Mechanism of total electron emission yield reduction using a micro-porous surface
NASA Astrophysics Data System (ADS)
Ye, Ming; Wang, Dan; He, Yongning
2017-03-01
Suppression of the total secondary electron yield (TEY) of metal surfaces is important in many areas such as accelerator, satellite, and Hall thruster. Among TEY suppression techniques, micro-porous surfaces have been demonstrated as an effective method. In this work, we developed an analytical model that is able to obtain the contributions of TEY from both the 1st and 2nd generation secondary electrons (SEs). Calculation results show that the TEY contributed by the bottom of the hole dominates the TEY of the micro-porous surface with the aspect ratio we have chosen. Thus, we developed the following design guidance for the improvement of the TEY suppression efficiency of the micro-porous surface: either lower the TEY of the bottom or guide its SEs to the lateral side of the hole. To verify this idea, we performed the following numerical simulations: a micro-hole with its inner surfaces coated with a low TEY material and a micro-hole with nano-triangular grooves or nano-truncated cone pillars embedded at its bottom. Compared with a usual micro-hole, the proposed hybrid micro/nano structures show improved TEY suppression efficiency as expected from the analytical model. The percentage ratios of the 1st and 2nd generation SEs obtained from the simulation agree well with the predictions of the analytical model. What is more, we also present the results of the emitting angle distribution of SEs which represent remarkable deviation from the usual cosine distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yonemura, Takumi, E-mail: yonemura-takumi@sei.co.jp; Iihara, Junji; Uemura, Shigeaki
We have succeeded in measuring X-ray absorption fine structure (TEY-XAFS) spectra of insulating plate samples by total electron yield. The biggest problem is how to suppress the charge-up. We have attempted to deposit a gold stripe electrode on the surface and obtained a TEY-XAFS spectrum. This indicates that the metal stripe electrode is very useful in the TEY-XAFS measurement of the insulating plate samples. In the detailed analysis, we have found that the effective area for suppressing charge-up was approximately 120 μm from the edge of the electrode.
Effect of reflection and refraction on NEXAFS spectra measured in TEY mode
2018-01-01
The evolution of near-edge X-ray absorption fine structure in the vicinity of the K-absorption edge of oxygen for HfO2 over a wide range of incidence angles is analyzed by simultaneous implementation of the total-electron-yield (TEY) method and X-ray reflection spectroscopy. It is established that the effect of refraction on the TEY spectrum is greater than that of reflection and extends into the angular region up to angles 2θc. Within angles that are less than the critical angle, both the reflection and refraction strongly distort the shape of the TEY spectrum. Limitations of the technique for the calculation of optical constants from the reflection spectra using the Kramers–Kronig relation in the limited energy region in the vicinity of thresholds are discussed in detail. PMID:29271772
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emerson, Rachel; Hoover, Amber; Ray, Allison
Drought conditions in 2012 were some of the most severe in recent history. The purpose of this study is to examine the impact of drought on quality, quantity, and theoretical ethanol yield (TEY) of three bioenergy feedstocks, corn stover, mixed grasses from Conservation Reserve Program lands, and Miscanthus × giganteus. To assess drought effects on these feedstocks, samples from 2010 (minimal to no drought) and 2012 (severe drought) were compared from multiple locations in the US. In all feedstocks, drought significantly increased extractives and reduced structural sugars and lignin; subsequently, TEYs were reduced 10–15%. Biomass yields were significantly reduced formore » M. × giganteus and mixed grasses. When reduction in quality and quantity were combined, TEYs decreased 26–59%. Drought negatively affected biomass quality and quantity that resulted in significant TEY reductions. As a result, such fluctuations in biomass quality and yield may have significant consequences for developing lignocellulosic biorefineries.« less
Emerson, Rachel; Hoover, Amber; Ray, Allison; ...
2014-07-04
Drought conditions in 2012 were some of the most severe in recent history. The purpose of this study is to examine the impact of drought on quality, quantity, and theoretical ethanol yield (TEY) of three bioenergy feedstocks, corn stover, mixed grasses from Conservation Reserve Program lands, and Miscanthus × giganteus. To assess drought effects on these feedstocks, samples from 2010 (minimal to no drought) and 2012 (severe drought) were compared from multiple locations in the US. In all feedstocks, drought significantly increased extractives and reduced structural sugars and lignin; subsequently, TEYs were reduced 10–15%. Biomass yields were significantly reduced formore » M. × giganteus and mixed grasses. When reduction in quality and quantity were combined, TEYs decreased 26–59%. Drought negatively affected biomass quality and quantity that resulted in significant TEY reductions. As a result, such fluctuations in biomass quality and yield may have significant consequences for developing lignocellulosic biorefineries.« less
Surface modification study of borate materials from B K-edge X-ray absorption spectroscopy
NASA Astrophysics Data System (ADS)
Kasrai, Masoud; Fleet, Michael E.; Muthupari, Swaminathan; Li, D.; Bancroft, G. M.
The B K-edge X-ray absorption near-edge structure (XANES) spectra of two borates with tetrahedrally-coordinated B [[4]B; natural danburite (CaB2Si2O8) and synthetic boron phosphate (BPO4)] have been recorded in total electron yield (TEY) and fluorescence yield (FY) modes to investigate the surface and bulk structure of these materials. The TEY XANES measurement shows that danburite is susceptible to surface damage involving conversion of [4]B sites to [3]B sites by reaction with moisture and/or mechanical abrasion (grinding, polishing, etc.). The bulk of the mineral is essentially unaffected. Commercial boron phosphate powder exhibits more extensive surface and bulk damage, which increases with air exposure but is recovered on heating at 650°C. In contrast to ELNES, the XANES technique is not affected by beam damage and when collected in the FY mode is capable of yielding meaningful information on the coordination and intermediate-range structure of B in borate and borosilicate materials.
Electronic Structures and Optical Properties of α-Al2O3Nanowires
NASA Astrophysics Data System (ADS)
Wang, Zhiqiang; Li, Chunlei; Liu, Lijia; Sham, Tsun-Kong
2013-04-01
The electronic structure and optical properties of α-Al2O3 nanowires (NWs) have been investigated using X-ray absorption near-edge structures (XANES) and X-ray excited optical luminescence (XEOL). The XANES were recorded in total electron yield (TEY) and total fluorescence yield (TFY) across the K- and L3,2-edges of aluminium and the K-edge of oxygen. The results indicate that the NWs are of a core/shell structure with a single-crystalline core and an amorphous shell. The XEOL spectra of the NWs show an intense peak at 404 nm, which comes from the F centre located in the amorphous shell of the NWs. The implication of these findings and the sensitivity of XEOL for defect detection are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rachel Emerson; Amber Hoover; Allison Ray
2014-11-01
Drought conditions in 2012 were some of the most severe reported in the United States. It is necessary to explore the effects of drought on the quality attributes of current and potential bioenergy feedstocks. Compositional analysis data for corn stover, Miscanthus, and CRP grasses from one or more locations for years 2010 (normal precipitation levels) and 2012 (a known severe drought year nationally) was collected. Results & discussion: The general trend for samples that experienced drought was an increase in extractives and a decrease in structural sugars and lignin. The TEY yields were calculated to determine the drought effects onmore » ethanol production. All three feedstocks had a decrease of 12-14% in TEY when only decreases of carbohydrate content was analyzed. When looking at the compounded effect of both carbohydrate content and the decreases in dry matter loss for each feedstock there was a TEY decrease of 25%-59%. Conclusion: Drought had a significant impact on the quality of all three bioenergy crops. In all cases where drought was experienced both the quality of the feedstock and the yield decreased. These drought induced effects could have significant economic impacts on biorefineries.« less
A reaction cell for ambient pressure soft x-ray absorption spectroscopy
NASA Astrophysics Data System (ADS)
Castán-Guerrero, C.; Krizmancic, D.; Bonanni, V.; Edla, R.; Deluisa, A.; Salvador, F.; Rossi, G.; Panaccione, G.; Torelli, P.
2018-05-01
We present a new experimental setup for performing X-ray Absorption Spectroscopy (XAS) in the soft X-ray range at ambient pressure. The ambient pressure XAS setup is fully compatible with the ultra high vacuum environment of a synchrotron radiation spectroscopy beamline end station by means of ultrathin Si3N4 membranes acting as windows for the X-ray beam and seal of the atmospheric sample environment. The XAS detection is performed in total electron yield (TEY) mode by probing the drain current from the sample with a picoammeter. The high signal/noise ratio achievable in the TEY mode, combined with a continuous scanning of the X-ray energies, makes it possible recording XAS spectra in a few seconds. The first results show the performance of this setup to record fast XAS spectra from sample surfaces exposed at atmospheric pressure, even in the case of highly insulating samples. The use of a permanent magnet inside the reaction cell enables the measurement of X-ray magnetic circular dichroism at ambient pressure.
Conductance relaxation in GeBiTe: Slow thermalization in an open quantum system
NASA Astrophysics Data System (ADS)
Ovadyahu, Z.
2018-02-01
This work describes the microstructure and transport properties of GeBixTey films with emphasis on their out-of-equilibrium behavior. Persistent-photoconductivity (PPC), previously studied in the phase-change compound GeSbxTey , is also quite prominent in this system. Much weaker PPC response is observed in the pure GeTe compound and when alloying GeTe with either In or Mn. Films made from these compounds share the same crystallographic structure, the same p -type conductivity, a similar compositional disorder extending over mesoscopic scales, and similar mosaic morphology. The enhanced photoconductive response exhibited by the Sb and Bi alloys may therefore be related to their common chemistry. Persistent photoconductivity is observable in GeBixTey films at the entire range of sheet resistances studied in this work (≈103Ω to ≈55 M Ω ). The excess conductance produced by a brief exposure to infrared illumination decays with time as a stretched exponential (Kohlrausch law). Intrinsic electron-glass effects, on the other hand, are observable in thin films of GeBixTey only for samples that are strongly localized just like it was noted with the seven electron glasses previously studied. These include a memory dip which is the defining attribute of the phenomenon. The memory dip in GeBixTey is the widest amongst the germanium-telluride alloys studied to date consistent with the high carrier concentration N ≥1021cm-3 of this compound. The thermalization process exhibited in either the PPC state or in the electron-glass regime is sluggish but the temporal law of the relaxation from the out-of-equilibrium state is distinctly different. Coexistence of the two phenomena give rise to some nontrivial effects, in particular, the visibility of the memory dip is enhanced in the PPC state. The relation between this effect and the dependence of the memory-effect magnitude on the ratio between the interparticle interaction and quench disorder is discussed.
Pharmaceutical Compounds Studied Using NEXAFS
NASA Astrophysics Data System (ADS)
Murray Booth, A.; Braun, Simon; Lonsbourough, Tom; Purton, John; Patel, Sunil; Schroeder, Sven L. M.
2007-02-01
Total Electron Yield (TEY) oxygen K-edge NEXAFS detects the presence of strongly adsorbed water molecules on poloxamer-coated pharmaceutical actives, which provides a useful spectroscopic indicator for bioavailability. The results are supported by complementary XPS measurements. Carbon K-edge spectra obtained in a high-pressure NEXAFS cell were used in situ to establish how a polymer coating spread on a drug surface by using humidity induced dispersion of the coating. Finally, we demonstrate how combined Carbon and Oxygen K-edge measurements can be used to characterize amorphous surface layers on micronised crystals of a drug compound.
USDA-ARS?s Scientific Manuscript database
Drought conditions in 2012 were some of the most severe in recent history. The purpose of this study was to examine the impact of drought on quality, quantity, and theoretical ethanol yield (TEY) of three bioenergy feedstocks, corn stover, mixed perennial grasses from Conservation Reserve Program de...
Bradley, Joseph A; Yang, Ping; Batista, Enrique R; Boland, Kevin S; Burns, Carol J; Clark, David L; Conradson, Steven D; Kozimor, Stosh A; Martin, Richard L; Seidler, Gerald T; Scott, Brian L; Shuh, David K; Tyliszczak, Tolek; Wilkerson, Marianne P; Wolfsberg, Laura E
2010-10-06
Accurate X-ray absorption spectra (XAS) of first row atoms, e.g., O, are notoriously difficult to obtain due to the extreme sensitivity of the measurement to surface contamination, self-absorption, and saturation affects. Herein, we describe a comprehensive approach for determining reliable O K-edge XAS data for ReO(4)(1-) and provide methodology for obtaining trustworthy and quantitative data on nonconducting molecular systems, even in the presence of surface contamination. This involves comparing spectra measured by nonresonant inelastic X-ray scattering (NRIXS), a bulk-sensitive technique that is not prone to X-ray self-absorption and provides exact peak intensities, with XAS spectra obtained by three different detection modes, namely total electron yield (TEY), fluorescence yield (FY), and scanning transmission X-ray microscopy (STXM). For ReO(4)(1-), TEY measurements were heavily influenced by surface contamination, while the FY and STXM data agree well with the bulk NRIXS analysis. These spectra all showed two intense pre-edge features indicative of the covalent interaction between the Re 5d and O 2p orbitals. Density functional theory calculations were used to assign these two peaks as O 1s excitations to the e and t(2) molecular orbitals that result from Re 5d and O 2p covalent mixing in T(d) symmetry. Electronic structure calculations were used to determine the amount of O 2p character (%) in these molecular orbitals. Time dependent-density functional theory (TD-DFT) was also used to calculate the energies and intensities of the pre-edge transitions. Overall, under these experimental conditions, this analysis suggests that NRIXS, STXM, and FY operate cooperatively, providing a sound basis for validation of bulk-like excitation spectra and, in combination with electronic structure calculations, suggest that NaReO(4) may serve as a well-defined O K-edge energy and intensity standard for future O K-edge XAS studies.
Electronic properties of crystalline Ge1-xSbxTey thin films
NASA Astrophysics Data System (ADS)
Fallica, Roberto; Volpe, Flavio; Longo, Massimo; Wiemer, Claudia; Salicio, Olivier; Abrutis, Adulfas
2012-09-01
Ge1-xSbxTey thin films, grown by metalorganic and hot-wire liquid injection chemical vapor deposition in different crystalline phases, are investigated to determine resistivity, carrier density, and carrier mobility in the 4.2-300 K temperature range. It is found that all these chalcogenides exhibit p-type conduction, high carrier density (>2 . 1020 cm-3), and no carrier freeze-out, regardless of composition. Low-temperature mobility data show that both chemical composition and growth technique affect the defect density and, in turn, the carrier scattering mechanisms. In this regard, charge carrier mobility is analyzed according to semi-empirical scattering models and an interpretation is provided.
A simplified method for monomeric carbohydrate analysis of corn stover biomass
USDA-ARS?s Scientific Manuscript database
Constituent determination of biomass for theoretical ethanol yield (TEY) estimation requires the removal of non-structural carbohydrates prior to analysis to prevent interference with the analytical procedure. According to the accepted U.S. Dept. of Energy-National Renewable Energy Laboratory (NREL)...
Carbohydrate and nutrient composition of corn stover from three Southeastern USA locations
USDA-ARS?s Scientific Manuscript database
Corn (Zea mays L.) stover has been identified as an important feedstock for bioenergy and bio-product production. Our objective was to quantify nutrient removal, carbohydrate composition, theoretical ethanol yield (TEY) for various stover fractions. In 2009, 2010, and 2011, whole-plant samples were ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfrum, Edward J; Scagline-Mellor, Steffany; Griggs, Thomas
Switchgrass (Panicum virgatum L.) and giant miscanthus (Miscanthus x giganteus Greef & Deuter ex Hodkinson & Renvoize) are productive on marginal lands in the eastern USA, but their productivity and composition have not been compared on mine lands. Our objectives were to compare biomass production, composition, and theoretical ethanol yield (TEY) and production (TEP) of these grasses on a reclaimed mined site. Following 25 years of herbaceous cover, vegetation was killed and plots of switchgrass cultivars Kanlow and BoMaster and miscanthus lines Illinois and MBX-002 were planted in five replications. Annual switchgrass and miscanthus yields averaged 5.8 and 8.9 Mgmore » dry matter ha-1, respectively, during 2011 to 2015. Cell wall carbohydrate composition was analyzed via near-infrared reflectance spectroscopy with models based on switchgrass or mixed herbaceous samples including switchgrass and miscanthus. Concentrations were higher for glucan and lower for xylan in miscanthus than in switchgrass but TEY did not differ (453 and 450 L Mg-1, respectively). In response to biomass production, total ethanol production was greater for miscanthus than for switchgrass (5594 vs 3699 L ha-1), did not differ between Kanlow and BoMaster switchgrass (3880 and 3517 L ha-1, respectively), and was higher for MBX-002 than for Illinois miscanthus (6496 vs 4692 L ha-1). Relative to the mixed feedstocks model, the switchgrass model slightly underpredicted glucan and slightly overpredicted xylan concentrations. Estimated TEY was slightly lower from the switchgrass model but both models distinguished genotype, year, and interaction effects similarly. Biomass productivity and TEP were similar to those from agricultural sites with marginal soils.« less
Janitza, Philipp; Ullrich, Kristian Karsten; Quint, Marcel
2012-01-01
The mitogen-activated protein kinase (MAPK) pathway is a three-tier signaling cascade that transmits cellular information from the plasma membrane to the cytoplasm where it triggers downstream responses. The MAPKs represent the last step in this cascade and are activated when both tyrosine and threonine residues in a conserved TxY motif are phosphorylated by MAPK kinases, which in turn are themselves activated by phosphorylation by MAPK kinase kinases. To understand the molecular evolution of MAPKs in the plant kingdom, we systematically conducted a Hidden-Markov-Model based screen to identify MAPKs in 13 completely sequenced plant genomes. In this analysis, we included green algae, bryophytes, lycophytes, and several mono- and eudicotyledonous species covering >800 million years of evolution. The phylogenetic relationships of the 204 identified MAPKs based on Bayesian inference facilitated the retraction of the sequence of emergence of the four major clades that are characterized by the presence of a TDY or TEY-A/TEY-B/TEY-C type kinase activation loop. We present evidence that after the split of TDY- and TEY-type MAPKs, initially the TEY-C clade emerged. This was followed by the TEY-B clade in early land plants until the TEY-A clade finally emerged in flowering plants. In addition to these well characterized clades, we identified another highly conserved clade of 45 MAPK-likes, members of which were previously described as Mak-homologous kinases. In agreement with their essential functions, molecular population genetic analysis of MAPK genes in Arabidopsis thaliana accessions reveal that purifying selection drove the evolution of the MAPK family, implying strong functional constraints on MAPK genes. Closely related MAPKs most likely subfunctionalized, a process in which differential transcriptional regulation of duplicates may be involved.
Composition- and crystallinity-dependent thermoelectric properties of ternary BixSb2-xTey films
NASA Astrophysics Data System (ADS)
Kim, Jiwon; Lim, Jae-Hong; Myung, Nosang V.
2018-01-01
BixSb2-xTey films with controlled compositions were synthesized by a simple and cost-effective electrodeposition technique followed by post-annealing, for thermoelectric applications. Tailoring the chemical composition of ternary BixSb2-xTey materials is critical to adjust the carrier concentration and carrier type, which are crucial to determine their thermoelectric performance. Herein, the composition of electrodeposited BixSb2-xTey film was simply tailored by controlling the [Sb]/[Bi] ratio in the electrolytes while maintaining their dense and uniform morphology. Crystallographic properties of the BixSb2-xTey films, such as crystallinity and grain size changes, were confirmed by X-ray diffraction. Room-temperature measurements of electrical conductivity, Hall mobility, and carrier concentration revealed that the substitution of Bi with Sb decreased the carrier concentration, and increased the mobility. The Seebeck coefficient of the ternary BixSb2-xTey films transitioned between p- and n-type characteristics with an increase in the Bi content. Moreover, the mobility-dependent electrical conductivity of the Bi10Sb30Te60 film resulted in a high Seebeck coefficient owing to decreased carrier concentration of the film, leading to a power factor (PF) of ∼490 μW/m K2. This is more than 10 times higher than the PF values of binary nanocrystalline Sb2Te3 films.
Ab-initio Calculation of the XANES of Lithium Phosphates and LiFePO4
NASA Astrophysics Data System (ADS)
Yiu, Y. M.; Yang, Songlan; Wang, Dongniu; Sun, Xueliang; Sham, T. K.
2013-04-01
Lithium iron phosphate has been regarded as a promising cathode material for the next generation lithium ion batteries due to its high specific capacity, superior thermal and cyclic stability [1]. In this study, the XANES (X-ray Absorption Near Edge Structure) spectra of lithium iron phosphate and lithium phosphates of various compositions at the Li K, P L3,2, Fe M3,2 and O K-edges have been simulated self-consistently using ab-initio calculations based on multiple scattering theory (the FEFF9 code) and DFT (Density Functional Theory, the Wien2k code). The lithium phosphates under investigation include LiFePO4, γ-Li3PO4, Li4P2O7 and LiPO3. The calculated spectra are compared to the experimental XANES recorded in total electron yield (TEY) and fluorescence yield (FLY). This work was carried out to assess the XANES of possible phases presented in LiFePO4 based Li ion battery applications [2].
Magnetic properties and microstructure of melt-spun Ce17Fe78-xB6Hfx (x = 0-1.0) alloys
NASA Astrophysics Data System (ADS)
Jiang, Qingzheng; Zhong, Minglong; Quan, Qichen; Lei, Weikai; Zeng, Qingwen; Hu, Yongfeng; Xu, Yaping; Hu, Xianjun; Zhang, Lili; Liu, Renhui; Ma, Shengcan; Zhong, Zhenchen
2017-12-01
Ce17Fe78-xB6Hfx (x = 0-1.0) alloys were fabricated by a melt-spinning technique in order to study their magnetic properties and microstructure. Magnetic investigations of Ce17Fe78-xB6Hfx (x = 0-1.0) alloys show that the room-temperature coercivity increases linearly from 352 kA/m at x = 0 to 420 kA/m at x = 1.0. The Curie temperature (Tc) decreases monotonically from 424.5 K to 409.1 K. The Ce L3-edge X-ray absorption near edge structure (XANES) spectrums reveal that there is more Ce4+ in ribbons under total electron yield (TEY) than fluorescence yield (FY). Hf addition has no effect on the weight of Ce3+ and Ce4+ in CeFeB-based alloys. The grain refinement and microstructure uniformity are essential for improving the magnetic properties of Hf-doped alloys. This paper may shed light on the further development of the Ce-based magnets and offer a feasible way for using the rare earth resources effectively.
NASA Astrophysics Data System (ADS)
Stiewe, Christian; Bertini, Luca; Toprak, Muhammet; Christensen, Mogens; Platzek, Dieter; Williams, Simon; Gatti, Carlo; Müller, Eckhard; Iversen, Bo B.; Muhammed, Mamoun; Rowe, Michael
2005-02-01
The properties of Te-doped Co(Sb1-yTey)3 and Te-Ni double-doped Co1-xNix(Sb1-yTey)3 nanostructured skutterudites were evaluated by means of x-ray powder diffraction, and transport properties measured on the synthesized samples have been compared with ab initio theoretical modeling. Theoretical optimal dopant contents have been evaluated according to the maximum value of the power factor, calculating the electronic transport properties from the ab initio material band structure using semiclassical Boltzmann transport theory. The samples have been synthesized by chemical alloying with Te substitution for Sb up to 2.5at.% and Ni substitution for Co up to 2.0at.%. X-ray powder diffraction has been performed on all samples to reveal information about phase purity and Rietveld refinement was performed for the phase composition and cell parameter. The thermoelectric properties of the resulting consolidates were investigated in a temperature range from 300to723K using various measurement facilities. A standardization and round robin program was started among the participating evaluation laboratories in order to ensure reliability of the data obtained. The significant reduction in thermal conductivity, when compared to highly annealed CoSb3, could be proved which is caused by the nanostructuring, resulting in a high concentration of grain boundaries. A combination of substitution levels for Ni and Te has been found resulting in the largest ZT value of 0.65 at 680K among unfilled skutterudite materials.
Allai, Larbi; Druart, Xavier; Öztürk, Mehmet; BenMoula, Anass; Nasser, Boubker; El Amiri, Bouchra
2016-12-01
The present study aimed to assess the phenolic composition of the acetone extract from Opuntia ficus indica cladodes (ACTEX) and its effects on ram semen variables, lipid peroxidation and DNA fragmentation during liquid storage at 5°C for up to 72h in skim milk and Tris egg yolk extenders. Semen samples from five rams were pooled extended with Tris-egg yolk (TEY) or skim milk (SM) extenders containing ACTEX (0%, 1%, 2%, 4% and 8%) at a final concentration of 0.8×10 9 sperm/ml and stored for up to 72h at 5°C. The sperm variables were evaluated at different time periods (8, 24, 48 and 72h). Sperm total motility and viability were superior in TEY than in SM whereas the progressive motility, membrane integrity, abnormality and spontaneous lipid peroxidation were greater in SM compared to TEY (P<0.05). The results also indicated that the inclusion of 1% ACTEX in the SM or TEY extender increased the sperm motility, viability, membrane integrity, and decreased the abnormality, lipids peroxidation up to 72h in storage compared to control group. Similarly, even at 72h of storage, 1% ACTEX can efficiently decrease the negative effects of liquid storage on sperm DNA fragmentation (P<0.05). In conclusion, SM and TEY supplemented with 1% of ACTEX can improve the quality of ram semen. Further studies are required to identify the active components in ACTEX involved in its effect on ram sperm preservation. Copyright © 2016 Elsevier B.V. All rights reserved.
Magnetic Properties of Electron-Doped LaCoO3
NASA Astrophysics Data System (ADS)
Tomiyasu, Keisuke; Sato, Mika; Koyama, Shun-Ichi; Nojima, Tsutomu; Kajimoto, Ryoichi; Ji, Sungdae; Iwasa, Kazuaki
2017-09-01
We studied electron-doped LaCo1 - yTey6 + O3 by magnetization measurements and neutron scattering. The effective Bohr magneton, estimated by Curie-Weiss fitting around room temperature, is independent of y. This suggests that magnetic Co3+(HS), not nonmagnetic Co3+(LS), is mainly replaced by doped magnetic Co2+(HS). At the lowest temperatures, a Brillouin-function-like saturating behavior persists in the magnetization curves even in the high-y samples, and neither a clear magnetic reflection nor magnetic dispersion is observed by neutron scattering. These findings indicate that the magnetic correlation is very weak, in contrast to the well-known hole-doped LaCoO3 accompanied by a drastic transition to a ferromagnetic metal. However, we also found that the low-y samples exhibit nonnegligible enhancement of the saturated magnetization by ˜2μB per a doped electron. All these characteristics are discussed in the light of the activation and inactivation of a spin-state blockade.
"Daughter of Time": Outside Reading for a Research Writing Course.
ERIC Educational Resources Information Center
Sosville, Jerri
1987-01-01
Presents an alternative to the usual selections taught in research paper writing courses. Suggests that Josephine Tey's novel is more relevant and enjoyable, as well as better suited for research projects, than, for example, "1984" or "The Sound and the Fury." (HTH)
Phonon anomalies in intermediate valent TmXSe and TmSe1 - yTey
NASA Astrophysics Data System (ADS)
Boppart, H.; Treindl, A.; Wachter, P.
1981-03-01
In TmxSe and TmSe1-yTey the degree of valence mixing can be adjusted between nearly 3+ for Tm0.87Se and 2.55+ for TmSe0.7Te0.3. The measurement of sound velocities vL, vTl and vT2 and the evaluation of the Raman effect for various compositions permit the derivation of LA [111] phonon dispersion at critical points in the Brillouin zone. vL decreases with increasing valence mixing. Near the middle of the zone the LA branch gets a dip for intermediate valent compositions, resulting in a characteristic peak in the Ramn spectrum at about 60 cm-1. The elastic constant c12 has been found negative for Tm0.99Se, also at 4.2 K. For uniaxial pressures c12 exhibits strong nonlinearities and even changes sign with pressure in an intermediate valent composition. The optical phonon frequencies, LO (L) also soften proportional with the degree of valence mixing.
NASA Astrophysics Data System (ADS)
Goroncy, Christian; Saloga, Patrick E. J.; Gruner, Mathias; Schmudde, Madlen; Vonnemann, Jonathan; Otero, Edwige; Haag, Rainer; Graf, Christina
2018-05-01
For the application of iron oxide nanoparticles from thermal decomposition approaches as contrast agents in magnetic resonance imaging (MRI), their initial hydrophobic ligands have to be replaced by hydrophilic ones. This exchange can influence the surface oxidation state and the magnetic properties of the particles. Here, the effect of the anchor group of three organic ligands, citric acid and two catechols, dihydrocaffeic acid and its nitrated derivative nitro dihydrocaffeic acid on iron oxide nanoparticles is evaluated. The oleate ligands of Fe3O4/γ-Fe2O3 nanoparticles prepared by the thermal decomposition of iron oleate were exchanged against the hydrophilic ligands. X-ray absorption spectroscopy, especially X-ray magnetic circular dichroism (XMCD) measurements in the total electron yield (TEY) mode was used to investigate local magnetic and electronic properties of the particles' surface region before and after the ligand exchange. XMCD was combined with charge transfer multiplet calculations which provide information on the contributions of Fe2+ and Fe3+ at different lattice sites, i.e. either in tetrahedral or octahedral environment. The obtained data demonstrate that nitro hydrocaffeic acid leads to least reduction of the magnetizability of the surface region of the iron oxide nanoparticles compared to the two other ligands. For all hydrophilic samples, the proportion of Fe3+ ions in octahedral sites increases at the expense of the Fe2+ in octahedral sites whereas the percentage of Fe3+ in tetrahedral sites hardly changes. These observations suggest that an oxidation process took place, but a selective decrease of the Fe2+ ions in octahedral sites ions due to surface dissolution processes is unlikely. The citrate ligand has the least oxidative effect, whereas the degree of oxidation was similar for both catechol ligands regardless of the nitro group. Twenty-four hours of incubation in isotonic saline has nearly no influences on the magnetic properties of the nanoparticles, the least on those with the nitrated hydrocaffeic acid ligand.
Enhanced thermoelectric properties in Bi and Te doped p-type Cu3SbSe4 compound
NASA Astrophysics Data System (ADS)
Kumar, Aparabal; Dhama, P.; Banerji, P.
2018-04-01
We report the effect of Bi and Te doping on the electrical transport and thermoelectric properties of Cu3SbSe4 with an aim to maximize the power factor and/or minimize the thermal conductivity. A series of Cu3Sb1-xBixSe4-yTey (x = 0, 0.02, 0.04, 0.06, 0.08; y = 0.01) samples were prepared by melt growth technique and ball milling followed by spark plasma sintering. The structural analysis and microstructures were carried out by X-ray diffraction, transmission electron microscopy and Field emission scanning electron microscopy. Electrical resistivity is found to decrease with increase in doping contents, which is due to increase in carrier concentration and formation of acceptor level inside the energy gap. Reduction in thermal conductivity with increase in Bi content is attributed to scattering of phonons through grain boundaries and mass fluctuation. Maximum figure of merit (ZT ˜ 0.76) was achieved in the Cu3Sb0.98Bi0.02Se3.99Te0.01 sample at 650 K, which is approximately twice of the Cu3SbSe4. The results reveal that the Bi and Te doped Cu3SbSe4 leads to remarkable improvement in its thermoelectric properties.
Investigating annually-resovled natural climate variability during MIS 11 using lacustrine records
NASA Astrophysics Data System (ADS)
Tye, G. J.; Palmer, A. P.; Candy, I.; Coxon, P.; Hardiman, M.
2012-04-01
Marine isotope stage 11 (MIS 11, ca 410,000 yrs BP) is considered to be one of the best analogues for current and future climate change due to the similarity of orbital forcing patterns during these two interglacials. Marine and ice-core records suggest that MIS 11 was a particularly long interglacial, characterised by stable climates. The investigation of high-resolution climate records from MIS 11 can, therefore, allow us to understand how the climate of a Holocene-like interglacial might evolve in the absence of anthropogenic modification. MIS 11 sediments preserved in the palaeolake basin at Marks Tey, eastern England, offer the potential for such a study as they are considered to be annually-laminated (varved) throughout a large part of the interglacial (Turner, 1970, 1975). The lamination sets appear to be comprised, primarily, of three regularly occurring laminae types; 1) authigenic carbonate, 2) diatom blooms, and 3) organic detritus, although there appears to be some variability in the microfacies of these laminations. The carbonate laminations are the key to the study of climate variability during MIS 11, as they represent authigenic carbonate precipitation, consistent with temperature/biologically driven changes in lake chemistry during the summer months. Oxygen isotopic analysis of the carbonate therefore gives a proxy for summer temperature. A period of key interest in the MIS 11 sequence at Marks Tey occurs during the early part of the interglacial, where there is a short-lived increase in grass pollen relative to tree pollen, termed the Non-Arboreal Pollen Zone (NAPZ). The cause of this shift in pollen has been subject to debate, with natural wildfire (Turner, 1970) or climatic deterioration (e.g. Kelly, 1964) being suggested as possible forcing mechanisms. In this study, as well as discussing the main characteristics of the MIS 11 sequence at Marks Tey, we will focus on the sedimentary, micromorphological and geochemical record of the NAPZ. In particular we discuss the potential role of abrupt, sub-Milankovitch, climate cooling in its genesis, whilst highlighting the complexity of ecological and landscape response that such a climatic event may generate. The study concludes by discussing the potential occurrence of 8.2ka-like events in pre-Holocene interglacials.
Clinical Investigation Program.
1987-09-30
Mexico , September 1987. Publications: None ! ~t 4, FAMC A.P.R. (RCS MED 300) Detail Summary Sheet (HSCR 40-23 as amended) (1) Date: 30 Sep 87 (2...Infection: A Prospective Study. Presented: 2nd Annual Symposium of the Rocky Moun-tain Flow Cytometry Users Group, Albuquerque, New Mexico , 10-11...COL, MC (9) Dept/Sv:Pe-at (10) Associate Tnvestigators (lI) Tey WoJr--s: Myron J. Levin, M.D. varicella vaccine U Co. HSC (12) Accumu tEve MEDCASE:* 1
NASA Astrophysics Data System (ADS)
Park, Kee-Ryung; Cho, Hong-Baek; Song, Yoseb; Kim, Seil; Kwon, Young-Tae; Ryu, Seung Han; Lim, Jae-Hong; Lee, Woo-Jin; Choa, Yong-Ho
2018-04-01
A few millimeter-long lead telluride (PbTe) hollow nanofibers with thermoelectric properties was synthesized for the first time with high through manner via three-step sequential process of electrospinning, electrodeposition and cationic exchange reaction. As-synthesized electrospun Ag nanofibers with ultra-long aspect ratio of 10,000 were Te electrodeposited to obtain silver telluride nanotubes and underwent cationic exchange reaction in Pb(NO3)2 solution to obtain polycrystalline PbTe nanotubes with average diameter of 100 nm with 20 nm of wall thickness. Variation of the Ag-to-Pb ratio in the AgxTey-PbTe nanocomposites during the cationic exchange reaction enabled to control the thermoelectric properties of resulting 1D hollow nanofibers. The diameter of Ag nanofiber is the key factor to determine the final dimension of the PbTe nanotubes in the topotactic transformation and the content of Ag ion leads to the enhancement of thermoelectric properties in the AgxTey-PbTe nanocomposites. The synthesized 1D nanocomposite mats showed the highest value of Seebeck coefficient of 433 μV/K (at 300 K) when the remained Ag content was 30%, while the power factor reached highest to 0.567 μW/mK2 for the pure PbTe nanotubes. The enhancement of thermoelectric properties and the composite crystallinity are elucidated with relation to Ag contents in the resulting 1D nanocomposites.
2D XANES-XEOL mapping: observation of enhanced band gap emission from ZnO nanowire arrays
NASA Astrophysics Data System (ADS)
Wang, Zhiqiang; Guo, Xiaoxuan; Sham, Tsun-Kong
2014-05-01
Using 2D XANES-XEOL spectroscopy, it is found that the band gap emission of ZnO nanowire arrays is substantially enhanced i.e. that the intensity ratio between the band gap and defect emissions increases by more than an order of magnitude when the excitation energy is scanned across the O K-edge. Possible mechanisms are discussed.Using 2D XANES-XEOL spectroscopy, it is found that the band gap emission of ZnO nanowire arrays is substantially enhanced i.e. that the intensity ratio between the band gap and defect emissions increases by more than an order of magnitude when the excitation energy is scanned across the O K-edge. Possible mechanisms are discussed. Electronic supplementary information (ESI) available: XEOL spectra with different excitation energies. X-ray attenuation length vs. photon energy. Details of surface defects in ZnO NWs. The second O K-edge and Zn L-edge 2D XANES-XEOL maps. Comparison of the first and second TEY at O K-edge and Zn L-edge scans, respectively. Raman spectra of the ZnO NWs with different IBGE/IDE ratios. See DOI: 10.1039/c4nr01049c
Yan, Yaping; Ao, Lei; Wang, Hong; Duan, Yanchao; Chang, Shaohui; Chen, Bingbing; Zhi, Dalong; Li, Sujuan; Niu, Yuyu; Ji, Weizhi; Si, Wei
2016-11-01
Conventional TRISegg yolk (TEY) freezing medium for the cryopreservation of NHP sperm has the risk of contamination due to widespread zoonotic diseases. This study was aimed at determining the optimal glycerol concentration, freezing rate, and holding time in liquid N2 vapor for the cryopreservation of cynomolgus macaque sperm by using a commercial egg-yolkfree freezing medium (SC medium) designed for human sperm cryopreservation. Sperm motility and acrosomal integrity after freezing were assessed. Sperm in SC medium (dilution ratio, 3:1) frozen at cooling rates of 67 and 183C/min in liquid N2 vapor showed higher post-thaw motility than did samples frozen at 435C/min. At the cooling rate of 183C/min and dilution in SC medium at a 3:1 ratio, post-thaw motility was higher after a holding time of 10 min than after 30 min (recommended by the manufacturer). In addition, post-thaw motility of sperm frozen in SC medium was higher with dilution ratios of 3:1, 4.5:1, and 6:1 compared with 9:1, 10.5:1, and 12:1, and the sample diluted 12:1 showed the lowest percentage of thawed sperm with intact acrosomes. Sperm showed higher post-thaw motility after freezing in TEY than in SC medium; acrosomal integrity did not differ between the 2 media. Our results indicated that cynomolgus macaque sperm can be cryopreserved successfully by using a commercial egg-yolkfree freezing medium, which provides an option for genetic preservation with decreased zoonotic risk in this important NHP species.
Comparing sugar type supplementation for cryopreservation of boar semen in egg yolk based extender.
Malo, C; Gil, L; Gonzalez, N; Cano, R; de Blas, I; Espinosa, E
2010-08-01
Cryopreservation of boar semen is still considered suboptimal due to lower fertility when compared to fresh semen. The aim of this study was to evaluate the effects of the addition of different sugars (lactose, trehalose and glucose) on boar spermatozoa cryopreserved in an egg yolk based extender. Ejaculates were collected from a boar previously selected and semen samples were processed using the straw freezing procedure. In experiment 1, subsamples of semen were frozen in three different extenders: recommended lactose egg yolk extender (LEY); trehalose egg yolk extender (TEY) and glucose egg yolk extender (GEY). Sperm quality was assessed for motility, viability, acrosome integrity and hypoosmotic swelling test response upon collection, after freezing and thawing and then every hour for 3h. Results showed that total motility at 1 and 3h, progressive motility at 3h, positive hypoosmotic response at 2 and 3h and acrosome integrity at all times were significantly improved when trehalose was added to the extender. In experiment 2, sugar influence was also demonstrated in vitro fertilization. A total of 1691 oocytes were in vitro matured and inseminated with frozen-thawed sperm at 2000:1 sperm:oocyte ratio and coincubated for 6h. Presumptive zygotes were cultured in NCSU-23 medium to assess fertilization parameters and embryo development. Both penetration and monospermy rates were significantly higher for trehalose frozen semen. A significant increase was observed in efficiency and blastocyst formation rates from TEY to the other groups. Our results demonstrated that trehalose extender enhances spermatozoa viability and its in vitro fertilization parameters in boar ejaculates with good sperm freezability. Further studies are necessary to assess the impact of sugars on the entire population. (c) 2010 Elsevier Inc. All rights reserved.
Bertani, Ilaria; Rusconi, Laura; Bolognese, Fabrizio; Forlani, Greta; Conca, Barbara; De Monte, Lucia; Badaracco, Gianfranco; Landsberger, Nicoletta; Kilstrup-Nielsen, Charlotte
2006-10-20
Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been identified in patients with Rett syndrome, West syndrome, and X-linked infantile spasms sharing the common features of generally intractable early seizures and mental retardation. Disease-causing mutations are distributed in both the catalytic domain and in the large COOH terminus. In this report, we examine the functional consequences of some Rett mutations of CDKL5 together with some synthetically designed derivatives useful to underline the functional domains of the protein. The mutated CDKL5 derivatives have been subjected to in vitro kinase assays and analyzed for phosphorylation of the TEY (Thr-Glu-Tyr) motif within the activation loop, their subcellular localization, and the capacity of CDKL5 to interact with itself. Whereas wild-type CDKL5 autophosphorylates and mediates the phosphorylation of the methyl-CpG-binding protein 2 (MeCP2) in vitro, Rett-mutated proteins show both impaired and increased catalytic activity suggesting that a tight regulation of CDKL5 is required for correct brain functions. Furthermore, we show that CDKL5 can self-associate and mediate the phosphorylation of its own TEY (Thr-Glu-Tyr) motif. Eventually, we show that the COOH terminus regulates CDKL5 properties; in particular, it negatively influences the catalytic activity and is required for its proper sub-nuclear localization. We propose a model in which CDKL5 phosphorylation is required for its entrance into the nucleus whereas a portion of the COOH-terminal domain is responsible for a stable residency in this cellular compartment probably through protein-protein interactions.
Yan, Yaping; Ao, Lei; Wang, Hong; Duan, Yanchao; Chang, Shaohui; Chen, Bingbing; Zhi, Dalong; Li, Sujuan; Niu, Yuyu; Ji, Weizhi; Si, Wei
2016-01-01
Conventional TRIS–egg yolk (TEY) freezing medium for the cryopreservation of NHP sperm has the risk of contamination due to widespread zoonotic diseases. This study was aimed at determining the optimal glycerol concentration, freezing rate, and holding time in liquid N2 vapor for the cryopreservation of cynomolgus macaque sperm by using a commercial egg-yolk–free freezing medium (SC medium) designed for human sperm cryopreservation. Sperm motility and acrosomal integrity after freezing were assessed. Sperm in SC medium (dilution ratio, 3:1) frozen at cooling rates of –67° and –183°C/min in liquid N2 vapor showed higher post-thaw motility than did samples frozen at –435 °C/min. At the cooling rate of –183 °C/min and dilution in SC medium at a 3:1 ratio, post-thaw motility was higher after a holding time of 10 min than after 30 min (recommended by the manufacturer). In addition, post-thaw motility of sperm frozen in SC medium was higher with dilution ratios of 3:1, 4.5:1, and 6:1 compared with 9:1, 10.5:1, and 12:1, and the sample diluted 12:1 showed the lowest percentage of thawed sperm with intact acrosomes. Sperm showed higher post-thaw motility after freezing in TEY than in SC medium; acrosomal integrity did not differ between the 2 media. Our results indicated that cynomolgus macaque sperm can be cryopreserved successfully by using a commercial egg-yolk–free freezing medium, which provides an option for genetic preservation with decreased zoonotic risk in this important NHP species. PMID:27931311
Mohanta, Tapan Kumar; Arora, Pankaj Kumar; Mohanta, Nibedita; Parida, Pratap; Bae, Hanhong
2015-02-06
Mitogen Activated Protein Kinase (MAPK) signaling is of critical importance in plants and other eukaryotic organisms. The MAPK cascade plays an indispensible role in the growth and development of plants, as well as in biotic and abiotic stress responses. The MAPKs are constitute the most downstream module of the three tier MAPK cascade and are phosphorylated by upstream MAP kinase kinases (MAPKK), which are in turn are phosphorylated by MAP kinase kinase kinase (MAPKKK). The MAPKs play pivotal roles in regulation of many cytoplasmic and nuclear substrates, thus regulating several biological processes. A total of 589 MAPKs genes were identified from the genome wide analysis of 40 species. The sequence analysis has revealed the presence of several N- and C-terminal conserved domains. The MAPKs were previously believed to be characterized by the presence of TEY/TDY activation loop motifs. The present study showed that, in addition to presence of activation loop TEY/TDY motifs, MAPKs are also contain MEY, TEM, TQM, TRM, TVY, TSY, TEC and TQY activation loop motifs. Phylogenetic analysis of all predicted MAPKs were clustered into six different groups (group A, B, C, D, E and F), and all predicted MAPKs were assigned with specific names based on their orthology based evolutionary relationships with Arabidopsis or Oryza MAPKs. We conducted global analysis of the MAPK gene family of plants from lower eukaryotes to higher eukaryotes and analyzed their genomic and evolutionary aspects. Our study showed the presence of several new activation loop motifs and diverse conserved domains in MAPKs. Advance study of newly identified activation loop motifs can provide further information regarding the downstream signaling cascade activated in response to a wide array of stress conditions, as well as plant growth and development.
Evolution of oxygenated cadmium sulfide (CdS:O) during high-temperature CdTe solar cell fabrication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meysing, Daniel M.; Reese, Matthew O.; Warren, Charles W.
Oxygenated cadmium sulfide (CdS:O) produced by reactive sputtering has emerged as a promising alternative to conventional CdS for use as the n-type window layer in CdTe solar cells. Here, complementary techniques are used to expose the window layer (CdS or CdS:O) in completed superstrate devices and combined with a suite of materials characterization to elucidate its evolution during high temperature device processing. During device fabrication amorphous CdS:O undergoes significant interdiffusion with CdTe and recrystallization, forming CdS1-yTey nanocrystals whose Te fraction approaches solubility limits. Significant oxygen remains after processing, concentrated in sulfate clusters dispersed among the CdS1-yTey alloy phase, accounting formore » ~30% of the post-processed window layer based on cross-sectional microscopy. Interdiffusion and recrystallization are observed in devices with un-oxygenated CdS, but to a much lesser extent. Etching experiments suggest that the CdS thickness is minimally changed during processing, but the CdS:O window layer is reduced from 100 nm to 60-80 nm, which is confirmed by microscopy. Alloying reduces the band gap of the CdS:O window layer to 2.15 eV, but reductions in thickness and areal density improve its transmission spectrum, which is well matched to device quantum efficiency. The changes to the window layer in the reactive environments of device fabrication are profoundly different than what occurs by thermal annealing in an inert environment, which produced films with a band gap of 2.4 eV for both CdS and CdS:O. These results illustrate for the first time the significant changes that occur to the window layer during processing that are critical to the performance of CdTe solar cells.« less
Electron-induced electron yields of uncharged insulating materials
NASA Astrophysics Data System (ADS)
Hoffmann, Ryan Carl
Presented here are electron-induced electron yield measurements from high-resistivity, high-yield materials to support a model for the yield of uncharged insulators. These measurements are made using a low-fluence, pulsed electron beam and charge neutralization to minimize charge accumulation. They show charging induced changes in the total yield, as much as 75%, even for incident electron fluences of <3 fC/mm2, when compared to an uncharged yield. The evolution of the yield as charge accumulates in the material is described in terms of electron recapture, based on the extended Chung and Everhart model of the electron emission spectrum and the dual dynamic layer model for internal charge distribution. This model is used to explain charge-induced total yield modification measured in high-yield ceramics, and to provide a method for determining electron yield of uncharged, highly insulating, high-yield materials. A sequence of materials with progressively greater charge susceptibility is presented. This series starts with low-yield Kapton derivative called CP1, then considers a moderate-yield material, Kapton HN, and ends with a high-yield ceramic, polycrystalline aluminum oxide. Applicability of conductivity (both radiation induced conductivity (RIC) and dark current conductivity) to the yield is addressed. Relevance of these results to spacecraft charging is also discussed.
NASA Astrophysics Data System (ADS)
Hoffmann, Ryan; Dennison, J. R.; Abbott, Jonathan
2006-03-01
When incident energetic electrons interact with a material, they excite electrons within the material to escape energies. The electron emission is quantified as the ratio of emitted electrons to incident particle flux, termed electron yield. Measuring the electron yield of insulators is difficult due to dynamic surface charge accumulation which directly affects landing energies and the potential barrier that emitted electrons must overcome. Our recent measurements of highly insulating materials have demonstrated significant changes in total yield curves and yield decay curves for very small electron doses equivalent to a trapped charge density of <10^10 electrons /cm^3. The Chung-Everhart theory provides a basic model for the behavior of the electron emission spectra which we relate to yield decay curves as charge is allowed to accumulate. Yield measurements as a function of dose for polyimide (Kapton^TM) and microcrystalline SiO2 will be presented. We use our data and model to address the question of whether there is a minimal dose threshold at which the accumulated charge no longer affects the yield.
NASA Astrophysics Data System (ADS)
Svimonishvili, Tengiz; Zameroski, Nathan; Gilmore, Mark; Schamiloglu, Edl; Gaudet, John; Yan, Lincan
2004-11-01
Secondary Electron Emission (SEE) results from bombarding materials with electrons, atoms, or ions. The amount of secondary emission depends on factors such as bulk and surface properties of materials, energy of incident particles, and their angle of incidence. Total secondary electron emission yield, defined as the number of secondary electrons ejected per primary electron, is an important material parameter. Materials with high yield find use, for instance, in photomultiplier tubes, whereas materials with low yield, such as graphite, are used for SEE suppression in high-power microwave devices. The lower the SEE yield, the better the performance of high-power microwave devices (for example, gyrotrons). Employing a low-energy electron gun (energy range from 5 eV to 2000 eV), our work aims at characterizing and eventually identifying novel materials (with the lowest possible SEE yield) that will enhance operation and efficiency of high-power microwave devices.
Toburen, L. H.; McLawhorn, S. L.; McLawhorn, R. A.; Carnes, K. D.; Dingfelder, M.; Shinpaugh, J. L.
2013-01-01
Absolute doubly differential electron emission yields were measured from thin films of amorphous solid water (ASW) after the transmission of 6 MeV protons and 19 MeV (1 MeV/nucleon) fluorine ions. The ASW films were frozen on thin (1-μm) copper foils cooled to approximately 50 K. Electrons emitted from the films were detected as a function of angle in both the forward and backward direction and as a function of the film thickness. Electron energies were determined by measuring the ejected electron time of flight, a technique that optimizes the accuracy of measuring low-energy electron yields, where the effects of molecular environment on electron transport are expected to be most evident. Relative electron emission yields were normalized to an absolute scale by comparison of the integrated total yields for proton-induced electron emission from the copper substrate to values published previously. The absolute doubly differential yields from ASW are presented along with integrated values, providing single differential and total electron emission yields. These data may provide benchmark tests of Monte Carlo track structure codes commonly used for assessing the effects of radiation quality on biological effectiveness. PMID:20681805
Primary radical yields in pulse irradiated alkaline aqueous solution
NASA Technical Reports Server (NTRS)
Fielden, E. M.; Hart, E. J.
1969-01-01
Primary radical yields of hydrated electrons, H atoms, and OH radicals are determined by measuring hydrated electron formation following a 4 microsecond pulse of X rays. The pH dependence of free radical yields beyond pH 12 is determined by observation of the hydrated electrons.
Method for resurrecting negative electron affinity photocathodes after exposure to an oxidizing gas
Mulhollan, Gregory A; Bierman, John C
2012-10-30
A method by which negative electron affinity photocathodes (201), single crystal, amorphous, or otherwise ordered, can be made to recover their quantum yield following exposure to an oxidizing gas has been discovered. Conventional recovery methods employ the use of cesium as a positive acting agent (104). In the improved recovery method, an electron beam (205), sufficiently energetic to generate a secondary electron cloud (207), is applied to the photocathode in need of recovery. The energetic beam, through the high secondary electron yield of the negative electron affinity surface (203), creates sufficient numbers of low energy electrons which act on the reduced-yield surface so as to negate the effects of absorbed oxidizing atoms thereby recovering the quantum yield to a pre-decay value.
NASA Technical Reports Server (NTRS)
Simsic, P. L.
1974-01-01
Excitation of neutral atoms by inelastic scattering of incident electrons in gaseous nebulae were investigated using Slater Wave functions to describe the initial and final states of the atom. Total cross sections using the Born Approximation are calculated for: Li(2s yields 2p), Na(3s yields 4p), k(4s yields 4p). The intensity of emitted radiation from gaseous nebulae is also calculated, and Maxwell distribution is employed to average the kinetic energy of electrons.
NASA Astrophysics Data System (ADS)
Paulus, G. G.; Zacher, F.; Walther, H.; Lohr, A.; Becker, W.; Kleber, M.
1998-01-01
Measurements of above-threshold ionization electron spectra in an elliptically polarized field as a function of the ellipticity are presented. In the rescattering regime, electron yields quickly drop with increasing ellipticity. The yields of lower-energy electrons rise again when circular polarization is approached. A classical explanation for these effects is provided. Additional local maxima in the yields of lower-energy electrons can be interpreted as being due to interferences of electron trajectories that tunnel out at different times within one cycle of the field.
NASA Technical Reports Server (NTRS)
Dennison, J. R.; Thomson, C. D.; Kite, J.; Zavyalov, V.; Corbridge, Jodie
2004-01-01
In an effort to improve the reliability and versatility of spacecraft charging models designed to assist spacecraft designers in accommodating and mitigating the harmful effects of charging on spacecraft, the NASA Space Environments and Effects (SEE) Program has funded development of facilities at Utah State University for the measurement of the electronic properties of both conducting and insulating spacecraft materials. We present here an overview of our instrumentation and capabilities, which are particularly well suited to study electron emission as related to spacecraft charging. These measurements include electron-induced secondary and backscattered yields, spectra, and angular resolved measurements as a function of incident energy, species and angle, plus investigations of ion-induced electron yields, photoelectron yields, sample charging and dielectric breakdown. Extensive surface science characterization capabilities are also available to fully characterize the samples in situ. Our measurements for a wide array of conducting and insulating spacecraft materials have been incorporated into the SEE Charge Collector Knowledge-base as a Database of Electronic Properties of Materials Applicable to Spacecraft Charging. This Database provides an extensive compilation of electronic properties, together with parameterization of these properties in a format that can be easily used with existing spacecraft charging engineering tools and with next generation plasma, charging, and radiation models. Tabulated properties in the Database include: electron-induced secondary electron yield, backscattered yield and emitted electron spectra; He, Ar and Xe ion-induced electron yields and emitted electron spectra; photoyield and solar emittance spectra; and materials characterization including reflectivity, dielectric constant, resistivity, arcing, optical microscopy images, scanning electron micrographs, scanning tunneling microscopy images, and Auger electron spectra. Further details of the instrumentation used for insulator measurements and representative measurements of insulating spacecraft materials are provided in other Spacecraft Charging Conference presentations. The NASA Space Environments and Effects Program, the Air Force Office of Scientific Research, the Boeing Corporation, NASA Graduate Research Fellowships, and the NASA Rocky Mountain Space Grant Consortium have provided support.
Secondary electron emission yield from high aspect ratio carbon velvet surfaces
Jin, Chenggang; Ottaviano, Angelica; Raitses, Yevgeny
2017-11-01
The plasma electrons bombarding a plasma-facing wall surface can induce secondary electron emission (SEE) from the wall. A strong SEE can enhance the power losses by reducing the wall sheath potential and thereby increasing the electron flux from the plasma to the wall. The use of the materials with surface roughness and the engineered materials with surface architecture is known to reduce the effective SEE by trapping the secondary electrons. In this work, we demonstrate a 65% reduction of SEE yield using a velvet material consisting of high aspect ratio carbon fibers. The measurements of SEE yield for different velvetmore » samples using the electron beam in vacuum demonstrate the dependence of the SEE yield on the fiber length and the packing density, which is strongly affected by the alignment of long velvet fibers with respect to the electron beam impinging on the velvet sample. Furthermore, the results of SEE measurements support the previous observations of the reduced SEE measured in Hall thrusters.« less
Zeng, Lixia; Zhou, Xianming; Cheng, Rui; Wang, Xing; Ren, Jieru; Lei, Yu; Ma, Lidong; Zhao, Yongtao; Zhang, Xiaoan; Xu, Zhongfeng
2017-07-25
Secondary electron emission yield from the surface of SiC ceramics induced by Xe 17+ ions has been measured as a function of target temperature and incident energy. In the temperature range of 463-659 K, the total yield gradually decreases with increasing target temperature. The decrease is about 57% for 3.2 MeV Xe 17+ impact, and about 62% for 4.0 MeV Xe 17+ impact, which is much larger than the decrease observed previously for ion impact at low charged states. The yield dependence on the temperature is discussed in terms of work function, because both kinetic electron emission and potential electron emission are influenced by work function. In addition, our experimental data show that the total electron yield gradually increases with the kinetic energy of projectile, when the target is at a constant temperature higher than room temperature. This result can be explained by electronic stopping power which plays an important role in kinetic electron emission.
Secondary electron emission yield from high aspect ratio carbon velvet surfaces
NASA Astrophysics Data System (ADS)
Jin, Chenggang; Ottaviano, Angelica; Raitses, Yevgeny
2017-11-01
The plasma electrons bombarding a plasma-facing wall surface can induce secondary electron emission (SEE) from the wall. A strong SEE can enhance the power losses by reducing the wall sheath potential and thereby increasing the electron flux from the plasma to the wall. The use of the materials with surface roughness and the engineered materials with surface architecture is known to reduce the effective SEE by trapping the secondary electrons. In this work, we demonstrate a 65% reduction of SEE yield using a velvet material consisting of high aspect ratio carbon fibers. The measurements of SEE yield for different velvet samples using the electron beam in vacuum demonstrate the dependence of the SEE yield on the fiber length and the packing density, which is strongly affected by the alignment of long velvet fibers with respect to the electron beam impinging on the velvet sample. The results of SEE measurements support the previous observations of the reduced SEE measured in Hall thrusters.
Enhanced electron yield from laser-driven wakefield acceleration in high-Z gas jets.
Mirzaie, Mohammad; Hafz, Nasr A M; Li, Song; Liu, Feng; He, Fei; Cheng, Ya; Zhang, Jie
2015-10-01
An investigation of the electron beam yield (charge) form helium, nitrogen, and neon gas jet plasmas in a typical laser-plasma wakefield acceleration experiment is carried out. The charge measurement is made by imaging the electron beam intensity profile on a fluorescent screen into a charge coupled device which was cross-calibrated with an integrated current transformer. The dependence of electron beam charge on the laser and plasma conditions for the aforementioned gases are studied. We found that laser-driven wakefield acceleration in low Z-gas jet targets usually generates high-quality and well-collimated electron beams with modest yields at the level of 10-100 pC. On the other hand, filamentary electron beams which are observed from high-Z gases at higher densities reached much higher yields. Evidences for cluster formation were clearly observed in the nitrogen gas jet target, where we received the highest electron beam charge of ∼1.7 nC. Those intense electron beams will be beneficial for the applications on the generation of bright X-rays, gamma rays radiations, and energetic positrons via the bremsstrahlung or inverse-scattering processes.
Secondary Electron Emission Materials for Transmission Dynodes in Novel Photomultipliers: A Review
Tao, Shu Xia; Chan, Hong Wah; van der Graaf, Harry
2016-01-01
Secondary electron emission materials are reviewed with the aim of providing guidelines for the future development of novel transmission dynodes. Materials with reflection secondary electron yield higher than three and transmission secondary electron yield higher than one are tabulated for easy reference. Generations of transmission dynodes are listed in the order of the invention time with a special focus on the most recent atomic-layer-deposition synthesized transmission dynodes. Based on the knowledge gained from the survey of secondary election emission materials with high secondary electron yield, an outlook of possible improvements upon the state-of-the-art transmission dynodes is provided. PMID:28774137
Secondary electron emission from textured surfaces
NASA Astrophysics Data System (ADS)
Huerta, C. E.; Patino, M. I.; Wirz, R. E.
2018-04-01
In this work, a Monte Carlo model is used to investigate electron induced secondary electron emission for varying effects of complex surfaces by using simple geometric constructs. Geometries used in the model include: vertical fibers for velvet-like surfaces, tapered pillars for carpet-like surfaces, and a cage-like configuration of interlaced horizontal and vertical fibers for nano-structured fuzz. The model accurately captures the secondary electron emission yield dependence on incidence angle. The model shows that unlike other structured surfaces previously studied, tungsten fuzz exhibits secondary electron emission yield that is independent of primary electron incidence angle, due to the prevalence of horizontally-oriented fibers in the fuzz geometry. This is confirmed with new data presented herein of the secondary electron emission yield of tungsten fuzz at incidence angles from 0-60°.
Electron Emission Properties of Insulator Materials Pertinent to the International Space Station
NASA Technical Reports Server (NTRS)
Thomson, C. D.; Zavyalov, V.; Dennison, J. R.; Corbridge, Jodie
2004-01-01
We present the results of our measurements of the electron emission properties of selected insulating and conducting materials used on the International Space Station (ISS). Utah State University (USU) has performed measurements of the electron-, ion-, and photon-induced electron emission properties of conductors for a few years, and has recently extended our capabilities to measure electron yields of insulators, allowing us to significantly expand current spacecraft material charging databases. These ISS materials data are used here to illustrate our various insulator measurement techniques that include: i) Studies of electron-induced secondary and backscattered electron yield curves using pulsed, low current electron beams to minimize deleterious affects of insulator charging. ii) Comparison of several methods used to determine the insulator 1st and 2nd crossover energies. These incident electron energies induce unity total yield at the transition between yields greater than and less than one with either negative or positive charging, respectively. The crossover energies are very important in determining both the polarity and magnitude of spacecraft surface potentials. iii) Evolution of electron emission energy spectra as a function of insulator charging used to determine the surface potential of insulators. iv) Surface potential evolution as a function of pulsed-electron fluence to determine how quickly insulators charge, and how this can affect subsequent electron yields. v) Critical incident electron energies resulting in electrical breakdown of insulator materials and the effect of breakdown on subsequent emission, charging and conduction. vi) Charge-neutralization techniques such as low-energy electron flooding and UV light irradiation to dissipate both positive and negative surface potentials during yield measurements. Specific ISS materials being tested at USU include chromic and sulfuric anodized aluminum, RTV-silicone solar array adhesives, solar cell cover glasses, Kapton, and gold. Further details of the USU testing facilities, the instrumentation used for insulator measurements, and the NASA/SEE Charge Collector materials database are provided in other Spacecraft Charging Conference presentations (Dennison, 2003b). The work presented was supported in part by the NASA Space Environments and Effects (SEE) Program, the Boeing Corporation, and a NASA Graduate Fellowship. Samples were supplied by Boeing, the Environmental Effects Group at Marshall Space Flight Center, and Sheldahl, Inc.
NASA Astrophysics Data System (ADS)
Vaz, R.; May, P. W.; Fox, N. A.; Harwood, C. J.; Chatterjee, V.; Smith, J. A.; Horsfield, C. J.; Lapington, J. S.; Osbourne, S.
2015-03-01
Diamond-based photomultipliers have the potential to provide a significant improvement over existing devices due to diamond's high secondary electron yield and narrow energy distribution of secondary electrons which improves energy resolution creating extremely fast response times. In this paper we describe an experimental apparatus designed to study secondary electron emission from diamond membranes only 400 nm thick, observed in reflection and transmission configurations. The setup consists of a system of calibrated P22 green phosphor screens acting as radiation converters which are used in combination with photomultiplier tubes to acquire secondary emission yield data from the diamond samples. The superior signal voltage sampling of the phosphor screen setup compared with traditional Faraday Cup detection allows the variation in the secondary electron yield across the sample to be visualised, allowing spatial distributions to be obtained. Preliminary reflection and transmission yield data are presented as a function of primary electron energy for selected CVD diamond films and membranes. Reflection data were also obtained from the same sample set using a Faraday Cup detector setup. In general, the curves for secondary electron yield versus primary energy for both measurement setups were comparable. On average a 15-20% lower signal was recorded on our setup compared to the Faraday Cup, which was attributed to the lower photoluminescent efficiency of the P22 phosphor screens when operated at sub-kilovolt bias voltages.
Joly, Laure; Antoine, Rodolphe; Broyer, Michel; Lemoine, Jérôme; Dugourd, Philippe
2008-02-07
Electron detachment from peptide dianions is studied as a function of the laser wavelength. The first step for the detachment is a resonant electronic excitation of the dianions. Electronic excitation spectra are reported for three peptides, including gramicidin. A comparative study of the detachment yield for 13 peptides was performed at 260 nm and at 220 nm. At 260 nm, the detachment yield is mainly driven by the sum of the absorption coefficients of the aromatic amino acids that are contained in the peptide. At 220 nm, no direct relation is observed between the electron photodetachement yields and the sum of absorption efficiencies. At this wavelength, the sequence and the structure of the peptide may have an influence on the photodetachment process.
Modeling of reduced effective secondary electron emission yield from a velvet surface
Swanson, Charles; Kaganovich, Igor D.
2016-12-05
Complex structures on a material surface can significantly reduce total secondary electron emission from that surface. A velvet is a surface that consists of an array of vertically standing whiskers. The reduction occurs due to the capture of low-energy, true secondary electrons emitted at the bottom of the structure and on the sides of the velvet whiskers. We performed numerical simulations and developed an approximate analytical model that calculates the net secondary electron emission yield from a velvet surface as a function of the velvet whisker length and packing density, and the angle of incidence of primary electrons. We foundmore » that to suppress secondary electrons, the following condition on dimensionless parameters must be met: (π/2) DΑ tan θ >> 1, where theta is the angle of incidence of the primary electron from the normal, D is the fraction of surface area taken up by the velvet whisker bases, and A is the aspect ratio, A = h/r, the ratio of height to radius of the velvet whiskers. We find that velvets available today can reduce the secondary electron yield by 90% from the value of a flat surface. As a result, the values of optimal velvet whisker packing density that maximally suppresses the secondary electron emission yield are determined as a function of velvet aspect ratio and the electron angle of incidence.« less
A new electronic meter for measuring herbage yield
Donald L. Neal; Lee R. Neal
1965-01-01
A new electronic instrument, called the Heterodyne Vegetation Meter to measure herbage yield and utilization was built and tested. The instrument proved to be reliable and rapid. Further testing will be conducted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pivi, M.T.F.; Collet, G.; King, F.
Beam instability caused by the electron cloud has been observed in positron and proton storage rings and it is expected to be a limiting factor in the performance of the positron Damping Ring (DR) of future Linear Colliders (LC) such as ILC and CLIC. To test a series of promising possible electron cloud mitigation techniques as surface coatings and grooves, in the Positron Low Energy Ring (LER) of the PEP-II accelerator, we have installed several test vacuum chambers including (i) a special chamber to monitor the variation of the secondary electron yield of technical surface materials and coatings under themore » effect of ion, electron and photon conditioning in situ in the beam line; (ii) chambers with grooves in a straight magnetic-free section; and (iii) coated chambers in a dedicated newly installed 4-magnet chicane to study mitigations in a magnetic field region. In this paper, we describe the ongoing R&D effort to mitigate the electron cloud effect for the LC damping ring, focusing on the first experimental area and on results of the reduction of the secondary electron yield due to in situ conditioning.« less
Plasma-screening effects on the electron-impact excitation of hydrogenic ions in dense plasmas
NASA Technical Reports Server (NTRS)
Jung, Young-Dae
1993-01-01
Plasma-screening effects are investigated on electron-impact excitation of hydrogenic ions in dense plasmas. Scaled cross sections Z(exp 4) sigma for 1s yields 2s and 1s yields 2p are obtained for a Debye-Hueckel model of the screened Coulomb interaction. Ground and excited bound wave functions are modified in the screened Coulomb potential (Debye-Hueckel model) using the Ritz variation method. The resulting atomic wave functions and their eigenenergies agree well with the numerical and high-order perturbation theory calculations for the interesting domain of the Debye length not less than 10. The Born approximation is used to describe the continuum states of the projectile electron. Plasma screening effects on the atomic electrons cannot be neglected in the high-density cases. Including these effects, the cross sections are appreciably increased for 1s yields 2s transitions and decreased for 1s yields 2p transitions.
High-yield positron systems for linear colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clendenin, J.E.
1989-04-01
Linear colliders, such as the SLC, are among those accelerators for which a high-yield positron source operating at the repetition rate of the accelerator is desired. The SLC, having electron energies up to 50 GeV, presents the possibility of generating positron bunches with useful charge even exceeding that of the initial electron bunch. The exact positron yield to be obtained depends on the particular capture, transport and damping system employed. Using 31 GeV electrons impinging on a W-type converter phase-space at the target to the acceptance of the capture rf section, the SLC source is capable of producing, for everymore » electron, up to two positrons within the acceptance of the positron damping ring. The design of this source and the performance of the positron system as built are described. Also, future prospects and limitations for high-yield positron systems are discussed. 11 refs., 5 figs., 3 tabs.« less
Comparative analysis of the secondary electron yield from carbon nanoparticles and pure water medium
NASA Astrophysics Data System (ADS)
Verkhovtsev, Alexey; McKinnon, Sally; de Vera, Pablo; Surdutovich, Eugene; Guatelli, Susanna; Korol, Andrei V.; Rosenfeld, Anatoly; Solov'yov, Andrey V.
2015-04-01
The production of secondary electrons generated by carbon nanoparticles and pure water medium irradiated by fast protons is studied by means of model approaches and Monte Carlo simulations. It is demonstrated that due to a prominent collective response to an external field, the nanoparticles embedded in the medium enhance the yield of low-energy electrons. The maximal enhancement is observed for electrons in the energy range where plasmons, which are excited in the nanoparticles, play the dominant role. Electron yield from a solid carbon nanoparticle composed of fullerite, a crystalline form of C60 fullerene, is demonstrated to be several times higher than that from liquid water. Decay of plasmon excitations in carbon-based nanosystems thus represents a mechanism of increase of the low-energy electron yield, similar to the case of sensitizing metal nanoparticles. This observation gives a hint for investigation of novel types of sensitizers to be composed of metallic and organic parts. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey V. Solov'yov, Nigel Mason, Gustavo García and Eugene Surdutovich.
Acharya, Santhosh; Bhat, N N; Joseph, Praveen; Sanjeev, Ganesh; Sreedevi, B; Narayana, Y
2011-05-01
The effects of single pulses and multiple pulses of 7 MV electrons on micronuclei (MN) induction in cytokinesis-blocked human peripheral blood lymphocytes (PBLs) were investigated over a wide range of dose rates per pulse (instantaneous dose rate). PBLs were exposed to graded doses of 2, 3, 4, 6, and 8 Gy of single electron pulses of varying pulse widths at different dose rates per pulse, ranging from 1 × 10(6) Gy s(-1) to 3.2 × 10(8) Gy s(-1). Different dose rates per pulse were achieved by changing the dose per electron pulse by adjusting the beam current and pulse width. MN yields per unit absorbed dose after irradiation with single electron pulses were compared with those of multiple pulses of electrons. A significant decrease in the MN yield with increasing dose rates per pulse was observed, when dose was delivered by a single electron pulse. However, no reduction in the MN yield was observed when dose was delivered by multiple pulses of electrons. The decrease in the yield at high dose rates per pulse suggests possible radical recombination, which leads to decreased biological damage. Cellular response to the presence of very large numbers of chromosomal breaks may also alter the damage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ki, Dae-Han; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr
We investigate the electronic transitions X {sup 1}{Sigma}{sup +} {sub g} {yields} b {sup 3}{Sigma} {sub u} {sup +}, X {sup 1}{Sigma}{sup +} {sub g} {yields} a {sup 3}{Sigma} {sub g} {sup +}, and X {sup 1}{Sigma}{sup +} {sub g} {yields} B {sup 1}{Sigma} {sub u} {sup +} of molecular hydrogen by studying electron impacts in astrophysical Lorentzian plasmas. Useful fitting formulae for the X {sup 1}{Sigma}{sup +} {sub g} {yields} b {sup 3}{Sigma} {sub u} {sup +}, X {sup 1}{Sigma}{sup +} {sub g} {yields} a {sup 3}{Sigma} {sub g} {sup +}, and X {sup 1}{Sigma}{sup +} {sub g} {yields}more » B {sup 1}{Sigma} {sub u} {sup +} excitation cross sections are employed in order to obtain the electronic excitation rate coefficients of H{sub 2} as functions of the spectral index and temperature. In low-temperature regions, it is found that the excitation rate coefficients R{sub b{sup 3}{Sigma}{sub u{sup {sub +}}}}, R{sub a{sup 3}{Sigma}{sub g{sup {sub +}}}}, and R{sub B{sub {sup 1}{Sigma}{sub u{sup {sub +}}}}} of H{sub 2} in non-Maxwellian plasmas are smaller than those in Maxwellian plasmas. However, in high-temperature regions, the excitation rate coefficients of H{sub 2} in non-Maxwellian plasmas are greater than those in Maxwellian plasmas. It is also shown that the X {sup 1}{Sigma}{sup +} {sub g} {yields} b {sup 3}{Sigma} {sub u} {sup +} excitation rate coefficient is the main contributor in low-temperature regions. In contrast, it is found that the X {sup 1}{Sigma}{sup +} {sub g} {yields} B {sup 1}{Sigma} {sub u} {sup +} electronic excitation is dominant in high-temperature regions.« less
NASA Astrophysics Data System (ADS)
Poškus, A.
2016-09-01
This paper evaluates the accuracy of the single-event (SE) and condensed-history (CH) models of electron transport in MCNP6.1 when simulating characteristic Kα, total K (=Kα + Kβ) and Lα X-ray emission from thick targets bombarded by electrons with energies from 5 keV to 30 keV. It is shown that the MCNP6.1 implementation of the CH model for the K-shell impact ionization leads to underestimation of the K yield by 40% or more for the elements with atomic numbers Z < 15 and overestimation of the Kα yield by more than 40% for the elements with Z > 25. The Lα yields are underestimated by more than an order of magnitude in CH mode, because MCNP6.1 neglects X-ray emission caused by electron-impact ionization of L, M and higher shells in CH mode (the Lα yields calculated in CH mode reflect only X-ray fluorescence, which is mainly caused by photoelectric absorption of bremsstrahlung photons). The X-ray yields calculated by MCNP6.1 in SE mode (using ENDF/B-VII.1 library data) are more accurate: the differences of the calculated and experimental K yields are within the experimental uncertainties for the elements C, Al and Si, and the calculated Kα yields are typically underestimated by (20-30)% for the elements with Z > 25, whereas the Lα yields are underestimated by (60-70)% for the elements with Z > 49. It is also shown that agreement of the experimental X-ray yields with those calculated in SE mode is additionally improved by replacing the ENDF/B inner-shell electron-impact ionization cross sections with the set of cross sections obtained from the distorted-wave Born approximation (DWBA), which are also used in the PENELOPE code system. The latter replacement causes a decrease of the average relative difference of the experimental X-ray yields and the simulation results obtained in SE mode to approximately 10%, which is similar to accuracy achieved with PENELOPE. This confirms that the DWBA inner-shell impact ionization cross sections are significantly more accurate than the corresponding ENDF/B cross sections when energy of incident electrons is of the order of the binding energy.
Degradation spectra and ionization yields of electrons in gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inokuti, M.; Douthat, D.A.; Rau, A.R.P.
1975-01-01
Progress in the microscopic theory of electron degradation in gases by Platzman, Fano, and co-workers is outlined. The theory consists of (1) the cataloging of all major inelastic-collision cross sections for electrons (including secondary-electron energy distribution in a single ionizing collision) and (2) the evaluation of cumulative consequences of individual electron collisions for the electrons themselves as well as for target molecules. For assessing the data consistency and reliability and extrapolating the data to the unexplored ranges of variables (such as electron energy), a series of plots devised by Platzman are very powerful. Electron degradation spectra were obtained through numericalmore » solution of the Spencer--Fano equation for all electron energies down to the first ionization thresholds for a few examples such as He and Ne. The systematics of the solutions resulted in the recognition of approximate scaling properties of the degradation spectra for different initial electron energies and pointed to new methods of more efficient treatment. Systematics of the ionization yields and their energy dependence on the initial electron energy were also recognized. Finally, the Spencer--Fano equation for the degradation spectra and the Fowler equation for the ionization and other yields are tightly linked with each other by a set of variational principles. (52 references, 7 figures) (DLC)« less
Modeling of reduced secondary electron emission yield from a foam or fuzz surface
Swanson, Charles; Kaganovich, Igor D.
2018-01-10
Complex structures on a material surface can significantly reduce the total secondary electron emission yield from that surface. A foam or fuzz is a solid surface above which is placed a layer of isotropically aligned whiskers. Primary electrons that penetrate into this layer produce secondary electrons that become trapped and do not escape into the bulk plasma. In this manner the secondary electron yield (SEY) may be reduced. We developed an analytic model and conducted numerical simulations of secondary electron emission from a foam to determine the extent of SEY reduction. We find that the relevant condition for SEY minimization ismore » $$\\bar{u}$$≡AD/2>>1 while D <<1, where D is the volume fill fraction and A is the aspect ratio of the whisker layer, the ratio of the thickness of the layer to the radius of the fibers. As a result, we find that foam cannot reduce the SEY from a surface to less than 0.3 of its flat value.« less
Modeling of reduced secondary electron emission yield from a foam or fuzz surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanson, Charles; Kaganovich, Igor D.
Complex structures on a material surface can significantly reduce the total secondary electron emission yield from that surface. A foam or fuzz is a solid surface above which is placed a layer of isotropically aligned whiskers. Primary electrons that penetrate into this layer produce secondary electrons that become trapped and do not escape into the bulk plasma. In this manner the secondary electron yield (SEY) may be reduced. We developed an analytic model and conducted numerical simulations of secondary electron emission from a foam to determine the extent of SEY reduction. We find that the relevant condition for SEY minimization ismore » $$\\bar{u}$$≡AD/2>>1 while D <<1, where D is the volume fill fraction and A is the aspect ratio of the whisker layer, the ratio of the thickness of the layer to the radius of the fibers. As a result, we find that foam cannot reduce the SEY from a surface to less than 0.3 of its flat value.« less
Laane, Colja; Willner, Itamar; Otvos, John W.; Calvin, Melvin
1981-01-01
The effectiveness of negatively charged colloidal SiO2 particles in controlling photosensitized electron transfer reactions has been studied and compared with that of the negatively charged sodium lauryl sulfate (NaLauSO4) micellar system. In particular, the photosensitized reduction of the zwitterionic electron acceptor propylviologen sulfonate (PVS0) with tris(2,2′-bipyridinium)ruthenium(II) [Ru(bipy)32+] as the sensitizer and triethanolamine as the electron donor is found to have a quantum yield of 0.033 for formation of the radical anion (PVS[unk]) in the SiO2 colloid compared with 0.005 in the homogeneous system and 0.0086 in a NaLauSO4 micellar solution. The higher quantum yields obtained with the SiO2 colloidal system are attributed to substantial stabilization against back reaction of the intermediate photoproducts—i.e., Ru(bipy)33+ and PVS[unk]—by electrostatic repulsion of the reduced electron acceptor from the negatively charged particle surface. The binding properties of the SiO2 particles and NaLauSO4 micelles were investigated by flow dialysis. The results show that the sensitizer binds to both interfaces and that the SiO2 interface is characterized by a much higher surface potential than the micellar interface (≈-170 mV vs. -85 mV). The effect of ionic strength on the surface potential was estimated from the Gouy-Chapman theory, and the measured quantum yields of photosensitized electron transfer were correlated with surface potential at different ionic strengths. This correlation shows that the quantum yield is not affected by surface potentials smaller than ≈-40 mV. At larger potentials, the quantum yield increases rapidly. The quantum yield obtained in the micellar system at different strengths fits nicely on the correlation curve for the colloid SiO2 system. These results indicate that the surface potential is the dominant factor in the quantum yield improvement for PVS0 reduction. PMID:16593095
NASA Technical Reports Server (NTRS)
Green, A. E. S.; Singhal, R. P.
1979-01-01
An analytic representation for the spatial (radial and longitudinal) yield spectra is developed in terms of a model containing three simple 'microplumes'. The model is applied to electron energy degradation in molecular nitrogen gas for 0.1 to 5 keV incident electrons. From the nature of the cross section input to this model it is expected that the scaled spatial yield spectra for other gases will be quite similar. The model indicates that each excitation, ionization, etc. plume should have its individual spatial and energy dependence. Extensions and aeronomical and radiological applications of the model are discussed.
NASA Astrophysics Data System (ADS)
Huels, M. A.; Parenteau, L.; Sanche, L.
1994-03-01
We present measurements of O- electron stimulated desorption yields obtained under identical experimental conditions from 0.15 monolayers (ML) of O2 deposited onto disordered substrates consisting of 4 ML of either Kr, Xe, C2H6, C2H4, N2O, CH3Cl, or H2O, all condensed on Pt (polycrystalline). The resulting O- yield functions, for incident electron energies below 20 eV, are compared to that obtained from the O2/Kr solid; this allows us to assess the order of magnitude effects of the local substrate environment on dissociative electron attachment (DEA) via the 2Πu and gas phase forbidden 2Σ+g,u resonances of O-2. We note that, in addition to electron energy losses in the substrate prior to DEA to O2 and post-dissociation interactions of the O- with the substrate molecules, charge or energy transfer from the O-2 transient anion to a substrate molecule, and capture of the incident electron into a dissociative anion resonance of the substrate molecule may contribute to a reduced O- yield from the physisorbed O2. In the case of O2 deposited on amorphous ice, we find that the O- signal from DEA to O2 is completely absent for electron energies below 14 eV; we attribute this to a complete quenching of the dissociative O-2(2Πu, 2Σ+) resonances by the adjacent water molecules.
Current-Driven Hydrogen Desorption from Graphene: Experiment and Theory.
Gao, Li; Pal, Partha Pratim; Seideman, Tamar; Guisinger, Nathan P; Guest, Jeffrey R
2016-02-04
Electron-stimulated desorption of hydrogen from the graphene/SiC(0001) surface at room temperature was investigated with ultrahigh vacuum scanning tunneling microscopy and ab initio calculations in order to elucidate the desorption mechanisms and pathways. Two different desorption processes were observed. In the high electron energy regime (4-8 eV), the desorption yield is independent of both voltage and current, which is attributed to the direct electronic excitation of the C-H bond. In the low electron energy regime (2-4 eV), however, the desorption yield exhibits a threshold dependence on voltage, which is explained by the vibrational excitation of the C-H bond via transient ionization induced by inelastic tunneling electrons. The observed current independence of the desorption yield suggests that the vibrational excitation is a single-electron process. We also observed that the curvature of graphene dramatically affects hydrogen desorption. Desorption from concave regions was measured to be much more probable than desorption from convex regions in the low electron energy regime (∼2 eV), as would be expected from the identified desorption mechanism.
Ulloa, Jesus G; Russell, Marika D; Chen, Alice Hm; Tuot, Delphine S
2017-06-23
Electronic consultation (eConsult) systems have enhanced access to specialty expertise and enhanced care coordination among primary care and specialty care providers, while maintaining high primary care provider (PCP), specialist and patient satisfaction. Little is known about their impact on the efficiency of specialty care delivery, in particular surgical yield (percent of ambulatory visits resulting in a scheduled surgical case). Retrospective cohort of a random selection of 150 electronic consults from PCPs to a safety-net general surgery clinic for the three most common general surgery procedures (herniorrhaphy, cholecystectomy, anorectal procedures) in 2014. Electronic consultation requests were reviewed for the presence/absence of consult domains: symptom acuity/severity, diagnostic evaluation, concurrent medical conditions, and attempted diagnosis. Logic regression was used to examine the association between completeness of consult requests and scheduling an ambulatory clinic visit. Surgical yield was also calculated, as was the percentage of patients requiring unanticipated healthcare visits. In 2014, 1743 electronic consultations were submitted to general surgery. Among the 150 abstracted, the presence of consult domains ranged from 49% to 99%. Consult completeness was not associated with greater likelihood of scheduling an ambulatory visit. Seventy-six percent of consult requests (114/150) were scheduled for a clinic appointment and surgical yield was 46%; without an eConsult system, surgical yield would have been 35% (p=0.07). Among patients not scheduled for a clinic visit (n=36), 4 had related unanticipated emergency department visits. Econsult systems can be used to safely optimize the surgical yield of a safety-net general surgery service.
Impurity sputtering from the guard limiter of the lower hybrid wave antenna in a tokamak
NASA Astrophysics Data System (ADS)
Ou, Jing; Xiang, Nong; Men, Zongzheng
2018-01-01
The hot spots on the guard limiter of the lower hybrid wave (LHW) antenna in a tokamak were believed to be associated with the energetic electrons produced by the wave-plasma interaction, leading to a sudden increase of impurity influx and even ending with disruption. To investigate the carbon sputtering from the guard limiter of the LHW antenna, the impurity sputtering yield is calculated by coupling the module of Plasma Surface Interaction [Warrier et al., Comput. Phys. Commun. 46, 160 (2004)] with the models for the sheath of plasma containing energetic electron and for the material heat transport. It is found that the presence of a small population of energetic electrons can change significantly the impurity sputtering yield, as a result of the sheath potential modification. For the typical plasma parameters in the current tokamak, with an increase in the energetic electron component, the physical sputtering yield reaches its maximum and then decreases slowly, while the chemical sputtering yield demonstrates a very sharp increase and then decreases rapidly. In addition, effects of the ion temperature and background electron density on the impurity sputtering are also discussed.
The dissociative recombination of O2(+) - The quantum yield of O(1S) and O(1D)
NASA Technical Reports Server (NTRS)
Abreu, V. J.; Solomon, S. C.; Sharp, W. E.; Hays, P. B.
1983-01-01
Data from the visible airglow experiment on the Atmosphere Explorer-E satellite have been used to determine the quantum yield of O(1S) and O(1D) from the dissociative recombination of O2(+). A range of values between 0.09 and 0.23 has been obtained for the quantum yield of O(1S). It is shown that the quantum yield of O(1S) depends on the ratio of electron density to atomic oxygen density. This suggests that the quantum yield of O(1S) may depend on the degree of vibrational excitation of the recombining O2(+). The quantum yield of O(1D) has been measured to be 1.23 + or - 0.42, with no dependence on the electron-oxygen ratio.
Ion induced electron emission statistics under Agm- cluster bombardment of Ag
NASA Astrophysics Data System (ADS)
Breuers, A.; Penning, R.; Wucher, A.
2018-05-01
The electron emission from a polycrystalline silver surface under bombardment with Agm- cluster ions (m = 1, 2, 3) is investigated in terms of ion induced kinetic excitation. The electron yield γ is determined directly by a current measurement method on the one hand and implicitly by the analysis of the electron emission statistics on the other hand. Successful measurements of the electron emission spectra ensure a deeper understanding of the ion induced kinetic electron emission process, with particular emphasis on the effect of the projectile cluster size to the yield as well as to emission statistics. The results allow a quantitative comparison to computer simulations performed for silver atoms and clusters impinging onto a silver surface.
NASA Astrophysics Data System (ADS)
Du, L. C.; Xi, W. D.; Zhang, J. B.; Matsuzaki, H.; Furube, A.
2018-06-01
Photoinduced electron transfer from gold nanoparticles (NPs) to semiconductor under plasmon excitation is an important phenomenon in photocatalysis and solar cell applications. Femtosecond plasmon-induced electron transfer from gold NPs to the conduction band of different semiconductor like TiO2, SnO2, and ZnO was monitored at 3440 nm upon optical excitation of the surface plasmon band of gold NPs. It was found that electron injection was completed within 240 fs and the electron injection yield reached 10-30% under 570 nm excitation. It means TiO2 is not the only proper semiconductor as electron acceptors in such gold/semiconductor nanoparticle systems.
Cisplatin Radiosensitization of DNA Irradiated with 2-20 eV Electrons: Role of Transient Anions.
Bao, Qianhong; Chen, Yunfeng; Zheng, Yi; Sanche, Léon
2014-06-20
Platinum chemotherapeutic agents, such as cisplatin ( cis -diamminedichloroplatinum(II)), can act as radiosensitizers when bound covalently to nuclear DNA in cancer cells. This radiosensitization is largely due to an increase in DNA damage induced by low-energy secondary electrons, produced in large quantities by high-energy radiation. We report the yields of single- and double-strand breaks (SSB and DSB) and interduplex cross-links (CL) induced by electrons of 1.6-19.6 eV (i.e., the yield functions) incident on 5 monolayer (ML) films of cisplatin-DNA complexes. These yield functions are compared with those previously recorded with 5 ML films of unmodified plasmid DNA. Binding of five cisplatin molecules to plasmid DNA (3197 base pairs) enhances SSB, DSB, and CL by factors varying, from 1.2 to 2.8, 1.4 to 3.5, and 1.2 to 2.7, respectively, depending on electron energy. All yield functions exhibit structures around 5 and 10 eV that can be attributed to enhancement of bond scission, via the initial formation of core-excited resonances associated with π → π * transitions of the bases. This increase in damage is interpreted as arising from a modification of the parameters of the corresponding transient anions already present in nonmodified DNA, particularly those influencing molecular dissociation. Two additional resonances, specific to cisplatin-modified DNA, are formed at 13.6 and 17.6 eV in the yield function of SSB. Furthermore, cisplatin binding causes the induction of DSB by electrons of 1.6-3.6 eV, i.e., in an energy region where a DSB cannot be produced by a single electron in pure DNA. Breaking two bonds with a subexcitation-energy electron is tentatively explained by a charge delocalization mechanism, where a single electron occupies simultaneously two σ * bonds linking the Pt atom to guanine bases on opposite strands.
Cisplatin Radiosensitization of DNA Irradiated with 2–20 eV Electrons: Role of Transient Anions
Bao, Qianhong; Chen, Yunfeng; Zheng, Yi; Sanche, Léon
2015-01-01
Platinum chemotherapeutic agents, such as cisplatin (cis-diamminedichloroplatinum(II)), can act as radiosensitizers when bound covalently to nuclear DNA in cancer cells. This radiosensitization is largely due to an increase in DNA damage induced by low-energy secondary electrons, produced in large quantities by high-energy radiation. We report the yields of single- and double-strand breaks (SSB and DSB) and interduplex cross-links (CL) induced by electrons of 1.6–19.6 eV (i.e., the yield functions) incident on 5 monolayer (ML) films of cisplatin–DNA complexes. These yield functions are compared with those previously recorded with 5 ML films of unmodified plasmid DNA. Binding of five cisplatin molecules to plasmid DNA (3197 base pairs) enhances SSB, DSB, and CL by factors varying, from 1.2 to 2.8, 1.4 to 3.5, and 1.2 to 2.7, respectively, depending on electron energy. All yield functions exhibit structures around 5 and 10 eV that can be attributed to enhancement of bond scission, via the initial formation of core-excited resonances associated with π → π* transitions of the bases. This increase in damage is interpreted as arising from a modification of the parameters of the corresponding transient anions already present in nonmodified DNA, particularly those influencing molecular dissociation. Two additional resonances, specific to cisplatin-modified DNA, are formed at 13.6 and 17.6 eV in the yield function of SSB. Furthermore, cisplatin binding causes the induction of DSB by electrons of 1.6–3.6 eV, i.e., in an energy region where a DSB cannot be produced by a single electron in pure DNA. Breaking two bonds with a subexcitation-energy electron is tentatively explained by a charge delocalization mechanism, where a single electron occupies simultaneously two σ* bonds linking the Pt atom to guanine bases on opposite strands. PMID:26793285
Secondary electron emission from lithium and lithium compounds
Capece, A. M.; Patino, M. I.; Raitses, Y.; ...
2016-07-06
In this work, measurements of electron-induced secondary electron emission ( SEE) yields of lithium as a function of composition are presented. The results are particularly relevant for magnetic fusion devices such as tokamaks, field-reversed configurations, and stellarators that consider Li as a plasma-facing material for improved plasma confinement. SEE can reduce the sheath potential at the wall and cool electrons at the plasma edge, resulting in large power losses. These effects become significant as the SEE coefficient, γ e, approaches one, making it imperative to maintain a low yield surface. This work demonstrates that the yield from Li strongly dependsmore » on chemical composition and substantially increases after exposure to oxygen and water vapor. The total yield was measured using a retarding field analyzer in ultrahigh vacuum for primary electron energies of 20-600 eV. The effect of Li composition was determined by introducing controlled amounts of O 2 and H 2O vapor while monitoring film composition with Auger electron spectroscopy and temperature programmed desorption. The results show that the energy at which γ e = 1 decreases with oxygen content and is 145 eV for a Li film that is 17% oxidized and drops to less than 25 eV for a fully oxidized film. This work has important implications for laboratory plasmas operating under realistic vacuum conditions in which oxidation significantly alters the electron emission properties of Li walls. Published by AIP Publishing.« less
Secondary electron emission from lithium and lithium compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capece, A. M., E-mail: capecea@tcnj.edu; Department of Physics, The College of New Jersey, Ewing, New Jersey 08628; Patino, M. I.
2016-07-04
In this work, measurements of electron-induced secondary electron emission (SEE) yields of lithium as a function of composition are presented. The results are particularly relevant for magnetic fusion devices such as tokamaks, field-reversed configurations, and stellarators that consider Li as a plasma-facing material for improved plasma confinement. SEE can reduce the sheath potential at the wall and cool electrons at the plasma edge, resulting in large power losses. These effects become significant as the SEE coefficient, γ{sub e}, approaches one, making it imperative to maintain a low yield surface. This work demonstrates that the yield from Li strongly depends onmore » chemical composition and substantially increases after exposure to oxygen and water vapor. The total yield was measured using a retarding field analyzer in ultrahigh vacuum for primary electron energies of 20–600 eV. The effect of Li composition was determined by introducing controlled amounts of O{sub 2} and H{sub 2}O vapor while monitoring film composition with Auger electron spectroscopy and temperature programmed desorption. The results show that the energy at which γ{sub e} = 1 decreases with oxygen content and is 145 eV for a Li film that is 17% oxidized and drops to less than 25 eV for a fully oxidized film. This work has important implications for laboratory plasmas operating under realistic vacuum conditions in which oxidation significantly alters the electron emission properties of Li walls.« less
Measurements of Electrical and Electron Emission Properties of Highly Insulating Materials
NASA Technical Reports Server (NTRS)
Dennison, J. R.; Brunson, Jerilyn; Hoffman, Ryan; Abbott, Jonathon; Thomson, Clint; Sim, Alec
2005-01-01
Highly insulating materials often acquire significant charges when subjected to fluxes of electrons, ions, or photons. This charge can significantly modify the materials properties of the materials and have profound effects on the functionality of the materials in a variety of applications. These include charging of spacecraft materials due to interactions with the severe space environment, enhanced contamination due to charging in Lunar of Martian environments, high power arching of cables and sources, modification of tethers and ion thrusters for propulsion, and scanning electron microscopy, to name but a few examples. This paper describes new techniques and measurements of the electron emission properties and resistivity of highly insulating materials. Electron yields are a measure of the number of electrons emitted from a material per incident particle (electron, ion or photon). Electron yields depend on incident species, energy and angle, and on the material. They determine the net charge acquired by a material subject to a give incident flu. New pulsed-beam techniques will be described that allow accurate measurement of the yields for uncharged insulators and measurements of how the yields are modified as charge builds up in the insulator. A key parameter in modeling charge dissipation is the resistivity of insulating materials. This determines how charge will accumulate and redistribute across an insulator, as well as the time scale for charge transport and dissipation. Comparison of new long term constant-voltage methods and charge storage methods for measuring resistivity of highly insulating materials will be compared to more commonly used, but less accurate methods.
Bremsstrahlung Dose Yield for High-Intensity Short-Pulse Laser–Solid Experiments
Liang, Taiee; Bauer, Johannes M.; Liu, James C.; ...
2016-12-01
A bremsstrahlung source term has been developed by the Radiation Protection (RP) group at SLAC National Accelerator Laboratory for high-intensity short-pulse laser–solid experiments between 10 17 and 10 22 W cm –2. This source term couples the particle-in-cell plasma code EPOCH and the radiation transport code FLUKA to estimate the bremsstrahlung dose yield from laser–solid interactions. EPOCH characterizes the energy distribution, angular distribution, and laser-to-electron conversion efficiency of the hot electrons from laser–solid interactions, and FLUKA utilizes this hot electron source term to calculate a bremsstrahlung dose yield (mSv per J of laser energy on target). The goal of thismore » paper is to provide RP guidelines and hazard analysis for high-intensity laser facilities. In conclusion, a comparison of the calculated bremsstrahlung dose yields to radiation measurement data is also made.« less
Bremsstrahlung Dose Yield for High-Intensity Short-Pulse Laser–Solid Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Taiee; Bauer, Johannes M.; Liu, James C.
A bremsstrahlung source term has been developed by the Radiation Protection (RP) group at SLAC National Accelerator Laboratory for high-intensity short-pulse laser–solid experiments between 10 17 and 10 22 W cm –2. This source term couples the particle-in-cell plasma code EPOCH and the radiation transport code FLUKA to estimate the bremsstrahlung dose yield from laser–solid interactions. EPOCH characterizes the energy distribution, angular distribution, and laser-to-electron conversion efficiency of the hot electrons from laser–solid interactions, and FLUKA utilizes this hot electron source term to calculate a bremsstrahlung dose yield (mSv per J of laser energy on target). The goal of thismore » paper is to provide RP guidelines and hazard analysis for high-intensity laser facilities. In conclusion, a comparison of the calculated bremsstrahlung dose yields to radiation measurement data is also made.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banu, Afreen; Rathod, Vandana, E-mail: drvandanarathod@rediffmail.com; Ranganath, E.
Highlights: {yields} Silver nanoparticle production by using Rhizopus stolonifer. {yields} Antibacterial activity of silver nanoparticles against extended spectrum {beta}-lactamase producing (ESBL) strains of Enterobacteriaceae. {yields} Synergistic effect of antibiotics with silver nanoparticles towards ESBL-strains. {yields} Characterization of silver nanoparticles made by UV-vis spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) spectroscopy, atomic force microscopy (AFM). -- Abstract: This report focuses on the synthesis of silver nanoparticles using the fungus, Rhizopus stolonifer and its antimicrobial activity. Research in nanotechnology highlights the possibility of green chemistry pathways to produce technologically important nanomaterials. Characterization of newly synthesized silvermore » nanoparticles was made by UV-visible absorption spectroscopy, scanning electron microscope (SEM), transmission electron microscope (TEM), Fourier transform infrared (FTIR) spectroscopy and atomic force microscope (AFM). TEM micrograph revealed the formation of spherical nanoparticles with size ranging between 3 and 20 nm. The biosynthesized silver nanoparticles (AgNPs) showed excellent antibacterial activity against ESBL-strains which includes E. coli, Proteus. sp. and Klebsiella sp.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baglioni, P.; Rivara-Minten, E.; Kevan, L.
1989-02-23
Electron spin resonance (ESR) and electron spin echo modulation (ESEM) of photoionized N,N,N{prime},N{prime}-tetramethylbenzidine (TMB) cation adsorbed at the interface of butadiene-acrylonitrile-methacrylic acid and butadiene-styrene-acrylic acid polymeric latices have been studied as a function of sodium dodecyl sulfate (SDS) concentration adsorbed at the latex interface. The photoionization yield of TMB in frozen latices mainly depends on the strength of TMB{sup +}-water interactions, which are enhanced by added SDS as measured by ESEM. An increase in the negative surface potential of the latex particles, due to the adsorption of SDS at the latex surface, does not affect the photoionization yield, showing thatmore » the particle surface potential has, for negatively charged systems, a secondary role in promoting the photoionization yield. Differences in the TMB{sup +} yield are found for the two polymeric latices and are attributed to the different latex compositions and/or different interfacial structures.« less
Current-Driven Hydrogen Desorption from Graphene: Experiment and Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, L.; Pal, Partha P.; Seideman, Tamar
2016-02-04
Electron-stimulated desorption of hydrogen from the graphene/SiC(0001) surface at room temperature was investigated with ultrahigh vacuum scanning tunneling microscopy and ab initio calculations in order to elucidate the desorption mechanisms and pathways. Two different desorption processes were observed. In the high electron energy regime (4-8 eV), the desorption yield is independent of both voltage and current, which is attributed to the direct electronic excitation of the C-H bond. In the low electron energy regime (2-4 eV), however, the desorption yield exhibits a threshold dependence on voltage, which is explained by the vibrational excitation of the C-H bond via transient ionizationmore » induced by inelastic tunneling electrons. The observed current-independence of the desorption yield suggests that the vibrational excitation is a singleelectron process. We also observed that the curvature of graphene dramatically affects hydrogen desorption. Desorption from concave regions was measured to be much more probable than desorption from convex regions in the low electron energy regime (~ 2 eV), as would be expected from the identified desorption mechanism« less
Huang, K.; Li, Y. F.; Li, D. Z.; Chen, L. M.; Tao, M. Z.; Ma, Y.; Zhao, J. R.; Li, M. H.; Chen, M.; Mirzaie, M.; Hafz, N.; Sokollik, T.; Sheng, Z. M.; Zhang, J.
2016-01-01
Ultrafast betatron x-ray emission from electron oscillations in laser wakefield acceleration (LWFA) has been widely investigated as a promising source. Betatron x-rays are usually produced via self-injected electron beams, which are not controllable and are not optimized for x-ray yields. Here, we present a new method for bright hard x-ray emission via ionization injection from the K-shell electrons of nitrogen into the accelerating bucket. A total photon yield of 8 × 108/shot and 108 photons with energy greater than 110 keV is obtained. The yield is 10 times higher than that achieved with self-injection mode in helium under similar laser parameters. The simulation suggests that ionization-injected electrons are quickly accelerated to the driving laser region and are subsequently driven into betatron resonance. The present scheme enables the single-stage betatron radiation from LWFA to be extended to bright γ-ray radiation, which is beyond the capability of 3rd generation synchrotrons. PMID:27273170
Cross-Diels-Alder reactions of 6-oxo-1-sulfonyl-1,6-dihydropyridine-3-carboxylates.
Teyssot, Marie-Laure; Lormier, Anh-Tuan; Chataigner, Isabelle; Piettre, Serge R
2007-03-30
Electron-poor 6-oxo-1-sulfonyl-1,6-dihydropyridine-3-carboxylates 1b-d undergo cross-Diels-Alder reactions with electron-rich dienes 4a-f under hyperbaric conditions, reacting either as dienophiles to yield normal-electron-demand (NED) cycloadducts 10 and/or 11 or as dienes to give inverse-electron-demand (IED) cycloadducts 12 and/or 13. The latter are converted into 14 and/or 15 through an NED cycloaddition with a second equivalent of electron-rich diene. Acyclic dienes display a propensity to yield NED products, whereas cyclic dienes tend to favor IED cycloadducts. High-pressure activation compares favorably with thermal or microwave activation in terms of both yields and suppression of the transformation of 1 into unreactive pyridines 3. Whereas the Cope rearrangement from IED to NED occurs under thermal conditions, no evidence of its involvement under high pressure could be detected. These and other data point to similar activation energies for the NED and IED processes under these conditions.
NASA Astrophysics Data System (ADS)
Thompson, William; Stern, Lewis; Ferranti, Dave; Huynh, Chuong; Scipioni, Larry; Notte, John; Sanford, Colin
2010-06-01
Recent helium ion microscope (HIM) imaging studies have shown the strong sensitivity of HIM induced secondary electron (SE) yields [1] to the sample physical and chemical properties and to its surface topography. This SE yield sensitivity is due to the low recoil energy of the HIM initiated electrons and their resulting short mean free path. Additionally, a material's SE escape probability is modulated by changes in the material's work function and surface potential. Due to the escape electrons' roughly 2eV mean energy and their nanometer range mean free path, HIM SE mode image contrast has significant material and surface sensitivity. The latest generation of HIM has a 0.35 nanometer resolution specification and is equipped with a plasma cleaning process to mitigate the effects of hydrocarbon contamination. However, for surfaces that may have native oxide chemistries influencing the secondary electron yield, a new process of low energy, shallow angle argon sputtering, was evaluated. The intent of this work was to study the effect of removing pre-existing native oxides and any in-situ deposited surface contaminants. We will introduce the sputter yield predictions of two established computer models and the sputter yield and sample modification forecasts of the molecular dynamics program, Kalypso. We will review the experimental technique applied to copper samples and show the copper grain contrast improvement that resulted when argon cleaned samples were imaged in HIM SE mode.
NASA Astrophysics Data System (ADS)
Zhou, Jinwei; Findley, Bret R.; Braun, Charles L.; Sutin, Norman
2001-06-01
We recently reported that free radical ion quantum yields for electron-donor-acceptor (EDA) systems of alkylbenzenes-tetracyanoethylene (TCNE) exhibit a remarkable wavelength dependence in dichloromethane, a medium polarity solvent. We proposed that weak absorption by long-distance, unassociated or "random" D⋯A pairs is mainly responsible for the free radical ion yield. Here a model for the wavelength dependence of the free ion yield is developed for four systems in which differing degrees of EDA complex formation are present: 1,3,5-tri-tert-butylbenzene-TCNE in which only random pairs exist due to the bulky groups on the electron donor, and toluene—TCNE, 1,3,5-triethylbenzene-TCNE and 1,3,5-trimethylbenzene-TCNE. Mulliken-Hush theory is used to determine the excitation distance distribution of unassociated, random pairs at different wavelengths. For each absorption distribution, free radical ion yields at different wavelengths are then calculated using Onsager's result for the ion separation probability. Encouraging agreement between the calculated yields and our experimental results is obtained. As far as we are aware, this is the first time that photoexcitation of unassociated donor/acceptor pairs has been invoked as the source of separated radical ion pairs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urquijo, P.; Barberio, E.; Dalseno, J.
2007-02-01
We report a measurement of the inclusive electron energy spectrum for charmed semileptonic decays of B mesons in a 140 fb{sup -1} data sample collected at the {upsilon}(4S) resonance with the Belle detector at the KEKB asymmetric energy e{sup +}e{sup -} collider. We determine the first four moments of the electron energy spectrum for threshold values of the electron energy between 0.4 and 2.0 GeV. In addition, we provide values of the partial branching fraction (zeroth moment) for the same electron threshold energies, and independent measurements of the B{sup +} and B{sup 0} partial branching fractions at 0.4 GeV andmore » 0.6 GeV electron threshold energies. We measure the independent B{sup +} and B{sup 0} partial branching fractions with electron threshold energies of 0.4 GeV to be {delta}B(B{sup +}{yields}X{sub c}e{nu})=(10.79{+-}0.25(stat.){+-}0.27(sys.))% and {delta}B(B{sup 0}{yields}X{sub c}e{nu})=(10.08{+-}0.30(stat.){+-}0.22(sys.))%. Full correlations between all measurements are evaluated.« less
NASA Astrophysics Data System (ADS)
Petrov, Yu. V.; Anikeva, A. E.; Vyvenko, O. F.
2018-06-01
Secondary electron emission from thin silicon nitride films of different thicknesses on silicon excited by helium ions with energies from 15 to 35 keV was investigated in the helium ion microscope. Secondary electron yield measured with Everhart-Thornley detector decreased with the irradiation time because of the charging of insulating films tending to zero or reaching a non-zero value for relatively thick or thin films, respectively. The finiteness of secondary electron yield value, which was found to be proportional to electronic energy losses of the helium ion in silicon substrate, can be explained by the electron emission excited from the substrate by the helium ions. The method of measurement of secondary electron energy distribution from insulators was suggested, and secondary electron energy distribution from silicon nitride was obtained.
The Titan haze revisted: Magnetospheric energy sorces quantitative tholin yields
NASA Technical Reports Server (NTRS)
Thompson, W. Reid; Mcdonald, Gene D.; Sagan, Carl
1994-01-01
We present laboratory measurements of the radiation yields of complex organic solids produced from N2/CH4 gas mixtures containing 10 or 0.1% CH4. These tholins are thought to resemble organic aerosols produced in the atmospheres of Titan, Pluto, and Triton. The tholin yields are large compared to the total yield of gaseous products: nominally, 13 (C + N)/100 eV for Titan tholin and 2.1 (C + N)/100 eV for Triton tholin. High-energy magnetospheric electrons responsible for tholin production represents a class distinct from the plasma electrons considered in models of Titan's aiglow. Electrons with E greater than 20 keV provide an energy flux approximately 1 x 10(exp -2) erg/cm/sec, implying from our measured tholin yields a mass flux of 0.5 to 4.0 x 10(exp -14) g/sq cm/sec of tholin. (The corresponding thickness of the tholin sedimentary column accumulated over 4 Gyr on Titan's surface is 4 to 30 m). This figure is in agreement with required mass fluxes computed from recent radiative transfer and sedimentation models. If, however, theses results, derived from experiments at approximately 2 mb, are applied to lower pressure levels toward peak auroral electron energy deposition and scaled with pressure as the gas-phase organic yields, the derived tholin mass flux is at least an order of magnitude less. We attrribute this difference to the fact that tholin synthesis occurs well below the level of maximum electron energy depositon and to possible contributions to tholis from UV-derived C2-hydrocarbons. We conclude that Tita tholin, produced by magnetospheric electrons, is alone sufficient to supply at least a significant fraction of Titan's haze-a result consistent with the fact that the optical properties of Titan tholin, among all proposed material, are best at reproducing Titan's geometric albedo spectrum from near UV to mid-IR in light-scattering models.
Low-energy electron stimulated desorption of neutrals from multilayers of SiCl4 on Si(111).
Lane, Christopher D; Orlando, Thomas M
2006-04-28
The interaction of low-energy electrons with multilayers of SiCl(4) adsorbed on Si(111) leads to production and desorption of Cl((2)P(32)), Cl((2)P(12)), Si, and SiCl. Resonant structure in the yield versus incident electron energy (E(i)) between 6 and 12 eV was seen in all neutral channels and assigned to dissociative electron attachment (DEA), unimolecular decay of excited products produced via autodetachment and direct dissociation. These processes yield Cl((2)P(32)) and Cl((2)P(12)) with nonthermal kinetic energies of 425 and 608 meV, respectively. The Cl((2)P(12)) is produced solely at the vacuum surface interface, whereas the formation of Cl((2)P(32)) likely involves subsurface dissociation, off-normal trajectories, and collisions with neighbors. Structure in the Cl((2)P(32)) yield near 14 and 25 eV can originate from excitation of electrons in the 2e, 7t(2) and 6t(2), 6a(1) levels, respectively. Although the 14 eV feature was not present in the Cl((2)P(12)) yield, the broad 25 eV feature, which involves complex Auger filling of holes in the 6t(2) and 6a(1) levels of SiCl(4), is observed. Direct ionization, exciton decay, and DEA from secondary electron scattering all occur at E(i)>14 eV. Si and SiCl were detected via nonresonant ionization of SiCl(x) precursors that are produced via the same states and mechanisms that yield Cl. The Si retains the kinetic energy profile of the desorbed precursors.
Mayoral, Alvaro; Magen, Cesar; Jose-Yacaman, Miguel
2011-01-01
Long multi-branched gold nanoparticles have been synthesized in a very high yield through a facile synthesis combining two different capping agents. The stability of these materials with the time has been tested and their characterization have been performed by diverse advanced electron microscopy techniques, paying special attention to aberration corrected transmission electron microscopy in order to unambiguously analyze the surface structure of the branches and provide insights for the formation of stellated gold nanoparticles. PMID:22125420
Ford, W E; Otvos, J W; Calvin, M
1979-01-01
An amphiphilic tris(2,2'-bipyridine)ruthenium(2+) derivative that is incorporated into the walls of phosphatidylcholine vesicles photosensitizes the irreversible oxidation of ethylenediaminetetraacetate(3-) dissolved in the inner aqueous compartments of the vesicle suspension and the one-electron reduction of heptylviologen(2+) dissolved in the continuous aqueous phase. The quantum yield of viologen radical production depends on the phospholipid-to-ruthenium complex mole ratios. A kinetic model is used to derive an order-of-magnitude estimate for the rate constant of electron transport across the vesicle walls. The results are inconsistent with a diffusional mechanism for electron transport and are interpreted in terms of electron exchange. PMID:291027
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Pimpec, F.; /PSI, Villigen; Kirby, R.E.
In many accelerator storage rings running positively charged beams, ionization of residual gas and secondary electron emission (SEE) in the beam pipe will give rise to an electron cloud which can cause beam blow-up or loss of the circulating beam. A preventative measure that suppresses electron cloud formation is to ensure that the vacuum wall has a low secondary emission yield (SEY). The SEY of thin films of TiN, sputter deposited Non-Evaporable Getters and a novel TiCN alloy were measured under a variety of conditions, including the effect of re-contamination from residual gas.
DNA strand breaks and crosslinks induced by transient anions in the range 2-20 eV.
Luo, Xinglan; Zheng, Yi; Sanche, Léon
2014-04-15
The energy dependence of the yields of single and double strand breaks (SSB and DSB) and crosslinks induced by electron impact on plasmid DNA films is measured in the 2-20 eV range. The yield functions exhibit two strong maxima, which are interpreted to result from the formation of core-excited resonances (i.e., transient anions) of the bases, and their decay into the autoionization channel, resulting in π → π * electronic transitions of the bases followed by electron transfer to the C-O σ * bond in the phosphate group. Occupancy of the σ * orbital ruptures the C-O bond of the backbone via dissociative electron attachment, producing a SSB. From a comparison of our results with those of other works, including theoretical calculations and electron-energy-loss spectra of the bases, the 4.6 eV peak in the SSB yield function is attributed to the resonance decay into the lowest electronically excited states of the bases; in particular, those resulting from the transitions 1 3 A'( π 2 → π 3 *) and 1 3 A″(n 2 → π 3 *) of thymine and 1 3 A'( π → π *) of cytosine. The strongest peak at 9.6 eV in the SSB yield function is also associated with electron captured by excited states of the bases, resulting mostly from a multitude of higher-energy π → π * transitions. The DSB yield function exhibits strong maxima at 6.1 and 9.6 eV. The peak at 9.6 eV is probably related to the same resonance manifold as that leading to SSB, but the other at 6.1 eV may be more restricted to decay into the electronic state 1 3 A' ( π → π *) of cytosine via autoionization. The yield function of crosslinks is dominated by a broad peak extending over the 3.6-11.6 eV range with a sharper one at 17.6 eV. The different line shape of the latter function, compared to that of SSB and DSB, appears to be due to the formation of reactive radical sites in the initial supercoiled configuration of the plasmid, which react with the circular form (i.e., DNA with a SSB) to produce a crosslink.
Neupane, Achal; Nepal, Madhav P.; Piya, Sarbottam; Subramanian, Senthil; Rohila, Jai S.; Reese, R. Neil; Benson, Benjamin V.
2013-01-01
Mitogen-activated protein kinase (MAPK) genes in eukaryotes regulate various developmental and physiological processes including those associated with biotic and abiotic stresses. Although MAPKs in some plant species including Arabidopsis have been identified, they are yet to be identified in soybean. Major objectives of this study were to identify GmMAPKs, assess their evolutionary relationships, and analyze their functional divergence. We identified a total of 38 MAPKs, eleven MAPKKs, and 150 MAPKKKs in soybean. Within the GmMAPK family, we also identified a new clade of six genes: four genes with TEY and two genes with TQY motifs requiring further investigation into possible legume-specific functions. The results indicated the expansion of the GmMAPK families attributable to the ancestral polyploidy events followed by chromosomal rearrangements. The GmMAPK and GmMAPKKK families were substantially larger than those in other plant species. The duplicated GmMAPK members presented complex evolutionary relationships and functional divergence when compared to their counterparts in Arabidopsis. We also highlighted existing nomenclatural issues, stressing the need for nomenclatural consistency. GmMAPK identification is vital to soybean crop improvement, and novel insights into the evolutionary relationships will enhance our understanding about plant genome evolution. PMID:24137047
Badshah, Syed Lal; Sun, Junlei; Mula, Sam; Gorka, Mike; Baker, Patricia; Luthra, Rajiv; Lin, Su; van der Est, Art; Golbeck, John H; Redding, Kevin E
2018-01-01
In Photosystem I, light-induced electron transfer can occur in either of two symmetry-related branches of cofactors, each of which is composed of a pair of chlorophylls (ec2 A /ec3 A or ec2 B /ec3 B ) and a phylloquinone (PhQ A or PhQ B ). The axial ligand to the central Mg 2+ of the ec2 A and ec2 B chlorophylls is a water molecule that is also H-bonded to a nearby Asn residue. Here, we investigate the importance of this interaction for charge separation by converting each of the Asn residues to a Leu in the green alga, Chlamydomonas reinhardtii, and the cyanobacterium, Synechocystis sp. PCC6803, and studying the energy and electron transfer using time-resolved optical and EPR spectroscopy. Nanosecond transient absorbance measurements of the PhQ to F X electron transfer show that in both species, the PsaA-N604L mutation (near ec2 B ) results in a ~50% reduction in the amount of electron transfer in the B-branch, while the PsaB-N591L mutation (near ec2 A ) results in a ~70% reduction in the amount of electron transfer in the A-branch. A diminished quantum yield of P 700 + PhQ - is also observed in ultrafast optical experiments, but the lower yield does not appear to be a consequence of charge recombination in the nanosecond or microsecond timescales. The most significant finding is that the yield of electron transfer in the unaffected branch did not increase to compensate for the lower yield in the affected branch. Hence, each branch of the reaction center appears to operate independently of the other in carrying out light-induced charge separation. Copyright © 2017 Elsevier B.V. All rights reserved.
Alotiby, M; Greguric, I; Kibédi, T; Lee, B Q; Roberts, M; Stuchbery, A E; Tee, Pi; Tornyi, T; Vos, M
2018-03-21
Auger electrons emitted after nuclear decay have potential application in targeted cancer therapy. For this purpose it is important to know the Auger electron yield per nuclear decay. In this work we describe a measurement of the ratio of the number of conversion electrons (emitted as part of the nuclear decay process) to the number of Auger electrons (emitted as part of the atomic relaxation process after the nuclear decay) for the case of 125 I. Results are compared with Monte-Carlo type simulations of the relaxation cascade using the BrIccEmis code. Our results indicate that for 125 I the calculations based on rates from the Evaluated Atomic Data Library underestimate the K Auger yields by 20%.
NASA Astrophysics Data System (ADS)
Alotiby, M.; Greguric, I.; Kibédi, T.; Lee, B. Q.; Roberts, M.; Stuchbery, A. E.; Tee, Pi; Tornyi, T.; Vos, M.
2018-03-01
Auger electrons emitted after nuclear decay have potential application in targeted cancer therapy. For this purpose it is important to know the Auger electron yield per nuclear decay. In this work we describe a measurement of the ratio of the number of conversion electrons (emitted as part of the nuclear decay process) to the number of Auger electrons (emitted as part of the atomic relaxation process after the nuclear decay) for the case of 125I. Results are compared with Monte-Carlo type simulations of the relaxation cascade using the BrIccEmis code. Our results indicate that for 125I the calculations based on rates from the Evaluated Atomic Data Library underestimate the K Auger yields by 20%.
Yamori, Wataru; Kondo, Eri; Sugiura, Daisuke; Terashima, Ichiro; Suzuki, Yuji; Makino, Amane
2016-01-01
Although photosynthesis is the most important source for biomass and grain yield, a lack of correlation between photosynthesis and plant yield among different genotypes of various crop species has been frequently observed. Such observations contribute to the ongoing debate whether enhancing leaf photosynthesis can improve yield potential. Here, transgenic rice plants that contain variable amounts of the Rieske FeS protein in the cytochrome (cyt) b6 /f complex between 10 and 100% of wild-type levels have been used to investigate the effect of reductions of these proteins on photosynthesis, plant growth and yield. Reductions of the cyt b6 /f complex did not affect the electron transport rates through photosystem I but decreased electron transport rates through photosystem II, leading to concomitant decreases in CO2 assimilation rates. There was a strong control of plant growth and grain yield by the rate of leaf photosynthesis, leading to the conclusion that enhancing photosynthesis at the single-leaf level would be a useful target for improving crop productivity and yield both via conventional breeding and biotechnology. The data here also suggest that changing photosynthetic electron transport rates via manipulation of the cyt b6 /f complex could be a potential target for enhancing photosynthetic capacity in higher plants. © 2015 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Curren, A. N.; Jensen, K. A.
1984-01-01
Experimentally determined values of true secondary electron emission and relative values of reflected primary electron yield for untreated and ion textured oxygen free high conductivity copper and untreated and ion textured high purity isotropic graphite surfaces are presented for a range of primary electron beam energies and beam impingement angles. This investigation was conducted to provide information that would improve the efficiency of multistage depressed collectors (MDC's) for microwave amplifier traveling wave tubes in space communications and aircraft applications. For high efficiency, MDC electrode surfaces must have low secondary electron emission characteristics. Although copper is a commonly used material for MDC electrodes, it exhibits relatively high levels of secondary electron emission if its surface is not treated for emission control. Recent studies demonstrated that high purity isotropic graphite is a promising material for MDC electrodes, particularly with ion textured surfaces. The materials were tested at primary electron beam energies of 200 to 2000 eV and at direct (0 deg) to near grazing (85 deg) beam impingement angles. True secondary electron emission and relative reflected primary electron yield characteristics of the ion textured surfaces were compared with each other and with those of untreated surfaces of the same materials. Both the untreated and ion textured graphite surfaces and the ion treated copper surface exhibited sharply reduced secondary electron emission characteristics relative to those of untreated copper. The ion treated graphite surface yielded the lowest emission levels.
Runaway electrons as a source of impurity and reduced fusion yield in the dense plasma focus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lerner, Eric J.; Yousefi, Hamid R.
2014-10-15
Impurities produced by the vaporization of metals in the electrodes may be a major cause of reduced fusion yields in high-current dense plasma focus devices. We propose here that a major, but hitherto-overlooked, cause of such impurities is vaporization by runaway electrons during the breakdown process at the beginning of the current pulse. This process is sufficient to account for the large amount of erosion observed in many dense plasma focus devices on the anode very near to the insulator. The erosion is expected to become worse with lower pressures, typical of machines with large electrode radii, and would explainmore » the plateauing of fusion yield observed in such machines at higher peak currents. Such runaway electron vaporization can be eliminated by the proper choice of electrode material, by reducing electrode radii and thus increasing fill gas pressure, or by using pre-ionization to eliminate the large fields that create runaway electrons. If these steps are combined with monolithic electrodes to eliminate arcing erosion, large reductions in impurities and large increases in fusion yield may be obtained, as the I{sup 4} scaling is extended to higher currents.« less
Kumar, Dinesh; Lee, Ahreum; Lee, Taegon; Lim, Manho; Lim, Dong-Kwon
2016-03-09
We report that reduced graphene-coated gold nanoparticles (r-GO-AuNPs) are excellent visible-light-responsive photocatalysts for the photoconversion of CO2 into formic acid (HCOOH). The wavelength-dependent quantum and chemical yields of HCOOH shows a significant contribution of plasmon-induced hot electrons for CO2 photoconversion. Furthermore, the presence and reduced state of the graphene layers are critical parameters for the efficient CO2 photoconversion because of the electron mobility of graphene. With an excellent selectivity toward HCOOH (>90%), the quantum yield of HCOOH using r-GO-AuNPs is 1.52%, superior to that of Pt-coated AuNPs (quantum yield: 1.14%). This indicates that r-GO is a viable alternative to platinum metal. The excellent colloidal stability and photocatalytic stability of r-GO-AuNPs enables CO2 photoconversion under more desirable reaction conditions. These results highlight the role of reduced graphene layers as highly efficient electron acceptors and transporters to facilitate the use of hot electrons for plasmonic photocatalysts. The femtosecond transient spectroscopic analysis also shows 8.7 times higher transport efficiency of hot plasmonic electrons in r-GO-AuNPs compared with AuNPs.
Investigation of argon ion sputtering on the secondary electron emission from gold samples
NASA Astrophysics Data System (ADS)
Yang, Jing; Cui, Wanzhao; Li, Yun; Xie, Guibai; Zhang, Na; Wang, Rui; Hu, Tiancun; Zhang, Hongtai
2016-09-01
Secondary electron (SE) yield, δ, is a very sensitive surface property. The values of δ often are not consistent for even identical materials. The influence of surface changes on the SE yield was investigated experimentally in this article. Argon ion sputtering was used to remove the contamination from the surface. Surface composition was monitored by X-ray photoelectron spectroscopy (XPS) and surface topography was scanned by scanning electron microscope (SEM) and atomic force microscope (AFM) before and after every sputtering. It was found that argon sputtering can remove contamination and roughen the surface. An ;equivalent work function; is presented in this thesis to establish the relationship between SE yield and surface properties. Argon ion sputtering of 1.5keV leads to a significant increase of so called ;work function; (from 3.7 eV to 6.0 eV), and a decrease of SE yield (from 2.01 to 1.54). These results provided a new insight into the influence of surface changes on the SE emission.
Lee, Hee-Seock; Ban, Syuichi; Sanami, Toshiya; Takahashi, Kazutoshi; Sato, Tatsuhiko; Shin, Kazuo; Chung, Chinwha
2005-01-01
A study of differential photo-neutron yields by irradiation with 2 GeV electrons has been carried out. In this extension of a previous study in which measurements were made at an angle of 90 degrees relative to incident electrons, the differential photo-neutron yield was obtained at two other angles, 48 degrees and 140 degrees, to study its angular characteristics. Photo-neutron spectra were measured using a pulsed beam time-of-flight method and a BC418 plastic scintillator. The reliable range of neutron energy measurement was 8-250 MeV. The neutron spectra were measured for 10 Xo-thick Cu, Sn, W and Pb targets. The angular distribution characteristics, together with the previous results for 90 degrees, are presented in the study. The experimental results are compared with Monte Carlo calculation results. The yields predicted by MCNPX 2.5 tend to underestimate the measured ones. The same trend holds for the comparison results using the EGS4 and PICA3 codes.
NASA Astrophysics Data System (ADS)
Monteiro, C. M. B.; Fernandes, L. M. P.; Veloso, J. F. C. A.; Oliveira, C. A. B.; dos Santos, J. M. F.
2012-07-01
The search for alternatives to PMTs as photosensors in optical TPCs for rare event detection has significantly increased in the last few years. In particular, in view of the next generation large volume detectors, the use of photosensors with lower natural radioactivity, such as large area APDs or GM-APDs, with the additional possibility of sparse surface coverage, triggered the intense study of secondary scintillation production in micropattern electron multipliers, such as GEMs and THGEMs, as alternatives to the commonly used uniform electric field region between two parallel meshes. The much higher scintillation output obtained from the electron avalanches in such microstructures presents an advantage in those situations. The accurate knowledge of the amount of such scintillation is important for correct detector simulation and optimization. It will also serve as a benchmark for software tools developed and/or under development for the calculation of the amount of such scintillation.The secondary scintillation yield, or electroluminescence yield, in the electron avalanches of GEMs and THGEMs operating in gaseous xenon and argon has been determined for different gas pressures. At 1 bar, THGEMs deliver electroluminescence yields that are more than one order of magnitude higher when compared to those achieved in GEMs and two orders of magnitude when compared to those achieved in a uniform field gap. The THGEM electroluminescence yield presents a faster decrease with pressure when comparing to the GEM electroluminescence yield, reaching similar values to what is achieved in GEMs for xenon pressures of 2.5 bar, but still one order of magnitude higher than that produced in a uniform field gap. Another exception is the GEM operating in argon, which presents an electroluminescence yield similar to that produced in a uniform electric field gap, while the THGEM achieves yields that are more than one order of magnitude higher.
Kaewkhao, J; Limkitjaroenporn, P; Chaiphaksa, W; Kim, H J
2016-09-01
In this study, the CCT technique and nuclear instrument module (NIM) setup for the measurements of coincidence electron energy spectra of calcium molybdate (CaMoO4) and cerium doped gadolinium aluminium gallium garnet (Gd3Al2Ga3O12:Ce or GAGG:Ce) scintillation crystals were carried out. The (137)Cs irradiated gamma rays with an energy (Eγ) of 662keV was used as a radioactive source. The coincidence electron energy spectra were recorded at seven scattering angles of 30°-120°. It was found that seven corresponding electron energies were in the range of 100.5-435.4keV. The results show that, for all electron energies, the electron energy peaks of CaMoO4 crystal yielded higher number of counts than those of GAGG:Ce crystal. The electron energy resolution, the light yield and non-proportionality were also determined. It was found that the energy resolutions are inverse proportional to the square root of electron energy for both crystals. Furthermore, the results show that the light yield of GAGG:Ce crystal is much higher than that of CaMoO4 crystal. It was also found that both CaMoO4 and GAGG:Ce crystals demonstrated good proportional property in the electron energy range of 260-435.4keV. Copyright © 2016 Elsevier Ltd. All rights reserved.
A dual-phase xenon TPC for scintillation and ionisation yield measurements in liquid xenon
NASA Astrophysics Data System (ADS)
Baudis, Laura; Biondi, Yanina; Capelli, Chiara; Galloway, Michelle; Kazama, Shingo; Kish, Alexander; Pakarha, Payam; Piastra, Francesco; Wulf, Julien
2018-05-01
A small-scale, two-phase (liquid/gas) xenon time projection chamber ( Xurich II) was designed, constructed and is under operation at the University of Zürich. Its main purpose is to investigate the microphysics of particle interactions in liquid xenon at energies below 50 keV, which are relevant for rare event searches using xenon as target material. Here we describe in detail the detector, its associated infrastructure, and the signal identification algorithm developed for processing and analysing the data. We present the first characterisation of the new instrument with calibration data from an internal ^83{m} Kr source. The zero-field light yield is 15.0 and 14.0 photoelectrons/keV at 9.4 and 32.1 keV, respectively, and the corresponding values at an electron drift field of 1 kV/cm are 10.8 and 7.9 photoelectrons/keV. The charge yields at these energies are 28 and 31 electrons/keV, with the proportional scintillation yield of 24 photoelectrons per one electron extracted into the gas phase, and an electron lifetime of 200 μ s. The relative energy resolution, σ /E, is 11.9 and 5.8% at 9.4 and 32.1 keV, respectively using a linear combination of the scintillation and ionisation signals. We conclude with measurements of the electron drift velocity at various electric fields, and compare these to literature values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanson, Charles; Kaganovich, Igor D.
Complex structures on a material surface can significantly reduce the total secondary electron emission from that surface. The reduction occurs due to the capture of low-energy, true secondary electrons emitted at one point of the structure and intersecting another. We performed Monte Carlo calculations to demonstrate that fractal surfaces can reduce net secondary electron emission produced by the surface as compared to the flat surface. Specifically, we describe one surface, a “feathered” surface, which reduces the secondary electron emission yield more effectively than other previously considered configurations. Specifically, feathers grown onto a surface suppress secondary electron emission from shallow anglesmore » of incidence more effectively than velvet. Here, we find that, for the surface simulated, secondary electron emission yield remains below 20% of its un-suppressed value, even for shallow incident angles, where the velvet-only surface gives reduction factor of only 50%.« less
Swanson, Charles; Kaganovich, Igor D.
2017-07-24
Complex structures on a material surface can significantly reduce the total secondary electron emission from that surface. The reduction occurs due to the capture of low-energy, true secondary electrons emitted at one point of the structure and intersecting another. We performed Monte Carlo calculations to demonstrate that fractal surfaces can reduce net secondary electron emission produced by the surface as compared to the flat surface. Specifically, we describe one surface, a “feathered” surface, which reduces the secondary electron emission yield more effectively than other previously considered configurations. Specifically, feathers grown onto a surface suppress secondary electron emission from shallow anglesmore » of incidence more effectively than velvet. Here, we find that, for the surface simulated, secondary electron emission yield remains below 20% of its un-suppressed value, even for shallow incident angles, where the velvet-only surface gives reduction factor of only 50%.« less
Experimental study on secondary electron emission characteristics of Cu
NASA Astrophysics Data System (ADS)
Liu, Shenghua; Liu, Yudong; Wang, Pengcheng; Liu, Weibin; Pei, Guoxi; Zeng, Lei; Sun, Xiaoyang
2018-02-01
Secondary electron emission (SEE) of a surface is the origin of the multipacting effect which could seriously deteriorate beam quality and even perturb the normal operation of particle accelerators. Experimental measurements on secondary electron yield (SEY) for different materials and coatings have been developed in many accelerator laboratories. In fact, the SEY is just one parameter of secondary electron emission characteristics which include spatial and energy distribution of emitted electrons. A novel experimental apparatus was set up in China Spallation Neutron Source, and an innovative method was applied to obtain the whole characteristics of SEE. Taking Cu as the sample, secondary electron yield, its dependence on beam injection angle, and the spatial and energy distribution of secondary electrons were achieved with this measurement device. The method for spatial distribution measurement was first proposed and verified experimentally. This contribution also tries to give all the experimental results a reasonable theoretical analysis and explanation.
NASA Astrophysics Data System (ADS)
Swanson, Charles; Kaganovich, Igor D.
2017-07-01
Complex structures on a material surface can significantly reduce the total secondary electron emission from that surface. The reduction occurs due to the capture of low-energy, true secondary electrons emitted at one point of the structure and intersecting another. We performed Monte Carlo calculations to demonstrate that fractal surfaces can reduce net secondary electron emission produced by the surface as compared to the flat surface. Specifically, we describe one surface, a "feathered" surface, which reduces the secondary electron emission yield more effectively than other previously considered configurations. Specifically, feathers grown onto a surface suppress secondary electron emission from shallow angles of incidence more effectively than velvet. We find that, for the surface simulated, secondary electron emission yield remains below 20% of its un-suppressed value, even for shallow incident angles, where the velvet-only surface gives reduction factor of only 50%.
NASA Astrophysics Data System (ADS)
Cai, Libing; Wang, Jianguo; Zhu, Xiangqin; Wang, Yue; Zhang, Dianhui
2015-01-01
Based on the secondary electron emission avalanche (SEEA) model, the SEEA discharge on the vacuum insulator surface is simulated by using a 2D PIC-MCC code developed by ourselves. The evolutions of the number of discharge electrons, insulator surface charge, current, and 2D particle distribution are obtained. The effects of the strength of the applied electric field, secondary electron yield coefficient, rise time of the pulse, length of the insulator on the discharge are investigated. The results show that the number of the SEEA electrons presents a quadratic dependence upon the applied field strength. The SEEA current, which is on the order of Ampere, is directly proportional to the field strength and secondary electron yield coefficient. Finally, the electron-stimulated outgassing is included in the simulation code, and a three-phase discharge curve is presented by the simulation, which agrees with the experimental data.
A hybrid model describing ion induced kinetic electron emission
NASA Astrophysics Data System (ADS)
Hanke, S.; Duvenbeck, A.; Heuser, C.; Weidtmann, B.; Wucher, A.
2015-06-01
We present a model to describe the kinetic internal and external electron emission from an ion bombarded metal target. The model is based upon a molecular dynamics treatment of the nuclear degree of freedom, the electronic system is assumed as a quasi-free electron gas characterized by its Fermi energy, electron temperature and a characteristic attenuation length. In a series of previous works we have employed this model, which includes the local kinetic excitation as well as the rapid spread of the generated excitation energy, in order to calculate internal and external electron emission yields within the framework of a Richardson-Dushman-like thermionic emission model. However, this kind of treatment turned out to fail in the realistic prediction of experimentally measured internal electron yields mainly due to the restriction of the treatment of electronic transport to a diffusive manner. Here, we propose a slightly modified approach additionally incorporating the contribution of hot electrons which are generated in the bulk material and undergo ballistic transport towards the emitting interface.
NASA Technical Reports Server (NTRS)
Curren, A. N.; Jensen, K. A.
1984-01-01
Experimentally determined values of true secondary electron emission and relative values of reflected primary electron yield for untreated and ion-textured pyrolytic graphite over a range of primary electron energy levels and electron beam impingement angles are presented. Information required to develop high efficiency multistage depressed collectors (MDC's) for microwave amplifier traveling-wave tubes for space communication and aircraft applications is provided. To attain the highest possible MDC efficiencies, the electrode surfaces must have low secondary electron emission characteristics. Pyrolytic graphite, a chemically vapor-deposited material, is a particularly promising candidate for this application. The pyrolytic graphite surfaces studied were tested over a range of primary electron beam energies and beam impingement angles from 200 to 2000 eV and direct (0 deg) to near-grazing angles (85 deg), respectively. Surfaces both parallel to and normal to the planes of material deposition were examined. The true secondary electron emission and reflected primary electron yield characteristics of the pyrolytic graphite surfaces are compared to those of sooted control surfaces.
NASA Astrophysics Data System (ADS)
Tian, Jiting; Zhou, Wei; Feng, Qijie; Zheng, Jian
2018-03-01
An unsolved problem in research of sputtering from metals induced by energetic large cluster ions is that molecular dynamics (MD) simulations often produce sputtering yields much higher than experimental results. Different from the previous simulations considering only elastic atomic interactions (nuclear stopping), here we incorporate inelastic electrons-atoms interactions (electronic stopping, ES) into MD simulations using a friction model. In this way we have simulated continuous 45° impacts of 10-20 keV C60 on a Ag(111) surface, and found that the calculated sputtering yields can be very close to the experimental results when the model parameter is appropriately assigned. Conversely, when we ignore the effect of ES, the yields are much higher, just like the previous studies. We further expand our research to the sputtering of Au induced by continuous keV C60 or Ar100 bombardments, and obtain quite similar results. Our study indicates that the gap between the experimental and the simulated sputtering yields is probably induced by the ignorance of ES in the simulations, and that a careful treatment of this issue is important for simulations of cluster-ion-induced sputtering, especially for those aiming to compare with experiments.
NASA Astrophysics Data System (ADS)
Lyon, Yana A.; Beran, Gregory; Julian, Ryan R.
2017-07-01
Traditional electron-transfer dissociation (ETD) experiments operate through a complex combination of hydrogen abundant and hydrogen deficient fragmentation pathways, yielding c and z ions, side-chain losses, and disulfide bond scission. Herein, a novel dissociation pathway is reported, yielding homolytic cleavage of carbon-iodine bonds via electronic excitation. This observation is very similar to photodissociation experiments where homolytic cleavage of carbon-iodine bonds has been utilized previously, but ETD activation can be performed without addition of a laser to the mass spectrometer. Both loss of iodine and loss of hydrogen iodide are observed, with the abundance of the latter product being greatly enhanced for some peptides after additional collisional activation. These observations suggest a novel ETD fragmentation pathway involving temporary storage of the electron in a charge-reduced arginine side chain. Subsequent collisional activation of the peptide radical produced by loss of HI yields spectra dominated by radical-directed dissociation, which can be usefully employed for identification of peptide isomers, including epimers.
Local formation of nitrogen-vacancy centers in diamond by swift heavy ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwartz, J.; Aloni, S.; Ogletree, D. F.
2014-12-03
In this paper, we exposed nitrogen-implanted diamonds to beams of swift heavy ions (~1 GeV, ~4 MeV/u) and find that these irradiations lead directly to the formation of nitrogen vacancy (NV) centers, without thermal annealing. We compare the photoluminescence intensities of swift heavy ion activated NV - centers to those formed by irradiation with low-energy electrons and by thermal annealing. NV - yields from irradiations with swift heavy ions are 0.1 of yields from low energy electrons and 0.02 of yields from thermal annealing. We discuss possible mechanisms of NV center formation by swift heavy ions such as electronic excitationsmore » and thermal spikes. While forming NV centers with low efficiency, swift heavy ions could enable the formation of three dimensional NV - assemblies over relatively large distances of tens of micrometers. Finally and further, our results show that NV center formation is a local probe of (partial) lattice damage relaxation induced by electronic excitations from swift heavy ions in diamond.« less
Dimension scaling effects on the yield sensitivity of HEMT digital circuits
NASA Technical Reports Server (NTRS)
Sarker, Jogendra C.; Purviance, John E.
1992-01-01
In our previous works, using a graphical tool, yield factor histograms, we studied the yield sensitivity of High Electron Mobility Transistors (HEMT) and HEMT circuit performance with the variation of process parameters. This work studies the scaling effects of process parameters on yield sensitivity of HEMT digital circuits. The results from two HEMT circuits are presented.
NASA Technical Reports Server (NTRS)
Dayton, James A., Jr.
1998-01-01
A review is presented of more than 20 years of research conducted at NASA Lewis Research Center on the suppression of secondary electron emission (SEE) for the enhancement of the efficiency of vacuum electron devices with multistage depressed collectors. This paper will include a description of measurement techniques, data from measurements of SEE on a variety of materials of engineering interest and methods of surface treatment for the suppression of SEE. In the course of this work the lowest secondary electron yield ever reported was achieved for ion textured graphite, and, in a parallel line of research, the highest yield was obtained for chemical vapor deposited thin diamond films.
Visible-light-induced two-electron-transfer photoreductions on CdS: Effects of morphology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiragami, Tsutomu; Pac, Chyongjin; Yanagida, Shozo
1990-01-25
Freshly prepared CdS suspensions (CdS-O) consisting of quantized particles and their loose aggregation catalyze photoreductions of aromatic ketones and olefins in methanol under visible light irradiation using triethylamine as sacrificial electron donor, yielding alcohols and dihydro compounds, respectively, which are more selective than photocatalysis of commercially available crystalline CdS (Aldrich) (CdS-Ald). Deuterium incorporation experiments in photolysis of dimethyl maleate in methanol-O-D revealed that CdS-O catalyzes sequential two-electron-transfer photoreduction, affording dideuterated dimethyl succinate, while CdS-Ald induces both photoreduction and photoisomerization through disproportionation between one-electron-transfer-reduction intermediates, yielding much trideuterated dimethyl succinate and monodeuterated dimethyl fumarate and maleate.
DNA strand breaks and crosslinks induced by transient anions in the range 2-20 eV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Xinglan; Zheng, Yi, E-mail: Yizheng@fzu.edu.cn; Sanche, Léon
2014-04-21
The energy dependence of the yields of single and double strand breaks (SSB and DSB) and crosslinks induced by electron impact on plasmid DNA films is measured in the 2-20 eV range. The yield functions exhibit two strong maxima, which are interpreted to result from the formation of core-excited resonances (i.e., transient anions) of the bases, and their decay into the autoionization channel, resulting in π → π{sup *} electronic transitions of the bases followed by electron transfer to the C–O σ{sup *} bond in the phosphate group. Occupancy of the σ{sup *} orbital ruptures the C–O bond of themore » backbone via dissociative electron attachment, producing a SSB. From a comparison of our results with those of other works, including theoretical calculations and electron-energy-loss spectra of the bases, the 4.6 eV peak in the SSB yield function is attributed to the resonance decay into the lowest electronically excited states of the bases; in particular, those resulting from the transitions 1{sup 3}A{sup ′} (π{sub 2} → π{sub 3}{sup *}) and 1{sup 3}A{sup ″} (n{sub 2} → π{sub 3}{sup *}) of thymine and 1{sup 3}A{sup ′} (π → π{sup *}) of cytosine. The strongest peak at 9.6 eV in the SSB yield function is also associated with electron captured by excited states of the bases, resulting mostly from a multitude of higher-energy π → π{sup *} transitions. The DSB yield function exhibits strong maxima at 6.1 and 9.6 eV. The peak at 9.6 eV is probably related to the same resonance manifold as that leading to SSB, but the other at 6.1 eV may be more restricted to decay into the electronic state 1{sup 3}A{sup ′} (π → π{sup *}) of cytosine via autoionization. The yield function of crosslinks is dominated by a broad peak extending over the 3.6-11.6 eV range with a sharper one at 17.6 eV. The different line shape of the latter function, compared to that of SSB and DSB, appears to be due to the formation of reactive radical sites in the initial supercoiled configuration of the plasmid, which react with the circular form (i.e., DNA with a SSB) to produce a crosslink.« less
The effect of impurities and incident angle on the secondary electron emission of Ni(110)
NASA Astrophysics Data System (ADS)
Lazar, Hadar; Patino, Marlene; Raitses, Yevgeny; Koel, Bruce E.; Gentile, Charles; Feibush, Eliot
2015-11-01
The investigation of secondary electron emission (SEE) of conducting materials used for magnetic fusion devices and plasma thrusters is important for determining device lifetime and performance. Methods to quantify the secondary electron emission from conducting materials and to characterize the effects that impurities and incident angles have on secondary electron emission were developed using 4-grid low energy electron diffraction (LEED) optics. The total secondary electron yield from a Ni(110) surface was continuously measured from the sample current as surface contamination increased from reactions with background gases in the ultrahigh vacuum chamber. Auger electron spectroscopy (AES) and temperature programmed desorption (TPD) were used to examine the composition and impurity levels on the Ni(110) surface. The total secondary electron yield was also measured at different incident angles. Thank you to the Princeton Plasma Physics Laboratory and the Department of Energy for the opportunity to work on this project through the Science Undergraduate Laboratory Internships.
The effects of impurities and incidence angle on the secondary electron emission of Ni(110)
NASA Astrophysics Data System (ADS)
Lazar, Hadar; Patino, Marlene; Raitses, Yevgeny; Koel, Bruce; Gentile, Charles; Feibush, Eliot
The investigation of secondary electron emission (SEE) of conducting materials used for magnetic fusion devices and plasma thrusters is important for determining device lifetime and performance. Methods to quantify the secondary electron emission from conducting materials and to characterize the effects that impurities and incidence angles have on secondary electron emission were developed using 4-grid low energy electron diffraction (LEED) optics. The total secondary electron yield from a Ni(110) surface was continuously measured from the sample current as surface contamination increased from reactions with background gases in the ultrahigh vacuum chamber. Auger electron spectroscopy (AES) and temperature programmed desorption (TPD) were used to examine the composition and impurity levels on the Ni(110) surface. The total secondary electron yield was also measured at different incidence angles. Thank you to the Princeton Plasma Physics Laboratory (PPPL) and the Department of Energy (DOE) for the opportunity to work on this project through the Science Undergraduate Laboratory Internships (SULI).
NASA Astrophysics Data System (ADS)
He, Lixin; Li, Yang; Wang, Zhe; Zhang, Qingbin; Lan, Pengfei; Lu, Peixiang
2014-05-01
We have performed the quantum trajectory analysis for high-order-harmonic generation (HHG) with different driving laser wavelengths. By defining the ratio of HHG yields of the Nth and first rescattering events (YN/Y1), we quantitatively evaluate the HHG contributions from multiple rescatterings. The results show that the HHG yield ratio increases gradually with the increase of the laser wavelength, which demonstrates that high-order rescatterings provide ascendent contributions to HHG at longer wavelength. By calculating the classical electron trajectories, we find significant differences exist in the electron behaviors between the first and high-order rescatterings. Further investigations have demonstrated that the increasing HHG yield ratio is mainly attributed to the relatively smaller contributions from the short path of the first electron rescattering at longer laser wavelength.
Photoproduction of hydrated electrons from natural organic solutes in aquatic environments
Zepp, R.G.; Braun, A.M.; Hoigne, J.; Leenheer, J.A.
1987-01-01
Laser flash photolysis was used to investigate the transients formed on absorption of 355-nm light by dissolved organic matter (DOM) from natural water bodies and from soil. Absorption spectra and quenching studies of the transients provided confirming evidence that hydrated electrons were formed by all of the DOM that were studied. The DOM from the Suwannee River in Georgia and from the Greifensee, a Swiss lake, exhibited great variability in light-absorbing properties. Despite this high variability in absorption coefficients, the primary quantum yields for electron ejection from the Greifensee and Suwannee DOM fell in a narrow range (0.005-0.008). Steady-state irradiations (355 nm) of the DOM with 2-chloroethanol (0.02 M) present as an electron scavenger produced chloride ions with quantum yields that were about 2 orders of magnitude lower than the primary quantum yields. This result indicates that most of the photoejected electrons recombine with cations before escaping into bulk solution. Irradiations of DOM solutions under sunlight (April, latitude 34?? N) photoproduced electrons at rates falling in the range of 0.2-0.4 ??mol/[(mg of DOC) h]. These results indicate that hydrated electrons can play a significant role in the environmental photoreduction of persistent, electronegative pollutants but may be relatively unimportant in the environmental production of hydrogen peroxide. ?? 1987 American Chemical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Zhe; Cao, Minhua, E-mail: caomh@bit.edu.cn; Key Laboratory of Cluster Science, Ministry of Education of China, Department of Chemistry, Beijing Institute of Technology, Beijing 100081
Research highlights: {yields} Novel Bi{sub 2}S{sub 3} hierarchical nanostructures self-assembled by nanorods are successfully synthesized in mild benzyl alcohol system under hydrothermal conditions. {yields} The hierarchical nanostructures exhibit a flower-like shape. {yields} PVP plays an important role for the formation of the hierarchical nanostructures. {yields} Bi{sub 2}S{sub 3} film prepared from the flower-like hierarchical nanostructures exhibits good hydrophobic properties. -- Abstract: Novel Bi{sub 2}S{sub 3} hierarchical nanostructures self-assembled by nanorods are successfully synthesized in mild benzyl alcohol system under hydrothermal conditions. The hierarchical nanostructures exhibit a flower-like shape. X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), scanning electron microscopy (SEM), transmissionmore » electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED) were used to characterize the as-synthesized samples. Meanwhile, the effect of various experimental parameters including the concentration of reagents and reaction time on final product has been investigated. In our experiment, PVP plays an important role for the formation of the hierarchical nanostructures and the possible mechanism was proposed. In addition, Bi{sub 2}S{sub 3} film prepared from the flower-like hierarchical nanostructures exhibits good hydrophobic properties, which may bring nontrivial functionalities and may have some promising applications in the future.« less
Few-cycle attosecond pulse chirp effects on asymmetries in ionized electron momentum distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng Liangyou; Tan Fang; Gong Qihuang
2009-07-15
The momentum distributions of electrons ionized from H atoms by chirped few-cycle attosecond pulses are investigated by numerically solving the time-dependent Schroedinger equation. The central carrier frequency of the pulse is chosen to be 25 eV, which is well above the ionization threshold. The asymmetry (or difference) in the yield of electrons ionized along and opposite to the direction of linear laser polarization is found to be very sensitive to the pulse chirp (for pulses with fixed carrier-envelope phase), both for a fixed electron energy and for the energy-integrated yield. In particular, the larger the pulse chirp, the larger themore » number of times the asymmetry changes sign as a function of ionized electron energy. For a fixed chirp, the ionized electron asymmetry is found to be sensitive also to the carrier-envelope phase of the few-cycle pulse.« less
Experimental determination of positron-related surface characteristics of 6H-SiC
NASA Astrophysics Data System (ADS)
Nangia, A.; Kim, J. H.; Weiss, A. H.; Brauer, G.
2002-03-01
The positron work function of 6H-SiC was determined to be -2.1±0.1 eV from an analysis of the energy spectrum of positrons reemitted from the surface. The positron reemission yield, highest in the sample inserted into vacuum after atmospheric exposure and cleaning with ethanol, was significantly reduced after sputtering with 3 keV, 125 μA min Ne+ ions. The yield was not recovered even after annealing at 900 °C, presumably due to the stability of sputter induced defects. Sputtering at lower energies caused a smaller decrease in the reemission yield that was largely recovered after annealing at 850 °C. Analysis using electron induced Auger electron spectroscopy and positron-annihilation-induced Auger electron spectroscopy indicated that the surface was Si enriched after sputtering and C enriched after subsequent annealing. Values of positron diffusion length and mobility in the unsputtered material were extracted from the dependence of the reemission yield on the beam energy. The application of SiC as a field-assisted positron moderator is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Joon-Seok; Choi, Kyung-Mi; Lee, Cheol-Koo, E-mail: cklee2005@korea.ac.kr
2011-06-03
Highlights: {yields} Calorie restriction (CR) increases electron transport chain (ETC) at both RNA and protein level. {yields} CR enhances mitochondrial membrane potential, and, regardless of ages, reduces reactive oxygen species. {yields} CR increases both efficiency and capacity of the ETC. {yields} CR induces intensive modulation at mitochondrial ETC where might be a major site leading to extension of lifespan. -- Abstract: Caloric restriction (CR) is known to extend lifespan in a variety of species; however, the mechanism remains unclear. In this study, we found that CR potentiated the mitochondrial electron transport chain (ETC) at both the transcriptional and translational levels.more » Indeed, mitochondrial membrane potential (MMP) was increased by CR, and, regardless of ages, overall reactive oxygen species (ROS) generation was decreased by CR. With these changes, overall growth rate of cells was maintained under various CR conditions, just like cells under a non-restricted condition. All of these data support increased efficiency and capacity of the ETC by CR, and this change might lead to extension of lifespan.« less
Radiation and chemical pretreatment of cellulosic waste
NASA Astrophysics Data System (ADS)
Chosdu, Rahayu; Hilmy, Nazly; Erizal; Erlinda, T. B.; Abbas, B.
1993-10-01
RADIATION AND CHEMICAL PRETREATMENT OF CELLULOSIC WASTE. Combination pretreatment of cellulosic wastes such as corn stalk, cassava bark and peanut husk were studied using chemical and irradiation of electron beam. The effect of 2 % NaOH and irradiation at the doses of 100, 300 and 500 kGy on the cellulosic wastes were evaluated by measurement of the glucose yield in enzymatic hydrolysis. Irradiation was carried out with an electron beam machine EPS-300 (Energy 300 kev, current 50 mA). The result shows that the glucose yield were higher by increasing of dose irradiation and treated with 2 % of NaOH especially in corn stalk. The glucose yield of corn stalk were 20 % in untreated samples and increases to 43 % after treated with electron beam irradiation at the dose of 500 kGy and 2 % NaOH. Cassava bark and peanut husk show the glucose yield are only 3.5, and 2.5% respectively. The effect of E-beam current in enzymatic hydrolysis of corn stalk, and preliminary studied E-beam radiation pretreatment of cassava bark are also reported.
Attosecond Spectroscopy Probing Electron Correlation Dynamics
NASA Astrophysics Data System (ADS)
Winney, Alexander H.
Electrons are the driving force behind every chemical reaction. The exchange, ionization, or even relaxation of electrons is behind every bond broken or formed. According to the Bohr model of the atom, it takes an electron 150 as to orbit a proton[6]. With this as a unit time scale for an electron, it is clear that a pulse duration of several femtoseconds will not be sufficient to understanding electron dynamics. Our work demonstrates both technical and scientific achievements that push the boundaries of attosecond dynamics. TDSE studies show that amplification the yield of high harmonic generation (HHG) may be possible with transverse confinement of the electron. XUV-pump-XUV-probe shows that the yield of APT train can be sufficient for 2-photon double ionization studies. A zero dead-time detection system allows for the measurement of state-resolved double ionization for the first time. Exploiting attosecond angular streaking[7] probes sequential and non-sequential double ionization via electron-electron correlations with attosecond time resolution. Finally, using recoil frame momentum correlation, the fast dissociation of CH 3I reveals important orbital ionization dynamics of non-dissociative & dissociative, single & double ionization.
NASA Technical Reports Server (NTRS)
Dunn, M. G.
1972-01-01
The rate coefficients for the reactions C(+) + e(-) + e(-) yields C + e(-) and CO(+) + e(-) yields C + O were measured over the electron temperature range of approximately 1500 deg K to 7000 deg K. The measurements were performed in CO that had expanded from equilibrium reservoir conditions of 7060 deg K at 17.3 atm pressure and from 6260 deg K at 10.0 atm pressure. Two RAM flight probes were used to measure electron density and electron temperature in the expanding flow of a shock tunnel. Experiments were performed in the inviscid flow with both probes and in the nozzle-wall boundary layer with the constant bias-voltage probe. The distributions of electron density and electron temperature were independently measured using voltage-swept thin-wire probes. Thin-wire Langmuir probes were also used to measure the electron-density and electron-temperature distributions in the boundary layer of a sharp flat plate located on the nozzle centerline. Admittance measurements were performed with the RAM C and RAM C-C S-band antennas in the presence of an ionized boundary layer.
Tsai, Chia-Hua; Chirdon, Danielle N; Kagalwala, Husain N; Maurer, Andrew B; Kaur, Aman; Pintauer, Tomislav; Bernhard, Stefan; Noonan, Kevin J T
2015-08-03
The synthesis and characterization of electron-poor thiophene 1,1-dioxides bearing cyanated phenyl groups are reported. The electron-accepting nature of these compounds was evaluated by cyclic voltammetry, and highly reversible and facile reductions were observed for several derivatives. Moreover, some of the reduced thiophene dioxides form colorful anions, which were investigated spectroelectrochemically. Photoluminescence spectra of the electron-deficient sulfones were measured in CH2 Cl2, and they emit in the blue-green region with significant variation in the quantum yield depending on the aryl substituents. By expanding the degree of substitution on the phenyl rings, quantum yields up to 34 % were obtained. X-ray diffraction data are reported for two of the thiophene 1,1-dioxides, and the electronic structure was probed for all synthesized derivatives through DFT calculations. The dioxides were also examined as electron relays in a photocatalytic water reduction reaction, and they showed potential to boost the efficiency. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Coyne, L.; Hovatter, W.; Sweeney, M.
1983-01-01
Experimental data concerning emission of light upon dehydration as a function of preheating and pre-gamma-irradiation are correlated with reported studies of electron-spin resonance (ESR) activity after similar pretreatments. The effect of these pretreatments on the kaolin-promoted incorporation of glycine into peptide oligomers in a wet/cold, hot/dry fluctuating environment is compared to their effect on the ESR and luminescent signals. The existence of spectroscopically active centers appears to be loosely anticorrelated with reaction yield; these yields are increased by increasing the overall energy content of the material. It is concluded that some part of the chemical yield is produced by a mechanism involving intrinsic, excited electronic states of the clay crystal lattice. These states may be derived from thermally, interfacially, and/or mechanically induced charge reorganization within interspersed energy levels in the band structure of the material.
NASA Astrophysics Data System (ADS)
Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; di Gangi, P.; di Giovanni, A.; Diglio, S.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Howlett, J.; Itay, R.; Kaminsky, B.; Kazama, S.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Lin, Q.; Lindemann, S.; Lindner, M.; Lombardi, F.; Lopes, J. A. M.; Mahlstedt, J.; Manfredini, A.; Maris, I.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Molinario, A.; Morâ, K.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Pizzella, V.; Piro, M.-C.; Plante, G.; Priel, N.; Ramírez García, D.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rupp, N.; Saldanha, R.; Dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Shockley, E.; Silva, M.; Simgen, H.; Sivers, M. V.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Vargas, M.; Wang, H.; Wang, Z.; Wei, Y.; Weinheimer, C.; Wittweg, C.; Wulf, J.; Ye, J.; Zhang, Y.; Zhu, T.; Xenon Collaboration
2018-05-01
We report on the response of liquid xenon to low energy electronic recoils below 15 keV from beta decays of tritium at drift fields of 92 V /cm , 154 V /cm and 366 V /cm using the XENON100 detector. A data-to-simulation fitting method based on Markov Chain Monte Carlo is used to extract the photon yields and recombination fluctuations from the experimental data. The photon yields measured at the two lower fields are in agreement with those from literature; additional measurements at a higher field of 366 V /cm are presented. The electronic and nuclear recoil discrimination as well as its dependence on the drift field and photon detection efficiency are investigated at these low energies. The results provide new measurements in the energy region of interest for dark matter searches using liquid xenon.
Local formation of nitrogen-vacancy centers in diamond by swift heavy ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwartz, J.; Ilmenau University of Technology, Department of Microelectronics and Nanoelectric Systems, 98684 Ilmenau; Aloni, S.
2014-12-07
We exposed nitrogen-implanted diamonds to beams of swift heavy ions (∼1 GeV, ∼4 MeV/u) and find that these irradiations lead directly to the formation of nitrogen vacancy (NV) centers, without thermal annealing. We compare the photoluminescence intensities of swift heavy ion activated NV{sup −} centers to those formed by irradiation with low-energy electrons and by thermal annealing. NV{sup −} yields from irradiations with swift heavy ions are 0.1 of yields from low energy electrons and 0.02 of yields from thermal annealing. We discuss possible mechanisms of NV center formation by swift heavy ions such as electronic excitations and thermal spikes. While formingmore » NV centers with low efficiency, swift heavy ions could enable the formation of three dimensional NV{sup −} assemblies over relatively large distances of tens of micrometers. Further, our results show that NV center formation is a local probe of (partial) lattice damage relaxation induced by electronic excitations from swift heavy ions in diamond.« less
Positron annihilation studies in solid substituted aromatic compounds
NASA Astrophysics Data System (ADS)
Oliveira, F. C.; Oliveira, A. M.; Donnici, C. L.; Machado, J. C.; Magalhães, W. F.; Windmöller, D.; Fulgêncio, F. H.; Souza, L. R.
2011-04-01
Positronium formation was investigated in benzene and naphthalene compounds with electron donating (sbnd NH2 and sbnd OH) and electron withdrawing (sbnd CN and sbnd NO2) substituents. The results exhibit an increase in the positronium formation yield whenever donating groups are bound to the ring and a decrease with withdrawing groups. These results can be attributed to the π-system electronic density variation in the aromatic ring. The amount of positronium obtained, I3 parameter, has been correlated with the Hammett (σ) and Brown-Okamoto (σp+) constants and adjusted through the modified Hammett equation, which employs the ratio I3/I3ϕ, yielding a satisfactory fit.
NASA Astrophysics Data System (ADS)
Feil, Stefan; Märk, Tilmann D.; Mauracher, Andreas; Scheier, Paul; Mayhew, Chris A.
2008-11-01
Non-dissociative and dissociative electron attachment to a series of gas-phase perfluorocarbons (PFCs), namely octafluorocyclobutane, c-C4F8, octafluorobut-2-ene (perfluoro-2-butene), 2-C4F8, hexafluorobuta-1,3-diene (1,3 perfluorobutadiene), 1,3 C4F6, and octafluorocyclopentene (perfluorocyclopentene), c-C5F8, of importance to technological plasmas, have been investigated using two different, but complimentary, instruments available in Innsbruck over the electron energy range 0-20 eV. Anion yields as a function of electron energy have been recorded, with the positions and intensities of the electron attachment resonances being determined. One of these instruments is a double focusing sector field mass spectrometer (VG-ZAB-2SEQ), which has been used for measurements requiring high sensitivity and for obtaining accurate relative anion yields. It has also been used to determine the electron detachment lifetimes of the parent anions under various accelerating voltages, and these results are also presented. The second instrument (CELIA) is a trochoidal electron monochromator coupled to a quadrupole mass filter with a pulse counting system for detecting product anionic species. This provides a much higher energy resolution than the VG-ZAB, which makes it a better instrument to investigate narrow energy resonances close to 0 eV. The results of anion yields, peak positions and the relative intensities presented in this paper are compared with previous data of electron attachment to the above PFCs, including investigations by Professor Eugen Illenberger.
Nano-Se: Cheap and easy-to-obtain novel material for all-dielectric nano-photonics
NASA Astrophysics Data System (ADS)
Ivanova, A. K.; Ionin, A. A.; Khmel'nitskii, R. A.; Klevkov, Yu. K.; Kudryashov, S. I.; Levchenko, A. O.; Mel'nik, N. N.; Nastulyavichus, A. A.; Rudenko, A. A.; Saraeva, I. N.; Smirnov, N. A.; Zayarny, D. A.; Gonchukov, S. A.; Tolordava, E. R.; Baranov, A. N.
2017-09-01
Milligram-per-second production of selenium nanoparticles in water sols was realized through few W, kHz-rate nanosecond laser ablation of a solid selenium pellet. High-yield particle formation mechanism and ultimate mass-removal yield were elucidated by optical profilometry and scanning electron microscopy characterization of crater depths and topographies. Deposited particles were inspected by scanning electron microscopy, while optical transmission Raman and dynamic light scattering spectroscopy characterized their hydrosols.
Photooxidation of mixed aryl and biarylphosphines.
Zhang, Dong; Celaje, Jeff A; Agua, Alon; Doan, Chad; Stewart, Timothy; Bau, Robert; Selke, Matthias
2010-07-02
Arylphosphines and dialkylbiarylphosphines react with singlet oxygen to form phosphine oxides and phosphinate esters. For mixed arylphosphines, the most electron-rich aryl group migrates to form the phosphinate, while for dialkylbiarylphosphines migration of the alkyl group occurs. Dialkylbiarylphosphines also yield arene epoxides, especially in electron-rich systems. Phosphinate ester formation is increased at high temperature, while protic solvents increase the yield of epoxide. The product distribution provides evidence for Buchwald's recent conformational model for the aerobic oxidation of dialkylbiarylphosphines.
Charge dynamics of MgO single crystals subjected to KeV electron irradiation
NASA Astrophysics Data System (ADS)
Boughariou, A.; Blaise, G.; Braga, D.; Kallel, A.
2004-04-01
A scanning electron microscope has been equipped to study the fundamental aspects of charge trapping in insulating materials, by measuring the secondary electron emission (SEE) yield σ with a high precision (a few percent), as a function of energy, electron current density, and dose. The intrinsic secondary electron emission yield σ0 of uncharged MgO single crystals annealed at 1000 °C, 2 h, has been studied at four energies 1.1, 5, 15, and 30 keV on three different crystal orientations (100), (110), and (111). At low energies (1.1 and 5 keV) σ0 depends on the crystalline orientation wheras at high energies (30 keV) no differentiation occurs. It is shown that the value of the second crossover energy E2, for which the intrinsic SEE yield σ0=1, is extremely delicate to measure with precision. It is about 15 keV±500 eV for the (100) orientation, 13.5 keV±500 eV for the (110), and 18.5 keV±500 eV for the (111) one. At low current density J⩽105 pA/cm2, the variation of σ with the injected dose makes possible the observation of a self-regulated regime characterized by a steady value of the SEE yield σst=1. At low energies 1.1 and 5 keV, there is no current density effects in MgO, but at high energies ≈30 keV, apparent current density effects come from a bad collect of secondary electrons, due to very high negative surface potential. At 30 keV energy, an intense erratic electron exoemission was observed on the MgO (110) orientation annealed at 1500 °C. This phenomenon is the result of a disruptive process similar to flashover, which takes place at the surface of the material.
Mohanta, Tapan Kumar; Mohanta, Nibedita; Parida, Pratap; Panda, Sujogya Kumar; Ponpandian, Lakshmi Narayanan; Bae, Hanhong
2016-01-01
The mitogen-activated protein kinase (MAPK) is characterized by the presence of the T-E-Y, T-D-Y, and T-G-Y motifs in its activation loop region and plays a significant role in regulating diverse cellular responses in eukaryotic organisms. Availability of large-scale genome data in the fungal kingdom encouraged us to identify and analyse the fungal MAPK gene family consisting of 173 fungal species. The analysis of the MAPK gene family resulted in the discovery of several novel activation loop motifs (T-T-Y, T-I-Y, T-N-Y, T-H-Y, T-S-Y, K-G-Y, T-Q-Y, S-E-Y and S-D-Y) in fungal MAPKs. The phylogenetic analysis suggests that fungal MAPKs are non-polymorphic, had evolved from their common ancestors around 1500 million years ago, and are distantly related to plant MAPKs. We are the first to report the presence of nine novel activation loop motifs in fungal MAPKs. The specificity of the activation loop motif plays a significant role in controlling different growth and stress related pathways in fungi. Hence, the presences of these nine novel activation loop motifs in fungi are of special interest. PMID:26918378
MAP Kinase-Mediated Negative Regulation of Symbiotic Nodule Formation in Medicago truncatula.
Ryu, Hojin; Laffont, Carole; Frugier, Florian; Hwang, Ildoo
2017-01-01
Mitogen-activated protein kinase (MAPK) signaling cascades play critical roles in various cellular events in plants, including stress responses, innate immunity, hormone signaling, and cell specificity. MAPK-mediated stress signaling is also known to negatively regulate nitrogen-fixing symbiotic interactions, but the molecular mechanism of the MAPK signaling cascades underlying the symbiotic nodule development remains largely unknown. We show that the MtMKK5-MtMPK3/6 signaling module negatively regulates the early symbiotic nodule formation, probably upstream of ERN1 (ERF Required for Nodulation 1) and NSP1 (Nod factor Signaling Pathway 1) in Medicago truncatula . The overexpression of MtMKK5 stimulated stress and defense signaling pathways but also reduced nodule formation in M. truncatula roots. Conversely, a MAPK specific inhibitor, U0126, enhanced nodule formation and the expression of an early nodulation marker gene, MtNIN . We found that MtMKK5 directly activates MtMPK3/6 by phosphorylating the TEY motif within the activation loop and that the MtMPK3/6 proteins physically interact with the early nodulation-related transcription factors ERN1 and NSP1. These data suggest that the stress signaling-mediated MtMKK5/MtMPK3/6 module suppresses symbiotic nodule development via the action of early nodulation transcription factors.
MAP Kinase-Mediated Negative Regulation of Symbiotic Nodule Formation in Medicago truncatula
Ryu, Hojin; Laffont, Carole; Frugier, Florian; Hwang, Ildoo
2017-01-01
Mitogen-activated protein kinase (MAPK) signaling cascades play critical roles in various cellular events in plants, including stress responses, innate immunity, hormone signaling, and cell specificity. MAPK-mediated stress signaling is also known to negatively regulate nitrogen-fixing symbiotic interactions, but the molecular mechanism of the MAPK signaling cascades underlying the symbiotic nodule development remains largely unknown. We show that the MtMKK5-MtMPK3/6 signaling module negatively regulates the early symbiotic nodule formation, probably upstream of ERN1 (ERF Required for Nodulation 1) and NSP1 (Nod factor Signaling Pathway 1) in Medicago truncatula. The overexpression of MtMKK5 stimulated stress and defense signaling pathways but also reduced nodule formation in M. truncatula roots. Conversely, a MAPK specific inhibitor, U0126, enhanced nodule formation and the expression of an early nodulation marker gene, MtNIN. We found that MtMKK5 directly activates MtMPK3/6 by phosphorylating the TEY motif within the activation loop and that the MtMPK3/6 proteins physically interact with the early nodulation-related transcription factors ERN1 and NSP1. These data suggest that the stress signaling-mediated MtMKK5/MtMPK3/6 module suppresses symbiotic nodule development via the action of early nodulation transcription factors. PMID:28152300
Richter, Johannes M; Abdi-Jalebi, Mojtaba; Sadhanala, Aditya; Tabachnyk, Maxim; Rivett, Jasmine P H; Pazos-Outón, Luis M; Gödel, Karl C; Price, Michael; Deschler, Felix; Friend, Richard H
2016-12-23
In lead halide perovskite solar cells, there is at least one recycling event of electron-hole pair to photon to electron-hole pair at open circuit under solar illumination. This can lead to a significant reduction in the external photoluminescence yield from the internal yield. Here we show that, for an internal yield of 70%, we measure external yields as low as 15% in planar films, where light out-coupling is inefficient, but observe values as high as 57% in films on textured substrates that enhance out-coupling. We analyse in detail how externally measured rate constants and photoluminescence efficiencies relate to internal recombination processes under photon recycling. For this, we study the photo-excited carrier dynamics and use a rate equation to relate radiative and non-radiative recombination events to measured photoluminescence efficiencies. We conclude that the use of textured active layers has the ability to improve power conversion efficiencies for both LEDs and solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmeri, P., E-mail: patrick.palmeri@umons.ac.be; Quinet, P., E-mail: pascal.quinet@umons.ac.be; IPNAS, Université de Liège, B-4000 Liège
2015-03-15
The K-shell electron impact ionization (EII) cross section, along with the K-shell fluorescence yield, is one of the key atomic parameters for fast-electron diagnostic in laser-solid experiments through the K-shell emission cross section. In addition, copper is a material that has been often used in those experiments because it has a maximum total K-shell emission yield. Furthermore, in a campaign dedicated to the modeling of the K lines of astrophysical interest (Palmeri et al., 2012), the K-shell fluorescence yields for the K-vacancy fine-structure atomic levels of all the copper isonuclear ions have been calculated. In this study, the K-shell EII crossmore » sections connecting the ground and the metastable levels of the parent copper ions to the daughter ions K-vacancy levels considered in Palmeri et al. (2012) have been determined. The relativistic distorted-wave (DW) approximation implemented in the FAC atomic code has been used for the incident electron kinetic energies up to 10 times the K-shell threshold energies. Moreover, the resulting DW cross sections have been extrapolated at higher energies using the asymptotic form proposed by Davies et al. (2013)« less
Secondary Electron Emission Yields
NASA Technical Reports Server (NTRS)
Krainsky, I.; Lundin, W.; Gordon, W. L.; Hoffman, R. W.
1981-01-01
The secondary electron emission (SEE) characteristics for a variety of spacecraft materials were determined under UHV conditions using a commercial double pass CMA which permits sequential Auger electron electron spectroscopic analysis of the surface. The transparent conductive coating indium tin oxide (ITO) was examined on Kapton and borosilicate glass and indium oxide on FED Teflon. The total SEE coefficient ranges from 2.5 to 2.6 on as-received surfaces and from 1.5 to 1.6 on Ar(+) sputtered surfaces with 5 nm removed. A cylindrical sample carousel provides normal incidence of the primary beam as well as a multiple Faraday cup measurement of the approximately nA beam currents. Total and true secondary yields are obtained from target current measurements with biasing of the carousel. A primary beam pulsed mode to reduce electron beam dosage and minimize charging of insulating coatings was applied to Mg/F2 coated solar cell covers. Electron beam effects on ITO were found quite important at the current densities necessary to do Auger studies.
NASA Astrophysics Data System (ADS)
Pershukevich, P. P.; Volkovich, D. I.; Gladkov, L. L.; Dudkin, S. V.; Kuzmitsky, V. A.; Makarova, E. A.; Solovyev, K. N.
2017-10-01
The photophysics and electronic structure of tribenzotetraazachlorins (H2, Zn, and Mg), which are novel analogues of phtalocyanines, have been studied experimentally and theoretically. At 293 K, the electronic absorption, fluorescence, and fluorescence excitation spectra are recorded and the fluorescence quantum yield and lifetime, as well as the quantum yield of singlet oxygen generation, are measured; at 77 K, the fluorescence, fluorescence excitation, and fluorescence polarization spectra are recorded and the fluorescence lifetime values are measured. The dependences of the absorption spectra and photophysical parameters on the structure variation are analyzed in detail. Quantum-chemical calculations of the electronic structure and absorption spectra of tribenzotetraazachlorins (H2, Mg) are performed using the INDO/Sm method (modified INDO/S method) based on molecular-geometry optimization by the DFT PBE/TZVP method. The results of quantum-chemical calculations of the electronic absorption spectra are in very good agreement with the experimental data for the transitions to two lower electronic states.
Ultrafast Surface-Enhanced Raman Probing of the Role of Hot Electrons in Plasmon-Driven Chemistry.
Brandt, Nathaniel C; Keller, Emily L; Frontiera, Renee R
2016-08-18
Hot electrons generated through plasmonic excitations in metal nanostructures show great promise for efficiently driving chemical reactions with light. However, the lifetime, yield, and mechanism of action of plasmon-generated hot electrons involved in a given photocatalytic process are not well understood. Here, we develop ultrafast surface-enhanced Raman scattering (SERS) as a direct probe of plasmon-molecule interactions in the plasmon-catalyzed dimerization of 4-nitrobenzenethiol to p,p'-dimercaptoazobenzene. Ultrafast SERS probing of these molecular reporters in plasmonic hot spots reveals transient Fano resonances, which we attribute to near-field coupling of Stokes-shifted photons to hot electron-driven metal photoluminescence. Surprisingly, we find that hot spots that yield more photoluminescence are much more likely to drive the reaction, which indirectly proves that plasmon-generated hot electrons induce the photochemistry. These ultrafast SERS results provide insight into the relative reactivity of different plasmonic hot spot environments and quantify the ultrafast lifetime of hot electrons involved in plasmon-driven chemistry.
Action spectra of photosystems II and I and quantum yield of photosynthesis in leaves in State 1.
Laisk, Agu; Oja, Vello; Eichelmann, Hillar; Dall'Osto, Luca
2014-02-01
The spectral global quantum yield (YII, electrons/photons absorbed) of photosystem II (PSII) was measured in sunflower leaves in State 1 using monochromatic light. The global quantum yield of PSI (YI) was measured using low-intensity monochromatic light flashes and the associated transmittance change at 810nm. The 810-nm signal change was calibrated based on the number of electrons generated by PSII during the flash (4·O2 evolution) which arrived at the PSI donor side after a delay of 2ms. The intrinsic quantum yield of PSI (yI, electrons per photon absorbed by PSI) was measured at 712nm, where photon absorption by PSII was small. The results were used to resolve the individual spectra of the excitation partitioning coefficients between PSI (aI) and PSII (aII) in leaves. For comparison, pigment-protein complexes for PSII and PSI were isolated, separated by sucrose density ultracentrifugation, and their optical density was measured. A good correlation was obtained for the spectral excitation partitioning coefficients measured by these different methods. The intrinsic yield of PSI was high (yI=0.88), but it absorbed only about 1/3 of quanta; consequently, about 2/3 of quanta were absorbed by PSII, but processed with the low intrinsic yield yII=0.63. In PSII, the quantum yield of charge separation was 0.89 as detected by variable fluorescence Fv/Fm, but 29% of separated charges recombined (Laisk A, Eichelmann H and Oja V, Photosynth. Res. 113, 145-155). At wavelengths less than 580nm about 30% of excitation is absorbed by pigments poorly connected to either photosystem, most likely carotenoids bound in pigment-protein complexes. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, Police Anil Kumar; Srinivas, Basavaraju; Kala, Pruthu
Highlights: {yields} Visible active Bi-TiO{sub 2} photocatalyst preparation and thorough charaterization. {yields} Bi-TiO{sub 2} shows high activity for isoproturon degradation under solar light irradiation. {yields} The spectral response of TiO{sub 2} shifts from UV to visible light region by Bi doping. {yields} Bi{sup 3+{delta}+} species are playing a vital role in minimizing e{sup -}/h{sup +} recombination. -- Abstract: Bi-doped TiO{sub 2} catalyst was prepared by sol-gel method and was characterized by thermo gravimetric analysis (TGA), X-ray diffraction spectra (XRD), X-ray photo electronic spectroscopy (XPS), UV-Vis diffused reflectance spectra (DRS), photoluminescence spectra (PLS), transmission electron microscopy (TEM), energy dispersive analysis ofmore » X-rays (EDAX) and BET surface area. The photocatalytic activity of the catalysts were evaluated for the degradation of isoproturon herbicide under solar light irradiation. The UV-Visible DRS of Bi-doped TiO{sub 2} showed red shift in optical absorption. The presence of Bi{sup 3+{delta}+} species are playing a vital role in minimizing the electron hole recombination resulting higher activity compared to bare TiO{sub 2}.« less
Konigsfeld, Katie M; Lee, Melissa; Urata, Sarah M; Aguilera, Joe A; Milligan, Jamie R
2012-03-01
Electron deficient guanine radical species are major intermediates produced in DNA by the direct effect of ionizing irradiation. There is evidence that they react with amine groups in closely bound ligands to form covalent crosslinks. Crosslink formation is very poorly characterized in terms of quantitative rate and yield data. We sought to address this issue by using oligo-arginine ligands to model the close association of DNA and its binding proteins in chromatin. Guanine radicals were prepared in plasmid DNA by single electron oxidation. The product distribution derived from them was assayed by strand break formation after four different post-irradiation incubations. We compared the yields of DNA damage produced in the presence of four ligands in which neither, one, or both of the amino and carboxylate termini were blocked with amides. Free carboxylate groups were unreactive. Significantly higher yields of heat labile sites were observed when the amino terminus was unblocked. The rate of the reaction was characterized by diluting the unblocked amino group with its amide blocked derivative. These observations provide a means to develop quantitative estimates for the yields in which these labile sites are formed in chromatin by exposure to ionizing irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prakash, John; Mishra, Ashok Kumar
2016-01-15
It is possible to measure luminescence quantum yield in a facile way, by designing an optical spectrometer capable of obtaining electronic absorption as well as luminescence spectra, with a setup that uses the same light source and detector for both the spectral measurements. Employment of a single light source and single detector enables use of the same correction factor profile for spectral corrections. A suitable instrumental scaling factor is used for adjusting spectral losses.
Photooxidation of Mixed Aryl and Biarylphosphines
Zhang, Dong; Celaje, Jeff A.; Agua, Alon; Doan, Chad; Stewart, Timothy; Bau, Robert; Selke, Matthias
2010-01-01
Aryl phosphines and dialkylbiaryl phosphines react with singlet oxygen to form phosphinate esters. For mixed arylphosphines, the most electron-rich aryl group migrates to form the phosphinate, while for dialkylbiaryl phosphines migration of the alkyl group occurs. Dialkylbiaryl phosphines also yield arene epoxides, especially in electron rich systems. Phosphinate ester formation is increased at high temperature while protic solvents increase the yield of epoxide. The product distribution provides evidence for Buchwald’s recent conformational model for the aerobic oxidation of dialkylbiaryl phosphines. PMID:20527907
Ning, Na; Wen, Yinyuan; Dong, Shuqi; Yin, Meiqiang; Guo, Meijun; Wang, Binqiang; Feng, Lei; Guo, Pingyi
2014-01-01
Radix Isatidis (Isatis indigotica Fort.) is one of the most important traditional Chinese medicine plants. However, there is no suitable herbicide used for weed control in Radix Isatidis field during postemergence stage. To explore the safety of sulfonylurea herbicide nicosulfuron on Radix Isatidis (Isatis indigotica Fort.) seedlings and the photosynthetic physiological response of the plant to the herbicide, biological mass, leaf area, photosynthetic pigment content, photosynthetic rate, chlorophyll fluorescence characteristics, and P700 parameters of Radix Isatidis seedlings were analyzed 10 d after nicosulfuron treatment at 5th leaf stage in this greenhouse research. The results showed that biological mass, total chlorophyll, chlorophyll a, and carotenoids content, photosynthetic rate, stomatal conductance, PS II maximum quantum yield, PS II effective quantum yield, PS II electron transport rate, photochemical quenching, maximal P700 change, photochemical quantum yield of PS I, and PS I electron transport rate decreased with increasing herbicide concentrations, whereas initial fluorescence, quantum yield of non-regulated energy dissipation in PS II and quantum yield of non-photochemical energy dissipation due to acceptor side limitation in PS I increased. It suggests that nicosulfuron ≥1 mg L−1 causes the damage of chloroplast, PS II and PS I structure. Electron transport limitations in PS I receptor side, and blocked dark reaction process may be the main cause of the significantly inhibited growth and decreased photosynthetic rate of Radix Isatidis seedlings. PMID:25165819
NASA Astrophysics Data System (ADS)
Elfimchev, S.; Chandran, M.; Akhvlediani, R.; Hoffman, A.
2017-07-01
In this study the origin of visible sub-band gap photoelectron emission (PEE) from polycrystalline diamond films is investigated. The PEE yields as a function of temperature were studied in the wavelengths range of 360-520 nm. Based on the comparison of electron emission yields from diamond films deposited on silicon and molybdenum substrates, with different thicknesses and nitrogen doping levels, we suggested that photoelectrons are generated from nitrogen related centers in diamond. Our results show that diamond film thickness and substrate material have no significant influence on the PEE yield. We found that nanocrystalline diamond films have low electron emission yields, compared to microcrystalline diamond, due to the presence of high amount of defects in the former, which trap excited electrons before escaping into the vacuum. However, the low PEE yield of nanocrystalline diamond films was found to increase with temperature. The phenomenon was explained by the trap assisted photon enhanced thermionic emission (ta-PETE) model. According to the ta-PETE model, photoelectrons are trapped by shallow traps, followed by thermal excitation at elevated temperatures and escape into the vacuum. Activation energies of trap levels were estimated for undoped nanocrystalline, undoped microcrystalline and N-doped diamond films using the Richardson-Dushman equation, which gives 0.13, 0.39 and 0.04 eV, respectively. Such low activation energy of trap levels makes the ta-PETE process very effective at elevated temperatures.
Structural Studies on Dy to 119 GPa and Applications to Lanthanide Systematics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patterson, J; Akella, J
2005-05-31
The Rare Earth elements (REE) are known to undergo crystallographic as well as electronic structure changes with applied pressure. On increasing pressure, the trivalent lanthanides follow the sequence hcp {yields} Sm-type {yields} dhcp {yields} fcc {yields} dfcc. In this report we present room-temperature high-pressure x-ray diffraction data for Dy as well as our observations on the post-dfcc phases and concomitant volume changes in the heavy REE.
Identifying target processes for microbial electrosynthesis by elementary mode analysis.
Kracke, Frauke; Krömer, Jens O
2014-12-30
Microbial electrosynthesis and electro fermentation are techniques that aim to optimize microbial production of chemicals and fuels by regulating the cellular redox balance via interaction with electrodes. While the concept is known for decades major knowledge gaps remain, which make it hard to evaluate its biotechnological potential. Here we present an in silico approach to identify beneficial production processes for electro fermentation by elementary mode analysis. Since the fundamentals of electron transport between electrodes and microbes have not been fully uncovered yet, we propose different options and discuss their impact on biomass and product yields. For the first time 20 different valuable products were screened for their potential to show increased yields during anaerobic electrically enhanced fermentation. Surprisingly we found that an increase in product formation by electrical enhancement is not necessarily dependent on the degree of reduction of the product but rather the metabolic pathway it is derived from. We present a variety of beneficial processes with product yield increases of maximal 36% in reductive and 84% in oxidative fermentations and final theoretical product yields up to 100%. This includes compounds that are already produced at industrial scale such as succinic acid, lysine and diaminopentane as well as potential novel bio-commodities such as isoprene, para-hydroxybenzoic acid and para-aminobenzoic acid. Furthermore, it is shown that the way of electron transport has major impact on achievable biomass and product yields. The coupling of electron transport to energy conservation could be identified as crucial for most processes. This study introduces a powerful tool to determine beneficial substrate and product combinations for electro-fermentation. It also highlights that the maximal yield achievable by bio electrochemical techniques depends strongly on the actual electron transport mechanisms. Therefore it is of great importance to reveal the involved fundamental processes to be able to optimize and advance electro fermentations beyond the level of lab-scale studies.
Influence of organic ions on DNA damage induced by 1 eV to 60 keV electrons.
Zheng, Yi; Sanche, Léon
2010-10-21
We report the results of a study on the influence of organic salts on the induction of single strand breaks (SSBs) and double strand breaks (DSBs) in DNA by electrons of 1 eV to 60 keV. Plasmid DNA films are prepared with two different concentrations of organic salts, by varying the amount of the TE buffer (Tris-HCl and EDTA) in the films with ratio of 1:1 and 6:1 Tris ions to DNA nucleotide. The films are bombarded with electrons of 1, 10, 100, and 60 000 eV under vacuum. The damage to the 3197 base-pair plasmid is analyzed ex vacuo by agarose gel electrophoresis. The highest yields are reached at 100 eV and the lowest ones at 60 keV. The ratios of SSB to DSB are surprisingly low at 10 eV (∼4.3) at both salt concentrations, and comparable to the ratios measured with 100 eV electrons. At all characteristic electron energies, the yields of SSB and DSB are found to be higher for the DNA having the lowest salt concentration. However, the organic salts are more efficient at protecting DNA against the damage induced by 1 and 10 eV electrons. DNA damage and protection by organic ions are discussed in terms of mechanisms operative at each electron energy. It is suggested that these ions create additional electric fields within the groove of DNA, which modify the resonance parameter of 1 and 10 eV electrons, namely, by reducing the electron capture cross-section of basic DNA units and the lifetime of corresponding transient anions. An interstrand electron transfer mechanism is proposed to explain the low ratios for the yields of SSB to those of DSB produced by 10 eV electrons.
Influence of organic ions on DNA damage induced by 1 eV to 60 keV electrons
Zheng, Yi; Sanche, Léon
2011-01-01
We report the results of a study on the influence of organic salts on the induction of single strand breaks (SSBs) and double strand breaks (DSBs) in DNA by electrons of 1 eV to 60 keV. Plasmid DNA films are prepared with two different concentrations of organic salts, by varying the amount of the TE buffer (Tris-HCl and EDTA) in the films with ratio of 1:1 and 6:1 Tris ions to DNA nucleotide. The films are bombarded with electrons of 1, 10, 100, and 60 000 eV under vacuum. The damage to the 3197 base-pair plasmid is analyzed ex vacuo by agarose gel electrophoresis. The highest yields are reached at 100 eV and the lowest ones at 60 keV. The ratios of SSB to DSB are surprisingly low at 10 eV (~4.3) at both salt concentrations, and comparable to the ratios measured with 100 eV electrons. At all characteristic electron energies, the yields of SSB and DSB are found to be higher for the DNA having the lowest salt concentration. However, the organic salts are more efficient at protecting DNA against the damage induced by 1 and 10 eV electrons. DNA damage and protection by organic ions are discussed in terms of mechanisms operative at each electron energy. It is suggested that these ions create additional electric fields within the groove of DNA, which modify the resonance parameter of 1 and 10 eV electrons, namely, by reducing the electron capture cross-section of basic DNA units and the lifetime of corresponding transient anions. An interstrand electron transfer mechanism is proposed to explain the low ratios for the yields of SSB to those of DSB produced by 10 eV electrons. PMID:20969428
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maldonado, R.; Kevan, L.; Szajdzinska-Pietek, E.
1984-11-01
The electron spin echo modulation (ESEM) and electron spin resonance (ESR) spectra of the cation radical of N,N,N',N'-tetramethylbenzidine (TMB) in frozen sodium dodecyl sulfate (SDS)= and dodecyltrimethylammonium chloride (DTAC) micelles were studied as a function of sodium chloride concentration. TMB/sup +center-dot/ was produced by photoionization at 350 nm of the parent compound in the micelles at 77 K. From the ESEM analysis it is found that the cation--water interactions increase with salt addition in both anionic and cationic micelles to a maximum near 0.2 M NaCl and then decrease somewhat. The increase is interpreted in terms of an increase inmore » the water density at the micellar surface due to an increased surface concentration of hydrated counterions. The decrease may be due to TMB moving further from the polar micellar surface with added salt. From ESR spectra the photoionization yields of TMB at 77 K were determined. For DTAC micelles the yields are found to decrease with salt addition as expected from electrostatic considerations. For SDS micelles the photoionization yields increase for salt concentrations up to about 0.15 M and decrease for greater salt concentrations up to 0.5 M. The initial increase in cation yield correlates with electrostatic expectations. The decrease may be due to TMB moving further from the polar micellar surface with added salt. The possible effect of differing TMB protonation equilibria between anionic and cationic micelles on the photoionization yields was found to be unimportant by adjusting the bulk solution pH. An important conclusion is that salt addition can be used to optimize charge separation for photoionized solutes in anionic micelles.« less
Serrano, M S; Backus, E A; Cardona, C
2000-12-01
Two methods for estimating the tolerance of common bean genotypes to Empoasca kraemeri Ross & Moore were compared, using a yield trial carried out at Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia, versus stylet penetration tactics measured by AC electronic feeding monitors. A stylet penetration index was devised based on principal component scores of three penetration tactics identified (pulsing laceration, cell rupturing, and lancing sap ingestion), combined with knowledge of the hopperburn symptoms caused by each tactic. Tolerant genotypes, as classified by the CIAT yield index, showed significantly more unprotected yield and lower hopperburn scores than the susceptible control. They also induced performance of less pulsing laceration (the tactic considered most damaging to the plant), and more of the other two, mitigating tactics, especially cell rupturing. When index values were calculated for each genotype, stylet penetration index values matched those of the yield index for three out of five genotypes: two EMP-coded tolerant lines ('EMP 385' and 'EMP 392') and the susceptible control 'BAT 41'. Thus, for these three genotypes, all subsequent hoppereburn symptoms are predictable by the type of feeding behavior performed on them. 'Porrillo Sintético' and 'EMP 84', considered borderline genotypes by the yield index, were overestimated and underestimated respectively, by the stylet penetration index. We postulate that, for these two genotypes, plant physiological responses to feeding (either compensatory or heightened sensitivity, respectively) synergize with type of feeding performed to generate the overall hopperburn condition. This multivariate analysis of electronic monitoring data was successfully used to devise an index of resistance. The implications of using the stylet penetration index and the advantages of using electronic monitoring in a bean-breeding program are discussed.
Pater, P; Bernal, M; Naqa, I El; Seuntjens, J
2012-06-01
To validate and scrutinize published DNA strand break data with Geant4-DNA and a probabilistic model. To study the impact of source size, electronic equilibrium and secondary electron tracking cutoff on direct relative biological effectiveness (DRBE). Geant4 (v4.9.5) was used to simulate a cylindrical region of interest (ROI) with r = 15 nm and length = 1.05 mm, in a slab of liquid water of 1.06 g/cm 3 density. The ROI was irradiated with mono-energetic photons, with a uniformly distributed volumetric isotropic source (0.28, 1.5 keV) or a plane beam (0.662, 1.25 MeV), of variable size. Electrons were tracked down to 50 or 10 eV, with G4-DNA processes and energy transfer greater than 10.79 eV was scored. Based on volume ratios, each scored event had a 0.0388 probability of happening on either DNA helix (break). Clusters of at least one break on each DNA helix within 3.4 nm were found using a DBSCAN algorithm and categorized as double strand breaks (DSB). All other events were categorized as single strand breaks (SSB). Geant4-DNA is able to reproduce strand break yields previously published. Homogeneous irradiation conditions should be present throughout the ROI for DRBE comparisons. SSB yields seem slightly dependent on the primary photon energy. DRBEs show a significant increasing trend for lower energy incident photons. A lower electron cutoff produces higher SSB yields, but decreases the SSB/DSB yields ratio. The probabilistic and geometrical DNA models can predict equivalent results. Using Geant4, we were able to reproduce previously published results on the direct strand break yields of photon and study the importance of irradiation conditions. We also show an ascending trend for DRBE with lower incident photon energies. A probabilistic model coupled with track structure analysis can be used to simulate strand break yields. NSERC, CIHR. © 2012 American Association of Physicists in Medicine.
Development of a high resolution liquid xenon imaging chamber for gamma-ray astronomy
NASA Technical Reports Server (NTRS)
Aprile, Elena
1991-01-01
The objective was to develop the technology of liquid xenon (LXe) detectors for spectroscopy and imaging of gamma rays from astrophysical sources emitting in the low to medium energy regime. In particular, the technical challenges and the physical processes relevant to the realization of the LXe detector operated as a Time Projection Chamber (TPC) were addressed and studied. Experimental results were obtained on the following topics: (1) long distance drift of free electrons in LXe (purity); (2) scintillation light yield for electrons and alphas in LXe (triggering); and (3) ionization yield for electrons and gamma rays in LXe (energy resolution). The major results from the investigations are summarized.
Abelev, B I; Aggarwal, M M; Ahammed, Z; Anderson, B D; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Baumgart, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Benedosso, F; Betts, R R; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Blyth, S-L; Bombara, M; Bonner, B E; Botje, M; Bouchet, J; Brandin, A V; Bravar, A; Burton, T P; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Callner, J; Catu, O; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, J Y; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chung, S U; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Dash, S; Daugherity, M; de Moura, M M; Dedovich, T G; Dephillips, M; Derevschikov, A A; Didenko, L; Dietel, T; Djawotho, P; Dogra, S M; Dong, X; Drachenberg, J L; Draper, J E; Du, F; Dunin, V B; Dunlop, J C; Dutta Mazumdar, M R; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Fatemi, R; Fedorisin, J; Feng, A; Filip, P; Finch, E; Fine, V; Fisyak, Y; Fu, J; Gagliardi, C A; Gaillard, L; Ganti, M S; Garcia-Solis, E; Ghazikhanian, V; Ghosh, P; Gorbunov, Y G; Gos, H; Grebenyuk, O; Grosnick, D; Guertin, S M; Guimaraes, K S F F; Gupta, N; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Henry, T W; Heppelmann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffman, A M; Hoffmann, G W; Hofman, D; Hollis, R; Horner, M J; Huang, H Z; Hughes, E W; Humanic, T J; Igo, G; Iordanova, A; Jacobs, P; Jacobs, W W; Jakl, P; Jia, F; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Kettler, D; Khodyrev, V Yu; Kim, B C; Kiryluk, J; Kisiel, A; Kislov, E M; Klein, S R; Knospe, A G; Kocoloski, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kouchpil, V; Kowalik, K L; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kurnadi, P; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lapointe, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Lehocka, S; LeVine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lin, X; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Ljubicic, T; Llope, W J; Longacre, R S; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Melnick, Yu; Meschanin, A; Millane, J; Miller, M L; Minaev, N G; Mioduszewski, S; Mironov, C; Mischke, A; Mitchell, J; Mohanty, B; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Nepali, N S; Netrakanti, P K; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pachr, M; Pal, S K; Panebratsev, Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Phatak, S C; Planinic, M; Pluta, J; Poljak, N; Porile, N; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Qattan, I A; Raniwala, R; Raniwala, S; Ray, R L; Relyea, D; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Sahoo, R; Sakrejda, I; Sakuma, T; Salur, S; Sandweiss, J; Sarsour, M; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shen, W Q; Shimanskiy, S S; Sichtermann, E P; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sorensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Staszak, D; Stock, R; Strikhanov, M; Stringfellow, B; Suaide, A A P; Suarez, M C; Subba, N L; Sumbera, M; Sun, X M; Sun, Z; Surrow, B; Symons, T J M; Szanto de Toledo, A; Takahashi, J; Tang, A H; Tarnowsky, T; Thomas, J H; Timmins, A R; Timoshenko, S; Tokarev, M; Trainor, T A; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; van der Kolk, N; van Leeuwen, M; Vander Molen, A M; Varma, R; Vasilevski, I M; Vasiliev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, X L; Wang, Y; Watson, J W; Webb, J C; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wu, J; Wu, Y; Xu, N; Xu, Q H; Xu, Z; Yepes, P; Yoo, I-K; Yue, Q; Yurevich, V I; Zhan, W; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zhou, J; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N; Zuo, J X
2007-05-11
The STAR collaboration at the BNL Relativistic Heavy-Ion Collider (RHIC) reports measurements of the inclusive yield of nonphotonic electrons, which arise dominantly from semileptonic decays of heavy flavor mesons, over a broad range of transverse momenta (1.2
NASA Astrophysics Data System (ADS)
Li, Jiangtao; Hoekstra, Bart; Wang, Zhen-Bin; Qiu, Jie; Pu, Yi-Kang
2018-04-01
A relationship between the apparent secondary electron yield ({γ }{{se}}) and the oxygen coverage/oxide layer thickness on an aluminum cathode is obtained in an experiment under a controlled environment. The apparent secondary electron yield ({γ }{{se}}) is deduced from the breakdown voltage between two parallel plate electrodes in a 360 mTorr argon environment using a simple Townsend breakdown model with the assumption that the variation of the apparent secondary electron yield is dominated by the variation of the argon ion induced processes. The oxygen coverage/oxide layer thickness on the aluminum cathode is measured by a semi in situ x-ray photoemission spectroscopy equipment which is directly attached to the discharge chamber. It is found that three phases exist: (1) in the monomonolayer regime, as the oxygen coverage increases from 0 to 0.3, {γ }{{se}} decreases by nearly 40 % , (2) as the oxygen coverage increases from 0.3 to 1, {γ }{{se}} keeps nearly constant, (3) as the oxide layer thickness increases from about 0.3 nm to about 1.1 nm, {γ }{{se}} increases by 150 % . We propose that, in the submonolayer regime, the chemisorbed oxygen on the aluminum surface causes the decrease of {γ }{{se}} by creating a local potential barrier, which reduces the Auger neutralization rate and the energy gained by the Auger electrons. In the multilayer regime, as the oxide layer grows in thickness, there are three proposed mechanisms which cause the increase of {γ }{{se}}: (1) the work function decreases; (2) resonance neutralization and Auger de-excitation may exist. This is served as another channel for secondary electron production; (3) the kinetic energy of Auger electrons is increased on average, leading to a higher probability for electrons to overcome the surface potential barrier.
NASA Astrophysics Data System (ADS)
Wang, Zhenguang; Susha, Andrei S.; Chen, Bingkun; Reckmeier, Claas; Tomanec, Ondrej; Zboril, Radek; Zhong, Haizheng; Rogach, Andrey L.
2016-03-01
Poly(vinylpyrrolidone) supported Cu nanoclusters were synthesized by reduction of Cu(ii) ions with ascorbic acid in water, and initially showed blue photoluminescence with a quantum yield of 8%. An enhancement of the emission quantum yield has been achieved by treatment of Cu clusters with different electron-rich ligands, with the most pronounced effect (photoluminescence quantum yield of 27%) achieved with glutathione. The bright blue emission of glutathione treated Cu NCs is fully preserved in the solid state powder, which has been combined with commercial green and red phosphors to fabricate down-conversion white light emitting diodes with a high colour rendering index of 92.Poly(vinylpyrrolidone) supported Cu nanoclusters were synthesized by reduction of Cu(ii) ions with ascorbic acid in water, and initially showed blue photoluminescence with a quantum yield of 8%. An enhancement of the emission quantum yield has been achieved by treatment of Cu clusters with different electron-rich ligands, with the most pronounced effect (photoluminescence quantum yield of 27%) achieved with glutathione. The bright blue emission of glutathione treated Cu NCs is fully preserved in the solid state powder, which has been combined with commercial green and red phosphors to fabricate down-conversion white light emitting diodes with a high colour rendering index of 92. Electronic supplementary information (ESI) available: The optical spectra of control experiments for Cu NC synthesis, optimization of the reaction conditions, and spectra for LEDs chips and blue LEDs. See DOI: 10.1039/c6nr00806b
Laane, Colja; Ford, William E.; Otvos, John W.; Calvin, Melvin
1981-01-01
The photosensitized reduction of heptylviologen in the bulk aqueous phase of phosphatidylcholine vesicles containing EDTA inside and a membrane-bound tris(2,2′-bipyridine)ruthenium(2+) derivative is enhanced by a factor of 6.5 by the addition of valinomycin in the presence of K+. A 3-fold stimulation by gramicidin and carbonyl cyanide m-chlorophenylhydrazone is observed. The results suggest that, under these conditions, the rate of photoinduced electron transfer across vesicle walls in the absence of ion carriers is limited by cotransport of cations. The rate of electron transfer across vesicle walls could be influenced further by generating transmembrane potentials with K+ gradients in the presence of valinomycin. When vesicles are made with transmembrane potentials, interior more negative, the quantum yield of heptylviologen reduction is doubled, and, conversely, when vesicles are made with transmembrane potentials, interior more positive, the quantum yield is decreased and approaches the value found in the absence of valinomycin. PMID:16593002
Electron emission from tungsten surface induced by neon ions
NASA Astrophysics Data System (ADS)
Xu, Zhongfeng; Zeng, Lixia; Zhao, Yongtao; Cheng, Rui; Zhang, Xiaoan; Ren, Jieru; Zhou, Xianming; Wang, Xing; Lei, Yu; Li, Yongfeng; Yu, Yang; Liu, Xueliang; Xiao, Guoqing; Li, Fuli
2014-04-01
The electron emission from W surface induced by Neq+ has been measured. For the same charge state, the electron yield gradually increases with the projectile velocity. Meanwhile, the effect of the potential energy of projectile has been found obviously. Our results give the critical condition for "trampoline effect".
NASA Astrophysics Data System (ADS)
Chen, Zhangjin; Li, Xiaojin; Zatsarinny, Oleg; Bartschat, Klaus; Lin, C. D.
2018-01-01
We present numerical simulations of the ratio between double and single ionization of He and Ne by intense laser pulses at wavelengths of 390 and 400 nm, respectively. The yields of doubly charged ions due to nonsequential double ionization (NSDI) are obtained by employing the quantitative rescattering (QRS) model. In this model, the NSDI ionization probability is expressed as a product of the returning electron wave packet (RWP) and the total scattering cross sections for laser-free electron impact excitation and electron impact ionization of the parent ion. According to the QRS theory, the same RWP is also responsible for the emission of high-energy above-threshold ionization photoelectrons. To obtain absolute double-ionization yields, the RWP is generated by solving the time-dependent Schrödinger equation (TDSE) within a one-electron model. The same TDSE results can also be taken to obtain single-ionization yields. By using the TDSE results to calibrate single ionization and the RWP obtained from the strong-field approximation, we further simplify the calculation such that the nonuniform laser intensity distribution in the focused laser beam can be accounted for. In addition, laser-free electron impact excitation and ionization cross sections are calculated using the state-of-the-art many-electron R -matrix theory. The simulation results for double-to-single-ionization ratios are found to compare well with experimental data and support the validity of the nonsequential double-ionization mechanism for the covered intensity region.
Reevaluation of analytical methods for photogenerated singlet oxygen
Nakamura, Keisuke; Ishiyama, Kirika; Ikai, Hiroyo; Kanno, Taro; Sasaki, Keiichi; Niwano, Yoshimi; Kohno, Masahiro
2011-01-01
The aim of the present study is to compare different analytical methods for singlet oxygen and to discuss an appropriate way to evaluate the yield of singlet oxygen photogenerated from photosensitizers. Singlet oxygen photogenerated from rose bengal was evaluated by electron spin resonance analysis using sterically hindered amines, spectrophotometric analysis of 1,3-diphenylisobenzofuran oxidation, and analysis of fluorescent probe (Singlet Oxygen Sensor Green®). All of the analytical methods could evaluate the relative yield of singlet oxygen. The sensitivity of the analytical methods was 1,3-diphenylisobenzofuran < electron spin resonance < Singlet Oxygen Sensor Green®. However, Singlet Oxygen Sensor Green® could be used only when the concentration of rose bengal was very low (<1 µM). In addition, since the absorption spectra of 1,3-diphenylisobenzofuran is considerably changed by irradiation of 405 nm laser, photosensitizers which are excited by light with a wavelength of around 400 nm such as hematoporphyrin cannot be used in the 1,3-diphenylisobenzofuran oxidation method. On the other hand, electron spin resonance analysis using a sterically hindered amine, especially 2,2,6,6-tetramethyl-4-piperidinol and 2,2,5,5-tetramethyl-3-pyrroline-3-carboxamide, had proper sensitivity and wide detectable range for the yield of photogenerated singlet oxygen. Therefore, in photodynamic therapy, it is suggested that the relative yield of singlet oxygen generated by various photosensitizers can be evaluated properly by electron spin resonance analysis. PMID:21980223
Wardlow, Nathan; Polin, Chris; Villagomez-Bernabe, Balder; Currell, Fred
2015-11-01
We present a simple model for a component of the radiolytic production of any chemical species due to electron emission from irradiated nanoparticles (NPs) in a liquid environment, provided the expression for the G value for product formation is known and is reasonably well characterized by a linear dependence on beam energy. This model takes nanoparticle size, composition, density and a number of other readily available parameters (such as X-ray and electron attenuation data) as inputs and therefore allows for the ready determination of this contribution. Several approximations are used, thus this model provides an upper limit to the yield of chemical species due to electron emission, rather than a distinct value, and this upper limit is compared with experimental results. After the general model is developed we provide details of its application to the generation of HO• through irradiation of gold nanoparticles (AuNPs), a potentially important process in nanoparticle-based enhancement of radiotherapy. This model has been constructed with the intention of making it accessible to other researchers who wish to estimate chemical yields through this process, and is shown to be applicable to NPs of single elements and mixtures. The model can be applied without the need to develop additional skills (such as using a Monte Carlo toolkit), providing a fast and straightforward method of estimating chemical yields. A simple framework for determining the HO• yield for different NP sizes at constant NP concentration and initial photon energy is also presented.
Faries, Kaitlyn M.; Kressel, Lucas L.; Wander, Marc J.; Holten, Dewey; Laible, Philip D.; Kirmaier, Christine; Hanson, Deborah K.
2012-01-01
Photosynthetic reaction centers convert light energy into chemical energy in a series of transmembrane electron transfer reactions, each with near 100% yield. The structures of reaction centers reveal two symmetry-related branches of cofactors (denoted A and B) that are functionally asymmetric; purple bacterial reaction centers use the A pathway exclusively. Previously, site-specific mutagenesis has yielded reaction centers capable of transmembrane charge separation solely via the B branch cofactors, but the best overall electron transfer yields are still low. In an attempt to better realize the architectural and energetic factors that underlie the directionality and yields of electron transfer, sites within the protein-cofactor complex were targeted in a directed molecular evolution strategy that implements streamlined mutagenesis and high throughput spectroscopic screening. The polycistronic approach enables efficient construction and expression of a large number of variants of a heteroligomeric complex that has two intimately regulated subunits with high sequence similarity, common features of many prokaryotic and eukaryotic transmembrane protein assemblies. The strategy has succeeded in the discovery of several mutant reaction centers with increased efficiency of the B pathway; they carry multiple substitutions that have not been explored or linked using traditional approaches. This work expands our understanding of the structure-function relationships that dictate the efficiency of biological energy-conversion reactions, concepts that will aid the design of bio-inspired assemblies capable of both efficient charge separation and charge stabilization. PMID:22247556
Bennett, Kochise; Kowalewski, Markus; Mukamel, Shaul
2016-02-09
We present a hierarchy of Fermi golden rules (FGRs) that incorporate strongly coupled electronic/nuclear dynamics in time-resolved photoelectron spectroscopy (TRPES) signals at different levels of theory. Expansion in the joint electronic and nuclear eigenbasis yields the numerically most challenging exact FGR (eFGR). The quasistatic Fermi Golden Rule (qsFGR) neglects nuclear motion during the photoionization process but takes into account electronic coherences as well as populations initially present in the pumped matter as well as those generated internally by coupling between electronic surfaces. The standard semiclassical Fermi Golden Rule (scFGR) neglects the electronic coherences and the nuclear kinetic energy during the ionizing pulse altogether, yielding the classical Condon approximation. The coherence contributions depend on the phase-profile of the ionizing field, allowing coherent control of TRPES signals. The photoelectron spectrum from model systems is simulated using these three levels of theory. The eFGR and the qsFGR show temporal oscillations originating from the electronic or vibrational coherences generated as the nuclear wave packet traverses a conical intersection. These oscillations, which are missed by the scFGR, directly reveal the time-evolving splitting between electronic states of the neutral molecule in the curve-crossing regime.
NASA Technical Reports Server (NTRS)
Wintucky, E. G.; Curren, A. N.; Sovey, J. S.
1981-01-01
Measurements are presented of secondary electron emission and reflected primary electron characteristics of sputter-textured pyrolitic graphite surfaces with microstructures of various sizes and densities, made with an Auger cylindrical mirror analyzer in a high-vacuum chamber at pressures below 1.33 x 10 to the -7th N/sq m (10 to the -9th torr). A dense, tall, thin, spire-like microstructure, obtained at ion energies of 1000 eV and ion current densities of 5 mA/sq cm, is the most effective. The secondary electron emission from such a surface is lower than that of soot, whose secondary emission is among the lowest of any material. At a primary electron energy of 1000 eV, the secondary electron emission yield of smooth CU is about 350% greater than the lowest value obtained for sputter-textured pyrolitic graphite. The reflected primary electron index of smooth Cu is a factor of 80 greater. If the secondary electron emission yield is reduced to 0.3, which is possible with sputter-textured pyrolitic graphite, the traveling wave tube collector efficiency could be improved by as much as 4% over that for smooth copper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishii, M.A.; Kimura, M.; Inokuti, M.
1990-12-01
A comparative study of electron degradation spectra and yields for various species in gaseous and solid H{sub 2}O is carred out by using the rigorous Spencer-Fano theory and the continuous-slowing-down approximation (CSDA). As input we use cross-section data given by Hayashi (in {ital Atomic} {ital and} {ital Molecular} {ital Data} {ital for} {ital Radiotherapy}, Proceedings of an IAEA Advisory Group Meeting, Vienna, June 1988, Report No. IAEA-TECDOC-506 (International Atomic Energy Agency, Vienna, 1989), p. 193) for the gas and by Michaud and Sanche (Phys. Rev. 36, 4672 (1987)) for the solid. Vibrational excitation is the dominant mechanism of the slowingmore » down of the electron in both gas and solid phases at intermediate energies of 8--2 eV. Rotational excitation for the gas and phonon excitation for the solid, which share the same origin of dynamics, are the second important mechanism. The general trends of the electron degradation spectra are similar in the two phases. However, details of the spectra differ notably from one another. Because the energy dependence of some of the cross sections is complex, the CSDA fails to reproduce even a local average of the Spencer-Fano degradation spectrum, and gives yields of various products appreciably different from those evaluated from the Spencer-Fano degradation spectrum.« less
Nakato, Teruyuki; Yamada, Yoshimi; Miyamoto, Nobuyoshi
2009-02-05
We investigated photoinduced charge separation occurring in a multicomponent colloidal system composed of oxide nanosheets of photocatalytically active niobate and photochemically inert clay and electron accepting methylviologen dications (MV2+). The inorganic nanosheets were obtained by exfoliation of layered hexaniobate and hectorite clay. The niobate and clay nanosheets were spatially separated in the colloidally dispersed state, and the MV2+ molecules were selectively adsorbed on the clay platelets. UV irradiation of the colloids led to electron transfer from the niobate nanosheets to the MV2+ molecules adsorbed on clay. The photoinduced electron transfer produced methylviologen radical cations (MV*+), which was characterized by high yield and long lifetime. The yield and stability of the MV*+ species were found to depend strongly on the clay content of the colloid: from a few mol % to approximately 70 mol % of the yield and several tens of minutes to more than 40 h of the lifetime. The contents of the niobate nanosheets and MV2+ molecules and the aging of the colloid also affected the photoinduced charge separation. In the absence of MV2+ molecules in the colloid, UV irradiation induced electron accumulation in the niobate nanosheets. The stability of the electron-accumulated state also depended on the clay content. The variation in the photochemical behavior is discussed in relation to the viscosity of the colloid.
Auroral and photoelectron fluxes in cometary ionospheres
NASA Astrophysics Data System (ADS)
Bhardwaj, A.; Haider, S. A.; Spinghal, R. P.
1990-05-01
The analytical yield spectrum method has been used to ascertain photoelectron and auroral electron fluxes in cometary ionospheres, with a view to determining the effects of cometocentric distances, solar zenith angle, and solar minimum and maximum conditions. Auroral electron fluxes are thus calculated for monoenergetic and observed primary electron spectra; auroral electrons are found to make a larger contribution to the observed electron spectrum than EUV-generated photoelectrons. Good agreement is established with extant theoretical works.
Signal yields, energy resolution, and recombination fluctuations in liquid xenon
NASA Astrophysics Data System (ADS)
Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Bramante, R.; Brás, P.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chiller, A. A.; Chiller, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Ihm, M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Phelps, P.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.; LUX Collaboration
2017-01-01
This work presents an analysis of monoenergetic electronic recoil peaks in the dark-matter-search and calibration data from the first underground science run of the Large Underground Xenon (LUX) detector. Liquid xenon charge and light yields for electronic recoil energies between 5.2 and 661.7 keV are measured, as well as the energy resolution for the LUX detector at those same energies. Additionally, there is an interpretation of existing measurements and descriptions of electron-ion recombination fluctuations in liquid xenon as limiting cases of a more general liquid xenon recombination fluctuation model. Measurements of the standard deviation of these fluctuations at monoenergetic electronic recoil peaks exhibit a linear dependence on the number of ions for energy deposits up to 661.7 keV, consistent with previous LUX measurements between 2 and 16 keV with 3H. We highlight similarities in liquid xenon recombination for electronic and nuclear recoils with a comparison of recombination fluctuations measured with low-energy calibration data.
Boughariou, A; Damamme, G; Kallel, A
2015-04-01
This paper focuses on the effect of sample annealing temperature and crystallographic orientation on the secondary electron yield of MgO during charging by a defocused electron beam irradiation. The experimental results show that there are two regimes during the charging process that are better identified by plotting the logarithm of the secondary electron emission yield, lnσ, as function of the total trapped charge in the material QT. The impact of the annealing temperature and crystallographic orientation on the evolution of lnσ is presented here. The slope of the asymptotic regime of the curve lnσ as function of QT, expressed in cm(2) per trapped charge, is probably linked to the elementary cross section of electron-hole recombination, σhole, which controls the trapping evolution in the reach of the stationary flow regime. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.
Room temperature mechanical properties of electron beam welded zircaloy-4 sheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parga, C. J.; Rooyen, I. J.; Coryell, B. D.
Room temperature mechanical properties of electron beam welded and plain Zircaloy-4 sheet (1.6mm thick) have been measured and compared. Various welding parameters were utilized to join sheet material. Electron beam welded specimens and as-received sheet specimens show comparable mechanical properties. Zr-4 sheet displays anisotropy; tensile properties measured for transverse display higher elastic modulus, yield strength, reduction of area and slightly lower ductility than for the longitudinal (rolling direction). Higher welding power increases the alloy’s hardness, elastic modulus and yield strength, with a corresponding decrease in tensile strength and ductility. The hardness measured at weld is comparable to the parent metalmore » hardness. Hardness at heat-affected-zone is slightly higher. Electron microscopic examination shows distinct microstructure morphology and grain size at the weld zone, HAZ and parent metal. A correlation between welding parameters, mechanical properties and microstructural features was established for electron beam welded Zircaloy-4 sheet material.« less
Room temperature mechanical properties of electron beam welded zircaloy-4 sheet
Parga, C. J.; Rooyen, I. J.; Coryell, B. D.; ...
2017-11-04
Room temperature mechanical properties of electron beam welded and plain Zircaloy-4 sheet (1.6mm thick) have been measured and compared. Various welding parameters were utilized to join sheet material. Electron beam welded specimens and as-received sheet specimens show comparable mechanical properties. Zr-4 sheet displays anisotropy; tensile properties measured for transverse display higher elastic modulus, yield strength, reduction of area and slightly lower ductility than for the longitudinal (rolling direction). Higher welding power increases the alloy’s hardness, elastic modulus and yield strength, with a corresponding decrease in tensile strength and ductility. The hardness measured at weld is comparable to the parent metalmore » hardness. Hardness at heat-affected-zone is slightly higher. Electron microscopic examination shows distinct microstructure morphology and grain size at the weld zone, HAZ and parent metal. A correlation between welding parameters, mechanical properties and microstructural features was established for electron beam welded Zircaloy-4 sheet material.« less
Convoy electron emission from resonant coherently excited 390 MeV/u hydrogen-like Ar ions
NASA Astrophysics Data System (ADS)
Azuma, T.; Takabayashi, Y.; Ito, T.; Komaki, K.; Yamazaki, Y.; Takada, E.; Murakami, T.
2003-12-01
Energetic ions traveling through a single crystal are excited by an oscillating crystal field produced by a periodic arrangement of the atomic strings/planes, which is called Resonant Coherent Excitation (RCE). We have observed enhancement of convoy electron yields associated with RCE of 1s electron to the n=2 excited states of 390 MeV/u hydrogen-like Ar 17+ ions passing through a Si crystal in the (2 2¯ 0) planar channeling condition. Lost electrons from projectile ions due to ionization contribute to convoy electrons emitted in the forward direction with the same velocity as the projectile ions. With combination of a magnet and a thick Si solid-state detector, we measured the energy spectra of convoy electrons of about 200 keV emitted at 0°. The convoy electron yield as a function of the transition energy, i.e. the resonance profile, has a similar structure to the resonance profile observed through the ionized fraction of the emerging ions. It is explained by the fact that both enhancements are due to increase in the fraction of the excited states from which electrons are more easily ionized by target electron impact in the crystal than from the ground state.
What Hinders Electron Transfer Dissociation (ETD) of DNA Cations?
NASA Astrophysics Data System (ADS)
Hari, Yvonne; Leumann, Christian J.; Schürch, Stefan
2017-12-01
Radical activation methods, such as electron transfer dissociation (ETD), produce structural information complementary to collision-induced dissociation. Herein, electron transfer dissociation of 3-fold protonated DNA hexamers was studied to gain insight into the fragmentation mechanism. The fragmentation patterns of a large set of DNA hexamers confirm cytosine as the primary target of electron transfer. The reported data reveal backbone cleavage by internal electron transfer from the nucleobase to the phosphate linker leading either to a•/ w or d/ z• ion pairs. This reaction pathway contrasts with previous findings on the dissociation processes after electron capture by DNA cations, suggesting multiple, parallel dissociation channels. However, all these channels merely result in partial fragmentation of the precursor ion because the charge-reduced DNA radical cations are quite stable. Two hypotheses are put forward to explain the low dissociation yield of DNA radical cations: it is either attributed to non-covalent interactions between complementary fragments or to the stabilization of the unpaired electron in stacked nucleobases. MS3 experiments suggest that the charge-reduced species is the intact oligonucleotide. Moreover, introducing abasic sites significantly increases the dissociation yield of DNA cations. Consequently, the stabilization of the unpaired electron by π-π-stacking provides an appropriate rationale for the high intensity of DNA radical cations after electron transfer. [Figure not available: see fulltext.
Interpretation of quantum yields exceeding unity in photoelectrochemical systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szklarczyk, M.; Allen, R.E.
1986-10-20
In photoelectrochemical systems involving light shining on a semiconductor interfaced with an electrolyte, the quantum yield as a function of photon frequency ..nu.. is observed to exhibit a peak at h..nu..roughly-equal2E/sub g/, where E/sub g/ is the band gap of the semiconductor. The maximum in this peak is sometimes found to exceed unity. We provide an interpretation involving surface states and inelastic electron-electron scattering. The theory indicates that the effect should be observable for p-type semiconductors, but not n-type.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damtie, Fikeraddis A., E-mail: Fikeraddis.Damtie@teorfys.lu.se; Wacker, Andreas, E-mail: Andreas.Wacker@fysik.lu.se; Karki, Khadga J., E-mail: Khadga.Karki@chemphys.lu.se
Multiple exciton generation (MEG) is a process in which more than one electron hole pair is generated per absorbed photon. It allows us to increase the efficiency of solar energy harvesting. Experimental studies have shown the multiple exciton generation yield of 1.2 in isolated colloidal quantum dots. However real photoelectric devices require the extraction of electron hole pairs to electric contacts. We provide a systematic study of the corresponding quantum coherent processes including extraction and injection and show that a proper design of extraction and injection rates enhances the yield significantly up to values around 1.6.
Triage of oxidation-prone proteins by Sqstm1/p62 within the mitochondria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Minjung; Shin, Jaekyoon, E-mail: jkshin@med.skku.ac.kr
2011-09-16
Highlights: {yields} The mitochondrion contains its own protein quality control system. {yields} p62 localizes within the mitochondria and forms mega-dalton sized complexes. {yields} p62 interacts with oxidation-prone proteins and the proteins of quality control. {yields} In vitro delivery of p62 improves mitochondrial functions. {yields} p62 is implicated as a participant in mitochondrial protein quality control. -- Abstract: As the mitochondrion is vulnerable to oxidative stress, cells have evolved several strategies to maintain mitochondrial integrity, including mitochondrial protein quality control mechanisms and autophagic removal of damaged mitochondria. Involvement of an autophagy adaptor, Sqstm1/p62, in the latter process has been recently described.more » In the present study, we provide evidence that a portion of p62 directly localizes within the mitochondria and supports stable electron transport by forming heterogeneous protein complexes. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF) of mitochondrial proteins co-purified with p62 revealed that p62 interacts with several oxidation-prone proteins, including a few components of the electron transport chain complexes, as well as multiple chaperone molecules and redox regulatory enzymes. Accordingly, p62-deficient mitochondria exhibited compromised electron transport, and the compromised function was partially restored by in vitro delivery of p62. These results suggest that p62 plays an additional role in maintaining mitochondrial integrity at the vicinity of target machineries through its function in relation to protein quality control.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiede, D.M.; Kellogg, E.C.; Kolaczkowski, S.
We have carried out a more stringent test for electron transfer along the M-pathway at low temperature. This has been done by directly detecting transient states generated from the trapped PH{sub L}{sup {minus}}H{sub M} state in Rps viridis reaction centers. Under these conditions the normal forward electron transfer to H{sub L} is blocked, and the yield of transient P{sup +}H{sub M}{sup {minus}} is determined with respect to the lifetime of P*. Others have measured this lifetime to be 20 ps at room temperature. This enhances the opportunity for detecting a reaction between P* and H{sub M} by 20-fold. These experimentsmore » find that transient bleaching of the P990 nm band occurs from the trapped PH{sub L}{sup {minus}}H{sub M} state on the ns time scale, with a quantum yield of 0.09 {plus minus} 0.06 compared to normal photochemistry. This measurement places an upper limit on the yield of a transient P{sup +}H{sub M}{sup {minus}} state. The measured yield and estimated lifetime of P* suggest that the maximum electron transfer rate P* {yields} H{sub M} is about 5 {times} 10{sup 9} sec{sup {minus}1} ({tau}{sub M} = 200 ps). This corresponds to a k{sub L}/k{sub M} ratio of at least 200. This large value of the branching ratio is remarkable in view of the structural symmetry of the reaction center. 13 refs., 2 figs.« less
Engineered Surfaces to Control Secondary Electron Yield for Multipactor Suppression
2017-09-14
Radio Engineers ( IRE ) Transactions on Electron Devices. The first paper , published by Preist and Talcott, examined damage to RF windows in klystrons...Secondary electron emission data for aluminum referenced by Hatch in his 1961 paper showing a typical SEY (δ) curve (top) and typical energy...83 IRE : Institute of Radio Engineers
Electron crystallography of ultrathin 3D protein crystals: Atomic model with charges
Yonekura, Koji; Kato, Kazuyuki; Ogasawara, Mitsuo; Tomita, Masahiro; Toyoshima, Chikashi
2015-01-01
Membrane proteins and macromolecular complexes often yield crystals too small or too thin for even the modern synchrotron X-ray beam. Electron crystallography could provide a powerful means for structure determination with such undersized crystals, as protein atoms diffract electrons four to five orders of magnitude more strongly than they do X-rays. Furthermore, as electron crystallography yields Coulomb potential maps rather than electron density maps, it could provide a unique method to visualize the charged states of amino acid residues and metals. Here we describe an attempt to develop a methodology for electron crystallography of ultrathin (only a few layers thick) 3D protein crystals and present the Coulomb potential maps at 3.4-Å and 3.2-Å resolution, respectively, obtained from Ca2+-ATPase and catalase crystals. These maps demonstrate that it is indeed possible to build atomic models from such crystals and even to determine the charged states of amino acid residues in the Ca2+-binding sites of Ca2+-ATPase and that of the iron atom in the heme in catalase. PMID:25730881
Analytical model of secondary electron emission yield in electron beam irradiated insulators.
Ghorbel, N; Kallel, A; Damamme, G
2018-06-12
The study of secondary electron emission (SEE) yield as a function of the kinetic energy of the incident primary electron beam and its evolution with charge accumulation inside insulators is a source of valuable information (even though an indirect one) on charge transport and trapping phenomena. We will show that this evolution is essentially due, in plane geometry conditions (achieved using a defocused electron beam), to the electric field effect (due to the accumulation of trapped charges in the bulk) in the escape zone of secondary electrons and not to modifications of trapping cross sections, which only have side effects. We propose an analytical model including the main basic phenomena underlying the space charge dynamics. It will be observed that such a model makes it possible to reproduce both qualitatively and quantitatively the measurement of SEE evolution as well as to provide helpful indications concerning charge transport (more precisely, the ratios between the mobility and diffusion coefficient with the thermal velocity of the charge carrier). Copyright © 2018 Elsevier Ltd. All rights reserved.
Electron crystallography of ultrathin 3D protein crystals: atomic model with charges.
Yonekura, Koji; Kato, Kazuyuki; Ogasawara, Mitsuo; Tomita, Masahiro; Toyoshima, Chikashi
2015-03-17
Membrane proteins and macromolecular complexes often yield crystals too small or too thin for even the modern synchrotron X-ray beam. Electron crystallography could provide a powerful means for structure determination with such undersized crystals, as protein atoms diffract electrons four to five orders of magnitude more strongly than they do X-rays. Furthermore, as electron crystallography yields Coulomb potential maps rather than electron density maps, it could provide a unique method to visualize the charged states of amino acid residues and metals. Here we describe an attempt to develop a methodology for electron crystallography of ultrathin (only a few layers thick) 3D protein crystals and present the Coulomb potential maps at 3.4-Å and 3.2-Å resolution, respectively, obtained from Ca(2+)-ATPase and catalase crystals. These maps demonstrate that it is indeed possible to build atomic models from such crystals and even to determine the charged states of amino acid residues in the Ca(2+)-binding sites of Ca(2+)-ATPase and that of the iron atom in the heme in catalase.
A threshold gas Cerenkov detector for the spin asymmetries of the nucleon experiment
Armstrong, Whitney R.; Choi, Seonho; Kaczanowicz, Ed; ...
2015-09-26
In this study, we report on the design, construction, commissioning, and performance of a threshold gas Cerenkov counter in an open configuration, which operates in a high luminosity environment and produces a high photo-electron yield. Part of a unique open geometry detector package known as the Big Electron Telescope Array, this Cerenkov counter served to identify scattered electrons and reject produced pions in an inclusive scattering experiment known as the Spin Asymmetries of the Nucleon Experiment E07-003 at the Thomas Jefferson National Accelerator Facility (TJNAF) also known as Jefferson Lab. The experiment consisted of a measurement of double spin asymmetriesmore » A || and A ⊥ of a polarized electron beam impinging on a polarized ammonia target. The Cerenkov counter's performance is characterised by a yield of about 20 photoelectrons per electron or positron track. Thanks to this large number of photoelectrons per track, the Cerenkov counter had enough resolution to identify electron-positron pairs from the conversion of photons resulting mainly from π 0 decays.« less
SEP events and wake region lunar dust charging with grain radii
NASA Astrophysics Data System (ADS)
Chandran, S. B. Rakesh; Rajesh, S. R.; Abraham, A.; Renuka, G.; Venugopal, Chandu
2017-01-01
Our lunar surface is exposed to all kinds of radiations from the Sun, since it lacks a global magnetic field. Like lunar surface, dust particles are also exposed to plasmas and UV radiation and, consequently they carry electrostatic charges. During Solar Energetic Particle events (SEPs) secondary electron emission plays a vital role in charging of lunar dusts. To study the lunar dust charging during SEPs on lunar wake region, we derived an expression for lunar dust potential and analysed how it varies with different electron temperatures and grain radii. Because of high energetic solar fluxes, secondary yield (δ) values reach up to 2.3 for 0.5 μm dust grain. We got maximum yield at an energy of 550 eV which is in well agreement with lunar sample experimental observation (Anderegg et al., 1972). It is observed that yield value increases with electron energy, reaches to a maximum value and then decreases. During SEPs heavier dust grains show larger yield values because of the geometry of the grains. On the wake region, the dust potential reaches up to -497 V for 0.5 μm dust grain. The electric field of these grains could present a significant threat to manned and unmanned missions to the Moon.
Towards efficient solar hydrogen production by intercalated carbon nitride photocatalyst.
Gao, Honglin; Yan, Shicheng; Wang, Jiajia; Huang, Yu An; Wang, Peng; Li, Zhaosheng; Zou, Zhigang
2013-11-07
The development of efficient photocatalytic material for converting solar energy to hydrogen energy as viable alternatives to fossil-fuel technologies is expected to revolutionize energy shortage and environment issues. However, to date, the low quantum yield for solar hydrogen production over photocatalysts has hindered advances in the practical applications of photocatalysis. Here, we show that a carbon nitride intercalation compound (CNIC) synthesized by a simple molten salt route is an efficient polymer photocatalyst with a high quantum yield. We found that coordinating the alkali metals into the C-N plane of carbon nitride will induce the un-uniform spatial charge distribution. The electrons are confined in the intercalated region while the holes are in the far intercalated region, which promoted efficient separation of photogenerated carriers. The donor-type alkali metal ions coordinating into the nitrogen pots of carbon nitrides increase the free carrier concentration and lead to the formation of novel nonradiative paths. This should favor improved transport of the photogenerated electron and hole and decrease the electron-hole recombination rate. As a result, the CNIC exhibits a quantum yield as high as 21.2% under 420 nm light irradiation for solar hydrogen production. Such high quantum yield opens up new opportunities for using cheap semiconducting polymers as energy transducers.
NASA Astrophysics Data System (ADS)
Kimura, Kenji; Usui, Satoshi; Nakajima, Kaoru
2000-12-01
We have measured secondary-electron (SE) yield γ induced by 0.5 MeV/u H, He, and Li ions specularly reflected from a SnTe(001) surface. The position-dependent SE production rate is derived from the observed γ. The SE production rate normalized by the observed mean square charge of the reflected ions is almost independent of the atomic number of the projectile ion. This indicates that the surface track potential induced by the projectile ion is negligibly small to affect the SE emission at semiconductor surfaces probably due to rapid relaxation processes.
NASA Technical Reports Server (NTRS)
Smith, Steven J.; Chutjian, A.; Mitroy, J.; Tayal, S. S.; Henry, Ronald J. W.; Man, K.-F.; Mawhorter, R. J.; Williams, I. D.
1993-01-01
Electron-excitation cross sections are reported for the 3s 2S yields 3p 2P(h, k) resonance transition in Mg(+) at energies from threshold (4.43 eV) to approximately 9 times threshold (40.0 eV). The electron-energy-loss merged-beams technique used in these measurements is described in detail. In addition, the method of separating contributions of the elastically scattered (Coulomb) and the inelastically scattered electrons in the present Mg(+) case and previously reported Zn(+) results is described. Comparisons in the experimental energy range are made for Mg(+) with the two five-state close-coupling theoretical calculations carried out herein, and with other published close-coupling, distorted-wave, and semiempirical calculations. The present Mg(+) cross sections and Zn(+) cross sections from earlier measurements are tabulated.
Two-photon coincident emission from thick targets for 70-keV incident electrons
NASA Astrophysics Data System (ADS)
Liu, J.; Kahler, D. L.; Quarles, C. A.
1993-04-01
Two-photon coincidence yields have been measured in thick targets of C, Al, Ag, and Ta for 70 keV incident electrons and photons radiated at +/-45° to the incident beam. A theoretical model, which is more rigorous, has been developed to simulate the two-photon processes of coherent thick-target double bremsstrahlung (TTDB) and the incoherent emission of two single-bremsstrahlung (SBSB) photons in a thick-target environment. The model is based on an integration of the thin-target cross sections over the target thickness taking into account electron energy loss, electron backscattering, and photon attenuation. It predicts a yield that is much lower than that of the previous model. The prediction of the model fits the present experimental data well by adjusting the relative weight of the two competing processes, and we find that TTDB dominates at low Z and incoherent SBSB dominates at higher Z.
NASA Astrophysics Data System (ADS)
Hudson, L. T.; Tolk, N. H.; Bao, C.; Nordlander, P.; Russell, D. P.; Xu, J.
2000-10-01
The desorption yields of excited hydrogen atoms from the surfaces of KCl, KBr, NaCl, NaF, and LiF have been measured as a function of incident photon and electron energy and flux, time of irradiation, dosing pressure of H2 and sample temperature. As these surfaces are exposed to H2 gas during electron or photon bombardment, the fluorescence from excited hydrogen atoms ejected from the surface is monitored. The desorption yields are found to be contingent upon surface damage induced by the incident particle radiation, leading to dissociative adsorption at surface sites containing an excess of alkali metal. A desorption mechanism is presented in which incident electrons or photons induce a valence excitation to a neutral, antibonding state of the surface alkali hydride molecule complex, leading to the desorption of hydrogen atoms possessing several eV of kinetic energy.
Photoionization and electron-impact ionization of Ar5+
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J.C.; Lu, M.; Esteves, D.
2007-02-27
Absolute cross sections for photoionization andelectron-impact Photionization of Ar5+ have been measuredusing twodifferent interacting-beams setups. The spectra consist of measurementsof the yield of products dueto single ionization as a function ofelectron or photon energy. In addition, absolute photoionization andelectron-impact ionization cross sections were measured to normalize themeasured Ar6+ product-ion yield spectra. In the energy range from 90 to111 eV, both electron-impact ionization and photoionization of Ar5+aredominated by indirect 3s subshell excitation-autoionization. In theenergy range from 270 to 285 eV, resonances due to 2p-3dexcitation-autoionization are prominent in the photoionization spectrum.In the range from 225 to 335 eV, an enhancement due tomore » 2p-nl (n>2>excitations are evident in the electron-impactionization cross section.The electron and photon impact data show some features due to excitationof the same intermediate autoionizing states.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dohyung Lee.
This dissertation addresses the problem of dynamic electron-electron interactions in fast ion-atom collisions using projectile Auger electron spectroscopy. The study was carried out by measuring high-resolution projectile KKL Auger electron spectra as a function of projectile energy for the various collision systems of 0.25-2 MeV/u O{sup q+} and F{sup q+} incident on H{sub 2} and He targets. The electrons were detected in the beam direction, where the kinematic broadening is minimized. A zero-degree tandem electron spectrometer system, was developed and showed the versatility of zero-degree measurements of collisionally-produced atomic states. The zero-degree binary encounter electrons (BEe), quasifree target electrons ionizedmore » by the projectiles in head-on collisions, were observed as a strong background in the KLL Auger electron spectrum. They were studied by treating the target ionization as 180{degree} Rutherford elastic scattering in the projectile frame, and resulted in a validity test of the impulse approximation (IA) and a way to determine the spectrometer efficiency. An anomalous q-dependence, in which the zero-degree BEe yields increase with decreasing projectile charge state (q), was observed. State-resolved KLL Auger cross sections were determined by using the BEe normalization and thus the cross section of the electron-electron interactions such as resonant transfer-excitation (RTE), electron-electron excitation (eeE), and electron-electron ionization (eeI) were determined. Projectile 2l capture with 1s {yields} 2p excitation by the captured target electron was observed as an RTE process with Li-like and He-like projectiles and the measured RTEA (RTE followed by Auger decay) cross sections showed good agreement with an RTE-IA treatment and RTE alignment theory.« less
NASA Astrophysics Data System (ADS)
Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Bathe, S.; Baublis, V.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Black, D.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Butsyk, S.; Campbell, S.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Connors, M.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Dairaku, S.; Danley, T. W.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dietzsch, O.; Ding, L.; Dion, A.; Diss, P. B.; Do, J. H.; Donadelli, M.; D'Orazio, L.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Edwards, S.; Efremenko, Y. V.; Engelmore, T.; Enokizono, A.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Fusayasu, T.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamilton, H. F.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; Hayano, R.; Hayashi, S.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hollis, R. S.; Homma, K.; Hong, B.; Horaguchi, T.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ichihara, T.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imazu, Y.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Isinhue, A.; Ivanishchev, D.; Jacak, B. V.; Javani, M.; Jezghani, M.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kamin, J.; Kanda, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Karatsu, K.; Kawall, D.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kijima, K. M.; Kim, B. I.; Kim, C.; Kim, D. J.; Kim, E.-J.; Kim, G. W.; Kim, M.; Kim, Y.-J.; Kim, Y. K.; Kimelman, B.; Kinney, E.; Kistenev, E.; Kitamura, R.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Komkov, B.; Koster, J.; Kotchetkov, D.; Kotov, D.; Krizek, F.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S.; Lee, S. H.; Lee, S. R.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Lewis, B.; Li, X.; Lim, S. H.; Linden Levy, L. A.; Liu, M. X.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Manion, A.; Manko, V. I.; Mannel, E.; Maruyama, T.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Midori, J.; Mignerey, A. C.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Mohapatra, S.; Montuenga, P.; Moon, H. J.; Moon, T.; Morrison, D. P.; Moskowitz, M.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagashima, K.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Nihashi, M.; Niida, T.; Nishimura, S.; Nouicer, R.; Novák, T.; Novitzky, N.; Nukariya, A.; Nyanin, A. S.; Obayashi, H.; O'Brien, E.; Ogilvie, C. A.; Okada, K.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, J. S.; Park, S.; Park, S. K.; Pate, S. F.; Patel, L.; Patel, M.; Pei, H.; Peng, J.-C.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Purschke, M. L.; Qu, H.; Rak, J.; Ramson, B. J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Rinn, T.; Riveli, N.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Rubin, J. G.; Ryu, M. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, S.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seidl, R.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Skolnik, M.; Slunečka, M.; Snowball, M.; Solano, S.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tennant, E.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, R.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Vale, C.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Voas, B.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Whitaker, S.; White, A. S.; White, S. N.; Winter, D.; Wolin, S.; Woody, C. L.; Wysocki, M.; Xia, B.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yanovich, A.; Ying, J.; Yokkaichi, S.; Yoo, J. H.; Yoon, I.; You, Z.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhou, S.; Zou, L.; Phenix Collaboration
2016-03-01
The PHENIX Collaboration at the Relativistic Heavy Ion Collider has measured open heavy flavor production in minimum bias Au +Au collisions at √{sN N}=200 GeV via the yields of electrons from semileptonic decays of charm and bottom hadrons. Previous heavy flavor electron measurements indicated substantial modification in the momentum distribution of the parent heavy quarks owing to the quark-gluon plasma created in these collisions. For the first time, using the PHENIX silicon vertex detector to measure precision displaced tracking, the relative contributions from charm and bottom hadrons to these electrons as a function of transverse momentum are measured in Au +Au collisions. We compare the fraction of electrons from bottom hadrons to previously published results extracted from electron-hadron correlations in p +p collisions at √{sN N}=200 GeV and find the fractions to be similar within the large uncertainties on both measurements for pT>4 GeV/c . We use the bottom electron fractions in Au +Au and p +p along with the previously measured heavy flavor electron RA A to calculate the RA A for electrons from charm and bottom hadron decays separately. We find that electrons from bottom hadron decays are less suppressed than those from charm for the region 3
Electron emission from condensed phase material induced by fast protons.
Shinpaugh, J L; McLawhorn, R A; McLawhorn, S L; Carnes, K D; Dingfelder, M; Travia, A; Toburen, L H
2011-02-01
Monte Carlo track simulation has become an important tool in radiobiology. Monte Carlo transport codes commonly rely on elastic and inelastic electron scattering cross sections determined using theoretical methods supplemented with gas-phase data; experimental condensed phase data are often unavailable or infeasible. The largest uncertainties in the theoretical methods exist for low-energy electrons, which are important for simulating electron track ends. To test the reliability of these codes to deal with low-energy electron transport, yields of low-energy secondary electrons ejected from thin foils have been measured following passage of fast protons. Fast ions, where interaction cross sections are well known, provide the initial spectrum of low-energy electrons that subsequently undergo elastic and inelastic scattering in the material before exiting the foil surface and being detected. These data, measured as a function of the energy and angle of the emerging electrons, can provide tests of the physics of electron transport. Initial measurements from amorphous solid water frozen to a copper substrate indicated substantial disagreement with MC simulation, although questions remained because of target charging. More recent studies, using different freezing techniques, do not exhibit charging, but confirm the disagreement seen earlier between theory and experiment. One now has additional data on the absolute differential electron yields from copper, aluminum and gold, as well as for thin films of frozen hydrocarbons. Representative data are presented.
Electron emission from condensed phase material induced by fast protons†
Shinpaugh, J. L.; McLawhorn, R. A.; McLawhorn, S. L.; Carnes, K. D.; Dingfelder, M.; Travia, A.; Toburen, L. H.
2011-01-01
Monte Carlo track simulation has become an important tool in radiobiology. Monte Carlo transport codes commonly rely on elastic and inelastic electron scattering cross sections determined using theoretical methods supplemented with gas-phase data; experimental condensed phase data are often unavailable or infeasible. The largest uncertainties in the theoretical methods exist for low-energy electrons, which are important for simulating electron track ends. To test the reliability of these codes to deal with low-energy electron transport, yields of low-energy secondary electrons ejected from thin foils have been measured following passage of fast protons. Fast ions, where interaction cross sections are well known, provide the initial spectrum of low-energy electrons that subsequently undergo elastic and inelastic scattering in the material before exiting the foil surface and being detected. These data, measured as a function of the energy and angle of the emerging electrons, can provide tests of the physics of electron transport. Initial measurements from amorphous solid water frozen to a copper substrate indicated substantial disagreement with MC simulation, although questions remained because of target charging. More recent studies, using different freezing techniques, do not exhibit charging, but confirm the disagreement seen earlier between theory and experiment. One now has additional data on the absolute differential electron yields from copper, aluminum and gold, as well as for thin films of frozen hydrocarbons. Representative data are presented. PMID:21183539
NASA Astrophysics Data System (ADS)
Lahmann, B.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Li, C. K.; Petrasso, R. D.; Hartouni, E. P.; Yeamans, C. B.; Rinderknecht, H. G.; Sayre, D. B.; Grim, G.; Baker, K.; Casey, D. T.; Dewald, E.; Goyon, C.; Jarrott, L. C.; Khan, S.; Lepape, S.; Ma, T.; Pickworth, L.; Shah, R.; Kline, J. L.; Perry, T.; Zylstra, A.; Yi, S. A.
2017-10-01
In deuterium-filled inertial confinement fusion implosions, 0.82 MeV 3He and 1.01 MeV T (generated by the primary DD reaction branches) can undergo fusion reactions with the thermal deuterium plasma to create secondary D3He protons and DT neutrons, respectively. In regimes of moderate fuel areal density (ρR 5 - 100 mg/cm2) the ratio of both of these secondary yields to the primary yield can be used to infer the fuel ρR, convergence ratio (CR), and an electron temperature (Te) . This technique has been used on a myriad of deuterium filled capsule implosion experiments on the NIF using the neutron time of flight (nTOF) diagnostics to measure the yield of secondary DT neutrons and CR-39 based wedge range filters (WRFs) to measure the yield of secondary D3He protons. This work is supported in part by the U.S. DoE and LLNL.
Neutron yield and induced radioactivity: a study of 235-MeV proton and 3-GeV electron accelerators.
Hsu, Yung-Cheng; Lai, Bo-Lun; Sheu, Rong-Jiun
2016-01-01
This study evaluated the magnitude of potential neutron yield and induced radioactivity of two new accelerators in Taiwan: a 235-MeV proton cyclotron for radiation therapy and a 3-GeV electron synchrotron serving as the injector for the Taiwan Photon Source. From a nuclear interaction point of view, neutron production from targets bombarded with high-energy particles is intrinsically related to the resulting target activation. Two multi-particle interaction and transport codes, FLUKA and MCNPX, were used in this study. To ensure prediction quality, much effort was devoted to the associated benchmark calculations. Comparisons of the accelerators' results for three target materials (copper, stainless steel and tissue) are presented. Although the proton-induced neutron yields were higher than those induced by electrons, the maximal neutron production rates of both accelerators were comparable according to their respective beam outputs during typical operation. Activation products in the targets of the two accelerators were unexpectedly similar because the primary reaction channels for proton- and electron-induced activation are (p,pn) and (γ,n), respectively. The resulting residual activities and remnant dose rates as a function of time were examined and discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Laboratory Studies of Charging Properties of Dust Grains in Astrophysical/Planetary Environments
NASA Technical Reports Server (NTRS)
Tankosic, D.; Abbas, M. M.
2012-01-01
Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with UV/X-ray radiation, as well as by electron/ion impact. Knowledge of physical and optical properties of individual dust grains is required for understanding of the physical and dynamical processes in space environments and the role of dust in formation of stellar and planetary systems. In this paper we focus on charging of individual micron/submicron dust grains by processes that include: (a) UV photoelectric emissions involving incident photon energies higher than the work function of the material and b) electron impact, where low energy electrons are scattered or stick to the dust grains, thereby charging the dust grains negatively, and at sufficiently high energies the incident electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). It is well accepted that the charging properties of individual micron/submicron size dust grains are expected to be substantially different from the bulk materials. However, no viable models for calculation of the charging properties of individual micron size dust grains are available at the present time. Therefore, the photoelectric yields, and secondary electron emission yields of micron-size dust grains have to be obtained by experimental methods. Currently, very limited experimental data are available for charging of individual micron-size dust grains. Our experimental results, obtained on individual, micron-size dust grains levitated in an electrodynamic balance facility (at NASA-MSFC), show that: (1) The measured photoelectric yields are substantially higher than the bulk values given in the literature and indicate a particle size dependence with larger particles having order-of-magnitude higher values than for submicron-size grains; (2) dust charging by low energy electron impact is a complex process. Also, our measurements indicate that the electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (e.g. Abbas et al, 2010). Laboratory measurements on charging of analogs of the interstellar dust as well as Apollo 11 dust grains conducted at the NASA-MSFC Dusty Plasma Lab. are presented here
Temporal changes in fluid chemistry and energy profiles in the vulcano island hydrothermal system.
Rogers, Karyn L; Amend, Jan P; Gurrieri, Sergio
2007-12-01
In June 2003, the geochemical composition of geothermal fluids was determined at 9 sites in the Vulcano hydrothermal system, including sediment seeps, geothermal wells, and submarine vents. Compositional data were combined with standard state reaction properties to determine the overall Gibbs free energy (DeltaG(r) ) for 120 potential lithotrophic and heterotrophic reactions. Lithotrophic reactions in the H-O-N-S-C-Fe system were considered, and exergonic reactions yielded up to 120 kJ per mole of electrons transferred. The potential for heterotrophy was characterized by energy yields from the complete oxidation of 6 carboxylic acids- formic, acetic, propanoic, lactic, pyruvic, and succinic-with the following redox pairs: O(2)/H(2)O, SO(4) (2)/H(2)S, NO(3) ()/NH(4) (+), S(0)/H(2)S, and Fe(3)O(4)/Fe(2+). Heterotrophic reactions yielded 6-111 kJ/mol e(). Energy yields from both lithotrophic and heterotrophic reactions were highly dependent on the terminal electron acceptor (TEA); reactions with O(2) yielded the most energy, followed by those with NO(3) (), Fe(III), SO(4) (2), and S(0). When only reactions with complete TEA reduction were included, the exergonic lithotrophic reactions followed a similar electron tower. Spatial variability in DeltaG(r) was significant for iron redox reactions, owing largely to the wide range in Fe(2+) and H(+) concentrations. Energy yields were compared to those obtained for samples collected in June 2001. The temporal variations in geochemical composition and energy yields observed in the Vulcano hydrothermal system between 2001 and 2003 were moderate. The largest differences in DeltaG(r) over the 2 years were from iron redox reactions, due to temporal changes in the Fe(2+) and H(+) concentrations. The observed variations in fluid composition across the Vulcano hydrothermal system have the potential to influence not only microbial diversity but also the metabolic strategies of the resident microbial communities.
NASA Astrophysics Data System (ADS)
Teolis, B. D.; Plainaki, C.; Cassidy, T. A.; Raut, U.
2017-10-01
O2, H2, and H2O2 radiolysis from water ice is pervasive on icy astrophysical bodies, but the lack of a self-consistent, quantitative model of the yields of these water products versus irradiation projectile species and energy has been an obstacle to estimating the radiolytic oxidant sources to the surfaces and exospheres of these objects. A major challenge is the wide variation of O2 radiolysis yields between laboratory experiments, ranging over 4 orders of magnitude from 5 × 10-7 to 5 × 10-3 molecules/eV for different particles and energies. We revisit decades of laboratory data to solve this long-standing puzzle, finding an inverse projectile range dependence in the O2 yields, due to preferential O2 formation from an 30 Å thick oxygenated surface layer. Highly penetrating projectile ions and electrons with ranges ≳30 Å are therefore less efficient at producing O2 than slow/heavy ions and low-energy electrons (≲ 400 eV) which deposit most energy near the surface. Unlike O2, the H2O2 yields from penetrating projectiles fall within a comparatively narrow range of (0.1-6) × 10-3 molecules/eV and do not depend on range, suggesting that H2O2 forms deep in the ice uniformly along the projectile track, e.g., by reactions of OH radicals. We develop an analytical model for O2, H2, and H2O2 yields from pure water ice for electrons and singly charged ions of any mass and energy and apply the model to estimate possible O2 source rates on several icy satellites. The yields are upper limits for icy bodies on which surface impurities may be present.
Electron and Positron Stopping Powers of Materials
National Institute of Standards and Technology Data Gateway
SRD 7 NIST Electron and Positron Stopping Powers of Materials (PC database for purchase) The EPSTAR database provides rapid calculations of stopping powers (collisional, radiative, and total), CSDA ranges, radiation yields and density effect corrections for incident electrons or positrons with kinetic energies from 1 keV to 10 GeV, and for any chemically defined target material.
Radiation treatment of molasses
NASA Astrophysics Data System (ADS)
Rodríguez, A. S.; Serrano G., J.; Lara R., O.; Reyes L., J.
Molasses are a by-product of the sugar industry. Their annual production in México in around 1 million tons and are mainly used as a complement for animal feeding and for the production of alcohols. Their value is relatively low compared with another chemicals. When molasses are irradiated with gamma radiation or accelerated electrons, in presence of nitric acid and oxygen, it is obtained oxalic acid and several polymeric compounds. In both cases, the same products are obtained, but the yield is greater with electrons. It has been studied the effect of dose and dose rate in the yields. As example, when mixtures of molasses-nitric acid, with an initial concentration of 26% of total sugar reductors, are irradiated with 1.0 MeV electrons, in a continuous flow reactor, at 0.11 {Gy}/{sec} to a total dose of 30 KGy, the oxalic acid yield is around 44% of the total chemical reductors used. The separations of the radiolytic products was made by successive decantations and concentrations, and purified by recristallizations. From the analytical information, the minimal formula were calculated for the acid product and the polymeric compounds.
Study of electronic sputtering of CaF2 thin films
NASA Astrophysics Data System (ADS)
Pandey, Ratnesh K.; Kumar, Manvendra; Khan, Saif A.; Kumar, Tanuj; Tripathi, Ambuj; Avasthi, D. K.; Pandey, Avinash C.
2014-01-01
In the present work thin films of CaF2 deposited on Si substrate by electron beam evaporation have been investigated for swift heavy ions induced sputtering and surface modifications. Glancing angle X-ray Diffraction (GAXRD) measurements show that the pristine films are polycrystalline in nature and the grain size increases with increase in film thickness. Rutherford backscattering spectrometry (RBS) of pristine as well as irradiated films was performed to determine the sputter yield of CaF2 and a decrease in sputter yield has been observed with increase in film thickness. Thermal spike model has been applied to explain this. The confinement of energy in the grains having size smaller than the electron mean free path (λ) results in a higher sputtering yield. Atomic force microscopy (AFM) studies of irradiated CaF2 thin films show formation of cracks on film surface at a fluence of 5 × 1012 ions/cm2. Also RBS results confirm the removal of film from the surface and more exposure of substrate with increasing dose of ions.
Photosensitized regeneration of carbonyl compounds from oximes.
de Lijser, H J Peter; Fardoun, Fadia H; Sawyer, Jody R; Quant, Michelle
2002-07-11
[reaction: see text] Deprotection of oximes to their corresponding carbonyl compounds through the use of photosensitized electron-transfer reactions proceeds in reasonable to good yields. Better yields are obtained in nonpolar solvents and when triplet sensitizers are used. Preliminary mechanistic studies suggest the involvement of an iminoxyl radical.
Escobedo, Galileo; Soldevila, Gloria; Ortega-Pierres, Guadalupe; Chávez-Ríos, Jesús Ramsés; Nava, Karen; Fonseca-Liñán, Rocío; López-Griego, Lorena; Hallal-Calleros, Claudia; Ostoa-Saloma, Pedro; Morales-Montor, Jorge
2010-01-01
MAP kinases (MAPK) are involved in the regulation of cellular processes such as reproduction and growth. In parasites, the role of MAPK has been scarcely studied. Here, we describe the participation of an ERK-like protein in estrogen-dependent reproduction of the helminth parasite Taenia crassiceps. Our results show that 17β-estradiol induces a concentration-dependent increase in the bud number of in vitro cultured cysticerci. If parasites are also incubated in presence of an ERK-inhibitor, the stimulatory effect of estrogen is blocked. The expression of ERK-like mRNA and its corresponding protein was detected in the parasite. The ERK-like protein was over-expressed by all treatments. Nevertheless, a strong induction of phosphorylation of this protein was observed only in response to 17β-estradiol. Cross-contamination by host cells was discarded by flow cytometry analysis. Parasite cells expressing the ERK-like protein were exclusively located at the subtegument tissue by confocal microscopy. Finally, the ERK-like protein was separated by bidimensional electrophoresis and then sequenced, showing the conserved TEY activation motif, typical of all known ERK 1/2 proteins. Our results show that an ERK-like protein is involved in the molecular signalling during the interaction between the host and T. crassiceps, and may be considered as target for anti-helminth drugs design. PMID:20145710
Mutlak, Michael; Schlesinger-Laufer, Michal; Haas, Tali; Shofti, Rona; Ballan, Nimer; Lewis, Yair E; Zuler, Mor; Zohar, Yaniv; Caspi, Lilac H; Kehat, Izhak
2018-05-24
Chronic pressure overload and a variety of mediators induce concentric cardiac hypertrophy. When prolonged, cardiac hypertrophy culminates in decreased myocardial function and heart failure. Activation of the extracellular signal-regulated kinase (ERK) is consistently observed in animal models of hypertrophy and in human patients, but its role in the process is controversial. We generated transgenic mouse lines with cardiomyocyte restricted overexpression of intrinsically active ERK1, which similar to the observations in hypertrophy is phosphorylated on both the TEY and the Thr207 motifs and is overexpressed at pathophysiological levels. The activated ERK1 transgenic mice developed a modest adaptive hypertrophy with increased contractile function and without fibrosis. Following induction of pressure-overload, where multiple pathways are stimulated, this activation did not further increase the degree of hypertrophy but protected the heart through a decrease in the degree of fibrosis and maintenance of ventricular contractile function. The ERK pathway acts to promote a compensated hypertrophic response, with enhanced contractile function and reduced fibrosis. The activation of this pathway may be a therapeutic strategy to preserve contractile function when the pressure overload cannot be easily alleviated. The inhibition of this pathway, which is increasingly being used for cancer therapy on the other hand, should be used with caution in the presence of pressure-overload. Copyright © 2017. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreira, E.; Henriques, J.M.; Azevedo, D.L.
2011-04-15
Orthorhombic SrSnO{sub 3} was investigated using density functional theory (DFT) considering both the local density and generalized gradient approximations, LDA and GGA, respectively. The electronic band structure, density of states, complex dielectric function, optical absorption, and the infrared and Raman spectra were computed. Calculated lattice parameters are close to the experimental measurements, and an indirect band gap E(S{yields}{Gamma})=1.97eV (2.27 eV) was obtained within the GGA (LDA) level of calculation. Effective masses for holes and electrons were estimated, being very anisotropic in comparison with similar results for orthorhombic CaSnO{sub 3}. The complex dielectric function and the optical absorption of SrSnO{sub 3}more » were shown to be sensitive to the plane of polarization of the incident light. The infrared spectrum between 100 and 600 cm{sup -1} was obtained, with its main peaks being assigned, and a nice agreement between experimental and theoretical peaks of the Raman spectrum of orthorhombic SrSnO{sub 3} was achieved. -- Graphical abstract: Orthorhombic SrSnO{sub 3}: a view of the unit cell (left) and plots showing the calculated and experimental Raman spectra (right). Display Omitted Research highlights: {yields} We have performed DFT calculations on orthorhombic SrSnO{sub 3} crystals, obtaining their structural, electronical and optical properties. {yields} An indirect band gap was obtained, and anisotropic effective masses were found for both electrons and holes. {yields} The complex dielectric function and the optical absorption of SrSnO{sub 3} were shown to be very sensitive to the plane of polarization of the incident light. {yields} The infrared spectrum between 100 and 600 cm{sup -1} was obtained, with its main peaks being assigned, and a nice agreement between experimental and theoretical peaks of the Raman spectrum was achieved.« less
Comparison of exciplex generation under optical and X-ray excitation
NASA Astrophysics Data System (ADS)
Kipriyanov, A. A.; Melnikov, A. R.; Stass, D. V.; Doktorov, A. B.
2017-09-01
Exciplex generation under optical and X-ray excitation in identical conditions is experimentally compared using a specially chosen model donor-acceptor system, anthracene (electron acceptor) and N,N-dimethylaniline (electron donor) in non-polar solution, and the results are analyzed and interpreted based on analytically calculated luminescence quantum yields. Calculations are performed on the basis of kinetic equations for multistage schemes of bulk exciplex production reaction under optical excitation and combination of bulk and geminate reactions of radical ion pairs under X-ray excitation. These results explain the earlier experimentally found difference in the ratio of the quantum yields of exciplexes and excited electron acceptors (exciplex generation efficiency) and the corresponding change in the exciplex generation efficiency under X-irradiation as compared to the reaction under optical excitation.
Comparison of exciplex generation under optical and X-ray excitation.
Kipriyanov, A A; Melnikov, A R; Stass, D V; Doktorov, A B
2017-09-07
Exciplex generation under optical and X-ray excitation in identical conditions is experimentally compared using a specially chosen model donor-acceptor system, anthracene (electron acceptor) and N,N-dimethylaniline (electron donor) in non-polar solution, and the results are analyzed and interpreted based on analytically calculated luminescence quantum yields. Calculations are performed on the basis of kinetic equations for multistage schemes of bulk exciplex production reaction under optical excitation and combination of bulk and geminate reactions of radical ion pairs under X-ray excitation. These results explain the earlier experimentally found difference in the ratio of the quantum yields of exciplexes and excited electron acceptors (exciplex generation efficiency) and the corresponding change in the exciplex generation efficiency under X-irradiation as compared to the reaction under optical excitation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feitelson, J.; Mauzerall, D.C.
1993-08-12
Wide-band, time-resolved, pulsed photoacoustics has been employed to study the electron-transfer reaction between a triplet magnesium porphyrin and various quinones in polar and nonpolar solvents. The reaction rate constants are near encounter limited. The yield of triplet state is 70% in both solvents. The yield of ions is 85% in the former and zero in the latter, in agreement with spin dephasing time and escape times from the Coulomb wells in the two solvents. In methanol the plot of measured heat output versus quinone redox potential is linear. This implies that the entropy of electron transfer is constant through themore » series, but it may not be negligible. 16 refs., 2 figs., 1 tab.« less
NASA Astrophysics Data System (ADS)
Kaya, Ismet I.; Eberl, Karl
2007-05-01
A three-terminal device formed by two electrostatic barriers crossing an asymmetrically patterned two-dimensional electron gas displays an unusual potential depression at the middle contact, yielding absolute negative resistance. The device displays momentum and current transfer ratios that far exceed unity. The observed reversal of the current or potential in the middle terminal can be interpreted as the analog of Bernoulli’s effect in a Fermi liquid. The results are explained by directional scattering of electrons in two dimensions.
All optical electron injector using an intense ultrashort pulse laser and a solid wire target
NASA Astrophysics Data System (ADS)
Palchan, T.; Eisenmann, S.; Zigler, A.; Kaganovich, D.; Hubbard, R. F.; Fraenkel, M.; Fisher, D.; Henis, Z.
2006-05-01
Energetic electron bunches were generated by irradiating a solid tungsten wire 13 μm wide with 50 femtosecond pulses at an intensity of ˜3×1018 W/cm2. The electron yield, energy spectrum and angular distribution were measured. These energetic electron bunches are suitable for injection into a laser driven plasma accelerator. An all-optical electron injector based on this approach could simplify timing and alignment in future laser-plasma accelerator experiments.
Hay, Daniel N T; Messerle, Louis
2002-09-01
Reduction of TaBr(5) with Ga in the presence of KBr in a sealed borosilicate ampule at 400 degrees, followed by aqueous Soxhlet extraction and addition of stannous bromide and hydrobromic acid to the extract, yielded Ta(6)Br(14).8H(2)O in 80-84% yield. The new procedure provides a convenient, low temperature, high yield route to the synthesis of the title compound from inexpensive precursors.
Static High Pressure Structural studies on Dy to 119 GPa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patterson, J R; Saw, C K; Akella, J
2003-11-12
Structural phase transitions in the rare-earth metal Dysprosium have been studied in a Diamond Anvil Cell (DAC) to 119 GPa by x-ray diffraction. Four transformations following the sequence hcp {yields} Sm-type {yields} dhcp {yields} hR24 (hexagonal) {yields} bcm (monoclinic) are observed at 6, 15, 43, and 73 GPa respectively. The hexagonal to monoclinic transformation is accompanied by a 6% reduction in volume, which is attributed to delocalization of the 4f electrons, similar to that seen in Ce, Pr, and Gd.
High-yield, ultrafast, surface plasmon-enhanced, Au nanorod optical field electron emitter arrays.
Hobbs, Richard G; Yang, Yujia; Fallahi, Arya; Keathley, Philip D; De Leo, Eva; Kärtner, Franz X; Graves, William S; Berggren, Karl K
2014-11-25
Here we demonstrate the design, fabrication, and characterization of ultrafast, surface-plasmon enhanced Au nanorod optical field emitter arrays. We present a quantitative study of electron emission from Au nanorod arrays fabricated by high-resolution electron-beam lithography and excited by 35 fs pulses of 800 nm light. We present accurate models for both the optical field enhancement of Au nanorods within high-density arrays, and electron emission from those nanorods. We have also studied the effects of surface plasmon damping induced by metallic interface layers at the substrate/nanorod interface on near-field enhancement and electron emission. We have identified the peak optical field at which the electron emission mechanism transitions from a 3-photon absorption mechanism to strong-field tunneling emission. Moreover, we have investigated the effects of nanorod array density on nanorod charge yield, including measurement of space-charge effects. The Au nanorod photocathodes presented in this work display 100-1000 times higher conversion efficiency relative to previously reported UV triggered emission from planar Au photocathodes. Consequently, the Au nanorod arrays triggered by ultrafast pulses of 800 nm light in this work may outperform equivalent UV-triggered Au photocathodes, while also offering nanostructuring of the electron pulse produced from such a cathode, which is of interest for X-ray free-electron laser (XFEL) development where nanostructured electron pulses may facilitate more efficient and brighter XFEL radiation.
Modulated Electron Emission by Scattering-Interference of Primary Electrons
NASA Astrophysics Data System (ADS)
Valeri, Sergio; di Bona, Alessandro
We review the effects of scattering-interference of the primary, exciting beam on the electron emission from ordered atomic arrays. The yield of elastically and inelastically backscattered electrons, Auger electrons and secondary electrons shows a marked dependence on the incidence angle of primary electrons. Both the similarity and the relative importance of processes experienced by incident and excident electrons are discussed. We also present recent studies of electron focusing and defocusing along atomic chains. The interplay between these two processes determines the in-depth profile of the primary electron intensity anisotropy. Finally, the potential for surface-structural studies and limits for quantitative analysis are discussed, in comparison with the Auger electron diffraction (AED) and photoelectron diffraction (PD) techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
T. Ditmire; Zweiback, J; Cowan, T E
In conclusion, we have observed the production of 2.45 MeV deuterium fusion neutrons when a gas of deuterium clusters is irradiated with a 120 mJ, 35 fs laser pulse. When the focal position is optimized, we have observed as many as 10{sup 4} neutrons per laser shot. This yield is consistent with some simple estimates for the fusion yield. We also find that the fusion yield is a sensitive function of the deuterium cluster size in the target jet, a consequence of the Coulomb explosion origin of the fast deuterons. We also find that the neutron pulse duration is fast,more » with a characteristic burn time of well under 1 ns. This experiment may represent a means for producing a compact, table-top source of short pulse fusion neutrons for applications. Furthermore, we have measured hard x-ray yield from femtosecond laser interactions with both solid and micron scale droplet targets. Strong hard x-ray production is observed from both targets. However, the inferred electron temperature is somewhat higher in the case of irradiation of the droplets. These data are consistent with PIC simulations. This finding indicates that quite unique hot electron dynamics occur during the irradiation of wavelength scale particles by an intense laser field and likely warrants further study.« less
Molecular interferometer to decode attosecond electron-nuclear dynamics.
Palacios, Alicia; González-Castrillo, Alberto; Martín, Fernando
2014-03-18
Understanding the coupled electronic and nuclear dynamics in molecules by using pump-probe schemes requires not only the use of short enough laser pulses but also wavelengths and intensities that do not modify the intrinsic behavior of the system. In this respect, extreme UV pulses of few-femtosecond and attosecond durations have been recognized as the ideal tool because their short wavelengths ensure a negligible distortion of the molecular potential. In this work, we propose the use of two twin extreme UV pulses to create a molecular interferometer from direct and sequential two-photon ionization processes that leave the molecule in the same final state. We theoretically demonstrate that such a scheme allows for a complete identification of both electronic and nuclear phases in the wave packet generated by the pump pulse. We also show that although total ionization yields reveal entangled electronic and nuclear dynamics in the bound states, doubly differential yields (differential in both electronic and nuclear energies) exhibit in addition the dynamics of autoionization, i.e., of electron correlation in the ionization continuum. Visualization of such dynamics is possible by varying the time delay between the pump and the probe pulses.
The electroluminescence of Xe-Ne gas mixtures: A Monte Carol simulation study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos, F.P.; Dias, T.H.V.T.; Rachinhas, P.J.B.M.
1998-04-01
The authors have performed a Monte Carlo simulation of the drift of electrons through a mixture of gaseous xenon with the lighter noble gas neon at a total pressure of 1 atm. The electroluminescence characteristics and other transport parameters are investigated as a function of the reduced electric field and composition of the mixture. For Xe-Ne mixtures with 5, 10, 20, 40, 70, 90, and 100% of Xe, they present results for electroluminescence yield and excitation efficiency, average electron energy, electron drift velocity, reduced mobility, reduced diffusion coefficients, and characteristic energies over a range of reduced electric fields which excludemore » electron multiplication. For the 5% Xe mixture, they also assess the influence of electron multiplication on the electroluminescence yield. The present study of Xe-Ne mixtures was motivated by an interest in using them as a filling for gas proportional scintillation counters in low-energy X-ray applications. In this energy range, the X rays will penetrate further into the detector due to the presence of Ne, and this will lead to an improvement in the collection of primary electrons originating near the detector window and may represent an advantage over the use of pure Xe.« less
NASA Astrophysics Data System (ADS)
Dayton, M.; Datte, P.; Carpenter, A.; Eckart, M.; Manuel, A.; Khater, H.; Hargrove, D.; Bell, P.
2017-08-01
The National Ignition Facility's (NIF) harsh radiation environment can cause electronics to malfunction during high-yield DT shots. Until now there has been little experience fielding electronic-based cameras in the target chamber under these conditions; hence, the performance of electronic components in NIF's radiation environment was unknown. It is possible to purchase radiation tolerant devices, however, they are usually qualified for radiation environments different to NIF, such as space flight or nuclear reactors. This paper presents the results from a series of online experiments that used two different prototype camera systems built from non-radiation hardened components and one commercially available camera that permanently failed at relatively low total integrated dose. The custom design built in Livermore endured a 5 × 1015 neutron shot without upset, while the other custom design upset at 2 × 1014 neutrons. These results agreed with offline testing done with a flash x-ray source and a 14 MeV neutron source, which suggested a methodology for developing and qualifying electronic systems for NIF. Further work will likely lead to the use of embedded electronic systems in the target chamber during high-yield shots.
NASA Technical Reports Server (NTRS)
Zhao, Minhua; Ming, Bin; Kim, Jae-Woo; Gibbons, Luke J.; Gu, Xiaohong; Nguyen, Tinh; Park, Cheol; Lillehei, Peter T.; Villarrubia, J. S.; Vladar, Andras E.;
2015-01-01
Despite many studies of subsurface imaging of carbon nanotube (CNT)-polymer composites via scanning electron microscopy (SEM), significant controversy exists concerning the imaging depth and contrast mechanisms. We studied CNT-polyimide composites and, by threedimensional reconstructions of captured stereo-pair images, determined that the maximum SEM imaging depth was typically hundreds of nanometers. The contrast mechanisms were investigated over a broad range of beam accelerating voltages from 0.3 to 30 kV, and ascribed to modulation by embedded CNTs of the effective secondary electron (SE) emission yield at the polymer surface. This modulation of the SE yield is due to non-uniform surface potential distribution resulting from current flows due to leakage and electron beam induced current. The importance of an external electric field on SEM subsurface imaging was also demonstrated. The insights gained from this study can be generally applied to SEM nondestructive subsurface imaging of conducting nanostructures embedded in dielectric matrices such as graphene-polymer composites, silicon-based single electron transistors, high resolution SEM overlay metrology or e-beam lithography, and have significant implications in nanotechnology.
NASA Astrophysics Data System (ADS)
Ohta, Akio; Truyen, Nguyen Xuan; Fujimura, Nobuyuki; Ikeda, Mitsuhisa; Makihara, Katsunori; Miyazaki, Seiichi
2018-06-01
The energy distribution of the electronic state density of wet-cleaned epitaxial GaN surfaces and SiO2/GaN structures has been studied by total photoelectron yield spectroscopy (PYS). By X-ray photoelectron spectroscopy (XPS) analysis, the energy band diagram for a wet-cleaned epitaxial GaN surface such as the energy level of the valence band top and electron affinity has been determined to obtain a better understanding of the measured PYS signals. The electronic state density of GaN surface with different carrier concentrations in the energy region corresponding to the GaN bandgap has been evaluated. Also, the interface defect state density of SiO2/GaN structures was also estimated by not only PYS analysis but also capacitance–voltage (C–V) characteristics. We have demonstrated that PYS analysis enables the evaluation of defect state density filled with electrons at the SiO2/GaN interface in the energy region corresponding to the GaN midgap, which is difficult to estimate by C–V measurement of MOS capacitors.
The scaling of electron and positron generation in intense laser-solid interactions
Chen, Hui; Link, A.; Sentoku, Y.; ...
2015-05-27
This study presents experimental scalings of the electrons and positrons produced by intense laser-target interactions at relativistic laser intensities (10 18–10 20 W cm -2). The data were acquired from three short-pulse laser facilities with laser energies ranging from 80 to 1500 J. We found a non-linear (≈E L 2) scaling of positron yield [Chen et al., Phys. Rev. Lett. 114, 215001 (2015)] and a linear scaling of electron yield with the laser energy. These scalings are explained by theoretical and numerical analyses. Positron acceleration by the target sheath field is confirmed by the positron energy spectrum, which has amore » pronounced peak at energies near the sheath potential, as determined by the observed maximum energies of accelerated protons. The parameters of laser-produced electron-positron jets are summarized together with the theoretical energy scaling. Finally, the measured energy-squared scaling of relativistic electron-positron jets indicates the possibility to create an astrophysically relevant experimental platform with such jets using multi-kilojoule high intensity lasers currently under construction.« less
The scaling of electron and positron generation in intense laser-solid interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Hui; Link, A.; Fiuza, F.
2015-05-15
This paper presents experimental scalings of the electrons and positrons produced by intense laser-target interactions at relativistic laser intensities (10{sup 18}–10{sup 20} W cm{sup −2}). The data were acquired from three short-pulse laser facilities with laser energies ranging from 80 to 1500 J. We found a non-linear (≈E{sub L}{sup 2}) scaling of positron yield [Chen et al., Phys. Rev. Lett. 114, 215001 (2015)] and a linear scaling of electron yield with the laser energy. These scalings are explained by theoretical and numerical analyses. Positron acceleration by the target sheath field is confirmed by the positron energy spectrum, which has a pronouncedmore » peak at energies near the sheath potential, as determined by the observed maximum energies of accelerated protons. The parameters of laser-produced electron-positron jets are summarized together with the theoretical energy scaling. The measured energy-squared scaling of relativistic electron-positron jets indicates the possibility to create an astrophysically relevant experimental platform with such jets using multi-kilojoule high intensity lasers currently under construction.« less
Electron-Induced Chemistry of Cobalt Tricarbonyl Nitrosyl (Co(CO)3NO) in Liquid Helium Nanodroplets
2015-01-01
Electron addition to cobalt tricarbonyl nitrosyl (Co(CO3NO) and its clusters has been explored in helium nanodroplets. Anions were formed by adding electrons with controlled energies, and reaction products were identified by mass spectrometry. Dissociative electron attachment (DEA) to the Co(CO)3NO monomer gave reaction products similar to those reported in earlier gas phase experiments. However, loss of NO was more prevalent than loss of CO, in marked contrast to the gas phase. Since the Co–N bond is significantly stronger than the Co–C bond, this preference for NO loss must be driven by selective reaction dynamics at low temperature. For [Co(CO)3NO]N clusters, the DEA chemistry is similar to that of the monomer, but the anion yields as a function of electron energy show large differences, with the relatively sharp resonances of the monomer being replaced by broad profiles peaking at much higher electron energies. A third experiment involved DEA of Co(CO)3NO on a C60 molecule in an attempt to simulate the effect of a surface. Once again, broad ion yield curves are seen, but CO loss now becomes the most probable reaction channel. The implication of these findings for understanding focused electron beam induced deposition of cobalt is described. PMID:26401190
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, T; Bain, TS; Barlett, MA
2014-01-02
Microbial oxidation of elemental sulfur with an electrode serving as the electron acceptor is of interest because this may play an important role in the recovery of electrons from sulfidic wastes and for current production in marine benthic microbial fuel cells. Enrichments initiated with a marine sediment inoculum, with elemental sulfur as the electron donor and a positively poised (+300 mV versus Ag/AgCl) anode as the electron acceptor, yielded an anode biofilm with a diversity of micro-organisms, including Thiobacillus, Sulfurimonas, Pseudomonas, Clostridium and Desulfuromonas species. Further enrichment of the anode biofilm inoculum in medium with elemental sulfur as the electronmore » donor and Fe(III) oxide as the electron acceptor, followed by isolation in solidified sulfur/Fe(III) medium yielded a strain of Desulfuromonas, designated strain TZ1. Strain TZ1 effectively oxidized elemental sulfur to sulfate with an anode serving as the sole electron acceptor, at rates faster than Desulfobulbus propionicus, the only other organism in pure culture previously shown to oxidize S with current production. The abundance of Desulfuromonas species enriched on the anodes of marine benthic fuel cells has previously been interpreted as acetate oxidation driving current production, but the results presented here suggest that sulfur-driven current production is a likely alternative.« less
Adare, A.; Aidala, C.; Ajitanand, N. N.; ...
2016-03-07
We measured open heavy flavor production in minimum bias Au + Au collisions at √s( NN) = 200 GeV via the yields of electrons from semileptonic decays of charm and bottom hadrons, using the PHENIX Collaboration at the Relativistic Heavy Ion Collider. In the past, heavy flavor electron measurements indicated substantial modification in the momentum distribution of the parent heavy quarks owing to the quark-gluon plasma created in these collisions. For the first time, using the PHENIX silicon vertex detector to measure precision displaced tracking, the relative contributions from charm and bottom hadrons to these electrons as a function ofmore » transverse momentum are measured in Au + Au collisions. Here, we compare the fraction of electrons from bottom hadrons to previously published results extracted from electron-hadron correlations in p + p collisions at √s( NN) = 200 GeV and find the fractions to be similar within the large uncertainties on both measurements for p (T) > 4 GeV/c. We use the bottom electron fractions in Au + Au and p + p along with the previously measured heavy flavor electron R (AA) to calculate the R (AA) for electrons from charm and bottom hadron decays separately. Finally, we find that electrons from bottom hadron decays are less suppressed than those from charm for the region 3 < p (T) < 4 GeV/c.« less
NASA Astrophysics Data System (ADS)
Hovakimyan, Samvel; Moritz, Robert; Tayan, Rodrik
2017-04-01
The Cenozoic evolution of the central segment of the Tethyan belt is dominated by oblique convergence and final collision of Gondwana-derived terranes and the Arabian plate with Eurasia, which created a favorable setting for the formation of the highly mineralized Meghri-Ordubad pluton in the southernmost Lesser Caucasus. Regional strike-slip faults played an important role in the control of the porphyry Cu-Mo and epithermal systems hosted by the Meghri-Ordubad pluton. In this contribution we discuss the paleostress and the kinematic environment of the major strike-slip and oblique-slip ore-controlling faults throughout the Eocene subduction to Mio-Pliocene post-collisional tectonic evolution of the Meghri-Ordubad pluton based on detailed structural field mapping of the ore districts, stereonet compilation of ore-bearing fractures and vein orientations in the major porphyry and epithermal deposits, and the paleostress reconstructions. Paleostress reconstructions indicate that during the Eocene and Early Oligocene, the main paleostress axe orientations reveal a dominant NE-SW-oriented compression, which is compatible with the subduction geometry of the Neotethys along Eurasia. This tectonic setting was favorable for dextral displacements along the two major, regional NNW-oriented Khustup-Giratakh and Salvard-Ordubad strike-slip faults. This resulted in the formation of a NS-oriented transrotational basin, known as the Central magma and ore- controlling zone (Tayan, 1998). It caused a horizontal clockwise rotation of blocks. The EW-oriented faults separating the blocks formed as en-échelon antithetic faults (Voghji, Meghrasar, Bughakyar and Meghriget-Cav faults). The Central zone consists of a network of EW-oriented sinistral and NS-oriented subparallel strike-slip faults (Tashtun, Spetry, Tey, Meghriget and Terterasar faults). They are active since the Eocene and were reactivated during the entire tectonic evolution of the pluton, but with different behaviors. During the Eocene, dextral displacement along the NS-oriented strike-slip faults were favorable for the opening of NE-oriented en-échelon normal faults. The NS-oriented faults, in particular at their intersection with EW- and NE-oriented faults, were important ore-controlling structures for the emplacement of major porphyry Cu-Mo (Dastakert, Aygedzor and Agarak) and epithermal (Tey-Lichkvaz and Terterasar) deposits. In summary, we conclude that from the Eocene to the Oligocene the dominant structural system consisted essentially in dextral strike-slip tectonics along the major NS-oriented faults. During the Oligocene to Miocene, NS-oriented compression and EW-oriented extension predominated, which is consistent with the collisional and post-collisional geodynamic evolution of the study area. This setting resulted in renewed dextral displacement along the NS-oriented ore-controlling faults, and sinistral displacement along the EW-oriented antithetic faults. This setting created the favorable geometry for opening NS- EW- and NE-oriented extension fractures, and the adequate conditions for the emplacement of vein-, stockwork-type porphyry deposits, including the giant Kadjaran deposit. During the Lower Miocene to Pliocene there was a rotation in the main regional stress components according to progressive regional evolution. Paleostress reconstructions indicate a change in compression from NS during the Miocene to NNW during the Pliocene. The Tashtun transcurrent fault had an oblique-slip behavior. It formed a negative flower structure with a sinistral strike-slip component, which resulted in the development of a pull-apart basin and the formation of the Lichk porphyry-epithermal system.
NASA Astrophysics Data System (ADS)
Li, Jun-Li; Li, Chun-Yan; Qiu, Rui; Yan, Cong-Chong; Xie, Wen-Zhang; Zeng, Zhi; Tung, Chuan-Jong
2013-09-01
In order to study the influence of inelastic cross sections on the simulation of direct DNA strand breaks induced by low energy electrons, six different sets of inelastic cross section data were calculated and loaded into the Geant4-DNA code to calculate the DNA strand break yields under the same conditions. The six sets of the inelastic cross sections were calculated by applying the dielectric function method of Emfietzoglou's optical-data treatments, with two different optical datasets and three different dispersion models, using the same Born corrections. Results show that the inelastic cross sections have a notable influence on the direct DNA strand break yields. The yields simulated with the inelastic cross sections based on Hayashi's optical data are greater than those based on Heller's optical data. The discrepancies are about 30-45% for the single strand break yields and 45-80% for the double strand break yields. Among the yields simulated with cross sections of the three different dispersion models, generally the greatest are those of the extended-Drude dispersion model, the second are those of the extended-oscillator-Drude dispersion model, and the last are those of the Ashley's δ-oscillator dispersion model. For the single strand break yields, the differences between the first two are very little and the differences between the last two are about 6-57%. For the double strand break yields, the biggest difference between the first two can be about 90% and the differences between the last two are about 17-70%.
Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction.
Müller, Knut; Krause, Florian F; Béché, Armand; Schowalter, Marco; Galioit, Vincent; Löffler, Stefan; Verbeeck, Johan; Zweck, Josef; Schattschneider, Peter; Rosenauer, Andreas
2014-12-15
By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field-induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright-field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms.
Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction
NASA Astrophysics Data System (ADS)
Müller, Knut; Krause, Florian F.; Béché, Armand; Schowalter, Marco; Galioit, Vincent; Löffler, Stefan; Verbeeck, Johan; Zweck, Josef; Schattschneider, Peter; Rosenauer, Andreas
2014-12-01
By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field-induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright-field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms.
Development of a Computationally Efficient, High Fidelity, Finite Element Based Hall Thruster Model
NASA Technical Reports Server (NTRS)
Jacobson, David (Technical Monitor); Roy, Subrata
2004-01-01
This report documents the development of a two dimensional finite element based numerical model for efficient characterization of the Hall thruster plasma dynamics in the framework of multi-fluid model. Effect of the ionization and the recombination has been included in the present model. Based on the experimental data, a third order polynomial in electron temperature is used to calculate the ionization rate. The neutral dynamics is included only through the neutral continuity equation in the presence of a uniform neutral flow. The electrons are modeled as magnetized and hot, whereas ions are assumed magnetized and cold. The dynamics of Hall thruster is also investigated in the presence of plasma-wall interaction. The plasma-wall interaction is a function of wall potential, which in turn is determined by the secondary electron emission and sputtering yield. The effect of secondary electron emission and sputter yield has been considered simultaneously, Simulation results are interpreted in the light of experimental observations and available numerical solutions in the literature.
Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction
Müller, Knut; Krause, Florian F.; Béché, Armand; Schowalter, Marco; Galioit, Vincent; Löffler, Stefan; Verbeeck, Johan; Zweck, Josef; Schattschneider, Peter; Rosenauer, Andreas
2014-01-01
By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field-induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright-field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms. PMID:25501385
Signal yields, energy resolution, and recombination fluctuations in liquid xenon
Akerib, D. ?S.; Alsum, S.; Ara?jo, H. ?M.; ...
2017-01-19
This study presents an analysis of monoenergetic electronic recoil peaks in the dark-matter-search and calibration data from the first underground science run of the Large Underground Xenon (LUX) detector. Liquid xenon charge and light yields for electronic recoil energies between 5.2 and 661.7 keV are measured, as well as the energy resolution for the LUX detector at those same energies. Additionally, there is an interpretation of existing measurements and descriptions of electron-ion recombination fluctuations in liquid xenon as limiting cases of a more general liquid xenon recombination fluctuation model. Measurements of the standard deviation of these fluctuations at monoenergetic electronicmore » recoil peaks exhibit a linear dependence on the number of ions for energy deposits up to 661.7 keV, consistent with previous LUX measurements between 2 and 16 keV with 3H. We highlight similarities in liquid xenon recombination for electronic and nuclear recoils with a comparison of recombination fluctuations measured with low-energy calibration data.« less
Ellis, Jennifer L; Hickstein, Daniel D; Xiong, Wei; Dollar, Franklin; Palm, Brett B; Keister, K Ellen; Dorney, Kevin M; Ding, Chengyuan; Fan, Tingting; Wilker, Molly B; Schnitzenbaumer, Kyle J; Dukovic, Gordana; Jimenez, Jose L; Kapteyn, Henry C; Murnane, Margaret M
2016-02-18
We present ultrafast photoemission measurements of isolated nanoparticles in vacuum using extreme ultraviolet (EUV) light produced through high harmonic generation. Surface-selective static EUV photoemission measurements were performed on nanoparticles with a wide array of compositions, ranging from ionic crystals to nanodroplets of organic material. We find that the total photoelectron yield varies greatly with nanoparticle composition and provides insight into material properties such as the electron mean free path and effective mass. Additionally, we conduct time-resolved photoelectron yield measurements of isolated oleylamine nanodroplets, observing that EUV photons can create solvated electrons in liquid nanodroplets. Using photoemission from a time-delayed 790 nm pulse, we observe that a solvated electron is produced in an excited state and subsequently relaxes to its ground state with a lifetime of 151 ± 31 fs. This work demonstrates that femotosecond EUV photoemission is a versatile surface-sensitive probe of the properties and ultrafast dynamics of isolated nanoparticles.
Thermal Electrons in Gamma-Ray Burst Afterglows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ressler, Sean M.; Laskar, Tanmoy
2017-08-20
To date, nearly all multi-wavelength modeling of long-duration γ -ray bursts has ignored synchrotron radiation from the significant population of electrons expected to pass the shock without acceleration into a power-law distribution. We investigate the effect of including the contribution of thermal, non-accelerated electrons to synchrotron absorption and emission in the standard afterglow model, and show that these thermal electrons provide an additional source of opacity to synchrotron self-absorption, and yield an additional emission component at higher energies. The extra opacity results in an increase in the synchrotron self-absorption frequency by factors of 10–100 for fiducial parameters. The nature ofmore » the additional emission depends on the details of the thermal population, but is generally observed to yield a spectral peak in the optical brighter than radiation from the nonthermal population by similar factors a few seconds after the burst, remaining detectable at millimeter and radio frequencies several days later.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Overzet, Lawrence J.; Raja, L.
The research program was collaborative between the researchers at the University of Texas at Dallas and the University of Texas at Austin. The primary subject of this program was to investigate the possibility of active control of secondary electron emission (SEE) from surfaces in contact with plasmas and thereby actively control plasmas. Very few studies of ion-induced electron emission (IIEE) from semiconductors exist, and those that do exist primarily used high-energy ion beams in the experiments. Furthermore, those few studies took extreme measures to ensure that the measurements were performed on atomically clean surfaces because of the surface sensitivity ofmore » the IIEE process. Even a small exposure to air can change the IIEE yield significantly. In addition, much of the existing data for IIEE from semiconductors was obtained in the 1950s and ‘60s, when semiconductor materials were first being refined. As a result, nearly all of that data is for p-type Ge and Si. Before this investigation, experimental data on n-type materials was virtually non-existent. While the basic theory assumed that IIEE yields ought to be substantially independent of doping type and concentration, recent measurements of near atmospheric pressure plasmas and of breakdown suggested otherwise. These indirect measurements were made on surfaces that were not atomically clean and seemed to indicate that deep sub-surface changes to the bulk conduction band electron density could lead to substantial variations in the IIEE yield. Exactly in contradiction to the generally accepted theory. Insufficient direct data existed to settle the matter. We performed both experimental measurements and theoretical calculations of IIEE yields from both Si and Ge in order to help clarify whether or not conduction band electrons substantially change the IIEE yield. We used three wafers of each material to carry out the investigation: a heavily doped p-type, an intrinsic and a heavily doped n-type wafer. There was approximately a factor of 10 15 difference in the conduction band electron densities of the p-type and n-type Si wafers and a factor of 10 10 for Ge. We investigated semiconductor surfaces that were both chemically cleaned (not atomically clean) and sputter cleaned (much closer to atomically clean), since such measurements are more relevant to recent indirect measurements. In addition to IIEE measurements, X-ray and ultraviolet photoelectron spectroscopies (XPS and UPS) were utilized to better understand the results.« less
The yield of N/2D/ atoms in the dissociative recombination of NO/+/
NASA Technical Reports Server (NTRS)
Kley, D.; Lawrence, G. M.; Stone, E. J.
1977-01-01
The quantum yield or branching ratio of N(2D) atoms formed in the reaction e + NO(+) yields N + O was measured to be 76% plus or minus 6%. Photoionization of buffered nitric oxide by a flash lamp was studied using time-resolved atomic absorption. Atoms were produced both by direct photodissociation and by dissociative recombination, and these two effects were separated by means of SF6 as an electron scavenger.
Vlachos, Dimitrios; Craven, Alan J; McComb, David W
2005-03-01
The effects of specimen charging on X-ray absorption spectroscopy using total electron yield have been investigated using powder samples of zirconia stabilized by a range of oxides. The stabilized zirconia powder was mixed with graphite to minimize the charging but significant modifications of the intensities of features in the X-ray absorption near-edge fine structure (XANES) still occurred. The time dependence of the charging was measured experimentally using a time scan, and an algorithm was developed to use this measured time dependence to correct the effects of the charging. The algorithm assumes that the system approaches the equilibrium state by an exponential decay. The corrected XANES show improved agreement with the electron energy-loss near-edge fine structure obtained from the same samples.
The Effect of Correlated Energetic Disorder on Charge Transport in Organic Semiconductors
NASA Astrophysics Data System (ADS)
Allen, Jonathan; Röding, Sebastian; Cherqui, Charles; Dunlap, David
2012-10-01
In their 1995 paper describing a Monte Carlo simulation for dissociation of an electron-hole pair in the presence of Gaussian energetic disorder, Albrect and Bäassler reported a surprising result. They found that increasing the width σ of the energetic disorder increases the quantum yield φ. They attributed this behavior to the tendency for energy fluctuations to compete against the Coulombic pair attraction, driving the electron-hole pair apart at short distances where, without disorder, recombination would be almost certain. We have expanded upon this notion, and introduced spatial correlation into the energetic disorder. By correlating the energetic disorder, we have demonstrated even larger quantum yields in simulation, attributable to the tendency of correlation to drive the charges further apart spatially than merely random disorder. Our results generally support the findings of Greenham et al. in that a larger correlation radius gives a larger quantum yield. In addition to larger quantum yield, we believe that correlated disorder could be used to create pathways for charge transport within a material, allowing the charge carrier behavior to be tuned.
Effect of Nb on microstructure and yield strength of a high temperature tempered martensitic steel
NASA Astrophysics Data System (ADS)
Wang, Qian; Sun, Yu; Zhang, Chuanyou; Wang, Qingfeng; Zhang, Fucheng
2018-04-01
Martensitic steels based on a composition of 25CrMo47NbVTi with different concentrations of Nb (0.003%–0.060%) were quenched (Q) at 900 °C and tempered (T) at 700 °C to obtain oil country tubular goods (OCTG) with higher yield strength. The precipitation and microstructures were characterized and quantified by optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction (XRD). The results show that the increased Nb content led to an enhanced overall precipitation, the rising solution-precipitation temperature, the increased mass or volume fraction of the Nb-containing precipitates, and the decreased average diameter of Nb-containing particles. With the enhanced precipitation of small sized Nb-containing particles, the austenite grain and corresponding martensitic packet and block were evidently refined. In addition, the dislocation density increased slightly with increasing Nb addition. The yield strength was experimentally measured and quantitatively estimated. The findings based on theoretical calculations indicated that as a consequence of intensified strengthening from grain boundaries, precipitates and dislocations, the yield strength was enhanced significantly by Nb addition.
Bio/Nano Electronic Devices and Sensors
2008-10-01
Microscopy and Microanalysis 2006 Meeting, Chicago, IL, July 30 - August 3, 2006 4) S. Khizroev, "Three-dimensional Magnetic Memory," presented at US Air...ABSTRACT This effort consists of five research thrusts: (1) Dense Memory Devices-(1)3-D magnetic recording was enhanced using patterned soft underlayers...and interlayer, (2) Cold cathode microwave generator and ceramic electron multiplier-ceramic multiplier using a novel secondary electron yield
Fast and inexpensive synthesis of pentacene with high yield using 6,13-pentacenequinone as precursor
NASA Astrophysics Data System (ADS)
Mota, María L.; Rodriguez, Bibiana; Carrillo, Amanda; Ambrosio, Roberto C.; Luque, Priscy A.; Mireles, Marcela; Vivaldo, Israel; Quevedo, Manuel A.
2018-02-01
Pentacene is an important semiconductor in the field of organic electronics. In this work is presented an alternative synthesis procedure to obtain pentacene from 6,13-pentacenequinone as a precursor. Synthesis of pentacene was performed in two reactions, Diels-Adler cycloaddition of 6,13-pentacenequinone followed by 6,13-pentacenequinone reduction to pentacene, employing LiAlH4 as reducing agent. The products were characterized by Fourier Transform Infrared Spectroscopy (FTIR), 1H-Nuclear Magnetic Resonance Spectroscopy (1H-NMR), X-Ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and Ultraviolet-Visible Spectroscopy (UV-VIS). In this work, 6,13-pentacenequinone was synthetized with a high yield (55%) using an alternative method. The optimization process resulted in an overall reduction of reaction time while exhibiting high yield. The method presented here provides an affordable pentacene synthesis route with high purity, which can be further applied for research and development of organic electronic applications.
NASA Astrophysics Data System (ADS)
Zier, J. C.; Mosher, D.; Allen, R. J.; Commisso, R. J.; Cooperstein, G.; Hinshelwood, D. D.; Jackson, S. L.; Murphy, D. P.; Ottinger, P. F.; Richardson, A. S.; Schumer, J. W.; Swanekamp, S. B.; Weber, B. V.
2014-06-01
Intense pulsed active detection (IPAD) is a promising technique for detecting fissile material to prevent the proliferation of special nuclear materials. With IPAD, fissions are induced in a brief, intense radiation burst and the resulting gamma ray or neutron signals are acquired during a short period of elevated signal-to-noise ratio. The 8 MV, 200 kA Mercury pulsed-power generator at the Naval Research Laboratory coupled to a high-power vacuum diode produces an intense 30 ns bremsstrahlung beam to study this approach. The work presented here reports on Mercury experiments designed to maximize the photofission yield in a depleted-uranium (DU) object in the bremsstrahlung far field by varying the anode-cathode (AK) diode gap spacing and by adding an inner-diameter-reducing insert in the outer conductor wall. An extensive suite of diagnostics was fielded to measure the bremsstrahlung beam and DU fission yield as functions of diode geometry. Delayed fission neutrons from the DU proved to be a valuable diagnostic for measuring bremsstrahlung photons above 5 MeV. The measurements are in broad agreement with particle-in-cell and Monte Carlo simulations of electron dynamics and radiation transport. These show that with increasing AK gap, electron losses to the insert and outer conductor wall increase and that the electron angles impacting the bremsstrahlung converter approach normal incidence. The diode conditions for maximum fission yield occur when the gap is large enough to produce electron angles close to normal, yet small enough to limit electron losses.
Electron-stimulated reactions in nanoscale water films adsorbed on α-Al 2O 3 (0001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrik, Nikolay G.; Kimmel, Gregory A.
The radiation-induced decomposition and desorption of nanoscale amorphous solid water (D2O) films adsorbed on -Al2O3(0001) surface was studied at low temperature in ultrahigh vacuum using temperature programmed desorption (TPD) and electron stimulated desorption (ESD) with a mono-energetic, low energy electron source. ESD yields of molecular products ( D2, O2 and D¬2O) and the total sputtering yield increased with increasing D2O coverage up to ~15 water monolayers (i.e. ~15 1015 cm-2) to a coverage-independent level for thicker water films. Experiments with isotopically-layered water films (D2O and H2O) demonstrated that the highest water decomposition yields occurred at the interfaces of the nanoscalemore » water films with the alumina substrate and vacuum. However, the increased reactivity of the water/alumina interface is relatively small compared to the enhancements in the non-thermal reactions previously observed at the water/Pt(111) and water/TiO2(110) interfaces. We propose that the relatively low activity of Al2O3(0001) for the radiation-induced production of molecular hydrogen is associated with lower reactivity of this surface with hydrogen atoms, which are likely precursors for the molecular hydrogen.100 eV electrons are stopped in the H 2O portion of the isotopically-layered nanoscale film on α-Al 2O 3(0001) but D 2is produced at the D 2O/alumina interface by mobile electronic excitations and/or hydronium ions.« less
NASA Astrophysics Data System (ADS)
Schweigert, I. V.; Yadrenkin, M. A.; Fomichev, V. P.
2017-11-01
Modification of the sheath structure near the emissive plate placed in magnetized DC discharge plasma of Hall thruster type was studied in the experiment and in kinetic simulations. The plate is made from Al2O3 which has enhanced secondary electron emission yield. The energetic electrons emitted by heated cathode provide the volume ionization and the secondary electron emission from the plate. An increase of the electron beam energy leads to an increase of the secondary electron generation, which initiates the transition in sheath structure over the emissive plate.
Nuclear excitation by electronic transition of 235U
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chodash, P. A.; Norman, E. B.; Burke, J. T.
Here, nuclear excitation by electronic transition (NEET) is a rare nuclear excitation that can occur in isotopes containing a low-lying nuclear excited state. Over the past 40 yr, several experiments have attempted to measure NEET of 235U and those experiments have yielded conflicting results.
Nuclear excitation by electronic transition of 235U
Chodash, P. A.; Norman, E. B.; Burke, J. T.; ...
2016-03-11
Here, nuclear excitation by electronic transition (NEET) is a rare nuclear excitation that can occur in isotopes containing a low-lying nuclear excited state. Over the past 40 yr, several experiments have attempted to measure NEET of 235U and those experiments have yielded conflicting results.
Brown, M F; Brotzman, H G; Kinden, D A
1976-09-01
A procedure yielding sections of unembedded biological samples for observation by scanning electron microscopy is described. Sections of samples, fixed and hardened in OsO4, were obtained in quantity with a tissue sectioner. Subsequent treatments to osmium-coat cut surfaces were employed prior to critical point drying. The procedure yields cleanly cut surfaces through cells and cytoplasmic organelles which are retained in their normal position. Sections of apple leaf and mouse kidney are illustrated. Sections can be readily cut in a desired plane with less structural damage than is typically encountered by other sectioning or dissection techniques.
Denmark, Scott E; Wilson, Tyler W; Burk, Matthew T; Heemstra, John R
2007-12-05
Silyl ketene imines derived from a variety of alpha-branched nitriles have been developed as highly useful reagents for the construction of quaternary stereogenic centers via the aldol addition reaction. In the presence of SiCl4 and the catalytic action of chiral phosphoramide (R,R)-5, silyl ketene imines undergo extremely rapid and high yielding addition to a wide variety of aromatic aldehydes with excellent diastereo- and enantioselectivity. Of particular note is the high yields and selectivities obtained from electron-rich, electron-poor, and hindered aldehydes. The nitrile function serves as a useful precursor for further synthetic manipulation.
NASA Astrophysics Data System (ADS)
Suljoti, E.; de Groot, F. M. F.; Nagasono, M.; Glatzel, P.; Hennies, F.; Deppe, M.; Pietzsch, A.; Sonntag, B.; Föhlisch, A.; Wurth, W.
2009-09-01
Symmetrical fluorescence yield profiles and asymmetrical electron yield profiles of the preresonances at the La NIV,V x-ray absorption edge are experimentally observed in LaPO4 nanoparticles. Theoretical studies show that they are caused by interference effects. The spin-orbit interaction and the giant resonance produce symmetry entangled intermediate states that activate coherent scattering and alter the spectral distribution of the oscillator strength. The scattering amplitudes of the electron and fluorescence decays are further modified by the spin-orbit coupling in the final 5p5ɛl and 5p54f1 states.
The Parity of the Neutral Pion and the Decay pi{sup 0} Yields 2e{sup +} + 2e{sup -}
DOE R&D Accomplishments Database
Samios, N. P.; Plano, R.; Prodell, A.; Schwartz, M.; Steinberger, J.
1962-01-01
Two hundred and six electronic decays of the pi{sup 0}, pi{sup 0} yields e{sup +} + e{sup -} + e{sup +} + e{sup -}, were observed in a hydrogen bubble chamber. The decay distributions of the electron pairs and the total rate for this process are shown to be in good agreement with theory. An examination of correlations of the e{sup +}e{sup -} pair decay planes on the basis of electrodynamic predictions is in agreement with the hypothesis that the pi{sup 0} is pseudoscalar, but disagrees for scalar pions by 3.6 standard deviations. (auth)
Electron impact fragmentation of thymine: partial ionization cross sections for positive fragments
NASA Astrophysics Data System (ADS)
van der Burgt, Peter J. M.; Mahon, Francis; Barrett, Gerard; Gradziel, Marcin L.
2014-06-01
We have measured mass spectra for positive ions for low-energy electron impact on thymine using a reflectron time-of-flight mass spectrometer. Using computer controlled data acquisition, mass spectra have been acquired for electron impact energies up to 100 eV in steps of 0.5 eV. Ion yield curves for most of the fragment ions have been determined by fitting groups of adjacent peaks in the mass spectra with sequences of normalized Gaussians. The ion yield curves have been normalized by comparing the sum of the ion yields to the average of calculated total ionization cross sections. Appearance energies have been determined. The nearly equal appearance energies of 83 u and 55 u observed in the present work strongly indicate that near threshold the 55 u ion is formed directly by the breakage of two bonds in the ring, rather than from a successive loss of HNCO and CO from the parent ion. Likewise 54 u is not formed by CO loss from 82 u. The appearance energies are in a number of cases consistent with the loss of one or more hydrogen atoms from a heavier fragment, but 70 u is not formed by hydrogen loss from 71 u.
The Ehrenfest force field: Topology and consequences for the definition of an atom in a molecule.
Martín Pendás, A; Hernández-Trujillo, J
2012-10-07
The Ehrenfest force is the force acting on the electrons in a molecule due to the presence of the other electrons and the nuclei. There is an associated force field in three-dimensional space that is obtained by the integration of the corresponding Hermitian quantum force operator over the spin coordinates of all of the electrons and the space coordinates of all of the electrons but one. This paper analyzes the topology induced by this vector field and its consequences for the definition of molecular structure and of an atom in a molecule. Its phase portrait reveals: that the nuclei are attractors of the Ehrenfest force, the existence of separatrices yielding a dense partitioning of three-dimensional space into disjoint regions, and field lines connecting the attractors through these separatrices. From the numerical point of view, when the Ehrenfest force field is obtained as minus the divergence of the kinetic stress tensor, the induced topology was found to be highly sensitive to choice of gaussian basis sets at long range. Even the use of large split valence and highly uncontracted basis sets can yield spurious critical points that may alter the number of attraction basins. Nevertheless, at short distances from the nuclei, in general, the partitioning of three-dimensional space with the Ehrenfest force field coincides with that induced by the gradient field of the electron density. However, exceptions are found in molecules where the electron density yields results in conflict with chemical intuition. In these cases, the molecular graphs of the Ehrenfest force field reveal the expected atomic connectivities. This discrepancy between the definition of an atom in a molecule between the two vector fields casts some doubts on the physical meaning of the integration of Ehrenfest forces over the basins of the electron density.
Cao, H.
2015-05-26
We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We also report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0more » to 970 V/cm. For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V/cm. Furthermore, we report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from 83mKr internal conversion electrons is comparable to that from 207Bi conversion electrons, we obtained the numbers of excitons (N ex) and ion pairs (N i) and their ratio (N ex/N i) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.« less
Comparing Benign and Malignant Neoplasia and DSB Induction for Low-and High-LET Radiation
NASA Astrophysics Data System (ADS)
Burns, Fredric; Tang, Moon-Shong Eric; Wu, Feng
One-and 2-stage models based on DNA double strand breaks (DSBs) have been developed to describe the dose and LET dependence of cancer induction in rat skin exposed to the Bragg plateau of several ion beams or electron radiation. Data are presented showing that carcinomas (malignant) and fibromas (benign) are induced differently by low and high LET radiation. DSBs are subject to complex repair processes, including homologous and non-homologous end joining, that slowly eliminate broken chromosome ends but at the expense of elevating genomic instability that increases the risk of neoplasia. In this formulation the initial molecular lesion in radiation carcinogenesis is assumed to be a DNA double strand break (DSB). The 2-event model assumes that pairs of DSBs join to create cellular genomic instability that eventually progresses to malignancy. The 1-event model assumes that joining is insignificant but that unrepaired DSBs remain and are sufficiently destabilizing to produce low-grade neoplasias. The respective expected relationships between neoplasia yield (Y), radiation dose (D) and LET (L) are: Y(D) = CLD + BD2 (A) for 2-events and Y(D) = CLD (B) for 1-event. Respective B and C values have been evaluated empirically for carcinomas, fibromas and DSBs, the latter via the -H2Ax technique in surrogate keratinocytes, for several types of radiations, including, 40Ar ions, 56Fe ions, 20Ne ions, protons, electrons and x-rays. Fibromas outnumber carcinomas by about 6:1 but are more sensitive than carcinomas to the cytolethal effect of the radiations. The 2-event model agrees well with carcinoma yields in rat skin but fails to model fibromas correctly. Instead the fibroma yields best fitted with the 1-event model for the high LET ion radiations, but at very low LET (electron radiation), an empirical D3 component becomes apparent which is not currently incorporated into the theoretical model. At higher LET values, the D3 component was not detected. The overall results are summarized as follows: 1) DSBs predict carcinoma yields in regard to dose and LET in conformity to Equation A, 2) fibroma yields for 40Ar and 20Ne ions conform to Equation B, i.e. yield proportionality to D and L and 3) the positive slope of the fibroma yield to electron radiation is a third order discrepancy suggesting a more complicated response that has yet to be incorporated into the model. The results provide encouragement that once calibrated for humans, a short-term test of DSB yield might be capable of predicting cancer risks for a variety of space radiation exposure scenarios.
Limitations in cooling electrons using normal-metal-superconductor tunnel junctions.
Pekola, J P; Heikkilä, T T; Savin, A M; Flyktman, J T; Giazotto, F; Hekking, F W J
2004-02-06
We demonstrate both theoretically and experimentally two limiting factors in cooling electrons using biased tunnel junctions to extract heat from a normal metal into a superconductor. First, when the injection rate of electrons exceeds the internal relaxation rate in the metal to be cooled, the electrons do not obey the Fermi-Dirac distribution, and the concept of temperature cannot be applied as such. Second, at low bath temperatures, states within the gap induce anomalous heating and yield a theoretical limit of the achievable minimum temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skalyga, V.; Sidorov, A.; Lobachevsky State University of Nizhny Novgorod
2015-09-07
In present paper, an approach for high yield compact D-D neutron generator based on a high current gasdynamic electron cyclotron resonance ion source is suggested. Results on dense pulsed deuteron beam production with current up to 500 mA and current density up to 750 mA/cm{sup 2} are demonstrated. Neutron yield from D{sub 2}O and TiD{sub 2} targets was measured in case of its bombardment by pulsed 300 mA D{sup +} beam with 45 keV energy. Neutron yield density at target surface of 10{sup 9} s{sup −1} cm{sup −2} was detected with a system of two {sup 3}He proportional counters. Estimations based on obtained experimental resultsmore » show that neutron yield from a high quality TiD{sub 2} target bombarded by D{sup +} beam demonstrated in present work accelerated to 100 keV could reach 6 × 10{sup 10} s{sup −1} cm{sup −2}. It is discussed that compact neutron generator with such characteristics could be perspective for a number of applications like boron neutron capture therapy, security systems based on neutron scanning, and neutronography.« less
Cryoradiolytic reduction of heme proteins: Maximizing dose-dependent yield
NASA Astrophysics Data System (ADS)
Denisov, Ilia G.; Victoria, Doreen C.; Sligar, Stephen G.
2007-04-01
Radiolytic reduction in frozen solutions and crystals is a useful method for generation of trapped intermediates in protein-based radical reactions. In this communication we define the conditions which provide the maximum yield of one electron-reduced myoglobin at 77 K using 60Co γ-irradiation in aqueous glycerol glass. The yield reached 50% after 20 kGy, was almost complete at ˜160 kGy total dose, and does not depend on the protein concentration in the range 0.01-5 mM.
Process Redesign of the Norwegian Navy Materiel Command’s Replenishment of Inventory Items
1997-12-01
procurement offices into one. The second proposal is to introduce, and use electronic commerce in the replenishment process. It is concluded that both...redesign proposals will reduce administrative lead-time, variability and hence cost. Benefits from an introduction of electronic commerce will yield a yearly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mieno, H.; Kabe, R.; Allendorf, M. D.
Here, the first metal–organic framework exhibiting thermally activated delayed fluorescence (TADF) was developed. The zirconium-based framework (UiO-68-dpa) uses a newly designed linker composed of a terphenyl backbone, an electron-accepting carboxyl group, and an electron-donating diphenylamine and exhibits green TADF emission with a photoluminescence quantum yield of 30% and high thermal stability.
Neon in ultrashort and intense x-rays from free electron lasers
NASA Astrophysics Data System (ADS)
Buth, Christian; Beerwerth, Randolf; Obaid, Razib; Berrah, Nora; Cederbaum, Lorenz S.; Fritzsche, Stephan
2018-03-01
We theoretically examine neon atoms in ultrashort and intense x-rays from free electron lasers and compare our results with data from experiments conducted at the Linac Coherent Light Source. For this purpose, we treat in detail the electronic structure in all possible nonrelativistic cationic configurations using a relativistic multiconfiguration approach. The interaction with the x-rays is described in rate-equation approximation. To understand the mechanisms of the interaction, a path analysis is devised which allows us to investigate what sequences of photoionization and decay processes lead to a specific configuration and with what probability. Thereby, we uncover a connection to the mathematics of graph theory and formal languages. In detail, we study the ion yields and find that plain rate equations do not provide a satisfactory description. We need to extend the rate equations for neon to incorporate double Auger decay of a K-shell vacancy and photoionization shake off for neutral neon. Shake off is included for valence and core ionization; the former has hitherto been overlooked but has important consequences for the ion yields from an x-ray energy below the core ionization threshold. Furthermore, we predict the photon yields from XUV and x-ray fluorescence these allow one insights into the configurations populated by the interaction with the x-rays. Finally, we discover that inaccuracies in those Auger decay widths employed in previous studies have only a minor influence on ion and photon yields.
Maina, James W; Schütz, Jürg A; Grundy, Luke; Des Ligneris, Elise; Yi, Zhifeng; Kong, Lingxue; Pozo-Gonzalo, Cristina; Ionescu, Mihail; Dumée, Ludovic F
2017-10-11
Photocatalytic conversion of carbon dioxide (CO 2 ) to useful products has potential to address the adverse environmental impact of global warming. However, most photocatalysts used to date exhibit limited catalytic performance, due to poor CO 2 adsorption capacity, inability to efficiently generate photoexcited electrons, and/or poor transfer of the photogenerated electrons to CO 2 molecules adsorbed on the catalyst surface. The integration of inorganic semiconductor nanoparticles across metal organic framework (MOF) materials has potential to yield new hybrid materials, combining the high CO 2 adsorption capacity of MOF and the ability of the semiconductor nanoparticles to generate photoexcited electrons. Herein, controlled encapsulation of TiO 2 and Cu-TiO 2 nanoparticles within zeolitic imidazolate framework (ZIF-8) membranes was successfully accomplished, using rapid thermal deposition (RTD), and their photocatalytic efficiency toward CO 2 conversion was investigated under UV irradiation. Methanol and carbon monoxide (CO) were found to be the only products of the CO 2 reduction, with yields strongly dependent upon the content and composition of the dopant semiconductor particles. CuTiO 2 nanoparticle doped membranes exhibited the best photocatalytic performance, with 7 μg of the semiconductor nanoparticle enhancing CO yield of the pristine ZIF-8 membrane by 233%, and methanol yield by 70%. This work opens new routes for the fabrication of hybrid membranes containing inorganic nanoparticles and MOFs, with potential application not only in catalysis but also in electrochemical, separation, and sensing applications.
NASA Technical Reports Server (NTRS)
Tankosic, D.; Abbas, M. M.
2013-01-01
The dust charging by electron impact is an important dust charging process in Astrophysical, Planetary, and the Lunar environments. Low energy electrons are reflected or stick to the grains charging the dust grains negatively. At sufficiently high energies electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Available theoretical models for the calculation of SEE yield applicable for neutral, planar or bulk surfaces are generally based on Sternglass Equation. However, viable models for charging of individual dust grains do not exist at the present time. Therefore, the SEE yields have to be obtained by some experimental methods at the present time. We have conducted experimental studies on charging of individual micron size dust grains in simulated space environments using an electrodynamic balance (EDB) facility at NASA-MSFC. The results of our extensive laboratory study of charging of individual micron-size dust grains by low energy electron impact indicate that the SEE by electron impact is a very complex process expected to be substantially different from the bulk materials. It was found that the incident electrons may lead to positive or negative charging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration. In this paper we give a more elaborate discussion about the possible effects of the AC field in the EDB on dust charging measurements by comparing the secondary electron emission time-period (tau (sub em) (s/e)) with the time-period (tau (sub ac) (ms)) of the AC field cycle in the EDB that we have briefly addressed in our previous publication.
Ogawa, Takako; Sonoike, Kintake
2016-03-01
Estimation of photosynthesis by Chl fluorescence measurement of cyanobacteria is always problematic due to the interference from respiratory electron transfer and from phycocyanin fluorescence. The interference from respiratory electron transfer could be avoided by the use of DCMU or background illumination by blue light, which oxidizes the plastoquinone pool that tends to be reduced by respiration. On the other hand, the precise estimation of photosynthesis in cells with a different phycobilisome content by Chl fluorescence measurement is difficult. By subtracting the basal fluorescence due to the phycobilisome and PSI, it becomes possible to estimate the precise maximum quantum yield of PSII in cyanobacteria. Estimated basal fluorescence accounted for 60% of the minimum fluorescence, resulting in a large difference between the 'apparent' yield and 'true' yield under high phycocyanin conditions. The calculated value of the 'true' maximum quantum yield of PSII was around 0.8, which was similar to the value observed in land plants. The results suggest that the cause of the apparent low yield reported in cyanobacteria is mainly ascribed to the interference from phycocyanin fluorescence. We also found that the 'true' maximum quantum yield of PSII decreased under nitrogen-deficient conditions, suggesting the impairment of the PSII reaction center, while the 'apparent' maximum quantum yield showed a marginal change under the same conditions. Due to the high contribution of phycocyanin fluorescence in cyanobacteria, it is essential to eliminate the influence of the change in phycocyanin content on Chl fluorescence measurement and to evaluate the 'true' photosynthetic condition. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Curren, A. N.; Jensen, K. A.
1985-01-01
Experimentally determined values of true secondary electron emission and relative values of reflected primary electron yield for a range of primary electron beam energies and beam impingement angles are presented for a series of novel textured carbon surfaces on copper substrates. (All copper surfaces used in this study were oxygen-free, high-conductivity grade). The purpose of this investigation is to provide information necessary to develop high-efficiency multistage depressed collectors (MDC's) for microwave amplifier traveling-wave tubes (TWT's) for communications and aircraft applications. To attain the highest TWT signal quality and overall efficiency, the MDC electrode surface must have low secondary electron emission characteristics. While copper is the material most commonly used for MDC electrodes, it exhibits relatively high levels of secondary electron emission unless its surface is treated for emission control. The textured carbon surface on copper substrate described in this report is a particularly promising candidate for the MDC electrode application. Samples of textured carbon surfaces on copper substrates typical of three different levels of treatment are prepared and tested for this study. The materials are tested at primary electron beam energies of 200 to 2000 eV and at direct (0 deg) to near-grazing (85 deg) beam impingement angles. True secondary electron emission and relative reflected primary electron yield characteristics of the textured surfaces are compared with each other and with those of untreated copper. All the textured carbon surfaces on copper substrate tested exhibited sharply lower secondary electron emission characteristics than those of an untreated copper surface.
Threshold law for electron-atom impact ionization
NASA Technical Reports Server (NTRS)
Temkin, A.
1982-01-01
A derivation of the explicit form of the threshold law for electron impact ionization of atoms is presented, based on the Coulomb-dipole theory. The important generalization is made of using a dipole function whose moment is the dipole moment formed by an inner electron and the nucleus. The result is a modulated quasi-linear law for the yield of positive ions which applies to positron-atom impact ionization.
Electron induced dissociation in condensed-phase nitromethane I: desorption of ionic fragments.
Bazin, Marc; Ptasińska, Sylwia; Bass, Andrew D; Sanche, Léon
2009-03-14
Low energy electron induced dissociation of condensed nitromethane was investigated by measuring the electron stimulated desorption of anions and cations from multilayer films of CH(3)NO(2) and CD(3)NO(2), using a recently constructed, high sensitivity time of flight mass spectrometer. The desorbed yields were measured as a function of incident electron energy in the range between 1 to 20 eV and as function of coverage on Pt and Xe substrates. In anion desorption experiments, the following ions were observed: H(-) (D(-)), O(-), OH(-) (OD(-)), CN(-), NCO(-), NO(2)(-), CHNO(2)(-) (CDNO(2)(-)), CH(2)NO(2)(-) (CD(2)NO(2)(-)). Resonant structure seen in all anion yield functions, is attributed to dissociative electron attachment (DEA), though certain anion signals [e.g., OH(-) (OD(-)) and CH(2)NO(2)(-) (CD(2)NO(2)(-))] are likely the result of reactive scattering by O(-) ions. The dominant desorbed cation signals are CD(3)(+) and NO(+), and the appearance potentials of these species were measured to be 12.2 and 11.5 eV, respectively. The present measurements provide information on how the electron-induced dissociation processes of this proto-typical explosive molecule are modulated by the condensed environment and on how initial dissociation events occurring on a particular molecule, may induce further dissociation.
Benchmarking Attosecond Physics with Atomic Hydrogen
2015-05-25
theoretical simulations are available in this regime. We provided accurate reference data on the photoionization yield and the CEP-dependent...this difficulty. This experiment claimed to show that, contrary to current understanding, the photoionization of an atomic electron is not an... photoion yield and transferrable intensity calibration. The dependence of photoionization probability on laser intensity is one of the most
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verkhoturov, Stanislav V.; Geng, Sheng; Schweikert, Emile A., E-mail: schweikert@chem.tamu.edu
We present the first data from individual C{sub 60} impacting one to four layer graphene at 25 and 50 keV. Negative secondary ions and electrons emitted in transmission were recorded separately from each impact. The yields for C{sub n}{sup −} clusters are above 10% for n ≤ 4, they oscillate with electron affinities and decrease exponentially with n. The result can be explained with the aid of MD simulation as a post-collision process where sufficient vibrational energy is accumulated around the rim of the impact hole for sputtering of carbon clusters. The ionization probability can be estimated by comparing experimentalmore » yields of C{sub n}{sup −} with those of C{sub n}{sup 0} from MD simulation, where it increases exponentially with n. The ionization probability can be approximated with ejecta from a thermally excited (3700 K) rim damped by cluster fragmentation and electron detachment. The experimental electron probability distributions are Poisson-like. On average, three electrons of thermal energies are emitted per impact. The thermal excitation model invoked for C{sub n}{sup −} emission can also explain the emission of electrons. The interaction of C{sub 60} with graphene is fundamentally different from impacts on 3D targets. A key characteristic is the high degree of ionization of the ejecta.« less
Characterization and Reactivity of a Terminal Nickel(III)-Oxygen Adduct
Pirovano, Paolo; Farquhar, Erik R.; Swart, Marcel; Fitzpatrick, Anthony J.; Morgan, Grace G.; McDonald, Aidan R.
2015-01-01
High-valent terminal metal-oxygen adducts are hypothesized to be the potent oxidising reactants in late transition metal oxidation catalysis. In particular, examples of high-valent terminal nickel-oxygen adducts are sparse, meaning there is a dearth in the understanding of such oxidants. In this study, a monoanionic NiII-bicarbonate complex was found to react in a 1:1 ratio with the one-electron oxidant tris(4-bromophenyl)ammoniumyl hexachloroantimonate, yielding a thermally unstable intermediate in high yield (~95%). Electronic absorption, electronic paramagnetic resonance and X-ray absorption spectroscopies and density functional theory calculations confirm its description as a low-spin (S = ½), square planar NiIII-oxygen adduct. This rare example of a high-valent terminal nickel-oxygen complex performs oxidations of organic substrates, including 2,6-ditertbutylphenol and triphenylphosphine, which are indicative of hydrogen atom abstraction and oxygen atom transfer reactivity, respectively. PMID:25612563
NASA Astrophysics Data System (ADS)
Vlassov, Sergei; Polyakov, Boris; Vahtrus, Mikk; Mets, Magnus; Antsov, Mikk; Oras, Sven; Tarre, Aivar; Arroval, Tõnis; Lõhmus, Rünno; Aarik, Jaan
2017-12-01
The proper choice of coating materials and methods in core-shell nanowire (NW) engineering is crucial to assuring improved characteristics or even new functionalities of the resulting composite structures. In this paper, we have reported electron-beam-induced reversible elastic-to-plastic transition in Ag/Al2O3 and Au/Al2O3 NWs prepared by the coating of Ag and Au NWs with Al2O3 by low-temperature atomic layer deposition. The observed phenomenon enabled freezing the bent core-shell NW at any arbitrary curvature below the yield strength of the materials and later restoring its initially straight profile by irradiating the NW with electrons. In addition, we demonstrated that the coating efficiently protects the core material from fracture and plastic yield, allowing it to withstand significantly higher deformations and stresses in comparison to uncoated NW.
NASA Astrophysics Data System (ADS)
Ionin, Andrey; Ivanova, Anastasia; Khmel'nitskii, Roman; Klevkov, Yury; Kudryashov, Sergey; Mel'nik, Nikolay; Nastulyavichus, Alena; Rudenko, Andrey; Saraeva, Irina; Smirnov, Nikita; Zayarny, Dmitry; Baranov, Anatoly; Kirilenko, Demid; Brunkov, Pavel; Shakhmin, Alexander
2018-04-01
Milligram-per-second production of selenium nanoparticles in water sols was realized through 7-W, 2 MHz-rate femtosecond laser ablation of a crystalline trigonal selenium pellet. High-yield particle formation mechanism and ultimate mass-removal yield were elucidated by optical profilometry and scanning electron microscopy characterization of the corresponding crater depths and topographies. Deposited selenium particles were inspected by scanning and transmission electron microscopy, while their hydrosols (nanoinks) were characterized by optical transmission, Raman and dynamic light scattering spectroscopy. 2D patterns and coatings were ink-jet printed on thin supported silver films and their bare silica glass substrates, as well as on IR-transparent CaF2 substrates, and characterized by electron microscopy, energy-dispersive x-ray spectroscopy, and broadband (vis-mid IR) transmission spectroscopy, exhibiting crystalline selenium nanoparticles with high refractive index as promising all-dielectric sensing building nanoblocks in nanophotonics.
Electron crystallography of PhoE porin, an outer membrane, channel- forming protein from E. coli
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walian, P.J.
1989-11-01
One approach to studying the structure of membrane proteins is the use of electron crystallography. Dr. Bing Jap has crystallized PhoE pore-forming protein (porin) from the outer membrane of escherichia coli (E. coli) into monolayer crystals. The findings of this research and those of Jap (1988, 1989) have determined these crystals to be highly ordered, yielding structural information to a resolution of better than 2.8 angstroms. The task of this thesis has been to collect and process the electron diffraction patterns necessary to generate a complete three-dimensional set of high resolution structure factor amplitudes of PhoE porin. Fourier processing ofmore » these amplitudes when combined with the corresponding phase data is expected to yield the three-dimensional structure of PhoE porin at better than 3.5 angstroms resolution. 92 refs., 33 figs., 3 tabs. (CBS)« less
Gupta, Ravindra Kumar; Achalkumar, Ammathnadu Sudhakar
2018-05-18
A high yielding microwave-assisted synthetic method to obtain unsymmetrical perylene diester monoimide (PEI), by treating the perylene tetrester (PTE) with requisite amine is reported. Perylene-based molecules are widely used in the construction of self-assembled supramolecular structures because of their propensity to aggregate under various conditions. In comparison to perylene bisimides (PBIs), PEIs are less studied in organic electronics/self-assembly due to the synthetic difficulty and low yields in their preparation. PEIs are less electron deficient and have an unsymmetric structure in comparison to PBIs. Further, the PEIs got higher solubility than PBIs. The present method is applicable with a wide range of substrates like aliphatic, aromatic, benzyl amines, PTEs and bay-annulated PTEs. This method provides a tuning handle for the optical/electronic properties of perylene derivatives and also provides an easy access to unsymmetrical PBIs from the PEIs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vahtrus, Mikk; Šutka, Andris; Institute of Silicate Materials, Riga Technical University, P. Valdena 3/7, Riga LV-1048
2015-02-15
In this work TiO{sub 2} nanofibers produced by needle and needleless electrospinning processes from the same precursor were characterized and compared using Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and in situ SEM nanomechanical testing. Phase composition, morphology, Young's modulus and bending strength values were found. Weibull statistics was used to evaluate and compare uniformity of mechanical properties of nanofibers produced by two different methods. It is shown that both methods yield nanofibers with very similar properties. - Graphical abstract: Display Omitted - Highlights: • TiO{sub 2} nanofibers were produced by needle and needleless electrospinning processes. •more » Structure was studied by Raman spectroscopy and electron microscopy methods. • Mechanical properties were measured using advanced in situ SEM cantilevered beam bending technique. • Both methods yield nanofibers with very similar properties.« less
Carra, Claudio; Nussbaum, Rafael; Bally, Thomas
2006-06-12
2,6-Difluorophenylnitrene was reinvestigated both experimentally, in Ar matrices at 10 K, and computationally, by DFT and CASSCF/CASPT2 calculations. Almost-pure samples of both neutral rearrangement products (the bicyclic azirine and the cyclic ketenimine) of a phenylnitrene were prepared and characterized for the first time. These samples were then subjected to X-irradiation in the presence of CH2Cl2 as an electron scavenger, which led to ionization of the neutral intermediates. Thereby, it was shown that only the phenylnitrene and the cyclic ketenimine yield stable radical cations, whereas the bicyclic azirine decays to both of these compounds on ionization. The cyclic ketenimine yields a novel aromatic azatropylium-type radical cation. The electronic structure of the title compound is discussed in detail, and its relation to those of the iso-pi-electronic benzyl radical and phenylcarbene is traced.
Characterization and Reactivity of a Terminal Nickel(III)-Oxygen Adduct
Pirovano, Paolo; Farquhar, Erik R.; Swart, Marcel; ...
2015-01-22
Here, high-valent terminal metal–oxygen adducts are hypothesized to be the potent oxidizing reactants in late transition metal oxidation catalysis. In particular, examples of high-valent terminal nickel–oxygen adducts are scarce, meaning there is a dearth in the understanding of such oxidants. A monoanionic Ni II-bicarbonate complex has been found to react in a 1:1 ratio with the one-electron oxidant tris(4-bromophenyl)ammoniumyl hexachloroantimonate, yielding a thermally unstable intermediate in high yield (ca. 95%). Electronic absorption, electronic paramagnetic resonance, and X-ray absorption spectroscopies and density functional theory calculations confirm its description as a low-spin (S=1/2), square planar Ni III–oxygen adduct. Moreover, this rare examplemore » of a high-valent terminal nickel–oxygen complex performs oxidations of organic substrates, including 2,6-di-tert-butylphenol and triphenylphosphine, which are indicative of hydrogen atom abstraction and oxygen atom transfer reactivity, respectively.« less
A redox beginning: Which came first phosphoryl, acyl, or electron transfer ?. [Abstract only
NASA Technical Reports Server (NTRS)
Weber, Arthur L.
1994-01-01
Thermodynamic and kinetic information available on the synthesis of prebiotic monomers and polymers will be examined in order to illuminate the prebiotic plausibility of polymer syntheses based on (a) phosphoryl transfer that yields phosphodiester polymers, (b) acyl transfer that gives polyamides, and (c) electron transfer that produces polydisulfide or poly(thio)ester polymers. New experimental results on the oxidative polymerization of 2,3-dimercaptopropanol by ferric ions on the surface of ferric hydroxide oxide will be discussed as a chemical model of polymerization by electron transfer. This redox polymerization that yields polymers with a polydisulfide backbone was found to give oligomers up to the 15-mer from 1 mM of 2,3-dimercaptopropanol after one day at 25 C. High pressure liquid chromatography (HPLC) analysis of the oligomers was carried out on an Alltech OH-100 column eluted with acetonitrile-water.
Instrumentation for Studies of Electron Emission and Charging From Insulators
NASA Technical Reports Server (NTRS)
Thomson, C. D.; Zavyalov, V.; Dennison, J. R.
2004-01-01
Making measurements of electron emission properties of insulators is difficult since insulators can charge either negatively or positively under charge particle bombardment. In addition, high incident energies or high fluences can result in modification of a material s conductivity, bulk and surface charge profile, structural makeup through bond breaking and defect creation, and emission properties. We discuss here some of the charging difficulties associated with making insulator-yield measurements and review the methods used in previous studies of electron emission from insulators. We present work undertaken by our group to make consistent and accurate measurements of the electron/ion yield properties for numerous thin-film and thick insulator materials using innovative instrumentation and techniques. We also summarize some of the necessary instrumentation developed for this purpose including fast response, low-noise, high-sensitivity ammeters; signal isolation and interface to standard computer data acquisition apparatus using opto-isolation, sample-and-hold, and boxcar integration techniques; computer control, automation and timing using Labview software; a multiple sample carousel; a pulsed, compact, low-energy, charge neutralization electron flood gun; and pulsed visible and UV light neutralization sources. This work is supported through funding from the NASA Space Environments and Effects Program and the NASA Graduate Research Fellowship Program.
Atomic and electronic basis for the serrations of refractory high-entropy alloys
NASA Astrophysics Data System (ADS)
Wang, William Yi; Shang, Shun Li; Wang, Yi; Han, Fengbo; Darling, Kristopher A.; Wu, Yidong; Xie, Xie; Senkov, Oleg N.; Li, Jinshan; Hui, Xi Dong; Dahmen, Karin A.; Liaw, Peter K.; Kecskes, Laszlo J.; Liu, Zi-Kui
2017-06-01
Refractory high-entropy alloys present attractive mechanical properties, i.e., high yield strength and fracture toughness, making them potential candidates for structural applications. Understandings of atomic and electronic interactions are important to reveal the origins for the formation of high-entropy alloys and their structure-dominated mechanical properties, thus enabling the development of a predictive approach for rapidly designing advanced materials. Here, we report the atomic and electronic basis for the valence-electron-concentration-categorized principles and the observed serration behavior in high-entropy alloys and high-entropy metallic glass, including MoNbTaW, MoNbVW, MoTaVW, HfNbTiZr, and Vitreloy-1 MG (Zr41Ti14Cu12.5Ni10Be22.5). We find that the yield strengths of high-entropy alloys and high-entropy metallic glass are a power-law function of the electron-work function, which is dominated by local atomic arrangements. Further, a reliance on the bonding-charge density provides a groundbreaking insight into the nature of loosely bonded spots in materials. The presence of strongly bonded clusters and weakly bonded glue atoms imply a serrated deformation of high-entropy alloys, resulting in intermittent avalanches of defects movement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Matthew A.; Redondo, Amaia Beloqui; Duyckaerts, Nicolas
A new liquid microjet endstation designed for ultraviolet (UPS) and X-ray (XPS) photoelectron, and partial electron yield X-ray absorption (XAS) spectroscopies at the Swiss Light Source is presented. The new endstation, which is based on a Scienta HiPP-2 R4000 electron spectrometer, is the first liquid microjet endstation capable of operating in vacuum and in ambient pressures up to the equilibrium vapor pressure of liquid water at room temperature. In addition, the Scienta HiPP-2 R4000 energy analyzer of this new endstation allows for XPS measurements up to 7000 eV electron kinetic energy that will enable electronic structure measurements of bulk solutionsmore » and buried interfaces from liquid microjet samples. The endstation is designed to operate at the soft X-ray SIM beamline and at the tender X-ray Phoenix beamline. The endstation can also be operated using a Scienta 5 K ultraviolet helium lamp for dedicated UPS measurements at the vapor-liquid interface using either He I or He II α lines. The design concept, first results from UPS, soft X-ray XPS, and partial electron yield XAS measurements, and an outlook to the potential of this endstation are presented.« less
Schryvers, D; Cao, S; Tirry, W; Idrissi, H; Van Aert, S
2013-01-01
After a short review of electron tomography techniques for materials science, this overview will cover some recent results on different shape memory and nanostructured metallic systems obtained by various three-dimensional (3D) electron imaging techniques. In binary Ni–Ti, the 3D morphology and distribution of Ni4Ti3 precipitates are investigated by using FIB/SEM slice-and-view yielding 3D data stacks. Different quantification techniques will be presented including the principal ellipsoid for a given precipitate, shape classification following a Zingg scheme, particle distribution function, distance transform and water penetration. The latter is a novel approach to quantifying the expected matrix transformation in between the precipitates. The different samples investigated include a single crystal annealed with and without compression yielding layered and autocatalytic precipitation, respectively, and a polycrystal revealing different densities and sizes of the precipitates resulting in a multistage transformation process. Electron tomography was used to understand the interaction between focused ion beam-induced Frank loops and long dislocation structures in nanobeams of Al exhibiting special mechanical behaviour measured by on-chip deposition. Atomic resolution electron tomography is demonstrated on Ag nanoparticles in an Al matrix. PMID:27877554
NASA Astrophysics Data System (ADS)
Stapelmann, Katharina; Fiebrandt, Marcel; Styrnoll, Tim; Baldus, Sabrina; Bibinov, Nikita; Awakowicz, Peter
2015-06-01
A capacitively coupled plasma driven at a frequency of 81.36 MHz from the VHF-band is investigated by means of optical emission spectroscopy (OES) and multipole resonance probe (MRP). The discharge is operated with hydrogen, yielding an electropositive discharge, as well as oxygen, yielding an electronegative discharge, and mixtures of both. Pressure is varied from p=5 Pa to p=25 Pa. Homogeneity of the discharge is investigated by CCD camera recordings as well as spatially resolved multipole resonance probe measurements. The results indicate the presence of electromagnetic edge effects as well as standing wave effects. Furthermore, a largely homogeneous discharge can be achieved with hydrogen as process gas at a pressure of p=5 -10 Pa. With increasing pressure as well as with increasing oxygen content, the discharge appears less homogeneously. The transition from an electropositive to an electronegative discharge leads to a change in electron heating mechanisms, with pronounced local maxima of electron density at the sheath edges. A comparison of OES and MRP results reveal a significant difference in electron density, which can be explained by a non-Maxwellian distribution function of electrons.
Kinetic Monte Carlo simulations of excitation density dependent scintillation in CsI and CsI(Tl)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhiguo; Williams, Richard; Grim, Joel
2013-08-15
Nonlinear quenching of electron-hole pairs in the denser regions of ionization tracks created by γ-ray and high-energy electrons is a likely cause of the light yield nonproportionality of many inorganic scintillators. Therefore, kinetic Monte Carlo (KMC) simulations were carried out to investigate the scintillation properties of pure and thallium-doped CsI as a function of electron-hole pair density. The availability of recent experimental data on the excitation density dependence of the light yield of CsI following ultraviolet excitation allowed for an improved parameterization of the interactions between self-trapped excitons (STE) in the KMC model via dipole-dipole Förster transfer. The KMC simulationsmore » reveal that nonlinear quenching occurs very rapidly (within a few picoseconds) in the early stages of the scintillation process. In addition, the simulations predict that the concentration of thallium activators can affect the extent of nonlinear quenching as it has a direct influence on the STE density through STE dissociation and electron scavenging. This improved model will enable more realistic simulations of the nonproportional γ-ray and electron response of inorganic scintillators.« less
Polska, Katarzyna; Rak, Janusz; Bass, Andrew D.; Cloutier, Pierre; Sanche, Léon
2013-01-01
We measured the low energy electron stimulated desorption (ESD) of anions from thin films of native (TXT) and bromine monosubstituted (TBrXT) oligonucleotide trimers deposited on a gold surface (T = thymidine, X = T, deoxycytidine (C), deoxyadenosine (A) or deoxyguanosine (G), Br = bromine). The desorption of H−, CH3−/NH−, O−/NH2−, OH−, CN−, and Br− was induced by 0 to 20 eV electrons. Dissociative electron attachment, below 12 eV, and dipolar dissociation, above 12 eV, are responsible for the formation of these anions. The comparison of the results obtained for the native and brominated trimers suggests that the main pathways of TBrXT degradation correspond to the release of the hydride and bromide anions. Significantly, the presence of bromine in oligonucleotide trimers blocks the electron-induced degradation of nuclobases as evidenced by a dramatic decrease in CN− desorption. An increase in the yields of OH− is also observed. The debromination yield of particular oligonucleotides diminishes in the following order: BrdU > BrdA > BrdG > BrdC. Based on these results, 5-bromo-2′-deoxyuridine appears to be the best radiosensitizer among the studied bromonucleosides. PMID:22360262
Polska, Katarzyna; Rak, Janusz; Bass, Andrew D; Cloutier, Pierre; Sanche, Léon
2012-02-21
We measured the low energy electron stimulated desorption (ESD) of anions from thin films of native (TXT) and bromine monosubstituted (TBrXT) oligonucleotide trimers deposited on a gold surface (T = thymidine, X = T, deoxycytidine (C), deoxyadenosine (A) or deoxyguanosine (G), Br = bromine). The desorption of H(-), CH(3)(-)/NH(-), O(-)/NH(2)(-), OH(-), CN(-), and Br(-) was induced by 0 to 20 eV electrons. Dissociative electron attachment, below 12 eV, and dipolar dissociation, above 12 eV, are responsible for the formation of these anions. The comparison of the results obtained for the native and brominated trimers suggests that the main pathways of TBrXT degradation correspond to the release of the hydride and bromide anions. Significantly, the presence of bromine in oligonucleotide trimers blocks the electron-induced degradation of nuclobases as evidenced by a dramatic decrease in CN(-) desorption. An increase in the yields of OH(-) is also observed. The debromination yield of particular oligonucleotides diminishes in the following order: BrdU > BrdA > BrdG > BrdC. Based on these results, 5-bromo-2(')-deoxyuridine appears to be the best radiosensitizer among the studied bromonucleosides. © 2012 American Institute of Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmeri, P., E-mail: patrick.palmeri@umons.ac.be; Quinet, P., E-mail: pascal.quinet@umons.ac.be; IPNAS, Université de Liège, B-4000 Liège
2015-09-15
The K-shell electron impact ionization (EII) cross section, along with the K-shell fluorescence yield, is one of the key atomic parameters for fast-electron diagnostic in laser–solid experiments through the K-shell emission cross section. In addition, in a campaign dedicated to the modeling of the K lines of astrophysical interest (Palmeri et al. (2012)), the K-shell fluorescence yields for the K-vacancy fine-structure atomic levels of all the vanadium isonuclear ions have been calculated. In this study, the K-shell EII cross sections connecting the ground and the metastable levels of the parent vanadium ions to the daughter ions K-vacancy levels considered in Palmerimore » et al. (2012) have been determined. The relativistic distorted-wave (DW) approximation implemented in the FAC atomic code has been used for the incident electron kinetic energies up to 20 times the K-shell threshold energies. Moreover, the resulting DW cross sections have been extrapolated at higher energies using the asymptotic behavior of the modified relativistic binary encounter Bethe model (MRBEB) of Guerra et al. (2012) with the density-effect correction proposed by Davies et al. (2013)« less
NASA Astrophysics Data System (ADS)
Polska, Katarzyna; Rak, Janusz; Bass, Andrew D.; Cloutier, Pierre; Sanche, Léon
2012-02-01
We measured the low energy electron stimulated desorption (ESD) of anions from thin films of native (TXT) and bromine monosubstituted (TBrXT) oligonucleotide trimers deposited on a gold surface (T = thymidine, X = T, deoxycytidine (C), deoxyadenosine (A) or deoxyguanosine (G), Br = bromine). The desorption of H-, CH3-/NH-, O-/NH2-, OH-, CN-, and Br- was induced by 0 to 20 eV electrons. Dissociative electron attachment, below 12 eV, and dipolar dissociation, above 12 eV, are responsible for the formation of these anions. The comparison of the results obtained for the native and brominated trimers suggests that the main pathways of TBrXT degradation correspond to the release of the hydride and bromide anions. Significantly, the presence of bromine in oligonucleotide trimers blocks the electron-induced degradation of nuclobases as evidenced by a dramatic decrease in CN- desorption. An increase in the yields of OH- is also observed. The debromination yield of particular oligonucleotides diminishes in the following order: BrdU > BrdA > BrdG > BrdC. Based on these results, 5-bromo-2'-deoxyuridine appears to be the best radiosensitizer among the studied bromonucleosides.
Laboratory plasma with cold electron temperature of the lower ionosphere
NASA Astrophysics Data System (ADS)
Dickson, Shannon; Robertson, Scott
2009-10-01
For the first time, plasma with cold electron temperatures less than 300K has been created continuously in the laboratory. The plasma is created in a cylindrical double-walled vacuum chamber in which the inner chamber (18cm in diameter and 30cm long) is wrapped in copper tubing through which vapor from liquid nitrogen flows, providing a cooling mechanism for the neutral gas. The inner chamber has two negatively-biased filaments for plasma generation and a platinum wire Langmuir probe for diagnostic measurements. Neutral gas pressures of 1.6mTorr and a total filament emission current of 2mA are used to obtain plasma densities near 4 x 10^8 cm-3. When carbon monoxide is used as the working gas, decreasing the neutral gas temperature also decreases the cold electron temperatures, yielding cold electrons with 21meV (240K) when the neutral CO is at 150K. The same experiment conducted with H2, He, or Ar results in a doubling of the cold electron temperatures, yielding 80meV (930K) when the neutral gas is at 150K. The lower electron temperature with CO is attributed to the asymmetric CO molecule having a nonzero electric dipole moment which increases the cross section for electron energy exchange. Nitric oxide, a dominant constituent of the ionosphere, has a similar dipole moment and collision cross section as carbon monoxide and is likely to be equally effective at cooling electrons.
NASA Astrophysics Data System (ADS)
Chauhan, A.; Bergner, F.; Etienne, A.; Aktaa, J.; de Carlan, Y.; Heintze, C.; Litvinov, D.; Hernandez-Mayoral, M.; Oñorbe, E.; Radiguet, B.; Ulbricht, A.
2017-11-01
The collaborative study is focused on the relationship between microstructure and yield stress for an ODS Fe-9%Cr-based transformable alloy and an ODS Fe-14%Cr-based ferritic alloy. The contributions to the total room temperature yield stress arising from various strengthening mechanisms are addressed on the basis of a comprehensive description of the microstructures uncovered by means of transmission electron microscopy (TEM), electron backscatter diffraction (EBSD), small-angle neutron scattering (SANS) and atom probe tomography (APT). While these methods provide a high degree of complementarity, a reasonable agreement was found in cases of overlap of information. The derived set of microstructure parameters along with reported strengthening equations was used to calculate the room temperature yield stress. The estimates were critically compared with the measured yield stress for an extended set of alloys including data reported for Fe-Cr model alloys and steels thus covering one order of magnitude or more in grain size, dislocation density, particle density and yield stress. The comparison shows that particle strengthening, dislocation forest strengthening, and Hall-Petch strengthening are the major contributions and that a mixed superposition rule reproduces the measured yield stress within experimental scatter for the whole extended set of alloys. The wide variation of microstructures additionally underpins the conclusions and goes beyond previous work, in which one or few ODS steels and narrow microstructure variations were typically covered.
NASA Astrophysics Data System (ADS)
Kim, Su Chol; Yamaguchi, Satoru; Kataoka, Yoshihide; Iwami, Motohiro; Hiraki, Akio; Satou, Mamoru; Fujimoto, Fuminori
1982-01-01
Sputtering yields of Si and Ni from thin layer films of Ni-Si compounds (Ni1-xSix), including the pure materials (Ni and Si), caused by 5 keV Ar+ ion bombardment were investigated using backscattering spectrometry. The sputtering yield for Si from Ni1-xSix increased with increasing Si concentration. However, there is an abrupt decrease in the yield for Si concentrations above NiSi2 to pure Si. This is in clear contrast to the sputtering yield of Ni from Ni1-xSix which increased with increasing Ni concentration monotonously. These results are discussed on the basis of both the difference in the atomic density and the electronic state of the alloy.
Liang, Wenkel; Chapman, Craig T; Ding, Feizhi; Li, Xiaosong
2012-03-01
A first-principles solvated electronic dynamics method is introduced. Solvent electronic degrees of freedom are coupled to the time-dependent electronic density of a solute molecule by means of the implicit reaction field method, and the entire electronic system is propagated in time. This real-time time-dependent approach, incorporating the polarizable continuum solvation model, is shown to be very effective in describing the dynamical solvation effect in the charge transfer process and yields a consistent absorption spectrum in comparison to the conventional linear response results in solution. © 2012 American Chemical Society
UV-radiation-induced electron emission by hormones. Hypothesis for specific communication mechanisms
NASA Astrophysics Data System (ADS)
Getoff, Nikola
2009-11-01
The highlights of recently observed electron emission from electronically excited sexual hormones (17β-estradiol, progesterone, testosterone) and the phytohormone genistein in polar media are briefly reviewed. The electron yield, Q(e aq-), dependence from substrate concentration, hormone structure, polarity of solvent, absorbed energy and temperature are discussed. The hormones reactivity with e aq- and efficiency in electron transfer ensure them the ability to communicate with other biological systems in an organism. A hypothesis is presented for the explanation of the mechanisms of the distinct recognition of signals transmitted by electrons, originating from different types of hormones to receiving centres. Biological consequences of the electron emission in respect to cancer are mentioned.
Direct Heating of a Laser-Imploded Core by Ultraintense Laser-Driven Ions
NASA Astrophysics Data System (ADS)
Kitagawa, Y.; Mori, Y.; Komeda, O.; Ishii, K.; Hanayama, R.; Fujita, K.; Okihara, S.; Sekine, T.; Satoh, N.; Kurita, T.; Takagi, M.; Watari, T.; Kawashima, T.; Kan, H.; Nishimura, Y.; Sunahara, A.; Sentoku, Y.; Nakamura, N.; Kondo, T.; Fujine, M.; Azuma, H.; Motohiro, T.; Hioki, T.; Kakeno, M.; Miura, E.; Arikawa, Y.; Nagai, T.; Abe, Y.; Ozaki, S.; Noda, A.
2015-05-01
A novel direct core heating fusion process is introduced, in which a preimploded core is predominantly heated by energetic ions driven by LFEX, an extremely energetic ultrashort pulse laser. Consequently, we have observed the D (d ,n )
NASA Astrophysics Data System (ADS)
Gray, Nathan W.; Perez-Rubio, Victor; Bolke, Joseph G.; Alexander, W. B.
2014-10-01
Focal plane arrays (FPAs) made on InSb wafers are the key cost-driving component in IR imaging systems. The electronic and crystallographic properties of the wafer directly determine the imaging device performance. The "facet effect" describes the non-uniform electronic properties of crystals resulting from anisotropic dopant segregation during bulk growth. When the segregation coefficient of dopant impurities changes notably across the melt/solid interface of a growing crystal the result is non-uniform electronic properties across wafers made from these crystals. The effect is more pronounced in InSb crystals grown on the (111) axis compared with other orientations and crystal systems. FPA devices made on these wafers suffer costly yield hits due to inconsistent device response and performance. Historically, InSb crystal growers have grown approximately 9-19 degree off-axis from the (111) to avoid the facet effect and produced wafers with improved uniformity of electronic properties. It has been shown by researchers in the 1960s that control of the facet effect can produce uniform small diameter crystals. In this paper, we share results employing a process that controls the facet effect when growing large diameter crystals from which 4, 5, and 6" wafers can be manufactured. The process change resulted in an increase in wafers yielded per crystal by several times, all with high crystal quality and uniform electronic properties. Since the crystals are grown on the (111) axis, manufacturing (111) oriented wafers is straightforward with standard semiconductor equipment and processes common to the high-volume silicon wafer industry. These benefits result in significant manufacturing cost savings and increased value to our customers.
Direct heating of a laser-imploded core by ultraintense laser-driven ions.
Kitagawa, Y; Mori, Y; Komeda, O; Ishii, K; Hanayama, R; Fujita, K; Okihara, S; Sekine, T; Satoh, N; Kurita, T; Takagi, M; Watari, T; Kawashima, T; Kan, H; Nishimura, Y; Sunahara, A; Sentoku, Y; Nakamura, N; Kondo, T; Fujine, M; Azuma, H; Motohiro, T; Hioki, T; Kakeno, M; Miura, E; Arikawa, Y; Nagai, T; Abe, Y; Ozaki, S; Noda, A
2015-05-15
A novel direct core heating fusion process is introduced, in which a preimploded core is predominantly heated by energetic ions driven by LFEX, an extremely energetic ultrashort pulse laser. Consequently, we have observed the D(d,n)^{3}He-reacted neutrons (DD beam-fusion neutrons) with the yield of 5×10^{8} n/4π sr. Examination of the beam-fusion neutrons verified that the ions directly collide with the core plasma. While the hot electrons heat the whole core volume, the energetic ions deposit their energies locally in the core, forming hot spots for fuel ignition. As evidenced in the spectrum, the process simultaneously excited thermal neutrons with the yield of 6×10^{7} n/4π sr, raising the local core temperature from 0.8 to 1.8 keV. A one-dimensional hydrocode STAR 1D explains the shell implosion dynamics including the beam fusion and thermal fusion initiated by fast deuterons and carbon ions. A two-dimensional collisional particle-in-cell code predicts the core heating due to resistive processes driven by hot electrons, and also the generation of fast ions, which could be an additional heating source when they reach the core. Since the core density is limited to 2 g/cm^{3} in the current experiment, neither hot electrons nor fast ions can efficiently deposit their energy and the neutron yield remains low. In future work, we will achieve the higher core density (>10 g/cm^{3}); then hot electrons could contribute more to the core heating via drag heating. Together with hot electrons, the ion contribution to fast ignition is indispensable for realizing high-gain fusion. By virtue of its core heating and ignition, the proposed scheme can potentially achieve high gain fusion.
Mechanism for the Green Glow of the Upper Ionosphere
NASA Technical Reports Server (NTRS)
Guberman, Steven L.
1997-01-01
The generation of the green line of atomic oxygen by dissociative recombination of 02 plus occurs by the capture of an electron into a repulsive state of 02 followed by dissociation along another state of a different electronic symmetry. The two states are coupled together by mixed symmetry Rydberg states. Quantum chemical calculations give a rate coefficient at room temperature of (0.39 (+ 0.31 or -0.19)) x 10 exp -8 cubic centimeters per second. The quantum yield of excited oxygen is within the range deduced from ground, rocket, and satellite observations. The rate coefficients and yields are needed in models of the optical emission, chemistry, and energy balance of planetary ionospheres.
Electron-stimulated desorption study of hydrogen-exposed aluminum films
NASA Technical Reports Server (NTRS)
Park, CH.; Bujor, M.; Poppa, H.
1984-01-01
H2 adsorption of evaporated clean and H2-exposed aluminum films is investigated by using the electron-stimulated desorption (ESD) method. A strong H(+)ESD signal is observed on a freshly evaporated aluminum surface which is clean according to previously proposed cleanlines criteria. An increased H(+) yield on H2 exposure is also observed. However, the increasing rate of H(+) emission could be directly correlated with small increases in H2O partial pressure during H2 exposure. It is proposed that the oxidation of aluminum by water vapor and subsequent adsorption of H2 or water is the primary process of the enhanced high H(+) yield during H2 exposure.
Hahlin, A; Karis, O; Brena, B; Dunn, J H; Arvantis, D
2001-03-01
We have performed x-ray absorption spectroscopy at the Fe, Ni, and Co L2,3 edges of in situ grown thin magnetic films. We compare electron yield measurements performed at SSRL and BESSY-I. Differences in the L2,3 white line intensities are found for all three elements, comparing data from the two facilities. We propose a correlation between spectral intensities and the degree of spatial coherence of the exciting radiation. The electron yield saturation effects are stronger for light with a higher degree of spatial coherence. Therefore the observed, coherence related, intensity variations are due to an increase in the absorption coefficient, and not to secondary channel related effects.
NASA Technical Reports Server (NTRS)
Tankosic, D.; Abbas, M. M.
2013-01-01
The dust charging by electron impact is an important dust charging processes in astrophysical and planetary environments. Incident low energy electrons are reflected or stick to the grains charging the dust grains negatively. At sufficiently high energies electrons penetrate the grains, leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Available classical theoretical models for calculations of SEE yields are generally applicable for neutral, planar, or bulk surfaces. These models, however, are not valid for calculations of the electron impact charging properties of electrostatically charged micron/submicron-size dust grains in astrophysical environments. Rigorous quantum mechanical models are not yet available, and the SEE yields have to be determined experimentally for development of more accurate models for charging of individual dust grains. At the present time, very limited experimental data are available for charging of individual micron-size dust grains, particularly for low energy electron impact. The experimental results on individual, positively charged, micron-size lunar dust grains levitated carried out by us in a unique facility at NASA-MSFC, based on an electrodynamic balance, indicate that the SEE by electron impact is a complex process. The electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (Abbas et al, 2010, 2012). In this paper, we discuss SEE charging properties of individual micron-size silica microspheres that are believed to be analogs of a class of interstellar dust grains. The measurements indicate charging of the 0.2m silica particles when exposed to 25 eV electron beams and discharging when exposed to higher energy electron beams. Relatively large size silica particles (5.2-6.82m) generally discharge to lower equilibrium potentials at both electron energies. These measurements conducted on silica microspheres are qualitatively similar in nature to our previous SEE measurements on lunar Apollo missions dust samples.
Kostka, Joel E.; Dalton, Dava D.; Skelton, Hayley; Dollhopf, Sherry; Stucki, Joseph W.
2002-01-01
Smectite clay minerals are abundant in soils and sediments worldwide and are typically rich in Fe. While recent investigations have shown that the structural Fe(III) bound in clay minerals is reduced by microorganisms, previous studies have not tested growth with clay minerals as the sole electron acceptor. Here we have demonstrated that a pure culture of Shewanella oneidensis strain MR-1 as well as enrichment cultures of Fe(III)-reducing bacteria from rice paddy soil and subsurface sediments are capable of conserving energy for growth with the structural Fe(III) bound in smectite clay as the sole electron acceptor. Pure cultures of S. oneidensis were used for more detailed growth rate and yield experiments on various solid- and soluble-phase electron acceptors [smectite, Fe(III) oxyhydroxide FeOOH, Fe(III) citrate, and oxygen] in the same minimal medium. Growth was assessed as direct cell counts or as an increase in cell carbon (measured as particulate organic carbon). Cell counts showed that similar growth of S. oneidensis (108 cells ml−1) occurred with smectitic Fe(III) and on other Fe forms [amorphous Fe(III) oxyhydroxide, and Fe citrate] or oxygen as the electron acceptor. In contrast, cell yields of S. oneidensis measured as the increase in cell carbon were similar on all Fe forms tested while yields on oxygen were five times higher, in agreement with thermodynamic predictions. Over a range of particle loadings (0.5 to 4 g liter−1), the increase in cell number was highly correlated to the amount of structural Fe in smectite reduced. From phylogenetic analysis of the complete 16S rRNA gene sequences, a predominance of clones retrieved from the clay mineral-reducing enrichment cultures were most closely related to the low-G+C gram-positive members of the Bacteria (Clostridium and Desulfitobacterium) and the δ-Proteobacteria (members of the Geobacteraceae). Results indicate that growth with smectitic Fe(III) is similar in magnitude to that with Fe(III) oxide minerals and is dependent upon the mineral surface area available. Iron(III) bound in clay minerals should be considered an important electron acceptor supporting the growth of bacteria in soils or sedimentary environments. PMID:12450850
Improved Ion Resistance for III-V Photocathodes in High Current Guns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulhollan, Gregory, A.
2012-11-16
The two photocathode test systems were modified, baked and recommissioned. The first system was dedicated to ion studies and the second to electron stimulated recovery (ESR) work. The demonstration system for the electron beam rejuvenation was set up, tested and demonstrated to one of the SSRL team (Dr. Kirby) during a site visit. The requisite subsystems were transferred to SSRL, installed and photoemission studies conducted on activated surfaces following electron beam exposure. Little surface chemistry change was detected in the photoemission spectra following the ESR process. The yield mapping system for the ion (and later, the electron beam rejuvenation) studiesmore » was implemented and use made routine. Ion species and flux measurements were performed for H, He, Ne, Ar, Kr and Xe ions at energies of 0.5, 1.0 and 2.0 kV. Gas induced photoyield measurements followed each ion exposure measurement. These data permit the extraction of photoyield induced change per ion (by species) at the measured energies. Electron beam induced rejuvenation was first demonstrated in the second chamber with primary electron beam energy and dependency investigations following. A Hiden quadrupole mass spectrometer for the electron stimulated desorption (ESD) measurements was procured. The UHV test systems needed for subsequent measurements were configured, baked, commissioned and utilized for their intended purposes. Measurements characterizing the desorption products from the ESD process and secondary electron (SE) yield at the surfaces of negative electron affinity GaAs photocathodes have been performed. One US Utility Patent was granted covering the ESR process.« less
ERIC Educational Resources Information Center
Baca, Alfred
2009-01-01
Electronics that can cover large areas, often referred to as macroelectronics, has received increasing attention over the past decade mainly due to it use in display systems, but increasingly due to certain forms of macroelectronics that can be integrated with thin plastic sheets or elastomeric substrates to yield mechanically flexible and…
USDA-ARS?s Scientific Manuscript database
In plants alternative oxidase (AOX) is an important nuclear-encoded enzyme active in the mitochondrial electron-transport chain, transferring electrons from ubiquinol to alternative oxidase instead of the cytochrome pathway to yield ubiquinone and water. AOX protects against unexpected inhibition of...
Nanotechnology with Carbon Nanotubes: Mechanics, Chemistry, and Electronics
NASA Technical Reports Server (NTRS)
Srivastava, Deepak
2003-01-01
This viewgraph presentation reviews the Nanotechnology of carbon nanotubes. The contents include: 1) Nanomechanics examples; 2) Experimental validation of nanotubes in composites; 3) Anisotropic plastic collapse; 4) Spatio-temporal scales, yielding single-wall nanotubes; 5) Side-wall functionalization of nanotubes; 6) multi-wall Y junction carbon nanotubes; 7) Molecular electronics with Nanotube junctions; 8) Single-wall carbon nanotube junctions; welding; 9) biomimetic dendritic neurons: Carbon nanotube, nanotube electronics (basics), and nanotube junctions for Devices,
Nonlinear Optoacoustic Underwater Sound.
1988-01-11
sufficiently high plasma densities, the plasma itself may act as an acoustic ] amplifier, channeling electronic energy into acoustic energy. The shock pulse... channeled into the production of electron charge carriers, the law of conservation of energy dictates that the upperbound of the electron yield must be...temperature of the water by approximately 10C from room 100 - t bLT WV *A% IV * , . . ..1- KV7 b * .% r.- V-V I 7 TABLE V 0 EQUILIBRIUM BLAST MODEL CASE
NASA Astrophysics Data System (ADS)
Suzuki, I. H.; Kono, Y.; Sakai, K.; Kimura, M.; Ueda, K.; Tamenori, Y.; Takahashi, O.; Nagaoka, S.
2013-04-01
Spectator resonant Auger electron spectra with the Si 1s photoexcitation of SiCl4 have been measured using an electron spectroscopic technique combined with undulator radiation. The transition with the highest intensity in the total ion yield (TIY) spectrum, coming from excitation of a 1s electron into the 9t2 valence orbital, generates the resonant Auger decay in which the excited electron remains in the 9t2 orbital. A TIY peak positioned slightly above the 1s ionization threshold induces Auger decay in which the slow photoelectron is re-captured into a higher lying Rydberg orbital or the normal Auger peak shape is distorted due to a post-collision interaction effect. Another structure above the threshold, originating from a doubly excited state, yields the normal Auger peak with the distortion of peak shape and a resonant Auger peak with a higher kinetic energy. These findings provide a clear understanding of the properties of the excited orbitals which were ambiguous previously.
Evolution of the secondary electron emission during the graphitization of thin C films
NASA Astrophysics Data System (ADS)
Larciprete, Rosanna; Grosso, Davide Remo; Di Trolio, Antonio; Cimino, Roberto
2015-02-01
The relation between the atomic hybridization and the secondary electron emission yield (SEY) in carbon materials has been investigated during the thermal graphitization of thin amorphous carbon layers deposited by magnetron sputtering on Cu substrates. C1s core level, valence band and Raman spectroscopy were used to follow the sp3→sp2 structural reorganization while the SEY curves as a function of the kinetic energy of the incident electron beam were measured in parallel. We found that an amorphous C layer with a thickness of a few tens of nanometers is capable to modify the secondary emission properties of the clean copper surface, reducing the maximum yield from 1.4 to 1.2. A further SEY decrease observed with the progressive conversion of sp3 hybrids into six-fold aromatic domains was related to the electronic structure close to the Fermi level of the C-films. We found that a moderate structural quality of the C layer is sufficient to notably decrease the SEY as aromatic clusters of limited size approach the secondary emission properties of graphite.
NASA Astrophysics Data System (ADS)
Aydinol, Mahmut
2017-02-01
L shell and L subshells ionization cross sections σL and σLi (i = 1, 2, 3) following electron impact on (N,O, F, Ne, Na, Mg, Al, Si) atoms calculated. By using Lotz' equation for nonrelativistic cases in Matlab σL and σLi cross section values obtained for ten electron impact(Eo) values in the range of ELi
Conceptual design of the gamma-to-electron magnetic spectrometer for the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Y., E-mail: yhkim@lanl.gov; Herrmann, H. W.; Jorgenson, H. J.
2014-11-15
The Gamma-to-Electron Magnetic Spectrometer (GEMS) diagnostic is designed to measure the prompt γ-ray energy spectrum during high yield deuterium-tritium (DT) implosions at the National Ignition Facility (NIF). The prompt γ-ray spectrum will provide “burn-averaged” observables, including total DT fusion yield, total areal density (ρR), ablator ρR, and fuel ρR. These burn-averaged observables are unique because they are essentially averaged over 4π, providing a global reference for the line-of-sight-specific measurements typical of x-ray and neutron diagnostics. The GEMS conceptual design meets the physics-based requirements: ΔE/E = 3%–5% can be achieved in the range of 2–25 MeV γ-ray energy. Minimum DT neutronmore » yields required for 15% measurement uncertainty at low-resolution mode are: 5 × 10{sup 14} DT-n for ablator ρR (at 0.2 g/cm{sup 2}); 2 × 10{sup 15} DT-n for total DT yield (at 4.2 × 10{sup −5} γ/n); and 1 × 10{sup 16} DT-n for fuel ρR (at 1 g/cm{sup 2})« less
Modeling ionization and recombination from low energy nuclear recoils in liquid argon
Foxe, M.; Hagmann, C.; Jovanovic, I.; ...
2015-03-27
Coherent elastic neutrino-nucleus scattering (CENNS) is an as-yet undetected, flavor-independent neutrino interaction predicted by the Standard Model. Detection of CENNS could offer benefits for detection of supernova and solar neutrinos in astrophysics, or for detection of antineutrinos for nuclear reactor monitoring and nuclear nonproliferation. One challenge with detecting CENNS is the low energy deposition associated with a typical CENNS nuclear recoil. In addition, nuclear recoils result in lower ionization yields than those produced by electron recoils of the same energy. While a measurement of the nuclear recoil ionization yield in liquid argon in the keV energy range has been recentlymore » reported, a corresponding model for low-energy ionization yield in liquid argon does not exist. For this reason, a Monte Carlo simulation has been developed to predict the ionization yield at sub-10 keV energies. The model consists of two distinct components: (1) simulation of the atomic collision cascade with production of ionization, and (2) the thermalization and drift of ionization electrons in an applied electric field including local recombination. As an application of our results we report updated estimates of detectable ionization in liquid argon from CENNS at a nuclear reactor.« less
Conceptual design of the gamma-to-electron magnetic spectrometer for the National Ignition Facility
Kim, Y.; Herrmann, H. W.; Jorgenson, H. J.; ...
2014-08-01
The Gamma-to-Electron Magnetic Spectrometer (GEMS) diagnostic is designed to measure the prompt γ-ray energy spectrum during high yield deuterium-tritium (DT) implosions at the National Ignition Facility (NIF). The prompt γ-ray spectrum will provide ‘burn-averaged’ observables, including total DT fusion yield, total areal density (ρR), ablator ρR, and fuel ρR. These burn-averaged observables are unique because they are essentially averaged over 4π, providing a global reference for the line-of-sight-specific measurements typical of x-ray and neutron diagnostics. The GEMS conceptual design meets the physics-based requirements: ΔE/E = 3 - 5% can be achieved in the range of 2 - 25 MeV γ-raymore » energy. Minimum DT neutron yields required for 15% measurement uncertainty at low-resolution mode are: 5×10 14 DT-n for ablator ρR (at 0.2 g/cm 2); 2×10 15 DT-n for total DT yield (at 4.2×10 -5γ /n); and 1×10 16 DT-n for fuel ρR (at 1 g/cm 2).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, H.S., E-mail: 160184@mail.csc.com.tw; Chiu, C.H.; Hong, I.T.
2013-09-15
Previous literature has used several monocrystalline sputtering targets with various crystalline planes, respectively, to investigate the variations of the sputter yield of materials in different crystalline orientations. This study presents a method to measure the sputtered yields of Mo for the three low-index planes (100), (110), and (111), through using an easily made polycrystalline target. The procedure was firstly to use electron backscattered diffraction to identify the grain positions of the three crystalline planes, and then use a focused ion beam to perform the micro-milling of each identified grain, and finally the sputter yields were calculated from the removed volumes,more » which were measured by atomic force microscope. Experimental results showed that the sputter yield of the primary orientations for Mo varied as Y{sub (110)} > Y{sub (100)} > Y{sub (111)}, coincidental with the ranking of their planar atomic packing densities. The concept of transparency of ion in the crystalline substance was applied to elucidate these results. In addition, the result of (110) orientation exhibiting higher sputter yield is helpful for us to develop a Mo target with a higher deposition rate for use in industry. By changing the deformation process from straight rolling to cross rolling, the (110) texture intensity of the Mo target was significantly improved, and thus enhanced the deposition rate. - Highlights: • We used EBSD, FIB and AFM to measure the sputter yields of Mo in low-index planes. • The sputter yield of the primary orientations for Mo varied as Y{sub (110)} > Y{sub (100)} > Y{sub (111)}. • The transparency of ion was used to elucidate the differences in the sputter yield. • We improved the sputter rate of polycrystalline Mo target by adjusting its texture.« less
Kinetic electron model for plasma thruster plumes
NASA Astrophysics Data System (ADS)
Merino, Mario; Mauriño, Javier; Ahedo, Eduardo
2018-03-01
A paraxial model of an unmagnetized, collisionless plasma plume expanding into vacuum is presented. Electrons are treated kinetically, relying on the adiabatic invariance of their radial action integral for the integration of Vlasov's equation, whereas ions are treated as a cold species. The quasi-2D plasma density, self-consistent electric potential, and electron pressure, temperature, and heat fluxes are analyzed. In particular, the model yields the collisionless cooling of electrons, which differs from the Boltzmann relation and the simple polytropic laws usually employed in fluid and hybrid PIC/fluid plume codes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikhailovskii, V., E-mail: v.mikhailovskii@spbu.ru; IRC for Nanotechnology, Research Park, St.-Petersburg State University; Petrov, Yu.
2016-06-17
The drastic enhancement of backscattered electrons (BSE) yield from nanostructured thin metal film which exceeded well the one from massive metal was observed at accelerating voltages below 400 V. The dependences of BSE signal from nanostructured gold film on accelerating voltage and on retarding grid potential applied to BSE detector were investigated. It was shown that enhanced BSE signal was formed by inelastic scattered electrons coming from the gaps between nanoparticles. A tentative explanation of the mechanism of BSE signal enhancement was suggested.
Electron impact ionization of the gas-phase sorbitol
NASA Astrophysics Data System (ADS)
Chernyshova, Irina; Markush, Pavlo; Zavilopulo, Anatoly; Shpenik, Otto
2015-03-01
Ionization and dissociative ionization of the sorbitol molecule by electron impact have been studied using two different experimental methods. In the mass range of m/ z = 10-190, the mass spectra of sorbitol were recorded at the ionizing electron energies of 70 and 30 eV. The ion yield curves for the fragment ions have been analyzed and the appearance energies of these ions have been determined. The relative total ionization cross section of the sorbitol molecule was measured using monoenergetic electron beam. Possible fragmentation pathways for the sorbitol molecule were proposed.
NASA Astrophysics Data System (ADS)
Wan Chan Tseung, H.; Kaspar, J.; Tolich, N.
2011-10-01
An experimental test of the electron energy scale linearities of SNO+ and EJ-301 scintillators was carried out using a Compton spectrometer with electrons in the energy range 0.09-3 MeV. The linearity of the apparatus was explicitly demonstrated. It was found that the response of both types of scintillators with respect to electrons becomes non-linear below ˜0.4 MeV. An explanation is given in terms of Cherenkov light absorption and re-emission by the scintillators.
Zhu, Zonglong; Bai, Yang; Liu, Xiao; ...
2016-05-11
Here highly crystalline SnO 2 is demonstrated to serve as a stable and robust electron-transporting layer for high-performance perovskite solar cells. Benefiting from its high crystallinity, the relatively thick SnO 2 electron-transporting layer (≈120 nm) provides a respectable electron-transporting property to yield a promising power conversion efficiency (PCE)(18.8%) Over 90% of the initial PCE can be retained after 30 d storage in ambient with ≈70% relative humidity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Q.S.; Barkovskii, A.L.; Adriaens, P.
1999-11-01
The susceptibility of dioxins to dissolved organic carbon (DOC)-mediated dechlorination reactions was investigated using 1,2,3,4,6,7,9-heptachlorodibenzo-p-dioxin (HpCDD), Aldrich humic acid (AHA), and polymaleic acid (PMA) as model compounds. The dechlorination yields were on the order of 4--20% which, when normalized to phenolic acidity, was comparable to yields observed in the presence of the humic constituents catechol and resorcinol. Based on the ratio of dechlorination yields as a function of phenolic acidity and electron transfer capacity, differences in electron transfer efficiency to dioxins are likely combined effects of specific interactions with the functional groups and nonspecific hydrophobic interactions. Hexa- and pentaCDD homologuesmore » were dominant in all incubations, and diCDD constituted the final product of dechlorination. The rates of appearance of lesser chlorinated products were similar to those observed in sediment systems and followed thermodynamic considerations as they decreased with a decrease in level of chlorination. Generally, both absolute and phenolic acidity-normalized rate constants for AHA-mediated reactions were up to 2-fold higher than those effected by PMA. These results indicate that the electron shuttling capacity of sediment DOC may significantly affect the fate of dioxins, in part through dechlorination reactions.« less
Electron impact fragmentation of adenine: partial ionization cross sections for positive fragments
NASA Astrophysics Data System (ADS)
van der Burgt, Peter J. M.; Finnegan, Sinead; Eden, Samuel
2015-07-01
Using computer-controlled data acquisition we have measured mass spectra of positive ions for electron impact on adenine, with electron energies up to 100 eV. Ion yield curves for 50 ions have been obtained and normalized by comparing their sum to the average of calculated total ionization cross sections. Appearance energies have been determined for 37 ions; for 20 ions for the first time. All appearance energies are consistent with the fragmentation pathways identified in the literature. Second onset energies have been determined for 12 fragment ions (for 11 ions for the first time), indicating the occurrence of more than one fragmentation process e.g. for 39 u (C2HN+) and 70 u (C2H4N3+). Matching ion yield shapes (118-120 u, 107-108 u, 91-92 u, and 54-56 u) provide new evidence supporting closely related fragmentation pathways and are attributed to hydrogen rearrangement immediately preceding the fragmentation. We present the first measurement of the ion yield curve of the doubly charged parent ion (67.5 u), with an appearance energy of 23.5 ± 1.0 eV. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.
Extraction of the proton radius from electron-proton scattering data
Lee, Gabriel; Arrington, John R.; Hill, Richard J.
2015-07-27
We perform a new analysis of electron-proton scattering data to determine the proton electric and magnetic radii, enforcing model-independent constraints from form factor analyticity. A wide-ranging study of possible systematic effects is performed. An improved analysis is developed that rebins data taken at identical kinematic settings and avoids a scaling assumption of systematic errors with statistical errors. Employing standard models for radiative corrections, our improved analysis of the 2010 Mainz A1 Collaboration data yields a proton electric radius r E = 0.895(20) fm and magnetic radius r M = 0.776(38) fm. A similar analysis applied to world data (excluding Mainzmore » data) implies r E = 0.916(24) fm and r M = 0.914(35) fm. The Mainz and world values of the charge radius are consistent, and a simple combination yields a value r E = 0.904(15) fm that is 4σ larger than the CREMA Collaboration muonic hydrogen determination. The Mainz and world values of the magnetic radius differ by 2.7σ, and a simple average yields r M = 0.851(26) fm. As a result, the circumstances under which published muonic hydrogen and electron scattering data could be reconciled are discussed, including a possible deficiency in the standard radiative correction model which requires further analysis.« less
Electron-stimulated reactions in nanoscale water films adsorbed on (alpha)-Al2O3(0001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrik, Nikolay G.; Kimmel, Gregory A.
2018-05-11
The radiation-induced decomposition and desorption of nanoscale amorphous solid water (D2O) films adsorbed on -Al2O3(0001) surface was studied at low temperature in ultrahigh vacuum using temperature programmed desorption (TPD) and electron stimulated desorption (ESD) with a mono-energetic, low energy electron source. ESD yields of molecular products ( D2, O2 and D¬2O) and the total sputtering yield increased with increasing D2O coverage up to ~15 water monolayers (i.e. ~15 1015 cm-2) to a coverage-independent level for thicker water films. Experiments with isotopically-layered water films (D2O and H2O) demonstrated that the highest water decomposition yields occurred at the interfaces of the nanoscalemore » water films with the alumina substrate and vacuum. However, the increased reactivity of the water/alumina interface is relatively small compared to the enhancements in the non-thermal reactions previously observed at the water/Pt(111) and water/TiO2(110) interfaces. We propose that the relatively low activity of Al2O3(0001) for the radiation-induced production of molecular hydrogen is associated with lower reactivity of this surface with hydrogen atoms, which are likely precursors for the molecular hydrogen.« less
Ramamoorthy, Rengasamy; Vishal, Bhushan; Ramachandran, Srinivasan; Kumar, Prakash P
2018-02-01
Ds insertion in rice OsPS1-F gene results in semi-dwarf plants with reduced tiller number and grain yield, while genetic complementation with OsPS1-F rescued the mutant phenotype. Photosynthetic electron transport is regulated in the chloroplast thylakoid membrane by multi-protein complexes. Studies about photosynthetic machinery and its subunits in crop plants are necessary, because they could be crucial for yield enhancement in the long term. Here, we report the characterization of OsPS1-F (encoding Oryza sativa PHOTOSYSTEM 1-F subunit) using a single copy Ds insertion rice mutant line. The homozygous mutant (osps1-f) showed striking difference in growth and development compared to the wild type (WT), including, reduction in plant height, tiller number, grain yield as well as pale yellow leaf coloration. Chlorophyll concentration and electron transport rate were significantly reduced in the mutant compared to the WT. OsPS1-F gene was highly expressed in rice leaves compared to other tissues at different developmental stages tested. Upon complementation of the mutant with proUBI::OsPS1-F, the observed mutant phenotypes were rescued. Our results illustrate that OsPS1-F plays an important role in regulating proper growth and development of rice plants.
Electron-stimulated reactions in nanoscale water films adsorbed on α-Al 2 O 3 (0001)
Petrik, Nikolay G.; Kimmel, Greg A.
2018-04-11
The radiation-induced decomposition and desorption of nanoscale amorphous solid water (D 2O) films adsorbed on an α-Al 2O 3(0001) surface was studied at low temperature in ultrahigh vacuum using temperature programmed desorption (TPD) and electron stimulated desorption (ESD) with a mono-energetic, low energy electron source. ESD yields of molecular products (D 2, O 2 and D 2O) and the total sputtering yield increased with increasing D 2O coverage up to ~15 water monolayers (i.e. ~15 x 10 15 cm -2) to a coverage-independent level for thicker water films. Experiments with isotopically-layered water films (D 2O and H 2O) demonstrated thatmore » the highest water decomposition yields occurred at the interfaces of the nanoscale water films with the alumina substrate and vacuum. However, the increased reactivity of the water/alumina interface is relatively small compared to the enhancements in the non-thermal reactions previously observed at the water/Pt(111) and water/TiO 2(110) interfaces. Here, we propose that the relatively low activity of Al 2O 3(0001) for the radiation-induced production of molecular hydrogen is associated with lower reactivity of this surface with hydrogen atoms, which are likely precursors for the formation of molecular hydrogen.« less
Electron-stimulated reactions in nanoscale water films adsorbed on α-Al 2 O 3 (0001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrik, Nikolay G.; Kimmel, Greg A.
The radiation-induced decomposition and desorption of nanoscale amorphous solid water (D 2O) films adsorbed on an α-Al 2O 3(0001) surface was studied at low temperature in ultrahigh vacuum using temperature programmed desorption (TPD) and electron stimulated desorption (ESD) with a mono-energetic, low energy electron source. ESD yields of molecular products (D 2, O 2 and D 2O) and the total sputtering yield increased with increasing D 2O coverage up to ~15 water monolayers (i.e. ~15 x 10 15 cm -2) to a coverage-independent level for thicker water films. Experiments with isotopically-layered water films (D 2O and H 2O) demonstrated thatmore » the highest water decomposition yields occurred at the interfaces of the nanoscale water films with the alumina substrate and vacuum. However, the increased reactivity of the water/alumina interface is relatively small compared to the enhancements in the non-thermal reactions previously observed at the water/Pt(111) and water/TiO 2(110) interfaces. Here, we propose that the relatively low activity of Al 2O 3(0001) for the radiation-induced production of molecular hydrogen is associated with lower reactivity of this surface with hydrogen atoms, which are likely precursors for the formation of molecular hydrogen.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Peng; Yuly, Jonathon L.; Lubner, Carolyn E.
How can proteins drive two electrons from a redox active donor onto two acceptors at very different potentials and distances? And how can this transaction be conducted without dissipating very much energy or violating the laws of thermodynamics? Nature appears to have addressed these challenges by coupling thermodynamically uphill and downhill electron transfer reactions, using two-electron donor cofactors that have very different potentials for the removal of the first and second electron. Although electron bifurcation is carried out with near perfection from the standpoint of energy conservation and electron delivery yields, it is a biological energy transduction paradigm that hasmore » only come into focus recently. This Account provides an exegesis of the biophysical principles that underpin electron bifurcation.« less
Re-Visiting the Electronic Energy Map of the Copper Dimer by Double-Resonant Four-Wave Mixing
NASA Astrophysics Data System (ADS)
Visser, Bradley; Bornhauser, Peter; Beck, Martin; Knopp, Gregor; Marquardt, Roberto; Gourlaouen, Christophe; van Bokhoven, Jeroen A.; Radi, Peter
2017-06-01
The copper dimer is one of the most studied transition metal (TM) diatomics due to its alkali-metal like electronic shell structure, strongly bound ground state and chemical reactivity. The high electronic promotion energy in the copper atom yields numerous low-lying electronic states compared to TM dimers with d)-hole electronic configurations. Thus, through extensive study the excited electronic structure of Cu_2 is relatively well known, however in practice few excited states have been investigated with rotational resolution or even assigned term symbols or dissociation limits. The spectroscopic methods that have been used to investigate the copper dimer until now have not possessed sufficient spectral selectivity, which has complicated the analysis of the often overlapping transitions. Resonant four-wave mixing is a non-linear absorption based spectroscopic method. In favorable cases, the two-color version (TC-RFWM) enables purely optical mass selective spectral measurements in a mixed molecular beam. Additionally, by labelling individual rotational levels in the common intermediate state the spectra are dramatically simplified. In this work, we report on the rotationally resolved characterization of low-lying electronic states of dicopper. Several term symbols have been assigned unambiguously. De-perturbation studies performed shed light on the complex electronic structure of the molecule. Furthermore, a new low-lying electronic state of Cu_2 is discovered and has important implications for the high-level theoretical structure calculations performed in parallel. In fact, the ab initio methods applied yield relative energies among the electronic levels that are almost quantitative and allow assignment of the newly observed state that is governed by spin-orbit interacting levels.
Preshot Predictions for Defect Induced Mix (DIME) Capsules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, Paul A.; Krasheninnikova, Natalia S.; Tregillis, Ian L.
2012-07-31
In this memo, we evaluate the most probable yield and other results for the Defect Induced Mix (DIME-12A) Polar Direct Drive (PDD) capsule-only shots. We evaluate the expected yield, bang time, burn averaged ion temperature, and the average electron temperature of the Ge line-emitting region. We also include synthetic images of the capsule backlit by Cu K-{alpha} emission (8.39 keV) and core self-emission synthetic images. This memo is a companion to the maximum credible yield memo (LA-UR-12-00287) published earlier.
Kohn anomalies in momentum dependence of magnetic susceptibility of some three-dimensional systems
NASA Astrophysics Data System (ADS)
Stepanenko, A. A.; Volkova, D. O.; Igoshev, P. A.; Katanin, A. A.
2017-11-01
We study a question of the presence of Kohn points, yielding at low temperatures nonanalytic momentum dependence of magnetic susceptibility near its maximum, in electronic spectra of some threedimensional systems. In particular, we consider a one-band model on face-centered cubic lattice with hopping between the nearest and next-nearest neighbors, which models some aspects of the dispersion of ZrZn2, and the two-band model on body-centered cubic lattice, modeling the dispersion of chromium. For the former model, it is shown that Kohn points yielding maxima of susceptibility exist in a certain (sufficiently wide) region of electronic concentrations; the dependence of the wave vectors, corresponding to the maxima, on the chemical potential is investigated. For the two-band model, we show the existence of the lines of Kohn points, yielding maximum susceptibility, whose position agrees with the results of band structure calculations and experimental data on the wave vector of antiferromagnetism of chromium.
Lago, A F; Januário, R D; Cavasso Filho, R L; Simon, M; Dávalos, J Z
2017-10-01
Time of flight mass spectrometry, electron-ion coincidence, and ion yield spectroscopy were employed to investigate for the first time the thiazole (C 3 H 3 NS) molecule in the gas phase excited by synchrotron radiation in the soft X-ray domain. Total ion yield (TIY) and photoelectron-photoion coincidence (PEPICO) spectra were recorded as a function of the photon energy in the vicinity of the carbon K edge (C1s). The C1s resonant transitions as well as the core ionization thresholds have been determined from the profile of TIY spectrum, and the features were discussed. The corresponding partial ion yields were determined from the PEPICO spectra for the cation species produced upon the molecular photodissociation. Additional ab initio calculations have also been performed from where relevant structural and electronic configuration parameters were obtained for this molecule. Copyright © 2017 John Wiley & Sons, Ltd.
Template-free solution approach to synthesize CdS dendrites with SCN based ionic liquid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Kangfeng; Li, Jiajia; Cheng, Xianyi
2011-07-15
Highlights: {yields} Template-free solution approach to synthesize CdS hierarchical dendrites. {yields} The 1-butyl-3-methlyimidazole thiocyanate ([BMIM][SCN]) plays doubly functional roles in the progress. {yields} The CdS hierarchical dendrites exhibit a more intense emission at 710 nm belongs to infrared band. -- Abstract: Cadmium sulfide dendrites were synthesized by a facile hydrothermal treatment from CdCl{sub 2} and ionic liquid 1-butyl-3-methlyimidazole thiocyanate acted both as sulfur source and surfactant. The product was characterized by means of X-ray powder diffraction and scanning electron microscopy. X-ray powder diffraction studies indicated that the product was well-crystallized hexagonal phase of CdS, and the scanning electron microscopy imagesmore » showed that the obtained powders consisted of a wealth of well-defined CdS dendritic microstructures with a pronounced trunk and highly ordered branches. The UV-Vis and photoluminescence spectroscopy measurements were taken as well. The possible formation mechanism of CdS dendrites was simply proposed in the end.« less
All-inkjet-printed thin-film transistors: manufacturing process reliability by root cause analysis.
Sowade, Enrico; Ramon, Eloi; Mitra, Kalyan Yoti; Martínez-Domingo, Carme; Pedró, Marta; Pallarès, Jofre; Loffredo, Fausta; Villani, Fulvia; Gomes, Henrique L; Terés, Lluís; Baumann, Reinhard R
2016-09-21
We report on the detailed electrical investigation of all-inkjet-printed thin-film transistor (TFT) arrays focusing on TFT failures and their origins. The TFT arrays were manufactured on flexible polymer substrates in ambient condition without the need for cleanroom environment or inert atmosphere and at a maximum temperature of 150 °C. Alternative manufacturing processes for electronic devices such as inkjet printing suffer from lower accuracy compared to traditional microelectronic manufacturing methods. Furthermore, usually printing methods do not allow the manufacturing of electronic devices with high yield (high number of functional devices). In general, the manufacturing yield is much lower compared to the established conventional manufacturing methods based on lithography. Thus, the focus of this contribution is set on a comprehensive analysis of defective TFTs printed by inkjet technology. Based on root cause analysis, we present the defects by developing failure categories and discuss the reasons for the defects. This procedure identifies failure origins and allows the optimization of the manufacturing resulting finally to a yield improvement.
NEST: a comprehensive model for scintillation yield in liquid xenon
Szydagis, M.; Barry, N.; Kazkaz, K.; ...
2011-10-03
Here, a comprehensive model for explaining scintillation yield in liquid xenon is introduced. We unify various definitions of work function which abound in the literature and incorporate all available data on electron recoil scintillation yield. This results in a better understanding of electron recoil, and facilitates an improved description of nuclear recoil. An incident gamma energy range of O(1 keV) to O(1 MeV) and electric fields between 0 and O(10 kV/cm) are incorporated into this heuristic model. We show results from a Geant4 implementation, but because the model has a few free parameters, implementation in any simulation package should bemore » simple. We use a quasi-empirical approach, with an objective of improving detector calibrations and performance verification. The model will aid in the design and optimization of future detectors. This model is also easy to extend to other noble elements. In this paper we lay the foundation for an exhaustive simulation code which we call NEST (Noble Element Simulation Technique).« less
Effect of metal surfaces on matrix-assisted laser desorption/ionization analyte peak intensities.
Kancharla, Vidhyullatha; Bashir, Sajid; Liu, Jingbo L; Ramirez, Oscar M; Derrick, Peter J; Beran, Kyle A
2017-10-01
Different metal surfaces in the form of transmission electron microscope grids were examined as support surfaces in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with a view towards enhancement of peptide signal intensity. The observed enhancement between 5-fold and 20-fold relative to the normal stainless steel slide was investigated by applying the thermal desorption model for matrix-assisted laser desorption/ionization. A simple model evaluates the impact that the thermal properties of the metals have on the ion yield of the analyte. It was observed that there was not a direct, or strong, correlation between the thermal properties of the metals and the corresponding ion yield of the peptides. The effects of both fixed and variable laser irradiances versus ion yield were also examined for the respective metals studied. In all cases the use of transmission electron microscope grids required much lower laser irradiances in order to generate similar peak intensities as those observed with a stainless steel surface.
Howard, H T; Tyler, G L; Esposito, P B; Anderson, J D; Reasenberg, R D; Shapiro, I I; Fjeldbo, G; Kliore, A J; Levy, G S; Brunn, D L; Dickinson, R; Edelson, R E; Martin, W L; Postal, R B; Seidel, B; Sesplaukis, T T; Shirley, D L; Stelzried, C T; Sweetnam, D N; Wood, G E; Zygielbaum, A I
1974-07-12
Analysis of the radio-tracking data from Mariner 10 yields 6,023,600 +/- 600 for the ratio of the mass of the sun to that of Mercury, in very good agreement with values determined earlier from radar data alone. Occultation measurements yielded values for the radius of Mercury of 2440 +/- 2 and 2438 +/- 2 kilometers at laditudes of 2 degrees N and 68 degrees N, respectively, again in close agreement with the average equatorial radius of 2439 +/- 1 kilometers determined from radar data. The mean density of 5.44 grams per cubic centimeter deduced for Mercury from Mariner 10 data thus virtually coincides with the prior determination. No evidence of either an ionosphere or an atmosphere was found, with the data yielding upper bounds on the electron density of about 1500 and 4000 electrons per cubic centimeter on the dayside and nightside, respectively, and an inferred upper bound on the surface pressure of 10(-8) millibar.
Lignin Depolymerisation and Lignocellulose Fractionation by Solvated Electrons in Liquid Ammonia.
Prinsen, Pepijn; Narani, Anand; Rothenberg, Gadi
2017-03-09
We explored the depolymerisation of several lignins in liquid ammonia at relatively high temperatures and pressures (120 °C and 88 bar). Five different lignins were tested: Indulin AT kraft, Protobind 1000 soda, wheat straw organosolv, poplar organosolv and elephant grass-milled wood lignin (EG MWL). In pure liquid ammonia, all lignins underwent slow incorporation of nitrogen into their structure, resulting in higher molecular weight and polydispersity index. Subsequently, we show a reductive depolymerisation by solvated electrons at room temperature by adding sodium metal to the liquid ammonia without any external hydrogen donor. The netto yields of bio-oil are low for technical lignins (10-23 %), but with higher yields of alkylphenols. In the case of native EG MWL, netto yields of 40 % bio-oil were achieved. Finally, when the room temperature method was applied to poplar wood fibre, we observe improved delignification upon the addition of sodium compared to poplar wood fractionation in pure liquid ammonia. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, H.
We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We also report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0more » to 970 V/cm. For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V/cm. Furthermore, we report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from 83mKr internal conversion electrons is comparable to that from 207Bi conversion electrons, we obtained the numbers of excitons (N ex) and ion pairs (N i) and their ratio (N ex/N i) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.« less
NASA Astrophysics Data System (ADS)
Lyo, S. K.; Huang, Danhong
2006-05-01
Electron-electron scattering conserves total momentum and does not dissipate momentum directly in a low-density system where the umklapp process is forbidden. However, it can still affect the conductance through the energy relaxation of the electrons. We show here that this effect can be studied with arbitrary accuracy in a multisublevel one-dimensional (1D) single quantum wire system in the presence of roughness and phonon scattering using a formally exact solution of the Boltzmann transport equation. The intrasubband electron-electron scattering is found to yield no net effect on the transport of electrons in 1D with only one sublevel occupied. For a system with a multilevel occupation, however, we find a significant effect of intersublevel electron-electron scattering on the temperature and density dependence of the resistance at low temperatures.
1974-01-01
also makes the Government vulner- able to upward price pressures by the selected supplier and induces design stagnation. % • The potential benefit of...following modifications: 1. It should specifically permit consideration of changes that are of benefit to the contractor and not detrimen- tal to...vali- dated by experience, that competition throughout the electronic-system life-cycle process will, on the whole, yield great benefits in
Measuring Transmission Efficiencies Of Mass Spectrometers
NASA Technical Reports Server (NTRS)
Srivastava, Santosh K.
1989-01-01
Coincidence counts yield absolute efficiencies. System measures mass-dependent transmission efficiencies of mass spectrometers, using coincidence-counting techniques reminiscent of those used for many years in calibration of detectors for subatomic particles. Coincidences between detected ions and electrons producing them counted during operation of mass spectrometer. Under certain assumptions regarding inelastic scattering of electrons, electron/ion-coincidence count is direct measure of transmission efficiency of spectrometer. When fully developed, system compact, portable, and used routinely to calibrate mass spectrometers.
Saeki, Akinori; Kozawa, Takahiro; Ohnishi, Yuko; Tagawa, Seiichi
2007-02-22
The initial decrease of solvated electrons in tetrahydrofuran (THF) upon addition of biphenyl was investigated by picosecond pulse radiolysis. Transient absorption spectra derived from the biphenyl radical anion (centered at 408 and 655 nm) and solvated electrons of THF (infrared) were successfully measured in the wavelength region from 400 to 900 nm by the extension of a femtosecond continuum probe light to near-ultraviolet using a second harmonic generation of Ti:sapphire laser and a CaF2 plate. From the analysis of kinetic traces at 1300 nm considering the overlap of primary solvated electrons and partial biphenyl radical anion, C37, which is defined by the solute concentration to reduce the initial yield of solvated electrons to 1/e, was found to be 87 +/- 3 mM. The rate constant of solvated electrons with biphenyl was determined as 5.8 +/- 0.3 x 10(10) M(-1) s(-1). We demonstrate that the kinetic traces at both 408 nm mainly due to biphenyl radical anion and 1300 nm mainly due to solvated electrons are reproduced with high accuracy and consistency by a simple kinetic analysis. Much higher concentrations of biphenyl (up to 2 M) were examined, showing further increase of the initial yield of biphenyl radical anion accompanying a fast decay component. This observation is discussed in terms of geminate ion recombination, scavenging, delayed geminate ion recombination, and direct ionization of biphenyl at high concentration.
Enhanced production of low energy electrons by alpha particle impact
Kim, Hong-Keun; Titze, Jasmin; Schöffler, Markus; Trinter, Florian; Waitz, Markus; Voigtsberger, Jörg; Sann, Hendrik; Meckel, Moritz; Stuck, Christian; Lenz, Ute; Odenweller, Matthias; Neumann, Nadine; Schössler, Sven; Ullmann-Pfleger, Klaus; Ulrich, Birte; Fraga, Rui Costa; Petridis, Nikos; Metz, Daniel; Jung, Annika; Grisenti, Robert; Czasch, Achim; Jagutzki, Ottmar; Schmidt, Lothar; Jahnke, Till; Schmidt-Böcking, Horst; Dörner, Reinhard
2011-01-01
Radiation damage to living tissue stems not only from primary ionizing particles but to a substantial fraction from the dissociative attachment of secondary electrons with energies below the ionization threshold. We show that the emission yield of those low energy electrons increases dramatically in ion–atom collisions depending on whether or not the target atoms are isolated or embedded in an environment. Only when the atom that has been ionized and excited by the primary particle impact is in immediate proximity of another atom is a fragmentation route known as interatomic Coulombic decay (ICD) enabled. This leads to the emission of a low energy electron. Over the past decade ICD was explored in several experiments following photoionization. Most recent results show its observation even in water clusters. Here we show the quantitative role of ICD for the production of low energy electrons by ion impact, thus approaching a scenario closer to that of radiation damage by alpha particles: We choose ion energies on the maximum of the Bragg peak where energy is most efficiently deposited in tissue. We compare the electron production after colliding He+ ions on isolated Ne atoms and on Ne dimers (Ne2). In the latter case the Ne atom impacted is surrounded by a most simple environment already opening ICD as a deexcitation channel. As a consequence, we find a dramatically enhanced low energy electron yield. The results suggest that ICD may have a significant influence on cell survival after exposure to ionizing radiation. PMID:21730184
NASA Astrophysics Data System (ADS)
Williams, Gareth O.; Künzel, S.; Daboussi, S.; Iwan, B.; Gonzalez, A. I.; Boutu, W.; Hilbert, V.; Zastrau, U.; Lee, H. J.; Nagler, B.; Granados, E.; Galtier, E.; Heimann, P.; Barbrel, B.; Dovillaire, G.; Lee, R. W.; Dunn, J.; Recoules, V.; Blancard, C.; Renaudin, P.; de la Varga, A. G.; Velarde, P.; Audebert, P.; Merdji, H.; Zeitoun, Ph.; Fajardo, M.
2018-02-01
We present measurements of photon absorption by free electrons as a solid is transformed to plasma. A femtosecond x-ray free-electron laser is used to heat a solid, which separates the electron and ion heating time scales. The changes in absorption are measured with an independent probe pulse created through high-order-harmonic generation. We find an increase in electron temperature to have a relatively small impact on absorption, contrary to several predictions, whereas ion heating increases absorption. We compare the data to current theoretical and numerical approaches and find that a smoother electronic structure yields a better fit to the data, suggestive of a temperature-dependent electronic structure in warm dense matter.
Electron and photon degradation in aluminum, gallium and boron doped float zone silicon solar cells
NASA Technical Reports Server (NTRS)
Rahilly, W. P.; Scott-Monck, J.; Anspaugh, B.; Locker, D.
1976-01-01
Solar cells fabricated from Al, Ga and B doped Lopex silicon over a range of resistivities were tested under varying conditions of 1 MeV electron fluence, light exposures and thermal cycling. Results indicate that Al and Ga can replace B as a P type dopant to yield improved solar cell performance.
Di-lepton yield from the decay of excited 28Si states
NASA Astrophysics Data System (ADS)
Bacelar, J. C.; Buda, A.; Bałanda, A.; Krasznahorkay, A.; van der Ploeg, H.; Sujkowski, Z.; van der Woude, A.
1994-03-01
The first dilepton yield measurements from excited nuclear states obtained with a new Positron-Electron Pair Spectroscopic Instrument (PEPSI) are reported. Nuclear states in 28Si, with an initial excitation energy E∗ = 50 MeV, were populated via the isospin T = 0 reaction 4He + 24Mg and the mixed-isospin 3He + 25Mg reaction. In both reactions the dilepton (e +e -) and photon decay yields were measured concurrently. An excess of counts in the e +e - spectrum, over the converted photon yield, is observed in the energy region above 15 MeV. An analyses is discussed whereby the observed excess counts are assumed to represent the isoscalar E0 strength in excited nuclear states.
First measurements of J/{psi} decays into {sigma}{sup +}{sigma}{sup -} and {xi}{sup 0}{xi}{sup 0}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ablikim, M.; Bai, J. Z.; Bai, Y.
Based on 58x10{sup 6} J/{psi} events collected with the BESII detector at the Beijing Electron-Positron Collider, the baryon pair processes J/{psi}{yields}{sigma}{sup +}{sigma}{sup -} and J/{psi}{yields}{xi}{sup 0}{xi}{sup 0} are observed for the first time. The branching fractions are measured to be B(J/{psi}{yields}{sigma}{sup +}{sigma}{sup -})=(1.50{+-}0.10{+-}0.22)x10{sup -3} and B(J/{psi}{yields}{xi}{sup 0}{xi}{sup 0})=(1.20{+-}0.12{+-}0.21)x10{sup -3}, where the first errors are statistical and the second ones are systematic.
An investigation into the feasibility of myoglobin-based single-electron transistors
Li, Debin; Gannett, Peter M.; Lederman, David
2016-01-01
Myoglobin single-electron transistors were investigated using nanometer-gap platinum electrodes fabricated by electromigration at cryogenic temperatures. Apomyoglobin (myoglobin without heme group) was used as a reference. The results suggest single electron transport is mediated by resonant tunneling with the electronic and vibrational levels of the heme group in a single protein. They also represent a proof-of-principle that proteins with redox centers across nanometer-gap electrodes can be utilized to fabricate single-electron transistors. The protein orientation and conformation may significantly affect the conductance of these devices. Future improvements in device reproducibility and yield will require control of these factors. PMID:22972432
First measurements of electron temperature in the D region with a symmetric double probe
NASA Technical Reports Server (NTRS)
Szuszczewicz, E. P.
1973-01-01
Measurement of the altitude profile of electron temperature in the ionospheric D region with the aid of a symmetric double probe flown on a Nike-Cajun payload launched on Oct. 13, 1971. The procedure for determining the electron temperature from the parameters of the double probe's current-voltage characteristic under conditions of nonnegligible ion-atom collision frequencies is described. It is shown that in its first lower ionospheric application the technique of the symmetric double probe has yielded the lowest values of electron temperature yet measured and has provided the very first direct measurement of electron temperature in the D region.
A note on antenna models in a warm isotropic plasma
NASA Technical Reports Server (NTRS)
Singh, N.
1980-01-01
The electron-transparent and electron-reflecting models of antennas in a warm isotropic plasma are reexamined. It is shown that a purely electrical treatment of both the models without an explicit use of the boundary condition on electron velocity yields the same results as those previously obtained through an electromechanical treatment. The essential difference between the two models is that for the electron-reflecting model, fields are nonzero only in the exterior region, while for the electron-transparent model, they are nonzero both in the exterior and interior regions of the antenna. This distinction helps in clarifying some misconceptions about these models of antennas in warm isotropic plasma.
Lithium Alkaline Halides—Next Generation of Dual Mode Scintillators
NASA Astrophysics Data System (ADS)
Soundara-Pandian, L.; Hawrami, R.; Glodo, J.; Ariesanti, E.; van Loef, E. V.; Shah, K.
2016-04-01
We report on a new family of scintillators - Lithium alkaline halides, developed based on the alkaline halides by introducing lithium for dual mode gamma-neutron detection. Many different compositions were grown, among which LiSr2I5 (LSI), LiCa2I5 (LCI), LiSr2Br5 (LSB) activated with divalent Europium show good gamma and neutron detection properties. LSI shows the main emission at 497 nm under X-ray excitation. It also shows good proportionality, which in combination with the light yield as high as 60000 photons/MeV, results in an energy resolution of 3.5% at 662 keV. The electron or gamma equivalent energy (GEE) of the thermal neutron peak due to the 6Li neutron capture is 4.1 MeV, which amounts to a very high neutron light yield of 245000 photons. The decay times for neutrons are faster compared to that for gamma-rays, hence we achieved good pulse shape discrimination (PSD) between gamma and neutron events. Our initial studies on the effects of Eu concentration on the properties of LSI show that 3%-4% Eu concentration is optimal for the best performance in terms of gamma and neutron light yields and pulse shape discrimination. LCI shows the main emission at 475 nm under X-ray excitation and a very high gamma light yield of 90000 photons/MeV. The measured energy resolution is 6% at 662 keV. The electron equivalent energy for neutron detection has been measured to be around 3 MeV, which gives a neutron light yield of 270 000 photons. The measured decay times for neutrons are faster compared to gamma decays and the PSD between the gamma-rays and neutrons is not as good as LSI. LSB shows two emissions at 410 and 475 nm under X-ray excitation. The measured light yield is 32000 ph/MeV gamma-ray with an energy resolution of 6% at 662 keV. The electron equivalent energy of the 6Li capture peak was measured to be 3.3 MeV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polska, Katarzyna; Rak, Janusz; Bass, Andrew D.
2012-02-21
We measured the low energy electron stimulated desorption (ESD) of anions from thin films of native (TXT) and bromine monosubstituted (TBrXT) oligonucleotide trimers deposited on a gold surface (T = thymidine, X = T, deoxycytidine (C), deoxyadenosine (A) or deoxyguanosine (G), Br = bromine). The desorption of H{sup -}, CH{sub 3}{sup -}/NH{sup -}, O{sup -}/NH{sub 2}{sup -}, OH{sup -}, CN{sup -}, and Br{sup -} was induced by 0 to 20 eV electrons. Dissociative electron attachment, below 12 eV, and dipolar dissociation, above 12 eV, are responsible for the formation of these anions. The comparison of the results obtained for themore » native and brominated trimers suggests that the main pathways of TBrXT degradation correspond to the release of the hydride and bromide anions. Significantly, the presence of bromine in oligonucleotide trimers blocks the electron-induced degradation of nuclobases as evidenced by a dramatic decrease in CN{sup -} desorption. An increase in the yields of OH{sup -} is also observed. The debromination yield of particular oligonucleotides diminishes in the following order: BrdU > BrdA > BrdG > BrdC. Based on these results, 5-bromo-2{sup '}-deoxyuridine appears to be the best radiosensitizer among the studied bromonucleosides.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swulius, Matthew T.; Chen, Songye; Jane Ding, H.
2011-04-22
Highlights: {yields} No long helical filaments are seen near or along rod-shaped bacterial inner membranes by electron cryo-tomography. {yields} Electron cryo-tomography has the resolution to detect single filaments in vivo. -- Abstract: How rod-shaped bacteria form and maintain their shape is an important question in bacterial cell biology. Results from fluorescent light microscopy have led many to believe that the actin homolog MreB and a number of other proteins form long helical filaments along the inner membrane of the cell. Here we show using electron cryotomography of six different rod-shaped bacterial species, at macromolecular resolution, that no long (>80 nm)more » helical filaments exist near or along either surface of the inner membrane. We also use correlated cryo-fluorescent light microscopy (cryo-fLM) and electron cryo-tomography (ECT) to identify cytoplasmic bundles of MreB, showing that MreB filaments are detectable by ECT. In light of these results, the structure and function of MreB must be reconsidered: instead of acting as a large, rigid scaffold that localizes cell-wall synthetic machinery, moving MreB complexes may apply tension to growing peptidoglycan strands to ensure their orderly, linear insertion.« less
Brown, Matthew A; Redondo, Amaia Beloqui; Jordan, Inga; Duyckaerts, Nicolas; Lee, Ming-Tao; Ammann, Markus; Nolting, Frithjof; Kleibert, Armin; Huthwelker, Thomas; Müächler, Jean-Pierre; Birrer, Mario; Honegger, Juri; Wetter, Reto; Wörner, Hans Jakob; van Bokhoven, Jeroen A
2013-07-01
A new liquid microjet endstation designed for ultraviolet (UPS) and X-ray (XPS) photoelectron, and partial electron yield X-ray absorption (XAS) spectroscopies at the Swiss Light Source is presented. The new endstation, which is based on a Scienta HiPP-2 R4000 electron spectrometer, is the first liquid microjet endstation capable of operating in vacuum and in ambient pressures up to the equilibrium vapor pressure of liquid water at room temperature. In addition, the Scienta HiPP-2 R4000 energy analyzer of this new endstation allows for XPS measurements up to 7000 eV electron kinetic energy that will enable electronic structure measurements of bulk solutions and buried interfaces from liquid microjet samples. The endstation is designed to operate at the soft X-ray SIM beamline and at the tender X-ray Phoenix beamline. The endstation can also be operated using a Scienta 5 K ultraviolet helium lamp for dedicated UPS measurements at the vapor-liquid interface using either He I or He II α lines. The design concept, first results from UPS, soft X-ray XPS, and partial electron yield XAS measurements, and an outlook to the potential of this endstation are presented.
Characterization of radiation belt electron energy spectra from CRRES observations
NASA Astrophysics Data System (ADS)
Johnston, W. R.; Lindstrom, C. D.; Ginet, G. P.
2010-12-01
Energetic electrons in the outer radiation belt and the slot region exhibit a wide variety of energy spectral forms, more so than radiation belt protons. We characterize the spatial and temporal dependence of these forms using observations from the CRRES satellite Medium Electron Sensor A (MEA) and High-Energy Electron Fluxmeter (HEEF) instruments, together covering an energy range 0.15-8 MeV. Spectra were classified with two independent methods, data clustering and curve-fitting analyses, in each case defining categories represented by power law, exponential, and bump-on-tail (BOT) or other complex shapes. Both methods yielded similar results, with BOT, exponential, and power law spectra respectively dominating in the slot region, outer belt, and regions just beyond the outer belt. The transition from exponential to power law spectra occurs at higher L for lower magnetic latitude. The location of the transition from exponential to BOT spectra is highly correlated with the location of the plasmapause. In the slot region during the days following storm events, electron spectra were observed to evolve from exponential to BOT yielding differential flux minima at 350-650 keV and maxima at 1.5-2 MeV; such evolution has been attributed to energy-dependent losses from scattering by whistler hiss.
Zhao, Yixin; Swierk, John R.; Megiatto, Jackson D.; Sherman, Benjamin; Youngblood, W. Justin; Qin, Dongdong; Lentz, Deanna M.; Moore, Ana L.; Moore, Thomas A.; Gust, Devens; Mallouk, Thomas E.
2012-01-01
Photoelectrochemical water splitting directly converts solar energy to chemical energy stored in hydrogen, a high energy density fuel. Although water splitting using semiconductor photoelectrodes has been studied for more than 40 years, it has only recently been demonstrated using dye-sensitized electrodes. The quantum yield for water splitting in these dye-based systems has, so far, been very low because the charge recombination reaction is faster than the catalytic four-electron oxidation of water to oxygen. We show here that the quantum yield is more than doubled by incorporating an electron transfer mediator that is mimetic of the tyrosine-histidine mediator in Photosystem II. The mediator molecule is covalently bound to the water oxidation catalyst, a colloidal iridium oxide particle, and is coadsorbed onto a porous titanium dioxide electrode with a Ruthenium polypyridyl sensitizer. As in the natural photosynthetic system, this molecule mediates electron transfer between a relatively slow metal oxide catalyst that oxidizes water on the millisecond timescale and a dye molecule that is oxidized in a fast light-induced electron transfer reaction. The presence of the mediator molecule in the system results in photoelectrochemical water splitting with an internal quantum efficiency of approximately 2.3% using blue light. PMID:22547794
Highly charged ion based time of flight emission microscope
Barnes, Alan V.; Schenkel, Thomas; Hamza, Alex V.; Schneider, Dieter H.; Doyle, Barney
2001-01-01
A highly charged ion based time-of-flight emission microscope has been designed, which improves the surface sensitivity of static SIMS measurements because of the higher ionization probability of highly charged ions. Slow, highly charged ions are produced in an electron beam ion trap and are directed to the sample surface. The sputtered secondary ions and electrons pass through a specially designed objective lens to a microchannel plate detector. This new instrument permits high surface sensitivity (10.sup.10 atoms/cm.sup.2), high spatial resolution (100 nm), and chemical structural information due to the high molecular ion yields. The high secondary ion yield permits coincidence counting, which can be used to enhance determination of chemical and topological structure and to correlate specific molecular species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malyshev, Oleg B., E-mail: oleg.malyshev@stfc.ac.uk; Hogan, Benjamin T.; Pendleton, Mark
2014-09-01
The reduction of thermal outgassing from stainless steel by surface polishing or vacuum firing is well-known in vacuum technology, and the consequent use of both techniques allows an even further reduction of outgassing. The aim of this study was to identify the effectiveness of surface polishing and vacuum firing for reducing electron-stimulated desorption (ESD) from 316LN stainless steel, which is a frequently used material for particle accelerator vacuum chambers and components. It was found that, unlike for thermal outgassing, surface polishing does not reduce the ESD yield and may even increase it, while vacuum firing of nonpolished sample reduces onlymore » the H{sub 2} ESD yield by a factor 2.« less
The low-energy, charge-transfer excited states of 4-amino-4-prime-nitrodiphenyl sulfide
NASA Technical Reports Server (NTRS)
O'Connor, Donald B.; Scott, Gary W.; Tran, Kim; Coulter, Daniel R.; Miskowski, Vincent M.; Stiegman, Albert E.; Wnek, Gary E.
1992-01-01
Absorption and emission spectra of 4-amino-4-prime-nitrodiphenyl sulfide in polar and nonpolar solvents were used to characterize and assign the low-energy excited states of the molecule. Fluorescence-excitation anisotropy spectra and fluorescence quantum yields were also used to characterize the photophysics of these states. The lowest-energy fluorescent singlet state was determined to be an intramolecular charge transfer (ICT) state involving transfer of a full electron charge from the amino to the nitro group yielding a dipole moment of about 50 D. A low-energy, intense absorption band is assigned as a transition to a different ICT state involving a partial electron charge transfer from sulfur to the nitro group.
Some observations on glass-knife making.
Ward, R T
1977-11-01
The yield of usable knife edge per knife (for thin sectioning) was markedly increased when glass knives were made at an included angle of 55 degrees rather than the customary 45 degrees. A large number of measurements of edge check marks made with a routine light scattering method as well as observations made on a smaller number of test sections with the electron microscope indicated the superiority of 55 degrees knives. Knives were made with both taped pliers and an LKB Knifemaker. Knives were graded by methods easily applied in any biological electron microscope laboratory. Depending on the mode of fracture, the yield of knives having more than 33% of their edges free of check marks was 30 to 100 times greater at 55 degrees than 45 degrees.
Multiple ionization of neon by soft x-rays at ultrahigh intensity
NASA Astrophysics Data System (ADS)
Guichard, R.; Richter, M.; Rost, J.-M.; Saalmann, U.; Sorokin, A. A.; Tiedtke, K.
2013-08-01
At the free-electron laser FLASH, multiple ionization of neon atoms was quantitatively investigated at photon energies of 93.0 and 90.5 eV. For ion charge states up to 6+, we compare the respective absolute photoionization yields with results from a minimal model and an elaborate description including standard sequential and direct photoionization channels. Both approaches are based on rate equations and take into account a Gaussian spatial intensity distribution of the laser beam. From the comparison we conclude that photoionization up to a charge of 5+ can be described by the minimal model which we interpret as sequential photoionization assisted by electron shake-up processes. For higher charges, the experimental ionization yields systematically exceed the elaborate rate-based prediction.
Sarfehnia, Arman; Jabbari, Keyvan; Seuntjens, Jan; Podgorsak, Ervin B
2007-07-01
Since taken with megavoltage, forward-directed bremsstrahlung beams, the image quality of current portal images is inferior to that of diagnostic quality images produced by kilovoltage beams. In this paper, the beam quality of orthogonal bremsstrahlung beams defined as the 90 degrees component of the bremsstrahlung distribution produced from megavoltage electron pencil beams striking various targets is presented, and the suitability of their use for improved radiotherapy imaging is evaluated. A 10 MeV electron beam emerging through the research port of a Varian Clinac-18 linac was made to strike targets of carbon, aluminum, and copper. PDD and attenuation measurements of both the forward and orthogonal beams were carried out, and the results were also used to estimate the effective and mean energy of the beams. The mean energy of a spectrum produced by a carbon target dropped by 83% from 1296 keV in the forward direction to 217 keV in the orthogonal direction, while for an aluminum target it dropped by 77% to 412 keV, and for a copper target by 65% to 793 keV. An in-depth Monte Carlo study of photon yield and electron contamination was also performed. Photon yield and effective energy are lower for orthogonal beams than for forward beams, and the differences are more pronounced for targets of lower atomic number. Using their relatively low effective energy, orthogonal bremsstrahlung beams produced by megavoltage electrons striking low atomic number targets yield images with a higher contrast in comparison with forward bremsstrahlung beams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golwala, Sunil Ramanlal
2000-01-01
Extensive evidence indicates that a large fraction of the matter in the universe is nonluminous, nonbaryonic, and “cold” — nonrelativistic at the time matter began to dominate the energy density of the universe. Weakly Interacting Massive Particles (WIMPs) are an excellent candidate for nonbaryonic, cold dark matter. Minimal supersymmetry provides a natural WIMP candidate in the form of the lightest superpartner, with a typical mass Mδ ~ 100 GeV c-2 . WIMPs are expected to have collapsed into a roughly isothermal, spherical halo within which the visible portion of our galaxy resides. They would scatter off nuclei via the weakmore » interaction, potentially allowingtheir direct detection. The Cryogenic Dark Matter Search (CDMS) employs Ge and Si detectors to search for WIMPs via their elastic-scatteringinteractions with nuclei while discriminatingagainst interactions of background particles. The former yield nuclear recoils while the latter produce electron recoils. The ionization yield (the ratio of ionization production to recoil energy in a semiconductor) of a particle interaction differs greatly for nuclear and electron recoils. CDMS detectors measure phonon and electron-hole-pair production to determine recoil energy and ionization yield for each event and thereby discriminate nuclear recoils from electron recoils. This dissertation reports new limits on the spin-independent WIMP-nucleon elastic-scattering cross section that exclude unexplored parameter space above 10 GeV c-2 WIMP mass and, at > 75% CL, the entire 3σ allowed region for the WIMP signal reported by the DAMA experiment. The experimental apparatus, detector performance, and data analysis are fully described.« less
Electron Stimulated Desorption Yields at the Mercury's Surface Based On Hybrid Simulation Results
NASA Astrophysics Data System (ADS)
Travnicek, P. M.; Schriver, D.; Orlando, T. M.; Hellinger, P.
2016-12-01
In terms of previous research concerning the solar wind sputtering process, most of the focus has been on ion sputtering by precipitating solar wind protons, however, precipitating electrons can also result in the desorption of neutrals and ions from Mercury's surface and represents a potentially significant source of exospheric and heavy ion components. Electron stimulated desorption (ESD) is not bound by optical selection rules and electron impact energies can vary over a much wider range, including core-level excitations that easily lead to multi-electron shake up events that can cascade into localized multiple charged states that Coulomb explode with extreme kinetic energy release (up to 8 eV = 186,000 K). While considered for the lunar exosphere, ESD has not been adequately studied or quantified as a producer of neutrals and ions. ESD is a well known process which involves the excitation (often ionization) of a surface target followed by charge ejection, bond breaking and ion expulsion due to the resultant Coulomb repulsion. Though the role of ESD processes has not been discussed much with respect to Mercury, the impinging energetic electrons that are transported through the magnetosphere and precipitate can induce significant material removal. Given the energetics and the wide band-gap nature of the minerals, the departing material may also be primarily ionic. The possible role of 5 eV - 1 keV electron stimulated desorption and dissociation in "weathering" the regolith can be significant. ESD yields will be calculated based on the ion and electron precipitation profiles for the already carried out hybrid and electron simulations. Neutral and ion cloud profiles around Mercury will be calculated and combined with those profiles expected from PSD and MIV.
Alizadeh, Elahe; Orlando, Thomas M; Sanche, Léon
2015-04-01
Many experimental and theoretical advances have recently allowed the study of direct and indirect effects of low-energy electrons (LEEs) on DNA damage. In an effort to explain how LEEs damage the human genome, researchers have focused efforts on LEE interactions with bacterial plasmids, DNA bases, sugar analogs, phosphate groups, and longer DNA moieties. Here, we summarize the current understanding of the fundamental mechanisms involved in LEE-induced damage of DNA and complex biomolecule films. Results obtained by several laboratories on films prepared and analyzed by different methods and irradiated with different electron-beam current densities and fluencies are presented. Despite varied conditions (e.g., film thicknesses and morphologies, intrinsic water content, substrate interactions, and extrinsic atmospheric compositions), comparisons show a striking resemblance in the types of damage produced and their yield functions. The potential of controlling this damage using molecular and nanoparticle targets with high LEE yields in targeted radiation-based cancer therapies is also discussed.
Characterization and reactivity of a terminal nickel(III)-oxygen adduct.
Pirovano, Paolo; Farquhar, Erik R; Swart, Marcel; Fitzpatrick, Anthony J; Morgan, Grace G; McDonald, Aidan R
2015-02-23
High-valent terminal metal-oxygen adducts are hypothesized to be the potent oxidizing reactants in late transition metal oxidation catalysis. In particular, examples of high-valent terminal nickel-oxygen adducts are scarce, meaning there is a dearth in the understanding of such oxidants. A monoanionic Ni(II)-bicarbonate complex has been found to react in a 1:1 ratio with the one-electron oxidant tris(4-bromophenyl)ammoniumyl hexachloroantimonate, yielding a thermally unstable intermediate in high yield (ca. 95%). Electronic absorption, electronic paramagnetic resonance, and X-ray absorption spectroscopies and density functional theory calculations confirm its description as a low-spin (S = 1/2), square planar Ni(III)-oxygen adduct. This rare example of a high-valent terminal nickel-oxygen complex performs oxidations of organic substrates, including 2,6-di-tert-butylphenol and triphenylphosphine, which are indicative of hydrogen atom abstraction and oxygen atom transfer reactivity, respectively. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cooperative Metal+Ligand Oxidative Addition and Sigma-Bond Metathesis: A DFT Study
Lopez, Kent G.; Cundari, Thomas R.; Gary, J. Brannon
2018-01-17
A computational study of the experimentally proposed mechanism of alkyne diboration by a PDICo complex yielded two fundamental catalytic steps that undergo remarkable electronic changes, PDI = bis(imino)-pyridine. The reactions are envisaged via DFT (density functional theory) and MCSCF (multi-configuration self-consistent field) simulations as (i) a cooperative metal+ligand oxidative addition, and (ii) a sigma-bond metathesis induced ligand-to-metal charge transfer. Analysis of the bonding of pertinent intermediates/TSs also yielded important insight that may be illuminating with regards to the larger field of green catalysis that seeks to ennoble base metals through synergy with potentially redox non-innocent (RNI) ligands. For the presentmore » case, massive changes in electronic structure do not incur massive energetic penalties. Finally, in conjunction with previous research, one may postulate that structural and energetic “fluidity” among several electronic states of RNI-M 3d along the reaction coordinate is an essential signature of redox cooperativity and thus ennoblement.« less
Robust, functional nanocrystal solids by infilling with atomic layer deposition.
Liu, Yao; Gibbs, Markelle; Perkins, Craig L; Tolentino, Jason; Zarghami, Mohammad H; Bustamante, Jorge; Law, Matt
2011-12-14
Thin films of colloidal semiconductor nanocrystals (NCs) are inherently metatstable materials prone to oxidative and photothermal degradation driven by their large surface-to-volume ratios and high surface energies. (1) The fabrication of practical electronic devices based on NC solids hinges on preventing oxidation, surface diffusion, ripening, sintering, and other unwanted physicochemical changes that can plague these materials. Here we use low-temperature atomic layer deposition (ALD) to infill conductive PbSe NC solids with metal oxides to produce inorganic nanocomposites in which the NCs are locked in place and protected against oxidative and photothermal damage. Infilling NC field-effect transistors and solar cells with amorphous alumina yields devices that operate with enhanced and stable performance for at least months in air. Furthermore, ALD infilling with ZnO lowers the height of the inter-NC tunnel barrier for electron transport, yielding PbSe NC films with electron mobilities of 1 cm2 V(-1) s(-1). Our ALD technique is a versatile means to fabricate robust NC solids for optoelectronic devices.
Unravelling the Electronic State of NO2 Product in Ultrafast Photodissociation of Nitromethane.
Adachi, Shunsuke; Kohguchi, Hiroshi; Suzuki, Toshinori
2018-01-18
The primary photochemical reaction of nitromethane (NM) after ππ* excitation is known to be C-N bond cleavage (CH 3 NO 2 + hν → CH 3 + NO 2 ). On the other hand, NO 2 can be formed in both the ground and excited states, and identification of the electronic state of the NO 2 product has been a central subject in the experimental and theoretical studies. Here we present time-resolved photoelectron spectroscopy using vacuum-ultraviolet probe pulses to observe all transient electronic states of NM and the reaction products. The result indicates that ultrafast internal conversion occurs down to S 1 and S 0 within 24 fs, and the dissociation proceeds on the S 1 surface (τ diss ≲ 50 fs), leading to comparable product yields of NO 2 (A) and NO 2 (X). The overall dissociation quantum yield within our observation time window (<2 ps) is estimated to be 0.29.
NASA Astrophysics Data System (ADS)
Shinozuka, Yuzo; Oda, Masato
2015-09-01
The interacting quasi-band model proposed for electronic states in simple alloys is extended for compound semiconductor alloys with general lattice structures containing several atoms per unit cell. Using a tight-binding model, a variational electronic wave function for quasi-Bloch states yields a non-Hermitian Hamiltonian matrix characterized by matrix elements of constituent crystals and concentration of constituents. Solving secular equations for each k-state yields the alloy’s energy spectrum for any type of randomness and arbitrary concentration. The theory is used to address III-V (II-VI) alloys with a zincblende lattice with crystal band structures well represented by the sp3s* model. Using the resulting 15 × 15 matrix, the concentration dependence of valence and conduction bands is calculated in a unified scheme for typical alloys: Al1-xGaxAs, GaAs1-xPx, and GaSb1-xPx. Results agree well with experiments and are discussed with respect to the concentration dependence, direct-indirect gap transition, and band-gap-bowing origin.
NASA Astrophysics Data System (ADS)
Wang, Huihui; Bokarev, Sergey I.; Aziz, Saadullah G.; Kühn, Oliver
2017-08-01
Recent developments in attosecond spectroscopy yield access to the correlated motion of electrons on their intrinsic timescales. Spin-flip dynamics is usually considered in the context of valence electronic states, where spin-orbit coupling is weak and processes related to the electron spin are usually driven by nuclear motion. However, for core-excited states, where the core-hole has a nonzero angular momentum, spin-orbit coupling is strong enough to drive spin-flips on a much shorter timescale. Using density matrix-based time-dependent restricted active space configuration interaction including spin-orbit coupling, we address an unprecedentedly short spin-crossover for the example of L-edge (2p→3d) excited states of a prototypical Fe(II) complex. This process occurs on a timescale, which is faster than that of Auger decay (∼4 fs) treated here explicitly. Modest variations of carrier frequency and pulse duration can lead to substantial changes in the spin-state yield, suggesting its control by soft X-ray light.
Cooperative Metal+Ligand Oxidative Addition and Sigma-Bond Metathesis: A DFT Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, Kent G.; Cundari, Thomas R.; Gary, J. Brannon
A computational study of the experimentally proposed mechanism of alkyne diboration by a PDICo complex yielded two fundamental catalytic steps that undergo remarkable electronic changes, PDI = bis(imino)-pyridine. The reactions are envisaged via DFT (density functional theory) and MCSCF (multi-configuration self-consistent field) simulations as (i) a cooperative metal+ligand oxidative addition, and (ii) a sigma-bond metathesis induced ligand-to-metal charge transfer. Analysis of the bonding of pertinent intermediates/TSs also yielded important insight that may be illuminating with regards to the larger field of green catalysis that seeks to ennoble base metals through synergy with potentially redox non-innocent (RNI) ligands. For the presentmore » case, massive changes in electronic structure do not incur massive energetic penalties. Finally, in conjunction with previous research, one may postulate that structural and energetic “fluidity” among several electronic states of RNI-M 3d along the reaction coordinate is an essential signature of redox cooperativity and thus ennoblement.« less
Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor
NASA Astrophysics Data System (ADS)
Nguyen, Giang D.; Tsai, Hsin-Zon; Omrani, Arash A.; Marangoni, Tomas; Wu, Meng; Rizzo, Daniel J.; Rodgers, Griffin F.; Cloke, Ryan R.; Durr, Rebecca A.; Sakai, Yuki; Liou, Franklin; Aikawa, Andrew S.; Chelikowsky, James R.; Louie, Steven G.; Fischer, Felix R.; Crommie, Michael F.
2017-11-01
The rational bottom-up synthesis of atomically defined graphene nanoribbon (GNR) heterojunctions represents an enabling technology for the design of nanoscale electronic devices. Synthetic strategies used thus far have relied on the random copolymerization of two electronically distinct molecular precursors to yield GNR heterojunctions. Here we report the fabrication and electronic characterization of atomically precise GNR heterojunctions prepared through late-stage functionalization of chevron GNRs obtained from a single precursor. Post-growth excitation of fully cyclized GNRs induces cleavage of sacrificial carbonyl groups, resulting in atomically well-defined heterojunctions within a single GNR. The GNR heterojunction structure was characterized using bond-resolved scanning tunnelling microscopy, which enables chemical bond imaging at T = 4.5 K. Scanning tunnelling spectroscopy reveals that band alignment across the heterojunction interface yields a type II heterojunction, in agreement with first-principles calculations. GNR heterojunction band realignment proceeds over a distance less than 1 nm, leading to extremely large effective fields.
Kijjanapanich, P; Pakdeerattanamint, K; Lens, P N L; Annachhatre, A P
2012-12-01
This research was conducted to select suitable natural organic substrates as potential carbon sources for use as electron donors for biological sulphate reduction in a permeable reactive barrier (PRB). A number of organic substrates were assessed through batch and continuous column experiments under anaerobic conditions with acid mine drainage (AMD) obtained from an abandoned lignite coal mine. To keep the heavy metal concentration at a constant level, the AMD was supplemented with heavy metals whenever necessary. Under anaerobic conditions, sulphate-reducing bacteria (SRB) converted sulphate into sulphide using the organic substrates as electron donors. The sulphide that was generated precipitated heavy metals as metal sulphides. Organic substrates, which yielded the highest sulphate reduction in batch tests, were selected for continuous column experiments which lasted over 200 days. A mixture of pig-farm wastewater treatment sludge, rice husk and coconut husk chips yielded the best heavy metal (Fe, Cu, Zn and Mn) removal efficiencies of over 90%.
NASA Astrophysics Data System (ADS)
Duarte, C. L.; Ribeiro, M. A.; Oikawa, H.; Mori, M. N.; Napolitano, C. M.; Galvão, C. A.
2012-08-01
The use of microbial cellulolytic enzymes is the most efficient process to liberate glucose from cellulose in biomass without the formation of fermentation inhibitors. A combination of pretreatment technologies is an alternative way to increase the access of enzymes to cellulose, and consequently, the conversion yield. In this way, the present study reports on the enzymatic hydrolysis of SCB submitted to three kinds of pretreatment: electron beam processing (EBP), and EBP followed by hydrothermal (TH) and diluted acid (AH) treatment. SCB samples were irradiated using a radiation dynamics electron beam accelerator, and then submitted to thermal and acid (0.1% sulfuric acid) hydrolysis for 40 and 60 min at 180 °C. These samples were submitted to enzymatic hydrolysis (EH) using commercial preparations, including Celluclast 1.5 L and beta-glycosidase. The addition of diluted acid improved TH treatment allowing for a shorter application time. EBP with 50 kGy increased the enzymatic hydrolysis yield of cellulose by 20% after TH and 30% after AH.
Simulation of secondary emission calorimeter for future colliders
NASA Astrophysics Data System (ADS)
Yetkin, E. A.; Yetkin, T.; Ozok, F.; Iren, E.; Erduran, M. N.
2018-03-01
We present updated results from a simulation study of a conceptual sampling electromagnetic calorimeter based on secondary electron emission process. We implemented the secondary electron emission process in Geant4 as a user physics list and produced the energy spectrum and yield of secondary electrons. The energy resolution of the SEE calorimeter was σ/E = (41%) GeV1/2/√E and the response linearity to electromagnetic showers was to within 1.5%. The simulation results were also compared with a traditional scintillator calorimeter.
NASA Astrophysics Data System (ADS)
Senba, Y.; Nagasono, M.; Koyama, T.; Yumoto, H.; Ohashi, H.; Tono, K.; Togashi, T.; Inubushi, Y.; Sato, T.; Yabashi, M.; Ishikawa, T.
2013-03-01
Optimization of focusing conditions is important in free-electron laser applications. A time-of-flight mass analyzer has been designed and constructed for this purpose. The time-of-flight spectra of ionic species evolved from laser ablation of gold were measured. The yields of ionic species showed strong correlations with free-electron-laser intensity. This method conveniently allows for direct estimation of laser intensity on sample and determination of focusing position.
NASA Astrophysics Data System (ADS)
Ghyngazov, S. A.; Frangulyan, T. S.; Chernyavskii, A. V.; Goreev, A. K.; Naiden, E. P.
2015-06-01
Comparative experiments on sintering zirconia ceramics are performed using colliding beams of low-energy electrons and under conditions of thermal heating. The density and microhardness of ceramic materials manufactured via different processes are determined. The use of a regime of bilateral heating by high-intensity,low-energy electron beams is shown to intensify the sintering process and yield material specimens with improved characteristics compared to those formed by thermal sintering.
Electron kinematics in a plasma focus
NASA Technical Reports Server (NTRS)
Hohl, F.; Gary, S. P.
1977-01-01
The results of numerical integrations of the three-dimensional relativistic equations of motion of electrons subject to given electric and magnetic fields are presented. Fields due to two different models are studied: (1) a circular distribution of current filaments, and (2) a uniform current distribution; both the collapse and the current reduction phases are studied in each model. Decreasing current in the uniform current model yields 100 keV electrons accelerated toward the anode and, as for earlier ion computations, provides general agreement with experimental results.
2014-09-01
with approximately 5 × 1018 Si atoms/cm3 to yield a conductive buffer for STM and photoemsission spectroscopy measurements. On some samples a 3 nm ErAs...where S is the Seebeck coefficient, σ is the electrical conductivity , and κ is the thermal conductivity . Here the electronic information is contained... conductivities (κ = κe + κlat). While the electronic component of thermal conductivity κe is inherently tied to electrical conductivity σ via Wiedemann
Quantum radiation reaction in laser-electron-beam collisions.
Blackburn, T G; Ridgers, C P; Kirk, J G; Bell, A R
2014-01-10
It is possible using current high-intensity laser facilities to reach the quantum radiation reaction regime for energetic electrons. An experiment using a wakefield accelerator to drive GeV electrons into a counterpropagating laser pulse would demonstrate the increase in the yield of high-energy photons caused by the stochastic nature of quantum synchrotron emission: we show that a beam of 10(9) 1 GeV electrons colliding with a 30 fs laser pulse of intensity 10(22) W cm(-2) will emit 6300 photons with energy greater than 700 MeV, 60× the number predicted by classical theory.
Tunneling induced electron transfer between separated protons
NASA Astrophysics Data System (ADS)
Vindel-Zandbergen, Patricia; Meier, Christoph; Sola, Ignacio R.
2018-04-01
We study electron transfer between two separated protons using local control theory. In this symmetric system one can favour a slow transfer by biasing the algorithm, achieving high efficiencies for fixed nuclei. The solution can be parametrized using a sequence of a pump followed by a dump pulse that lead to tunneling-induced electron transfer. Finally, we study the effect of the nuclear kinetic energy on the efficiency. Even in the absence of relative motion between the protons, the spreading of the nuclear wave function is enough to reduce the yield of electronic transfer to less than one half.
A new quasi-thermal trap model for solar flare hard X-ray bursts - An electrostatic trap model
NASA Technical Reports Server (NTRS)
Spicer, D. S.; Emslie, A. G.
1988-01-01
A new quasi-thermal trap model of solar flare hard X-ray bursts is presented. The new model utilizes the trapping ability of a magnetic mirror and a magnetic field-aligned electrostatic potential produced by differences in anisotropies of the electron and ion distribution function. It is demonstrated that this potential can, together with the magnetic mirror itself, effectively confine electrons in a trap, thereby enhancing their bremsstrahlung yield per electron. This analysis makes even more untenable models involving precipitation of the bremsstrahlung-producing electrons onto a cold target.
Hernandez-Perez, Augusto C; Caron, Antoine; Collins, Shawn K
2015-11-09
An evaluation of both a visible-light- and UV-light-mediated synthesis of carbazoles from various triarylamines with differing electronic properties under continuous-flow conditions has been conducted. In general, triarylamines bearing electron-rich groups tend to produce higher yields than triarylamines possessing electron-withdrawing groups. The incorporation of nitrogen-based heterocycles, as well as halogen-containing arenes in carbazole skeletons, was well tolerated, and often synthetically useful complementarity was observed between the UV-light and visible-light (photoredox) methods. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Accuracy of electron densities obtained via Koopmans-compliant hybrid functionals
NASA Astrophysics Data System (ADS)
Elmaslmane, A. R.; Wetherell, J.; Hodgson, M. J. P.; McKenna, K. P.; Godby, R. W.
2018-04-01
We evaluate the accuracy of electron densities and quasiparticle energy gaps given by hybrid functionals by directly comparing these to the exact quantities obtained from solving the many-electron Schrödinger equation. We determine the admixture of Hartree-Fock exchange to approximate exchange-correlation in our hybrid functional via one of several physically justified constraints, including the generalized Koopmans' theorem. We find that hybrid functionals yield strikingly accurate electron densities and gaps in both exchange-dominated and correlated systems. We also discuss the role of the screened Fock operator in the success of hybrid functionals.
Chen, Xiao; Yang, Shuang; Zheng, Yi Chu; Chen, Ying; Hou, Yu; Yang, Xiao Hua; Yang, Hua Gui
2015-09-01
A novel multifunctional inverse opal-like TiO 2 electron transport layer (IOT-ETL) is designed to replace the traditional compact layer and mesoporous scaffold layer in perovskite solar cells (PSCs). Improved light harvesting efficiency and charge transporting performance in IOT-ETL based PSCs yield high power conversion efficiency of 13.11%.
ERIC Educational Resources Information Center
Brodhead, Matthew T.; Abel, Emily A.; Al-Dubayan, Monerah N.; Brouwers, Lauren; Abston, Gina Warren; Rispoli, Mandy J.
2016-01-01
We compared the results of a brief electronic pictorial multiple-stimulus without replacement (EP-MSWO) preference assessment to a brief tangible MSWO preference assessment in five children with autism. Results of both assessments yielded a match between high preferred (HP) toys for four participants and low preferred toys for three participants.…
Thermally activated delayed fluorescence of a Zr-based metal–organic framework
Mieno, H.; Kabe, R.; Allendorf, M. D.; ...
2017-12-22
Here, the first metal–organic framework exhibiting thermally activated delayed fluorescence (TADF) was developed. The zirconium-based framework (UiO-68-dpa) uses a newly designed linker composed of a terphenyl backbone, an electron-accepting carboxyl group, and an electron-donating diphenylamine and exhibits green TADF emission with a photoluminescence quantum yield of 30% and high thermal stability.
USDA-ARS?s Scientific Manuscript database
Sprouts have frequently been implicated in outbreaks of foodborne illnesses, mostly due to contaminated seeds. Intervention technologies to decontaminate seeds without affecting sprout yield are needed. In the present study, we compared gamma rays with electron beam in inactivating E. coli artifici...
NASA Astrophysics Data System (ADS)
Hirakawa, Kazutaka; Murata, Atsushi
2018-01-01
Water-soluble porphyrins, diethoxyphosphorus(V)tetraphenylporphyrin (EtP(V)TPP) and its fluorinated analogue (FEtP(V)TPP), decreased the typical absorption around 340 nm of nicotinamide adenine dinucleotide (NADH) under visible light irradiation, indicating oxidative decomposition. A singlet oxygen quencher, sodium azide, and a triplet quencher, potassium iodide, slightly inhibited photosensitized NADH oxidation. However, these inhibitory effects were very small. Furthermore, the fluorescence lifetime of these P(V)porphyrins was decreased by NADH, suggesting the contribution of electron transfer to the singlet excited (S1) state of P(V)porphyrin. The redox potential measurement supports the electron transfer-mediated oxidation of NADH. The quantum yields of NADH photodecomposition by P(V)porphyrins could be estimated from the kinetic data and the effect of these quenchers on NADH oxidation. The obtained values suggest that the electron accepting by the S1 states of P(V)porphyrins triggers a chain reaction of NADH oxidation. This photosensitized reaction may play an important role in the photocytotoxicity of P(V)porphyrins. The axial ligand fluorination of P(V)porphyrins improved electron accepting ability. However, fluorination slightly suppressed static interaction with NADH, resulting in decreased oxidation quantum yield.
Yamaji, Minoru; Hakoda, Yuma; Okamoto, Hideki; Tani, Fumito
2017-04-12
We prepared a variety of coumarin derivatives having expanded π-electron systems along the direction crossing the C 3 -C 4 bond of the coumarin skeleton via a photochemical cyclization process and investigated their photophysical features as a function of the number (n) of the added benzene rings based on emission and transient absorption measurements. Upon increasing n, the fluorescence quantum yields of the π-extended coumarins increased. Expanding the π-electron system on the C 3 -C 4 bond of the coumarin skeleton was found to be efficient for increasing the fluorescence ability more than that on the C 7 -C 8 bond. Introducing the methoxy group at the 7-position was also efficient for enhancing the fluorescence quantum yield and rate of the expanded coumarins. The non-radiative process from the fluorescence state was not substantially influenced by the expanded π-electron system. The competitive process with the fluorescence was found to be intersystem crossing to the triplet state based on the observations of the triplet-triplet absorption. The effects of the expanded π-electron systems on the fluorescence ability were investigated with the aid of TD-DFT calculations.
Pina, João; de Melo, J Seixas; Breusov, D; Scherf, Ullrich
2013-09-28
A comprehensive spectral and photophysical investigation of four donor-acceptor-donor (DAD) oligomers consisting of electron-deficient 2,1,3-benzothiadiazole or quinoxaline moieties linked to electron-rich thienyl or bithienyl units has been undertaken. Additionally, a bis(dithienyl) substituted naphthalene was also investigated. The D-A-D nature of these oligomers resulted in the presence of an intramolecular charge transfer (ICT) state, which was further substantiated by solvatochromism studies (analysis with the Lippert-Mataga formalism). Hereby, significant differences have been obtained for the fluorescence quantum yields of the oligomers in the non-polar solvent methylcyclohexane vs. the polar ethanol. The study was further complemented with the determination of the optimized ground-state molecular geometries for the oligomers together with the prediction of the lowest vertical one-electron excitation energy and the relevant molecular orbital contours using DFT calculations. The electronic transitions show a clear HOMO to LUMO charge-transfer character. In contrast to the thiophene oligomers (the oligothiophenes with n = 1-7), where the intersystem crossing (ISC) yield decreases with n, the studied DAD oligomers were found to show an increase in the ISC efficiency with the number of (donor) thienyl units.
Arc-evaporated carbon films: Optical properties and electron mean free paths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arakawa, E.T.; Dolfini, S.M.; Ashley, J.C.
1985-06-15
The real and imaginary parts of the complex refractive index, n(..omega..) = n(..omega..)+ik(..omega..), of arc-evaporated carbon films have been obtained over the range of photon energies h..omega.. from 0.5 to 62.0 eV. Values of k(..omega..) obtained from transmission measurements in this energy range were combined with values of k(..omega..) from the literature in the infrared and soft-x-ray regions. A Kramers-Kronig analysis then yielded the values of n(..omega..). The density of the arc-evaporated carbon films was found to be 1.90 +- 0.05 g cm/sup -3/ by the ''sink-float'' method, and their thicknesses were determined optically. A sum-rule calculation yielded the effectivemore » numbers of valence and core electrons to be 4.2 and 1.8, respectively. The experimental values determined for n(..omega..) have been used to estimate values of the inelastic mean free path ..lambda..(E) for electrons of energy E from 200 to 3000 eV in amorphous carbon. Good agreement is found between ..lambda..(E) and experimentally determined values of electron attenuation length L(E) from the literature.« less
Transport of secondary electrons and reactive species in ion tracks
NASA Astrophysics Data System (ADS)
Surdutovich, Eugene; Solov'yov, Andrey V.
2015-08-01
The transport of reactive species brought about by ions traversing tissue-like medium is analysed analytically. Secondary electrons ejected by ions are capable of ionizing other molecules; the transport of these generations of electrons is studied using the random walk approximation until these electrons remain ballistic. Then, the distribution of solvated electrons produced as a result of interaction of low-energy electrons with water molecules is obtained. The radial distribution of energy loss by ions and secondary electrons to the medium yields the initial radial dose distribution, which can be used as initial conditions for the predicted shock waves. The formation, diffusion, and chemical evolution of hydroxyl radicals in liquid water are studied as well. COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Gareth O.; Künzel, S.; Daboussi, S.
We present measurements of photon absorption by free electrons as a solid is transformed to plasma. A femtosecond x-ray free-electron laser is used to heat a solid, which separates the electron and ion heating time scales. The changes in absorption are measured with an independent probe pulse created through high-order-harmonic generation. We find an increase in electron temperature to have a relatively small impact on absorption, contrary to several predictions, whereas ion heating increases absorption. Here, we compare the data to current theoretical and numerical approaches and find that a smoother electronic structure yields a better fit to the data,more » suggestive of a temperature-dependent electronic structure in warm dense matter.« less
Williams, Gareth O.; Künzel, S.; Daboussi, S.; ...
2018-02-14
We present measurements of photon absorption by free electrons as a solid is transformed to plasma. A femtosecond x-ray free-electron laser is used to heat a solid, which separates the electron and ion heating time scales. The changes in absorption are measured with an independent probe pulse created through high-order-harmonic generation. We find an increase in electron temperature to have a relatively small impact on absorption, contrary to several predictions, whereas ion heating increases absorption. Here, we compare the data to current theoretical and numerical approaches and find that a smoother electronic structure yields a better fit to the data,more » suggestive of a temperature-dependent electronic structure in warm dense matter.« less
Pickett, Tom E; Roca, Francesc X; Richards, Christopher J
2003-04-04
Racemic and enantiopure ((p)()S)-1-bromo-2-methylferrocene 6 were synthesized in 4 steps from 2-(4,4-dimethyloxazolinyl)ferrocene and (S)-2-(4-methylethyloxazolinyl)ferrocene, respectively (46 and 81% overall yield). Bromolithium exchange and addition of ClPR(2) gave the corresponding racemic or enantiopure 2-methylferrocenyl phosphine ligands 2-MeFcPR(2) 11 (R = Ph), 12 (R = Cy), and 13 (R = (t)Bu) in 28-93% yield. Use of PCl(3) gave the C(3)-symmetric phosphine (2-MeFc)(3)P 5 from ((p)()S)-6(72% yield) but racemic 6 did not lead to the formation of triferrocenyl phosphines. Combination of 5 and Pd(2)(dba)(3) gave an active catalyst for the Suzuki reaction of aryl chlorides, for example, 4-chlorotoluene and phenylboronic acid reacted at only 60 degrees C in dioxane (86% yield). Other examples are reported together with the use of 12 in this same protocol. From the X-ray crystal structure of 5 the cone angle was determined as 211 degrees. With this, and the electronic character of 11, 12, and other phosphines (derived from nu(CO) of trans-[(R(3)P)(2)Rh(CO)Cl]), an analysis is made of the steric and electronic influences on ligand activity in the Suzuki reaction.
Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements.
Ko, Heung Cho; Shin, Gunchul; Wang, Shuodao; Stoykovich, Mark P; Lee, Jeong Won; Kim, Dong-Hun; Ha, Jeong Sook; Huang, Yonggang; Hwang, Keh-Chih; Rogers, John A
2009-12-01
Materials and methods to achieve electronics intimately integrated on the surfaces of substrates with complex, curvilinear shapes are described. The approach exploits silicon membranes in circuit mesh structures that can be deformed in controlled ways using thin, elastomeric films. Experimental and theoretical studies of the micromechanics of such curvilinear electronics demonstrate the underlying concepts. Electrical measurements illustrate the high yields that can be obtained. The results represent significant experimental and theoretical advances over recently reported concepts for creating hemispherical photodetectors in electronic eye cameras and for using printable silicon nanoribbons/membranes in flexible electronics. The results might provide practical routes to the integration of high performance electronics with biological tissues and other systems of interest for new applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xiao; Zhang, Bingsen; Li, Chuang
Graphical abstract: Nanostructured nickel silicides have been synthesized by reduction and silification of high-surface-area nickel oxide, and exhibited remarkably like-noble metal property, lower electric resistivity, and ferromagnetism at room temperature. Highlights: Black-Right-Pointing-Pointer NiSi{sub x} have been prepared by reduction and silification of high-surface-area NiO. Black-Right-Pointing-Pointer The structure of nickel silicides changed with increasing reaction temperature. Black-Right-Pointing-Pointer Si doping into nickel changed the magnetic properties of metallic nickel. Black-Right-Pointing-Pointer NiSi{sub x} have remarkably lower electric resistivity and like-noble metal property. -- Abstract: Nanostructured nickel silicides have been prepared by reduction and silicification of high-surface-area nickel oxide (145 m{sup 2} g{sup -1})more » produced via precipitation. The prepared materials were characterized by nitrogen adsorption, X-ray diffraction, thermal analysis, FT-IR spectroscopy, scanning electron microscopy, transmission electron microscopy, magnetic and electrochemical measurements. The nickel silicide formation involves the following sequence: NiO (cubic) {yields} Ni (cubic) {yields} Ni{sub 2}Si (orthorhombic) {yields} NiSi (orthorhombic) {yields} NiSi{sub 2} (cubic), with particles growing from 13.7 to 21.3 nm. The nickel silicides are ferromagnetic at room temperature, and their saturation magnetization values change drastically with the increase of Si content. Nickel silicides have remarkably low electrical resistivity and noble metal-like properties because of a constriction of the Ni d band and an increase of the electronic density of states. The results suggest that such silicides are promising candidates as inexpensive yet functional materials for applications in electrochemistry as well as catalysis.« less
Protein-induced Photophysical Changes to the Amyloid Indicator Dye Thioflavin T
DOE Office of Scientific and Technical Information (OSTI.GOV)
L Wolfe; M Calabrese; A Nath
2011-12-31
The small molecule thioflavin T (ThT) is a defining probe for the identification and mechanistic study of amyloid fiber formation. As such, ThT is fundamental to investigations of serious diseases such as Alzheimer's disease, Parkinson disease, and type II diabetes. For each disease, a different protein undergoes conformational conversion to a {beta}-sheet rich fiber. The fluorescence of ThT exhibits an increase in quantum yield upon binding these fibers. Despite its widespread use, the structural basis for binding specificity and for the changes to the photophysical properties of ThT remain poorly understood. Here, we report the co-crystal structures of ThT withmore » two alternative states of {beta}-2 microglobulin ({beta}2m); one monomeric, the other an amyloid-like oligomer. In the latter, the dye intercalates between {beta}-sheets orthogonal to the {beta}-strands. Importantly, the fluorophore is bound in such a manner that a photophysically relevant torsion is limited to a range of angles generally associated with low, not high, quantum yield. Quantum mechanical assessment of the fluorophore shows the electronic distribution to be strongly stabilized by aromatic interactions with the protein. Monomeric {beta}2m gives little increase in ThT fluorescence despite showing three fluorophores, at two binding sites, in configurations generally associated with high quantum yield. Our efforts fundamentally extend existing understanding about the origins of amyloid-induced photophysical changes. Specifically, the {beta}-sheet interface that characterizes amyloid acts both sterically and electronically to stabilize the fluorophore's ground state electronic distribution. By preventing the fluorophore from adopting its preferred excited state configuration, nonradiative relaxation pathways are minimized and quantum yield is increased.« less
Protein-induced photophysical changes to the amyloid indicator dye thioflavin T
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfe, Leslie S.; Calabrese, Matthew F.; Nath, Abhinav
2010-10-04
The small molecule thioflavin T (ThT) is a defining probe for the identification and mechanistic study of amyloid fiber formation. As such, ThT is fundamental to investigations of serious diseases such as Alzheimer's disease, Parkinson disease, and type II diabetes. For each disease, a different protein undergoes conformational conversion to a {beta}-sheet rich fiber. The fluorescence of ThT exhibits an increase in quantum yield upon binding these fibers. Despite its widespread use, the structural basis for binding specificity and for the changes to the photophysical properties of ThT remain poorly understood. Here, we report the co-crystal structures of ThT withmore » two alternative states of {beta}-2 microglobulin ({beta}2m); one monomeric, the other an amyloid-like oligomer. In the latter, the dye intercalates between {beta}-sheets orthogonal to the {beta}-strands. Importantly, the fluorophore is bound in such a manner that a photophysically relevant torsion is limited to a range of angles generally associated with low, not high, quantum yield. Quantum mechanical assessment of the fluorophore shows the electronic distribution to be strongly stabilized by aromatic interactions with the protein. Monomeric {beta}2m gives little increase in ThT fluorescence despite showing three fluorophores, at two binding sites, in configurations generally associated with high quantum yield. Our efforts fundamentally extend existing understanding about the origins of amyloid-induced photophysical changes. Specifically, the {beta}-sheet interface that characterizes amyloid acts both sterically and electronically to stabilize the fluorophore's ground state electronic distribution. By preventing the fluorophore from adopting its preferred excited state configuration, nonradiative relaxation pathways are minimized and quantum yield is increased.« less
Measuring the ionization balance of gold in a low-density plasma of importance to ICF
DOE Office of Scientific and Technical Information (OSTI.GOV)
May, M; Beiersdorfer, P; Schneider, M
Charge state distributions (CSDs) have been determined in low density ({approx}10 {sup 12} cm{sup -3}) gold plasmas having either a monoenergetic beam (E{sub Beam} = 2.66, 3.53 and 4.54 keV) or experimentally simulated thermal electron distributions (T{sub e} = 2.0, 2.5 and 3.0 keV). These plasmas were created in the Livermore electron beam ion traps EBIT-I and EBIT-II. Line emission and radiative recombination features of Ni to Kr-like gold ions were recorded in the x-ray region with a crystal spectrometer and a photometrically calibrated microcalorimeter. The CSDs in the experimentally simulated thermal plasmas were inferred by fitting the observed 4f{yields}3dmore » and 5f{yields}3d lines with synthetic spectra from the Hebrew University Lawrence Livermore Atomic Code (HULLAC). Additionally, the CSDs in the beam plasmas were inferred both from fitting the line emission and fitting the radiative recombination emission to calculations from the General Relativistic Atomic Structure Program (GRASP). Despite the relatively simple atomic physics in the low density plasma, differences existed between the experimental CSDs and the simulations from several available codes (e.g. RIGEL). Our experimental CSD relied upon accurate electron impact cross sections provided by HULLAC. To determine their reliability, we have experimentally determined the cross sections for several of the n=3{yields}4 and n=3{yields}5 excitations in Ni to Ga-like Au and compared them to distorted wave calculations. Recent Au spectra recorded during experiments at the HELEN laser facility are presented and compared with those from EBIT-I and EBIT-II.« less
Measuring the Ionization Balance of Gold in a Low-Density Plasma of Importance to ICF
DOE Office of Scientific and Technical Information (OSTI.GOV)
May, M.J.; Beiersdorfer, P.; Schneider, M.
Charge state distributions (CSDs) have been determined in low density ({approx_equal}1012 cm-3) gold plasmas having either a monoenergetic beam (EBeam = 2.66, 3.53 and 4.54 keV) or experimentally simulated thermal electron distributions (Te = 2.0, 2.5 and 3.0 keV). These plasmas were created in the Livermore electron beam ion traps EBIT-I and EBIT-II. Line emission and radiative recombination features of Ni to Kr-like gold ions were recorded in the x-ray region with a crystal spectrometer and a photometrically calibrated microcalorimeter. The CSDs in the experimentally simulated thermal plasmas were inferred by fitting the observed 4f{yields}3d and 5f{yields}3d lines with syntheticmore » spectra from the Hebrew University Lawrence Livermore Atomic Code (HULLAC). Additionally, the CSDs in the beam plasmas were inferred both from fitting the line emission and fitting the radiative recombination emission to calculations from the General Relativistic Atomic Structure Program (GRASP). Despite the relatively simple atomic physics in the low density plasma, differences existed between the experimental CSDs and the simulations from several available codes (e.g. RIGEL). Our experimental CSD relied upon accurate electron impact cross sections provided by HULLAC. To determine their reliability, we have experimentally determined the cross sections for several of the n=3{yields}4 and n=3{yields}5 excitations in Ni to Ga-like Au and compared them to distorted wave calculations. Recent Au spectra recorded during experiments at the HELEN laser facility are presented and compared with those from EBIT-I and EB0011IT-.« less
Leto, Domenick F; Chattopadhyay, Swarup; Day, Victor W; Jackson, Timothy A
2013-09-28
Herein we describe the chemical reactivity of the mononuclear [Mn(II)(N4py)(OTf)](OTf) (1) complex with hydrogen peroxide and superoxide. Treatment of 1 with one equivalent superoxide at -40 °C in MeCN formed the peroxomanganese(III) adduct, [Mn(III)(O2)(N4py)](+) (2) in ~30% yield. Complex 2 decayed over time and the formation of the bis(μ-oxo)dimanganese(III,IV) complex, [Mn(III)Mn(IV)(μ-O)2(N4py)2](3+) (3) was observed. When 2 was formed in higher yields (~60%) using excess superoxide, the [Mn(III)(O2)(N4py)](+) species thermally decayed to Mn(II) species and 3 was formed in no greater than 10% yield. Treatment of [Mn(III)(O2)(N4py)](+) with 1 resulted in the formation of 3 in ~90% yield, relative to the concentration of [Mn(III)(O2)(N4py)](+). This reaction mimics the observed chemistry of Mn-ribonucleotide reductase, as it features the conversion of two Mn(II) species to an oxo-bridged Mn(III)Mn(IV) compound using O2(-) as oxidant. Complex 3 was independently prepared through treatment of 1 with H2O2 and base at -40 °C. The geometric and electronic structures of 3 were probed using electronic absorption, electron paramagnetic resonance (EPR), magnetic circular dichroism (MCD), variable-temperature, variable-field MCD (VTVH-MCD), and X-ray absorption (XAS) spectroscopies. Complex 3 was structurally characterized by X-ray diffraction (XRD), which revealed the N4py ligand bound in an unusual tetradentate fashion.
Petruk, Ariel A.; Bartesaghi, Silvina; Trujillo, Madia; Estrin, Darío A.; Murgida, Daniel; Kalyanaraman, Balaraman; Marti, Marcelo A.; Radi, Rafael
2012-01-01
Experimental studies in hemeproteins and model Tyr/Cys-containing peptides exposed to oxidizing and nitrating species suggest that intramolecular electron transfer (IET) between tyrosyl radicals (Tyr-O●) and Cys residues controls oxidative modification yields. The molecular basis of this IET process is not sufficiently understood with structural atomic detail. Herein, we analyzed using molecular dynamics and quantum mechanics-based computational calculations, mechanistic possibilities for the radical transfer reaction in Tyr/Cys-containing peptides in solution and correlated them with existing experimental data. Our results support that Tyr-O● to Cys radical transfer is mediated by an acid/base equilibrium that involves deprotonation of Cys to form the thiolate, followed by a likely rate-limiting transfer process to yield cysteinyl radical and a Tyr phenolate; proton uptake by Tyr completes the reaction. Both, the pKa values of the Tyr phenol and Cys thiol groups and the energetic and kinetics of the reversible IET are revealed as key physico-chemical factors. The proposed mechanism constitutes a case of sequential, acid/base equilibrium-dependent and solvent-mediated, proton-coupled electron transfer and explains the dependency of oxidative yields in Tyr/Cys peptides as a function of the number of alanine spacers. These findings contribute to explain oxidative modifications in proteins that contain sequence and/or spatially close Tyr-Cys residues. PMID:22640642
Shuman, Nicholas S; Miller, Thomas M; Viggiano, Albert A; Troe, Jürgen
2013-05-28
Thermal rate constants and product branching fractions for electron attachment to CF3Br and the CF3 radical have been measured over the temperature range 300-890 K, the upper limit being restricted by thermal decomposition of CF3Br. Both measurements were made in Flowing Afterglow Langmuir Probe apparatuses; the CF3Br measurement was made using standard techniques, and the CF3 measurement using the Variable Electron and Neutral Density Attachment Mass Spectrometry technique. Attachment to CF3Br proceeds exclusively by the dissociative channel yielding Br(-), with a rate constant increasing from 1.1 × 10(-8) cm(3) s(-1) at 300 K to 5.3 × 10(-8) cm(3) s(-1) at 890 K, somewhat lower than previous data at temperatures up to 777 K. CF3 attachment proceeds through competition between associative attachment yielding CF3 (-) and dissociative attachment yielding F(-). Prior data up to 600 K showed the rate constant monotonically increasing, with the partial rate constant of the dissociative channel following Arrhenius behavior; however, extrapolation of the data using a recently proposed kinetic modeling approach predicted the rate constant to turn over at higher temperatures, despite being only ~5% of the collision rate. The current data agree well with the previous kinetic modeling extrapolation, providing a demonstration of the predictive capabilities of the approach.
Tripathi, Pranav K; Durbach, Shane; Coville, Neil J
2017-09-22
The disposal of non-biodegradable plastic waste without further upgrading/downgrading is not environmentally acceptable and many methods to overcome the problem have been proposed. Herein we indicate a simple method to make high-value nanomaterials from plastic waste as a partial solution to the environmental problem. Laboratory-based waste centrifuge tubes made of polypropylene were chosen as a carbon source to show the process principle. In the process, multi-walled carbon nanotubes (MWCNTs) were synthesized from plastic waste in a two-stage stainless steel 316 (SS 316) metal tube that acted as both reactor vessel and catalyst. The steel reactor contains Fe (and Ni, and various alloys), which act as the catalyst for the carbon conversion process. The reaction and products were studied using electron probe microanalysis, thermogravimetric analysis, Raman spectroscopy and transmission electron microscopy and scanning electron microscopy. Optimization studies to determine the effect of different parameters on the process showed that the highest yield and most graphitized MWCNTs were formed at 900 °C under the reaction conditions used (yield 42%; Raman I D / I G ratio = 0.48). The high quality and high yield of the MWCNTs that were produced in a flow reactor from plastic waste using a two stage SS 316 chemical vapor deposition (CVD) furnace did not require the use of an added catalyst.
Durbach, Shane
2017-01-01
The disposal of non-biodegradable plastic waste without further upgrading/downgrading is not environmentally acceptable and many methods to overcome the problem have been proposed. Herein we indicate a simple method to make high-value nanomaterials from plastic waste as a partial solution to the environmental problem. Laboratory-based waste centrifuge tubes made of polypropylene were chosen as a carbon source to show the process principle. In the process, multi-walled carbon nanotubes (MWCNTs) were synthesized from plastic waste in a two-stage stainless steel 316 (SS 316) metal tube that acted as both reactor vessel and catalyst. The steel reactor contains Fe (and Ni, and various alloys), which act as the catalyst for the carbon conversion process. The reaction and products were studied using electron probe microanalysis, thermogravimetric analysis, Raman spectroscopy and transmission electron microscopy and scanning electron microscopy. Optimization studies to determine the effect of different parameters on the process showed that the highest yield and most graphitized MWCNTs were formed at 900 °C under the reaction conditions used (yield 42%; Raman ID/IG ratio = 0.48). The high quality and high yield of the MWCNTs that were produced in a flow reactor from plastic waste using a two stage SS 316 chemical vapor deposition (CVD) furnace did not require the use of an added catalyst. PMID:28937596
2015-01-01
The iron(IV) nitrido complex PhB(MesIm)3Fe≡N reacts with 1,3-cyclohexadiene to yield the iron(II) pyrrolide complex PhB(MesIm)3Fe(η5-C4H4N) in high yield. The mechanism of product formation is proposed to involve sequential [4 + 1] cycloaddition and retro Diels–Alder reactions. Surprisingly, reaction with 1,4-cyclohexadiene yields the same iron-containing product, albeit in substantially lower yield. The proposed reaction mechanism, supported by electronic structure calculations, involves hydrogen-atom abstraction from 1,4-cyclohexadiene to provide the cyclohexadienyl radical. This radical is an intermediate in substrate isomerization to 1,3-cyclohexadiene, leading to formation of the pyrrolide product. PMID:25068927
Acid proliferation to improve the sensitivity of EUV resists: a pulse radiolysis study
NASA Astrophysics Data System (ADS)
Enomoto, Kazuyuki; Arimitsu, Koji; Yoshizawa, Atsutaro; Yamamoto, Hiroki; Oshima, Akihiro; Kozawa, Takahiro; Tagawa, Seiichi
2011-04-01
The yields of acid have been measured in the electron-beam irradiation of triphenylsulfonium triflate (TPS-Tf) and pinanediol monosulfonates, which consist of tosylate (PiTs), 4-fluorobenzenesulfonate (Pi1F), or 4-trifluoromethylbenzenesulfonate (Pi3F), as an acid amplifier blended in 4-hydroxystyrene matrixes. The acid yields efficiency decreases when PiTs is present, while its efficiency increases in the presence of Pi3F. Reactions of the electrons with TPS-Tf and pinanediol monosulfonates have been studied using pulse radiolysis in liquid tetrahydrofuran (THF) to evaluate the kinetic contributions to acid production. The THF-solvated electrons react with PiTs, Pi1F, and Pi3F to produce the corresponding radical anions; the rate constants are estimated to be 4.1, 5.1, and 9.2 × 1010 M-1 s-1, respectively. Electron transfer from PiTs•-, Pi1F•-, and Pi3F•- radical anions to TPS-Tf occurs with the rate constants of 5.7×1010, 1.2×1011, and 6.3 × 1010 M-1 s-1, respectively. The long-lived Pi3F•- efficiently undergoes the electron transfer to TPS-Tf to form the TPS-Tf•-, which subsequently decompose to generate TfOH. On the other hand, the decay channels of PiTs•- and Pi1F•-, which possess a relatively short lifetime, are presumably dependent on its reactions with solvated protons (charge recombination) rather than the electron transfer to TPS-Tf. The novel acid production pathway via the electron transfer from pinanediol monosulfonate radical anions to TPS-Tf is presented.
Fluorescence and phosphorescence of photomultiplier window materials under electron irradiation
NASA Technical Reports Server (NTRS)
Viehmann, W.; Eubanks, A. G.; Bredekamp, J. H.
1974-01-01
The fluorescence and phosphorescence of photomultiplier window materials under electron irradiation were investigated using a Sr-90/Y-90 beta emitter as the electron source. Spectral emission curves of UV grade, optical grade, and electron-irradiated samples of MGF2 and LiF, CaF2, BaF2, sapphire, fused silica, and UV transmitting glasses were obtained over the spectral range of 200 nm to 650 nm. Fluorescence yields, expressed as the number of counts in a solid angle of 2 pi steradian per 1MeV of incident electron energy deposited, were determined on these materials utilizing photomultiplier tubes with cesium telluride, bialkali, and trialkali (S-20) photocathodes, respectively.
Anaerobic Benzene Oxidation by Geobacter Species
Bain, Timothy S.; Nevin, Kelly P.; Barlett, Melissa A.; Lovley, Derek R.
2012-01-01
The abundance of Geobacter species in contaminated aquifers in which benzene is anaerobically degraded has led to the suggestion that some Geobacter species might be capable of anaerobic benzene degradation, but this has never been documented. A strain of Geobacter, designated strain Ben, was isolated from sediments from the Fe(III)-reducing zone of a petroleum-contaminated aquifer in which there was significant capacity for anaerobic benzene oxidation. Strain Ben grew in a medium with benzene as the sole electron donor and Fe(III) oxide as the sole electron acceptor. Furthermore, additional evaluation of Geobacter metallireducens demonstrated that it could also grow in benzene-Fe(III) medium. In both strain Ben and G. metallireducens the stoichiometry of benzene metabolism and Fe(III) reduction was consistent with the oxidation of benzene to carbon dioxide with Fe(III) serving as the sole electron acceptor. With benzene as the electron donor, and Fe(III) oxide (strain Ben) or Fe(III) citrate (G. metallireducens) as the electron acceptor, the cell yields of strain Ben and G. metallireducens were 3.2 × 109 and 8.4 × 109 cells/mmol of Fe(III) reduced, respectively. Strain Ben also oxidized benzene with anthraquinone-2,6-disulfonate (AQDS) as the sole electron acceptor with cell yields of 5.9 × 109 cells/mmol of AQDS reduced. Strain Ben serves as model organism for the study of anaerobic benzene metabolism in petroleum-contaminated aquifers, and G. metallireducens is the first anaerobic benzene-degrading organism that can be genetically manipulated. PMID:23001648
Magnetic, electronic, dielectric and optical properties of Pr(Ca:Sr)MnO 3
NASA Astrophysics Data System (ADS)
Sichelschmidt, J.; Paraskevopoulos, M.; Brando, M.; Wehn, R.; Ivannikov, D.; Mayr, F.; Pucher, K.; Hemberger, J.; Pimenov, A.; Krug von Nidda, H.-A.; Lunkenheimer, P.; Ivanov, V. Yu.; Mukhin, A. A.; Balbashov, A. M.; Loidl, A.
2001-03-01
The charge-ordered perovskite Pr0.65Ca0.28Sr0.07MnO3 was investigated by means of magnetic susceptibility, specific heat, dielectric and optical spectroscopy and electron-spin resonance techniques. Under moderate magnetic fields, the charge order melts yielding colossal magnetoresistance effects with changes of the resistivity over eleven orders of magnitude. The optical conductivity is studied from audio frequencies far into the visible spectral regime. Below the phonon modes hopping conductivity is detected. Beyond the phonon modes the optical conductivity is explained by polaronic excitations out of a bound state. ESR techniques yield detailed informations on the (H,T ) phase diagram and reveal a broadening of the linewidth which can be modeled in terms of activated polaron hopping.
Boll, Rose Ann; Matos, Milan; Torrico, Matthew N.
2015-03-27
Electrodeposition is a technique that is routinely employed in nuclear research for the preparation of thin solid films of actinide materials which can be used in accelerator beam bombardments, irradiation studies, or as radioactive sources. The present study investigates the deposition of both lanthanides and actinides from an aqueous ammonium acetate electrolyte matrix. Electrodepositions were performed primarily on stainless steel disks; with yield analysis evaluated using -spectroscopy. Experimental parameters were studied and modified in order to optimize the uniformity and adherence of the deposition while maximizing the yield. The initial development utilized samarium as the plating material, with and withoutmore » a radioactive tracer. As a result, surface characterization studies were performed by scanning electron microscopy, electron microprobe analysis, radiographic imaging, and x-ray diffraction.« less
Lahue, Brian R; Lo, Sie-Mun; Wan, Zhao-Kui; Woo, Grace H C; Snyder, John K
2004-10-15
The intramolecular inverse-electron-demand Diels-Alder reaction between imidazoles and 1,2,4-triazines linked by a trimethylene tether from the imidazole N1 position to the triazine C3 proceed in excellent yields to produce 1,2,3,4-tetrahydro-1,5-naphthyridines. The reaction proceeds by a cycloaddition with subsequent loss of nitrogen, followed by a presumed stepwise loss of a nitrile. The analogous intramolecular cycloadditions employing a tetramethylene tether also proceeded to give 2,3,4,5-tetrahydro-1H-pyrido[3,2-b]azepines in acceptable yields. The reaction to produce the tetrahydro-1,5-naphthyridines can also be promoted with microwave irradiation.
NASA Astrophysics Data System (ADS)
Naftel, S. J.; Coulthard, I.; Sham, T. K.; Xu, D.-X.; Erickson, L.; Das, S. R.
1999-05-01
We report a Ni and Si L3,2-edge x-ray absorption near edge structures (XANES) study of nickel-silicon interaction in submicron (0.15 and 0.2 μm) lines on a n-Si(100) wafer as well as a series of well characterized Ni-Si blanket films. XANES measurements recorded in both total electron yield and soft x-ray fluorescence yield indicate that under the selected silicidation conditions, the more desirable low resistivity phase, NiSi, is indeed the dominant phase in the subhalf-micron lines although the formation of this phase is less complete as the line becomes narrower and this is accompanied by a Ni rich surface.
Second derivatives for approximate spin projection methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Lee M.; Hratchian, Hrant P., E-mail: hhratchian@ucmerced.edu
2015-02-07
The use of broken-symmetry electronic structure methods is required in order to obtain correct behavior of electronically strained open-shell systems, such as transition states, biradicals, and transition metals. This approach often has issues with spin contamination, which can lead to significant errors in predicted energies, geometries, and properties. Approximate projection schemes are able to correct for spin contamination and can often yield improved results. To fully make use of these methods and to carry out exploration of the potential energy surface, it is desirable to develop an efficient second energy derivative theory. In this paper, we formulate the analytical secondmore » derivatives for the Yamaguchi approximate projection scheme, building on recent work that has yielded an efficient implementation of the analytical first derivatives.« less
Electron response of some low-Z scintillators in wide energy range
NASA Astrophysics Data System (ADS)
Swiderski, L.; Marcinkowski, R.; Moszynski, M.; Czarnacki, W.; Szawlowski, M.; Szczesniak, T.; Pausch, G.; Plettner, C.; Roemer, K.
2012-06-01
Light yield nonproportionality and the intrinsic resolution of some low atomic number scintillators were studied by means of the Wide Angle Compton Coincidence (WACC) technique. The plastic and liquid scintillator response to Compton electrons was measured in the energy range of 10 keV up to 4 MeV, whereas a CaF2:Eu sample was scanned from 3 keV up to 1 MeV. The nonproportionality of the CaF2:Eu light yield has characteristics typical for inorganic scintillators of the multivalent halides group, whereas tested organic scintillators show steeply increasing nonproportionality without saturation point. This is in contrast to the behavior of all known inorganic scintillators having their nonproportionality curves at saturation above energies between tens and several hundred keV.
Atomic and electronic structures of BaHfO3-doped TFA-MOD-derived YBa2Cu3O7-δ thin films
NASA Astrophysics Data System (ADS)
Molina-Luna, Leopoldo; Duerrschnabel, Michael; Turner, Stuart; Erbe, Manuela; Martinez, Gerardo T.; Van Aert, Sandra; Holzapfel, Bernhard; Van Tendeloo, Gustaaf
2015-11-01
Tailoring the properties of oxide-based nanocomposites is of great importance for a wide range of materials relevant for energy technology. YBa2Cu3O7-δ (YBCO) superconducting thin films containing nanosized BaHfO3 (BHO) particles yield a significant improvement of the magnetic flux pinning properties and a reduced anisotropy of the critical current density. These films were prepared by chemical solution deposition (CSD) on (100) SrTiO3 (STO) substrates yielding critical current densities up to 3.6 MA cm-2 at 77 K and self-field. Transport in-field J c measurements demonstrated a high pinning force maximum of around 6 GN/m3 for a sample annealed at T = 760 °C that has a doping of 12 mol% of BHO. This sample was investigated by scanning transmission electron microscopy (STEM) in combination with electron energy-loss spectroscopy (EELS) yielding strain and spectral maps. Spherical BHO nanoparticles of 15 nm in size were found in the matrix, whereas the particles at the interface were flat. A 2 nm diffusion layer containing Ti was found at the YBCO (BHO)/STO interface. Local lattice deformation mapping at the atomic scale revealed crystal defects induced by the presence of both sorts of BHO nanoparticles, which can act as pinning centers for magnetic flux lines. Two types of local lattice defects were identified and imaged: (i) misfit edge dislocations and (ii) Ba-Cu-Cu-Ba stacking faults (Y-248 intergrowths). The local electronic structure and charge transfer were probed by high energy resolution monochromated electron energy-loss spectroscopy. This technique made it possible to distinguish superconducting from non-superconducting areas in nanocomposite samples with atomic resolution in real space, allowing the identification of local pinning sites on the order of the coherence length of YBCO (˜1.5 nm) and the determination of 0.25 nm dislocation cores.
Nagarajan, Kalaivanan; Mallia, Ajith R.; Muraleedharan, Keerthi
2017-01-01
We describe the design, bottom-up synthesis and X-ray single crystal structure of systematically twisted aromatics 1c and 2d for efficient intersystem crossing. Steric congestion at the cove region creates a nonplanar geometry that induces a significant yield of triplet excited states in the electron-poor core-twisted aromatics 1c and 2d. A systematic increase in the number of twisted regions in 1c and 2d results in a concomitant enhancement in the rate and yield of intersystem crossing, monitored using femtosecond and nanosecond transient absorption spectroscopy. Time-resolved absorption spectroscopic measurements display enhanced triplet quantum yields (Φ T = 10 ± 1% for 1c and Φ T = 30 ± 2% for 2d) in the twisted aromatics when compared to a negligible Φ T (<1%) in the planar analog 3c. Twist-induced spin–orbit coupling via activated out-of-plane C–H/C 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 C vibrations can facilitate the formation of triplet excited states in twisted aromatics 1c and 2d, in contrast to the negligible intersystem crossing in the planar analog 3c. The ease of synthesis, high solubility, access to triplet excited states and strong electron affinity make such imide functionalized core-twisted aromatics desirable materials for organic electronics such as solar cells. PMID:28694952
Highly conductive and pure gold nanostructures grown by electron beam induced deposition
Shawrav, Mostafa M.; Taus, Philipp; Wanzenboeck, Heinz D.; Schinnerl, M.; Stöger-Pollach, M.; Schwarz, S.; Steiger-Thirsfeld, A.; Bertagnolli, Emmerich
2016-01-01
This work introduces an additive direct-write nanofabrication technique for producing extremely conductive gold nanostructures from a commercial metalorganic precursor. Gold content of 91 atomic % (at. %) was achieved by using water as an oxidative enhancer during direct-write deposition. A model was developed based on the deposition rate and the chemical composition, and it explains the surface processes that lead to the increases in gold purity and deposition yield. Co-injection of an oxidative enhancer enabled Focused Electron Beam Induced Deposition (FEBID)—a maskless, resistless deposition method for three dimensional (3D) nanostructures—to directly yield pure gold in a single process step, without post-deposition purification. Gold nanowires displayed resistivity down to 8.8 μΩ cm. This is the highest conductivity achieved so far from FEBID and it opens the possibility of applications in nanoelectronics, such as direct-write contacts to nanomaterials. The increased gold deposition yield and the ultralow carbon level will facilitate future applications such as the fabrication of 3D nanostructures in nanoplasmonics and biomolecule immobilization. PMID:27666531
Fully kinetic simulations of dense plasma focus Z-pinch devices.
Schmidt, A; Tang, V; Welch, D
2012-11-16
Dense plasma focus Z-pinch devices are sources of copious high energy electrons and ions, x rays, and neutrons. The mechanisms through which these physically simple devices generate such high-energy beams in a relatively short distance are not fully understood. We now have, for the first time, demonstrated a capability to model these plasmas fully kinetically, allowing us to simulate the pinch process at the particle scale. We present here the results of the initial kinetic simulations, which reproduce experimental neutron yields (~10(7)) and high-energy (MeV) beams for the first time. We compare our fluid, hybrid (kinetic ions and fluid electrons), and fully kinetic simulations. Fluid simulations predict no neutrons and do not allow for nonthermal ions, while hybrid simulations underpredict neutron yield by ~100x and exhibit an ion tail that does not exceed 200 keV. Only fully kinetic simulations predict MeV-energy ions and experimental neutron yields. A frequency analysis in a fully kinetic simulation shows plasma fluctuations near the lower hybrid frequency, possibly implicating lower hybrid drift instability as a contributor to anomalous resistivity in the plasma.
All-inkjet-printed thin-film transistors: manufacturing process reliability by root cause analysis
Sowade, Enrico; Ramon, Eloi; Mitra, Kalyan Yoti; Martínez-Domingo, Carme; Pedró, Marta; Pallarès, Jofre; Loffredo, Fausta; Villani, Fulvia; Gomes, Henrique L.; Terés, Lluís; Baumann, Reinhard R.
2016-01-01
We report on the detailed electrical investigation of all-inkjet-printed thin-film transistor (TFT) arrays focusing on TFT failures and their origins. The TFT arrays were manufactured on flexible polymer substrates in ambient condition without the need for cleanroom environment or inert atmosphere and at a maximum temperature of 150 °C. Alternative manufacturing processes for electronic devices such as inkjet printing suffer from lower accuracy compared to traditional microelectronic manufacturing methods. Furthermore, usually printing methods do not allow the manufacturing of electronic devices with high yield (high number of functional devices). In general, the manufacturing yield is much lower compared to the established conventional manufacturing methods based on lithography. Thus, the focus of this contribution is set on a comprehensive analysis of defective TFTs printed by inkjet technology. Based on root cause analysis, we present the defects by developing failure categories and discuss the reasons for the defects. This procedure identifies failure origins and allows the optimization of the manufacturing resulting finally to a yield improvement. PMID:27649784
NASA Astrophysics Data System (ADS)
Cheng, Cheng
Non-crystalline thin film materials are widely used in the semiconductor industry (micro- and optoelectronics) and in green energy, e.g., photovolatic applications. This dissertation under-pins these device application with studies of their electronic structures using derivative X-ray Absorption Spectroscopy (XAS) and derivative Spectroscopic Ellipsometry (SE) for the first time to experimentally determine electronic and intrinsic defect structures. Differences between electron and hole mobilities in c- (and ng-Si) and c- (and ng- Ge), make Ge channels superior to Si channels in for aggressively scaled CMOS field effect transistors (FETs). Bonding between Si and Ge substrates and gate dielectric oxides is the focus this dissertation. The primary objective of this research is to measure and interpret by ab-initio theory the electronic and intrinsic electronic defect structures mirco-electronic thin film materials. This is accomplished for the first time by combining (i) derivative XAS TEY data obtained at the Stanford Synchrotron Radiation Light Source (SSRL) with (ii) derivative Spectroscopic Ellipsometry results obtained at the J.A. Woollam Co. laboratory. All the oxides were deposited in RPECVD system with in-line AES and RHEED. Thins films and gate stacks were annealed in RTA system in Ar to determine temperature dependent changes. 2nd derivative analysis is applied on XAS and SE spectra emphasizing the conduction band (CB) and virtual bound state (VBS) regimes. 2nd derivative SE spectra for ng-Si and ng-Ge each have 3 distinct regimes: (i) 3 excitons, (ii) 2 features in the CB edge region, and (iii) 3 additional exciton features above the IP. Excitonic spectral width provides conductivity electron masses (em0*) and hence electron mobilities. The wider the energy range, the higher the electron mobility in that CB. Spectra of high-K dielectrics have an additional energy regime between the CB edge regime, and the higher eV excitons. This regime has 4 intra-d state transitions. Intra-d states are observed in all high-K dielectrics regardless of morphology, e.g. ng-TiO2, nc- Ti silicate , c-LaTiO3, nc-HfSiON334. This dissertation also discussed spectroscopic studies of: (i) nc-SiO 2, nc-GeO2 and (ii) nc-(SiO2)x(GeO2) 1-x pseudo-binary alloys. These studies, and the interpretation of these spectra and those in Chapter 3 in the This dissertation also discussed spectroscopic studies of: (i) nc-SiO2, nc-GeO2 and (ii) nc-(SiO 2)x(GeO2)1-x pseudo-binary alloys. These studies, and the interpretation of these spectra and those in Chapter 3 in the context of ab-initio theory provide a science base for the implementation of nc-oxides onto Germaniumsubstrates for aggressively scaled CMOS FETs, imaging devices as well as photovoltaics. X-Ray photoelectron spectroscopy(XPS) and Auger electron spectroscopy(AES) were used to determine SiO2 and GeO2 concentration in (SiO2)x(GeO2)1-x alloys. A linear trend in chemical shifts with compositions is observed and explained with charge-potential model, which incorporates the results of calculated partial charge from an empirical model for ionicity. The compositional linear relationships between binding energies nc-SiO 2, nc-GeO2, and (SiO2)x(GeO2)1-x alloy concentration agrees with the calculated results in charge potential model. SE and XAS spectral results show relatively strong O-vacancy in nc-GeO 2. O-vacancy defects in c-SiO2 are weaker. This is due to differences between Ge-O and Si-O bond (657.5kJ/mol and 799.6kJ/mol respectively). SE data shows a strong defect feature in GeO2, while SiO2 has no significant and distinct defect signature. Percolation theory describes the interconnection of bonds, e.g. Si-O and Ge-O in an otherwise nc-material, a (SiO2)x(GeO2)1-x pseudo-binary alloy. Changes in the band-gap energy of binary Si-Ge alloys occur at 0%Si (or 100% Ge), and the band gap energy increases from ˜ 0.6 eV to ˜0.87 eV as the Si concentration increases. A inflection point is at the percolation threshold˜16 %. For larger %Si there are increases to Si CB gap threshold energy of 1.1eV discussed in Chapter 3. The pseudo-binary system, (GeO2)x(SiO2) 1-x has been designated as a confluent double percolation phenomenon. Distinct changes are at percolation thresholds concentrations of: 16% and 84% SiO2, or equivalently at 84% and 16% Ge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okuyama, Haruki; Karashima, Shutaro; Suzuki, Toshinori, E-mail: suzuki@kuchem.kyoto-u.ac.jp
The charge-transfer-to-solvent (CTTS) reactions from iodide (I{sup −}) to H{sub 2}O, D{sub 2}O, methanol, and ethanol were studied by time-resolved photoelectron spectroscopy of liquid microjets using a magnetic bottle time-of-flight spectrometer with variable pass energy. Photoexcited iodide dissociates into a weak complex (a contact pair) of a solvated electron and an iodine atom in similar reaction times, 0.3 ps in H{sub 2}O and D{sub 2}O and 0.5 ps in methanol and ethanol, which are much shorter than their dielectric relaxation times. The results indicate that solvated electrons are formed with minimal solvent reorganization in the long-range solvent polarization field createdmore » for I{sup −}. The photoelectron spectra for CTTS in H{sub 2}O and D{sub 2}O—measured with higher accuracy than in our previous study [Y. I. Suzuki et al., Chem. Sci. 2, 1094 (2011)]—indicate that internal conversion yields from the photoexcited I{sup −*} (CTTS) state are less than 10%, while alcohols provide 2–3 times greater yields of internal conversion from I{sup −*}. The overall geminate recombination yields are found to be in the order of H{sub 2}O > D{sub 2}O > methanol > ethanol, which is opposite to the order of the mutual diffusion rates of an iodine atom and a solvated electron. This result is consistent with the transition state theory for an adiabatic outer-sphere electron transfer process, which predicts that the recombination reaction rate has a pre-exponential factor inversely proportional to a longitudinal solvent relaxation time.« less
NASA Astrophysics Data System (ADS)
King, Simon J.; Price, Stephen D.
2011-02-01
Relative partial ionization cross sections (PICS) for the formation of fragment ions following electron ionization of SiCl4, in the electron energy range 30-200 eV, have been determined using time-of-flight mass spectrometry coupled with an ion coincidence technique. By this method, the contributions to the yield of each fragment ion from dissociative single, double, and triple ionization, are distinguished. These yields are quantified in the form of relative precursor-specific PICS, which are reported here for the first time for SiCl4. For the formation of singly charged ionic fragments, the low-energy maxima appearing in the PICS curves are due to contributions from single ionization involving predominantly indirect ionization processes, while contributions to the yields of these ions at higher electron energies are often dominated by dissociative double ionization. Our data, in the reduced form of relative PICS, are shown to be in good agreement with a previous determination of the PICS of SiCl4. Only for the formation of doubly charged fragment ions are the current relative PICS values lower than those measured in a previous study, although both datasets agree within combined error limits. The relative PICS data presented here include the first quantitative measurements of the formation of Cl2+ fragment ions and of the formation of ion pairs via dissociative double ionization. The peaks appearing in the 2D ion coincidence data are analyzed to provide further information concerning the mechanism and energetics of the charge-separating dissociations of SiCl42+. The lowest energy dicationic precursor state, leading to SiCl3+ + Cl+ formation, lies 27.4 ± 0.3 eV above the ground state of SiCl4 and is in close agreement with a calculated value of the adiabatic double ionization energy (27.3 eV).
King, Simon J; Price, Stephen D
2011-02-21
Relative partial ionization cross sections (PICS) for the formation of fragment ions following electron ionization of SiCl(4), in the electron energy range 30-200 eV, have been determined using time-of-flight mass spectrometry coupled with an ion coincidence technique. By this method, the contributions to the yield of each fragment ion from dissociative single, double, and triple ionization, are distinguished. These yields are quantified in the form of relative precursor-specific PICS, which are reported here for the first time for SiCl(4). For the formation of singly charged ionic fragments, the low-energy maxima appearing in the PICS curves are due to contributions from single ionization involving predominantly indirect ionization processes, while contributions to the yields of these ions at higher electron energies are often dominated by dissociative double ionization. Our data, in the reduced form of relative PICS, are shown to be in good agreement with a previous determination of the PICS of SiCl(4). Only for the formation of doubly charged fragment ions are the current relative PICS values lower than those measured in a previous study, although both datasets agree within combined error limits. The relative PICS data presented here include the first quantitative measurements of the formation of Cl(2) (+) fragment ions and of the formation of ion pairs via dissociative double ionization. The peaks appearing in the 2D ion coincidence data are analyzed to provide further information concerning the mechanism and energetics of the charge-separating dissociations of SiCl(4) (2+). The lowest energy dicationic precursor state, leading to SiCl(3) (+) + Cl(+) formation, lies 27.4 ± 0.3 eV above the ground state of SiCl(4) and is in close agreement with a calculated value of the adiabatic double ionization energy (27.3 eV).
NASA Astrophysics Data System (ADS)
Williams, R. T.; Grim, Joel Q.; Li, Qi; Ucer, K. B.; Bizarri, G. A.; Kerisit, S.; Gao, Fei; Bhattacharya, P.; Tupitsyn, E.; Rowe, E.; Buliga, V. M.; Burger, A.
2013-09-01
Models of nonproportional response in scintillators have highlighted the importance of parameters such as branching ratios, carrier thermalization times, diffusion, kinetic order of quenching, associated rate constants, and radius of the electron track. For example, the fraction ηeh of excitations that are free carriers versus excitons was shown by Payne and coworkers to have strong correlation with the shape of electron energy response curves from Compton-coincidence studies. Rate constants for nonlinear quenching are implicit in almost all models of nonproportionality, and some assumption about track radius must invariably be made if one is to relate linear energy deposition dE/dx to volume-based excitation density n (eh/cm3) in terms of which the rates are defined. Diffusion, affecting time-dependent track radius and thus density of excitations, has been implicated as an important factor in nonlinear light yield. Several groups have recently highlighted diffusion of hot electrons in addition to thermalized carriers and excitons in scintillators. However, experimental determination of many of these parameters in the insulating crystals used as scintillators has seemed difficult. Subpicosecond laser techniques including interband z scan light yield, fluence-dependent decay time, and transient optical absorption are now yielding experimental values for some of the missing rates and ratios needed for modeling scintillator response. First principles calculations and Monte Carlo simulations can fill in additional parameters still unavailable from experiment. As a result, quantitative modeling of scintillator electron energy response from independently determined material parameters is becoming possible on an increasingly firmer data base. This paper describes recent laser experiments, calculations, and numerical modeling of scintillator response.
Williams, R. T.; Grim, Joel Q.; Li, Qi; ...
2013-09-26
Models of nonproportional response in scintillators have highlighted the importance of parameters such as branching ratios, carrier thermalization times, diffusion, kinetic order of quenching, associated rate constants, and radius of the electron track. For example, the fraction ηeh of excitations that are free carriers versus excitons was shown by Payne and coworkers to have strong correlation with the shape of electron energy response curves from Compton-coincidence studies. Rate constants for nonlinear quenching are implicit in almost all models of nonproportionality, and some assumption about track radius must invariably be made if one is to relate linear energy deposition dE/dx tomore » volume-based excitation density n (eh/cm 3) in terms of which the rates are defined. Diffusion, affecting time-dependent track radius and thus density of excitations, has been implicated as an important factor in nonlinear light yield. Several groups have recently highlighted diffusion of hot electrons in addition to thermalized carriers and excitons in scintillators. However, experimental determination of many of these parameters in the insulating crystals used as scintillators has seemed difficult. Subpicosecond laser techniques including interband z scan light yield, fluence-dependent decay time, and transient optical absorption are now yielding experimental values for some of the missing rates and ratios needed for modeling scintillator response. First principles calculations and Monte Carlo simulations can fill in additional parameters still unavailable from experiment. As a result, quantitative modeling of scintillator electron energy response from independently determined material parameters is becoming possible on an increasingly firmer data base. This study describes recent laser experiments, calculations, and numerical modeling of scintillator response.« less
Photophysical parameters and fluorescence quenching of 7-diethylaminocoumarin (DEAC) laser dye
NASA Astrophysics Data System (ADS)
El-Mossalamy, E. H.; Obaid, A. Y.; El-Daly, S. A.
2011-10-01
The optical properties including electronic absorption spectrum, emission spectrum, fluorescence quantum yield, and dipole moment of electronic transition of 7-diethylaminocoumarin (DEAC) laser dye have been measured in different solvents. Both electronic absorption and fluorescence spectra are red shifted as the polarity of the medium increases, indicating that the dipole moment of molecule increases on excitation. The fluorescence quantum yield of DEAC decreases as the polarity of solvent increases, a result of the role of solvent polarity in stabilization of the twisting of the intramolecular charge transfer (TICT) in excited state, which is a non-emissive state, as well as hydrogen bonding with the hetero-atom of dye. The emission spectrum of DEAC has also been measured in cationic (CTAC) and anionic (SDS) micelles, the intensity increases as the concentration of surfactant increases, and an abrupt change in emission intensity is observed at critical micelle concentration (CMC) of surfactant. 2×10 -3 mol dm -3 of DEAC gives laser emission in the blue region on pumping with nitrogen laser ( λex=337.1 nm). The laser parameters such as tuning range, gain coefficient ( α), emission cross section ( σe), and half-life energy have been calculated in different solvents, namely acetone, dioxane , ethanol, and dimethyforamide (DMF). The photoreactivity of DEAC has been studied in CCl 4 at a wavelength of 366 nm. The values of photochemical yield ( ϕc) and rate constant ( k) are determined. The interaction of organic acceptors such as picric acid (PA), tetracyanoethylene (TCNE), and 7,7,8,8-tetracynoquinonedimethane (TCNQ) with DEAC is also studied using fluorescence measurements in acetonitrile (CH 3CN); from fluorescence quenching study we assume the possible electron transfer from excited donor DEAC to organic acceptor forming non-emissive exciplex.
Effects of electron-ion temperature equilibration on inertial confinement fusion implosions.
Xu, Barry; Hu, S X
2011-07-01
The electron-ion temperature relaxation essentially affects both the laser absorption in coronal plasmas and the hot-spot formation in inertial confinement fusion (ICF). It has recently been reexamined for plasma conditions closely relevant to ICF implosions using either classical molecular-dynamics simulations or analytical methods. To explore the electron-ion temperature equilibration effects on ICF implosion performance, we have examined two Coulomb logarithm models by implementing them into our hydrocodes, and we have carried out hydrosimulations for ICF implosions. Compared to the Lee-More model that is currently used in our standard hydrocodes, the two models predict substantial differences in laser absorption, coronal temperatures, and neutron yields for ICF implosions at the OMEGA Laser Facility [Boehly et al. Opt. Commun. 133, 495 (1997)]. Such effects on the triple-picket direct-drive design at the National Ignition Facility (NIF) have also been explored. Based on the validity of the two models, we have proposed a combined model of the electron-ion temperature-relaxation rate for the overall ICF plasma conditions. The hydrosimulations using the combined model for OMEGA implosions have shown ∼6% more laser absorption, ∼6%-15% higher coronal temperatures, and ∼10% more neutron yield, when compared to the Lee-More model prediction. It is also noticed that the gain for the NIF direct-drive design can be varied by ∼10% among the different electron-ion temperature-relaxation models.
Microstructural Analysis of Ti-6Al-4V Components Made by Electron Beam Additive Manufacturing
NASA Astrophysics Data System (ADS)
Coleman, Rashadd L.
Electron Beam Additive Manufacturing (EBAM) is a relatively new additive manufacturing (AM) technology that uses a high-energy electron beam to melt and fuse powders to build full-density parts in a layer by layer fashion. EBAM can fabricate metallic components, particularly, of complex shapes, in an efficient and cost-effective manner compared to conventional manufacturing means. EBAM is an enabling technology for rapid manufacturing (RM) of metallic components, and thus, can efficiently integrate the design and manufacturing of aerospace components. However, EBAM for aerospace-related applications remain limited because the effect of the EBAM process on part characteristics is not fully understood. In this study, various techniques including microhardness, optical microscopy (OM), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and electron backscatter diffraction (EBSD) were used to characterize Ti-6Al-4V components processed using EBAM. The results were compared to Ti-6Al-4V components processed using conventional techniques. In this study it is shown that EBAM built Ti-64 components have increased hardness, elastic modulus, and yield strength compared to wrought Ti-6Al-4V. Further, it is also shown in this study that the horizontal build EBAM Ti-6Al-4V has increased hardness, elastic modulus, and yield strength compared to vertical build EBAM due to a preferential growth of the beta phase.
Ribeiro, F de A; Almeida, G C; Garcia-Basabe, Y; Wolff, W; Boechat-Roberty, H M; Rocco, M L M
2015-11-07
The incidence of high-energy radiation onto icy surfaces constitutes an important route for leading new neutral or ionized molecular species back to the gas phase in interstellar and circumstellar environments, especially where thermal desorption is negligible. In order to simulate such processes, an acetonitrile ice (CH3CN) frozen at 120 K is bombarded by high energy electrons, and the desorbing positive ions are analyzed by time-of-flight mass spectrometry (TOF-MS). Several fragment and cluster ions were identified, including the Hn=1-3(+), CHn=0-3(+)/NHn=0-1(+); C2Hn=0-3(+)/CHn=0-3N(+), C2Hn=0-6N(+) ion series and the ion clusters (CH3CN)n=1-2(+) and (CH3CN)n=1-2H(+). The energy dependence on the positive ion desorption yield indicates that ion desorption is initiated by Coulomb explosion following Auger electronic decay. The results presented here suggest that non-thermal desorption processes, such as desorption induced by electronic transitions (DIET) may be responsible for delivering neutral and ionic fragments from simple nitrile-bearing ices to the gas-phase, contributing to the production of more complex molecules. The derived desorption yields per electron impact may contribute to chemical evolution models in different cold astrophysical objects, especially where the abundance of CH3CN is expected to be high.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yongxi; Ernzerhof, Matthias, E-mail: Matthias.Ernzerhof@UMontreal.ca; Bahmann, Hilke
Drawing on the adiabatic connection of density functional theory, exchange-correlation functionals of Kohn-Sham density functional theory are constructed which interpolate between the extreme limits of the electron-electron interaction strength. The first limit is the non-interacting one, where there is only exchange. The second limit is the strong correlated one, characterized as the minimum of the electron-electron repulsion energy. The exchange-correlation energy in the strong-correlation limit is approximated through a model for the exchange-correlation hole that is referred to as nonlocal-radius model [L. O. Wagner and P. Gori-Giorgi, Phys. Rev. A 90, 052512 (2014)]. Using the non-interacting and strong-correlated extremes, variousmore » interpolation schemes are presented that yield new approximations to the adiabatic connection and thus to the exchange-correlation energy. Some of them rely on empiricism while others do not. Several of the proposed approximations yield the exact exchange-correlation energy for one-electron systems where local and semi-local approximations often fail badly. Other proposed approximations generalize existing global hybrids by using a fraction of the exchange-correlation energy in the strong-correlation limit to replace an equal fraction of the semi-local approximation to the exchange-correlation energy in the strong-correlation limit. The performance of the proposed approximations is evaluated for molecular atomization energies, total atomic energies, and ionization potentials.« less
Nguyen, Jenny; Ma, Yuhan; Luo, Ting; Bristow, Robert G.; Jaffray, David A.; Lu, Qing-Bin
2011-01-01
Both water and electron-transfer reactions play important roles in chemistry, physics, biology, and the environment. Oxidative DNA damage is a well-known mechanism, whereas the relative role of reductive DNA damage is unknown. The prehydrated electron (), a novel species of electrons in water, is a fascinating species due to its fundamental importance in chemistry, biology, and the environment. is an ideal agent to observe reductive DNA damage. Here, we report both the first in situ femtosecond time-resolved laser spectroscopy measurements of ultrafast-electron-transfer (UET) reactions of with various scavengers (KNO3, isopropanol, and dimethyl sulfoxide) and the first gel electrophoresis measurements of DNA strand breaks induced by and OH• radicals co-produced by two-UV-photon photolysis of water. We strikingly found that the yield of reductive DNA strand breaks induced by each is twice the yield of oxidative DNA strand breaks induced by each OH• radical. Our results not only unravel the long-standing mystery about the relative role of radicals in inducing DNA damage under ionizing radiation, but also challenge the conventional notion that oxidative damage is the main pathway for DNA damage. The results also show the potential of femtomedicine as a new transdisciplinary frontier and the broad significance of UET reactions of in many processes in chemistry, physics, biology, and the environment. PMID:21730183
Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimitrov, D. A.; Bell, G. I.; Smedley, J.
Here, detailed measurements of momentum distributions of emitted electrons have allowed the investigation of the thermal limit of the transverse emittance from metal photocathodes. Furthermore, recent developments in material design and growth have resulted in photocathodes that can deliver high quantum efficiency and are sufficiently robust to use in high electric field gradient photoinjectors and free electron lasers. The growth process usually produces photoemissive material layers with rough surface profiles that lead to transverse accelerating fields and possible work function variations, resulting in emittance growth. To better understand the effects of temperature, density of states, and surface roughness on themore » properties of emitted electrons, we have developed realistic three-dimensional models for photocathode materials with grated surface structures. They include general modeling of electron excitation due to photon absorption, charge transport, and emission from flat and rough metallic surfaces. The models also include image charge and field enhancement effects. We report results from simulations with flat and rough surfaces to investigate how electron scattering, controlled roughness, work function variation, and field enhancement affect emission properties. Comparison of simulation results with measurements of the quantum yield and transverse emittance from flat Sb emission surfaces shows the importance of including efficient modeling of photon absorption, temperature effects, and the material density of states to achieve agreement with the experimental data.« less
Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes
Dimitrov, D. A.; Bell, G. I.; Smedley, J.; ...
2017-10-26
Here, detailed measurements of momentum distributions of emitted electrons have allowed the investigation of the thermal limit of the transverse emittance from metal photocathodes. Furthermore, recent developments in material design and growth have resulted in photocathodes that can deliver high quantum efficiency and are sufficiently robust to use in high electric field gradient photoinjectors and free electron lasers. The growth process usually produces photoemissive material layers with rough surface profiles that lead to transverse accelerating fields and possible work function variations, resulting in emittance growth. To better understand the effects of temperature, density of states, and surface roughness on themore » properties of emitted electrons, we have developed realistic three-dimensional models for photocathode materials with grated surface structures. They include general modeling of electron excitation due to photon absorption, charge transport, and emission from flat and rough metallic surfaces. The models also include image charge and field enhancement effects. We report results from simulations with flat and rough surfaces to investigate how electron scattering, controlled roughness, work function variation, and field enhancement affect emission properties. Comparison of simulation results with measurements of the quantum yield and transverse emittance from flat Sb emission surfaces shows the importance of including efficient modeling of photon absorption, temperature effects, and the material density of states to achieve agreement with the experimental data.« less
NASA Astrophysics Data System (ADS)
Tarkeshian, R.; Vay, J. L.; Lehe, R.; Schroeder, C. B.; Esarey, E. H.; Feurer, T.; Leemans, W. P.
2018-04-01
Similarly to laser or x-ray beams, the interaction of sufficiently intense particle beams with neutral gases will result in the creation of plasma. In contrast to photon-based ionization, the strong unipolar field of a particle beam can generate a plasma where the electron population receives a large initial momentum kick and escapes, leaving behind unshielded ions. Measuring the properties of the ensuing Coulomb exploding ions—such as their kinetic energy distribution, yield, and spatial distribution—can provide information about the peak electric fields that are achieved in the electron beams. Particle-in-cell simulations and analytical models are presented for high-brightness electron beams of a few femtoseconds or even hundreds of attoseconds, and transverse beam sizes on the micron scale, as generated by today's free electron lasers. Different density regimes for the utilization as a potential diagnostics are explored, and the fundamental differences in plasma dynamical behavior for e-beam or photon-based ionization are highlighted. By measuring the dynamics of field-induced ions for different gas and beam densities, a lower bound on the beam charge density can be obtained in a single shot and in a noninvasive way. The exponential dependency of the ionization yield on the beam properties can provide unprecedented spatial and temporal resolution, at the submicrometer and subfemtosecond scales, respectively, offering a practical and powerful approach to characterizing beams from accelerators at the frontiers of performance.
Uses and capabilities of electronic capacitance instruments for estimating standing herbage
P. O. Currie; M. J. Morris; D. L. Neal
1973-01-01
An electronic capacitance meter was used to estimate herbage yield from sown ranges in western USA. On an area in Arizona where the grass stand had been sown broadcast, ^a r2 of 0-47 was obtained between the meter value and oven-dry weight estimate. Excluding those plots with very large amounts of standing dead organic matter (OM), or very succulent plants...
Cross sections for the dissociative attachment of electrons to NO
NASA Technical Reports Server (NTRS)
Krishnakumar, E.; Srivastava, S. K.
1988-01-01
Cross sections for the production of O(-) by electron attachment to NO are reported. It is found that the maximum value of the cross section is about 52 percent higher than the measurement of Rapp and Briglia (1965). Cross sections for the process of polar dissociation, e + NO yields N(+) + O(_), have also been measured, and the threshold energy for this process has been obtained.
Imaging Gallium Nitride High Electron Mobility Transistors to Identify Point Defects
2014-03-01
streamline the sample preparation procedure to maximize the yield of successful samples to be analyzed chemically in an energy dispersive spectrometry...transmission electron microscope (STEM), sample preparation 15. NUMBER OF PAGES 103 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT...Computer Engineering iii THIS PAGE INTENTIONALLY LEFT BLANK iv ABSTRACT The purpose of this thesis is to streamline the sample preparation
Micro-buffy coats of whole blood: a method for the electron microscopic study of mononuclear cells.
Nunes, J F; Soares, J O; Alves de Matos, A P
1979-09-01
A method for the electron microscopic study of human peripheral lymphocytes by which very small buffy coats are obtained through centrifugation of heparinized whole blood in glass or plastic microhematocrit tubes is presented. This method is time saving and efficient, yielding well preserved material and a comparatively large number of mononuclear cells (mainly lymphocytes) in each thin section.
Chen, Kai; Zhu, Zi-Zhong; Liu, Jia-Xin; Tang, Xiang-Ying; Wei, Yin; Shi, Min
2016-01-07
Rh(II)-catalyzed diversified ring expansions controlled by single-electron-transfer (SET) have been disclosed in this communication, producing a series of indole-fused azetidines and 1H-carbazoles or related derivatives in moderate to good yields via Rh2(III,II) nitrene radical intermediates. The direction of ring expansion branches according to different ring sizes of methylenecycloalkanes.
Underestimated role of the secondary electron emission in the space
NASA Astrophysics Data System (ADS)
Nemecek, Zdenek; Richterova, Ivana; Safrankova, Jana; Pavlu, Jiri; Vaverka, Jakub; Nouzak, Libor
2016-07-01
Secondary electron emission (SEE) is one of many processes that charges surfaces of bodies immersed into a plasma. Until present, a majority of considerations in theories and experiments is based on the sixty year old description of an interaction of planar metallic surfaces with electrons, thus the effects of a surface curvature, roughness, presence of clusters as well as an influence of the material conductance on different aspects of this interaction are neglected. Dust grains or their clusters can be frequently found in many space environments - interstellar clouds, atmospheres of planets, tails of comets or planetary rings are only typical examples. The grains are exposed to electrons of different energies and they can acquire positive or negative charge during this interaction. We review the progress in experimental investigations and computer simulations of the SEE from samples relevant to space that was achieved in course of the last decade. We present a systematic study of well-defined systems that starts from spherical grains of various diameters and materials, and it continues with clusters consisting of different numbers of small spherical grains that can be considered as examples of real irregularly shaped space grains. The charges acquired by investigated objects as well as their secondary emission yields are calculated using the SEE model. We show that (1) the charge and surface potential of clusters exposed to the electron beam are influenced by the number of grains and by their geometry within a particular cluster, (2) the model results are in an excellent agreement with the experiment, and (3) there is a large difference between charging of a cluster levitating in the free space and that attached to a planar surface. The calculation provides a reduction of the secondary electron emission yield of the surface covered by dust clusters by a factor up to 1.5 with respect to the yield of a smooth surface. (4) These results are applied on charging of the lunar surface and the dust grains levitating above it, and it is shown that the SEE is more important for isolated dust grains than for the lunar surface covered by them.
Low-energy electron-induced reactions in condensed matter
NASA Astrophysics Data System (ADS)
Arumainayagam, Christopher R.; Lee, Hsiao-Lu; Nelson, Rachel B.; Haines, David R.; Gunawardane, Richard P.
2010-01-01
The goal of this review is to discuss post-irradiation analysis of low-energy (≤50 eV) electron-induced processes in nanoscale thin films. Because electron-induced surface reactions in monolayer adsorbates have been extensively reviewed, we will instead focus on low-energy electron-induced reactions in multilayer adsorbates. The latter studies, involving nanoscale thin films, serve to elucidate the pivotal role that the low-energy electron-induced reactions play in high-energy radiation-induced chemical reactions in condensed matter. Although electron-stimulated desorption (ESD) experiments conducted during irradiation have yielded vital information relevant to primary or initial electron-induced processes, we wish to demonstrate in this review that analyzing the products following low-energy electron irradiation can provide new insights into radiation chemistry. This review presents studies of electron-induced reactions in nanoscale films of molecular species such as oxygen, nitrogen trifluoride, water, alkanes, alcohols, aldehydes, ketones, carboxylic acids, nitriles, halocarbons, alkane and phenyl thiols, thiophenes, ferrocene, amino acids, nucleotides, and DNA using post-irradiation techniques such as temperature-programmed desorption (TPD), reflection-absorption infrared spectroscopy (RAIRS), X-ray photoelectron spectroscopy (XPS), high-resolution electron energy loss spectroscopy (HREELS), gel electrophoresis, and microarray fluorescence. Post-irradiation temperature-programmed desorption, in particular, has been shown to be useful in identifying labile radiolysis products as demonstrated by the first identification of methoxymethanol as a reaction product of methanol radiolysis. Results of post-irradiation studies have been used not only to identify radiolysis products, but also to determine the dynamics of electron-induced reactions. For example, studies of the radiolysis yield as a function of incident electron energy have shown that dissociative electron attachment plays an important role in the electron-induced single strand breaks in DNA leading to mutagenic damage. Studies such as these not only provide insight into the fundamentals of electron-molecule interactions in the condensed phase but also may provide information valuable to (a) furthering cost-efficient destruction of hazardous chemicals, (b) understanding the electron-induced decomposition of feed gases used in the plasma processing of semiconductor devices, (c) clarifying the role, if any, of low-energy electrons, produced by cosmic rays, contributing to the formation of the ozone hole by interacting with halocarbons and producing Cl atoms, (d) illuminating the dynamics of electron-induced oligomerization and/or polymerization, and (e) explicating the astrochemistry of icy grains.
AFRRI Reports October - December 1990
1991-01-01
in the reaction between cytosine radicals and adria- mycin, it is possible that the yield of-DMPO--O,- and of its decomposition product, DMPO-OH, are...mixture due to the decomposition Time (min) of DMPO-O- by 0,7 ’. Fig. 2. Adriamycin radical yield as a function of time. y.lrradiated The electron...radical by decomposition of superoxide spin trapped toionization of thyminc. The thymnine cation and union radicals. adducts, Ato. Pharmn. 21: 262-265
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Z; Jiang, W; Stuart, B
Purpose: Since electrons are easily scattered, the virtual source position for electrons is expected to locate below the x-ray target of Medical Linacs. However, the effective SSD method yields the electron virtual position above the x-ray target for some applicators for some energy in Siemens Linacs. In this study, we propose to use IC Profiler (Sun Nuclear) for evaluating the electron virtual source position for the standard electron applicators for various electron energies. Methods: The profile measurements for various nominal source-to-detector distances (SDDs) of 100–115 cm were carried out for electron beam energies of 6–18 MeV. Two methods were used:more » one was to use a 0.125 cc ion chamber (PTW, Type 31010) with buildup mounted in a PTW water tank without water filled; and the other was to use IC Profiler with a buildup to achieve charge particle equilibrium. The full width at half-maximum (FWHM) method was used to determine the field sizes for the measured profiles. Backprojecting (by a straight line) the distance between the 50% points on the beam profiles for the various SDDs, yielded the virtual source position for each applicator. Results: The profiles were obtained and the field sizes were determined by FWHM. The virtual source positions were determined through backprojection of profiles for applicators (5, 10, 15, 20, 25). For instance, they were 96.415 cm (IC Profiler) vs 95.844 cm (scanning ion chamber) for 9 MeV electrons with 10×10 cm applicator and 97.160 cm vs 97.161 cm for 12 MeV electrons with 10×10 cm applicator. The differences in the virtual source positions between IC profiler and scanning ion chamber were within 1.5%. Conclusion: IC Profiler provides a practical method for determining the electron virtual source position and its results are consistent with those obtained by profiles of scanning ion chamber with buildup.« less
X-Ray Sum Frequency Diffraction for Direct Imaging of Ultrafast Electron Dynamics
NASA Astrophysics Data System (ADS)
Rouxel, Jérémy R.; Kowalewski, Markus; Bennett, Kochise; Mukamel, Shaul
2018-06-01
X-ray diffraction from molecules in the ground state produces an image of their charge density, and time-resolved x-ray diffraction can thus monitor the motion of the nuclei. However, the density change of excited valence electrons upon optical excitation can barely be monitored with regular diffraction techniques due to the overwhelming background contribution of the core electrons. We present a nonlinear x-ray technique made possible by novel free electron laser sources, which provides a spatial electron density image of valence electron excitations. The technique, sum frequency generation carried out with a visible pump and a broadband x-ray diffraction pulse, yields snapshots of the transition charge densities, which represent the electron density variations upon optical excitation. The technique is illustrated by ab initio simulations of transition charge density imaging for the optically induced electronic dynamics in a donor or acceptor substituted stilbene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng Doug-yuan; Wu Ji-ping
1987-04-01
This paper presents some results from observations of a Chinese satellite-borne semiconductor electron detector. Data analysis yields typical values of electron fluxes in the central region of the inner radiation belt. The omnidirectional fluxes of electrons having energies greater than 0.5 MeV and 1.0 MeV are 1.9 x 10/sup 8/ and 6.7 x 10/sup 7/ elec./s-cm/sup 2/, respectively. The electron-flux profile on a typical orbit as a function of time is also given. In addition, the omnidirectional fluxes at the synchronous altitude for the two electron-energy levels mentioned are 2.43 x 10/sup 6/ and 4.25 x 10/sup 5/ elec./s-cm/sup 2/.more » The diurnal variations of electrons in the outer radiation belt observed at the synchronous altitude are also given. The results agree with those observed abroad.« less
Evaluation of large format electron bombarded virtual phase CCDs as ultraviolet imaging detectors
NASA Technical Reports Server (NTRS)
Opal, Chet B.; Carruthers, George R.
1989-01-01
In conjunction with an external UV-sensitive cathode, an electron-bombarded CCD may be used as a high quantum efficiency/wide dynamic range photon-counting UV detector. Results are presented for the case of a 1024 x 1024, 18-micron square pixel virtual phase CCD used with an electromagnetically focused f/2 Schmidt camera, which yields excellent simgle-photoevent discrimination and counting efficiency. Attention is given to the vacuum-chamber arrangement used to conduct system tests and the CCD electronics and data-acquisition systems employed.
Electron-bombarded CCD detectors for ultraviolet atmospheric remote sensing
NASA Technical Reports Server (NTRS)
Carruthers, G. R.; Opal, C. B.
1983-01-01
Electronic image sensors based on charge coupled devices operated in electron-bombarded mode, yielding real-time, remote-readout, photon-limited UV imaging capability are being developed. The sensors also incorporate fast-focal-ratio Schmidt optics and opaque photocathodes, giving nearly the ultimate possible diffuse-source sensitivity. They can be used for direct imagery of atmospheric emission phenomena, and for imaging spectrography with moderate spatial and spectral resolution. The current state of instrument development, laboratory results, planned future developments and proposed applications of the sensors in space flight instrumentation is described.
Graphene shield enhanced photocathodes and methods for making the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moody, Nathan Andrew
Disclosed are graphene shield enhanced photocathodes, such as high QE photocathodes. In certain embodiments, a monolayer graphene shield membrane ruggedizes a high quantum efficiency photoemission electron source by protecting a photosensitive film of the photocathode, extending operational lifetime and simplifying its integration in practical electron sources. In certain embodiments of the disclosed graphene shield enhanced photocathodes, the graphene serves as a transparent shield that does not inhibit photon or electron transmission but isolates the photosensitive film of the photocathode from reactive gas species, preventing contamination and yielding longer lifetime.
Positron-annihilation-induced ion desorption from TiO2(110)
NASA Astrophysics Data System (ADS)
Tachibana, T.; Hirayama, T.; Nagashima, Y.
2014-05-01
We have investigated the positron-stimulated desorption of ions from a TiO2(110) surface. Desorbed O+ ions were detected in coincidence with the emission of annihilation γ rays. The energy dependence of the ion yields shows that the O+ ions were detected at energies much lower than the previously reported threshold for electron impact desorption corresponding to the excitation energy of Ti(3p) core electrons. These results provide evidence that core-hole creation by positron annihilation with electrons in the core levels leads to ion desorption.
Enhancement of High-Speed Infrared Array Electronics (Center Director's Discretionary Fund)
NASA Technical Reports Server (NTRS)
Sutherland, W. T.
1996-01-01
A state-of-the-art infrared detector was to be used as the sensor in a new spectrometer-camera for astronomical observations. The sensitivity of the detector required the use of low-noise, high-speed electronics in the system design. The key component in the electronic system was the pre-amplifier that amplified the low voltage signal coming from the detector. The system was designed based on the selection of the amplifier and that was driven by the maximum noise level, which would yield the desired sensitivity for the telescope system.
NASA Astrophysics Data System (ADS)
Li, Guo-Ling; Zhang, Fabi; Cui, Yi-Tao; Oji, Hiroshi; Son, Jin-Young; Guo, Qixin
2015-07-01
By combination of hard X-ray photoelectron spectroscopy (HAXPES) and first-principles band structure calculations, the electronic states of β-Ga2O3 were investigated to deepen the understanding of bulk information for this compound. The valence band spectra of HAXPES presented the main contribution from Ga 4sp, which are well represented by photoionization cross section weighted partial density of states. The experimental data complemented with the theoretical study yield a realistic picture of the electronic structure for β-Ga2O3.
NASA Astrophysics Data System (ADS)
Shikanov, A. E.; Vovchenko, E. D.; Kozlovskii, K. I.; Rashchikov, V. I.; Shatokhin, V. L.
2018-04-01
A model for acceleration of deuterons and generation of neutrons in a compact laser-plasma diode with electron isolation using magnetic field generated by a hollow cylindrical permanent magnet is presented. Experimental and computer-simulated neutron yields are compared for the diode structure under study. An accelerating neutron tube with a relatively high neutron generation efficiency can be constructed using suppression of electron conduction with the aid of a magnet placed in the vacuum volume.
Yamanaka; Ino
2000-05-08
In L x-ray emissions from a Si(111)-sqrt[3]xsqrt[3]-In surface induced by electron beam irradiation were measured as functions of the incident glancing angle. Under surface wave resonance conditions, anomalous x-ray intensities were clearly observed. Using dynamical calculations, these intensities are well explained as changes in density of the electron wave field at adatom positions. From these intensities, the adatom site was analyzed, and it was found that the T4 model is better than the H3 model.
Porto Ferreira, Cassio; Oliveira de Almeida, Ana Cristina; Corte-Real, Suzana
2015-01-01
Transmission electron microscopy can yield useful information in a range of scientific fields; it is capable of imaging at a significantly higher resolution than light microscopes and has been a very useful tool in the identification of morphological changes of the dermis as well as assessment of changes in the extracellular matrix. Our aim is to characterize by electron microscopy the cellular profile of lesions caused by Sporothrix schenckii from the sporotrichosis epidemic in its zoonotic form that occurs in Rio de Janeiro, Brazil. PMID:25653392
Effects of front-surface target structures on properties of relativistic laser-plasma electrons.
Jiang, S; Krygier, A G; Schumacher, D W; Akli, K U; Freeman, R R
2014-01-01
We report the results of a study of the role of prescribed geometrical structures on the front of a target in determining the energy and spatial distribution of relativistic laser-plasma electrons. Our three-dimensional particle-in-cell simulation studies apply to short-pulse, high-intensity laser pulses, and indicate that a judicious choice of target front-surface geometry provides the realistic possibility of greatly enhancing the yield of high-energy electrons while simultaneously confining the emission to narrow (<5°) angular cones.
Ferrocene- and Biferrocene-Containing Macrocycles towards Single-Molecule Electronics.
Wilson, Lucy E; Hassenrück, Christopher; Winter, Rainer F; White, Andrew J P; Albrecht, Tim; Long, Nicholas J
2017-06-06
Cyclic multiredox centered systems are currently of great interest, with new compounds being reported and developments made in understanding their behavior. Efficient, elegant, and high-yielding (for macrocyclic species) synthetic routes to two novel alkynyl-conjugated multiple ferrocene- and biferrocene-containing cyclic compounds are presented. The electronic interactions between the individual ferrocene units have been investigated through electrochemistry, spectroelectrochemistry, density functional theory (DFT), and crystallography to understand the effect of cyclization on the electronic properties and structure. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Non-thermal Processes in the Formation of Mercury's Tenuous Exosphere
NASA Astrophysics Data System (ADS)
Schaible, M. J.; Bennett, C.; Jones, B. M.; Orlando, T. M.
2017-12-01
Recent observations from the MESSENGER spacecraft orbiting Mercury have established that a quasi-trapped population of ions and electrons with 1-10 keV energy exists at a distance of about 1.5 RM (RM is Mercury's radius) around much of the planet. Recent observations from the Fast Imaging Plasma Spectrometer (FIPS), taken < 400 km from the surface, have shown a plasma cusp with energetic heavy ions (i.e. Na+ and O+ groups). The sources of these ions are not clear. A newly developed global kinetic transport model suggests that electron-stimulated desorption (ESD), and possibly light ion stimulated desorption (ISD), can directly yield ions that can be transported and dynamically accelerated to the plasma cusp regions observed by FIPS. Neutrals desorbed from the surface by ESD, ISD, photon-stimulated desorption (PSD) and meteorite impact may also be photoionized and transported/injected into the cusp region. Though the relative importance of these mechanisms in the formation of Mercury's tenuous atmosphere and the subsequent effects on the exosphere/magnetosphere dynamics are not known, it is likely that all of these contribute significantly. The goals of this work are to measure desorption cross-sections and ejection velocities for Na+, O+, and water group ions under relevant electron and ion bombardment energies. This program utilizes state-of-the art surface science capabilities to probe the role of ESD and ISD as a source of ions and neutrals present in the exosphere of Mercury. The experimental chamber is equipped with a dosing system, a cryogenic cooled temperature controlled sample holder, as well as pulsed ion and electron sources. The ESD and ISD ion yields and velocity measurements are obtained directly by sampling with a time-of-flight mass spectrometer. The measured ESD ion yields from adsorbate covered Mercury surface analogs such as the sulfur bearing minerals MgS, Na2S and K2S are low. Additionally, ISD experiments using incident protons also yielded low ion signals. These results implicate PSD and neutral desorption as dominant processes. The information obtained from these experiments can be directly incorporated into model simulations for comparison with data recently obtained by the FIPS instrument.
Sharma, Kiran K; Razskazovskiy, Yuriy; Purkayastha, Shubhadeep; Bernhard, William A
2009-06-11
The question of how NA base sequence influences the yield of DNA strand breaks produced by the direct effect of ionizing radiation was investigated in a series of oligodeoxynucleotides of the form (d(CG)(n))(2) and (d(GC)(n))(2). The yields of free base release from X-irradiated DNA films containing 2.5 waters/nucleotide were measured by HPLC as a function of oligomer length. For (d(CG)(n))(2), the ratio of the Gua yield to Cyt yield, R, was relatively constant at 2.4-2.5 for n = 2-4 and it decreased to 1.2 as n increased from 5 to 10. When Gua was moved to the 5' end, for example going from d(CG)(5) to d(GC)(5), R dropped from 1.9 +/- 0.1 to 1.1 +/- 0.1. These effects are poorly described if the chemistry at the oligomer ends is assumed to be independent of the remainder of the oligomer. A mathematical model incorporating charge transfer through the base stack was derived to explain these effects. In addition, EPR was used to measure the yield of trapped-deoxyribose radicals at 4 K following X-irradiation at 4 K. The yield of free base release was substantially greater, by 50-100 nmol/J, than the yield of trapped-deoxyribose radicals. Therefore, a large fraction of free base release stems from a nonradical intermediate. For this intermediate, a deoxyribose carbocation formed by two one-electron oxidations is proposed. This reaction pathway requires that the hole (electron loss site) transfers through the base stack and, upon encountering a deoxyribose hole, oxidizes that site to form a deoxyribose carbocation. This reaction mechanism provides a consistent way of explaining both the absence of trapped radical intermediates and the unusual dependence of free base release on oligomer length.
Chung, Wei-Ju; Cui, Yujia; Huang, Feng-Yun J; Tu, Tzu-Hui; Yang, Tzu-Sen; Lo, Jem-Mau; Chiang, Chi-Shiun; Hsu, Ian C
2014-01-01
Radiation therapy for cancer patients works by ionizing damage to nuclear DNA, primarily by creating double-strand breaks (DSB). A major shortcoming of traditional radiation therapy is the set of side effect associated with its long-range interaction with nearby tissues. Low-energy Auger electrons have the advantage of an extremely short effective range, minimizing damage to healthy tissue. Consequently, the isotope ⁹⁹mTc, an Auger electron source, is currently being studied for its beneficial potential in cancer treatment. We examined the dose effect of a pyrene derivative ⁹⁹mTc complex on plasmid DNA by using gel electrophoresis in both aqueous and methanol solutions. In aqueous solutions, the average yield per decay for double-strand breaks is 0.011±0.005 at low dose range, decreasing to 0.0005±0.0003 in the presence of 1 M dimethyl sulfoxide (DMSO). The apparent yield per decay for single-strand breaks (SSB) is 0.04±0.02, decreasing to approximately a fifth with 1 M DMSO. In methanol, the average yield per decay of DSB is 0.54±0.06 and drops to undetectable levels in 2 M DMSO. The SSB yield per decay is 7.2±0.2, changing to 0.4±0.2 in the presence of 2 M DMSO. The 95% decrease in the yield of DSB in DMSO indicates that the main mechanism for DSB formation is through indirect effect, possibly by cooperative binding or clustering of intercalators. In the presence of non-radioactive ligands at a near saturation concentration, where radioactive Tc compounds do not form large clusters, the yield of SSB stays the same while the yield of DSB decreases to the value in DMSO. DSBs generated by ⁹⁹mTc conjugated to intercalators are primarily caused by indirect effects through clustering.
Size effects on elasticity, yielding, and fracture of silver nanowires: In situ experiments
NASA Astrophysics Data System (ADS)
Zhu, Yong; Qin, Qingquan; Xu, Feng; Fan, Fengru; Ding, Yong; Zhang, Tim; Wiley, Benjamin J.; Wang, Zhong Lin
2012-01-01
This paper reports the quantitative measurement of a full spectrum of mechanical properties of fivefold twinned silver (Ag) nanowires (NWs), including Young's modulus, yield strength, and ultimate tensile strength. In-situ tensile testing of Ag NWs with diameters between 34 and 130 nm was carried out inside a scanning electron microscope (SEM). Young's modulus, yield strength, and ultimate tensile strength all increased as the NW diameter decreased. The maximum yield strength in our tests was found to be 2.64 GPa, which is about 50 times the bulk value and close to the theoretical value of Ag in the 110 orientation. The size effect in the yield strength is mainly due to the stiffening size effect in the Young's modulus. Yield strain scales reasonably well with the NW surface area, which reveals that yielding of Ag NWs is due to dislocation nucleation from surface sources. Pronounced strain hardening was observed for most NWs in our study. The strain hardening, which has not previously been reported for NWs, is mainly attributed to the presence of internal twin boundaries.
Kane, Aunica L; Brutinel, Evan D; Joo, Heena; Maysonet, Rebecca; VanDrisse, Chelsey M; Kotloski, Nicholas J; Gralnick, Jeffrey A
2016-04-01
Shewanella oneidensis strain MR-1 is a facultative anaerobe that thrives in redox-stratified environments due to its ability to utilize a wide array of terminal electron acceptors. Conversely, the electron donors utilized by S. oneidensis are more limited and include products of primary fermentation such as lactate, pyruvate, formate, and hydrogen. Lactate, pyruvate, and hydrogen metabolisms inS. oneidensis have been described previously, but little is known about the role of formate oxidation in the ecophysiology of these bacteria. Formate is produced by S. oneidensis through pyruvate formate lyase during anaerobic growth on carbon sources that enter metabolism at or above the level of pyruvate, and the genome contains three gene clusters predicted to encode three complete formate dehydrogenase complexes. To determine the contribution of each complex to formate metabolism, strains lacking one, two, or all three annotated formate dehydrogenase gene clusters were generated and examined for growth rates and yields on a variety of carbon sources. Here, we report that formate oxidation contributes to both the growth rate and yield of S. oneidensis through the generation of proton motive force. Exogenous formate also greatly accelerated growth on N-acetylglucosamine, a carbon source normally utilized very slowly by S. oneidensis under anaerobic conditions. Surprisingly, deletion of all three formate dehydrogenase gene clusters enabled growth of S. oneidensis using pyruvate in the absence of a terminal electron acceptor, a mode of growth never before observed in these bacteria. Our results demonstrate that formate oxidation is a fundamental strategy under anaerobic conditions for energy conservation inS. oneidensis. Shewanella species have garnered interest in biotechnology applications for their ability to respire extracellular terminal electron acceptors, such as insoluble iron oxides and electrodes. While much effort has gone into studying the proteins for extracellular electron transport, how electrons generated through the oxidation of organic carbon sources enter this pathway remains understudied. Here, we quantify the role of formate oxidation in the anaerobic physiology of Shewanella oneidensis Formate oxidation contributes to both the growth rate and yield on a variety of carbon sources through the generation of proton motive force. Advances in our understanding of the anaerobic metabolism of S. oneidensis are important for our ability to utilize and engineer this organism for applications in bioenergy, biocatalysis, and bioremediation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Kane, Aunica L.; Brutinel, Evan D.; Joo, Heena; Maysonet, Rebecca; VanDrisse, Chelsey M.; Kotloski, Nicholas J.
2016-01-01
ABSTRACT Shewanella oneidensis strain MR-1 is a facultative anaerobe that thrives in redox-stratified environments due to its ability to utilize a wide array of terminal electron acceptors. Conversely, the electron donors utilized by S. oneidensis are more limited and include products of primary fermentation such as lactate, pyruvate, formate, and hydrogen. Lactate, pyruvate, and hydrogen metabolisms in S. oneidensis have been described previously, but little is known about the role of formate oxidation in the ecophysiology of these bacteria. Formate is produced by S. oneidensis through pyruvate formate lyase during anaerobic growth on carbon sources that enter metabolism at or above the level of pyruvate, and the genome contains three gene clusters predicted to encode three complete formate dehydrogenase complexes. To determine the contribution of each complex to formate metabolism, strains lacking one, two, or all three annotated formate dehydrogenase gene clusters were generated and examined for growth rates and yields on a variety of carbon sources. Here, we report that formate oxidation contributes to both the growth rate and yield of S. oneidensis through the generation of proton motive force. Exogenous formate also greatly accelerated growth on N-acetylglucosamine, a carbon source normally utilized very slowly by S. oneidensis under anaerobic conditions. Surprisingly, deletion of all three formate dehydrogenase gene clusters enabled growth of S. oneidensis using pyruvate in the absence of a terminal electron acceptor, a mode of growth never before observed in these bacteria. Our results demonstrate that formate oxidation is a fundamental strategy under anaerobic conditions for energy conservation in S. oneidensis. IMPORTANCE Shewanella species have garnered interest in biotechnology applications for their ability to respire extracellular terminal electron acceptors, such as insoluble iron oxides and electrodes. While much effort has gone into studying the proteins for extracellular electron transport, how electrons generated through the oxidation of organic carbon sources enter this pathway remains understudied. Here, we quantify the role of formate oxidation in the anaerobic physiology of Shewanella oneidensis. Formate oxidation contributes to both the growth rate and yield on a variety of carbon sources through the generation of proton motive force. Advances in our understanding of the anaerobic metabolism of S. oneidensis are important for our ability to utilize and engineer this organism for applications in bioenergy, biocatalysis, and bioremediation. PMID:26883823
Taming Big Data: An Information Extraction Strategy for Large Clinical Text Corpora.
Gundlapalli, Adi V; Divita, Guy; Carter, Marjorie E; Redd, Andrew; Samore, Matthew H; Gupta, Kalpana; Trautner, Barbara
2015-01-01
Concepts of interest for clinical and research purposes are not uniformly distributed in clinical text available in electronic medical records. The purpose of our study was to identify filtering techniques to select 'high yield' documents for increased efficacy and throughput. Using two large corpora of clinical text, we demonstrate the identification of 'high yield' document sets in two unrelated domains: homelessness and indwelling urinary catheters. For homelessness, the high yield set includes homeless program and social work notes. For urinary catheters, concepts were more prevalent in notes from hospitalized patients; nursing notes accounted for a majority of the high yield set. This filtering will enable customization and refining of information extraction pipelines to facilitate extraction of relevant concepts for clinical decision support and other uses.
2D microwave imaging reflectometer electronics.
Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C
2014-11-01
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.
Modification and benchmarking of MCNP for low-energy tungsten spectra.
Mercier, J R; Kopp, D T; McDavid, W D; Dove, S B; Lancaster, J L; Tucker, D M
2000-12-01
The MCNP Monte Carlo radiation transport code was modified for diagnostic medical physics applications. In particular, the modified code was thoroughly benchmarked for the production of polychromatic tungsten x-ray spectra in the 30-150 kV range. Validating the modified code for coupled electron-photon transport with benchmark spectra was supplemented with independent electron-only and photon-only transport benchmarks. Major revisions to the code included the proper treatment of characteristic K x-ray production and scoring, new impact ionization cross sections, and new bremsstrahlung cross sections. Minor revisions included updated photon cross sections, electron-electron bremsstrahlung production, and K x-ray yield. The modified MCNP code is benchmarked to electron backscatter factors, x-ray spectra production, and primary and scatter photon transport.
NASA Technical Reports Server (NTRS)
Choi, B. H.; Poe, R. T.; Sun, J. C.; Shan, Y.
1979-01-01
A general theoretical approach is proposed for the calculation of elastic, vibrational, and rotational transitions for electron-molecule scattering at intermediate and high-electron-impact energies. In this formulation, contributions to the scattering process come from the incoherent sum of two dominant potentials: a short-range shielded nuclear Coulomb potential from individual atomic centers, and a permanent/induced long-range potential. Application to e-N2 scattering from 50-500 eV incident electron energies has yielded good agreement with absolutely calibrated experiments. Comparisons with other theoretical approaches are made. The physical picture as well as the general features of electron-molecule scattering process are discussed within the framework of the two-potential approach.
Steering continuum electron dynamics by low-energy attosecond streaking
NASA Astrophysics Data System (ADS)
Geng, Ji-Wei; Xiong, Wei-Hao; Xiao, Xiang-Ru; Gong, Qihuang; Peng, Liang-You
2016-08-01
A semiclassical model is developed to understand the electronic dynamics in the low-energy attosecond streaking. Under a relatively strong infrared (IR) pulse, the low-energy part of photoelectrons initialized by a single attosecond pulse (SAP) can either rescatter with the ionic core and induce interferences structures in the momentum spectra of the ionized electrons or be recaptured into the Rydberg states. The Coulomb potential plays essential roles in both the electron rescattering and recapturing processes. We find that by changing the time delay between the SAP and the IR pulse, the photoelectrons yield or the population of the Rydberg states can be effectively controlled. The present study demonstrates a fascinating way to steer the electron motion in the continuum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medvedev, Nikita; Li, Zheng; Tkachenko, Victor
2017-01-31
In the present study, a theoretical study of electron-phonon (electron-ion) coupling rates in semiconductors driven out of equilibrium is performed. Transient change of optical coefficients reflects the band gap shrinkage in covalently bonded materials, and thus, the heating of atomic lattice. Utilizing this dependence, we test various models of electron-ion coupling. The simulation technique is based on tight-binding molecular dynamics. Our simulations with the dedicated hybrid approach (XTANT) indicate that the widely used Fermi's golden rule can break down describing material excitation on femtosecond time scales. In contrast, dynamical coupling proposed in this work yields a reasonably good agreement ofmore » simulation results with available experimental data.« less
NASA Technical Reports Server (NTRS)
Stevenson, T. R.; Hsieh, W.-T.; Li, M. J.; Stahle, C. M.; Rhee, K. W.; Teufel, J.; Schoelkopf, R. J.
2002-01-01
This paper will describe the fabrication of small aluminum tunnel junctions for applications in astronomy. Antenna-coupled superconducting tunnel junctions with integrated single-electron transistor readout have the potential for photon-counting sensitivity at sub-millimeter wavelengths. The junctions for the detector and single-electron transistor can be made with electron-beam lithography and a standard self-aligned double-angle deposition process. However, high yield and uniformity of the junctions is required for large-format detector arrays. This paper will describe how measurement and modification of the sensitivity ratio in the resist bilayer was used to greatly improve the reliability of forming devices with uniform, sub-micron size, low-leakage junctions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finzel, Kati, E-mail: kati.finzel@liu.se
The local conditions for the Pauli potential that are necessary in order to yield self-consistent electron densities from orbital-free calculations are investigated for approximations that are expressed with the help of a local position variable. It is shown that those local conditions also apply when the Pauli potential is given in terms of the electron density. An explicit formula for the Ne atom is given, preserving the local conditions during the iterative procedure. The resulting orbital-free electron density exhibits proper shell structure behavior and is in close agreement with the Kohn-Sham electron density. This study demonstrates that it is possiblemore » to obtain self-consistent orbital-free electron densities with proper atomic shell structure from simple one-point approximations for the Pauli potential at local density level.« less
Monte Carlo simulation of the neutron monitor yield function
NASA Astrophysics Data System (ADS)
Mangeard, P.-S.; Ruffolo, D.; Sáiz, A.; Madlee, S.; Nutaro, T.
2016-08-01
Neutron monitors (NMs) are ground-based detectors that measure variations of the Galactic cosmic ray flux at GV range rigidities. Differences in configuration, electronics, surroundings, and location induce systematic effects on the calculation of the yield functions of NMs worldwide. Different estimates of NM yield functions can differ by a factor of 2 or more. In this work, we present new Monte Carlo simulations to calculate NM yield functions and perform an absolute (not relative) comparison with the count rate of the Princess Sirindhorn Neutron Monitor (PSNM) at Doi Inthanon, Thailand, both for the entire monitor and for individual counter tubes. We model the atmosphere using profiles from the Global Data Assimilation System database and the Naval Research Laboratory Mass Spectrometer, Incoherent Scatter Radar Extended model. Using FLUKA software and the detailed geometry of PSNM, we calculated the PSNM yield functions for protons and alpha particles. An agreement better than 9% was achieved between the PSNM observations and the simulated count rate during the solar minimum of December 2009. The systematic effect from the electronic dead time was studied as a function of primary cosmic ray rigidity at the top of the atmosphere up to 1 TV. We show that the effect is not negligible and can reach 35% at high rigidity for a dead time >1 ms. We analyzed the response function of each counter tube at PSNM using its actual dead time, and we provide normalization coefficients between count rates for various tube configurations in the standard NM64 design that are valid to within ˜1% for such stations worldwide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Shih-Ching; Lo, Shih-Yen; Graduate Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
Research highlights: {yields} Lipid rafts are known to play an important role in virus entry and virus assembly of many viruses. {yields} However, HCV is the first example of the association of lipid raft with viral RNA replication. {yields} Our results in this manuscript demonstrate that purified HCV RCs with associated lipid raft membrane appeared as distinct particles of around 0.7 um under EM and AFM. {yields} Knockdown of proteins associated with lipid raft suppressed the HCV replication and reduced the number of these particles. {yields} To our knowledge, structures of HCV RCs were demonstrated at its first time inmore » this manuscript. -- Abstract: Hepatitis C viral RNA synthesis has been demonstrated to occur on a lipid raft membrane structure. Lipid raft membrane fraction purified by membrane flotation analysis was observed using transmission electron microscopy and atomic force microscopy. Particles around 0.7 um in size were found in lipid raft membrane fraction purified from hepatitis C virus (HCV) replicon but not their parental HuH7 cells. HCV NS5A protein was associated with these specialized particles. After several cycles of freezing-thawing, these particles would fuse into larger sizes up to 10 um. Knockdown of seven proteins associated with lipid raft (VAPA, COPG, RAB18, COMT, CDC42, DPP4, and KDELR2) of HCV replicon cells reduced the observed number of these particles and suppressed the HCV replication. Results in this study indicated that HCV replication complexes with associated lipid raft membrane form distinct particle structures of around 0.7 um as observed from transmission electron microscopy and atomic force microscopy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huan Yao, Jefferson Lab Hall A Collaboration, E05-110 Collaboration
2012-04-01
In order to test the Coulomb sum rule in nuclei, a precision measurement of inclusive electron scattering cross sections in the quasi-elastic region was performed at Jefferson Lab. Incident electrons of energies ranging from 0.4 GeV/c to 4 GeV/c scattered off {sup 4}He, {sup 12}C, {sup 56}Fe and {sup 208}Pb nuclei at four scattering angles (15deg., 60deg., 90deg., 120deg.) and scattered energies ranging from 0.1 GeV/c to 4 GeV/c. The Rosenbluth method with proper Coulomb corrections is used to extract the transverse and longitudinal response functions at three-momentum transfers 0.55 GeV/c {le} |q{yields}| {le} 1.0 GeV/c. The Coulomb Sum ismore » determined in the same |q{yields}| range as mentioned above and will be compared to predictions. Analysis progress and preliminary results will be presented.« less
Fabrication and characterization of CNT-based smart tips for synchrotron assisted STM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Hui; Cummings, Marvin; Camino, Fernando
Determination of chemical composition along with imaging at the atomic level provides critical information towards fundamental understanding of the surface of materials and, hence, yields the capability to design new materials by tailoring their ultimate functionalities. Synchrotron X-ray assisted scanning tunneling microscopy (SX-STM) is a promising new technique to achieve real space chemically specific atomic mapping. Chemical sensitivity of SX-STM relies on excitation of core electrons by incident X-rays when their energy is tuned to an absorption edge of a particular element. However, along with core-level electrons, photoelectrons are also excited, which yield additional current and interfere with the tunnelingmore » current. To reduce the background photoelectron current and to improve ultimate resolution of SX-STM, we have developed and fabricated multiwalled carbon nanotubes (MWCNT) based “smart tips” using plasma enhanced chemical vapor deposition and focused ion beam milling. As a result, the newly developed CNT-based smart tips, characterized step by step by scanning electron microscopy (SEM) during the fabrication process, demonstrate good performance and provide opportunity for realizing atomic chemical mapping.« less
Mutual capacitance of liquid conductors in deformable tactile sensing arrays
NASA Astrophysics Data System (ADS)
Li, Bin; Fontecchio, Adam K.; Visell, Yon
2016-01-01
Advances in highly deformable electronics are needed in order to enable emerging categories of soft computing devices ranging from wearable electronics, to medical devices, and soft robotic components. The combination of highly elastic substrates with intrinsically stretchable conductors holds the promise of enabling electronic sensors that can conform to curved objects, reconfigurable displays, or soft biological tissues, including the skin. Here, we contribute sensing principles for tactile (mechanical image) sensors based on very low modulus polymer substrates with embedded liquid metal microfluidic arrays. The sensors are fabricated using a single-step casting method that utilizes fine nylon filaments to produce arrays of cylindrical channels on two layers. The liquid metal (gallium indium alloy) conductors that fill these channels readily adopt the shape of the embedding membrane, yielding levels of deformability greater than 400%, due to the use of soft polymer substrates. We modeled the sensor performance using electrostatic theory and continuum mechanics, yielding excellent agreement with experiments. Using a matrix-addressed capacitance measurement technique, we are able to resolve strain distributions with millimeter resolution over areas of several square centimeters.
Feasibility of track-based multiple scattering tomography
NASA Astrophysics Data System (ADS)
Jansen, H.; Schütze, P.
2018-04-01
We present a tomographic technique making use of a gigaelectronvolt electron beam for the determination of the material budget distribution of centimeter-sized objects by means of simulations and measurements. In both cases, the trajectory of electrons traversing a sample under test is reconstructed using a pixel beam-telescope. The width of the deflection angle distribution of electrons undergoing multiple Coulomb scattering at the sample is estimated. Basing the sinogram on position-resolved estimators enables the reconstruction of the original sample using an inverse radon transform. We exemplify the feasibility of this tomographic technique via simulations of two structured cubes—made of aluminium and lead—and via an in-beam measured coaxial adapter. The simulations yield images with FWHM edge resolutions of (177 ± 13) μm and a contrast-to-noise ratio of 5.6 ± 0.2 (7.8 ± 0.3) for aluminium (lead) compared to air. The tomographic reconstruction of a coaxial adapter serves as experimental evidence of the technique and yields a contrast-to-noise ratio of 15.3 ± 1.0 and a FWHM edge resolution of (117 ± 4) μm.
Open Charm Yields in d+Au Collisions at sqrt(sNN) = 200 GeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, J.; Aggarwal, M.M.; Ahammed, Z.
2005-01-07
Mid-rapidity open charm spectra from direct reconstruction of D{sup 0}({bar D}{sup 0}) {yields} K{sup {-+}} {pi}{sup {+-}} in d+Au collisions and indirect electron/positron measurements via charm semileptonic decays in p+p and d+Au collisions at {radical}s{sub NN} = 200 GeV are reported. The D{sup 0}({bar D}{sup 0}) spectrum covers a transverse momentum (p{sub T}) range of 0.1 < p{sub T} < 3 GeV/c whereas the electron spectra cover a range of 1 < p{sub T} < 4 GeV/c. The electron spectra show approximate binary collision scaling between p+p and d+Au collisions. From these two independent analyses, the differential cross section permore » nucleon-nucleon binary interaction at mid-rapidity for open charm production from d+Au collisions at RHIC is d{sigma}{sub c{bar c}}{sup NN}/dy = 0.30 {+-} 0.04 (stat.) {+-} 0.09(syst.) mb. The results are compared to theoretical calculations. Implications for charmonium results in A+A collisions are discussed.« less
NASA Astrophysics Data System (ADS)
Rosenberg, R. A.; McDowell, M. W.; Ma, Q.; Harkay, K. C.
2003-09-01
It is well known that exposure to an accelerator environment can cause ``conditioning'' of the vacuum chamber surfaces. In order to understand the manner in which the surface structure might influence the production of gases and electrons in the accelerator, such surfaces should be studied both before and after exposure to accelerator conditions. Numerous studies have been performed on representative materials prior to being inserted into an accelerator, but very little has been done on materials that have ``lived'' in the accelerator for extended periods. In the present work, we mounted Al and Cu coupons at different positions in a section of the Advanced Photon Source storage ring and removed them following exposures ranging from 6 to 18 months. X-ray photoelectron spectroscopy (XPS) of the surface was performed before and after exposure. Changes were observed that depended on the location and whether the coupon was facing the chamber interior or chamber wall. These results will be presented and compared to XPS and secondary electron yield data obtained from laboratory measurements meant to simulate the accelerator conditions.
Spin decoherence of InAs surface electrons by transition metal ions
NASA Astrophysics Data System (ADS)
Zhang, Yao; Soghomonian, V.; Heremans, J. J.
2018-04-01
Spin interactions between a two-dimensional electron system at the InAs surface and transition metal ions, Fe3 +, Co2 +, and Ni2 +, deposited on the InAs surface, are probed by antilocalization measurements. The spin-dependent quantum interference phenomena underlying the quantum transport phenomenon of antilocalization render the technique sensitive to the spin states of the transition metal ions on the surface. The experiments yield data on the magnitude and temperature dependence of the electrons' inelastic scattering rates, spin-orbit scattering rates, and magnetic spin-flip rates as influenced by Fe3 +, Co2 +, and Ni2 +. A high magnetic spin-flip rate is shown to mask the effects of spin-orbit interaction, while the spin-flip rate is shown to scale with the effective magnetic moment of the surface species. The spin-flip rates and their dependence on temperature yield information about the spin states of the transition metal ions at the surface, and in the case of Co2 + suggest either a spin transition or formation of a spin-glass system.
Robust, functional nanocrystal solids by infilling with atomic layer deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yao; Gibbs, Markelle; Perkins, Craig L.
2011-12-14
Thin films of colloidal semiconductor nanocrystals (NCs) are inherently metatstable materials prone to oxidative and photothermal degradation driven by their large surface-to-volume ratios and high surface energies. The fabrication of practical electronic devices based on NC solids hinges on preventing oxidation, surface diffusion, ripening, sintering, and other unwanted physicochemical changes that can plague these materials. Here we use low-temperature atomic layer deposition (ALD) to infill conductive PbSe NC solids with metal oxides to produce inorganic nanocomposites in which the NCs are locked in place and protected against oxidative and photothermal damage. Infilling NC field-effect transistors and solar cells with amorphousmore » alumina yields devices that operate with enhanced and stable performance for at least months in air. Furthermore, ALD infilling with ZnO lowers the height of the inter-NC tunnel barrier for electron transport, yielding PbSe NC films with electron mobilities of 1 cm² V -1 s -1. Our ALD technique is a versatile means to fabricate robust NC solids for optoelectronic devices.« less
Evaluating molecular cobalt complexes for the conversion of N2 to NH3.
Del Castillo, Trevor J; Thompson, Niklas B; Suess, Daniel L M; Ung, Gaël; Peters, Jonas C
2015-10-05
Well-defined molecular catalysts for the reduction of N2 to NH3 with protons and electrons remain very rare despite decades of interest and are currently limited to systems featuring molybdenum or iron. This report details the synthesis of a molecular cobalt complex that generates superstoichiometric yields of NH3 (>200% NH3 per Co-N2 precursor) via the direct reduction of N2 with protons and electrons. While the NH3 yields reported herein are modest by comparison to those of previously described iron and molybdenum systems, they intimate that other metals are likely to be viable as molecular N2 reduction catalysts. Additionally, a comparison of the featured tris(phosphine)borane Co-N2 complex with structurally related Co-N2 and Fe-N2 species shows how remarkably sensitive the N2 reduction performance of potential precatalysts is. These studies enable consideration of the structural and electronic effects that are likely relevant to N2 conversion activity, including the π basicity, charge state, and geometric flexibility.
Mutual capacitance of liquid conductors in deformable tactile sensing arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Bin; Fontecchio, Adam K.; Visell, Yon
2016-01-04
Advances in highly deformable electronics are needed in order to enable emerging categories of soft computing devices ranging from wearable electronics, to medical devices, and soft robotic components. The combination of highly elastic substrates with intrinsically stretchable conductors holds the promise of enabling electronic sensors that can conform to curved objects, reconfigurable displays, or soft biological tissues, including the skin. Here, we contribute sensing principles for tactile (mechanical image) sensors based on very low modulus polymer substrates with embedded liquid metal microfluidic arrays. The sensors are fabricated using a single-step casting method that utilizes fine nylon filaments to produce arraysmore » of cylindrical channels on two layers. The liquid metal (gallium indium alloy) conductors that fill these channels readily adopt the shape of the embedding membrane, yielding levels of deformability greater than 400%, due to the use of soft polymer substrates. We modeled the sensor performance using electrostatic theory and continuum mechanics, yielding excellent agreement with experiments. Using a matrix-addressed capacitance measurement technique, we are able to resolve strain distributions with millimeter resolution over areas of several square centimeters.« less