and properties of the nanocomposites can be manipulated by changing the chemical composition of the deposition solution. Careful application of AC impedance spectroscopy techniques and DC measurements are used to show that the nanocomposites exhibit mixed ionic and electronic conductivity, where electronic charge is transported through the ITO nanocrystal phase, and ionic charge is transported through the polymer matrix phase. The synthetic methods developed here and understanding of charge transport ultimately lead to the fabrication of a solid state nanocomposite electrochromic device based on nanocrystals of ITO and cerium oxide. Part II of this dissertation considers electron transport within individual metal oxide nanocrystals themselves. It primarily examines relationships between synthetic chemistry, doping mechanisms in metal oxides, and the accompanying physics of free carrier scattering within the interior of highly doped metal oxide nanocrystals, with particular mind paid to ITO nanocrystals. Additionally, synthetic methods as well as metal oxide defect chemistry influences the balance between activation and compensation of dopants, which limits the nanocrystals' free carrier concentration. Furthermore, because of ionized impurity scattering of the oscillating electrons by dopant ions, scattering must be treated in a fundamentally different way in semiconductor metal oxide materials when compared with conventional metals. (Abstract shortened by ProQuest.).
Giant current fluctuations in an overheated single-electron transistor
NASA Astrophysics Data System (ADS)
Laakso, M. A.; Heikkilä, T. T.; Nazarov, Yuli V.
2010-11-01
Interplay of cotunneling and single-electron tunneling in a thermally isolated single-electron transistor leads to peculiar overheating effects. In particular, there is an interesting crossover interval where the competition between cotunneling and single-electron tunneling changes to the dominance of the latter. In this interval, the current exhibits anomalous sensitivity to the effective electron temperature of the transistor island and its fluctuations. We present a detailed study of the current and temperature fluctuations at this interesting point. The methods implemented allow for a complete characterization of the distribution of the fluctuating quantities, well beyond the Gaussian approximation. We reveal and explore the parameter range where, for sufficiently small transistor islands, the current fluctuations become gigantic. In this regime, the optimal value of the current, its expectation value, and its standard deviation differ from each other by parametrically large factors. This situation is unique for transport in nanostructures and for electron transport in general. The origin of this spectacular effect is the exponential sensitivity of the current to the fluctuating effective temperature.
An electronic beam splitter realized with crossed graphene nanoribbons
NASA Astrophysics Data System (ADS)
Frederiksen, Thomas; Brandimarte, Pedro; Engelund, Mads; Papior, Nick; Garcia-Lekue, Aran; Sanchez-Portal, Daniel
Graphene nanoribbons (GNRs) are promising components in future nanoelectronics. We have explored a prototype 4-terminal semiconducting device formed by two crossed armchair GNRs (AGNRs) using state-of-the-art first-principles transport methods. We analyze in detail the roles of intersection angle, stacking order, inter-GNR separation, and finite voltages on the transport characteristics. Interestingly, when the AGNRs intersect at θ =60° , electrons injected from one terminal can be split into two outgoing waves with a tunable ratio around 50 % and with almost negligible back-reflection. The splitted electron wave is found to propagate partly straight across the intersection region in one ribbon and partly in one direction of the other ribbon, i.e., in analogy of an optical beam splitter. Our simulations further identify realistic conditions for which this semiconducting device can act as a mechanically controllable electronic beam splitter with possible applications in carbon-based quantum electronic circuits and electron optics. FP7-FET-ICT PAMS (610446), MAT2013-46593-C6-2-P, IT-756-13.
Rau, A W; Bakueva, L; Rowlands, J A
2005-10-01
Amorphous selenium (a-Se) based real-time flat-panel imagers (FPIs) are finding their way into the digital radiology department because they offer the practical advantages of digital x-ray imaging combined with an image quality that equals or outperforms that of conventional systems. The temporal imaging characteristics of FPIs can be affected by ghosting (i.e., radiation-induced changes of sensitivity) when the dose to the detector is high (e.g., portal imaging and mammography) or the images are acquired at a high frame rate (e.g., fluoroscopy). In this paper, the x-ray time-of-flight (TOF) method is introduced as a tool for the investigation of ghosting in a-Se photoconductor layers. The method consists of irradiating layers of a-Se with short x-ray pulses. From the current generated in the a-Se layer, ghosting is quantified and the ghosting parameters (charge carrier generation rate and carrier lifetimes and mobilities) are assessed. The x-ray TOF method is novel in that (1) x-ray sensitivity (S) and ghosting parameters can be measured simultaneously, (2) the transport of both holes and electrons can be isolated, and (3) the method is applicable to the practical a-Se layer structure with blocking contacts used in FPIs. The x-ray TOF method was applied to an analysis of ghosting in a-Se photoconductor layers under portal imaging conditions, i.e., 1 mm thick a-Se layers, biased at 5 V/ microm, were irradiated using a 6 MV LINAC x-ray beam to a total dose (ghosting dose) of 30 Gy. The initial sensitivity (S0) of the a-Se layers was 63 +/- 2 nC cm(-2) cGy(-1). It was found that S decreases to 30% of S0 after a ghosting dose of 5 Gy and to 21% after 30 Gy at which point no further change in S occurs. At an x-ray intensity of 22 Gy/s (instantaneous dose rate during a LINAC x-ray pulse), the charge carrier generation rate was 1.25 +/- 0.1 x 10(22) ehp m(-3) s(-1) and, to a first approximation, independent of the ghosting dose. However, both hole and electron transport showed a strong dependence on the ghosting dose: hole transport decreased by 61%, electron transport by up to approximately 80%. Therefore, degradation of both hole and electron transport due to the recombination of mobile charge carriers with trapped carriers (of opposite polarity) were identified as the main cause of ghosting in this study.
NASA Astrophysics Data System (ADS)
Sclauzero, Gabriele; Dal Corso, Andrea
2013-02-01
An efficient method for computing the Landauer-Büttiker conductance of an open quantum system within DFT+U is presented. The Hubbard potential is included in electronic-structure and transport calculations as a simple renormalization of the nonlocal pseudopotential coefficients by restricting the integration for the onsite occupations within the cutoff spheres of the pseudopotential. We apply the methodology to the case of an Au monatomic chain in the presence of a CO molecule adsorbed on it. We show that the Hubbard U correction removes the spurious magnetization in the pristine Au chain at the equilibrium spacing, as well as the unphysical contribution of d electrons to the conductance, resulting in a single (spin-degenerate) transmission channel and a more realistic conductance of 1G0. We find that the conductance reduction due to CO adsorption is much larger for the atop site than for the bridge site, so that the general picture of electron transport in stretched Au chains given by the local density approximation remains valid at the equilibrium Au-Au spacing within DFT+U.
Coherent spin transport through a 350 micron thick silicon wafer.
Huang, Biqin; Monsma, Douwe J; Appelbaum, Ian
2007-10-26
We use all-electrical methods to inject, transport, and detect spin-polarized electrons vertically through a 350-micron-thick undoped single-crystal silicon wafer. Spin precession measurements in a perpendicular magnetic field at different accelerating electric fields reveal high spin coherence with at least 13pi precession angles. The magnetic-field spacing of precession extrema are used to determine the injector-to-detector electron transit time. These transit time values are associated with output magnetocurrent changes (from in-plane spin-valve measurements), which are proportional to final spin polarization. Fitting the results to a simple exponential spin-decay model yields a conduction electron spin lifetime (T1) lower bound in silicon of over 500 ns at 60 K.
NASA Astrophysics Data System (ADS)
Sternal, Oliver; Engelbrecht, Eugene; Burger, Renier; Dunzlaff, Phillip; Ferreira, Stefan; Fichtner, Horst; Heber, Bernd; Kopp, Andreas; Potgieter, Marius; Scherer, Klaus
The transport of energetic particles in the heliosphere is usually described by the Parker trans-port equation including the physical processes of diffusion, drift, convection and adiabatic energy changes. The Ulysses spacecraft provides unique insight into the flux of MeV electrons at high latitudes. In this contribution, we compare our model results for the Parker HMF model and the Fisk-type Schwadron-Parker HMF model to Ulysses measurements. The elec-tron flux at high latitudes has been used as a remote sensing method to investigate the imprint of a Fisk-type HMF. We show here for the first time that such an imprint exists and deduce a limitation on the Fisk HMF angle β.
Kinetic theory of two-temperature polyatomic plasmas
NASA Astrophysics Data System (ADS)
Orlac'h, Jean-Maxime; Giovangigli, Vincent; Novikova, Tatiana; Roca i Cabarrocas, Pere
2018-03-01
We investigate the kinetic theory of two-temperature plasmas for reactive polyatomic gas mixtures. The Knudsen number is taken proportional to the square root of the mass ratio between electrons and heavy-species, and thermal non-equilibrium between electrons and heavy species is allowed. The kinetic non-equilibrium framework also requires a weak coupling between electrons and internal energy modes of heavy species. The zeroth-order and first-order fluid equations are derived by using a generalized Chapman-Enskog method. Expressions for transport fluxes are obtained in terms of macroscopic variable gradients and the corresponding transport coefficients are expressed as bracket products of species perturbed distribution functions. The theory derived in this paper provides a consistent fluid model for non-thermal multicomponent plasmas.
Charge transport in metal oxides: A theoretical study of hematite α-Fe2O3
NASA Astrophysics Data System (ADS)
Iordanova, N.; Dupuis, M.; Rosso, K. M.
2005-04-01
Transport of conduction electrons and holes through the lattice of α-Fe2O3 (hematite) is modeled as a valence alternation of iron cations using ab initio electronic structure calculations and electron transfer theory. Experimental studies have shown that the conductivity along the (001) basal plane is four orders of magnitude larger than the conductivity along the [001] direction. In the context of the small polaron model, a cluster approach was used to compute quantities controlling the mobility of localized electrons and holes, i.e., the reorganization energy and the electronic coupling matrix element that enter Marcus' theory. The calculation of the electronic coupling followed the generalized Mulliken-Hush approach using the complete active space self-consistent field method. Our findings demonstrate an approximately three orders of magnitude anisotropy in both electron and hole mobility between directions perpendicular and parallel to the c axis, in good accord with experimental data. The anisotropy arises from the slowness of both electron and hole mobilities across basal oxygen planes relative to that within iron bilayers between basal oxygen planes. Interestingly, for elementary reaction steps along either of the directions considered, there is only less than one order of magnitude difference in mobility between electrons and holes, in contrast to accepted classical arguments. Our findings indicate that the most important quantity underlying mobility differences is the electronic coupling, albeit the reorganization energy contributes as well. The large values computed for the electronic coupling suggest that charge transport reactions in hematite are adiabatic in nature. The electronic coupling is found to depend on both the superexchange interaction through the bridging oxygen atoms and the d-shell electron spin coupling within the Fe-Fe donor-acceptor pair, while the reorganization energy is essentially independent of the electron spin coupling.
NASA Astrophysics Data System (ADS)
Yang, Aiyun; Xia, Caijuan; Zhang, Boqun; Wang, Jun; Su, Yaoheng; Tu, Zheyan
2018-02-01
By applying first-principles method based on density functional theory combined with nonequilibrium Green’s function, we investigate the effect of torsion angle on the electronic transport properties in dipyrimidinyl-diphenyl co-oligomer molecular device with tailoring graphene nanoribbon electrodes. The results show that the torsion angle plays an important role on the electronic transport properties of the molecular device. When the torsion angle rotates from 0∘ to 90∘, the molecular devices exhibit very different current-voltage characteristics which can realize the on and off states of the molecular switch.
Numerical Solution of the Electron Transport Equation in the Upper Atmosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, Mark Christopher; Holmes, Mark; Sailor, William C
A new approach for solving the electron transport equation in the upper atmosphere is derived. The problem is a very stiff boundary value problem, and to obtain an accurate numerical solution, matrix factorizations are used to decouple the fast and slow modes. A stable finite difference method is applied to each mode. This solver is applied to a simplifieed problem for which an exact solution exists using various versions of the boundary conditions that might arise in a natural auroral display. The numerical and exact solutions are found to agree with each other to at least two significant digits.
Nonequilibrium Transport and the Bernoulli Effect of Electrons in a Two-Dimensional Electron Gas
NASA Astrophysics Data System (ADS)
Kaya, Ismet I.
2013-02-01
Nonequilibrium transport of charged carriers in a two-dimensional electron gas is summarized from an experimental point of view. The transport regime in which the electron-electron interactions are enhanced at high bias leads to a range of striking effects in a two-dimensional electron gas. This regime of transport is quite different than the ballistic transport in which particles propagate coherently with no intercarrier energy transfer and the diffusive transport in which the momentum of the electron system is lost with the involvement of the phonons. Quite a few hydrodynamic phenomena observed in classical gasses have the electrical analogs in the current flow. When intercarrier scattering events dominate the transport, the momentum sharing via narrow angle scattering among the hot and cold electrons lead to negative resistance and electron pumping which can be viewed as the analog of the Bernoulli-Venturi effect observed classical gasses. The recent experimental findings and the background work in the field are reviewed.
Gómez-Arbeláez, Diego; Camacho, Paul A.; Cohen, Daniel D.; Rincón-Romero, Katherine; Alvarado-Jurado, Laura; Pinzón, Sandra; Duperly, John; López-Jaramillo, Patricio
2014-01-01
Background: The current “epidemic” of childhood obesity is described as being driven by modern lifestyles with associated socioeconomic and environmental changes that modify dietary habits, discourage physical activity and encourage sedentary behaviors. Objective: To evaluate the association between household income and the availability of electronic devices and transport at home, and the values of waist circumference (WC), as an indicator of abdominal obesity, in children and adolescents from Bucaramanga, Colombia. Methods: Cross-sectional study of public elementary and high school population, of low-middle socioeconomic status. Results: A total of 668 schoolchildren were recruited. After adjusting for potential confounders, significant positive associations between waist circumference and higher household income (p = 0.011), and waist circumference and the availability of electronic devices and transport at home (p = 0.026) were found. Conclusions: In low-middle socioeconomic status schoolchildren in a developing country, those from relatively more affluent families had greater waist circumference, an association that is opposite to that observed in developed countries. This finding could be related to higher income family’s ability to purchase electronic devices and motorized transport which discourage physical activity and for their children to buy desirable and more costly western fast food. PMID:24514426
RF kicker cavity to increase control in common transport lines
Douglas, David R.; Ament, Lucas J. P.
2017-04-18
A method of controlling e-beam transport where electron bunches with different characteristics travel through the same beam pipe. An RF kicker cavity is added at the beginning of the common transport pipe or at various locations along the common transport path to achieve independent control of different bunch types. RF energy is applied by the kicker cavity kicks some portion of the electron bunches, separating the bunches in phase space to allow independent control via optics, or separating bunches into different beam pipes. The RF kicker cavity is operated at a specific frequency to enable kicking of different types of bunches in different directions. The phase of the cavity is set such that the selected type of bunch passes through the cavity when the RF field is at a node, leaving that type of bunch unaffected. Beam optics may be added downstream of the kicker cavity to cause a further separation in phase space.
[Anaerobic reduction of humus/Fe (III) and electron transport mechanism of Fontibacter sp. SgZ-2].
Ma, Chen; Yang, Gui-qin; Lu, Qin; Zhou, Shun-gui
2014-09-01
Humus and Fe(III) respiration are important extracellular respiration metabolism. Electron transport pathway is the key issue of extracellular respiration. To understand the electron transport properties and the environmental behavior of a novel Fe(III)- reducing bacterium, Fontibacter sp. SgZ-2, capacities of anaerobic humus/Fe(III) reduction and electron transport mechanisms with four electron acceptors were investigated in this study. The results of anaerobic batch experiments indicated that strain SgZ-2 had the ability to reduce humus analog [ 9,10-anthraquinone-2,6-disulfonic acid (AQDS) and 9,10-anthraquinone-2-sulfonic acid (AQS)], humic acids (HA), soluble Fe(III) (Fe-EDTA and Fe-citrate) and Fe(III) oxides [hydrous ferric oxide (HFO)]. Fermentative sugars (glucose and sucrose) were the most effective electron donors in the humus/Fe(III) reduction by strain SgZ-2. Additionally, differences of electron carrier participating in the process of electron transport with different electron acceptors (i. e. , oxygen, AQS, Fe-EDTA and HFO) were investigated using respiratory inhibitors. The results suggested that similar respiratory chain components were involved in the reducing process of oxygen and Fe-EDTA, including dehydrogenase, quinones and cytochromes b-c. In comparison, only dehydrogenase was found to participate in the reduction of AQS and HFO. In conclusion, different electron transport pathways may be employed by strain SgZ-2 between insoluble and soluble electron acceptors or among soluble electron acceptors. Preliminary models of electron transport pathway with four electron acceptors were proposed for strain SgZ-2, and the study of electron transport mechanism was explored to the genus Fontibacter. All the results from this study are expected to help understand the electron transport properties and the environmental behavior of the genus Fontibacter.
Wu, Han-Chun; Chaika, Alexander N; Huang, Tsung-Wei; Syrlybekov, Askar; Abid, Mourad; Aristov, Victor Yu; Molodtsova, Olga V; Babenkov, Sergey V; Marchenko, D; Sánchez-Barriga, Jaime; Mandal, Partha Sarathi; Varykhalov, Andrei Yu; Niu, Yuran; Murphy, Barry E; Krasnikov, Sergey A; Lübben, Olaf; Wang, Jing Jing; Liu, Huajun; Yang, Li; Zhang, Hongzhou; Abid, Mohamed; Janabi, Yahya T; Molotkov, Sergei N; Chang, Ching-Ray; Shvets, Igor
2015-09-22
Trilayer graphene exhibits exceptional electronic properties that are of interest both for fundamental science and for technological applications. The ability to achieve a high on-off current ratio is the central question in this field. Here, we propose a simple method to achieve a current on-off ratio of 10(4) by opening a transport gap in Bernal-stacked trilayer graphene. We synthesized Bernal-stacked trilayer graphene with self-aligned periodic nanodomain boundaries (NBs) on the technologically relevant vicinal cubic-SiC(001) substrate and performed electrical measurements. Our low-temperature transport measurements clearly demonstrate that the self-aligned periodic NBs can induce a charge transport gap greater than 1.3 eV. More remarkably, the transport gap of ∼0.4 eV persists even at 100 K. Our results show the feasibility of creating new electronic nanostructures with high on-off current ratios using graphene on cubic-SiC.
Bao, Zhong-Min; Xu, Rui-Peng; Li, Chi; Xie, Zhong-Zhi; Zhao, Xin-Dong; Zhang, Yi-Bo; Li, Yan-Qing; Tang, Jian-Xin
2016-08-31
Charge transport at organic/inorganic hybrid contacts significantly affects the performance of organic optoelectronic devices because the unfavorable energy level offsets at these interfaces can hinder charge injection or extraction due to large barrier heights. Herein, we report a technologically relevant method to functionalize a traditional hole-transport layer of solution-processed nickel oxide (NiOx) with various interlayers. The photoemission spectroscopy measurements reveal the continuous tuning of the NiOx substrate work function ranging from 2.5 to 6.6 eV, enabling the alignment transition of energy levels between the Schottky-Mott limit and Fermi level pinning at the organic/composite NiOx interface. As a result, switching hole and electron transport for the active organic material on the composite NiOx layer is achieved due to the controlled carrier injection/extraction barriers. The experimental findings indicate that tuning the work function of metal oxides with optimum energy level offsets can facilitate the charge transport at organic/electrode contacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cramer, Christopher J.
Charge transfer and charge transport in photoactivated systems are fundamental processes that underlie solar energy capture, solar energy conversion, and photoactivated catalysis, both organometallic and enzymatic. We developed methods, algorithms, and software tools needed for reliable treatment of the underlying physics for charge transfer and charge transport, an undertaking with broad applicability to the goals of the fundamental-interaction component of the Department of Energy Office of Basic Energy Sciences and the exascale initiative of the Office of Advanced Scientific Computing Research.
Nano-soldering to single atomic layer
Girit, Caglar O [Berkeley, CA; Zettl, Alexander K [Kensington, CA
2011-10-11
A simple technique to solder submicron sized, ohmic contacts to nanostructures has been disclosed. The technique has several advantages over standard electron beam lithography methods, which are complex, costly, and can contaminate samples. To demonstrate the soldering technique graphene, a single atomic layer of carbon, has been contacted, and low- and high-field electronic transport properties have been measured.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dave, Mudra R., E-mail: mdave-phy@yahoo.co.in; Sharma, A. C.
2015-06-24
The structural, electronic and magnetic properties of free standing Au-Pd bimetallic atomic chain is studied using ab-initio method. It is found that electronic and magnetic properties of chains depend on position of atoms and number of atoms. Spin polarization factor for different atomic configuration of atomic chain is calculated predicting a half metallic behavior. It suggests a total spin polarised transport in these chains.
Shikanai, Toshiharu; Yamamoto, Hiroshi
2017-01-09
Photosynthetic electron transport is coupled to proton translocation across the thylakoid membrane, resulting in the formation of a trans-thylakoid proton gradient (ΔpH) and membrane potential (Δψ). Ion transporters and channels localized to the thylakoid membrane regulate the contribution of each component to the proton motive force (pmf). Although both ΔpH and Δψ contribute to ATP synthesis as pmf, only ΔpH downregulates photosynthetic electron transport via the acidification of the thylakoid lumen by inducing thermal dissipation of excessive absorbed light energy from photosystem II antennae and slowing down of the electron transport through the cytochrome b 6 f complex. To optimize the tradeoff between efficient light energy utilization and protection of both photosystems against photodamage, plants have to regulate the pmf amplitude and its components, ΔpH and Δψ. Cyclic electron transport around photosystem I (PSI) is a major regulator of the pmf amplitude by generating pmf independently of the net production of NADPH by linear electron transport. Chloroplast ATP synthase relaxes pmf for ATP synthesis, and its activity should be finely tuned for maintaining the size of the pmf during steady-state photosynthesis. Pseudo-cyclic electron transport mediated by flavodiiron protein (Flv) forms a large electron sink, which is essential for PSI photoprotection in fluctuating light in cyanobacteria. Flv is conserved from cyanobacteria to gymnosperms but not in angiosperms. The Arabidopsis proton gradient regulation 5 (pgr5) mutant is defective in the main pathway of PSI cyclic electron transport. By introducing Physcomitrella patens genes encoding Flvs, the function of PSI cyclic electron transport was substituted by that of Flv-dependent pseudo-cyclic electron transport. In transgenic plants, the size of the pmf was complemented to the wild-type level but the contribution of ΔpH to the total pmf was lower than that in the wild type. In the pgr5 mutant, the size of the pmf was drastically lowered by the absence of PSI cyclic electron transport. In the mutant, ΔpH occupied the majority of pmf, suggesting the presence of a mechanism for the homeostasis of luminal pH in the light. To avoid damage to photosynthetic electron transport by periods of excess solar energy, plants employ an intricate regulatory network involving alternative electron transport pathways, ion transporters/channels, and pH-dependent mechanisms for downregulating photosynthetic electron transport. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Härtle, R.; Cohen, G.; Reichman, D. R.; Millis, A. J.
2013-12-01
The interplay between interference effects and electron-electron interactions in electron transport through an interacting double quantum dot system is investigated using a hierarchical quantum master equation approach which becomes exact if carried to infinite order and converges well if the temperature is not too low. Decoherence due to electron-electron interactions is found to give rise to pronounced negative differential resistance, enhanced broadening of structures in current-voltage characteristics, and an inversion of the electronic population. Dependence on gate voltage is shown to be a useful method of distinguishing decoherence-induced phenomena from effects induced by other mechanisms such as the presence of a blocking state. Comparison of results obtained by the hierarchical quantum master equation approach to those obtained from the Born-Markov approximation to the Nakajima-Zwanzig equation and from the noncrossing approximation to the nonequilibrium Green's function reveals the importance of an interdot coupling that originates from the energy dependence of the conduction bands in the leads and the need for a systematic perturbative expansion.
NASA Astrophysics Data System (ADS)
Iwamoto, Yosuke
2018-03-01
In this study, the Monte Carlo displacement damage calculation method in the Particle and Heavy-Ion Transport code System (PHITS) was improved to calculate displacements per atom (DPA) values due to irradiation by electrons (or positrons) and gamma rays. For the damage due to electrons and gamma rays, PHITS simulates electromagnetic cascades using the Electron Gamma Shower version 5 (EGS5) algorithm and calculates DPA values using the recoil energies and the McKinley-Feshbach cross section. A comparison of DPA values calculated by PHITS and the Monte Carlo assisted Classical Method (MCCM) reveals that they were in good agreement for gamma-ray irradiations of silicon and iron at energies that were less than 10 MeV. Above 10 MeV, PHITS can calculate DPA values not only for electrons but also for charged particles produced by photonuclear reactions. In DPA depth distributions under electron and gamma-ray irradiations, build-up effects can be observed near the target's surface. For irradiation of 90-cm-thick carbon by protons with energies of more than 30 GeV, the ratio of the secondary electron DPA values to the total DPA values is more than 10% and increases with an increase in incident energy. In summary, PHITS can calculate DPA values for all particles and materials over a wide energy range between 1 keV and 1 TeV for electrons, gamma rays, and charged particles and between 10-5 eV and 1 TeV for neutrons.
Veazey, Joshua P; Reguera, Gemma; Tessmer, Stuart H
2011-12-01
The metal-reducing bacterium Geobacter sulfurreducens produces conductive protein appendages known as "pilus nanowires" to transfer electrons to metal oxides and to other cells. These processes can be harnessed for the bioremediation of toxic metals and the generation of electricity in bioelectrochemical cells. Key to these applications is a detailed understanding of how these nanostructures conduct electrons. However, to the best of our knowledge, their mechanism of electron transport is not known. We used the capability of scanning tunneling microscopy (STM) to probe conductive materials with higher spatial resolution than other scanning probe methods to gain insights into the transversal electronic behavior of native, cell-anchored pili. Despite the presence of insulating cellular components, the STM topography resolved electronic molecular substructures with periodicities similar to those reported for the pilus shaft. STM spectroscopy revealed electronic states near the Fermi level, consistent with a conducting material, but did not reveal electronic states expected for cytochromes. Furthermore, the transversal conductance was asymmetric, as previously reported for assemblies of helical peptides. Our results thus indicate that the Geobacter pilus shaft has an intrinsic electronic structure that could play a role in charge transport.
A tunable electronic beam splitter realized with crossed graphene nanoribbons
NASA Astrophysics Data System (ADS)
Brandimarte, Pedro; Engelund, Mads; Papior, Nick; Garcia-Lekue, Aran; Frederiksen, Thomas; Sánchez-Portal, Daniel
2017-03-01
Graphene nanoribbons (GNRs) are promising components in future nanoelectronics due to the large mobility of graphene electrons and their tunable electronic band gap in combination with recent experimental developments of on-surface chemistry strategies for their growth. Here, we explore a prototype 4-terminal semiconducting device formed by two crossed armchair GNRs (AGNRs) using state-of-the-art first-principles transport methods. We analyze in detail the roles of intersection angle, stacking order, inter-GNR separation, GNR width, and finite voltages on the transport characteristics. Interestingly, when the AGNRs intersect at θ =60° , electrons injected from one terminal can be split into two outgoing waves with a tunable ratio around 50% and with almost negligible back-reflection. The split electron wave is found to propagate partly straight across the intersection region in one ribbon and partly in one direction of the other ribbon, i.e., in analogy with an optical beam splitter. Our simulations further identify realistic conditions for which this semiconducting device can act as a mechanically controllable electronic beam splitter with possible applications in carbon-based quantum electronic circuits and electron optics. We rationalize our findings with a simple model suggesting that electronic beam splitters can generally be realized with crossed GNRs.
ecode - Electron Transport Algorithm Testing v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franke, Brian C.; Olson, Aaron J.; Bruss, Donald Eugene
2016-10-05
ecode is a Monte Carlo code used for testing algorithms related to electron transport. The code can read basic physics parameters, such as energy-dependent stopping powers and screening parameters. The code permits simple planar geometries of slabs or cubes. Parallelization consists of domain replication, with work distributed at the start of the calculation and statistical results gathered at the end of the calculation. Some basic routines (such as input parsing, random number generation, and statistics processing) are shared with the Integrated Tiger Series codes. A variety of algorithms for uncertainty propagation are incorporated based on the stochastic collocation and stochasticmore » Galerkin methods. These permit uncertainty only in the total and angular scattering cross sections. The code contains algorithms for simulating stochastic mixtures of two materials. The physics is approximate, ranging from mono-energetic and isotropic scattering to screened Rutherford angular scattering and Rutherford energy-loss scattering (simple electron transport models). No production of secondary particles is implemented, and no photon physics is implemented.« less
Electronic transport close to semi-infinite 2D systems and their interfaces
NASA Astrophysics Data System (ADS)
Xia, Fanbing; Wang, Jian; Jian Wang's research Group Team
Transport properties of 2D materials especially close to their boundary has received much attention after the successful fabrication of Graphene. While most previous work is devoted to the conventional lead-device-lead setup with a finite size center area, this project investigates real space transport properties of infinite and semi-infinite 2D systems under the framework of Non-equilibrium Green's function. The commonly used method of calculating Green's function by inverting matrices in the real space can be unstable in dealing with large systems as sometimes it gives non-converging result. By transforming from the real space to momentum space, the author managed to replace the matrix inverting process by Brillouin Zone integral which can be greatly simplified by the application of contour integral. Combining this methodology with Dyson equations, we are able to calculate transport properties of semi-infinite graphene close to its zigzag boundary and its combination with other material including s-wave superconductor. Interference pattern of transmitted and reflected electrons, Graphene lensing effects and difference between Specular Andreev reflection and normal Andreev reflection are verified. We also generalize how to apply this method to a broad range of 2D materials. The University of Hong Kong.
NASA Astrophysics Data System (ADS)
Li, Dongde; Wu, Di; Zhang, Xiaojiao; Zeng, Bowen; Li, Mingjun; Duan, Haiming; Yang, Bingchu; Long, Mengqiu
2018-05-01
The spin-dependent electronic transport properties of M(dcdmp)2 (M = Cu, Au, Co, Ni; dcdmp = 2,3-dicyano-5,6-dimercaptopyrazyne) molecular devices based on zigzag graphene nanoribbon (ZGNR) electrodes were investigated by density functional theory combined nonequilibrium Green's function method (DFT-NEGF). Our results show that the spin-dependent transport properties of the M(dcdmp)2 molecular devices can be controlled by the spin configurations of the ZGNR electrodes, and the central 3d-transition metal atom can introduce a larger magnetism than that of the nonferrous metal one. Moreover, the perfect spin filtering effect, negative differential resistance, rectifying effect and magnetic resistance phenomena can be observed in our proposed M(dcdmp)2 molecular devices.
Advances in the simulation of toroidal gyro-Landau fluid model turbulence
NASA Astrophysics Data System (ADS)
Waltz, R. E.; Kerbel, G. D.; Milovich, J.; Hammett, G. W.
1995-06-01
The gyro-Landau fluid (GLF) model equations for toroidal geometry [R. E. Waltz, R. R. Dominguez, and G. W. Hammett, Phys. Fluids B 4, 3138 (1992)] have been recently applied to study ion temperature gradient (ITG) mode turbulence using the three-dimensional (3-D) nonlinear ballooning mode representation (BMR) outlined earlier [R. E. Waltz, G. D. Kerbel, and J. Milovich, Phys. Plasmas 1, 2229 (1994)]. The present paper extends this work by treating some unresolved issues concerning ITG turbulence with adiabatic electrons. Although eddies are highly elongated in the radial direction, long time radial correlation lengths are short and comparable to poloidal lengths. Although transport at vanishing shear is not particularly large, transport at reverse global shear, is significantly less. Electrostatic transport at moderate shear is not much affected by inclusion of local shear and average favorable curvature. Transport is suppressed when critical E×B rotational shear is comparable to the maximum linear growth rate with only a weak dependence on magnetic shear. Self-consistent turbulent transport of toroidal momentum can result in a transport bifurcation at sufficiently large r/(Rq). However, the main thrust of the new formulation in the paper deals with advances in the development of finite beta GLF models with trapped electrons and BMR numerical methods for treating the fast parallel field motion of the untrapped electrons.
NASA Astrophysics Data System (ADS)
Sharma, Diksha; Badal, Andreu; Badano, Aldo
2012-04-01
The computational modeling of medical imaging systems often requires obtaining a large number of simulated images with low statistical uncertainty which translates into prohibitive computing times. We describe a novel hybrid approach for Monte Carlo simulations that maximizes utilization of CPUs and GPUs in modern workstations. We apply the method to the modeling of indirect x-ray detectors using a new and improved version of the code \\scriptsize{{MANTIS}}, an open source software tool used for the Monte Carlo simulations of indirect x-ray imagers. We first describe a GPU implementation of the physics and geometry models in fast\\scriptsize{{DETECT}}2 (the optical transport model) and a serial CPU version of the same code. We discuss its new features like on-the-fly column geometry and columnar crosstalk in relation to the \\scriptsize{{MANTIS}} code, and point out areas where our model provides more flexibility for the modeling of realistic columnar structures in large area detectors. Second, we modify \\scriptsize{{PENELOPE}} (the open source software package that handles the x-ray and electron transport in \\scriptsize{{MANTIS}}) to allow direct output of location and energy deposited during x-ray and electron interactions occurring within the scintillator. This information is then handled by optical transport routines in fast\\scriptsize{{DETECT}}2. A load balancer dynamically allocates optical transport showers to the GPU and CPU computing cores. Our hybrid\\scriptsize{{MANTIS}} approach achieves a significant speed-up factor of 627 when compared to \\scriptsize{{MANTIS}} and of 35 when compared to the same code running only in a CPU instead of a GPU. Using hybrid\\scriptsize{{MANTIS}}, we successfully hide hours of optical transport time by running it in parallel with the x-ray and electron transport, thus shifting the computational bottleneck from optical to x-ray transport. The new code requires much less memory than \\scriptsize{{MANTIS}} and, as a result, allows us to efficiently simulate large area detectors.
Absorptive pinhole collimators for ballistic Dirac fermions in graphene
Barnard, Arthur W.; Hughes, Alex; Sharpe, Aaron L.; Watanabe, Kenji; Taniguchi, Takashi; Goldhaber-Gordon, David
2017-01-01
Ballistic electrons in solids can have mean free paths far larger than the smallest features patterned by lithography. This has allowed development and study of solid-state electron-optical devices such as beam splitters and quantum point contacts, which have informed our understanding of electron flow and interactions. Recently, high-mobility graphene has emerged as an ideal two-dimensional semimetal that hosts unique chiral electron-optical effects due to its honeycomb crystalline lattice. However, this chiral transport prevents the simple use of electrostatic gates to define electron-optical devices in graphene. Here we present a method of creating highly collimated electron beams in graphene based on collinear pairs of slits, with absorptive sidewalls between the slits. By this method, we achieve beams with angular width 18° or narrower, and transmission matching classical ballistic predictions. PMID:28504264
NASA Astrophysics Data System (ADS)
Jardin, A.; Mazon, D.; Malard, P.; O'Mullane, M.; Chernyshova, M.; Czarski, T.; Malinowski, K.; Kasprowicz, G.; Wojenski, A.; Pozniak, K.
2017-08-01
The tokamak WEST aims at testing ITER divertor high heat flux component technology in long pulse operation. Unfortunately, heavy impurities like tungsten (W) sputtered from the plasma facing components can pollute the plasma core by radiation cooling in the soft x-ray (SXR) range, which is detrimental for the energy confinement and plasma stability. SXR diagnostics give valuable information to monitor impurities and study their transport. The WEST SXR diagnostic is composed of two new cameras based on the Gas Electron Multiplier (GEM) technology. The WEST GEM cameras will be used for impurity transport studies by performing 2D tomographic reconstructions with spectral resolution in tunable energy bands. In this paper, we characterize the GEM spectral response and investigate W density reconstruction thanks to a synthetic diagnostic recently developed and coupled with a tomography algorithm based on the minimum Fisher information (MFI) inversion method. The synthetic diagnostic includes the SXR source from a given plasma scenario, the photoionization, electron cloud transport and avalanche in the detection volume using Magboltz, and tomographic reconstruction of the radiation from the GEM signal. Preliminary studies of the effect of transport on the W ionization equilibrium and on the reconstruction capabilities are also presented.
One-Dimensional Electron Transport Layers for Perovskite Solar Cells
Thakur, Ujwal K.; Kisslinger, Ryan; Shankar, Karthik
2017-01-01
The electron diffusion length (Ln) is smaller than the hole diffusion length (Lp) in many halide perovskite semiconductors meaning that the use of ordered one-dimensional (1D) structures such as nanowires (NWs) and nanotubes (NTs) as electron transport layers (ETLs) is a promising method of achieving high performance halide perovskite solar cells (HPSCs). ETLs consisting of oriented and aligned NWs and NTs offer the potential not merely for improved directional charge transport but also for the enhanced absorption of incoming light and thermodynamically efficient management of photogenerated carrier populations. The ordered architecture of NW/NT arrays affords superior infiltration of a deposited material making them ideal for use in HPSCs. Photoconversion efficiencies (PCEs) as high as 18% have been demonstrated for HPSCs using 1D ETLs. Despite the advantages of 1D ETLs, there are still challenges that need to be overcome to achieve even higher PCEs, such as better methods to eliminate or passivate surface traps, improved understanding of the hetero-interface and optimization of the morphology (i.e., length, diameter, and spacing of NWs/NTs). This review introduces the general considerations of ETLs for HPSCs, deposition techniques used, and the current research and challenges in the field of 1D ETLs for perovskite solar cells. PMID:28468280
Electron-beam induced nano-etching of suspended graphene
Sommer, Benedikt; Sonntag, Jens; Ganczarczyk, Arkadius; Braam, Daniel; Prinz, Günther; Lorke, Axel; Geller, Martin
2015-01-01
Besides its interesting physical properties, graphene as a two-dimensional lattice of carbon atoms promises to realize devices with exceptional electronic properties, where freely suspended graphene without contact to any substrate is the ultimate, truly two-dimensional system. The practical realization of nano-devices from suspended graphene, however, relies heavily on finding a structuring method which is minimally invasive. Here, we report on the first electron beam-induced nano-etching of suspended graphene and demonstrate high-resolution etching down to ~7 nm for line-cuts into the monolayer graphene. We investigate the structural quality of the etched graphene layer using two-dimensional (2D) Raman maps and demonstrate its high electronic quality in a nano-device: A 25 nm-wide suspended graphene nanoribbon (GNR) that shows a transport gap with a corresponding energy of ~60 meV. This is an important step towards fast and reliable patterning of suspended graphene for future ballistic transport, nano-electronic and nano-mechanical devices. PMID:25586495
Two-dimensional electronic transport and surface electron accumulation in MoS2.
Siao, M D; Shen, W C; Chen, R S; Chang, Z W; Shih, M C; Chiu, Y P; Cheng, C-M
2018-04-12
Because the surface-to-volume ratio of quasi-two-dimensional materials is extremely high, understanding their surface characteristics is crucial for practically controlling their intrinsic properties and fabricating p-type and n-type layered semiconductors. Van der Waals crystals are expected to have an inert surface because of the absence of dangling bonds. However, here we show that the surface of high-quality synthesized molybdenum disulfide (MoS 2 ) is a major n-doping source. The surface electron concentration of MoS 2 is nearly four orders of magnitude higher than that of its inner bulk. Substantial thickness-dependent conductivity in MoS 2 nanoflakes was observed. The transfer length method suggested the current transport in MoS 2 following a two-dimensional behavior rather than the conventional three-dimensional mode. Scanning tunneling microscopy and angle-resolved photoemission spectroscopy measurements confirmed the presence of surface electron accumulation in this layered material. Notably, the in situ-cleaved surface exhibited a nearly intrinsic state without electron accumulation.
Insights into the post-transcriptional regulation of the mitochondrial electron transport chain.
Sirey, Tamara M; Ponting, Chris P
2016-10-15
The regulation of the mitochondrial electron transport chain is central to the control of cellular homeostasis. There are significant gaps in our understanding of how the expression of the mitochondrial and nuclear genome-encoded components of the electron transport chain are co-ordinated, and how the assembly of the protein complexes that constitute the electron transport chain are regulated. Furthermore, the role post-transcriptional gene regulation may play in modulating these processes needs to be clarified. This review summarizes the current knowledge regarding the post-transcriptional gene regulation of the electron transport chain and highlights how noncoding RNAs may contribute significantly both to complex electron transport chain regulatory networks and to mitochondrial dysfunction. © 2016 The Author(s).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Priimak, Dmitri
2014-12-01
We present a finite difference numerical algorithm for solving two dimensional spatially homogeneous Boltzmann transport equation which describes electron transport in a semiconductor superlattice subject to crossed time dependent electric and constant magnetic fields. The algorithm is implemented both in C language targeted to CPU and in CUDA C language targeted to commodity NVidia GPU. We compare performances and merits of one implementation versus another and discuss various software optimisation techniques.
The cytochrome b6f complex at the crossroad of photosynthetic electron transport pathways.
Tikhonov, Alexander N
2014-08-01
Regulation of photosynthetic electron transport at the level of the cytochrome b6f complex provides efficient performance of the chloroplast electron transport chain (ETC). In this review, after brief overview of the structural organization of the chloroplast ETC, the consideration of the problem of electron transport control is focused on the plastoquinone (PQ) turnover and its interaction with the b6f complex. The data available show that the rates of plastoquinol (PQH2) formation in PSII and its diffusion to the b6f complex do not limit the overall rate of electron transfer between photosystem II (PSII) and photosystem I (PSI). Analysis of experimental and theoretical data demonstrates that the rate-limiting step in the intersystem chain of electron transport is determined by PQH2 oxidation at the Qo-site of the b6f complex, which is accompanied by the proton release into the thylakoid lumen. The acidification of the lumen causes deceleration of PQH2 oxidation, thus impeding the intersystem electron transport. Two other mechanisms of regulation of the intersystem electron transport have been considered: (i) "state transitions" associated with the light-induced redistribution of solar energy between PSI and PSII, and (ii) redistribution of electron fluxes between alternative pathways (noncyclic electron transport and cyclic electron flow around PSI). Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Transient electroluminescence on pristine and degraded phosphorescent blue OLEDs
NASA Astrophysics Data System (ADS)
Niu, Quan; Blom, Paul W. M.; May, Falk; Heimel, Paul; Zhang, Minlu; Eickhoff, Christian; Heinemeyer, Ute; Lennartz, Christian; Crǎciun, N. Irina
2017-11-01
In state-of-the-art blue phosphorescent organic light-emitting diode (PHOLED) device architectures, electrons and holes are injected into the emissive layer, where they are carried by the emitting and hole transporting units, respectively. Using transient electroluminescence measurements, we disentangle the contribution of the electrons and holes on the transport and efficiency of both pristine and degraded PHOLEDs. By varying the concentration of hole transporting units, we show that for pristine PHOLEDs, the transport is electron dominated. Furthermore, degradation of the PHOLEDs upon electrical aging is not related to the hole transport but is governed by a decrease in the electron transport due to the formation of electron traps.
Zn2GeO4 nanowires as efficient electron injection material for electroluminescent devices.
Wang, Jiangxin; Yan, Chaoyi; Magdassi, Shlomo; Lee, Pooi See
2013-08-14
Pure phase Zn2GeO4 nanowires (NWs) were grown by the chemical vapor transport method on p-GaN: Mg/Al2O3 substrate. The as-grown Zn2GeO4 NWs exhibited n-type characteristic due to native defects and formed a p-n heterojunction with the p-GaN substrate. The unique energy level of Zn2GeO4 NWs promotes electron injection into GaN active region while suppressing hole injection into Zn2GeO4 NWs. The device exhibited an emission centered at 426 nm and a low turn-on voltage around 4 V. Zn2GeO4 NWs are first reported in this paper as promising electron transport and injection material for electroluminescent devices.
Polarization of electron-beam irradiated LDPE films: contribution to charge generation and transport
NASA Astrophysics Data System (ADS)
Banda, M. E.; Griseri, V.; Teyssèdre, G.; Le Roy, S.
2018-04-01
Electron-beam irradiation is an alternative way to generate charges in insulating materials, at controlled position and quantity, in order to monitor their behaviour in regard to transport phenomena under the space charge induced electric field or external field applied. In this study, low density polyethylene (LDPE) films were irradiated by a 80 keV electron-beam with a flux of 1 nA cm‑2 during 10 min in an irradiation chamber under vacuum conditions, and were then characterized outside the chamber using three experimental methods. The electrical behaviour of the irradiated material was assessed by space charge measurements using the pulsed electro-acoustic (PEA) method under dc stress. The influence of the applied electric field polarity and amplitude has been tested in order to better understand the charge behaviour after electron-beam irradiation. Fourier transform infra-red spectroscopy (FTIR) and photoluminescence (PL) measurements were performed to evaluate the impact of the electron beam irradiation, i.e. deposited charges and energy, on the chemical structure of the irradiated samples. The present results show that the electrical behaviour in LDPE after irradiation is mostly driven by charges, i.e. by physical process functions of the electric field, and that changes in the chemical structure seems to be mild.
Advanced Terrain Displays for Transport Category Aircraft
DOT National Transportation Integrated Search
1992-02-01
A preliminary evaluation of terrain information presentation methods was conducted in a part-task simulation study. Pilots qualified on autoflight aircraft used both paper and prototypical electronic instrument approach plate formats to obtain terrai...
First-principles studies of electronic, transport and bulk properties of pyrite FeS2
NASA Astrophysics Data System (ADS)
Banjara, Dipendra; Mbolle, Augustine; Malozovsky, Yuriy; Franklin, Lashounda; Bagayoko, Diola
We present results of ab-initio, self-consistent density functional theory (DFT) calculations of electronic, transport, and bulk properties of pyrite FeS2. We employed a local density approximation (LDA) potential and the linear combination of atomic orbitals (LCAO) formalism, following the Bagayoko, Zhao and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). The BZW-EF method requires successive, self consistent calculations with increasing basis sets to reach the ground state of the system under study. We report the band structure, the band gap, total and partial densities of states, effective masses, and the bulk modulus. Work funded in part by the US Department of Energy (DOE), National Nuclear Security Administration (NNSA) (Award No.DE-NA0002630), the National Science Foundation (NSF) (Award No, 1503226), LaSPACE, and LONI-SUBR.
Ionic and electronic transport properties in dense plasmas by orbital-free density functional theory
Sjostrom, Travis; Daligault, Jérôme
2015-12-09
We validate the application of our recent orbital-free density functional theory (DFT) approach, [Phys. Rev. Lett. 113, 155006 (2014)], for the calculation of ionic and electronic transport properties of dense plasmas. To this end, we calculate the self-diffusion coefficient, the viscosity coefficient, the electrical and thermal conductivities, and the reflectivity coefficient of hydrogen and aluminum plasmas. Very good agreement is found with orbital-based Kohn-Sham DFT calculations at lower temperatures. Because the computational costs of the method do not increase with temperature, we can produce results at much higher temperatures than is accessible by the Kohn-Sham method. Our results for warmmore » dense aluminum at solid density are inconsistent with the recent experimental results reported by Sperling et al. [Phys. Rev. Lett. 115, 115001 (2015)].« less
Mante, Pierre-Adrien; Stoumpos, Constantinos C.; Kanatzidis, Mercouri G.; ...
2017-02-08
The intrinsic properties of CH 3NH 3PbI 3 are still largely unknown in spite of the great amount of attention it has received for its solar cell application. Mobility of charges is a quintessential property in this aspect; however, there is still no clear understanding of electron transport, as reported values span over three orders of magnitude. Here we develop a method to measure the electron and hole deformation potentials using coherent acoustic phonons generated by femtosecond laser pulses. Furthermore, we apply this method to characterize a CH 3NH 3PbI 3 single crystal.We measure the acoustic phonon properties and characterizemore » electron-acoustic phonon scattering. Then, using the deformation potential theory, we calculate the carrier intrinsic mobility and compare it to the reported experimental and theoretical values. These results reveal high electron and hole mobilities of 2,800 and 9,400 cm 2V -1 s -1 , respectively. Comparison with literature values of mobility demonstrates the potential role played by polarons in charge transport in CH 3NH 3PbI 3.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mante, Pierre-Adrien; Stoumpos, Constantinos C.; Kanatzidis, Mercouri G.
The intrinsic properties of CH 3NH 3PbI 3 are still largely unknown in spite of the great amount of attention it has received for its solar cell application. Mobility of charges is a quintessential property in this aspect; however, there is still no clear understanding of electron transport, as reported values span over three orders of magnitude. Here we develop a method to measure the electron and hole deformation potentials using coherent acoustic phonons generated by femtosecond laser pulses. Furthermore, we apply this method to characterize a CH 3NH 3PbI 3 single crystal.We measure the acoustic phonon properties and characterizemore » electron-acoustic phonon scattering. Then, using the deformation potential theory, we calculate the carrier intrinsic mobility and compare it to the reported experimental and theoretical values. These results reveal high electron and hole mobilities of 2,800 and 9,400 cm 2V -1 s -1 , respectively. Comparison with literature values of mobility demonstrates the potential role played by polarons in charge transport in CH 3NH 3PbI 3.« less
Bias-dependent oscillatory electron transport of monatomic sulfur chains
NASA Astrophysics Data System (ADS)
Yu, Jing-Xin; Cheng, Yan; Sanvito, Stefano; Chen, Xiang-Rong
2012-03-01
The bias-dependent oscillatory electron transport of monatomic sulfur chains sandwiched between gold electrodes is investigated with density functional theory and non-equilibrium Green's function method. At zero bias, in contrast to the typical odd-even oscillations observed in most metallic chains, we find that the conductance oscillates with a period of four atoms. However, as the bias voltage is increased the current displays a two-atom periodicity. This emerges gradually, first for the longer chains and then, at voltages larger than 0.7 V, for lengths. The oscillatory behaviors are analyzed by the density of states and the energy-dependent and bias-dependent transmission coefficients.
Probability of detection of defects in coatings with electronic shearography
NASA Astrophysics Data System (ADS)
Maddux, Gary A.; Horton, Charles M.; Lansing, Matthew D.; Gnacek, William J.; Newton, Patrick L.
1994-07-01
The goal of this research was to utilize statistical methods to evaluate the probability of detection (POD) of defects in coatings using electronic shearography. The coating system utilized in the POD studies was to be the paint system currently utilized on the external casings of the NASA Space Transportation System (STS) Revised Solid Rocket Motor (RSRM) boosters. The population of samples was to be large enough to determine the minimum defect size for 90 percent probability of detection of 95 percent confidence POD on these coatings. Also, the best methods to excite coatings on aerospace components to induce deformations for measurement by electronic shearography were to be determined.
Probability of detection of defects in coatings with electronic shearography
NASA Technical Reports Server (NTRS)
Maddux, Gary A.; Horton, Charles M.; Lansing, Matthew D.; Gnacek, William J.; Newton, Patrick L.
1994-01-01
The goal of this research was to utilize statistical methods to evaluate the probability of detection (POD) of defects in coatings using electronic shearography. The coating system utilized in the POD studies was to be the paint system currently utilized on the external casings of the NASA Space Transportation System (STS) Revised Solid Rocket Motor (RSRM) boosters. The population of samples was to be large enough to determine the minimum defect size for 90 percent probability of detection of 95 percent confidence POD on these coatings. Also, the best methods to excite coatings on aerospace components to induce deformations for measurement by electronic shearography were to be determined.
Probability of detection of defects in coatings with electronic shearography
NASA Technical Reports Server (NTRS)
Russell, S. S.; Lansing, M. D.; Horton, C. M.; Gnacek, W. J.
1995-01-01
The goal of this research was to utilize statistical methods to evaluate the probability of detection (POD) of defects in coatings using electronic shearography. The coating system utilized in the POD studies was to be the paint system currently utilized on the external casings of the NASA space transportation system reusable solid rocket motor boosters. The population of samples was to be large enough to determine the minimum defect size for 90-percent POD of 95-percent confidence POD on these coatings. Also, the best methods to excite coatings on aerospace components to induce deformations for measurement by electronic shearography were to be determined.
Electromechanical and Chemical Sensing at the Nanoscale: DFT and Transport Modeling
NASA Astrophysics Data System (ADS)
Maiti, Amitesh
Of the many nanoelectronic applications proposed for near to medium-term commercial deployment, sensors based on carbon nanotubes (CNT) and metal-oxide nanowires are receiving significant attention from researchers. Such devices typically operate on the basis of the changes of electrical response characteristics of the active component (CNT or nanowire) when subjected to an externally applied mechanical stress or the adsorption of a chemical or bio-molecule. Practical development of such technologies can greatly benefit from quantum chemical modeling based on density functional theory (DFT), and from electronic transport modeling based on non-equilibrium Green's function (NEGF). DFT can compute useful quantities like possible bond-rearrangements, binding energy, charge transfer, and changes to the electronic structure, while NEGF can predict changes in electronic transport behavior and contact resistance. Effects of surrounding medium and intrinsic structural defects can also be taken into account. In this work we review some recent DFT and transport investigations on (1) CNT-based nano-electromechanical sensors (NEMS) and (2) gas-sensing properties of CNTs and metal-oxide nanowires. We also briefly discuss our current understanding of CNT-metal contacts which, depending upon the metal, the deposition technique, and the masking method can have a significant effect on device performance.
How to probe transverse magnetic anisotropy of a single-molecule magnet by electronic transport?
NASA Astrophysics Data System (ADS)
Misiorny, M.; Burzuri, E.; Gaudenzi, R.; Park, K.; Leijnse, M.; Wegewijs, M.; Paaske, J.; Cornia, A.; van der Zant, H.
We propose an approach for in-situ determination of the transverse magnetic anisotropy (TMA) of an individual molecule by electronic transport measurements, see Phys. Rev. B 91, 035442 (2015). We study a Fe4 single-molecule magnet (SMM) captured in a gateable junction, a unique tool for addressing the spin in different redox states of a molecule. We show that, due to mixing of the spin eigenstates of the SMM, the TMA significantly manifests itself in transport. We predict and experimentally observe the pronounced intensity modulation of the Coulomb peak amplitude with the magnetic field in the linear-response transport regime, from which the TMA parameter E can be estimated. Importantly, the method proposed here does not rely on the small induced tunnelling effects and, hence, works well at temperatures and electron tunnel broadenings by far exceeding the tunnel splittings and even E itself. We deduce that the TMA for a single Fe4 molecule captured in a junction is substantially larger than the bulk value. Work supported by the Polish Ministry of Science and Education as `Iuventus Plus' project (IP2014 030973) in years 2015-2016.
Electron transport chains in organohalide-respiring bacteria and bioremediation implications.
Wang, Shanquan; Qiu, Lan; Liu, Xiaowei; Xu, Guofang; Siegert, Michael; Lu, Qihong; Juneau, Philippe; Yu, Ling; Liang, Dawei; He, Zhili; Qiu, Rongliang
In situ remediation employing organohalide-respiring bacteria represents a promising solution for cleanup of persistent organohalide pollutants. The organohalide-respiring bacteria conserve energy by utilizing H 2 or organic compounds as electron donors and organohalides as electron acceptors. Reductive dehalogenase (RDase), a terminal reductase of the electron transport chain in organohalide-respiring bacteria, is the key enzyme that catalyzes halogen removal. Accumulating experimental evidence thus far suggests that there are distinct models for respiratory electron transfer in organohalide-respirers of different lineages, e.g., Dehalococcoides, Dehalobacter, Desulfitobacterium and Sulfurospirillum. In this review, to connect the knowledge in organohalide-respiratory electron transport chains to bioremediation applications, we first comprehensively review molecular components and their organization, together with energetics of the organohalide-respiratory electron transport chains, as well as recent elucidation of intramolecular electron shuttling and halogen elimination mechanisms of RDases. We then highlight the implications of organohalide-respiratory electron transport chains in stimulated bioremediation. In addition, major challenges and further developments toward understanding the organohalide-respiratory electron transport chains and their bioremediation applications are identified and discussed. Copyright © 2018 Elsevier Inc. All rights reserved.
Tunneling explains efficient electron transport via protein junctions.
Fereiro, Jerry A; Yu, Xi; Pecht, Israel; Sheves, Mordechai; Cuevas, Juan Carlos; Cahen, David
2018-05-15
Metalloproteins, proteins containing a transition metal ion cofactor, are electron transfer agents that perform key functions in cells. Inspired by this fact, electron transport across these proteins has been widely studied in solid-state settings, triggering the interest in examining potential use of proteins as building blocks in bioelectronic devices. Here, we report results of low-temperature (10 K) electron transport measurements via monolayer junctions based on the blue copper protein azurin (Az), which strongly suggest quantum tunneling of electrons as the dominant charge transport mechanism. Specifically, we show that, weakening the protein-electrode coupling by introducing a spacer, one can switch the electron transport from off-resonant to resonant tunneling. This is a consequence of reducing the electrode's perturbation of the Cu(II)-localized electronic state, a pattern that has not been observed before in protein-based junctions. Moreover, we identify vibronic features of the Cu(II) coordination sphere in transport characteristics that show directly the active role of the metal ion in resonance tunneling. Our results illustrate how quantum mechanical effects may dominate electron transport via protein-based junctions.
49 CFR 228.205 - Access to electronic records.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Access to electronic records. 228.205 Section 228.205 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD...; SLEEPING QUARTERS Electronic Recordkeeping § 228.205 Access to electronic records. (a) FRA inspectors and...
49 CFR 228.205 - Access to electronic records.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Access to electronic records. 228.205 Section 228.205 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD...; SLEEPING QUARTERS Electronic Recordkeeping § 228.205 Access to electronic records. (a) FRA inspectors and...
49 CFR 228.205 - Access to electronic records.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Access to electronic records. 228.205 Section 228.205 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD...; SLEEPING QUARTERS Electronic Recordkeeping § 228.205 Access to electronic records. (a) FRA inspectors and...
Beam transport and monitoring for laser plasma accelerators
NASA Astrophysics Data System (ADS)
Nakamura, K.; Sokollik, T.; van Tilborg, J.; Gonsalves, A. J.; Shaw, B.; Shiraishi, S.; Mittal, R.; De Santis, S.; Byrd, J. M.; Leemans, W.
2012-12-01
The controlled transport and imaging of relativistic electron beams from laser plasma accelerators (LPAs) are critical for their diagnostics and applications. Here we present the design and progress in the implementation of the transport and monitoring system for an undulator based electron beam diagnostic. Miniature permanent-magnet quadrupoles (PMQs) are employed to realize controlled transport of the LPA electron beams, and cavity based electron beam position monitors for non-invasive beam position detection. Also presented is PMQ calibration by using LPA electron beams with broadband energy spectrum. The results show promising performance for both transporting and monitoring. With the proper transport system, XUV-photon spectra from THUNDER will provide the momentum distribution of the electron beam with the resolution above what can be achieved by the magnetic spectrometer currently used in the LOASIS facility.
External control of electron energy distributions in a dual tandem inductively coupled plasma
NASA Astrophysics Data System (ADS)
Liu, Lei; Sridhar, Shyam; Zhu, Weiye; Donnelly, Vincent M.; Economou, Demetre J.; Logue, Michael D.; Kushner, Mark J.
2015-08-01
The control of electron energy probability functions (EEPFs) in low pressure partially ionized plasmas is typically accomplished through the format of the applied power. For example, through the use of pulse power, the EEPF can be modulated to produce shapes not possible under continuous wave excitation. This technique uses internal control. In this paper, we discuss a method for external control of EEPFs by transport of electrons between separately powered inductively coupled plasmas (ICPs). The reactor incorporates dual ICP sources (main and auxiliary) in a tandem geometry whose plasma volumes are separated by a grid. The auxiliary ICP is continuously powered while the main ICP is pulsed. Langmuir probe measurements of the EEPFs during the afterglow of the main ICP suggests that transport of hot electrons from the auxiliary plasma provided what is effectively an external source of energetic electrons. The tail of the EEPF and bulk electron temperature were then elevated in the afterglow of the main ICP by this external source of power. Results from a computer simulation for the evolution of the EEPFs concur with measured trends.
NASA Technical Reports Server (NTRS)
Friedel, R. H. W.; Bourdarie, S.; Fennell, J.; Kanekal, S.; Cayton, T. E.
2004-01-01
The highly energetic electron environment in the inner magnetosphere (GEO inward) has received a lot of research attention in resent years, as the dynamics of relativistic electron acceleration and transport are not yet fully understood. These electrons can cause deep dielectric charging in any space hardware in the MEO to GEO region. We use a new and novel approach to obtain a global representation of the inner magnetospheric energetic electron environment, which can reproduce the absolute environment (flux) for any spacecraft orbit in that region to within a factor of 2 for the energy range of 100 KeV to 5 MeV electrons, for any levels of magnetospheric activity. We combine the extensive set of inner magnetospheric energetic electron observations available at Los Alamos with the physics based Salammbo transport code, using the data assimilation technique of "nudging". This in effect input in-situ data into the code and allows the diffusion mechanisms in the code to interpolate the data into regions and times of no data availability. We present here details of the methods used, both in the data assimilation process and in the necessary inter-calibration of the input data used. We will present sample runs of the model/data code and compare the results to test spacecraft data not used in the data assimilation process.
Okamoto, Akihiro; Tokunou, Yoshihide; Saito, Junki
2016-01-01
Outer-membrane c-type cytochrome (OM c-Cyt) complexes in several genera of iron-reducing bacteria, such as Shewanella and Geobacter, are capable of transporting electrons from the cell interior to extracellular solids as a terminal step of anaerobic respiration. The kinetics of this electron transport has implications for controlling the rate of microbial electron transport during bioenergy or biochemical production, iron corrosion, and natural mineral cycling. Herein, we review the findings from in-vivo and in-vitro studies examining electron transport kinetics through single OM c-Cyt complexes in Shewanella oneidensis MR-1. In-vitro electron flux via a purified OM c-Cyt complex, comprised of MtrA, B, and C proteins from S. oneidensis MR-1, embedded in a proteoliposome system is reported to be 10- to 100-fold faster compared with in-vivo estimates based on measurements of electron flux per cell and OM c-Cyts density. As the proteoliposome system is estimated to have 10-fold higher cation flux via potassium channels than electrons, we speculate that the slower rate of electron-coupled cation transport across the OM is responsible for the significantly lower electron transport rate that is observed in-vivo. As most studies to date have primarily focused on the energetics or kinetics of interheme electron hopping in OM c-Cyts in this microbial electron transport mechanism, the proposed model involving cation transport provides new insight into the rate detemining step of EET, as well as the role of self-secreted flavin molecules bound to OM c-Cyt and proton management for energy conservation and production in S. oneidensis MR-1. PMID:27924259
NASA Astrophysics Data System (ADS)
Kwapiński, Tomasz
2017-03-01
The electron transport properties of a linear atomic chain are studied theoretically within the tight-binding Hamiltonian and the Green’s function method. Variations of the local density of states (DOS) along the chain are investigated. They are crucial in scanning tunnelling experiments and give important insight into the electron transport mechanism and charge distribution inside chains. It is found that depending on the chain parity the local DOS at the Fermi level can form cone-like structures (DOS cones) along the chain. The general condition for the local DOS oscillations is obtained and the linear behaviour of the local density function is confirmed analytically. DOS cones are characterized by a linear decay towards the chain which is in contrast to the propagation properties of charge density waves, end states and Friedel oscillations in one-dimensional systems. We find that DOS cones can appear due to non-resonant electron transport, the spin-orbit scattering or for chains fabricated on a substrate with localized electrons. It is also shown that for imperfect chains (e.g. with a reduced coupling strength between two neighboring sites) a diamond-like structure of the local DOS along the chain appears.
Electron transport in gold colloidal nanoparticle-based strain gauges.
Moreira, Helena; Grisolia, Jérémie; Sangeetha, Neralagatta M; Decorde, Nicolas; Farcau, Cosmin; Viallet, Benoit; Chen, Ke; Viau, Guillaume; Ressier, Laurence
2013-03-08
A systematic approach for understanding the electron transport mechanisms in resistive strain gauges based on assemblies of gold colloidal nanoparticles (NPs) protected by organic ligands is described. The strain gauges were fabricated from parallel micrometer wide wires made of 14 nm gold (Au) colloidal NPs on polyethylene terephthalate substrates, elaborated by convective self-assembly. Electron transport in such devices occurs by inter-particle electron tunneling through the tunnel barrier imposed by the organic ligands protecting the NPs. This tunnel barrier was varied by changing the nature of organic ligands coating the nanoparticles: citrate (CIT), phosphines (BSPP, TDSP) and thiols (MPA, MUDA). Electro-mechanical tests indicate that only the gold NPs protected by phosphine and thiol ligands yield high gauge sensitivity. Temperature-dependent resistance measurements are explained using the 'regular island array model' that extracts transport parameters, i.e., the tunneling decay constant β and the Coulomb charging energy E(C). This reveals that the Au@CIT nanoparticle assemblies exhibit a behavior characteristic of a strong-coupling regime, whereas those of Au@BSPP, Au@TDSP, Au@MPA and Au@MUDA nanoparticles manifest a weak-coupling regime. A comparison of the parameters extracted from the two methods indicates that the most sensitive gauges in the weak-coupling regime feature the highest β. Moreover, the E(C) values of these 14 nm NPs cannot be neglected in determining the β values.
Electron transport in gold colloidal nanoparticle-based strain gauges
NASA Astrophysics Data System (ADS)
Moreira, Helena; Grisolia, Jérémie; Sangeetha, Neralagatta M.; Decorde, Nicolas; Farcau, Cosmin; Viallet, Benoit; Chen, Ke; Viau, Guillaume; Ressier, Laurence
2013-03-01
A systematic approach for understanding the electron transport mechanisms in resistive strain gauges based on assemblies of gold colloidal nanoparticles (NPs) protected by organic ligands is described. The strain gauges were fabricated from parallel micrometer wide wires made of 14 nm gold (Au) colloidal NPs on polyethylene terephthalate substrates, elaborated by convective self-assembly. Electron transport in such devices occurs by inter-particle electron tunneling through the tunnel barrier imposed by the organic ligands protecting the NPs. This tunnel barrier was varied by changing the nature of organic ligands coating the nanoparticles: citrate (CIT), phosphines (BSPP, TDSP) and thiols (MPA, MUDA). Electro-mechanical tests indicate that only the gold NPs protected by phosphine and thiol ligands yield high gauge sensitivity. Temperature-dependent resistance measurements are explained using the ‘regular island array model’ that extracts transport parameters, i.e., the tunneling decay constant β and the Coulomb charging energy EC. This reveals that the Au@CIT nanoparticle assemblies exhibit a behavior characteristic of a strong-coupling regime, whereas those of Au@BSPP, Au@TDSP, Au@MPA and Au@MUDA nanoparticles manifest a weak-coupling regime. A comparison of the parameters extracted from the two methods indicates that the most sensitive gauges in the weak-coupling regime feature the highest β. Moreover, the EC values of these 14 nm NPs cannot be neglected in determining the β values.
NASA Astrophysics Data System (ADS)
Song, Zihang; Tong, Guoqing; Li, Huan; Li, Guopeng; Ma, Shuai; Yu, Shimeng; Liu, Qian; Jiang, Yang
2018-01-01
Three-dimensional (3D) architecture perovskite solar cells (PSCs) using CdS nanorod (NR) arrays as an electron transport layer were designed and prepared layer-by-layer via a physical-chemical vapor deposition (P-CVD) process. The CdS NRs not only provided a scaffold to the perovskite film, but also increased the interfacial contact between the perovskite film and electron transport layer. As an optimized result, a high power conversion efficiency of 12.46% with a short-circuit current density of 19.88 mA cm-2, an open-circuit voltage of 1.01 V and a fill factor of 62.06% was obtained after 12 h growth of CdS NRs. It was four times the efficiency of contrast planar structure with a similar thickness. The P-CVD method assisted in achieving flat and voidless CH3NH3PbI3-x Cl x perovskite film and binding the CdS NRs and perovskite film together. The different density of CdS NRs had obvious effects on light transmittance of 350-550 nm, the interfacial area and the difficulty of combining layers. Moreover, the efficient 1D transport paths for electrons and multiple absorption of light, which are generated in 3D architecture, were beneficial to realize a decent power conversion efficiency.
NASA Astrophysics Data System (ADS)
Kobayashi, T.; Ida, K.; Inagaki, S.; Tsuchiya, H.; Tamura, N.; Choe, G. H.; Yun, G. S.; Park, H. K.; Ko, W. H.; Evans, T. E.; Austin, M. E.; Shafer, M. W.; Ono, M.; López-bruna, D.; Ochando, M. A.; Estrada, T.; Hidalgo, C.; Moon, C.; Igami, H.; Yoshimura, Y.; Tsujimura, T. Ii.; Itoh, S.-I.; Itoh, K.
2017-07-01
In this contribution we analyze modulation electron cyclotron resonance heating (MECH) experiment and discuss higher harmonic frequency dependence of transport coefficients. We use the bidirectional heat pulse propagation method, in which both inward propagating heat pulse and outward propagating heat pulse are analyzed at a radial range, in order to distinguish frequency dependence of transport coefficients due to hysteresis from that due to other reasons, such as radially dependent transport coefficients, a finite damping term, or boundary effects. The method is applied to MECH experiments performed in various helical and tokamak devices, i.e. Large Helical Device (LHD), TJ-II, Korea Superconducting Tokamak Advanced Research (KSTAR), and Doublet III-D (DIII-D) with different plasma conditions. The frequency dependence of transport coefficients are clearly observed, showing a possibility of existence of transport hysteresis in flux-gradient relation.
NASA Astrophysics Data System (ADS)
Ulla, Hidayath; Kiran, M. Raveendra; Garudachari, B.; Ahipa, T. N.; Tarafder, Kartick; Adhikari, Airody Vasudeva; Umesh, G.; Satyanarayan, M. N.
2017-09-01
In this article, the synthesis, characterization and use of two novel naphthalimides as electron-transporting emitter materials for organic light emitting diode (OLED) applications are reported. The molecules were obtained by substituting electron donating chloro-phenoxy group at the C-4 position. A detailed optical, thermal, electrochemical and related properties were systematically studied. Furthermore, theoretical calculations (DFT) were performed to get a better understanding of the electronic structures. The synthesized molecules were used as electron transporters and emitters in OLEDs with three different device configurations. The devices with the molecules showed blue emission with efficiencies of 1.89 cdA-1, 0.98 lmW-1, 0.71% at 100 cdm-2. The phosphorescent devices with naphthalimides as electron transport materials displayed better performance in comparison to the device without any electron transporting material and were analogous with the device using standard electron transporting material, Alq3. The results demonstrate that the naphthalimides could play a significant part in the progress of OLEDs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rau, A.W.; Bakueva, L.; Rowlands, J.A.
2005-10-15
Amorphous selenium (a-Se) based real-time flat-panel imagers (FPIs) are finding their way into the digital radiology department because they offer the practical advantages of digital x-ray imaging combined with an image quality that equals or outperforms that of conventional systems. The temporal imaging characteristics of FPIs can be affected by ghosting (i.e., radiation-induced changes of sensitivity) when the dose to the detector is high (e.g., portal imaging and mammography) or the images are acquired at a high frame rate (e.g., fluoroscopy). In this paper, the x-ray time-of-flight (TOF) method is introduced as a tool for the investigation of ghosting inmore » a-Se photoconductor layers. The method consists of irradiating layers of a-Se with short x-ray pulses. From the current generated in the a-Se layer, ghosting is quantified and the ghosting parameters (charge carrier generation rate and carrier lifetimes and mobilities) are assessed. The x-ray TOF method is novel in that (1) x-ray sensitivity (S) and ghosting parameters can be measured simultaneously (2) the transport of both holes and electrons can be isolated, and (3) the method is applicable to the practical a-Se layer structure with blocking contacts used in FPIs. The x-ray TOF method was applied to an analysis of ghosting in a-Se photoconductor layers under portal imaging conditions, i.e., 1 mm thick a-Se layers, biased at 5 V/{mu}m, were irradiated using a 6 MV LINAC x-ray beam to a total dose (ghosting dose) of 30 Gy. The initial sensitivity (S{sub 0}) of the a-Se layers was 63{+-}2 nC cm{sup -2} cGy{sup -1}. It was found that S decreases to 30% of S{sub 0} after a ghosting dose of 5 Gy and to 21% after 30 Gy at which point no further change in S occurs. At an x-ray intensity of 22 Gy/s (instantaneous dose rate during a LINAC x-ray pulse), the charge carrier generation rate was 1.25{+-}0.1x10{sup 22} ehp m{sup -3} s{sup -1} and, to a first approximation, independent of the ghosting dose. However, both hole and electron transport showed a strong dependence on the ghosting dose: hole transport decreased by 61%, electron transport by up to {approx}80%. Therefore, degradation of both hole and electron transport due to the recombination of mobile charge carriers with trapped carriers (of opposite polarity) were identified as the main cause of ghosting in this study.« less
Non-equilibrium STLS approach to transport properties of single impurity Anderson model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rezai, Raheleh, E-mail: R_Rezai@sbu.ac.ir; Ebrahimi, Farshad, E-mail: Ebrahimi@sbu.ac.ir
In this work, using the non-equilibrium Keldysh formalism, we study the effects of the electron–electron interaction and the electron-spin correlation on the non-equilibrium Kondo effect and the transport properties of the symmetric single impurity Anderson model (SIAM) at zero temperature by generalizing the self-consistent method of Singwi, Tosi, Land, and Sjolander (STLS) for a single-band tight-binding model with Hubbard type interaction to out of equilibrium steady-states. We at first determine in a self-consistent manner the non-equilibrium spin correlation function, the effective Hubbard interaction, and the double-occupancy at the impurity site. Then, using the non-equilibrium STLS spin polarization function in themore » non-equilibrium formalism of the iterative perturbation theory (IPT) of Yosida and Yamada, and Horvatic and Zlatic, we compute the spectral density, the current–voltage characteristics and the differential conductance as functions of the applied bias and the strength of on-site Hubbard interaction. We compare our spectral densities at zero bias with the results of numerical renormalization group (NRG) and depict the effects of the electron–electron interaction and electron-spin correlation at the impurity site on the aforementioned properties by comparing our numerical result with the order U{sup 2} IPT. Finally, we show that the obtained numerical results on the differential conductance have a quadratic universal scaling behavior and the resulting Kondo temperature shows an exponential behavior. -- Highlights: •We introduce for the first time the non-equilibrium method of STLS for Hubbard type models. •We determine the transport properties of SIAM using the non-equilibrium STLS method. •We compare our results with order-U2 IPT and NRG. •We show that non-equilibrium STLS, contrary to the GW and self-consistent RPA, produces the two Hubbard peaks in DOS. •We show that the method keeps the universal scaling behavior and correct exponential behavior of Kondo temperature.« less
New Computational Approach to Electron Transport in Irregular Graphene Nanostructures
NASA Astrophysics Data System (ADS)
Mason, Douglas; Heller, Eric; Prendergast, David; Neaton, Jeffrey
2009-03-01
For novel graphene devices of nanoscale-to-macroscopic scale, many aspects of their transport properties are not easily understood due to difficulties in fabricating devices with regular edges. Here we develop a framework to efficiently calculate and potentially screen electronic transport properties of arbitrary nanoscale graphene device structures. A generalization of the established recursive Green's function method is presented, providing access to arbitrary device and lead geometries with substantial computer-time savings. Using single-orbital nearest-neighbor tight-binding models and the Green's function-Landauer scattering formalism, we will explore the transmission function of irregular two-dimensional graphene-based nanostructures with arbitrary lead orientation. Prepared by LBNL under contract DE-AC02-05CH11231 and supported by the U.S. Dept. of Energy Computer Science Graduate Fellowship under grant DE-FG02-97ER25308.
Electromagnetic energy transport in nanoparticle chains via dark plasmon modes.
Solis, David; Willingham, Britain; Nauert, Scott L; Slaughter, Liane S; Olson, Jana; Swanglap, Pattanawit; Paul, Aniruddha; Chang, Wei-Shun; Link, Stephan
2012-03-14
Using light to exchange information offers large bandwidths and high speeds, but the miniaturization of optical components is limited by diffraction. Converting light into electron waves in metals allows one to overcome this problem. However, metals are lossy at optical frequencies and large-area fabrication of nanometer-sized structures by conventional top-down methods can be cost-prohibitive. We show electromagnetic energy transport with gold nanoparticles that were assembled into close-packed linear chains. The small interparticle distances enabled strong electromagnetic coupling causing the formation of low-loss subradiant plasmons, which facilitated energy propagation over many micrometers. Electrodynamic calculations confirmed the dark nature of the propagating mode and showed that disorder in the nanoparticle arrangement enhances energy transport, demonstrating the viability of using bottom-up nanoparticle assemblies for ultracompact opto-electronic devices. © 2012 American Chemical Society
Yoo-Kong, Sikarin; Liewrian, Watchara
2015-12-01
We report on a theoretical investigation concerning the polaronic effect on the transport properties of a charge carrier in a one-dimensional molecular chain. Our technique is based on the Feynman's path integral approach. Analytical expressions for the frequency-dependent mobility and effective mass of the carrier are obtained as functions of electron-phonon coupling. The result exhibits the crossover from a nearly free particle to a heavily trapped particle. We find that the mobility depends on temperature and decreases exponentially with increasing temperature at low temperature. It exhibits large polaronic-like behaviour in the case of weak electron-phonon coupling. These results agree with the phase transition (A.S. Mishchenko et al., Phys. Rev. Lett. 114, 146401 (2015)) of transport phenomena related to polaron motion in the molecular chain.
Choi, Jongmin; Song, Seulki; Hörantner, Maximilian T; Snaith, Henry J; Park, Taiho
2016-06-28
An electron transporting layer (ETL) plays an important role in extracting electrons from a perovskite layer and blocking recombination between electrons in the fluorine-doped tin oxide (FTO) and holes in the perovskite layers, especially in planar perovskite solar cells. Dense TiO2 ETLs prepared by a solution-processed spin-coating method (S-TiO2) are mainly used in devices due to their ease of fabrication. Herein, we found that fatal morphological defects at the S-TiO2 interface due to a rough FTO surface, including an irregular film thickness, discontinuous areas, and poor physical contact between the S-TiO2 and the FTO layers, were inevitable and lowered the charge transport properties through the planar perovskite solar cells. The effects of the morphological defects were mitigated in this work using a TiO2 ETL produced from sputtering and anodization. This method produced a well-defined nanostructured TiO2 ETL with an excellent transmittance, single-crystalline properties, a uniform film thickness, a large effective area, and defect-free physical contact with a rough substrate that provided outstanding electron extraction and hole blocking in a planar perovskite solar cell. In planar perovskite devices, anodized TiO2 ETL (A-TiO2) increased the power conversion efficiency by 22% (from 12.5 to 15.2%), and the stabilized maximum power output efficiency increased by 44% (from 8.9 to 12.8%) compared with S-TiO2. This work highlights the importance of the ETL geometry for maximizing device performance and provides insights into achieving ideal ETL morphologies that remedy the drawbacks observed in conventional spin-coated ETLs.
Beam transport and monitoring for laser plasma accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, K.; Sokollik, T.; Tilborg, J. van
The controlled transport and imaging of relativistic electron beams from laser plasma accelerators (LPAs) are critical for their diagnostics and applications. Here we present the design and progress in the implementation of the transport and monitoring system for an undulator based electron beam diagnostic. Miniature permanent-magnet quadrupoles (PMQs) are employed to realize controlled transport of the LPA electron beams, and cavity based electron beam position monitors for non-invasive beam position detection. Also presented is PMQ calibration by using LPA electron beams with broadband energy spectrum. The results show promising performance for both transporting and monitoring. With the proper transport system,more » XUV-photon spectra from THUNDER will provide the momentum distribution of the electron beam with the resolution above what can be achieved by the magnetic spectrometer currently used in the LOASIS facility.« less
Hall-Effect Thruster Simulations with 2-D Electron Transport and Hydrodynamic Ions
NASA Technical Reports Server (NTRS)
Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard H.; Goebel, Dan M.
2009-01-01
A computational approach that has been used extensively in the last two decades for Hall thruster simulations is to solve a diffusion equation and energy conservation law for the electrons in a direction that is perpendicular to the magnetic field, and use discrete-particle methods for the heavy species. This "hybrid" approach has allowed for the capture of bulk plasma phenomena inside these thrusters within reasonable computational times. Regions of the thruster with complex magnetic field arrangements (such as those near eroded walls and magnets) and/or reduced Hall parameter (such as those near the anode and the cathode plume) challenge the validity of the quasi-one-dimensional assumption for the electrons. This paper reports on the development of a computer code that solves numerically the 2-D axisymmetric vector form of Ohm's law, with no assumptions regarding the rate of electron transport in the parallel and perpendicular directions. The numerical challenges related to the large disparity of the transport coefficients in the two directions are met by solving the equations in a computational mesh that is aligned with the magnetic field. The fully-2D approach allows for a large physical domain that extends more than five times the thruster channel length in the axial direction, and encompasses the cathode boundary. Ions are treated as an isothermal, cold (relative to the electrons) fluid, accounting for charge-exchange and multiple-ionization collisions in the momentum equations. A first series of simulations of two Hall thrusters, namely the BPT-4000 and a 6-kW laboratory thruster, quantifies the significance of ion diffusion in the anode region and the importance of the extended physical domain on studies related to the impact of the transport coefficients on the electron flow field.
Code of Federal Regulations, 2010 CFR
2010-10-01
... restrictions on use of electronic devices. 220.315 Section 220.315 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.315 Operational tests and inspections; further restrictions on use of electronic...
Polyaniline Nanofibers as the Hole Transport Medium in an Inverse Dye-Sensitized Solar Cell
NASA Astrophysics Data System (ADS)
Hesselsweet, Ian Brock
In order to become a viable alternative to silicon photovoltaics, dye-sensitized solar cells must overcome several issues primarily resulting from their use of a liquid electrolyte. Much research has gone into correcting these shortcomings by replacing the liquid electrolyte with solid-state hole-transport media. Using these solid-state materials brings new difficulties, such as completely filling the pores in the TiO2 nanostructure, and achieving good adhesion with the dye-coated TiO2. A novel approach to addressing these difficulties is the inverse dye-sensitized solar cell design. In this method the devices are constructed in reverse order, with the solidstate hole-transport medium providing the nanostructure instead of the TiO2. This allows new materials and methods to be used which may better address these issues. In this project, inverse dye-sensitized solar cells using polyaniline nanofibers as the hole transport medium were prepared and characterized. The devices were prepared on fluorine-doped tin oxide (FTO) coated glass electrodes. The first component was a dense spin-coated polyaniline blocking layer, to help prevent short circuiting of the devices. The second layer was a thin film of drop cast polyaniline nanofibers which acted as the hole transport medium and provided high surface area for the dye attachment. The dye used was 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin (TCPP), which was covalently attached to the nanofibers using a Friedel-Crafts acylation. Titania gel was then deposited into the pores of the nanofiber film by controlled hydrolysis of a titanium complex (Tyzor LA). A back electrode of TiO2 nanoparticles sintered on FTO was pressed on top to complete the devices. A typical device generated an open circuit voltage of 0.17 V and a closed circuit current of 5.7 nA/cm2 while the highest open circuit voltage recorded for any variation on a device was 0.31 V and the highest short circuit current was 52 nA/cm2 under AM 1.5 simulated solar spectrum at 100 mW/cm2. Initially prepared devices did not generate a measureable photocurrent due to two materials flaws. The first was traced to the poorly developed conduction band of the titania gel, as deposited from Tyzor LA hydrolysis, resulting in poor electron conduction. This prevented the titania gel from efficiently functioning as the electron transport medium. A remedy was found in adding a layer of sintered anatase TiO2 nanoparticles on the back electrode to serve as the electron transport medium. However, this remedy does not address the issue of the inability of titania gel to efficiently transport electrons photogenerated deep in the nanofiber film to the back electrode. The second flaw was found to originate from fast recombination kinetics between electrons in TiO2 and holes in polyaniline. However, a positive feature was that the titania gel intended to be used as the electron transport medium was found to sufficiently insulate the interface such that the recombination rate slowed enough to allow generation of a measureable photocurrent. Electronic insulation was further enhanced by co-attaching decanoic acid onto the polyaniline nanofibers to fill in pinholes between the dye molecules. While these solutions were not ideal, they were intended to be diagnostic in nature and supplied critical information about the weak links in the device design, thus pointing the way toward improving device performance. Significant enhancements can be expected by addressing these issues in further detail.
Charge Transport in Metal Oxides: A Theoretical Study of Hematite α-Fe2O3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iordanova, Nellie I.; Dupuis, Michel; Rosso, Kevin M.
2005-04-08
Transport of conduction electrons and holes through the lattice of ??Fe2O3 (hematite) is modeled as a valence alternation of iron cations using ab initio electronic structure calculations and electron transfer theory. Experimental studies have shown that the conductivity along the (001) basal plane is four orders of magnitude larger than the conductivity along the [001] direction. In the context of the small polaron model, a cluster approach was used to compute quantities controlling the mobility of localized electrons and holes, i.e. the reorganization energy and the electronic coupling matrix element that enter Marcus? theory. The calculation of the electronic couplingmore » followed the Generalized Mulliken-Hush approach using the complete active space self-consistent field (CASSCF) method. Our findings demonstrate an approximately three orders of magnitude anisotropy in both electron and hole mobility between directions perpendicular and parallel to the c-axis, in good accord with experimental data. The anisotropy arises from the slowness of both electron and hole mobility across basal oxygen planes relative to that within iron bi-layers between basal oxygen planes. Interestingly, for elementary reaction steps along either of the directions considered, there is only approximately one order of magnitude difference in mobility between electrons and holes, in contrast to accepted classical arguments. Our findings indicate that the most important quantity underlying mobility differences is the electronic coupling, albeit the reorganization energy contributes as well. The large values computed for the electronic coupling suggest that charge transport reactions in hematite are adiabatic in nature. The electronic coupling is found to depend on both the superexchange interaction through the bridging oxygen atoms and the d-shell electron spin coupling within the Fe?Fe donor-acceptor pair, while the reorganization energy is essentially independent of the electron spin coupling.« less
Gold nanostructures and methods of use
Zhang, Jin Z [Santa Cruz, CA; Schwartzberg, Adam [Santa Cruz, CA; Olson, Tammy Y [Santa Cruz, CA
2012-03-20
The invention is drawn to novel nanostructures comprising hollow nanospheres and nanotubes for use as chemical sensors, conduits for fluids, and electronic conductors. The nanostructures can be used in microfluidic devices, for transporting fluids between devices and structures in analytical devices, for conducting electrical currents between devices and structure in analytical devices, and for conducting electrical currents between biological molecules and electronic devices, such as bio-microchips.
Gold nanostructures and methods of use
Zhang, Jin Z.; Schwartzberg, Adam; Olson, Tammy Y.
2016-03-01
The invention is drawn to novel nanostructures comprising hollow nanospheres and nanotubes for use as chemical sensors, conduits for fluids, and electronic conductors. The nanostructures can be used in microfluidic devices, for transporting fluids between devices and structures in analytical devices, for conducting electrical currents between devices and structure in analytical devices, and for conducting electrical currents between biological molecules and electronic devices, such as bio-microchips.
NASA Astrophysics Data System (ADS)
White, R. D.; Cocks, D.; Boyle, G.; Casey, M.; Garland, N.; Konovalov, D.; Philippa, B.; Stokes, P.; de Urquijo, J.; González-Magaña, O.; McEachran, R. P.; Buckman, S. J.; Brunger, M. J.; Garcia, G.; Dujko, S.; Petrovic, Z. Lj
2018-05-01
Accurate modelling of electron transport in plasmas, plasma-liquid and plasma-tissue interactions requires (i) the existence of accurate and complete sets of cross-sections, and (ii) an accurate treatment of electron transport in these gaseous and soft-condensed phases. In this study we present progress towards the provision of self-consistent electron-biomolecule cross-section sets representative of tissue, including water and THF, by comparison of calculated transport coefficients with those measured using a pulsed-Townsend swarm experiment. Water–argon mixtures are used to assess the self-consistency of the electron-water vapour cross-section set proposed in de Urquijo et al (2014 J. Chem. Phys. 141 014308). Modelling of electron transport in liquids and soft-condensed matter is considered through appropriate generalisations of Boltzmann’s equation to account for spatial-temporal correlations and screening of the electron potential. The ab initio formalism is applied to electron transport in atomic liquids and compared with available experimental swarm data for these noble liquids. Issues on the applicability of the ab initio formalism for krypton are discussed and addressed through consideration of the background energy of the electron in liquid krypton. The presence of self-trapping (into bubble/cluster states/solvation) in some liquids requires a reformulation of the governing Boltzmann equation to account for the combined localised–delocalised nature of the resulting electron transport. A generalised Boltzmann equation is presented which is highlighted to produce dispersive transport observed in some liquid systems.
Curvature effects on the electronic and transport properties of semiconductor films
NASA Astrophysics Data System (ADS)
Batista, F. F.; Chaves, Andrey; da Costa, D. R.; Farias, G. A.
2018-05-01
Within the effective mass approximation, we study the curvature effects on the electronic and transport properties of semiconductor films. We investigate how the geometry-induced potential resulting exclusively from periodic ripples in the film induces electronic confinement and a superlattice band structure. For fixed curvature parameters, such a confinement can be easily tuned by an external electric field, hence features of the superlattice band structure such as its energy gaps and band curvature can be controlled by an external parameter. We also show that, for some values of curvature and electric field, it is possible to obtain massless Dirac bands for a smooth curved structure. Moreover, we use a wave packet propagation method to demonstrate that the ripples are responsible for a significant inter-sub-band transition, specially for moderate values of the ripple height.
NASA Astrophysics Data System (ADS)
Mäckel, Helmut; MacKenzie, Roderick C. I.
2018-03-01
Charge-carrier mobility is a fundamental material parameter, which plays an important role in determining solar-cell efficiency. The higher the mobility, the less time a charge carrier will spend in a device and the less likely it is that it will be lost to recombination. Despite the importance of this physical property, it is notoriously difficult to measure accurately in disordered thin-film solar cells under operating conditions. We, therefore, investigate a method previously proposed in the literature for the determination of mobility as a function of current density. The method is based on a simple analytical model that relates the mobility to carrier density and transport resistance. By revising the theoretical background of the method, we clearly demonstrate what type of mobility can be extracted (constant mobility or effective mobility of electrons and holes). We generalize the method to any combination of measurements that is able to determine the mean electron and hole carrier density, and the transport resistance at a given current density. We explore the robustness of the method by simulating typical organic solar-cell structures with a variety of physical properties, including unbalanced mobilities, unbalanced carrier densities, and for high or low carrier trapping rates. The simulations reveal that near VOC and JSC , the method fails due to the limitation of determining the transport resistance. However, away from these regions (and, importantly, around the maximum power point), the method can accurately determine charge-carrier mobility. In the presence of strong carrier trapping, the method overestimates the effective mobility due to an underestimation of the carrier density.
NASA Astrophysics Data System (ADS)
Huang, Baoling
Atomic-level thermal transport in compact, layered, linked-cage, and filled-cage crystals is investigated using a multiscale approach, combines the ab initio calculation, molecular dynamics (MD), Boltzman transport equations (BTE), and the kinetic theory. These materials are of great interests in energy storage, transport, and conversion. The structural metrics of phonon conductivity of these crystals are then explored. An atomic structure-based model is developed for the understanding the relationship between the atomic structure and phonon transport in compact crystals at high temperatures. The elemental electronegativity, element mass, and the arrangement of bonds are found to be the dominant factors to determine the phonon conductivity. As an example of linked-cage crystals, the phonon conductivity of MOF-5 is investigated over a wide temperature range using MD simulations and the Green-Kubo method. The temperature dependence of the thermal conductivity of MOF-5 is found to be weak at high temperatures, which results from the suppression of the long-range acoustic phonon transport by the special linked-cage structure. The mean free path of the majority of phonons in MOF-5 is limited by the cage size. The phonon and electron transport in layered Bi2Te3 structure are investigated using the first-principle calculations, MD, and BTE. Strong anisotropy has been found for both phonon and electron transport due to the special layered structure. The long-range acoustic phonons dominate the phonon transport with a strong temperature and direction dependence. Temperature dependence of the energy gap and appropriate modelling of relaxation times are found to be important for the prediction of the electrical transport in the intrinsic regime. The scattering by the acoustic, optical, and polar-optical phonons are found to dominate the electron transport. For filled skutterudite structure, strong coupling between the filler and the host is found, which contradicts the traditional "rattler" concept. The interatomic bonds of the host are significantly affected by the filler. It is shown that without changing the interatomic potentials for the host, the filler itself can not result in a lower phonon conductivity for the filled structure. It is also found that the behavior of partially-filled skutterudites can be better understood by treating the partially-filled structure as a solid solution of the empty structure and fully-filled structure. The combination of theoretical-analysis methods used in this work, provides for comparative insight into the role of atomic structure on the phonon transport in a variety of crystals used in energy storage, transport, and conversion.
ERIC Educational Resources Information Center
Myers, Alan
1990-01-01
A method of obtaining a crude mitochondrial extract from sheep and beef heart is described. The respiratory substrates succinate and malate are examined as well as the inhibitory effect of malonate. An interface with a microcomputer for plotting colorimeter results is discussed. (Author/CW)
Novel High Efficient Organic Photovoltaic Materials: Appendix for Summary of Research. Appendix
NASA Technical Reports Server (NTRS)
Sun, Sam
2002-01-01
There are many different kinds of conjugated polymers that may be useful in photovoltaic devices. So far, the most popular and successful conjugated polymers used in photovoltaic devices include poly(1,4-)phenylenevinylenes (PPV), C60 and their derivatives. The discovery of electro-luminescence in PPV has stimulated a great deal of interest in developing "plastic" solid-state semiconductor devices. The overall synthetic methodology for the preparation of PPV can be divided into three main categories: (1) side chain derivatization, (2) precursor approach, and (3) in-situ polymerization. In this project, the first method was adopted. As discussed in project proposal and literatures, the overall efficiency of photovoltaic devices containing conjugated polymers is determined by the materials ability to generate excitons from incoming radiation, and then to separate the charges at donor/acceptor interfaces, and then to transport charges to respective electrodes. Given that effective exciton diffusion range are typical less then 30 nm, unique morphological structures are needed. This need led to several research groups to the idea that interpenetrating or bi-continuous networks of donor (electron donating) and acceptor (electron withdrawing) polymers should give better results. One approach involved the use of functionalized PPV. The attachment of electron withdrawing cyano groups to a PPV forms the CN-PPV, making it a strong electron acceptor. Underivatized PPV is a generally considered a hole-transporting material. Using blends of MEH-PPV, a soluble donor PPV derivative, as a hole transporter and CN-PPV as an electron transporter, a quantum efficiencies of up to 6% was achieved.
A Modified Monte Carlo Method for Carrier Transport in Germanium, Free of Isotropic Rates
NASA Astrophysics Data System (ADS)
Sundqvist, Kyle
2010-03-01
We present a new method for carrier transport simulation, relevant for high-purity germanium < 100 > at a temperature of 40 mK. In this system, the scattering of electrons and holes is dominated by spontaneous phonon emission. Free carriers are always out of equilibrium with the lattice. We must also properly account for directional effects due to band structure, but there are many cautions in the literature about treating germanium in particular. These objections arise because the germanium electron system is anisotropic to an extreme degree, while standard Monte Carlo algorithms maintain a reliance on isotropic, integrated rates. We re-examine Fermi's Golden Rule to produce a Monte Carlo method free of isotropic rates. Traditional Monte Carlo codes implement particle scattering based on an isotropically averaged rate, followed by a separate selection of the particle's final state via a momentum-dependent probability. In our method, the kernel of Fermi's Golden Rule produces analytical, bivariate rates which allow for the simultaneous choice of scatter and final state selection. Energy and momentum are automatically conserved. We compare our results to experimental data.
Charge distribution and transport properties in reduced ceria phases: A review
NASA Astrophysics Data System (ADS)
Shoko, E.; Smith, M. F.; McKenzie, Ross H.
2011-12-01
The question of the charge distribution in reduced ceria phases (CeO2-x) is important for understanding the microscopic physics of oxygen storage capacity, and the electronic and ionic conductivities in these materials. All these are key properties in the application of these materials in catalysis and electrochemical devices. Several approaches have been applied to study this problem, including ab initio methods. Recently [1], we applied the bond valence model (BVM) to discuss the charge distribution in several different crystallographic phases of reduced ceria. Here, we compare the BVM results to those from atomistic simulations to determine if there is consistency in the predictions of the two approaches. Our analysis shows that the two methods give a consistent picture of the charge distribution around oxygen vacancies in bulk reduced ceria phases. We then review the transport theory applicable to reduced ceria phases, providing useful relationships which enable comparison of experimental results obtained by different techniques. In particular, we compare transport parameters obtained from the observed optical absorption spectrum, α(ω), dc electrical conductivity with those predicted by small polaron theory and the Harrison method. The small polaron energy is comparable to that estimated from α(ω). However, we found a discrepancy between the value of the electron hopping matrix element, t, estimated from the Marcus-Hush formula and that obtained by the Harrison method. Part of this discrepancy could be attributed to the system lying in the crossover region between adiabatic and nonadiabatic whereas our calculations assumed the system to be nonadiabatic. Finally, by considering the relationship between the charge distribution and electronic conductivity, we suggest the possibility of low temperature metallic conductivity for intermediate phases, i.e., x˜0.3. This has not yet been experimentally observed.
Numerical simulations of quantum devices
NASA Astrophysics Data System (ADS)
Sandu, Titus
This work has been motivated by the tremendous effort toward the next generation of electron devices that will replace the present CMOS (Complementary Metal Oxide Semiconductor). Non-equilibrium Green's function formalism (NEGF) and empirical tight-binding (ETB) methods have been utilized in this dissertation. We studied the transport properties of Si/SiO2 resonant tunneling diodes (RTDs) by employing NEGF. We analyzed the physics of electron transport in Si/SiO2 RTDs and provided some guidelines for the fabrication of such devices by considering the effect of interface roughness scattering. Atomic scale roughness is shown to be acceptable. As the island size of the roughness increases, the peak-to-valley ratio degrades to less than 5 for 1 nm roughness and less than 2 for 2 nm roughness. By the ETB method we calculated electronic and optical properties of the relatively new Si/BeSe0.41Te0.59 system, more precisely Si/BeSe0.41Te0.59 [001] superlattices (SLs). Two interface bands were found in the band gap of bulk silicon. They were related to the polar Si/BeSe0.41Te0.59 interface. In addition, numerical calculations showed that the optical gap is close to the fundamental gap of bulk Si and the transitions are optically allowed. Two more aspects have been studied with NEGF: intrinsic bistability and off-zone center current flow of electrons in the RTD. We showed that broadening of the quasi-bound state in the emitter by scattering reduces intrinsic bistability. So far in different theoretical papers dealing with intrinsic bistability, only the scattering in the well has been considered. Finally, we demonstrated that scattering induces off-zone center current flow of electrons in RTDs. In RTDs electrons usually have a zone-center current flow. This is due to the coherent transport for which Tsu-Esaki formula is valid. On the contrary, holes have off-zone-center current flow. We show that, generally, carrier current flow is off-center, which means that the hole behavior is extended to electrons and is related to the breakdown of the Tsu-Esaki formula. Oblique flow is due to incoherent scattering represented by interface roughness and acoustic phonons. This is a quite new result and has been recently seen experimentally for hole transport.
Code of Federal Regulations, 2014 CFR
2014-01-01
... electronic transportation billing documents to: General Services Administration Transportation Audit Division... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Who is responsible for keeping my agency's electronic commerce transportation billing records? 102-118.80 Section 102-118.80...
Code of Federal Regulations, 2012 CFR
2012-01-01
... electronic transportation billing documents to: General Services Administration Transportation Audit Division... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Who is responsible for keeping my agency's electronic commerce transportation billing records? 102-118.80 Section 102-118.80...
Code of Federal Regulations, 2010 CFR
2010-07-01
... electronic transportation billing documents to: General Services Administration Transportation Audit Division... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Who is responsible for keeping my agency's electronic commerce transportation billing records? 102-118.80 Section 102-118.80...
Code of Federal Regulations, 2013 CFR
2013-07-01
... electronic transportation billing documents to: General Services Administration Transportation Audit Division... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Who is responsible for keeping my agency's electronic commerce transportation billing records? 102-118.80 Section 102-118.80...
Code of Federal Regulations, 2011 CFR
2011-01-01
... electronic transportation billing documents to: General Services Administration Transportation Audit Division... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Who is responsible for keeping my agency's electronic commerce transportation billing records? 102-118.80 Section 102-118.80...
NASA Astrophysics Data System (ADS)
Guo, Heng; Yang, Jian; Pu, Bingxue; Zhang, Haiyan; Niu, Xiaobin
2018-01-01
Organo-lead perovskites as light harvesters have represented a hot field of research on high-efficiency perovskite solar cells. Previous approaches to increasing the solar cell efficiency have focused on optimization of the morphology of perovskite film. In fact, the electron transporting layer (ETL) also has a significant impact on solar cell performance. Herein, we introduce a facile and low temperature solution-processing method to deposit Nb2O5 film as ETL for PSCs. Based on Nb2O5 ETL, we investigate the effect of the annealing time for the perovskite films via different solution processing, relating it to the perovskite film morphology and its influence on the device working mechanisms. These results shed light on the origin of photovoltaic performance voltage in perovskite solar cells, and provide a path to further increase their efficiency.
Solar cells with perovskite-based light sensitization layers
Kanatzidis, Mercouri G.; Chang, Robert P.H.; Stoumpos, Konstantinos; Lee, Byunghong
2018-05-08
Solar cells are provided which comprise an electron transporting layer and a light sensitizing layer of perovskite disposed over the surface of the electron transporting layer. The perovskite may have a formula selected from the group consisting of A2MX6, Z2MX6 or YMX6, wherein A is an alkali metal, M is a metal or a metalloid, X is a halide, Z is selected from the group consisting of a primary ammonium, an iminium, a secondary ammonium, a tertiary ammonium, and a quaternary ammonium, and Y has formula Mb(L)3, wherein Mb is a transition metal in the 2+ oxidation state L is an N--N neutral chelating ligand. Methods of making the solar cells are also provided, including methods based on electrospray deposition.
First-principles electron transport with phonon coupling: Large scale at low cost
NASA Astrophysics Data System (ADS)
Gunst, Tue; Markussen, Troels; Palsgaard, Mattias L. N.; Stokbro, Kurt; Brandbyge, Mads
2017-10-01
Phonon-assisted tunneling plays a crucial role for electronic device performance and even more so with future size down-scaling. We show how one can include this effect in large-scale first-principles calculations using a single "special thermal displacement" (STD) of the atomic coordinates at almost the same cost as elastic transport calculations, by extending the recent method of Zacharias et al. [Phys. Rev. B 94, 075125 (2016), 10.1103/PhysRevB.94.075125] to the important case of Landauer conductance. We apply the method to ultrascaled silicon devices and demonstrate the importance of phonon-assisted band-to-band and source-to-drain tunneling. In a diode the phonons lead to a rectification ratio suppression in good agreement with experiments, while in an ultrathin body transistor the phonons increase off currents by four orders of magnitude, and the subthreshold swing by a factor of 4, in agreement with perturbation theory.
Electrical transport engineering of semiconductor superlattice structures
NASA Astrophysics Data System (ADS)
Shokri, Aliasghar
2014-04-01
We investigate the influence of doping concentration on band structures of electrons and electrical transmission in a typical aperiodic semiconductor superlattice consisting of quantum well and barrier layers, theoretically. For this purpose, we assume that each unit cell of the superlattice contains alternately two types of material GaAs (as a well) and GaAlAs (as a barrier) with six sublayers of two materials. Our calculations are based on the generalized Kronig-Penny (KP) model and the transfer matrix method within the framework of the parabolic conductance band effective mass approximation in the coherent regime. This model reduces the numerical calculation time and enables us to use the transfer matrix method to investigate transport in the superlattices. We show that by varying the doping concentration and geometrical parameters, one can easily block the transmission of the electrons. The numerical results may be useful in designing of nanoenergy filter devices.
Ohmic contact formation between metal and AlGaN/GaN heterostructure via graphene insertion
NASA Astrophysics Data System (ADS)
Sung Park, Pil; Reddy, Kongara M.; Nath, Digbijoy N.; Yang, Zhichao; Padture, Nitin P.; Rajan, Siddharth
2013-04-01
A simple method for the creation of Ohmic contact to 2D electron gas in AlGaN/GaN high electron-mobility transistors using Cr/graphene layer is demonstrated. A weak temperature dependence of this Ohmic contact observed in the range 77 to 300 K precludes thermionic emission or trap-assisted hopping as possible carrier-transport mechanisms. It is suggested that the Cr/graphene combination acts akin to a doped n-type semiconductor in contact with AlGaN/GaN heterostructure, and promotes carrier transport along percolating Al-lean paths through the AlGaN layer. This use of graphene offers a simple method for making Ohmic contacts to AlGaN/GaN heterostructures, circumventing complex additional processing steps involving high temperatures. These results could have important implications for the fabrication and manufacturing of AlGaN/GaN-based microelectronic and optoelectronic devices/sensors of the future.
Nejand, Bahram Abdollahi; Gharibzadeh, Saba; Ahmadi, Vahid; Shahverdi, H. Reza
2016-01-01
We introduced a new approach to deposit perovskite layer with no need for dissolving perovskite precursors. Deposition of Solution-free perovskite (SFP) layer is a key method for deposition of perovskite layer on the hole or electron transport layers that are strongly sensitive to perovskite precursors. Using deposition of SFP layer in the perovskite solar cells would extend possibility of using many electron and hole transport materials in both normal and invert architectures of perovskite solar cells. In the present work, we synthesized crystalline perovskite powder followed by successful deposition on TiO2 and cuprous iodide as the non-sensitve and sensitive charge transport layers to PbI2 and CH3NH3I solution in DMF. The post compressing step enhanced the efficiency of the devices by increasing the interface area between perovskite and charge transport layers. The 9.07% and 7.71% cell efficiencies of the device prepared by SFP layer was achieved in respective normal (using TiO2 as a deposition substrate) and inverted structure (using CuI as deposition substrate) of perovskite solar cell. This method can be efficient in large-scale and low cost fabrication of new generation perovskite solar cells. PMID:27640991
Transport equations for partially ionized reactive plasma in magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhdanov, V. M.; Stepanenko, A. A.
2016-06-08
Transport equations for partially ionized reactive plasma in magnetic field taking into account the internal degrees of freedom and electronic excitation of plasma particles are derived. As a starting point of analysis the kinetic equation with a binary collision operator written in the Wang-Chang and Uhlenbeck form and with a reactive collision integral allowing for arbitrary chemical reactions is used. The linearized variant of Grad’s moment method is applied to deduce the systems of moment equations for plasma and also full and reduced transport equations for plasma species nonequilibrium parameters.
Zhao, Yu-Han; Zhang, Kai-Cheng; Wang, Zhao-Wei; Huang, Peng; Zhu, Kai; Li, Zhen-Dong; Li, Da-Hua; Yuan, Li-Gang; Zhou, Yi; Song, Bo
2017-08-09
Owing to the high charge mobility and low processing temperature, ZnO is regarded as an ideal candidate for electron transport layer (ETL) material in thin-film solar cells. For the film preparation, the presently dominated sol-gel (SG) and hydrolysis-condensation (HC) methods show great potential; however, the effect of these two methods on the performance of the resulting devices has not been investigated in the same frame. In this study, the ZnO films made through SG and HC methods were applied in perovskite solar cells (Pero-SCs), and the performances of corresponding devices were compared under parallel conditions. We found that the surface morphologies and the conductivities of the films prepared by SG and HC methods showed great differences. The HC-ZnO films with higher conductivity led to relatively higher device performance, and the best power conversion efficiencie (PCE) of 12.9% was obtained; meanwhile, for Pero-SCs based on SG-ZnO, the best PCE achieved was 10.9%. The better device performance of Pero-SCs based on HC-ZnO should be attributed to the better charge extraction and transportation ability of HC-ZnO film. Moreover, to further enhance the performance of Pero-SCs, a thin layer of pristine C 60 was introduced between HC-ZnO and perovskite layers. By doing so, the quality of perovskite films was improved, and the PCE was elevated to 14.1%. The preparation of HC-ZnO film involves relatively lower-temperature (maximum 100 °C) processing; the films showed better charge extraction and transportation properties and can be a more promising ETL material in Pero-SCs.
Yan, Hong; Zhang, Zhaoting; Wang, Shuanhu; Zhang, Hongrui; Chen, Changle; Jin, Kexin
2017-11-08
Modulating transport behaviors of two-dimensional electron gases are of critical importance for applications of the next-generation multifunctional oxide electronics. In this study, transport behaviors of LaAlO 3 /SrTiO 3 heterointerfaces modified through the Ni dopant and the light irradiation have been investigated. Through the Ni dopant, the resistances increase significantly and a resistance upturn phenomenon due to the Kondo effect is observed at T < 40 K. Under a 360 nm light irradiation, the interfaces exhibit a persistent photoconductivity and a suppressed Kondo effect at low temperature due to the increased mobility measured through the photo-Hall method. Moreover, the relative changes in resistance of interfaces induced by light are increased from 800 to 6600% at T = 12 K with increasing the substitution of Ni, which is discussed by the band bending and the lattice effect due to the Ni dopant. This work paves the way for better controlling the emerging properties of complex oxide heterointerfaces and would be helpful for photoelectric device applications based on all-oxides.
Magnetic and electrostatic confinement of plasma with tuning of electrostatic field
Rostoker, Norman [Irvine, CA; Binderbauer, Michl [Irvine, CA; Qerushi, Artan [Irvine, CA; Tahsiri, Hooshang [Irvine, CA
2008-10-21
A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Magnetic and electrostatic confinement of plasma with tuning of electrostatic field
Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang
2006-10-10
A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Apparatus for magnetic and electrostatic confinement of plasma
Rostoker, Norman; Binderbauer, Michl
2013-06-11
An apparatus and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions ions are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Apparatus for magnetic and electrostatic confinement of plasma
Rostoker, Norman; Binderbauer, Michl
2016-07-05
An apparatus and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions ions are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Apparatus for magnetic and electrostatic confinement of plasma
Rostoker, Norman; Binderbauer, Michl
2006-10-31
An apparatus and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Apparatus for magnetic and electrostatic confinement of plasma
Rostoker, Norman; Binderbauer, Michl
2006-04-11
An apparatus and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Apparatus for magnetic and electrostatic confinement of plasma
Rostoker, Norman [Irvine, CA; Binderbauer, Michl [Irvine, CA
2009-08-04
An apparatus and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions ions are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Magnetic and electrostatic confinement of plasma with tuning of electrostatic field
Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang
2006-03-21
A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Thermal transport across metal–insulator interface via electron–phonon interaction.
Zhang, Lifa; Lü, Jing-Tao; Wang, Jian-Sheng; Li, Baowen
2013-11-06
The thermal transport across a metal–insulator interface can be characterized by electron–phonon interaction through which an electron lead is coupled to a phonon lead if phonon–phonon coupling at the interface is very weak. We investigate the thermal conductance and rectification between the electron part and the phonon part using the nonequilibrium Green's function method. It is found that the thermal conductance has a nonmonotonic behavior as a function of average temperature or the coupling strength between the phonon leads in the metal part and the insulator part. The metal–insulator interface shows a clear thermal rectification effect, which can be reversed by a change in average temperature or the electron–phonon coupling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavelyev, D. G., E-mail: pavelev@rf.unn.ru, E-mail: obolensk@rf.unn.ru; Vasilev, A. P., E-mail: vasiljev@mail.ioffe.ru; Kozlov, V. A., E-mail: kozlov@ipm.sci-nnov.ru
2016-11-15
The electron transport in superlattices based on GaAs/AlAs heterostructures with a small number of periods (6 periods) is calculated by the Monte Carlo method. These superlattices are used in terahertz diodes for the frequency stabilization of quantum cascade lasers in the range up to 4.7 THz. The band structure of superlattices with different numbers of AlAs monolayers is considered and their current–voltage characteristics are calculated. The calculated current–voltage characteristics are compared with the experimental data. The possibility of the efficient application of these superlattices in the THz frequency range is established both theoretically and experimentally.
InGaAs/InAlAs Double Quantum Wells as Starting Structures for Quantum Logic Gates
NASA Astrophysics Data System (ADS)
Marchewka, M.; Sheregii, E. M.
2011-12-01
The detection of both symmetric and anti-symmetric electron states in DQWs by an optical method is described in this paper. Values of the symmetric and anti-symmetric splitting (SAS-gap) determined in this way are used for interpretation of the beating effect in the SdH oscillations observed at low temperatures in the external magnetic field. SAS-splitting of electron states in DQWs clearly exists at room temperature and electrons in symmetric and anti-symmetric states have different statistics so these states can be identified in electron transport.
Unified computational model of transport in metal-insulating oxide-metal systems
NASA Astrophysics Data System (ADS)
Tierney, B. D.; Hjalmarson, H. P.; Jacobs-Gedrim, R. B.; Agarwal, Sapan; James, C. D.; Marinella, M. J.
2018-04-01
A unified physics-based model of electron transport in metal-insulator-metal (MIM) systems is presented. In this model, transport through metal-oxide interfaces occurs by electron tunneling between the metal electrodes and oxide defect states. Transport in the oxide bulk is dominated by hopping, modeled as a series of tunneling events that alter the electron occupancy of defect states. Electron transport in the oxide conduction band is treated by the drift-diffusion formalism and defect chemistry reactions link all the various transport mechanisms. It is shown that the current-limiting effect of the interface band offsets is a function of the defect vacancy concentration. These results provide insight into the underlying physical mechanisms of leakage currents in oxide-based capacitors and steady-state electron transport in resistive random access memory (ReRAM) MIM devices. Finally, an explanation of ReRAM bipolar switching behavior based on these results is proposed.
49 CFR 234.315 - Electronic recordkeeping.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Electronic recordkeeping. 234.315 Section 234.315 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... railroad adequately limits and controls accessibility to the records retained in its electronic database...
49 CFR 234.315 - Electronic recordkeeping.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Electronic recordkeeping. 234.315 Section 234.315 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... railroad adequately limits and controls accessibility to the records retained in its electronic database...
49 CFR 234.315 - Electronic recordkeeping.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Electronic recordkeeping. 234.315 Section 234.315 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... railroad adequately limits and controls accessibility to the records retained in its electronic database...
NASA Astrophysics Data System (ADS)
Lunt, Richard Royal, III
Organic semiconductors have gained tremendous attention recently as their use in field effect transistors, sensors, solar cells, lasers, and organic light emitting diodes have been demonstrated, offering the potential for low-cost alternatives. Since renewable energy remains one the greatest challenges of the 21st century, the possibility for low-cost and flexible organic photovoltaics is particularly exciting. In the first part of this thesis, we demonstrate a route to the controlled growth of oriented crystalline films through organic vapor-phase deposition (OVPD), in conjunction with organic-inorganic, and organic-organic quasi-epitaxy. This method for producing highly ordered crystalline thin-film heterostructures combines the control of film growth with the electronic properties expected to approach that of organic single crystals, making them potentially useful for high efficiency organic thin-film devices and solar cells. We further demonstrate OVPD as a method for the deposition of large-scale organic electronics with low material waste, a key ability in fulfilling the promise of low-cost organic devices. The second part of this thesis is focused on understanding factors that govern energy (i.e. exciton) transport. The two single most important and fundamental properties of organic semiconductors are the transport of charge and energy. While charge mobility has been extensively studied and convincingly linked to the degree of crystalline order and orientation, the principles governing energy transport, i.e. exciton migration, in this class of materials and the subsequent connection to crystalline properties still remain ambiguous. Therefore, we aim to understand key aspects governing exciton motion in organic materials to better engineer materials, film morphologies, and film architectures for organic electronics with improved performance. To this end, we have developed a new method for measuring exciton diffusion and characterize a range of archetypal organic compounds. We then derive a simple theoretical model that provides insight into the control of exciton migration in organic systems through changes in both crystal orientation (anisotropy) and degree of crystalline order, which is crucial for the management of energy transport in a wide range of important organic electronic devices.
Van Vooren, Antoine; Kim, Ji-Seon; Cornil, Jérôme
2008-05-16
Poly(9,9-di-n-octylfluorene-alt-benzothiadiazole) [F8BT], displays very different charge-transport properties for holes versus electrons when comparing annealed and pristine thin films and transport parallel (intrachain) and perpendicular (interchain) to the polymer axes. The present theoretical contribution focuses on the electron-transport properties of F8BT chains and compares the efficiency of intrachain versus interchain transport in the hopping regime. The theoretical results rationalize significantly lowered electron mobility in annealed F8BT thin films and the smaller mobility anisotropy (mu( parallel)/mu( perpendicular)) measured for electrons in aligned films (i.e. 5-7 compared to 10-15 for holes).
A long way to the electrode: how do Geobacter cells transport their electrons?
Bonanni, Pablo Sebastián; Schrott, Germán David; Busalmen, Juan Pablo
2012-12-01
The mechanism of electron transport in Geobacter sulfurreducens biofilms is a topic under intense study and debate. Although some proteins were found to be essential for current production, the specific role that each one plays in electron transport to the electrode remains to be elucidated and a consensus on the mechanism of electron transport has not been reached. In the present paper, to understand the state of the art in the topic, electron transport from inside of the cell to the electrode in Geobacter sulfurreducens biofilms is analysed, reviewing genetic studies, biofilm conductivity assays and electrochemical and spectro-electrochemical experiments. Furthermore, crucial data still required to achieve a deeper understanding are highlighted.
Zelovich, Tamar; Hansen, Thorsten; Liu, Zhen-Fei; ...
2017-03-02
A parameter-free version of the recently developed driven Liouville-von Neumann equation [T. Zelovich et al., J. Chem. Theory Comput. 10(8), 2927-2941 (2014)] for electronic transport calculations in molecular junctions is presented. The single driving rate, appearing as a fitting parameter in the original methodology, is replaced by a set of state-dependent broadening factors applied to the different single-particle lead levels. These broadening factors are extracted explicitly from the self-energy of the corresponding electronic reservoir and are fully transferable to any junction incorporating the same lead model. Furthermore, the performance of the method is demonstrated via tight-binding and extended Hückel calculationsmore » of simple junction models. Our analytic considerations and numerical results indicate that the developed methodology constitutes a rigorous framework for the design of "black-box" algorithms to simulate electron dynamics in open quantum systems out of equilibrium.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelovich, Tamar; Hansen, Thorsten; Liu, Zhen-Fei
A parameter-free version of the recently developed driven Liouville-von Neumann equation [T. Zelovich et al., J. Chem. Theory Comput. 10(8), 2927-2941 (2014)] for electronic transport calculations in molecular junctions is presented. The single driving rate, appearing as a fitting parameter in the original methodology, is replaced by a set of state-dependent broadening factors applied to the different single-particle lead levels. These broadening factors are extracted explicitly from the self-energy of the corresponding electronic reservoir and are fully transferable to any junction incorporating the same lead model. Furthermore, the performance of the method is demonstrated via tight-binding and extended Hückel calculationsmore » of simple junction models. Our analytic considerations and numerical results indicate that the developed methodology constitutes a rigorous framework for the design of "black-box" algorithms to simulate electron dynamics in open quantum systems out of equilibrium.« less
NASA Astrophysics Data System (ADS)
Dietrich, Scott
Heterostructures made of semiconductor materials may be one of most versatile environments for the study of the physics of electron transport in two dimensions. These systems are highly customizable and demonstrate a wide range of interesting physical phenomena. In response to both microwave radiation and DC excitations, strongly nonlinear transport that gives rise to non-equilibrium electron states has been reported and investigated. We have studied GaAs quantum wells with a high density of high mobility two-dimensional electrons placed in a quantizing magnetic field. This study presents the observation of several nonlinear transport mechanisms produced by the quantum nature of these materials. The quantum scattering rate, 1tau/q, is an important parameter in these systems, defining the width of the quantized energy levels. Traditional methods of extracting 1tau/q involve studying the amplitude of Shubnikov-de Haas oscillations. We analyze the quantum positive magnetoresistance due to the cyclotron motion of electrons in a magnetic field. This method gives 1tau/q and has the additional benefit of providing access to the strength of electron-electron interactions, which is not possible by conventional techniques. The temperature dependence of the quantum scattering rate is found to be proportional to the square of the temperature and is in very good agreement with theory that considers electron-electron interactions in 2D systems. In quantum wells with a small scattering rate - which corresponds to well-defined Landau levels - quantum oscillations of nonlinear resistance that are independent of magnetic field strength have been observed. These oscillations are periodic in applied bias current and are connected to quantum oscillations of resistance at zero bias: either Shubnikov-de Haas oscillations for single subband systems or magnetointersubband oscillations for two subband systems. The bias-induced oscillations can be explained by a spatial variation of electron density across the sample. The theoretical model predicts the period of these oscillations to depend on the total electron density, which has been confirmed by controlling the density through a voltage top-gate on the sample. The peculiar nonlinear mechanism of quantal heating has garned much attention recently. This bulk phenomenon is a quantum manifestation of Joule heating where an applied bias current causes selective flattening in the electron distribution function but conserves overall broadening. This produces a highly non-equilibrium distribution of electrons that drastically effects the transport properties of the system. Recent studies have proposed contributions from edge states and/or skipping orbitals. We have shown that these contributions are minimal by studying the transition to the zero differential conductance state and comparing results between Hall and Corbino geometries. This demonstrated quantal heating as the dominant nonlinear mechanism in these systems. To study the dynamics of quantal heating, we applied microwave radiation simultaneously from two sources at frequencies ƒ1 and ƒ2 and measured the response of the system at the difference frequency, ƒ=|ƒ 1-ƒ2|. This provides direct access to the rate of inelastic scattering processes, 1tau/in, that tend to bring the electron distribution back to thermal equilibrium. While conventional measurements of the temperature dependence indicate that 1tau/in is proportional to temperature, recent DC investigations and our new dynamic measurements show either T2 or T3 dependence in different magnetic fields. Our microwave experiment is the first direct access to the inelastic relaxation rate and confirms the non-linear temperature dependence.
Teschome, Bezu; Facsko, Stefan; Schönherr, Tommy; Kerbusch, Jochen; Keller, Adrian; Erbe, Artur
2016-10-11
DNA origami nanostructures have been used extensively as scaffolds for numerous applications such as for organizing both organic and inorganic nanomaterials, studying single molecule reactions, and fabricating photonic devices. Yet, little has been done toward the integration of DNA origami nanostructures into nanoelectronic devices. Among other challenges, the technical difficulties in producing well-defined electrical contacts between macroscopic electrodes and individual DNA origami-based nanodevices represent a serious bottleneck that hinders the thorough characterization of such devices. Therefore, in this work, we have developed a method to electrically contact individual DNA origami-based metallic nanowires using electron beam lithography. We then characterize the charge transport of such nanowires in the temperature range from room temperature down to 4.2 K. The room temperature charge transport measurements exhibit ohmic behavior, whereas at lower temperatures, multiple charge transport mechanisms such as tunneling and thermally assisted transport start to dominate. Our results confirm that charge transport along metallized DNA origami nanostructures may deviate from pure metallic behavior due to several factors including partial metallization, seed inhomogeneities, impurities, and weak electronic coupling among AuNPs. Besides, this study further elucidates the importance of variable temperature measurements for determining the dominant charge transport mechanisms for conductive nanostructures made by self-assembly approaches.
Electromigration and the structure of metallic nanocontacts
NASA Astrophysics Data System (ADS)
Hoffmann-Vogel, R.
2017-09-01
This article reviews efforts to structurally characterize metallic nanocontacts. While the electronic characterization of such junctions is relatively straight forward, usually it is technically challenging to study the nanocontact's structure at small length scales. However, knowing that the structure is the basis for understanding the electronic properties of the nanocontact, for example, it is necessary to explain the electronic properties by calculations based on structural models. Besides using a gate electrode, controlling the structure is an important way of understanding how the electronic transport properties can be influenced. A key to make structural information directly accessible is to choose a fabrication method that is adapted to the structural characterization method. Special emphasis is given to transmission electron microscopy fabrication and to thermally assisted electromigration methods due to their potential for obtaining information on both electrodes of the forming nanocontact. Controlled electromigration aims at studying the contact at constant temperature of the contact during electromigration compared to studies at constant temperature of the environment as done previously. We review efforts to calculate electromigration forces. We describe how hot spots are formed during electromigration. We summarize implications for the structure obtained from studies of the ballistic transport regime, tunneling, and Coulomb-blockade. We review the structure of the nanocontacts known from direct structural characterization. Single-crystalline wires allow suppressing grain boundary electromigration. In thin films, the substrate plays an important role in influencing the defect and temperature distribution. Hot-spot formation and recrystallization are observed. We add information on the local temperature and current density and on alloys important for microelectronic interconnects.
Ab initio calculation of electron–phonon coupling in monoclinic β-Ga{sub 2}O{sub 3} crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Krishnendu, E-mail: kghosh3@buffalo.edu; Singisetti, Uttam, E-mail: uttamsin@buffalo.edu
2016-08-15
The interaction between electrons and vibrational modes in monoclinic β-Ga{sub 2}O{sub 3} is theoretically investigated using ab-initio calculations. The large primitive cell of β-Ga{sub 2}O{sub 3} gives rise to 30 phonon modes all of which are taken into account in transport calculation. The electron-phonon interaction is calculated under density functional perturbation theory and then interpolated using Wannier–Fourier interpolation. The long-range interaction elements between electrons and polar optical phonon (POP) modes are calculated separately using the Born effective charge tensor. The direction dependence of the long-range POP coupling in a monoclinic crystal is explored and is included in the transport calculations.more » Scattering rate calculations are done using the Fermi golden rule followed by solving the Boltzmann transport equation using the Rode's method to estimate low field mobility. A room temperature mobility of 115 cm{sup 2}/V s is observed. Comparison with recent experimentally reported mobility is done for a wide range of temperatures (30 K–650 K). It is also found that the POP interaction dominates the electron mobility under low electric field conditions. The relative contribution of the different POP modes is analyzed and the mode 21 meV POP is found to have the highest impact on low field electron mobility at room temperature.« less
Transport Simulations for Fast Ignition on NIF
NASA Astrophysics Data System (ADS)
Strozzi, D. J.; Tabak, M.; Grote, D. P.; Town, R. P. J.; Kemp, A. J.
2009-11-01
Calculations of the transport and deposition of a relativistic electron beam into fast-ignition fuel configurations are presented. The hybrid PIC code LSP is used, run in implicit mode and with fluid background particles. The electron beam distribution is chosen based on explicit PIC simulations of the short-pulse LPI. These generally display two hot-electron temperatures, one close to the ponderomotive scaling and one that is much lower. Fast-electron collisions utilize the formulae of J. R. Davies [S. Atzeni et al., Plasma Phys. Controlled Fusion 51 (2009)], and are done with a conservative, relativistic grid-based method similar to Lemons et al., J. Comput. Phys. 228 (2009). We include energy loss off both bound and free electrons in partially-ionized media (such as a gold cone), and have started to use realistic ionization and non-ideal EOS models. We have found the fractional energy coupling into the dense fuel is higher for CD than DT targets, due to the enhanced resistivity and resulting magnetic fields. The coupling enhancement due to magnetic fields and beam characteristics (such as angular spectrum) will be quantified.
NASA Astrophysics Data System (ADS)
Oh, Dong Keun; Hong, Sung Mok; Lee, Cheol Eui; Kim, B.-S.; Jin, J.-I.
2005-12-01
Using the time of flight (ToF) method, we investigated the bipolar charge transport for two glass-forming molecules containing carbazole and cyano-carbazole moiety. The enhanced electron mobility was observed in the cyano-carbazole compound. From the numerical method based the Laplace formalism, the distribution of hole trapping energy was obtained for the carbazole compound. This result was compared with the exponential distribution extracted from dispersion parameter for the cyano-carbazole material. Considering charge-dipole interactions as a reason for the disordered trapping mechanism, we discussed dispersive charge transport induced by a strong dipolar (i.e. cyano) group by comparing the distributions of hole trapping sites for two compounds.
Evaluating the Efficacy of GLUT Inhibitors Using a Seahorse Extracellular Flux Analyzer.
Wei, Changyong; Heitmeier, Monique; Hruz, Paul W; Shanmugam, Mala
2018-01-01
Glucose is metabolized through anaerobic glycolysis and aerobic oxidative phosphorylation (OXPHOS). Perturbing glucose uptake and its subsequent metabolism can alter both glycolytic and OXPHOS pathways and consequently lactate and/or oxygen consumption. Production and secretion of lactate, as a consequence of glycolysis, leads to acidification of the extracellular medium. Molecular oxygen is the final electron acceptor in the electron transport chain, facilitating oxidative phosphorylation of ADP to ATP. The alterations in extracellular acidification and/or oxygen consumption can thus be used as indirect readouts of glucose metabolism and assessing the impact of inhibiting glucose transport through specific glucose transporters (GLUTs). The Seahorse bioenergetics analyzer can measure both the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). The proposed methodology affords a robust, high-throughput method to screen for GLUT inhibition in cells engineered to express specific GLUTs, providing live cell read-outs upon GLUT inhibition.
NASA Astrophysics Data System (ADS)
Khedri, A.; Meden, V.; Costi, T. A.
2017-11-01
We investigate the effect of vibrational degrees of freedom on the linear thermoelectric transport through a single-level quantum dot described by the spinless Anderson-Holstein impurity model. To study the effects of strong electron-phonon coupling, we use the nonperturbative numerical renormalization group approach. We also compare our results, at weak to intermediate coupling, with those obtained by employing the functional renormalization group method, finding good agreement in this parameter regime. When applying a gate voltage at finite temperatures, the inelastic scattering processes, induced by phonon-assisted tunneling, result in an interesting interplay between electrical and thermal transport. We explore different parameter regimes and identify situations for which the thermoelectric power as well as the dimensionless figure of merit are significantly enhanced via a Mahan-Sofo type of mechanism. We show, in particular, that this occurs at strong electron-phonon coupling and in the antiadiabatic regime.
A simple quantum mechanical treatment of scattering in nanoscale transistors
NASA Astrophysics Data System (ADS)
Venugopal, R.; Paulsson, M.; Goasguen, S.; Datta, S.; Lundstrom, M. S.
2003-05-01
We present a computationally efficient, two-dimensional quantum mechanical simulation scheme for modeling dissipative electron transport in thin body, fully depleted, n-channel, silicon-on-insulator transistors. The simulation scheme, which solves the nonequilibrium Green's function equations self consistently with Poisson's equation, treats the effect of scattering using a simple approximation inspired by the "Büttiker probes," often used in mesoscopic physics. It is based on an expansion of the active device Hamiltonian in decoupled mode space. Simulation results are used to highlight quantum effects, discuss the physics of scattering and to relate the quantum mechanical quantities used in our model to experimentally measured low field mobilities. Additionally, quantum boundary conditions are rigorously derived and the effects of strong off-equilibrium transport are examined. This paper shows that our approximate treatment of scattering, is an efficient and useful simulation method for modeling electron transport in nanoscale, silicon-on-insulator transistors.
Unconventional transport in ultraclean graphene constriction devices
NASA Astrophysics Data System (ADS)
Pita Vidal, Marta; Ma, Qiong; Watanabe, Kenji; Taniguchi, Takashi; Jarillo-Herrero, Pablo
Under mesoscopic conditions, strong electron-electron interactions and weak electron-phonon coupling in graphene lead to hydrodynamic behavior of electrons, resulting in unusual and unexpected transport phenomena. Specifically, this hydrodynamical collective cooperation of electrons is predicted to enhance the flow of electrical current, leading to a striking higher-than-ballistic conductance through a narrow geometrical constriction. To access the hydrodynamic regime, we fabricated high-quality, low-disorder graphene nano-constriction devices encapsulated by hexagonal boron nitride, where electron-electron scattering dominates impurity scattering. We will report on our systematic four-probe conductance measurements on devices with different constriction widths as a function of number density and temperature. The observation of quantum transport phenomena that are inconsistent with the non-interacting ballistic free-fermion model would suggest a macroscopic transport signature of electron viscosity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strelcov, Evgheni; Belianinov, Alexei; Hsieh, Ying-Hui
Development of new generation electronic devices requires understanding and controlling the electronic transport in ferroic, magnetic, and optical materials, which is hampered by two factors. First, the complications of working at the nanoscale, where interfaces, grain boundaries, defects, and so forth, dictate the macroscopic characteristics. Second, the convolution of the response signals stemming from the fact that several physical processes may be activated simultaneously. Here, we present a method of solving these challenges via a combination of atomic force microscopy and data mining analysis techniques. Rational selection of the latter allows application of physical constraints and enables direct interpretation ofmore » the statistically significant behaviors in the framework of the chosen physical model, thus distilling physical meaning out of raw data. We demonstrate our approach with an example of deconvolution of complex transport behavior in a bismuth ferrite–cobalt ferrite nanocomposite in ambient and ultrahigh vacuum environments. Measured signal is apportioned into four electronic transport patterns, showing different dependence on partial oxygen and water vapor pressure. These patterns are described in terms of Ohmic conductance and Schottky emission models in the light of surface electrochemistry. Finally and furthermore, deep data analysis allows extraction of local dopant concentrations and barrier heights empowering our understanding of the underlying dynamic mechanisms of resistive switching.« less
NASA Astrophysics Data System (ADS)
Partovi-Azar, P.; Panahian Jand, S.; Kaghazchi, P.
2018-01-01
Edge termination of graphene nanoribbons is a key factor in determination of their physical and chemical properties. Here, we focus on nitrogen-terminated zigzag graphene nanoribbons resembling polyacrylonitrile-based carbon nanofibers (CNFs) which are widely studied in energy research. In particular, we investigate magnetic, electronic, and transport properties of these CNFs as functions of their widths using density-functional theory calculations together with the nonequilibrium Green's function method. We report on metallic behavior of all the CNFs considered in this study and demonstrate that the narrow CNFs show finite magnetic moments. The spin-polarized electronic states in these fibers exhibit similar spin configurations on both edges and result in spin-dependent transport channels in the narrow CNFs. We show that the partially filled nitrogen dangling-bond bands are mainly responsible for the ferromagnetic spin ordering in the narrow samples. However, the magnetic moment becomes vanishingly small in the case of wide CNFs where the dangling-bond bands fall below the Fermi level and graphenelike transport properties arising from the π orbitals are recovered. The magnetic properties of the CNFs as well as their stability have also been discussed in the presence of water molecules and the hexagonal boron nitride substrate.
Modeling the Charge Transport in Graphene Nano Ribbon Interfaces for Nano Scale Electronic Devices
NASA Astrophysics Data System (ADS)
Kumar, Ravinder; Engles, Derick
2015-05-01
In this research work we have modeled, simulated and compared the electronic charge transport for Metal-Semiconductor-Metal interfaces of Graphene Nano Ribbons (GNR) with different geometries using First-Principle calculations and Non-Equilibrium Green's Function (NEGF) method. We modeled junctions of Armchair GNR strip sandwiched between two Zigzag strips with (Z-A-Z) and Zigzag GNR strip sandwiched between two Armchair strips with (A-Z-A) using semi-empirical Extended Huckle Theory (EHT) within the framework of Non-Equilibrium Green Function (NEGF). I-V characteristics of the interfaces were visualized for various transport parameters. The distinct changes in conductance and I-V curves reported as the Width across layers, Channel length (Central part) was varied at different bias voltages from -1V to 1 V with steps of 0.25 V. From the simulated results we observed that the conductance through A-Z-A graphene junction is in the range of 10-13 Siemens whereas the conductance through Z-A-Z graphene junction is in the range of 10-5 Siemens. These suggested conductance controlled mechanisms for the charge transport in the graphene interfaces with different geometries is important for the design of graphene based nano scale electronic devices like Graphene FETs, Sensors.
Strelcov, Evgheni; Belianinov, Alexei; Hsieh, Ying-Hui; ...
2015-08-27
Development of new generation electronic devices requires understanding and controlling the electronic transport in ferroic, magnetic, and optical materials, which is hampered by two factors. First, the complications of working at the nanoscale, where interfaces, grain boundaries, defects, and so forth, dictate the macroscopic characteristics. Second, the convolution of the response signals stemming from the fact that several physical processes may be activated simultaneously. Here, we present a method of solving these challenges via a combination of atomic force microscopy and data mining analysis techniques. Rational selection of the latter allows application of physical constraints and enables direct interpretation ofmore » the statistically significant behaviors in the framework of the chosen physical model, thus distilling physical meaning out of raw data. We demonstrate our approach with an example of deconvolution of complex transport behavior in a bismuth ferrite–cobalt ferrite nanocomposite in ambient and ultrahigh vacuum environments. Measured signal is apportioned into four electronic transport patterns, showing different dependence on partial oxygen and water vapor pressure. These patterns are described in terms of Ohmic conductance and Schottky emission models in the light of surface electrochemistry. Finally and furthermore, deep data analysis allows extraction of local dopant concentrations and barrier heights empowering our understanding of the underlying dynamic mechanisms of resistive switching.« less
Recent progress in understanding electron thermal transport in NSTX
Ren, Y.; Belova, E.; Gorelenkov, N.; ...
2017-03-10
The anomalous level of electron thermal transport inferred in magnetically confined configurations is one of the most challenging problems for the ultimate realization of fusion power using toroidal devices: tokamaks, spherical tori and stellarators. It is generally believed that plasma instabilities driven by the abundant free energy in fusion plasmas are responsible for the electron thermal transport. The National Spherical Torus eXperiment (NSTX) (Ono et al 2000 Nucl. Fusion 40 557) provides a unique laboratory for studying plasma instabilities and their relation to electron thermal transport due to its low toroidal field, high plasma beta, low aspect ratio and largemore » ExB flow shear. Recent findings on NSTX have shown that multiple instabilities are required to explain observed electron thermal transport, given the wide range of equilibrium parameters due to different operational scenarios and radial regions in fusion plasmas. Here we review the recent progresses in understanding anomalous electron thermal transport in NSTX and focus on mechanisms that could drive electron thermal transport in the core region. The synergy between experiment and theoretical/ numerical modeling is essential to achieving these progresses. The plans for newly commissioned NSTX-Upgrade will also be discussed.« less
NASA Astrophysics Data System (ADS)
Ivanova, A.; Tokmakov, A.; Lebedeva, K.; Roze, M.; Kaulachs, I.
2017-08-01
Organometal halide perovskites are promising materials for lowcost, high-efficiency solar cells. The method of perovskite layer deposition and the interfacial layers play an important role in determining the efficiency of perovskite solar cells (PSCs). In the paper, we demonstrate inverted planar perovskite solar cells where perovskite layers are deposited by two-step modified interdiffusion and one-step methods. We also demonstrate how PSC parameters change by doping of charge transport layers (CTL). We used dimethylsupoxide (DMSO) as dopant for the hole transport layer (PEDOT:PSS) but for the electron transport layer [6,6]-phenyl C61 butyric acid methyl ester (PCBM)) we used N,N-dimethyl-N-octadecyl(3-aminopropyl)trimethoxysilyl chloride (DMOAP). The highest main PSC parameters (PCE, EQE, VOC) were obtained for cells prepared by the one-step method with fast crystallization and doped CTLs but higher fill factor (FF) and shunt resistance (Rsh) values were obtained for cells prepared by the two-step method with undoped CTLs.
Calculated electronic, transport, and related properties of zinc blende boron arsenide (zb-BAs)
NASA Astrophysics Data System (ADS)
Nwigboji, Ifeanyi H.; Malozovsky, Yuriy; Franklin, Lashounda; Bagayoko, Diola
2016-10-01
We present the results from ab-initio, self-consistent density functional theory (DFT) calculations of electronic, transport, and bulk properties of zinc blende boron arsenide. We utilized the local density approximation potential of Ceperley and Alder, as parameterized by Vosko and his group, the linear combination of Gaussian orbitals formalism, and the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF), in carrying out our completely self-consistent calculations. With this method, the results of our calculations have the full, physical content of density functional theory (DFT). Our results include electronic energy bands, densities of states, effective masses, and the bulk modulus. Our calculated, indirect band gap of 1.48 eV, from Γ to a conduction band minimum close to X, for the room temperature lattice constant of 4.777 Å, is in an excellent agreement with the experimental value of 1.46 ± 0.02 eV. We thoroughly explain the reasons for the excellent agreement between our findings and corresponding, experimental ones. This work provides a confirmation of the capability of DFT to describe accurately properties of materials, if the computations adhere strictly to the conditions of validity of DFT, as done by the BZW-EF method.
Energy-filtered cold electron transport at room temperature.
Bhadrachalam, Pradeep; Subramanian, Ramkumar; Ray, Vishva; Ma, Liang-Chieh; Wang, Weichao; Kim, Jiyoung; Cho, Kyeongjae; Koh, Seong Jin
2014-09-10
Fermi-Dirac electron thermal excitation is an intrinsic phenomenon that limits functionality of various electron systems. Efforts to manipulate electron thermal excitation have been successful when the entire system is cooled to cryogenic temperatures, typically <1 K. Here we show that electron thermal excitation can be effectively suppressed at room temperature, and energy-suppressed electrons, whose energy distribution corresponds to an effective electron temperature of ~45 K, can be transported throughout device components without external cooling. This is accomplished using a discrete level of a quantum well, which filters out thermally excited electrons and permits only energy-suppressed electrons to participate in electron transport. The quantum well (~2 nm of Cr2O3) is formed between source (Cr) and tunnelling barrier (SiO2) in a double-barrier-tunnelling-junction structure having a quantum dot as the central island. Cold electron transport is detected from extremely narrow differential conductance peaks in electron tunnelling through CdSe quantum dots, with full widths at half maximum of only ~15 mV at room temperature.
Electron Transport Modeling of Molecular Nanoscale Bridges Used in Energy Conversion Schemes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunietz, Barry D
2016-08-09
The goal of the research program is to reliably describe electron transport and transfer processes at the molecular level. Such insight is essential for improving molecular applications of solar and thermal energy conversion. We develop electronic structure models to study (1) photoinduced electron transfer and transport processes in organic semiconducting materials, and (2) charge and heat transport through molecular bridges. We seek fundamental understanding of key processes, which lead to design new experiments and ultimately to achieve systems with improved properties.
Role of charged impurities in thermoelectric transport in molybdenum disulfide monolayers
NASA Astrophysics Data System (ADS)
Patil, Sukanya B.; Sankeshwar, N. S.; Mulimani, B. G.
2017-12-01
A theoretical study of the electronic properties, namely, electrical conductivity (EC), electronic thermal conductivity (ETC) and thermoelectric power (TEP) in 2D MoS2 monolayers (MLs), over a wide range of temperatures (10 < T < 300 K), is presented employing Boltzmann transport formalism. Considering the electrons to be scattered by screened charged impurities and the acoustic, optical and remote phonons, the transport equation is solved using Ritz iterative method. Numerical calculations of EC, ETC and TEP presented for supported and free-standing MLs with high electron concentrations, as a function of temperature, bring out the relative importance of the various scattering mechanisms operative. The role of CIs, with regard to both concentration and separation from the substrate-ML interface, in determining the properties of supported MLs is demonstrated for the first time. Validity of Wiedemann-Franz law and Mott formula are examined for supported and free standing MLs. Calculations are in consonance with recent experimental data on mobility and TEP of exfoliated SiO2-supported MoS2 ML samples. In the case of TEP it is found that though the diffusion contribution is dominant the inclusion of the drag component, incorporating contributions from all relevant phonon scattering mechanisms, is needed to obtain good agreement with the data.
Resistivity scaling and electron relaxation times in metallic nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moors, Kristof, E-mail: kristof@itf.fys.kuleuven.be; Imec, Kapeldreef 75, B-3001 Leuven; Sorée, Bart
2014-08-14
We study the resistivity scaling in nanometer-sized metallic wires due to surface roughness and grain-boundaries, currently the main cause of electron scattering in nanoscaled interconnects. The resistivity has been obtained with the Boltzmann transport equation, adopting the relaxation time approximation of the distribution function and the effective mass approximation for the conducting electrons. The relaxation times are calculated exactly, using Fermi's golden rule, resulting in a correct relaxation time for every sub-band state contributing to the transport. In general, the relaxation time strongly depends on the sub-band state, something that remained unclear with the methods of previous work. The resistivitymore » scaling is obtained for different roughness and grain-boundary properties, showing large differences in scaling behavior and relaxation times. Our model clearly indicates that the resistivity is dominated by grain-boundary scattering, easily surpassing the surface roughness contribution by a factor of 10.« less
Negative differential resistance and switch behavior of T-BxNy (x, y = 5, 6, 11) molecular junctions
NASA Astrophysics Data System (ADS)
Wang, Shi-Liang; Yang, Chuan-Lu; Wang, Mei-Shan; Ma, Xiao-Guang; Xin, Jian-Guo
2017-05-01
The electronic transport properties of T-BxNy (x, y = 5, 6, 11) molecular junction are investigated based on first-principle density functional theory and non-equilibrium Green's function method. Strong negative differential resistance (NDR) behavior is observed for T-B5N6 molecule under negative and positive bias voltages, with an obvious switch effect for T-B6N5. However, only small NDR is shown for the complex of the two molecules. The projected device density of states, the spatial distribution of molecular orbitals, and the effect of transmission spectra under various bias voltages on the electronic transport properties are analyzed. The obvious effect of bias voltage on the changes in the electronic distribution of frontier molecular orbitals is responsible for the NDR or switch behavior. Therefore, different functional molecular devices can be obtained with different structures of T-BxNy.
On the Kubo-Greenwood model for electron conductivity
NASA Astrophysics Data System (ADS)
Dufty, James; Wrighton, Jeffrey; Luo, Kai; Trickey, S. B.
2018-02-01
Currently, the most common method to calculate transport properties for materials under extreme conditions is based on the phenomenological Kubo-Greenwood method. The results of an inquiry into the justification and context of that model are summarized here. Specifically, the basis for its connection to equilibrium DFT and the assumption of static ions are discussed briefly.
Electrically induced spontaneous emission in open electronic system
NASA Astrophysics Data System (ADS)
Wang, Rulin; Zhang, Yu; Yam, Chiyung; Computation Algorithms Division (CSRC) Team; Theoretical; Computational Chemistry (HKU) Collaboration
A quantum mechanical approach is formulated for simulation of electroluminescence process in open electronic system. Based on nonequilibrium Green's function quantum transport equations and combining with photon-electron interaction, this method is used to describe electrically induced spontaneous emission caused by electron-hole recombination. The accuracy and reliability of simulation depends critically on correct description of the electronic band structure and the electron occupancy in the system. In this work, instead of considering electron-hole recombination in discrete states in the previous work, we take continuous states into account to simulate the spontaneous emission in open electronic system, and discover that the polarization of emitted photon is closely related to its propagation direction. Numerical studies have been performed to silicon nanowire-based P-N junction with different bias voltage.
NASA Astrophysics Data System (ADS)
Gavvalapalli, Nagarjuna
All-polymer solar cells (APSC) are a class of organic solar cells in which hole and electron transporting phases are made of conjugated polymers. Unlike polymer/fullerene solar cell, photoactive material of APSC can be designed to have hole and electron transporting polymers with complementary absorption range and proper frontier energy level offset. However, the highest reported PCE of APSC is 5 times less than that of polymer/fullerene solar cell. The low PCE of APSC is mainly due to: i) low charge separation efficiency; and ii) lack of optimal morphology to facilitate charge transfer and transport; and iii) lack of control over the exciton and charge transport in each phase. My research work is focused towards addressing these issues. The charge separation efficiency of APSC can be enhanced by designing novel electron transporting polymers with: i) broad absorption range; ii) high electron mobility; and iii) high dielectric constant. In addition to with the above parameters chemical and electronic structure of the repeating unit of conjugated polymer also plays a role in charge separation efficiency. So far only three classes of electron transporting polymers, CN substituted PPV, 2,1,3-benzothiadiazole derived polymers and rylene diimide derived polymers, are used in APSC. Thus to enhance the charge separation efficiency new classes of electron transporting polymers with the above characteristics need to be synthesized. I have developed a new straightforward synthetic strategy to rapidly generate new classes of electron transporting polymers with different chemical and electronic structure, broad absorption range, and high electron mobility from readily available electron deficient monomers. In APSCs due to low entropy of mixing, polymers tend to micro-phase segregate rather than forming the more useful nano-phase segregation. Optimizing the polymer blend morphology to obtain nano-phase segregation is specific to the system under study, time consuming, and not trivial. Thus to avoid micro-phase segregation, nanoparticles of hole and electron transporters are synthesized and blended. But the PCE of nanoparticle blends are far less than those of polymer blends. This is mainly due to the: i) lack of optimal assembly of nanoparticles to facilitate charge transfer and transport processes; and ii) lack of control over the exciton and charge transport properties within the nanoparticles. Polymer packing within the nanoparticle controls the optoelectronic and charge transport properties of the nanoparticle. In this work I have shown that the solvent used to synthesize nanoparticles plays a crucial role in determining the assembly of polymer chains inside the nanoparticle there by affecting its exciton and charge transport processes. To obtain the optimal morphology for better charge transfer and transport, we have also synthesized nanoparticles of different radius with surfactants of opposite charge. We propose that depending on the radius and/or Coulombic interactions these nanoparticles can be assembled into mineral structure-types that are useful for photovoltaic devices.
Defect-driven localization crossovers in MBE-grown La-doped SrSn O3 films
NASA Astrophysics Data System (ADS)
Wang, Tianqi; Thoutam, Laxman Raju; Prakash, Abhinav; Nunn, William; Haugstad, Greg; Jalan, Bharat
2017-11-01
Through systematic control of cation stoichiometry using a hybrid molecular beam epitaxy method, we show a crossover from weak to strong localization of electronic carriers in La-doped SrSn O3 films on LaAl O3 (001). We demonstrate that substrate-induced dislocations in these films can have a strong influence on the electron phase coherence length resulting in two-dimensional to three-dimensional weak localization crossover. We discuss the correlation between electronic transport, and defects associated with nonstoichiometry and dislocations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saad, Yousef
2014-03-19
The master project under which this work is funded had as its main objective to develop computational methods for modeling electronic excited-state and optical properties of various nanostructures. The specific goals of the computer science group were primarily to develop effective numerical algorithms in Density Functional Theory (DFT) and Time Dependent Density Functional Theory (TDDFT). There were essentially four distinct stated objectives. The first objective was to study and develop effective numerical algorithms for solving large eigenvalue problems such as those that arise in Density Functional Theory (DFT) methods. The second objective was to explore so-called linear scaling methods ormore » Methods that avoid diagonalization. The third was to develop effective approaches for Time-Dependent DFT (TDDFT). Our fourth and final objective was to examine effective solution strategies for other problems in electronic excitations, such as the GW/Bethe-Salpeter method, and quantum transport problems.« less
Electron transport and light-harvesting switches in cyanobacteria
Mullineaux, Conrad W.
2014-01-01
Cyanobacteria possess multiple mechanisms for regulating the pathways of photosynthetic and respiratory electron transport. Electron transport may be regulated indirectly by controlling the transfer of excitation energy from the light-harvesting complexes, or it may be more directly regulated by controlling the stoichiometry, localization, and interactions of photosynthetic and respiratory electron transport complexes. Regulation of the extent of linear vs. cyclic electron transport is particularly important for controlling the redox balance of the cell. This review discusses what is known of the regulatory mechanisms and the timescales on which they occur, with particular regard to the structural reorganization needed and the constraints imposed by the limited mobility of membrane-integral proteins in the crowded thylakoid membrane. Switching mechanisms requiring substantial movement of integral thylakoid membrane proteins occur on slower timescales than those that require the movement only of cytoplasmic or extrinsic membrane proteins. This difference is probably due to the restricted diffusion of membrane-integral proteins. Multiple switching mechanisms may be needed to regulate electron transport on different timescales. PMID:24478787
NASA Astrophysics Data System (ADS)
Paul, Sanjoy
Organic electronics offer the possibility of producing low cost, flexible, and large area electronics. Organic semiconductors (OSCs) (organic polymers and crystals), used in organic electronics, are promising materials for novel optical and electronic devices such as organic light emitting diodes, organic field effect transistors, organic sensors, and organic photovoltaics (OPVs). OSCs are composed of molecules weakly held together via van der Walls forces rather than covalent bonds as in the case of inorganic semiconductors such as Si. The combined effect of small wave function overlap, spatial and energetic disorder in organic semiconducting materials lead to localization of charge carriers and, in many cases, hopping conduction. OSCs also differ from conventional semiconductors in that charges photogeneration (e.g., in OPVs) proceeds via the production, diffusion, and dissociation of excitons. Liquid crystalline OSCs (LCOSCs) are semiconductors with phases intermediate between the highly ordered crystalline and completely disordered liquid phases. These materials offer many advantages including facile alignment and the opportunity to study the effects of differing intermolecular geometries on transfer integrals, disorder-induced trapping, charge mobilities, and photogeneration efficiency. In this dissertation work, we explored the photogeneration and charge transport mechanisms in a few model smectic and discotic LCs to better understand the governing principles of photogeneration and charge transport using conventional and novel methods based on the pulsed laser time-of-flight charge carrier transport technique. Four major interrelated topics were considered in this research. First, a sample of smectic LC was aligned in order to compare the resulting hole mobility to that of an unaligned sample, with the aim of understanding how the intermolecular alignment over large length scales affects the hopping probability. The role of the polarization of the photogenerating light was also explored in the context of these anisotropic systems. Next, the photogeneration and charge transport was investigated as a function of temperature, electric field, the wavelength and intensity of photogenerating light. Different exciton dissociation interfaces between the electrode and the LC to probe the details of the mechanism of excitonic dissociation (e.g., surface mediated generation vs. exciton-exciton fusion) were explored. Next, we have also developed a new method of spatially resolving the photogeneration and transport mechanisms in inhomogeneous OSCs called "scanning time of flight microscopy (STOFm)" which simultaneously obtains 2d images of transport coefficients and polarized transmittance. The STOFm was extensively used to study charge transport in various structured semiconductors: smectics, discotics, as well as in phase separated LC/polymer structures. Finally, this work involves characterization and analysis of transport in a number of new phenyl-naphthalene LC OSCs.
NASA Astrophysics Data System (ADS)
Tsukamoto, Shigeru; Ono, Tomoya; Hirose, Kikuji; Blügel, Stefan
2017-03-01
The self-energy term used in transport calculations, which describes the coupling between electrode and transition regions, is able to be evaluated only from a limited number of the propagating and evanescent waves of a bulk electrode. This obviously contributes toward the reduction of the computational expenses in transport calculations. In this paper, we present a mathematical formula for reducing the computational expenses further without using any approximation and without losing accuracy. So far, the self-energy term has been handled as a matrix with the same dimension as the Hamiltonian submatrix representing the interaction between an electrode and a transition region. In this work, through the singular-value decomposition of the submatrix, the self-energy matrix is handled as a smaller matrix, whose dimension is the rank number of the Hamiltonian submatrix. This procedure is practical in the case of using the pseudopotentials in a separable form, and the computational expenses for determining the self-energy matrix are reduced by 90% when employing a code based on the real-space finite-difference formalism and projector-augmented wave method. In addition, this technique is applicable to the transport calculations using atomic or localized basis sets. Adopting the self-energy matrices obtained from this procedure, we present the calculation of the electron transport properties of C20 molecular junctions. The application demonstrates that the electron transmissions are sensitive to the orientation of the molecule with respect to the electrode surface. In addition, channel decomposition of the scattering wave functions reveals that some unoccupied C20 molecular orbitals mainly contribute to the electron conduction through the molecular junction.
NASA Astrophysics Data System (ADS)
Shen, Ji-Mei; Liu, Jing; Min, Yi; Zhou, Li-Ping
2016-12-01
Using the first-principles method which combines the nonequilibrium Green’s function (NEGF) with density functional theory (DFT), the role of defect, dopant, barrier length and geometric deformation for low-bias negative differential resistance (NDR) in two capped armchair carbon nanotubes (CNTs) sandwiching σ barrier are systematically analyzed. We found that this method can regulate the negative differential resistance (NDR) effects such as current peak and peak position. The adjusting mechanism may originate from orbital interaction and orbital reconstruction. Our calculations try to manipulate the transport characteristics in energy space by simply manipulating the structure in real space, which may promise the potential applications in nanomolecular-electronics in the future.
A Theoretical Review on Interfacial Thermal Transport at the Nanoscale.
Zhang, Ping; Yuan, Peng; Jiang, Xiong; Zhai, Siping; Zeng, Jianhua; Xian, Yaoqi; Qin, Hongbo; Yang, Daoguo
2018-01-01
With the development of energy science and electronic technology, interfacial thermal transport has become a key issue for nanoelectronics, nanocomposites, energy transmission, and conservation, etc. The application of thermal interfacial materials and other physical methods can reliably improve the contact between joined surfaces and enhance interfacial thermal transport at the macroscale. With the growing importance of thermal management in micro/nanoscale devices, controlling and tuning the interfacial thermal resistance (ITR) at the nanoscale is an urgent task. This Review examines nanoscale interfacial thermal transport mainly from a theoretical perspective. Traditional theoretical models, multiscale models, and atomistic methodologies for predicting ITR are introduced. Based on the analysis and summary of the factors that influence ITR, new methods to control and reduce ITR at the nanoscale are described in detail. Furthermore, the challenges facing interfacial thermal management and the further progress required in this field are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stockner, Thomas; Mullen, Anna; MacMillan, Fraser
2015-10-01
ABC transporters are primary active transporters found in all kingdoms of life. Human multidrug resistance transporter ABCB1, or P-glycoprotein, has an extremely broad substrate spectrum and confers resistance against chemotherapy drug treatment in cancer cells. The bacterial ABC transporter MsbA is a lipid A flippase and a homolog to the human ABCB1 transporter, with which it partially shares its substrate spectrum. Crystal structures of MsbA and ABCB1 have been solved in multiple conformations, providing a glimpse into the possible conformational changes the transporter could be going through during the transport cycle. Crystal structures are inherently static, while a dynamic picture of the transporter in motion is needed for a complete understanding of transporter function. Molecular dynamics (MD) simulations and electron paramagnetic resonance (EPR) spectroscopy can provide structural information on ABC transporters, but the strength of these two methods lies in the potential to characterise the dynamic regime of these transporters. Information from the two methods is quite complementary. MD simulations provide an all atom dynamic picture of the time evolution of the molecular system, though with a narrow time window. EPR spectroscopy can probe structural, environmental and dynamic properties of the transporter in several time regimes, but only through the attachment sites of an exogenous spin label. In this review the synergistic effects that can be achieved by combining the two methods are highlighted, and a brief methodological background is also presented. © 2015 Authors; published by Portland Press Limited.
Electrical transport properties in indium tin oxide films prepared by electron-beam evaporation
NASA Astrophysics Data System (ADS)
Liu, X. D.; Jiang, E. Y.; Zhang, D. X.
2008-10-01
Amorphous and polycrystalline indium tin oxide films have been prepared by electron-beam evaporation method. The amorphous films exhibit semiconductor behavior, while metallic conductivity is observed in the polycrystalline samples. The magnetoconductivities of the polycrystalline films are positive at low temperatures and can be well described by the theory of three-dimensional weak-localization effect. In addition, the electron phase-breaking rate is proportional to T3/2. Comparing the experimental results with theory, we find that the electron-electron scattering is the dominant destroyer of the constructive interference in the films. In addition, the Coulomb interaction is the main contribution to the nontrivial corrections for the electrical conductivity at low temperatures.
Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma
Rostoker, Norman; Binderbauer, Michl
2003-12-16
A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma
Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang
2007-02-20
A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma
Rostoker, Norman; Binderbauer, Michl; Qerushi, Artan; Tahsiri, Hooshang
2006-02-07
A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Sensitivity analysis for dose deposition in radiotherapy via a Fokker–Planck model
Barnard, Richard C.; Frank, Martin; Krycki, Kai
2016-02-09
In this paper, we study the sensitivities of electron dose calculations with respect to stopping power and transport coefficients. We focus on the application to radiotherapy simulations. We use a Fokker–Planck approximation to the Boltzmann transport equation. Equations for the sensitivities are derived by the adjoint method. The Fokker–Planck equation and its adjoint are solved numerically in slab geometry using the spherical harmonics expansion (P N) and an Harten-Lax-van Leer finite volume method. Our method is verified by comparison to finite difference approximations of the sensitivities. Finally, we present numerical results of the sensitivities for the normalized average dose depositionmore » depth with respect to the stopping power and the transport coefficients, demonstrating the increase in relative sensitivities as beam energy decreases. In conclusion, this in turn gives estimates on the uncertainty in the normalized average deposition depth, which we present.« less
NASA Astrophysics Data System (ADS)
Wong, S. K.; Chan, V. S.; Hinton, F. L.
2001-10-01
The classic solution of the linearized drift kinetic equations in neoclassical transport theory for large-aspect-ratio tokamak flux-surfaces relies on the variational principle and the choice of ``localized" distribution functions as trialfunctions.(M.N. Rosenbluth, et al., Phys. Fluids 15) (1972) 116. Somewhat unclear in this approach are the nature and the origin of the ``localization" and whether the results obtained represent the exact leading terms in an asymptotic expansion int he inverse aspect ratio. Using the method of matched asymptotic expansions, we were able to derive the leading approximations to the distribution functions and demonstrated the asymptotic exactness of the existing results. The method is also applied to the calculation of angular momentum transport(M.N. Rosenbluth, et al., Plasma Phys. and Contr. Nucl. Fusion Research, 1970, Vol. 1 (IAEA, Vienna, 1971) p. 495.) and the current driven by electron cyclotron waves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grishkov, A. A.; Kornilov, S. Yu., E-mail: kornilovsy@gmail.com; Rempe, N. G.
2016-07-15
The results of computer simulations of the electron-optical system of an electron gun with a plasma emitter are presented. The simulations are performed using the KOBRA3-INP, XOOPIC, and ANSYS codes. The results describe the electron beam formation and transport. The electron trajectories are analyzed. The mechanisms of gas influence on the energy inhomogeneity of the beam and its current in the regions of beam primary formation, acceleration, and transport are described. Recommendations for optimizing the electron-optical system with a plasma emitter are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jodin, L.; Tobola, J.; Pecheur, P.
2004-11-01
The structural and electron transport properties of the pure and Co-, Ti-, and Zr-substituted FeVSb half-Heusler phases have been investigated using x-ray diffraction, Moessbauer spectroscopy, and Electron Probe Microscopy Analysis as well as resistivity, thermopower, and Hall effect measurements in the 80-900 K temperature range. In a parallel study, the electronic structures of FeVSb and the aforementioned alloys were calculated using the Korringa-Kohn-Rostoker method with the coherent potential approximation (KKR-CPA) in the LDA framework. The electronic densities of states and dispersion curves were obtained. The crystal structure stability and site preference analysis were addressed using total energy computations. Most ofmore » these experimental results correspond to electronic structure computations only if they take into account extra crystal defects such as antisite defects or vacancies present to various extents in the samples. Indeed a remarkable variation of KKR-CPA density of states occurring both in FeVSb and FeV{sub 1-x}Zr{sub x}Sb including defects may explain why FeVSb is not fully semiconducting as well as why there is a change of the thermopower sign in the FeV{sub 1-x}Zr{sub x}Sb versus x content.« less
Single-Nanoparticle Photoelectrochemistry at a Nanoparticulate TiO2 -Filmed Ultramicroelectrode.
Peng, Yue-Yi; Ma, Hui; Ma, Wei; Long, Yi-Tao; Tian, He
2018-03-26
An ultrasensitive photoelectrochemical method for achieving real-time detection of single nanoparticle collision events is presented. Using a micrometer-thick nanoparticulate TiO 2 -filmed Au ultra-microelectrode (TiO 2 @Au UME), a sub-millisecond photocurrent transient was observed for an individual N719-tagged TiO 2 (N719@TiO 2 ) nanoparticle and is due to the instantaneous collision process. Owing to a trap-limited electron diffusion process as the rate-limiting step, a random three-dimensional diffusion model was developed to simulate electron transport dynamics in TiO 2 film. The combination of theoretical simulation and high-resolution photocurrent measurement allow electron-transfer information of a single N719@TiO 2 nanoparticle to be quantified at single-molecule accuracy and the electron diffusivity and the electron-collection efficiency of TiO 2 @Au UME to be estimated. This method provides a test for studies of photoinduced electron transfer at the single-nanoparticle level. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Transport properties of partially ionized and unmagnetized plasmas.
Magin, Thierry E; Degrez, Gérard
2004-10-01
This work is a comprehensive and theoretical study of transport phenomena in partially ionized and unmagnetized plasmas by means of kinetic theory. The pros and cons of different models encountered in the literature are presented. A dimensional analysis of the Boltzmann equation deals with the disparity of mass between electrons and heavy particles and yields the epochal relaxation concept. First, electrons and heavy particles exhibit distinct kinetic time scales and may have different translational temperatures. The hydrodynamic velocity is assumed to be identical for both types of species. Second, at the hydrodynamic time scale the energy exchanged between electrons and heavy particles tends to equalize both temperatures. Global and species macroscopic fluid conservation equations are given. New constrained integral equations are derived from a modified Chapman-Enskog perturbative method. Adequate bracket integrals are introduced to treat thermal nonequilibrium. A symmetric mathematical formalism is preferred for physical and numerical standpoints. A Laguerre-Sonine polynomial expansion allows for systems of transport to be derived. Momentum, mass, and energy fluxes are associated to shear viscosity, diffusion coefficients, thermal diffusion coefficients, and thermal conductivities. A Goldstein expansion of the perturbation function provides explicit expressions of the thermal diffusion ratios and measurable thermal conductivities. Thermal diffusion terms already found in the Russian literature ensure the exact mass conservation. A generalized Stefan-Maxwell equation is derived following the method of Kolesnikov and Tirskiy. The bracket integral reduction in terms of transport collision integrals is presented in Appendix for the thermal nonequilibrium case. A simple Eucken correction is proposed to deal with the internal degrees of freedom of atoms and polyatomic molecules, neglecting inelastic collisions. The authors believe that the final expressions are readily usable for practical applications in fluid dynamics.
Balanced electron-hole transport in spin-orbit semimetal SrIrO3 heterostructures
NASA Astrophysics Data System (ADS)
Manca, Nicola; Groenendijk, Dirk J.; Pallecchi, Ilaria; Autieri, Carmine; Tang, Lucas M. K.; Telesio, Francesca; Mattoni, Giordano; McCollam, Alix; Picozzi, Silvia; Caviglia, Andrea D.
2018-02-01
Relating the band structure of correlated semimetals to their transport properties is a complex and often open issue. The partial occupation of numerous electron and hole bands can result in properties that are seemingly in contrast with one another, complicating the extraction of the transport coefficients of different bands. The 5 d oxide SrIrO3 hosts parabolic bands of heavy holes and light electrons in gapped Dirac cones due to the interplay between electron-electron interactions and spin-orbit coupling. We present a multifold approach relying on different experimental techniques and theoretical calculations to disentangle its complex electronic properties. By combining magnetotransport and thermoelectric measurements in a field-effect geometry with first-principles calculations, we quantitatively determine the transport coefficients of different conduction channels. Despite their different dispersion relationships, electrons and holes are found to have strikingly similar transport coefficients, yielding a holelike response under field-effect and thermoelectric measurements and a linear electronlike Hall effect up to 33 T.
Bonanni, Pablo Sebastián; Massazza, Diego; Busalmen, Juan Pablo
2013-07-07
Geobacter sulfurreducens bacteria grow on biofilms and have the particular ability of using polarized electrodes as the final electron acceptor of their respiratory chain. In these biofilms, electrons are transported through distances of more than 50 μm before reaching the electrode. The way in which electrons are transported across the biofilm matrix through such large distances remains under intense discussion. None of the two mechanisms proposed for explaining the process, electron hopping through outer membrane cytochromes and metallic like conduction through conductive PilA filaments, can account for all the experimental evidence collected so far. Aiming at providing new elements for understanding the basis for electron transport, in this perspective article we present a modelled structure of Geobacter pilus. Its analysis in combination with already existing experimental evidence gives support to the proposal of the "stepping stone" mechanism, in which the combined action of pili and cytochromes allows long range electron transport through the biofilm.
Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation.
Yang, Lina; Minnich, Austin J
2017-03-14
Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials.
Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation
Yang, Lina; Minnich, Austin J.
2017-01-01
Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials. PMID:28290484
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William
ITS is a powerful and user-friendly software package permitting state of the art Monte Carlo solution of linear time-independent couple electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theoristsmore » alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 5.0, the latest version of ITS, contains (1) improvements to the ITS 3.0 continuous-energy codes, (2)multigroup codes with adjoint transport capabilities, and (3) parallel implementations of all ITS codes. Moreover the general user friendliness of the software has been enhanced through increased internal error checking and improved code portability.« less
Time-of-Flight Measurements on TlBr Detectors
NASA Astrophysics Data System (ADS)
Suzuki, K.; Shorohov, M.; Sawada, T.; Seto, S.
2015-04-01
Carrier transport properties of TlBr crystals grown using the Bridgman method were investigated by the time-of-flight technique. The electron and hole mobilities were measured as 20 - 27 cm2 /Vs and 1.0 - 2.0 cm2/Vs respectively at room temperature. The temperature dependence of the electron mobility increases with decreasing temperature as approximated by a well-known empirical formula reflecting the reciprocal of the LO-phonon density.
NASA Astrophysics Data System (ADS)
Zhul'Kina, A. L.; Ivantsova, E. L.; Filatova, A. G.; Kosenko, R. Yu.; Gumargalieva, K. Z.; Iordanskii, A. L.
2009-05-01
Complex investigation of the equilibrium sorption of water, diffusive transport of antiseptic, and morphology of mixed compositions based on polyoxybutirate and polyamide resin 54C has been performed to develop and analyze new biodegradable polymer compositions for controlled release of medicinal substances. Samples of mixtures were prepared by two methods: pressing under pressure and solvent evaporation from a polymer solution. The samples were compared and their morphology was analyzed by scanning electron microscopy. It is shown that the component ratio in the obtained mixtures affects their morphological, transport, and sorption characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhul'kina, A. L.; Ivantsova, E. L.; Filatova, A. G.
2009-05-15
Complex investigation of the equilibrium sorption of water, diffusive transport of antiseptic, and morphology of mixed compositions based on polyoxybutirate and polyamide resin 54C has been performed to develop and analyze new biodegradable polymer compositions for controlled release of medicinal substances. Samples of mixtures were prepared by two methods: pressing under pressure and solvent evaporation from a polymer solution. The samples were compared and their morphology was analyzed by scanning electron microscopy. It is shown that the component ratio in the obtained mixtures affects their morphological, transport, and sorption characteristics.
49 CFR Appendix C to Part 599 - Electronic Transaction Screen
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 7 2010-10-01 2010-10-01 false Electronic Transaction Screen C Appendix C to Part 599 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC... ASSISTANCE TO RECYCLE AND SAVE ACT PROGRAM Pt. 599, App. C Appendix C to Part 599—Electronic Transaction...
49 CFR Appendix C to Part 599 - Electronic Transaction Screen
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 7 2012-10-01 2012-10-01 false Electronic Transaction Screen C Appendix C to Part 599 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC... ASSISTANCE TO RECYCLE AND SAVE ACT PROGRAM Pt. 599, App. C Appendix C to Part 599—Electronic Transaction...
49 CFR Appendix C to Part 599 - Electronic Transaction Screen
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 7 2013-10-01 2013-10-01 false Electronic Transaction Screen C Appendix C to Part 599 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC... ASSISTANCE TO RECYCLE AND SAVE ACT PROGRAM Pt. 599, App. C Appendix C to Part 599—Electronic Transaction...
49 CFR Appendix C to Part 599 - Electronic Transaction Screen
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 7 2014-10-01 2014-10-01 false Electronic Transaction Screen C Appendix C to Part 599 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC... ASSISTANCE TO RECYCLE AND SAVE ACT PROGRAM Pt. 599, App. C Appendix C to Part 599—Electronic Transaction...
49 CFR Appendix C to Part 599 - Electronic Transaction Screen
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 7 2011-10-01 2011-10-01 false Electronic Transaction Screen C Appendix C to Part 599 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC... ASSISTANCE TO RECYCLE AND SAVE ACT PROGRAM Pt. 599, App. C Appendix C to Part 599—Electronic Transaction...
Zhu, Zonglong; Bai, Yang; Liu, Xiao; ...
2016-05-11
Here highly crystalline SnO 2 is demonstrated to serve as a stable and robust electron-transporting layer for high-performance perovskite solar cells. Benefiting from its high crystallinity, the relatively thick SnO 2 electron-transporting layer (≈120 nm) provides a respectable electron-transporting property to yield a promising power conversion efficiency (PCE)(18.8%) Over 90% of the initial PCE can be retained after 30 d storage in ambient with ≈70% relative humidity.
Electron and hole transport in the organic small molecule α-NPD
NASA Astrophysics Data System (ADS)
Rohloff, R.; Kotadiya, N. B.; Crǎciun, N. I.; Blom, P. W. M.; Wetzelaer, G. A. H.
2017-02-01
Electron and hole transport properties of the organic small molecule N,N'-Di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine are investigated by space-charge-limited current measurements. The hole transport shows trap-free behavior with a mobility of 2.3 × 10-8 m2/Vs at vanishing carrier density and electric field. The electron transport, on the other hand, shows heavily trap-limited behavior, which leads to highly unbalanced transport. A trap concentration of 1.3 × 1024 m-3 was found by modeling the electron currents, similar to the universal trap concentration found in conjugated polymers. This indicates that electron trapping is a generic property of organic semiconductors, ranging from vacuum-deposited small-molecules to solution-processed conjugated polymers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wook Kim, Jin; Yoo, Seung Il; Sung Kang, Jin
2015-06-28
We analyzed the performance of multi-emissive white phosphorescent organic light-emitting diodes (PHOLEDs) in relation to various red emitting sites of hole and electron transport layers (HTL and ETL). The shift of the recombination zone producing stable white emission in PHOLEDs was utilized as luminance was increased with red emission in its electron transport layer. Multi-emissive white PHOLEDs including the red light emitting electron transport layer yielded maximum external quantum efficiency of 17.4% with CIE color coordinates (−0.030, +0.001) shifting only from 1000 to 10 000 cd/m{sup 2}. Additionally, we observed a reduction of energy loss in the white PHOLED via Ir(piq){submore » 3} as phosphorescent red dopant in electron transport layer.« less
Electron-hole collision limited transport in charge-neutral bilayer graphene
NASA Astrophysics Data System (ADS)
Nam, Youngwoo; Ki, Dong-Keun; Soler-Delgado, David; Morpurgo, Alberto F.
2017-12-01
Ballistic transport occurs whenever electrons propagate without collisions deflecting their trajectory. It is normally observed in conductors with a negligible concentration of impurities, at low temperature, to avoid electron-phonon scattering. Here, we use suspended bilayer graphene devices to reveal a new regime, in which ballistic transport is not limited by scattering with phonons or impurities, but by electron-hole collisions. The phenomenon manifests itself in a negative four-terminal resistance that becomes visible when the density of holes (electrons) is suppressed by gate-shifting the Fermi level in the conduction (valence) band, above the thermal energy. For smaller densities, transport is diffusive, and the measured conductivity is reproduced quantitatively, with no fitting parameters, by including electron-hole scattering as the only process causing velocity relaxation. Experiments on a trilayer device show that the phenomenon is robust and that transport at charge neutrality is governed by the same physics. Our results provide a textbook illustration of a transport regime that had not been observed previously and clarify the nature of conduction through charge-neutral graphene under conditions in which carrier density inhomogeneity is immaterial. They also demonstrate that transport can be limited by a fully electronic mechanism, originating from the same microscopic processes that govern the physics of Dirac-like plasmas.
Single-Molecule Electronics: Chemical and Analytical Perspectives.
Nichols, Richard J; Higgins, Simon J
2015-01-01
It is now possible to measure the electrical properties of single molecules using a variety of techniques including scanning probe microcopies and mechanically controlled break junctions. Such measurements can be made across a wide range of environments including ambient conditions, organic liquids, ionic liquids, aqueous solutions, electrolytes, and ultra high vacuum. This has given new insights into charge transport across molecule electrical junctions, and these experimental methods have been complemented with increasingly sophisticated theory. This article reviews progress in single-molecule electronics from a chemical perspective and discusses topics such as the molecule-surface coupling in electrical junctions, chemical control, and supramolecular interactions in junctions and gating charge transport. The article concludes with an outlook regarding chemical analysis based on single-molecule conductance.
Anomalous Transport in High Beta Poloidal DIII-D Discharges
NASA Astrophysics Data System (ADS)
Pankin, A.; Garofalo, A.; Kritz, A.; Rafiq, T.; Weiland, J.
2016-10-01
Dominant instabilities that drive anomalous transport in high beta poloidal DIII-D discharges are investigated using the MMM7.1, and TGLF models in the predictive integrated modeling TRANSP code. The ion thermal transport is found to be strongly reduced in these discharges, but turbulence driven by the ITG modes along with the neoclassical transport still play a role in determining the ion temperature profiles. The electron thermal transport driven by the ETG modes impact the electron temperature profiles. The E × B flow shear is found to have a small effect in reducing the electron thermal transport. The Shafranov shift is found to strongly reduce the anomalous transport in the high beta poloidal DIII-D discharges. The reduction of Shafranov shift can destroy the ion internal transport barrier and can result in significantly lower core temperatures. The MMM7.1 model predicts electron and ion temperature profiles reasonably well, but it fails to accurately predict the properties of electron internal transport barrier, which indicates that the ETG model in MMM7.1 needs to be improved in the high beta poloidal operational regime. Research supported by the Office of Science, US DOE.
Numerically exact full counting statistics of the nonequilibrium Anderson impurity model
NASA Astrophysics Data System (ADS)
Ridley, Michael; Singh, Viveka N.; Gull, Emanuel; Cohen, Guy
2018-03-01
The time-dependent full counting statistics of charge transport through an interacting quantum junction is evaluated from its generating function, controllably computed with the inchworm Monte Carlo method. Exact noninteracting results are reproduced; then, we continue to explore the effect of electron-electron interactions on the time-dependent charge cumulants, first-passage time distributions, and n -electron transfer distributions. We observe a crossover in the noise from Coulomb blockade to Kondo-dominated physics as the temperature is decreased. In addition, we uncover long-tailed spin distributions in the Kondo regime and analyze queuing behavior caused by correlations between single-electron transfer events.
Numerically exact full counting statistics of the nonequilibrium Anderson impurity model
Ridley, Michael; Singh, Viveka N.; Gull, Emanuel; ...
2018-03-06
The time-dependent full counting statistics of charge transport through an interacting quantum junction is evaluated from its generating function, controllably computed with the inchworm Monte Carlo method. Exact noninteracting results are reproduced; then, we continue to explore the effect of electron-electron interactions on the time-dependent charge cumulants, first-passage time distributions, and n-electron transfer distributions. We observe a crossover in the noise from Coulomb blockade to Kondo-dominated physics as the temperature is decreased. In addition, we uncover long-tailed spin distributions in the Kondo regime and analyze queuing behavior caused by correlations between single-electron transfer events
Numerically exact full counting statistics of the nonequilibrium Anderson impurity model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ridley, Michael; Singh, Viveka N.; Gull, Emanuel
The time-dependent full counting statistics of charge transport through an interacting quantum junction is evaluated from its generating function, controllably computed with the inchworm Monte Carlo method. Exact noninteracting results are reproduced; then, we continue to explore the effect of electron-electron interactions on the time-dependent charge cumulants, first-passage time distributions, and n-electron transfer distributions. We observe a crossover in the noise from Coulomb blockade to Kondo-dominated physics as the temperature is decreased. In addition, we uncover long-tailed spin distributions in the Kondo regime and analyze queuing behavior caused by correlations between single-electron transfer events
New Tunneling Features in Polar III-Nitride Resonant Tunneling Diodes
NASA Astrophysics Data System (ADS)
Encomendero, Jimy; Faria, Faiza Afroz; Islam, S. M.; Protasenko, Vladimir; Rouvimov, Sergei; Sensale-Rodriguez, Berardi; Fay, Patrick; Jena, Debdeep; Xing, Huili Grace
2017-10-01
For the past two decades, repeatable resonant tunneling transport of electrons in III-nitride double barrier heterostructures has remained elusive at room temperature. In this work we theoretically and experimentally study III-nitride double-barrier resonant tunneling diodes (RTDs), the quantum transport characteristics of which exhibit new features that are unexplainable using existing semiconductor theory. The repeatable and robust resonant transport in our devices enables us to track the origin of these features to the broken inversion symmetry in the uniaxial crystal structure, which generates built-in spontaneous and piezoelectric polarization fields. Resonant tunneling transport enabled by the ground state as well as by the first excited state is demonstrated for the first time over a wide temperature window in planar III-nitride RTDs. An analytical transport model for polar resonant tunneling heterostructures is introduced for the first time, showing a good quantitative agreement with experimental data. From this model we realize that tunneling transport is an extremely sensitive measure of the built-in polarization fields. Since such electric fields play a crucial role in the design of electronic and photonic devices, but are difficult to measure, our work provides a completely new method to accurately determine their magnitude for the entire class of polar heterostructures.
Shen, L; Levine, S H; Catchen, G L
1987-07-01
This paper describes an optimization method for determining the beta dose distribution in tissue, and it describes the associated testing and verification. The method uses electron transport theory and optimization techniques to analyze the responses of a three-element thermoluminescent dosimeter (TLD) system. Specifically, the method determines the effective beta energy distribution incident on the dosimeter system, and thus the system performs as a beta spectrometer. Electron transport theory provides the mathematical model for performing the optimization calculation. In this calculation, parameters are determined that produce calculated doses for each of the chip/absorber components in the three-element TLD system. The resulting optimized parameters describe an effective incident beta distribution. This method can be used to determine the beta dose specifically at 7 mg X cm-2 or at any depth of interest. The doses at 7 mg X cm-2 in tissue determined by this method are compared to those experimentally determined using an extrapolation chamber. For a great variety of pure beta sources having different incident beta energy distributions, good agreement is found. The results are also compared to those produced by a commonly used empirical algorithm. Although the optimization method produces somewhat better results, the advantage of the optimization method is that its performance is not sensitive to the specific method of calibration.
Investigation of direct solar-to-microwave energy conversion techniques
NASA Technical Reports Server (NTRS)
Chatterton, N. E.; Mookherji, T. K.; Wunsch, P. K.
1978-01-01
Identification of alternative methods of producing microwave energy from solar radiation for purposes of directing power to the Earth from space is investigated. Specifically, methods of conversion of optical radiation into microwave radiation by the most direct means are investigated. Approaches based on demonstrated device functioning and basic phenomenologies are developed. There is no system concept developed, that is competitive with current baseline concepts. The most direct methods of conversion appear to require an initial step of production of coherent laser radiation. Other methods generally require production of electron streams for use in solid-state or cavity-oscillator systems. Further development is suggested to be worthwhile for suggested devices and on concepts utilizing a free-electron stream for the intraspace station power transport mechanism.
Energy-filtered cold electron transport at room temperature
Bhadrachalam, Pradeep; Subramanian, Ramkumar; Ray, Vishva; Ma, Liang-Chieh; Wang, Weichao; Kim, Jiyoung; Cho, Kyeongjae; Koh, Seong Jin
2014-01-01
Fermi-Dirac electron thermal excitation is an intrinsic phenomenon that limits functionality of various electron systems. Efforts to manipulate electron thermal excitation have been successful when the entire system is cooled to cryogenic temperatures, typically <1 K. Here we show that electron thermal excitation can be effectively suppressed at room temperature, and energy-suppressed electrons, whose energy distribution corresponds to an effective electron temperature of ~45 K, can be transported throughout device components without external cooling. This is accomplished using a discrete level of a quantum well, which filters out thermally excited electrons and permits only energy-suppressed electrons to participate in electron transport. The quantum well (~2 nm of Cr2O3) is formed between source (Cr) and tunnelling barrier (SiO2) in a double-barrier-tunnelling-junction structure having a quantum dot as the central island. Cold electron transport is detected from extremely narrow differential conductance peaks in electron tunnelling through CdSe quantum dots, with full widths at half maximum of only ~15 mV at room temperature. PMID:25204839
1982-12-01
AD-A125 858 EXPERIMENTAL STUDIES OF LATERAL ELECTRON TRANSPORT IN 1/3 GALLIUM ARSENIDE-RL..(U) ILLINOIS UNIV AT URBANA COORDINATED SCIENCE LAB N R...EXPERIMENTAL STUDIES OF LATERALXILECTRON TRANSPORT ,:g IN GALLIUM ARSENIDE -ALUMINUM GALLIUM ARSENIDE- -HETEROSTRUCTURES APRVE O PUBLICRLEAS.DSRBUINULMTE. 2...EXPERIMENTAL STUDIES OF LATERAL ELECTRON TRANSPORT IN GALLIUM ARSENIDE-ALUMINUM GALLIUM ARSENIDE Technical Report R-975 HETEROSTRUCTURES 6. PERFORMING ONG
Code of Federal Regulations, 2013 CFR
2013-10-01
... MATTERS Paper Documents 4.302 Policy. (a) Section 3(a) of E.O. 13423, Strengthening Federal Environmental, Energy, and Transportation Management, directs agencies to implement waste prevention. In addition... agencies to eliminate waste. Electronic commerce methods (see 4.502) and double-sided printing and copying...
Code of Federal Regulations, 2011 CFR
2011-10-01
... MATTERS Paper Documents 4.302 Policy. (a) Section 3(a) of E.O. 13423, Strengthening Federal Environmental, Energy, and Transportation Management, directs agencies to implement waste prevention. In addition... agencies to eliminate waste. Electronic commerce methods (see 4.502) and double-sided printing and copying...
Code of Federal Regulations, 2014 CFR
2014-10-01
... MATTERS Paper Documents 4.302 Policy. (a) Section 3(a) of E.O. 13423, Strengthening Federal Environmental, Energy, and Transportation Management, directs agencies to implement waste prevention. In addition... agencies to eliminate waste. Electronic commerce methods (see 4.502) and double-sided printing and copying...
Code of Federal Regulations, 2012 CFR
2012-10-01
... MATTERS Paper Documents 4.302 Policy. (a) Section 3(a) of E.O. 13423, Strengthening Federal Environmental, Energy, and Transportation Management, directs agencies to implement waste prevention. In addition... agencies to eliminate waste. Electronic commerce methods (see 4.502) and double-sided printing and copying...
NASA Astrophysics Data System (ADS)
Istomin, V. A.; Kustova, E. V.
2017-02-01
The influence of electronic excitation on transport processes in non-equilibrium high-temperature ionized mixture flows is studied. Two five-component mixtures, N 2 / N2 + / N / N + / e - and O 2 / O2 + / O / O + / e - , are considered taking into account the electronic degrees of freedom for atomic species as well as the rotational-vibrational-electronic degrees of freedom for molecular species, both neutral and ionized. Using the modified Chapman-Enskog method, the transport coefficients (thermal conductivity, shear viscosity and bulk viscosity, diffusion and thermal diffusion) are calculated in the temperature range 500-50 000 K. Thermal conductivity and bulk viscosity coefficients are strongly affected by electronic states, especially for neutral atomic species. Shear viscosity, diffusion, and thermal diffusion coefficients are not sensible to electronic excitation if the size of excited states is assumed to be constant. The limits of applicability for the Stokes relation are discussed; at high temperatures, this relation is violated not only for molecular species but also for electronically excited atomic gases. Two test cases of strongly non-equilibrium flows behind plane shock waves corresponding to the spacecraft re-entry (Hermes and Fire II) are simulated numerically. Fluid-dynamic variables and heat fluxes are evaluated in gases with electronic excitation. In inviscid flows without chemical-radiative coupling, the flow-field is weakly affected by electronic states; however, in viscous flows, their influence can be more important, in particular, on the convective heat flux. The contribution of different dissipative processes to the heat transfer is evaluated as well as the effect of reaction rate coefficients. The competition of diffusion and heat conduction processes reduces the overall effect of electronic excitation on the convective heating, especially for the Fire II test case. It is shown that reliable models of chemical reaction rates are of great importance for accurate predictions of the fluid dynamic variables and heat fluxes.
NASA Astrophysics Data System (ADS)
Utama, M. Iqbal Bakti; Lu, Xin; Zhan, Da; Ha, Son Tung; Yuan, Yanwen; Shen, Zexiang; Xiong, Qihua
2014-10-01
Patterning two-dimensional materials into specific spatial arrangements and geometries is essential for both fundamental studies of materials and practical applications in electronics. However, the currently available patterning methods generally require etching steps that rely on complicated and expensive procedures. We report here a facile patterning method for atomically thin MoSe2 films using stripping with an SU-8 negative resist layer exposed to electron beam lithography. Additional steps of chemical and physical etching were not necessary in this SU-8 patterning method. The SU-8 patterning was used to define a ribbon channel from a field effect transistor of MoSe2 film, which was grown by chemical vapor deposition. The narrowing of the conduction channel area with SU-8 patterning was crucial in suppressing the leakage current within the device, thereby allowing a more accurate interpretation of the electrical characterization results from the sample. An electrical transport study, enabled by the SU-8 patterning, showed a variable range hopping behavior at high temperatures.Patterning two-dimensional materials into specific spatial arrangements and geometries is essential for both fundamental studies of materials and practical applications in electronics. However, the currently available patterning methods generally require etching steps that rely on complicated and expensive procedures. We report here a facile patterning method for atomically thin MoSe2 films using stripping with an SU-8 negative resist layer exposed to electron beam lithography. Additional steps of chemical and physical etching were not necessary in this SU-8 patterning method. The SU-8 patterning was used to define a ribbon channel from a field effect transistor of MoSe2 film, which was grown by chemical vapor deposition. The narrowing of the conduction channel area with SU-8 patterning was crucial in suppressing the leakage current within the device, thereby allowing a more accurate interpretation of the electrical characterization results from the sample. An electrical transport study, enabled by the SU-8 patterning, showed a variable range hopping behavior at high temperatures. Electronic supplementary information (ESI) available: Further experiments on patterning and additional electrical characterizations data. See DOI: 10.1039/c4nr03817g
A Monte Carlo Code for Relativistic Radiation Transport Around Kerr Black Holes
NASA Technical Reports Server (NTRS)
Schnittman, Jeremy David; Krolik, Julian H.
2013-01-01
We present a new code for radiation transport around Kerr black holes, including arbitrary emission and absorption mechanisms, as well as electron scattering and polarization. The code is particularly useful for analyzing accretion flows made up of optically thick disks and optically thin coronae. We give a detailed description of the methods employed in the code and also present results from a number of numerical tests to assess its accuracy and convergence.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Liu, Pengcheng; Wang, Yifeng; Zhu, Kongjun; Tai, Guoan; Liu, Jinsong; Wang, Jing; Yan, Kang; Zhang, Jianhui
2018-05-01
Nanostructuring is an effective approach to improve thermoelectric (TE) performance, which is caused by the interface and quantum effects on electron and phonon transport. For a typical layered structure such as sodium cobalt (NCO), a highly textured ceramic with nanostructure is beneficial for the carrier transport properties due to the strong anisotropy. In this paper, we established a textured NCO ceramic with highly oriented single crystals in nanoscale. The Na0.6CoO2 platelet crystals were prepared by a one-step hydrothermal method. The growth mechanism was revealed to involve dissolution-recrystallization and exchange reactions. NCO TE ceramics fabricated by a press-aided spark plasma sintering method showed a high degree of texturing, with the platelet crystals basically lying along the in-plane direction perpendicular to the press direction. TE properties of the textured NCO ceramics showed a strong anisotropic behavior. The in-plane electrical conductivity was considerably larger than the out-of-plane data because of fewer grain boundaries and interfaces that existed in the in-plane direction. Moreover, the in-plane Seebeck coefficient was higher because of the anisotropic electronic nature of NCO. Although the in-plane thermal conductivity was high, a prior ZT value was enabled for these NCO ceramics along this direction because of the dominant electrical transport. This finding provides a new approach to prepare highly oriented ceramics.
2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion
NASA Astrophysics Data System (ADS)
Kang, Keehoon; Watanabe, Shun; Broch, Katharina; Sepe, Alessandro; Brown, Adam; Nasrallah, Iyad; Nikolka, Mark; Fei, Zhuping; Heeney, Martin; Matsumoto, Daisuke; Marumoto, Kazuhiro; Tanaka, Hisaaki; Kuroda, Shin-Ichi; Sirringhaus, Henning
2016-08-01
Doping is one of the most important methods to control charge carrier concentration in semiconductors. Ideally, the introduction of dopants should not perturb the ordered microstructure of the semiconducting host. In some systems, such as modulation-doped inorganic semiconductors or molecular charge transfer crystals, this can be achieved by spatially separating the dopants from the charge transport pathways. However, in conducting polymers, dopants tend to be randomly distributed within the conjugated polymer, and as a result the transport properties are strongly affected by the resulting structural and electronic disorder. Here, we show that in the highly ordered lamellar microstructure of a regioregular thiophene-based conjugated polymer, a small-molecule p-type dopant can be incorporated by solid state diffusion into the layers of solubilizing side chains without disrupting the conjugated layers. In contrast to more disordered systems, this allows us to observe coherent, free-electron-like charge transport properties, including a nearly ideal Hall effect in a wide temperature range, a positive magnetoconductance due to weak localization and the Pauli paramagnetic spin susceptibility.
49 CFR 220.305 - Use of personal electronic devices.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.305 Use of personal electronic devices. A railroad operating employee must have each personal electronic device turned off with... 49 Transportation 4 2010-10-01 2010-10-01 false Use of personal electronic devices. 220.305...
49 CFR 220.305 - Use of personal electronic devices.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Use of personal electronic devices. 220.305... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.305 Use of personal electronic devices. A railroad operating employee must have each personal electronic device turned off with...
49 CFR 220.305 - Use of personal electronic devices.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Use of personal electronic devices. 220.305... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.305 Use of personal electronic devices. A railroad operating employee must have each personal electronic device turned off with...
Analytical and Numerical Solutions of Generalized Fokker-Planck Equations - Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prinja, Anil K.
The overall goal of this project was to develop advanced theoretical and numerical techniques to quantitatively describe the spreading of a collimated beam of charged particles in space, in angle, and in energy, as a result of small deflection, small energy transfer Coulomb collisions with the target nuclei and electrons. Such beams arise in several applications of great interest in nuclear engineering, and include electron and ion radiotherapy, ion beam modification of materials, accelerator transmutation of waste, and accelerator production of tritium, to name some important candidates. These applications present unique and difficult modeling challenges, but from the outset aremore » amenable to the language of ''transport theory'', which is very familiar to nuclear engineers and considerably less-so to physicists and material scientists. Thus, our approach has been to adopt a fundamental description based on transport equations, but the forward peakedness associated with charged particle interactions precludes a direct application of solution methods developed for neutral particle transport. Unique problem formulations and solution techniques are necessary to describe the transport and interaction of charged particles. In particular, we have developed the Generalized Fokker-Planck (GFP) approach to describe the angular and radial spreading of a collimated beam and a renormalized transport model to describe the energy-loss straggling of an initially monoenergetic distribution. Both analytic and numerical solutions have been investigated and in particular novel finite element numerical methods have been developed. In the first phase of the project, asymptotic methods were used to develop closed form solutions to the GFP equation for different orders of expansion, and was described in a previous progress report. In this final report we present a detailed description of (i) a novel energy straggling model based on a Fokker-Planck approximation but which is adapted for a multigroup transport setting, and (ii) two unique families of discontinuous finite element schemes, one linear and the other nonlinear.« less
Electron Fluid Description of Wave-Particle Interactions in Strong Buneman Turbulence
NASA Astrophysics Data System (ADS)
Che, Haihong
2013-10-01
To understand the nature of anomalous resistivity in magnetic reconnection, we investigate turbulence-induced momentum transport and energy dissipation associated with electron heating in Buneman instability. Using 3D particle-in-cell simulations, we find that the macroscopic effects generated by wave-particle interactions can be described by a set of electron fluid equations. These equations show that the energy dissipation and momentum transports in Buneman instability are locally quasi-static but globally non-static and irreversible. Turbulence drag dissipates both the bulk energy of electron streams and the associated magnetic energy. The decrease of magnetic field maintains an inductive electric field that re-accelerates electrons. The net loss of streaming energy is converted into electron heat and increases the electron Boltzmann entropy. The growth of self-sustained Buneman waves satisfies a Bernoulli-like equation which relates the turbulence-induced convective momentum transport and thermal momentum transport. Electron trapping and de-trapping drives local momentum transports, while phase mixing converts convective momentum into thermal momentum.These two local momentum transports sustain the Buneman waves and act as the micro-macro link in the anomalous heating process. This research is supported by the NASA Postdoctoral Program at NASA/GSFC administered by Oak Ridge Associated Universities through a contract with NASA.
Vázquez-Mayagoitia, Álvaro; Ratcliff, Laura E.; Tretiak, Sergei; Bair, Raymond A.; Gray, Stephen K.; Van Voorhis, Troy; Larsen, Ross E.; Darling, Seth B.
2017-01-01
Organic photovoltaics (OPVs) are a promising carbon-neutral energy conversion technology, with recent improvements pushing power conversion efficiencies over 10%. A major factor limiting OPV performance is inefficiency of charge transport in organic semiconducting materials (OSCs). Due to strong coupling with lattice degrees of freedom, the charges form polarons, localized quasi-particles comprised of charges dressed with phonons. These polarons can be conceptualized as pseudo-atoms with a greater effective mass than a bare charge. We propose that due to this increased mass, polarons can be modeled with Langevin molecular dynamics (LMD), a classical approach with a computational cost much lower than most quantum mechanical methods. Here we present LMD simulations of charge transfer between a pair of fullerene molecules, which commonly serve as electron acceptors in OSCs. We find transfer rates consistent with experimental measurements of charge mobility, suggesting that this method may provide quantitative predictions of efficiency when used to simulate materials on the device scale. Our approach also offers information that is not captured in the overall transfer rate or mobility: in the simulation data, we observe exactly when and why intermolecular transfer events occur. In addition, we demonstrate that these simulations can shed light on the properties of polarons in OSCs. Much remains to be learned about these quasi-particles, and there are no widely accepted methods for calculating properties such as effective mass and friction. Our model offers a promising approach to exploring mass and friction as well as providing insight into the details of polaron transport in OSCs. PMID:28553494
Computer modeling of electron and proton transport in chloroplasts.
Tikhonov, Alexander N; Vershubskii, Alexey V
2014-07-01
Photosynthesis is one of the most important biological processes in biosphere, which provides production of organic substances from atmospheric CO2 and water at expense of solar energy. In this review, we contemplate computer models of oxygenic photosynthesis in the context of feedback regulation of photosynthetic electron transport in chloroplasts, the energy-transducing organelles of the plant cell. We start with a brief overview of electron and proton transport processes in chloroplasts coupled to ATP synthesis and consider basic regulatory mechanisms of oxygenic photosynthesis. General approaches to computer simulation of photosynthetic processes are considered, including the random walk models of plastoquinone diffusion in thylakoid membranes and deterministic approach to modeling electron transport in chloroplasts based on the mass action law. Then we focus on a kinetic model of oxygenic photosynthesis that includes key stages of the linear electron transport, alternative pathways of electron transfer around photosystem I (PSI), transmembrane proton transport and ATP synthesis in chloroplasts. This model includes different regulatory processes: pH-dependent control of the intersystem electron transport, down-regulation of photosystem II (PSII) activity (non-photochemical quenching), the light-induced activation of the Bassham-Benson-Calvin (BBC) cycle. The model correctly describes pH-dependent feedback control of electron transport in chloroplasts and adequately reproduces a variety of experimental data on induction events observed under different experimental conditions in intact chloroplasts (variations of CO2 and O2 concentrations in atmosphere), including a complex kinetics of P700 (primary electron donor in PSI) photooxidation, CO2 consumption in the BBC cycle, and photorespiration. Finally, we describe diffusion-controlled photosynthetic processes in chloroplasts within the framework of the model that takes into account complex architecture of chloroplasts and lateral heterogeneity of lamellar system of thylakoids. The lateral profiles of pH in the thylakoid lumen and in the narrow gap between grana thylakoids have been calculated under different metabolic conditions. Analyzing topological aspects of diffusion-controlled stages of electron and proton transport in chloroplasts, we conclude that along with the NPQ mechanism of attenuation of PSII activity and deceleration of PQH2 oxidation by the cytochrome b6f complex caused by the lumen acidification, the intersystem electron transport may be down-regulated due to the light-induced alkalization of the narrow partition between adjacent thylakoids of grana. The computer models of electron and proton transport described in this article may be integrated as appropriate modules into a comprehensive model of oxygenic photosynthesis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Kerner, Ross A; Rand, Barry P
2018-01-04
Ambipolar transport describes the nonequilibrium, coupled motion of positively and negatively charged particles to ensure that internal electric fields remain small. It is commonly invoked in the semiconductor community where the motion of excess electrons and holes drift and diffuse together. However, the concept of ambipolar transport is not limited to semiconductor physics. Materials scientists working on ion conducting ceramics understand ambipolar transport dictates the coupled diffusion of ions and the rate is limited by the ion with the lowest diffusion coefficient. In this Perspective, we review a third application of ambipolar transport relevant to mixed ionic-electronic conducting materials for which the motion of ions is expected to be coupled to electronic carriers. In this unique situation, the ambipolar diffusion model has been successful at explaining the photoenhanced diffusion of metal ions in chalcogenide glasses and other properties of materials. Recent examples of photoenhanced phenomena in metal halide perovskites are discussed and indicate that mixed ionic-electronic ambipolar transport is similarly important for a deep understanding of these emerging materials.
49 CFR 220.303 - General use of electronic devices.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.303 General use of electronic devices. A railroad operating employee shall not use an electronic device if that use would... 49 Transportation 4 2010-10-01 2010-10-01 false General use of electronic devices. 220.303 Section...
49 CFR 220.303 - General use of electronic devices.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false General use of electronic devices. 220.303 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.303 General use of electronic devices. A railroad operating employee shall not use an electronic device if that use would...
49 CFR 220.303 - General use of electronic devices.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false General use of electronic devices. 220.303 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.303 General use of electronic devices. A railroad operating employee shall not use an electronic device if that use would...
Zhang, Hongtao; Setubal, Joao Carlos; Zhan, Xiaobei; Zheng, Zhiyong; Yu, Lijun; Wu, Jianrong; Chen, Dingqiang
2011-06-01
Agrobacterium sp. ATCC 31749 (formerly named Alcaligenes faecalis var. myxogenes) is a non-pathogenic aerobic soil bacterium used in large scale biotechnological production of curdlan. However, little is known about its genomic information. DNA partial sequence of electron transport chains (ETCs) protein genes were obtained in order to understand the components of ETC and genomic-specificity in Agrobacterium sp. ATCC 31749. Degenerate primers were designed according to ETC conserved sequences in other reported species. DNA partial sequences of ETC genes in Agrobacterium sp. ATCC 31749 were cloned by the PCR method using degenerate primers. Based on comparative genomic analysis, nine electron transport elements were ascertained, including NADH ubiquinone oxidoreductase, succinate dehydrogenase complex II, complex III, cytochrome c, ubiquinone biosynthesis protein ubiB, cytochrome d terminal oxidase, cytochrome bo terminal oxidase, cytochrome cbb (3)-type terminal oxidase and cytochrome caa (3)-type terminal oxidase. Similarity and phylogenetic analyses of these genes revealed that among fully sequenced Agrobacterium species, Agrobacterium sp. ATCC 31749 is closest to Agrobacterium tumefaciens C58. Based on these results a comprehensive ETC model for Agrobacterium sp. ATCC 31749 is proposed.
NASA Astrophysics Data System (ADS)
Kobayashi, Yoshihiko; Koike, Tsuyoshi; Okawa, Mario; Takayanagi, Ryohei; Takei, Shohei; Minohara, Makoto; Kobayashi, Masaki; Horiba, Koji; Kumigashira, Hiroshi; Yasui, Akira; Ikenaga, Eiji; Saitoh, Tomohiko; Asai, Kichizo
2016-11-01
We have investigated the Ce and Co core level spectroscopy, and the magnetic and electrical transport properties of lightly Ce-doped YCoO3. We have successfully synthesized single-phase Y1-xCexCoO3 for 0.0 ≤ x ≤ 0.1 by the sol-gel method. Hard X-ray photoelectron and X-ray absorption spectroscopy experiments reveal that the introduced Ce ions are tetravalent, which is considered to be the first case of electron doping into bulk trivalent Co oxides with perovskite RECoO3 (RE: rare-earth element or Y) caused by RE site substitution. The magnitude of the effective magnetic moment peff obtained from the temperature dependence of magnetic susceptibility χ(T) at higher temperatures is close to that for high-spin Co2+ introduced by the Ce doping, implying that the electrons doped into the Co site induce Co2+ with a high-spin state. For x = 0.1, ferromagnetic ordering is observed below about 7 K. Electrical transport properties such as resistivity and thermoelectric power show that negative electron-like carriers are introduced by Ce substitution.
Electron heat transport measured in a stochastic magnetic field.
Biewer, T M; Forest, C B; Anderson, J K; Fiksel, G; Hudson, B; Prager, S C; Sarff, J S; Wright, J C; Brower, D L; Ding, W X; Terry, S D
2003-07-25
New profile measurements have allowed the electron thermal diffusivity profile to be estimated from power balance in the Madison Symmetric Torus where magnetic islands overlap and field lines are stochastic. The measurements show that (1) the electron energy transport is conductive not convective, (2) the measured thermal diffusivities are in good agreement with numerical simulations of stochastic transport, and (3) transport is greatly reduced near the reversal surface where magnetic diffusion is small.
Modeling of nonequilibrium space plasma flows
NASA Technical Reports Server (NTRS)
Gombosi, Tamas
1995-01-01
Godunov-type numerical solution of the 20 moment plasma transport equations. One of the centerpieces of our proposal was the development of a higher order Godunov-type numerical scheme to solve the gyration dominated 20 moment transport equations. In the first step we explored some fundamental analytic properties of the 20 moment transport equations for a low b plasma, including the eigenvectors and eigenvalues of propagating disturbances. The eigenvalues correspond to wave speeds, while the eigenvectors characterize the transported physical quantities. In this paper we also explored the physically meaningful parameter range of the normalized heat flow components. In the second step a new Godunov scheme type numerical method was developed to solve the coupled set of 20 moment transport equations for a quasineutral single-ion plasma. The numerical method and the first results were presented at several national and international meetings and a paper describing the method has been published in the Journal of Computational Physics. To our knowledge this is the first numerical method which is capable of producing stable time-dependent solutions to the full 20 (or 16) moment set of transport equations, including the full heat flow equation. Previous attempts resulted in unstable (oscillating) solutions of the heat flow equations. Our group invested over two man-years into the development and implementation of the new method. The present model solves the 20 moment transport equations for an ion species and thermal electrons in 8 domain extending from a collision dominated to a collisionless region (200 km to 12,000 km). This model has been applied to study O+ acceleration due to Joule heating in the lower ionosphere.
49 CFR 229.20 - Electronic recordkeeping.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Electronic recordkeeping. 229.20 Section 229.20..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS General § 229.20 Electronic recordkeeping... part through electronic transmission, storage, and retrieval provided that all of the requirements...
49 CFR 229.20 - Electronic recordkeeping.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Electronic recordkeeping. 229.20 Section 229.20..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS General § 229.20 Electronic recordkeeping... part through electronic transmission, storage, and retrieval provided that all of the requirements...
Magnetic-flutter-induced pedestal plasma transport
NASA Astrophysics Data System (ADS)
Callen, J. D.; Hegna, C. C.; Cole, A. J.
2013-11-01
Plasma toroidal rotation can limit reconnection of externally applied resonant magnetic perturbation (RMP) fields δB on rational magnetic flux surfaces. Hence it causes the induced radial perturbations δBρ to be small there, thereby inhibiting magnetic island formation and stochasticity at the top of pedestals in high (H-mode) confinement tokamak plasmas. However, the δBρs induced by RMPs increase away from rational surfaces and are shown to induce significant sinusoidal radial motion (flutter) of magnetic field lines with a radial extent that varies linearly with δBρ and inversely with distance from the rational surface because of the magnetic shear. This produces a radial electron thermal diffusivity that is (1/2)(δBρ/B0)2 times a kinetically derived, electron-collision-induced, magnetic-shear-reduced, effective parallel electron thermal diffusivity in the absence of magnetic stochasticity. These low collisionality flutter-induced transport processes and thin magnetic island effects are shown to be highly peaked in the vicinity of rational surfaces at the top of low collisionality pedestals. However, the smaller but finite level of magnetic-flutter-induced electron heat transport midway between rational surfaces is the primary factor that determines the electron temperature difference between rational surfaces at the pedestal top. The magnetic-flutter-induced non-ambipolar electron density transport can be large enough to push the plasma toward an electron density transport root. Requiring ambipolar density transport is shown to determine the radial electric field, the plasma toroidal rotation (via radial force balance), a reduced electron thermal diffusivity and increased ambipolar density transport in the pedestal. At high collisionality the various flutter effects are less strongly peaked at rational surfaces and generally less significant. They are thus less likely to exhibit flutter-induced resonant behaviour and transition toward an electron transport root. Magnetic-flutter-induced plasma transport processes provide a new paradigm for developing an understanding of how RMPs modify the pedestal structure to stabilize peeling-ballooning modes and thereby suppress edge localized modes in low collisionality tokamak H-mode plasmas.
Douglas, David R [Newport News, VA; Tennant, Christopher D [Williamsburg, VA
2012-07-10
A method of avoiding CSR induced beam quality defects in free electron laser operation by a) controlling the rate of compression and b) using a novel means of integrating the compression with the remainder of the transport system: both are accomplished by means of dispersion modulation. A large dispersion is created in the penultimate dipole magnet of the compression region leading to rapid compression; this large dispersion is demagnified and dispersion suppression performed in a final small dipole. As a result, the bunch is short for only a small angular extent of the transport, and the resulting CSR excitation is small.
Length dependence of electron transport through molecular wires--a first principles perspective.
Khoo, Khoong Hong; Chen, Yifeng; Li, Suchun; Quek, Su Ying
2015-01-07
One-dimensional wires constitute a fundamental building block in nanoscale electronics. However, truly one-dimensional metallic wires do not exist due to Peierls distortion. Molecular wires come close to being stable one-dimensional wires, but are typically semiconductors, with charge transport occurring via tunneling or thermally-activated hopping. In this review, we discuss electron transport through molecular wires, from a theoretical, quantum mechanical perspective based on first principles. We focus specifically on the off-resonant tunneling regime, applicable to shorter molecular wires (<∼4-5 nm) where quantum mechanics dictates electron transport. Here, conductance decays exponentially with the wire length, with an exponential decay constant, beta, that is independent of temperature. Different levels of first principles theory are discussed, starting with the computational workhorse - density functional theory (DFT), and moving on to many-electron GW methods as well as GW-inspired DFT + Sigma calculations. These different levels of theory are applied in two major computational frameworks - complex band structure (CBS) calculations to estimate the tunneling decay constant, beta, and Landauer-Buttiker transport calculations that consider explicitly the effects of contact geometry, and compute the transmission spectra directly. In general, for the same level of theory, the Landauer-Buttiker calculations give more quantitative values of beta than the CBS calculations. However, the CBS calculations have a long history and are particularly useful for quick estimates of beta. Comparing different levels of theory, it is clear that GW and DFT + Sigma calculations give significantly improved agreement with experiment compared to DFT, especially for the conductance values. Quantitative agreement can also be obtained for the Seebeck coefficient - another independent probe of electron transport. This excellent agreement provides confirmative evidence of off-resonant tunneling in the systems under investigation. Calculations show that the tunneling decay constant beta is a robust quantity that does not depend on details of the contact geometry, provided that the same contact geometry is used for all molecular lengths considered. However, because conductance is sensitive to contact geometry, values of beta obtained by considering conductance values where the contact geometry is changing with the molecular junction length can be quite different. Experimentally measured values of beta in general compare well with beta obtained using DFT + Sigma and GW transport calculations, while discrepancies can be attributed to changes in the experimental contact geometries with molecular length. This review also summarizes experimental and theoretical efforts towards finding perfect molecular wires with high conductance and small beta values.
Berleb, Stefan; Brütting, Wolfgang
2002-12-31
Electron transport in tris(8-hydroxyquinoline) aluminum (Alq3) is investigated by impedance spectroscopy under conditions of space-charge limited conduction (SCLC). Existing SCLC models are extended to include the field dependence of the charge carrier mobility and energetically distributed trap states. The dispersive nature of electron transport is revealed by a frequency-dependent mobility with a dispersion parameter alpha in the range 0.4-0.5, independent of temperature. This indicates that positional rather than energetic disorder is the dominant mechanism for the dispersive transport of electrons in Alq3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siddiqua, Poppy; O'Leary, Stephen K., E-mail: stephen.oleary@ubc.ca
2016-03-07
Within the framework of a semi-classical three-valley Monte Carlo electron transport simulation approach, we analyze the steady-state and transient aspects of the electron transport within bulk zinc-blende indium nitride, with a focus on the response to variations in the crystal temperature and the doping concentration. We find that while the electron transport associated with zinc-blende InN is highly sensitive to the crystal temperature, it is not very sensitive to the doping concentration selection. The device consequences of these results are then explored.
Simulation of electron transport during electron-beam-induced deposition of nanostructures
Jeschke, Harald O; Valentí, Roser
2013-01-01
Summary We present a numerical investigation of energy and charge distributions during electron-beam-induced growth of tungsten nanostructures on SiO2 substrates by using a Monte Carlo simulation of the electron transport. This study gives a quantitative insight into the deposition of energy and charge in the substrate and in the already existing metallic nanostructures in the presence of the electron beam. We analyze electron trajectories, inelastic mean free paths, and the distribution of backscattered electrons in different compositions and at different depths of the deposit. We find that, while in the early stages of the nanostructure growth a significant fraction of electron trajectories still interacts with the substrate, when the nanostructure becomes thicker the transport takes place almost exclusively in the nanostructure. In particular, a larger deposit density leads to enhanced electron backscattering. This work shows how mesoscopic radiation-transport techniques can contribute to a model that addresses the multi-scale nature of the electron-beam-induced deposition (EBID) process. Furthermore, similar simulations can help to understand the role that is played by backscattered electrons and emitted secondary electrons in the change of structural properties of nanostructured materials during post-growth electron-beam treatments. PMID:24367747
Fabrication of graphene/titanium carbide nanorod arrays for chemical sensor application.
Fu, Chong; Li, Mingji; Li, Hongji; Li, Cuiping; Qu, Changqing; Yang, Baohe
2017-03-01
Vertically stacked graphene nanosheet/titanium carbide nanorod array/titanium (graphene/TiC nanorod array) wires were fabricated using a direct current arc plasma jet chemical vapor deposition (DC arc plasma jet CVD) method. The graphene/TiC nanorod arrays were characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction spectroscopy. The TiO 2 nanotube array was reduced to the TiC nanorod array, and using those TiC nanorods as nucleation sites, the vertical graphene layer was formed on the TiC nanorod surface. The multi-target response mechanisms of the graphene/TiC nanorod array were investigated for ascorbic acid (AA), dopamine (DA), uric acid (UA), and hydrochlorothiazide (HCTZ). The vertically stacked graphene sheets facilitated the electron transfer and reactant transport with a unique porous surface, high surface area, and high electron transport network of CVD graphene sheets. The TiC nanorod array facilitated the electron transfer and firmly held the graphene layer. Thus, the graphene/TiC nanorod arrays could simultaneously respond to trace biomarkers and antihypertensive drugs. Copyright © 2016 Elsevier B.V. All rights reserved.
Long, Y Z; Yin, Z H; Chen, Z J; Jin, A Z; Gu, C Z; Zhang, H T; Chen, X H
2008-05-28
The current-voltage (I-V) characteristics and electrical resistivity of isolated potassium manganese oxide (K(0.27)MnO(2)·0.5H(2)O) nanowires prepared by a simple hydrothermal method were investigated over a wide temperature range from 300 to 4 K. With lowering temperature, a transition from linear to nonlinear I-V curves was observed around 50 K, and a clear zero bias anomaly (i.e., Coulomb gap-like structure) appeared on the differential conductance (dI/dV) curves, possibly due to enhanced electron-electron interaction at low temperatures. The temperature dependence of resistivity, [Formula: see text], follows the Efros-Shklovskii (ES) law, as expected in the presence of a Coulomb gap. Here we note that both the ES law and Coulomb blockade can in principle lead to a reduced zero bias conductance at low temperatures; in this study we cannot exclude the possibility of Coulomb-blockade transport in the measured nanowires, especially in the low-temperature range. It is still an open question how to pin down the origin of the observed reduction to a Coulomb gap (ES law) or Coulomb blockade.
A comparative study of transport properties of monolayer graphene and AlGaN-GaN heterostructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozdemir, M. D.; Atasever, O.; Ozdemir, B.
2015-07-15
The electronic transport properties of monolayer graphene are presented with an Ensemble Monte Carlo method where a rejection technique is used to account for the occupancy of the final states after scattering. Acoustic and optic phonon scatterings are considered for intrinsic graphene and in addition, ionized impurity and surface roughness scatterings are considered for the case of dirty graphene. The effect of screening is considered in the ionized impurity scattering of electrons. The time dependence of drift velocity of carriers is obtained where overshoot and undershoot effects are observed for certain values of applied field and material parameters for intrinsicmore » graphene. The field dependence of drift velocity of carriers showed negative differential resistance and disappeared as acoustic scattering becomes dominant for intrinsic graphene. The variation of electron mobility with temperature is calculated for intrinsic (suspended) and dirty monolayer graphene sheets separately and they are compared. These are also compared with the mobility of two dimensional electrons at an AlGaN/GaN heterostructure. It is observed that interface roughness may become very effective in limiting the mobility of electrons in graphene.« less
NASA Astrophysics Data System (ADS)
Li, He-Ping; Chen, Jian; Guo, Heng; Jiang, Dong-Jun; Zhou, Ming-Sheng; Department of Engineering Physics Team
2017-10-01
Ion extraction from a plasma under an externally applied electric field involve multi-particle and multi-field interactions, and has wide applications in the fields of materials processing, etching, chemical analysis, etc. In order to develop the high-efficiency ion extraction methods, it is indispensable to establish a feasible model to understand the non-equilibrium transportation processes of the charged particles and the evolutions of the space charge sheath during the extraction process. Most of the previous studies on the ion extraction process are mainly based on the electron-equilibrium fluid model, which assumed that the electrons are in the thermodynamic equilibrium state. However, it may lead to some confusions with neglecting the electron movement during the sheath formation process. In this study, a non-electron-equilibrium model is established to describe the transportation of the charged particles in a parallel-plate ion extraction process. The numerical results show that the formation of the Child-Langmuir sheath is mainly caused by the charge separation. And thus, the sheath shielding effect will be significantly weakened if the charge separation is suppressed during the extraction process of the charged particles.
Mass and Charge Transport in Electronically Conductive Polymers
1990-08-02
This method is based on coating an electrode surface with an insulating nitrile butadiene rubber ( NBR ). The electrolyte for polymerization (LiCIO4...in acetonitrile) etches channels through the NBR ; pyrrole is then polymerized in these channels. After polymerization the NBR is extracted away with
NASA Astrophysics Data System (ADS)
Fernandez, Eduardo; Gascon, Nicolas; Knoll, Aaron; Scharfe, Michelle; Cappelli, Mark
2007-11-01
Motivated by the inability of radial-axial (r-z) simulations to properly treat cross-field electron transport in Hall thrusters, a novel 2D z-θ model has been implemented. In common with many r-z descriptions, the simulation is hybrid in nature and assumes quasi-neutrality. Unlike r-z models, electron transport is not enhanced with an ad-hoc mobility coefficient; instead it is given by collisional or ``classical'' terms as well as ``anomalous'' contributions associated with azimuthal electric field fluctuations. Results indicate that anomalous transport dominates classical transport for most of the channel and near field, except in a strong electron flow shear region near the channel exit. The correlation between flow shear, fluctuation behavior, and electron transport will be examined, along with experimental data from the Stanford Hall Thruster. Our findings make a strong link to the turbulent transport suppression mechanism by flow shear seen in fusion devices. The scheme for combining the r-z and z-θ descriptions into an upcoming 3D hybrid model will be presented.
Low-Energy Electron Potentiometry: Contactless Imaging of Charge Transport on the Nanoscale.
Kautz, J; Jobst, J; Sorger, C; Tromp, R M; Weber, H B; van der Molen, S J
2015-09-04
Charge transport measurements form an essential tool in condensed matter physics. The usual approach is to contact a sample by two or four probes, measure the resistance and derive the resistivity, assuming homogeneity within the sample. A more thorough understanding, however, requires knowledge of local resistivity variations. Spatially resolved information is particularly important when studying novel materials like topological insulators, where the current is localized at the edges, or quasi-two-dimensional (2D) systems, where small-scale variations can determine global properties. Here, we demonstrate a new method to determine spatially-resolved voltage maps of current-carrying samples. This technique is based on low-energy electron microscopy (LEEM) and is therefore quick and non-invasive. It makes use of resonance-induced contrast, which strongly depends on the local potential. We demonstrate our method using single to triple layer graphene. However, it is straightforwardly extendable to other quasi-2D systems, most prominently to the upcoming class of layered van der Waals materials.
Measurements of Impurity Particle Transport Associated with Drift-Wave Turbulence in MST
NASA Astrophysics Data System (ADS)
Nishizawa, Takashi; Nornberg, Mark; Boguski, John; Craig, Darren; den Hartog, Daniel; Pueschel, M. J.; Sarff, John; Terry, Paul; Williams, Zach; Xing, Zichuan
2017-10-01
Understanding and controlling impurity transport in a toroidal magnetized plasma is one of the critical issues that need to be addressed in order to achieve controlled fusion. Gyrokinetic modeling shows turbulence can drive impurity transport, but direct measurements of the turbulent flux have not been made. Particle balance is typically used to infer the presence of turbulent impurity transport. We report, for the first time in a toroidal plasma, direct measurements of turbulence-driven impurity transport. Trapped electron mode (TEM) turbulence appears in MST plasmas when MHD tearing fluctuations are suppressed. Impurity ion-Doppler spectroscopy is used to correlate impurity density and radial velocity fluctuations associated with TEM. Small Doppler shifts associated with the radial velocity fluctuations (rms 1km/s) are resolved with the use of a new linearized spectrum correlation analysis method, which improves the rejection of Poisson noise. The method employs frequency-domain correlation analysis to expose the fluctuation and transport spectrum. The C+ 2 impurity transport velocity driven by turbulence is found to be 48m/s (inward), which is sufficiently large to impact an impurity flux balance in MST improved-confinement plasmas. This work is supported by the US DOE.
Impact of the Topological Surface State on the Thermoelectric Transport in Sb2Te3 Thin Films.
Hinsche, Nicki F; Zastrow, Sebastian; Gooth, Johannes; Pudewill, Laurens; Zierold, Robert; Rittweger, Florian; Rauch, Tomáš; Henk, Jürgen; Nielsch, Kornelius; Mertig, Ingrid
2015-04-28
Ab initio electronic structure calculations based on density functional theory and tight-binding methods for the thermoelectric properties of p-type Sb2Te3 films are presented. The thickness-dependent electrical conductivity and the thermopower are computed in the diffusive limit of transport based on the Boltzmann equation. Contributions of the bulk and the surface to the transport coefficients are separated, which enables to identify a clear impact of the topological surface state on the thermoelectric properties. When the charge carrier concentration is tuned, a crossover between a surface-state-dominant and a Fuchs-Sondheimer transport regime is achieved. The calculations are corroborated by thermoelectric transport measurements on Sb2Te3 films grown by atomic layer deposition.
Electron transport in single molecules: from benzene to graphene.
Chen, F; Tao, N J
2009-03-17
Electron movement within and between molecules--that is, electron transfer--is important in many chemical, electrochemical, and biological processes. Recent advances, particularly in scanning electrochemical microscopy (SECM), scanning-tunneling microscopy (STM), and atomic force microscopy (AFM), permit the study of electron movement within single molecules. In this Account, we describe electron transport at the single-molecule level. We begin by examining the distinction between electron transport (from semiconductor physics) and electron transfer (a more general term referring to electron movement between donor and acceptor). The relation between these phenomena allows us to apply our understanding of single-molecule electron transport between electrodes to a broad range of other electron transfer processes. Electron transport is most efficient when the electron transmission probability via a molecule reaches 100%; the corresponding conductance is then 2e(2)/h (e is the charge of the electron and h is the Planck constant). This ideal conduction has been observed in a single metal atom and a string of metal atoms connected between two electrodes. However, the conductance of a molecule connected to two electrodes is often orders of magnitude less than the ideal and strongly depends on both the intrinsic properties of the molecule and its local environment. Molecular length, means of coupling to the electrodes, the presence of conjugated double bonds, and the inclusion of possible redox centers (for example, ferrocene) within the molecular wire have a pronounced effect on the conductance. This complex behavior is responsible for diverse chemical and biological phenomena and is potentially useful for device applications. Polycyclic aromatic hydrocarbons (PAHs) afford unique insight into electron transport in single molecules. The simplest one, benzene, has a conductance much less than 2e(2)/h due to its large LUMO-HOMO gap. At the other end of the spectrum, graphene sheets and carbon nanotubes--consisting of infinite numbers of aromatic rings--have small or even zero energy gaps between the conduction and valence bands. Between these two limits are intermediate molecules with rich properties, such as perylene derivatives made of seven aromatic rings; the properties of these types of molecules have yet to be fully explored. Studying PAHs is important not only in answering fundamental questions about electron transport but also in the ongoing quest for molecular-scale electronic devices. This line of research also helps bridge the gap between electron transfer phenomena in small redox molecules and electron transport properties in nanostructures.
Quantum transport in graphene Hall bars: Effects of side gates
NASA Astrophysics Data System (ADS)
Petrović, M. D.; Peeters, F. M.
2017-05-01
Quantum electron transport in side-gated graphene Hall bars is investigated in the presence of quantizing external magnetic fields. The asymmetric potential of four side-gates distorts the otherwise flat bands of the relativistic Landau levels, and creates new propagating states in the Landau spectrum (i.e. snake states). The existence of these new states leads to an interesting modification of the bend and Hall resistances, with new quantizing plateaus appearing in close proximity of the Landau levels. The electron guiding in this system can be understood by studying the current density profiles of the incoming and outgoing modes. From the fact that guided electrons fully transmit without any backscattering (similarly to edge states), we are able to analytically predict the values of the quantized resistances, and they match the resistance data we obtain with our numerical (tight-binding) method. These insights in the electron guiding will be useful in predicting the resistances for other side-gate configurations, and possibly in other system geometries, as long as there is no backscattering of the guided states.
Li, Dong-Mei; Zhang, Hai-Sen; Tan, Qiu-Ping; Li, Ling; Yu, Qin; Gao, Dong-Sheng
2011-11-01
Taking the nectarine variety 'Shuguang' (Prunus persica var. nectariana cv. Shuguang) as test material, and by using respiration inhibitors KCN and SHAM, this paper studied the cytochrome electron transport pathway and the alternative respiration pathway in nectarine flower bud during dormancy induction under the effects of short sunlight. Both the total respiration rate (V(t)) and the cytochrome electron transport pathway respiration rate (rho' V(cyt)) presented double hump-shaped variation. Short sunlight brought the first-hump of V(t) and rho' V(cyt), forward and delayed the second-hump synchronously, inhibited the rho' V(cyt), but had no significant effects on the V(t). The capacity (V(alt)) and activity (rho V (alt)) of alternative respiration pathway also varied in double hump-shape, and the variation was basically in synchronous. Short sunlight made the first climax of V(alt) and rhoV(alt) advanced, but had little effects on the later period climax. The inhibition of cytochrome electron transport pathway and the enhancement of alternative respiration pathway were the important features of nectarine flower bud during dormancy induction, and according to the respective contributions of the two electron transport pathways to the total respiration rate, the cytochrome electron transport pathway was still the main pathway of electron transport, whereas the alternative respiration pathway played an auxiliary and branched role.
NASA Astrophysics Data System (ADS)
Rabie, M.; Franck, C. M.
2016-06-01
We present a freely available MATLAB code for the simulation of electron transport in arbitrary gas mixtures in the presence of uniform electric fields. For steady-state electron transport, the program provides the transport coefficients, reaction rates and the electron energy distribution function. The program uses established Monte Carlo techniques and is compatible with the electron scattering cross section files from the open-access Plasma Data Exchange Project LXCat. The code is written in object-oriented design, allowing the tracing and visualization of the spatiotemporal evolution of electron swarms and the temporal development of the mean energy and the electron number due to attachment and/or ionization processes. We benchmark our code with well-known model gases as well as the real gases argon, N2, O2, CF4, SF6 and mixtures of N2 and O2.
NASA Astrophysics Data System (ADS)
Szczęśniak, Dominik; Ennaoui, Ahmed; Ahzi, Saïd
2016-09-01
Recently, the transition metal dichalcogenides have attracted renewed attention due to the potential use of their low-dimensional forms in both nano- and opto-electronics. In such applications, the electronic and transport properties of monolayer transition metal dichalcogenides play a pivotal role. The present paper provides a new insight into these essential properties by studying the complex band structures of popular transition metal dichalcogenide monolayers (MX 2, where M = Mo, W; X = S, Se, Te) while including spin-orbit coupling effects. The conducted symmetry-based tight-binding calculations show that the analytical continuation from the real band structures to the complex momentum space leads to nonlinear generalized eigenvalue problems. Herein an efficient method for solving such a class of nonlinear problems is presented and yields a complete set of physically relevant eigenvalues. Solutions obtained by this method are characterized and classified into propagating and evanescent states, where the latter states manifest not only monotonic but also oscillatory decay character. It is observed that some of the oscillatory evanescent states create characteristic complex loops at the direct band gap of MX 2 monolayers, where electrons can directly tunnel between the band gap edges. To describe these tunneling currents, decay behavior of electronic states in the forbidden energy region is elucidated and their importance within the ballistic transport regime is briefly discussed.
Sano, Yuzou; Morris, Hugh; Shimada, Hiroshi; Ronse De Craene, Louis P.; Jansen, Steven
2011-01-01
Background and Aims Imperforate tracheary elements (ITEs) in wood of vessel-bearing angiosperms may or may not transport water. Despite the significance of hydraulic transport for defining ITE types, the combination of cell structure with water transport visualization in planta has received little attention. This study provides a quantitative analysis of structural features associated with the conductive vs. non-conductive nature of ITEs. Methods Visualization of water transport was studied in 15 angiosperm species by dye injection and cryo-scanning electron microscopy. Structural features of ITEs were examined using light and electron microscopy. Key Results ITEs connected to each other by pit pairs with complete pit membranes contributed to water transport, while cells showing pit membranes with perforations up to 2 µm were hydraulically not functional. A close relationship was found between pit diameter and pit density, with both characters significantly higher in conductive than in non-conductive cells. In species with both conductive and non-conductive ITEs, a larger diameter was characteristic of the conductive cells. Water transport showed no apparent relationship with the length of ITEs and vessel grouping. Conclusions The structure and density of pits between ITEs represent the main anatomical characters determining water transport. The pit membrane structure of ITEs provides a reliable, but practically challenging, criterion to determine their conductive status. It is suggested that the term tracheids should strictly be used for conductive ITEs, while fibre-tracheids and libriform fibres are non-conductive. PMID:21385773
Quantum transport through disordered 1D wires: Conductance via localized and delocalized electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopar, Víctor A.
Coherent electronic transport through disordered systems, like quantum wires, is a topic of fundamental and practical interest. In particular, the exponential localization of electron wave functions-Anderson localization-due to the presence of disorder has been widely studied. In fact, Anderson localization, is not an phenomenon exclusive to electrons but it has been observed in microwave and acoustic experiments, photonic materials, cold atoms, etc. Nowadays, many properties of electronic transport of quantum wires have been successfully described within a scaling approach to Anderson localization. On the other hand, anomalous localization or delocalization is, in relation to the Anderson problem, a less studiedmore » phenomenon. Although one can find signatures of anomalous localization in very different systems in nature. In the problem of electronic transport, a source of delocalization may come from symmetries present in the system and particular disorder configurations, like the so-called Lévy-type disorder. We have developed a theoretical model to describe the statistical properties of transport when electron wave functions are delocalized. In particular, we show that only two physical parameters determine the complete conductance distribution.« less
Transire, a Program for Generating Solid-State Interface Structures
2017-09-14
function-based electron transport property calculator. Three test cases are presented to demonstrate the usage of Transire: the misorientation of the...graphene bilayer, the interface energy as a function of misorientation of copper grain boundaries, and electron transport transmission across the...gallium nitride/silicon carbide interface. 15. SUBJECT TERMS crystalline interface, electron transport, python, computational chemistry, grain boundary
Using Adobe Flash Animations of Electron Transport Chain to Teach and Learn Biochemistry
ERIC Educational Resources Information Center
Teplá, Milada; Klímová, Helena
2015-01-01
Teaching the subject of the electron transport chain is one of the most challenging aspects of the chemistry curriculum at the high school level. This article presents an educational program called "Electron Transport Chain" which consists of 14 visual animations including a biochemistry quiz. The program was created in the Adobe Flash…
NASA Astrophysics Data System (ADS)
Zahid, F.; Paulsson, M.; Polizzi, E.; Ghosh, A. W.; Siddiqui, L.; Datta, S.
2005-08-01
We present a transport model for molecular conduction involving an extended Hückel theoretical treatment of the molecular chemistry combined with a nonequilibrium Green's function treatment of quantum transport. The self-consistent potential is approximated by CNDO (complete neglect of differential overlap) method and the electrostatic effects of metallic leads (bias and image charges) are included through a three-dimensional finite element method. This allows us to capture spatial details of the electrostatic potential profile, including effects of charging, screening, and complicated electrode configurations employing only a single adjustable parameter to locate the Fermi energy. As this model is based on semiempirical methods it is computationally inexpensive and flexible compared to ab initio models, yet at the same time it is able to capture salient qualitative features as well as several relevant quantitative details of transport. We apply our model to investigate recent experimental data on alkane dithiol molecules obtained in a nanopore setup. We also present a comparison study of single molecule transistors and identify electronic properties that control their performance.
Dissipationless transport of spin-polarized electrons and Cooper pairs in an electron waveguide
NASA Astrophysics Data System (ADS)
Levy, J.; Annadi, A.; Lu, S.; Cheng, G.; Tylan-Tyler, A.; Briggeman, M.; Tomczyk, M.; Huang, M.; Pekker, D.; Irvin, P.; Lee, H.; Lee, J.-W.; Eom, C.-B.
Electron systems undergo profound changes in their behavior when constrained to move along a single axis. To date, clean one-dimensional (1D) electron transport has only been observed in carbon-based nanotubes and nanoribbons, and compound semiconductor nanowires. Complex-oxide heterostructures can possess conductive two-dimensional (2D) interfaces with much richer chemistries and properties, e.g., superconductivity, but with mobilities that appear to preclude ballistic transport in 1D. Here we show that nearly ideal 1D electron waveguides exhibiting ballistic transport of electrons and non-superconducting Cooper pairs can be formed at the interface between the two band insulators LaAlO3 and SrTiO3. The electron waveguides possess gate and magnetic-field selectable spin and charge degrees of freedom, and can be tuned to the one-dimensional limit of a single spin-polarized quantum channel. The strong attractive electron-electron interactions enable a new mode of dissipationless transport of electron pairs that is not superconducting. The selectable spin and subband quantum numbers of these electron waveguides may be useful for quantum simulation, quantum informatio We gratefully acknowledge financial support from ONR N00014-15-1-2847 (JL), AFOSR (FA9550-15-1-0334 (CBE) and FA9550-12-1-0057 (JL, CBE)), AOARD FA2386-15-1-4046 (CBE) and NSF (DMR-1104191 (JL), DMR-1124131 (CBE, JL) and DMR-1234096 (CBE)).
An ab initio electronic transport database for inorganic materials.
Ricci, Francesco; Chen, Wei; Aydemir, Umut; Snyder, G Jeffrey; Rignanese, Gian-Marco; Jain, Anubhav; Hautier, Geoffroy
2017-07-04
Electronic transport in materials is governed by a series of tensorial properties such as conductivity, Seebeck coefficient, and effective mass. These quantities are paramount to the understanding of materials in many fields from thermoelectrics to electronics and photovoltaics. Transport properties can be calculated from a material's band structure using the Boltzmann transport theory framework. We present here the largest computational database of electronic transport properties based on a large set of 48,000 materials originating from the Materials Project database. Our results were obtained through the interpolation approach developed in the BoltzTraP software, assuming a constant relaxation time. We present the workflow to generate the data, the data validation procedure, and the database structure. Our aim is to target the large community of scientists developing materials selection strategies and performing studies involving transport properties.
NASA Astrophysics Data System (ADS)
Bjørlig, Anders V.; von Soosten, Merlin; Erlandsen, Ricci; Dahm, Rasmus Tindal; Zhang, Yu; Gan, Yulin; Chen, Yunzhong; Pryds, Nini; Jespersen, Thomas S.
2018-04-01
A simple approach is presented for designing complex oxide mesoscopic electronic devices based on the conducting interfaces of room temperature grown LaAlO3/SrTiO3 heterostructures. The technique is based entirely on methods known from conventional semiconductor processing technology, and we demonstrate a lateral resolution of ˜100 nm. We study the low temperature transport properties of nanoscale wires and demonstrate the feasibility of the technique for defining in-plane gates allowing local control of the electrostatic environment in mesoscopic devices.
Calculated electronic, transport, and related properties of zinc blende boron arsenide (zb-BAs)
Nwigboji, Ifeanyi H.; Malozovsky, Yuriy; Franklin, Lashounda; ...
2016-10-11
Here, we present the results from ab-initio, self-consistent density functional theory (DFT) calculations of electronic, transport, and bulk properties of zinc blende boron arsenide. We utilized the local density approximation potential of Ceperley and Alder, as parameterized by Vosko and his group, the linear combination of Gaussian orbitals formalism, and the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF), in carrying out our completely self-consistent calculations. With this method, the results of our calculations have the full, physical content of density functional theory (DFT). Our results include electronic energy bands, densities of states, effective masses,more » and the bulk modulus. Our calculated, indirect band gap of 1.48 eV, from C to a conduction band minimum close to X, for the room temperature lattice constant of 4.777 Å, is in an excellent agreement with the experimental value of 1.46 6 0.02 eV. We thor-oughly explain the reasons for the excellent agreement between our findings and corresponding, experimental ones. This work provides a confirmation of the capability of DFT to describe accu-rately properties of materials, provides a confirmation of the capability of DFT to describe accu-rately properties of materials, if the computations adhere strictly to the conditions of validity of DFT, as done by the BZW-EF method.« less
Transport coefficients in high-temperature ionized air flows with electronic excitation
NASA Astrophysics Data System (ADS)
Istomin, V. A.; Oblapenko, G. P.
2018-01-01
Transport coefficients are studied in high-temperature ionized air mixtures using the modified Chapman-Enskog method. The 11-component mixture N2/N2+/N /N+/O2/O2+/O /O+/N O /N O+/e- , taking into account the rotational and vibrational degrees of freedom of molecules and electronic degrees of freedom of both atomic and molecular species, is considered. Using the PAINeT software package, developed by the authors of the paper, in wide temperature range calculations of the thermal conductivity, thermal diffusion, diffusion, and shear viscosity coefficients for an equilibrium ionized air mixture and non-equilibrium flow conditions for mixture compositions, characteristic of those in shock tube experiments and re-entry conditions, are performed. For the equilibrium air case, the computed transport coefficients are compared to those obtained using simplified kinetic theory algorithms. It is shown that neglecting electronic excitation leads to a significant underestimation of the thermal conductivity coefficient at temperatures higher than 25 000 K. For non-equilibrium test cases, it is shown that the thermal diffusion coefficients of neutral species and the self-diffusion coefficients of all species are strongly affected by the mixture composition, while the thermal conductivity coefficient is most strongly influenced by the degree of ionization of the flow. Neglecting electronic excitation causes noticeable underestimation of the thermal conductivity coefficient at temperatures higher than 20 000 K.
NASA Astrophysics Data System (ADS)
Artemyev, Anton V.; Neishtadt, Anatoly I.; Vasiliev, Alexei A.
2018-04-01
Accurately modelling and forecasting of the dynamics of the Earth's radiation belts with the available computer resources represents an important challenge that still requires significant advances in the theoretical plasma physics field of wave-particle resonant interaction. Energetic electron acceleration or scattering into the Earth's atmosphere are essentially controlled by their resonances with electromagnetic whistler mode waves. The quasi-linear diffusion equation describes well this resonant interaction for low intensity waves. During the last decade, however, spacecraft observations in the radiation belts have revealed a large number of whistler mode waves with sufficiently high intensity to interact with electrons in the nonlinear regime. A kinetic equation including such nonlinear wave-particle interactions and describing the long-term evolution of the electron distribution is the focus of the present paper. Using the Hamiltonian theory of resonant phenomena, we describe individual electron resonance with an intense coherent whistler mode wave. The derived characteristics of such a resonance are incorporated into a generalized kinetic equation which includes non-local transport in energy space. This transport is produced by resonant electron trapping and nonlinear acceleration. We describe the methods allowing the construction of nonlinear resonant terms in the kinetic equation and discuss possible applications of this equation.
The piezoelectric gating effect in a thin bent membrane with a two-dimensional electron gas
NASA Astrophysics Data System (ADS)
Shevyrin, Andrey A.; Pogosov, Arthur G.
2018-05-01
Thin suspended nanostructures with a two-dimensional electron gas can be used as nanoelectromechanical systems in which electron transport is piezoelectrically coupled to mechanical motion and vibrations. Apart from practical applications, these systems are interesting for studying electron transport under unusual conditions, namely, in the presence of additional mechanical degrees of freedom. In the present paper, we analyze the influence of the bending on the density of a gated two-dimensional electron gas contained in a suspended membrane using the Thomas–Fermi approach and the model of pure electrostatic screening. We show that a small bending is analogous to a small change in gate voltages. Our calculations demonstrate that the density change is most prominent near the edges of the conductive channel created by negatively biased gates. When moving away from these edges, the bending-induced density change rapidly decays. We propose several methods to increase the magnitude of the effect, with the largest benefit obtained from coverage of the conductive channel with an additional grounded gate. It is shown that, for a conductive channel under a bare surface, the largest effect can be achieved if the two-dimensional electron gas is placed near the middle of the membrane thickness, despite the bending-induced strain is zero there.
78 FR 29204 - Notice of Request for Revisions of an Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-17
... public transportation systems. In two subsequent years, The Transportation, Housing and Urban Development... DEPARTMENT OF TRANSPORTATION Federal Transit Administration [FTA Docket No. FTA-2013-0025] Notice... electronic docket site. (Note: The U.S. Department of Transportation's (DOT's) electronic docket is no longer...
Density matrix Monte Carlo modeling of quantum cascade lasers
NASA Astrophysics Data System (ADS)
Jirauschek, Christian
2017-10-01
By including elements of the density matrix formalism, the semiclassical ensemble Monte Carlo method for carrier transport is extended to incorporate incoherent tunneling, known to play an important role in quantum cascade lasers (QCLs). In particular, this effect dominates electron transport across thick injection barriers, which are frequently used in terahertz QCL designs. A self-consistent model for quantum mechanical dephasing is implemented, eliminating the need for empirical simulation parameters. Our modeling approach is validated against available experimental data for different types of terahertz QCL designs.
State-specific transport properties of electronically excited Ar and C
NASA Astrophysics Data System (ADS)
Istomin, V. A.; Kustova, E. V.
2018-05-01
In the present study, a theoretical model of state-resolved transport properties in electronically excited atomic species developed earlier is applied to argon and carbon atomic species. It is shown that for Ar and C, similarly to the case of atomic nitrogen and oxygen, the Slater-like models can be applied to calculate diameters of electronically excited atoms. Using the Slater-like model it is shown that for half-filled N (2 px1py1pz1) and full-filled Ar (3 px2py2pz2) electronic shells the growth of atomic radius goes slowly compared to C (2 px1py1) and O (2 px2py1pz1). The effect of collision diameters on the transport properties of Ar and C is evaluated. The influence of accounted number of electronic levels on the transport coefficients is examined for the case of Boltzmann distributions over electronic energy levels. It is emphasized that in the temperature range 1000-14000 K, for Boltzmann-like distributions over electronic states the number of accounted electronic levels do not influence the transport coefficients. Contrary to this, for higher temperatures T > 14000 K this effect becomes of importance, especially for argon.
A Deterministic Computational Procedure for Space Environment Electron Transport
NASA Technical Reports Server (NTRS)
Nealy, John E.; Chang, C. K.; Norman, Ryan B.; Blattnig, Steve R.; Badavi, Francis F.; Adamcyk, Anne M.
2010-01-01
A deterministic computational procedure for describing the transport of electrons in condensed media is formulated to simulate the effects and exposures from spectral distributions typical of electrons trapped in planetary magnetic fields. The primary purpose for developing the procedure is to provide a means of rapidly performing numerous repetitive transport calculations essential for electron radiation exposure assessments for complex space structures. The present code utilizes well-established theoretical representations to describe the relevant interactions and transport processes. A combined mean free path and average trajectory approach is used in the transport formalism. For typical space environment spectra, several favorable comparisons with Monte Carlo calculations are made which have indicated that accuracy is not compromised at the expense of the computational speed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qian; University of the Chinese Academy of Sciences, Beijing 100039; Li, Bincheng, E-mail: bcli@ioe.ac.cn
2015-09-28
Spatially resolved steady-state photocarrier radiometric (PCR) imaging technique is developed to characterize the electronic transport properties of silicon wafers. Based on a nonlinear PCR theory, simulations are performed to investigate the effects of electronic transport parameters (the carrier lifetime, the carrier diffusion coefficient, and the front surface recombination velocity) on the steady-state PCR intensity profiles. The electronic transport parameters of an n-type silicon wafer are simultaneously determined by fitting the measured steady-state PCR intensity profiles to the three-dimensional nonlinear PCR model. The determined transport parameters are in good agreement with the results obtained by the conventional modulated PCR technique withmore » multiple pump beam radii.« less
The Molecular Density of States in Bacterial Nanowires
El-Naggar, Mohamed Y.; Gorby, Yuri A.; Xia, Wei; Nealson, Kenneth H.
2008-01-01
The recent discovery of electrically conductive bacterial appendages has significant physiological, ecological, and biotechnological implications, but the mechanism of electron transport in these nanostructures remains unclear. We here report quantitative measurements of transport across bacterial nanowires produced by the dissimilatory metal-reducing bacterium, Shewanella oneidensis MR-1, whose electron transport system is being investigated for renewable energy recovery in microbial fuel cells and bioremediation of heavy metals and radionuclides. The Shewanella nanowires display a surprising nonlinear electrical transport behavior, where the voltage dependence of the conductance reveals peaks indicating discrete energy levels with higher electronic density of states. Our results indicate that the molecular constituents along the Shewanella nanowires possess an intricate electronic structure that plays a role in mediating transport. PMID:18441026
Phonon limited electronic transport in Pb
NASA Astrophysics Data System (ADS)
Rittweger, F.; Hinsche, N. F.; Mertig, I.
2017-09-01
We present a fully ab initio based scheme to compute electronic transport properties, i.e. the electrical conductivity σ and thermopower S, in the presence of electron-phonon interaction. We explicitly investigate the \
Room-temperature ballistic energy transport in molecules with repeating units
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubtsova, Natalia I.; Nyby, Clara M.; Zhang, Hong
2015-06-07
In materials, energy can propagate by means of two limiting regimes: diffusive and ballistic. Ballistic energy transport can be fast and efficient and often occurs with a constant speed. Using two-dimensional infrared spectroscopy methods, we discovered ballistic energy transport via individual polyethylene chains with a remarkably high speed of 1440 m/s and the mean free path length of 14.6 Å in solution at room temperature. Whereas the transport via the chains occurs ballistically, the mechanism switches to diffusive with the effective transport speed of 130 m/s at the end-groups attached to the chains. A unifying model of the transport inmore » molecules is presented with clear time separation and additivity among the transport along oligomeric fragments, which occurs ballistically, and the transport within the disordered fragments, occurring diffusively. The results open new avenues for making novel elements for molecular electronics, including ultrafast energy transporters, controlled chemical reactors, and sub-wavelength quantum nanoseparators.« less
NASA Astrophysics Data System (ADS)
Gunst, Tue; Markussen, Troels; Stokbro, Kurt; Brandbyge, Mads
2016-01-01
We present density functional theory calculations of the phonon-limited mobility in n -type monolayer graphene, silicene, and MoS2. The material properties, including the electron-phonon interaction, are calculated from first principles. We provide a detailed description of the normalized full-band relaxation time approximation for the linearized Boltzmann transport equation (BTE) that includes inelastic scattering processes. The bulk electron-phonon coupling is evaluated by a supercell method. The method employed is fully numerical and does therefore not require a semianalytic treatment of part of the problem and, importantly, it keeps the anisotropy information stored in the coupling as well as the band structure. In addition, we perform calculations of the low-field mobility and its dependence on carrier density and temperature to obtain a better understanding of transport in graphene, silicene, and monolayer MoS2. Unlike graphene, the carriers in silicene show strong interaction with the out-of-plane modes. We find that graphene has more than an order of magnitude higher mobility compared to silicene in the limit where the silicene out-of-plane interaction is reduced to zero (by substrate interaction, clamping, or similar). If the out-of-plane interaction is not actively reduced, the mobility of silicene will essentially be zero. For MoS2, we obtain several orders of magnitude lower mobilities compared to graphene in agreement with other recent theoretical results. The simulations illustrate the predictive capabilities of the newly implemented BTE solver applied in simulation tools based on first-principles and localized basis sets.
Decoupled electron and phonon transports in hexagonal boron nitride-silicene bilayer heterostructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Yongqing; Pei, Qing-Xiang, E-mail: peiqx@ihpc.a-star.edu.sg, E-mail: zhangg@ihpc.a-star.edu.sg; Zhang, Gang, E-mail: peiqx@ihpc.a-star.edu.sg, E-mail: zhangg@ihpc.a-star.edu.sg
2016-02-14
Calculations based on the density functional theory and empirical molecular dynamics are performed to investigate interlayer interaction, electronic structure and thermal transport of a bilayer heterostructure consisting of silicene and hexagonal boron nitride (h-BN). In this heterostructure, the two layers are found to interact weakly via a non-covalent binding. As a result, the Dirac cone of silicene is preserved with the Dirac cone point being located exactly at the Fermi level, and only a small amount of electrons are transferred from h-BN to silicene, suggesting that silicene dominates the electronic transport. Molecular dynamics calculation results demonstrate that the heat currentmore » along h-BN is six times of that along silicene, suggesting that h-BN dominates the thermal transport. This decoupled role of h-BN and silicene in thermal and electronic transport suggests that the BN-silicene bilayer heterostructure is promising for thermoelectric applications.« less
Micrometer-Scale Ballistic Transport of Electron Pairs in LaAlO_{3}/SrTiO_{3} Nanowires.
Tomczyk, Michelle; Cheng, Guanglei; Lee, Hyungwoo; Lu, Shicheng; Annadi, Anil; Veazey, Joshua P; Huang, Mengchen; Irvin, Patrick; Ryu, Sangwoo; Eom, Chang-Beom; Levy, Jeremy
2016-08-26
High-mobility complex-oxide heterostructures and nanostructures offer new opportunities for extending the paradigm of quantum transport beyond the realm of traditional III-V or carbon-based materials. Recent quantum transport investigations with LaAlO_{3}/SrTiO_{3}-based quantum dots reveal the existence of a strongly correlated phase in which electrons form spin-singlet pairs without becoming superconducting. Here, we report evidence for the micrometer-scale ballistic transport of electron pairs in quasi-1D LaAlO_{3}/SrTiO_{3} nanowire cavities. In the paired phase, Fabry-Perot-like quantum interference is observed, in sync with conductance oscillations observed in the superconducting regime (at a zero magnetic field). Above a critical magnetic field B_{p}, the electron pairs unbind and the conductance oscillations shift with the magnetic field. These experimental observations extend the regime of ballistic electronic transport to strongly correlated phases.
49 CFR 220.307 - Use of railroad-supplied electronic devices.
Code of Federal Regulations, 2010 CFR
2010-10-01
... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.307 Use of railroad-supplied electronic devices. (a) General restriction. A railroad operating employee... 49 Transportation 4 2010-10-01 2010-10-01 false Use of railroad-supplied electronic devices. 220...
2014-02-27
Electron Microscopy. Detailed Kronig -Penny (K-P)) modeling of electron transport through these superlattices suggests an estimated e-h transition energy...superalttices was confirmed by Transmission Electron Microscopy. Detailed Kronig -Penny (K-P)) modeling of electron transport through these superlattices
NASA Astrophysics Data System (ADS)
Pettersen, Sigurd R.; Nagao, Shijo; Kristiansen, Helge; Helland, Susanne; Njagi, John; Suganuma, Katsuaki; Zhang, Zhiliang; He, Jianying
2017-01-01
The flash diffusivity method, also known as laser flash analysis (LFA), is commonly used to obtain the thermal diffusivity (α) and thermal conductivity (κ) of materials, due to its relative simplicity, rapid measurements, small sample size requirement, and standardized commercially available instruments. In this work, an epoxy adhesive was filled with a large fraction of homogeneous micron-sized polymethylmethacrylate spheres coated with thin silver films, such that a percolating metallic network that dominated the electric and thermal transport formed through the polymer at <3 vol. % silver. Specific heat capacity (Cp) was measured from the LFA measurements by a comparative method and from the total and reversible heat flow signals of modulated differential scanning calorimetry (MDSC). κ was estimated as the product of α, Cp, and density (ρ) and was found to vary significantly with the method to find Cp. The electron contribution was found from the electrical conductivity by the Wiedemann-Franz law and was used to elucidate the thermal transport mechanisms in the composite. A theoretical background for the various methods is included.
NASA Technical Reports Server (NTRS)
Coroniti, F. V.; Thorne, R. M.
1972-01-01
Coupling of source, transport, and sink processes produces a fairly accurate model for the macroscopic structure and dynamics of magnetospheric electrons. Auroral electrons are controlled by convective transport from a plasma sheet source coupled with a precipitation loss due to whistler and electrostatic plasma turbulence. Outer and inner zone electrons are governed by radial diffusion transport from convection and acceleration sources external to the plasmapause and by parasitic precipitation losses arising from cyclotron and Landau interactions with whistler and ion cyclotron turbulence.
Modification and benchmarking of MCNP for low-energy tungsten spectra.
Mercier, J R; Kopp, D T; McDavid, W D; Dove, S B; Lancaster, J L; Tucker, D M
2000-12-01
The MCNP Monte Carlo radiation transport code was modified for diagnostic medical physics applications. In particular, the modified code was thoroughly benchmarked for the production of polychromatic tungsten x-ray spectra in the 30-150 kV range. Validating the modified code for coupled electron-photon transport with benchmark spectra was supplemented with independent electron-only and photon-only transport benchmarks. Major revisions to the code included the proper treatment of characteristic K x-ray production and scoring, new impact ionization cross sections, and new bremsstrahlung cross sections. Minor revisions included updated photon cross sections, electron-electron bremsstrahlung production, and K x-ray yield. The modified MCNP code is benchmarked to electron backscatter factors, x-ray spectra production, and primary and scatter photon transport.
NASA Astrophysics Data System (ADS)
Parashar, Sweta
2018-05-01
We present density functional theory-nonequilibrium Green’s function method for electron transport of dipyridazine and dipyridimine molecular junctions with gold, copper and nickel electrodes. Our investigation reveals that the junctions formed with gold and copper electrodes bridging dipyridazine molecule through thiol anchoring group enhance current as compared to the junctions in which the molecule and electrode were coupled directly. Further, nickel electrode displays weak decrease of current with increase of voltage at about 1.2 V. The result is fully rationalized by means of the distribution of molecular orbitals as well as shift in molecular energy levels and HOMO-LUMO gap with applied bias voltage. Our findings are compared with theoretical and experimental results available for other molecular junctions. Present results predict potential avenues for changing the transport behavior by not only changing the electrodes, but also the position of nitrogen atom and type of anchoring-atom that connect molecule and electrodes, thus extending applications of dipyridazine and dipyridimine molecule in future integrated circuits.
Galerkin methods for Boltzmann-Poisson transport with reflection conditions on rough boundaries
NASA Astrophysics Data System (ADS)
Morales Escalante, José A.; Gamba, Irene M.
2018-06-01
We consider in this paper the mathematical and numerical modeling of reflective boundary conditions (BC) associated to Boltzmann-Poisson systems, including diffusive reflection in addition to specularity, in the context of electron transport in semiconductor device modeling at nano scales, and their implementation in Discontinuous Galerkin (DG) schemes. We study these BC on the physical boundaries of the device and develop a numerical approximation to model an insulating boundary condition, or equivalently, a pointwise zero flux mathematical condition for the electron transport equation. Such condition balances the incident and reflective momentum flux at the microscopic level, pointwise at the boundary, in the case of a more general mixed reflection with momentum dependant specularity probability p (k →). We compare the computational prediction of physical observables given by the numerical implementation of these different reflection conditions in our DG scheme for BP models, and observe that the diffusive condition influences the kinetic moments over the whole domain in position space.
Electron transport in the stochastic fields of the reversed-field pinch
NASA Astrophysics Data System (ADS)
Kim, Myung-Hee; Punjabi, Alkesh
1996-08-01
We employ the Monte Carlo method for the calculation of anomalous transport developed by Punjabi and Boozer to calculate the particle diffusion coefficient for electrons in the stochastic magnetic fields of the reversed-field pinch (RFP). in the Monte Carlo calculations represented here, the transport mechanism is the loss of magnetic surfaces due to resistive perturbations. The equilibrium magnetic fields are represented by the Bessel function model for the RFP. The diffusion coefficient D is calculated as a function of a, the amplitude of the perturbation. We see three regimes as the amplitude of the tearing modes is increased: the Rechester—Rosenbluth regime where D scales as a2 the anomalous regime where D scales more rapidly than a2 and the Mynick—Krornmes regime where D scales more slowly than a2. Inclusion of the effects of loop voltage on the particle drift orbits in the RFP does not affect the intervals in the amplitude a where these regimes operate.
Carbon Nanotube-Based Membrane for Light-Driven, Simultaneous Proton and Electron Transport
Pilgrim, Gregory A.; Amori, Amanda R.; Hou, Zhentao; ...
2016-12-07
Here we discuss the photon driven transport of protons and electrons over hundreds of microns through a membrane based on vertically aligned single walled carbon nanotubes (SWNTs). Electrons are photogenerated in colloidal CdSe quantum dots that have been noncovalently attached to the carbon nanotube membrane and can be delivered at potentials capable of reducing earth-abundant molecular catalysts that perform proton reduction. Proton transport is driven by the electron photocurrent and is shown to be faster through the SWNT based membrane than through the commercial polymer Nafion. Furthermore, the potential utility of SWNT membranes for solar water splitting applications is demonstratedmore » through their excellent proton and electron transport properties as well as their ability to interact with other components of water splitting systems, such as small molecule electron acceptors.« less
Development of a 1.5D plasma transport code for coupling to full orbit runaway electron simulations
NASA Astrophysics Data System (ADS)
Lore, J. D.; Del Castillo-Negrete, D.; Baylor, L.; Carbajal, L.
2017-10-01
A 1.5D (1D radial transport + 2D equilibrium geometry) plasma transport code is being developed to simulate runaway electron generation, mitigation, and avoidance by coupling to the full-orbit kinetic electron transport code KORC. The 1.5D code solves the time-dependent 1D flux surface averaged transport equations with sources for plasma density, pressure, and poloidal magnetic flux, along with the Grad-Shafranov equilibrium equation for the 2D flux surface geometry. Disruption mitigation is simulated by introducing an impurity neutral gas `pellet', with impurity densities and electron cooling calculated from ionization, recombination, and line emission rate coefficients. Rapid cooling of the electrons increases the resistivity, inducing an electric field which can be used as an input to KORC. The runaway electron current is then included in the parallel Ohm's law in the transport equations. The 1.5D solver will act as a driver for coupled simulations to model effects such as timescales for thermal quench, runaway electron generation, and pellet impurity mixtures for runaway avoidance. Current progress on the code and details of the numerical algorithms will be presented. Work supported by the US DOE under DE-AC05-00OR22725.
Kawrakow, I
2000-03-01
In this report the condensed history Monte Carlo simulation of electron transport and its application to the calculation of ion chamber response is discussed. It is shown that the strong step-size dependencies and lack of convergence to the correct answer previously observed are the combined effect of the following artifacts caused by the EGS4/PRESTA implementation of the condensed history technique: dose underprediction due to PRESTA'S pathlength correction and lateral correlation algorithm; dose overprediction due to the boundary crossing algorithm; dose overprediction due to the breakdown of the fictitious cross section method for sampling distances between discrete interaction and the inaccurate evaluation of energy-dependent quantities. These artifacts are now understood quantitatively and analytical expressions for their effect are given.
Hiding the interior region of core-shell nanoparticles with quantum invisible cloaks
NASA Astrophysics Data System (ADS)
Lee, Jeng Yi; Lee, Ray-Kuang
2014-04-01
Based on the scattering cancellation, we provide a method not only making a nanoparticle nearly invisible, but also hiding its interior region from the outside probing matter wave. By applying the interplay among the nodal points of partial waves along with the concept of streamline in fluid dynamics for probability flux, a quantum invisible cloak to the electron transport in a host semiconductor is demonstrated by simultaneously guiding the probability flux outside a hidden region and keeping the total scattering cross section negligible. As the probability flux vanishes in the interior region, one can embed any materials inside a multiple core-shell nanoparticle without affecting physical observables from the outside. Our results reveal the possibility to design a protection shield layer for fragile interior parts from the impact of transport electrons.
Control of electron transport routes through redox-regulated redistribution of respiratory complexes
Liu, Lu-Ning; Bryan, Samantha J.; Huang, Fang; Yu, Jianfeng; Nixon, Peter J.; Rich, Peter R.; Mullineaux, Conrad W.
2012-01-01
In cyanobacteria, respiratory electron transport takes place in close proximity to photosynthetic electron transport, because the complexes required for both processes are located within the thylakoid membranes. The balance of electron transport routes is crucial for cell physiology, yet the factors that control the predominance of particular pathways are poorly understood. Here we use a combination of tagging with green fluorescent protein and confocal fluorescence microscopy in live cells of the cyanobacterium Synechococcus elongatus PCC 7942 to investigate the distribution on submicron scales of two key respiratory electron donors, type-I NAD(P)H dehydrogenase (NDH-1) and succinate dehydrogenase (SDH). When cells are grown under low light, both complexes are concentrated in discrete patches in the thylakoid membranes, about 100–300 nm in diameter and containing tens to hundreds of complexes. Exposure to moderate light leads to redistribution of both NDH-1 and SDH such that they become evenly distributed within the thylakoid membranes. The effects of electron transport inhibitors indicate that redistribution of respiratory complexes is triggered by changes in the redox state of an electron carrier close to plastoquinone. Redistribution does not depend on de novo protein synthesis, and it is accompanied by a major increase in the probability that respiratory electrons are transferred to photosystem I rather than to a terminal oxidase. These results indicate that the distribution of complexes on the scale of 100–300 nm controls the partitioning of reducing power and that redistribution of electron transport complexes on these scales is a physiological mechanism to regulate the pathways of electron flow. PMID:22733774
NASA Astrophysics Data System (ADS)
Lyo, S. K.; Huang, Danhong
2006-05-01
Electron-electron scattering conserves total momentum and does not dissipate momentum directly in a low-density system where the umklapp process is forbidden. However, it can still affect the conductance through the energy relaxation of the electrons. We show here that this effect can be studied with arbitrary accuracy in a multisublevel one-dimensional (1D) single quantum wire system in the presence of roughness and phonon scattering using a formally exact solution of the Boltzmann transport equation. The intrasubband electron-electron scattering is found to yield no net effect on the transport of electrons in 1D with only one sublevel occupied. For a system with a multilevel occupation, however, we find a significant effect of intersublevel electron-electron scattering on the temperature and density dependence of the resistance at low temperatures.
Formal Methods for Life-Critical Software
NASA Technical Reports Server (NTRS)
Butler, Ricky W.; Johnson, Sally C.
1993-01-01
The use of computer software in life-critical applications, such as for civil air transports, demands the use of rigorous formal mathematical verification procedures. This paper demonstrates how to apply formal methods to the development and verification of software by leading the reader step-by-step through requirements analysis, design, implementation, and verification of an electronic phone book application. The current maturity and limitations of formal methods tools and techniques are then discussed, and a number of examples of the successful use of formal methods by industry are cited.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nasirabadi, P. Shojaee; Jabbari, M.; Hattel, J. H.
2016-06-08
Nowadays, many electronic systems are exposed to harsh conditions of relative humidity and temperature. Mass transport properties of electronic packaging materials are needed in order to investigate the influence of moisture and temperature on reliability of electronic devices. Polycarbonate (PC) is widely used in the electronics industry. Thus, in this work the water diffusion coefficient into PC is investigated. Furthermore, numerical methods used for estimation of the diffusion coefficient and their assumptions are discussed. 1D and 3D numerical solutions are compared and based on this, it is shown how the estimated value can be different depending on the choice ofmore » dimensionality in the model.« less
Analytic solution of the Spencer-Lewis angular-spatial moments equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filippone, W.L.
A closed-form solution for the angular-spatial moments of the Spencer-Lewis equation is presented that is valid for infinite homogeneous media. From the moments, the electron density distribution as a function of position and path length (energy) is reconstructed for several sample problems involving plane isotropic sources of electrons in aluminium. The results are in excellent agreement with those determined numerically using the streaming ray method. The primary use of the closed form solution will most likely be to generate accurate electron transport benchmark solutions. In principle, the electron density as a function of space, path length, and direction can bemore » determined for planar sources of arbitrary angular distribution.« less
Vibrational inelastic scattering effects in molecular electronics
NASA Astrophysics Data System (ADS)
Ness, H.; Fisher, A. J.
2005-06-01
We describe how to treat the interaction of traveling electrons with localized vibrational modes in nanojunctions. We present a multichannel scattering technique, which can be applied to calculate the transport properties for realistic systems, and we show how it is related to other methods that are useful in particular cases. We apply our technique to describe recent experiments on the conductance through molecular junctions. Author contributions: H.N. and A.J.F. designed research and wrote the paper; and H.N. performed research and analyzed data.This paper was submitted directly (Track II) to the PNAS office.Abbreviations: IETS, inelastic electron tunneling spectroscopy; SSSM, single-site, single-vibrational mode; e-ph, electron-phonon.
Carrier transport dynamics in Mn-doped CdSe quantum dot sensitized solar cells
NASA Astrophysics Data System (ADS)
Poudyal, Uma; Maloney, Francis S.; Sapkota, Keshab; Wang, Wenyong
2017-10-01
In this work quantum dot sensitized solar cells (QDSSCs) were fabricated with CdSe and Mn-doped CdSe quantum dots (QDs) using the SILAR method. QDSSCs based on Mn-doped CdSe QDs exhibited improved incident photon-to-electron conversion efficiency. Carrier transport dynamics in the QDSSCs were studied using the intensity modulated photocurrent/photovoltage spectroscopy technique, from which transport and recombination time constants could be derived. Compared to CdSe QDSSCs, Mn-CdSe QDSSCs exhibited shorter transport time constant, longer recombination time constant, longer diffusion length, and higher charge collection efficiency. These observations suggested that Mn doping in CdSe QDs could benefit the performance of solar cells based on such nanostructures.
49 CFR 228.205 - Access to electronic records.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Access to electronic records. 228.205 Section 228... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HOURS OF SERVICE OF RAILROAD EMPLOYEES Electronic Recordkeeping § 228.205 Access to electronic records. (a) FRA inspectors and State inspectors participating under 49...
49 CFR 228.205 - Access to electronic records.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Access to electronic records. 228.205 Section 228... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HOURS OF SERVICE OF RAILROAD EMPLOYEES Electronic Recordkeeping § 228.205 Access to electronic records. (a) FRA inspectors and State inspectors participating under 49...
Umamaheswari, A; Venkateswarlu, K
2004-06-01
Concentration-dependent inhibition of the photosynthetic electron transport chain (photosystem I (PS I), photosystem II (PS II) and whole chain reaction) and ATP content was observed in Nostoc muscorum and Chlorella vulgaris grown with o-nitrophenol, m-nitrophenol, or 2,4-dinitrophenol. Although the extents of inhibition of the photosynthetic electron transport chain in both organisms were similar, PS II was more sensitive than PS I and whole chain reaction to the nitrophenols. Depletion of the ATP pool was noted in nitrophenol-grown cultures, probably as a consequence of nearly complete inhibition of the photosynthetic electron transport chain.
Lin, Keng-Hua; Strachan, Alejandro
2015-07-21
Motivated by significant interest in metal-semiconductor and metal-insulator interfaces and superlattices for energy conversion applications, we developed a molecular dynamics-based model that captures the thermal transport role of conduction electrons in metals and heat transport across these types of interface. Key features of our model, denoted eleDID (electronic version of dynamics with implicit degrees of freedom), are the natural description of interfaces and free surfaces and the ability to control the spatial extent of electron-phonon (e-ph) coupling. Non-local e-ph coupling enables the energy of conduction electrons to be transferred directly to the semiconductor/insulator phonons (as opposed to having to first couple to the phonons in the metal). We characterize the effect of the spatial e-ph coupling range on interface resistance by simulating heat transport through a metal-semiconductor interface to mimic the conditions of ultrafast laser heating experiments. Direct energy transfer from the conduction electrons to the semiconductor phonons not only decreases interfacial resistance but also increases the ballistic transport behavior in the semiconductor layer. These results provide new insight for experiments designed to characterize e-ph coupling and thermal transport at the metal-semiconductor/insulator interfaces.
Transport properties of correlated metals: A dynamical mean field theory perspective
NASA Astrophysics Data System (ADS)
Deng, Xiaoyu
Strongly correlated metals, including many transition metal oxides, are characterized by unconventional transport properties with anomalous temperature dependence. For example, in many systems Fermi liquid behavior holds only below an extremely low temperature while at high temperature these bad metals have large resistivity which exceeds the Mott-Ioffe-Regel (MIR) limit. Material specific calculation of these anomalous transport properties is an outstanding challenge. Recent advances enabled us to study the transport and optical properties of two archetypal correlated oxides, vanadium oxides and ruthenates, using the LDA +DMFT method. In V2O3, the prototypical Mott system, our computed resistivity and optical conductivity are in very good agreement with experimental measurements, which clearly demonstrates that the strong correlation dominates the transport of this material. Furthermore by expressing the resistivity in terms of an effective plasma frequency and an effective scattering rate, we uncover the so-called ''hidden Fermi liquid'' [1, 2, 3] behavior, in both the computed and measured optical response of V2O3. This paradigm explains the optics and transport in other materials such as NdNiO3 film and CaRuO3. In the ruthenates family, we carried out a systematical theoretical study on the transport properties of four metallic members, Sr2RuO4, Sr3Ru2O7, SrRuO3 and CaRuO3, which generally encapsulates the gradually structure evolution from two-dimension to three dimension. With a unified computational scheme, we are able to obtain the electronic structure and transport properties of all these materials. The computed effective mass enhancement, resistivity and optical conductivity are good agreement with experimental measurements, which indicates that electron-electron scattering dominates the transport of ruthenates. We explain why the single layered compound Sr2RuO4 has a relative weak correlation with respect to its siblings, which corroborates its good metallicity. Comparing our results with experimental data, benchmarks the capability as well as the limitations of existing methodologies for describing transport properties of realistic correlated materials. Supported by NSF DMR-1308141.
NASA Astrophysics Data System (ADS)
Nag, Abhinav; Kumari, Anuja; Kumar, Jagdish
2018-05-01
We have investigated structural, electronic and transport properties of the alkali metals using ab-initio density functional theory. The electron energy dispersions are found parabolic free electron like which is expected for alkali metals. The lattice constants for all the studied metals are also in good agreement within 98% with experiments. We have further computed their transport properties using semi-classical Boltzmann transport equations with special focus on electrical and thermal conductivity. Our objective was to obtain Wiedemann-Franz law and hence Lorenz number. The motivation to do these calculations is to see that how the incorporation of different interactions such as electron-lattice, electron-electron interaction affect the Wiedeman-Franz law. By solving Boltzmann transport equations, we have obtained electrical conductivity (σ/τ) and thermal conductivity (κ0 /τ) at different temperatures and then calculated Lorenz number using L = κ0 /(σT). The obtained value of Lorenz number has been found to match with value derived for free electron Fermi gas 2.44× 10-8 WΩK-2. Our results prove that the Wiedemann-Franz law as derived for free electron gas does not change much for alkali metals, even when one incorporates interaction of electrons with atomic nuclei and other electrons. However, at lower temperatures, the Lorenz number, was found to be deviating from its theoretical value.
Suppression of turbulent transport in NSTX internal transport barriers
NASA Astrophysics Data System (ADS)
Yuh, Howard
2008-11-01
Electron transport will be important for ITER where fusion alphas and high-energy beam ions will primarily heat electrons. In the NSTX, internal transport barriers (ITBs) are observed in reversed (negative) shear discharges where diffusivities for electron and ion thermal channels and momentum are reduced. While neutral beam heating can produce ITBs in both electron and ion channels, High Harmonic Fast Wave (HHFW) heating can produce electron thermal ITBs under reversed magnetic shear conditions without momentum input. Interestingly, the location of the electron ITB does not necessarily match that of the ion ITB: the electron ITB correlates well with the minimum in the magnetic shear determined by Motional Stark Effect (MSE) [1] constrained equilibria, whereas the ion ITB better correlates with the maximum ExB shearing rate. Measured electron temperature gradients can exceed critical linear thresholds for ETG instability calculated by linear gyrokinetic codes in the ITB confinement region. The high-k microwave scattering diagnostic [2] shows reduced local density fluctuations at wavenumbers characteristic of electron turbulence for discharges with strongly negative magnetic shear versus weakly negative or positive magnetic shear. Fluctuation reductions are found to be spatially and temporally correlated with the local magnetic shear. These results are consistent with non-linear gyrokinetic simulations predictions showing the reduction of electron transport in negative magnetic shear conditions despite being linearly unstable [3]. Electron transport improvement via negative magnetic shear rather than ExB shear highlights the importance of current profile control in ITER and future devices. [1] F.M. Levinton, H. Yuh et al., PoP 14, 056119 [2] D.R. Smith, E. Mazzucato et al., RSI 75, 3840 [3] Jenko, F. and Dorland, W., PRL 89 225001
Wang, Qing; Kitaura, Ryo; Suzuki, Shoji; Miyauchi, Yuhei; Matsuda, Kazunari; Yamamoto, Yuta; Arai, Shigeo; Shinohara, Hisanori
2016-01-26
Edge-dependent electronic properties of graphene nanoribbons (GNRs) have attracted intense interests. To fully understand the electronic properties of GNRs, the combination of precise structural characterization and electronic property measurement is essential. For this purpose, two experimental techniques using free-standing GNR devices have been developed, which leads to the simultaneous characterization of electronic properties and structures of GNRs. Free-standing graphene has been sculpted by a focused electron beam in transmission electron microscope (TEM) and then purified and narrowed by Joule heating down to several nanometer width. Structure-dependent electronic properties are observed in TEM, and significant increase in sheet resistance and semiconducting behavior become more salient as the width of GNR decreases. The narrowest GNR width we obtained with the present method is about 1.6 nm with a large transport gap of 400 meV.
An ab initio electronic transport database for inorganic materials
Ricci, Francesco; Chen, Wei; Aydemir, Umut; ...
2017-07-04
Electronic transport in materials is governed by a series of tensorial properties such as conductivity, Seebeck coefficient, and effective mass. These quantities are paramount to the understanding of materials in many fields from thermoelectrics to electronics and photovoltaics. Transport properties can be calculated from a material’s band structure using the Boltzmann transport theory framework. We present here the largest computational database of electronic transport properties based on a large set of 48,000 materials originating from the Materials Project database. Our results were obtained through the interpolation approach developed in the BoltzTraP software, assuming a constant relaxation time. We present themore » workflow to generate the data, the data validation procedure, and the database structure. In conclusion, our aim is to target the large community of scientists developing materials selection strategies and performing studies involving transport properties.« less
Introduction of Shear-Based Transport Mechanisms in Radial-Axial Hybrid Hall Thruster Simulations
NASA Astrophysics Data System (ADS)
Scharfe, Michelle; Gascon, Nicolas; Scharfe, David; Cappelli, Mark; Fernandez, Eduardo
2007-11-01
Electron diffusion across magnetic field lines in Hall effect thrusters is experimentally observed to be higher than predicted by classical diffusion theory. Motivated by theoretical work for fusion applications and experimental measurements of Hall thrusters, numerical models for the electron transport are implemented in radial-axial hybrid simulations in order to compute the electron mobility using simulated plasma properties and fitting parameters. These models relate the cross-field transport to the imposed magnetic field distribution through shear suppression of turbulence-enhanced transport. While azimuthal waves likely enhance cross field mobility, axial shear in the electron fluid may reduce transport due to a reduction in turbulence amplitudes and modification of phase shifts between fluctuating properties. The sensitivity of the simulation results to the fitting parameters is evaluated and an examination is made of the transportability of these parameters to several Hall thruster devices.
An ab initio electronic transport database for inorganic materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ricci, Francesco; Chen, Wei; Aydemir, Umut
Electronic transport in materials is governed by a series of tensorial properties such as conductivity, Seebeck coefficient, and effective mass. These quantities are paramount to the understanding of materials in many fields from thermoelectrics to electronics and photovoltaics. Transport properties can be calculated from a material’s band structure using the Boltzmann transport theory framework. We present here the largest computational database of electronic transport properties based on a large set of 48,000 materials originating from the Materials Project database. Our results were obtained through the interpolation approach developed in the BoltzTraP software, assuming a constant relaxation time. We present themore » workflow to generate the data, the data validation procedure, and the database structure. In conclusion, our aim is to target the large community of scientists developing materials selection strategies and performing studies involving transport properties.« less
Ultrafast and nanoscale diodes
NASA Astrophysics Data System (ADS)
Zhang, Peng; Lau, Y. Y.
2016-10-01
Charge carrier transport across interfaces of dissimilar materials (including vacuum) is the essence of all electronic devices. Ultrafast charge transport across a nanometre length scale is of fundamental importance in the miniaturization of vacuum and plasma electronics. With the combination of recent advances in electronics, photonics and nanotechnology, these miniature devices may integrate with solid-state platforms, achieving superior performance. This paper reviews recent modelling efforts on quantum tunnelling, ultrafast electron emission and transport, and electrical contact resistance. Unsolved problems and challenges in these areas are addressed.
Organic Donor-Acceptor Complexes as Novel Organic Semiconductors.
Zhang, Jing; Xu, Wei; Sheng, Peng; Zhao, Guangyao; Zhu, Daoben
2017-07-18
Organic donor-acceptor (DA) complexes have attracted wide attention in recent decades, resulting in the rapid development of organic binary system electronics. The design and synthesis of organic DA complexes with a variety of component structures have mainly focused on metallicity (or even superconductivity), emission, or ferroelectricity studies. Further efforts have been made in high-performance electronic investigations. The chemical versatility of organic semiconductors provides DA complexes with a great number of possibilities for semiconducting applications. Organic DA complexes extend the semiconductor family and promote charge separation and transport in organic field-effect transistors (OFETs) and organic photovoltaics (OPVs). In OFETs, the organic complex serves as an active layer across extraordinary charge pathways, ensuring the efficient transport of induced charges. Although an increasing number of organic semiconductors have been reported to exhibit good p- or n-type properties (mobilities higher than 1 or even 10 cm 2 V -1 s -1 ), critical scientific challenges remain in utilizing the advantages of existing semiconductor materials for more and wider applications while maintaining less complicated synthetic or device fabrication processes. DA complex materials have revealed new insight: their unique molecular packing and structure-property relationships. The combination of donors and acceptors could offer practical advantages compared with their unimolecular materials. First, growing crystals of DA complexes with densely packed structures will reduce impurities and traps from the self-assembly process. Second, complexes based on the original structural components could form superior mixture stacking, which can facilitate charge transport depending on the driving force in the coassembly process. Third, the effective use of organic semiconductors can lead to tunable band structures, allowing the operation mode (p- or n-type) of the transistor to be systematically controlled by changing the components. Finally, theoretical calculations based on cocrystals with unique stacking could widen our understanding of structure-property relationships and in turn help us design high-performance semiconductors based on DA complexes. In this Account, we focus on discussing organic DA complexes as a new class of semiconducting materials, including their design, growth methods, packing modes, charge-transport properties, and structure-property relationships. We have also fabricated and investigated devices based on these binary crystals. This interdisciplinary work combines techniques from the fields of self-assembly, crystallography, condensed-matter physics, and theoretical chemistry. Researchers have designed new complex systems, including donor and acceptor compounds that self-assemble in feasible ways into highly ordered cocrystals. We demonstrate that using this crystallization method can easily realize ambipolar or unipolar transport. To further improve device performance, we propose several design strategies, such as using new kinds of donors and acceptors, modulating the energy alignment of the donor (ionization potential, IP) and acceptor (electron affinity, EA) components, and extending the π-conjugated backbones. In addition, we have found that when we use molecular "doping" (2:1 cocrystallization), the charge-transport nature of organic semiconductors can be switched from hole-transport-dominated to electron-transport-dominated. We expect that the formation of cocrystals through the complexation of organic donor and acceptor species will serve as a new strategy to develop semiconductors for organic electronics with superior performances over their corresponding individual components.
Numerical analysis of the Anderson localization
NASA Astrophysics Data System (ADS)
Markoš, P.
2006-10-01
The aim of this paper is to demonstrate, by simple numerical simulations, the main transport properties of disordered electron systems. These systems undergo the metal insulator transition when either Fermi energy crosses the mobility edge or the strength of the disorder increases over critical value. We study how disorder affects the energy spectrum and spatial distribution of electronic eigenstates in the diffusive and insulating regime, as well as in the critical region of the metal-insulator transition. Then, we introduce the transfer matrix and conductance, and we discuss how the quantum character of the electron propagation influences the transport properties of disordered samples. In the weakly disordered systems, the weak localization and anti-localization as well as the universal conductance fluctuation are numerically simulated and discussed. The localization in the one dimensional system is described and interpreted as a purely quantum effect. Statistical properties of the conductance in the critical and localized regimes are demonstrated. Special attention is given to the numerical study of the transport properties of the critical regime and to the numerical verification of the single parameter scaling theory of localization. Numerical data for the critical exponent in the orthogonal models in dimension 2 < d, ≤ 5 are compared with theoretical predictions. We argue that the discrepancy between the theory and numerical data is due to the absence of the self-averaging of transmission quantities. This complicates the analytical analysis of the disordered systems. Finally, theoretical methods of description of weakly disordered systems are explained and their possible generalization to the localized regime is discussed. Since we concentrate on the one-electron propagation at zero temperature, no effects of electron-electron interaction and incoherent scattering are discussed in the paper.
Electronic transport in bismuth selenide in the topological insulator regime
NASA Astrophysics Data System (ADS)
Kim, Dohun
The 3D topological insulators (TIs) have an insulating bulk but spin-momentum coupled metallic surface states stemming from band inversion due to strong spin-orbit interaction, whose existence is guaranteed by the topology of the band structure of the insulator. While the STI surface state has been studied spectroscopically by e.g. photoemission and scanned probes, transport experiments have failed to demonstrate clear signature of the STI due to high level of bulk conduction. In this thesis, I present experimental results on the transport properties of TI material Bi2Se3 in the absence of bulk conduction (TI regime), achieved by applying novel p-type doping methods. Field effect transistors consisting of thin (thickness: 5-17 nm) Bi2Se3 are fabricated by mechanical exfoliation of single crystals, and a combination of conventional dielectric (300 nm thick SiO2) and electrochemical or chemical gating methods are used to move the Fermi energy through the surface Dirac point inside bulk band gap, revealing the ambipolar gapless nature of transport in the Bi2Se3 surface states. The minimum conductivity of the topological surface state is understood within the self-consistent theory of Dirac electrons in the presence of charged impurities. The intrinsic finite-temperature resistivity of the topological surface state due to electron-acoustic phonon scattering is measured to be 60 times larger than that of graphene largely due to the smaller Fermi and sound velocities in Bi2Se 3, which will have implications for topological electronic devices operating at room temperature. Along with semi-classical Boltzmann transport, I also discuss 2D weak anti-localization (WAL) behavior of the topological surface states. By investigating gate-tuned WAL behavior in thin (5-17 nm) TI films, I show that WAL in the TI regime is extraordinarily sensitive to the hybridization induced quantum mechanical tunneling between top and bottom topological surfaces, and interplay of phase coherence time and inter-surface tunneling time results in a crossover from two decoupled (top and bottom) symplectic 2D metal surfaces to a coherently coupled single channel. Furthermore, a complete suppression of WAL is observed in the 5 nm thick Bi2Se 3 film which was found to occur when the hybridization gap becomes comparable to the disorder strength.
NASA Astrophysics Data System (ADS)
Shen, Xiaohan
With the rapid advances in the development of nanotechnology, nowadays, the sizes of elementary unit, i.e. transistor, of micro- and nanoelectronic devices are well deep into nanoscale. For the pursuit of cheaper and faster nanoscale electronic devices, the size of transistors keeps scaling down. As the miniaturization of the nanoelectronic devices, the electrical resistivity increases dramatically, resulting rapid growth in the heat generation. The heat generation and limited thermal dissipation in nanoscale materials have become a critical problem in the development of the next generation nanoelectronic devices. Copper (Cu) is widely used conducting material in nanoelectronic devices, and the electron-phonon scattering is the dominant contributor to the resistivity in Cu nanowires at room temperature. Meanwhile, phonons are the main carriers of heat in insulators, intrinsic and lightly doped semiconductors. The thermal transport is an ensemble of phonon transport, which strongly depends on the phonon frequency. In addition, the phonon transport in nanoscale materials can behave fundamentally different than in bulk materials, because of the spatial confinement. However, the size effect on electron-phonon scattering and frequency dependent phonon transport in nanoscale materials remain largely unexplored, due to the lack of suitable experimental techniques. This thesis is mainly focusing on the study of carrier dynamics and acoustic phonon transport in nanoscale materials. The weak photothermal interaction in Cu makes thermoreflectance measurement difficult, we rather measured the reflectivity change of Cu induced by absorption variation. We have developed a method to separately measure the processes of electron-electron scattering and electron-phonon scattering in epitaxial Cu films by monitoring the transient reflectivity signal using the resonant probe with particular wavelengths. The enhancement on electron-phonon scattering in epitaxial Cu films with thickness less than 100 nm was observed. The longitudinal acoustic phonon transport in silicon (Si) nanorod with confined diameter and length was investigated. The guided phonon modes in Si nanorod with different frequencies and wave vectors were observed. The mean-free-path of the guided phonons in Si nanorod was found to be larger than the effective phonon mean-free-path in Si film, because of the limited phonon scattering channels in Si nanorod. The phonon density of states and dispersion relation strongly depend on the size and boundary conditions of nanorod. Our work demonstrates the possibility of modifying the phonon transport properties in nanoscale materials by designing the size and boundary conditions, hence the control of thermal conductivity. In addition, the periodicity effect of nanostructures on acoustic phonon transport was investigated in silicon dioxide (SiO2) nanorod arrays. The lattice modes and mechanical eigenmodes were observed, and the pitch effect on lattice modes was discussed. A narrowband acoustic phonon spectroscopic technique with tunable frequency and spectral width throughout GHz frequency range has been developed to investigate the frequency-dependent acoustic phonon transport in nanoscale materials. The quadratic frequency dependence of acoustic attenuation of SiO2 and indium tin oxide (ITO) thin films was observed, and the acoustic attenuation of ITO was found to be larger than SiO2. Moreover, the acoustic control on mechanical resonance of nanoscale materials using the narrowband acoustic phonon source was demonstrated in tungsten thin film.
NASA Astrophysics Data System (ADS)
Bao, Jian; Lau, Calvin; Kuley, Animesh; Lin, Zhihong; Fulton, Daniel; Tajima, Toshiki; Tri Alpha Energy, Inc. Team
2017-10-01
Collisional and turbulent transport in a field reversed configuration (FRC) is studied in global particle simulation by using GTC (gyrokinetic toroidal code). The global FRC geometry is incorporated in GTC by using a field-aligned mesh in cylindrical coordinates, which enables global simulation coupling core and scrape-off layer (SOL) across the separatrix. Furthermore, fully kinetic ions are implemented in GTC to treat magnetic-null point in FRC core. Both global simulation coupling core and SOL regions and independent SOL region simulation have been carried out to study turbulence. In this work, the ``logical sheath boundary condition'' is implemented to study parallel transport in the SOL. This method helps to relax time and spatial steps without resolving electron plasma frequency and Debye length, which enables turbulent transports simulation with sheath effects. We will study collisional and turbulent SOL parallel transport with mirror geometry and sheath boundary condition in C2-W divertor.
Fung, E-Dean; Adak, Olgun; Lovat, Giacomo; Scarabelli, Diego; Venkataraman, Latha
2017-02-08
We investigate light-induced conductance enhancement in single-molecule junctions via photon-assisted transport and hot-electron transport. Using 4,4'-bipyridine bound to Au electrodes as a prototypical single-molecule junction, we report a 20-40% enhancement in conductance under illumination with 980 nm wavelength radiation. We probe the effects of subtle changes in the transmission function on light-enhanced current and show that discrete variations in the binding geometry result in a 10% change in enhancement. Importantly, we prove theoretically that the steady-state behavior of photon-assisted transport and hot-electron transport is identical but that hot-electron transport is the dominant mechanism for optically induced conductance enhancement in single-molecule junctions when the wavelength used is absorbed by the electrodes and the hot-electron relaxation time is long. We confirm this experimentally by performing polarization-dependent conductance measurements of illuminated 4,4'-bipyridine junctions. Finally, we perform lock-in type measurements of optical current and conclude that currents due to laser-induced thermal expansion mask optical currents. This work provides a robust experimental framework for studying mechanisms of light-enhanced transport in single-molecule junctions and offers tools for tuning the performance of organic optoelectronic devices by analyzing detailed transport properties of the molecules involved.
Influence of mitochondrial efficiency on beef lean color stability
USDA-ARS?s Scientific Manuscript database
Loss of electrons in the electron transport chain has been implicated as a source of variation in feed efficiency of meat producing animals. The present study was conducted to evaluate the effects of electron loss during electron transport on beef lean color stability. Beef carcasses (n = 91) were...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berdiyorov, G. R., E-mail: gberdiyorov@qf.org.qa; El-Mellouhi, F.; Madjet, M. E.
Density functional theory in combination with the nonequilibrium Green's function formalism is used to study the electronic transport properties of methylammonium lead-iodide perovskite CH{sub 3}NH{sub 3}PbI{sub 3}. Electronic transport in homogeneous ferroelectric and antiferroelectric phases, both of which do not contain any charged domain walls, is quite similar. The presence of charged domain wall drastically (by about an order of magnitude) enhances the electronic transport in the lateral direction. The increase of the transmission originates from the smaller variation of the electrostatic potential profile along the charged domain walls. This fact may provide a tool for tuning transport properties ofmore » such hybrid materials by manipulating molecular cations having dipole moment.« less
NASA Astrophysics Data System (ADS)
Groeneveld, Bart G. H. M.; Najafi, Mehrdad; Steensma, Bauke; Adjokatse, Sampson; Fang, Hong-Hua; Jahani, Fatemeh; Qiu, Li; ten Brink, Gert H.; Hummelen, Jan C.; Loi, Maria Antonietta
2017-07-01
We present efficient p-i-n type perovskite solar cells using NiOx as the hole transport layer and a fulleropyrrolidine with a triethylene glycol monoethyl ether side chain (PTEG-1) as electron transport layer. This electron transport layer leads to higher power conversion efficiencies compared to perovskite solar cells with PCBM (phenyl-C61-butyric acid methyl ester). The improved performance of PTEG-1 devices is attributed to the reduced trap-assisted recombination and improved charge extraction in these solar cells, as determined by light intensity dependence and photoluminescence measurements. Through optimization of the hole and electron transport layers, the power conversion efficiency of the NiOx/perovskite/PTEG-1 solar cells was increased up to 16.1%.
Soldering to a single atomic layer
NASA Astrophysics Data System (ADS)
Girit, ćaǧlar Ö.; Zettl, A.
2007-11-01
The standard technique to make electrical contact to nanostructures is electron beam lithography. This method has several drawbacks including complexity, cost, and sample contamination. We present a simple technique to cleanly solder submicron sized, Ohmic contacts to nanostructures. To demonstrate, we contact graphene, a single atomic layer of carbon, and investigate low- and high-bias electronic transport. We set lower bounds on the current carrying capacity of graphene. A simple model allows us to obtain device characteristics such as mobility, minimum conductance, and contact resistance.
Soldering to a single atomic layer
NASA Astrophysics Data System (ADS)
Girit, Caglar; Zettl, Alex
2008-03-01
The standard technique to make electrical contact to nanostructures is electron beam lithography. This method has several drawbacks including complexity, cost, and sample contamination. We present a simple technique to cleanly solder submicron sized, Ohmic contacts to nanostructures. To demonstrate, we contact graphene, a single atomic layer of carbon, and investigate low- and high-bias electronic transport. We set lower bounds on the current carrying capacity of graphene. A simple model allows us to obtain device characteristics such as mobility, minimum conductance, and contact resistance.
Phase-breaking effect on polaron transport in organic conjugated polymers
Meng, Ruixuan; Yin, Sun; Zheng, Yujun; ...
2017-06-15
Despite intense investigations and many accepted viewpoints on theory and experiment, the coherent and incoherent carrier transport in organic semiconductors remains an unsettled topic due to the strong electron-phonon coupling. Based on the tight-binding Su-Schrieffer-Heeger (SSH) model combined with a non-adiabatic dynamics method, we study the effect of phase-breaking on polaron transport by introducing a group of phase-breaking factors into π-electron wave-functions in organic conjugated polymers. Two approaches are applied: the modification of the transfer integral and the phase-breaking addition to the wave-function. Within the former, it is found that a single site phase-breaking can trap a polaron. However, withmore » a larger regular phase-breaking a polaron becomes more delocalized and lighter. Additionally, a group of disordered phase-breaking factors can make the polaron disperse in transport process. Within the latter approach, we show that the phase-breaking can render the delocalized state in valence band discrete and the state in the gap more localized. Consequently, the phase-breaking frequency and intensity can reduce the stability of a polaron. Furthermore, the phase-breaking in organic systems is the main factor that degrades the coherent transport and destroys the carrier stability.« less
Phase-breaking effect on polaron transport in organic conjugated polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Ruixuan; Yin, Sun; Zheng, Yujun
Despite intense investigations and many accepted viewpoints on theory and experiment, the coherent and incoherent carrier transport in organic semiconductors remains an unsettled topic due to the strong electron-phonon coupling. Based on the tight-binding Su-Schrieffer-Heeger (SSH) model combined with a non-adiabatic dynamics method, we study the effect of phase-breaking on polaron transport by introducing a group of phase-breaking factors into π-electron wave-functions in organic conjugated polymers. Two approaches are applied: the modification of the transfer integral and the phase-breaking addition to the wave-function. Within the former, it is found that a single site phase-breaking can trap a polaron. However, withmore » a larger regular phase-breaking a polaron becomes more delocalized and lighter. Additionally, a group of disordered phase-breaking factors can make the polaron disperse in transport process. Within the latter approach, we show that the phase-breaking can render the delocalized state in valence band discrete and the state in the gap more localized. Consequently, the phase-breaking frequency and intensity can reduce the stability of a polaron. Furthermore, the phase-breaking in organic systems is the main factor that degrades the coherent transport and destroys the carrier stability.« less
Exploring the Charge Transport in Conjugated Polymers.
Xu, Yong; Sun, Huabin; Li, Wenwu; Lin, Yen-Fu; Balestra, Francis; Ghibaudo, Gerard; Noh, Yong-Young
2017-11-01
Conjugated polymers came to an unprecedented epoch that the charge transport is limited only by small disorder within aggregated domains. Accurate evaluation of transport performance is thus vital to optimizing further molecule design. Yet, the routine method by means of the conventional field-effect transistors may not satisfy such a requirement. Here, it is shown that the extrinsic effects of Schottky barrier, access transport through semiconductor bulk, and concurrent ambipolar conduction seriously influence transport analysis. The planar transistors incorporating ohmic contacts free of access and ambipolar conduction afford an ideal access to charge transport. It is found, however, that only the planar transistors operating in low-field regime are reliable to explore the inherent transport properties due to the energetic disorder lowering by the lateral field induced by high drain voltage. This work opens up a robust approach to comprehend the delicate charge transport in conjugated polymers so as to develop high-performance semiconducting polymers for promising plastic electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Guidelines for Electronic Submission of Reflectorization Implementation Compliance Reports C Appendix C to Part 224 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION REFLECTORIZATION OF RAIL FREIGHT ROLLING STOCK Pt...
NASA Astrophysics Data System (ADS)
Hwang, Seok Won; Lee, Ho-Jun; Lee, Hae June
2014-12-01
Fluid models have been widely used and conducted successfully in high pressure plasma simulations where the drift-diffusion and the local-field approximation are valid. However, fluid models are not able to demonstrate non-local effects related to large electron energy relaxation mean free path in low pressure plasmas. To overcome this weakness, a hybrid model coupling electron Monte Carlo collision (EMCC) method with the fluid model is introduced to obtain precise electron energy distribution functions using pseudo-particles. Steady state simulation results by a one-dimensional hybrid model which includes EMCC method for the collisional reactions but uses drift-diffusion approximation for electron transport in a fluid model are compared with those of a conventional particle-in-cell (PIC) and a fluid model for low pressure capacitively coupled plasmas. At a wide range of pressure, the hybrid model agrees well with the PIC simulation with a reduced calculation time while the fluid model shows discrepancy in the results of the plasma density and the electron temperature.
NASA Astrophysics Data System (ADS)
Soldano, Caterina
The investigation of the electronic and magnetotransport properties at low temperature in individual MWNT with embedded clusters are here presented. The majority of studies of transport in MWNT reported in literature has been carried out on arc-discharge grown tubes, generally considered "clean" and defect-free. In this project, individual MWNT grown in alumina template are used; these tubes are highly disordered compared for example to arc-discharge ones, conditions that dramatically will impact the charge transport. As-fabricated devices are in general highly resistive. A large decrease in the value of the device resistance can be achieved through a controlled and fast high-bias sweep method (HBT) across the sample. Scanning electron microscopy analysis shows that this method induces a metal (platinum) decoration of the MWNT surface as a consequence of the large amount of Joule heating developed during the sweep. Temperature dependence study (5
NASA Astrophysics Data System (ADS)
Yang, Jia-Yue; Cheng, Long; Hu, Ming
2017-12-01
Intermetallic clathrates, one class of guest-host systems with perfectly crystalline structures, hold great potential to be the "phonon glass - electron crystal" thermoelectric materials. Previous studies focus on revealing the atomistic origins of blocked phononic transport, yet little attention is drawn to the enhanced electronic transport. In this work, we investigate the binary type-I M8Si46 (M = Sr, Ba, Tl, and Pb) clathrates and unravel how rattlers concurrently block phononic transport and enhance electronic transport from first-principles. By comparing the empty and filled clathrates, the lattice thermal conductivity is greatly reduced by a factor of 21 due to the decrease in phonon relaxation time for propagative phonons over 0-6 THz by 1.5 orders of magnitude. On the other hand, rattlers bridge charge gaps among cages by donating electrons and thus drastically increase electrical conductivity. The concurrent realization of blocked phononic transport and enhanced electronic transport boosts the figure-of-merit (ZT) of empty clathrate by 4 orders of magnitude. Furthermore, by manipulating metallic rattlers and n-type doping, the power factor is markedly improved and ZT can reach 0.55 at 800 K. These results provide a quantitative description of the guest-host interaction and coupling dynamics from first-principles. The proposed strategy of manipulating ratting atoms and in-situ doping offers important guidance to engineer clathrates with high thermoelectric performance.
49 CFR 239.303 - Electronic recordkeeping.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Electronic recordkeeping. 239.303 Section 239.303 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... limits and controls accessibility to such information retained in its database system and identifies...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santi, A.; Piacentini, G.; Zanichelli, M.
2014-05-12
A method for reconstructing the spatial profile of the electric field along the thickness of a generic bulk solid-state photodetector is proposed. Furthermore, the mobility and lifetime of both electrons and holes can be evaluated contextually. The method is based on a procedure of minimization built up from current transient profiles induced by laser pulses in a planar detector at different applied voltages. The procedure was tested in CdTe planar detectors for X- and Gamma rays. The devices were measured in a single-carrier transport configuration by impinging laser light on the sample cathode. This method could be suitable for manymore » other devices provided that they are made of materials with sufficiently high resistivity, i.e., with a sufficiently low density of intrinsic carriers.« less
Mn Impurity in Bulk GaAs Crystals
NASA Astrophysics Data System (ADS)
Pawłowski, M.; Piersa, M.; Wołoś, A.; Palczewska, M.; Strzelecka, G.; Hruban, A.; Gosk, J.; Kamińska, M.; Twardowski, A.
2006-11-01
Magnetic and electron transport properties of GaAs:Mn crystals grown by Czochralski method were studied. Electron spin resonance showed the presence of Mn acceptor A in two charge states: singly ionized A- in the form of Mn2+(d5), and neutral A0 in the form of Mn2+(d5) plus a bound hole (h). It was possible to determine the relative concentration of both types of centers from intensity of the corresponding electron spin resonance lines. Magnetization measured as a function of magnetic field (up to 6 T) in the temperature range of 2-300 K revealed overall paramagnetic behavior of the samples. Effective spin was found to be about 1.5 value, which was consistent with the presence of two types of Mn configurations. In most of the studied samples the dominance of Mn2+(d5)+h configuration was established and it increased after annealing of native donors. The total value of Mn content was obtained from fitting of magnetization curves with the use of parameters obtained from electron spin resonance. In electron transport, two mechanisms of conductivity were observed: valence band transport dominated above 70 K, and hopping conductivity within Mn impurity band at lower temperatures. From the analysis of the hopping conductivity and using the obtained values of the total Mn content, the effective radius of Mn acceptor in GaAs was estimated as a = 11 ± 3 Å.
Nondispersive Electron Transport in Alq3
2001-08-20
APPLIED PHYSICS LETTERS VOLUME 79, NUMBER 16 15 OCTOBER 2001Nondispersive electron transport in Alq3 George G. Malliaras,a) Yulong Shen, and David H...room temperature electron transport in amorphous films of tris ~8-hydroxyquinolinolato! aluminum ~III! ( Alq3 ) with the time-of-flight technique...We use the correlated disorder model to determine an effective dipole moment for Alq3 , and the corresponding meridional to facial isomeric ratio
Electron transport chains of lactic acid bacteria - walking on crutches is part of their lifestyle
Brooijmans, Rob; Hugenholtz, Jeroen
2009-01-01
A variety of lactic acid bacteria contain rudimentary electron transport chains that can be reconstituted by the addition of heme and menaquinone to the growth medium. These activated electron transport chains lead to higher biomass production and increased robustness, which is beneficial for industrial applications, but a major concern when dealing with pathogenic lactic acid bacteria. PMID:20948651
Yu, Xi; Lovrincic, Robert; Sepunaru, Lior; Li, Wenjie; Vilan, Ayelet; Pecht, Israel; Sheves, Mordechai; Cahen, David
2015-10-27
Surprisingly efficient solid-state electron transport has recently been demonstrated through "dry" proteins (with only structural, tightly bound H2O left), suggesting proteins as promising candidates for molecular (bio)electronics. Using inelastic electron tunneling spectroscopy (IETS), we explored electron-phonon interaction in metal/protein/metal junctions, to help understand solid-state electronic transport across the redox protein azurin. To that end an oriented azurin monolayer on Au is contacted by soft Au electrodes. Characteristic vibrational modes of amide and amino acid side groups as well as of the azurin-electrode contact were observed, revealing the azurin native conformation in the junction and the critical role of side groups in the charge transport. The lack of abrupt changes in the conductance and the line shape of IETS point to far off-resonance tunneling as the dominant transport mechanism across azurin, in line with previously reported (and herein confirmed) azurin junctions. The inelastic current and hence electron-phonon interaction appear to be rather weak and comparable in magnitude with the inelastic fraction of tunneling current via alkyl chains, which may reflect the known structural rigidity of azurin.
NASA Astrophysics Data System (ADS)
Stegmann, Thomas; Franco-Villafañe, John A.; Kuhl, Ulrich; Mortessagne, Fabrice; Seligman, Thomas H.
2017-01-01
Electron transport in small graphene nanoribbons is studied by microwave emulation experiments and tight-binding calculations. In particular, it is investigated under which conditions a transport gap can be observed. Our experiments provide evidence that armchair ribbons of width 3 m +2 with integer m are metallic and otherwise semiconducting, whereas zigzag ribbons are metallic independent of their width. The contact geometry, defining to which atoms at the ribbon edges the source and drain leads are attached, has strong effects on the transport. If leads are attached only to the inner atoms of zigzag edges, broad transport gaps can be observed in all armchair ribbons as well as in rhomboid-shaped zigzag ribbons. All experimental results agree qualitatively with tight-binding calculations using the nonequilibrium Green's function method.
Molecular electronics: some views on transport junctions and beyond.
Joachim, Christian; Ratner, Mark A
2005-06-21
The field of molecular electronics comprises a fundamental set of issues concerning the electronic response of molecules as parts of a mesoscopic structure and a technology-facing area of science. We will overview some important aspects of these subfields. The most advanced ideas in the field involve the use of molecules as individual logic or memory units and are broadly based on using the quantum state space of the molecule. Current work in molecular electronics usually addresses molecular junction transport, where the molecule acts as a barrier for incoming electrons: This is the fundamental Landauer idea of "conduction as scattering" generalized to molecular junction structures. Another point of view in terms of superexchange as a guiding mechanism for coherent electron transfer through the molecular bridge is discussed. Molecules generally exhibit relatively strong vibronic coupling. The last section of this overview focuses on vibronic effects, including inelastic electron tunneling spectroscopy, hysteresis in junction charge transport, and negative differential resistance in molecular transport junctions.