Sample records for electron transport problems

  1. Numerical solution of the electron transport equation

    NASA Astrophysics Data System (ADS)

    Woods, Mark

    The electron transport equation has been solved many times for a variety of reasons. The main difficulty in its numerical solution is that it is a very stiff boundary value problem. The most common numerical methods for solving boundary value problems are symmetric collocation methods and shooting methods. Both of these types of methods can only be applied to the electron transport equation if the boundary conditions are altered with unrealistic assumptions because they require too many points to be practical. Further, they result in oscillating and negative solutions, which are physically meaningless for the problem at hand. For these reasons, all numerical methods for this problem to date are a bit unusual because they were designed to try and avoid the problem of extreme stiffness. This dissertation shows that there is no need to introduce spurious boundary conditions or invent other numerical methods for the electron transport equation. Rather, there already exists methods for very stiff boundary value problems within the numerical analysis literature. We demonstrate one such method in which the fast and slow modes of the boundary value problem are essentially decoupled. This allows for an upwind finite difference method to be applied to each mode as is appropriate. This greatly reduces the number of points needed in the mesh, and we demonstrate how this eliminates the need to define new boundary conditions. This method is verified by showing that under certain restrictive assumptions, the electron transport equation has an exact solution that can be written as an integral. We show that the solution from the upwind method agrees with the quadrature evaluation of the exact solution. This serves to verify that the upwind method is properly solving the electron transport equation. Further, it is demonstrated that the output of the upwind method can be used to compute auroral light emissions.

  2. Quantum transport through disordered 1D wires: Conductance via localized and delocalized electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gopar, Víctor A.

    Coherent electronic transport through disordered systems, like quantum wires, is a topic of fundamental and practical interest. In particular, the exponential localization of electron wave functions-Anderson localization-due to the presence of disorder has been widely studied. In fact, Anderson localization, is not an phenomenon exclusive to electrons but it has been observed in microwave and acoustic experiments, photonic materials, cold atoms, etc. Nowadays, many properties of electronic transport of quantum wires have been successfully described within a scaling approach to Anderson localization. On the other hand, anomalous localization or delocalization is, in relation to the Anderson problem, a less studiedmore » phenomenon. Although one can find signatures of anomalous localization in very different systems in nature. In the problem of electronic transport, a source of delocalization may come from symmetries present in the system and particular disorder configurations, like the so-called Lévy-type disorder. We have developed a theoretical model to describe the statistical properties of transport when electron wave functions are delocalized. In particular, we show that only two physical parameters determine the complete conductance distribution.« less

  3. Ultrafast and nanoscale diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Lau, Y. Y.

    2016-10-01

    Charge carrier transport across interfaces of dissimilar materials (including vacuum) is the essence of all electronic devices. Ultrafast charge transport across a nanometre length scale is of fundamental importance in the miniaturization of vacuum and plasma electronics. With the combination of recent advances in electronics, photonics and nanotechnology, these miniature devices may integrate with solid-state platforms, achieving superior performance. This paper reviews recent modelling efforts on quantum tunnelling, ultrafast electron emission and transport, and electrical contact resistance. Unsolved problems and challenges in these areas are addressed.

  4. Numerical Solution of the Electron Transport Equation in the Upper Atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, Mark Christopher; Holmes, Mark; Sailor, William C

    A new approach for solving the electron transport equation in the upper atmosphere is derived. The problem is a very stiff boundary value problem, and to obtain an accurate numerical solution, matrix factorizations are used to decouple the fast and slow modes. A stable finite difference method is applied to each mode. This solver is applied to a simplifieed problem for which an exact solution exists using various versions of the boundary conditions that might arise in a natural auroral display. The numerical and exact solutions are found to agree with each other to at least two significant digits.

  5. Multiple-time-scale motion in molecularly linked nanoparticle arrays.

    PubMed

    George, Christopher; Szleifer, Igal; Ratner, Mark

    2013-01-22

    We explore the transport of electrons between electrodes that encase a two-dimensional array of metallic quantum dots linked by molecular bridges (such as α,ω alkaline dithiols). Because the molecules can move at finite temperatures, the entire transport structure comprising the quantum dots and the molecules is in dynamical motion while the charge is being transported. There are then several physical processes (physical excursions of molecules and quantum dots, electronic migration, ordinary vibrations), all of which influence electronic transport. Each can occur on a different time scale. It is therefore not appropriate to use standard approaches to this sort of electron transfer problem. Instead, we present a treatment in which three different theoretical approaches-kinetic Monte Carlo, classical molecular dynamics, and quantum transport-are all employed. In certain limits, some of the dynamical effects are unimportant. But in general, the transport seems to follow a sort of dynamic bond percolation picture, an approach originally introduced as formal models and later applied to polymer electrolytes. Different rate-determining steps occur in different limits. This approach offers a powerful scheme for dealing with multiple time scale transport problems, as will exist in many situations with several pathways through molecular arrays or even individual molecules that are dynamically disordered.

  6. The cytochrome b6f complex at the crossroad of photosynthetic electron transport pathways.

    PubMed

    Tikhonov, Alexander N

    2014-08-01

    Regulation of photosynthetic electron transport at the level of the cytochrome b6f complex provides efficient performance of the chloroplast electron transport chain (ETC). In this review, after brief overview of the structural organization of the chloroplast ETC, the consideration of the problem of electron transport control is focused on the plastoquinone (PQ) turnover and its interaction with the b6f complex. The data available show that the rates of plastoquinol (PQH2) formation in PSII and its diffusion to the b6f complex do not limit the overall rate of electron transfer between photosystem II (PSII) and photosystem I (PSI). Analysis of experimental and theoretical data demonstrates that the rate-limiting step in the intersystem chain of electron transport is determined by PQH2 oxidation at the Qo-site of the b6f complex, which is accompanied by the proton release into the thylakoid lumen. The acidification of the lumen causes deceleration of PQH2 oxidation, thus impeding the intersystem electron transport. Two other mechanisms of regulation of the intersystem electron transport have been considered: (i) "state transitions" associated with the light-induced redistribution of solar energy between PSI and PSII, and (ii) redistribution of electron fluxes between alternative pathways (noncyclic electron transport and cyclic electron flow around PSI). Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  7. Generalized Bloch theorem for complex periodic potentials: A powerful application to quantum transport calculations

    NASA Astrophysics Data System (ADS)

    Zhang, X.-G.; Varga, Kalman; Pantelides, Sokrates T.

    2007-07-01

    Band-theoretic methods with periodically repeated supercells have been a powerful approach for ground-state electronic structure calculations but have not so far been adapted for quantum transport problems with open boundary conditions. Here, we introduce a generalized Bloch theorem for complex periodic potentials and use a transfer-matrix formulation to cast the transmission probability in a scattering problem with open boundary conditions in terms of the complex wave vectors of a periodic system with absorbing layers, allowing a band technique for quantum transport calculations. The accuracy and utility of the method are demonstrated by the model problems of the transmission of an electron over a square barrier and the scattering of a phonon in an inhomogeneous nanowire. Application to the resistance of a twin boundary in nanocrystalline copper yields excellent agreement with recent experimental data.

  8. Effect of Energy Alignment, Electron Mobility, and Film Morphology of Perylene Diimide Based Polymers as Electron Transport Layer on the Performance of Perovskite Solar Cells.

    PubMed

    Guo, Qiang; Xu, Yingxue; Xiao, Bo; Zhang, Bing; Zhou, Erjun; Wang, Fuzhi; Bai, Yiming; Hayat, Tasawar; Alsaedi, Ahmed; Tan, Zhan'ao

    2017-03-29

    For organic-inorganic perovskite solar cells (PerSCs), the electron transport layer (ETL) plays a crucial role in efficient electron extraction and transport for high performance PerSCs. Fullerene and its derivatives are commonly used as ETL for p-i-n structured PerSCs. However, these spherical small molecules are easy to aggregate with high annealing temperature and thus induce morphology stability problems. N-type conjugated polymers are promising candidates to overcome these problems due to the tunable energy levels, controllable aggregation behaviors, and good film formation abilities. Herein, a series of perylene diimide (PDI) based polymers (PX-PDIs), which contain different copolymeried units (X), including vinylene (V), thiophene (T), selenophene (Se), dibenzosilole (DBS), and cyclopentadithiophene (CPDT), are introduced as ETL for p-i-n structured PerSCs. The effect of energy alignment, electron mobility, and film morphology of these ETLs on the photovoltaic performance of the PerSCs are fully investigated. Among the PX-PDIs, PV-PDI demonstrates the deeper LUMO energy level, the highly delocalized LUMO electron density, and a better planar structure, making it the best electron transport material for PerSCs. The planar heterojunction PerSC with PV-PDI as ETL achieves a power conversion efficiency (PCE) of 10.14%, among the best values for non-fullerene based PerSCs.

  9. Recent progress in understanding electron thermal transport in NSTX

    DOE PAGES

    Ren, Y.; Belova, E.; Gorelenkov, N.; ...

    2017-03-10

    The anomalous level of electron thermal transport inferred in magnetically confined configurations is one of the most challenging problems for the ultimate realization of fusion power using toroidal devices: tokamaks, spherical tori and stellarators. It is generally believed that plasma instabilities driven by the abundant free energy in fusion plasmas are responsible for the electron thermal transport. The National Spherical Torus eXperiment (NSTX) (Ono et al 2000 Nucl. Fusion 40 557) provides a unique laboratory for studying plasma instabilities and their relation to electron thermal transport due to its low toroidal field, high plasma beta, low aspect ratio and largemore » ExB flow shear. Recent findings on NSTX have shown that multiple instabilities are required to explain observed electron thermal transport, given the wide range of equilibrium parameters due to different operational scenarios and radial regions in fusion plasmas. Here we review the recent progresses in understanding anomalous electron thermal transport in NSTX and focus on mechanisms that could drive electron thermal transport in the core region. The synergy between experiment and theoretical/ numerical modeling is essential to achieving these progresses. The plans for newly commissioned NSTX-Upgrade will also be discussed.« less

  10. Multilevel acceleration of scattering-source iterations with application to electron transport

    DOE PAGES

    Drumm, Clif; Fan, Wesley

    2017-08-18

    Acceleration/preconditioning strategies available in the SCEPTRE radiation transport code are described. A flexible transport synthetic acceleration (TSA) algorithm that uses a low-order discrete-ordinates (S N) or spherical-harmonics (P N) solve to accelerate convergence of a high-order S N source-iteration (SI) solve is described. Convergence of the low-order solves can be further accelerated by applying off-the-shelf incomplete-factorization or algebraic-multigrid methods. Also available is an algorithm that uses a generalized minimum residual (GMRES) iterative method rather than SI for convergence, using a parallel sweep-based solver to build up a Krylov subspace. TSA has been applied as a preconditioner to accelerate the convergencemore » of the GMRES iterations. The methods are applied to several problems involving electron transport and problems with artificial cross sections with large scattering ratios. These methods were compared and evaluated by considering material discontinuities and scattering anisotropy. Observed accelerations obtained are highly problem dependent, but speedup factors around 10 have been observed in typical applications.« less

  11. DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations

    NASA Astrophysics Data System (ADS)

    Sempau, Josep; Wilderman, Scott J.; Bielajew, Alex F.

    2000-08-01

    A new Monte Carlo (MC) algorithm, the `dose planning method' (DPM), and its associated computer program for simulating the transport of electrons and photons in radiotherapy class problems employing primary electron beams, is presented. DPM is intended to be a high-accuracy MC alternative to the current generation of treatment planning codes which rely on analytical algorithms based on an approximate solution of the photon/electron Boltzmann transport equation. For primary electron beams, DPM is capable of computing 3D dose distributions (in 1 mm3 voxels) which agree to within 1% in dose maximum with widely used and exhaustively benchmarked general-purpose public-domain MC codes in only a fraction of the CPU time. A representative problem, the simulation of 1 million 10 MeV electrons impinging upon a water phantom of 1283 voxels of 1 mm on a side, can be performed by DPM in roughly 3 min on a modern desktop workstation. DPM achieves this performance by employing transport mechanics and electron multiple scattering distribution functions which have been derived to permit long transport steps (of the order of 5 mm) which can cross heterogeneity boundaries. The underlying algorithm is a `mixed' class simulation scheme, with differential cross sections for hard inelastic collisions and bremsstrahlung events described in an approximate manner to simplify their sampling. The continuous energy loss approximation is employed for energy losses below some predefined thresholds, and photon transport (including Compton, photoelectric absorption and pair production) is simulated in an analogue manner. The δ-scattering method (Woodcock tracking) is adopted to minimize the computational costs of transporting photons across voxels.

  12. Atomistic mechanisms of rapid energy transport in light-harvesting molecules

    NASA Astrophysics Data System (ADS)

    Ohmura, Satoshi; Koga, Shiro; Akai, Ichiro; Shimojo, Fuyuki; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2011-03-01

    Synthetic supermolecules such as π-conjugated light-harvesting dendrimers efficiently harvest energy from sunlight, which is of significant importance for the global energy problem. Key to their success is rapid transport of electronic excitation energy from peripheral antennas to photochemical reaction cores, the atomistic mechanisms of which remains elusive. Here, quantum-mechanical molecular dynamics simulation incorporating nonadiabatic electronic transitions reveals the key molecular motion that significantly accelerates the energy transport based on the Dexter mechanism.

  13. Effect of Phase-Breaking Events on Electron Transport in Mesoscopic and Nanodevices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meunier, Vincent; Mintmire, John W; Thushari, Jayasekera

    2008-01-01

    Existing ballistic models for electron transport in mesoscopic and nanoscale systems break down as the size of the device becomes longer than the phase coherence length of electrons in the system. Krstic et al. experimentally observed that the current in single-wall carbon nanotube systems can be regarded as a combination of a coherent part and a noncoherent part. In this article, we discuss the use of Buettiker phase-breaking technique to address partially coherent electron transport, generalize that to a multichannel problem, and then study the effect of phase-breaking events on the electron transport in two-terminal graphene nanoribbon devices. We alsomore » investigate the difference between the pure-phase randomization and phase/momentum randomization boundary conditions. While momentum randomization adds an extra resistance caused by backward scattering, pure-phase randomization smooths the conductance oscillations because of interference.« less

  14. Model Comparison for Electron Thermal Transport

    NASA Astrophysics Data System (ADS)

    Moses, Gregory; Chenhall, Jeffrey; Cao, Duc; Delettrez, Jacques

    2015-11-01

    Four electron thermal transport models are compared for their ability to accurately and efficiently model non-local behavior in ICF simulations. Goncharov's transport model has accurately predicted shock timing in implosion simulations but is computationally slow and limited to 1D. The iSNB (implicit Schurtz Nicolai Busquet electron thermal transport method of Cao et al. uses multigroup diffusion to speed up the calculation. Chenhall has expanded upon the iSNB diffusion model to a higher order simplified P3 approximation and a Monte Carlo transport model, to bridge the gap between the iSNB and Goncharov models while maintaining computational efficiency. Comparisons of the above models for several test problems will be presented. This work was supported by Sandia National Laboratory - Albuquerque and the University of Rochester Laboratory for Laser Energetics.

  15. Delta-ray Production in MCNP 6.2.0

    NASA Astrophysics Data System (ADS)

    Anderson, C.; McKinney, G.; Tutt, J.; James, M.

    Secondary electrons in the form of delta-rays, also referred to as knock-on electrons, have been a feature of MCNP for electron and positron transport for over 20 years. While MCNP6 now includes transport for a suite of heavy-ions and charged particles from its integration with MCNPX, the production of delta-rays was still limited to electron and positron transport. In the newest release of MCNP6, version 6.2.0, delta-ray production has now been extended for all energetic charged particles. The basis of this production is the analytical formulation from Rossi and ICRU Report 37. This paper discusses the MCNP6 heavy charged-particle implementation and provides production results for several benchmark/test problems.

  16. Beam transport results on the multi-beam MABE accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, P.D.; Alexander, J.A.; Hasti, D.E.

    1985-10-01

    MABE is a multistage, electron beam linear accelerator. The accelerator has been operated in single beam (60 kA, 7 Mev) and multiple beam configurations. This paper deals with the multiple beam configuration in which typically nine approx. = 25 kA injected beams are transported through three accelerating gaps. Experimental results from the machine are discussed, including problems encountered and proposed solutions to those problems.

  17. Electronic thermal transport in strongly correlated multilayered nanostructures

    NASA Astrophysics Data System (ADS)

    Freericks, J. K.; Zlatić, V.; Shvaika, A. M.

    2007-01-01

    The formalism for a linear-response many-body treatment of the electronic contributions to thermal transport is developed for multilayered nanostructures. By properly determining the local heat-current operator, it is possible to show that the Jonson-Mahan theorem for the bulk can be extended to inhomogeneous problems, so the various thermal-transport coefficient integrands are related by powers of frequency (including all effects of vertex corrections when appropriate). We illustrate how to use this formalism by showing how it applies to measurements of the Peltier effect, the Seebeck effect, and the thermal conductance.

  18. Benchmark solution for the Spencer-Lewis equation of electron transport theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganapol, B.D.

    As integrated circuits become smaller, the shielding of these sensitive components against penetrating electrons becomes extremely critical. Monte Carlo methods have traditionally been the method of choice in shielding evaluations primarily because they can incorporate a wide variety of relevant physical processes. Recently, however, as a result of a more accurate numerical representation of the highly forward peaked scattering process, S/sub n/ methods for one-dimensional problems have been shown to be at least as cost-effective in comparison with Monte Carlo methods. With the development of these deterministic methods for electron transport, a need has arisen to assess the accuracy ofmore » proposed numerical algorithms and to ensure their proper coding. It is the purpose of this presentation to develop a benchmark to the Spencer-Lewis equation describing the transport of energetic electrons in solids. The solution will take advantage of the correspondence between the Spencer-Lewis equation and the transport equation describing one-group time-dependent neutron transport.« less

  19. Delta-ray Production in MCNP 6.2.0

    DOE PAGES

    Anderson, Casey Alan; McKinney, Gregg Walter; Tutt, James Robert; ...

    2017-10-26

    Secondary electrons in the form of delta-rays, also referred to as knock-on electrons, have been a feature of MCNP for electron and positron transport for over 20 years. While MCNP6 now includes transport for a suite of heavy-ions and charged particles from its integration with MCNPX, the production of delta-rays was still limited to electron and positron transport. In the newest release of MCNP6, version 6.2.0, delta-ray production has now been extended for all energetic charged particles. The basis of this production is the analytical formulation from Rossi and ICRU Report 37. As a result, this paper discusses the MCNP6more » heavy charged-particle implementation and provides production results for several benchmark/test problems.« less

  20. Measurement of brightness temperature of two-dimensional electron gas in channel of a high electron mobility transistor at ultralow dissipation power

    NASA Astrophysics Data System (ADS)

    Korolev, A. M.; Shulga, V. M.; Turutanov, O. G.; Shnyrkov, V. I.

    2016-07-01

    A technically simple and physically clear method is suggested for direct measurement of the brightness temperature of two-dimensional electron gas (2DEG) in the channel of a high electron mobility transistor (HEMT). The usage of the method was demonstrated with the pseudomorphic HEMT as a specimen. The optimal HEMT dc regime, from the point of view of the "back action" problem, was found to belong to the unsaturated area of the static characteristics possibly corresponding to the ballistic electron transport mode. The proposed method is believed to be a convenient tool to explore the ballistic transport, electron diffusion, 2DEG properties and other electrophysical processes in heterostructures.

  1. Modeling quantum cascade lasers: Coupled electron and phonon transport far from equilibrium and across disparate spatial scales

    DOE PAGES

    Shi, Y. B.; Mei, S.; Jonasson, O.; ...

    2016-12-28

    Quantum cascade lasers (QCLs) are high-power coherent light sources in the midinfrared and terahertz parts of the electromagnetic spectrum. They are devices in which the electronic and lattice systems are far from equilibrium, strongly coupled to one another, and the problem bridges disparate spatial scales. Here, we present our ongoing work on the multiphysics and multiscale simulation of far-from-equilibrium transport of charge and heat in midinfrared QCLs.

  2. MCNP/X TRANSPORT IN THE TABULAR REGIME

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HUGHES, H. GRADY

    2007-01-08

    The authors review the transport capabilities of the MCNP and MCNPX Monte Carlo codes in the energy regimes in which tabular transport data are available. Giving special attention to neutron tables, they emphasize the measures taken to improve the treatment of a variety of difficult aspects of the transport problem, including unresolved resonances, thermal issues, and the availability of suitable cross sections sets. They also briefly touch on the current situation in regard to photon, electron, and proton transport tables.

  3. Electron transport in graphene/graphene side-contact junction by plane-wave multiple-scattering method

    DOE PAGES

    Li, Xiang-Guo; Chu, Iek-Heng; Zhang, X. -G.; ...

    2015-05-28

    Electron transport in graphene is along the sheet but junction devices are often made by stacking different sheets together in a “side-contact” geometry which causes the current to flow perpendicular to the sheets within the device. Such geometry presents a challenge to first-principles transport methods. We solve this problem by implementing a plane-wave-based multiple-scattering theory for electron transport. In this study, this implementation improves the computational efficiency over the existing plane-wave transport code, scales better for parallelization over large number of nodes, and does not require the current direction to be along a lattice axis. As a first application, wemore » calculate the tunneling current through a side-contact graphene junction formed by two separate graphene sheets with the edges overlapping each other. We find that transport properties of this junction depend strongly on the AA or AB stacking within the overlapping region as well as the vacuum gap between two graphene sheets. Finally, such transport behaviors are explained in terms of carbon orbital orientation, hybridization, and delocalization as the geometry is varied.« less

  4. Electron Transport In Nanowires - An Engineer'S View

    NASA Astrophysics Data System (ADS)

    Nawrocki, W.

    In the paper technological problems connected to electron transport in mesoscopic- and nanostructures are considered. The electrical conductance of nanowires formed by metallic contacts in an experimental setup proposed by Costa-Kramer et al. The investigation has been performed in air at room temperature measuring the conductance between two vibrating metal wires with standard oscilloscope. Conductance quantization in units of G o = 2e /h = (12.9 kΩ)-1 up to five quanta of conductance has been observed for nanowires formed in many metals. The explanation of this universal phenomena is the formation of a nanometer-sized wire (nanowire) between macroscopic metallic contacts which induced, due to theory proposed by Landauer, the quantization of conductance. Thermal problems in nanowirese are also discussed in the paper.

  5. An environment-dependent semi-empirical tight binding model suitable for electron transport in bulk metals, metal alloys, metallic interfaces, and metallic nanostructures. I. Model and validation

    NASA Astrophysics Data System (ADS)

    Hegde, Ganesh; Povolotskyi, Michael; Kubis, Tillmann; Boykin, Timothy; Klimeck, Gerhard

    2014-03-01

    Semi-empirical Tight Binding (TB) is known to be a scalable and accurate atomistic representation for electron transport for realistically extended nano-scaled semiconductor devices that might contain millions of atoms. In this paper, an environment-aware and transferable TB model suitable for electronic structure and transport simulations in technologically relevant metals, metallic alloys, metal nanostructures, and metallic interface systems are described. Part I of this paper describes the development and validation of the new TB model. The new model incorporates intra-atomic diagonal and off-diagonal elements for implicit self-consistency and greater transferability across bonding environments. The dependence of the on-site energies on strain has been obtained by appealing to the Moments Theorem that links closed electron paths in the system to energy moments of angular momentum resolved local density of states obtained ab initio. The model matches self-consistent density functional theory electronic structure results for bulk face centered cubic metals with and without strain, metallic alloys, metallic interfaces, and metallic nanostructures with high accuracy and can be used in predictive electronic structure and transport problems in metallic systems at realistically extended length scales.

  6. Generation of Low-Energy High-Current Electron Beams in Plasma-Anode Electron Guns

    NASA Astrophysics Data System (ADS)

    Ozur, G. E.; Proskurovsky, D. I.

    2018-01-01

    This paper is a review of studies on the generation of low-energy high-current electron beams in electron guns with a plasma anode and an explosive-emission cathode. The problems related to the initiation of explosive electron emission under plasma and the formation and transport of high-current electron beams in plasma-filled systems are discussed consecutively. Considerable attention is given to the nonstationary effects that occur in the space charge layers of plasma. Emphasis is also placed on the problem of providing a uniform energy density distribution over the beam cross section, which is of critical importance in using electron beams of this type for surface treatment of materials. Examples of facilities based on low-energy high-current electron beam sources are presented and their applications in materials science and practice are discussed.

  7. Response Matrix Monte Carlo for electron transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballinger, C.T.; Nielsen, D.E. Jr.; Rathkopf, J.A.

    1990-11-01

    A Response Matrix Monte Carol (RMMC) method has been developed for solving electron transport problems. This method was born of the need to have a reliable, computationally efficient transport method for low energy electrons (below a few hundred keV) in all materials. Today, condensed history methods are used which reduce the computation time by modeling the combined effect of many collisions but fail at low energy because of the assumptions required to characterize the electron scattering. Analog Monte Carlo simulations are prohibitively expensive since electrons undergo coulombic scattering with little state change after a collision. The RMMC method attempts tomore » combine the accuracy of an analog Monte Carlo simulation with the speed of the condensed history methods. The combined effect of many collisions is modeled, like condensed history, except it is precalculated via an analog Monte Carol simulation. This avoids the scattering kernel assumptions associated with condensed history methods. Results show good agreement between the RMMC method and analog Monte Carlo. 11 refs., 7 figs., 1 tabs.« less

  8. Theoretical modeling of electronic transport in molecular devices

    NASA Astrophysics Data System (ADS)

    Piccinin, Simone

    In this thesis a novel approach for simulating electronic transport in nanoscale structures is introduced. We consider an open quantum system (the electrons of structure) accelerated by an external electromotive force and dissipating energy through inelastic scattering with a heat bath (phonons) acting on the electrons. This method can be regarded as a quantum-mechanical extension of the semi-classical Boltzmann transport equation. We use periodic boundary conditions and employ Density Functional Theory to recast the many-particle problem in an effective single-particle mean-field problem. By explicitly treating the dissipation in the electrodes, the behavior of the potential is an outcome of our method, at variance with the scattering approaches based on the Landauer formalism. We study the self-consistent steady-state solution, analyzing the out-of-equilibrium electron distribution, the electrical characteristics, the behavior of the self-consistent potential and the density of states of the system. We apply the method to the study of electronic transport in several molecular devices, consisting of small organic molecules or atomic wires sandwiched between gold surfaces. For gold wires we recover the experimental evidence that transport in short wires is ballistic, independent of the length of the wire and with conductance of one quantum. In benzene-1,4-dithiol we find that the delocalization of the frontier orbitals of the molecule is responsible for the high value of conductance and that, by inserting methylene groups to decouple the sulfur atoms from the carbon ring, the current is reduced, in agreement with the experimental measurements. We study the effect a geometrical distortion in a molecular device, namely the relative rotation of the carbon rings in a biphenyl-4,4'-dithiol molecule. We find that the reduced coupling between pi orbitals of the rings induced by the rotation leads to a reduction of the conductance and that this behavior is captured by a simple two level model. Finally the transport properties of alkanethiol monolayers are analyzed by means of the local density of states at the Fermi energy: we find an exponential dependence of the current on the length of the chain, in quantitative agreement with the corresponding experiments.

  9. An environment-dependent semi-empirical tight binding model suitable for electron transport in bulk metals, metal alloys, metallic interfaces, and metallic nanostructures. II. Application—Effect of quantum confinement and homogeneous strain on Cu conductance

    NASA Astrophysics Data System (ADS)

    Hegde, Ganesh; Povolotskyi, Michael; Kubis, Tillmann; Charles, James; Klimeck, Gerhard

    2014-03-01

    The Semi-Empirical tight binding model developed in Part I Hegde et al. [J. Appl. Phys. 115, 123703 (2014)] is applied to metal transport problems of current relevance in Part II. A systematic study of the effect of quantum confinement, transport orientation, and homogeneous strain on electronic transport properties of Cu is carried out. It is found that quantum confinement from bulk to nanowire boundary conditions leads to significant anisotropy in conductance of Cu along different transport orientations. Compressive homogeneous strain is found to reduce resistivity by increasing the density of conducting modes in Cu. The [110] transport orientation in Cu nanowires is found to be the most favorable for mitigating conductivity degradation since it shows least reduction in conductance with confinement and responds most favorably to compressive strain.

  10. Direct Observation of Virtual Electrode Formation Through a Novel Electrolyte-to-Electrode Transition

    NASA Astrophysics Data System (ADS)

    Siegel, David; El Gabaly, Farid; Bartelt, Norman; McCarty, Kevin

    2014-03-01

    Novel electrochemical solutions to problems in energy storage and transportation can drive renewable energy to become an economically viable alternative to fossil fuels. In many electrochemical systems, the behavior of a device can be fundamentally limited by the surface area of a triple phase boundary, the boundary region where a gas-phase species, electrode, and electrolyte coincide. When the electrode is an ionic insulator the triple phase boundary is typically a one-dimensional boundary with nanometer-scale thickness: ions cannot transport through the electrode, while electrons cannot be transported through the electrolyte. Here we present direct experimental measurements of a novel electrolyte-to-electrode transition with photoemission electron microscopy, and observe that the surface of an ionically conductive, electronically insulative solid oxide electrolyte undergoes a transition into a mixed electron-ion conductor in the vicinity of a metal electrode. Our direct experimental measurements allow us to characterize this system and address the mechanisms of ionic reactions and transport through comparisons with theoretical modeling to provide us with a physical picture of the processes involved. Our results provide insight into one of the mechanisms of ion transport in an electrochemical cell that may be generalizable to other systems.

  11. ITS version 5.0 : the integrated TIGER series of coupled electron/photon Monte Carlo transport codes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William

    ITS is a powerful and user-friendly software package permitting state of the art Monte Carlo solution of linear time-independent couple electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theoristsmore » alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 5.0, the latest version of ITS, contains (1) improvements to the ITS 3.0 continuous-energy codes, (2)multigroup codes with adjoint transport capabilities, and (3) parallel implementations of all ITS codes. Moreover the general user friendliness of the software has been enhanced through increased internal error checking and improved code portability.« less

  12. Modeling Electronic Quantum Transport with Machine Learning

    DOE PAGES

    Lopez Bezanilla, Alejandro; von Lilienfeld Toal, Otto A.

    2014-06-11

    We present a machine learning approach to solve electronic quantum transport equations of one-dimensional nanostructures. The transmission coefficients of disordered systems were computed to provide training and test data sets to the machine. The system’s representation encodes energetic as well as geometrical information to characterize similarities between disordered configurations, while the Euclidean norm is used as a measure of similarity. Errors for out-of-sample predictions systematically decrease with training set size, enabling the accurate and fast prediction of new transmission coefficients. The remarkable performance of our model to capture the complexity of interference phenomena lends further support to its viability inmore » dealing with transport problems of undulatory nature.« less

  13. Theory of electron-phonon-dislon interacting system—toward a quantized theory of dislocations

    NASA Astrophysics Data System (ADS)

    Li, Mingda; Tsurimaki, Yoichiro; Meng, Qingping; Andrejevic, Nina; Zhu, Yimei; Mahan, Gerald D.; Chen, Gang

    2018-02-01

    We provide a comprehensive theoretical framework to study how crystal dislocations influence the functional properties of materials, based on the idea of a quantized dislocation, namely a ‘dislon’. In contrast to previous work on dislons which focused on exotic phenomenology, here we focus on their theoretical structure and computational power. We first provide a pedagogical introduction that explains the necessity and benefits of taking the dislon approach and why the dislon Hamiltonian takes its current form. Then, we study the electron-dislocation and phonon-dislocation scattering problems using the dislon formalism. Both the effective electron and phonon theories are derived, from which the role of dislocations on electronic and phononic transport properties is computed. Compared with traditional dislocation scattering studies, which are intrinsically single-particle, low-order perturbation and classical quenched defect in nature, the dislon theory not only allows easy incorporation of quantum many-body effects such as electron correlation, electron-phonon interaction, and higher-order scattering events, but also allows proper consideration of the dislocation’s long-range strain field and dynamic aspects on equal footing for arbitrary types of straight-line dislocations. This means that instead of developing individual models for specific dislocation scattering problems, the dislon theory allows for the calculation of electronic structure and electrical transport, thermal transport, optical and superconducting properties, etc, under one unified theory. Furthermore, the dislon theory has another advantage over empirical models in that it requires no fitting parameters. The dislon theory could serve as a major computational tool to understand the role of dislocations on multiple materials’ functional properties at an unprecedented level of clarity, and may have wide applications in dislocated energy materials.

  14. A radially resolved kinetic model for nonlocal electron ripple diffusion losses in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Scott

    A relatively simple radially resolved kinetic model is applied to the ripple diffusion problem for electrons in tokamaks. The distribution function f(r,v) is defined on a two-dimensional grid, where r is the radial coordinate and v is the velocity coordinate. Particle transport in the radial direction is from ripple and banana diffusion and transport in the velocity direction is described by the Fokker-Planck equation. Particles and energy are replaced by source functions that are adjusted to maintain a constant central density and temperature. The relaxed profiles of f(r,v) show that the electron distribution function at the wall contains suprathermal electronsmore » that have diffused from the interior that enhance ripple transport. The transport at the periphery is therefore nonlocal. The energy replacement times from the computational model are near to the experimental replacement times for tokamak discharges in the compilation by Pfeiffer and Waltz [Nucl. Fusion 19, 51 (1979)].« less

  15. Breaking the barriers of all-polymer solar cells: Solving electron transporter and morphology problems

    NASA Astrophysics Data System (ADS)

    Gavvalapalli, Nagarjuna

    All-polymer solar cells (APSC) are a class of organic solar cells in which hole and electron transporting phases are made of conjugated polymers. Unlike polymer/fullerene solar cell, photoactive material of APSC can be designed to have hole and electron transporting polymers with complementary absorption range and proper frontier energy level offset. However, the highest reported PCE of APSC is 5 times less than that of polymer/fullerene solar cell. The low PCE of APSC is mainly due to: i) low charge separation efficiency; and ii) lack of optimal morphology to facilitate charge transfer and transport; and iii) lack of control over the exciton and charge transport in each phase. My research work is focused towards addressing these issues. The charge separation efficiency of APSC can be enhanced by designing novel electron transporting polymers with: i) broad absorption range; ii) high electron mobility; and iii) high dielectric constant. In addition to with the above parameters chemical and electronic structure of the repeating unit of conjugated polymer also plays a role in charge separation efficiency. So far only three classes of electron transporting polymers, CN substituted PPV, 2,1,3-benzothiadiazole derived polymers and rylene diimide derived polymers, are used in APSC. Thus to enhance the charge separation efficiency new classes of electron transporting polymers with the above characteristics need to be synthesized. I have developed a new straightforward synthetic strategy to rapidly generate new classes of electron transporting polymers with different chemical and electronic structure, broad absorption range, and high electron mobility from readily available electron deficient monomers. In APSCs due to low entropy of mixing, polymers tend to micro-phase segregate rather than forming the more useful nano-phase segregation. Optimizing the polymer blend morphology to obtain nano-phase segregation is specific to the system under study, time consuming, and not trivial. Thus to avoid micro-phase segregation, nanoparticles of hole and electron transporters are synthesized and blended. But the PCE of nanoparticle blends are far less than those of polymer blends. This is mainly due to the: i) lack of optimal assembly of nanoparticles to facilitate charge transfer and transport processes; and ii) lack of control over the exciton and charge transport properties within the nanoparticles. Polymer packing within the nanoparticle controls the optoelectronic and charge transport properties of the nanoparticle. In this work I have shown that the solvent used to synthesize nanoparticles plays a crucial role in determining the assembly of polymer chains inside the nanoparticle there by affecting its exciton and charge transport processes. To obtain the optimal morphology for better charge transfer and transport, we have also synthesized nanoparticles of different radius with surfactants of opposite charge. We propose that depending on the radius and/or Coulombic interactions these nanoparticles can be assembled into mineral structure-types that are useful for photovoltaic devices.

  16. Contour integral method for obtaining the self-energy matrices of electrodes in electron transport calculations

    NASA Astrophysics Data System (ADS)

    Iwase, Shigeru; Futamura, Yasunori; Imakura, Akira; Sakurai, Tetsuya; Tsukamoto, Shigeru; Ono, Tomoya

    2018-05-01

    We propose an efficient computational method for evaluating the self-energy matrices of electrodes to study ballistic electron transport properties in nanoscale systems. To reduce the high computational cost incurred in large systems, a contour integral eigensolver based on the Sakurai-Sugiura method combined with the shifted biconjugate gradient method is developed to solve an exponential-type eigenvalue problem for complex wave vectors. A remarkable feature of the proposed algorithm is that the numerical procedure is very similar to that of conventional band structure calculations. We implement the developed method in the framework of the real-space higher-order finite-difference scheme with nonlocal pseudopotentials. Numerical tests for a wide variety of materials validate the robustness, accuracy, and efficiency of the proposed method. As an illustration of the method, we present the electron transport property of the freestanding silicene with the line defect originating from the reversed buckled phases.

  17. A versatile nanotechnology to connect individual nano-objects for the fabrication of hybrid single-electron devices

    NASA Astrophysics Data System (ADS)

    Bernand-Mantel, A.; Bouzehouane, K.; Seneor, P.; Fusil, S.; Deranlot, C.; Brenac, A.; Notin, L.; Morel, R.; Petroff, F.; Fert, A.

    2010-11-01

    We report on the high yield connection of single nano-objects as small as a few nanometres in diameter to separately elaborated metallic electrodes, using a 'table-top' nanotechnology. Single-electron transport measurements validate that transport occurs through a single nano-object. The vertical geometry of the device natively allows an independent choice of materials for each electrode and the nano-object. In addition ferromagnetic materials can be used without encountering oxidation problems. The possibility of elaborating such hybrid nanodevices opens new routes for the democratization of spintronic studies in low dimensions.

  18. Influence of the electron-cation interaction on electron mobility in dye-sensitized ZnO and TiO2 nanocrystals: a study using ultrafast terahertz spectroscopy.

    PubMed

    Nemec, H; Rochford, J; Taratula, O; Galoppini, E; Kuzel, P; Polívka, T; Yartsev, A; Sundström, V

    2010-05-14

    Charge transport and recombination in nanostructured semiconductors are poorly understood key processes in dye-sensitized solar cells. We have employed time-resolved spectroscopies in the terahertz and visible spectral regions supplemented with Monte Carlo simulations to obtain unique information on these processes. Our results show that charge transport in the active solar cell material can be very different from that in nonsensitized semiconductors, due to strong electrostatic interaction between injected electrons and dye cations at the surface of the semiconductor nanoparticle. For ZnO, this leads to formation of an electron-cation complex which causes fast charge recombination and dramatically decreases the electron mobility even after the dissociation of the complex. Sensitized TiO2 does not suffer from this problem due to its high permittivity efficiently screening the charges.

  19. The electronic and transport properties of monolayer transition metal dichalcogenides: a complex band structure analysis

    NASA Astrophysics Data System (ADS)

    Szczesniak, Dominik

    Recently, monolayer transition metal dichalcogenides have attracted much attention due to their potential use in both nano- and opto-electronics. In such applications, the electronic and transport properties of group-VIB transition metal dichalcogenides (MX2 , where M=Mo, W; X=S, Se, Te) are particularly important. Herein, new insight into these properties is presented by studying the complex band structures (CBS's) of MX2 monolayers while accounting for spin-orbit coupling effects. By using the symmetry-based tight-binding model a nonlinear generalized eigenvalue problem for CBS's is obtained. An efficient method for solving such class of problems is presented and gives a complete set of physically relevant solutions. Next, these solutions are characterized and classified into propagating and evanescent states, where the latter states present not only monotonic but also oscillatory decay character. It is observed that some of the oscillatory evanescent states create characteristic complex loops at the direct band gaps, which describe the tunneling currents in the MX2 materials. The importance of CBS's and tunneling currents is demonstrated by the analysis of the quantum transport across MX2 monolayers within phase field matching theory. Present work has been prepared within the Qatar Energy and Environment Research Institute (QEERI) grand challenge ATHLOC project (Project No. QEERI- GC-3008).

  20. Decreased Charge Transport Barrier and Recombination of Organic Solar Cells by Constructing Interfacial Nanojunction with Annealing-Free ZnO and Al Layers.

    PubMed

    Liu, Chunyu; Zhang, Dezhong; Li, Zhiqi; Zhang, Xinyuan; Guo, Wenbin; Zhang, Liu; Ruan, Shengping; Long, Yongbing

    2017-07-05

    To overcome drawbacks of the electron transport layer, such as complex surface defects and unmatched energy levels, we successfully employed a smart semiconductor-metal interfacial nanojunciton in organic solar cells by evaporating an ultrathin Al interlayer onto annealing-free ZnO electron transport layer, resulting in a high fill factor of 73.68% and power conversion efficiency of 9.81%. The construction of ZnO-Al nanojunction could effectively fill the surface defects of ZnO and reduce its work function because of the electron transfer from Al to ZnO by Fermi level equilibrium. The filling of surface defects decreased the interfacial carrier recombination in midgap trap states. The reduced surface work function of ZnO-Al remodulated the interfacial characteristics between ZnO and [6,6]-phenyl C71-butyric acid methyl ester (PC 71 BM), decreasing or even eliminating the interfacial barrier against the electron transport, which is beneficial to improve the electron extraction capacity. The filled surface defects and reduced interfacial barrier were realistically observed by photoluminescence measurements of ZnO film and the performance of electron injection devices, respectively. This work provides a simple and effective method to simultaneously solve the problems of surface defects and unmatched energy level for the annealing-free ZnO or other metal oxide semiconductors, paving a way for the future popularization in photovoltaic devices.

  1. [Detection of toxic substances in microbial fuel cells].

    PubMed

    Wang, Jiefu; Niu, Hao; Wu, Wenguo

    2017-05-25

    Microbial fuel cells (MFCs) is a highly promising bioelectrochemical technology and uses microorganisms as catalyst to convert chemical energy directly to electrical energy. Microorganisms in the anodic chamber of MFC oxidize the substrate and generate electrons. The electrons are absorbed by the anode and transported through an external circuit to the cathode for corresponding reduction. The flow of electrons is measured as current. This current is a linear measure of the activity of microorganisms. If a toxic event occurs, microbial activity will change, most likely decrease. Hence, fewer electrons are transported and current decreases as well. In this way, a microbial fuel cell-based biosensor provides a direct measure to detect toxicity for samples. This paper introduces the detection of antibiotics, heavy metals, organic pollutants and acid in MFCs. The existing problems and future application of MFCs are also analyzed.

  2. ITS Version 6 : the integrated TIGER series of coupled electron/photon Monte Carlo transport codes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William

    2008-04-01

    ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of lineartime-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a methodmore » for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 6, the latest version of ITS, contains (1) improvements to the ITS 5.0 codes, and (2) conversion to Fortran 90. The general user friendliness of the software has been enhanced through memory allocation to reduce the need for users to modify and recompile the code.« less

  3. Response to “Comment on ‘Rethinking first-principles electron transport theories with projection operators: The problems caused by partitioning the basis set’” [J. Chem. Phys. 140, 177103 (2014)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reuter, Matthew G., E-mail: mgreuter@u.northwestern.edu; Harrison, Robert J.

    2014-05-07

    The thesis of Brandbyge's comment [J. Chem. Phys. 140, 177103 (2014)] is that our operator decoupling condition is immaterial to transport theories, and it appeals to discussions of nonorthogonal basis sets in transport calculations in its arguments. We maintain that the operator condition is to be preferred over the usual matrix conditions and subsequently detail problems in the existing approaches. From this operator perspective, we conclude that nonorthogonal projectors cannot be used and that the projectors must be selected to satisfy the operator decoupling condition. Because these conclusions pertain to operators, the choice of basis set is not germane.

  4. The EGS4 Code System: Solution of Gamma-ray and Electron Transport Problems

    DOE R&D Accomplishments Database

    Nelson, W. R.; Namito, Yoshihito

    1990-03-01

    In this paper we present an overview of the EGS4 Code System -- a general purpose package for the Monte Carlo simulation of the transport of electrons and photons. During the last 10-15 years EGS has been widely used to design accelerators and detectors for high-energy physics. More recently the code has been found to be of tremendous use in medical radiation physics and dosimetry. The problem-solving capabilities of EGS4 will be demonstrated by means of a variety of practical examples. To facilitate this review, we will take advantage of a new add-on package, called SHOWGRAF, to display particle trajectories in complicated geometries. These are shown as 2-D laser pictures in the written paper and as photographic slides of a 3-D high-resolution color monitor during the oral presentation. 11 refs., 15 figs.

  5. Importance biasing scheme implemented in the PRIZMA code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandiev, I.Z.; Malyshkin, G.N.

    1997-12-31

    PRIZMA code is intended for Monte Carlo calculations of linear radiation transport problems. The code has wide capabilities to describe geometry, sources, material composition, and to obtain parameters specified by user. There is a capability to calculate path of particle cascade (including neutrons, photons, electrons, positrons and heavy charged particles) taking into account possible transmutations. Importance biasing scheme was implemented to solve the problems which require calculation of functionals related to small probabilities (for example, problems of protection against radiation, problems of detection, etc.). The scheme enables to adapt trajectory building algorithm to problem peculiarities.

  6. Quantum Transmission Conditions for Diffusive Transport in Graphene with Steep Potentials

    NASA Astrophysics Data System (ADS)

    Barletti, Luigi; Negulescu, Claudia

    2018-05-01

    We present a formal derivation of a drift-diffusion model for stationary electron transport in graphene, in presence of sharp potential profiles, such as barriers and steps. Assuming the electric potential to have steep variations within a strip of vanishing width on a macroscopic scale, such strip is viewed as a quantum interface that couples the classical regions at its left and right sides. In the two classical regions, where the potential is assumed to be smooth, electron and hole transport is described in terms of semiclassical kinetic equations. The diffusive limit of the kinetic model is derived by means of a Hilbert expansion and a boundary layer analysis, and consists of drift-diffusion equations in the classical regions, coupled by quantum diffusive transmission conditions through the interface. The boundary layer analysis leads to the discussion of a four-fold Milne (half-space, half-range) transport problem.

  7. TRANSPORT EQUATION OF A PLASMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balescu, R.

    1960-10-01

    It is shown that the many-body problem in plasmas can be handled explicitly. An equation describing the collective effects of the problem is derived. For simplicity, a onecomponent gas is considered in a continuous neutralizing background. The tool for handling the problem is provided by the general theory of irreversible processes in gases. The equation derived describes the interaction of electrons which are"dressed" by a polarization cloud. The polarization cloud differs from the Debye cloud. (B.O.G.)

  8. Spin-orbit coupling, electron transport and pairing instabilities in two-dimensional square structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocharian, Armen N.; Fernando, Gayanath W.; Fang, Kun

    Rashba spin-orbit effects and electron correlations in the two-dimensional cylindrical lattices of square geometries are assessed using mesoscopic two-, three- and four-leg ladder structures. Here the electron transport properties are systematically calculated by including the spin-orbit coupling in tight binding and Hubbard models threaded by a magnetic flux. These results highlight important aspects of possible symmetry breaking mechanisms in square ladder geometries driven by the combined effect of a magnetic gauge field spin-orbit interaction and temperature. The observed persistent current, spin and charge polarizations in the presence of spin-orbit coupling are driven by separation of electron and hole charges andmore » opposite spins in real-space. The modeled spin-flip processes on the pairing mechanism induced by the spin-orbit coupling in assembled nanostructures (as arrays of clusters) engineered in various two-dimensional multi-leg structures provide an ideal playground for understanding spatial charge and spin density inhomogeneities leading to electron pairing and spontaneous phase separation instabilities in unconventional superconductors. Such studies also fall under the scope of current challenging problems in superconductivity and magnetism, topological insulators and spin dependent transport associated with numerous interfaces and heterostructures.« less

  9. Mass-Gathering Medical Care in Electronic Dance Music Festivals.

    PubMed

    FitzGibbon, Kathleen M; Nable, Jose V; Ayd, Benjamin; Lawner, Benjamin J; Comer, Angela C; Lichenstein, Richard; Levy, Matthew J; Seaman, Kevin G; Bussey, Ian

    2017-10-01

    Introduction Electronic dance music (EDM) festivals represent a unique subset of mass-gathering events with limited guidance through literature or legislation to guide mass-gathering medical care at these events. Hypothesis/Problem Electronic dance music festivals pose unique challenges with increased patient encounters and heightened patient acuity under-estimated by current validated casualty predication models. This was a retrospective review of three separate EDM festivals with analysis of patient encounters and patient transport rates. Data obtained were inserted into the predictive Arbon and Hartman models to determine estimated patient presentation rate and patient transport rates. The Arbon model under-predicted the number of patient encounters and the number of patient transports for all three festivals, while the Hartman model under-predicted the number of patient encounters at one festival and over-predicted the number of encounters at the other two festivals. The Hartman model over-predicted patient transport rates for two of the three festivals. Electronic dance music festivals often involve distinct challenges and current predictive models are inaccurate for planning these events. The formation of a cohesive incident action plan will assist in addressing these challenges and lead to the collection of more uniform data metrics. FitzGibbon KM , Nable JV , Ayd B , Lawner BJ , Comer AC , Lichenstein R , Levy MJ , Seaman KG , Bussey I . Mass-gathering medical care in electronic dance music festivals. Prehosp Disaster Med. 2017;32(5):563-567.

  10. Technology Projects for the Classroom [and] Teacher's Guide.

    ERIC Educational Resources Information Center

    Kaufman, Allan; Flowers, Jim

    This book presents 20 projects for technology education students. The emphasis is on problem solving and hands-on learning through projects dealing with a wide variety of technologies/industries, including the following: robotics, information storage and retrieval, communications, transportation, electronics, manufacturing, construction, materials…

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Amiya K.

    The goal of this grant has been to study the basic physics of various sources of anomalous transport in tokamaks. Anomalous transport in tokamaks continues to be one of the major problems in magnetic fusion research. As a tokamak is not a physics device by design, direct experimental observation and identification of the instabilities responsible for transport, as well as physics studies of the transport in tokamaks, have been difficult and of limited value. It is noted that direct experimental observation, identification and physics study of microinstabilities including ITG, ETG, and trapped electron/ion modes in tokamaks has been very difficultmore » and nearly impossible. The primary reasons are co-existence of many instabilities, their broadband fluctuation spectra, lack of flexibility for parameter scans and absence of good local diagnostics. This has motivated us to study the suspected tokamak instabilities and their transport consequences in a simpler, steady state Columbia Linear Machine (CLM) with collisionless plasma and the flexibility of wide parameter variations. Earlier work as part of this grant was focused on both ITG turbulence, widely believed to be a primary source of ion thermal transport in tokamaks, and the effects of isotope scaling on transport levels. Prior work from our research team has produced and definitively identified both the slab and toroidal branches of this instability and determined the physics criteria for their existence. All the experimentally observed linear physics corroborate well with theoretical predictions. However, one of the large areas of research dealt with turbulent transport results that indicate some significant differences between our experimental results and most theoretical predictions. Latter years of this proposal were focused on anomalous electron transport with a special focus on ETG. There are several advanced tokamak scenarios with internal transport barriers (ITB), when the ion transport is reduced to neoclassical values by combined mechanisms of ExB and diamagnetic flow shear suppression of the ion temperature gradient (ITG) instabilities. However, even when the ion transport is strongly suppressed, the electron transport remains highly anomalous. The most plausible physics scenario for the anomalous electron transport is based on electron temperature gradient (ETG) instabilities. This instability is an electron analog of and nearly isomorphic to the ITG instability, which we had studied before extensively. However, this isomorphism is broken nonlinearily. It is noted that as the typical ETG mode growth rates are larger (in contrast to ITG modes) than ExB shearing rates in usual tokamaks, the flow shear suppression of ETG modes is highly unlikely. This motivated a broader range of investigations of other physics scenarios of nonlinear saturation and transport scaling of ETG modes.« less

  12. Electromagnetic energy transport in nanoparticle chains via dark plasmon modes.

    PubMed

    Solis, David; Willingham, Britain; Nauert, Scott L; Slaughter, Liane S; Olson, Jana; Swanglap, Pattanawit; Paul, Aniruddha; Chang, Wei-Shun; Link, Stephan

    2012-03-14

    Using light to exchange information offers large bandwidths and high speeds, but the miniaturization of optical components is limited by diffraction. Converting light into electron waves in metals allows one to overcome this problem. However, metals are lossy at optical frequencies and large-area fabrication of nanometer-sized structures by conventional top-down methods can be cost-prohibitive. We show electromagnetic energy transport with gold nanoparticles that were assembled into close-packed linear chains. The small interparticle distances enabled strong electromagnetic coupling causing the formation of low-loss subradiant plasmons, which facilitated energy propagation over many micrometers. Electrodynamic calculations confirmed the dark nature of the propagating mode and showed that disorder in the nanoparticle arrangement enhances energy transport, demonstrating the viability of using bottom-up nanoparticle assemblies for ultracompact opto-electronic devices. © 2012 American Chemical Society

  13. An efficient solution to the decoherence enhanced trivial crossing problem in surface hopping

    NASA Astrophysics Data System (ADS)

    Bai, Xin; Qiu, Jing; Wang, Linjun

    2018-03-01

    We provide an in-depth investigation of the time interval convergence when both trivial crossing and decoherence corrections are applied to Tully's fewest switches surface hopping (FSSH) algorithm. Using one force-based and one energy-based decoherence strategies as examples, we show decoherence corrections intrinsically enhance the trivial crossing problem. We propose a restricted decoherence (RD) strategy and incorporate it into the self-consistent (SC) fewest switches surface hopping algorithm [L. Wang and O. V. Prezhdo, J. Phys. Chem. Lett. 5, 713 (2014)]. The resulting SC-FSSH-RD approach is applied to general Hamiltonians with different electronic couplings and electron-phonon couplings to mimic charge transport in tens to hundreds of molecules. In all cases, SC-FSSH-RD allows us to use a large time interval of 0.1 fs for convergence and the simulation time is reduced by over one order of magnitude. Both the band and hopping mechanisms of charge transport have been captured perfectly. SC-FSSH-RD makes surface hops in the adiabatic representation and can be implemented in both diabatic and locally diabatic representations for wave function propagation. SC-FSSH-RD can potentially describe general nonadiabatic dynamics of electrons and excitons in organics and other materials.

  14. Electron transport in solid targets and in the active mixture of a CO2 laser amplifier

    NASA Astrophysics Data System (ADS)

    Galkowski, A.

    The paper examines the use of the NIKE code for the Monte Carlo computation of the deposited energy profile and other characteristics of the absorption process of an electron beam in a solid target and the spatial distribution of primary ionization in the active mixture of a CO2 laser amplifier. The problem is considered in connection with the generation of intense electron beams and the acceleration of thin metal foils, as well as in connection with the electric discharge pumping of a CO2 laser amplifier.

  15. First-principles Study on the Charge Transport Mechanism of Lithium Sulfide (Li2 S) in Lithium-Sulfur Batteries.

    PubMed

    Kim, B S Do-Hoon; Lee, M S Byungju; Park, Kyu-Young; Kang, Kisuk

    2016-04-20

    The lithium-sulfur chemistry is regarded as a promising candidate for next-generation battery systems because of its high specific energy (1675 mA h g(-1) ). Although issues such as low cycle stability and power capability of the system remain to be addressed, extensive research has been performed experimentally to resolve these problems. Attaining a fundamental understanding of the reaction mechanism and its reaction product would further spur the development of lithium-sulfur batteries. Here, we investigated the charge transport mechanism of lithium sulfide (Li2 S), a discharge product of conventional lithium-sulfur batteries using first-principles calculations. Our calculations indicate that the major charge transport is governed by the lithium-ion vacancies among various possible charge carriers. Furthermore, the large bandgap and low concentration of electron polarons indicate that the electronic conduction negligibly contributes to the charge transport mechanism in Li2 S. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Final Technical Report [Scalable methods for electronic excitations and optical responses of nanostructures: mathematics to algorithms to observables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saad, Yousef

    2014-03-19

    The master project under which this work is funded had as its main objective to develop computational methods for modeling electronic excited-state and optical properties of various nanostructures. The specific goals of the computer science group were primarily to develop effective numerical algorithms in Density Functional Theory (DFT) and Time Dependent Density Functional Theory (TDDFT). There were essentially four distinct stated objectives. The first objective was to study and develop effective numerical algorithms for solving large eigenvalue problems such as those that arise in Density Functional Theory (DFT) methods. The second objective was to explore so-called linear scaling methods ormore » Methods that avoid diagonalization. The third was to develop effective approaches for Time-Dependent DFT (TDDFT). Our fourth and final objective was to examine effective solution strategies for other problems in electronic excitations, such as the GW/Bethe-Salpeter method, and quantum transport problems.« less

  17. Development and application of a 2-electron reduced density matrix approach to electron transport via molecular junctions

    NASA Astrophysics Data System (ADS)

    Hoy, Erik P.; Mazziotti, David A.; Seideman, Tamar

    2017-11-01

    Can an electronic device be constructed using only a single molecule? Since this question was first asked by Aviram and Ratner in the 1970s [Chem. Phys. Lett. 29, 277 (1974)], the field of molecular electronics has exploded with significant experimental advancements in the understanding of the charge transport properties of single molecule devices. Efforts to explain the results of these experiments and identify promising new candidate molecules for molecular devices have led to the development of numerous new theoretical methods including the current standard theoretical approach for studying single molecule charge transport, i.e., the non-equilibrium Green's function formalism (NEGF). By pairing this formalism with density functional theory (DFT), a wide variety of transport problems in molecular junctions have been successfully treated. For some systems though, the conductance and current-voltage curves predicted by common DFT functionals can be several orders of magnitude above experimental results. In addition, since density functional theory relies on approximations to the exact exchange-correlation functional, the predicted transport properties can show significant variation depending on the functional chosen. As a first step to addressing this issue, the authors have replaced density functional theory in the NEGF formalism with a 2-electron reduced density matrix (2-RDM) method, creating a new approach known as the NEGF-RDM method. 2-RDM methods provide a more accurate description of electron correlation compared to density functional theory, and they have lower computational scaling compared to wavefunction based methods of similar accuracy. Additionally, 2-RDM methods are capable of capturing static electron correlation which is untreatable by existing NEGF-DFT methods. When studying dithiol alkane chains and dithiol benzene in model junctions, the authors found that the NEGF-RDM predicts conductances and currents that are 1-2 orders of magnitude below those of B3LYP and M06 DFT functionals. This suggests that the NEGF-RDM method could be a viable alternative to NEGF-DFT for molecular junction calculations.

  18. A comparison of non-local electron transport models for laser-plasmas relevant to inertial confinement fusion

    DOE PAGES

    Sherlock, M.; Brodrick, J. P.; Ridgers, C. P.

    2017-08-08

    Here, we compare the reduced non-local electron transport model developed to Vlasov-Fokker-Planck simulations. Two new test cases are considered: the propagation of a heat wave through a high density region into a lower density gas, and a one-dimensional hohlraum ablation problem. We find that the reduced model reproduces the peak heat flux well in the ablation region but significantly over-predicts the coronal preheat. The suitability of the reduced model for computing non-local transport effects other than thermal conductivity is considered by comparing the computed distribution function to the Vlasov-Fokker-Planck distribution function. It is shown that even when the reduced modelmore » reproduces the correct heat flux, the distribution function is significantly different to the Vlasov-Fokker-Planck prediction. Two simple modifications are considered which improve agreement between models in the coronal region.« less

  19. Cytochromes and iron sulfur proteins in sulfur metabolism of phototrophic bacteria

    NASA Technical Reports Server (NTRS)

    Fischer, U.

    1985-01-01

    Dissimilatory sulfur metabolism in phototrophic sulfur bacteria provides the bacteria with electrons for photosynthetic electron transport chain and, with energy. Assimilatory sulfate reduction is necessary for the biosynthesis of sulfur-containing cell components. Sulfide, thiosulfate, and elemental sulfur are the sulfur compounds most commonly used by phototrophic bacteria as electron donors for anoxygenic photosynthesis. Cytochromes or other electron transfer proteins, like high-potential-iron-sulfur protein (HIPIP) function as electron acceptors or donors for most enzymatic steps during the oxidation pathways of sulfide or thiosulfate. Yet, heme- or siroheme-containing proteins themselves undergo enzymatic activities in sulfur metabolism. Sirohemes comprise a porphyrin-like prosthetic group of sulfate reductase. eenzymatic reactions involve electron transfer. Electron donors or acceptors are necessary for each reaction. Cytochromes and iron sulfur problems, are able to transfer electrons.

  20. Theory of electron–phonon–dislon interacting system—toward a quantized theory of dislocations

    DOE PAGES

    Li, Mingda; Tsurimaki, Yoichiro; Meng, Qingping; ...

    2018-02-05

    In this paper, we provide a comprehensive theoretical framework to study how crystal dislocations influence the functional properties of materials, based on the idea of a quantized dislocation, namely a 'dislon'. In contrast to previous work on dislons which focused on exotic phenomenology, here we focus on their theoretical structure and computational power. We first provide a pedagogical introduction that explains the necessity and benefits of taking the dislon approach and why the dislon Hamiltonian takes its current form. Then, we study the electron–dislocation and phonon–dislocation scattering problems using the dislon formalism. Both the effective electron and phonon theories aremore » derived, from which the role of dislocations on electronic and phononic transport properties is computed. Compared with traditional dislocation scattering studies, which are intrinsically single-particle, low-order perturbation and classical quenched defect in nature, the dislon theory not only allows easy incorporation of quantum many-body effects such as electron correlation, electron–phonon interaction, and higher-order scattering events, but also allows proper consideration of the dislocation's long-range strain field and dynamic aspects on equal footing for arbitrary types of straight-line dislocations. This means that instead of developing individual models for specific dislocation scattering problems, the dislon theory allows for the calculation of electronic structure and electrical transport, thermal transport, optical and superconducting properties, etc, under one unified theory. Furthermore, the dislon theory has another advantage over empirical models in that it requires no fitting parameters. The dislon theory could serve as a major computational tool to understand the role of dislocations on multiple materials' functional properties at an unprecedented level of clarity, and may have wide applications in dislocated energy materials.« less

  1. Theory of electron–phonon–dislon interacting system—toward a quantized theory of dislocations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mingda; Tsurimaki, Yoichiro; Meng, Qingping

    In this paper, we provide a comprehensive theoretical framework to study how crystal dislocations influence the functional properties of materials, based on the idea of a quantized dislocation, namely a 'dislon'. In contrast to previous work on dislons which focused on exotic phenomenology, here we focus on their theoretical structure and computational power. We first provide a pedagogical introduction that explains the necessity and benefits of taking the dislon approach and why the dislon Hamiltonian takes its current form. Then, we study the electron–dislocation and phonon–dislocation scattering problems using the dislon formalism. Both the effective electron and phonon theories aremore » derived, from which the role of dislocations on electronic and phononic transport properties is computed. Compared with traditional dislocation scattering studies, which are intrinsically single-particle, low-order perturbation and classical quenched defect in nature, the dislon theory not only allows easy incorporation of quantum many-body effects such as electron correlation, electron–phonon interaction, and higher-order scattering events, but also allows proper consideration of the dislocation's long-range strain field and dynamic aspects on equal footing for arbitrary types of straight-line dislocations. This means that instead of developing individual models for specific dislocation scattering problems, the dislon theory allows for the calculation of electronic structure and electrical transport, thermal transport, optical and superconducting properties, etc, under one unified theory. Furthermore, the dislon theory has another advantage over empirical models in that it requires no fitting parameters. The dislon theory could serve as a major computational tool to understand the role of dislocations on multiple materials' functional properties at an unprecedented level of clarity, and may have wide applications in dislocated energy materials.« less

  2. A Novel Conductive Mesoporous Layer with a Dynamic Two-Step Deposition Strategy Boosts Efficiency of Perovskite Solar Cells to 20.

    PubMed

    Sun, Haoxuan; Deng, Kaimo; Zhu, Yayun; Liao, Min; Xiong, Jie; Li, Yanrong; Li, Liang

    2018-05-22

    Lead halide perovskite solar cells (PSCs) with the high power conversion efficiency (PCE) typically use mesoporous metal oxide nanoparticles as the scaffold and electron-transport layers. However, the traditional mesoporous layer suffers from low electron conductivity and severe carrier recombination. Here, antimony-doped tin oxide nanorod arrays are proposed as novel transparent conductive mesoporous layers in PSCs. Such a mesoporous layer improves the electron transport as well as light utilization. To resolve the common problem of uneven growth of perovskite on rough surface, the dynamic two-step spin coating strategy is proposed to prepare highly smooth, dense, and crystallized perovskite films with micrometer-scale grains, largely reducing the carrier recombination ratio. The conductive mesoporous layer and high-quality perovskite film eventually render the PSC with a remarkable PCE of 20.1% with excellent reproducibility. These findings provide a new avenue to further design high-efficiency PSCs from the aspect of carrier transport and recombination. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Complex band structures of transition metal dichalcogenide monolayers with spin-orbit coupling effects

    NASA Astrophysics Data System (ADS)

    Szczęśniak, Dominik; Ennaoui, Ahmed; Ahzi, Saïd

    2016-09-01

    Recently, the transition metal dichalcogenides have attracted renewed attention due to the potential use of their low-dimensional forms in both nano- and opto-electronics. In such applications, the electronic and transport properties of monolayer transition metal dichalcogenides play a pivotal role. The present paper provides a new insight into these essential properties by studying the complex band structures of popular transition metal dichalcogenide monolayers (MX 2, where M  =  Mo, W; X  =  S, Se, Te) while including spin-orbit coupling effects. The conducted symmetry-based tight-binding calculations show that the analytical continuation from the real band structures to the complex momentum space leads to nonlinear generalized eigenvalue problems. Herein an efficient method for solving such a class of nonlinear problems is presented and yields a complete set of physically relevant eigenvalues. Solutions obtained by this method are characterized and classified into propagating and evanescent states, where the latter states manifest not only monotonic but also oscillatory decay character. It is observed that some of the oscillatory evanescent states create characteristic complex loops at the direct band gap of MX 2 monolayers, where electrons can directly tunnel between the band gap edges. To describe these tunneling currents, decay behavior of electronic states in the forbidden energy region is elucidated and their importance within the ballistic transport regime is briefly discussed.

  4. Efficient method for computing the electronic transport properties of a multiterminal system

    NASA Astrophysics Data System (ADS)

    Lima, Leandro R. F.; Dusko, Amintor; Lewenkopf, Caio

    2018-04-01

    We present a multiprobe recursive Green's function method to compute the transport properties of mesoscopic systems using the Landauer-Büttiker approach. By introducing an adaptive partition scheme, we map the multiprobe problem into the standard two-probe recursive Green's function method. We apply the method to compute the longitudinal and Hall resistances of a disordered graphene sample, a system of current interest. We show that the performance and accuracy of our method compares very well with other state-of-the-art schemes.

  5. Development and fabrication of a solar cell junction processing system

    NASA Technical Reports Server (NTRS)

    Bunker, S.

    1981-01-01

    A solar cell junction processing system was developed and fabricated. A pulsed electron beam for the four inch wafers is being assembled and tested, wafers were successfully pulsed, and solar cells fabricated. Assembly of the transport locks is completed. The transport was operated successfully but not with sufficient reproducibility. An experiment test facility to examine potential scaleup problems associated with the proposed ion implanter design was constructed and operated. Cells were implanted and found to have efficiency identical to the normal Spire implant process.

  6. Direct conversion of nuclear radiation energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miley, George H.

    1970-01-01

    This book presents a comprehensive study of methods for converting nuclear radiationi directly without resorting to a heat cycle. The concepts discussed primarily involve direct collection of charged particles released by radioisotopes and by nuclear and thermonuclear reactors. Areas considered include basic energy conversion, charged-particle transport theory, secondary-electron emission, and leakage currents and associated problems. Applications to both nuclear instrumentaion and power sources are discussed. Problems are also included as an aid to the reader or for classroom use.

  7. Design, Modeling and Simulations in the RACE Project: Preliminary study for the development of a transport line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maidana, C. O.; Hunt, A. W.; Idaho State University, Department of Physics, PO Box 8106, Pocatello, ID 83209

    2007-02-12

    As part of the Reactor Accelerator Coupling Experiment (RACE) a set of preliminary studies were conducted to design a transport beam line that could bring a 25 MeV electron beam from a Linear Accelerator to a neutron-producing target inside a subcritical system. Because of the relatively low energy beam, the beam size and a relatively long beam line (implicating a possible divergence problem) different parameters and models were studied before a final design could be submitted for assembly. This report shows the first results obtained from different simulations of the transport line optics and dynamics.

  8. Smoothing of Transport Plans with Fixed Marginals and Rigorous Semiclassical Limit of the Hohenberg-Kohn Functional

    NASA Astrophysics Data System (ADS)

    Cotar, Codina; Friesecke, Gero; Klüppelberg, Claudia

    2018-06-01

    We prove rigorously that the exact N-electron Hohenberg-Kohn density functional converges in the strongly interacting limit to the strictly correlated electrons (SCE) functional, and that the absolute value squared of the associated constrained search wavefunction tends weakly in the sense of probability measures to a minimizer of the multi-marginal optimal transport problem with Coulomb cost associated to the SCE functional. This extends our previous work for N = 2 ( Cotar etal. in Commun Pure Appl Math 66:548-599, 2013). The correct limit problem has been derived in the physics literature by Seidl (Phys Rev A 60 4387-4395, 1999) and Seidl, Gorigiorgi and Savin (Phys Rev A 75:042511 1-12, 2007); in these papers the lack of a rigorous proofwas pointed out.We also give amathematical counterexample to this type of result, by replacing the constraint of given one-body density—an infinite dimensional quadratic expression in the wavefunction—by an infinite-dimensional quadratic expression in the wavefunction and its gradient. Connections with the Lawrentiev phenomenon in the calculus of variations are indicated.

  9. Analytic solution of the Spencer-Lewis angular-spatial moments equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filippone, W.L.

    A closed-form solution for the angular-spatial moments of the Spencer-Lewis equation is presented that is valid for infinite homogeneous media. From the moments, the electron density distribution as a function of position and path length (energy) is reconstructed for several sample problems involving plane isotropic sources of electrons in aluminium. The results are in excellent agreement with those determined numerically using the streaming ray method. The primary use of the closed form solution will most likely be to generate accurate electron transport benchmark solutions. In principle, the electron density as a function of space, path length, and direction can bemore » determined for planar sources of arbitrary angular distribution.« less

  10. Statistical approach to tunneling time in attosecond experiments

    NASA Astrophysics Data System (ADS)

    Demir, Durmuş; Güner, Tuğrul

    2017-11-01

    Tunneling, transport of particles through classically forbidden regions, is a pure quantum phenomenon. It governs numerous phenomena ranging from single-molecule electronics to donor-acceptor transition reactions. The main problem is the absence of a universal method to compute tunneling time. This problem has been attacked in various ways in the literature. Here, in the present work, we show that a statistical approach to the problem, motivated by the imaginary nature of time in the forbidden regions, lead to a novel tunneling time formula which is real and subluminal (in contrast to various known time definitions implying superluminal tunneling). In addition to this, we show explicitly that the entropic time formula is in good agreement with the tunneling time measurements in laser-driven He ionization. Moreover, it sets an accurate range for long-range electron transfer reactions. The entropic time formula is general enough to extend to the photon and phonon tunneling phenomena.

  11. An abstract approach to evaporation models in rarefied gas dynamics

    NASA Astrophysics Data System (ADS)

    Greenberg, W.; van der Mee, C. V. M.

    1984-03-01

    Strong evaporation models involving 1D stationary problems with linear self-adjoint collision operators and solutions in abstract Hilbert spaces are investigated analytically. An efficient algorithm for locating the transition from existence to nonexistence of solutions is developed and applied to the 1D and 3D BGK model equations and the 3D BGK model in moment form, demonstrating the nonexistence of stationary evaporation states with supersonic drift velocities. Applications to similar models in electron and phonon transport, radiative transfer, and neutron transport are suggested.

  12. A model of recovering the parameters of fast nonlocal heat transport in magnetic fusion plasmas

    NASA Astrophysics Data System (ADS)

    Kukushkin, A. B.; Kulichenko, A. A.; Sdvizhenskii, P. A.; Sokolov, A. V.; Voloshinov, V. V.

    2017-12-01

    A model is elaborated for interpreting the initial stage of the fast nonlocal transport events, which exhibit immediate response, in the diffusion time scale, of the spatial profile of electron temperature to its local perturbation, while the net heat flux is directed opposite to ordinary diffusion (i.e. along the temperature gradient). We solve the inverse problem of recovering the kernel of the integral equation, which describes nonlocal (superdiffusive) transport of energy due to emission and absorption of electromagnetic (EM) waves with long free path and strong reflection from the vacuum vessel’s wall. To allow for the errors of experimental data, we use the method based on the regularized (in the framework of an ill-posed problem, using the parametric models) approximation of available experimental data. The model is applied to interpreting the data from stellarator LHD and tokamak TFTR. The EM wave transport is considered here in the single-group approximation, however the limitations of the physics model enable us to identify the spectral range of the EM waves which might be responsible for the observed phenomenon.

  13. NASA's Technical Handbook for Avoiding On-Orbit ESD Anomalies Due to Internal Charging Effects

    NASA Technical Reports Server (NTRS)

    Whittlesey, Albert; Garrett, Henry B.

    1996-01-01

    This paper describes NASA-HDBK-4002, "Avoiding Problems Caused by Spacecraft On-Orbit Internal Charging Effects". The handbook includes a description of internal charging and why it is of concern to spacecraft designers. It also suggests how to determine when a project needs to consider internal spacecraft charging, it contains an electron penetration depth chart, rationale for a critical electron flux criterion, a worst-case geosynchronous electron plasma spectrum, general design guidelines, quantitative design guidelines, and a typical materials characteristics list. Appendices include a listing of some environment codes, electron transport codes, a discussion of geostationary electron plasma environments, a brief description of electron beam and other materials tests, and transient susceptibility tests. The handbook will be in the web page, hftp://standards.nasa.gov. A prior document, NASA TP2361 "Design Guidelines for Assessing and controlling Spacecraft Charging Effects", 1984, is in use to describe mitigation techniques for the effects of surface charging of satellites in space plasma environments. HDBK-4002 is meant to complement 2361 and together, the pair of documents describe both cause and mitigation designs for problems caused by energetic space plasmas.

  14. A comparison of non-local electron transport models relevant to inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Sherlock, Mark; Brodrick, Jonathan; Ridgers, Christopher

    2017-10-01

    We compare the reduced non-local electron transport model developed by Schurtz et al. to Vlasov-Fokker-Planck simulations. Two new test cases are considered: the propagation of a heat wave through a high density region into a lower density gas, and a 1-dimensional hohlraum ablation problem. We find the reduced model reproduces the peak heat flux well in the ablation region but significantly over-predicts the coronal preheat. The suitability of the reduced model for computing non-local transport effects other than thermal conductivity is considered by comparing the computed distribution function to the Vlasov-Fokker-Planck distribution function. It is shown that even when the reduced model reproduces the correct heat flux, the distribution function is significantly different to the Vlasov-Fokker-Planck prediction. Two simple modifications are considered which improve agreement between models in the coronal region. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  15. A transportronic solution to the problem of interorbital transportation

    NASA Technical Reports Server (NTRS)

    Brown, William C.

    1992-01-01

    An all-electronic transportation system described by the term 'transportronics' is examined as a means of solving the current problem of the high cost of transporting material from low-Earth orbit (LEO) to geostationary orbit (GEO). In this transportation system, low cost electric energy at the surface of the Earth is efficiently converted into microwave power which is then efficiently formed into a narrow beam which is kept incident upon the orbital transfer vehicles (OTV's) by electronic tracking. The incident beam is efficiently captured and converted into DC power by a device which has a very high ratio of DC power output to its mass. Because the mass of the electric thruster is also low, the resulting acceleration is unprecedented for electric-propelled vehicles. However, the performance of the system in terms of transit times from LEO to GEO is penalized by the short time of contact between the beam and the vehicle in low-Earth orbits. This makes it necessary to place the Earth based transmitters and the vehicles in the equatorial plane thus introducing many geopolitical factors. Technically, however, such a system as described in the report may out-perform any other approach to transportation in the LEO to GEO regime. The report describes and analyzes all portions of the beamed microwave power transmission system in considerable detail. An economic analysis of the operating and capital costs is made with the aid of a reference system capable of placing about 130,000 kilograms of payload into GEO each year. More mature states of the system are then examined, to a level in which 60,000 metric tons per year could be placed into GEO.

  16. Ant colony algorithm implementation in electron and photon Monte Carlo transport: application to the commissioning of radiosurgery photon beams.

    PubMed

    García-Pareja, S; Galán, P; Manzano, F; Brualla, L; Lallena, A M

    2010-07-01

    In this work, the authors describe an approach which has been developed to drive the application of different variance-reduction techniques to the Monte Carlo simulation of photon and electron transport in clinical accelerators. The new approach considers the following techniques: Russian roulette, splitting, a modified version of the directional bremsstrahlung splitting, and the azimuthal particle redistribution. Their application is controlled by an ant colony algorithm based on an importance map. The procedure has been applied to radiosurgery beams. Specifically, the authors have calculated depth-dose profiles, off-axis ratios, and output factors, quantities usually considered in the commissioning of these beams. The agreement between Monte Carlo results and the corresponding measurements is within approximately 3%/0.3 mm for the central axis percentage depth dose and the dose profiles. The importance map generated in the calculation can be used to discuss simulation details in the different parts of the geometry in a simple way. The simulation CPU times are comparable to those needed within other approaches common in this field. The new approach is competitive with those previously used in this kind of problems (PSF generation or source models) and has some practical advantages that make it to be a good tool to simulate the radiation transport in problems where the quantities of interest are difficult to obtain because of low statistics.

  17. A model for the nonlocal transport and the associated distribution function deformation in magnetized laser-plasmas

    NASA Astrophysics Data System (ADS)

    Nicolaï, Ph.; Feugeas, J.-L.; Schurtz, G.

    2006-06-01

    We present a model of nonlocal transport for multidimensional radiation magneto hydrodynamic codes. In laser produced plasmas, it is now believed that the heat transfert can be strongly modified by the nonlocal nature of the electron conduction. Nevertheless other mechanisms as self generated magnetic fields may affect heat transport too. The model described in this work aims at extending the formula of G. Schurtz, Ph. Nicolaï and M. Busquet [1] to magnetized plasmas. A system of nonlocal equations is derived from kinetic equations with self-consistent electric and magnetic fields. These equations are analyzed and applied to a physical problem in order to demonstrate the main features of the model.

  18. Anomalous Temperature Dependence in Metal-Black Phosphorus Contact.

    PubMed

    Li, Xuefei; Grassi, Roberto; Li, Sichao; Li, Tiaoyang; Xiong, Xiong; Low, Tony; Wu, Yanqing

    2018-01-10

    Metal-semiconductor contact has been the performance limiting problem for electronic devices and also dictates the scaling potential for future generation devices based on novel channel materials. Two-dimensional semiconductors beyond graphene, particularly few layer black phosphorus, have attracted much attention due to their exceptional electronic properties such as anisotropy and high mobility. However, due to its ultrathin body nature, few layer black phosphorus-metal contact behaves differently than conventional Schottky barrier (SB) junctions, and the mechanisms of its carrier transport across such a barrier remain elusive. In this work, we examine the transport characteristic of metal-black phosphorus contact under varying temperature. We elucidated the origin of apparent negative SB heights extracted from classical thermionic emission model and also the phenomenon of metal-insulator transition observed in the current-temperature transistor characteristic. In essence, we found that the SB height can be modulated by the back-gate voltage, which beyond a certain critical point becomes so low that the injected carrier can no longer be described by the conventional thermionic emission theory. The transition from transport dominated by a Maxwell-Boltzmann distribution for the high energy tail states, to that of a Fermi distribution by low energy Fermi sea electrons, is the physical origin of the observed metal-insulator transition. We identified two distinctive tunneling limited transport regimes in the contact: vertical and longitudinal tunneling.

  19. Understanding electrical conduction in lithium ion batteries through multi-scale modeling

    NASA Astrophysics Data System (ADS)

    Pan, Jie

    Silicon (Si) has been considered as a promising negative electrode material for lithium ion batteries (LIBs) because of its high theoretical capacity, low discharge voltage, and low cost. However, the utilization of Si electrode has been hampered by problems such as slow ionic transport, large stress/strain generation, and unstable solid electrolyte interphase (SEI). These problems severely influence the performance and cycle life of Si electrodes. In general, ionic conduction determines the rate performance of the electrode, while electron leakage through the SEI causes electrolyte decomposition and, thus, causes capacity loss. The goal of this thesis research is to design Si electrodes with high current efficiency and durability through a fundamental understanding of the ionic and electronic conduction in Si and its SEI. Multi-scale physical and chemical processes occur in the electrode during charging and discharging. This thesis, thus, focuses on multi-scale modeling, including developing new methods, to help understand these coupled physical and chemical processes. For example, we developed a new method based on ab initio molecular dynamics to study the effects of stress/strain on Li ion transport in amorphous lithiated Si electrodes. This method not only quantitatively shows the effect of stress on ionic transport in amorphous materials, but also uncovers the underlying atomistic mechanisms. However, the origin of ionic conduction in the inorganic components in SEI is different from that in the amorphous Si electrode. To tackle this problem, we developed a model by separating the problem into two scales: 1) atomistic scale: defect physics and transport in individual SEI components with consideration of the environment, e.g., LiF in equilibrium with Si electrode; 2) mesoscopic scale: defect distribution near the heterogeneous interface based on a space charge model. In addition, to help design better artificial SEI, we further demonstrated a theoretical design of multicomponent SEIs by utilizing the synergetic effect found in the natural SEI. We show that the electrical conduction can be optimized by varying the grain size and volume fraction of two phases in the artificial multicomponent SEI.

  20. Monte Carlo Modeling of Non-Local Electron Conduction in High Energy Density Plasmas

    NASA Astrophysics Data System (ADS)

    Chenhall, Jeffrey John

    The implicit SNB (iSNB) non-local multigroup thermal electron conduction method of Schurtz et. al. [Phys. Plasmas 7, 4238 (2000)] and Cao et. al. [Phys. Plasmas 22, 082308 (2015)] is adapted into an electron thermal transport Monte Carlo (ETTMC) transport method to better model higher order angular and long mean free path non-local effects. The ETTMC model is used to simulate the electron thermal transport within inertial confinement fusion (ICF) type problems. The new model aims to improve upon the currently used iSNB, in particular by using finite particle ranges in comparison to the exponential solution of a diffusion method and by improved higher order angular modeling. The new method has been implemented in the 1D LILAC and 2D DRACO multiphysics production codes developed by the University of Rochester Laboratory for Laser Energetics. The ETTMC model is compared to iSNB for several direct drive ICF type simulations: Omega shot 60303 a shock timing experiment, Omega shot 59529 a shock timing experiment, Omega shot 68951 a cryogenic target implosion and a NIF polar direct drive phase plate design. Overall, the ETTMC method performs at least as well as the iSNB method and predicts lower preheating ahead of the shock fronts. This research was supported by University of Rochester Laboratory for Laser Energetics, Sandia National Laboratories and the University of Wisconsin-Madison Foundation.

  1. Relativistic theory of radiofrequency current drive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balescu, R.; Metens, T.

    1991-05-01

    A fully relativistic kinetic theory of rf current drive in a tokamak is developed for both the lower hybrid and the electron cyclotron mechanisms. The problem is treated as a generalization of the classical transport equations, in which the thermodynamic forces are modified by the addition of a rf-source term. In the limit of weak rf amplitude and neglecting toroidal effects (such as particle trapping), explicit analytical expressions are obtained for the rf-generated current, the dissipated power, and the current drive efficiency. These expressions are fully relativistic and are valid over the whole admissible range of frequencies and for allmore » electron temperatures. The relation between efficiency and parallel relativistic transport coefficients is exhibited. The most important relativistic effect is a dramatic broadening of the frequency range over which the rf-generated current is significantly different from zero.« less

  2. A Non Local Electron Heat Transport Model for Multi-Dimensional Fluid Codes

    NASA Astrophysics Data System (ADS)

    Schurtz, Guy

    2000-10-01

    Apparent inhibition of thermal heat flow is one of the most ancient problems in computational Inertial Fusion and flux-limited Spitzer-Harm conduction has been a mainstay in multi-dimensional hydrodynamic codes for more than 25 years. Theoretical investigation of the problem indicates that heat transport in laser produced plasmas has to be considered as a non local process. Various authors contributed to the non local theory and proposed convolution formulas designed for practical implementation in one-dimensional fluid codes. Though the theory, confirmed by kinetic calculations, actually predicts a reduced heat flux, it fails to explain the very small limiters required in two-dimensional simulations. Fokker-Planck simulations by Epperlein, Rickard and Bell [PRL 61, 2453 (1988)] demonstrated that non local effects could lead to a strong reduction of heat flow in two dimensions, even in situations where a one-dimensional analysis suggests that the heat flow is nearly classical. We developed at CEA/DAM a non local electron heat transport model suitable for implementation in our two-dimensional radiation hydrodynamic code FCI2. This model may be envisionned as the first step of an iterative solution of the Fokker-Planck equations; it takes the mathematical form of multigroup diffusion equations, the solution of which yields both the heat flux and the departure of the electron distribution function to the Maxwellian. Although direct implementation of the model is straightforward, formal solutions of it can be expressed in convolution form, exhibiting a three-dimensional tensor propagator. Reduction to one dimension retrieves the original formula of Luciani, Mora and Virmont [PRL 51, 1664 (1983)]. Intense magnetic fields may be generated by thermal effects in laser targets; these fields, as well as non local effects, will inhibit electron conduction. We present simulations where both effects are taken into account and shortly discuss the coupling strategy between them.

  3. Identifying the molecular functions of electron transport proteins using radial basis function networks and biochemical properties.

    PubMed

    Le, Nguyen-Quoc-Khanh; Nguyen, Trinh-Trung-Duong; Ou, Yu-Yen

    2017-05-01

    The electron transport proteins have an important role in storing and transferring electrons in cellular respiration, which is the most proficient process through which cells gather energy from consumed food. According to the molecular functions, the electron transport chain components could be formed with five complexes with several different electron carriers and functions. Therefore, identifying the molecular functions in the electron transport chain is vital for helping biologists understand the electron transport chain process and energy production in cells. This work includes two phases for discriminating electron transport proteins from transport proteins and classifying categories of five complexes in electron transport proteins. In the first phase, the performances from PSSM with AAIndex feature set were successful in identifying electron transport proteins in transport proteins with achieved sensitivity of 73.2%, specificity of 94.1%, and accuracy of 91.3%, with MCC of 0.64 for independent data set. With the second phase, our method can approach a precise model for identifying of five complexes with different molecular functions in electron transport proteins. The PSSM with AAIndex properties in five complexes achieved MCC of 0.51, 0.47, 0.42, 0.74, and 1.00 for independent data set, respectively. We suggest that our study could be a power model for determining new proteins that belongs into which molecular function of electron transport proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Enhanced Mixed Electronic-Ionic Conductors through Cation Ordering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, Allan J.; Morgan, Dane; Grey, Clare

    2014-08-31

    The performance of many energy conversion and storage devices depend on the properties of mixed ionic-electronic conducting (miec) materials. Mixed or ambipolar conductors simultaneously transport ions and electrons and provide the critical interface between chemical and electrical energy in devices such as fuel cells, ion transport membranes, and batteries. Enhancements in storage capacity, reversibility, power density and device lifetime all require new materials and a better understanding of the fundamentals of ambipolar conductivity and surface reactivity.The high temperature properties of the ordered perovksites AA’B 2O 5+x, where A = rare earth ion, Y and B = Ba, Sr were studied.more » The work was motivated by the high oxygen transport and surface exchange rates observed for members of this class of mixed ionic and electronic conductors. A combined experimental and computational approach, including structural, electrochemical, and transport characterization and modeling was used. The approach attacks the problem simultaneously at global (e.g., neutron diffraction and impedance spectroscopy), local (e.g., pair distribution function, nuclear magnetic resonance) and molecular (ab initio thermokinetic modeling) length scales. The objectives of the work were to understand how the cation and associated anion order lead to exceptional ionic and electronic transport properties and surface reactivity in AA’B2O5+x perovskites. A variety of compounds were studied by X-ray and neutron diffraction, measurements of thermodynamics and transport and theoretically. These included PrBaCo 2O 5+x and NdBaCo 2O 5+x, PrBaCo 2-xFexO 6- δ (x = 0, 0.5, 1.0, 1.5 and 2) and LnBaCoFeO 6- δ (Ln = La, Pr, Nd, Sm, Eu and Gd), Sr 3YCo 4O 10.5, YBaMn 2O 5+x. A 0.5A’ 0.5BO 3 (where A=Y, Sc, La, Ce, Pr, Nd, Pm, Sm; A’= Sr, Ba; and B= Fe, Co, Mn, Ni), Ba 2In 2O 5, and La 1 xSr xCoO 3-δ /(La 1-ySry) 2CoO 4±δ interfaces.« less

  5. Digital waterway construction based on inland electronic navigation chart

    NASA Astrophysics Data System (ADS)

    Wang, Xue; Pan, Junfeng; Zhu, Weiwei

    2015-12-01

    With advantages of large capacity, long distance, low energy consumption, low cost, less land occupation and light pollution, inland waterway transportation becomes one of the most important constituents of the comprehensive transportation system and comprehensive water resources utilization in China. As one of "three elements" of navigation, waterway is the important basis for the development of water transportation and plays a key supporting role in shipping economic. The paper discuss how to realize the informatization and digitization of waterway management based on constructing an integrated system of standard inland electronic navigation chart production, waterway maintenance, navigation mark remote sensing and control, ship dynamic management, and water level remote sensing and report, which can also be the foundation of the intelligent waterway construction. Digital waterway construction is an information project and also has a practical meaning for waterway. It can not only meet the growing high assurance and security requirements for waterway, but also play a significant advantage in improving transport efficiency, reducing costs, promoting energy conservation and so on. This study lays a solid foundation on realizing intelligent waterway and building a smooth, efficient, safe, green modern inland waterway system, and must be considered as an unavoidable problem for the coordinated development between "low carbon" transportation and social economic.

  6. Numerical benchmarking of a Coarse-Mesh Transport (COMET) Method for medical physics applications

    NASA Astrophysics Data System (ADS)

    Blackburn, Megan Satterfield

    2009-12-01

    Radiation therapy has become a very import method for treating cancer patients. Thus, it is extremely important to accurately determine the location of energy deposition during these treatments, maximizing dose to the tumor region and minimizing it to healthy tissue. A Coarse-Mesh Transport Method (COMET) has been developed at the Georgia Institute of Technology in the Computational Reactor and Medical Physics Group for use very successfully with neutron transport to analyze whole-core criticality. COMET works by decomposing a large, heterogeneous system into a set of smaller fixed source problems. For each unique local problem that exists, a solution is obtained that we call a response function. These response functions are pre-computed and stored in a library for future use. The overall solution to the global problem can then be found by a linear superposition of these local problems. This method has now been extended to the transport of photons and electrons for use in medical physics problems to determine energy deposition from radiation therapy treatments. The main goal of this work was to develop benchmarks for testing in order to evaluate the COMET code to determine its strengths and weaknesses for these medical physics applications. For response function calculations, legendre polynomial expansions are necessary for space, angle, polar angle, and azimuthal angle. An initial sensitivity study was done to determine the best orders for future testing. After the expansion orders were found, three simple benchmarks were tested: a water phantom, a simplified lung phantom, and a non-clinical slab phantom. Each of these benchmarks was decomposed into 1cm x 1cm and 0.5cm x 0.5cm coarse meshes. Three more clinically relevant problems were developed from patient CT scans. These benchmarks modeled a lung patient, a prostate patient, and a beam re-entry situation. As before, the problems were divided into 1cm x 1cm, 0.5cm x 0.5cm, and 0.25cm x 0.25cm coarse mesh cases. Multiple beam energies were also tested for each case. The COMET solutions for each case were compared to a reference solution obtained by pure Monte Carlo results from EGSnrc. When comparing the COMET results to the reference cases, a pattern of differences appeared in each phantom case. It was found that better results were obtained for lower energy incident photon beams as well as for larger mesh sizes. Possible changes may need to be made with the expansion orders used for energy and angle to better model high energy secondary electrons. Heterogeneity also did not pose a problem for the COMET methodology. Heterogeneous results were found in a comparable amount of time to the homogeneous water phantom. The COMET results were typically found in minutes to hours of computational time, whereas the reference cases typically required hundreds or thousands of hours. A second sensitivity study was also performed on a more stringent problem and with smaller coarse meshes. Previously, the same expansion order was used for each incident photon beam energy so better comparisons could be made. From this second study, it was found that it is optimal to have different expansion orders based on the incident beam energy. Recommendations for future work with this method include more testing on higher expansion orders or possible code modification to better handle secondary electrons. The method also needs to handle more clinically relevant beam descriptions with an energy and angular distribution associated with it.

  7. Numerical optimization of the ramp-down phase with the RAPTOR code

    NASA Astrophysics Data System (ADS)

    Teplukhina, Anna; Sauter, Olivier; Felici, Federico; The Tcv Team; The ASDEX-Upgrade Team; The Eurofusion Mst1 Team

    2017-10-01

    The ramp-down optimization goal in this work is defined as the fastest possible decrease of a plasma current while avoiding any disruptions caused by reaching physical or technical limits. Numerical simulations and preliminary experiments on TCV and AUG have shown that a fast decrease of plasma elongation and an adequate timing of the H-L transition during current ramp-down can help to avoid reaching high values of the plasma internal inductance. The RAPTOR code (F. Felici et al., 2012 PPCF 54; F. Felici, 2011 EPFL PhD thesis), developed for real-time plasma control, has been used for an optimization problem solving. Recently the transport model has been extended to include the ion temperature and electron density transport equations in addition to the electron temperature and current density transport equations, increasing the physical applications of the code. The gradient-based models for the transport coefficients (O. Sauter et al., 2014 PPCF 21; D. Kim et al., 2016 PPCF 58) have been implemented to RAPTOR and tested during this work. Simulations of the AUG and TCV entire plasma discharges will be presented. See the author list of S. Coda et al., Nucl. Fusion 57 2017 102011.

  8. HZETRN: Description of a free-space ion and nucleon transport and shielding computer program

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Badavi, Francis F.; Cucinotta, Francis A.; Shinn, Judy L.; Badhwar, Gautam D.; Silberberg, R.; Tsao, C. H.; Townsend, Lawrence W.; Tripathi, Ram K.

    1995-01-01

    The high-charge-and energy (HZE) transport computer program HZETRN is developed to address the problems of free-space radiation transport and shielding. The HZETRN program is intended specifically for the design engineer who is interested in obtaining fast and accurate dosimetric information for the design and construction of space modules and devices. The program is based on a one-dimensional space-marching formulation of the Boltzmann transport equation with a straight-ahead approximation. The effect of the long-range Coulomb force and electron interaction is treated as a continuous slowing-down process. Atomic (electronic) stopping power coefficients with energies above a few A MeV are calculated by using Bethe's theory including Bragg's rule, Ziegler's shell corrections, and effective charge. Nuclear absorption cross sections are obtained from fits to quantum calculations and total cross sections are obtained with a Ramsauer formalism. Nuclear fragmentation cross sections are calculated with a semiempirical abrasion-ablation fragmentation model. The relation of the final computer code to the Boltzmann equation is discussed in the context of simplifying assumptions. A detailed description of the flow of the computer code, input requirements, sample output, and compatibility requirements for non-VAX platforms are provided.

  9. Determination of domain wall chirality using in situ Lorentz transmission electron microscopy

    DOE PAGES

    Chess, Jordan J.; Montoya, Sergio A.; Fullerton, Eric E.; ...

    2017-02-23

    Controlling domain wall chirality is increasingly seen in non-centrosymmetric materials. Mapping chiral magnetic domains requires knowledge about all the vector components of the magnetization, which poses a problem for conventional Lorentz transmission electron microscopy (LTEM) that is only sensitive to magnetic fields perpendicular to the electron beams direction of travel. The standard approach in LTEM for determining the third component of the magnetization is to tilt the sample to some angle and record a second image. Furthermore, this presents a problem for any domain structures that are stabilized by an applied external magnetic field (e.g. skyrmions), because the standard LTEMmore » setup does not allow independent control of the angle of an applied magnetic field, and sample tilt angle. Here we show that applying a modified transport of intensity equation analysis to LTEM images collected during an applied field sweep, we can determine the domain wall chirality of labyrinth domains in a perpendicularly magnetized material, avoiding the need to tilt the sample.« less

  10. Determination of domain wall chirality using in situ Lorentz transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chess, Jordan J.; Montoya, Sergio A.; Fullerton, Eric E.

    Controlling domain wall chirality is increasingly seen in non-centrosymmetric materials. Mapping chiral magnetic domains requires knowledge about all the vector components of the magnetization, which poses a problem for conventional Lorentz transmission electron microscopy (LTEM) that is only sensitive to magnetic fields perpendicular to the electron beams direction of travel. The standard approach in LTEM for determining the third component of the magnetization is to tilt the sample to some angle and record a second image. Furthermore, this presents a problem for any domain structures that are stabilized by an applied external magnetic field (e.g. skyrmions), because the standard LTEMmore » setup does not allow independent control of the angle of an applied magnetic field, and sample tilt angle. Here we show that applying a modified transport of intensity equation analysis to LTEM images collected during an applied field sweep, we can determine the domain wall chirality of labyrinth domains in a perpendicularly magnetized material, avoiding the need to tilt the sample.« less

  11. Electronic transport in the quantum spin Hall state due to the presence of adatoms in graphene

    NASA Astrophysics Data System (ADS)

    Lima, Leandro; Lewenkopf, Caio

    Heavy adatoms, even at low concentrations, are predicted to turn a graphene sheet into a topological insulator with substantial gap. The adatoms mediate the spin-orbit coupling that is fundamental to the quantum spin Hall effect. The adatoms act as local spin-orbit scatterer inducing hopping processes between distant carbon atoms giving origin to transverse spin currents. Although there are effective models that describe spectral properties of such systems with great detail, quantitative theoretical work for the transport counterpart is still lacking. We developed a multiprobe recursive Green's function technique with spin resolution to analyze the transport properties for large geometries. We use an effective tight-binding Hamiltonian to describe the problem of adatoms randomly placed at the center of the honeycomb hexagons, which is the case for most transition metals. Our choice of current and voltage probes is favorable to experiments since it filters the contribution of only one spin orientation, leading to a quantized spin Hall conductance of e2 / h . We also discuss the electronic propagation in the system by imaging the local density of states and the electronic current densities. The authors acknowledge the Brazilian agencies CNPq, CAPES, FAPERJ and INCT de Nanoestruturas de Carbono for financial support.

  12. Superthermal Electron Energy Interchange in the Ionosphere-Plasmasphere System

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Glocer, A.; Liemohn, M. W.; Himwich, E. W.

    2013-01-01

    A self-consistent approach to superthermal electron (SE) transport along closed field lines in the inner magnetosphere is used to examine the concept of plasmaspheric transparency, magnetospheric trapping, and SE energy deposition to the thermal electrons. The dayside SE population is generated both by photoionization of the thermosphere and by secondary electron production from impact ionization when the photoelectrons collide with upper atmospheric neutral particles. It is shown that a self-consistent approach to this problem produces significant changes, in comparison with other approaches, in the SE energy exchange between the plasmasphere and the two magnetically conjugate ionospheres. In particular, plasmaspheric transparency can vary by a factor of two depending on the thermal plasma content along the field line and the illumination conditions of the two conjugate ionospheres. This variation in plasmaspheric transparency as a function of thermal plasma and ionospheric conditions increases with L-shell, as the field line gets longer and the equatorial pitch angle extent of the fly-through zone gets smaller. The inference drawn from these results is that such a self-consistent approach to SE transport and energy deposition should be included to ensure robustness in ionosphere-magnetosphere modeling networks.

  13. Reverse electron transport effects on NADH formation and metmyoglobin reduction.

    PubMed

    Belskie, K M; Van Buiten, C B; Ramanathan, R; Mancini, R A

    2015-07-01

    The objective was to determine if NADH generated via reverse electron flow in beef mitochondria can be used for electron transport-mediated reduction and metmyoglobin reductase pathways. Beef mitochondria were isolated from bovine hearts (n=5) and reacted with combinations of succinate, NAD, and mitochondrial inhibitors to measure oxygen consumption and NADH formation. Mitochondria and metmyoglobin were reacted with succinate, NAD, and mitochondrial inhibitors to measure electron transport-mediated metmyoglobin reduction and metmyoglobin reductase activity. Addition of succinate and NAD increased oxygen consumption, NADH formation, electron transport-mediated metmyoglobin reduction, and reductase activity (p<0.05). Addition of antimycin A prevented electron flow beyond complex III, therefore, decreasing oxygen consumption and electron transport-mediated metmyoglobin reduction. Addition of rotenone prevented reverse electron flow, increased oxygen consumption, increased electron transport-mediated metmyoglobin reduction, and decreased NADH formation. Succinate and NAD can generate NADH in bovine tissue postmortem via reverse electron flow and this NADH can be used by both electron transport-mediated and metmyoglobin reductase pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. THE ENERGY CONVERSION APPARATUS IN PHOTOSYNTHESIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sauer, K.

    1962-12-01

    An analysis of outstanding problems still presenting difficulty with respect to understanding the quantumconversion process in photosynthesis is presented. Considerations of how some of these difficulties may be overcome are included. The dynamic process of energy conversion is considered in terms of photon absorption, electronic energy transfer, trapping in long-lived excited states, primary oxidants and reductants, and the electron transport chain leading to products representing stored chemical potential. The physical structure of the apparatus accomplishing this energy conversion is sought in the framework of the concept of the photosynthetic unit. The nature of this unit--its size, composition, arrangement and orientationmore » of components, internal electrical and polarizability properties, and assembly and aggregation in the chloroplast--and the problems related to its determination are essential considerations in the overall approach to the understanding of the mechanism of energy conversion. (auth)« less

  15. Integrated fusion simulation with self-consistent core-pedestal coupling

    DOE PAGES

    Meneghini, O.; Snyder, P. B.; Smith, S. P.; ...

    2016-04-20

    In this study, accurate prediction of fusion performance in present and future tokamaks requires taking into account the strong interplay between core transport, pedestal structure, current profile and plasma equilibrium. An integrated modeling workflow capable of calculating the steady-state self- consistent solution to this strongly-coupled problem has been developed. The workflow leverages state-of-the-art components for collisional and turbulent core transport, equilibrium and pedestal stability. Validation against DIII-D discharges shows that the workflow is capable of robustly pre- dicting the kinetic profiles (electron and ion temperature and electron density) from the axis to the separatrix in good agreement with the experiments.more » An example application is presented, showing self-consistent optimization for the fusion performance of the 15 MA D-T ITER baseline scenario as functions of the pedestal density and ion effective charge Z eff.« less

  16. Multiple elastic scattering of electrons in condensed matter

    NASA Astrophysics Data System (ADS)

    Jablonski, A.

    2017-01-01

    Since the 1940s, much attention has been devoted to the problem of accurate theoretical description of electron transport in condensed matter. The needed information for describing different aspects of the electron transport is the angular distribution of electron directions after multiple elastic collisions. This distribution can be expanded into a series of Legendre polynomials with coefficients, Al. In the present work, a database of these coefficients for all elements up to uranium (Z=92) and a dense grid of electron energies varying from 50 to 5000 eV has been created. The database makes possible the following applications: (i) accurate interpolation of coefficients Al for any element and any energy from the above range, (ii) fast calculations of the differential and total elastic-scattering cross sections, (iii) determination of the angular distribution of directions after multiple collisions, (iv) calculations of the probability of elastic backscattering from solids, and (v) calculations of the calibration curves for determination of the inelastic mean free paths of electrons. The last two applications provide data with comparable accuracy to Monte Carlo simulations, yet the running time is decreased by several orders of magnitude. All of the above applications are implemented in the Fortran program MULTI_SCATT. Numerous illustrative runs of this program are described. Despite a relatively large volume of the database of coefficients Al, the program MULTI_SCATT can be readily run on personal computers.

  17. Inverse Band Structure Design via Materials Database Screening: Application to Square Planar Thermoelectrics

    DOE PAGES

    Isaacs, Eric B.; Wolverton, Chris

    2018-02-26

    Electronic band structure contains a wealth of information on the electronic properties of a solid and is routinely computed. However, the more difficult problem of designing a solid with a desired band structure is an outstanding challenge. In order to address this inverse band structure design problem, we devise an approach using materials database screening with materials attributes based on the constituent elements, nominal electron count, crystal structure, and thermodynamics. Our strategy is tested in the context of thermoelectric materials, for which a targeted band structure containing both flat and dispersive components with respect to crystal momentum is highly desirable.more » We screen for thermodynamically stable or metastable compounds containing d 8 transition metals coordinated by anions in a square planar geometry in order to mimic the properties of recently identified oxide thermoelectrics with such a band structure. In doing so, we identify 157 compounds out of a total of over half a million candidates. After further screening based on electronic band gap and structural anisotropy, we explicitly compute the band structures for the several of the candidates in order to validate the approach. We successfully find two new oxide systems that achieve the targeted band structure. Electronic transport calculations on these two compounds, Ba 2PdO 3 and La 4PdO 7, confirm promising thermoelectric power factor behavior for the compounds. This methodology is easily adapted to other targeted band structures and should be widely applicable to a variety of design problems.« less

  18. Inverse Band Structure Design via Materials Database Screening: Application to Square Planar Thermoelectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaacs, Eric B.; Wolverton, Chris

    Electronic band structure contains a wealth of information on the electronic properties of a solid and is routinely computed. However, the more difficult problem of designing a solid with a desired band structure is an outstanding challenge. In order to address this inverse band structure design problem, we devise an approach using materials database screening with materials attributes based on the constituent elements, nominal electron count, crystal structure, and thermodynamics. Our strategy is tested in the context of thermoelectric materials, for which a targeted band structure containing both flat and dispersive components with respect to crystal momentum is highly desirable.more » We screen for thermodynamically stable or metastable compounds containing d 8 transition metals coordinated by anions in a square planar geometry in order to mimic the properties of recently identified oxide thermoelectrics with such a band structure. In doing so, we identify 157 compounds out of a total of over half a million candidates. After further screening based on electronic band gap and structural anisotropy, we explicitly compute the band structures for the several of the candidates in order to validate the approach. We successfully find two new oxide systems that achieve the targeted band structure. Electronic transport calculations on these two compounds, Ba 2PdO 3 and La 4PdO 7, confirm promising thermoelectric power factor behavior for the compounds. This methodology is easily adapted to other targeted band structures and should be widely applicable to a variety of design problems.« less

  19. Clinical, pathological and functional characterization of riboflavin-responsive neuropathy

    PubMed Central

    Manole, Andreea; Jaunmuktane, Zane; Hargreaves, Iain; Ludtmann, Marthe H R; Salpietro, Vincenzo; Bello, Oscar D; Pope, Simon; Pandraud, Amelie; Horga, Alejandro; Scalco, Renata S; Li, Abi; Ashokkumar, Balasubramaniem; Lourenço, Charles M; Heales, Simon; Horvath, Rita; Chinnery, Patrick F; Toro, Camilo; Singleton, Andrew B; Jacques, Thomas S; Abramov, Andrey Y; Muntoni, Francesco; Hanna, Michael G; Reilly, Mary M; Revesz, Tamas; Kullmann, Dimitri M

    2017-01-01

    Abstract Brown-Vialetto-Van Laere syndrome represents a phenotypic spectrum of motor, sensory, and cranial nerve neuropathy, often with ataxia, optic atrophy and respiratory problems leading to ventilator-dependence. Loss-of-function mutations in two riboflavin transporter genes, SLC52A2 and SLC52A3, have recently been linked to Brown-Vialetto-Van Laere syndrome. However, the genetic frequency, neuropathology and downstream consequences of riboflavin transporter mutations are unclear. By screening a large cohort of 132 patients with early-onset severe sensory, motor and cranial nerve neuropathy we confirmed the strong genetic link between riboflavin transporter mutations and Brown-Vialetto-Van Laere syndrome, identifying 22 pathogenic mutations in SLC52A2 and SLC52A3, 14 of which were novel. Brain and spinal cord neuropathological examination of two cases with SLC52A3 mutations showed classical symmetrical brainstem lesions resembling pathology seen in mitochondrial disease, including severe neuronal loss in the lower cranial nerve nuclei, anterior horns and corresponding nerves, atrophy of the spinothalamic and spinocerebellar tracts and posterior column–medial lemniscus pathways. Mitochondrial dysfunction has previously been implicated in an array of neurodegenerative disorders. Since riboflavin metabolites are critical components of the mitochondrial electron transport chain, we hypothesized that reduced riboflavin transport would result in impaired mitochondrial activity, and confirmed this using in vitro and in vivo models. Electron transport chain complex I and complex II activity were decreased in SLC52A2 patient fibroblasts, while global knockdown of the single Drosophila melanogaster riboflavin transporter homologue revealed reduced levels of riboflavin, downstream metabolites, and electron transport chain complex I activity. This in turn led to abnormal mitochondrial membrane potential, respiratory chain activity and morphology. Riboflavin transporter knockdown in Drosophila also resulted in severely impaired locomotor activity and reduced lifespan, mirroring patient pathology, and these phenotypes could be partially rescued using a novel esterified derivative of riboflavin. Our findings expand the genetic, clinical and neuropathological features of Brown-Vialetto-Van Laere syndrome, implicate mitochondrial dysfunction as a downstream consequence of riboflavin transporter gene defects, and validate riboflavin esters as a potential therapeutic strategy. PMID:29053833

  20. Clinical, pathological and functional characterization of riboflavin-responsive neuropathy.

    PubMed

    Manole, Andreea; Jaunmuktane, Zane; Hargreaves, Iain; Ludtmann, Marthe H R; Salpietro, Vincenzo; Bello, Oscar D; Pope, Simon; Pandraud, Amelie; Horga, Alejandro; Scalco, Renata S; Li, Abi; Ashokkumar, Balasubramaniem; Lourenço, Charles M; Heales, Simon; Horvath, Rita; Chinnery, Patrick F; Toro, Camilo; Singleton, Andrew B; Jacques, Thomas S; Abramov, Andrey Y; Muntoni, Francesco; Hanna, Michael G; Reilly, Mary M; Revesz, Tamas; Kullmann, Dimitri M; Jepson, James E C; Houlden, Henry

    2017-11-01

    Brown-Vialetto-Van Laere syndrome represents a phenotypic spectrum of motor, sensory, and cranial nerve neuropathy, often with ataxia, optic atrophy and respiratory problems leading to ventilator-dependence. Loss-of-function mutations in two riboflavin transporter genes, SLC52A2 and SLC52A3, have recently been linked to Brown-Vialetto-Van Laere syndrome. However, the genetic frequency, neuropathology and downstream consequences of riboflavin transporter mutations are unclear. By screening a large cohort of 132 patients with early-onset severe sensory, motor and cranial nerve neuropathy we confirmed the strong genetic link between riboflavin transporter mutations and Brown-Vialetto-Van Laere syndrome, identifying 22 pathogenic mutations in SLC52A2 and SLC52A3, 14 of which were novel. Brain and spinal cord neuropathological examination of two cases with SLC52A3 mutations showed classical symmetrical brainstem lesions resembling pathology seen in mitochondrial disease, including severe neuronal loss in the lower cranial nerve nuclei, anterior horns and corresponding nerves, atrophy of the spinothalamic and spinocerebellar tracts and posterior column-medial lemniscus pathways. Mitochondrial dysfunction has previously been implicated in an array of neurodegenerative disorders. Since riboflavin metabolites are critical components of the mitochondrial electron transport chain, we hypothesized that reduced riboflavin transport would result in impaired mitochondrial activity, and confirmed this using in vitro and in vivo models. Electron transport chain complex I and complex II activity were decreased in SLC52A2 patient fibroblasts, while global knockdown of the single Drosophila melanogaster riboflavin transporter homologue revealed reduced levels of riboflavin, downstream metabolites, and electron transport chain complex I activity. This in turn led to abnormal mitochondrial membrane potential, respiratory chain activity and morphology. Riboflavin transporter knockdown in Drosophila also resulted in severely impaired locomotor activity and reduced lifespan, mirroring patient pathology, and these phenotypes could be partially rescued using a novel esterified derivative of riboflavin. Our findings expand the genetic, clinical and neuropathological features of Brown-Vialetto-Van Laere syndrome, implicate mitochondrial dysfunction as a downstream consequence of riboflavin transporter gene defects, and validate riboflavin esters as a potential therapeutic strategy. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  1. Improving hole injection efficiency by manipulating the hole transport mechanism through p-type electron blocking layer engineering.

    PubMed

    Zhang, Zi-Hui; Ju, Zhengang; Liu, Wei; Tan, Swee Tiam; Ji, Yun; Kyaw, Zabu; Zhang, Xueliang; Hasanov, Namig; Sun, Xiao Wei; Demir, Hilmi Volkan

    2014-04-15

    The p-type AlGaN electron blocking layer (EBL) is widely used in InGaN/GaN light-emitting diodes (LEDs) for electron overflow suppression. However, a typical EBL also reduces the hole injection efficiency, because holes have to climb over the energy barrier generated at the p-AlGaN/p-GaN interface before entering the quantum wells. In this work, to address this problem, we report the enhancement of hole injection efficiency by manipulating the hole transport mechanism through insertion of a thin GaN layer of 1 nm into the p-AlGaN EBL and propose an AlGaN/GaN/AlGaN-type EBL outperforming conventional AlGaN EBLs. Here, the position of the inserted thin GaN layer relative to the p-GaN region is found to be the key to enhancing the hole injection efficiency. InGaN/GaN LEDs with the proposed p-type AlGaN/GaN/AlGaN EBL have demonstrated substantially higher optical output power and external quantum efficiency.

  2. Resolving Rapid Variation in Energy for Particle Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haut, Terry Scot; Ahrens, Cory Douglas; Jonko, Alexandra

    2016-08-23

    Resolving the rapid variation in energy in neutron and thermal radiation transport is needed for the predictive simulation capability in high-energy density physics applications. Energy variation is difficult to resolve due to rapid variations in cross sections and opacities caused by quantized energy levels in the nuclei and electron clouds. In recent work, we have developed a new technique to simultaneously capture slow and rapid variations in the opacities and the solution using homogenization theory, which is similar to multiband (MB) and to the finite-element with discontiguous support (FEDS) method, but does not require closure information. We demonstrated the accuracymore » and efficiency of the method for a variety of problems. We are researching how to extend the method to problems with multiple materials and the same material but with different temperatures and densities. In this highlight, we briefly describe homogenization theory and some results.« less

  3. Calculation of transmission probability by solving an eigenvalue problem

    NASA Astrophysics Data System (ADS)

    Bubin, Sergiy; Varga, Kálmán

    2010-11-01

    The electron transmission probability in nanodevices is calculated by solving an eigenvalue problem. The eigenvalues are the transmission probabilities and the number of nonzero eigenvalues is equal to the number of open quantum transmission eigenchannels. The number of open eigenchannels is typically a few dozen at most, thus the computational cost amounts to the calculation of a few outer eigenvalues of a complex Hermitian matrix (the transmission matrix). The method is implemented on a real space grid basis providing an alternative to localized atomic orbital based quantum transport calculations. Numerical examples are presented to illustrate the efficiency of the method.

  4. Application of a Java-based, univel geometry, neutral particle Monte Carlo code to the searchlight problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles A. Wemple; Joshua J. Cogliati

    2005-04-01

    A univel geometry, neutral particle Monte Carlo transport code, written entirely in the Java programming language, is under development for medical radiotherapy applications. The code uses ENDF-VI based continuous energy cross section data in a flexible XML format. Full neutron-photon coupling, including detailed photon production and photonuclear reactions, is included. Charged particle equilibrium is assumed within the patient model so that detailed transport of electrons produced by photon interactions may be neglected. External beam and internal distributed source descriptions for mixed neutron-photon sources are allowed. Flux and dose tallies are performed on a univel basis. A four-tap, shift-register-sequence random numbermore » generator is used. Initial verification and validation testing of the basic neutron transport routines is underway. The searchlight problem was chosen as a suitable first application because of the simplicity of the physical model. Results show excellent agreement with analytic solutions. Computation times for similar numbers of histories are comparable to other neutron MC codes written in C and FORTRAN.« less

  5. Nonequilibrium Transport and the Bernoulli Effect of Electrons in a Two-Dimensional Electron Gas

    NASA Astrophysics Data System (ADS)

    Kaya, Ismet I.

    2013-02-01

    Nonequilibrium transport of charged carriers in a two-dimensional electron gas is summarized from an experimental point of view. The transport regime in which the electron-electron interactions are enhanced at high bias leads to a range of striking effects in a two-dimensional electron gas. This regime of transport is quite different than the ballistic transport in which particles propagate coherently with no intercarrier energy transfer and the diffusive transport in which the momentum of the electron system is lost with the involvement of the phonons. Quite a few hydrodynamic phenomena observed in classical gasses have the electrical analogs in the current flow. When intercarrier scattering events dominate the transport, the momentum sharing via narrow angle scattering among the hot and cold electrons lead to negative resistance and electron pumping which can be viewed as the analog of the Bernoulli-Venturi effect observed classical gasses. The recent experimental findings and the background work in the field are reviewed.

  6. Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas (GPS - TTBP) Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chame, Jacqueline

    2011-05-27

    The goal of this project is the development of the Gyrokinetic Toroidal Code (GTC) Framework and its applications to problems related to the physics of turbulence and turbulent transport in tokamaks,. The project involves physics studies, code development, noise effect mitigation, supporting computer science efforts, diagnostics and advanced visualizations, verification and validation. Its main scientific themes are mesoscale dynamics and non-locality effects on transport, the physics of secondary structures such as zonal flows, and strongly coherent wave-particle interaction phenomena at magnetic precession resonances. Special emphasis is placed on the implications of these themes for rho-star and current scalings and formore » the turbulent transport of momentum. GTC-TTBP also explores applications to electron thermal transport, particle transport; ITB formation and cross-cuts such as edge-core coupling, interaction of energetic particles with turbulence and neoclassical tearing mode trigger dynamics. Code development focuses on major initiatives in the development of full-f formulations and the capacity to simulate flux-driven transport. In addition to the full-f -formulation, the project includes the development of numerical collision models and methods for coarse graining in phase space. Verification is pursued by linear stability study comparisons with the FULL and HD7 codes and by benchmarking with the GKV, GYSELA and other gyrokinetic simulation codes. Validation of gyrokinetic models of ion and electron thermal transport is pursed by systematic stressing comparisons with fluctuation and transport data from the DIII-D and NSTX tokamaks. The physics and code development research programs are supported by complementary efforts in computer sciences, high performance computing, and data management.« less

  7. [Anaerobic reduction of humus/Fe (III) and electron transport mechanism of Fontibacter sp. SgZ-2].

    PubMed

    Ma, Chen; Yang, Gui-qin; Lu, Qin; Zhou, Shun-gui

    2014-09-01

    Humus and Fe(III) respiration are important extracellular respiration metabolism. Electron transport pathway is the key issue of extracellular respiration. To understand the electron transport properties and the environmental behavior of a novel Fe(III)- reducing bacterium, Fontibacter sp. SgZ-2, capacities of anaerobic humus/Fe(III) reduction and electron transport mechanisms with four electron acceptors were investigated in this study. The results of anaerobic batch experiments indicated that strain SgZ-2 had the ability to reduce humus analog [ 9,10-anthraquinone-2,6-disulfonic acid (AQDS) and 9,10-anthraquinone-2-sulfonic acid (AQS)], humic acids (HA), soluble Fe(III) (Fe-EDTA and Fe-citrate) and Fe(III) oxides [hydrous ferric oxide (HFO)]. Fermentative sugars (glucose and sucrose) were the most effective electron donors in the humus/Fe(III) reduction by strain SgZ-2. Additionally, differences of electron carrier participating in the process of electron transport with different electron acceptors (i. e. , oxygen, AQS, Fe-EDTA and HFO) were investigated using respiratory inhibitors. The results suggested that similar respiratory chain components were involved in the reducing process of oxygen and Fe-EDTA, including dehydrogenase, quinones and cytochromes b-c. In comparison, only dehydrogenase was found to participate in the reduction of AQS and HFO. In conclusion, different electron transport pathways may be employed by strain SgZ-2 between insoluble and soluble electron acceptors or among soluble electron acceptors. Preliminary models of electron transport pathway with four electron acceptors were proposed for strain SgZ-2, and the study of electron transport mechanism was explored to the genus Fontibacter. All the results from this study are expected to help understand the electron transport properties and the environmental behavior of the genus Fontibacter.

  8. ETMB-RBF: discrimination of metal-binding sites in electron transporters based on RBF networks with PSSM profiles and significant amino acid pairs.

    PubMed

    Ou, Yu-Yen; Chen, Shu-An; Wu, Sheng-Cheng

    2013-01-01

    Cellular respiration is the process by which cells obtain energy from glucose and is a very important biological process in living cell. As cells do cellular respiration, they need a pathway to store and transport electrons, the electron transport chain. The function of the electron transport chain is to produce a trans-membrane proton electrochemical gradient as a result of oxidation-reduction reactions. In these oxidation-reduction reactions in electron transport chains, metal ions play very important role as electron donor and acceptor. For example, Fe ions are in complex I and complex II, and Cu ions are in complex IV. Therefore, to identify metal-binding sites in electron transporters is an important issue in helping biologists better understand the workings of the electron transport chain. We propose a method based on Position Specific Scoring Matrix (PSSM) profiles and significant amino acid pairs to identify metal-binding residues in electron transport proteins. We have selected a non-redundant set of 55 metal-binding electron transport proteins as our dataset. The proposed method can predict metal-binding sites in electron transport proteins with an average 10-fold cross-validation accuracy of 93.2% and 93.1% for metal-binding cysteine and histidine, respectively. Compared with the general metal-binding predictor from A. Passerini et al., the proposed method can improve over 9% of sensitivity, and 14% specificity on the independent dataset in identifying metal-binding cysteines. The proposed method can also improve almost 76% sensitivity with same specificity in metal-binding histidine, and MCC is also improved from 0.28 to 0.88. We have developed a novel approach based on PSSM profiles and significant amino acid pairs for identifying metal-binding sites from electron transport proteins. The proposed approach achieved a significant improvement with independent test set of metal-binding electron transport proteins.

  9. ETMB-RBF: Discrimination of Metal-Binding Sites in Electron Transporters Based on RBF Networks with PSSM Profiles and Significant Amino Acid Pairs

    PubMed Central

    Ou, Yu-Yen; Chen, Shu-An; Wu, Sheng-Cheng

    2013-01-01

    Background Cellular respiration is the process by which cells obtain energy from glucose and is a very important biological process in living cell. As cells do cellular respiration, they need a pathway to store and transport electrons, the electron transport chain. The function of the electron transport chain is to produce a trans-membrane proton electrochemical gradient as a result of oxidation–reduction reactions. In these oxidation–reduction reactions in electron transport chains, metal ions play very important role as electron donor and acceptor. For example, Fe ions are in complex I and complex II, and Cu ions are in complex IV. Therefore, to identify metal-binding sites in electron transporters is an important issue in helping biologists better understand the workings of the electron transport chain. Methods We propose a method based on Position Specific Scoring Matrix (PSSM) profiles and significant amino acid pairs to identify metal-binding residues in electron transport proteins. Results We have selected a non-redundant set of 55 metal-binding electron transport proteins as our dataset. The proposed method can predict metal-binding sites in electron transport proteins with an average 10-fold cross-validation accuracy of 93.2% and 93.1% for metal-binding cysteine and histidine, respectively. Compared with the general metal-binding predictor from A. Passerini et al., the proposed method can improve over 9% of sensitivity, and 14% specificity on the independent dataset in identifying metal-binding cysteines. The proposed method can also improve almost 76% sensitivity with same specificity in metal-binding histidine, and MCC is also improved from 0.28 to 0.88. Conclusions We have developed a novel approach based on PSSM profiles and significant amino acid pairs for identifying metal-binding sites from electron transport proteins. The proposed approach achieved a significant improvement with independent test set of metal-binding electron transport proteins. PMID:23405059

  10. Contribution of Cyclic and Pseudo-cyclic Electron Transport to the Formation of Proton Motive Force in Chloroplasts.

    PubMed

    Shikanai, Toshiharu; Yamamoto, Hiroshi

    2017-01-09

    Photosynthetic electron transport is coupled to proton translocation across the thylakoid membrane, resulting in the formation of a trans-thylakoid proton gradient (ΔpH) and membrane potential (Δψ). Ion transporters and channels localized to the thylakoid membrane regulate the contribution of each component to the proton motive force (pmf). Although both ΔpH and Δψ contribute to ATP synthesis as pmf, only ΔpH downregulates photosynthetic electron transport via the acidification of the thylakoid lumen by inducing thermal dissipation of excessive absorbed light energy from photosystem II antennae and slowing down of the electron transport through the cytochrome b 6 f complex. To optimize the tradeoff between efficient light energy utilization and protection of both photosystems against photodamage, plants have to regulate the pmf amplitude and its components, ΔpH and Δψ. Cyclic electron transport around photosystem I (PSI) is a major regulator of the pmf amplitude by generating pmf independently of the net production of NADPH by linear electron transport. Chloroplast ATP synthase relaxes pmf for ATP synthesis, and its activity should be finely tuned for maintaining the size of the pmf during steady-state photosynthesis. Pseudo-cyclic electron transport mediated by flavodiiron protein (Flv) forms a large electron sink, which is essential for PSI photoprotection in fluctuating light in cyanobacteria. Flv is conserved from cyanobacteria to gymnosperms but not in angiosperms. The Arabidopsis proton gradient regulation 5 (pgr5) mutant is defective in the main pathway of PSI cyclic electron transport. By introducing Physcomitrella patens genes encoding Flvs, the function of PSI cyclic electron transport was substituted by that of Flv-dependent pseudo-cyclic electron transport. In transgenic plants, the size of the pmf was complemented to the wild-type level but the contribution of ΔpH to the total pmf was lower than that in the wild type. In the pgr5 mutant, the size of the pmf was drastically lowered by the absence of PSI cyclic electron transport. In the mutant, ΔpH occupied the majority of pmf, suggesting the presence of a mechanism for the homeostasis of luminal pH in the light. To avoid damage to photosynthetic electron transport by periods of excess solar energy, plants employ an intricate regulatory network involving alternative electron transport pathways, ion transporters/channels, and pH-dependent mechanisms for downregulating photosynthetic electron transport. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  11. Synthesis of Li2MnSiO4-graphene composite and its electrochemical performances as a cathode material for lithium ion batteries.

    PubMed

    Kim, Jeonghyun; Song, Taeseup; Park, Hyunjung; Yuh, Junhan; Paik, Ungyu

    2014-10-01

    The Li2MnSiO4 is a promising candidate as a cathode for lithium ion batteries due to its large theoretical capacity of 330 mA h g(-1) and high thermal stability. However, the problems related to low electronic conductivity and large irreversible capacity at the first cycle limits its practical use as a Li-ion cathode material. We have developed a carbon coated Li2MnSiO4-graphene composite electrode to overcome these problems. Our designed electrode exhibits high reversible capacity of 301 mA h g(-1), with a high initial coulombic efficiency, and a discharge capacity at current rate of 0.5 C, that is double value of carbon coated Li2MnSiO4-carbon black composite electrode. These significant improvements are attributed to fast electron transport along the graphene sheet.

  12. Fractional conductance oscillations in quantum rings: wave packet picture of transport in a few-electron system.

    PubMed

    Chwiej, T; Szafran, B

    2013-04-17

    We study electron transfer across a two-terminal quantum ring using a time-dependent description of the scattering process. For the considered scattering event the quantum ring is initially charged with one or two electrons, with another electron incident to the ring from the input channel. We study the electron transfer probability (T) as a function of the external magnetic field. We determine the periodicity of T for a varied number of electrons confined within the ring. For that purpose we develop a method to describe the wave packet dynamics for a few electrons participating in the scattering process, taking into full account the electron-electron correlations. We find that electron transfer across the quantum ring initially charged by a single electron acquires a distinct periodicity of half of the magnetic flux quantum (Φ0/2), corresponding to the formation of a transient two-electron state inside the ring. In the case of a three-electron scattering problem with two electrons initially occupying the ring, a period of Φ0/3 for T is formed in the limit of thin channels. The effect of disorder present in the confinement potential of the ring is also discussed.

  13. Prediction of FAD binding sites in electron transport proteins according to efficient radial basis function networks and significant amino acid pairs.

    PubMed

    Le, Nguyen-Quoc-Khanh; Ou, Yu-Yen

    2016-07-30

    Cellular respiration is a catabolic pathway for producing adenosine triphosphate (ATP) and is the most efficient process through which cells harvest energy from consumed food. When cells undergo cellular respiration, they require a pathway to keep and transfer electrons (i.e., the electron transport chain). Due to oxidation-reduction reactions, the electron transport chain produces a transmembrane proton electrochemical gradient. In case protons flow back through this membrane, this mechanical energy is converted into chemical energy by ATP synthase. The convert process is involved in producing ATP which provides energy in a lot of cellular processes. In the electron transport chain process, flavin adenine dinucleotide (FAD) is one of the most vital molecules for carrying and transferring electrons. Therefore, predicting FAD binding sites in the electron transport chain is vital for helping biologists understand the electron transport chain process and energy production in cells. We used an independent data set to evaluate the performance of the proposed method, which had an accuracy of 69.84 %. We compared the performance of the proposed method in analyzing two newly discovered electron transport protein sequences with that of the general FAD binding predictor presented by Mishra and Raghava and determined that the accuracy of the proposed method improved by 9-45 % and its Matthew's correlation coefficient was 0.14-0.5. Furthermore, the proposed method enabled reducing the number of false positives significantly and can provide useful information for biologists. We developed a method that is based on PSSM profiles and SAAPs for identifying FAD binding sites in newly discovered electron transport protein sequences. This approach achieved a significant improvement after we added SAAPs to PSSM features to analyze FAD binding proteins in the electron transport chain. The proposed method can serve as an effective tool for predicting FAD binding sites in electron transport proteins and can help biologists understand the functions of the electron transport chain, particularly those of FAD binding sites. We also developed a web server which identifies FAD binding sites in electron transporters available for academics.

  14. Current-driven plasmonic boom instability in three-dimensional gated periodic ballistic nanostructures

    NASA Astrophysics Data System (ADS)

    Aizin, G. R.; Mikalopas, J.; Shur, M.

    2016-05-01

    An alternative approach of using a distributed transmission line analogy for solving transport equations for ballistic nanostructures is applied for solving the three-dimensional problem of electron transport in gated ballistic nanostructures with periodically changing width. The structures with varying width allow for modulation of the electron drift velocity while keeping the plasma velocity constant. We predict that in such structures biased by a constant current, a periodic modulation of the electron drift velocity due to the varying width results in the instability of the plasma waves if the electron drift velocity to plasma wave velocity ratio changes from below to above unity. The physics of such instability is similar to that of the sonic boom, but, in the periodically modulated structures, this analog of the sonic boom is repeated many times leading to a larger increment of the instability. The constant plasma velocity in the sections of different width leads to resonant excitation of the unstable plasma modes with varying bias current. This effect (that we refer to as the superplasmonic boom condition) results in a strong enhancement of the instability. The predicted instability involves the oscillating dipole charge carried by the plasma waves. The plasmons can be efficiently coupled to the terahertz electromagnetic radiation due to the periodic geometry of the gated structure. Our estimates show that the analyzed instability should enable powerful tunable terahertz electronic sources.

  15. Insights into the post-transcriptional regulation of the mitochondrial electron transport chain.

    PubMed

    Sirey, Tamara M; Ponting, Chris P

    2016-10-15

    The regulation of the mitochondrial electron transport chain is central to the control of cellular homeostasis. There are significant gaps in our understanding of how the expression of the mitochondrial and nuclear genome-encoded components of the electron transport chain are co-ordinated, and how the assembly of the protein complexes that constitute the electron transport chain are regulated. Furthermore, the role post-transcriptional gene regulation may play in modulating these processes needs to be clarified. This review summarizes the current knowledge regarding the post-transcriptional gene regulation of the electron transport chain and highlights how noncoding RNAs may contribute significantly both to complex electron transport chain regulatory networks and to mitochondrial dysfunction. © 2016 The Author(s).

  16. Transient electroluminescence on pristine and degraded phosphorescent blue OLEDs

    NASA Astrophysics Data System (ADS)

    Niu, Quan; Blom, Paul W. M.; May, Falk; Heimel, Paul; Zhang, Minlu; Eickhoff, Christian; Heinemeyer, Ute; Lennartz, Christian; Crǎciun, N. Irina

    2017-11-01

    In state-of-the-art blue phosphorescent organic light-emitting diode (PHOLED) device architectures, electrons and holes are injected into the emissive layer, where they are carried by the emitting and hole transporting units, respectively. Using transient electroluminescence measurements, we disentangle the contribution of the electrons and holes on the transport and efficiency of both pristine and degraded PHOLEDs. By varying the concentration of hole transporting units, we show that for pristine PHOLEDs, the transport is electron dominated. Furthermore, degradation of the PHOLEDs upon electrical aging is not related to the hole transport but is governed by a decrease in the electron transport due to the formation of electron traps.

  17. Structure-Function of the Cytochrome b 6f Complex of Oxygenic Photosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cramer, W. A.; Yamashita, E.; Baniulis, D.

    2014-03-20

    Structure–function of the major integral membrane cytochrome b 6f complex that functions in cyanobacteria, algae, and green plants to transfer electrons between the two reaction center complexes in the electron transport chain of oxygenic photosynthesis is discussed in the context of recently obtained crystal structures of the complex and soluble domains of cytochrome f and the Rieske iron–sulfur protein. The energy-transducing function of the complex, generation of the proton trans-membrane electrochemical potential gradient, centers on the oxidation/reduction pathways of the plastoquinol/plastoquinone (QH 2/Q), the proton donor/acceptor within the complex. These redox reactions are carried out by five redox prosthetic groupsmore » embedded in each monomer, the high potential two iron–two sulfur cluster and the heme of cytochrome f on the electropositive side (p) of the complex, two noncovalently bound b-type hemes that cross the complex and the membrane, and a covalently bound c-type heme (c n) on the electronegative side (n). These five redox-active groups are organized in high- (cyt f/[2Fe–2S] and low-potential (hemes b p, b n, c n) electron transport pathways that oxidize and reduce the quinol and quinone on the p- and n-sides in a Q-cycle-type mechanism, while translocating as many as 2 H + to the p-side aqueous side for every electron transferred through the high potential chain to the photosystem I reaction center. The presence of heme c n and the connection of the n-side of the membrane and b 6f complex to the cyclic electron transport chain indicate that the Q cycle in the oxygenic photosynthetic electron transport chain differs from those connected to the bc 1 complex in the mitochondrial respiratory chain and the chain in photosynthetic bacteria. Inferences from the structure and C2 symmetry of the complex for the pathway of QH 2/Q transfer within the complex, problems posed by the presence of lipid in the inter-monomer cavity, and the narrow portal for QH2 passage through the p-side oxidation site proximal to the [2Fe–2S] cluster are discussed.« less

  18. Conductance and thermopower in molecular nanojunctions

    NASA Astrophysics Data System (ADS)

    Sen, Arijit

    2013-02-01

    Electronic transport through short channels in a molecular junction is an intricate quantum scattering problem [1]. To garner insight on how the structure and the electrical properties of a nanoscale junction are correlated is thus of both fundamental and technological interest [1-3]. As observed experimentally in the last couple of years by several independent research groups [4-5], a two-terminal molecular junction comprising of a simple alkane chain with varying length can exhibit high as well as low conductance. However, what causes the simultaneous unveiling of multiple conductances remained largely obscure. We have recently demonstrated [6] that the binary conductance in these heterostructures is due mainly to two distinct electrode orientations that control the electrode-molecule coupling as well as the tunneling strength through quantum interference following diversity in the electrode band structures. Our detailed analysis on the transmission spectra indicates that even a single-molecule nanojunction can potentially serve as a realistic double-quantum-dot kind of system to yield tunable Fano resonance, as often desired for nanoscale switching. In this talk, I intend to give a brief account of molecular electronics and its future applications along with the challenges and possibilities in the current perspective. A few deliberations may as well include how the inter-dot tunneling strength may affect the non-equilibrium charge transport and thermoelectricity in a myriad of molecular junctions based on different molecular conformations and electrode structures. Finally, I shall try to touch upon the effect of electron-phonon interaction on the nanoscale charge transport, and also, the phonon-mediated thermal transport in molecular nanodevices.

  19. Experimental Study of Electron and Phonon Dynamics in Nanoscale Materials by Ultrafast Laser Time-Domain Spectroscopy

    NASA Astrophysics Data System (ADS)

    Shen, Xiaohan

    With the rapid advances in the development of nanotechnology, nowadays, the sizes of elementary unit, i.e. transistor, of micro- and nanoelectronic devices are well deep into nanoscale. For the pursuit of cheaper and faster nanoscale electronic devices, the size of transistors keeps scaling down. As the miniaturization of the nanoelectronic devices, the electrical resistivity increases dramatically, resulting rapid growth in the heat generation. The heat generation and limited thermal dissipation in nanoscale materials have become a critical problem in the development of the next generation nanoelectronic devices. Copper (Cu) is widely used conducting material in nanoelectronic devices, and the electron-phonon scattering is the dominant contributor to the resistivity in Cu nanowires at room temperature. Meanwhile, phonons are the main carriers of heat in insulators, intrinsic and lightly doped semiconductors. The thermal transport is an ensemble of phonon transport, which strongly depends on the phonon frequency. In addition, the phonon transport in nanoscale materials can behave fundamentally different than in bulk materials, because of the spatial confinement. However, the size effect on electron-phonon scattering and frequency dependent phonon transport in nanoscale materials remain largely unexplored, due to the lack of suitable experimental techniques. This thesis is mainly focusing on the study of carrier dynamics and acoustic phonon transport in nanoscale materials. The weak photothermal interaction in Cu makes thermoreflectance measurement difficult, we rather measured the reflectivity change of Cu induced by absorption variation. We have developed a method to separately measure the processes of electron-electron scattering and electron-phonon scattering in epitaxial Cu films by monitoring the transient reflectivity signal using the resonant probe with particular wavelengths. The enhancement on electron-phonon scattering in epitaxial Cu films with thickness less than 100 nm was observed. The longitudinal acoustic phonon transport in silicon (Si) nanorod with confined diameter and length was investigated. The guided phonon modes in Si nanorod with different frequencies and wave vectors were observed. The mean-free-path of the guided phonons in Si nanorod was found to be larger than the effective phonon mean-free-path in Si film, because of the limited phonon scattering channels in Si nanorod. The phonon density of states and dispersion relation strongly depend on the size and boundary conditions of nanorod. Our work demonstrates the possibility of modifying the phonon transport properties in nanoscale materials by designing the size and boundary conditions, hence the control of thermal conductivity. In addition, the periodicity effect of nanostructures on acoustic phonon transport was investigated in silicon dioxide (SiO2) nanorod arrays. The lattice modes and mechanical eigenmodes were observed, and the pitch effect on lattice modes was discussed. A narrowband acoustic phonon spectroscopic technique with tunable frequency and spectral width throughout GHz frequency range has been developed to investigate the frequency-dependent acoustic phonon transport in nanoscale materials. The quadratic frequency dependence of acoustic attenuation of SiO2 and indium tin oxide (ITO) thin films was observed, and the acoustic attenuation of ITO was found to be larger than SiO2. Moreover, the acoustic control on mechanical resonance of nanoscale materials using the narrowband acoustic phonon source was demonstrated in tungsten thin film.

  20. Electron transport chains in organohalide-respiring bacteria and bioremediation implications.

    PubMed

    Wang, Shanquan; Qiu, Lan; Liu, Xiaowei; Xu, Guofang; Siegert, Michael; Lu, Qihong; Juneau, Philippe; Yu, Ling; Liang, Dawei; He, Zhili; Qiu, Rongliang

    In situ remediation employing organohalide-respiring bacteria represents a promising solution for cleanup of persistent organohalide pollutants. The organohalide-respiring bacteria conserve energy by utilizing H 2 or organic compounds as electron donors and organohalides as electron acceptors. Reductive dehalogenase (RDase), a terminal reductase of the electron transport chain in organohalide-respiring bacteria, is the key enzyme that catalyzes halogen removal. Accumulating experimental evidence thus far suggests that there are distinct models for respiratory electron transfer in organohalide-respirers of different lineages, e.g., Dehalococcoides, Dehalobacter, Desulfitobacterium and Sulfurospirillum. In this review, to connect the knowledge in organohalide-respiratory electron transport chains to bioremediation applications, we first comprehensively review molecular components and their organization, together with energetics of the organohalide-respiratory electron transport chains, as well as recent elucidation of intramolecular electron shuttling and halogen elimination mechanisms of RDases. We then highlight the implications of organohalide-respiratory electron transport chains in stimulated bioremediation. In addition, major challenges and further developments toward understanding the organohalide-respiratory electron transport chains and their bioremediation applications are identified and discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Tunneling explains efficient electron transport via protein junctions.

    PubMed

    Fereiro, Jerry A; Yu, Xi; Pecht, Israel; Sheves, Mordechai; Cuevas, Juan Carlos; Cahen, David

    2018-05-15

    Metalloproteins, proteins containing a transition metal ion cofactor, are electron transfer agents that perform key functions in cells. Inspired by this fact, electron transport across these proteins has been widely studied in solid-state settings, triggering the interest in examining potential use of proteins as building blocks in bioelectronic devices. Here, we report results of low-temperature (10 K) electron transport measurements via monolayer junctions based on the blue copper protein azurin (Az), which strongly suggest quantum tunneling of electrons as the dominant charge transport mechanism. Specifically, we show that, weakening the protein-electrode coupling by introducing a spacer, one can switch the electron transport from off-resonant to resonant tunneling. This is a consequence of reducing the electrode's perturbation of the Cu(II)-localized electronic state, a pattern that has not been observed before in protein-based junctions. Moreover, we identify vibronic features of the Cu(II) coordination sphere in transport characteristics that show directly the active role of the metal ion in resonance tunneling. Our results illustrate how quantum mechanical effects may dominate electron transport via protein-based junctions.

  2. 49 CFR 228.205 - Access to electronic records.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Access to electronic records. 228.205 Section 228.205 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD...; SLEEPING QUARTERS Electronic Recordkeeping § 228.205 Access to electronic records. (a) FRA inspectors and...

  3. 49 CFR 228.205 - Access to electronic records.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Access to electronic records. 228.205 Section 228.205 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD...; SLEEPING QUARTERS Electronic Recordkeeping § 228.205 Access to electronic records. (a) FRA inspectors and...

  4. 49 CFR 228.205 - Access to electronic records.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Access to electronic records. 228.205 Section 228.205 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD...; SLEEPING QUARTERS Electronic Recordkeeping § 228.205 Access to electronic records. (a) FRA inspectors and...

  5. Beam transport and monitoring for laser plasma accelerators

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Sokollik, T.; van Tilborg, J.; Gonsalves, A. J.; Shaw, B.; Shiraishi, S.; Mittal, R.; De Santis, S.; Byrd, J. M.; Leemans, W.

    2012-12-01

    The controlled transport and imaging of relativistic electron beams from laser plasma accelerators (LPAs) are critical for their diagnostics and applications. Here we present the design and progress in the implementation of the transport and monitoring system for an undulator based electron beam diagnostic. Miniature permanent-magnet quadrupoles (PMQs) are employed to realize controlled transport of the LPA electron beams, and cavity based electron beam position monitors for non-invasive beam position detection. Also presented is PMQ calibration by using LPA electron beams with broadband energy spectrum. The results show promising performance for both transporting and monitoring. With the proper transport system, XUV-photon spectra from THUNDER will provide the momentum distribution of the electron beam with the resolution above what can be achieved by the magnetic spectrometer currently used in the LOASIS facility.

  6. Cation-limited kinetic model for microbial extracellular electron transport via an outer membrane cytochrome C complex

    PubMed Central

    Okamoto, Akihiro; Tokunou, Yoshihide; Saito, Junki

    2016-01-01

    Outer-membrane c-type cytochrome (OM c-Cyt) complexes in several genera of iron-reducing bacteria, such as Shewanella and Geobacter, are capable of transporting electrons from the cell interior to extracellular solids as a terminal step of anaerobic respiration. The kinetics of this electron transport has implications for controlling the rate of microbial electron transport during bioenergy or biochemical production, iron corrosion, and natural mineral cycling. Herein, we review the findings from in-vivo and in-vitro studies examining electron transport kinetics through single OM c-Cyt complexes in Shewanella oneidensis MR-1. In-vitro electron flux via a purified OM c-Cyt complex, comprised of MtrA, B, and C proteins from S. oneidensis MR-1, embedded in a proteoliposome system is reported to be 10- to 100-fold faster compared with in-vivo estimates based on measurements of electron flux per cell and OM c-Cyts density. As the proteoliposome system is estimated to have 10-fold higher cation flux via potassium channels than electrons, we speculate that the slower rate of electron-coupled cation transport across the OM is responsible for the significantly lower electron transport rate that is observed in-vivo. As most studies to date have primarily focused on the energetics or kinetics of interheme electron hopping in OM c-Cyts in this microbial electron transport mechanism, the proposed model involving cation transport provides new insight into the rate detemining step of EET, as well as the role of self-secreted flavin molecules bound to OM c-Cyt and proton management for energy conservation and production in S. oneidensis MR-1. PMID:27924259

  7. Aquatic models for the study of renal transport function and pollutant toxicity.

    PubMed Central

    Miller, D S

    1987-01-01

    Studies of renal cell transport mechanisms and their impairment by xenobiotics are often limited by technical difficulties related to renal tubule complexity. Problems include the juxtaposition of multiple tubule segments with different transport functions and severely limited access to the tubular lumen. Some limitations can be overcome by the careful selection of an appropriate aquatic experimental system. Two aquatic models for the vertebrate proximal segment are discussed here. The first is the kidney from certain marine flounder, which offers the following advantages: long-term viability, little tissue of nonproximal origin, and easy tubule isolation. Data are presented to demonstrate how studies with flounder kidney can be used to elucidate cellular mechanisms whereby different classes of toxic pollutants may interact. Results from these experiments indicate that the excretion of certain anionic xenobiotics can be delayed by other anionic xenobiotics that compete for secretory transport sites and by compounds that disrupt cellular ion gradients and energy metabolism needed to drive transport. The second system is the crustacean urinary bladder, a simple, flatsheet epithelium. Bladder morphology and transport physiology closely resemble those of vertebrate proximal segment. Electron micrographs show a brush border membrane at the luminal surface, numerous mitochondria, and an infolded serosal membrane, while in vivo and in vitro transport studies show reabsorption of NaCl, nutrients and water and secretion of organic cations; organic anions are secreted in bladders from some species and reabsorbed in others. Moreover, since bladders can be mounted as flat sheets in flux chambers, studies with this tissue avoid the problems of complex renal tubule geometry and tissue heterogeneity that limit transport studies in proximal tubule. Images FIGURE 3. FIGURE 6. PMID:3297665

  8. Observation of inhibited electron-ion coupling in strongly heated graphite

    PubMed Central

    White, T. G.; Vorberger, J.; Brown, C. R. D.; Crowley, B. J. B.; Davis, P.; Glenzer, S. H.; Harris, J. W. O.; Hochhaus, D. C.; Le Pape, S.; Ma, T.; Murphy, C. D.; Neumayer, P.; Pattison, L. K.; Richardson, S.; Gericke, D. O.; Gregori, G.

    2012-01-01

    Creating non-equilibrium states of matter with highly unequal electron and lattice temperatures (Tele≠Tion) allows unsurpassed insight into the dynamic coupling between electrons and ions through time-resolved energy relaxation measurements. Recent studies on low-temperature laser-heated graphite suggest a complex energy exchange when compared to other materials. To avoid problems related to surface preparation, crystal quality and poor understanding of the energy deposition and transport mechanisms, we apply a different energy deposition mechanism, via laser-accelerated protons, to isochorically and non-radiatively heat macroscopic graphite samples up to temperatures close to the melting threshold. Using time-resolved x ray diffraction, we show clear evidence of a very small electron-ion energy transfer, yielding approximately three times longer relaxation times than previously reported. This is indicative of the existence of an energy transfer bottleneck in non-equilibrium warm dense matter. PMID:23189238

  9. Blue emitting 1,8-naphthalimides with electron transport properties for organic light emitting diode applications

    NASA Astrophysics Data System (ADS)

    Ulla, Hidayath; Kiran, M. Raveendra; Garudachari, B.; Ahipa, T. N.; Tarafder, Kartick; Adhikari, Airody Vasudeva; Umesh, G.; Satyanarayan, M. N.

    2017-09-01

    In this article, the synthesis, characterization and use of two novel naphthalimides as electron-transporting emitter materials for organic light emitting diode (OLED) applications are reported. The molecules were obtained by substituting electron donating chloro-phenoxy group at the C-4 position. A detailed optical, thermal, electrochemical and related properties were systematically studied. Furthermore, theoretical calculations (DFT) were performed to get a better understanding of the electronic structures. The synthesized molecules were used as electron transporters and emitters in OLEDs with three different device configurations. The devices with the molecules showed blue emission with efficiencies of 1.89 cdA-1, 0.98 lmW-1, 0.71% at 100 cdm-2. The phosphorescent devices with naphthalimides as electron transport materials displayed better performance in comparison to the device without any electron transporting material and were analogous with the device using standard electron transporting material, Alq3. The results demonstrate that the naphthalimides could play a significant part in the progress of OLEDs.

  10. Comment on “Rethinking first-principles electron transport theories with projection operators: The problems caused by partitioning the basis set” [J. Chem. Phys. 139, 114104 (2013)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandbyge, Mads, E-mail: mads.brandbyge@nanotech.dtu.dk

    2014-05-07

    In a recent paper Reuter and Harrison [J. Chem. Phys. 139, 114104 (2013)] question the widely used mean-field electron transport theories, which employ nonorthogonal localized basis sets. They claim these can violate an “implicit decoupling assumption,” leading to wrong results for the current, different from what would be obtained by using an orthogonal basis, and dividing surfaces defined in real-space. We argue that this assumption is not required to be fulfilled to get exact results. We show how the current/transmission calculated by the standard Greens function method is independent of whether or not the chosen basis set is nonorthogonal, andmore » that the current for a given basis set is consistent with divisions in real space. The ambiguity known from charge population analysis for nonorthogonal bases does not carry over to calculations of charge flux.« less

  11. Solar coronal loop heating by cross-field wave transport

    NASA Technical Reports Server (NTRS)

    Amendt, Peter; Benford, Gregory

    1989-01-01

    Solar coronal arches heated by turbulent ion-cyclotron waves may suffer significant cross-field transport by these waves. Nonlinear processes fix the wave-propagation speed at about a tenth of the ion thermal velocity, which seems sufficient to spread heat from a central core into a large cool surrounding cocoon. Waves heat cocoon ions both through classical ion-electron collisions and by turbulent stochastic ion motions. Plausible cocoon sizes set by wave damping are in roughly kilometers, although the wave-emitting core may be only 100 m wide. Detailed study of nonlinear stabilization and energy-deposition rates predicts that nearby regions can heat to values intermediate between the roughly electron volt foot-point temperatures and the about 100 eV core, which is heated by anomalous Ohmic losses. A volume of 100 times the core volume may be affected. This qualitative result may solve a persistent problem with current-driven coronal heating; that it affects only small volumes and provides no way to produce the extended warm structures perceptible to existing instruments.

  12. High-order Two-Fluid Plasma Solver for Direct Numerical Simulations of Magnetic Flows with Realistic Transport Phenomena

    NASA Astrophysics Data System (ADS)

    Li, Zhaorui; Livescu, Daniel

    2017-11-01

    The two-fluid plasma equations with full transport terms, including temperature and magnetic field dependent ion and electron viscous stresses and heat fluxes, frictional drag force, and ohmic heating term have been solved by using the sixth-order non-dissipative compact scheme for plasma flows in several different regimes. In order to be able to fully resolve all the dynamically relevant time and length scales while maintaining computational feasibility, the assumptions of infinite speed of light and negligible electron inertia have been made. The accuracy and robustness of this two-fluid plasma solver in handling plasma flows have been tested against a series of canonical problems, such as Alfven-Whistler dispersion relation, electromagnetic plasma shock, magnetic reconnection, etc. For all test cases, grid convergence tests have been conducted to achieve fully resolved results. The roles of heat flux, viscosity, resistivity, Hall and Biermann battery effects, are investigated for the canonical flows studied.

  13. Enhanced Tunnel Spin Injection into Graphene using Chemical Vapor Deposited Hexagonal Boron Nitride

    PubMed Central

    Kamalakar, M. Venkata; Dankert, André; Bergsten, Johan; Ive, Tommy; Dash, Saroj P.

    2014-01-01

    The van der Waals heterostructures of two-dimensional (2D) atomic crystals constitute a new paradigm in nanoscience. Hybrid devices of graphene with insulating 2D hexagonal boron nitride (h-BN) have emerged as promising nanoelectronic architectures through demonstrations of ultrahigh electron mobilities and charge-based tunnel transistors. Here, we expand the functional horizon of such 2D materials demonstrating the quantum tunneling of spin polarized electrons through atomic planes of CVD grown h-BN. We report excellent tunneling behavior of h-BN layers together with tunnel spin injection and transport in graphene using ferromagnet/h-BN contacts. Employing h-BN tunnel contacts, we observe enhancements in both spin signal amplitude and lifetime by an order of magnitude. We demonstrate spin transport and precession over micrometer-scale distances with spin lifetime up to 0.46 nanosecond. Our results and complementary magnetoresistance calculations illustrate that CVD h-BN tunnel barrier provides a reliable, reproducible and alternative approach to address the conductivity mismatch problem for spin injection into graphene. PMID:25156685

  14. TiO2/BiVO4 Nanowire Heterostructure Photoanodes Based on Type II Band Alignment

    PubMed Central

    2016-01-01

    Metal oxides that absorb visible light are attractive for use as photoanodes in photoelectrosynthetic cells. However, their performance is often limited by poor charge carrier transport. We show that this problem can be addressed by using separate materials for light absorption and carrier transport. Here, we report a Ta:TiO2|BiVO4 nanowire photoanode, in which BiVO4 acts as a visible light-absorber and Ta:TiO2 acts as a high surface area electron conductor. Electrochemical and spectroscopic measurements provide experimental evidence for the type II band alignment necessary for favorable electron transfer from BiVO4 to TiO2. The host–guest nanowire architecture presented here allows for simultaneously high light absorption and carrier collection efficiency, with an onset of anodic photocurrent near 0.2 V vs RHE, and a photocurrent density of 2.1 mA/cm2 at 1.23 V vs RHE. PMID:27163032

  15. The intelligence of dual simplex method to solve linear fractional fuzzy transportation problem.

    PubMed

    Narayanamoorthy, S; Kalyani, S

    2015-01-01

    An approach is presented to solve a fuzzy transportation problem with linear fractional fuzzy objective function. In this proposed approach the fractional fuzzy transportation problem is decomposed into two linear fuzzy transportation problems. The optimal solution of the two linear fuzzy transportations is solved by dual simplex method and the optimal solution of the fractional fuzzy transportation problem is obtained. The proposed method is explained in detail with an example.

  16. Theory of interparticle correlations in dense, high-temperature plasmas. V - Electric and thermal conductivities

    NASA Technical Reports Server (NTRS)

    Ichimaru, S.; Tanaka, S.

    1985-01-01

    Ichimaru et al. (1985) have developed a general theory in which the interparticle correlations in dense, high-temperature multicomponent plasmas were formulated systematically over a wide range of plasma parameters. The present paper is concerned with an extension of this theory, taking into account the problems of the electronic transport in such high-density plasmas. It is shown that the resulting theory is capable of describing the transport coefficients accurately over a wide range of the density and temperature parameters. Attention is given to electric and thermal conductivities, generalized Coulomb logarithms, a comparison of the considered theory with other theories, and a comparison of the theory with experimental results.

  17. Beam transport and monitoring for laser plasma accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, K.; Sokollik, T.; Tilborg, J. van

    The controlled transport and imaging of relativistic electron beams from laser plasma accelerators (LPAs) are critical for their diagnostics and applications. Here we present the design and progress in the implementation of the transport and monitoring system for an undulator based electron beam diagnostic. Miniature permanent-magnet quadrupoles (PMQs) are employed to realize controlled transport of the LPA electron beams, and cavity based electron beam position monitors for non-invasive beam position detection. Also presented is PMQ calibration by using LPA electron beams with broadband energy spectrum. The results show promising performance for both transporting and monitoring. With the proper transport system,more » XUV-photon spectra from THUNDER will provide the momentum distribution of the electron beam with the resolution above what can be achieved by the magnetic spectrometer currently used in the LOASIS facility.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Printz, Adam D.; Lipomi, Darren J., E-mail: dlipomi@ucsd.edu

    The primary goal of the field concerned with organic semiconductors is to produce devices with performance approaching that of silicon electronics, but with the deformability—flexibility and stretchability—of conventional plastics. However, an inherent competition between deformability and charge transport has long been observed in these materials, and achieving the extreme (or even moderate) deformability implied by the word “plastic” concurrently with high charge transport may be elusive. This competition arises because the properties needed for high carrier mobilities—e.g., rigid chains in π-conjugated polymers and high degrees of crystallinity in the solid state—are antithetical to deformability. On the device scale, this competitionmore » can lead to low-performance yet mechanically robust devices, or high-performance devices that fail catastrophically (e.g., cracking, cohesive failure, and delamination) under strain. There are, however, some observations that contradict the notion of the mutual exclusivity of electronic and mechanical performances. These observations suggest that this problem may not be a fundamental trade-off, but rather an inconvenience that may be negotiated by a logical selection of materials and processing conditions. For example, the selection of the poly(3-alkylthiophene) with a critical side-chain length—poly(3-heptylthiophene) (n = 7)—marries the high deformability of poly(3-octylthiophene) (n = 8) with the high electronic performance (as manifested in photovoltaic efficiency) of poly(3-hexylthiophene) (n = 6). This review explores the relationship between deformability and charge transport in organic semiconductors. The principal conclusions are that reducing the competition between these two parameters is in fact possible, with two demonstrated routes being: (1) incorporation of softer, insulating material into a stiffer, semiconducting material and (2) increasing disorder in a highly ordered film, but not enough to disrupt charge transport pathways. The aim of this review is to provide a bridge between the fields interested in electronic properties and mechanical properties of conjugated polymers. We provide a high-level introduction to some of the important electronic and mechanical properties and measurement techniques for organic electronic devices, demonstrate an apparent competition between good electronic performance and mechanical deformability, and highlight potential strategies for overcoming this undesirable competition. A marriage of these two fields would allow for rational design of materials for applications requiring large-area, low-cost, printable devices that are ultra-flexible or stretchable, such as organic photovoltaic devices and wearable, conformable, or implantable sensors.« less

  19. 49 CFR 220.315 - Operational tests and inspections; further restrictions on use of electronic devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... restrictions on use of electronic devices. 220.315 Section 220.315 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.315 Operational tests and inspections; further restrictions on use of electronic...

  20. The Intelligence of Dual Simplex Method to Solve Linear Fractional Fuzzy Transportation Problem

    PubMed Central

    Narayanamoorthy, S.; Kalyani, S.

    2015-01-01

    An approach is presented to solve a fuzzy transportation problem with linear fractional fuzzy objective function. In this proposed approach the fractional fuzzy transportation problem is decomposed into two linear fuzzy transportation problems. The optimal solution of the two linear fuzzy transportations is solved by dual simplex method and the optimal solution of the fractional fuzzy transportation problem is obtained. The proposed method is explained in detail with an example. PMID:25810713

  1. Diazonium functionalized graphene: microstructure, electric, and magnetic properties.

    PubMed

    Huang, Ping; Jing, Long; Zhu, Huarui; Gao, Xueyun

    2013-01-15

    The unique honeycomb lattice structure of graphene gives rise to its outstanding electronic properties such as ultrahigh carrier mobility, ballistic transport, and more. However, a crucial obstacle to its use in the electronics industry is its lack of an energy bandgap. A covalent chemistry strategy could overcome this problem, and would have the benefits of being highly controllable and stable in the ambient environment. One possible approach is aryl diazonium functionalization. In this Account, we investigate the micromolecular/lattice structure, electronic structure, and electron-transport properties of nitrophenyl-diazonium-functionalized graphene. We find that nitrophenyl groups mainly adopt random and inhomogeneous configurations on the graphene basal plane, and that their bonding with graphene carbon atoms leads to slight elongation of the graphene lattice spacing. By contrast, hydrogenated graphene has a compressed lattice. Low levels of functionalization suppressed the electric conductivity of the resulting functionalized graphene, while highly functionalized graphene showed the opposite effect. This difference arises from the competition between the charge transfer effect and the scattering enhancement effect introduced by nitrophenyl groups bonding with graphene carbon atoms. Detailed electron transport measurements revealed that the nitrophenyl diazonium functionalization locally breaks the symmetry of graphene lattice, which leads to an increase in the density of state near the Fermi level, thus increasing the carrier density. On the other hand, the bonded nitrophenyl groups act as scattering centers, lowering the mean free path of the charge carriers and suppressing the carrier mobility. In rare cases, we observed ordered configurations of nitrophenyl groups in local domains on graphene flakes due to fluctuations in the reaction processes. We describe one example of such a superlattice, with a lattice constant nearly twice of that of pristine graphene. We performed comprehensive theoretical calculations to investigate the lattice and the electronic structure of the superlattice structure. Our results reveal that it is a thermodynamically stable, spin-polarized semiconductor with a bandgap of ∼0.5 eV. Our results demonstrate the possibility of controlling graphene's electronic properties using aryl diazonium functionalization. Asymmetric addition of aryl groups to different sublattices of graphene is a promising approach for producing ferromagnetic, semiconductive graphene, which will have broad applications in the electronic industry.

  2. Electron transport in biomolecular gaseous and liquid systems: theory, experiment and self-consistent cross-sections

    NASA Astrophysics Data System (ADS)

    White, R. D.; Cocks, D.; Boyle, G.; Casey, M.; Garland, N.; Konovalov, D.; Philippa, B.; Stokes, P.; de Urquijo, J.; González-Magaña, O.; McEachran, R. P.; Buckman, S. J.; Brunger, M. J.; Garcia, G.; Dujko, S.; Petrovic, Z. Lj

    2018-05-01

    Accurate modelling of electron transport in plasmas, plasma-liquid and plasma-tissue interactions requires (i) the existence of accurate and complete sets of cross-sections, and (ii) an accurate treatment of electron transport in these gaseous and soft-condensed phases. In this study we present progress towards the provision of self-consistent electron-biomolecule cross-section sets representative of tissue, including water and THF, by comparison of calculated transport coefficients with those measured using a pulsed-Townsend swarm experiment. Water–argon mixtures are used to assess the self-consistency of the electron-water vapour cross-section set proposed in de Urquijo et al (2014 J. Chem. Phys. 141 014308). Modelling of electron transport in liquids and soft-condensed matter is considered through appropriate generalisations of Boltzmann’s equation to account for spatial-temporal correlations and screening of the electron potential. The ab initio formalism is applied to electron transport in atomic liquids and compared with available experimental swarm data for these noble liquids. Issues on the applicability of the ab initio formalism for krypton are discussed and addressed through consideration of the background energy of the electron in liquid krypton. The presence of self-trapping (into bubble/cluster states/solvation) in some liquids requires a reformulation of the governing Boltzmann equation to account for the combined localised–delocalised nature of the resulting electron transport. A generalised Boltzmann equation is presented which is highlighted to produce dispersive transport observed in some liquid systems.

  3. 41 CFR 102-118.80 - Who is responsible for keeping my agency's electronic commerce transportation billing records?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... electronic transportation billing documents to: General Services Administration Transportation Audit Division... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Who is responsible for keeping my agency's electronic commerce transportation billing records? 102-118.80 Section 102-118.80...

  4. 41 CFR 102-118.80 - Who is responsible for keeping my agency's electronic commerce transportation billing records?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... electronic transportation billing documents to: General Services Administration Transportation Audit Division... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Who is responsible for keeping my agency's electronic commerce transportation billing records? 102-118.80 Section 102-118.80...

  5. 41 CFR 102-118.80 - Who is responsible for keeping my agency's electronic commerce transportation billing records?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... electronic transportation billing documents to: General Services Administration Transportation Audit Division... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Who is responsible for keeping my agency's electronic commerce transportation billing records? 102-118.80 Section 102-118.80...

  6. 41 CFR 102-118.80 - Who is responsible for keeping my agency's electronic commerce transportation billing records?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... electronic transportation billing documents to: General Services Administration Transportation Audit Division... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Who is responsible for keeping my agency's electronic commerce transportation billing records? 102-118.80 Section 102-118.80...

  7. 41 CFR 102-118.80 - Who is responsible for keeping my agency's electronic commerce transportation billing records?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... electronic transportation billing documents to: General Services Administration Transportation Audit Division... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Who is responsible for keeping my agency's electronic commerce transportation billing records? 102-118.80 Section 102-118.80...

  8. Computation of electron transport and relaxation properties in gases based on improved multi-term approximation of Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Cai, X. J.; Wang, X. X.; Zou, X. B.; Lu, Z. W.

    2018-01-01

    An understanding of electron kinetics is of importance in various applications of low temperature plasmas. We employ a series of model and real gases to investigate electron transport and relaxation properties based on improved multi-term approximation of the Boltzmann equation. First, a comparison of different methods to calculate the interaction integrals has been carried out; the effects of free parameters, such as vmax, lmax, and the arbitrary temperature Tb, on the convergence of electron transport coefficients are analyzed. Then, the modified attachment model of Ness et al. and SF6 are considered to investigate the effect of attachment on the electron transport properties. The deficiency of the pulsed Townsend technique to measure the electron transport and reaction coefficients in electronegative gases is highlighted when the reduced electric field is small. In order to investigate the effect of external magnetic field on the electron transport properties, Ar plasmas in high power impulse sputtering devices are considered. In the end, the electron relaxation properties of the Reid model under the influence of electric and magnetic fields are demonstrated.

  9. Unified computational model of transport in metal-insulating oxide-metal systems

    NASA Astrophysics Data System (ADS)

    Tierney, B. D.; Hjalmarson, H. P.; Jacobs-Gedrim, R. B.; Agarwal, Sapan; James, C. D.; Marinella, M. J.

    2018-04-01

    A unified physics-based model of electron transport in metal-insulator-metal (MIM) systems is presented. In this model, transport through metal-oxide interfaces occurs by electron tunneling between the metal electrodes and oxide defect states. Transport in the oxide bulk is dominated by hopping, modeled as a series of tunneling events that alter the electron occupancy of defect states. Electron transport in the oxide conduction band is treated by the drift-diffusion formalism and defect chemistry reactions link all the various transport mechanisms. It is shown that the current-limiting effect of the interface band offsets is a function of the defect vacancy concentration. These results provide insight into the underlying physical mechanisms of leakage currents in oxide-based capacitors and steady-state electron transport in resistive random access memory (ReRAM) MIM devices. Finally, an explanation of ReRAM bipolar switching behavior based on these results is proposed.

  10. 49 CFR 234.315 - Electronic recordkeeping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Electronic recordkeeping. 234.315 Section 234.315 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... railroad adequately limits and controls accessibility to the records retained in its electronic database...

  11. 49 CFR 234.315 - Electronic recordkeeping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Electronic recordkeeping. 234.315 Section 234.315 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... railroad adequately limits and controls accessibility to the records retained in its electronic database...

  12. 49 CFR 234.315 - Electronic recordkeeping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Electronic recordkeeping. 234.315 Section 234.315 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... railroad adequately limits and controls accessibility to the records retained in its electronic database...

  13. A compartmentalized solute transport model for redox zones in contaminated aquifers: 1. Theory and development

    USGS Publications Warehouse

    Abrams , Robert H.; Loague, Keith

    2000-01-01

    This paper, the first of two parts [see Abrams and Loague, this issue], takes the compartmentalized approach for the geochemical evolution of redox zones presented by Abrams et al. [1998] and embeds it within a solute transport framework. In this paper the compartmentalized approach is generalized to facilitate the description of its incorporation into a solute transport simulator. An equivalent formulation is developed which removes any discontinuities that may occur when switching compartments. Rate‐limited redox reactions are modeled with a modified Monod relationship that allows either the organic substrate or the electron acceptor to be the rate‐limiting reactant. Thermodynamic constraints are used to inhibit lower‐energy redox reactions from occurring under infeasible geochemical conditions without imposing equilibrium on the lower‐energy reactions. The procedure used allows any redox reaction to be simulated as being kinetically limited or thermodynamically limited, depending on local geochemical conditions. Empirical reaction inhibition methods are not needed. The sequential iteration approach (SIA), a technique which allows the number of solute transport equations to be reduced, is adopted to solve the coupled geochemical/solute transport problem. When the compartmentalized approach is embedded within the SIA, with the total analytical concentration of each component as the dependent variable in the transport equation, it is possible to reduce the number of transport equations even further than with the unmodified SIA. A one‐dimensional, coupled geochemical/solute transport simulation is presented in which redox zones evolve dynamically in time and space. The compartmentalized solute transport (COMPTRAN) model described in this paper enables the development of redox zones to be simulated under both kinetic and thermodynamic constraints. The modular design of COMPTRAN facilitates the use of many different, preexisting solute transport and geochemical codes. The companion paper [Abrams and Loague, this issue] presents examples of the application of COMPTRAN to field‐scale problems.

  14. Intrachain versus interchain electron transport in poly(fluorene-alt-benzothiadiazole): a quantum-chemical insight.

    PubMed

    Van Vooren, Antoine; Kim, Ji-Seon; Cornil, Jérôme

    2008-05-16

    Poly(9,9-di-n-octylfluorene-alt-benzothiadiazole) [F8BT], displays very different charge-transport properties for holes versus electrons when comparing annealed and pristine thin films and transport parallel (intrachain) and perpendicular (interchain) to the polymer axes. The present theoretical contribution focuses on the electron-transport properties of F8BT chains and compares the efficiency of intrachain versus interchain transport in the hopping regime. The theoretical results rationalize significantly lowered electron mobility in annealed F8BT thin films and the smaller mobility anisotropy (mu( parallel)/mu( perpendicular)) measured for electrons in aligned films (i.e. 5-7 compared to 10-15 for holes).

  15. A long way to the electrode: how do Geobacter cells transport their electrons?

    PubMed

    Bonanni, Pablo Sebastián; Schrott, Germán David; Busalmen, Juan Pablo

    2012-12-01

    The mechanism of electron transport in Geobacter sulfurreducens biofilms is a topic under intense study and debate. Although some proteins were found to be essential for current production, the specific role that each one plays in electron transport to the electrode remains to be elucidated and a consensus on the mechanism of electron transport has not been reached. In the present paper, to understand the state of the art in the topic, electron transport from inside of the cell to the electrode in Geobacter sulfurreducens biofilms is analysed, reviewing genetic studies, biofilm conductivity assays and electrochemical and spectro-electrochemical experiments. Furthermore, crucial data still required to achieve a deeper understanding are highlighted.

  16. Electroluminescent devices formed using semiconductor nanocrystals as an electron transport media and method of making such electroluminescent devices

    DOEpatents

    Alivisatos, A. Paul; Colvin, Vickie

    1996-01-01

    An electroluminescent device is described, as well as a method of making same, wherein the device is characterized by a semiconductor nanocrystal electron transport layer capable of emitting visible light in response to a voltage applied to the device. The wavelength of the light emitted by the device may be changed by changing either the size or the type of semiconductor nanocrystals used in forming the electron transport layer. In a preferred embodiment the device is further characterized by the capability of emitting visible light of varying wavelengths in response to changes in the voltage applied to the device. The device comprises a hole processing structure capable of injecting and transporting holes, and usually comprising a hole injecting layer and a hole transporting layer; an electron transport layer in contact with the hole processing structure and comprising one or more layers of semiconductor nanocrystals; and an electron injecting layer in contact with the electron transport layer for injecting electrons into the electron transport layer. The capability of emitting visible light of various wavelengths is principally based on the variations in voltage applied thereto, but the type of semiconductor nanocrystals used and the size of the semiconductor nanocrystals in the layers of semiconductor nanometer crystals may also play a role in color change, in combination with the change in voltage.

  17. Electron density window for best frequency performance, lowest phase noise and slowest degradation of GaN heterostructure field-effect transistors

    NASA Astrophysics Data System (ADS)

    Matulionis, Arvydas

    2013-07-01

    The problems in the realm of nitride heterostructure field-effect transistors (HFETs) are discussed in terms of a novel fluctuation-dissipation-based approach impelled by a recent demonstration of strong correlation of hot-electron fluctuations with frequency performance and degradation of the devices. The correlation has its genesis in the dissipation of the LO-mode heat accumulated by the non-equilibrium longitudinal optical phonons (hot phonons) confined in the channel that hosts the high-density hot-electron gas subjected to a high electric field. The LO-mode heat causes additional scattering of hot electrons and facilitates defect formation in a different manner than the conventional heat contained mainly in the acoustic phonon mode. We treat the heat dissipation problem in terms of the hot-phonon lifetime responsible for the conversion of the non-migrant hot phonons into migrant acoustic modes and other vibrations. The lifetime is measured over a wide range of electron density and supplied electric power. The optimal conditions for the dissipation of the LO-mode heat are associated with the plasmon-assisted disintegration of hot phonons. Signatures of plasmons are experimentally resolved in fluctuations, dissipation, hot-electron transport, transistor frequency performance, transistor phase noise and transistor reliability. In particular, a slower degradation and a faster operation of GaN-based HFETs take place inside the electron density window where the resonant plasmon-assisted ultrafast dissipation of the LO-mode heat comes into play. A novel heterostructure design for the possible improvement of HFET performance is proposed, implemented and tested.

  18. Unconventional transport in ultraclean graphene constriction devices

    NASA Astrophysics Data System (ADS)

    Pita Vidal, Marta; Ma, Qiong; Watanabe, Kenji; Taniguchi, Takashi; Jarillo-Herrero, Pablo

    Under mesoscopic conditions, strong electron-electron interactions and weak electron-phonon coupling in graphene lead to hydrodynamic behavior of electrons, resulting in unusual and unexpected transport phenomena. Specifically, this hydrodynamical collective cooperation of electrons is predicted to enhance the flow of electrical current, leading to a striking higher-than-ballistic conductance through a narrow geometrical constriction. To access the hydrodynamic regime, we fabricated high-quality, low-disorder graphene nano-constriction devices encapsulated by hexagonal boron nitride, where electron-electron scattering dominates impurity scattering. We will report on our systematic four-probe conductance measurements on devices with different constriction widths as a function of number density and temperature. The observation of quantum transport phenomena that are inconsistent with the non-interacting ballistic free-fermion model would suggest a macroscopic transport signature of electron viscosity.

  19. Amorphous oxides as electron transport layers in Cu(In,Ga)Se 2 superstrate devices: Amorphous oxides in Cu(In,Ga)Se 2 superstrate devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinemann, M. D.; van Hest, M. F. A. M.; Contreras, M.

    Cu(In,Ga)Se2 (CIGS) solar cells in superstrate configuration promise improved light management and higher stability compared to substrate devices, but they have yet to deliver comparable power conversion efficiencies (PCEs). Chemical reactions between the CIGS layer and the front contact were shown in the past to deteriorate the p-n junction in superstrate devices, which led to lower efficiencies compared to the substrate-type devices. This work aims to solve this problem by identifying a buffer layer between the CIGS layer and the front contact, acting as the electron transport layer, with an optimized electron affinity, doping density and chemical stability. Using combinatorialmore » material exploration we identified amorphous gallium oxide (a-GaOx) as a potentially suitable buffer layer material. The best results were obtained for a-GaOx with an electron affinity that was found to be comparable to that of CIGS. Based on the results of device simulations, it is assumed that detrimental interfacial acceptor states are present at the interface between CIGS and a-GaOx. However, these initial experiments indicate the potential of a-GaOx in this application, and how to reach performance parity with substrate devices, by further increase of its n-type doping density.« less

  20. Diffusive transport of energetic electrons in the solar corona: X-ray and radio diagnostics

    NASA Astrophysics Data System (ADS)

    Musset, S.; Kontar, E. P.; Vilmer, N.

    2018-02-01

    Context. Imaging spectroscopy in X-rays with RHESSI provides the possibility to investigate the spatial evolution of X-ray emitting electron distribution and therefore, to study transport effects on energetic electrons during solar flares. Aims: We study the energy dependence of the scattering mean free path of energetic electrons in the solar corona. Methods: We used imaging spectroscopy with RHESSI to study the evolution of energetic electrons distribution in various parts of the magnetic loop during the 2004 May 21 flare. We compared these observations with the radio observations of the gyrosynchrotron radiation of the same flare and with the predictions of a diffusive transport model. Results: X-ray analysis shows a trapping of energetic electrons in the corona and a spectral hardening of the energetic electron distribution between the top of the loop and the footpoints. Coronal trapping of electrons is stronger for radio-emitting electrons than for X-ray-emitting electrons. These observations can be explained by a diffusive transport model. Conclusions: We show that the combination of X-ray and radio diagnostics is a powerful tool to study electron transport in the solar corona in different energy domains. We show that the diffusive transport model can explain our observations, and in the range 25-500 keV, the scattering mean free path of electrons decreases with electron energy. We can estimate for the first time the scattering mean free path dependence on energy in the corona.

  1. Transparent amorphous oxide semiconductors for organic electronics: Application to inverted OLEDs

    PubMed Central

    Hosono, Hideo; Toda, Yoshitake; Kamiya, Toshio; Watanabe, Satoru

    2017-01-01

    Efficient electron transfer between a cathode and an active organic layer is one key to realizing high-performance organic devices, which require electron injection/transport materials with very low work functions. We developed two wide-bandgap amorphous (a-) oxide semiconductors, a-calcium aluminate electride (a-C12A7:e) and a-zinc silicate (a-ZSO). A-ZSO exhibits a low work function of 3.5 eV and high electron mobility of 1 cm2/(V · s); furthermore, it also forms an ohmic contact with not only conventional cathode materials but also anode materials. A-C12A7:e has an exceptionally low work function of 3.0 eV and is used to enhance the electron injection property from a-ZSO to an emission layer. The inverted electron-only and organic light-emitting diode (OLED) devices fabricated with these two materials exhibit excellent performance compared with the normal type with LiF/Al. This approach provides a solution to the problem of fabricating oxide thin-film transistor-driven OLEDs with both large size and high stability. PMID:28028243

  2. Electrical and thermal conductance quantization in nanostructures

    NASA Astrophysics Data System (ADS)

    Nawrocki, Waldemar

    2008-10-01

    In the paper problems of electron transport in mesoscopic structures and nanostructures are considered. The electrical conductance of nanowires was measured in a simple experimental system. Investigations have been performed in air at room temperature measuring the conductance between two vibrating metal wires with standard oscilloscope. Conductance quantization in units of G0 = 2e2/h = (12.9 kΩ)-1 up to five quanta of conductance has been observed for nanowires formed in many metals. The explanation of this universal phenomena is the formation of a nanometer-sized wire (nanowire) between macroscopic metallic contacts which induced, due to theory proposed by Landauer, the quantization of conductance. Thermal problems in nanowires are also discussed in the paper.

  3. Phonon thermal conduction in novel 2D materials.

    PubMed

    Xu, Xiangfan; Chen, Jie; Li, Baowen

    2016-12-07

    Recently, there has been increasing interest in phonon thermal transport in low-dimensional materials, due to the crucial importance of dissipating and managing heat in micro- and nano-electronic devices. Significant progress has been achieved for one-dimensional (1D) systems, both theoretically and experimentally. However, the study of heat conduction in two-dimensional (2D) systems is still in its infancy due to the limited availability of 2D materials and the technical challenges of fabricating suspended samples that are suitable for thermal measurements. In this review, we outline different experimental techniques and theoretical approaches for phonon thermal transport in 2D materials, discuss the problems and challenges of phonon thermal transport measurements and provide a comparison between existing experimental data. Special attention will be given to the effects of size, dimensionality, anisotropy and mode contributions in novel 2D systems, including graphene, boron nitride, MoS 2 , black phosphorous and silicene.

  4. Energy-filtered cold electron transport at room temperature.

    PubMed

    Bhadrachalam, Pradeep; Subramanian, Ramkumar; Ray, Vishva; Ma, Liang-Chieh; Wang, Weichao; Kim, Jiyoung; Cho, Kyeongjae; Koh, Seong Jin

    2014-09-10

    Fermi-Dirac electron thermal excitation is an intrinsic phenomenon that limits functionality of various electron systems. Efforts to manipulate electron thermal excitation have been successful when the entire system is cooled to cryogenic temperatures, typically <1 K. Here we show that electron thermal excitation can be effectively suppressed at room temperature, and energy-suppressed electrons, whose energy distribution corresponds to an effective electron temperature of ~45 K, can be transported throughout device components without external cooling. This is accomplished using a discrete level of a quantum well, which filters out thermally excited electrons and permits only energy-suppressed electrons to participate in electron transport. The quantum well (~2 nm of Cr2O3) is formed between source (Cr) and tunnelling barrier (SiO2) in a double-barrier-tunnelling-junction structure having a quantum dot as the central island. Cold electron transport is detected from extremely narrow differential conductance peaks in electron tunnelling through CdSe quantum dots, with full widths at half maximum of only ~15 mV at room temperature.

  5. Transportation optimization with fuzzy trapezoidal numbers based on possibility theory.

    PubMed

    He, Dayi; Li, Ran; Huang, Qi; Lei, Ping

    2014-01-01

    In this paper, a parametric method is introduced to solve fuzzy transportation problem. Considering that parameters of transportation problem have uncertainties, this paper develops a generalized fuzzy transportation problem with fuzzy supply, demand and cost. For simplicity, these parameters are assumed to be fuzzy trapezoidal numbers. Based on possibility theory and consistent with decision-makers' subjectiveness and practical requirements, the fuzzy transportation problem is transformed to a crisp linear transportation problem by defuzzifying fuzzy constraints and objectives with application of fractile and modality approach. Finally, a numerical example is provided to exemplify the application of fuzzy transportation programming and to verify the validity of the proposed methods.

  6. Electron Transport Modeling of Molecular Nanoscale Bridges Used in Energy Conversion Schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunietz, Barry D

    2016-08-09

    The goal of the research program is to reliably describe electron transport and transfer processes at the molecular level. Such insight is essential for improving molecular applications of solar and thermal energy conversion. We develop electronic structure models to study (1) photoinduced electron transfer and transport processes in organic semiconducting materials, and (2) charge and heat transport through molecular bridges. We seek fundamental understanding of key processes, which lead to design new experiments and ultimately to achieve systems with improved properties.

  7. Local re-acceleration and a modified thick target model of solar flare electrons

    NASA Astrophysics Data System (ADS)

    Brown, J. C.; Turkmani, R.; Kontar, E. P.; MacKinnon, A. L.; Vlahos, L.

    2009-12-01

    Context: The collisional thick target model (CTTM) of solar hard X-ray (HXR) bursts has become an almost “standard model” of flare impulsive phase energy transport and radiation. However, it faces various problems in the light of recent data, particularly the high electron beam density and anisotropy it involves. Aims: We consider how photon yield per electron can be increased, and hence fast electron beam intensity requirements reduced, by local re-acceleration of fast electrons throughout the HXR source itself, after injection. Methods: We show parametrically that, if net re-acceleration rates due to e.g. waves or local current sheet electric (E) fields are a significant fraction of collisional loss rates, electron lifetimes, and hence the net radiative HXR output per electron can be substantially increased over the CTTM values. In this local re-acceleration thick target model (LRTTM) fast electron number requirements and anisotropy are thus reduced. One specific possible scenario involving such re-acceleration is discussed, viz, a current sheet cascade (CSC) in a randomly stressed magnetic loop. Results: Combined MHD and test particle simulations show that local E fields in CSCs can efficiently accelerate electrons in the corona and and re-accelerate them after injection into the chromosphere. In this HXR source scenario, rapid synchronisation and variability of impulsive footpoint emissions can still occur since primary electron acceleration is in the high Alfvén speed corona with fast re-acceleration in chromospheric CSCs. It is also consistent with the energy-dependent time-of-flight delays in HXR features. Conclusions: Including electron re-acceleration in the HXR source allows an LRTTM modification of the CTTM in which beam density and anisotropy are much reduced, and alleviates theoretical problems with the CTTM, while making it more compatible with radio and interplanetary electron numbers. The LRTTM is, however, different in some respects such as spatial distribution of atmospheric heating by fast electrons.

  8. Electron transport and light-harvesting switches in cyanobacteria

    PubMed Central

    Mullineaux, Conrad W.

    2014-01-01

    Cyanobacteria possess multiple mechanisms for regulating the pathways of photosynthetic and respiratory electron transport. Electron transport may be regulated indirectly by controlling the transfer of excitation energy from the light-harvesting complexes, or it may be more directly regulated by controlling the stoichiometry, localization, and interactions of photosynthetic and respiratory electron transport complexes. Regulation of the extent of linear vs. cyclic electron transport is particularly important for controlling the redox balance of the cell. This review discusses what is known of the regulatory mechanisms and the timescales on which they occur, with particular regard to the structural reorganization needed and the constraints imposed by the limited mobility of membrane-integral proteins in the crowded thylakoid membrane. Switching mechanisms requiring substantial movement of integral thylakoid membrane proteins occur on slower timescales than those that require the movement only of cytoplasmic or extrinsic membrane proteins. This difference is probably due to the restricted diffusion of membrane-integral proteins. Multiple switching mechanisms may be needed to regulate electron transport on different timescales. PMID:24478787

  9. Tuning charge balance in PHOLEDs with ambipolar host materials to achieve high efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padmaperuma, Asanga B.; Koech, Phillip K.; Cosimbescu, Lelia

    2009-08-27

    The efficiency and stability of blue organic light emitting devices (OLEDs) continue to be a primary roadblock to developing organic solid state white lighting. For OLEDs to meet the high power conversion efficiency goal, they will require both close to 100% internal quantum efficiency and low operating voltage in a white light emitting device.1 It is generally accepted that such high quantum efficiency, can only be achieved with the use of organometallic phosphor doped OLEDs. Blue OLEDs are particularly important for solid state lighting. The simplest (and therefore likely the lowest cost) method of generating white light is to downmore » convert part of the emission from a blue light source with a system of external phosphors.2 A second method of generating white light requires the superposition of the light from red, green and blue OLEDs in the correct ratio. Either of these two methods (and indeed any method of generating white light with a high color rendering index) critically depends on a high efficiency blue light component.3 A simple OLED generally consists of a hole-injecting anode, a preferentially hole transporting organic layer (HTL), an emissive layer that contains the recombination zone and ideally transports both holes and electrons, a preferentially electron-transporting layer (ETL) and an electron-injecting cathode. Color in state-of-the-art OLEDs is generated by an organometallic phosphor incorporated by co-sublimation into the emissive layer (EML).4 New materials functioning as hosts, emitters, charge transporting, and charge blocking layers have been developed along with device architectures leading to electrophosphorescent based OLEDs with high quantum efficiencies near the theoretical limit. However, the layers added to the device architecture to enable high quantum efficiencies lead to higher operating voltages and correspondingly lower power efficiencies. Achievement of target luminance power efficiencies will require new strategies for lowering operating voltages, particularly if this is to be achieved in a device that can be manufactured at low cost. To avoid the efficiency losses associated with phosphorescence quenching by back-energy transfer from the dopant onto the host, the triplet excited states of the host material must be higher in energy than the triplet excited state of the dopant.5 This must be accomplished without sacrificing the charge transporting properties of the composite.6 Similar problems limit the efficiency of OLED-based displays, where blue light emitters are the least efficient and least stable. We previously demonstrated the utility of organic phosphine oxide (PO) materials as electron transporting HMs for FIrpic in blue OLEDs.7 However, the high reluctance of PO materials to oxidation and thus, hole injection limits the ability to balance charge injection and transport in the EML without relying on charge transport by the phosphorescent dopant. PO host materials were engineered to transport both electrons and holes in the EML and still maintain high triplet exciton energy to ensure efficient energy transfer to the dopant (Figure 1). There are examples of combining hole transporting moieties (mainly aromatic amines) with electron transport moieties (e.g., oxadiazoles, triazines, boranes)8 to develop new emitter and host materials for small molecule and polymer9 OLEDs. The challenge is to combine the two moieties without lowering the triplet energy of the target molecule. For example, coupling of a dimesitylphenylboryl moiety with a tertiary aromatic amine (FIAMBOT) results in intramolecular electron transfer from the amine to the boron atom through the bridging phenyl. The mesomeric effect of the dimesitylphenylboryl unit acts to extend conjugation and lowers triplet exciton energies (< 2.8 eV) rendering such systems inadequate as ambipolar hosts for blue phosphors.« less

  10. Transportation Network Analysis and Decomposition Methods

    DOT National Transportation Integrated Search

    1978-03-01

    The report outlines research in transportation network analysis using decomposition techniques as a basis for problem solutions. Two transportation network problems were considered in detail: a freight network flow problem and a scheduling problem fo...

  11. Required Equipment for Photo-Switchable Donor-Acceptor (D-A) Dyad Interfacial Self-Assembled Monolayers for Organic Photovoltaic Cells

    DTIC Science & Technology

    2014-01-24

    Interfacial Tuning via Electron-Blocking/Hole-Transport Layers and Indium Tin Oxide Surface Treatment in Bulk- Heterojunction Organic Photovoltaic Cells...devices Figure 3 shows the compounds we prepared to assemble on gold (Au) surfaces. Results of TPA-C60 dyads (1 and 2) self-assembled on Au electrodes...surface hydroxyl groups, respectively, we decided to prepare compounds 5-7 to attach as SAMs, see Figure 5. Difficulties and unexpected problems

  12. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS On control of kinematic parameters of ultracold neutrons in waveguides

    NASA Astrophysics Data System (ADS)

    Rivlin, Lev A.

    2010-10-01

    The possibility of controlling the kinematic parameters of ultracold neutrons (UCNs) is analysed by the example of a waveguide transfer and transformation of 2D images in ultracold neutrons and by the example of an increase in the concentration and deceleration/acceleration of ultracold neutrons during their transport in the waveguide with a variable cross section. The critical parameters of the problem are estimated, which indicates both consistency of the proposed approach and the emerging experimental limitations.

  13. Simulation of Current Transport in Polycrystalline CdTe Solar Cells

    NASA Astrophysics Data System (ADS)

    Troni, F.; Menozzi, R.; Colegrove, E.; Buurma, C.

    2013-11-01

    Polycrystalline thin-film CdTe solar cells have demonstrated laboratory efficiency exceeding 17% and are nowadays a commercial technology (albeit with somewhat lower efficiencies). The standard process features a poorly understood recrystallization step, obtained by annealing with a source of chlorine. This study uses two-dimensional numerical modeling to investigate current transport inside the polycrystalline CdTe absorber with and without recrystallization effects [increase of grain size and donor ClTe states at grain boundaries (GBs)]. Solving the Poisson equation and the drift-diffusion model for transport with Fermi statistics, while treating the optical problem by the one-dimensional transfer matrix method and complex refractive indexes, this study shows that: (i) in a columnar absorber (i.e., one where only vertical GBs exist), the presence of ClTe donor traps at GBs results in a dip in the band profiles that effectively serves as an electron collector, significantly increasing the short-circuit current and efficiency compared with nondecorated GBs; (ii) while the same dip acts as a hole barrier and thus can be expected to block holes from flowing when horizontal GBs are present, under illuminated conditions electron collection at GBs reduces the dip enough to allow substantial hole flow, and the cell performance is only moderately affected.

  14. MO-E-18C-04: Advanced Computer Simulation and Visualization Tools for Enhanced Understanding of Core Medical Physics Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naqvi, S

    2014-06-15

    Purpose: Most medical physics programs emphasize proficiency in routine clinical calculations and QA. The formulaic aspect of these calculations and prescriptive nature of measurement protocols obviate the need to frequently apply basic physical principles, which, therefore, gradually decay away from memory. E.g. few students appreciate the role of electron transport in photon dose, making it difficult to understand key concepts such as dose buildup, electronic disequilibrium effects and Bragg-Gray theory. These conceptual deficiencies manifest when the physicist encounters a new system, requiring knowledge beyond routine activities. Methods: Two interactive computer simulation tools are developed to facilitate deeper learning of physicalmore » principles. One is a Monte Carlo code written with a strong educational aspect. The code can “label” regions and interactions to highlight specific aspects of the physics, e.g., certain regions can be designated as “starters” or “crossers,” and any interaction type can be turned on and off. Full 3D tracks with specific portions highlighted further enhance the visualization of radiation transport problems. The second code calculates and displays trajectories of a collection electrons under arbitrary space/time dependent Lorentz force using relativistic kinematics. Results: Using the Monte Carlo code, the student can interactively study photon and electron transport through visualization of dose components, particle tracks, and interaction types. The code can, for instance, be used to study kerma-dose relationship, explore electronic disequilibrium near interfaces, or visualize kernels by using interaction forcing. The electromagnetic simulator enables the student to explore accelerating mechanisms and particle optics in devices such as cyclotrons and linacs. Conclusion: The proposed tools are designed to enhance understanding of abstract concepts by highlighting various aspects of the physics. The simulations serve as virtual experiments that give deeper and long lasting understanding of core principles. The student can then make sound judgements in novel situations encountered beyond routine clinical activities.« less

  15. Simulation of electron beam formation and transport in a gas-filled electron-optical system with a plasma emitter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grishkov, A. A.; Kornilov, S. Yu., E-mail: kornilovsy@gmail.com; Rempe, N. G.

    2016-07-15

    The results of computer simulations of the electron-optical system of an electron gun with a plasma emitter are presented. The simulations are performed using the KOBRA3-INP, XOOPIC, and ANSYS codes. The results describe the electron beam formation and transport. The electron trajectories are analyzed. The mechanisms of gas influence on the energy inhomogeneity of the beam and its current in the regions of beam primary formation, acceleration, and transport are described. Recommendations for optimizing the electron-optical system with a plasma emitter are presented.

  16. Balanced electron-hole transport in spin-orbit semimetal SrIrO3 heterostructures

    NASA Astrophysics Data System (ADS)

    Manca, Nicola; Groenendijk, Dirk J.; Pallecchi, Ilaria; Autieri, Carmine; Tang, Lucas M. K.; Telesio, Francesca; Mattoni, Giordano; McCollam, Alix; Picozzi, Silvia; Caviglia, Andrea D.

    2018-02-01

    Relating the band structure of correlated semimetals to their transport properties is a complex and often open issue. The partial occupation of numerous electron and hole bands can result in properties that are seemingly in contrast with one another, complicating the extraction of the transport coefficients of different bands. The 5 d oxide SrIrO3 hosts parabolic bands of heavy holes and light electrons in gapped Dirac cones due to the interplay between electron-electron interactions and spin-orbit coupling. We present a multifold approach relying on different experimental techniques and theoretical calculations to disentangle its complex electronic properties. By combining magnetotransport and thermoelectric measurements in a field-effect geometry with first-principles calculations, we quantitatively determine the transport coefficients of different conduction channels. Despite their different dispersion relationships, electrons and holes are found to have strikingly similar transport coefficients, yielding a holelike response under field-effect and thermoelectric measurements and a linear electronlike Hall effect up to 33 T.

  17. Stepping stones in the electron transport from cells to electrodes in Geobacter sulfurreducens biofilms.

    PubMed

    Bonanni, Pablo Sebastián; Massazza, Diego; Busalmen, Juan Pablo

    2013-07-07

    Geobacter sulfurreducens bacteria grow on biofilms and have the particular ability of using polarized electrodes as the final electron acceptor of their respiratory chain. In these biofilms, electrons are transported through distances of more than 50 μm before reaching the electrode. The way in which electrons are transported across the biofilm matrix through such large distances remains under intense discussion. None of the two mechanisms proposed for explaining the process, electron hopping through outer membrane cytochromes and metallic like conduction through conductive PilA filaments, can account for all the experimental evidence collected so far. Aiming at providing new elements for understanding the basis for electron transport, in this perspective article we present a modelled structure of Geobacter pilus. Its analysis in combination with already existing experimental evidence gives support to the proposal of the "stepping stone" mechanism, in which the combined action of pili and cytochromes allows long range electron transport through the biofilm.

  18. 49 CFR Appendix C to Part 599 - Electronic Transaction Screen

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Electronic Transaction Screen C Appendix C to Part 599 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC... ASSISTANCE TO RECYCLE AND SAVE ACT PROGRAM Pt. 599, App. C Appendix C to Part 599—Electronic Transaction...

  19. 49 CFR Appendix C to Part 599 - Electronic Transaction Screen

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Electronic Transaction Screen C Appendix C to Part 599 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC... ASSISTANCE TO RECYCLE AND SAVE ACT PROGRAM Pt. 599, App. C Appendix C to Part 599—Electronic Transaction...

  20. 49 CFR Appendix C to Part 599 - Electronic Transaction Screen

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false Electronic Transaction Screen C Appendix C to Part 599 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC... ASSISTANCE TO RECYCLE AND SAVE ACT PROGRAM Pt. 599, App. C Appendix C to Part 599—Electronic Transaction...

  1. 49 CFR Appendix C to Part 599 - Electronic Transaction Screen

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 7 2014-10-01 2014-10-01 false Electronic Transaction Screen C Appendix C to Part 599 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC... ASSISTANCE TO RECYCLE AND SAVE ACT PROGRAM Pt. 599, App. C Appendix C to Part 599—Electronic Transaction...

  2. 49 CFR Appendix C to Part 599 - Electronic Transaction Screen

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false Electronic Transaction Screen C Appendix C to Part 599 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC... ASSISTANCE TO RECYCLE AND SAVE ACT PROGRAM Pt. 599, App. C Appendix C to Part 599—Electronic Transaction...

  3. Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO 2 nanocrystals as the robust electron-transporting layer

    DOE PAGES

    Zhu, Zonglong; Bai, Yang; Liu, Xiao; ...

    2016-05-11

    Here highly crystalline SnO 2 is demonstrated to serve as a stable and robust electron-transporting layer for high-performance perovskite solar cells. Benefiting from its high crystallinity, the relatively thick SnO 2 electron-transporting layer (≈120 nm) provides a respectable electron-transporting property to yield a promising power conversion efficiency (PCE)(18.8%) Over 90% of the initial PCE can be retained after 30 d storage in ambient with ≈70% relative humidity.

  4. Electron and hole transport in the organic small molecule α-NPD

    NASA Astrophysics Data System (ADS)

    Rohloff, R.; Kotadiya, N. B.; Crǎciun, N. I.; Blom, P. W. M.; Wetzelaer, G. A. H.

    2017-02-01

    Electron and hole transport properties of the organic small molecule N,N'-Di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine are investigated by space-charge-limited current measurements. The hole transport shows trap-free behavior with a mobility of 2.3 × 10-8 m2/Vs at vanishing carrier density and electric field. The electron transport, on the other hand, shows heavily trap-limited behavior, which leads to highly unbalanced transport. A trap concentration of 1.3 × 1024 m-3 was found by modeling the electron currents, similar to the universal trap concentration found in conjugated polymers. This indicates that electron trapping is a generic property of organic semiconductors, ranging from vacuum-deposited small-molecules to solution-processed conjugated polymers.

  5. Color stable white phosphorescent organic light emitting diodes with red emissive electron transport layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wook Kim, Jin; Yoo, Seung Il; Sung Kang, Jin

    2015-06-28

    We analyzed the performance of multi-emissive white phosphorescent organic light-emitting diodes (PHOLEDs) in relation to various red emitting sites of hole and electron transport layers (HTL and ETL). The shift of the recombination zone producing stable white emission in PHOLEDs was utilized as luminance was increased with red emission in its electron transport layer. Multi-emissive white PHOLEDs including the red light emitting electron transport layer yielded maximum external quantum efficiency of 17.4% with CIE color coordinates (−0.030, +0.001) shifting only from 1000 to 10 000 cd/m{sup 2}. Additionally, we observed a reduction of energy loss in the white PHOLED via Ir(piq){submore » 3} as phosphorescent red dopant in electron transport layer.« less

  6. Electron-hole collision limited transport in charge-neutral bilayer graphene

    NASA Astrophysics Data System (ADS)

    Nam, Youngwoo; Ki, Dong-Keun; Soler-Delgado, David; Morpurgo, Alberto F.

    2017-12-01

    Ballistic transport occurs whenever electrons propagate without collisions deflecting their trajectory. It is normally observed in conductors with a negligible concentration of impurities, at low temperature, to avoid electron-phonon scattering. Here, we use suspended bilayer graphene devices to reveal a new regime, in which ballistic transport is not limited by scattering with phonons or impurities, but by electron-hole collisions. The phenomenon manifests itself in a negative four-terminal resistance that becomes visible when the density of holes (electrons) is suppressed by gate-shifting the Fermi level in the conduction (valence) band, above the thermal energy. For smaller densities, transport is diffusive, and the measured conductivity is reproduced quantitatively, with no fitting parameters, by including electron-hole scattering as the only process causing velocity relaxation. Experiments on a trilayer device show that the phenomenon is robust and that transport at charge neutrality is governed by the same physics. Our results provide a textbook illustration of a transport regime that had not been observed previously and clarify the nature of conduction through charge-neutral graphene under conditions in which carrier density inhomogeneity is immaterial. They also demonstrate that transport can be limited by a fully electronic mechanism, originating from the same microscopic processes that govern the physics of Dirac-like plasmas.

  7. Anomalous Transport in High Beta Poloidal DIII-D Discharges

    NASA Astrophysics Data System (ADS)

    Pankin, A.; Garofalo, A.; Kritz, A.; Rafiq, T.; Weiland, J.

    2016-10-01

    Dominant instabilities that drive anomalous transport in high beta poloidal DIII-D discharges are investigated using the MMM7.1, and TGLF models in the predictive integrated modeling TRANSP code. The ion thermal transport is found to be strongly reduced in these discharges, but turbulence driven by the ITG modes along with the neoclassical transport still play a role in determining the ion temperature profiles. The electron thermal transport driven by the ETG modes impact the electron temperature profiles. The E × B flow shear is found to have a small effect in reducing the electron thermal transport. The Shafranov shift is found to strongly reduce the anomalous transport in the high beta poloidal DIII-D discharges. The reduction of Shafranov shift can destroy the ion internal transport barrier and can result in significantly lower core temperatures. The MMM7.1 model predicts electron and ion temperature profiles reasonably well, but it fails to accurately predict the properties of electron internal transport barrier, which indicates that the ETG model in MMM7.1 needs to be improved in the high beta poloidal operational regime. Research supported by the Office of Science, US DOE.

  8. 49 CFR 40.205 - How are drug test problems corrected?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false How are drug test problems corrected? 40.205 Section 40.205 Transportation Office of the Secretary of Transportation PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Problems in Drug Tests § 40.205 How are drug test problems corrected? (a) As a collector, you have the...

  9. Energy-filtered cold electron transport at room temperature

    PubMed Central

    Bhadrachalam, Pradeep; Subramanian, Ramkumar; Ray, Vishva; Ma, Liang-Chieh; Wang, Weichao; Kim, Jiyoung; Cho, Kyeongjae; Koh, Seong Jin

    2014-01-01

    Fermi-Dirac electron thermal excitation is an intrinsic phenomenon that limits functionality of various electron systems. Efforts to manipulate electron thermal excitation have been successful when the entire system is cooled to cryogenic temperatures, typically <1 K. Here we show that electron thermal excitation can be effectively suppressed at room temperature, and energy-suppressed electrons, whose energy distribution corresponds to an effective electron temperature of ~45 K, can be transported throughout device components without external cooling. This is accomplished using a discrete level of a quantum well, which filters out thermally excited electrons and permits only energy-suppressed electrons to participate in electron transport. The quantum well (~2 nm of Cr2O3) is formed between source (Cr) and tunnelling barrier (SiO2) in a double-barrier-tunnelling-junction structure having a quantum dot as the central island. Cold electron transport is detected from extremely narrow differential conductance peaks in electron tunnelling through CdSe quantum dots, with full widths at half maximum of only ~15 mV at room temperature. PMID:25204839

  10. Experimental Studies of Lateral Electron Transport in Gallium Arsenide-Aluminum Gallium Arsenide Heterostructures.

    DTIC Science & Technology

    1982-12-01

    AD-A125 858 EXPERIMENTAL STUDIES OF LATERAL ELECTRON TRANSPORT IN 1/3 GALLIUM ARSENIDE-RL..(U) ILLINOIS UNIV AT URBANA COORDINATED SCIENCE LAB N R...EXPERIMENTAL STUDIES OF LATERALXILECTRON TRANSPORT ,:g IN GALLIUM ARSENIDE -ALUMINUM GALLIUM ARSENIDE- -HETEROSTRUCTURES APRVE O PUBLICRLEAS.DSRBUINULMTE. 2...EXPERIMENTAL STUDIES OF LATERAL ELECTRON TRANSPORT IN GALLIUM ARSENIDE-ALUMINUM GALLIUM ARSENIDE Technical Report R-975 HETEROSTRUCTURES 6. PERFORMING ONG

  11. POSSIBLE EVIDENCE FOR A FISK-TYPE HELIOSPHERIC MAGNETIC FIELD. I. ANALYZING ULYSSES/KET ELECTRON OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sternal, O.; Heber, B.; Kopp, A.

    The propagation of energetic charged particles in the heliospheric magnetic field is one of the fundamental problems in heliophysics. In particular, the structure of the heliospheric magnetic field remains an unsolved problem and is discussed as a controversial topic. The first successful analytic approach to the structure of the heliospheric magnetic field was the Parker field. However, the measurements of the Ulysses spacecraft at high latitudes revealed the possible need for refinements of the existing magnetic field model during solar minimum. Among other reasons, this led to the development of the Fisk field. This approach is highly debated and couldmore » not be ruled out with magnetic field measurements so far. A promising method to trace this magnetic field structure is to model the propagation of electrons in the energy range of a few MeV. Employing three-dimensional and time-dependent simulations of the propagation of energetic electrons, this work shows that the influence of a Fisk-type field on the particle transport in the heliosphere leads to characteristic variations of the electron intensities on the timescale of a solar rotation. For the first time it is shown that the Ulysses count rates of 2.5-7 MeV electrons contain the imprint of a Fisk-type heliospheric magnetic field structure. From a comparison of simulation results and the Ulysses count rates, realistic parameters for the Fisk theory are derived. Furthermore, these parameters are used to investigate the modeled relative amplitudes of protons and electrons, including the effects of drifts.« less

  12. Monte Carlo calculation of proton stopping power and ranges in water for therapeutic energies

    NASA Astrophysics Data System (ADS)

    Bozkurt, Ahmet

    2017-09-01

    Monte Carlo is a statistical technique for obtaining numerical solutions to physical or mathematical problems that are analytically impractical, if not impossible, to solve. For charged particle transport problems, it presents many advantages over deterministic methods since such problems require a realistic description of the problem geometry, as well as detailed tracking of every source particle. Thus, MC can be considered as a powerful alternative to the well-known Bethe-Bloche equation where an equation with various corrections is used to obtain stopping power and ranges of electrons, positrons, protons, alphas, etc. This study presents how a stochastic method such as MC can be utilized to obtain certain quantities of practical importance related to charged particle transport. Sample simulation geometries were formed for water medium where disk shaped thin detectors were employed to compute average values of absorbed dose and flux at specific distances. For each detector cell, these quantities were utilized to evaluate the values of the range and the stopping power, as well as the shape of Bragg curve, for mono-energetic point source pencil beams of protons. The results were found to be ±2% compared to the data from the NIST compilation. It is safe to conclude that this approach can be extended to determine dosimetric quantities for other media, energies and charged particle types.

  13. 49 CFR 220.305 - Use of personal electronic devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.305 Use of personal electronic devices. A railroad operating employee must have each personal electronic device turned off with... 49 Transportation 4 2010-10-01 2010-10-01 false Use of personal electronic devices. 220.305...

  14. 49 CFR 220.305 - Use of personal electronic devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Use of personal electronic devices. 220.305... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.305 Use of personal electronic devices. A railroad operating employee must have each personal electronic device turned off with...

  15. 49 CFR 220.305 - Use of personal electronic devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Use of personal electronic devices. 220.305... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.305 Use of personal electronic devices. A railroad operating employee must have each personal electronic device turned off with...

  16. Strain-modulated anisotropy of quantum transport properties in single-layer silicene: Spin and valley filtering

    NASA Astrophysics Data System (ADS)

    Farokhnezhad, M.; Esmaeilzadeh, M.; Shakouri, Kh.

    2017-11-01

    Strained two-dimensional crystals often offer novel physical properties that are usable to improve their electronic performance. Here we show by the theory of elasticity combined with the tight-binding approximation that local strains in silicene can open up new prospects for generating fully polarized spin and valley currents. The trajectory of electrons flowing through locally strained regions obeys the same behavior as light waves propagating in uniaxial anisotropic materials. The refraction angle of electrons at local strain boundaries exhibits a strong dependence on the valley degree of freedom, allowing for valley filtering based on the strain direction. The ability to control the spin polarization direction additionally requires a perpendicular electric field to be involved in combination with the local strain. Further similarities of the problem with optics of anisotropic materials are elucidated and possible applications in spin- and valleytronic nanodevices are discussed.

  17. Stokes paradox in electronic Fermi liquids

    NASA Astrophysics Data System (ADS)

    Lucas, Andrew

    2017-03-01

    The Stokes paradox is the statement that in a viscous two-dimensional fluid, the "linear response" problem of fluid flow around an obstacle is ill posed. We present a simple consequence of this paradox in the hydrodynamic regime of a Fermi liquid of electrons in two-dimensional metals. Using hydrodynamics and kinetic theory, we estimate the contribution of a single cylindrical obstacle to the global electrical resistance of a material, within linear response. Momentum relaxation, present in any realistic electron liquid, resolves the classical paradox. Nonetheless, this paradox imprints itself in the resistance, which can be parametrically larger than predicted by Ohmic transport theory. We find a remarkably rich set of behaviors, depending on whether or not the quasiparticle dynamics in the Fermi liquid should be treated as diffusive, hydrodynamic, or ballistic on the length scale of the obstacle. We argue that all three types of behavior are observable in present day experiments.

  18. Design, fabrication and characterization of a double layer solid oxide fuel cell (DLFC)

    NASA Astrophysics Data System (ADS)

    Wang, Guangjun; Wu, Xiangying; Cai, Yixiao; Ji, Yuan; Yaqub, Azra; Zhu, Bin

    2016-11-01

    A double layer solid oxide fuel cell (DLSOFC) without using the electrolyte (layer) has been designed by integrating advantages of positive electrode material of lithium ion battery(LiNi0.8Co0.15Al0.05O2) and oxygen-permeable membranes material (trace amount cobalt incorporated terbium doped ceria, TDC + Co) based on the semiconductor physics principle. Instead of using an electrolyte layer, the depletion layer between the anode and cathode served as an electronic insulator to block the electrons but to maintain the electrolyte function for ionic transport. Thus the device with two layers can realize the function of SOFC and at the same time avoids the electronic short circuiting problem. Such novel DLFC showed good performance at low temperatures, for instance, a maximum power density of 230 mWcm-2 was achieved at 500 °C. The working principle of the new device is presented.

  19. System design considerations for a production-grade, ESR-based x-ray lithography beamline

    NASA Astrophysics Data System (ADS)

    Kovacs, Stephen; Melore, Dan; Cerrina, Franco; Cole, Richard K.

    1991-08-01

    As electron storage ring (ESR) based x-ray lithography technology moves closer to becoming an industrial reality, more and more attention has been devoted to studying problem areas related to its application in the production environment. A principle component is the x-ray lithography beamline (XLBL) and its associated design requirements. XLBL, an x-ray radiation transport system, is one of the three major subunits in the ESR-based x-ray lithography system (XLS) and has a pivotal role in defining performance characteristics of the entire XLS. Its major functions are to transport the synchrotron orbital radiation (SOR) to the lithography target area with defined efficiency and to modify SOR into the spectral distribution defined by the lithography process window. These functions must be performed reliably in order to satisfy the required high production rate and ensure 0.25 micron resolution lithography conditions. In this paper the authors attempt to answer some specific questions that arise during the formulation of an XLBL system design. Three principle issues that are essential to formulating a design are (1) Radiation transport efficiency, (2) X-ray optical configurations in the beamline, (3) Beamline system configurations. Some practical solutions to thee problem areas are presented, and the effects of these parameters on lithography production rate are examined.

  20. Theory of thermal conductivity in the disordered electron liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwiete, G., E-mail: schwiete@uni-mainz.de; Finkel’stein, A. M.

    2016-03-15

    We study thermal conductivity in the disordered two-dimensional electron liquid in the presence of long-range Coulomb interactions. We describe a microscopic analysis of the problem using the partition function defined on the Keldysh contour as a starting point. We extend the renormalization group (RG) analysis developed for thermal transport in the disordered Fermi liquid and include scattering processes induced by the long-range Coulomb interaction in the sub-temperature energy range. For the thermal conductivity, unlike for the electrical conductivity, these scattering processes yield a logarithmic correction that may compete with the RG corrections. The interest in this correction arises from themore » fact that it violates the Wiedemann–Franz law. We checked that the sub-temperature correction to the thermal conductivity is not modified either by the inclusion of Fermi liquid interaction amplitudes or as a result of the RG flow. We therefore expect that the answer obtained for this correction is final. We use the theory to describe thermal transport on the metallic side of the metal–insulator transition in Si MOSFETs.« less

  1. Charge Transport Phenomena in Detectors of the Cryogenic Dark Matter Search

    NASA Astrophysics Data System (ADS)

    Sundqvist, Kyle

    2008-03-01

    The Cryogenic Dark Matter Search (CDMS) seeks to detect putative weakly-interacting massive particles (WIMPS), which could explain the dark matter problem in cosmology and particle physics. By simultaneously measuring the number of charge carriers and the energy in athermal phonons created by particle interactions in intrinsic Ge and Si crystals at a temperature of 40 mK, a signature response for each event is produced. This response, combined with phonon pulse-shape information, allows CDMS to actively discriminate candidate WIMP interactions with nuclei apart from electromagnetic radioactive background which interacts with electrons. The challenges associated with these techniques are unique. Carrier drift-fields are maintained at only a few V/cm, else drift-emitted Luke-Neganov phonons would dominate the phonons of the original interaction. Under such conditions, carrier scattering is dominated by zero-point fluctuations of the lattice ions. It has been an open question how well the 8 Kelvin data prominent in the literature depicts this case. We compare the simulated transport properties of electrons and holes in <100> Ge at 40 mK and at 8 K, and apply this understanding to our detectors.

  2. Electron Fluid Description of Wave-Particle Interactions in Strong Buneman Turbulence

    NASA Astrophysics Data System (ADS)

    Che, Haihong

    2013-10-01

    To understand the nature of anomalous resistivity in magnetic reconnection, we investigate turbulence-induced momentum transport and energy dissipation associated with electron heating in Buneman instability. Using 3D particle-in-cell simulations, we find that the macroscopic effects generated by wave-particle interactions can be described by a set of electron fluid equations. These equations show that the energy dissipation and momentum transports in Buneman instability are locally quasi-static but globally non-static and irreversible. Turbulence drag dissipates both the bulk energy of electron streams and the associated magnetic energy. The decrease of magnetic field maintains an inductive electric field that re-accelerates electrons. The net loss of streaming energy is converted into electron heat and increases the electron Boltzmann entropy. The growth of self-sustained Buneman waves satisfies a Bernoulli-like equation which relates the turbulence-induced convective momentum transport and thermal momentum transport. Electron trapping and de-trapping drives local momentum transports, while phase mixing converts convective momentum into thermal momentum.These two local momentum transports sustain the Buneman waves and act as the micro-macro link in the anomalous heating process. This research is supported by the NASA Postdoctoral Program at NASA/GSFC administered by Oak Ridge Associated Universities through a contract with NASA.

  3. Quantum transport and the Wigner distribution function for Bloch electrons in spatially homogeneous electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Iafrate, G. J.; Sokolov, V. N.; Krieger, J. B.

    2017-10-01

    The theory of Bloch electron dynamics for carriers in homogeneous electric and magnetic fields of arbitrary time dependence is developed in the framework of the Liouville equation. The Wigner distribution function (WDF) is determined from the single-particle density matrix in the ballistic regime, i.e., collision effects are excluded. In the theory, the single-particle transport equation is established with the electric field described in the vector potential gauge, and the magnetic field is treated in the symmetric gauge. No specific assumptions are made concerning the form of the initial distribution in momentum or configuration space. The general approach is to employ the accelerated Bloch state representation (ABR) as a basis so that the dependence upon the electric field, including multiband Zener tunneling, is treated exactly. Further, in the formulation of the WDF, we transform to a new set of variables so that the final WDF is gauge invariant and is expressed explicitly in terms of the position, kinetic momentum, and time. The methodology for developing the WDF is illustrated by deriving the exact WDF equation for free electrons in homogeneous electric and magnetic fields resulting in the same form as given by the collisionless Boltzmann transport equation (BTE). The methodology is then extended to the case of electrons described by an effective Hamiltonian corresponding to an arbitrary energy band function; the exact WDF equation results for the effective Hamiltonian case are shown to approximate the free electron results when taken to second order in the magnetic field. As a corollary, in these cases, it is shown that if the WDF is a wave packet, then the time rate of change of the electron quasimomentum is given by the Lorentz force. In treating the problem of Bloch electrons in a periodic potential in the presence of homogeneous electric and magnetic fields, the methodology for deriving the WDF reveals a multiband character due to the inherent nature of the Bloch states. The K0 representation of the Bloch envelope functions is employed to express the multiband WDF in a useful form. In examining the single-band WDF, it is found that the collisionless WDF equation matches the equivalent BTE to first order in the magnetic field. These results are necessarily extended to second order in the magnetic field by employing a unitary transformation that diagonalizes the Hamiltonian using the ABR to second order. The unitary transformation process includes a discussion of the multiband WDF transport analysis and the identification of the combined Zener-magnetic-field induced tunneling.

  4. Realization of a universal patient identifier for electronic medical records through biometric technology.

    PubMed

    Leonard, D C; Pons, Alexander P; Asfour, Shihab S

    2009-07-01

    The technology exists for the migration of healthcare data from its archaic paper-based system to an electronic one, and, once in digital form, to be transported anywhere in the world in a matter of seconds. The advent of universally accessible healthcare data has benefited all participants, but one of the outstanding problems that must be addressed is how the creation of a standardized nationwide electronic healthcare record system in the United States would uniquely identify and match a composite of an individual's recorded healthcare information to an identified individual patients out of approximately 300 million people to a 1:1 match. To date, a few solutions to this problem have been proposed that are limited in their effectiveness. We propose the use of biometric technology within our fingerprint, iris, retina scan, and DNA (FIRD) framework, which is a multiphase system whose primary phase is a multilayer consisting of these four types of biometric identifiers: 1) fingerprint; 2) iris; 3) retina scan; and 4) DNA. In addition, it also consists of additional phases of integration, consolidation, and data discrepancy functions to solve the unique association of a patient to their medical data distinctively. This would allow a patient to have real-time access to all of their recorded healthcare information electronically whenever it is necessary, securely with minimal effort, greater effectiveness, and ease.

  5. Computer modeling of electron and proton transport in chloroplasts.

    PubMed

    Tikhonov, Alexander N; Vershubskii, Alexey V

    2014-07-01

    Photosynthesis is one of the most important biological processes in biosphere, which provides production of organic substances from atmospheric CO2 and water at expense of solar energy. In this review, we contemplate computer models of oxygenic photosynthesis in the context of feedback regulation of photosynthetic electron transport in chloroplasts, the energy-transducing organelles of the plant cell. We start with a brief overview of electron and proton transport processes in chloroplasts coupled to ATP synthesis and consider basic regulatory mechanisms of oxygenic photosynthesis. General approaches to computer simulation of photosynthetic processes are considered, including the random walk models of plastoquinone diffusion in thylakoid membranes and deterministic approach to modeling electron transport in chloroplasts based on the mass action law. Then we focus on a kinetic model of oxygenic photosynthesis that includes key stages of the linear electron transport, alternative pathways of electron transfer around photosystem I (PSI), transmembrane proton transport and ATP synthesis in chloroplasts. This model includes different regulatory processes: pH-dependent control of the intersystem electron transport, down-regulation of photosystem II (PSII) activity (non-photochemical quenching), the light-induced activation of the Bassham-Benson-Calvin (BBC) cycle. The model correctly describes pH-dependent feedback control of electron transport in chloroplasts and adequately reproduces a variety of experimental data on induction events observed under different experimental conditions in intact chloroplasts (variations of CO2 and O2 concentrations in atmosphere), including a complex kinetics of P700 (primary electron donor in PSI) photooxidation, CO2 consumption in the BBC cycle, and photorespiration. Finally, we describe diffusion-controlled photosynthetic processes in chloroplasts within the framework of the model that takes into account complex architecture of chloroplasts and lateral heterogeneity of lamellar system of thylakoids. The lateral profiles of pH in the thylakoid lumen and in the narrow gap between grana thylakoids have been calculated under different metabolic conditions. Analyzing topological aspects of diffusion-controlled stages of electron and proton transport in chloroplasts, we conclude that along with the NPQ mechanism of attenuation of PSII activity and deceleration of PQH2 oxidation by the cytochrome b6f complex caused by the lumen acidification, the intersystem electron transport may be down-regulated due to the light-induced alkalization of the narrow partition between adjacent thylakoids of grana. The computer models of electron and proton transport described in this article may be integrated as appropriate modules into a comprehensive model of oxygenic photosynthesis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Ionic-Electronic Ambipolar Transport in Metal Halide Perovskites: Can Electronic Conductivity Limit Ionic Diffusion?

    PubMed

    Kerner, Ross A; Rand, Barry P

    2018-01-04

    Ambipolar transport describes the nonequilibrium, coupled motion of positively and negatively charged particles to ensure that internal electric fields remain small. It is commonly invoked in the semiconductor community where the motion of excess electrons and holes drift and diffuse together. However, the concept of ambipolar transport is not limited to semiconductor physics. Materials scientists working on ion conducting ceramics understand ambipolar transport dictates the coupled diffusion of ions and the rate is limited by the ion with the lowest diffusion coefficient. In this Perspective, we review a third application of ambipolar transport relevant to mixed ionic-electronic conducting materials for which the motion of ions is expected to be coupled to electronic carriers. In this unique situation, the ambipolar diffusion model has been successful at explaining the photoenhanced diffusion of metal ions in chalcogenide glasses and other properties of materials. Recent examples of photoenhanced phenomena in metal halide perovskites are discussed and indicate that mixed ionic-electronic ambipolar transport is similarly important for a deep understanding of these emerging materials.

  7. 49 CFR 220.303 - General use of electronic devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.303 General use of electronic devices. A railroad operating employee shall not use an electronic device if that use would... 49 Transportation 4 2010-10-01 2010-10-01 false General use of electronic devices. 220.303 Section...

  8. 49 CFR 220.303 - General use of electronic devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false General use of electronic devices. 220.303 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.303 General use of electronic devices. A railroad operating employee shall not use an electronic device if that use would...

  9. 49 CFR 220.303 - General use of electronic devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false General use of electronic devices. 220.303 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.303 General use of electronic devices. A railroad operating employee shall not use an electronic device if that use would...

  10. Hybrid matrix method for stable numerical analysis of the propagation of Dirac electrons in gapless bilayer graphene superlattices

    NASA Astrophysics Data System (ADS)

    Briones-Torres, J. A.; Pernas-Salomón, R.; Pérez-Álvarez, R.; Rodríguez-Vargas, I.

    2016-05-01

    Gapless bilayer graphene (GBG), like monolayer graphene, is a material system with unique properties, such as anti-Klein tunneling and intrinsic Fano resonances. These properties rely on the gapless parabolic dispersion relation and the chiral nature of bilayer graphene electrons. In addition, propagating and evanescent electron states coexist inherently in this material, giving rise to these exotic properties. In this sense, bilayer graphene is unique, since in most material systems in which Fano resonance phenomena are manifested an external source that provides extended states is required. However, from a numerical standpoint, the presence of evanescent-divergent states in the eigenfunctions linear superposition representing the Dirac spinors, leads to a numerical degradation (the so called Ωd problem) in the practical applications of the standard Coefficient Transfer Matrix (K) method used to study charge transport properties in Bilayer Graphene based multi-barrier systems. We present here a straightforward procedure based in the hybrid compliance-stiffness matrix method (H) that can overcome this numerical degradation. Our results show that in contrast to standard matrix method, the proposed H method is suitable to study the transmission and transport properties of electrons in GBG superlattice since it remains numerically stable regardless the size of the superlattice and the range of values taken by the input parameters: the energy and angle of the incident electrons, the barrier height and the thickness and number of barriers. We show that the matrix determinant can be used as a test of the numerical accuracy in real calculations.

  11. Study on the Electronic Transport Properties of Zigzag GaN Nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Enling; Wang, Xiqiang; Hou, Liping; Zhao, Danna; Dai, Yuanbin; Wang, Xuewen

    2011-02-01

    The electronic transport properties of zigzag GaN nanotubes (n, 0) (4 <= n <= 9) have been calculated using the density functional theory and non-equilibrium Green's functions method. Firstly, the density functional theory (DFT) is used to optimize and calculate the electronic structure of GaNNTs (n, 0) (4<=n<=9). Secondly, DFT and non-equilibrium Green function (NEGF) method are also used to predict the electronic transport properties of GaNNTs two-probe system. The results showed: there is a corresponding relation between the electronic transport properties and the valley of state density of each GaNNT. In addition, the volt-ampere curve of GaNNT is approximately linear.

  12. Electron heat transport measured in a stochastic magnetic field.

    PubMed

    Biewer, T M; Forest, C B; Anderson, J K; Fiksel, G; Hudson, B; Prager, S C; Sarff, J S; Wright, J C; Brower, D L; Ding, W X; Terry, S D

    2003-07-25

    New profile measurements have allowed the electron thermal diffusivity profile to be estimated from power balance in the Madison Symmetric Torus where magnetic islands overlap and field lines are stochastic. The measurements show that (1) the electron energy transport is conductive not convective, (2) the measured thermal diffusivities are in good agreement with numerical simulations of stochastic transport, and (3) transport is greatly reduced near the reversal surface where magnetic diffusion is small.

  13. 49 CFR 229.20 - Electronic recordkeeping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Electronic recordkeeping. 229.20 Section 229.20..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS General § 229.20 Electronic recordkeeping... part through electronic transmission, storage, and retrieval provided that all of the requirements...

  14. 49 CFR 229.20 - Electronic recordkeeping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Electronic recordkeeping. 229.20 Section 229.20..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS General § 229.20 Electronic recordkeeping... part through electronic transmission, storage, and retrieval provided that all of the requirements...

  15. Magnetic-flutter-induced pedestal plasma transport

    NASA Astrophysics Data System (ADS)

    Callen, J. D.; Hegna, C. C.; Cole, A. J.

    2013-11-01

    Plasma toroidal rotation can limit reconnection of externally applied resonant magnetic perturbation (RMP) fields δB on rational magnetic flux surfaces. Hence it causes the induced radial perturbations δBρ to be small there, thereby inhibiting magnetic island formation and stochasticity at the top of pedestals in high (H-mode) confinement tokamak plasmas. However, the δBρs induced by RMPs increase away from rational surfaces and are shown to induce significant sinusoidal radial motion (flutter) of magnetic field lines with a radial extent that varies linearly with δBρ and inversely with distance from the rational surface because of the magnetic shear. This produces a radial electron thermal diffusivity that is (1/2)(δBρ/B0)2 times a kinetically derived, electron-collision-induced, magnetic-shear-reduced, effective parallel electron thermal diffusivity in the absence of magnetic stochasticity. These low collisionality flutter-induced transport processes and thin magnetic island effects are shown to be highly peaked in the vicinity of rational surfaces at the top of low collisionality pedestals. However, the smaller but finite level of magnetic-flutter-induced electron heat transport midway between rational surfaces is the primary factor that determines the electron temperature difference between rational surfaces at the pedestal top. The magnetic-flutter-induced non-ambipolar electron density transport can be large enough to push the plasma toward an electron density transport root. Requiring ambipolar density transport is shown to determine the radial electric field, the plasma toroidal rotation (via radial force balance), a reduced electron thermal diffusivity and increased ambipolar density transport in the pedestal. At high collisionality the various flutter effects are less strongly peaked at rational surfaces and generally less significant. They are thus less likely to exhibit flutter-induced resonant behaviour and transition toward an electron transport root. Magnetic-flutter-induced plasma transport processes provide a new paradigm for developing an understanding of how RMPs modify the pedestal structure to stabilize peeling-ballooning modes and thereby suppress edge localized modes in low collisionality tokamak H-mode plasmas.

  16. Dispersive electron transport in tris(8-hydroxyquinoline) aluminum (Alq3) probed by impedance spectroscopy.

    PubMed

    Berleb, Stefan; Brütting, Wolfgang

    2002-12-31

    Electron transport in tris(8-hydroxyquinoline) aluminum (Alq3) is investigated by impedance spectroscopy under conditions of space-charge limited conduction (SCLC). Existing SCLC models are extended to include the field dependence of the charge carrier mobility and energetically distributed trap states. The dispersive nature of electron transport is revealed by a frequency-dependent mobility with a dispersion parameter alpha in the range 0.4-0.5, independent of temperature. This indicates that positional rather than energetic disorder is the dominant mechanism for the dispersive transport of electrons in Alq3.

  17. The steady-state and transient electron transport within bulk zinc-blende indium nitride: The impact of crystal temperature and doping concentration variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siddiqua, Poppy; O'Leary, Stephen K., E-mail: stephen.oleary@ubc.ca

    2016-03-07

    Within the framework of a semi-classical three-valley Monte Carlo electron transport simulation approach, we analyze the steady-state and transient aspects of the electron transport within bulk zinc-blende indium nitride, with a focus on the response to variations in the crystal temperature and the doping concentration. We find that while the electron transport associated with zinc-blende InN is highly sensitive to the crystal temperature, it is not very sensitive to the doping concentration selection. The device consequences of these results are then explored.

  18. Spin-polarized electron transport in hybrid graphene-BN nanoribbons

    NASA Astrophysics Data System (ADS)

    Gao, Song; Lu, Wei; Zheng, Guo-Hui; Jia, Yalei; Ke, San-Huang

    2017-05-01

    The experimental realization of hybrid graphene and h-BN provides a new way to modify the electronic and transport properties of graphene-based materials. In this work, we investigate the spin-polarized electron transport in hybrid graphene-BN zigzag nanoribbons by performing first-principles nonequilibrium Green’s function method calculations. A 100% spin-polarized electron transport in a large energy window around the Fermi level is found and this behavior is independent of the ribbon width as long as there contain 3 zigzag carbon chains. This behavior may be useful in making perfect spin filters.

  19. Simulation of electron transport during electron-beam-induced deposition of nanostructures

    PubMed Central

    Jeschke, Harald O; Valentí, Roser

    2013-01-01

    Summary We present a numerical investigation of energy and charge distributions during electron-beam-induced growth of tungsten nanostructures on SiO2 substrates by using a Monte Carlo simulation of the electron transport. This study gives a quantitative insight into the deposition of energy and charge in the substrate and in the already existing metallic nanostructures in the presence of the electron beam. We analyze electron trajectories, inelastic mean free paths, and the distribution of backscattered electrons in different compositions and at different depths of the deposit. We find that, while in the early stages of the nanostructure growth a significant fraction of electron trajectories still interacts with the substrate, when the nanostructure becomes thicker the transport takes place almost exclusively in the nanostructure. In particular, a larger deposit density leads to enhanced electron backscattering. This work shows how mesoscopic radiation-transport techniques can contribute to a model that addresses the multi-scale nature of the electron-beam-induced deposition (EBID) process. Furthermore, similar simulations can help to understand the role that is played by backscattered electrons and emitted secondary electrons in the change of structural properties of nanostructured materials during post-growth electron-beam treatments. PMID:24367747

  20. Fluctuations, Electron Transport, and Flow Shear in 2D Axial, Azimuthal (z-θ) Hybrid Hall Thruster Simulations.

    NASA Astrophysics Data System (ADS)

    Fernandez, Eduardo; Gascon, Nicolas; Knoll, Aaron; Scharfe, Michelle; Cappelli, Mark

    2007-11-01

    Motivated by the inability of radial-axial (r-z) simulations to properly treat cross-field electron transport in Hall thrusters, a novel 2D z-θ model has been implemented. In common with many r-z descriptions, the simulation is hybrid in nature and assumes quasi-neutrality. Unlike r-z models, electron transport is not enhanced with an ad-hoc mobility coefficient; instead it is given by collisional or ``classical'' terms as well as ``anomalous'' contributions associated with azimuthal electric field fluctuations. Results indicate that anomalous transport dominates classical transport for most of the channel and near field, except in a strong electron flow shear region near the channel exit. The correlation between flow shear, fluctuation behavior, and electron transport will be examined, along with experimental data from the Stanford Hall Thruster. Our findings make a strong link to the turbulent transport suppression mechanism by flow shear seen in fusion devices. The scheme for combining the r-z and z-θ descriptions into an upcoming 3D hybrid model will be presented.

  1. Electron transport in single molecules: from benzene to graphene.

    PubMed

    Chen, F; Tao, N J

    2009-03-17

    Electron movement within and between molecules--that is, electron transfer--is important in many chemical, electrochemical, and biological processes. Recent advances, particularly in scanning electrochemical microscopy (SECM), scanning-tunneling microscopy (STM), and atomic force microscopy (AFM), permit the study of electron movement within single molecules. In this Account, we describe electron transport at the single-molecule level. We begin by examining the distinction between electron transport (from semiconductor physics) and electron transfer (a more general term referring to electron movement between donor and acceptor). The relation between these phenomena allows us to apply our understanding of single-molecule electron transport between electrodes to a broad range of other electron transfer processes. Electron transport is most efficient when the electron transmission probability via a molecule reaches 100%; the corresponding conductance is then 2e(2)/h (e is the charge of the electron and h is the Planck constant). This ideal conduction has been observed in a single metal atom and a string of metal atoms connected between two electrodes. However, the conductance of a molecule connected to two electrodes is often orders of magnitude less than the ideal and strongly depends on both the intrinsic properties of the molecule and its local environment. Molecular length, means of coupling to the electrodes, the presence of conjugated double bonds, and the inclusion of possible redox centers (for example, ferrocene) within the molecular wire have a pronounced effect on the conductance. This complex behavior is responsible for diverse chemical and biological phenomena and is potentially useful for device applications. Polycyclic aromatic hydrocarbons (PAHs) afford unique insight into electron transport in single molecules. The simplest one, benzene, has a conductance much less than 2e(2)/h due to its large LUMO-HOMO gap. At the other end of the spectrum, graphene sheets and carbon nanotubes--consisting of infinite numbers of aromatic rings--have small or even zero energy gaps between the conduction and valence bands. Between these two limits are intermediate molecules with rich properties, such as perylene derivatives made of seven aromatic rings; the properties of these types of molecules have yet to be fully explored. Studying PAHs is important not only in answering fundamental questions about electron transport but also in the ongoing quest for molecular-scale electronic devices. This line of research also helps bridge the gap between electron transfer phenomena in small redox molecules and electron transport properties in nanostructures.

  2. [Regulation effects of short sunlight on two electron transport pathways in nectarine flower bud during dormancy induction].

    PubMed

    Li, Dong-Mei; Zhang, Hai-Sen; Tan, Qiu-Ping; Li, Ling; Yu, Qin; Gao, Dong-Sheng

    2011-11-01

    Taking the nectarine variety 'Shuguang' (Prunus persica var. nectariana cv. Shuguang) as test material, and by using respiration inhibitors KCN and SHAM, this paper studied the cytochrome electron transport pathway and the alternative respiration pathway in nectarine flower bud during dormancy induction under the effects of short sunlight. Both the total respiration rate (V(t)) and the cytochrome electron transport pathway respiration rate (rho' V(cyt)) presented double hump-shaped variation. Short sunlight brought the first-hump of V(t) and rho' V(cyt), forward and delayed the second-hump synchronously, inhibited the rho' V(cyt), but had no significant effects on the V(t). The capacity (V(alt)) and activity (rho V (alt)) of alternative respiration pathway also varied in double hump-shape, and the variation was basically in synchronous. Short sunlight made the first climax of V(alt) and rhoV(alt) advanced, but had little effects on the later period climax. The inhibition of cytochrome electron transport pathway and the enhancement of alternative respiration pathway were the important features of nectarine flower bud during dormancy induction, and according to the respective contributions of the two electron transport pathways to the total respiration rate, the cytochrome electron transport pathway was still the main pathway of electron transport, whereas the alternative respiration pathway played an auxiliary and branched role.

  3. METHES: A Monte Carlo collision code for the simulation of electron transport in low temperature plasmas

    NASA Astrophysics Data System (ADS)

    Rabie, M.; Franck, C. M.

    2016-06-01

    We present a freely available MATLAB code for the simulation of electron transport in arbitrary gas mixtures in the presence of uniform electric fields. For steady-state electron transport, the program provides the transport coefficients, reaction rates and the electron energy distribution function. The program uses established Monte Carlo techniques and is compatible with the electron scattering cross section files from the open-access Plasma Data Exchange Project LXCat. The code is written in object-oriented design, allowing the tracing and visualization of the spatiotemporal evolution of electron swarms and the temporal development of the mean energy and the electron number due to attachment and/or ionization processes. We benchmark our code with well-known model gases as well as the real gases argon, N2, O2, CF4, SF6 and mixtures of N2 and O2.

  4. 49 CFR 40.199 - What problems always cause a drug test to be cancelled?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false What problems always cause a drug test to be cancelled? 40.199 Section 40.199 Transportation Office of the Secretary of Transportation PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Problems in Drug Tests § 40.199 What problems always cause a drug test to be cancelled? (a...

  5. 49 CFR 40.208 - What problem requires corrective action but does not result in the cancellation of a test?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false What problem requires corrective action but does not result in the cancellation of a test? 40.208 Section 40.208 Transportation Office of the Secretary of Transportation PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Problems in Drug Tests § 40.208 What problem requires...

  6. Transire, a Program for Generating Solid-State Interface Structures

    DTIC Science & Technology

    2017-09-14

    function-based electron transport property calculator. Three test cases are presented to demonstrate the usage of Transire: the misorientation of the...graphene bilayer, the interface energy as a function of misorientation of copper grain boundaries, and electron transport transmission across the...gallium nitride/silicon carbide interface. 15. SUBJECT TERMS crystalline interface, electron transport, python, computational chemistry, grain boundary

  7. Using Adobe Flash Animations of Electron Transport Chain to Teach and Learn Biochemistry

    ERIC Educational Resources Information Center

    Teplá, Milada; Klímová, Helena

    2015-01-01

    Teaching the subject of the electron transport chain is one of the most challenging aspects of the chemistry curriculum at the high school level. This article presents an educational program called "Electron Transport Chain" which consists of 14 visual animations including a biochemistry quiz. The program was created in the Adobe Flash…

  8. Dissipationless transport of spin-polarized electrons and Cooper pairs in an electron waveguide

    NASA Astrophysics Data System (ADS)

    Levy, J.; Annadi, A.; Lu, S.; Cheng, G.; Tylan-Tyler, A.; Briggeman, M.; Tomczyk, M.; Huang, M.; Pekker, D.; Irvin, P.; Lee, H.; Lee, J.-W.; Eom, C.-B.

    Electron systems undergo profound changes in their behavior when constrained to move along a single axis. To date, clean one-dimensional (1D) electron transport has only been observed in carbon-based nanotubes and nanoribbons, and compound semiconductor nanowires. Complex-oxide heterostructures can possess conductive two-dimensional (2D) interfaces with much richer chemistries and properties, e.g., superconductivity, but with mobilities that appear to preclude ballistic transport in 1D. Here we show that nearly ideal 1D electron waveguides exhibiting ballistic transport of electrons and non-superconducting Cooper pairs can be formed at the interface between the two band insulators LaAlO3 and SrTiO3. The electron waveguides possess gate and magnetic-field selectable spin and charge degrees of freedom, and can be tuned to the one-dimensional limit of a single spin-polarized quantum channel. The strong attractive electron-electron interactions enable a new mode of dissipationless transport of electron pairs that is not superconducting. The selectable spin and subband quantum numbers of these electron waveguides may be useful for quantum simulation, quantum informatio We gratefully acknowledge financial support from ONR N00014-15-1-2847 (JL), AFOSR (FA9550-15-1-0334 (CBE) and FA9550-12-1-0057 (JL, CBE)), AOARD FA2386-15-1-4046 (CBE) and NSF (DMR-1104191 (JL), DMR-1124131 (CBE, JL) and DMR-1234096 (CBE)).

  9. Method of making organic light emitting devices

    DOEpatents

    Shiang, Joseph John [Niskayuna, NY; Janora, Kevin Henry [Schenectady, NY; Parthasarathy, Gautam [Saratoga Springs, NY; Cella, James Anthony [Clifton Park, NY; Chichak, Kelly Scott [Clifton Park, NY

    2011-03-22

    The present invention provides a method for the preparation of organic light-emitting devices comprising a bilayer structure made by forming a first film layer comprising an electroactive material and an INP precursor material, and exposing the first film layer to a radiation source under an inert atmosphere to generate an interpenetrating network polymer composition comprising the electroactive material. At least one additional layer is disposed on the reacted first film layer to complete the bilayer structure. The bilayer structure is comprised within an organic light-emitting device comprising standard features such as electrodes and optionally one or more additional layers serving as a bipolar emission layer, a hole injection layer, an electron injection layer, an electron transport layer, a hole transport layer, exciton-hole transporting layer, exciton-electron transporting layer, a hole transporting emission layer, or an electron transporting emission layer.

  10. An ab initio electronic transport database for inorganic materials.

    PubMed

    Ricci, Francesco; Chen, Wei; Aydemir, Umut; Snyder, G Jeffrey; Rignanese, Gian-Marco; Jain, Anubhav; Hautier, Geoffroy

    2017-07-04

    Electronic transport in materials is governed by a series of tensorial properties such as conductivity, Seebeck coefficient, and effective mass. These quantities are paramount to the understanding of materials in many fields from thermoelectrics to electronics and photovoltaics. Transport properties can be calculated from a material's band structure using the Boltzmann transport theory framework. We present here the largest computational database of electronic transport properties based on a large set of 48,000 materials originating from the Materials Project database. Our results were obtained through the interpolation approach developed in the BoltzTraP software, assuming a constant relaxation time. We present the workflow to generate the data, the data validation procedure, and the database structure. Our aim is to target the large community of scientists developing materials selection strategies and performing studies involving transport properties.

  11. 78 FR 29204 - Notice of Request for Revisions of an Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-17

    ... public transportation systems. In two subsequent years, The Transportation, Housing and Urban Development... DEPARTMENT OF TRANSPORTATION Federal Transit Administration [FTA Docket No. FTA-2013-0025] Notice... electronic docket site. (Note: The U.S. Department of Transportation's (DOT's) electronic docket is no longer...

  12. State-specific transport properties of electronically excited Ar and C

    NASA Astrophysics Data System (ADS)

    Istomin, V. A.; Kustova, E. V.

    2018-05-01

    In the present study, a theoretical model of state-resolved transport properties in electronically excited atomic species developed earlier is applied to argon and carbon atomic species. It is shown that for Ar and C, similarly to the case of atomic nitrogen and oxygen, the Slater-like models can be applied to calculate diameters of electronically excited atoms. Using the Slater-like model it is shown that for half-filled N (2 px1py1pz1) and full-filled Ar (3 px2py2pz2) electronic shells the growth of atomic radius goes slowly compared to C (2 px1py1) and O (2 px2py1pz1). The effect of collision diameters on the transport properties of Ar and C is evaluated. The influence of accounted number of electronic levels on the transport coefficients is examined for the case of Boltzmann distributions over electronic energy levels. It is emphasized that in the temperature range 1000-14000 K, for Boltzmann-like distributions over electronic states the number of accounted electronic levels do not influence the transport coefficients. Contrary to this, for higher temperatures T > 14000 K this effect becomes of importance, especially for argon.

  13. A Deterministic Computational Procedure for Space Environment Electron Transport

    NASA Technical Reports Server (NTRS)

    Nealy, John E.; Chang, C. K.; Norman, Ryan B.; Blattnig, Steve R.; Badavi, Francis F.; Adamcyk, Anne M.

    2010-01-01

    A deterministic computational procedure for describing the transport of electrons in condensed media is formulated to simulate the effects and exposures from spectral distributions typical of electrons trapped in planetary magnetic fields. The primary purpose for developing the procedure is to provide a means of rapidly performing numerous repetitive transport calculations essential for electron radiation exposure assessments for complex space structures. The present code utilizes well-established theoretical representations to describe the relevant interactions and transport processes. A combined mean free path and average trajectory approach is used in the transport formalism. For typical space environment spectra, several favorable comparisons with Monte Carlo calculations are made which have indicated that accuracy is not compromised at the expense of the computational speed.

  14. Electronic transport characterization of silicon wafers by spatially resolved steady-state photocarrier radiometric imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qian; University of the Chinese Academy of Sciences, Beijing 100039; Li, Bincheng, E-mail: bcli@ioe.ac.cn

    2015-09-28

    Spatially resolved steady-state photocarrier radiometric (PCR) imaging technique is developed to characterize the electronic transport properties of silicon wafers. Based on a nonlinear PCR theory, simulations are performed to investigate the effects of electronic transport parameters (the carrier lifetime, the carrier diffusion coefficient, and the front surface recombination velocity) on the steady-state PCR intensity profiles. The electronic transport parameters of an n-type silicon wafer are simultaneously determined by fitting the measured steady-state PCR intensity profiles to the three-dimensional nonlinear PCR model. The determined transport parameters are in good agreement with the results obtained by the conventional modulated PCR technique withmore » multiple pump beam radii.« less

  15. The Molecular Density of States in Bacterial Nanowires

    PubMed Central

    El-Naggar, Mohamed Y.; Gorby, Yuri A.; Xia, Wei; Nealson, Kenneth H.

    2008-01-01

    The recent discovery of electrically conductive bacterial appendages has significant physiological, ecological, and biotechnological implications, but the mechanism of electron transport in these nanostructures remains unclear. We here report quantitative measurements of transport across bacterial nanowires produced by the dissimilatory metal-reducing bacterium, Shewanella oneidensis MR-1, whose electron transport system is being investigated for renewable energy recovery in microbial fuel cells and bioremediation of heavy metals and radionuclides. The Shewanella nanowires display a surprising nonlinear electrical transport behavior, where the voltage dependence of the conductance reveals peaks indicating discrete energy levels with higher electronic density of states. Our results indicate that the molecular constituents along the Shewanella nanowires possess an intricate electronic structure that plays a role in mediating transport. PMID:18441026

  16. Phonon limited electronic transport in Pb

    NASA Astrophysics Data System (ADS)

    Rittweger, F.; Hinsche, N. F.; Mertig, I.

    2017-09-01

    We present a fully ab initio based scheme to compute electronic transport properties, i.e. the electrical conductivity σ and thermopower S, in the presence of electron-phonon interaction. We explicitly investigate the \

  17. Modeling and simulation of electronic structure, material interface and random doping in nano electronic devices

    PubMed Central

    Chen, Duan; Wei, Guo-Wei

    2010-01-01

    The miniaturization of nano-scale electronic devices, such as metal oxide semiconductor field effect transistors (MOSFETs), has given rise to a pressing demand in the new theoretical understanding and practical tactic for dealing with quantum mechanical effects in integrated circuits. Modeling and simulation of this class of problems have emerged as an important topic in applied and computational mathematics. This work presents mathematical models and computational algorithms for the simulation of nano-scale MOSFETs. We introduce a unified two-scale energy functional to describe the electrons and the continuum electrostatic potential of the nano-electronic device. This framework enables us to put microscopic and macroscopic descriptions in an equal footing at nano scale. By optimization of the energy functional, we derive consistently-coupled Poisson-Kohn-Sham equations. Additionally, layered structures are crucial to the electrostatic and transport properties of nano transistors. A material interface model is proposed for more accurate description of the electrostatics governed by the Poisson equation. Finally, a new individual dopant model that utilizes the Dirac delta function is proposed to understand the random doping effect in nano electronic devices. Two mathematical algorithms, the matched interface and boundary (MIB) method and the Dirichlet-to-Neumann mapping (DNM) technique, are introduced to improve the computational efficiency of nano-device simulations. Electronic structures are computed via subband decomposition and the transport properties, such as the I-V curves and electron density, are evaluated via the non-equilibrium Green's functions (NEGF) formalism. Two distinct device configurations, a double-gate MOSFET and a four-gate MOSFET, are considered in our three-dimensional numerical simulations. For these devices, the current fluctuation and voltage threshold lowering effect induced by the discrete dopant model are explored. Numerical convergence and model well-posedness are also investigated in the present work. PMID:20396650

  18. Decoupled electron and phonon transports in hexagonal boron nitride-silicene bilayer heterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Yongqing; Pei, Qing-Xiang, E-mail: peiqx@ihpc.a-star.edu.sg, E-mail: zhangg@ihpc.a-star.edu.sg; Zhang, Gang, E-mail: peiqx@ihpc.a-star.edu.sg, E-mail: zhangg@ihpc.a-star.edu.sg

    2016-02-14

    Calculations based on the density functional theory and empirical molecular dynamics are performed to investigate interlayer interaction, electronic structure and thermal transport of a bilayer heterostructure consisting of silicene and hexagonal boron nitride (h-BN). In this heterostructure, the two layers are found to interact weakly via a non-covalent binding. As a result, the Dirac cone of silicene is preserved with the Dirac cone point being located exactly at the Fermi level, and only a small amount of electrons are transferred from h-BN to silicene, suggesting that silicene dominates the electronic transport. Molecular dynamics calculation results demonstrate that the heat currentmore » along h-BN is six times of that along silicene, suggesting that h-BN dominates the thermal transport. This decoupled role of h-BN and silicene in thermal and electronic transport suggests that the BN-silicene bilayer heterostructure is promising for thermoelectric applications.« less

  19. Transport coefficients in nonequilibrium gas-mixture flows with electronic excitation.

    PubMed

    Kustova, E V; Puzyreva, L A

    2009-10-01

    In the present paper, a one-temperature model of transport properties in chemically nonequilibrium neutral gas-mixture flows with electronic excitation is developed. The closed set of governing equations for the macroscopic parameters taking into account electronic degrees of freedom of both molecules and atoms is derived using the generalized Chapman-Enskog method. The transport algorithms for the calculation of the thermal-conductivity, diffusion, and viscosity coefficients are proposed. The developed theoretical model is applied for the calculation of the transport coefficients in the electronically excited N/N(2) mixture. The specific heats and transport coefficients are calculated in the temperature range 50-50,000 K. Two sets of data for the collision integrals are applied for the calculations. An important contribution of the excited electronic states to the heat transfer is shown. The Prandtl number of atomic species is found to be substantially nonconstant.

  20. Micrometer-Scale Ballistic Transport of Electron Pairs in LaAlO_{3}/SrTiO_{3} Nanowires.

    PubMed

    Tomczyk, Michelle; Cheng, Guanglei; Lee, Hyungwoo; Lu, Shicheng; Annadi, Anil; Veazey, Joshua P; Huang, Mengchen; Irvin, Patrick; Ryu, Sangwoo; Eom, Chang-Beom; Levy, Jeremy

    2016-08-26

    High-mobility complex-oxide heterostructures and nanostructures offer new opportunities for extending the paradigm of quantum transport beyond the realm of traditional III-V or carbon-based materials. Recent quantum transport investigations with LaAlO_{3}/SrTiO_{3}-based quantum dots reveal the existence of a strongly correlated phase in which electrons form spin-singlet pairs without becoming superconducting. Here, we report evidence for the micrometer-scale ballistic transport of electron pairs in quasi-1D LaAlO_{3}/SrTiO_{3} nanowire cavities. In the paired phase, Fabry-Perot-like quantum interference is observed, in sync with conductance oscillations observed in the superconducting regime (at a zero magnetic field). Above a critical magnetic field B_{p}, the electron pairs unbind and the conductance oscillations shift with the magnetic field. These experimental observations extend the regime of ballistic electronic transport to strongly correlated phases.

  1. 49 CFR 220.307 - Use of railroad-supplied electronic devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD COMMUNICATIONS Electronic Devices § 220.307 Use of railroad-supplied electronic devices. (a) General restriction. A railroad operating employee... 49 Transportation 4 2010-10-01 2010-10-01 false Use of railroad-supplied electronic devices. 220...

  2. Advanced Nanoscale Thin Film & Bulk Materials Towards Thermoelectric Power Conversion Efficiencies of 30%

    DTIC Science & Technology

    2014-02-27

    Electron Microscopy. Detailed Kronig -Penny (K-P)) modeling of electron transport through these superlattices suggests an estimated e-h transition energy...superalttices was confirmed by Transmission Electron Microscopy. Detailed Kronig -Penny (K-P)) modeling of electron transport through these superlattices

  3. Magnetospheric electrons

    NASA Technical Reports Server (NTRS)

    Coroniti, F. V.; Thorne, R. M.

    1972-01-01

    Coupling of source, transport, and sink processes produces a fairly accurate model for the macroscopic structure and dynamics of magnetospheric electrons. Auroral electrons are controlled by convective transport from a plasma sheet source coupled with a precipitation loss due to whistler and electrostatic plasma turbulence. Outer and inner zone electrons are governed by radial diffusion transport from convection and acceleration sources external to the plasmapause and by parasitic precipitation losses arising from cyclotron and Landau interactions with whistler and ion cyclotron turbulence.

  4. Ab initio electronic transport and thermoelectric properties of solids from full and range-separated hybrid functionals

    NASA Astrophysics Data System (ADS)

    Sansone, Giuseppe; Ferretti, Andrea; Maschio, Lorenzo

    2017-09-01

    Within the semiclassical Boltzmann transport theory in the constant relaxation-time approximation, we perform an ab initio study of the transport properties of selected systems, including crystalline solids and nanostructures. A local (Gaussian) basis set is adopted and exploited to analytically evaluate band velocities as well as to access full and range-separated hybrid functionals (such as B3LYP, PBE0, or HSE06) at a moderate computational cost. As a consequence of the analytical derivative, our approach is computationally efficient and does not suffer from problems related to band crossings. We investigate and compare the performance of a variety of hybrid functionals in evaluating Boltzmann conductivity. Demonstrative examples include silicon and aluminum bulk crystals as well as two thermoelectric materials (CoSb3, Bi2Te3). We observe that hybrid functionals other than providing more realistic bandgaps—as expected—lead to larger bandwidths and hence allow for a better estimate of transport properties, also in metallic systems. As a nanostructure prototype, we also investigate conductivity in boron-nitride (BN) substituted graphene, in which nanoribbons (nanoroads) alternate with BN ones.

  5. Modification and benchmarking of MCNP for low-energy tungsten spectra.

    PubMed

    Mercier, J R; Kopp, D T; McDavid, W D; Dove, S B; Lancaster, J L; Tucker, D M

    2000-12-01

    The MCNP Monte Carlo radiation transport code was modified for diagnostic medical physics applications. In particular, the modified code was thoroughly benchmarked for the production of polychromatic tungsten x-ray spectra in the 30-150 kV range. Validating the modified code for coupled electron-photon transport with benchmark spectra was supplemented with independent electron-only and photon-only transport benchmarks. Major revisions to the code included the proper treatment of characteristic K x-ray production and scoring, new impact ionization cross sections, and new bremsstrahlung cross sections. Minor revisions included updated photon cross sections, electron-electron bremsstrahlung production, and K x-ray yield. The modified MCNP code is benchmarked to electron backscatter factors, x-ray spectra production, and primary and scatter photon transport.

  6. Carbon Nanotube-Based Membrane for Light-Driven, Simultaneous Proton and Electron Transport

    DOE PAGES

    Pilgrim, Gregory A.; Amori, Amanda R.; Hou, Zhentao; ...

    2016-12-07

    Here we discuss the photon driven transport of protons and electrons over hundreds of microns through a membrane based on vertically aligned single walled carbon nanotubes (SWNTs). Electrons are photogenerated in colloidal CdSe quantum dots that have been noncovalently attached to the carbon nanotube membrane and can be delivered at potentials capable of reducing earth-abundant molecular catalysts that perform proton reduction. Proton transport is driven by the electron photocurrent and is shown to be faster through the SWNT based membrane than through the commercial polymer Nafion. Furthermore, the potential utility of SWNT membranes for solar water splitting applications is demonstratedmore » through their excellent proton and electron transport properties as well as their ability to interact with other components of water splitting systems, such as small molecule electron acceptors.« less

  7. Development of a 1.5D plasma transport code for coupling to full orbit runaway electron simulations

    NASA Astrophysics Data System (ADS)

    Lore, J. D.; Del Castillo-Negrete, D.; Baylor, L.; Carbajal, L.

    2017-10-01

    A 1.5D (1D radial transport + 2D equilibrium geometry) plasma transport code is being developed to simulate runaway electron generation, mitigation, and avoidance by coupling to the full-orbit kinetic electron transport code KORC. The 1.5D code solves the time-dependent 1D flux surface averaged transport equations with sources for plasma density, pressure, and poloidal magnetic flux, along with the Grad-Shafranov equilibrium equation for the 2D flux surface geometry. Disruption mitigation is simulated by introducing an impurity neutral gas `pellet', with impurity densities and electron cooling calculated from ionization, recombination, and line emission rate coefficients. Rapid cooling of the electrons increases the resistivity, inducing an electric field which can be used as an input to KORC. The runaway electron current is then included in the parallel Ohm's law in the transport equations. The 1.5D solver will act as a driver for coupled simulations to model effects such as timescales for thermal quench, runaway electron generation, and pellet impurity mixtures for runaway avoidance. Current progress on the code and details of the numerical algorithms will be presented. Work supported by the US DOE under DE-AC05-00OR22725.

  8. Mechanisms of electron transport and recombination in ZnO nanostructures for dye-sensitized solar cells.

    PubMed

    Vega-Poot, Alberto G; Macías-Montero, Manuel; Idígoras, Jesus; Borrás, Ana; Barranco, Angel; Gonzalez-Elipe, Agustín R; Lizama-Tzec, Francisco I; Oskam, Gerko; Anta, Juan A

    2014-04-14

    ZnO is an attractive material for applications in dye-sensitized solar cells and related devices. This material has excellent electron-transport properties in the bulk but its electron diffusion coefficient is much smaller in mesoporous films. In this work the electron-transport properties of two different kinds of dye-sensitized ZnO nanostructures are investigated by small-perturbation electrochemical techniques. For nanoparticulate ZnO photoanodes prepared via a wet-chemistry technique, the diffusion coefficient is found to reproduce the typical behavior predicted by the multiple-trapping and the hopping models, with an exponential increase with respect to the applied bias. In contrast, in ZnO nanostructured thin films of controlled texture and crystallinity prepared via a plasma chemical vapor deposition method, the diffusion coefficient is found to be independent of the electrochemical bias. This observation suggests a different transport mechanism not controlled by trapping and electron accumulation. In spite of the quite different transport features, the recombination kinetics, the electron-collection efficiency and the photoconversion efficiency are very similar for both kinds of photoanodes, an observation that indicates that surface properties rather than electron transport is the main efficiency-determining factor in solar cells based on ZnO nanostructured photoanodes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. 49 CFR 40.203 - What problems cause a drug test to be cancelled unless they are corrected?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false What problems cause a drug test to be cancelled unless they are corrected? 40.203 Section 40.203 Transportation Office of the Secretary of Transportation PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Problems in Drug Tests § 40.203 What problems cause a drug test to be...

  10. Control of electron transport routes through redox-regulated redistribution of respiratory complexes

    PubMed Central

    Liu, Lu-Ning; Bryan, Samantha J.; Huang, Fang; Yu, Jianfeng; Nixon, Peter J.; Rich, Peter R.; Mullineaux, Conrad W.

    2012-01-01

    In cyanobacteria, respiratory electron transport takes place in close proximity to photosynthetic electron transport, because the complexes required for both processes are located within the thylakoid membranes. The balance of electron transport routes is crucial for cell physiology, yet the factors that control the predominance of particular pathways are poorly understood. Here we use a combination of tagging with green fluorescent protein and confocal fluorescence microscopy in live cells of the cyanobacterium Synechococcus elongatus PCC 7942 to investigate the distribution on submicron scales of two key respiratory electron donors, type-I NAD(P)H dehydrogenase (NDH-1) and succinate dehydrogenase (SDH). When cells are grown under low light, both complexes are concentrated in discrete patches in the thylakoid membranes, about 100–300 nm in diameter and containing tens to hundreds of complexes. Exposure to moderate light leads to redistribution of both NDH-1 and SDH such that they become evenly distributed within the thylakoid membranes. The effects of electron transport inhibitors indicate that redistribution of respiratory complexes is triggered by changes in the redox state of an electron carrier close to plastoquinone. Redistribution does not depend on de novo protein synthesis, and it is accompanied by a major increase in the probability that respiratory electrons are transferred to photosystem I rather than to a terminal oxidase. These results indicate that the distribution of complexes on the scale of 100–300 nm controls the partitioning of reducing power and that redistribution of electron transport complexes on these scales is a physiological mechanism to regulate the pathways of electron flow. PMID:22733774

  11. Effect of electron-electron scattering on the conductance of a quantum wire studied with the Boltzman transport equation

    NASA Astrophysics Data System (ADS)

    Lyo, S. K.; Huang, Danhong

    2006-05-01

    Electron-electron scattering conserves total momentum and does not dissipate momentum directly in a low-density system where the umklapp process is forbidden. However, it can still affect the conductance through the energy relaxation of the electrons. We show here that this effect can be studied with arbitrary accuracy in a multisublevel one-dimensional (1D) single quantum wire system in the presence of roughness and phonon scattering using a formally exact solution of the Boltzmann transport equation. The intrasubband electron-electron scattering is found to yield no net effect on the transport of electrons in 1D with only one sublevel occupied. For a system with a multilevel occupation, however, we find a significant effect of intersublevel electron-electron scattering on the temperature and density dependence of the resistance at low temperatures.

  12. Development of a scanning tunneling potentiometry system for measurement of electronic transport at short length scales

    NASA Astrophysics Data System (ADS)

    Rozler, Michael

    It is clear that complete understanding of macroscopic properties of materials is impossible without a thorough knowledge of behavior at the smallest length scales. While the past 25 years have witnessed major advances in a variety of techniques that probe the nanoscale properties of matter, electrical transport measurements -- the heart of condensed matter research -- have lagged behind, never progressing beyond bulk measurements. This thesis describes a scanning tunneling potentiometry (STP) system developed to simultaneously map the transport-related electrochemical potential distribution of a biased sample along with its surface topography, extending electronic transport measurements to the nanoscale. Combining a novel sample biasing technique with a continuous current-nulling feedback scheme pushes the noise performance of the measurement to its fundamental limit - the Johnson noise of the STM tunnel junction. The resulting 130 nV voltage sensitivity allows us to spatially resolve local potentials at scales down to 2 nm, while maintaining atomic scale STM imaging, all at scan sizes of up to 15 microns. A mm-range two-dimensional coarse positioning stage and the ability to operate from liquid helium to room temperature with a fast turn-around time greatly expand the versatility of the instrument. Use of carefully selected model materials, combined with excellent topographic and voltage resolution has allowed us to distinguish measurement artifacts caused by surface roughness from true potentiometric features, a major problem in previous STP measurements. The measurements demonstrate that STP can produce physically meaningful results for homogeneous transport as well as non-uniform conduction dominated by material microstructures. Measurements of several physically interesting materials systems are presented as well, revealing new behaviors at the smallest length sales. The results establish scanning tunneling potentiometry as a useful tool for physics and materials science.

  13. MCNP (Monte Carlo Neutron Photon) capabilities for nuclear well logging calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forster, R.A.; Little, R.C.; Briesmeister, J.F.

    The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. The general-purpose continuous-energy Monte Carlo code MCNP (Monte Carlo Neutron Photon), part of the LARTCS, provides a computational predictive capability for many applications of interest to the nuclear well logging community. The generalized three-dimensional geometry of MCNP is well suited for borehole-tool models. SABRINA, another component of the LARTCS, is a graphics code that can be used to interactively create a complex MCNP geometry. Users can define many source and tally characteristics with standard MCNP features. The time-dependent capabilitymore » of the code is essential when modeling pulsed sources. Problems with neutrons, photons, and electrons as either single particle or coupled particles can be calculated with MCNP. The physics of neutron and photon transport and interactions is modeled in detail using the latest available cross-section data. A rich collections of variance reduction features can greatly increase the efficiency of a calculation. MCNP is written in FORTRAN 77 and has been run on variety of computer systems from scientific workstations to supercomputers. The next production version of MCNP will include features such as continuous-energy electron transport and a multitasking option. Areas of ongoing research of interest to the well logging community include angle biasing, adaptive Monte Carlo, improved discrete ordinates capabilities, and discrete ordinates/Monte Carlo hybrid development. Los Alamos has requested approval by the Department of Energy to create a Radiation Transport Computational Facility under their User Facility Program to increase external interactions with industry, universities, and other government organizations. 21 refs.« less

  14. 49 CFR 228.205 - Access to electronic records.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Access to electronic records. 228.205 Section 228... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HOURS OF SERVICE OF RAILROAD EMPLOYEES Electronic Recordkeeping § 228.205 Access to electronic records. (a) FRA inspectors and State inspectors participating under 49...

  15. 49 CFR 228.205 - Access to electronic records.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Access to electronic records. 228.205 Section 228... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HOURS OF SERVICE OF RAILROAD EMPLOYEES Electronic Recordkeeping § 228.205 Access to electronic records. (a) FRA inspectors and State inspectors participating under 49...

  16. SU-E-T-489: Quantum versus Classical Trajectory Monte Carlo Simulations of Low Energy Electron Transport.

    PubMed

    Thomson, R; Kawrakow, I

    2012-06-01

    Widely-used classical trajectory Monte Carlo simulations of low energy electron transport neglect the quantum nature of electrons; however, at sub-1 keV energies quantum effects have the potential to become significant. This work compares quantum and classical simulations within a simplified model of electron transport in water. Electron transport is modeled in water droplets using quantum mechanical (QM) and classical trajectory Monte Carlo (MC) methods. Water droplets are modeled as collections of point scatterers representing water molecules from which electrons may be isotropically scattered. The role of inelastic scattering is investigated by introducing absorption. QM calculations involve numerically solving a system of coupled equations for the electron wavefield incident on each scatterer. A minimum distance between scatterers is introduced to approximate structured water. The average QM water droplet incoherent cross section is compared with the MC cross section; a relative error (RE) on the MC results is computed. RE varies with electron energy, average and minimum distances between scatterers, and scattering amplitude. The mean free path is generally the relevant length scale for estimating RE. The introduction of a minimum distance between scatterers increases RE substantially (factors of 5 to 10), suggesting that the structure of water must be modeled for accurate simulations. Inelastic scattering does not improve agreement between QM and MC simulations: for the same magnitude of elastic scattering, the introduction of inelastic scattering increases RE. Droplet cross sections are sensitive to droplet size and shape; considerable variations in RE are observed with changing droplet size and shape. At sub-1 keV energies, quantum effects may become non-negligible for electron transport in condensed media. Electron transport is strongly affected by the structure of the medium. Inelastic scatter does not improve agreement between QM and MC simulations of low energy electron transport in condensed media. © 2012 American Association of Physicists in Medicine.

  17. Impact of nitrophenols on the photosynthetic electron transport chain and ATP content in Nostoc muscorum and Chlorella vulgaris.

    PubMed

    Umamaheswari, A; Venkateswarlu, K

    2004-06-01

    Concentration-dependent inhibition of the photosynthetic electron transport chain (photosystem I (PS I), photosystem II (PS II) and whole chain reaction) and ATP content was observed in Nostoc muscorum and Chlorella vulgaris grown with o-nitrophenol, m-nitrophenol, or 2,4-dinitrophenol. Although the extents of inhibition of the photosynthetic electron transport chain in both organisms were similar, PS II was more sensitive than PS I and whole chain reaction to the nitrophenols. Depletion of the ATP pool was noted in nitrophenol-grown cultures, probably as a consequence of nearly complete inhibition of the photosynthetic electron transport chain.

  18. Role of direct electron-phonon coupling across metal-semiconductor interfaces in thermal transport via molecular dynamics.

    PubMed

    Lin, Keng-Hua; Strachan, Alejandro

    2015-07-21

    Motivated by significant interest in metal-semiconductor and metal-insulator interfaces and superlattices for energy conversion applications, we developed a molecular dynamics-based model that captures the thermal transport role of conduction electrons in metals and heat transport across these types of interface. Key features of our model, denoted eleDID (electronic version of dynamics with implicit degrees of freedom), are the natural description of interfaces and free surfaces and the ability to control the spatial extent of electron-phonon (e-ph) coupling. Non-local e-ph coupling enables the energy of conduction electrons to be transferred directly to the semiconductor/insulator phonons (as opposed to having to first couple to the phonons in the metal). We characterize the effect of the spatial e-ph coupling range on interface resistance by simulating heat transport through a metal-semiconductor interface to mimic the conditions of ultrafast laser heating experiments. Direct energy transfer from the conduction electrons to the semiconductor phonons not only decreases interfacial resistance but also increases the ballistic transport behavior in the semiconductor layer. These results provide new insight for experiments designed to characterize e-ph coupling and thermal transport at the metal-semiconductor/insulator interfaces.

  19. Revisiting Wiedemann-Franz law through Boltzmann transport equations and ab-initio density functional theory

    NASA Astrophysics Data System (ADS)

    Nag, Abhinav; Kumari, Anuja; Kumar, Jagdish

    2018-05-01

    We have investigated structural, electronic and transport properties of the alkali metals using ab-initio density functional theory. The electron energy dispersions are found parabolic free electron like which is expected for alkali metals. The lattice constants for all the studied metals are also in good agreement within 98% with experiments. We have further computed their transport properties using semi-classical Boltzmann transport equations with special focus on electrical and thermal conductivity. Our objective was to obtain Wiedemann-Franz law and hence Lorenz number. The motivation to do these calculations is to see that how the incorporation of different interactions such as electron-lattice, electron-electron interaction affect the Wiedeman-Franz law. By solving Boltzmann transport equations, we have obtained electrical conductivity (σ/τ) and thermal conductivity (κ0 /τ) at different temperatures and then calculated Lorenz number using L = κ0 /(σT). The obtained value of Lorenz number has been found to match with value derived for free electron Fermi gas 2.44× 10-8 WΩK-2. Our results prove that the Wiedemann-Franz law as derived for free electron gas does not change much for alkali metals, even when one incorporates interaction of electrons with atomic nuclei and other electrons. However, at lower temperatures, the Lorenz number, was found to be deviating from its theoretical value.

  20. Suppression of turbulent transport in NSTX internal transport barriers

    NASA Astrophysics Data System (ADS)

    Yuh, Howard

    2008-11-01

    Electron transport will be important for ITER where fusion alphas and high-energy beam ions will primarily heat electrons. In the NSTX, internal transport barriers (ITBs) are observed in reversed (negative) shear discharges where diffusivities for electron and ion thermal channels and momentum are reduced. While neutral beam heating can produce ITBs in both electron and ion channels, High Harmonic Fast Wave (HHFW) heating can produce electron thermal ITBs under reversed magnetic shear conditions without momentum input. Interestingly, the location of the electron ITB does not necessarily match that of the ion ITB: the electron ITB correlates well with the minimum in the magnetic shear determined by Motional Stark Effect (MSE) [1] constrained equilibria, whereas the ion ITB better correlates with the maximum ExB shearing rate. Measured electron temperature gradients can exceed critical linear thresholds for ETG instability calculated by linear gyrokinetic codes in the ITB confinement region. The high-k microwave scattering diagnostic [2] shows reduced local density fluctuations at wavenumbers characteristic of electron turbulence for discharges with strongly negative magnetic shear versus weakly negative or positive magnetic shear. Fluctuation reductions are found to be spatially and temporally correlated with the local magnetic shear. These results are consistent with non-linear gyrokinetic simulations predictions showing the reduction of electron transport in negative magnetic shear conditions despite being linearly unstable [3]. Electron transport improvement via negative magnetic shear rather than ExB shear highlights the importance of current profile control in ITER and future devices. [1] F.M. Levinton, H. Yuh et al., PoP 14, 056119 [2] D.R. Smith, E. Mazzucato et al., RSI 75, 3840 [3] Jenko, F. and Dorland, W., PRL 89 225001

  1. Modified Monte Carlo method for study of electron transport in degenerate electron gas in the presence of electron-electron interactions, application to graphene

    NASA Astrophysics Data System (ADS)

    Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek

    2017-07-01

    Standard computational methods used to take account of the Pauli Exclusion Principle into Monte Carlo (MC) simulations of electron transport in semiconductors may give unphysical results in low field regime, where obtained electron distribution function takes values exceeding unity. Modified algorithms were already proposed and allow to correctly account for electron scattering on phonons or impurities. Present paper extends this approach and proposes improved simulation scheme allowing including Pauli exclusion principle for electron-electron (e-e) scattering into MC simulations. Simulations with significantly reduced computational cost recreate correct values of the electron distribution function. Proposed algorithm is applied to study transport properties of degenerate electrons in graphene with e-e interactions. This required adapting the treatment of e-e scattering in the case of linear band dispersion relation. Hence, this part of the simulation algorithm is described in details.

  2. An ab initio electronic transport database for inorganic materials

    DOE PAGES

    Ricci, Francesco; Chen, Wei; Aydemir, Umut; ...

    2017-07-04

    Electronic transport in materials is governed by a series of tensorial properties such as conductivity, Seebeck coefficient, and effective mass. These quantities are paramount to the understanding of materials in many fields from thermoelectrics to electronics and photovoltaics. Transport properties can be calculated from a material’s band structure using the Boltzmann transport theory framework. We present here the largest computational database of electronic transport properties based on a large set of 48,000 materials originating from the Materials Project database. Our results were obtained through the interpolation approach developed in the BoltzTraP software, assuming a constant relaxation time. We present themore » workflow to generate the data, the data validation procedure, and the database structure. In conclusion, our aim is to target the large community of scientists developing materials selection strategies and performing studies involving transport properties.« less

  3. Introduction of Shear-Based Transport Mechanisms in Radial-Axial Hybrid Hall Thruster Simulations

    NASA Astrophysics Data System (ADS)

    Scharfe, Michelle; Gascon, Nicolas; Scharfe, David; Cappelli, Mark; Fernandez, Eduardo

    2007-11-01

    Electron diffusion across magnetic field lines in Hall effect thrusters is experimentally observed to be higher than predicted by classical diffusion theory. Motivated by theoretical work for fusion applications and experimental measurements of Hall thrusters, numerical models for the electron transport are implemented in radial-axial hybrid simulations in order to compute the electron mobility using simulated plasma properties and fitting parameters. These models relate the cross-field transport to the imposed magnetic field distribution through shear suppression of turbulence-enhanced transport. While azimuthal waves likely enhance cross field mobility, axial shear in the electron fluid may reduce transport due to a reduction in turbulence amplitudes and modification of phase shifts between fluctuating properties. The sensitivity of the simulation results to the fitting parameters is evaluated and an examination is made of the transportability of these parameters to several Hall thruster devices.

  4. An ab initio electronic transport database for inorganic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ricci, Francesco; Chen, Wei; Aydemir, Umut

    Electronic transport in materials is governed by a series of tensorial properties such as conductivity, Seebeck coefficient, and effective mass. These quantities are paramount to the understanding of materials in many fields from thermoelectrics to electronics and photovoltaics. Transport properties can be calculated from a material’s band structure using the Boltzmann transport theory framework. We present here the largest computational database of electronic transport properties based on a large set of 48,000 materials originating from the Materials Project database. Our results were obtained through the interpolation approach developed in the BoltzTraP software, assuming a constant relaxation time. We present themore » workflow to generate the data, the data validation procedure, and the database structure. In conclusion, our aim is to target the large community of scientists developing materials selection strategies and performing studies involving transport properties.« less

  5. Survey of horse transportation in Australia: issues and practices.

    PubMed

    Padalino, B; Raidal, S L; Hall, E; Knight, P; Celi, P; Jeffcott, L; Muscatello, G

    2016-10-01

    To survey amateur and professional participants on equine transportation management, practices and outcomes in Australia. An online survey targeting people who organised horse movements at least monthly was made available to a broad cross-section of amateur and professional equine associations. Respondents were invited to provide demographic details and information relating to their routine transportation management practices and their experiences of issues relating to the transportation of horses. Of 797 usable responses involving approximately 17,000 horses and 313,000 individual horse transport events, transport-related behavioural problems were reported by 38% of respondents, particularly at loading. Transport-related health problems had been experienced during or after transportation by horses in the care of 67% of respondents. The most common problems reported were traumatic injuries (45.0%), diarrhoea (20.0%), muscular problems (13.0%), respiratory problems (12.3%), overheating (10.5%) and colic (10.3%). In the 2 years reviewed in the survey, 9.4% of participants reported at least one case of transport-associated pneumonia and 35 horses had died, most commonly from fractures, colic or pneumonia. Although respondents identifying as amateurs transported horses less frequently and over shorter distances, the incidence of transport-related problems was similar between amateurs and professionals. Respondents reported specific precautions before, during and after transportation, although management was often not compliant with the Australian Code of horse transportation. Responses indicated that there remains a substantial risk of adverse welfare and health outcomes for horses transported in Australia and management practices reported may not be compliant with current recommendations for transportation. © 2016 Australian Veterinary Association.

  6. Generalized Pearson distributions for charged particles interacting with an electric and/or a magnetic field

    NASA Astrophysics Data System (ADS)

    Rossani, A.; Scarfone, A. M.

    2009-06-01

    The linear Boltzmann equation for elastic and/or inelastic scattering is applied to derive the distribution function of a spatially homogeneous system of charged particles spreading in a host medium of two-level atoms and subjected to external electric and/or magnetic fields. We construct a Fokker-Planck approximation to the kinetic equations and derive the most general class of distributions for the given problem by discussing in detail some physically meaningful cases. The equivalence with the transport theory of electrons in a phonon background is also discussed.

  7. The Crimean Solar Maximum Year Workshop, selected reports

    NASA Technical Reports Server (NTRS)

    Emslie, A. G.; Gaizauskas, V.; Wu, S. T.

    1980-01-01

    Problems associated with the transport of energy and acceleration of charged particles in solar flares are considered. Existing theories are compared with observation with a view to either discriminating between rival theories (such as whether hard X-rays are emitted by thermal or nonthermal bremsstrahlung), constraining existing theories (such as deduction of the number of nonthermal electrons present from spectroscopic diagnostics in the soft X-ray part of the spectrum), or suggesting theories (such as attempting to explain the observed spatial structure of microwave emission relative to alpha).

  8. Too Hot for Photon-Assisted Transport: Hot-Electrons Dominate Conductance Enhancement in Illuminated Single-Molecule Junctions.

    PubMed

    Fung, E-Dean; Adak, Olgun; Lovat, Giacomo; Scarabelli, Diego; Venkataraman, Latha

    2017-02-08

    We investigate light-induced conductance enhancement in single-molecule junctions via photon-assisted transport and hot-electron transport. Using 4,4'-bipyridine bound to Au electrodes as a prototypical single-molecule junction, we report a 20-40% enhancement in conductance under illumination with 980 nm wavelength radiation. We probe the effects of subtle changes in the transmission function on light-enhanced current and show that discrete variations in the binding geometry result in a 10% change in enhancement. Importantly, we prove theoretically that the steady-state behavior of photon-assisted transport and hot-electron transport is identical but that hot-electron transport is the dominant mechanism for optically induced conductance enhancement in single-molecule junctions when the wavelength used is absorbed by the electrodes and the hot-electron relaxation time is long. We confirm this experimentally by performing polarization-dependent conductance measurements of illuminated 4,4'-bipyridine junctions. Finally, we perform lock-in type measurements of optical current and conclude that currents due to laser-induced thermal expansion mask optical currents. This work provides a robust experimental framework for studying mechanisms of light-enhanced transport in single-molecule junctions and offers tools for tuning the performance of organic optoelectronic devices by analyzing detailed transport properties of the molecules involved.

  9. The implementation and operation of a variable-response electronic throttle control system for a TF-104G aircraft

    NASA Technical Reports Server (NTRS)

    Neal, Bradford; Sengupta, Upal

    1989-01-01

    During some flight programs, researchers have encountered problems in the throttle response characteristics of high-performance aircraft. To study and to help solve these problems, the National Aeronautics and Space Administration Ames Research Center's Dryden Flight Research Facility (Ames-Dryden) conducted a study using a TF-104G airplane modified with a variable-response electronic throttle control system. Ames-Dryden investigated the effects of different variables on engine response and handling qualities. The system provided transport delay, lead and lag filters, second-order lags, command rate and position limits, and variable gain between the pilot's throttle command and the engine fuel controller. These variables could be tested individually or in combination. Ten research flights were flown to gather data on engine response and to obtain pilot ratings of the various system configurations. The results should provide design criteria for engine-response characteristics. The variable-response throttle components and how they were installed in the TF-104G aircraft are described. How the variable-response throttle was used in flight and some of the results of using this system are discussed.

  10. Influence of mitochondrial efficiency on beef lean color stability

    USDA-ARS?s Scientific Manuscript database

    Loss of electrons in the electron transport chain has been implicated as a source of variation in feed efficiency of meat producing animals. The present study was conducted to evaluate the effects of electron loss during electron transport on beef lean color stability. Beef carcasses (n = 91) were...

  11. Approximating the nonlinear density dependence of electron transport coefficients and scattering rates across the gas-liquid interface

    NASA Astrophysics Data System (ADS)

    Garland, N. A.; Boyle, G. J.; Cocks, D. G.; White, R. D.

    2018-02-01

    This study reviews the neutral density dependence of electron transport in gases and liquids and develops a method to determine the nonlinear medium density dependence of electron transport coefficients and scattering rates required for modeling transport in the vicinity of gas-liquid interfaces. The method has its foundations in Blanc’s law for gas-mixtures and adapts the theory of Garland et al (2017 Plasma Sources Sci. Technol. 26) to extract electron transport data across the gas-liquid transition region using known data from the gas and liquid phases only. The method is systematically benchmarked against multi-term Boltzmann equation solutions for Percus-Yevick model liquids. Application to atomic liquids highlights the utility and accuracy of the derived method.

  12. Electronic transport in organometallic perovskite CH{sub 3}NH{sub 3}PbI{sub 3}: The role of organic cation orientations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berdiyorov, G. R., E-mail: gberdiyorov@qf.org.qa; El-Mellouhi, F.; Madjet, M. E.

    Density functional theory in combination with the nonequilibrium Green's function formalism is used to study the electronic transport properties of methylammonium lead-iodide perovskite CH{sub 3}NH{sub 3}PbI{sub 3}. Electronic transport in homogeneous ferroelectric and antiferroelectric phases, both of which do not contain any charged domain walls, is quite similar. The presence of charged domain wall drastically (by about an order of magnitude) enhances the electronic transport in the lateral direction. The increase of the transmission originates from the smaller variation of the electrostatic potential profile along the charged domain walls. This fact may provide a tool for tuning transport properties ofmore » such hybrid materials by manipulating molecular cations having dipole moment.« less

  13. Improved efficiency of NiOx-based p-i-n perovskite solar cells by using PTEG-1 as electron transport layer

    NASA Astrophysics Data System (ADS)

    Groeneveld, Bart G. H. M.; Najafi, Mehrdad; Steensma, Bauke; Adjokatse, Sampson; Fang, Hong-Hua; Jahani, Fatemeh; Qiu, Li; ten Brink, Gert H.; Hummelen, Jan C.; Loi, Maria Antonietta

    2017-07-01

    We present efficient p-i-n type perovskite solar cells using NiOx as the hole transport layer and a fulleropyrrolidine with a triethylene glycol monoethyl ether side chain (PTEG-1) as electron transport layer. This electron transport layer leads to higher power conversion efficiencies compared to perovskite solar cells with PCBM (phenyl-C61-butyric acid methyl ester). The improved performance of PTEG-1 devices is attributed to the reduced trap-assisted recombination and improved charge extraction in these solar cells, as determined by light intensity dependence and photoluminescence measurements. Through optimization of the hole and electron transport layers, the power conversion efficiency of the NiOx/perovskite/PTEG-1 solar cells was increased up to 16.1%.

  14. Critical thickness for the two-dimensional electron gas in LaTiO3/SrTiO3 superlattices

    NASA Astrophysics Data System (ADS)

    You, Jeong Ho; Lee, Jun Hee

    2013-10-01

    Transport dimensionality of Ti d electrons in (LaTiO3)1/(SrTiO3)N superlattices has been investigated using density functional theory with local spin-density approximation + U method. Different spatial distribution patterns have been found between Ti t2g orbital electrons. The dxy orbital electrons are highly localized near interfaces due to the potentials by positively charged LaO layers, while the degenerate dyz and dxz orbital electrons are more distributed inside SrTiO3 insulators. For N ≥ 3 unit cells (u.c.), the Ti dxy densities of state exhibit the staircaselike increments, which appear at the same energy levels as the dxy flat bands along the Γ-Z direction in band structures. The kz-independent discrete energy levels indicate that the electrons in dxy flat bands are two-dimensional electron gases (2DEGs) which can transport along interfaces, but they cannot transport perpendicularly to interfaces due to the confinements in the potential wells by LaO layers. Unlike the dxy orbital electrons, the dyz and dxz orbital electrons have three-dimensional (3D) transport characteristics, regardless of SrTiO3 thicknesses. The 2DEG formation by dxy orbital electrons, when N ≥ 3 u.c., indicates the existence of critical SrTiO3 thickness where the electron transport dimensionality starts to change from 3D to 2D in (LaTiO3)1/(SrTiO3)N superlattices.

  15. 49 CFR Appendix C to Part 224 - Guidelines for Electronic Submission of Reflectorization Implementation Compliance Reports

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Guidelines for Electronic Submission of Reflectorization Implementation Compliance Reports C Appendix C to Part 224 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION REFLECTORIZATION OF RAIL FREIGHT ROLLING STOCK Pt...

  16. Algorithms for constructing optimal paths and statistical analysis of passenger traffic

    NASA Astrophysics Data System (ADS)

    Trofimov, S. P.; Druzhinina, N. G.; Trofimova, O. G.

    2018-01-01

    Several existing information systems of urban passenger transport (UPT) are considered. Author’s UPT network model is presented. To a passenger a new service is offered that is the best path from one stop to another stop at a specified time. The algorithm and software implementation for finding the optimal path are presented. The algorithm uses the current UPT schedule. The article also describes the algorithm of statistical analysis of trip payments by the electronic E-cards. The algorithm allows obtaining the density of passenger traffic during the day. This density is independent of the network topology and UPT schedules. The resulting density of the traffic flow can solve a number of practical problems. In particular, the forecast for the overflow of passenger transport in the «rush» hours, the quantitative comparison of different topologies transport networks, constructing of the best UPT timetable. The efficiency of the proposed integrated approach is demonstrated by the example of the model town with arbitrary dimensions.

  17. MCNP capabilities for nuclear well logging calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forster, R.A.; Little, R.C.; Briesmeister, J.F.

    The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. This paper discusses how the general-purpose continuous-energy Monte Carlo code MCNP ({und M}onte {und C}arlo {und n}eutron {und p}hoton), part of the LARTCS, provides a computational predictive capability for many applications of interest to the nuclear well logging community. The generalized three-dimensional geometry of MCNP is well suited for borehole-tool models. SABRINA, another component of the LARTCS, is a graphics code that can be used to interactively create a complex MCNP geometry. Users can define many source and tallymore » characteristics with standard MCNP features. The time-dependent capability of the code is essential when modeling pulsed sources. Problems with neutrons, photons, and electrons as either single particle or coupled particles can be calculated with MCNP. The physics of neutron and photon transport and interactions is modeled in detail using the latest available cross-section data.« less

  18. Unravelling the progressive role of rattlers in thermoelectric clathrate and strategies for performance improvement: Concurrently enhancing electronic transport and blocking phononic transport

    NASA Astrophysics Data System (ADS)

    Yang, Jia-Yue; Cheng, Long; Hu, Ming

    2017-12-01

    Intermetallic clathrates, one class of guest-host systems with perfectly crystalline structures, hold great potential to be the "phonon glass - electron crystal" thermoelectric materials. Previous studies focus on revealing the atomistic origins of blocked phononic transport, yet little attention is drawn to the enhanced electronic transport. In this work, we investigate the binary type-I M8Si46 (M = Sr, Ba, Tl, and Pb) clathrates and unravel how rattlers concurrently block phononic transport and enhance electronic transport from first-principles. By comparing the empty and filled clathrates, the lattice thermal conductivity is greatly reduced by a factor of 21 due to the decrease in phonon relaxation time for propagative phonons over 0-6 THz by 1.5 orders of magnitude. On the other hand, rattlers bridge charge gaps among cages by donating electrons and thus drastically increase electrical conductivity. The concurrent realization of blocked phononic transport and enhanced electronic transport boosts the figure-of-merit (ZT) of empty clathrate by 4 orders of magnitude. Furthermore, by manipulating metallic rattlers and n-type doping, the power factor is markedly improved and ZT can reach 0.55 at 800 K. These results provide a quantitative description of the guest-host interaction and coupling dynamics from first-principles. The proposed strategy of manipulating ratting atoms and in-situ doping offers important guidance to engineer clathrates with high thermoelectric performance.

  19. 49 CFR 239.303 - Electronic recordkeeping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Electronic recordkeeping. 239.303 Section 239.303 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... limits and controls accessibility to such information retained in its database system and identifies...

  20. Nondispersive Electron Transport in Alq3

    DTIC Science & Technology

    2001-08-20

    APPLIED PHYSICS LETTERS VOLUME 79, NUMBER 16 15 OCTOBER 2001Nondispersive electron transport in Alq3 George G. Malliaras,a) Yulong Shen, and David H...room temperature electron transport in amorphous films of tris ~8-hydroxyquinolinolato! aluminum ~III! ( Alq3 ) with the time-of-flight technique...We use the correlated disorder model to determine an effective dipole moment for Alq3 , and the corresponding meridional to facial isomeric ratio

  1. Electron transport chains of lactic acid bacteria - walking on crutches is part of their lifestyle

    PubMed Central

    Brooijmans, Rob; Hugenholtz, Jeroen

    2009-01-01

    A variety of lactic acid bacteria contain rudimentary electron transport chains that can be reconstituted by the addition of heme and menaquinone to the growth medium. These activated electron transport chains lead to higher biomass production and increased robustness, which is beneficial for industrial applications, but a major concern when dealing with pathogenic lactic acid bacteria. PMID:20948651

  2. Vertical electronic transport in van de waals heterostructures

    NASA Astrophysics Data System (ADS)

    Qiao, Zhenhua; Zhenhua Qiao's Group Team

    In this work, we will introduce the theoretical investigation of the vertical electronic transport in various heterostructrues by using both tight-binding method and first-principles calculations. Counterintuitively, we find that the maximum electronic transport is achieved at very limited scattering regions but not at large overlapped catering regions. Based on this finding, we design a special setup to measure the tunneling effect in rotated bilayer systems.

  3. Insights into Solid-State Electron Transport through Proteins from Inelastic Tunneling Spectroscopy: The Case of Azurin.

    PubMed

    Yu, Xi; Lovrincic, Robert; Sepunaru, Lior; Li, Wenjie; Vilan, Ayelet; Pecht, Israel; Sheves, Mordechai; Cahen, David

    2015-10-27

    Surprisingly efficient solid-state electron transport has recently been demonstrated through "dry" proteins (with only structural, tightly bound H2O left), suggesting proteins as promising candidates for molecular (bio)electronics. Using inelastic electron tunneling spectroscopy (IETS), we explored electron-phonon interaction in metal/protein/metal junctions, to help understand solid-state electronic transport across the redox protein azurin. To that end an oriented azurin monolayer on Au is contacted by soft Au electrodes. Characteristic vibrational modes of amide and amino acid side groups as well as of the azurin-electrode contact were observed, revealing the azurin native conformation in the junction and the critical role of side groups in the charge transport. The lack of abrupt changes in the conductance and the line shape of IETS point to far off-resonance tunneling as the dominant transport mechanism across azurin, in line with previously reported (and herein confirmed) azurin junctions. The inelastic current and hence electron-phonon interaction appear to be rather weak and comparable in magnitude with the inelastic fraction of tunneling current via alkyl chains, which may reflect the known structural rigidity of azurin.

  4. Molecular electronics: some views on transport junctions and beyond.

    PubMed

    Joachim, Christian; Ratner, Mark A

    2005-06-21

    The field of molecular electronics comprises a fundamental set of issues concerning the electronic response of molecules as parts of a mesoscopic structure and a technology-facing area of science. We will overview some important aspects of these subfields. The most advanced ideas in the field involve the use of molecules as individual logic or memory units and are broadly based on using the quantum state space of the molecule. Current work in molecular electronics usually addresses molecular junction transport, where the molecule acts as a barrier for incoming electrons: This is the fundamental Landauer idea of "conduction as scattering" generalized to molecular junction structures. Another point of view in terms of superexchange as a guiding mechanism for coherent electron transfer through the molecular bridge is discussed. Molecules generally exhibit relatively strong vibronic coupling. The last section of this overview focuses on vibronic effects, including inelastic electron tunneling spectroscopy, hysteresis in junction charge transport, and negative differential resistance in molecular transport junctions.

  5. Molecular electronics: Some views on transport junctions and beyond

    PubMed Central

    Joachim, Christian; Ratner, Mark A.

    2005-01-01

    The field of molecular electronics comprises a fundamental set of issues concerning the electronic response of molecules as parts of a mesoscopic structure and a technology-facing area of science. We will overview some important aspects of these subfields. The most advanced ideas in the field involve the use of molecules as individual logic or memory units and are broadly based on using the quantum state space of the molecule. Current work in molecular electronics usually addresses molecular junction transport, where the molecule acts as a barrier for incoming electrons: This is the fundamental Landauer idea of “conduction as scattering” generalized to molecular junction structures. Another point of view in terms of superexchange as a guiding mechanism for coherent electron transfer through the molecular bridge is discussed. Molecules generally exhibit relatively strong vibronic coupling. The last section of this overview focuses on vibronic effects, including inelastic electron tunneling spectroscopy, hysteresis in junction charge transport, and negative differential resistance in molecular transport junctions. PMID:15956192

  6. Study of electron transport in a Hall thruster by axial–radial fully kinetic particle simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Shinatora, E-mail: choh.shinatora@jaxa.jp; Kubota, Kenichi; Funaki, Ikkoh

    2015-10-15

    Electron transport across a magnetic field in a magnetic-layer-type Hall thruster was numerically investigated for the future predictive modeling of Hall thrusters. The discharge of a 1-kW-class magnetic-layer-type Hall thruster designed for high-specific-impulse operation was modeled using an r-z two-dimensional fully kinetic particle code with and without artificial electron-diffusion models. The thruster performance results showed that both electron transport models captured the experimental result within discrepancies less than 20% in thrust and discharge current for all the simulated operation conditions. The electron cross-field transport mechanism of the so-called anomalous diffusion was self-consistently observed in the simulation without artificial diffusion models;more » the effective electron mobility was two orders of magnitude higher than the value obtained using the classical diffusion theory. To account for the self-consistently observed anomalous transport, the oscillation of plasma properties was speculated. It was suggested that the enhanced random-walk diffusion due to the velocity oscillation of low-frequency electron flow could explain the observed anomalous diffusion within an order of magnitude. The dominant oscillation mode of the electron flow velocity was found to be 20 kHz, which was coupled to electrostatic oscillation excited by global ionization instability.« less

  7. On the Monte Carlo simulation of electron transport in the sub-1 keV energy range.

    PubMed

    Thomson, Rowan M; Kawrakow, Iwan

    2011-08-01

    The validity of "classic" Monte Carlo (MC) simulations of electron and positron transport at sub-1 keV energies is investigated in the context of quantum theory. Quantum theory dictates that uncertainties on the position and energy-momentum four-vectors of radiation quanta obey Heisenberg's uncertainty relation; however, these uncertainties are neglected in "classical" MC simulations of radiation transport in which position and momentum are known precisely. Using the quantum uncertainty relation and electron mean free path, the magnitudes of uncertainties on electron position and momentum are calculated for different kinetic energies; a validity bound on the classical simulation of electron transport is derived. In order to satisfy the Heisenberg uncertainty principle, uncertainties of 5% must be assigned to position and momentum for 1 keV electrons in water; at 100 eV, these uncertainties are 17 to 20% and are even larger at lower energies. In gaseous media such as air, these uncertainties are much smaller (less than 1% for electrons with energy 20 eV or greater). The classical Monte Carlo transport treatment is questionable for sub-1 keV electrons in condensed water as uncertainties on position and momentum must be large (relative to electron momentum and mean free path) to satisfy the quantum uncertainty principle. Simulations which do not account for these uncertainties are not faithful representations of the physical processes, calling into question the results of MC track structure codes simulating sub-1 keV electron transport. Further, the large difference in the scale at which quantum effects are important in gaseous and condensed media suggests that track structure measurements in gases are not necessarily representative of track structure in condensed materials on a micrometer or a nanometer scale.

  8. Electron transport in polycyclic aromatic hydrocarbons/boron nitride hybrid structures: density functional theory combined with the nonequilibrium Green's function.

    PubMed

    Panahi, S F K S; Namiranian, Afshin; Soleimani, Maryam; Jamaati, Maryam

    2018-02-07

    We investigate the electronic transport properties of two types of junction based on single polyaromatic hydrocarbons (PAHs) and PAHs embedded in boron nitride (h-BN) nanoribbons, using nonequilibrium Green's functions (NEGF) and density functional theory (DFT). In the PAH junctions, a Fano resonance line shape at the Fermi energy in the transport feature can be clearly seen. In hybrid junctions, structural asymmetries enable interactions between the electronic states, leading to observation of interface-based transport. Our findings reveal that the interface of PAH/h-BN strongly affects the transport properties of the structures.

  9. 49 CFR 239.303 - Electronic recordkeeping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Electronic recordkeeping. 239.303 Section 239.303 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... accessibility to such information retained in its database system and identifies those individuals who have such...

  10. 49 CFR 239.303 - Electronic recordkeeping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Electronic recordkeeping. 239.303 Section 239.303 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... accessibility to such information retained in its database system and identifies those individuals who have such...

  11. 49 CFR 239.303 - Electronic recordkeeping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Electronic recordkeeping. 239.303 Section 239.303 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... accessibility to such information retained in its database system and identifies those individuals who have such...

  12. 49 CFR 239.303 - Electronic recordkeeping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Electronic recordkeeping. 239.303 Section 239.303 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... accessibility to such information retained in its database system and identifies those individuals who have such...

  13. Electronic transport properties of 4f shell elements of liquid metal using hard sphere Yukawa system

    NASA Astrophysics Data System (ADS)

    Patel, H. P.; Sonvane, Y. A.; Thakor, P. B.

    2018-04-01

    The electronic transport properties are analyzed for 4f shell elements of liquid metals. To examine the electronic transport properties like electrical resistivity (ρ), thermal conductivity (σ) and thermo electrical power (Q), we used our own parameter free model potential with the Hard Sphere Yukawa (HSY) reference system. The screening effect on aforesaid properties has been examined by using different screening functions like Hartree (H), Taylor (T) and Sarkar (S). The correlations of our resultsand other data with available experimental values are intensely promising. Also, we conclude that our newly constructed parameter free model potential is capable of explaining the above mentioned electronic transport properties.

  14. 76 FR 17470 - Notice of Transportation Services' Transition From Paper to Electronic Fare Media

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-29

    ...] Notice of Transportation Services' Transition From Paper to Electronic Fare Media AGENCY: Office of the... planning to shift to electronic fare media in particular areas, beginning in New York and parts of the... to electronic fare media; thus, compelling the shift from a paper based system (vouchers) to an...

  15. Electron temperature critical gradient and transport stiffness in DIII-D

    DOE PAGES

    Smith, Sterling P.; Petty, Clinton C.; White, Anne E.; ...

    2015-07-06

    The electron energy flux has been probed as a function of electron temperature gradient on the DIII-D tokamak, in a continuing effort to validate turbulent transport models. In the scan of gradient, a critical electron temperature gradient has been found in the electron heat fluxes and stiffness at various radii in L-mode plasmas. The TGLF reduced turbulent transport model [G.M. Staebler et al, Phys. Plasmas 14, 055909 (2007)] and full gyrokinetic GYRO model [J. Candy and R.E. Waltz, J. Comput. Phys. 186, 545 (2003)] recover the general trend of increasing electron energy flux with increasing electron temperature gradient scale length,more » but they do not predict the absolute level of transport at all radii and gradients. Comparing the experimental observations of incremental (heat pulse) diffusivity and stiffness to the models’ reveals that TGLF reproduces the trends in increasing diffusivity and stiffness with increasing electron temperature gradient scale length with a critical gradient behavior. Furthermore, the critical gradient of TGLF is found to have a dependence on q 95, contrary to the independence of the experimental critical gradient from q 95.« less

  16. Parameter dependence of the MCNP electron transport in determining dose distributions.

    PubMed

    Reynaert, N; Palmans, H; Thierens, H; Jeraj, R

    2002-10-01

    In this paper, a detailed study of the electron transport in MCNP is performed, separating the effects of the energy binning technique on the energy loss rate, the scattering angles, and the sub-step length as a function of energy. As this problem is already well known, in this paper we focus on the explanation as to why the default mode of MCNP can lead to large deviations. The resolution dependence was investigated as well. An error in the MCNP code in the energy binning technique in the default mode (DBCN 18 card = 0) was revealed, more specific in the updating of cross sections when a sub-step is performed corresponding to a high-energy loss. This updating error is not present in the ITS mode (DBCN 18 card = 1) and leads to a systematically lower dose deposition rate in the default mode. The effect is present for all energies studied (0.5-10 MeV) and depends on the geometrical resolution of the scoring regions and the energy grid resolution. The effect of the energy binning technique is of the same order of that of the updating error for energies below 2 MeV, and becomes less important for higher energies. For a 1 MeV point source surrounded by homogeneous water, the deviation of the default MCNP results at short distances attains 9% and remains approximately the same for all energies. This effect could be corrected by removing the completion of an energy step each time an electron changes from an energy bin during a sub-step. Another solution consists of performing all calculations in the ITS mode. Another problem is the resolution dependence, even in the ITS mode. The higher the resolution is chosen (the smaller the scoring regions) the faster the energy is deposited along the electron track. It is proven that this is caused by starting a new energy step when crossing a surface. The resolution effect should be investigated for every specific case when calculating dose distributions around beta sources. The resolution should not be higher than 0.85*(1-EFAC)*CSDA, where EFAC is the energy loss per energy step and CSDA a continuous slowing down approximation range. This effect could as well be removed by determining the cross sections for energy loss and multiple scattering at the average energy of an energy step and by sampling the cross sections for each sub-step. Overall, we conclude that MCNP cannot be used without a caution due to possible errors in the electron transport. When care is taken, it is possible to obtain correct results that are in agreement with other Monte Carlo codes.

  17. Charge distribution and transport properties in reduced ceria phases: A review

    NASA Astrophysics Data System (ADS)

    Shoko, E.; Smith, M. F.; McKenzie, Ross H.

    2011-12-01

    The question of the charge distribution in reduced ceria phases (CeO2-x) is important for understanding the microscopic physics of oxygen storage capacity, and the electronic and ionic conductivities in these materials. All these are key properties in the application of these materials in catalysis and electrochemical devices. Several approaches have been applied to study this problem, including ab initio methods. Recently [1], we applied the bond valence model (BVM) to discuss the charge distribution in several different crystallographic phases of reduced ceria. Here, we compare the BVM results to those from atomistic simulations to determine if there is consistency in the predictions of the two approaches. Our analysis shows that the two methods give a consistent picture of the charge distribution around oxygen vacancies in bulk reduced ceria phases. We then review the transport theory applicable to reduced ceria phases, providing useful relationships which enable comparison of experimental results obtained by different techniques. In particular, we compare transport parameters obtained from the observed optical absorption spectrum, α(ω), dc electrical conductivity with those predicted by small polaron theory and the Harrison method. The small polaron energy is comparable to that estimated from α(ω). However, we found a discrepancy between the value of the electron hopping matrix element, t, estimated from the Marcus-Hush formula and that obtained by the Harrison method. Part of this discrepancy could be attributed to the system lying in the crossover region between adiabatic and nonadiabatic whereas our calculations assumed the system to be nonadiabatic. Finally, by considering the relationship between the charge distribution and electronic conductivity, we suggest the possibility of low temperature metallic conductivity for intermediate phases, i.e., x˜0.3. This has not yet been experimentally observed.

  18. Microscale heat transfer in fusion welding of glass by ultra-short pulse laser using dual phase lag effects

    NASA Astrophysics Data System (ADS)

    Bag, Swarup

    2018-04-01

    The heat transfer in microscale has very different physical basis than macroscale where energy transport depends on collisions among energy carriers (electron and phonon), mean free path for the lattice (~ 10 – 100 nm) and mean free time between energy carriers. The heat transport is described on the basis of different types of energy carriers averaging over the grain scale in space and collations between them in time scale. The physical bases of heat transfer are developed by phonon-electron interaction for metals and alloys and phonon scattering for insulators and dielectrics. The non-Fourier effects in heating become more and more predominant as the duration of heating pulse becomes extremely small that is comparable with mean free time of the energy carriers. The mean free time for electron – phonon and phonon-phonon interaction is of the order of 1 and 10 picoseconds, respectively. In the present study, the mathematical formulation of the problem is defined considering dual phase lag i.e. two relaxation times in heat transport assuming a volumetric heat generation for ultra-short pulse laser interaction with dielectrics. The relaxation times are estimated based on phonon scattering model. A three dimensional finite element model is developed to find transient temperature distribution using quadruple ellipsoidal heat source model. The analysis is performed for single and multiple pulses to generate the time temperature history at different location and at different instant of time. The simulated results are validated with experiments reported in independent literature. The effect of two relaxation times and pulse width on the temperature profile is studied through numerical simulation.

  19. Nonlocal heat transport and improved target design for x-ray heating studies at x-ray free electron lasers

    NASA Astrophysics Data System (ADS)

    Hoidn, Oliver; Seidler, Gerald T.

    2018-01-01

    The extremely high-power densities and short durations of single pulses of x-ray free electron lasers (XFELs) have opened new opportunities in atomic physics, where complex excitation-relaxation chains allow for high ionization states in atomic and molecular systems, and in dense plasma physics, where XFEL heating of solid-density targets can create unique dense states of matter having temperatures on the order of the Fermi energy. We focus here on the latter phenomena, with special emphasis on the problem of optimum target design to achieve high x-ray heating into the warm dense matter (WDM) state. We report fully three-dimensional simulations of the incident x-ray pulse and the resulting multielectron relaxation cascade to model the spatial energy density deposition in multicomponent targets, with particular focus on the effects of nonlocal heat transport due to the motion of high energy photoelectrons and Auger electrons. We find that nanoscale high-Z /low-Z multicomponent targets can give much improved energy density deposition in lower-Z materials, with enhancements reaching a factor of 100. This has three important benefits. First, it greatly enlarges the thermodynamic parameter space in XFEL x-ray heating studies of lower-Z materials. Second, it allows the use of higher probe photon energies, enabling higher-information content x-ray diffraction (XRD) measurements such as in two-color XFEL operations. Third, while this is merely one step toward optimization of x-ray heating target design, the demonstration of the importance of nonlocal heat transport establishes important common ground between XFEL-based x-ray heating studies and more traditional laser plasma methods.

  20. Unconventional aspects of electronic transport in delafossite oxides

    NASA Astrophysics Data System (ADS)

    Daou, Ramzy; Frésard, Raymond; Eyert, Volker; Hébert, Sylvie; Maignan, Antoine

    2017-12-01

    The electronic transport properties of the delafossite oxides ? are usually understood in terms of two well-separated entities, namely the triangular ? and (? layers. Here, we review several cases among this extensive family of materials where the transport depends on the interlayer coupling and displays unconventional properties. We review the doped thermoelectrics based on ? and ?, which show a high-temperature recovery of Fermi-liquid transport exponents, as well as the highly anisotropic metals ?, ?, and ?, where the sheer simplicity of the Fermi surface leads to unconventional transport. We present some of the theoretical tools that have been used to investigate these transport properties and review what can and cannot be learned from the extensive set of electronic structure calculations that have been performed.

  1. Incorporating deep learning with convolutional neural networks and position specific scoring matrices for identifying electron transport proteins.

    PubMed

    Le, Nguyen-Quoc-Khanh; Ho, Quang-Thai; Ou, Yu-Yen

    2017-09-05

    In several years, deep learning is a modern machine learning technique using in a variety of fields with state-of-the-art performance. Therefore, utilization of deep learning to enhance performance is also an important solution for current bioinformatics field. In this study, we try to use deep learning via convolutional neural networks and position specific scoring matrices to identify electron transport proteins, which is an important molecular function in transmembrane proteins. Our deep learning method can approach a precise model for identifying of electron transport proteins with achieved sensitivity of 80.3%, specificity of 94.4%, and accuracy of 92.3%, with MCC of 0.71 for independent dataset. The proposed technique can serve as a powerful tool for identifying electron transport proteins and can help biologists understand the function of the electron transport proteins. Moreover, this study provides a basis for further research that can enrich a field of applying deep learning in bioinformatics. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Steepest entropy ascent quantum thermodynamic model of electron and phonon transport

    NASA Astrophysics Data System (ADS)

    Li, Guanchen; von Spakovsky, Michael R.; Hin, Celine

    2018-01-01

    An advanced nonequilibrium thermodynamic model for electron and phonon transport is formulated based on the steepest-entropy-ascent quantum thermodynamics framework. This framework, based on the principle of steepest entropy ascent (or the equivalent maximum entropy production principle), inherently satisfies the laws of thermodynamics and mechanics and is applicable at all temporal and spatial scales even in the far-from-equilibrium realm. Specifically, the model is proven to recover the Boltzmann transport equations in the near-equilibrium limit and the two-temperature model of electron-phonon coupling when no dispersion is assumed. The heat and mass transport at a temperature discontinuity across a homogeneous interface where the dispersion and coupling of electron and phonon transport are both considered are then modeled. Local nonequilibrium system evolution and nonquasiequilibrium interactions are predicted and the results discussed.

  3. Will Allis Prize Talk: Electron Collisions - Experiment, Theory and Applications

    NASA Astrophysics Data System (ADS)

    Bartschat, Klaus

    2016-05-01

    Electron collisions with atoms, ions, and molecules represent one of the very early topics of quantum mechanics. In spite of the field's maturity, a number of recent developments in detector technology (e.g., the ``reaction microscope'' or the ``magnetic-angle changer'') and the rapid increase in computational resources have resulted in significant progress in the measurement, understanding, and theoretical/computational description of few-body Coulomb problems. Close collaborations between experimentalists and theorists worldwide continue to produce high-quality benchmark data, which allow for thoroughly testing and further developing a variety of theoretical approaches. As a result, it has now become possible to reliably calculate the vast amount of atomic data needed for detailed modelling of the physics and chemistry of planetary atmospheres, the interpretation of astrophysical data, optimizing the energy transport in reactive plasmas, and many other topics - including light-driven processes, in which electrons are produced by continuous or short-pulse ultra-intense electromagnetic radiation. In this talk, I will highlight some of the recent developments that have had a major impact on the field. This will be followed by showcasing examples, in which accurate electron collision data enabled applications in fields beyond traditional AMO physics. Finally, open problems and challenges for the future will be outlined. I am very grateful for fruitful scientific collaborations with many colleagues, and the long-term financial support by the NSF through the Theoretical AMO and Computational Physics programs, as well as supercomputer resources through TeraGrid and XSEDE.

  4. Will Allis Prize for the Study of Ionized Gases: Electron Collisions - Experiment, Theory, and Applications

    NASA Astrophysics Data System (ADS)

    Bartschat, Klaus

    2016-09-01

    Electron collisions with atoms, ions, and molecules represent one of the very early topics of quantum mechanics. In spite of the field's maturity, a number of recent developments in detector technology (e.g., the ``reaction microscope'' or the ``magnetic-angle changer'') and the rapid increase in computational resources have resulted in significant progress in the measurement, understanding, and theoretical/computational description of few-body Coulomb problems. Close collaborations between experimentalists and theorists worldwide continue to produce high-quality benchmark data, which allow for thoroughly testing and further developing a variety of theoretical approaches. As a result, it has now become possible to reliably calculate the vast amount of atomic data needed for detailed modelling of the physics and chemistry of planetary atmospheres, the interpretation of astrophysical data, optimizing the energy transport in reactive plasmas, and many other topics - including light-driven processes, in which electrons are produced by continuous or short-pulse ultra-intense electromagnetic radiation. I will highlight some of the recent developments that have had a major impact on the field. This will be followed by showcasing examples, in which accurate electron collision data enabled applications in fields beyond traditional AMO physics. Finally, open problems and challenges for the future will be outlined. I am very grateful for fruitful scientific collaborations with many colleagues, and the long-term financial support by the NSF through the Theoretical AMO and Computational Physics programs, as well as supercomputer resources through TeraGrid and XSEDE.

  5. Charge transport and electron-hole asymmetry in low-mobility graphene/hexagonal boron nitride heterostructures

    NASA Astrophysics Data System (ADS)

    Li, Jiayu; Lin, Li; Huang, Guang-Yao; Kang, N.; Zhang, Jincan; Peng, Hailin; Liu, Zhongfan; Xu, H. Q.

    2018-02-01

    Graphene/hexagonal boron nitride (G/h-BN) heterostructures offer an excellent platform for developing nanoelectronic devices and for exploring correlated states in graphene under modulation by a periodic superlattice potential. Here, we report on transport measurements of nearly 0 ° -twisted G/h-BN heterostructures. The heterostructures investigated are prepared by dry transfer and thermally annealing processes and are in the low mobility regime (approximately 3000 cm2 V-1 s-1 at 1.9 K). The replica Dirac spectra and Hofstadter butterfly spectra are observed on the hole transport side, but not on the electron transport side, of the heterostructures. We associate the observed electron-hole asymmetry with the presence of a large difference between the opened gaps in the conduction and valence bands and a strong enhancement in the interband contribution to the conductivity on the electron transport side in the low-mobility G/h-BN heterostructures. We also show that the gaps opened at the central Dirac point and the hole-branch secondary Dirac point are large, suggesting the presence of strong graphene-substrate interaction and electron-electron interaction in our G/h-BN heterostructures. Our results provide additional helpful insight into the transport mechanism in G/h-BN heterostructures.

  6. Functional Characterization of the Small Regulatory Subunit PetP from the Cytochrome b6f Complex in Thermosynechococcus elongatus[C][W

    PubMed Central

    Rexroth, Sascha; Rexroth, Dorothea; Veit, Sebastian; Plohnke, Nicole; Cormann, Kai U.; Nowaczyk, Marc M.; Rögner, Matthias

    2014-01-01

    The cyanobacterial cytochrome b6f complex is central for the coordination of photosynthetic and respiratory electron transport and also for the balance between linear and cyclic electron transport. The development of a purification strategy for a highly active dimeric b6f complex from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 enabled characterization of the structural and functional role of the small subunit PetP in this complex. Moreover, the efficient transformability of this strain allowed the generation of a ΔpetP mutant. Analysis on the whole-cell level by growth curves, photosystem II light saturation curves, and P700+ reduction kinetics indicate a strong decrease in the linear electron transport in the mutant strain versus the wild type, while the cyclic electron transport via photosystem I and cytochrome b6f is largely unaffected. This reduction in linear electron transport is accompanied by a strongly decreased stability and activity of the isolated ΔpetP complex in comparison with the dimeric wild-type complex, which binds two PetP subunits. The distinct behavior of linear and cyclic electron transport may suggest the presence of two distinguishable pools of cytochrome b6f complexes with different functions that might be correlated with supercomplex formation. PMID:25139006

  7. Kinetic Theory of Electronic Transport in Random Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Lucas, Andrew

    2018-03-01

    We present the theory of quasiparticle transport in perturbatively small inhomogeneous magnetic fields across the ballistic-to-hydrodynamic crossover. In the hydrodynamic limit, the resistivity ρ generically grows proportionally to the rate of momentum-conserving electron-electron collisions at large enough temperatures T . In particular, the resulting flow of electrons provides a simple scenario where viscous effects suppress conductance below the ballistic value. This new mechanism for ρ ∝T2 resistivity in a Fermi liquid may describe low T transport in single-band SrTiO3 .

  8. Kinetic Theory of Electronic Transport in Random Magnetic Fields.

    PubMed

    Lucas, Andrew

    2018-03-16

    We present the theory of quasiparticle transport in perturbatively small inhomogeneous magnetic fields across the ballistic-to-hydrodynamic crossover. In the hydrodynamic limit, the resistivity ρ generically grows proportionally to the rate of momentum-conserving electron-electron collisions at large enough temperatures T. In particular, the resulting flow of electrons provides a simple scenario where viscous effects suppress conductance below the ballistic value. This new mechanism for ρ∝T^{2} resistivity in a Fermi liquid may describe low T transport in single-band SrTiO_{3}.

  9. Differentiation between electron transport sensing and proton motive force sensing by the Aer and Tsr receptors for aerotaxis

    PubMed Central

    Edwards, Jessica C.; Johnson, Mark S.; Taylor, Barry L.

    2007-01-01

    SUMMARY Aerotaxis (oxygen-seeking) behavior in Escherichia coli is a response to changes in the electron transport system and not oxygen per se. Because changes in proton motive force (PMF) are coupled to respiratory electron transport, it is difficult to differentiate between PMF, electron transport or redox, all primary candidates for the signal sensed by the aerotaxis receptors, Aer and Tsr. We constructed electron transport mutants that produced different respiratory H+/e- stoichiometries. These strains expressed binary combinations of one NADH dehydrogenase and one quinol oxidase. We then introduced either an aer or tsr mutation into each mutant to create two sets of electron transport mutants. In vivo H+/e- ratios for strains grown in glycerol medium ranged from 1.46 ± 0.18 to 3.04 ± 0.47, but rates of respiration and growth were similar. The PMF jump in response to oxygen was proportional to the H+/e- ratio in each set of mutants (r2 = 0.986 to 0.996). The length of Tsr-mediated aerotaxis responses increased with the PMF jump (r2 = 0.988), but Aer-mediated responses did not correlate with either PMF changes (r2 = 0.297) or the rate of electron transport (r2 = 0.066). Aer-mediated responses were linked to NADH dehydrogenase I, although there was no absolute requirement. The data indicate that Tsr responds to changes in PMF, but strong Aer responses to oxygen are associated with redox changes in NADH dehydrogenase I PMID:16995896

  10. Charge-transport anisotropy in black phosphorus: critical dependence on the number of layers.

    PubMed

    Banerjee, Swastika; Pati, Swapan K

    2016-06-28

    Phosphorene is a promising candidate for modern electronics because of the anisotropy associated with high electron-hole mobility. Additionally, superior mechanical flexibility allows the strain-engineering of various properties including the transport of charge carriers in phosphorene. In this work, we have shown the criticality of the number of layers to dictate the transport properties of black phosphorus. Trilayer black phosphorus (TBP) has been proposed as an excellent anisotropic material, based on the transport parameters using Boltzmann transport formalisms coupled with density functional theory. The mobilities of both the electron and the hole are found to be higher along the zigzag direction (∼10(4) cm(2) V(-1) s(-1) at 300 K) compared to the armchair direction (∼10(2) cm(2) V(-1) s(-1)), resulting in the intrinsic directional anisotropy. Application of strain leads to additional electron-hole anisotropy with 10(3) fold higher mobility for the electron compared to the hole. Critical strain for maximum anisotropic response has also been determined. Whether the transport anisotropy is due to the spatial or charge-carrier has been determined through analyses of the scattering process of electrons and holes, and their recombination as well as relaxation dynamics. In this context, we have derived two descriptors (S and F(k)), which are general enough for any 2D or quasi-2D systems. Information on the scattering involving purely the carrier states also helps to understand the layer-dependent photoluminescence and electron (hole) relaxation in black phosphorus. Finally, we justify trilayer black phosphorus (TBP) as the material of interest with excellent transport properties.

  11. Transport of secondary electrons and reactive species in ion tracks

    NASA Astrophysics Data System (ADS)

    Surdutovich, Eugene; Solov'yov, Andrey V.

    2015-08-01

    The transport of reactive species brought about by ions traversing tissue-like medium is analysed analytically. Secondary electrons ejected by ions are capable of ionizing other molecules; the transport of these generations of electrons is studied using the random walk approximation until these electrons remain ballistic. Then, the distribution of solvated electrons produced as a result of interaction of low-energy electrons with water molecules is obtained. The radial distribution of energy loss by ions and secondary electrons to the medium yields the initial radial dose distribution, which can be used as initial conditions for the predicted shock waves. The formation, diffusion, and chemical evolution of hydroxyl radicals in liquid water are studied as well. COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy.

  12. Investigation of ion and electron heat transport of high- T e ECH heated discharges in the large helical device

    DOE PAGES

    Pablant, N. A.; Satake, S.; Yokoyama, M.; ...

    2016-01-28

    An analysis of the radial electric field and heat transport, both for ions and electrons, is presented for a high-more » $${{T}_{\\text{e}}}$$ electron cyclotron heated (ECH) discharge on the large helical device (LHD). Transport analysis is done using the task3d transport suite utilizing experimentally measured profiles for both ions and electrons. Ion temperature and perpendicular flow profiles are measured using the recently installed x-ray imaging crystal spectrometer diagnostic (XICS), while electron temperature and density profiles are measured using Thomson scattering. The analysis also includes calculated ECH power deposition profiles as determined through the travis ray-tracing code. This is the first time on LHD that this type of integrated transport analysis with measured ion temperature profiles has been performed without NBI, allowing the heat transport properties of plasmas with only ECH heating to be more clearly examined. For this study, a plasma discharge is chosen which develops a high central electron temperature ($${{T}_{\\text{eo}}}=9$$ keV) at moderately low densities ($${{n}_{\\text{eo}}}=1.5\\times {{10}^{19}}$$ m-3). The experimentally determined transport properties from task3d are compared to neoclassical predictions as calculated by the gsrake and fortec-3d codes. The predicted electron fluxes are seen to be an order of magnitude less than the measured fluxes, indicating that electron transport is largely anomalous, while the neoclassical and measured ion heat fluxes are of the same magnitude. Neoclassical predictions of a strong positive ambipolar electric field ($${{E}_{\\text{r}}}$$ ) in the plasma core are validated through comparisons to perpendicular flow measurements from the XICS diagnostic. Furthermore, this provides confidence that the predictions are producing physically meaningful results for the particle fluxes and radial electric field, which are a key component in correctly predicting plasma confinement.« less

  13. Understanding the inelastic electron-tunneling spectra of alkanedithiols on gold.

    PubMed

    Solomon, Gemma C; Gagliardi, Alessio; Pecchia, Alessandro; Frauenheim, Thomas; Di Carlo, Aldo; Reimers, Jeffrey R; Hush, Noel S

    2006-03-07

    We present results for a simulated inelastic electron-tunneling spectra (IETS) from calculations using the "gDFTB" code. The geometric and electronic structure is obtained from calculations using a local-basis density-functional scheme, and a nonequilibrium Green's function formalism is employed to deal with the transport aspects of the problem. The calculated spectrum of octanedithiol on gold(111) shows good agreement with experimental results and suggests further details in the assignment of such spectra. We show that some low-energy peaks, unassigned in the experimental spectrum, occur in a region where a number of molecular modes are predicted to be active, suggesting that these modes are the cause of the peaks rather than a matrix signal, as previously postulated. The simulations also reveal the qualitative nature of the processes dominating IETS. It is highly sensitive only to the vibrational motions that occur in the regions of the molecule where there is electron density in the low-voltage conduction channel. This result is illustrated with an examination of the predicted variation of IETS with binding site and alkane chain length.

  14. Electronic Conductivity in Biomimetic α-Helical Peptide Nanofibers and Gels.

    PubMed

    Ing, Nicole L; Spencer, Ryan K; Luong, Son H; Nguyen, Hung D; Hochbaum, Allon I

    2018-03-27

    Examples of long-range electronic conductivity are rare in biological systems. The observation of micrometer-scale electronic transport through protein wires produced by bacteria is therefore notable, providing an opportunity to study fundamental aspects of conduction through protein-based materials and natural inspiration for bioelectronics materials. Borrowing sequence and structural motifs from these conductive protein fibers, we designed self-assembling peptides that form electronically conductive nanofibers under aqueous conditions. Conductivity in these nanofibers is distinct for two reasons: first, they support electron transport over distances orders of magnitude greater than expected for proteins, and second, the conductivity is mediated entirely by amino acids lacking extended conjugation, π-stacking, or redox centers typical of existing organic and biohybrid semiconductors. Electrochemical transport measurements show that the fibers support ohmic electronic transport and a metallic-like temperature dependence of conductance in aqueous buffer. At higher solution concentrations, the peptide monomers form hydrogels, and comparisons of the structure and electronic properties of the nanofibers and gels highlight the critical roles of α-helical secondary structure and supramolecular ordering in supporting electronic conductivity in these materials. These findings suggest a structural basis for long-range electronic conduction mechanisms in peptide and protein biomaterials.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherlock, M.; Brodrick, J. P.; Ridgers, C. P.

    Here, we compare the reduced non-local electron transport model developed to Vlasov-Fokker-Planck simulations. Two new test cases are considered: the propagation of a heat wave through a high density region into a lower density gas, and a one-dimensional hohlraum ablation problem. We find that the reduced model reproduces the peak heat flux well in the ablation region but significantly over-predicts the coronal preheat. The suitability of the reduced model for computing non-local transport effects other than thermal conductivity is considered by comparing the computed distribution function to the Vlasov-Fokker-Planck distribution function. It is shown that even when the reduced modelmore » reproduces the correct heat flux, the distribution function is significantly different to the Vlasov-Fokker-Planck prediction. Two simple modifications are considered which improve agreement between models in the coronal region.« less

  16. Parallel-processing with surface plasmons, a new strategy for converting the broad solar spectrum

    NASA Technical Reports Server (NTRS)

    Anderson, L. M.

    1982-01-01

    A new strategy for efficient solar-energy conversion is based on parallel processing with surface plasmons: guided electromagnetic waves supported on thin films of common metals like aluminum or silver. The approach is unique in identifying a broadband carrier with suitable range for energy transport and an inelastic tunneling process which can be used to extract more energy from the more energetic carriers without requiring different materials for each frequency band. The aim is to overcome the fundamental 56-percent loss associated with mismatch between the broad solar spectrum and the monoenergetic conduction electrons used to transport energy in conventional silicon solar cells. This paper presents a qualitative discussion of the unknowns and barrier problems, including ideas for coupling surface plasmons into the tunnels, a step which has been the weak link in the efficiency chain.

  17. Stefan-Maxwell Relations and Heat Flux with Anisotropic Transport Coefficients for Ionized Gases in a Magnetic Field with Application to the Problem of Ambipolar Diffusion

    NASA Astrophysics Data System (ADS)

    Kolesnichenko, A. V.; Marov, M. Ya.

    2018-01-01

    The defining relations for the thermodynamic diffusion and heat fluxes in a multicomponent, partially ionized gas mixture in an external electromagnetic field have been obtained by the methods of the kinetic theory. Generalized Stefan-Maxwell relations and algebraic equations for anisotropic transport coefficients (the multicomponent diffusion, thermal diffusion, electric and thermoelectric conductivity coefficients as well as the thermal diffusion ratios) associated with diffusion-thermal processes have been derived. The defining second-order equations are derived by the Chapman-Enskog procedure using Sonine polynomial expansions. The modified Stefan-Maxwell relations are used for the description of ambipolar diffusion in the Earth's ionospheric plasma (in the F region) composed of electrons, ions of many species, and neutral particles in a strong electromagnetic field.

  18. Modeling parameterized geometry in GPU-based Monte Carlo particle transport simulation for radiotherapy.

    PubMed

    Chi, Yujie; Tian, Zhen; Jia, Xun

    2016-08-07

    Monte Carlo (MC) particle transport simulation on a graphics-processing unit (GPU) platform has been extensively studied recently due to the efficiency advantage achieved via massive parallelization. Almost all of the existing GPU-based MC packages were developed for voxelized geometry. This limited application scope of these packages. The purpose of this paper is to develop a module to model parametric geometry and integrate it in GPU-based MC simulations. In our module, each continuous region was defined by its bounding surfaces that were parameterized by quadratic functions. Particle navigation functions in this geometry were developed. The module was incorporated to two previously developed GPU-based MC packages and was tested in two example problems: (1) low energy photon transport simulation in a brachytherapy case with a shielded cylinder applicator and (2) MeV coupled photon/electron transport simulation in a phantom containing several inserts of different shapes. In both cases, the calculated dose distributions agreed well with those calculated in the corresponding voxelized geometry. The averaged dose differences were 1.03% and 0.29%, respectively. We also used the developed package to perform simulations of a Varian VS 2000 brachytherapy source and generated a phase-space file. The computation time under the parameterized geometry depended on the memory location storing the geometry data. When the data was stored in GPU's shared memory, the highest computational speed was achieved. Incorporation of parameterized geometry yielded a computation time that was ~3 times of that in the corresponding voxelized geometry. We also developed a strategy to use an auxiliary index array to reduce frequency of geometry calculations and hence improve efficiency. With this strategy, the computational time ranged in 1.75-2.03 times of the voxelized geometry for coupled photon/electron transport depending on the voxel dimension of the auxiliary index array, and in 0.69-1.23 times for photon only transport.

  19. Analytical and Numerical Solutions of Generalized Fokker-Planck Equations - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prinja, Anil K.

    The overall goal of this project was to develop advanced theoretical and numerical techniques to quantitatively describe the spreading of a collimated beam of charged particles in space, in angle, and in energy, as a result of small deflection, small energy transfer Coulomb collisions with the target nuclei and electrons. Such beams arise in several applications of great interest in nuclear engineering, and include electron and ion radiotherapy, ion beam modification of materials, accelerator transmutation of waste, and accelerator production of tritium, to name some important candidates. These applications present unique and difficult modeling challenges, but from the outset aremore » amenable to the language of ''transport theory'', which is very familiar to nuclear engineers and considerably less-so to physicists and material scientists. Thus, our approach has been to adopt a fundamental description based on transport equations, but the forward peakedness associated with charged particle interactions precludes a direct application of solution methods developed for neutral particle transport. Unique problem formulations and solution techniques are necessary to describe the transport and interaction of charged particles. In particular, we have developed the Generalized Fokker-Planck (GFP) approach to describe the angular and radial spreading of a collimated beam and a renormalized transport model to describe the energy-loss straggling of an initially monoenergetic distribution. Both analytic and numerical solutions have been investigated and in particular novel finite element numerical methods have been developed. In the first phase of the project, asymptotic methods were used to develop closed form solutions to the GFP equation for different orders of expansion, and was described in a previous progress report. In this final report we present a detailed description of (i) a novel energy straggling model based on a Fokker-Planck approximation but which is adapted for a multigroup transport setting, and (ii) two unique families of discontinuous finite element schemes, one linear and the other nonlinear.« less

  20. 76 FR 22878 - Defense Transportation Regulation, Part IV

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ... Military Services, DFAS and SDDC. In addition, the proposed electronic billing processes will compliment... in the Defense Transportation Regulation (DTR) Part IV (DTR 4500.9R). This process proposes mandatory... Transportation Service Providers (TSP). Implementation of electronic payments for NTS at all Military Services...

  1. Electronic and transport properties of Cobalt-based valence tautomeric molecules and polymers

    NASA Astrophysics Data System (ADS)

    Chen, Yifeng; Calzolari, Arrigo; Buongiorno Nardelli, Marco

    2011-03-01

    The advancement of molecular spintronics requires further understandings of the fundamental electronic structures and transport properties of prototypical spintronics molecules and polymers. Here we present a density functional based theoretical study of the electronic structures of Cobalt-based valence tautomeric molecules Co III (SQ)(Cat)L Co II (SQ)2 L and their polymers, where SQ refers to the semiquinone ligand, and Cat the catecholate ligand, while L is a redox innocent backbone ligand. The conversion from low-spin Co III ground state to high-spin Co II excited state is realized by imposing an on-site potential U on the Co atom and elongating the Co-N bond. Transport properties are subsequently calculated by extracting electronic Wannier functions from these systems and computing the charge transport in the ballistic regime using a Non-Equilibrium Green's Function (NEGF) approach. Our transport results show distinct charge transport properties between low-spin ground state and high-spin excited state, hence suggesting potential spintronics devices from these molecules and polymers such as spin valves.

  2. High-Performance Lithium-Sulfur Batteries with a Self-Assembled Multiwall Carbon Nanotube Interlayer and a Robust Electrode-Electrolyte Interface.

    PubMed

    Kim, Hee Min; Hwang, Jang-Yeon; Manthiram, Arumugam; Sun, Yang-Kook

    2016-01-13

    Elemental sulfur electrode has a huge advantage in terms of charge-storage capacity. However, the lack of electrical conductivity results in poor electrochemical utilization of sulfur and performance. This problem has been overcome to some extent previously by using a bare multiwall carbon nanotube (MWCNT) paper interlayer between the sulfur cathode and the polymeric separator, resulting in good electron transport and adsorption of dissolved polysulfides. To advance the interlayer concept further, we present here a self-assembled MWCNT interlayer fabricated by a facile, low-cost process. The Li-S cells fabricated with the self-assembled MWCNT interlayer and a high loading of 3 mg cm(-2) sulfur exhibit a first discharge specific capacity of 1112 mAh g(-1) at 0.1 C rate and retain 95.8% of the capacity at 0.5 C rate after 100 cycles as the self-assembled MWCNT interlayer facilitates good interfacial contact between the interlayer and the sulfur cathode and fast electron and lithium-ion transport while trapping and reutilizing the migrating polysulfides. The approach presented here has the potential to advance the commercialization feasibility of the Li-S batteries.

  3. Performance of a Bounce-Averaged Global Model of Super-Thermal Electron Transport in the Earth's Magnetic Field

    NASA Technical Reports Server (NTRS)

    McGuire, Tim

    1998-01-01

    In this paper, we report the results of our recent research on the application of a multiprocessor Cray T916 supercomputer in modeling super-thermal electron transport in the earth's magnetic field. In general, this mathematical model requires numerical solution of a system of partial differential equations. The code we use for this model is moderately vectorized. By using Amdahl's Law for vector processors, it can be verified that the code is about 60% vectorized on a Cray computer. Speedup factors on the order of 2.5 were obtained compared to the unvectorized code. In the following sections, we discuss the methodology of improving the code. In addition to our goal of optimizing the code for solution on the Cray computer, we had the goal of scalability in mind. Scalability combines the concepts of portabilty with near-linear speedup. Specifically, a scalable program is one whose performance is portable across many different architectures with differing numbers of processors for many different problem sizes. Though we have access to a Cray at this time, the goal was to also have code which would run well on a variety of architectures.

  4. First-principles method for electron-phonon coupling and electron mobility: Applications to two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Gunst, Tue; Markussen, Troels; Stokbro, Kurt; Brandbyge, Mads

    2016-01-01

    We present density functional theory calculations of the phonon-limited mobility in n -type monolayer graphene, silicene, and MoS2. The material properties, including the electron-phonon interaction, are calculated from first principles. We provide a detailed description of the normalized full-band relaxation time approximation for the linearized Boltzmann transport equation (BTE) that includes inelastic scattering processes. The bulk electron-phonon coupling is evaluated by a supercell method. The method employed is fully numerical and does therefore not require a semianalytic treatment of part of the problem and, importantly, it keeps the anisotropy information stored in the coupling as well as the band structure. In addition, we perform calculations of the low-field mobility and its dependence on carrier density and temperature to obtain a better understanding of transport in graphene, silicene, and monolayer MoS2. Unlike graphene, the carriers in silicene show strong interaction with the out-of-plane modes. We find that graphene has more than an order of magnitude higher mobility compared to silicene in the limit where the silicene out-of-plane interaction is reduced to zero (by substrate interaction, clamping, or similar). If the out-of-plane interaction is not actively reduced, the mobility of silicene will essentially be zero. For MoS2, we obtain several orders of magnitude lower mobilities compared to graphene in agreement with other recent theoretical results. The simulations illustrate the predictive capabilities of the newly implemented BTE solver applied in simulation tools based on first-principles and localized basis sets.

  5. Short-term regulation and alternative pathways of photosynthetic electron transport in Hibiscus rosa-sinensis leaves.

    PubMed

    Trubitsin, Boris V; Vershubskii, Alexey V; Priklonskii, Vladimir I; Tikhonov, Alexander N

    2015-11-01

    In this work, using the EPR and PAM-fluorometry methods, we have studied induction events of photosynthetic electron transport in Hibiscus rosa-sinensis leaves. The methods used are complementary, providing efficient tools for in situ monitoring of P700 redox transients and photochemical activity of photosystem II (PSII). The induction of P700(+) in dark-adapted leaves is characterized by the multiphase kinetics with a lag-phase, which duration elongates with the dark-adaptation time. Analyzing effects of the uncoupler monensin and artificial electron carrier methylviologen (MV) on photooxidation of P700 and slow induction of chlorophyll a fluorescence (SIF), we could ascribe different phases of transient kinetics of electron transport processes in dark-adapted leaves to the following regulatory mechanisms: (i) acceleration of electron transfer on the acceptor side of PSI, (ii) pH-dependent modulation of the intersystem electron flow, and (iii) re-distribution of electron fluxes between alternative (linear, cyclic, and pseudocyclic) pathways. Monensin significantly decreases a level of P700(+) and inhibits SIF. MV, which mediates electron flow from PSI to O2 with consequent formation of H2O2, promotes a rapid photooxidation of P700 without any lag-phase peculiar to untreated leaves. MV-mediated water-water cycle (H2O→PSII→PSI→MV→O2→H2O2→H2O) is accompanied by generation of ascorbate free radicals. This suggests that the ascorbate peroxidase system of defense against reactive oxygen species is active in chloroplasts of H. rosa-sinensis leaves. In DCMU-treated chloroplasts with inhibited PSII, the contribution of cyclic electron flow is insignificant as compared to linear electron flow. For analysis of induction events, we have simulated electron transport processes within the framework of our generalized mathematical model of oxygenic photosynthesis, which takes into account pH-dependent mechanisms of electron transport control and re-distribution of electron fluxes between alternative pathways. The model adequately describes the main peculiarities of P700(+) induction and dynamics of the intersystem electron transport. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. The Design of Transportation Equipment in Terms of Human Capabilities. The Role of Engineering Psychology in Transport Safety.

    ERIC Educational Resources Information Center

    McFarland, Ross A.

    Human factors engineering is considered with regard to the design of safety factors for aviation and highway transportation equipment. Current trends and problem areas are identified for jet air transportation and for highway transportation. Suggested solutions to transportation safety problems are developed by applying the techniques of human…

  7. Electron transport in molecular wires with transition metal contacts

    NASA Astrophysics Data System (ADS)

    Dalgleish, Hugh

    A molecular wire is an organic molecule that forms a conducting bridge between electronic contacts. Single molecules are likely to be the smallest entities to conduct electricity and thus molecular wires present many interesting challenges to fundamental science as well as enormous potential for nanoelectronic technological applications. A particular challenge stems from the realization that the properties of molecular wires are strongly influenced by the combined characteristics of the molecule and the metal contacts. While gold has been the most studied contact material to date, interest in molecular wires with transition metal contacts that are electronically more complex than gold is growing. This thesis presents a theoretical investigation of electron transport and associated phenomena in molecular wires with transition metal contacts. An appropriate methodology is developed on the basis of Landauer theory and ab initio and semi-empirical considerations and new, physically important systems are identified. Spin-dependent transport mechanisms and device characteristics are explored for molecular wires with ferromagnetic iron contacts, systems that have not been considered previously, either theoretically or experimentally. Electron transport between iron point contacts bridged by iron atoms is also investigated. Spin-dependent transport is also studied for molecules bridging nickel contacts and a possible explanation of some experimentally observed phenomena is proposed. A novel physical phenomenon termed strong spin current rectification and a new controllable negative differential resistance mechanism with potential applications for molecular electronic technology are introduced. The phenomena predicted in this thesis should be accessible to present day experimental techniques and this work is intended to stimulate experiments directed at observing them. Keywords. molecular electronics; spintronics; electron transport; interface states.

  8. Origin of the different transport properties of electron and hole polarons in an ambipolar polyselenophene-based conjugated polymer

    NASA Astrophysics Data System (ADS)

    Chen, Zhuoying; Bird, Matthew; Lemaur, Vincent; Radtke, Guillaume; Cornil, Jérôme; Heeney, Martin; McCulloch, Iain; Sirringhaus, Henning

    2011-09-01

    Understanding the mechanisms limiting ambipolar transport in conjugated polymer field-effect transistors (FETs) is of both fundamental and practical interest. Here, we present a systematic study comparing hole and electron charge transport in an ambipolar conjugated polymer, semicrystalline poly(3,3''-di-n-decylterselenophene) (PSSS). Starting from a detailed analysis of the device characteristics and temperature/charge-density dependence of the mobility, we interpret the difference between hole and electron transport through both the Vissenberg-Matters and the mobility-edge model. To obtain microscopic insight into the quantum mechanical wave function of the charges at a molecular level, we combine charge modulation spectroscopy (CMS) measuring the charge-induced absorption signatures from positive and negative polarons in these ambipolar FETs with corresponding density functional theory (DFT) calculations. We observe a significantly higher switch-on voltage for electrons than for holes due to deep electron trap states, but also a higher activation energy of the mobility for mobile electrons. The CMS spectra reveal that the electrons that remain mobile and contribute to the FET current have a wave function that is more localized onto a single polymer chain than that of holes, which is extended over several polymer chains. We interpret this as evidence that the transport properties of the mobile electrons in PSSS are still affected by the presence of deep electron traps. The more localized electron state could be due to the mobile electrons interacting with shallow trap states in the vicinity of a chemical, potentially water-related, impurity that might precede the capture of the electron into a deeply trapped state.

  9. Two-dimensional collective electron magnetotransport, oscillations, and chaos in a semiconductor superlattice

    NASA Astrophysics Data System (ADS)

    Bonilla, L. L.; Carretero, M.; Segura, A.

    2017-12-01

    When quantized, traces of classically chaotic single-particle systems include eigenvalue statistics and scars in eigenfuntions. Since 2001, many theoretical and experimental works have argued that classically chaotic single-electron dynamics influences and controls collective electron transport. For transport in semiconductor superlattices under tilted magnetic and electric fields, these theories rely on a reduction to a one-dimensional self-consistent drift model. A two-dimensional theory based on self-consistent Boltzmann transport does not support that single-electron chaos influences collective transport. This theory agrees with existing experimental evidence of current self-oscillations, predicts spontaneous collective chaos via a period doubling scenario, and could be tested unambiguously by measuring the electric potential inside the superlattice under a tilted magnetic field.

  10. Role of interface states on electron transport in a-Si:H/nc-Si:H multilayer structures

    NASA Astrophysics Data System (ADS)

    Yadav, Asha; Kumari, Juhi; Agarwal, Pratima

    2018-05-01

    In this paper we report, I-V characteristic of a-Si:H/nc-Si:H multilayer structures in lateral as well as transverse direction. In lateral geometry, where the interfaces are parallel to the direction of electronic transport, residual photo conductivity (persistent photoconductivity) is observed after the light was turned off. On the other hand, in transverse geometry, where interfaces are along the direction of electronic transport, the space charge limited currents are affected and higher density of states is obtained. The PPC was more in the structures where numbers of such interface were more. These results have been understood in terms of the charge carriers trapped at the interface, which influence the electronic transport.

  11. Two-dimensional collective electron magnetotransport, oscillations, and chaos in a semiconductor superlattice.

    PubMed

    Bonilla, L L; Carretero, M; Segura, A

    2017-12-01

    When quantized, traces of classically chaotic single-particle systems include eigenvalue statistics and scars in eigenfuntions. Since 2001, many theoretical and experimental works have argued that classically chaotic single-electron dynamics influences and controls collective electron transport. For transport in semiconductor superlattices under tilted magnetic and electric fields, these theories rely on a reduction to a one-dimensional self-consistent drift model. A two-dimensional theory based on self-consistent Boltzmann transport does not support that single-electron chaos influences collective transport. This theory agrees with existing experimental evidence of current self-oscillations, predicts spontaneous collective chaos via a period doubling scenario, and could be tested unambiguously by measuring the electric potential inside the superlattice under a tilted magnetic field.

  12. Electron heat transport comparison in the Large Helical Device and TJ-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, J.; Dies, J.; Castejon, F.

    2007-10-15

    The electron heat transport in the Large Helical Device (LHD) [K. Ida, T. Shimozuma, H. Funaba et al., Phys. Rev. Lett. 91, 085003 (2003)] and TJ-II [F. Castejon, V. Tribaldos, I. Garcia-Cortes, E. de la Luna, J. Herranz, I. Pastor, T. Estrada, and TJ-II Team, Nucl. Fusion 42, 271 (2002)] is analyzed by means of the TOTAL [K. Yamazaki and T. Amano, Nucl. Fusion 32, 4 (1992)] and PRETOR-Stellarator [J. Dies, F. Castejon, J. M. Fontdecaba, J. Fontanet, J. Izquierdo, G. Cortes, and C. Alejaldre, Proceedings of the 29th European Physical Society Conference on Plasma Physics and Controlled Fusion, Montreux,more » 2002, Europhysics Conference Abstracts, 2004, Vol. 26B, P-5.027] plasma simulation codes and assuming a global transport model mixing GyroBohm-like drift wave model and other drift wave model with shorter wavelength. The stabilization of the GyroBohm-like model by the ExB shear has been also taken into account. Results show how such kind of electron heat transport can simulate experimental evidence in both devices, leading to the electron internal transport barrier (eITB) formation in the LHD and to the so-called 'enhanced heat confinement regimes' in TJ-II when electron density is low enough. Therefore, two sources for the anomalous electron heat transport can coexist in plasmas with eITB; however, for each device the relative importance of anomalous and neoclassical transport can be different.« less

  13. Electron transfer in biology

    NASA Astrophysics Data System (ADS)

    Williams, R. J. P.

    Electron transfer is one of the key reactions of biology not just in catalysis of oxidation/reduction reactions but in the conversion of sources of energy such as light to usable form for chemical transformations. There are then two intriguing problems. What is the nature of the matrix in which electrons flow in a biological cell after the initial charge separation due for example to the absorption of light. Here we are examining biological structures similar to man's electronic wires and the construction must be of low resistance in what are apparently insulators - organic polymers. It has been found that the electronic conduction system is largely made from metallo-proteins associated with lipid membranes. We understand much about these biological wires today. The second problem concerns the conversion of the energy captured from the light into usable chemical form. The major synthetic step in the production of biological polymers, including proteins, DNA, RNA, polysaccharides and fats, is condensation, i.e. the removal of water in the formation of amides, esters and so on. Now these condensation reactions are driven in biology by using a drying agent in water, namely the anhydride, pyrophosphate, in a special compound ATP, adenosine triphosphate. The central problem is to discover exactly how the flow of electrons can be related to the synthesis of (bound) pyrophosphate. (In a thermodynamic sense pyrophosphate is a water soluble kinetically stable drying agent comparable with solid P2O5.) In the biological systems the connection between these different classes of reaction, electron transfer and condensation, is known to be via the production of an energized gradient of protons across the biological membrane which arises from the flow of electrons across the same membrane in the electron transport wires of biology. However we do not understand thoroughly the steps which lead from electron flow in a membrane to proton gradients in that membrane, i.e. electron/proton coupling. Again we do not understand thoroughly how subsequently the proton gradient across a membrane makes ATP, pyrophosphate. Today there is good experimental evidence as to the likely answers in principle. These analyse the coupling devices in mechanical terms. In this article I describe at first the 'wires' of biology, uncoupled simple electron flow, and then go on to the ways in which electron flow could be transduced by mechanical devices, also proteins, into proton gradients and then ATP. This will be termed coupled electron flow. The objective of the article is to stimulate participation by physical chemists in the further description of biological energy capture from light or the oxidation of hydrocarbons to a form suitable for driving chemical syntheses in a controlled manner.

  14. Simulations of Coherent Synchrotron Radiation Effects in Electron Machines

    NASA Astrophysics Data System (ADS)

    Migliorati, M.; Schiavi, A.; Dattoli, G.

    2007-09-01

    Coherent synchrotron radiation (CSR) generated by high intensity electron beams can be a source of undesirable effects limiting the performance of storage rings. The complexity of the physical mechanisms underlying the interplay between the electron beam and the CSR demands for reliable simulation codes. In the past, codes based on Lie algebraic techniques have been very efficient to treat transport problems in accelerators. The extension of these methods to the non linear case is ideally suited to treat wakefields - beam interaction. In this paper we report on the development of a numerical code, based on the solution of the Vlasov equation, which includes the non linear contribution due to wakefields. The proposed solution method exploits an algebraic technique that uses the exponential operators. We show that, in the case of CSR wakefields, the integration procedure is capable of reproducing the onset of an instability which leads to microbunching of the beam thus increasing the CSR at short wavelengths. In addition, considerations on the threshold of the instability for Gaussian bunches is also reported.

  15. Simulations of Coherent Synchrotron Radiation Effects in Electron Machines

    NASA Astrophysics Data System (ADS)

    Migliorati, M.; Schiavi, A.; Dattoli, G.

    Coherent synchrotron radiation (CSR) generated by high intensity electron beams can be a source of undesirable effects limiting the performance of storage rings. The complexity of the physical mechanisms underlying the interplay between the electron beam and the CSR demands for reliable simulation codes. In the past, codes based on Lie algebraic techniques have been very efficient to treat transport problems in accelerators. The extension of these methods to the non linear case is ideally suited to treat wakefields - beam interaction. In this paper we report on the development of a numerical code, based on the solution of the Vlasov equation, which includes the non linear contribution due to wakefields. The proposed solution method exploits an algebraic technique that uses the exponential operators. We show that, in the case of CSR wakefields, the integration procedure is capable of reproducing the onset of an instability which leads to microbunching of the beam thus increasing the CSR at short wavelengths. In addition, considerations on the threshold of the instability for Gaussian bunches is also reported.

  16. A first-principles analysis of ballistic conductance, grain boundary scattering and vertical resistance in aluminum interconnects

    NASA Astrophysics Data System (ADS)

    Zhou, Tianji; Lanzillo, Nicholas A.; Bhosale, Prasad; Gall, Daniel; Quon, Roger

    2018-05-01

    We present an ab initio evaluation of electron scattering mechanisms in Al interconnects from a back-end-of-line (BEOL) perspective. We consider the ballistic conductance as a function of nanowire size, as well as the impact of surface oxidation on electron transport. We also consider several representative twin grain boundaries and calculate the specific resistivity and reflection coefficients for each case. Lastly, we calculate the vertical resistance across the Al/Ta(N)/Al and Cu/Ta(N)/Cu interfaces, which are representative of typical vertical interconnect structures with diffusion barriers. Despite a high ballistic conductance, the calculated specific resistivities at grain boundaries are 70-100% higher in Al than in Cu, and the vertical resistance across Ta(N) diffusion barriers are 60-100% larger for Al than for Cu. These results suggest that in addition to the well-known electromigration limitations in Al interconnects, electron scattering represents a major problem in achieving low interconnect line resistance at fine dimensions.

  17. Study of solid-conversion gaseous detector based on GEM for high energy X-ray industrial CT.

    PubMed

    Zhou, Rifeng; Zhou, Yaling

    2014-01-01

    The general gaseous ionization detectors are not suitable for high energy X-ray industrial computed tomography (HEICT) because of their inherent limitations, especially low detective efficiency and large volume. The goal of this study was to investigate a new type of gaseous detector to solve these problems. The novel detector was made by a metal foil as X-ray convertor to improve the conversion efficiency, and the Gas Electron Multiplier (hereinafter "GEM") was used as electron amplifier to lessen its volume. The detective mechanism and signal formation of the detector was discussed in detail. The conversion efficiency was calculated by using EGSnrc Monte Carlo code, and the transport course of photon and secondary electron avalanche in the detector was simulated with the Maxwell and Garfield codes. The result indicated that this detector has higher conversion efficiency as well as less volume. Theoretically this kind of detector could be a perfect candidate for replacing the conventional detector in HEICT.

  18. Treating electron transport in MCNP{sup trademark}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, H.G.

    1996-12-31

    The transport of electrons and other charged particles is fundamentally different from that of neutrons and photons. A neutron, in aluminum slowing down from 0.5 MeV to 0.0625 MeV will have about 30 collisions; a photon will have fewer than ten. An electron with the same energy loss will undergo 10{sup 5} individual interactions. This great increase in computational complexity makes a single- collision Monte Carlo approach to electron transport unfeasible for many situations of practical interest. Considerable theoretical work has been done to develop a variety of analytic and semi-analytic multiple-scattering theories for the transport of charged particles. Themore » theories used in the algorithms in MCNP are the Goudsmit-Saunderson theory for angular deflections, the Landau an theory of energy-loss fluctuations, and the Blunck-Leisegang enhancements of the Landau theory. In order to follow an electron through a significant energy loss, it is necessary to break the electron`s path into many steps. These steps are chosen to be long enough to encompass many collisions (so that multiple-scattering theories are valid) but short enough that the mean energy loss in any one step is small (for the approximations in the multiple-scattering theories). The energy loss and angular deflection of the electron during each step can then be sampled from probability distributions based on the appropriate multiple- scattering theories. This subsumption of the effects of many individual collisions into single steps that are sampled probabilistically constitutes the ``condensed history`` Monte Carlo method. This method is exemplified in the ETRAN series of electron/photon transport codes. The ETRAN codes are also the basis for the Integrated TIGER Series, a system of general-purpose, application-oriented electron/photon transport codes. The electron physics in MCNP is similar to that of the Integrated TIGER Series.« less

  19. Theoretical investigation of the electronic structure and quantum transport in the graphene-C(111) diamond surface system.

    PubMed

    Selli, Daniele; Baburin, Igor; Leoni, Stefano; Zhu, Zhen; Tománek, David; Seifert, Gotthard

    2013-10-30

    We investigate the interaction of a graphene monolayer with the C(111) diamond surface using ab initio density functional theory. To accommodate the lattice mismatch between graphene and diamond, the overlayer deforms into a wavy structure that binds strongly to the diamond substrate. The detached ridges of the wavy graphene overlayer behave electronically as free-standing polyacetylene chains with delocalized π electrons, separated by regions containing only sp(3) carbon atoms covalently bonded to the (111) diamond surface. We performed quantum transport calculations for different geometries of the system to study how the buckling of the graphene layer and the associated bonding to the diamond substrate affect the transport properties. The system displays high carrier mobility along the ridges and a wide transport gap in the direction normal to the ridges. These intriguing, strongly anisotropic transport properties qualify the hybrid graphene-diamond system as a viable candidate for electronic nanodevices.

  20. Understanding and removing surface states limiting charge transport in TiO2 nanowire arrays for enhanced optoelectronic device performance.

    PubMed

    Sheng, Xia; Chen, Liping; Xu, Tao; Zhu, Kai; Feng, Xinjian

    2016-03-01

    Charge transport within electrode materials plays a key role in determining the optoelectronic device performance. Aligned single-crystal TiO 2 nanowire arrays offer an ideal electron transport path and are expected to have higher electron mobility. Unfortunately, their transport is found not to be superior to that in nanoparticle films. Here we show that the low electron transport in rutile TiO 2 nanowires is mainly caused by surface traps in relatively deep energy levels, which cannot be removed by conventional approaches, such as oxygen annealing treatment. Moreover, we demonstrate an effective wet-chemistry approach to minimize these trap states, leading to over 20-fold enhancement in electron diffusion coefficient and 62% improvement in solar cell performance. On the basis of our results, the potential of TiO 2 NWs can be developed and well-utilized, which is significantly important for their practical applications.

  1. Electronic Transport in Two-Dimensional Materials

    NASA Astrophysics Data System (ADS)

    Sangwan, Vinod K.; Hersam, Mark C.

    2018-04-01

    Two-dimensional (2D) materials have captured the attention of the scientific community due to the wide range of unique properties at nanometer-scale thicknesses. While significant exploratory research in 2D materials has been achieved, the understanding of 2D electronic transport and carrier dynamics remains in a nascent stage. Furthermore, because prior review articles have provided general overviews of 2D materials or specifically focused on charge transport in graphene, here we instead highlight charge transport mechanisms in post-graphene 2D materials, with particular emphasis on transition metal dichalcogenides and black phosphorus. For these systems, we delineate the intricacies of electronic transport, including band structure control with thickness and external fields, valley polarization, scattering mechanisms, electrical contacts, and doping. In addition, electronic interactions between 2D materials are considered in the form of van der Waals heterojunctions and composite films. This review concludes with a perspective on the most promising future directions in this fast-evolving field.

  2. 49 CFR 236.8 - Operating characteristics of electromagnetic, electronic, or electrical apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Operating characteristics of electromagnetic, electronic, or electrical apparatus. 236.8 Section 236.8 Transportation Other Regulations Relating to... characteristics of electromagnetic, electronic, or electrical apparatus. Signal apparatus, the functioning of...

  3. 49 CFR 236.8 - Operating characteristics of electromagnetic, electronic, or electrical apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Operating characteristics of electromagnetic, electronic, or electrical apparatus. 236.8 Section 236.8 Transportation Other Regulations Relating to... characteristics of electromagnetic, electronic, or electrical apparatus. Signal apparatus, the functioning of...

  4. 49 CFR 236.8 - Operating characteristics of electromagnetic, electronic, or electrical apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Operating characteristics of electromagnetic, electronic, or electrical apparatus. 236.8 Section 236.8 Transportation Other Regulations Relating to... characteristics of electromagnetic, electronic, or electrical apparatus. Signal apparatus, the functioning of...

  5. 49 CFR 236.8 - Operating characteristics of electromagnetic, electronic, or electrical apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Operating characteristics of electromagnetic, electronic, or electrical apparatus. 236.8 Section 236.8 Transportation Other Regulations Relating to... characteristics of electromagnetic, electronic, or electrical apparatus. Signal apparatus, the functioning of...

  6. 49 CFR 236.8 - Operating characteristics of electromagnetic, electronic, or electrical apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Operating characteristics of electromagnetic, electronic, or electrical apparatus. 236.8 Section 236.8 Transportation Other Regulations Relating to... characteristics of electromagnetic, electronic, or electrical apparatus. Signal apparatus, the functioning of...

  7. Dissipative time-dependent quantum transport theory.

    PubMed

    Zhang, Yu; Yam, Chi Yung; Chen, GuanHua

    2013-04-28

    A dissipative time-dependent quantum transport theory is developed to treat the transient current through molecular or nanoscopic devices in presence of electron-phonon interaction. The dissipation via phonon is taken into account by introducing a self-energy for the electron-phonon coupling in addition to the self-energy caused by the electrodes. Based on this, a numerical method is proposed. For practical implementation, the lowest order expansion is employed for the weak electron-phonon coupling case and the wide-band limit approximation is adopted for device and electrodes coupling. The corresponding hierarchical equation of motion is derived, which leads to an efficient and accurate time-dependent treatment of inelastic effect on transport for the weak electron-phonon interaction. The resulting method is applied to a one-level model system and a gold wire described by tight-binding model to demonstrate its validity and the importance of electron-phonon interaction for the quantum transport. As it is based on the effective single-electron model, the method can be readily extended to time-dependent density functional theory.

  8. Transport of Space Environment Electrons: A Simplified Rapid-Analysis Computational Procedure

    NASA Technical Reports Server (NTRS)

    Nealy, John E.; Anderson, Brooke M.; Cucinotta, Francis A.; Wilson, John W.; Katz, Robert; Chang, C. K.

    2002-01-01

    A computational procedure for describing transport of electrons in condensed media has been formulated for application to effects and exposures from spectral distributions typical of electrons trapped in planetary magnetic fields. The procedure is based on earlier parameterizations established from numerous electron beam experiments. New parameterizations have been derived that logically extend the domain of application to low molecular weight (high hydrogen content) materials and higher energies (approximately 50 MeV). The production and transport of high energy photons (bremsstrahlung) generated in the electron transport processes have also been modeled using tabulated values of photon production cross sections. A primary purpose for developing the procedure has been to provide a means for rapidly performing numerous repetitive calculations essential for electron radiation exposure assessments for complex space structures. Several favorable comparisons have been made with previous calculations for typical space environment spectra, which have indicated that accuracy has not been substantially compromised at the expense of computational speed.

  9. A Deterministic Transport Code for Space Environment Electrons

    NASA Technical Reports Server (NTRS)

    Nealy, John E.; Chang, C. K.; Norman, Ryan B.; Blattnig, Steve R.; Badavi, Francis F.; Adamczyk, Anne M.

    2010-01-01

    A deterministic computational procedure has been developed to describe transport of space environment electrons in various shield media. This code is an upgrade and extension of an earlier electron code. Whereas the former code was formulated on the basis of parametric functions derived from limited laboratory data, the present code utilizes well established theoretical representations to describe the relevant interactions and transport processes. The shield material specification has been made more general, as have the pertinent cross sections. A combined mean free path and average trajectory approach has been used in the transport formalism. Comparisons with Monte Carlo calculations are presented.

  10. Relativistic Gurzhi effect in channels of Dirac materials

    NASA Astrophysics Data System (ADS)

    Kashuba, Oleksiy; Trauzettel, Björn; Molenkamp, Laurens W.

    2018-05-01

    Charge transport in channel-shaped 2D Dirac systems is studied employing the Boltzmann equation. The dependence of the resistivity on temperature and chemical potential is investigated. An accurate understanding of the influence of electron-electron interaction and material disorder allows us to identify a parameter regime, where the system reveals hydrodynamic transport behavior. We point out the conditions for three Dirac fermion specific features: heat flow hydrodynamics, pseudodiffusive transport, and the electron-hole scattering dominated regime. It is demonstrated that for clean samples the relativistic Gurzhi effect, a definite indicator of hydrodynamic transport, can be observed.

  11. Investigation of energy transport in DIII-D high- β P EAST-demonstration discharges with the TGLF turbulent and NEO neoclassical transport models [Investigation of energy transport in DIII-D high- β P EAST-demonstration discharges with turbulent and neoclassical transport models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Chengkang; Staebler, Gary M.; Lao, Lang L.

    Here, energy transport analyses of DIII-D high-β P EAST-demonstration discharges have been performed using the TGYRO transport package with TGLF turbulent and NEO neoclassical transport models under the OMFIT integrated modeling framework. Ion energy transport is shown to be dominated by neoclassical transport and ion temperature profiles predicted by TGYRO agree closely with the experimental measured profiles for these high-β P discharges. Ion energy transport is largely insensitive to reductions in the E × B flow shear stabilization. The Shafranov shift is shown to play a role in the suppression of the ion turbulent energy transport below the neoclassical level.more » Electron turbulent energy transport is under-predicted by TGLF and a significant shortfall in the electron energy transport over the whole core plasma is found with TGLF predictions for these high-β P discharges. TGYRO can successfully predict the experimental ion and electron temperature profiles by artificially increasing the saturated turbulence level for ETG driven modes used in TGLF.« less

  12. Investigation of energy transport in DIII-D high- β P EAST-demonstration discharges with the TGLF turbulent and NEO neoclassical transport models [Investigation of energy transport in DIII-D high- β P EAST-demonstration discharges with turbulent and neoclassical transport models

    DOE PAGES

    Pan, Chengkang; Staebler, Gary M.; Lao, Lang L.; ...

    2017-01-11

    Here, energy transport analyses of DIII-D high-β P EAST-demonstration discharges have been performed using the TGYRO transport package with TGLF turbulent and NEO neoclassical transport models under the OMFIT integrated modeling framework. Ion energy transport is shown to be dominated by neoclassical transport and ion temperature profiles predicted by TGYRO agree closely with the experimental measured profiles for these high-β P discharges. Ion energy transport is largely insensitive to reductions in the E × B flow shear stabilization. The Shafranov shift is shown to play a role in the suppression of the ion turbulent energy transport below the neoclassical level.more » Electron turbulent energy transport is under-predicted by TGLF and a significant shortfall in the electron energy transport over the whole core plasma is found with TGLF predictions for these high-β P discharges. TGYRO can successfully predict the experimental ion and electron temperature profiles by artificially increasing the saturated turbulence level for ETG driven modes used in TGLF.« less

  13. A Deterministic Electron, Photon, Proton and Heavy Ion Radiation Transport Suite for the Study of the Jovian System

    NASA Technical Reports Server (NTRS)

    Norman, Ryan B.; Badavi, Francis F.; Blattnig, Steve R.; Atwell, William

    2011-01-01

    A deterministic suite of radiation transport codes, developed at NASA Langley Research Center (LaRC), which describe the transport of electrons, photons, protons, and heavy ions in condensed media is used to simulate exposures from spectral distributions typical of electrons, protons and carbon-oxygen-sulfur (C-O-S) trapped heavy ions in the Jovian radiation environment. The particle transport suite consists of a coupled electron and photon deterministic transport algorithm (CEPTRN) and a coupled light particle and heavy ion deterministic transport algorithm (HZETRN). The primary purpose for the development of the transport suite is to provide a means for the spacecraft design community to rapidly perform numerous repetitive calculations essential for electron, proton and heavy ion radiation exposure assessments in complex space structures. In this paper, the radiation environment of the Galilean satellite Europa is used as a representative boundary condition to show the capabilities of the transport suite. While the transport suite can directly access the output electron spectra of the Jovian environment as generated by the Jet Propulsion Laboratory (JPL) Galileo Interim Radiation Electron (GIRE) model of 2003; for the sake of relevance to the upcoming Europa Jupiter System Mission (EJSM), the 105 days at Europa mission fluence energy spectra provided by JPL is used to produce the corresponding dose-depth curve in silicon behind an aluminum shield of 100 mils ( 0.7 g/sq cm). The transport suite can also accept ray-traced thickness files from a computer-aided design (CAD) package and calculate the total ionizing dose (TID) at a specific target point. In that regard, using a low-fidelity CAD model of the Galileo probe, the transport suite was verified by comparing with Monte Carlo (MC) simulations for orbits JOI--J35 of the Galileo extended mission (1996-2001). For the upcoming EJSM mission with a potential launch date of 2020, the transport suite is used to compute the traditional aluminum-silicon dose-depth calculation as a standard shield-target combination output, as well as the shielding response of high charge (Z) shields such as tantalum (Ta). Finally, a shield optimization algorithm is used to guide the instrument designer with the choice of graded-Z shield analysis.

  14. Enhancing and optimizing electronic transport in biphenyl derivative single-molecule junctions attached to carbon nanotubes electrodes

    NASA Astrophysics Data System (ADS)

    Reis-Silva, J. C.; Ferreira, D. F. S.; Leal, J. F. P.; Pinheiro, F. A.; Del Nero, J.

    2017-02-01

    We investigate, by means of ab initio calculations based on non-equilibrium Green's function method coupled to density function theory, electronic transport in molecular junctions composed of biphenyl (BP) and biphenyl within (-2H+) defect (BP2D) molecules attached to metallic (9,0) carbon nanotubes. We demonstrate that the BP2D junction exhibits unprecedented electronic transport properties, and that its conductance can be up to three orders of magnitude higher than biphenyl single-molecule junctions. These findings are explained in terms of the non-planar molecular conformation of BP2D, and of the stronger electronic coupling between the BP2D molecule and the organic electrodes, which confers high stability to the junction. Our results suggest that BP2D attached to carbon nanotubes can be explored as an efficient and highly stable platform in single-molecule electronics with extraordinary transport properties.

  15. Electronic Transport Properties of Carbon-Nanotube Networks: The Effect of Nitrate Doping on Intratube and Intertube Conductances

    NASA Astrophysics Data System (ADS)

    Ketolainen, T.; Havu, V.; Jónsson, E. Ö.; Puska, M. J.

    2018-03-01

    The conductivity of carbon-nanotube (CNT) networks can be improved markedly by doping with nitric acid. In the present work, CNTs and junctions of CNTs functionalized with NO3 molecules are investigated to understand the microscopic mechanism of nitric acid doping. According to our density-functional-theory band-structure calculations, there is charge transfer from the CNT to adsorbed molecules indicating p -type doping. The average doping efficiency of the NO3 molecules is higher if the NO3 molecules form complexes with water molecules. In addition to electron transport along individual CNTs, we also study electron transport between different types (metallic, semiconducting) of CNTs. Reflecting the differences in the electronic structures of semiconducting and metallic CNTs, we find that in addition to turning semiconducting CNTs metallic, doping further increases electron transport most efficiently along semiconducting CNTs as well as through the junctions between them.

  16. Distribution and dynamics of electron transport complexes in cyanobacterial thylakoid membranes☆

    PubMed Central

    Liu, Lu-Ning

    2016-01-01

    The cyanobacterial thylakoid membrane represents a system that can carry out both oxygenic photosynthesis and respiration simultaneously. The organization, interactions and mobility of components of these two electron transport pathways are indispensable to the biosynthesis of thylakoid membrane modules and the optimization of bioenergetic electron flow in response to environmental changes. These are of fundamental importance to the metabolic robustness and plasticity of cyanobacteria. This review summarizes our current knowledge about the distribution and dynamics of electron transport components in cyanobacterial thylakoid membranes. Global understanding of the principles that govern the dynamic regulation of electron transport pathways in nature will provide a framework for the design and synthetic engineering of new bioenergetic machinery to improve photosynthesis and biofuel production. This article is part of a Special Issue entitled: Organization and dynamics of bioenergetic systems in bacteria, edited by Conrad Mullineaux. PMID:26619924

  17. Distribution and dynamics of electron transport complexes in cyanobacterial thylakoid membranes.

    PubMed

    Liu, Lu-Ning

    2016-03-01

    The cyanobacterial thylakoid membrane represents a system that can carry out both oxygenic photosynthesis and respiration simultaneously. The organization, interactions and mobility of components of these two electron transport pathways are indispensable to the biosynthesis of thylakoid membrane modules and the optimization of bioenergetic electron flow in response to environmental changes. These are of fundamental importance to the metabolic robustness and plasticity of cyanobacteria. This review summarizes our current knowledge about the distribution and dynamics of electron transport components in cyanobacterial thylakoid membranes. Global understanding of the principles that govern the dynamic regulation of electron transport pathways in nature will provide a framework for the design and synthetic engineering of new bioenergetic machinery to improve photosynthesis and biofuel production. This article is part of a Special Issue entitled: Organization and dynamics of bioenergetic systems in bacteria, edited by Conrad Mullineaux. Copyright © 2015 The Author. Published by Elsevier B.V. All rights reserved.

  18. Theoretical Characterization of Charge Transport in Chromia (α-Cr2O3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iordanova, Nellie I.; Dupuis, Michel; Rosso, Kevin M.

    2005-08-15

    Transport of conduction electrons and holes through the lattice of ?-Cr2O3 (chromia) is modeled as a valence alternation of chromium cations using ab initio electronic structure calculations and electron transfer theory. In the context of the small polaron model, a cluster approach was used to compute quantities controlling the mobility of localized electrons and holes, i.e. the reorganization energy and the electronic coupling matrix element that enter Marcus? theory. The calculation of the electronic coupling followed the Generalized Mulliken-Hush approach and the quasi-diabatic method using the complete active space self-consistent field (CASSCF) method. Our findings indicate that hole mobility ismore » more than three orders of magnitude larger than electron mobility in both (001) and [001] lattice directions. The difference arises mainly from the larger internal reorganization energy calculated for electron transport relative to hole transport processes while electronic couplings have similar magnitudes. The much larger hole mobility vs electron mobility in ?-Cr2O3 is in contrast to similar hole and electron mobility in hematite ?-Fe2O3 previously calculated. Our calculations also indicate that the electronic coupling for all charge transfer processes of interest is smaller than for the corresponding processes in hematite. This variation is attributed to weaker interaction between the metal 3d states and the O(2p) states in chromia than in hematite, leading to smaller overlap between the charge transfer donor and acceptor wavefunctions and smaller super-exchange coupling in chromia. Nevertheless, the weaker coupling in chromia is still sufficiently large to suggest that charge transport processes in chromia are adiabatic in nature. The electronic coupling is found to depend on both the superexchange interaction through the bridging oxygen atoms and the d-shell electron spin coupling within the Cr-Cr donor-acceptor pair, while the reorganization energy is essentially independent of the electron spin coupling.« less

  19. Theoretical characterization of charge transport in chromia (α-Cr2O3)

    NASA Astrophysics Data System (ADS)

    Iordanova, N.; Dupuis, M.; Rosso, K. M.

    2005-08-01

    Transport of conduction electrons and holes through the lattice of α-Cr2O3 (chromia) is modeled as a valence alternation of chromium cations using ab initio electronic structure calculations and electron-transfer theory. In the context of the small polaron model, a cluster approach was used to compute quantities controlling the mobility of localized electrons and holes, i.e., the reorganization energy and the electronic coupling matrix element that enter Marcus' theory. The calculation of the electronic coupling followed the generalized Mulliken-Hush approach using the complete active space self-consistent-field (CASSCF) method and the quasidiabatic method. Our findings indicate that hole mobility is more than three orders of magnitude larger than electron mobility in both (001) and [001] lattice directions. The difference arises mainly from the larger internal reorganization energy calculated for electron-transport relative to hole-transport processes while electronic couplings have similar magnitudes. The much larger hole mobility versus electron mobility in α-Cr2O3 is in contrast to similar hole and electron mobilities in hematite α-Fe2O3 previously calculated. Our calculations also indicate that the electronic coupling for all charge-transfer processes of interest is smaller than for the corresponding processes in hematite. This variation is attributed to the weaker interaction between the metal 3d states and the O(2p ) states in chromia than in hematite, leading to a smaller overlap between the charge-transfer donor and acceptor wave functions and smaller superexchange coupling in chromia. Nevertheless, the weaker coupling in chromia is still sufficiently large to suggest that charge-transport processes in chromia are adiabatic in nature. The electronic coupling is found to depend on both the superexchange interaction through the bridging oxygen atoms and the d-shell electron-spin coupling within the Cr-Cr donor-acceptor pair, while the reorganization energy is essentially independent of the electron-spin coupling.

  20. Electron swarm properties under the influence of a very strong attachment in SF6 and CF3I obtained by Monte Carlo rescaling procedures

    NASA Astrophysics Data System (ADS)

    Mirić, J.; Bošnjaković, D.; Simonović, I.; Petrović, Z. Lj; Dujko, S.

    2016-12-01

    Electron attachment often imposes practical difficulties in Monte Carlo simulations, particularly under conditions of extensive losses of seed electrons. In this paper, we discuss two rescaling procedures for Monte Carlo simulations of electron transport in strongly attaching gases: (1) discrete rescaling, and (2) continuous rescaling. The two procedures are implemented in our Monte Carlo code with an aim of analyzing electron transport processes and attachment induced phenomena in sulfur-hexafluoride (SF6) and trifluoroiodomethane (CF3I). Though calculations have been performed over the entire range of reduced electric fields E/n 0 (where n 0 is the gas number density) where experimental data are available, the emphasis is placed on the analysis below critical (electric gas breakdown) fields and under conditions when transport properties are greatly affected by electron attachment. The present calculations of electron transport data for SF6 and CF3I at low E/n 0 take into account the full extent of the influence of electron attachment and spatially selective electron losses along the profile of electron swarm and attempts to produce data that may be used to model this range of conditions. The results of Monte Carlo simulations are compared to those predicted by the publicly available two term Boltzmann solver BOLSIG+. A multitude of kinetic phenomena in electron transport has been observed and discussed using physical arguments. In particular, we discuss two important phenomena: (1) the reduction of the mean energy with increasing E/n 0 for electrons in \\text{S}{{\\text{F}}6} and (2) the occurrence of negative differential conductivity (NDC) in the bulk drift velocity only for electrons in both \\text{S}{{\\text{F}}6} and CF3I. The electron energy distribution function, spatial variations of the rate coefficient for electron attachment and average energy as well as spatial profile of the swarm are calculated and used to understand these phenomena.

  1. 49 CFR 40.201 - What problems always cause a drug test to be cancelled and may result in a requirement for...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false What problems always cause a drug test to be cancelled and may result in a requirement for another collection? 40.201 Section 40.201 Transportation Office of the Secretary of Transportation PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Problems in Drug Tests § 40.201 Wha...

  2. 49 CFR 40.209 - What procedural problems do not result in the cancellation of a test and do not require correction?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false What procedural problems do not result in the cancellation of a test and do not require correction? 40.209 Section 40.209 Transportation Office of the Secretary of Transportation PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Problems in Drug Tests § 40.209 What procedura...

  3. Probing the electronic transport on the reconstructed Au/Ge(001) surface

    PubMed Central

    Krok, Franciszek; Kaspers, Mark R; Bernhart, Alexander M; Nikiel, Marek; Jany, Benedykt R; Indyka, Paulina; Wojtaszek, Mateusz; Möller, Rolf

    2014-01-01

    Summary By using scanning tunnelling potentiometry we characterized the lateral variation of the electrochemical potential µec on the gold-induced Ge(001)-c(8 × 2)-Au surface reconstruction while a lateral current flows through the sample. On the reconstruction and across domain boundaries we find that µec shows a constant gradient as a function of the position between the contacts. In addition, nanoscale Au clusters on the surface do not show an electronic coupling to the gold-induced surface reconstruction. In combination with high resolution scanning electron microscopy and transmission electron microscopy, we conclude that an additional transport channel buried about 2 nm underneath the surface represents a major transport channel for electrons. PMID:25247129

  4. Photosensitized electron transport across lipid vesicle walls: quantum yield dependence on sensitizer concentration.

    PubMed Central

    Ford, W E; Otvos, J W; Calvin, M

    1979-01-01

    An amphiphilic tris(2,2'-bipyridine)ruthenium(2+) derivative that is incorporated into the walls of phosphatidylcholine vesicles photosensitizes the irreversible oxidation of ethylenediaminetetraacetate(3-) dissolved in the inner aqueous compartments of the vesicle suspension and the one-electron reduction of heptylviologen(2+) dissolved in the continuous aqueous phase. The quantum yield of viologen radical production depends on the phospholipid-to-ruthenium complex mole ratios. A kinetic model is used to derive an order-of-magnitude estimate for the rate constant of electron transport across the vesicle walls. The results are inconsistent with a diffusional mechanism for electron transport and are interpreted in terms of electron exchange. PMID:291027

  5. Capabilities | Transportation Research | NREL

    Science.gov Websites

    about: Energy storage Power electronics Climate control Medium- and Heavy-Duty Vehicle Technology viable in the marketplace. Learn more about: Power electronics Energy storage Transportation Data

  6. Field theories in condensed matter physics

    NASA Astrophysics Data System (ADS)

    Concha, Andres

    In this thesis, field theory is applied to different problems in the context of condensed matter physics. In the first part of this work, a classical problem in which an elastic instability appears is studied. By taking advantage of the symmetries of the system, it is shown that when a soft substrate has a stiff crust and the whole system is forced to reduce its volume, the stiff crust rearranges in a way that will break the initial rotational symmetry, producing a periodic pattern that can be manipulated at our will by suitable changes of the external parameters. It is shown that elastic interactions in this type of systems can be mapped into non-local effective potentials. The possible application of these instabilities is also discussed. In the second part of this work, quantum electrodynamics (QED) is analyzed as an emergent theory that allows us to describe the low energy excitations in two-dimensional nodal systems. In particular, the ballistic electronic transport in graphene-like systems is analyzed. We propose a novel way to control massless Dirac fermions in graphene and systems alike by controlling the group velocity through the sample. We have analyzed this problem by computing transport properties using the transmission matrix formalism and, remarkably, it is found that a behavior conforming with a Snell's-like law emerges in this system: the basic ingredient needed to produce electronic wave guides. Finally, an anisotropic and strongly interacting version of QED 3 is applied to explain the non-universal emergence of antiferromagnetic order in cuprate superconductors. It is pointed out that the dynamics of interacting vortex anti-vortex fluctuations play a crucial role in defining the strength of interactions in this system. As a consequence, we find that different phases (confined and deconfined) are possible as a function of the relative velocity of the photons with respect to the Fermi and gap velocities for low energy excitation in cuprates.

  7. Interchange Instability and Transport in Matter-Antimatter Plasmas

    NASA Astrophysics Data System (ADS)

    Kendl, Alexander; Danler, Gregor; Wiesenberger, Matthias; Held, Markus

    2017-06-01

    Symmetric electron-positron plasmas in inhomogeneous magnetic fields are intrinsically subject to interchange instability and transport. Scaling relations for the propagation velocity of density perturbations relevant to transport in isothermal magnetically confined electron-positron plasmas are deduced, including damping effects when Debye lengths are large compared to Larmor radii. The relations are verified by nonlinear full-F gyrofluid computations. Results are analyzed with respect to planned magnetically confined electron-positron plasma experiments. The model is generalized to other matter-antimatter plasmas. Magnetized electron-positron-proton-antiproton plasmas are susceptible to interchange-driven local matter-antimatter separation, which can impede sustained laboratory magnetic confinement.

  8. Theory of electron--photon scattering effects in metals. Progress report, December 1, 1976--November 30, 1977

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, W.E.

    1977-01-01

    The general areas in which the investigations were carried out are transport properties and quasiparticle lifetimes in normal metals and superconductors. The more specific research projects upon which progress is reported are (a) the calculation of order parameter relaxation times in aluminum, (b) transport coefficients of the noble metals (emphasizing deviations from Matthiessen's rule), (c) variational transport calculations for a superconductor, (d) some general results on quasiparticle relaxation time anisotropy in polyvalent metals, and (e) a clarification of the roles of electron-electron and electron-phonon scattering in somple metals at low temperatures.

  9. Interchange Instability and Transport in Matter-Antimatter Plasmas.

    PubMed

    Kendl, Alexander; Danler, Gregor; Wiesenberger, Matthias; Held, Markus

    2017-06-09

    Symmetric electron-positron plasmas in inhomogeneous magnetic fields are intrinsically subject to interchange instability and transport. Scaling relations for the propagation velocity of density perturbations relevant to transport in isothermal magnetically confined electron-positron plasmas are deduced, including damping effects when Debye lengths are large compared to Larmor radii. The relations are verified by nonlinear full-F gyrofluid computations. Results are analyzed with respect to planned magnetically confined electron-positron plasma experiments. The model is generalized to other matter-antimatter plasmas. Magnetized electron-positron-proton-antiproton plasmas are susceptible to interchange-driven local matter-antimatter separation, which can impede sustained laboratory magnetic confinement.

  10. Connection between the membrane electron transport system and Hyn hydrogenase in the purple sulfur bacterium, Thiocapsa roseopersicina BBS.

    PubMed

    Tengölics, Roland; Mészáros, Lívia; Győri, E; Doffkay, Zsolt; Kovács, Kornél L; Rákhely, Gábor

    2014-10-01

    Thiocapsa. roseopersicina BBS has four active [NiFe] hydrogenases, providing an excellent opportunity to examine their metabolic linkages to the cellular redox processes. Hyn is a periplasmic membrane-associated hydrogenase harboring two additional electron transfer subunits: Isp1 is a transmembrane protein, while Isp2 is located on the cytoplasmic side of the membrane. In this work, the connection of HynSL to various electron transport pathways is studied. During photoautotrophic growth, electrons, generated from the oxidation of thiosulfate and sulfur, are donated to the photosynthetic electron transport chain via cytochromes. Electrons formed from thiosulfate and sulfur oxidation might also be also used for Hyn-dependent hydrogen evolution which was shown to be light and proton motive force driven. Hyn-linked hydrogen uptake can be promoted by both sulfur and nitrate. The electron flow from/to HynSL requires the presence of Isp2 in both directions. Hydrogenase-linked sulfur reduction could be inhibited by a QB site competitive inhibitor, terbutryne, suggesting a redox coupling between the Hyn hydrogenase and the photosynthetic electron transport chain. Based on these findings, redox linkages of Hyn hydrogenase are modeled. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Simulations of electron transport and ignition for direct-drive fast-ignition targets

    NASA Astrophysics Data System (ADS)

    Solodov, A. A.; Anderson, K. S.; Betti, R.; Gotcheva, V.; Myatt, J.; Delettrez, J. A.; Skupsky, S.; Theobald, W.; Stoeckl, C.

    2008-11-01

    The performance of high-gain, fast-ignition fusion targets is investigated using one-dimensional hydrodynamic simulations of implosion and two-dimensional (2D) hybrid fluid-particle simulations of hot-electron transport, ignition, and burn. The 2D/3D hybrid-particle-in-cell code LSP [D. R. Welch et al., Nucl. Instrum. Methods Phys. Res. A 464, 134 (2001)] and the 2D fluid code DRACO [P. B. Radha et al., Phys. Plasmas 12, 056307 (2005)] are integrated to simulate the hot-electron transport and heating for direct-drive fast-ignition targets. LSP simulates the transport of hot electrons from the place where they are generated to the dense fuel core where their energy is absorbed. DRACO includes the physics required to simulate compression, ignition, and burn of fast-ignition targets. The self-generated resistive magnetic field is found to collimate the hot-electron beam, increase the coupling efficiency of hot electrons with the target, and reduce the minimum energy required for ignition. Resistive filamentation of the hot-electron beam is also observed. The minimum energy required for ignition is found for hot electrons with realistic angular spread and Maxwellian energy-distribution function.

  12. Gyrofluid theory and simulation of electromagnetic turbulence and transport in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Snyder, Philip Benjamin

    1999-11-01

    Turbulence and transport in toroidal plasmas is studied via the development of an electromagnetic gyrofluid model, and its implementation in realistic nonlinear simulations. This work extends earlier electrostatic gyrofluid models to include magnetic fluctuations and non-adiabatic passing electron dynamics. A new set of electron fluid equations is derived from the drift kinetic equation, via an expansion in the electron-ion mass ratio. These electron equations include descriptions of linear and nonlinear drift motion, Landau damping, and electron-ion collisions. Ion moment equations are derived from the electromagnetic gyrokinetic equation, and the gyrokinetic Poisson's Equation and Ampere's Law close the system. The model is benchmarked with linear gyrokinetic calculations, and good agreement is found for both the finite-β ion temperature gradient (ITG) and kinetic Alfvén ballooning (KBM) instabilities. Nonlinear simulations of ITG and KBM-driven turbulence are performed in toroidal flux tube geometry at a range of values of plasma β, and electromagnetic effects are found to significantly impact turbulent heat and particle transport. At low values of β, transport is reduced, as expected due to the finite-β stabilization of the ITG mode. However, as β approaches the Ideal-MHD stability threshold, transport can increase. In the presence of dissipation provided by a model of electron Landau damping and electron-ion collisions, this transport increase can be quite dramatic. Finally, the results of the simulations are compared to tokamak experiments, and encouraging agreement is found with measured density and temperature fluctuation spectra. Direct comparisons of transport fluxes reveal that electromagnetic effects are important at characteristic edge parameters, bringing predicted fluxes more closely in line with observations.

  13. Joint Services Electronics Program.

    DTIC Science & Technology

    1987-04-30

    the specific objectives and progress in each work unit are reported. The focus of the JSEP project on transport properties of 1- dimensional...path. The properties of carrier transport and storage in various regions of these ultra-small, 3- dimensionally confined structures are not well...capabilities of MBE to grow and investigate the transport in these materials. SUMMARY OF RESEARCH: 1. One Dimensional Electron Transport One of the major goals

  14. High Field Transport of Free Carriers at the SI-SIO2 Interface.

    DTIC Science & Technology

    1983-10-27

    nuotbor) - Investigations of interface transport, ballistic transport and generally speaking high field transport in silicon and III-V compounds are...Tang and K. Hess, "Energy Diffusion Equation for an Electron Gas Interacting with Polar Optical Phonons: Non- Parabolic Case," Solid State...deformation potential electron-phonon scattering coeffi- cents is preented for elemental and compound semiconductors. Explesions for t acoustical defonoation

  15. Calculation of electron Dose Point Kernel in water with GEANT4 for medical application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guimaraes, C. C.; Sene, F. F.; Martinelli, J. R.

    2009-06-03

    The rapid insertion of new technologies in medical physics in the last years, especially in nuclear medicine, has been followed by a great development of faster Monte Carlo algorithms. GEANT4 is a Monte Carlo toolkit that contains the tools to simulate the problems of particle transport through matter. In this work, GEANT4 was used to calculate the dose-point-kernel (DPK) for monoenergetic electrons in water, which is an important reference medium for nuclear medicine. The three different physical models of electromagnetic interactions provided by GEANT4 - Low Energy, Penelope and Standard - were employed. To verify the adequacy of these models,more » the results were compared with references from the literature. For all energies and physical models, the agreement between calculated DPKs and reported values is satisfactory.« less

  16. Carrier Injection and Transport in Blue Phosphorescent Organic Light-Emitting Device with Oxadiazole Host

    PubMed Central

    Chiu, Tien-Lung; Lee, Pei-Yu

    2012-01-01

    In this paper, we investigate the carrier injection and transport characteristics in iridium(III)bis[4,6-(di-fluorophenyl)-pyridinato-N,C2′]picolinate (FIrpic) doped phosphorescent organic light-emitting devices (OLEDs) with oxadiazole (OXD) as the bipolar host material of the emitting layer (EML). When doping Firpic inside the OXD, the driving voltage of OLEDs greatly decreases because FIrpic dopants facilitate electron injection and electron transport from the electron-transporting layer (ETL) into the EML. With increasing dopant concentration, the recombination zone shifts toward the anode side, analyzed with electroluminescence (EL) spectra. Besides, EL redshifts were also observed with increasing driving voltage, which means the electron mobility is more sensitive to the electric field than the hole mobility. To further investigate carrier injection and transport characteristics, FIrpic was intentionally undoped at different positions inside the EML. When FIrpic was undoped close to the ETL, driving voltage increased significantly which proves the dopant-assisted-electron-injection characteristic in this OLED. When the undoped layer is near the electron blocking layer, the driving voltage is only slightly increased, but the current efficiency is greatly reduced because the main recombination zone was undoped. However, non-negligible FIrpic emission is still observed which means the recombination zone penetrates inside the EML due to certain hole-transporting characteristics of the OXD. PMID:22837713

  17. Specific Interaction between Redox Phospholipid Polymers and Plastoquinone in Photosynthetic Electron Transport Chain.

    PubMed

    Tanaka, Kenya; Kaneko, Masahiro; Ishikawa, Masahito; Kato, Souichiro; Ito, Hidehiro; Kamachi, Toshiaki; Kamiya, Kazuhide; Nakanishi, Shuji

    2017-04-19

    Redox phospholipid polymers added in culture media are known to be capable of extracting electrons from living photosynthetic cells across bacterial cell membranes with high cytocompatibility. In the present study, we identify the intracellular redox species that transfers electrons to the polymers. The open-circuit electrochemical potential of an electrolyte containing the redox polymer and extracted thylakoid membranes shift to positive (or negative) under light irradiation, when an electron transport inhibitor specific to plastoquinone is added upstream (or downstream) in the photosynthetic electron transport chain. The same trend is also observed for a medium containing living photosynthetic cells of Synechococcus elongatus PCC7942. These results clearly indicate that the phospholipid redox polymers extract photosynthetic electrons mainly from plastoquinone. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Using Adobe Flash animations of electron transport chain to teach and learn biochemistry.

    PubMed

    Teplá, Milada; Klímová, Helena

    2015-01-01

    Teaching the subject of the electron transport chain is one of the most challenging aspects of the chemistry curriculum at the high school level. This article presents an educational program called "Electron Transport Chain" which consists of 14 visual animations including a biochemistry quiz. The program was created in the Adobe Flash CS3 Professional animation program and is designed for high school chemistry students. Our goal is to develop educational materials that facilitate the comprehension of this complex subject through dynamic animations which show the course of the electron transport chain and simultaneously explain its nature. We record the process of the electron transport chain, including connections with oxidative phosphorylation, in such a way as to minimize the occurrence of discrepancies in interpretation. The educational program was evaluated in high schools through the administration of a questionnaire, which contained 12 opened-ended items and which required participants to evaluate the graphics of the animations, chemical content, student preferences, and its suitability for high school biochemistry teaching. © 2015 The International Union of Biochemistry and Molecular Biology.

  19. 25th anniversary article: charge transport and recombination in polymer light-emitting diodes.

    PubMed

    Kuik, Martijn; Wetzelaer, Gert-Jan A H; Nicolai, Herman T; Craciun, N Irina; De Leeuw, Dago M; Blom, Paul W M

    2014-01-01

    This article reviews the basic physical processes of charge transport and recombination in organic semiconductors. As a workhorse, LEDs based on a single layer of poly(p-phenylene vinylene) (PPV) derivatives are used. The hole transport in these PPV derivatives is governed by trap-free space-charge-limited conduction, with the mobility depending on the electric field and charge-carrier density. These dependencies are generally described in the framework of hopping transport in a Gaussian density of states distribution. The electron transport on the other hand is orders of magnitude lower than the hole transport. The reason is that electron transport is hindered by the presence of a universal electron trap, located at 3.6 eV below vacuum with a typical density of ca. 3 × 10¹⁷ cm⁻³. The trapped electrons recombine with free holes via a non-radiative trap-assisted recombination process, which is a competing loss process with respect to the emissive bimolecular Langevin recombination. The trap-assisted recombination in disordered organic semiconductors is governed by the diffusion of the free carrier (hole) towards the trapped carrier (electron), similar to the Langevin recombination of free carriers where both carriers are mobile. As a result, with the charge-carrier mobilities and amount of trapping centers known from charge-transport measurements, the radiative recombination as well as loss processes in disordered organic semiconductors can be fully predicted. Evidently, future work should focus on the identification and removing of electron traps. This will not only eliminate the non-radiative trap-assisted recombination, but, in addition, will shift the recombination zone towards the center of the device, leading to an efficiency improvement of more than a factor of two in single-layer polymer LEDs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Petersburg National Battlefield : alternative transportation feasibility study

    DOT National Transportation Integrated Search

    2012-11-13

    This report studies the feasibility of alternative solutions to several transportation problems affecting Petersburg National Battlefield in Petersburg, Virginia. Current transportation problems include site-specific access issues, wayfinding and nav...

  1. 40 CFR 263.20 - The manifest system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... accompany a hazardous waste shipment is satisfied when a copy of an electronic manifest is accessible during... CFR 177.817, a hazardous waste transporter must carry one printed copy of the electronic manifest on... unavailable for any reason, then: (i) The transporter in possession of the hazardous waste when the electronic...

  2. The Electron Transport Chain: An Interactive Simulation

    ERIC Educational Resources Information Center

    Romero, Chris; Choun, James

    2014-01-01

    This activity provides students an interactive demonstration of the electron transport chain and chemiosmosis during aerobic respiration. Students use simple, everyday objects as hydrogen ions and electrons and play the roles of the various proteins embedded in the inner mitochondrial membrane to show how this specific process in cellular…

  3. Transportation Self-Efficacy and Social Problem-Solving of Persons Who Are Blind or Visually Impaired.

    PubMed

    Crudden, Adele; O'Mally, Jamie; Antonelli, Karla

    2016-01-01

    Social problem-solving skills and transportation self-efficacy were assessed for 48 vocational rehabilitation consumers with visual disabilities who required assistance securing work transportation. Social problem solving was at the upper end of the normed average; transportation self-efficacy averaged 101.5 out of 140. Level of vision loss was not associated with score differences; urban residence related to slightly higher self-efficacy than suburban or rural residency. Participants appeared to have the skills necessary to secure employment transportation, but were less confident about transportation-seeking activities that required more initiative of social interaction. Training and information might help consumers gain confidence in these tasks and increase viable transportation options.

  4. Imprinted polymer-carbon consolidated composite fiber sensor for substrate-selective electrochemical sensing of folic acid.

    PubMed

    Prasad, Bhim Bali; Madhuri, Rashmi; Tiwari, Mahavir Prasad; Sharma, Piyush Sindhu

    2010-05-15

    Molecularly imprinted polymers (MIPs) are often electrically insulating materials. Due to the presence of diffusion barrier(s) in between such MIP coating and electrode surface and the absence of a direct path for the conduction of electrons from the binding sites to the electrode, the development of electrochemical sensor is significantly restricted. The direct use of MIPs those possess intrinsic electron-transport properties, is highly limited. These problems are resolved by the design of an original, substrate-selective MIP-fiber sensor that combines conventional insulating MIP and conducting carbon powder in consolidated phase. A layer of conducting carbon particles, arranged orderly as 'carbon strip', is inducted in the polymer for direct electronic conduction. MIP-carbon composite (monolithic fiber) in this work is prepared via in situ free radical polymerization of a new monomer (2,4,6-trisacrylamido-1,3,5-triazine, TAT) and subsequent cross-linkage with ethylene glycol dimethacrylate, in the presence of carbon powder and template (folic acid), at 55 degrees C in a glass capillary. The detection of folic acid with the MIP-fiber sensor was found to be specific and quantitative (detection limit 0.20 ng mL(-1), RSD=1.3%, S/N=3), in aqueous, blood serum and pharmaceutical samples, without any problem of non-specific false-positive contribution and cross-reactivity. 2010 Elsevier B.V. All rights reserved.

  5. Electronic transport in VO 2 —Experimentally calibrated Boltzmann transport modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinaci, Alper; Kado, Motohisa; Rosenmann, Daniel

    2015-12-28

    Materials that undergo metal-insulator transitions (MITs) are under intense study because the transition is scientifically fascinating and technologically promising for various applications. Among these materials, VO2 has served as a prototype due to its favorable transition temperature. While the physical underpinnings of the transition have been heavily investigated experimentally and computationally, quantitative modeling of electronic transport in the two phases has yet to be undertaken. In this work, we establish a density-functional-theory (DFT)-based approach to model electronic transport properties in VO2 in the semiconducting and metallic regimes, focusing on band transport using the Boltzmann transport equations. We synthesized high qualitymore » VO2 films and measured the transport quantities across the transition, in order to calibrate the free parameters in the model. We find that the experimental calibration of the Hubbard correction term can efficiently and adequately model the metallic and semiconducting phases, allowing for further computational design of MIT materials for desirable transport properties.« less

  6. The Optimal Location of GEODSS Sensors in Canada

    DTIC Science & Technology

    1991-02-01

    nteractive procedures for solving multiobjective transportation problems. A transportation problem is a classical linear programming problem where a...product must be transported from each of m sources to any of n destinations such that one or more objectives are optimized (36:96). The first algorithm...0, k - 1,...,L where z, is the fth element of zk The function z’(x) can now be optimized using any efficient, single-objectivc transportation

  7. Solving fully fuzzy transportation problem using pentagonal fuzzy numbers

    NASA Astrophysics Data System (ADS)

    Maheswari, P. Uma; Ganesan, K.

    2018-04-01

    In this paper, we propose a simple approach for the solution of fuzzy transportation problem under fuzzy environment in which the transportation costs, supplies at sources and demands at destinations are represented by pentagonal fuzzy numbers. The fuzzy transportation problem is solved without converting to its equivalent crisp form using a robust ranking technique and a new fuzzy arithmetic on pentagonal fuzzy numbers. To illustrate the proposed approach a numerical example is provided.

  8. Telegraph noise in Markovian master equation for electron transport through molecular junctions

    NASA Astrophysics Data System (ADS)

    Kosov, Daniel S.

    2018-05-01

    We present a theoretical approach to solve the Markovian master equation for quantum transport with stochastic telegraph noise. Considering probabilities as functionals of a random telegraph process, we use Novikov's functional method to convert the stochastic master equation to a set of deterministic differential equations. The equations are then solved in the Laplace space, and the expression for the probability vector averaged over the ensemble of realisations of the stochastic process is obtained. We apply the theory to study the manifestations of telegraph noise in the transport properties of molecular junctions. We consider the quantum electron transport in a resonant-level molecule as well as polaronic regime transport in a molecular junction with electron-vibration interaction.

  9. Ab-initio study of liquid systems: Concentration dependence of electrical resistivity of binary liquid alloy Rb1-xCsx

    NASA Astrophysics Data System (ADS)

    Thakur, Anil; Sharma, Nalini; Chandel, Surjeet; Ahluwalia, P. K.

    2013-02-01

    The electrical resistivity (ρL) of Rb1-XCsX binary alloys has been made calculated using Troullier Martins ab-initio pseudopotentials. The present results of the electrical resistivity (ρL) of Rb1-XCsX binary alloys have been found in good agreement with the experimental results. These results suggest that ab-initio approach for calculating electrical resistivity is quite successful in explaining the electronic transport properties of binary Liquid alloys. Hence ab-initio pseudopotentials can be used instead of model pseudopotentials having problem of transferability.

  10. Hybrid transport and diffusion modeling using electron thermal transport Monte Carlo SNB in DRACO

    NASA Astrophysics Data System (ADS)

    Chenhall, Jeffrey; Moses, Gregory

    2017-10-01

    The iSNB (implicit Schurtz Nicolai Busquet) multigroup diffusion electron thermal transport method is adapted into an Electron Thermal Transport Monte Carlo (ETTMC) transport method to better model angular and long mean free path non-local effects. Previously, the ETTMC model had been implemented in the 2D DRACO multiphysics code and found to produce consistent results with the iSNB method. Current work is focused on a hybridization of the computationally slower but higher fidelity ETTMC transport method with the computationally faster iSNB diffusion method in order to maximize computational efficiency. Furthermore, effects on the energy distribution of the heat flux divergence are studied. Work to date on the hybrid method will be presented. This work was supported by Sandia National Laboratories and the Univ. of Rochester Laboratory for Laser Energetics.

  11. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria.

    PubMed

    Barton, Larry L; Fauque, Guy D

    2009-01-01

    Chemolithotrophic bacteria that use sulfate as terminal electron acceptor (sulfate-reducing bacteria) constitute a unique physiological group of microorganisms that couple anaerobic electron transport to ATP synthesis. These bacteria (220 species of 60 genera) can use a large variety of compounds as electron donors and to mediate electron flow they have a vast array of proteins with redox active metal groups. This chapter deals with the distribution in the environment and the major physiological and metabolic characteristics of sulfate-reducing bacteria (SRB). This chapter presents our current knowledge of soluble electron transfer proteins and transmembrane redox complexes that are playing an essential role in the dissimilatory sulfate reduction pathway of SRB of the genus Desulfovibrio. Environmentally important activities displayed by SRB are a consequence of the unique electron transport components or the production of high levels of H(2)S. The capability of SRB to utilize hydrocarbons in pure cultures and consortia has resulted in using these bacteria for bioremediation of BTEX (benzene, toluene, ethylbenzene and xylene) compounds in contaminated soils. Specific strains of SRB are capable of reducing 3-chlorobenzoate, chloroethenes, or nitroaromatic compounds and this has resulted in proposals to use SRB for bioremediation of environments containing trinitrotoluene and polychloroethenes. Since SRB have displayed dissimilatory reduction of U(VI) and Cr(VI), several biotechnology procedures have been proposed for using SRB in bioremediation of toxic metals. Additional non-specific metal reductase activity has resulted in using SRB for recovery of precious metals (e.g. platinum, palladium and gold) from waste streams. Since bacterially produced sulfide contributes to the souring of oil fields, corrosion of concrete, and discoloration of stonework is a serious problem, there is considerable interest in controlling the sulfidogenic activity of the SRB. The production of biosulfide by SRB has led to immobilization of toxic metals and reduction of textile dyes, although the process remains unresolved, SRB play a role in anaerobic methane oxidation which not only contributes to carbon cycle activities but also depletes an important industrial energy reserve.

  12. Self-Assembly Strategies for Integrating Light Harvesting and Charge Separation in Artificial Photosynthetic Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasielewski, Michael R.

    In natural photosynthesis, organisms optimize solar energy conversion through organized assemblies of photofunctional chromophores and catalysts within proteins that provide specifically tailored environments for chemical reactions. As with their natural counterparts, artificial photosynthetic systems for practical solar fuels production must collect light energy, separate charge, and transport charge to catalytic sites where multielectron redox processes will occur. While encouraging progress has been made on each aspect of this complex problem, researchers have not yet developed self-ordering and self-assembling components and the tailored environments necessary to realize a fully-functional artificial system. Previously researchers have used complex, covalent molecular systems comprised ofmore » chromophores, electron donors, and electron acceptors to mimic both the light-harvesting and the charge separation functions of photosynthetic proteins. These systems allow for study of the dependencies of electron transfer rate constants on donor?acceptor distance and orientation, electronic interaction, and the free energy of the reaction. The most useful and informative systems are those in which structural constraints control both the distance and the orientation between the electron donors and acceptors. Self-assembly provides a facile means for organizing large numbers of molecules into supramolecular structures that can bridge length scales from nanometers to macroscopic dimensions. The resulting structures must provide pathways for migration of light excitation energy among antenna chromophores, and from antennas to reaction centers. They also must incorporate charge conduits, that is, molecular 'wires' that can efficiently move electrons and holes between reaction centers and catalytic sites. The central scientific challenge is to develop small, functional building blocks with a minimum number of covalent linkages, which also have the appropriate molecular recognition properties to facilitate self-assembly of complete, functional artificial photosynthetic systems. In this Account, we explore how self-assembly strategies involving ?-stacking can be used to integrate light harvesting with charge separation and transport.« less

  13. Diffusive vs. impulsive energetic electron transport during radiation belt storms

    NASA Astrophysics Data System (ADS)

    Vassiliadis, D.; Koepke, M.; Tornquist, M.

    2008-12-01

    Earth's electron radiation belts are continually replenished by inward particle transport (as well as other, local acceleration processes) taking place during radiation belt storms. For some storms the radial transport is primarily diffusive while for others it is impulsive, or characterized by injections. To distinguish between these types of inward transport, we first use a dynamic model of the phase-space density as measured by POLAR/HIST and expressed in terms of adiabatic invariants [Green and Kivelson, 2004]. In a review of storms from 1997 to 2004 the coefficients of the model are peaked at characteristic temporal and phase- space (mu, k, L*) scales during specific storms. The transport is quantified in terms of those invariants which are violated and identified with peaks of the electron distribution in invariant space. Second, we run guiding- center simulations in wave fields fitted to in situ measurements complemented at low and high L by ground ULF pulsations. The modes of response identified in earlier studies from SAMPEX and POLAR electron flux measurements are now associated with primarily diffusive transport in the central range of the outer belt, L=4-8, and primarily impulsive transport near the plasmapause boundary, L=3-4.

  14. Analysis of electron beam induced deposition (EBID) of residual hydrocarbons in electron microscopy

    NASA Astrophysics Data System (ADS)

    Rykaczewski, Konrad; White, William B.; Fedorov, Andrei G.

    2007-03-01

    In this work we have developed a comprehensive dynamic model of electron beam induced deposition (EBID) of residual hydrocarbon coupling mass transport, electron transport and scattering, and species decomposition to predict the deposition of carbon nanopillars. The simulations predict the local species and electron density distributions, as well as the three-demensional morphology and the growth rate of the deposit. Since the process occurs in a high vacuum environment, surface diffusion is considered as the primary transport mode of surface-adsorbed hydrocarbon precursor. The governing surface transport equation (STE) of the adsorbed species is derived and solved numerically. The transport, scattering, and absorption of primary electron as well as secondary electron generation are treated using the Monte Carlo method. Low energy secondary electrons are the major contributors to hydrocarbon decomposition due to their energy range matching peak dissociation reaction cross section energies for precursor molecules. The deposit and substrate are treated as a continuous entity allowing the simulation of the growth of a realistically sized deposit rather than a large number of cells representing each individual atom as in previously published simulations [Mitsuishi et al., Ultramicroscopy 103, 17 (2005); Silvis-Cividjian, Ph.D. thesis, University of Delft, 2002]. Such formulation allows for simple coupling of the STE with the dynamic growth of the nanopillar. Three different growth regimes occurring in EBID are identified using scaling analysis, and simulations are used to describe the deposit morphology and precursor surface concentration specific for each growth regime.

  15. Charge Transport Processes in Molecular Junctions

    NASA Astrophysics Data System (ADS)

    Smith, Christopher Eugene

    Molecular electronics (ME) has evolved into a rich area of exploration that combines the fields of chemistry, materials, electronic engineering and computational modeling to explore the physics behind electronic conduction at the molecular level. Through studying charge transport properties of single molecules and nanoscale molecular materials the field has gained the potential to bring about new avenues for the miniaturization of electrical components where quantum phenomena are utilized to achieve solid state molecular device functionality. Molecular junctions are platforms that enable these studies and consist of a single molecule or a small group of molecules directly connected to electrodes. The work presented in this thesis has built upon the current understanding of the mechanisms of charge transport in ordered junctions using self-assembled monolayer (SAM) molecular thin films. Donor and acceptor compounds were synthesized and incorporated into SAMs grown on metal substrates then the transport properties were measured with conducting probe atomic force microscopy (CP-AFM). In addition to experimentally measured current-voltage (I-V) curves, the transport properties were addressed computationally and modeled theoretically. The key objectives of this project were to 1) investigate the impact of molecular structure on hole and electron charge transport, 2) understand the nature of the charge carriers and their structure-transport properties through long (<4 nm) conjugated molecular wires, and 3) quantitatively extract interfacial properties characteristic to macroscopic junctions, such as energy level alignment and molecule-contact electronic coupling from experimental I-V curves. Here, we lay ground work for creating a more complete picture of charge transport in macroscopically ordered molecular junctions of controlled architecture, length and charge carrier. The polaronic nature of hopping transport has been predicted in long, conjugated molecular wires. Using quantum-based calculations, we modeled 'p-type' polaron transport through oligophenylenethiophene (OPTI) wires and assigned transport activation energies to specific modes of nuclear motion. We also show control over 'n-type', LUMO-mediated transport in short ( 2 nm) redox-active perylenediimide (PDI) SAMs bound to contacts through isocyano linkers. By changing the contact work function (φ) and temperature, we were able to verify thermally-assisted LUMO transport. Transition voltage spectroscopy and the single level model was employed to fit the experimental I-V curves and extract the electronic coupling (epsilon) and the EF-LUMO offset (epsilonl). It was found that epsilonl does not change with φ (LUMO pinning), while Gamma changes with both φ and temperature. Further, the PDI SAMs could be reversibly chemically gated to modulate the transport. These results help advance our understanding of transport behavior in semiconducting molecular thin films, and open opportunities to engineer improved electronic functionality into molecular devices.

  16. Crossing Over: Nanostructures that Move Electrons and Ions Across Cellular Membranes

    DOE PAGES

    Ajo-Franklin, C. M.; Noy, A.

    2015-04-27

    Critical biological processes such as energy generation and signal transduction are driven by the flow of electrons and ions across the membranes of living cells. As a result, there is substantial interest in creating nanostructured materials that control transport of these charged species across biomembranes. The recent advances in the synthesis of de novo and protein nanostructures for transmembrane ion and electron transport and the mechanistic understanding underlying this transport are described. Moreover, this body of work highlights the promise such nanostructures hold for directing transmembrane transport of charged species as well as challenges that must be overcome to realizemore » that potential.« less

  17. Integrated modelling framework for short pulse high energy density physics experiments

    NASA Astrophysics Data System (ADS)

    Sircombe, N. J.; Hughes, S. J.; Ramsay, M. G.

    2016-03-01

    Modelling experimental campaigns on the Orion laser at AWE, and developing a viable point-design for fast ignition (FI), calls for a multi-scale approach; a complete description of the problem would require an extensive range of physics which cannot realistically be included in a single code. For modelling the laser-plasma interaction (LPI) we need a fine mesh which can capture the dispersion of electromagnetic waves, and a kinetic model for each plasma species. In the dense material of the bulk target, away from the LPI region, collisional physics dominates. The transport of hot particles generated by the action of the laser is dependent on their slowing and stopping in the dense material and their need to draw a return current. These effects will heat the target, which in turn influences transport. On longer timescales, the hydrodynamic response of the target will begin to play a role as the pressure generated from isochoric heating begins to take effect. Recent effort at AWE [1] has focussed on the development of an integrated code suite based on: the particle in cell code EPOCH, to model LPI; the Monte-Carlo electron transport code THOR, to model the onward transport of hot electrons; and the radiation hydrodynamics code CORVUS, to model the hydrodynamic response of the target. We outline the methodology adopted, elucidate on the advantages of a robustly integrated code suite compared to a single code approach, demonstrate the integrated code suite's application to modelling the heating of buried layers on Orion, and assess the potential of such experiments for the validation of modelling capability in advance of more ambitious HEDP experiments, as a step towards a predictive modelling capability for FI.

  18. A gyrokinetic one-dimensional scrape-off layer model of an edge-localized mode heat pulse

    DOE PAGES

    Shi, E. L.; Hakim, A. H.; Hammett, G. W.

    2015-02-03

    An electrostatic gyrokinetic-based model is applied to simulate parallel plasma transport in the scrape-off layer to a divertor plate. We focus on a test problem that has been studied previously, using parameters chosen to model a heat pulse driven by an edge-localized mode in JET. Previous work has used direct particle-in-cellequations with full dynamics, or Vlasov or fluid equations with only parallel dynamics. With the use of the gyrokinetic quasineutrality equation and logical sheathboundary conditions, spatial and temporal resolution requirements are no longer set by the electron Debye length and plasma frequency, respectively. Finally, this test problem also helps illustratemore » some of the physics contained in the Hamiltonian form of the gyrokineticequations and some of the numerical challenges in developing an edge gyrokinetic code.« less

  19. Physiological Evidence for Isopotential Tunneling in the Electron Transport Chain of Methane-Producing Archaea

    PubMed Central

    Duszenko, Nikolas

    2017-01-01

    ABSTRACT Many, but not all, organisms use quinones to conserve energy in their electron transport chains. Fermentative bacteria and methane-producing archaea (methanogens) do not produce quinones but have devised other ways to generate ATP. Methanophenazine (MPh) is a unique membrane electron carrier found in Methanosarcina species that plays the same role as quinones in the electron transport chain. To extend the analogy between quinones and MPh, we compared the MPh pool sizes between two well-studied Methanosarcina species, Methanosarcina acetivorans C2A and Methanosarcina barkeri Fusaro, to the quinone pool size in the bacterium Escherichia coli. We found the quantity of MPh per cell increases as cultures transition from exponential growth to stationary phase, and absolute quantities of MPh were 3-fold higher in M. acetivorans than in M. barkeri. The concentration of MPh suggests the cell membrane of M. acetivorans, but not of M. barkeri, is electrically quantized as if it were a single conductive metal sheet and near optimal for rate of electron transport. Similarly, stationary (but not exponentially growing) E. coli cells also have electrically quantized membranes on the basis of quinone content. Consistent with our hypothesis, we demonstrated that the exogenous addition of phenazine increases the growth rate of M. barkeri three times that of M. acetivorans. Our work suggests electron flux through MPh is naturally higher in M. acetivorans than in M. barkeri and that hydrogen cycling is less efficient at conserving energy than scalar proton translocation using MPh. IMPORTANCE Can we grow more from less? The ability to optimize and manipulate metabolic efficiency in cells is the difference between commercially viable and nonviable renewable technologies. Much can be learned from methane-producing archaea (methanogens) which evolved a successful metabolic lifestyle under extreme thermodynamic constraints. Methanogens use highly efficient electron transport systems and supramolecular complexes to optimize electron and carbon flow to control biomass synthesis and the production of methane. Worldwide, methanogens are used to generate renewable methane for heat, electricity, and transportation. Our observations suggest Methanosarcina acetivorans, but not Methanosarcina barkeri, has electrically quantized membranes. Escherichia coli, a model facultative anaerobe, has optimal electron transport at the stationary phase but not during exponential growth. This study also suggests the metabolic efficiency of bacteria and archaea can be improved using exogenously supplied lipophilic electron carriers. The enhancement of methanogen electron transport through methanophenazine has the potential to increase renewable methane production at an industrial scale. PMID:28710268

  20. Physiological Evidence for Isopotential Tunneling in the Electron Transport Chain of Methane-Producing Archaea.

    PubMed

    Duszenko, Nikolas; Buan, Nicole R

    2017-09-15

    Many, but not all, organisms use quinones to conserve energy in their electron transport chains. Fermentative bacteria and methane-producing archaea (methanogens) do not produce quinones but have devised other ways to generate ATP. Methanophenazine (MPh) is a unique membrane electron carrier found in Methanosarcina species that plays the same role as quinones in the electron transport chain. To extend the analogy between quinones and MPh, we compared the MPh pool sizes between two well-studied Methanosarcina species, Methanosarcina acetivorans C2A and Methanosarcina barkeri Fusaro, to the quinone pool size in the bacterium Escherichia coli We found the quantity of MPh per cell increases as cultures transition from exponential growth to stationary phase, and absolute quantities of MPh were 3-fold higher in M. acetivorans than in M. barkeri The concentration of MPh suggests the cell membrane of M. acetivorans , but not of M. barkeri , is electrically quantized as if it were a single conductive metal sheet and near optimal for rate of electron transport. Similarly, stationary (but not exponentially growing) E. coli cells also have electrically quantized membranes on the basis of quinone content. Consistent with our hypothesis, we demonstrated that the exogenous addition of phenazine increases the growth rate of M. barkeri three times that of M. acetivorans Our work suggests electron flux through MPh is naturally higher in M. acetivorans than in M. barkeri and that hydrogen cycling is less efficient at conserving energy than scalar proton translocation using MPh. IMPORTANCE Can we grow more from less? The ability to optimize and manipulate metabolic efficiency in cells is the difference between commercially viable and nonviable renewable technologies. Much can be learned from methane-producing archaea (methanogens) which evolved a successful metabolic lifestyle under extreme thermodynamic constraints. Methanogens use highly efficient electron transport systems and supramolecular complexes to optimize electron and carbon flow to control biomass synthesis and the production of methane. Worldwide, methanogens are used to generate renewable methane for heat, electricity, and transportation. Our observations suggest Methanosarcina acetivorans , but not Methanosarcina barkeri , has electrically quantized membranes. Escherichia coli , a model facultative anaerobe, has optimal electron transport at the stationary phase but not during exponential growth. This study also suggests the metabolic efficiency of bacteria and archaea can be improved using exogenously supplied lipophilic electron carriers. The enhancement of methanogen electron transport through methanophenazine has the potential to increase renewable methane production at an industrial scale. Copyright © 2017 American Society for Microbiology.

  1. Aspects of electron transport in zigzag graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Bhalla, Pankaj; Pratap, Surender

    2018-05-01

    In this paper, we investigate the aspects of electron transport in the zigzag graphene nanoribbons (ZGNRs) using the nonequilibrium Green’s function (NEGF) formalism. The latter is an esoteric tool in mesoscopic physics. It is used to perform an analysis of ZGNRs by considering potential well. Within this potential, the dependence of transmission coefficient, local density of states (LDOS) and electron transport properties on number of atoms per unit cell is discussed. It is observed that there is an increment in electron and thermal conductance with increasing number of atoms. In addition to these properties, the dependence of same is also studied in figure of merit. The results infer that the contribution of electrons to enhance the figure of merit is important above the crossover temperature.

  2. Electronic structure and transport properties of quasi-one-dimensional carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Wu, Y. N.; Cheng, P.; Wu, M. J.; Zhu, H.; Xiang, Q.; Ni, J.

    2017-09-01

    Based on the density functional theory combined with the nonequilibrium Green's function, the influence of the wrinkle on the electronic structures and transport properties of quasi-one-dimensional carbon nanomaterials have been investigated, in which the wrinkled armchair graphene nanoribbons (wAGNRs) and the composite of AGNRs and single walled carbon nanotubes (SWCNTs) were considered with different connection of ripples. The wrinkle adjusts the electronic structures and transport properties of AGNRs. With the change of the strain, the wAGNRs for three width families reveal different electrical behavior. The band gap of AGNR(6) increases in the presence of the wrinkle, which is opposite to that of AGNR(5) and AGNR(7). The transport of AGNRs with the widths 6 or 7 has been modified by the wrinkle, especially by the number of isolated ripples, but it is insensitive to the strain. The nanojunctions constructed by AGNRs and SWCNTs can form the quantum wells, and some specific states are confined in wAGNRs. Although these nanojunctions exhibit the metallic, they have poor conductance due to the wrinkle. The filling of C20 into SWCNT has less influence on the electronic structure and transport of the junctions. The width and connection type of ripples have greatly influenced on the electronic structures and transport properties of quasi-one-dimensional nanomaterials.

  3. Microbial electron transport and energy conservation – the foundation for optimizing bioelectrochemical systems

    PubMed Central

    Kracke, Frauke; Vassilev, Igor; Krömer, Jens O.

    2015-01-01

    Microbial electrochemical techniques describe a variety of emerging technologies that use electrode–bacteria interactions for biotechnology applications including the production of electricity, waste and wastewater treatment, bioremediation and the production of valuable products. Central in each application is the ability of the microbial catalyst to interact with external electron acceptors and/or donors and its metabolic properties that enable the combination of electron transport and carbon metabolism. And here also lies the key challenge. A wide range of microbes has been discovered to be able to exchange electrons with solid surfaces or mediators but only a few have been studied in depth. Especially electron transfer mechanisms from cathodes towards the microbial organism are poorly understood but are essential for many applications such as microbial electrosynthesis. We analyze the different electron transport chains that nature offers for organisms such as metal respiring bacteria and acetogens, but also standard biotechnological organisms currently used in bio-production. Special focus lies on the essential connection of redox and energy metabolism, which is often ignored when studying bioelectrochemical systems. The possibility of extracellular electron exchange at different points in each organism is discussed regarding required redox potentials and effect on cellular redox and energy levels. Key compounds such as electron carriers (e.g., cytochromes, ferredoxin, quinones, flavins) are identified and analyzed regarding their possible role in electrode–microbe interactions. This work summarizes our current knowledge on electron transport processes and uses a theoretical approach to predict the impact of different modes of transfer on the energy metabolism. As such it adds an important piece of fundamental understanding of microbial electron transport possibilities to the research community and will help to optimize and advance bioelectrochemical techniques. PMID:26124754

  4. Optimal perturbations for nonlinear systems using graph-based optimal transport

    NASA Astrophysics Data System (ADS)

    Grover, Piyush; Elamvazhuthi, Karthik

    2018-06-01

    We formulate and solve a class of finite-time transport and mixing problems in the set-oriented framework. The aim is to obtain optimal discrete-time perturbations in nonlinear dynamical systems to transport a specified initial measure on the phase space to a final measure in finite time. The measure is propagated under system dynamics in between the perturbations via the associated transfer operator. Each perturbation is described by a deterministic map in the measure space that implements a version of Monge-Kantorovich optimal transport with quadratic cost. Hence, the optimal solution minimizes a sum of quadratic costs on phase space transport due to the perturbations applied at specified times. The action of the transport map is approximated by a continuous pseudo-time flow on a graph, resulting in a tractable convex optimization problem. This problem is solved via state-of-the-art solvers to global optimality. We apply this algorithm to a problem of transport between measures supported on two disjoint almost-invariant sets in a chaotic fluid system, and to a finite-time optimal mixing problem by choosing the final measure to be uniform. In both cases, the optimal perturbations are found to exploit the phase space structures, such as lobe dynamics, leading to efficient global transport. As the time-horizon of the problem is increased, the optimal perturbations become increasingly localized. Hence, by combining the transfer operator approach with ideas from the theory of optimal mass transportation, we obtain a discrete-time graph-based algorithm for optimal transport and mixing in nonlinear systems.

  5. Paleoclassical transport explains electron transport barriers in RTP and TEXTOR

    NASA Astrophysics Data System (ADS)

    Hogeweij, G. M. D.; Callen, J. D.; RTP Team; TEXTOR Team

    2008-06-01

    The recently developed paleoclassical transport model sets the minimum level of electron thermal transport in a tokamak. This transport level has proven to be in good agreement with experimental observations in many cases when fluctuation-induced anomalous transport is small, i.e. in (near-)ohmic plasmas in small to medium size tokamaks, inside internal transport barriers (ITBs) or edge transport barriers (H-mode pedestal). In this paper predictions of the paleoclassical transport model are compared in detail with data from such kinds of discharges: ohmic discharges from the RTP tokamak, EC heated RTP discharges featuring both dynamic and shot-to-shot scans of the ECH power deposition radius and off-axis EC heated discharges from the TEXTOR tokamak. For ohmically heated RTP discharges the Te profiles predicted by the paleoclassical model are in reasonable agreement with the experimental observations, and various parametric dependences are captured satisfactorily. The electron thermal ITBs observed in steady state EC heated RTP discharges and transiently after switch-off of off-axis ECH in TEXTOR are predicted very well by the paleoclassical model.

  6. 49 CFR 40.275 - What is the effect of procedural problems that are not sufficient to cancel an alcohol test?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... not sufficient to cancel an alcohol test? 40.275 Section 40.275 Transportation Office of the Secretary of Transportation PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Problems in Alcohol Testing § 40.275 What is the effect of procedural problems that are not sufficient to...

  7. 49 CFR 40.275 - What is the effect of procedural problems that are not sufficient to cancel an alcohol test?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... not sufficient to cancel an alcohol test? 40.275 Section 40.275 Transportation Office of the Secretary of Transportation PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Problems in Alcohol Testing § 40.275 What is the effect of procedural problems that are not sufficient to...

  8. 49 CFR 40.275 - What is the effect of procedural problems that are not sufficient to cancel an alcohol test?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... not sufficient to cancel an alcohol test? 40.275 Section 40.275 Transportation Office of the Secretary of Transportation PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Problems in Alcohol Testing § 40.275 What is the effect of procedural problems that are not sufficient to...

  9. 49 CFR 40.275 - What is the effect of procedural problems that are not sufficient to cancel an alcohol test?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... not sufficient to cancel an alcohol test? 40.275 Section 40.275 Transportation Office of the Secretary of Transportation PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Problems in Alcohol Testing § 40.275 What is the effect of procedural problems that are not sufficient to...

  10. 49 CFR 40.275 - What is the effect of procedural problems that are not sufficient to cancel an alcohol test?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... not sufficient to cancel an alcohol test? 40.275 Section 40.275 Transportation Office of the Secretary of Transportation PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Problems in Alcohol Testing § 40.275 What is the effect of procedural problems that are not sufficient to...

  11. Internet-based data interchange with XML

    NASA Astrophysics Data System (ADS)

    Fuerst, Karl; Schmidt, Thomas

    2000-12-01

    In this paper, a complete concept for Internet Electronic Data Interchange (EDI) - a well-known buzzword in the area of logistics and supply chain management to enable the automation of the interactions between companies and their partners - using XML (eXtensible Markup Language) will be proposed. This approach is based on Internet and XML, because the implementation of traditional EDI (e.g. EDIFACT, ANSI X.12) is mostly too costly for small and medium sized enterprises, which want to integrate their suppliers and customers in a supply chain. The paper will also present the results of the implementation of a prototype for such a system, which has been developed for an industrial partner to improve the current situation of parts delivery. The main functions of this system are an early warning system to detect problems during the parts delivery process as early as possible, and a transport following system to pursue the transportation.

  12. Multi-scale transport in the DIII-D ITER baseline scenario with direct electron heating and projection to ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grierson, B. A.; Staebler, G. M.; Solomon, W. M.

    Multi-scale fluctuations measured by turbulence diagnostics spanning long and short wavelength spatial scales impact energy confinement and the scale-lengths of plasma kinetic profiles in the DIII-D ITER baseline scenario with direct electron heating. Contrasting discharge phases with ECH + neutral beam injection (NBI) and NBI only at similar rotation reveal higher energy confinement and lower fluctuations when only NBI heating is used. Modeling of the core transport with TGYRO using the TGLF turbulent transport model and NEO neoclassical transport reproduces the experimental profile changes upon application of direct electron heating and indicates that multi-scale transport mechanisms are responsible for changesmore » in the temperature and density profiles. Intermediate and high-k fluctuations appear responsible for the enhanced electron thermal flux, and intermediate-k electron modes produce an inward particle pinch that increases the inverse density scale length. Projection to ITER is performed with TGLF and indicates a density profile that has a finite scale length due to intermediate-k electron modes at low collisionality and increases the fusion gain. Finally, for a range of E×B shear, the dominant mechanism that increases fusion performance is suppression of outward low-k particle flux and increased density peaking.« less

  13. Multi-scale transport in the DIII-D ITER baseline scenario with direct electron heating and projection to ITER

    DOE PAGES

    Grierson, B. A.; Staebler, G. M.; Solomon, W. M.; ...

    2018-02-01

    Multi-scale fluctuations measured by turbulence diagnostics spanning long and short wavelength spatial scales impact energy confinement and the scale-lengths of plasma kinetic profiles in the DIII-D ITER baseline scenario with direct electron heating. Contrasting discharge phases with ECH + neutral beam injection (NBI) and NBI only at similar rotation reveal higher energy confinement and lower fluctuations when only NBI heating is used. Modeling of the core transport with TGYRO using the TGLF turbulent transport model and NEO neoclassical transport reproduces the experimental profile changes upon application of direct electron heating and indicates that multi-scale transport mechanisms are responsible for changesmore » in the temperature and density profiles. Intermediate and high-k fluctuations appear responsible for the enhanced electron thermal flux, and intermediate-k electron modes produce an inward particle pinch that increases the inverse density scale length. Projection to ITER is performed with TGLF and indicates a density profile that has a finite scale length due to intermediate-k electron modes at low collisionality and increases the fusion gain. Finally, for a range of E×B shear, the dominant mechanism that increases fusion performance is suppression of outward low-k particle flux and increased density peaking.« less

  14. Multi-scale transport in the DIII-D ITER baseline scenario with direct electron heating and projection to ITER

    NASA Astrophysics Data System (ADS)

    Grierson, B. A.; Staebler, G. M.; Solomon, W. M.; McKee, G. R.; Holland, C.; Austin, M.; Marinoni, A.; Schmitz, L.; Pinsker, R. I.; DIII-D Team

    2018-02-01

    Multi-scale fluctuations measured by turbulence diagnostics spanning long and short wavelength spatial scales impact energy confinement and the scale-lengths of plasma kinetic profiles in the DIII-D ITER baseline scenario with direct electron heating. Contrasting discharge phases with ECH + neutral beam injection (NBI) and NBI only at similar rotation reveal higher energy confinement and lower fluctuations when only NBI heating is used. Modeling of the core transport with TGYRO using the TGLF turbulent transport model and NEO neoclassical transport reproduces the experimental profile changes upon application of direct electron heating and indicates that multi-scale transport mechanisms are responsible for changes in the temperature and density profiles. Intermediate and high-k fluctuations appear responsible for the enhanced electron thermal flux, and intermediate-k electron modes produce an inward particle pinch that increases the inverse density scale length. Projection to ITER is performed with TGLF and indicates a density profile that has a finite scale length due to intermediate-k electron modes at low collisionality and increases the fusion gain. For a range of E × B shear, the dominant mechanism that increases fusion performance is suppression of outward low-k particle flux and increased density peaking.

  15. CEPXS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-10-19

    CEPXS is a multigroup-Legendre cross-section generating code. The cross sections produced by CEPXS enable coupled electron-photon transport calculations to be performed with multigroup radiation transport codes, e.g. MITS and SCEPTRE. CEPXS generates multigroup-Legendre cross sections for photons, electrons and positrons over the energy range from 100 MeV to 1.0 keV. The continuous slowing-down approximation is used for those electron interactions that result in small-energy losses. The extended transport correction is applied to the forward-peaked elastic scattering cross section for electrons. A standard multigroup-Legendre treatment is used for the other coupled electron-photon cross sections. CEPXS extracts electron cross-section information from themore » DATAPAC data set and photon cross-section information from Biggs-Lighthill data. The model that is used for ionization/relaxation in CEPXS is essentially the same as that employed in ITS.« less

  16. 49 CFR Appendix C to Part 224 - Guidelines for Electronic Submission of Reflectorization Implementation Compliance Reports

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Guidelines for Electronic Submission of Reflectorization Implementation Compliance Reports C Appendix C to Part 224 Transportation Other Regulations... REFLECTORIZATION OF RAIL FREIGHT ROLLING STOCK Pt. 224, App. C Appendix C to Part 224—Guidelines for Electronic...

  17. 49 CFR Appendix C to Part 224 - Guidelines for Electronic Submission of Reflectorization Implementation Compliance Reports

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Guidelines for Electronic Submission of Reflectorization Implementation Compliance Reports C Appendix C to Part 224 Transportation Other Regulations... REFLECTORIZATION OF RAIL FREIGHT ROLLING STOCK Pt. 224, App. C Appendix C to Part 224—Guidelines for Electronic...

  18. 49 CFR Appendix C to Part 224 - Guidelines for Electronic Submission of Reflectorization Implementation Compliance Reports

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Guidelines for Electronic Submission of Reflectorization Implementation Compliance Reports C Appendix C to Part 224 Transportation Other Regulations... REFLECTORIZATION OF RAIL FREIGHT ROLLING STOCK Pt. 224, App. C Appendix C to Part 224—Guidelines for Electronic...

  19. 49 CFR Appendix C to Part 224 - Guidelines for Electronic Submission of Reflectorization Implementation Compliance Reports

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Guidelines for Electronic Submission of Reflectorization Implementation Compliance Reports C Appendix C to Part 224 Transportation Other Regulations... REFLECTORIZATION OF RAIL FREIGHT ROLLING STOCK Pt. 224, App. C Appendix C to Part 224—Guidelines for Electronic...

  20. Electron Temperature Gradient Scale Measurements in ICRF Heated Plasmas at Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Houshmandyar, Saeid; Phillips, Perry E.; Rowan, William L.; Howard, Nathaniel T.; Greenwald, Martin

    2016-10-01

    It is generally believed that the temperature gradient is a driving mechanism for the turbulent transport in hot and magnetically confined plasmas. A feature of many anomalous transport models is the critical threshold value (LC) for the gradient scale length, above which both the turbulence and the heat transport increases. This threshold is also predicted by the recent multi-scale gyrokinetic simulations, which are focused on addressing the electron (and ion) heat transport in tokamaks. Recently, we have established an accurate technique (BT-jog) to directly measure the electron temperature gradient scale length (LTe =Te / ∇T) profile, using a high-spatial resolution radiometer-based electron cyclotron emission (ECE) diagnostic. For the work presented here, electrons are heated by ion cyclotron range of frequencies (ICRF) through minority heating in L-mode plasmas at different power levels, TRANSP runs determine the electron heat fluxes and the scale lengths are measured through the BT-jog technique. Furthermore, the experiment is extended for different plasma current and electron densities by which the parametric dependence of LC on magnetic shear, safety factor and density will be investigated. This work is supported by U.S. DoE OFES, under Award No. DE-FG03-96ER-54373.

  1. Electron Transport in Quasi-Two-Dimensional Porous Network of Titania Nanoparticles, Incorporating Electrical and Optical Advantages in Dye-Sensitized Solar Cells.

    PubMed

    Javadi, Mohammad; Alizadeh, Saba; Khosravi, Yusef; Abdi, Yaser

    2016-11-04

    The integration of fast electron transport and large effective surface area is critical to attaining higher gains in the nanostructured photovoltaic devices. Here, we report facilitated electron transport in the quasi-two-dimensional (Q2D) porous TiO 2 . Liquid electrolyte dye-sensitized solar cells were prepared by utilizing photoanodes based on the Q2D porous substructures. Due to electron confinement in a microscale porous medium, directional diffusion toward collecting electrode is induced into the electron transport. Our measurements based on the photocurrent and photovoltage time-of-flight transients show that at higher Fermi levels, the electron diffusion coefficient in the Q2D porous TiO 2 is about one order of magnitude higher when compared with the conventional layer of porous TiO 2 . The results show that microstructuring of the porous TiO 2 leads to an approximately threefold improvement in the electron diffusion length. Such a modification may considerably affects the electrical functionality of moderate or low performance dye-sensitized solar cells for which the internal gain or collection efficiency is typically low. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Electron Trapping and Charge Transport by Large Amplitude Whistlers

    NASA Technical Reports Server (NTRS)

    Kellogg, P. J.; Cattell, C. A.; Goetz, K.; Monson, S. J.; Wilson, L. B., III

    2010-01-01

    Trapping of electrons by magnetospheric whistlers is investigated using data from the Waves experiment on Wind and the S/WAVES experiment on STEREO. Waveforms often show a characteristic distortion which is shown to be due to electrons trapped in the potential of the electrostatic part of oblique whistlers. The density of trapped electrons is significant, comparable to that of the unperturbed whistler. Transport of these trapped electrons to new regions can generate potentials of several kilovolts, Trapping and the associated potentials may play an important role in the acceleration of Earth's radiation belt electrons.

  3. The Low-Recycling Lithium Boundary and Implications for Plasma Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granstedt, Erik Michael

    Pumping of incident hydrogen and impurity ions by lithium enables control of the particle inventory and fueling profile in magnetic-confined plasmas, and may raise the plasma temperature near the wall. As a result, the density gradient is expected to contribute substantially to the free-energy, affecting particle and thermal transport from micro-turbulence which is typically the dominant transport mechanism in high-temperature fusion experiments. Transport in gyrokinetic simulations of density-gradient-dominated profiles is characterized by a small linear critical gradient, large particle flux, and preferential diffusion of cold particles. As a result, the heat flux is below 5/2 or even 3/2 times themore » particle flux, usually assumed to be the minimum for convection. While surprising, this result is consistent with increasing entropy. Coupled TEM-ITG (ion-temperature- gradient) simulations using ηe = ηi find η = ∇T /∇n∼0.8 maximizes the linear critical pressure gradient, which suggests that experiments operating near marginal ITG stability with larger η would increase the linear critical pressure gradient by transferring free-energy from the temperature gradient to the density gradient. Simulations were performed with profiles predicted for the Lithium Tokamak Experiment (LTX) if ion thermal transport was neoclassical, while electron thermal transport and particle transport were a fixed ratio above the neoclassical level. A robust TEM instability was found for the outer half radius, while the ITG was found to be driven unstable as well during gas puff fueling. This suggests that TEM transport will be an important transport mechanism in high-temperature low-recycling fusion experiments, and in the absence of stabilizing mechanisms, may dominate over neoclassical transport. A diagnostic suite has been developed to measure hydrogen and impurity emission in LTX in order to determine the lower bound on recycling that can be achieved in a small tokamak using solid lithium coatings, assess its dependence on the operating condition of the lithium surface, and evaluate its impact on the discharge. Coatings on the close-fitting stainless-steel substrate produce a significant reduction in recyling, so that the effective particle confinement times are as low as 1 ms. Measurements of particle inventory in the plasma and hydrogen Lyman-α emission indicate that hydrogen recycling at the surface increases as subsequent discharges are performed; nevertheless, strong pumping of hydrogen is observed even after almost double the cumulative fueling is applied that should saturate the lithium coating to the penetration depth of hydrogen ions. Probe measurements show that when external fueling is terminated, the scrape-off-layer of discharges with fresh coatings decays to lower density and rises to higher electron temperature than for discharges with a partially-passivated surface, consistent with reduced edge cooling from recycled particles. Near the end of the discharge, higher plasma current correlates with reduced τp* and hydrogen emission, suggesting that discharges with fresh coatings achieve higher electron temperature in the core. A novel approach using neutral modeling was developed for the inverse problem of determining the distribution of recycled particle flux from PFC surfaces given a large number of emission measurements, revealing that extremely low levels of recycling (Rcore∼0.6 and Rplate∼0.8) have been achieved with solid lithium coatings. Together with impurity emission measurements, modeling suggests that during periods of particularly low electron density, influx of impurities from the walls contributes substantially to the global particle balance.« less

  4. The effects of electron and hole transport layer with the electrode work function on perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Deng, Quanrong; Li, Yiqi; Chen, Lian; Wang, Shenggao; Wang, Geming; Sheng, Yonglong; Shao, Guosheng

    2016-09-01

    The effects of electron and hole transport layer with the electrode work function on perovskite solar cells with the interface defects were simulated by using analysis of microelectronic and photonic structures-one-dimensional (AMPS-1D) software. The simulation results suggest that TiO2 electron transport layer provides best device performance with conversion efficiency of 25.9% compared with ZnO and CdS. The threshold value of back electrode work function for Spiro-OMeTAD, NiO, CuI and Cu2O hole transport layer are calculated to be 4.9, 4.8, 4.7 and 4.9 eV, respectively, to reach the highest conversion efficiency. The mechanisms of device physics with various electron and hole transport materials are discussed in details. The device performance deteriorates gradually as the increased density of interface defects located at ETM/absorber or absorber/HTM. This research results can provide helpful guidance for materials and metal electrode choice for perovskite solar cells.

  5. Self-consistent Monte Carlo study of high-field carrier transport in graded heterostructures

    NASA Astrophysics Data System (ADS)

    Al-Omar, A.; Krusius, J. P.

    1987-11-01

    Hot-electron transport over graded heterostructures was investigated. A new formulation of the carrier transport, based on the effective mass theorem, a position-dependent Hamiltonian, scattering rates that included overlap integrals with correct symmetry, and ohmic contact models preserving the stochastic nature of carrier injection, was developed and implemented into the self-consistent ensemble Monte Carlo method. Hot-carrier transport in a graded Al(x)Ga(1-x)As device was explored with the following results: (1) the transport across compositionally graded semiconductor structures cannot be described with drift and diffusion concepts; (2) although heterostructure launchers generate a ballistic electron fraction as high as 15 percent and 40 percent of the total electron population for 300 and 77 K, respectively, they simultaneously reduce macroscopic average currents and carrier velocities; and (3) the width of the ballistic electron distribution and the magnitude of the ballistic fraction are primarily determined by material parameters and operating voltages rather than details of the device structure.

  6. Correlating electronic transport to atomic structures in self-assembled quantum wires.

    PubMed

    Qin, Shengyong; Kim, Tae-Hwan; Zhang, Yanning; Ouyang, Wenjie; Weitering, Hanno H; Shih, Chih-Kang; Baddorf, Arthur P; Wu, Ruqian; Li, An-Ping

    2012-02-08

    Quantum wires, as a smallest electronic conductor, are expected to be a fundamental component in all quantum architectures. The electronic conductance in quantum wires, however, is often dictated by structural instabilities and electron localization at the atomic scale. Here we report on the evolutions of electronic transport as a function of temperature and interwire coupling as the quantum wires of GdSi(2) are self-assembled on Si(100) wire-by-wire. The correlation between structure, electronic properties, and electronic transport are examined by combining nanotransport measurements, scanning tunneling microscopy, and density functional theory calculations. A metal-insulator transition is revealed in isolated nanowires, while a robust metallic state is obtained in wire bundles at low temperature. The atomic defects lead to electron localizations in isolated nanowire, and interwire coupling stabilizes the structure and promotes the metallic states in wire bundles. This illustrates how the conductance nature of a one-dimensional system can be dramatically modified by the environmental change on the atomic scale. © 2012 American Chemical Society

  7. The metal-insulator transition in a phase-separated manganite studied by in situ STS

    NASA Astrophysics Data System (ADS)

    Snijders, P. C.; Gao, M.; Guo, H.; Ward, T. Z.; Gao, H.-J.; Shen, J.; Gai, Z.

    2012-02-01

    Electronic phase separation (EPS) is a key feature at the heart of the wide variety of electronic and magnetic properties in complex oxides. One consequence of EPS is that electronic transport experiments in bulk materials or 2D films mostly probe the low resistivity electronic phases due to the percolative path of the current. We study oxygen deficient La5/8-xPrxCa3/8M nO3 (LPCMO) thin films using both in situ scanning tunneling spectroscopy (STS) and ex situ transport experiments. The oxygen deficiency is known to decrease the metal-insulator transition (MIT) temperature or even completely suppress the MIT in conventional transport experiments. We show that in situ STS is able to detect the MIT even in systems where conventional transport experiments do not show an MIT at zero magnetic field.

  8. A deterministic model of electron transport for electron probe microanalysis

    NASA Astrophysics Data System (ADS)

    Bünger, J.; Richter, S.; Torrilhon, M.

    2018-01-01

    Within the last decades significant improvements in the spatial resolution of electron probe microanalysis (EPMA) were obtained by instrumental enhancements. In contrast, the quantification procedures essentially remained unchanged. As the classical procedures assume either homogeneity or a multi-layered structure of the material, they limit the spatial resolution of EPMA. The possibilities of improving the spatial resolution through more sophisticated quantification procedures are therefore almost untouched. We investigate a new analytical model (M 1-model) for the quantification procedure based on fast and accurate modelling of electron-X-ray-matter interactions in complex materials using a deterministic approach to solve the electron transport equations. We outline the derivation of the model from the Boltzmann equation for electron transport using the method of moments with a minimum entropy closure and present first numerical results for three different test cases (homogeneous, thin film and interface). Taking Monte Carlo as a reference, the results for the three test cases show that the M 1-model is able to reproduce the electron dynamics in EPMA applications very well. Compared to classical analytical models like XPP and PAP, the M 1-model is more accurate and far more flexible, which indicates the potential of deterministic models of electron transport to further increase the spatial resolution of EPMA.

  9. Anomalous electron transport in Hall-effect thrusters: Comparison between quasi-linear kinetic theory and particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Lafleur, T.; Martorelli, R.; Chabert, P.; Bourdon, A.

    2018-06-01

    Kinetic drift instabilities have been implicated as a possible mechanism leading to anomalous electron cross-field transport in E × B discharges, such as Hall-effect thrusters. Such instabilities, which are driven by the large disparity in electron and ion drift velocities, present a significant challenge to modelling efforts without resorting to time-consuming particle-in-cell (PIC) simulations. Here, we test aspects of quasi-linear kinetic theory with 2D PIC simulations with the aim of developing a self-consistent treatment of these instabilities. The specific quantities of interest are the instability growth rate (which determines the spatial and temporal evolution of the instability amplitude), and the instability-enhanced electron-ion friction force (which leads to "anomalous" electron transport). By using the self-consistently obtained electron distribution functions from the PIC simulations (which are in general non-Maxwellian), we find that the predictions of the quasi-linear kinetic theory are in good agreement with the simulation results. By contrast, the use of Maxwellian distributions leads to a growth rate and electron-ion friction force that is around 2-4 times higher, and consequently significantly overestimates the electron transport. A possible method for self-consistently modelling the distribution functions without requiring PIC simulations is discussed.

  10. Defect-mediated transport and electronic irradiation effect in individual domains of CVD-grown monolayer MoS 2

    DOE PAGES

    Durand, Corentin; Zhang, Xiaoguang; Fowlkes, Jason; ...

    2015-01-16

    We study the electrical transport properties of atomically thin individual crystalline grains of MoS 2 with four-probe scanning tunneling microscopy. The monolayer MoS 2 domains are synthesized by chemical vapor deposition on SiO 2/Si substrate. Temperature dependent measurements on conductance and mobility show that transport is dominated by an electron charge trapping and thermal release process with very low carrier density and mobility. The effects of electronic irradiation are examined by exposing the film to electron beam in the scanning electron microscope in an ultrahigh vacuum environment. The irradiation process is found to significantly affect the mobility and the carriermore » density of the material, with the conductance showing a peculiar time-dependent relaxation behavior. It is suggested that the presence of defects in active MoS 2 layer and dielectric layer create charge trapping sites, and a multiple trapping and thermal release process dictates the transport and mobility characteristics. The electron beam irradiation promotes the formation of defects and impact the electrical properties of MoS 2. Finally, our study reveals the important roles of defects and the electron beam irradiation effects in the electronic properties of atomic layers of MoS 2.« less

  11. Tentative anatomy of ZnS-type electroluminescence

    NASA Astrophysics Data System (ADS)

    Bringuier, E.

    1994-05-01

    The paper reviews the electrical and optical mechanisms at work in sulfide-based thin-film electroluminescence display devices within the framework of general semiconductor physics. The electrical problem is twofold: (i) charge carriers are sourced at high electric field in a nominally insulating material, the carrier density increasing by almost eight orders of magnitude; (ii) the carriers are transported at high field, with an average energy largely exceeding the thermal one. (i) Carrier sourcing is best understood from direct-current-driven ZnS films, and is ascribed to partly filled deep donors transferring electrons to the conduction band by Fowler-Nordheim tunneling. The deep donors also act as carrier sinkers, and evidence for space charge is afforded by small-signal impedance analysis disclosing a markedly inductive behavior. The conduction picture obtained from dc-driven films is then used to clarify the operation of alternating-current electroluminescence structures where the sulfide is sandwiched between two blocking oxide layers. The electrostatics of the ac structure is investigated in detail including space charge and field nonuniformity, and external observables are related to internal quantities. The simple model of interfacial carrier sourcing and sinking is examined. (ii) High-field electronic transport is controlled by the electron-phonon interaction, and the modeling resorts to numerical simulations or the lucky-drift concept. At low electron energies the interaction with phonons is predominantly polar, while at optical energies it proceeds via deformation potential scattering. In spite of the uncertainties in transport models in that range, it is likely that ˜50% of the electrons overtake 2 eV at the usual operating fields in ZnS. Light emission is associated with impurity luminescence centers embedded in the sulfide host. They are excited while current is flowing, and the ensuing relaxation is partly radiative. We describe the two ways in which an impurity may be excited electrically, namely, impact excitation (internal promotion of the center to a state of higher energy) or impact ionization (with an electron released to the host conduction band). The actual excitation mechanism depends on the position of the impurity excited level relative to the host energy bands. A calculation of the excitation yield (number of excited centers per transferred electron) is detailed in the case of impact excitation. Lastly, a phenomenological description of the various relaxation channels is given in terms of formal kinetics, and the relative importance of radiative relaxation is assessed by means of the deexcitation yield (fraction of centers decaying radiatively), which is defined in the case of the impulse response.

  12. A theoretical study for electronic and transport properties of covalent functionalized MoS2 monolayer

    NASA Astrophysics Data System (ADS)

    Gao, Lijuan; Yang, Zhao-Di; Zhang, Guiling

    2017-06-01

    The geometries, electronic and electron transport properties of a series of functionalized MoS2 monolayers were investigated using density-functional theory (DFT) and the non-equilibrium Green's function (NEGF) methods. n-Propyl, n-trisilicyl, phenyl, p-nitrophenyl and p-methoxyphenyl are chosen as electron-donating groups. The results show covalent functionalization with electron-donating groups could make a transformation from typical semiconducting to metallic properties for appearance of midgap level across the Fermi level (Ef). The calculations of transport properties for two-probe devices indicate that conductivities of functionalized systems are obviously enhanced relative to pristine MoS2 monolayer. Grafted groups contribute to the major transport path and play an important role in enhancing conductivity. The NDR effect is found. The influence of grafted density is also studied. Larger grafted density leads to wider bandwidth of midgap level, larger current response of I-V curves and larger current difference between peak and valley.

  13. Transport Barriers in Bootstrap Driven Tokamaks

    NASA Astrophysics Data System (ADS)

    Staebler, Gary

    2017-10-01

    Maximizing the bootstrap current in a tokamak, so that it drives a high fraction of the total current, reduces the external power required to drive current by other means. Improved energy confinement, relative to empirical scaling laws, enables a reactor to more fully take advantage of the bootstrap driven tokamak. Experiments have demonstrated improved energy confinement due to the spontaneous formation of an internal transport barrier in high bootstrap fraction discharges. Gyrokinetic analysis, and quasilinear predictive modeling, demonstrates that the observed transport barrier is due to the suppression of turbulence primarily due to the large Shafranov shift. ExB velocity shear does not play a significant role in the transport barrier due to the high safety factor. It will be shown, that the Shafranov shift can produce a bifurcation to improved confinement in regions of positive magnetic shear or a continuous reduction in transport for weak or negative magnetic shear. Operation at high safety factor lowers the pressure gradient threshold for the Shafranov shift driven barrier formation. The ion energy transport is reduced to neoclassical and electron energy and particle transport is reduced, but still turbulent, within the barrier. Deeper into the plasma, very large levels of electron transport are observed. The observed electron temperature profile is shown to be close to the threshold for the electron temperature gradient (ETG) mode. A large ETG driven energy transport is qualitatively consistent with recent multi-scale gyrokinetic simulations showing that reducing the ion scale turbulence can lead to large increase in the electron scale transport. A new saturation model for the quasilinear TGLF transport code, that fits these multi-scale gyrokinetic simulations, can match the data if the impact of zonal flow mixing on the ETG modes is reduced at high safety factor. This work was supported by the U.S. Department of Energy under DE-FG02-95ER54309 and DE-FC02-04ER54698.

  14. Resolving the Mystery of Transport Within Internal Transport Barriers

    NASA Astrophysics Data System (ADS)

    Staebler, G. M.

    2013-10-01

    The Trapped Gyro-Landau Fluid (TGLF) quasilinear model, which is calibrated to approximate non-linear gyro-kinetic turbulence simulations, is now able to predict the electron density, electron and ion temperatures and ion toroidal rotation simultaneously for internal transport barrier (ITB) discharges in excellent agreement with data from the DIII-D tokamak. This is a strong validation of gyro-kinetic theory of ITBs, requiring multiple instabilities responsible for transport in different channels at different scales. Inside the ITB, the ion energy transport is observed to be reduced to the neoclassical level which is consistent with the theory of turbulence suppression by E × B velocity shear acting on low wavenumber turbulence. The electron energy transport is observed to be far above the neoclassical level which is consistent with electron energy transport due to high wavenumber electron temperature gradient (ETG) modes. Since the ETG modes do not produce particle and ion momentum transport, and low wavenumber modes are suppressed, these channels are expected to be reduced to the neoclassical level in striking disagreement with experimental measurements. A possible resolution of this conundrum was found in 2005 when gyro-kinetic turbulence simulations showed that the parallel velocity shear driven Kelvin-Helmholtz (KH) mode can arrest the suppression of transport by the shear in the E × B velocity Doppler shift at high toroidal flow shear. The success of TGLF in predicting ITB transport is due to the inclusion of ion gyro-radius scale modes that become dominant at high E × B shear and to recent improvements to TGLF that allow the KH mode to be faithfully modeled. The resolution of this long-standing mystery of the missing particle and momentum transport in an ITB is the result of the steady advances in gyro-kinetic simulations and quasilinear modeling. Supported by the US Department of Energy under DE-FG02-95ER54309.

  15. Study of reflection and transport in the microwave photo-excited GaAs/AlGaAs two dimensional electron system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Tianyu; Mani, Ramesh G.; Wegscheider, Werner

    2013-12-04

    We present the results of a concurrent experimental study of microwave reflection and transport in the GaAs/AlGaAs two dimensional electron gas system and correlate observed features in the reflection with the observed transport features. The experimental results are compared with expectations based on theory.

  16. Transportation barriers to accessing health care for urban children.

    PubMed

    Yang, Serena; Zarr, Robert L; Kass-Hout, Taha A; Kourosh, Atoosa; Kelly, Nancy R

    2006-11-01

    The Texas Children's Hospital Residents' Primary Care Group Clinic provides primary care to urban low-income children. The objective of this cross-sectional study was to investigate the impact of transportation problems on a family's ability to keep an appointment. One hundred eighty-three caregivers of children with an appointment were interviewed. Caregivers who kept their appointment were compared with those who did not with respect to demographic and transportation-related characteristics. Logistic regression modeling predicted caregivers with the following characteristics were more likely not to keep an appointment: not using a car to the last kept appointment, not keeping an appointment in the past due to transportation problems, having more than two people in the household, and not keeping an appointment in the past due to reasons other than transportation problems. Future research should focus on developing interventions to help low-income urban families overcome non-financial access barriers, including transportation problems.

  17. Optimal solution of full fuzzy transportation problems using total integral ranking

    NASA Astrophysics Data System (ADS)

    Sam’an, M.; Farikhin; Hariyanto, S.; Surarso, B.

    2018-03-01

    Full fuzzy transportation problem (FFTP) is a transportation problem where transport costs, demand, supply and decision variables are expressed in form of fuzzy numbers. To solve fuzzy transportation problem, fuzzy number parameter must be converted to a crisp number called defuzzyfication method. In this new total integral ranking method with fuzzy numbers from conversion of trapezoidal fuzzy numbers to hexagonal fuzzy numbers obtained result of consistency defuzzyfication on symmetrical fuzzy hexagonal and non symmetrical type 2 numbers with fuzzy triangular numbers. To calculate of optimum solution FTP used fuzzy transportation algorithm with least cost method. From this optimum solution, it is found that use of fuzzy number form total integral ranking with index of optimism gives different optimum value. In addition, total integral ranking value using hexagonal fuzzy numbers has an optimal value better than the total integral ranking value using trapezoidal fuzzy numbers.

  18. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe 2: Enabling nanoscale direct write homo-junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanford, Michael; Noh, Joo Hyon; Koehler, Michael R.

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe 2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe 2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe 2more » thereby locally tuning the resistivity and transport properties of the material. Hole transport in the few layer WSe 2 is degraded more severely relative to electron transport after helium ion irradiation. Moreover, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe 2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices.« less

  19. Requirement for Coenzyme Q in Plasma Membrane Electron Transport

    NASA Astrophysics Data System (ADS)

    Sun, I. L.; Sun, E. E.; Crane, F. L.; Morre, D. J.; Lindgren, A.; Low, H.

    1992-12-01

    Coenzyme Q is required in the electron transport system of rat hepatocyte and human erythrocyte plasma membranes. Extraction of coenzyme Q from the membrane decreases NADH dehydrogenase and NADH:oxygen oxidoreductase activity. Addition of coenzyme Q to the extracted membrane restores the activity. Partial restoration of activity is also found with α-tocopherylquinone, but not with vitamin K_1. Analogs of coenzyme Q inhibit NADH dehydrogenase and oxidase activity and the inhibition is reversed by added coenzyme Q. Ferricyanide reduction by transmembrane electron transport from HeLa cells is inhibited by coenzyme Q analogs and restored with added coenzyme Q10. Reduction of external ferricyanide and diferric transferrin by HeLa cells is accompanied by proton release from the cells. Inhibition of the reduction by coenzyme Q analogs also inhibits the proton release, and coenzyme Q10 restores the proton release activity. Trans-plasma membrane electron transport stimulates growth of serum-deficient cells, and added coenzyme Q10 increases growth of HeLa (human adenocarcinoma) and BALB/3T3 (mouse fibroblast) cells. The evidence is consistent with a function for coenzyme Q in a trans-plasma membrane electron transport system which influences cell growth.

  20. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe 2: Enabling nanoscale direct write homo-junctions

    DOE PAGES

    Stanford, Michael; Noh, Joo Hyon; Koehler, Michael R.; ...

    2016-06-06

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe 2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe 2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe 2more » thereby locally tuning the resistivity and transport properties of the material. Hole transport in the few layer WSe 2 is degraded more severely relative to electron transport after helium ion irradiation. Moreover, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe 2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices.« less

  1. Electronic transport in gadolinium atomic-size contacts

    NASA Astrophysics Data System (ADS)

    Olivera, B.; Salgado, C.; Lado, J. L.; Karimi, A.; Henkel, V.; Scheer, E.; Fernández-Rossier, J.; Palacios, J. J.; Untiedt, C.

    2017-02-01

    We report on the fabrication, transport measurements, and density functional theory (DFT) calculations of atomic-size contacts made of gadolinium (Gd). Gd is known to have local moments mainly associated with f electrons. These coexist with itinerant s and d bands that account for its metallic character. Here we explore whether and how the local moments influence electronic transport properties at the atomic scale. Using both scanning tunneling microscope and lithographic mechanically controllable break junction techniques under cryogenic conditions, we study the conductance of Gd when only few atoms form the junction between bulk electrodes made of the very same material. Thousands of measurements show that Gd has an average lowest conductance, attributed to single-atom contact, below 2/e2 h . Our DFT calculations for monostrand chains anticipate that the f bands are fully spin polarized and insulating and that the conduction may be dominated by s , p , and d bands. We also analyze the electronic transport for model nanocontacts using the nonequilibrium Green's function formalism in combination with DFT. We obtain an overall good agreement with the experimental results for zero bias and show that the contribution to the electronic transport from the f channels is negligible and that from the d channels is marginal.

  2. Multiple Choice Knapsack Problem: example of planning choice in transportation.

    PubMed

    Zhong, Tao; Young, Rhonda

    2010-05-01

    Transportation programming, a process of selecting projects for funding given budget and other constraints, is becoming more complex as a result of new federal laws, local planning regulations, and increased public involvement. This article describes the use of an integer programming tool, Multiple Choice Knapsack Problem (MCKP), to provide optimal solutions to transportation programming problems in cases where alternative versions of projects are under consideration. In this paper, optimization methods for use in the transportation programming process are compared and then the process of building and solving the optimization problems is discussed. The concepts about the use of MCKP are presented and a real-world transportation programming example at various budget levels is provided. This article illustrates how the use of MCKP addresses the modern complexities and provides timely solutions in transportation programming practice. While the article uses transportation programming as a case study, MCKP can be useful in other fields where a similar decision among a subset of the alternatives is required. Copyright 2009 Elsevier Ltd. All rights reserved.

  3. Electron drift velocity and mobility in graphene

    NASA Astrophysics Data System (ADS)

    Dong, Hai-Ming; Duan, Yi-Feng; Huang, Fei; Liu, Jin-Long

    2018-04-01

    We present a theoretical study of the electric transport properties of graphene-substrate systems. The drift velocity, mobility, and temperature of the electrons are self-consistently determined using the Boltzmann equilibrium equations. It is revealed that the electronic transport exhibits a distinctly nonlinear behavior. A very high mobility is achieved with the increase of the electric fields increase. The electron velocity is not completely saturated with the increase of the electric field. The temperature of the hot electrons depends quasi-linearly on the electric field. In addition, we show that the electron velocity, mobility, and electron temperature are sensitive to the electron density. These findings could be employed for the application of graphene for high-field nano-electronic devices.

  4. Study of transmission function and electronic transport in one dimensional silver nanowire: Ab-initio method using density functional theory (DFT)

    NASA Astrophysics Data System (ADS)

    Thakur, Anil; Kashyap, Rajinder

    2018-05-01

    Single nanowire electrode devices have their application in variety of fields which vary from information technology to solar energy. Silver nanowires, made in an aqueous chemical reduction process, can be reacted with gold salt to create bimetallic nanowires. Silver nanowire can be used as electrodes in batteries and have many other applications. In this paper we investigated structural and electronic transport properties of Ag nanowire using density functional theory (DFT) with SIESTA code. Electronic transport properties of Ag nanowire have been studied theoretically. First of all an optimized geometry for Ag nanowire is obtained using DFT calculations, and then the transport relations are obtained using NEGF approach. SIESTA and TranSIESTA simulation codes are used in the calculations respectively. The electrodes are chosen to be the same as the central region where transport is studied, eliminating current quantization effects due to contacts and focusing the electronic transport study to the intrinsic structure of the material. By varying chemical potential in the electrode regions, an I-V curve is traced which is in agreement with the predicted behavior. Bulk properties of Ag are in agreement with experimental values which make the study of electronic and transport properties in silver nanowires interesting because they are promising materials as bridging pieces in nanoelectronics. Transmission coefficient and V-I characteristic of Ag nano wire reveals that silver nanowire can be used as an electrode device.

  5. 23 CFR 950.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION INTELLIGENT TRANSPORTATION SYSTEMS ELECTRONIC TOLL... Express Lanes Demonstration Program, and the Interstate System Construction Toll Pilot Program. Electronic toll collection means the ability for vehicle operators to pay tolls automatically without slowing down...

  6. Rational design of anode materials based on Group IVA elements (Si, Ge, and Sn) for lithium-ion batteries.

    PubMed

    Wu, Xing-Long; Guo, Yu-Guo; Wan, Li-Jun

    2013-09-01

    Lithium-ion batteries (LIBs) represent the state-of-the-art technology in rechargeable energy-storage devices and they currently occupy the prime position in the marketplace for powering an increasingly diverse range of applications. However, the fast development of these applications has led to increasing demands being placed on advanced LIBs in terms of higher energy/power densities and longer life cycles. For LIBs to meet these requirements, researchers have focused on active electrode materials, owing to their crucial roles in the electrochemical performance of batteries. For anode materials, compounds based on Group IVA (Si, Ge, and Sn) elements represent one of the directions in the development of high-capacity anodes. Although these compounds have many significant advantages when used as anode materials for LIBs, there are still some critical problems to be solved before they can meet the high requirements for practical applications. In this Focus Review, we summarize a series of rational designs for Group IVA-based anode materials, in terms of their chemical compositions and structures, that could address these problems, that is, huge volume variations during cycling, unstable surfaces/interfaces, and invalidation of transport pathways for electrons upon cycling. These designs should at least include one of the following structural benefits: 1) Contain a sufficient number of voids to accommodate the volume variations during cycling; 2) adopt a "plum-pudding"-like structure to limit the volume variations during cycling; 3) facilitate an efficient and permanent transport pathway for electrons and lithium ions; or 4) show stable surfaces/interfaces to stabilize the in situ formed SEI layers. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Crossing Over: Nanostructures that Move Electrons and Ions across Cellular Membranes.

    PubMed

    Ajo-Franklin, Caroline M; Noy, Aleksandr

    2015-10-14

    Critical biological processes such as energy generation and signal transduction are driven by the flow of electrons and ions across the membranes of living cells. As a result, there is substantial interest in creating nanostructured materials that control transport of these charged species across biomembranes. Recent advances in the synthesis of de novo and protein nanostructures for transmembrane ion and electron transport and the mechanistic understanding underlying this transport are described. This body of work highlights the promise such nanostructures hold for directing transmembrane transport of charged species as well as challenges that must be overcome to realize that potential. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Influence of low-temperature resistivity on fast electron transport in solids: scaling to fast ignition electron beam parameters

    NASA Astrophysics Data System (ADS)

    McKenna, P.; MacLellan, D. A.; Butler, N. M. H.; Dance, R. J.; Gray, R. J.; Robinson, A. P. L.; Neely, D.; Desjarlais, M. P.

    2015-06-01

    The role of low-temperature electrical resistivity in defining the transport properties of mega-Ampere currents of fast (MeV) electrons in solids is investigated using 3D hybrid particle-in-cell (PIC) simulations. By considering resistivity profiles intermediate to the ordered (lattice) and disordered forms of two example materials, lithium and silicon, it is shown that both the magnitude of the resistivity and the shape of the resistivity-temperature profile at low temperatures strongly affect the self-generated resistive magnetic fields and the onset of resistive instabilities, and thus the overall fast electron beam transport pattern. The scaling of these effects to the giga-Ampere electron currents required for the fast ignition scheme for inertial fusion is also explored.

  9. Designing a Transportation System for a Parent Choice School District: A Transportation Supervisor's Handbook.

    ERIC Educational Resources Information Center

    Paller, Alan; And Others

    This study was commissioned to investigate the special transportation problems in parent-choice school districts and to prepare a handbook to assist transportation supervisors in overcoming these problems. Intended for school districts that have alternative schools, open enrollment plans, magnet schools, or other kinds of parent and student choice…

  10. Anaerobic humus and Fe(III) reduction and electron transport pathway by a novel humus-reducing bacterium, Thauera humireducens SgZ-1.

    PubMed

    Ma, Chen; Yu, Zhen; Lu, Qin; Zhuang, Li; Zhou, Shun-Gui

    2015-04-01

    In this study, an anaerobic batch experiment was conducted to investigate the humus- and Fe(III)-reducing ability of a novel humus-reducing bacterium, Thauera humireducens SgZ-1. Inhibition tests were also performed to explore the electron transport pathways with various electron acceptors. The results indicate that in anaerobic conditions, strain SgZ-1 possesses the ability to reduce a humus analog, humic acids, soluble Fe(III), and Fe(III) oxides. Acetate, propionate, lactate, and pyruvate were suitable electron donors for humus and Fe(III) reduction by strain SgZ-1, while fermentable sugars (glucose and sucrose) were not. UV-visible spectra obtained from intact cells of strain SgZ-1 showed absorption peaks at 420, 522, and 553 nm, characteristic of c-type cytochromes (cyt c). Dithionite-reduced cyt c was reoxidized by Fe-EDTA and HFO (hydrous ferric oxide), which suggests that cyt c within intact cells of strain SgZ-1 has the ability to donate electrons to extracellular Fe(III) species. Inhibition tests revealed that dehydrogenases, quinones, and cytochromes b/c (cyt b/c) were involved in reduction of AQS (9, 10-anthraquinone-2-sulfonic acid, humus analog) and oxygen. In contrast, only NADH dehydrogenase was linked to electron transport to HFO, while dehydrogenases and cyt b/c were found to participate in the reduction of Fe-EDTA. Thus, various different electron transport pathways are employed by strain SgZ-1 for different electron acceptors. The results from this study help in understanding the electron transport processes and environmental responses of the genus Thauera.

  11. Ferritin light-chain subunits: key elements for the electron transfer across the protein cage.

    PubMed

    Carmona, Unai; Li, Le; Zhang, Lianbing; Knez, Mato

    2014-12-18

    The first specific functionality of the light-chain (L-chain) subunit of the universal iron storage protein ferritin was identified. The electrons released during iron-oxidation were transported across the ferritin cage specifically through the L-chains and the inverted electron transport through the L-chains also accelerated the demineralization of ferritin.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, Sung Oh; Teizer, Winfried; WPI-Advanced Institute for Materials Research, Tohoku University, Sendai

    We report a deterioration of the electrical transport properties of a graphene field effect transistor due to energetic electron irradiation on a stack of Poly Methyl Methacrylate (PMMA) on graphene (PMMA/graphene bilayer). Prior to electron irradiation, we observed that the PMMA layer on graphene does not deteriorate the carrier transport of graphene but improves its electrical properties instead. As a result of the electron irradiation on the PMMA/graphene bilayer, the Raman “D” band appears after removal of PMMA. We argue that the degradation of the transport behavior originates from the binding of hydrogen generated during the PMMA backbone secession process.

  13. Non-renewal statistics for electron transport in a molecular junction with electron-vibration interaction

    NASA Astrophysics Data System (ADS)

    Kosov, Daniel S.

    2017-09-01

    Quantum transport of electrons through a molecule is a series of individual electron tunneling events separated by stochastic waiting time intervals. We study the emergence of temporal correlations between successive waiting times for the electron transport in a vibrating molecular junction. Using the master equation approach, we compute the joint probability distribution for waiting times of two successive tunneling events. We show that the probability distribution is completely reset after each tunneling event if molecular vibrations are thermally equilibrated. If we treat vibrational dynamics exactly without imposing the equilibration constraint, the statistics of electron tunneling events become non-renewal. Non-renewal statistics between two waiting times τ1 and τ2 means that the density matrix of the molecule is not fully renewed after time τ1 and the probability of observing waiting time τ2 for the second electron transfer depends on the previous electron waiting time τ1. The strong electron-vibration coupling is required for the emergence of the non-renewal statistics. We show that in the Franck-Condon blockade regime, extremely rare tunneling events become positively correlated.

  14. The merger of electrochemistry and molecular electronics.

    PubMed

    McCreery, Richard L

    2012-02-01

    Molecular Electronics has the potential to greatly enhance existing silicon-based microelectronics to realize new functions, higher device density, lower power consumption, and lower cost. Although the investigation of electron transport through single molecules and molecular monolayers in "molecular junctions" is a recent development, many of the relevant concepts and phenomena are derived from electrochemistry, as practiced for the past several decades. The past 10+ years have seen an explosion of research activity directed toward how the structure of molecules affects electron transport in molecular junctions, with the ultimate objective of "rational design" of molecular components with new electronic functions, such as chemical sensing, interactions with light, and low-cost, low-power consumer electronics. In order to achieve these scientifically and commercially important objectives, the factors controlling charge transport in molecules "connected" to conducting contacts must be understood, and methods for massively parallel manufacturing of molecular circuits must be developed. This Personal Account describes the development of reproducible and robust molecular electronic devices, starting with modified electrodes used in electrochemistry and progressing to manufacturable molecular junctions. Although the field faced some early difficulties in reliability and characterization, the pieces are now in place for rapid advances in understanding charge transport at the molecular level. Inherent in the field of Molecular Electronics are many electrochemical concepts, including tunneling, redox exchange, activated electron transfer, and electron coupling between molecules and conducting contacts. Copyright © 2012 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  15. 500(deg)C electronics for harsh environments

    NASA Technical Reports Server (NTRS)

    Sadwick, Laurence P.; Hwu, R. Jennifer; Chern, J. H. Howard; Lin, Ching-Hsu; Castillo, Linda Del; Johnson, Travis

    2005-01-01

    Solid state vacuum devices (SSVDs) are a relatively new class of electronic devices. Innosys is a leading producer of high frequency SSVDs for a number of applications, including RF communications. SSVDs combine features inherent to both solid state and vacuum transistors. Electron transport can be by solid state or vacuum or both. The focus of this talk is on thermionic SSVDs, in which the primary vacuum transport is by thermionically liberated electron emission.

  16. A solution-processed binary cathode interfacial layer facilitates electron extraction for inverted polymer solar cells.

    PubMed

    Zhang, Xinyuan; Li, Zhiqi; Liu, Chunyu; Guo, Jiaxin; Shen, Liang; Guo, Wenbin

    2018-03-15

    The charge transfer and separation are significantly affected by the electron properties of the interface between the electron-donor layer and the carrier-transporting layer in polymer solar cells (PSCs). In this study, we investigate the electron extraction mechanism of PSCs with a low temperature solution-processed ZnO/PEI as electron transport layer. The incorporation of PEI layer can decrease the work function of ZnO and reduce interfacial barrier, which facilitates electron extraction and suppresses bimolecular recombination, leading to a significant performance enhancement. Furthermore, PEI layer can induce phase separation and passivite inorganic surface trap states as well as shift the interfacial energy offset between metal oxide and organic materials. This work offers a simple and effective way to improve the charge transporting property of organic photovoltaic devices. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Out-of-plane electron transport in finite layer MoS2

    NASA Astrophysics Data System (ADS)

    Holzapfel, R.; Weber, J.; Lukashev, P. V.; Stollenwerk, A. J.

    2018-05-01

    Ballistic electron emission microscopy (BEEM) has been used to study the processes affecting electron transport along the [0001] direction of finite layer MoS2 flakes deposited onto the surface of Au/Si(001) Schottky diodes. Prominent features present in the differential spectra from the MoS2 flakes are consistent with the density of states of finite layer MoS2 calculated using density functional theory. The ability to observe the electronic structure of the MoS2 appears to be due to the relatively smooth density of states of Si in this energy range and a substantial amount of elastic or quasi-elastic scattering along the MoS2/Au/Si(001) path. Demonstration of these measurements using BEEM suggests that this technique could potentially be used to study electron transport through van der Waals heterostructures, with applications in a number of electronic devices.

  18. Dissipative time-dependent quantum transport theory: Quantum interference and phonon induced decoherence dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yu, E-mail: zhy@yangtze.hku.hk; Chen, GuanHua, E-mail: ghc@everest.hku.hk; Yam, ChiYung

    2015-04-28

    A time-dependent inelastic electron transport theory for strong electron-phonon interaction is established via the equations of motion method combined with the small polaron transformation. In this work, the dissipation via electron-phonon coupling is taken into account in the strong coupling regime, which validates the small polaron transformation. The corresponding equations of motion are developed, which are used to study the quantum interference effect and phonon-induced decoherence dynamics in molecular junctions. Numerical studies show clearly quantum interference effect of the transport electrons through two quasi-degenerate states with different couplings to the leads. We also found that the quantum interference can bemore » suppressed by the electron-phonon interaction where the phase coherence is destroyed by phonon scattering. This indicates the importance of electron-phonon interaction in systems with prominent quantum interference effect.« less

  19. The problem of deriving the field-induced thermal emission in Poole-Frenkel theories

    NASA Astrophysics Data System (ADS)

    Ongaro, R.; Pillonnet, A.

    1992-10-01

    A discussion is made of the legitimity of implementing the usual model of field-assisted release of electrons, over the lowered potential barrier of donors. It is stressed that no reliable interpretation can avail for the usual modelling of wells, on which Poole-Frenkel (PF) derivations are established. This is so because there does not seem to exist reliable ways of implanting a Coulomb potential well in the gap of a material. In an attempt to bridge the gap between the classical potential-energy approaches and the total-energy approach of Mahapatra and Roy, a Bohr-type model of wells is proposed. In addition, a brief review of quantum treatments of electronic transport in materials is presented, in order to see if more reliable ways of approaching PF effect can be derived on undisputable bases. Finally, it is concluded that, presently, PF effect can be established safely neither theoretically nor experimentally.

  20. The ePLAS code for Ignition Studies

    NASA Astrophysics Data System (ADS)

    Faehl, R. J.; Mason, R. J.; Kirkpatrick, R. C.

    2012-10-01

    The ePLAS code is a multi-fluid/PIC hybrid developing self-consistent E & B-fields by the Implicit Moment Method for stable calculations of high density plasma problems with voids on the electron Courant time scale. See: http://www.researchapplicationscorp.com. Here, we outline typical applications to: 1) short pulse driven electron transport along void (or high Z) insulated wires, and 2) the 2D development of shock ignition pressure peaks with B-fields. We outline the code's recent inclusion of SESAME EOS data, a DT/DD burn capability, a new option for K-alpha imaging of modeling output, and demonstrate a foil expansion tracked with either fluid or particle ions. Also, we describe a new super-hybrid extension of our implicit solver that permits full target dynamics studies on the ion Courant scale. Finally, we will touch on the very recent application of ePLAS to possible non-local/kinetic hydro effects NIF capsules.

  1. Neuromorphic computing enabled by physics of electron spins: Prospects and perspectives

    NASA Astrophysics Data System (ADS)

    Sengupta, Abhronil; Roy, Kaushik

    2018-03-01

    “Spintronics” refers to the understanding of the physics of electron spin-related phenomena. While most of the significant advancements in this field has been driven primarily by memory, recent research has demonstrated that various facets of the underlying physics of spin transport and manipulation can directly mimic the functionalities of the computational primitives in neuromorphic computation, i.e., the neurons and synapses. Given the potential of these spintronic devices to implement bio-mimetic computations at very low terminal voltages, several spin-device structures have been proposed as the core building blocks of neuromorphic circuits and systems to implement brain-inspired computing. Such an approach is expected to play a key role in circumventing the problems of ever-increasing power dissipation and hardware requirements for implementing neuro-inspired algorithms in conventional digital CMOS technology. Perspectives on spin-enabled neuromorphic computing, its status, and challenges and future prospects are outlined in this review article.

  2. Infrared conductivity of cuprates using Yang-Rice-Zhang ansatz: Review of our recent investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Navinder; Sharma, Raman

    2015-05-15

    A review of our recent investigations related to the ac transport properties in the psedogapped state of cuprate high temperature superconductors is presented. For our theoretical calculations we use a phenomenological Green’s function proposed by Yang, Rice and Zhang (YRZ). This is based upon the renormalized mean-field theory of the Hubbard model and takes into account the strong electron-electron interaction present in Cuprates. The pseudogap is also taken into account through a proposed self energy. We have tested the form of the Green’s function by computing ac conductivity of cuprates and then compared with experimental results. We found agreement betweenmore » theory and experiment in reproducing the doping evolution of ac conductivity but there is a problem with absolute magnitudes and their frequency dependence. This shows a partial success of the YRZ ansatz. The ways to rectify it are suggested and worked out.« less

  3. Electronic and thermal transport study of sinusoidally corrugated nanowires aiming to improve thermoelectric efficiency.

    PubMed

    Park, K H; Martin, P N; Ravaioli, U

    2016-01-22

    Improvement of thermoelectric efficiency has been very challenging in the solid-state industry due to the interplay among transport coefficients which measure the efficiency. In this work, we modulate the geometry of nanowires to interrupt thermal transport with causing only a minimal impact on electronic transport properties, thereby maximizing the thermoelectric power generation. As it is essential to scrutinize comprehensively both electronic and thermal transport behaviors for nano-scale thermoelectric devices, we investigate the Seebeck coefficient, the electrical conductance, and the thermal conductivity of sinusoidally corrugated silicon nanowires and eventually look into an enhancement of the thermoelectric figure-of-merit [Formula: see text] from the modulated nanowires over typical straight nanowires. A loss in the electronic transport coefficient is calculated with the recursive Green function along with the Landauer formalism, and the thermal transport is simulated with the molecular dynamics. In contrast to a small influence on the thermopower and the electrical conductance of the geometry-modulated nanowires, a large reduction of the thermal conductivity yields an enhancement of the efficiency by 10% to 35% from the typical nanowires. We find that this approach can be easily extended to various structures and materials as we consider the geometrical modulation as a sole source of perturbation to the system.

  4. Balance-Equation Approach to Nonuniform Electron Transport in Nonparabolic Semiconductors

    NASA Astrophysics Data System (ADS)

    Cao, Juncheng; Lei, Xiaolin

    1998-10-01

    On the basis of the Lei-Ting balance-equation transport theory recently developed for nonparabolic energy band, we propose a hydrodynamic approach to the spatially inhomogeneous electron transport in semiconductor devices. In the present approach, the momentum and energy collision terms are expressed by two nonlinear functions, the frictional acceleration and energy-loss rate, which give a detailed scattering-process-level description of nonstationary and nonlocal charge transport in the system. This approach allows one to calculate selfconsistently the transport parameters within the model itself based on the primary material data (band structure, deformation potential constant, etc.), thus it minimizes the uncertainty associated with the use of some empirical relations for transport coefficients. As a demonstration of the approach, we have carried out a numerical calculation for a submicrometer Si n^+nn^+ diode by assuming an isotropic Kane-type energy band. The results for electron velocity and energy, obtained at much less computing cost than the Monte-Carlo (MC) method, are in good agreement with MC prediction. The influence of heat-flow term on electron transport behaviour, especially on velocity overshoot, is also investigated. The project supported by National Natural Science Foundation of China, National and Shanghai Municipal Commission of Science and Technology, and the Shanghai Foundation for Research and Development of Applied Materials

  5. Schottky-barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes

    DOE PAGES

    Liu, Yuanyue; Xiao, Hai; Goddard, III, William A.

    2016-11-22

    Two-dimensional (2D) metal carbides and nitrides, called MXenes, have attracted great interest for applications such as energy storage. Here we demonstrate their potential as Schottky-barrier-free metal contacts to 2D semiconductors, providing a solution to the contact-resistance problem in 2D electronics. Based on first principles calculations, we find that the surface chemistry strongly affects the Fermi level of MXenes: O termination always increases the work function with respect to that of bare surface, OH always decreases it, while F exhibits either trend depending on the specific material. This phenomenon originates from the effect of surface dipoles, which together with the weakmore » Fermi level pinning, enable Schottky-barrier-free hole (or electron) injection into 2D semiconductors through van der Waals junctions with some of the O-terminated (or all the OH-terminated) MXenes. Furthermore, we suggest synthetic routes to control the surface terminations based on the calculated formation energies. Finally, this study enhances the understanding of the correlation between surface chemistry and electronic/transport properties of 2D materials, and also gives practical predictions for improving 2D electronics.« less

  6. Simple model of a coherent molecular photocell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernzerhof, Matthias, E-mail: Matthias.Ernzerhof@UMontreal.ca; Bélanger, Marc-André; Mayou, Didier

    2016-04-07

    Electron transport in molecular electronic devices is often dominated by a coherent mechanism in which the wave function extends from the left contact over the molecule to the right contact. If the device is exposed to light, photon absorption in the molecule might occur, turning the device into a molecular photocell. The photon absorption promotes an electron to higher energy levels and thus modifies the electron transmission probability through the device. A model for such a molecular photocell is presented that minimizes the complexity of the problem while providing a non-trivial description of the device mechanism. In particular, the rolemore » of the molecule in the photocell is investigated. It is described within the Hückel method and the source-sink potential approach [F. Goyer, M. Ernzerhof, and M. Zhuang, J. Chem. Phys. 126, 144104 (2007)] is used to eliminate the contacts in favor of complex-valued potentials. Furthermore, the photons are explicitly incorporated into the model through a second-quantized field. This facilitates the description of the photon absorption process with a stationary state calculation, where eigenvalues and eigenvectors are determined. The model developed is applied to various generic molecular photocells.« less

  7. First principles calculation of current-induced forces in atomic gold contacts

    NASA Astrophysics Data System (ADS)

    Brandbyge, Mads; Stokbro, Kurt; Taylor, Jeremy; Mozos, Jose-Luis; Ordejon, Pablo

    2002-03-01

    We have recently developed an first principles method [1] for calculating the electronic structure, electronic transport, and forces acting on the atoms, for atomic scale systems connected to semi-infinite electrodes and with an applied voltage bias. Our method is based on the density functional theory (DFT) as implemented in the well tested SIESTA program [2]. We fully deal with the atomistic structure of the whole system, treating both the contact and the electrodes on the same footing. The effect of the finite bias (including selfconsistency and the solution of the electrostatic problem) is taken into account using nonequilibrium Green's functions. In this talk we show results for the forces acting on the contact atoms due to the nonequilibrium situation in the electronic subsystem, i.e. in the presence of an electronic current. We concentrate on one atom wide gold contacts/wires connected to bulk gold electrodes. References [1] Our implementation is called TranSIESTA and is described in M. Brandbyge, J. Taylor, K. Stokbro, J-L. Mozos, and P. Ordejon, cond-mat/0110650 [2] D. Sanchez-Portal, P. Ordejon, E. Artacho and J. Soler, Int. J. Quantum Chem. 65, 453 (1997).

  8. Novel hole transport materials for organic light emitting devices

    NASA Astrophysics Data System (ADS)

    Shi, Jianmin; Forsythe, Eric; Morton, David

    2008-08-01

    Organic electronic devices generally have a layered structure with organic materials sandwiched between an anode and a cathode, such organic electronic devices of organic light-emitting diode (OLED), organic photovoltaic (OPV), organic thin-film transistor (OTFT). There are many advantages of these organic electronic devices as compared to silicon-based devices. However, one of key challenge for an organic electronic device is to minimize the charge injection barrier from electrodes to organic materials and improve the charge transport mobility. In order to overcome these circumstances, there are many approaches including, designing organic materials with minimum energy barriers and improving charge transport mobility. Ideally organic materials or complex with Ohmic contact will be the most desired.

  9. Dimits shift in realistic gyrokinetic plasma-turbulence simulations.

    PubMed

    Mikkelsen, D R; Dorland, W

    2008-09-26

    In simulations of turbulent plasma transport due to long wavelength (k perpendicular rhoi < or = 1) electrostatic drift-type instabilities, we find a persistent nonlinear up-shift of the effective threshold. Next-generation tokamaks will likely benefit from the higher effective threshold for turbulent transport, and transport models should incorporate suitable corrections to linear thresholds. The gyrokinetic simulations reported here are more realistic than previous reports of a Dimits shift because they include nonadiabatic electron dynamics, strong collisional damping of zonal flows, and finite electron and ion collisionality together with realistic shaped magnetic geometry. Reversing previously reported results based on idealized adiabatic electrons, we find that increasing collisionality reduces the heat flux because collisionality reduces the nonadiabatic electron microinstability drive.

  10. 49 CFR 237.155 - Documents and records.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... inspection and reproduction by the Federal Railroad Administration. (a) Electronic recordkeeping; general... the information required by this part; (3) The track owner monitors its electronic records database...

  11. 49 CFR 237.155 - Documents and records.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... inspection and reproduction by the Federal Railroad Administration. (a) Electronic recordkeeping; general... the information required by this part; (3) The track owner monitors its electronic records database...

  12. 49 CFR 237.155 - Documents and records.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... inspection and reproduction by the Federal Railroad Administration. (a) Electronic recordkeeping; general... the information required by this part; (3) The track owner monitors its electronic records database...

  13. Theory of Electron, Phonon and Spin Transport in Nanoscale Quantum Devices.

    PubMed

    Sadeghi, Hatef

    2018-06-21

    At the level of fundamental science, it was recently demonstrated that molecular wires can mediate long-range phase-coherent tunnelling with remarkably low attenuation over a few nanometre even at room temperature. Furthermore, a large mean free path has been observed in graphene and other graphene-like two-dimensional materials. These create the possibility of using quantum and phonon interference to engineer electron and phonon transport for wide range of applications such as molecular switches, sensors, piezoelectricity, thermoelectricity and thermal management. To understand transport properties of such devices, it is crucial to calculate their electronic and phononic transmission coefficients. The aim of this tutorial article is to review the state-of-art theoretical and mathematical techniques to treat electron, phonon and spin transport in nanoscale molecular junctions. This helps not only to explain new phenomenon observed experimentally but also provides a vital design tool to develop novel nanoscale quantum devices. © 2018 IOP Publishing Ltd.

  14. A model for the high-temperature transport properties of heavily doped n-type silicon-germanium alloys

    NASA Technical Reports Server (NTRS)

    Vining, Cronin B.

    1991-01-01

    A model is presented for the high-temperature transport properties of large-grain-size, heavily doped n-type silicon-germanium alloys. Electron and phonon transport coefficients are calculated using standard Boltzmann equation expressions in the relaxation time approximation. Good agreement with experiment is found by considering acoustic phonon and ionized impurity scattering for electrons, and phonon-phonon, point defect, and electron-phonon scattering for phonons. The parameters describing electron transport in heavily doped and lightly doped materials are significantly different and suggest that most carriers in heavily doped materials are in a band formed largely from impurity states. The maximum dimensionless thermoelectric figure of merit for single-crystal, n-type Si(0.8)Ge(0.2) at 1300 K is estimated at ZT about 1.13 with an optimum carrier concentration of n about 2.9 x 10 to the 20th/cu cm.

  15. Long-range electron transport of ruthenium-centered multilayer films via a stepping-stone mechanism.

    PubMed

    Terada, Kei-ichi; Nakamura, Hisao; Kanaizuka, Katsuhiko; Haga, Masa-aki; Asai, Yoshihiro; Ishida, Takao

    2012-03-27

    We studied electron transport of Ru complex multilayer films, whose structure resembles redox-active complex films known in the literature to have long-range electron transport abilities. Hydrogen bond formation in terms of pH control was used to induce spontaneous growth of a Ru complex multilayer. We made a cross-check between electrochemical measurements and I-V measurements using PEDOT:PSS to eliminate the risk of pinhole contributions to the mechanism and have found small β values of 0.012-0.021 Å(-1). Our Ru complex layers exhibit long-range electron transport but with low conductance. On the basis of the results of our theoretical-experimental collaboration, we propose a modified tunneling mechanism named the "stepping-stone mechanism", where the alignment of site potentials forms a narrow band around E(F), making resonant tunneling possible. Our observations may support Tuccito et al.'s proposed mechanism. © 2012 American Chemical Society

  16. Non-metal spintronics: study of spin-dependent transport in InSb- and InAs-based nanopatterned heterostructures

    NASA Astrophysics Data System (ADS)

    Heremans, J. J.; Chen, Hong; Peters, J. A.; Goel, N.; Chung, S. J.; Santos, M. B.; van Roy, W.; Borghs, G.

    2006-03-01

    Spin-orbit interaction in semiconductor heterostructures can lead to various spin-dependent electronic transport effects without the presence of magnetic materials. Mesoscopic samples were fabricated on InSb/InAlSb and InAs/AlGaSb two-dimensional electron systems, where spin-orbit interaction is strong. In mesoscopic devices, the effects of spin-orbit interaction are not averaged out over the geometry, and lead to observable electronic properties. We experimentally demonstrate spin-split ballistic transport and the creation of fully spin-polarized electron beams using spin-dependent reflection geometries and transverse magnetic focusing geometries. Spin-dependent transport properties in the semiconductor materials are also investigated using antidot lattices. Spin-orbit interaction effects in high-mobility semiconductor devices may be utilized toward the design of novel spintronics implementations. We acknowledge NSF DMR-0094055 (JJH), DMR-0080054, DMR-0209371 (MBS).

  17. Effect of dynamic disorder on charge transport along a pentacene chain

    NASA Astrophysics Data System (ADS)

    Böhlin, J.; Linares, M.; Stafström, S.

    2011-02-01

    The lattice equation of motion and a numerical solution of the time-dependent Schrödinger equation provide us with a microscopic picture of charge transport in highly ordered molecular crystals. We have chosen the pentacene single crystal as a model system, and we study charge transport as a function of phonon-mode time-dependent fluctuations in the intermolecular electron transfer integral. For comparison, we include similar fluctuations also in the intramolecular potentials. The variance in these energy quantities is closely related to the temperature of the system. The pentacene system is shown to be very sensitive to fluctuation in the intermolecular transfer integral, revealing a transition from adiabatic to nonadiabatic polaron transport for increasing temperatures. The extension of the polaron at temperatures above 200 K is limited by the electron localization length rather than the interplay between the electron transfer integral and the electron-phonon coupling strength.

  18. Magnetopause Losses of Radiation Belt Electrons During a Recent Magnetic Storm

    NASA Astrophysics Data System (ADS)

    Lemon, C. L.; Chen, M.; Roeder, J. L.; Fennell, J. F.; Mulligan, T. L.; Claudepierre, S. G.

    2013-12-01

    We present results from Van Allen Probes observations during the magnetic storm of June 1, 2013, and compare them with simulations of the same event using the RCM-E model. The RCM-E calculates ion and electron transport in self-consistently computed electric and magnetic fields. We examine the effect of the perturbed ring current magnetic field on the transport of energetic electrons, and the significance of this transport for explaining the observed evolution of radiation belt fluxes during this event. The event is notable because it is a relatively simple storm in which strong convection persists for approximately 7 hours, injecting a moderately strong ring current (minimum Dst of -120 nT); convection then quickly shuts off, leading to a long and smooth recovery phase. We use RCM-E simulations, constrained by Van Allen Probes data, to asses the rate of magnetopause losses of electrons (magnetopause shadowing), and to calculate electron drift times and the evolution of electron phase space densities during the storm event. We recently modified the RCM-E plasma drift calculations to include relativistic treatment of electrons and a more realistic electron loss model. The new electron loss model, although still somewhat simplistic, gives much more accurate loss rates in the inner magnetosphere (including the radiation belts), which significantly affects the resulting electron fluxes compared to previous simulations. This, in turn, modifies the transport of ions and electrons via feedback with both the electric and magnetic fields. Our results highlight the effect of the ring current on the evolution of the radiation belt electrons, with particular emphasis on the role that magnetopause losses play in the observed variation of radiation belt electron fluxes during the storm.

  19. Multifunctional Inverse Opal-Like TiO2 Electron Transport Layer for Efficient Hybrid Perovskite Solar Cells.

    PubMed

    Chen, Xiao; Yang, Shuang; Zheng, Yi Chu; Chen, Ying; Hou, Yu; Yang, Xiao Hua; Yang, Hua Gui

    2015-09-01

    A novel multifunctional inverse opal-like TiO 2 electron transport layer (IOT-ETL) is designed to replace the traditional compact layer and mesoporous scaffold layer in perovskite solar cells (PSCs). Improved light harvesting efficiency and charge transporting performance in IOT-ETL based PSCs yield high power conversion efficiency of 13.11%.

  20. Rylene and related diimides for organic electronics.

    PubMed

    Zhan, Xiaowei; Facchetti, Antonio; Barlow, Stephen; Marks, Tobin J; Ratner, Mark A; Wasielewski, Michael R; Marder, Seth R

    2011-01-11

    Organic electron-transporting materials are essential for the fabrication of organic p-n junctions, photovoltaic cells, n-channel field-effect transistors, and complementary logic circuits. Rylene diimides are a robust, versatile class of polycyclic aromatic electron-transport materials with excellent thermal and oxidative stability, high electron affinities, and, in many cases, high electron mobilities; they are, therefore, promising candidates for a variety of organic electronics applications. In this review, recent developments in the area of high-electron-mobility diimides based on rylenes and related aromatic cores, particularly perylene- and naphthalene-diimide-based small molecules and polymers, for application in high-performance organic field-effect transistors and photovoltaic cells are summarized and analyzed.

  1. Using a derivative-free optimization method for multiple solutions of inverse transport problems

    DOE PAGES

    Armstrong, Jerawan C.; Favorite, Jeffrey A.

    2016-01-14

    Identifying unknown components of an object that emits radiation is an important problem for national and global security. Radiation signatures measured from an object of interest can be used to infer object parameter values that are not known. This problem is called an inverse transport problem. An inverse transport problem may have multiple solutions and the most widely used approach for its solution is an iterative optimization method. This paper proposes a stochastic derivative-free global optimization algorithm to find multiple solutions of inverse transport problems. The algorithm is an extension of a multilevel single linkage (MLSL) method where a meshmore » adaptive direct search (MADS) algorithm is incorporated into the local phase. Furthermore, numerical test cases using uncollided fluxes of discrete gamma-ray lines are presented to show the performance of this new algorithm.« less

  2. Prediction of Spin-Polarization Effects in Quantum Wire Transport

    NASA Astrophysics Data System (ADS)

    Fasol, Gerhard; Sakaki, Hiroyuki

    1994-01-01

    We predict a new effect for transport in quantum wires: spontaneous spin polarization. Most work on transport in mesoscopic devices has assumed a model of non interacting, spin-free electrons. We introduce spin, electron pair scattering and microscopic crystal properties into the design of mesoscopic devices. The new spin polarization effect results from the fact that in a single mode quantum wire, electron and hole bands still have two spin subbands. In general, these two spin subbands are expected to be split even in zero magnetic field. At sufficiently low temperatures the electron pair scattering rates for one spin subband ( e.g., the spin-down) can be much larger than for the other spin subband. This effect can be used for an active spin polarizer device: hot electrons in one subband ( e.g., `spin up') pass with weak pair scattering, while electrons in the opposite subband ( e.g., `spin down'), have high probability of scattering into the `spin-up' subband, resulting in spin polarization of a hot electron beam.

  3. Nonequilibrium distribution functions in electron transport: decoherence, energy redistribution and dissipation

    NASA Astrophysics Data System (ADS)

    Stegmann, Thomas; Ujsághy, Orsolya; Wolf, Dietrich E.

    2018-04-01

    A new statistical model for the combined effects of decoherence, energy redistribution and dissipation on electron transport in large quantum systems is introduced. The essential idea is to consider the electron phase information to be lost only at randomly chosen regions with an average distance corresponding to the decoherence length. In these regions the electron's energy can be unchanged or redistributed within the electron system or dissipated to a heat bath. The different types of scattering and the decoherence leave distinct fingerprints in the energy distribution functions. They can be interpreted as a mixture of unthermalized and thermalized electrons. In the case of weak decoherence, the fraction of thermalized electrons show electrical and thermal contact resistances. In the regime of incoherent transport the proposed model is equivalent to a Boltzmann equation. The model is applied to experiments with carbon nanotubes. The excellent agreement of the model with the experimental data allows to determine the scattering lengths of the system.

  4. Mapping online transportation service quality and multiclass classification problem solving priorities

    NASA Astrophysics Data System (ADS)

    Alamsyah, Andry; Rachmadiansyah, Imam

    2018-03-01

    Online transportation service is known for its accessibility, transparency, and tariff affordability. These points make online transportation have advantages over the existing conventional transportation service. Online transportation service is an example of disruptive technology that change the relationship between customers and companies. In Indonesia, there are high competition among online transportation provider, hence the companies must maintain and monitor their service level. To understand their position, we apply both sentiment analysis and multiclass classification to understand customer opinions. From negative sentiments, we can identify problems and establish problem-solving priorities. As a case study, we use the most popular online transportation provider in Indonesia: Gojek and Grab. Since many customers are actively give compliment and complain about company’s service level on Twitter, therefore we collect 61,721 tweets in Bahasa during one month observations. We apply Naive Bayes and Support Vector Machine methods to see which model perform best for our data. The result reveal Gojek has better service quality with 19.76% positive and 80.23% negative sentiments than Grab with 9.2% positive and 90.8% negative. The Gojek highest problem-solving priority is regarding application problems, while Grab is about unusable promos. The overall result shows general problems of both case study are related to accessibility dimension which indicate lack of capability to provide good digital access to the end users.

  5. Transport synthetic acceleration for long-characteristics assembly-level transport problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zika, M.R.; Adams, M.L.

    2000-02-01

    The authors apply the transport synthetic acceleration (TSA) scheme to the long-characteristics spatial discretization for the two-dimensional assembly-level transport problem. This synthetic method employs a simplified transport operator as its low-order approximation. Thus, in the acceleration step, the authors take advantage of features of the long-characteristics discretization that make it particularly well suited to assembly-level transport problems. The main contribution is to address difficulties unique to the long-characteristics discretization and produce a computationally efficient acceleration scheme. The combination of the long-characteristics discretization, opposing reflecting boundary conditions (which are present in assembly-level transport problems), and TSA presents several challenges. The authorsmore » devise methods for overcoming each of them in a computationally efficient way. Since the boundary angular data exist on different grids in the high- and low-order problems, they define restriction and prolongation operations specific to the method of long characteristics to map between the two grids. They implement the conjugate gradient (CG) method in the presence of opposing reflection boundary conditions to solve the TSA low-order equations. The CG iteration may be applied only to symmetric positive definite (SPD) matrices; they prove that the long-characteristics discretization yields an SPD matrix. They present results of the acceleration scheme on a simple test problem, a typical pressurized water reactor assembly, and a typical boiling water reactor assembly.« less

  6. An animal model to study human muscular diseases involving mitochondrial oxidative phosphorylation.

    PubMed

    Lemieux, Hélène; Warren, Blair E

    2012-08-01

    Mitochondria are producing most of the energy needed for many cellular functions by a process named oxidative phosphorylation (OXPHOS). It is now well recognized that mitochondrial dysfunctions are involved in several pathologies or degenerative processes, including cardiovascular diseases, diabetes, and aging. Animal models are currently used to try to understand the role of mitochondria in human diseases but a major problem is that mitochondria from different species and tissues are variable in terms of regulation. Analysis of mitochondrial function in three species of planarian flatworms (Tricladia, Platyhelminthes) shows that they share a very rare characteristic with human mitochondria: a strong control of oxidative phosphorylation by the phosphorylation system. The ratio of coupled OXPHOS over maximal electron transport capacity after uncoupling (electron transport system; ETS) well below 1.0 indicates that the phosphorylation system is limiting the rate of OXPHOS. The OXPHOS/ETS ratios are 0.62 ± 0.06 in Dugesia tigrina, 0.63 ± 0.05 in D. dorotocephala and 0.62 ± 0.05 in Procotyla fluviatilis, comparable to the value measured in human muscles. To our knowledge, no other animal model displays this peculiarity. This new model offers a venue in which to test the phosphorylation system as a potential therapeutic control point within humans.

  7. Dusty Pair Plasma—Wave Propagation and Diffusive Transition of Oscillations

    NASA Astrophysics Data System (ADS)

    Atamaniuk, Barbara; Turski, Andrzej J.

    2011-11-01

    The crucial point of the paper is the relation between equilibrium distributions of plasma species and the type of propagation or diffusive transition of plasma response to a disturbance. The paper contains a unified treatment of disturbance propagation (transport) in the linearized Vlasov electron-positron and fullerene pair plasmas containing charged dust impurities, based on the space-time convolution integral equations. Electron-positron-dust/ion (e-p-d/i) plasmas are rather widespread in nature. Space-time responses of multi-component linearized Vlasov plasmas on the basis of multiple integral equations are invoked. An initial-value problem for Vlasov-Poisson/Ampère equations is reduced to the one multiple integral equation and the solution is expressed in terms of forcing function and its space-time convolution with the resolvent kernel. The forcing function is responsible for the initial disturbance and the resolvent is responsible for the equilibrium velocity distributions of plasma species. By use of resolvent equations, time-reversibility, space-reflexivity and the other symmetries are revealed. The symmetries carry on physical properties of Vlasov pair plasmas, e.g., conservation laws. Properly choosing equilibrium distributions for dusty pair plasmas, we can reduce the resolvent equation to: (i) the undamped dispersive wave equations, (ii) and diffusive transport equations of oscillations.

  8. P1 Nonconforming Finite Element Method for the Solution of Radiation Transport Problems

    NASA Technical Reports Server (NTRS)

    Kang, Kab S.

    2002-01-01

    The simulation of radiation transport in the optically thick flux-limited diffusion regime has been identified as one of the most time-consuming tasks within large simulation codes. Due to multimaterial complex geometry, the radiation transport system must often be solved on unstructured grids. In this paper, we investigate the behavior and the benefits of the unstructured P(sub 1) nonconforming finite element method, which has proven to be flexible and effective on related transport problems, in solving unsteady implicit nonlinear radiation diffusion problems using Newton and Picard linearization methods. Key words. nonconforrning finite elements, radiation transport, inexact Newton linearization, multigrid preconditioning

  9. Pristine fullerenes mixed by vacuum-free solution process: Efficient electron transport layer for planar perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Dai, Si-Min; Tian, Han-Rui; Zhang, Mei-Lin; Xing, Zhou; Wang, Lu-Yao; Wang, Xin; Wang, Tan; Deng, Lin-Long; Xie, Su-Yuan; Huang, Rong-Bin; Zheng, Lan-Sun

    2017-01-01

    Discovery of organic-inorganic hybrid perovskites ignites the dream of next-generation solar cells fabricated by low-cost solution processing. To date, fullerene derivative [6,6]-phenyl-C61- butyric acid methyl ester (PC61BM), is the most prevalently used electron transport layer for high efficiency p-i-n planar heterojunction perovskite solar cells. Compared with PC61BM, pristine fullerenes, such as C60 and C70, have shown superiority of higher electron mobility and much lower costs. Due to the poor solubility and strong tendency to crystallize for pristine fullerenes in solution process, it is still a challenge to deposit compact and continuous film of pristine fullerenes for p-i-n type perovskite solar cells by solution processing. Herein, solution processed pristine fullerenes (C60 and C70) were used as electron transport layers to replace PC61BM in perovskite solar cells with high performance and enhanced stability. Power conversion efficiency of 14.04% was obtained by using mixture of C60 and C70 as electron transport layer, which is comparable to that of PC61BM based device (13.74%). We demonstrated that the strong tendency of pristine fullerenes to crystallize during solvent removal can be largely mitigated by mixing different kinds of pristine fullerenes. These findings implicate pristine fullerenes as promising electron transport layers for high performance perovskite solar cells.

  10. Silicon quantum dots embedded in a SiO2 matrix: From structural study to carrier transport properties

    NASA Astrophysics Data System (ADS)

    Garcia-Castello, Nuria; Illera, Sergio; Guerra, Roberto; Prades, Joan Daniel; Ossicini, Stefano; Cirera, Albert

    2013-08-01

    We study the details of electronic transport related to the atomistic structure of silicon quantum dots embedded in a silicon dioxide matrix using ab initio calculations of the density of states. Several structural and composition features of quantum dots (QDs), such as diameter and amorphization level, are studied and correlated with transport under transfer Hamiltonian formalism. The current is strongly dependent on the QD density of states and on the conduction gap, both dependent on the dot diameter. In particular, as size increases, the available states inside the QD increase, while the QD band gap decreases due to relaxation of quantum confinement. Both effects contribute to increasing the current with the dot size. Besides, valence band offset between the band edges of the QD and the silica, and conduction band offset in a minor grade, increases with the QD diameter up to the theoretical value corresponding to planar heterostructures, thus decreasing the tunneling transmission probability and hence the total current. We discuss the influence of these parameters on electron and hole transport, evidencing a correlation between the electron (hole) barrier value and the electron (hole) current, and obtaining a general enhancement of the electron (hole) transport for larger (smaller) QD. Finally, we show that crystalline and amorphous structures exhibit enhanced probability of hole and electron current, respectively.

  11. Isolating lattice from electronic contributions in thermal transport measurements of metals and alloys above ambient temperature and an adiabatic model

    NASA Astrophysics Data System (ADS)

    Criss, Everett M.; Hofmeister, Anne M.

    2017-06-01

    From femtosecond spectroscopy (fs-spectroscopy) of metals, electrons and phonons reequilibrate nearly independently, which contrasts with models of heat transfer at ordinary temperatures (T > 100 K). These electronic transfer models only agree with thermal conductivity (k) data at a single temperature, but do not agree with thermal diffusivity (D) data. To address the discrepancies, which are important to problems in solid state physics, we separately measured electronic (ele) and phononic (lat) components of D in many metals and alloys over ˜290-1100 K by varying measurement duration and sample length in laser-flash experiments. These mechanisms produce distinct diffusive responses in temperature versus time acquisitions because carrier speeds (u) and heat capacities (C) differ greatly. Electronic transport of heat only operates for a brief time after heat is applied because u is high. High Dele is associated with moderate T, long lengths, low electrical resistivity, and loss of ferromagnetism. Relationships of Dele and Dlat with physical properties support our assignments. Although kele reaches ˜20 × klat near 470 K, it is transient. Combining previous data on u with each D provides mean free paths and lifetimes that are consistent with ˜298 K fs-spectroscopy, and new values at high T. Our findings are consistent with nearly-free electrons absorbing and transmitting a small fraction of the incoming heat, whereas phonons absorb and transmit the majority. We model time-dependent, parallel heat transfer under adiabatic conditions which is one-dimensional in solids, as required by thermodynamic law. For noninteracting mechanisms, k≅ΣCikiΣCi/(ΣCi2). For metals, this reduces to k = klat above ˜20 K, consistent with our measurements, and shows that Meissner’s equation (k≅klat + kele) is invalid above ˜20 K. For one mechanism with multiple, interacting carriers, k≅ΣCiki/(ΣCi). Thus, certain dynamic behaviors of electrons and phonons in metals have been misunderstood. Implications for theoretical models and technological advancements are briefly discussed.

  12. Metaheuristics for the dynamic stochastic dial-a-ride problem with expected return transports.

    PubMed

    Schilde, M; Doerner, K F; Hartl, R F

    2011-12-01

    The problem of transporting patients or elderly people has been widely studied in literature and is usually modeled as a dial-a-ride problem (DARP). In this paper we analyze the corresponding problem arising in the daily operation of the Austrian Red Cross. This nongovernmental organization is the largest organization performing patient transportation in Austria. The aim is to design vehicle routes to serve partially dynamic transportation requests using a fixed vehicle fleet. Each request requires transportation from a patient's home location to a hospital (outbound request) or back home from the hospital (inbound request). Some of these requests are known in advance. Some requests are dynamic in the sense that they appear during the day without any prior information. Finally, some inbound requests are stochastic. More precisely, with a certain probability each outbound request causes a corresponding inbound request on the same day. Some stochastic information about these return transports is available from historical data. The purpose of this study is to investigate, whether using this information in designing the routes has a significant positive effect on the solution quality. The problem is modeled as a dynamic stochastic dial-a-ride problem with expected return transports. We propose four different modifications of metaheuristic solution approaches for this problem. In detail, we test dynamic versions of variable neighborhood search (VNS) and stochastic VNS (S-VNS) as well as modified versions of the multiple plan approach (MPA) and the multiple scenario approach (MSA). Tests are performed using 12 sets of test instances based on a real road network. Various demand scenarios are generated based on the available real data. Results show that using the stochastic information on return transports leads to average improvements of around 15%. Moreover, improvements of up to 41% can be achieved for some test instances.

  13. Reaching Rural Handicapped Children: The Transportation Situation in Rural Service Delivery. Making It Work in Rural Communities. A Rural Network Monograph.

    ERIC Educational Resources Information Center

    Tucker, Jamie; And Others

    Almost everyone who responded to three transportation surveys of rural Handicapped Children's Early Education Program (HCEEP) projects identified transportation as a critical problem in the delivery of services to handicapped children in rural areas. Transportation problems encountered were attributed to environmental/geographic factors,…

  14. Zero point and zero suffix methods with robust ranking for solving fully fuzzy transportation problems

    NASA Astrophysics Data System (ADS)

    Ngastiti, P. T. B.; Surarso, Bayu; Sutimin

    2018-05-01

    Transportation issue of the distribution problem such as the commodity or goods from the supply tothe demmand is to minimize the transportation costs. Fuzzy transportation problem is an issue in which the transport costs, supply and demand are in the form of fuzzy quantities. Inthe case study at CV. Bintang Anugerah Elektrik, a company engages in the manufacture of gensets that has more than one distributors. We use the methods of zero point and zero suffix to investigate the transportation minimum cost. In implementing both methods, we use robust ranking techniques for the defuzzification process. The studyresult show that the iteration of zero suffix method is less than that of zero point method.

  15. In Silico Analysis of the Regulation of the Photosynthetic Electron Transport Chain in C3 Plants1[OPEN

    PubMed Central

    Kramer, David M.

    2018-01-01

    We present a new simulation model of the reactions in the photosynthetic electron transport chain of C3 species. We show that including recent insights about the regulation of the thylakoid proton motive force, ATP/NADPH balancing mechanisms (cyclic and noncyclic alternative electron transport), and regulation of Rubisco activity leads to emergent behaviors that may affect the operation and regulation of photosynthesis under different dynamic environmental conditions. The model was parameterized with experimental results in the literature, with a focus on Arabidopsis (Arabidopsis thaliana). A dataset was constructed from multiple sources, including measurements of steady-state and dynamic gas exchange, chlorophyll fluorescence, and absorbance spectroscopy under different light intensities and CO2, to test predictions of the model under different experimental conditions. Simulations suggested that there are strong interactions between cyclic and noncyclic alternative electron transport and that an excess capacity for alternative electron transport is required to ensure adequate redox state and lumen pH. Furthermore, the model predicted that, under specific conditions, reduction of ferredoxin by plastoquinol is possible after a rapid increase in light intensity. Further analysis also revealed that the relationship between ATP synthesis and proton motive force was highly regulated by the concentrations of ATP, ADP, and inorganic phosphate, and this facilitated an increase in nonphotochemical quenching and proton motive force under conditions where metabolism was limiting, such as low CO2, high light intensity, or combined high CO2 and high light intensity. The model may be used as an in silico platform for future research on the regulation of photosynthetic electron transport. PMID:28924017

  16. Electron transfer across a thermal gradient

    PubMed Central

    Craven, Galen T.

    2016-01-01

    Charge transfer is a fundamental process that underlies a multitude of phenomena in chemistry and biology. Recent advances in observing and manipulating charge and heat transport at the nanoscale, and recently developed techniques for monitoring temperature at high temporal and spatial resolution, imply the need for considering electron transfer across thermal gradients. Here, a theory is developed for the rate of electron transfer and the associated heat transport between donor–acceptor pairs located at sites of different temperatures. To this end, through application of a generalized multidimensional transition state theory, the traditional Arrhenius picture of activation energy as a single point on a free energy surface is replaced with a bithermal property that is derived from statistical weighting over all configurations where the reactant and product states are equienergetic. The flow of energy associated with the electron transfer process is also examined, leading to relations between the rate of heat exchange among the donor and acceptor sites as functions of the temperature difference and the electronic driving bias. In particular, we find that an open electron transfer channel contributes to enhanced heat transport between sites even when they are in electronic equilibrium. The presented results provide a unified theory for charge transport and the associated heat conduction between sites at different temperatures. PMID:27450086

  17. Molecular electronics with single molecules in solid-state devices.

    PubMed

    Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2009-09-01

    The ultimate aim of molecular electronics is to understand and master single-molecule devices. Based on the latest results on electron transport in single molecules in solid-state devices, we focus here on new insights into the influence of metal electrodes on the energy spectrum of the molecule, and on how the electron transport properties of the molecule depend on the strength of the electronic coupling between it and the electrodes. A variety of phenomena are observed depending on whether this coupling is weak, intermediate or strong.

  18. Design and analysis of the cryoharness for Planck LFI

    NASA Astrophysics Data System (ADS)

    Leutenegger, Paolo H.; Bersanelli, Marco; Ferretti, Roberto; Prina, Mauro

    2003-10-01

    Planck is the third Medium-Sized Mission (M3) of ESA Horizon 2000 Scientific Programme. It is designed to image the anisotropies of the Cosmic Background Radiation Field over the whole sky, with unprecedented sensitivity and angular resolution. Planck carries two main experiments named HFI (High Frequency Instrument) and LFI (Low Frequency Instrument). The first is based on bolometers, the latter is an array of tuned radio receivers, based on High Electron Mobility Transistors (HEMTs) amplifier technology, and covering the frequency range from 30 to 70 GHz. The Front-End Electronics Modules (FEM"s) are cooled at 20K by a H2 sorption cooler. The high frequency signals (up to 70 GHz) are amplified, phase lagged and transported by means of waveguides to the warm back-end electronics at temperatures of the order of 300K. The 20 K cooling is achieved exploiting a two-stage cooling concept. The satellite is passively cooled to temperatures of the order of 60K using special designed radiators called V-grooves. An H2 sorption cooler constitutes the second active cooling stage, which allows focal plane temperatures of 20K, i.e. compatible with the tight noise requirements of the Low Noise Amplifiers (LNA"s). Each FEM needs 22 bias lines characterised by a high immunity to external noise and disturbances. The power required for each FEM ranges from 16 to 34mW, depending on the radiometer frequency. Due to the limited cooling power of the sorption cooler (about 2W), the heat transport through the harness and therefore the parasitics on the focal plane, shall be minimised. A total of 290 wires have to be routed from the warm electronics (300K) to the cold focal plane (20K), along a path of about 2200mm, transporting currents ranging from a few uA up to 240mA. The present paper analyses the thermal and electrical problems connected with the design of a suitable cryo-harness for the bias of the radiometers cryogenic front-end modules of LFI. Two possible approaches are proposed, and a solution presented.

  19. Multi-channel transport experiments at Alcator C-Mod and comparison with gyrokinetic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, A. E.; Howard, N. T.; Greenwald, M.

    2013-05-15

    Multi-channel transport experiments have been conducted in auxiliary heated (Ion Cyclotron Range of Frequencies) L-mode plasmas at Alcator C-Mod [Marmar and Alcator C-Mod Group, Fusion Sci. Technol. 51(3), 3261 (2007)]. These plasmas provide good diagnostic coverage for measurements of kinetic profiles, impurity transport, and turbulence (electron temperature and density fluctuations). In the experiments, a steady sawtoothing L-mode plasma with 1.2 MW of on-axis RF heating is established and density is scanned by 20%. Measured rotation profiles change from peaked to hollow in shape as density is increased, but electron density and impurity profiles remain peaked. Ion or electron heat fluxesmore » from the two plasmas are the same. The experimental results are compared directly to nonlinear gyrokinetic theory using synthetic diagnostics and the code GYRO [Candy and Waltz, J. Comput. Phys. 186, 545 (2003)]. We find good agreement with experimental ion heat flux, impurity particle transport, and trends in the fluctuation level ratio (T(tilde sign){sub e}/T{sub e})/(ñ{sub e}/n{sub e}), but underprediction of electron heat flux. We find that changes in momentum transport (rotation profiles changing from peaked to hollow) do not correlate with changes in particle transport, and also do not correlate with changes in linear mode dominance, e.g., Ion Temperature Gradient versus Trapped Electron Mode. The new C-Mod results suggest that the drives for momentum transport differ from drives for heat and particle transport. The experimental results are inconsistent with present quasilinear models, and the strong sensitivity of core rotation to density remains unexplained.« less

  20. Origin of nonlinear transport across the magnetically induced superconductor-metal-insulator transition in two dimensions.

    PubMed

    Seo, Y; Qin, Y; Vicente, C L; Choi, K S; Yoon, Jongsoo

    2006-08-04

    We have studied the effect of perpendicular magnetic fields and temperatures on nonlinear electronic transport in amorphous Ta superconducting thin films. The films exhibit a magnetic field-induced metallic behavior intervening the superconductor-insulator transition in the zero temperature limit. We show that the phase-identifying nonlinear transport in the superconducting and metallic phases arises from an intrinsic origin, not from an electron heating effect. The nonlinear transport is found to accompany an extraordinarily long voltage response time.

Top