Science.gov

Sample records for electron-deficient double bonds

  1. Activation of Electron-Deficient Quinones through Hydrogen-Bond-Donor-Coupled Electron Transfer.

    PubMed

    Turek, Amanda K; Hardee, David J; Ullman, Andrew M; Nocera, Daniel G; Jacobsen, Eric N

    2016-01-11

    Quinones are important organic oxidants in a variety of synthetic and biological contexts, and they are susceptible to activation towards electron transfer through hydrogen bonding. Whereas this effect of hydrogen bond donors (HBDs) has been observed for Lewis basic, weakly oxidizing quinones, comparable activation is not readily achieved when more reactive and synthetically useful electron-deficient quinones are used. We have successfully employed HBD-coupled electron transfer as a strategy to activate electron-deficient quinones. A systematic investigation of HBDs has led to the discovery that certain dicationic HBDs have an exceptionally large effect on the rate and thermodynamics of electron transfer. We further demonstrate that these HBDs can be used as catalysts in a quinone-mediated model synthetic transformation.

  2. Chemical bonding in electron-deficient boron oxide clusters: core boronyl groups, dual 3c-4e hypervalent bonds, and rhombic 4c-4e bonds.

    PubMed

    Chen, Qiang; Lu, Haigang; Zhai, Hua-Jin; Li, Si-Dian

    2014-04-28

    We explore the structural and bonding properties of the electron-deficient boron oxide clusters, using a series of B3On(-/0/+) (n = 2-4) clusters as examples. Global-minimum structures of these boron oxide clusters are identified via unbiased Coalescence Kick and Basin Hopping searches, which show a remarkable size and charge-state dependence. An array of new bonding elements are revealed: core boronyl groups, dual 3c-4e hypervalent bonds (ω-bonds), and rhombic 4c-4e bonds (o-bonds). In favorable cases, oxygen can exhaust all its 2s/2p electrons to facilitate the formation of B-O bonds. The current findings should help understand the bonding nature of low-dimensional boron oxide nanomaterials and bulk boron oxides.

  3. Interaction geometries and energies of hydrogen bonds to C[double bond]O and C[double bond]S acceptors: a comparative study.

    PubMed

    Wood, Peter A; Pidcock, Elna; Allen, Frank H

    2008-08-01

    The occurrence, geometries and energies of hydrogen bonds from N-H and O-H donors to the S acceptors of thiourea derivatives, thioamides and thiones are compared with data for their O analogues - ureas, amides and ketones. Geometrical data derived from the Cambridge Structural Database indicate that hydrogen bonds to the C[double bond]S acceptors are much weaker than those to their C[double bond]O counterparts: van der Waals normalized hydrogen bonds to O are shorter than those to S by approximately 0.25 A. Further, the directionality of the approach of the hydrogen bond with respect to S, defined by the C[double bond]S...H angle, is in the range 102-109 degrees , much lower than the analogous C[double bond]O...H angle which lies in the range 127-140 degrees . Ab initio calculations using intermolecular perturbation theory show good agreement with the experimental results: the differences in hydrogen-bond directionality are closely reproduced, and the interaction energies of hydrogen bonds to S are consistently weaker than those to O, by approximately 12 kJ mol(-1), for each of the three compound classes. There are no CSD examples of hydrogen bonds to aliphatic thiones, (Csp(3))(2)C=S, consistent with the near-equality of the electronegativities of C and S. Thioureas and thioamides have electron-rich N substituents replacing the Csp(3) atoms. Electron delocalization involving C[double bond]S and the N lone pairs then induces a significant >C(delta+)[double bond]S(delta-) dipole, which enables the formation of the medium-strength C[double bond]S...H bonds observed in thioureas and thioamides.

  4. Valence State Driven Site Preference in the Quaternary Compound Ca5MgAgGe5: An Electron-Deficient Phase with Optimized Bonding

    SciTech Connect

    Ponou, Simeon; Lidin, Sven; Zhang, Yuemei; Miller, Gordon J.

    2014-04-18

    The quaternary phase Ca5Mg0.95Ag1.05(1)Ge5 (3) was synthesized by high-temperature solid-state techniques, and its crystal structure was determined by single-crystal diffraction methods in the orthorhombic space group Pnma – Wyckoff sequence c12 with a = 23.1481(4) Å, b = 4.4736(1) Å, c = 11.0128(2) Å, V = 1140.43(4) Å3, Z = 4. The crystal structure can be described as linear intergrowths of slabs cut from the CaGe (CrB-type) and the CaMGe (TiNiSi-type; M = Mg, Ag) structures. Hence, 3 is a hettotype of the hitherto missing n = 3 member of the structure series with the general formula R2+nT2X2+n, previously described with n = 1, 2, and 4. The member with n = 3 was predicted in the space group Cmcm – Wyckoff sequence f5c2. The experimental space group Pnma (in the nonstandard setting Pmcn) corresponds to a klassengleiche symmetry reduction of index two of the predicted space group Cmcm. This transition originates from the switching of one Ge and one Ag position in the TiNiSi-related slab, a process that triggers an uncoupling of each of the five 8f sites in Cmcm into two 4c sites in Pnma. The Mg/Ag site preference was investigated using VASP calculations and revealed a remarkable example of an intermetallic compound for which the electrostatic valency principle is a critical structure-directing force. The compound is deficient by one valence electron according to the Zintl concept, but LMTO electronic structure calculations indicate electronic stabilization and overall bonding optimization in the polyanionic network. Other stability factors beyond the Zintl concept that may account for the electronic stabilization are discussed.

  5. Understanding Rotation about a C=C Double Bond

    ERIC Educational Resources Information Center

    Barrows, Susan E.; Eberlein, Thomas H.

    2005-01-01

    The study focuses on the process and energetic cost of twisting around a C=C double bond and provides instructors with a simple vehicle for rectifying the common misrepresentation of C=C double bonds as rigid and inflexible. Discussions of cis and trans isomers of cycloalkenes are a good entry point for introducing students to the idea of a…

  6. A History of the Double-Bond Rule

    NASA Astrophysics Data System (ADS)

    Hoogenboom, Bernard E.

    1998-05-01

    The tautomeric polar systems recognized by Laar in 1886 contain an active atom that appeared to migrate from its original position. The tautomeric systems are of a general structural form and can be represented as X=Y-Z-A. Later workers recognized the same bond weakening effect in a variety of organic structures in which atom A is halogen, hydrogen, carbon, or nitrogen. Hermann Staudinger recognized the weakness of that bond, an allyl bond, in hydrocarbons and exploited the behavior for the preparation of isoprene from terpene hydrocarbons. In 1922 he formulated a generality, a rule, regarding the allyl bond reactivity He noted that natural rubber also decomposed to form isoprene and therefore concluded that natural rubber is an unsaturated hydrocarbon, that isoprene units in natural rubber represent weakly held allyl substituents, and that natural rubber is a macromolecular combination of isoprene units. From his different experience as an industrial chemist, Otto Schmidt recognized the same bond weakening effect in hydrocarbons and in 1932 postulated the "Double-Bond Rule," stating that the presence of a double bond in a hydrocarbon has an alternating strengthening and weakening effect on single bonds throughout the molecule, diminishing with distance from the double bond. Schmidt not only understood the practical benefit of this rule, but he also offered an explanation for the Rule on theoretical grounds. Novel in its time, his theoretical explanation did not find popular acceptance, despite his considerable efforts to promote it in the literature. His concept of the Rule was supplanted by the new theory of resonance devised by Pauling and Wheland and by the implied notion of the stabilization of products by delocalization effects.

  7. [Cu(NHC)]-Catalyzed C-H Allylation and Alkenylation of both Electron-Deficient and Electron-Rich (Hetero)arenes with Allyl Halides.

    PubMed

    Xie, Weilong; Chang, Sukbok

    2016-01-26

    New reactivity of a [Cu(NHC)] (NHC=N-heterocyclic carbene) catalyst is disclosed for the efficient C-H allylation of polyfluoroarenes using allyl halides in benzene at room temperature. The same catalyst system also promotes an isomerization-induced alkenylation of initially the generated allyl arenes when the reaction is run in tetrahydrofuran. Significantly, not only electron-deficient but also electron-rich (hetero)arenes undergo this double-bond migration process, thus leading to alkenylated products. The present system features mild reaction conditions, broad scope with respect to the arene substrates and allyl halide reactants, good functional-group tolerance, and high stereoselectivity. PMID:26695120

  8. Facile and Promising Method for Michael Addition of Indole and Pyrrole to Electron-Deficient trans-β-Nitroolefins Catalyzed by a Hydrogen Bond Donor Catalyst Feist's Acid and Preliminary Study of Antimicrobial Activity

    PubMed Central

    Al Majid, Abdullah M. A.; Islam, Mohammad Shahidul; Barakat, Assem; Al-Agamy, Mohamed H. M.; Naushad, Mu.

    2014-01-01

    The importance of cooperative hydrogen-bonding effects has been demonstrated using novel 3-methylenecyclopropane-1,2-dicarboxylic acid (Feist's acid (FA)) as hydrogen bond donor catalysts for the addition of indole and pyrrole to trans-β-nitrostyrene derivatives. Because of the hydrogen bond donor (HBD) ability, Feist's acid (FA) has been introduced as a new class of hydrogen bond donor catalysts for the activation of nitroolefin towards nucleophilic substitution reaction. It has effectively catalyzed the Michael addition of indoles and pyrrole to β-nitroolefins under optimum reaction condition to furnish the corresponding Michael adducts in good to excellent yields (up to 98%). The method is general, atom-economical, convenient, and eco-friendly and could provide excellent yields and regioselectivities. Some newly synthesized compounds were for examined in vitro antimicrobial activity and their preliminary results are reported. PMID:24574906

  9. A Simple Visualization of Double Bond Properties: Chemical Reactivity and UV Fluorescence

    ERIC Educational Resources Information Center

    Grayson, Scott M.

    2012-01-01

    A simple, easily visualized thin-layer chromatography (TLC) staining experiment is presented that highlights the difference in reactivity between aromatic double bonds and nonaromatic double bonds. Although the stability of aromatic systems is a major theme in organic chemistry, the concept is rarely reinforced "visually" in the undergraduate…

  10. Radiation Crosslinking of Polyurethane Enhanced by Introducing Terminal Double-Bonds

    NASA Astrophysics Data System (ADS)

    Zhou, Cheng-Fei; Liu, Yang; Jiu, Yong-Bin; Cao, Wei; Zhai, Tong; Wang, Lian-Cai

    2016-05-01

    In this article, the enhanced radiation crosslinking of polyurethane via double-bond capping method were discussed in detail. Meanwhile, the Enhanced radiation crosslinking of polyurethane based on polyimide as hard segment were emphasized. In addition, the preparation of radiation crosslinking foam by introducing terminal double-bond were introduced.

  11. The sEDA(=) and pEDA(=) descriptors of the double bonded substituent effect.

    PubMed

    Mazurek, Andrzej; Dobrowolski, Jan Cz

    2013-05-14

    New descriptors of the double bonded substituent effect, sEDA(=) and pEDA(=), were constructed based on quantum chemical calculations and NBO methodology. They show to what extent the σ and π electrons are donated to or withdrawn from the substituted system by a double bonded substituent. The new descriptors differ from descriptors of the classical substituent effect for which the pz orbital of the ipso carbon atom is engaged in the π-electron system of the two neighboring atoms in the ring. For double bonded substituents, the pz orbital participates in double bond formation with only one external atom. Moreover, the external double bond forces localization of the double bond system of the ring, significantly changing the core molecule. We demonstrated good agreement between our descriptors and the Weinhold and Landis' "natural σ and π-electronegativities": so far only descriptors allowing for evaluation of the substitution effect by a double bonded atom. The equivalency between descriptors constructed for 5- and 6-membered model structures as well as linear dependence/independence of the constructed parameters was discussed. Some interrelations between sEDA(=) and pEDA(=) and the other descriptors of (hetero)cyclic systems such as aromaticity and electron density in the ring and bond critical points were also examined.

  12. Double pancake bonds: pushing the limits of strong π-π stacking interactions.

    PubMed

    Cui, Zhong-hua; Lischka, Hans; Beneberu, Habtamu Z; Kertesz, Miklos

    2014-09-17

    The concept of a double-bonded pancake bonding mechanism is introduced to explain the extremely short π-π stacking contacts in dimers of dithiatriazines. While ordinary single pancake bonds occur between radicals and already display significantly shorter interatomic distances in comparison to van der Waals (vdW) contacts, the double-bonded pancake dimer is based on diradicaloid or antiaromatic molecules and exhibits even shorter and stronger intermolecular bonds that breach into the range of extremely stretched single bonds in terms of bond distances and binding energies. These properties give rise to promising possibilities in the design of new materials with high electrical conductivity and for the field of spintronics. The analysis of the double pancake bond is based on cutting edge electron correlation theory combining multireference (nondynamical) effects and dispersion (dynamical) contributions in a balanced way providing accurate interaction energies and distributions of unpaired spins. It is also shown that the present examples do not stand isolated but that similar mechanisms operate in several analogous nonradical molecular systems to form double-bonded π-stacking pancake dimers. We report on the amazing properties of a new type of stacking interaction mechanism between π conjugated molecules in the form of a "double pancake bond" which breaks the record for short intermolecular distances and provides formidable strength for some π-π stacking interactions. PMID:25203200

  13. Two-center two-electron covalent bonds with deficient bonding densities.

    PubMed

    Yang, Yang

    2012-10-18

    Electron-deficient covalent bonds are a type of covalent bonds without electron accumulation at their bonding regions. Compared with normal covalent bonds, they are quite sensitive to chemical environments. Electron-deficient and normal covalent bonds are not isolated from each other. An electron-deficient bond may change to a normal one upon the change of substituting groups. Neither bond elongation nor atom electronegativity is directly related to the electron deficiency in an electron-deficient bond. Atoms in molecules (AIM) analyses suggest that electron-deficient bonds are characterized by positive Laplacians and small ρ(BCP) values. The positive Laplacian is caused by insignificant electron accumulation perpendicular to the bond path. On the basis of electron localization function (ELF) descriptors, electron-deficient bonds have small basin populations, low η values and high relative fluctuations. There may be one or two bond basins for an electron-deficient bond. In addition, such a bond may correlate with two more valence basins close to the two participating atoms. Electron-deficient bonds are usually weak and long. This is consistent with the low s characters in their natural bond orbitals (NBOs).

  14. Transition metal-catalyzed process for addition of amines to carbon-carbon double bonds

    DOEpatents

    Hartwig, John F.; Kawatsura, Motoi; Loeber, Oliver

    2002-01-01

    The present invention is directed to a process for addition of amines to carbon-carbon double bonds in a substrate, comprising: reacting an amine with a compound containing at least one carbon-carbon double bond in the presence a transition metal catalyst under reaction conditions effective to form a product having a covalent bond between the amine and a carbon atom of the former carbon-carbon double bond. The transition metal catalyst comprises a Group 8 metal and a ligand containing one or more 2-electron donor atoms. The present invention is also directed to enantioselective reactions of amine compounds with compounds containing carbon-carbon double bonds, and a calorimetric assay to evaluate potential catalysts in these reactions.

  15. cis-trans isomerization of carbon double bonds in monounsaturated triacylglycerols via generation of free radicals.

    PubMed

    Tsuzuki, Wakako

    2010-09-01

    We investigated the heat-induced cis/trans isomerization of double bonds in monounsaturated lipids. When triolein (9-cis, 18:1) was heated around 180 degrees C, small amounts of isomerization products were obtained depending on the heating period. The heat-induced isomerization of triolein was considerably suppressed by the addition of different antioxidants or under nitrogen stream, and these additives simultaneously inhibited the thermal oxidation of double bonds in triolein. Therefore, an intermediate of the thermal oxidation reaction might be responsible for the heat-induced isomerization of the double bonds in triolein. The thermodynamics of the heat-induced isomerization of triolein (9-cis, 18:1) and trielaidin (9-trans, 18:1) were investigated using Arrhenius plot. The Arrhenius activation energies of cis double bonds in triolein and trans double bonds in trielaidin were 106 kJ/mol and 137 kJ/mol, respectively. The calculated internal rotational barrier heights of these double bonds were similar to those of the double bond of 2-butene radical and significantly lower than those of non-radicalized double bonds in 2-butene. These results suggest that heat-induced cis/trans isomerization of triolein and trielaidin occurs mainly through the formation of radical species, which are the intermediates produced during thermal oxidation. The activation energy difference between the two forms suggests that trans trielaidin radicals are more stable than cis triolein radicals. The high thermodynamic stability of the trans double bonds in lipid radicals would influence the population of cis and trans isomers in edible oils and contribute to slight accumulation of trans-18:1 isomers during heating or industrial processing.

  16. Borohydride-mediated radical addition reactions of organic iodides to electron-deficient alkenes.

    PubMed

    Kawamoto, Takuji; Uehara, Shohei; Hirao, Hidefumi; Fukuyama, Takahide; Matsubara, Hiroshi; Ryu, Ilhyong

    2014-05-01

    Cyanoborohydrides are efficient reagents in the reductive addition reactions of alkyl iodides and electron-deficient olefins. In contrast to using tin reagents, the reaction took place chemoselectively at the carbon-iodine bond but not at the carbon-bromine or carbon-chlorine bond. The reaction system was successfully applied to three-component reactions, including radical carbonylation. The rate constant for the hydrogen abstraction of a primary alkyl radical from tetrabutylammonium cyanoborohydride was estimated to be <1 × 10(4) M(-1) s(-1) at 25 °C by a kinetic competition method. This value is 3 orders of magnitude smaller than that of tributyltin hydride.

  17. Double hydrogen bond mediating self-assembly structure of cyanides on metal surface

    NASA Astrophysics Data System (ADS)

    Wang, Zhongping; Xiang, Feifei; Lu, Yan; Wei, Sheng; Li, Chao; Liu, Xiaoqing; Liu, Lacheng; Wang, Li

    2016-10-01

    Cyanides with different numbers of -C≡N, 1,2,4,5-Tetracyanobenzene (TCNB) and 2,3-Dicyanonaphthalene (2,3-DCN) deposited on Ag(111) and Ag(110) surfaces, have been investigated by room temperature scanning tunneling microscopy (RTSTM), respectively. High resolution STM images show double hydrogen bond is the main driving force to form variety of self-assembly structures, indicating the double hydrogen bond affects the electron distribution of cyanides and leads to a more stable structure with lower energy. In addition, the difference between Ag(111) and Ag(110) surfaces in their lattice structure induces a bigger assembly structural change of 2,3-DCN than that of 1,2,4,5-TCNB, which confirms the fact that the opposite double hydrogen bond formation formed by 1,2,4,5-TCNB is more stable than the neighboring double hydrogen bond formation formed by molecule 2,3-DCN.

  18. Determination of double bond location in fatty acids by manganese adduction and electron induced dissociation.

    PubMed

    Yoo, Hyun Ju; Håkansson, Kristina

    2010-08-15

    Double bond locations in fatty acids can be determined from characteristic charge-remote fragmentation patterns of alkali metal-adducted fatty acids following high energy collision activated dissociation (CAD). With low energy CAD, several chemical derivatization methods, including ozonization, epoxidation, and hydroxylation, have been used to generate characteristic fragments. However, high energy CAD is not universally available and involves a high degree of scattering, causing product ion loss. Further, derivatization reactions involve side reactions and sample loss. Here, we analyzed metal-adducted fatty acids to investigate the utility of electron induced dissociation (EID) for determining double bond location. EID has been proposed to involve both electronic excitation, similar to high energy CAD, and vibrational excitation. Various metals (Li, Zn, Co, Ni, Mg, Ca, Fe, and Mn) were investigated to fix one charge at the carboxylate end of fatty acids to promote charge-remote fragmentation. EID of Mn(II)-adducted fatty acids allowed determination of all double bond locations of arachidonic acid, linolenic acid, oleic acid, and stearic acid. For Mn(II)-adducted fatty acids, reduced characteristic charge-remote product ion abundances at the double bond positions are indicative of double bond locations. However, other metal adducts did not generally provide characteristic product ion abundances at all double bond locations.

  19. α-Halogenoacetanilides as hydrogen-bonding organocatalysts that activate carbonyl bonds: fluorine versus chlorine and bromine.

    PubMed

    Koeller, Sylvain; Thomas, Coralie; Peruch, Fréderic; Deffieux, Alain; Massip, Stéphane; Léger, Jean-Michel; Desvergne, Jean-Pierre; Milet, Anne; Bibal, Brigitte

    2014-03-01

    α-Halogenoacetanilides (X=F, Cl, Br) were examined as H-bonding organocatalysts designed for the double activation of CO bonds through NH and CH donor groups. Depending on the halide substituents, the double H-bond involved a nonconventional CH⋅⋅⋅O interaction with either a HCXn (n=1-2, X=Cl, Br) or a HCAr bond (X=F), as shown in the solid-state crystal structures and by molecular modeling. In addition, the catalytic properties of α-halogenoacetanilides were evaluated in the ring-opening polymerization of lactide, in the presence of a tertiary amine as cocatalyst. The α-dichloro- and α-dibromoacetanilides containing electron-deficient aromatic groups afforded the most attractive double H-bonding properties towards CO bonds, with a NH⋅⋅⋅O⋅⋅⋅HCX2 interaction.

  20. The Double-Bond Configuration of Corynanthean Alkaloids and Its Impact on Monoterpenoid Indole Alkaloid Biosynthesis.

    PubMed

    Eckermann, Ruben; Gaich, Tanja

    2016-04-11

    Experimental evidence is provided for the coherence of the double-bond geometry and the occurrence of "secondary cyclizations" in the biosynthesis of monoterpenoid indole alkaloids. Biosynthetically, akuammiline, C-mavacurine, and Strychnos alkaloids are proposed to be derived from the corynanthean alkaloid geissoschizine, a key intermediate in the biosynthetic pathway of these monoterpenoid indole alkaloids. This process occurs by so-called "secondary cyclizations" from geissoschizine or its derivatives. Although corynanthean alkaloids like geissoschizine incorporate E or Z double bonds located at C19-C20, the alkaloids downstream in the biosynthesis exclusively exhibit the E double bond. This study shows that secondary cyclizations preferentially occur with the E isomer of geissoschizine or its derivatives. This is attributed to the flexibility of the quinolizidine system of the corynanthean alkaloids, which can adopt a cis or trans conformation. For the secondary cyclization to take place, the cis-quinolizidine conformation is required. Experimental evidence supports the hypothesis that the E double bond of geissoschizine induces the cis conformation, whereas the Z double bond induces the trans conformation, which prohibits secondary cyclization of the Z compounds.

  1. Reactions of (Cp(CO) sub 2 Fe double bond CHAr) sup + (Ar = p-C sub 6 H sub 4 OMe) with O double bond N-Ar prime (Ar prime = C sub 6 H sub 5 , p-C sub 6 H sub 4 NMe sub 2 ) and PhN double bond NPh

    SciTech Connect

    Peng, Wei-Jun; Gamble, A.S.; Templeton, J.L.; Brookhart, M. )

    1990-02-07

    Organometallic products formed from the reaction of an electrophilic iron carbene complex with nitrosoarenes or azobenzene reflect net insertion of the ArN{double bond}X moiety into the Fe{double bond}CHAr bond. Cp(CO){sub 2}Fe-O-N(Ar{prime}){double bond}CHAr{sup +} and Cp(CO){sub 2}FeN(Ph)-N(Ph){double bond}CHAr{sup +} (Ar = p-C{sub 6}H{sub 4}OMe, Ar{prime} = p-C{sub 6}H{sub 4}NMe{sub 2}) have been isolated and spectroscopically characterized; the crystal structure of Cp(CO){sub 2}Fe-O-N(Ph){double bond}CHAr{sup +} is reported. Exposure of acetone solutions of Cp(CO){sub 2}Fe-O-N(Ar{prime}){double bond}CHAr{sup +} or Cp(CO){sub 2}FeN(Ph)-N(Ph){double bond}char{sup +} to light yields imine products Ar{prime}N{double bond}CHAr or PhN{double bond}CHAr, respectively. There is no evidence to support the formation of the simple stoichiometric iron-containing products of these reactions, the oxo and nitrene complexes Cp(CO){sub 2}Fe{double bond}O{sup +} and Cp(CO){sub 2}Fe{double bond}NPh{sup +}. Hydrolysis of the nitrone complexes Cp(CO){sub 2}Fe-O-N(Ar{prime}){double bond}CHAr{sup +} in aqueous acetone yields aldehyde products Ar{prime}CHO. 30 refs., 1 fig., 4 tabs.

  2. THP-1 macrophage lipid accumulation unaffected by fatty acid double bond geometric or positional configuration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary fatty acid type alters atherosclerotic lesion progression and macrophage lipid accumulation. Incompletely elucidated are the mechanisms by which fatty acids differing in double-bond geometric or positional configuration alter arterial lipid accumulation. The objective of this study was to ev...

  3. Single and double substrate insertion into the Ti=N(alpha) bonds of terminal titanium hydrazides.

    PubMed

    Tiong, Pei-Jen; Schofield, A Daniel; Selby, Jonathan D; Nova, Ainara; Clot, Eric; Mountford, Philip

    2010-01-01

    Nitriles, CO(2) and isocyanates undergo net single or double insertion reactions into the Ti=N(alpha) multiple bonds of terminal titanium hydrazides. These are the first such examples of this type of reactivity for any transition metal hydrazide complex.

  4. Directionality of Double-Bond Photoisomerization Dynamics Induced by a Single Stereogenic Center.

    PubMed

    Marchand, Gabriel; Eng, Julien; Schapiro, Igor; Valentini, Alessio; Frutos, Luis Manuel; Pieri, Elisa; Olivucci, Massimo; Léonard, Jérémie; Gindensperger, Etienne

    2015-02-19

    In light-driven single-molecule rotary motors, the photoisomerization of a double bond converts light energy into the rotation of a moiety (the rotor) with respect to another (the stator). However, at the level of a molecular population, an effective rotary motion can only be achieved if a large majority of the rotors rotate in the same, specific direction. Here we present a quantitative investigation of the directionality (clockwise vs counterclockwise) induced by a single stereogenic center placed in allylic position with respect to the reactive double bond of a model of the biomimetic indanylidene-pyrrolinium framework. By computing ensembles of nonadiabatic trajectories at 300 K, we predict that the photoisomerization is >70% unidirectional for the Z → E and E → Z conversions. Most importantly, we show that such directionality, resulting from the asymmetry of the excited state force field, can still be observed in the presence of a small (ca. 2°) pretwist or helicity of the reactive double bond. This questions the validity of the conjecture that a significant double-bond pretwist (e.g., >10°) in the ground state equilibrium structure of synthetic or natural rotary motors would be required for unidirectional motion. PMID:26262473

  5. Flow in out-of-plane double S-bonds

    NASA Technical Reports Server (NTRS)

    Schmidt, M. C.; Whitelaw, J. H.; Yianneskis, M.

    1986-01-01

    Developing flows in two out-of-plane double S-bend configurations have been measured by laser-Doppler anemometry. The first duct had a rectangular cross-section 40mmx40mm at the inlet and consisted of a uniform area 22.5 deg. - 22.5 deg. S-duct upstream with a 22.5 deg.- 22.5 deg. S- diffuser downstream. The second duct had a circular cross-section and consisted of a 45 deg. - 45 deg. uniform area S-duct upstream with a 22.5 deg. -22.5 deg. S-diffuser downstream. In both configurations the ratio of the mean radius of curvature to the inlet hydraulic diameter was 7.0, the exit-to-inlet area ratio of the diffusers was 1.5 and the ducts were connected so that the centerline of the S-duct lay in a plane normal to that of the S-diffuser. Streamwise and cross-stream velocity components were measured in laminar flow for the rectangular duct and in turbulent flow for both configurations; measurements of the turbulence levels, cross-correlations and wall static pressures were also made in the turbulent flow cases. Secondary flows of the first kind are present in the first S-duct and they are complemented or counteracted by the secondary flows generated by the area expansion and by the curvature of the S-diffusers downstream. Cross-stream velocities with magnitudes up to 0.19 and 0.11 of the bulk velocity were measured in the laminar and turbulent flows respectively in the rectangular duct and six cross-flow vortices were evident at the exit of the duct in both flow cases. The turbulent flow in the circular duct was qualitatively similar to that in the rectangular configuration, but the cross-stream velocities measured at the exit plane were smaller in the circular geometry. The results are presented in sufficient detail and accuracy for the assessment of numerical calculation methods and are listed in tabular form for this purpose.

  6. Electron-deficient η1-Indenyl,η3-allylpalladium(II) complexes stabilized by fluxional non-covalent interactions.

    PubMed

    Werlé, Christophe; Hamdaoui, Mustapha; Bailly, Corinne; Le Goff, Xavier-Frédéric; Brelot, Lydia; Djukic, Jean-Pierre

    2013-02-01

    Highly fluxional, solution-persistent, and formally electron-deficient (32e(-)) binuclear Pd(II)-C(0) complexes of 2-methyl-1H-indene were synthesized and structurally characterized by X-ray diffraction analysis. DFT investigations combined with a number of theoretical analyses of the bond framework suggest that the polar intermetallic interaction possesses no major covalent character. Instead of bearing a static metal-metal bond as suggested by structural X-ray diffraction analysis, the complexes display in solution significant fluxionality through haptotropy, i.e., a formal "oscillation" of the Pd(η(3)-allyl) moiety between two limiting η(1)-indenyl configurations. PMID:23317421

  7. A diabatic state model for double proton transfer in hydrogen bonded complexes

    SciTech Connect

    McKenzie, Ross H.

    2014-09-14

    Four diabatic states are used to construct a simple model for double proton transfer in hydrogen bonded complexes. Key parameters in the model are the proton donor-acceptor separation R and the ratio, D{sub 1}/D{sub 2}, between the proton affinity of a donor with one and two protons. Depending on the values of these two parameters the model describes four qualitatively different ground state potential energy surfaces, having zero, one, two, or four saddle points. Only for the latter are there four stable tautomers. In the limit D{sub 2} = D{sub 1} the model reduces to two decoupled hydrogen bonds. As R decreases a transition can occur from a synchronous concerted to an asynchronous concerted to a sequential mechanism for double proton transfer.

  8. Characterization of Heronamide Biosynthesis Reveals a Tailoring Hydroxylase and Indicates Migrated Double Bonds.

    PubMed

    Zhu, Yiguang; Zhang, Wenjun; Chen, Yaolong; Yuan, Chengshan; Zhang, Haibo; Zhang, Guangtao; Ma, Liang; Zhang, Qingbo; Tian, Xinpeng; Zhang, Si; Zhang, Changsheng

    2015-09-21

    Heronamides belong to a growing family of β-amino acid polyketide macrolactams (βPMs) with an unsaturated side chain. The biosynthetic gene cluster for heronamide F was identified from the deep-sea-derived Streptomyces sp. SCSIO 03032. The involvement of the gene cluster in heronamide biosynthesis was confirmed by the functional characterization of the P450 enzyme HerO as an 8-hydroxylase for tailoring heronamide biosynthesis. The presence of migrated double bonds in the conjugated diene-containing side chain of heronamides was confirmed by feeding experiments with labeled small carboxylic acid molecules. This study is the first demonstration of migrated double bonds in βPMs with an unsaturated side chain.

  9. Using ambient ozone for assignment of double bond position in unsaturated lipids.

    PubMed

    Ellis, Shane R; Hughes, Jessica R; Mitchell, Todd W; in het Panhuis, Marc; Blanksby, Stephen J

    2012-03-01

    Unsaturated lipids deposited onto a range of materials are observed to react with the low concentrations of ozone present in normal laboratory air. Parent lipids and ozonolysis cleavage products are both detected directly from surfaces by desorption electrospray ionisation mass spectrometry (DESI-MS) with the resulting mass spectra providing clear evidence of the double bond position within these molecules. This serendipitous process has been coupled with thin-layer chromatography (TLC) to provide a simple but powerful approach for the detailed structural elucidation of lipids present in complex biological extracts. Lipid extracts from human lens were deposited onto normal phase TLC plates and then developed to separate components according to lipid class. Exposure of the developed plates to laboratory air for ca. 1 h prior to DESI-MS analysis gave rise to ozonolysis products allowing for the unambiguous identification of double bond positions in even low abundant, unsaturated lipids. In particular, the co-localization of intact unsaturated lactosylceramides (LacCer) with products from their oxidative cleavage provide the first evidence for the presence of three isomeric LacCer (d18:0/24:1) species in the ocular lens lipidome, i.e., variants with double bonds at the n-9, n-7 and n-5 positions.

  10. Adhesive-bonded double-lap joints. [analytical solutions for static load carrying capacity

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1973-01-01

    Explicit analytical solutions are derived for the static load carrying capacity of double-lap adhesive-bonded joints. The analyses extend the elastic solution Volkersen and cover adhesive plasticity, adherend stiffness imbalance and thermal mismatch between the adherends. Both elastic-plastic and bi-elastic adhesive representations lead to the explicit result that the influence of the adhesive on the maximum potential bond strength is defined uniquely by the strain energy in shear per unit area of bond. Failures induced by peel stresses at the ends of the joint are examined. This failure mode is particularly important for composite adherends. The explicit solutions are sufficiently simple to be used for design purposes

  11. Double-decker bis(tetradiazepinoporphyrazinato) rare earth complexes: crucial role of intramolecular hydrogen bonding.

    PubMed

    Tarakanova, Ekaterina N; Trashin, Stanislav A; Simakov, Anton O; Furuyama, Taniyuki; Dzuban, Alexander V; Inasaridze, Liana N; Tarakanov, Pavel A; Troshin, Pavel A; Pushkarev, Victor E; Kobayashi, Nagao; Tomilova, Larisa G

    2016-07-26

    A series of homoleptic bis{tetrakis(5,7-bis(4-tert-butylphenyl)-6H-1,4-diazepino)[2,3-b,g,l,q]porphyrazinato}lanthanide sandwich complexes [(tBuPh)DzPz]2Ln (Ln = Lu, Er, Dy, Eu, Nd, Ce, La) were prepared and their physicochemical properties were studied to gain insight into the nature of specific interactions in diazepinoporphyrazines. The effect of annulated diazepine moieties and the Ln ionic radius on the properties of the complexes was investigated in comparison with double-decker phthalocyanines. A combination of experimental and theoretical studies revealed the presence of two types of hydrogen bonding interactions in the metal-free porphyrazine and the corresponding sandwich complexes, namely, interligand C-H(ax)N(meso) hydrogen bonding and O-HN(Dz) ligand-water interaction. The interligand hydrogen bonding imparts high stability of the ligand dimer and the double-decker compounds in a reduced state. This work is the first comprehensive investigation into the fundamental understanding of the unusual properties of diazepine-containing macroheterocycles. PMID:27396712

  12. Theoretical Analysis of the Effect of C═C Double Bonds on the Low-Temperature Reactivity of Alkenylperoxy Radicals.

    PubMed

    You, Xiaoqing; Chi, Yawei; He, Tanjin

    2016-08-01

    Biodiesel contains a large proportion of unsaturated fatty acid methyl esters. Its combustion characteristics, especially its ignition behavior at low temperatures, have been greatly affected by these C═C double bonds. In this work, we performed a theoretical analysis of the effect of C═C double bonds on the low-temperature reactivity of alkenylperoxy radicals, the key intermediates from the low-temperature combustion of biodiesel. To understand how double bonds affect the fate of peroxy radicals, we selected three representative peroxy radicals from heptane, heptene, and heptadiene having zero, one, and two double C═C bonds, respectively, for study. The potential energy surfaces were explored at the CBS-QB3 level, and the reaction rate constants were computed using canonical/variational transition state theories. We have found that the double bond is responsible for the very different bond dissociation energies of the various types of C-H bonds, which in turn affect significantly the reaction kinetics of alkenylperoxy radicals.

  13. Theoretical Analysis of the Effect of C═C Double Bonds on the Low-Temperature Reactivity of Alkenylperoxy Radicals.

    PubMed

    You, Xiaoqing; Chi, Yawei; He, Tanjin

    2016-08-01

    Biodiesel contains a large proportion of unsaturated fatty acid methyl esters. Its combustion characteristics, especially its ignition behavior at low temperatures, have been greatly affected by these C═C double bonds. In this work, we performed a theoretical analysis of the effect of C═C double bonds on the low-temperature reactivity of alkenylperoxy radicals, the key intermediates from the low-temperature combustion of biodiesel. To understand how double bonds affect the fate of peroxy radicals, we selected three representative peroxy radicals from heptane, heptene, and heptadiene having zero, one, and two double C═C bonds, respectively, for study. The potential energy surfaces were explored at the CBS-QB3 level, and the reaction rate constants were computed using canonical/variational transition state theories. We have found that the double bond is responsible for the very different bond dissociation energies of the various types of C-H bonds, which in turn affect significantly the reaction kinetics of alkenylperoxy radicals. PMID:27404895

  14. Substituent effects in double-helical hydrogen-bonded AAA-DDD complexes.

    PubMed

    Wang, Hong-Bo; Mudraboyina, Bhanu P; Wisner, James A

    2012-01-27

    Two series of DDD and AAA hydrogen-bond arrays were synthesized that form triply-hydrogen-bonded double-helical complexes when combined in CDCl(3) solution. Derivatization of the DDD arrays with electron-withdrawing groups increases the complex association constants by up to a factor of 30 in those arrays examined. Derivatization of the AAA arrays with electron donating substituents reveals a similar magnitude effect on the complex stabilities. The effect of substitution on both types of arrays are modeled quite satisfactorily (R(2) > 0.96 in all cases) as free energy relationships with respect to the sums of their Hammett substituent constants. In all, the complex stabilities can be manipulated over more than three orders of magnitude (>20 kJ mol(-1)) using this type of modification.

  15. Pancake π-π Bonding Goes Double: Unexpected 4e/All-Sites Bonding in Boron- and Nitrogen-Doped Phenalenyls.

    PubMed

    Tian, Yong-Hui; Sumpter, Bobby G; Du, Shiyu; Huang, Jingsong

    2015-06-18

    Chemical bonding interactions are the main driving force for the formation of molecules and materials from atoms. The two-electron/multicenter pancake π-π bonding found in phenalenyl (PLY, 1) radical π-dimers is intriguing due to its unconventional nature of covalent bonding for molecular aggregations and its propensity to induce unique optical, electronic, and magnetic properties. By using high-level quantum chemistry calculations, we show that the B- or N-doped PLYs (2 and 4), usually considered closed-shell and therefore trifling, can be rendered open-shell singlet by proper edge substitutions (3 and 5). The resulting two unpaired valence electrons on each molecular unit contribute to the formation of a genuine pancake-shaped 4e/all-sites double π-π bonding upon intermolecular π-dimerization, in contrast to the 2e/half-sites single π-π bonding in the parent PLY π-dimers. The unusual double π-π bonding motif discovered in these PLY analogues may broaden the landscape of, and find new applications for, intermolecular covalent bonding interactions.

  16. On the bonding nature of electron states for the Fe-Mo double perovskite

    SciTech Connect

    Carvajal, E.; Cruz-Irisson, M.; Oviedo-Roa, R.; Navarro, O.

    2014-05-15

    The electronic transport as well as the effect of an external magnetic field has been investigated on manganese-based materials, spinels and perovskites. Potential applications of double perovskites go from magnetic sensors to electrodes in solid-oxide fuel cells; besides the practical interests, it is known that small changes in composition modify radically the physical properties of double perovskites. We have studied the Sr{sub 2}FeMoO{sub 6} double perovskite compound (SFMO) using first-principles density functional theory. The calculations were done within the generalized gradient approximation (GGA) scheme with the Perdew-Burke-Ernzerhof (PBE) functional. We have made a detailed analysis of each electronic state and the charge density maps around the Fermi level. For the electronic properties of SFMO it was used a primitive cell, for which we found the characteristic half-metallic behavior density of states composed by e{sub g} and t{sub 2g} electrons from Fe and Mo atoms. Those peaks were tagged as bonding or antibonding around the Fermi level at both, valence and conduction bands.

  17. A search for thermal isomerization of olefins to carbenes: Thermal generations of the silicon-nitrogen double bond

    SciTech Connect

    Zhang, Xianping.

    1990-09-21

    The first part of this thesis will search for the thermal isomerization of olefins to carbenes which is predicted to be a high energy process by calculations and has only been observed in a few strained olefins. The possibility of thermal isomerization of simple olefins to carbenes will be explored. Substitution of a silyl group on the double bond of an olefin allows a potential intermediate which has a {beta}-radical to the silyl group during the cis-trans isomerization. The effects of a trimethylsilyl group on this isomerization are the subject of this study. The second part of this thesis will include the generation and chemistry of intermediates containing a silicon-nitrogen double bond. The isomerization of parent silanimine to the aminosilylene was calculated to be a high energy process. New approaches to the silicon-nitrogen double bond will also be presented. 92 refs., 12 figs., 11 tabs.

  18. Diffusion ordered spectroscopy for resolution of double bonded cis, trans-isomers

    NASA Astrophysics Data System (ADS)

    Chaudhari, Sachin Rama; Suryaprakash, N.

    2012-06-01

    NMR spectroscopic separation of double bonded cis- and trans-isomers, that have different molecular shapes but identical mass have been carried out using Diffusion Ordered Spectroscopy (DOSY). The mixtures of fumaric acid and maleic acid, that have similar hydrodynamic radii, have resolved been 'on the basis of their diffusion coefficients arising due to their different tendencies to associate with micelles or reverse micelles. Sodium dodecyl sulfate (SDS) and Dioctyl sulfosuccinate sodium salt (AOT) have been used as the media to mimic the chromatographic conditions, modify the average mobility and to achieve differential diffusion rates. The best separation of the components has been achieved by Dioctyl sulfosuccinate sodium salt (AOT) in D2O solution.

  19. Ethenolysis: A Green Catalytic Tool to Cleave Carbon-Carbon Double Bonds.

    PubMed

    Bidange, Johan; Fischmeister, Cédric; Bruneau, Christian

    2016-08-22

    Remarkable innovations have been made in the field of olefin metathesis due to the design and preparation of new catalysts. Ethenolysis, which is cross-metathesis with ethylene, represents one catalytic transformation that has been used with the purpose of cleaving internal carbon-carbon double bonds. The objectives were either the ring opening of cyclic olefins to produce dienes or the shortening of unsaturated hydrocarbon chains to degrade polymers or generate valuable shorter terminal olefins in a controlled manner. This Review summarizes several aspects of this reaction: the catalysts, their degradation in the presence of ethylene, some parameters driving their productivity, the side reactions, and the applications of ethenolysis in organic synthesis and in potential industrial applications. PMID:27359344

  20. Can HN[double bond, length as m-dash]NH, FN[double bond, length as m-dash]NH, or HN[double bond, length as m-dash]CHOH bridge the σ-hole and the lone pair at P in binary complexes with H2XP, for X = F, Cl, NC, OH, CN, CCH, CH3, and H?

    PubMed

    Del Bene, Janet E; Alkorta, Ibon; Elguero, José

    2015-11-11

    Ab initio MP2/aug'-cc-pVTZ calculations have been carried out to investigate the properties of complexes formed between H2XP, for X = F, Cl, NC, OH, CN, CCH, CH3, and H, and the possible bridging molecules HN[double bond, length as m-dash]NH, FN[double bond, length as m-dash]NH, and HN[double bond, length as m-dash]CHOH. H2XP:HNNH and H2XP:FNNH complexes are stabilized by PN pnicogen bonds, except for H2(CH3)P:FNNH and H3P:FNNH which are stabilized by N-HP hydrogen bonds. H2XP:HNCHOH complexes are stabilized by PN pnicogen bonds and nonlinear O-HP hydrogen bonds. For a fixed H2XP molecule, binding energies decrease in the order HNCHOH > HNNH > FNNH, except for the binding energies of H2(CH3)P and H3P with HNNH and FNNH. Binding energies of complexes with HNCHOH and HNNH increase as the P-N1 distance decreases, but binding energies of complexes with FNNH show little dependence on this distance. The large binding energies of H2XP:HNCHOH complexes arise from a cooperative effect involving electron-pair acceptance by P to form a pnicogen bond, and electron-pair donation by P to form a hydrogen bond. The dominant charge-transfer interaction in these complexes involves electron-pair donation by N across the pnicogen bond, except for complexes in which X is one of the more electropositive substituents, CCH, CH3, and H. For these, lone-pair donation by P across the hydrogen bond dominates. AIM and NBO data for these complexes are consistent with their bonding characteristics, showing molecular graphs with bond critical points and charge-transfer interactions associated with hydrogen and pnicogen bonds. EOM-CCSD spin-spin coupling constants (1p)J(P-N) across the pnicogen bond for each series of complexes correlate with the P-N distance. In contrast, (2h)J(O-P) values for complexes H2XP:HNCHOH do not correlate with the O-P distance, a consequence of the nonlinearity of these hydrogen bonds.

  1. Theoretical study of the OH addition to the endocyclic and exocyclic double bonds of the d-limonene

    NASA Astrophysics Data System (ADS)

    Ramírez-Ramírez, Víctor M.; Nebot-Gil, Ignacio

    2005-06-01

    The initial step of the d-limonene + OH gas-phase reaction mechanism was investigated by means of ab initio calculations. We have considered eight different possibilities for the OH addition, corresponding to the two C-C double bonds, the two C atoms of each double bond, and the syn or anti orientation, with respect to the isopropenyl group (endocyclic attack) or the ring cycle (exocyclic attack). Activation energies calculated at the QCISD(T)/6-31G(d)//UMP2/6-31G(d) level, show that there are preferred orientations for the OH addition under atmospheric conditions of temperature and pressure.

  2. Influence of chain length and double bond on the aqueous behavior of choline carboxylate soaps.

    PubMed

    Rengstl, Doris; Diat, Olivier; Klein, Regina; Kunz, Werner

    2013-02-26

    In preceding studies, we demonstrated that choline carboxylates ChC(m) with alkyl chain lengths of m = 12 - 18 are highly water-soluble (for m = 12, soluble up to 93 wt % soap and 0 °C). In addition, choline soaps are featured by an extraordinary lyotropic phase behavior. With decreasing water concentration, the following phases were found: micellar phase (L(1)), discontinuous cubic phase (I(1)' and I(1)"), hexagonal phase (H(1)), bicontinuous cubic phase (V(1)), and lamellar phase (L(α)). The present work is also focused on the lyotropic phase behavior of choline soaps but with shorter alkyl chains or different alkyl chain properties. We have investigated the aqueous phase behavior of choline soaps with C(8) and C(10) chain-lengths (choline octanoate and choline decanoate) and with a C(18) chain-length with a cis-double bond (choline oleate). We found that choline decanoate follows the lyotropic phase behavior of the longer-chain homologues mentioned above. Choline octanoate in water shows no discontinuous cubic phases, but an extended, isotropic micellar solution phase. In addition, choline octanoate is at the limit between a surfactant and a hydrotrope. The double bond in choline oleate leads also to a better solubility in water and a decrease of the solubilization temperature. It also influences the Gaussian curvature of the aggregates which results in a loss of discontinuous cubic phases in the binary phase diagram. The different lyotropic mesophases were identified by the penetration scan technique with polarizing light microscope and visual observations. To clarify the structural behavior small (SAXS) and wide (WAXS) angle X-ray scattering were performed. To further characterize the extended, isotropic micellar solution phase in the binary phase diagram of choline octanoate viscosity and conductivity measurements were also carried out.

  3. Pancake π–π Bonding Goes Double: Unexpected 4e/All-Sites Bonding in Boron- and Nitrogen-Doped Phenalenyls

    DOE PAGES

    Tian, Yong-Hui; Sumpter, Bobby G.; Du, Shiyu; Huang, Jingsong

    2015-06-03

    Phenalenyl is an important neutral pi-radical due to its capability to form unconventional pancake pi-pi bonding interactions, whereas its analogues with graphitic boron (B) or nitrogen (N)-doping have been regarded as closed-shell systems and therefore received much less attention. By using high-level quantum chemistry calculations, we also show that the B- and N-doped closed-shell phenalenyls unexpectedly form open-shell singlet pi-dimers with diradicaloid character featuring 2e/all-sites double pi-pi bonding. Moreover, by proper substitutions, the doped phenalenyl derivatives can be made open-shell species that form closed shell singlet pi-dimers bound by stronger 4e/all-sites double pi-pi bonding. Moreover, covalent pi-pi bonding overlap ismore » distributed on all of the atomic sites giving robust and genuine pancake-shaped pi-dimers which, depending on the number of electrons available in the bonding interactions, are equally or more stable than the pi-dimers of the pristine phenalenyl.« less

  4. Pancake π–π Bonding Goes Double: Unexpected 4e/All-Sites Bonding in Boron- and Nitrogen-Doped Phenalenyls

    SciTech Connect

    Tian, Yong-Hui; Sumpter, Bobby G.; Du, Shiyu; Huang, Jingsong

    2015-06-03

    Phenalenyl is an important neutral pi-radical due to its capability to form unconventional pancake pi-pi bonding interactions, whereas its analogues with graphitic boron (B) or nitrogen (N)-doping have been regarded as closed-shell systems and therefore received much less attention. By using high-level quantum chemistry calculations, we also show that the B- and N-doped closed-shell phenalenyls unexpectedly form open-shell singlet pi-dimers with diradicaloid character featuring 2e/all-sites double pi-pi bonding. Moreover, by proper substitutions, the doped phenalenyl derivatives can be made open-shell species that form closed shell singlet pi-dimers bound by stronger 4e/all-sites double pi-pi bonding. Moreover, covalent pi-pi bonding overlap is distributed on all of the atomic sites giving robust and genuine pancake-shaped pi-dimers which, depending on the number of electrons available in the bonding interactions, are equally or more stable than the pi-dimers of the pristine phenalenyl.

  5. Three-Component Azidation of Styrene-Type Double Bonds: Light-Switchable Behavior of a Copper Photoredox Catalyst.

    PubMed

    Fumagalli, Gabriele; Rabet, Pauline T G; Boyd, Scott; Greaney, Michael F

    2015-09-21

    [Cu(dap)2]Cl effectively catalyzes azide addition from the Zhdankin reagent to styrene-type double bonds, and subsequent addition of a third component to the benzylic position. In the presence of light, a photoredox cycle is implicated with polar components such as methanol or bromide adding to a benzylic cation. In the absence of light, by contrast, double azidation takes place to give diazides. Therefore, regioselective double functionalization can be achieved in good to excellent yields, with a switch between light and dark controlling the degree of azidation.

  6. Three-Component Azidation of Styrene-Type Double Bonds: Light-Switchable Behavior of a Copper Photoredox Catalyst**

    PubMed Central

    Fumagalli, Gabriele; Rabet, Pauline T G; Boyd, Scott; Greaney, Michael F

    2015-01-01

    [Cu(dap)2]Cl effectively catalyzes azide addition from the Zhdankin reagent to styrene-type double bonds, and subsequent addition of a third component to the benzylic position. In the presence of light, a photoredox cycle is implicated with polar components such as methanol or bromide adding to a benzylic cation. In the absence of light, by contrast, double azidation takes place to give diazides. Therefore, regioselective double functionalization can be achieved in good to excellent yields, with a switch between light and dark controlling the degree of azidation. PMID:26119004

  7. Nickel-catalysed cyclopropanation of electron-deficient alkenes with diiodomethane and diethylzinc.

    PubMed

    Xu, Jin; Samsuri, Nazurah Binte; Duong, Hung A

    2016-02-25

    In the presence of a nickel catalyst, the cyclopropanation of electron-deficient alkenes with diiodomethane and diethylzinc is drastically accelerated. A wide range of cyclopropyl ketones, esters and amides can be accessed under these conditions. PMID:26879514

  8. Bent Bonds and Multiple Bonds.

    ERIC Educational Resources Information Center

    Robinson, Edward A.; Gillespie, Ronald J.

    1980-01-01

    Considers carbon-carbon multiple bonds in terms of Pauling's bent bond model, which allows direct calculation of double and triple bonds from the length of a CC single bond. Lengths of these multiple bonds are estimated from direct measurements on "bent-bond" models constructed of plastic tubing and standard kits. (CS)

  9. The unexpected mechanism of carbonyl hydrosilylation catalyzed by (Cp)(ArN[double bond, length as m-dash])Mo(H)(PMe(3)).

    PubMed

    Shirobokov, Oleg G; Gorelsky, Serge I; Simionescu, Razvan; Kuzmina, Lyudmila G; Nikonov, Georgii I

    2010-11-01

    Complex (Cp)(ArN[double bond, length as m-dash])Mo(H)(PMe(3)) (2, Ar = 2,6-diisopropylphenyl) catalyzes the hydrosilylation of carbonyls by an unexpected associative mechanism. Complex 2 also reacts with PhSiH(3) by a σ-bond metathesis mechanism to give the silyl derivative (Cp)(ArN[double bond, length as m-dash])Mo(SiH(2)Ph)(PMe(3)).

  10. A Bonded Double-Doped Graphene Nanoribbon Framework for Advanced Electrocatalysis.

    PubMed

    Chen, Liang; Xiao, Jingjing; Liu, Baohong; Yi, Tao

    2016-07-01

    The preparation of a low-cost, high-efficient, and stable electrocatalyst as an alternative to platinum for the oxygen reduction reaction (ORR) is especially important to various energy storage components, such as fuel cells and metal-air batteries. Here, we report a new type of bonded double-doped graphene nanoribbon-based nonprecious metal catalysts in which Fe3C nanoparticles embedded in Fe-N-doped graphene nanoribbon (GNRs) frameworks through a simple pyrolysis. The as-obtained catalyst possesses several desirable merits for the ORR, such as diverse high-efficiency catalytic sites, a high specific surface area, an ideal hierarchical cellular structure, and a highly conductive N-doped GNR network. Accordingly, the prepared catalyst shows a superior ORR activity (an onset potential of 0.02 V and a half-wave potential of -0.148 V versus an Ag/AgCl electrode) in alkaline media, close to the commercial Pt/C catalyst. Moreover, it also displays good ORR behavior in an acidic solution. PMID:27300690

  11. Novel dehydrogenase catalyzes oxidative hydrolysis of carbon-nitrogen double bonds for hydrazone degradation.

    PubMed

    Itoh, Hideomi; Suzuta, Tetsuya; Hoshino, Takayuki; Takaya, Naoki

    2008-02-29

    Hydrazines and their derivatives are versatile artificial and natural compounds that are metabolized by elusive biological systems. Here we identified microorganisms that assimilate hydrazones and isolated the yeast, Candida palmioleophila MK883. When cultured with adipic acid bis(ethylidene hydrazide) as the sole source of carbon, C. palmioleophila MK883 degraded hydrazones and accumulated adipic acid dihydrazide. Cytosolic NAD+- or NADP+-dependent hydrazone dehydrogenase (Hdh) activity was detectable under these conditions. The production of Hdh was inducible by adipic acid bis(ethylidene hydrazide) and the hydrazone, varelic acid ethylidene hydrazide, under the control of carbon catabolite repression. Purified Hdh oxidized and hydrated the C=N double bond of acetaldehyde hydrazones by reducing NAD+ or NADP+ to produce relevant hydrazides and acetate, the latter of which the yeast assimilated. The deduced amino acid sequence revealed that Hdh belongs to the aldehyde dehydrogenase (Aldh) superfamily. Kinetic and mutagenesis studies showed that Hdh formed a ternary complex with the substrates and that conserved Cys is essential for the activity. The mechanism of Hdh is similar to that of Aldh, except that it catalyzed oxidative hydrolysis of hydrazones that requires adding a water molecule to the reaction catalyzed by conventional Aldh. Surprisingly, both Hdh and Aldh from baker's yeast (Ald4p) catalyzed the Hdh reaction as well as aldehyde oxidation. Our findings are unique in that we discovered a biological mechanism for hydrazone utilization and a novel function of proteins in the Aldh family that act on C=N compounds. PMID:18096698

  12. Localization of double bonds in wax esters by high-performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry utilizing the fragmentation of acetonitrile-related adducts.

    PubMed

    Vrkoslav, Vladimír; Háková, Martina; Pecková, Karolina; Urbanová, Klára; Cvačka, Josef

    2011-04-15

    Unsaturated wax esters (WEs) provided molecular adducts with C(3)H(5)N ([M + 55](+•)) in APCI sources in the presence of acetonitrile. CID MS/MS of [M + 55](+•) yielded fragments allowing the localization of double bond(s) in the hydrocarbon chains of the WEs. These fragments were formed by a cleavage on each side of the double bond. In methylene-interrupted polyunsaturated WEs, diagnostic fragments related to each double bond were detected; the most abundant were those corresponding to the cleavage of the C-C bond next to the first and the last double bond. To differentiate between those fragments differing in their structure or origin, a simple nomenclature based on α and ω ions has been introduced. Fragmentation of the α-type ions (fragments containing an ester bond) provided information on the occurrence of a double bond in the acid or alcohol part of the WEs. While no significant differences between the spectra of the WEs differing by cis/trans isomerism were found, the isomers were separated chromatographically. A data-dependent HPLC/APCI-MS(2) method for the comprehensive characterization of WEs in their complex mixtures has been developed and applied to natural mixtures of WEs isolated from jojoba oil and beeswax. More than 50 WE molecular species were completely identified, including the information on the acid and alcohol chain length and the position of the double bonds.

  13. THE PROTOTYPE ALUMINUM - CARBON SINGLE, DOUBLE, AND TRIPLE BONDS: Al - CH3, Al = CH2, AND Al. = CH

    SciTech Connect

    Fox, Douglas J.; Ray, Douglas; Rubesin, Philip C.; Schaefer III, Henry F.

    1980-06-01

    Nonempirical quantum mechanical methods have been used to investigate the A{ell}CH{sub 3}, A{ell}CH{sub 2}, and A{ell}CH molecules, which may be considered to represent the simplest aluminum-carbon single, double, and triple bonds. Equilibrium geometries and vibrational frequencies were determined at the self-consistent-field level of theory using double zeta basis set: A{ell}(11s7p/6s4p), C(9s5p/4s2p), H(4s/2s). The {sup 1}A{sub 1} ground state of A{ell}CH{sub 3} has a reasonably conventional A{ell}-C single bond of length 2.013 {angstrom}, compared to 1.96 {angstrom} in the known molecule A{ell}(CH{sub 3}){sub 3}. The CH equilibrium distance is 1.093 {angstrom} and the A{ell}-C-H angle 111.9{sup o}. The structures of three electron states each of A{ell}CH{sub 2} and A{ell}CH were similarly predicted, The interesting result is that the ground state of A{ell}CH{sub 2} does not contain an A{ell}-C double bond, and the ground state of A{ell}CH is not characterized by an A{ell}{triple_bond}C bond. The multiply-bonded electronic states do exist but they lie 21 kcal (A{ell}CH{sub 2}) and 86 kcal (A{ell}CH) above the respective ground states. The dissociation energies of the three ground electronic states are predicted to be 68 kcal (A{ell}CH{sub 3}), 77 kcal (A{ell}CH{sub 2}), and 88 kcal (A{ell}CH), Vibrational frequencies are also predicted for the three molecules, and their electronic structures are discussed with reference to Mulliken populations and dipole moments.

  14. Fabrication of extremely thermal-stable GaN template on Mo substrate using double bonding and step annealing process

    NASA Astrophysics Data System (ADS)

    Qing, Wang; Yang, Liu; Yongjian, Sun; Yuzhen, Tong; Guoyi, Zhang

    2016-08-01

    A new layer transfer technique which comprised double bonding and a step annealing process was utilized to transfer the GaN epilayer from a sapphire substrate to a Mo substrate. Combined with the application of the thermal-stable bonding medium, the resulting two-inch-diameter GaN template showed extremely good stability under high temperature and low stress state. Moreover, no cracks and winkles were observed. The transferred GaN template was suitable for homogeneous epitaxial, thus could be used for the direct fabrication of vertical LED chips as well as power electron devices. It has been confirmed that the double bonding and step annealing technique together with the thermal-stable bonding layer could significantly improve the bonding strength and stress relief, finally enhancing the thermal stability of the transferred GaN template. Project supported by the Guangdong Innovative Research Team Program (No. 2009010044), the China Postdoctoral Science Foundation (No. 2014M562233), the National Natural Science Foundation of Guangdong, China (No. 2015A030312011), and the Opened Fund of the State Key Laboratory on Integrated Optoelectronics (No. IOSKL2014KF17).

  15. Double Pancake Versus Long Chalcogen-Chalcogen Bonds in Six-Membered C,N,S-Heterocycles.

    PubMed

    Haberhauer, Gebhard; Gleiter, Rolf

    2016-06-13

    The double "pancake" bonding in the dimers of the six-membered heterocycles 1,3-dithia-2,4,6-triazine (4) and 1,3-dithia-2,4-diazine (16) were investigated by means of high-level quantum chemical calculations (B3LYP and CCSD(T)). It was found that the S-S dimers, 20 a and 27, are not the most stable isomers, but the dimers showing short S-N (21 a) and S-C (25, 28) bonds. An investigation of the 5-phenyl-1,3-dithia-2,4,6-triazine (4 b) yields that the syn dimer with two S-S bonds (2.57 Å) is the most stable one. In this dimer, the phenyl groups are placed on top of each other. The additional dispersion energy of the phenyl rings causes a stabilization of the syn-S-S (C2v -like) isomer. As a result, two weak albeit relevant single S-S bonds (2.57 Å) are predicted. These findings contradict the recently published concept of double "pancake" bonding in the dimer 4 b2 .

  16. Competitive Low Pressure Oxygen Plasma Interactions with Different= Carbon-Carbon Double Bonds

    NASA Astrophysics Data System (ADS)

    Patiño, P.; Sifontes, A.; Gambús, G.

    1999-10-01

    Recently we have shown advances from reactions of O(^3P) with both, l ong-chain hydrocarbons and refinery residuum. The oxidation products of t he process, a mixture of alcohols, epoxides and carbonyl compounds, might have potential properties as additives in formulating fuels. This work s hows the results of the interactions of an oxygen plasma with double bond s, both olefin and aromatic, in the same compound. The reactions have bee n carried out by making the plasma, created by a high voltage glow discha rge, reach the low vapor pressure surface of liquid 4-phenyl-1-butene. Th is (3 mL) was cooled down to -45 ^oC in a glass reactor, applied power was 24 W, at an oxygen pressure of 20 Pa. Products were analyzed by IR, N MR and mass spectroscopies. Conversions were studied as a function of the reaction time, this ranging from 5 to 120 minutes. At short times the O( ^3P) atoms produced in the discharge only reacted with the alkene fra ction of the hydrocarbon, 4-phenyl-1,2-epoxibutane (52%) and 4-phenyl-bu tanal (48%) being the products. Reactions on the benzene ring were obser ved from about 30 minutes on, the corresponding phenols having being prod uced at ratios ortho:para:meta :: 4:1:0.7. At 120 minutes, the ol efin have been completely oxidized and a low fraction of the non-equivale nt two methylene groups have reacted to produce alcohols and ketones.

  17. Bis(pentalene)di-titanium: a bent double-sandwich complex with a very short Ti-Ti bond.

    PubMed

    Kilpatrick, Alexander F R; Green, Jennifer C; Cloke, F Geoffrey N; Tsoureas, Nikolaos

    2013-10-21

    The novel bimetallic bis(pentalene) complex Ti2(μ:η(5),η(5)-Pn(†))2 (Pn(†) = C8H4{Si(i)Pr3-1,4}2) has been synthesised and structurally characterised. Structural data show a Ti-Ti distance of 2.399(2) Å, consistent with a strong metal-metal interaction, which DFT calculations best describe as a double bond with σ and π components.

  18. Dynamic covalent bond based on reversible photo [4 + 4] cycloaddition of anthracene for construction of double-dynamic polymers.

    PubMed

    Xu, Jiang-Fei; Chen, Yu-Zhe; Wu, Li-Zhu; Tung, Chen-Ho; Yang, Qing-Zheng

    2013-12-20

    Dynamic covalent bonds supplied by reversible anthracene dimerization were combined with pillar[5]arene/imidazole host-guest interactions to construct double-dynamic polymers. Heating such polymers (in solution or as a gel) led to depolymerization by dissociation of either the host-guest complexes alone or the complexes and the anthracene dimers, depending on the extent of heating. The polymers reformed readily upon cooling or irradiation.

  19. Rhodium-catalyzed annulative coupling of 3-phenylthiophenes with alkynes involving double C-H bond cleavages.

    PubMed

    Iitsuka, Tomonori; Hirano, Koji; Satoh, Tetsuya; Miura, Masahiro

    2014-01-01

    Double CH bond activation took place efficiently upon treatment of 3-phenylthiophenes with alkynes in the presence of a rhodium catalyst and a copper salt oxidant to form the corresponding naphthothiophene derivatives. Dehydrogenative coupling with alkenes was also found to occur on the phenyl moiety rather than the thiophene ring. These reactions provide straightforward synthetic methods for π-conjugated molecules involving a thiophene unit from readily available, simple building blocks. PMID:24288235

  20. Functionalization of the benzobicyclo[3.2.1] octadiene skeleton possessing one isolated double bond via photocatalytic oxygenation

    NASA Astrophysics Data System (ADS)

    Vuk, Dragana; Horváth, Ottó; Marinić, Željko; Škorić, Irena

    2016-03-01

    Photocatalytic oxygenation of three phenyl derivatives of a bicyclic skeleton with a free double bond 1a, 1b and 1c were carried out by utilizing a cationic and an anionic manganese(III) porphyrin irradiated in the visible range. While photocatalysis of 1a and 1b led to the formation of the corresponding hydroperoxy derivatives 2 and 3, respectively, (besides unidentified high-molecular-weight products) in the presence of the anionic Mn(III) porphyrin, the cationic photocatalyst proved to be less efficient and less selective with 1a. In the case of 1b, also with the cationic porphyrin, the corresponding hydroperoxy derivative (3) was the main product at a shorter reaction time (2 h), whereas a longer irradiation (4 h) led to the significant formation of a keto derivative (5) with a hydroperoxy substituent and a free double bond at positions deviating from those in the previous products (2 and 3). A dramatic change in the reactivity was observed for the methoxy derivative (1c). It gave only traces of identifiable products by using the anionic photocatalyst, while application of the cationic Mn(III) porphyrin resulted in a relatively efficient formation of an epoxy derivative (6) due to the reaction of the isolated double bond.

  1. Fracture Analysis of Double-Side Adhesively Bonded Composite Repairs to Cracked Aluminium Plate Using Line Spring Model

    NASA Astrophysics Data System (ADS)

    Niu, Yong; Su, Weiguo

    2016-06-01

    A line spring model is developed for analyzing the fracture problem of cracked metallic plate repaired with the double-sided adhesively bonded composite patch. The restraining action of the bonded patch is modeled as continuous distributed linear springs bridging the crack faces provided that the cracked plate is subjected to extensional load. The effective spring constant is determined from 1-D bonded joint theory. The hyper-singular integral equation (HSIE), which can be solved using the second kind Chebyshev polynomial expansion method, is applied to determine the crack opening displacements (COD) and the crack tip stress intensity factors (SIF) of the repaired cracked plate. The numerical result of SIF for the crack-tip correlates very well with the finite element (FE) computations based on the virtual crack closure technique (VCCT). The present analysis approaches and mathematical techniques are critical to the successful design, analysis and implementation of crack patching.

  2. Localization of double bonds in triacylglycerols using high-performance liquid chromatography/atmospheric pressure chemical ionization ion-trap mass spectrometry.

    PubMed

    Háková, Eva; Vrkoslav, Vladimír; Míková, Radka; Schwarzová-Pecková, Karolina; Bosáková, Zuzana; Cvačka, Josef

    2015-07-01

    A method for localizing double bonds in triacylglycerols using high-performance liquid chromatography-tandem mass spectrometry with atmospheric pressure chemical ionization (APCI) was developed. The technique was based on collision-induced dissociation or pulsed Q collision-induced dissociation of the C3H5N(+•) adducts ([M + 55](+•)) formed in the presence of acetonitrile in the APCI source. The spectra were investigated using a large series of standards obtained from commercial sources and prepared by randomization. The fragmentation spectra made it possible to determine (i) the total number of carbons and double bonds in the molecule, (ii) the number of carbons and double bonds in acyls, (iii) the acyl in the sn-2 position on the glycerol backbone, and (iv) the double-bond positions in acyls. The double-bond positions were determined based on two types of fragments (alpha and omega ions) formed by cleavages of C-C bonds vinylic to the original double bond. The composition of the acyls and their positions on glycerol were established from the masses and intensities of the ions formed by the elimination of fatty acids from the [M + 55](+•) precursor. The method was applied for the analysis of triacylglycerols in olive oil and vernix caseosa.

  3. Carbon-nitrogen bond construction and carbon-oxygen double bond cleavage on a molecular titanium oxonitride: a combined experimental and computational study.

    PubMed

    Carbó, Jorge J; García-López, Diego; González-Del Moral, Octavio; Martín, Avelino; Mena, Miguel; Santamaría, Cristina

    2015-10-01

    New carbon-nitrogen bonds were formed on addition of isocyanide and ketone reagents to the oxonitride species [{Ti(η(5)-C5Me5)(μ-O)}3(μ3-N)] (1). Reaction of 1 with XylNC (Xyl = 2,6-Me2C6H3) in a 1:3 molar ratio at room temperature leads to compound [{Ti(η(5)-C5Me5)(μ-O)}3(μ-XylNCCNXyl)(NCNXyl)] (2), after the addition of the nitrido group to one coordinated isocyanide and the carbon-carbon coupling of the other two isocyanide molecules have taken place. Thermolysis of 2 gives [{Ti(η(5)-C5Me5)(μ-O)}3(XylNCNXyl)(CN)] (3) where the heterocumulene [XylNCCNXyl] moiety and the carbodiimido [NCNXyl] fragment in 2 have undergone net transformations. Similarly, tert-butyl isocyanide (tBuNC) reacts with the starting material 1 under mild conditions to give the paramagnetic derivative [{Ti3(η(5)-C5Me5)3(μ-O)3(NCNtBu)}2(μ-CN)2] (4). However, compound 1 provides the oxo ketimide derivatives [{Ti3(η(5)-C5Me5)3(μ-O)4}(NCRPh)] [R = Ph (5), p-Me(C6H4) (6), o-Me(C6H4) (7)] upon reaction with benzophenone, p-methylbenzophenone, and o-methylbenzophenone, respectively. In these reactions, the carbon-oxygen double bond is completely ruptured, leading to the formation of a carbon-nitrogen and two metal-oxygen bonds. The molecular structures of complexes 2-4, 6, and 7 were determined by single-crystal X-ray diffraction analyses. Density functional theory calculations were performed on the incorporation of isocyanides and ketones to the model complex [{Ti(η(5)-C5H5)(μ-O)}3(μ3-N)] (1H). The mechanism involves the coordination of the substrates to one of the titanium metal centers, followed by an isomerization to place those substrates cis with respect to the apical nitrogen of 1H, where carbon-nitrogen bond formation occurs with a low-energy barrier. In the case of aryl isocyanides, the resulting complex incorporates additional isocyanide molecules leading to a carbon-carbon coupling. With ketones, the high oxophilicity of titanium promotes the unusual total cleavage of the

  4. Carbon-nitrogen bond construction and carbon-oxygen double bond cleavage on a molecular titanium oxonitride: a combined experimental and computational study.

    PubMed

    Carbó, Jorge J; García-López, Diego; González-Del Moral, Octavio; Martín, Avelino; Mena, Miguel; Santamaría, Cristina

    2015-10-01

    New carbon-nitrogen bonds were formed on addition of isocyanide and ketone reagents to the oxonitride species [{Ti(η(5)-C5Me5)(μ-O)}3(μ3-N)] (1). Reaction of 1 with XylNC (Xyl = 2,6-Me2C6H3) in a 1:3 molar ratio at room temperature leads to compound [{Ti(η(5)-C5Me5)(μ-O)}3(μ-XylNCCNXyl)(NCNXyl)] (2), after the addition of the nitrido group to one coordinated isocyanide and the carbon-carbon coupling of the other two isocyanide molecules have taken place. Thermolysis of 2 gives [{Ti(η(5)-C5Me5)(μ-O)}3(XylNCNXyl)(CN)] (3) where the heterocumulene [XylNCCNXyl] moiety and the carbodiimido [NCNXyl] fragment in 2 have undergone net transformations. Similarly, tert-butyl isocyanide (tBuNC) reacts with the starting material 1 under mild conditions to give the paramagnetic derivative [{Ti3(η(5)-C5Me5)3(μ-O)3(NCNtBu)}2(μ-CN)2] (4). However, compound 1 provides the oxo ketimide derivatives [{Ti3(η(5)-C5Me5)3(μ-O)4}(NCRPh)] [R = Ph (5), p-Me(C6H4) (6), o-Me(C6H4) (7)] upon reaction with benzophenone, p-methylbenzophenone, and o-methylbenzophenone, respectively. In these reactions, the carbon-oxygen double bond is completely ruptured, leading to the formation of a carbon-nitrogen and two metal-oxygen bonds. The molecular structures of complexes 2-4, 6, and 7 were determined by single-crystal X-ray diffraction analyses. Density functional theory calculations were performed on the incorporation of isocyanides and ketones to the model complex [{Ti(η(5)-C5H5)(μ-O)}3(μ3-N)] (1H). The mechanism involves the coordination of the substrates to one of the titanium metal centers, followed by an isomerization to place those substrates cis with respect to the apical nitrogen of 1H, where carbon-nitrogen bond formation occurs with a low-energy barrier. In the case of aryl isocyanides, the resulting complex incorporates additional isocyanide molecules leading to a carbon-carbon coupling. With ketones, the high oxophilicity of titanium promotes the unusual total cleavage of the

  5. A highly electron-deficient analogue of aniline, soluble oligomers, and their redox properties.

    PubMed

    Djukic, Brandon; Lough, Alan J; Seferos, Dwight S

    2013-09-20

    The synthesis and electrochemical oxidative coupling of a highly electron-deficient analogue of aniline results in the formation of soluble electron-deficient oligomers. Oligomers undergo related oxidation and reduction processes that are separated by a wide potential range. The mechanism behind this behavior is examined by cyclic voltammetry, optical absorption spectroscopy, (1)H NMR spectroscopy, and density functional theory calculations. Mesomeric isomerization of the oxidized oligomers leads to a very stable oxidized state that requires a large (2.8 V) overpotential to return to the neutral form. PMID:23971787

  6. Extraordinary stability of naphthalenediimide radical ion and its ultra-electron-deficient precursor: strategic role of the phosphonium group.

    PubMed

    Kumar, Sharvan; Ajayakumar, M R; Hundal, Geeta; Mukhopadhyay, Pritam

    2014-08-27

    Stabilization of radical ions and highly electron-deficient systems under ambient conditions is of great significance. A new design concept is presented that applies the multifaceted features of the phosphonium group to achieve isolation of (a) the first naphthalenediimide (NDI) radical ion [(1a•+)BPh4(–)] as single crystals and (b) an ultra-electron-deficient NDI [(1a(2+))2BF4(–)] having the lowest LUMO level recorded for an NDI, overwhelming the formative tetracyanoquinodimethane (TCNQ) molecule. Both 1a•+ and 1a(2+) exhibit unprecedented stability to normal workup procedures, chromatography, and anion metathesis in open air. To our knowledge, this is the first instance where radical ions stable toward chromatography have been obtained, which is a noteworthy development in the field of synthetic radical chemistry. The crucial components of thermodynamic and kinetic stabilization, namely, the nonbonded P···O interaction, hypervalency, and propeller-like shape of the phosphonium groups in 1a(2+) and 1a•+, were substantiated by crystallography and theoretical studies. Natural bond orbital (NBO) calculations validated the P···O contact to be an nO → σP–C* orbital interaction. Spontaneous electron transfer reactions of 1a(2+) even in nonpolar solvents, anion−π interactions of 1a(2+) with the naphthalene core, and panchromism of 1a•+ are the other emergent properties. The high-yielding (∼90%) in situ synthesis of 1a•+ and the extraordinary stability fostered by the phosphonium group have the potential to turn hitherto unstable organic systems into a new genre of stable off-the-shelf systems.

  7. Extraordinary stability of naphthalenediimide radical ion and its ultra-electron-deficient precursor: strategic role of the phosphonium group.

    PubMed

    Kumar, Sharvan; Ajayakumar, M R; Hundal, Geeta; Mukhopadhyay, Pritam

    2014-08-27

    Stabilization of radical ions and highly electron-deficient systems under ambient conditions is of great significance. A new design concept is presented that applies the multifaceted features of the phosphonium group to achieve isolation of (a) the first naphthalenediimide (NDI) radical ion [(1a•+)BPh4(–)] as single crystals and (b) an ultra-electron-deficient NDI [(1a(2+))2BF4(–)] having the lowest LUMO level recorded for an NDI, overwhelming the formative tetracyanoquinodimethane (TCNQ) molecule. Both 1a•+ and 1a(2+) exhibit unprecedented stability to normal workup procedures, chromatography, and anion metathesis in open air. To our knowledge, this is the first instance where radical ions stable toward chromatography have been obtained, which is a noteworthy development in the field of synthetic radical chemistry. The crucial components of thermodynamic and kinetic stabilization, namely, the nonbonded P···O interaction, hypervalency, and propeller-like shape of the phosphonium groups in 1a(2+) and 1a•+, were substantiated by crystallography and theoretical studies. Natural bond orbital (NBO) calculations validated the P···O contact to be an nO → σP–C* orbital interaction. Spontaneous electron transfer reactions of 1a(2+) even in nonpolar solvents, anion−π interactions of 1a(2+) with the naphthalene core, and panchromism of 1a•+ are the other emergent properties. The high-yielding (∼90%) in situ synthesis of 1a•+ and the extraordinary stability fostered by the phosphonium group have the potential to turn hitherto unstable organic systems into a new genre of stable off-the-shelf systems. PMID:25093533

  8. Effect of temperature and duration of post-cure on in vitro wear and quantity of remaining double bonds of resins containing carboxylic anhydride.

    PubMed

    Peutzfeldt, A

    1995-08-01

    The present study determined the effect of post-cure temperature and duration on in vitro wear resistance and quantity of remaining double bonds of anhydride-containing resins. Temperatures were varied between 37 degrees C and 225 degrees C, and durations were varied between 0 and 24 h. The quantity of remaining double bonds could not be established for post-cure temperatures of 200 degrees C or more due to melting of the polymer. A temperature of approximately 120 degrees C had optimal effect on wear resistance. Quantity of remaining double bonds and wear were found to decrease with increasing duration of post-cure. Low quantities of remaining double bonds were generally associated with low in vitro wear.

  9. Endohedral fullerene with μ3-carbido ligand and titanium-carbon double bond stabilized inside a carbon cage.

    PubMed

    Svitova, A L; Ghiassi, K B; Schlesier, C; Junghans, K; Zhang, Y; Olmstead, M M; Balch, A L; Dunsch, L; Popov, A A

    2014-01-01

    In all metallofullerenes known before this work, metal atoms form single highly polar bonds with non-metal atoms in endohedral cluster. This is rather surprising for titanium taking into account the diversity of organotitanium compounds. Here we show that the arc-discharge synthesis of mixed titanium-lutetium metallofullerenes in the presence of ammonia, melamine or methane unexpectedly results in the formation of TiLu2C@I(h)-C80 with an icosahedral Ih(7) carbon cage. Single-crystal X-ray diffraction and spectroscopic studies of the compound reveal an unprecedented endohedral cluster with a μ3-carbido ligand and Ti-C double bond. The Ti(IV) in TiLu2C@I(h)-C80 can be reversibly reduced to the Ti(III) state. The Ti = C bonding and Ti-localized lowest unoccupied molecular orbital in TiLu2C@Ih-C80 bear a certain resemblance to titanium alkylidenes. TiLu2C@I(h)-C80 is the first metallofullerene with a multiple bond between a metal and the central, non-metal atom of the endohedral cluster.

  10. Endohedral fullerene with μ3-carbido ligand and titanium-carbon double bond stabilized inside a carbon cage.

    PubMed

    Svitova, A L; Ghiassi, K B; Schlesier, C; Junghans, K; Zhang, Y; Olmstead, M M; Balch, A L; Dunsch, L; Popov, A A

    2014-01-01

    In all metallofullerenes known before this work, metal atoms form single highly polar bonds with non-metal atoms in endohedral cluster. This is rather surprising for titanium taking into account the diversity of organotitanium compounds. Here we show that the arc-discharge synthesis of mixed titanium-lutetium metallofullerenes in the presence of ammonia, melamine or methane unexpectedly results in the formation of TiLu2C@I(h)-C80 with an icosahedral Ih(7) carbon cage. Single-crystal X-ray diffraction and spectroscopic studies of the compound reveal an unprecedented endohedral cluster with a μ3-carbido ligand and Ti-C double bond. The Ti(IV) in TiLu2C@I(h)-C80 can be reversibly reduced to the Ti(III) state. The Ti = C bonding and Ti-localized lowest unoccupied molecular orbital in TiLu2C@Ih-C80 bear a certain resemblance to titanium alkylidenes. TiLu2C@I(h)-C80 is the first metallofullerene with a multiple bond between a metal and the central, non-metal atom of the endohedral cluster. PMID:24699547

  11. Characterization of Wax Esters by Electrospray Ionization Tandem Mass Spectrometry: Double Bond Effect and Unusual Product Ions

    PubMed Central

    Chen, Jianzhong; Green, Kari B; Nichols, Kelly K

    2015-01-01

    A series of different types of wax esters (represented by RCOOR′) were systematically studied by using electrospray ionization (ESI) collision-induced dissociation tandem mass spectrometry (MS/MS) along with pseudo MS3 (in-source dissociation combined with MS/MS) on a quadrupole time-of-flight (Q-TOF) mass spectrometer. The tandem mass spectra patterns resulting from dissociation of ammonium/proton adducts of these wax esters were influenced by the wax ester type and the collision energy applied. The product ions [RCOOH2]+, [RCO]+ and [RCO – H2O]+ that have been reported previously were detected; however, different primary product ions were demonstrated for the three wax ester types including: 1) [RCOOH2]+ for saturated wax esters, 2) [RCOOH2]+, [RCO]+ and [RCO – H2O]+ for unsaturated wax esters containing only one double bond in the fatty acid moiety or with one additional double bond in the fatty alcohol moiety, and 3) [RCOOH2]+ and [RCO]+ for unsaturated wax esters containing a double bond in the fatty alcohol moiety alone. Other fragments included [R′]+ and several series of product ions for all types of wax esters. Interestingly, unusual product ions were detected, such as neutral molecule (including water, methanol and ammonia) adducts of [RCOOH2]+ ions for all types of wax esters and [R′ – 2H]+ ions for unsaturated fatty acyl-containing wax esters. The patterns of tandem mass spectra for different types of wax esters will inform future identification and quantification approaches of wax esters in biological samples as supported by a preliminary study of quantification of isomeric wax esters in human meibomian gland secretions. PMID:26178197

  12. Characterization of Wax Esters by Electrospray Ionization Tandem Mass Spectrometry: Double Bond Effect and Unusual Product Ions.

    PubMed

    Chen, Jianzhong; Green, Kari B; Nichols, Kelly K

    2015-08-01

    A series of different types of wax esters (represented by RCOOR') were systematically studied by using electrospray ionization (ESI) collision-induced dissociation tandem mass spectrometry (MS/MS) along with pseudo MS(3) (in-source dissociation combined with MS/MS) on a quadrupole time-of-flight (Q-TOF) mass spectrometer. The tandem mass spectra patterns resulting from dissociation of ammonium/proton adducts of these wax esters were influenced by the wax ester type and the collision energy applied. The product ions [RCOOH2](+), [RCO](+) and [RCO-H2O](+) that have been reported previously were detected; however, different primary product ions were demonstrated for the three wax ester types including: (1) [RCOOH2](+) for saturated wax esters, (2) [RCOOH2](+), [RCO](+) and [RCO-H2O](+) for unsaturated wax esters containing only one double bond in the fatty acid moiety or with one additional double bond in the fatty alcohol moiety, and (3) [RCOOH2](+) and [RCO](+) for unsaturated wax esters containing a double bond in the fatty alcohol moiety alone. Other fragments included [R'](+) and several series of product ions for all types of wax esters. Interestingly, unusual product ions were detected, such as neutral molecule (including water, methanol and ammonia) adducts of [RCOOH2](+) ions for all types of wax esters and [R'-2H](+) ions for unsaturated fatty acyl-containing wax esters. The patterns of tandem mass spectra for different types of wax esters will inform future identification and quantification approaches of wax esters in biological samples as supported by a preliminary study of quantification of isomeric wax esters in human meibomian gland secretions.

  13. Platinum-mediated dinitrogen liberation from 2-picolyl azide through a putative Pt═N double bond containing intermediate.

    PubMed

    Pinter, Balazs; Urankar, Damijana; Pevec, Andrej; De Proft, Frank; Košmrlj, Janez

    2013-04-15

    2-Picolyl azide reacts with cis-[PtCl2(DMSO)2] to form the diimino complex [Pt(II)Cl2{NH═C(H)Py}] with subsequent dinitrogen liberation. The formation of the latter complex is scrutinized in a combined experimental and theoretical analysis. We establish in silico that the transformation involves a highly reactive intermediate containing a Pt═N double bond formed after the extrusion of N2 from the azide functionality. The prerequisites for N2 liberation and for the stabilization of the nitrene-related intermediate are analyzed in detail. PMID:23534346

  14. ELECTRON DONOR ACCEPTOR DESCRIPTORS OF THE SINGLE AND DOUBLE BONDED SUBSTITUENT AND HETEROATOM INCORPORATION EFFECTS. A REVIEW.

    PubMed

    Mazurek, Andrzej

    2016-01-01

    The properties of the series of Electron Donor-Acceptor (EDA) descriptors of classical substituent effect (sEDA(I), pEDA(I)), double bonded substituent effect (sEDA(=), pEDA(=)), heteroatom incorporation effect in monocyclic systems (sEDA(II), pEDA(II)), and in ring-junction position (sEDA(III), pEDA(III)), are reviewed. The descriptors show the amount of electrons donated to or withdrawn from the σ-(sEDA) or π(pEDA) valence orbitals by the substituent or incorporant. The new descriptors are expected to enrich the potency of QSAR analyses in drug design and materials chemistry.

  15. Terminal titanium-ligand multiple bonds. Cleavages of C=O and C=S double bonds with Ti imido complexes.

    PubMed

    Hsu, Shih-Hsien; Chang, Jr-Chiuan; Lai, Chun-Liang; Hu, Ching-Han; Lee, Hon Man; Lee, Gene-Hsiang; Peng, Shie-Ming; Huang, Jui-Hsien

    2004-10-18

    Treatment of (t-)BuN=TiCl(2)Py(3) with 2 equiv lithium ketiminate compound, Li[OCMeCHCMeN(Ar)] (where Ar = 2,6-diisopropylphenyl), in toluene at room temperature gave (t-)BuN=Ti[OCMeCHCMeN(Ar)](2) (1) in high yield. The reaction of 1 with phenyl isocyanate at room-temperature resulted in imido ligand exchange producing PhN=Ti[OCMeCHCMeN(Ar)](2) (2). Compound 1 decomposed at 90 degrees C to form a terminal titanium oxo compound O=Ti[OCMeCHCMeN(Ar)](2) (3) and (t-)BuNHCMeCHCMeNAr (4). Also, the compound 3 could be obtained by reacting 1 with CO(2) under mild condition. Similarly, while 1 reacts with an excess of carbon disulfide, a novel terminal titanium sulfido compound S=Ti[OCMeCHCMeN(Ar)](2) (5) was formed via a C=S bond breaking reaction. A novel titanium isocyanate compound Ti[OCMeCHCMeN(Ar)](2)(NCO)(OEt) (6) was formed on heating 1 with 1 equiv of urethane, H(2)NCOOEt. Compounds 1-6 have been characterized by (1)H and (13)C NMR spectroscopies. The molecular structures of 1, 3, 5, and 6 were determined by single-crystal X-ray diffraction. A theoretical calculation predicted that the cleavage of the C-S double bonds for carbon disulfide with the Ti=N bond of compound 1 was estimated at ca. 21.8 kcal.mol(-1) exothermic.

  16. Quantum dynamics study of fulvene double bond photoisomerization: The role of intramolecular vibrational energy redistribution and excitation energy

    SciTech Connect

    Blancafort, Lluis; Gatti, Fabien; Meyer, Hans-Dieter

    2011-10-07

    The double bond photoisomerization of fulvene has been studied with quantum dynamics calculations using the multi-configuration time-dependent Hartree method. Fulvene is a test case to develop optical control strategies based on the knowledge of the excited state decay mechanism. The decay takes place on a time scale of several hundred femtoseconds, and the potential energy surface is centered around a conical intersection seam between the ground and excited state. The competition between unreactive decay and photoisomerization depends on the region of the seam accessed during the decay. The dynamics are carried out on a four-dimensional model surface, parametrized from complete active space self-consistent field calculations, that captures the main features of the seam (energy and locus of the seam and associated branching space vectors). Wave packet propagations initiated by single laser pulses of 5-25 fs duration and 1.85-4 eV excitation energy show the principal characteristics of the first 150 fs of the photodynamics. Initially, the excitation energy is transferred to a bond stretching mode that leads the wave packet to the seam, inducing the regeneration of the reactant. The photoisomerization starts after the vibrational energy has flowed from the bond stretching to the torsional mode. In our propagations, intramolecular energy redistribution (IVR) is accelerated for higher excess energies along the bond stretch mode. Thus, the competition between unreactive decay and isomerization depends on the rate of IVR between the bond stretch and torsion coordinates, which in turn depends on the excitation energy. These results set the ground for the development of future optical control strategies.

  17. Chemical bonding and dynamic fluxionality of a B15(+) cluster: a nanoscale double-axle tank tread.

    PubMed

    Wang, Ying-Jin; You, Xue-Rui; Chen, Qiang; Feng, Lin-Yan; Wang, Kang; Ou, Ting; Zhao, Xiao-Yun; Zhai, Hua-Jin; Li, Si-Dian

    2016-06-21

    A planar, elongated B15(+) cationic cluster is shown to be structurally fluxional and functions as a nanoscale tank tread on the basis of electronic structure calculations, bonding analyses, and molecular dynamics simulations. The outer B11 peripheral ring behaves like a flexible chain gliding around an inner B4 rhombus core, almost freely at the temperature of 500 K. The rotational energy barrier is only 1.37 kcal mol(-1) (0.06 eV) at the PBE0/6-311+G* level, further refined to 1.66 kcal mol(-1) (0.07 eV) at the single-point CCSD(T)/6-311G*//CCSD/6-311G* level. Two soft vibrational modes of 166.3 and 258.3 cm(-1) are associated with the rotation, serving as double engines for the system. Bonding analysis suggests that the "island" electron clouds, both σ and π, between the peripheral ring and inner core flow and shift continuously during the intramolecular rotation, facilitating the dynamic fluxionality of the system with a small rotational barrier. The B15(+) cluster, roughly 0.6 nm in dimension, is the first double-axle nanoscale tank tread equipped with two engines, which expands the concepts of molecular wheels, Wankel motors, and molecular tanks.

  18. Chemical bonding and dynamic fluxionality of a B15(+) cluster: a nanoscale double-axle tank tread.

    PubMed

    Wang, Ying-Jin; You, Xue-Rui; Chen, Qiang; Feng, Lin-Yan; Wang, Kang; Ou, Ting; Zhao, Xiao-Yun; Zhai, Hua-Jin; Li, Si-Dian

    2016-06-21

    A planar, elongated B15(+) cationic cluster is shown to be structurally fluxional and functions as a nanoscale tank tread on the basis of electronic structure calculations, bonding analyses, and molecular dynamics simulations. The outer B11 peripheral ring behaves like a flexible chain gliding around an inner B4 rhombus core, almost freely at the temperature of 500 K. The rotational energy barrier is only 1.37 kcal mol(-1) (0.06 eV) at the PBE0/6-311+G* level, further refined to 1.66 kcal mol(-1) (0.07 eV) at the single-point CCSD(T)/6-311G*//CCSD/6-311G* level. Two soft vibrational modes of 166.3 and 258.3 cm(-1) are associated with the rotation, serving as double engines for the system. Bonding analysis suggests that the "island" electron clouds, both σ and π, between the peripheral ring and inner core flow and shift continuously during the intramolecular rotation, facilitating the dynamic fluxionality of the system with a small rotational barrier. The B15(+) cluster, roughly 0.6 nm in dimension, is the first double-axle nanoscale tank tread equipped with two engines, which expands the concepts of molecular wheels, Wankel motors, and molecular tanks. PMID:27229290

  19. Double bond stereochemistry influences the susceptibility of short-chain isoprenoids and polyprenols to decomposition by thermo-oxidation.

    PubMed

    Molińska, Ewa; Klimczak, Urszula; Komaszyło, Joanna; Derewiaka, Dorota; Obiedziński, Mieczysław; Kania, Magdalena; Danikiewicz, Witold; Swiezewska, Ewa

    2015-04-01

    Isoprenoid alcohols are common constituents of living cells. They are usually assigned a role in the adaptation of the cell to environmental stimuli, and this process might give rise to their oxidation by reactive oxygen species. Moreover, cellular isoprenoids may also undergo various chemical modifications resulting from the physico-chemical treatment of the tissues, e.g., heating during food processing. Susceptibility of isoprenoid alcohols to heat treatment has not been studied in detail so far. In this study, isoprenoid alcohols differing in the number of isoprene units and geometry of the double bonds, β-citronellol, geraniol, nerol, farnesol, solanesol and Pren-9, were subjected to thermo-oxidation at 80 °C. Thermo-oxidation resulted in the decomposition of the tested short-chain isoprenoids as well as medium-chain polyprenols with simultaneous formation of oxidized derivatives, such as hydroperoxides, monoepoxides, diepoxides and aldehydes, and possible formation of oligomeric derivatives. Oxidation products were monitored by GC-FID, GC-MS, ESI-MS and spectrophotometric methods. Interestingly, nerol, a short-chain isoprenoid with a double bond in the cis (Z) configuration, was more oxidatively stable than its trans (E) isomer, geraniol. However, the opposite effect was observed for medium-chain polyprenols, since Pren-9 (di-trans-poly-cis-prenol) was more susceptible to thermo-oxidation than its all-trans isomer, solanesol. Taken together, these results experimentally confirm that both short- and long-chain polyisoprenoid alcohols are prone to thermo-oxidation.

  20. Interactions of Molecules with cis and trans Double Bonds: A Theoretical Study of cis- and trans-2-Butene.

    PubMed

    Zarić, Milana M; Bugarski, Branko; Kijevčanin, Mirjana Lj

    2016-01-18

    Noncovalent interactions of cis- and trans-2-butene, as the smallest model systems of molecules with cis and trans double bonds, were studied to find potential differences in interactions of these molecules. The study was performed using quantum chemical methods including very accurate CCSD(T)/CBS method. We studied parallel and displaced parallel interactions in 2-butene dimers, in butane dimers, and between 2-butene and saturated butane. The results show the trend that interactions of 2-butene with butane are the strongest, followed by interactions in butane dimers, whereas the interaction in 2-butene dimers are the weakest. The strongest calculated interaction energy is between trans-2-butene and butane, with a CCSD(T)/CBS energy of -2.80 kcal mol(-1) . Interactions in cis-2-butene dimers are stronger than interactions in trans-2-butene dimers. Interestingly, some of the interactions involving 2-butene are as strong as interactions in a benzene dimer. These insights into interactions of cis- and trans-2-butene can improve understanding of the properties and processes that involve molecules with cis and trans double bonds, such as fatty acids and polymers.

  1. Role of the protein cavity in phytochrome chromoprotein assembly and double-bond isomerization: a comparison with model compounds.

    PubMed

    Rohmer, Thierry; Lang, Christina; Gärtner, Wolfgang; Hughes, Jon; Matysik, Jörg

    2010-01-01

    Difference patterns of (13)C NMR chemicals shifts for the protonation of a free model compound in organic solution, as reported in the literature (M. Stanek, K. Grubmayr [1998] Chem. Eur. J.4, 1653-1659), were compared with changes in the protonation state occurring during holophytochrome assembly from phycocyanobilin (PCB) and the apoprotein. Both processes induce identical changes in the NMR signals, indicating that the assembly process is linked to protonation of the chromophore, yielding a cationic cofactor in a heterogeneous, quasi-liquid protein environment. The identity of both difference patterns implies that the protonation of a model compound in solution causes a partial stretching of the geometry of the macrocycle as found in the protein. In fact, the similarity of the difference pattern within the bilin family for identical chemical transformations represents a basis for future theoretical analysis. On the other hand, the change of the (13)C NMR chemical shift pattern upon the Pr --> Pfr photoisomerization is very different to that of the free model compound upon ZZZ --> ZZE photoisomerization. Hence, the character of the double-bond isomerization in phytochrome is essentially different from that of a classical photoinduced double-bond isomerization, emphasizing the role of the protein environment in the modulation of this light-induced process. PMID:20492561

  2. Ozonolysis of the double bond of the unsaturated uronate residue in low-molecular-weight heparin and K5 heparosan.

    PubMed

    Masuko, Sayaka; Higashi, Kyohei; Wang, Zhenyu; Bhaskar, Ujjwal; Hickey, Anne Marie; Zhang, Fuming; Toida, Toshihiko; Dordick, Jonathan S; Linhardt, Robert J

    2011-09-27

    Ozone is known to add across and cleave carbon-carbon double bonds. Ozonolysis is widely used for the preparation of pharmaceuticals, for bleaching substances and for killing microorganisms in air and water sources. Some polysaccharides and oligosaccharides, such as those prepared using chemical or enzymatic β-elimination, contain a site of unsaturation. We examined ozonolysis of low-molecular-weight heparins (LMWHs), enoxaparin and logiparin, and heparosan oligo- and polysaccharides for the removal of the nonreducing terminal unsaturated uronate residue. 1D (1)H NMR showed that these ozone-treated polysaccharides retained the same structure as the starting polysaccharide, except that the C4-C5 double bond in the nonreducing end unsaturated uronate had been removed. The anticoagulant activity of the resulting product from enoxaparin and logiparin was comparable to that of the starting material. These results demonstrate that ozonolysis is an important tool for the removal of unsaturated uronate residues from LMWHs and heparosan without modification of the core polysaccharide structure or diminution of anticoagulant activity. This reaction also has potential applications in the chemoenzymatic synthesis of bioengineered heparin from Escherichia coli-derived K5 heparosan.

  3. The Mechanism of N-N Double Bond Cleavage by an Iron(II) Hydride Complex.

    PubMed

    Bellows, Sarina M; Arnet, Nicholas A; Gurubasavaraj, Prabhuodeyara M; Brennessel, William W; Bill, Eckhard; Cundari, Thomas R; Holland, Patrick L

    2016-09-21

    The use of hydride species for substrate reductions avoids strong reductants, and may enable nitrogenase to reduce multiple bonds without unreasonably low redox potentials. In this work, we explore the N═N bond cleaving ability of a high-spin iron(II) hydride dimer with concomitant release of H2. Specifically, this diiron(II) complex reacts with azobenzene (PhN═NPh) to perform a four-electron reduction, where two electrons come from H2 reductive elimination and the other two come from iron oxidation. The rate law of the H2 releasing reaction indicates that diazene binding occurs prior to H2 elimination, and the negative entropy of activation and inverse kinetic isotope effect indicate that H-H bond formation is the rate-limiting step. Thus, substrate binding causes reductive elimination of H2 that formally reduces the metals, and the metals use the additional two electrons to cleave the N-N multiple bond. PMID:27598037

  4. The Reductive Activation of CO2 Across a Ti=Ti Double Bond: Synthetic, Structural, and Mechanistic Studies

    PubMed Central

    2015-01-01

    The reactivity of the bis(pentalene)dititanium double-sandwich compound Ti2Pn†2 (1) (Pn† = 1,4-{SiiPr3}2C8H4) with CO2 is investigated in detail using spectroscopic, X-ray crystallographic, and computational studies. When the CO2 reaction is performed at −78 °C, the 1:1 adduct 4 is formed, and low-temperature spectroscopic measurements are consistent with a CO2 molecule bound symmetrically to the two Ti centers in a μ:η2,η2 binding mode, a structure also indicated by theory. Upon warming to room temperature the coordinated CO2 is quantitatively reduced over a period of minutes to give the bis(oxo)-bridged dimer 2 and the dicarbonyl complex 3. In situ NMR studies indicated that this decomposition proceeds in a stepwise process via monooxo (5) and monocarbonyl (7) double-sandwich complexes, which have been independently synthesized and structurally characterized. 5 is thermally unstable with respect to a μ-O dimer in which the Ti–Ti bond has been cleaved and one pentalene ligand binds in an η8 fashion to each of the formally TiIII centers. The molecular structure of 7 shows a “side-on” bound carbonyl ligand. Bonding of the double-sandwich species Ti2Pn2 (Pn = C8H6) to other fragments has been investigated by density functional theory calculations and fragment analysis, providing insight into the CO2 reaction pathway consistent with the experimentally observed intermediates. A key step in the proposed mechanism is disproportionation of a mono(oxo) di-TiIII species to yield di-TiII and di-TiIV products. 1 forms a structurally characterized, thermally stable CS2 adduct 8 that shows symmetrical binding to the Ti2 unit and supports the formulation of 4. The reaction of 1 with COS forms a thermally unstable complex 9 that undergoes scission to give mono(μ-S) mono(CO) species 10. Ph3PS is an effective sulfur transfer agent for 1, enabling the synthesis of mono(μ-S) complex 11 with a double-sandwich structure and bis(μ-S) dimer 12 in which the Ti

  5. Theoretical in-Solution Conformational/Tautomeric Analyses for Chain Systems with Conjugated Double Bonds Involving Nitrogen(s)

    PubMed Central

    Nagy, Peter I.

    2015-01-01

    Conformational/tautomeric transformations for X=CH–CH=Y structures (X = CH2, O, NH and Y = NH) have been studied in the gas phase, in dichloromethane and in aqueous solutions. The paper is a continuation of a former study where s-cis/s-trans conformational equilibria were predicted for analogues. The s-trans conformation is preferred for the present molecules in the gas phase on the basis of its lowest internal free energy as calculated at the B97D/aug-cc-pvqz and CCSD(T)CBS (coupled-cluster singles and doubles with non-iterative triples extrapolated to the complete basis set) levels. Transition state barriers are of 29–36 kJ/mol for rotations about the central C–C bonds. In solution, an s-trans form is still favored on the basis of its considerably lower internal free energy compared with the s-cis forms as calculated by IEF-PCM (integral-equation formalism of the polarizable continuum dielectric solvent model) at the theoretical levels indicated. A tetrahydrate model in the supermolecule/continuum approach helped explore the 2solute-solvent hydrogen bond pattern. The calculated transition state barrier for rotation about the C–C bond decreased to 27 kJ/mol for the tetrahydrate. Considering explicit solvent models, relative solvation free energies were calculated by means of the free energy perturbation method through Monte Carlo simulations. These calculated values differ remarkably from those by the PCM approach in aqueous solution, nonetheless the same prevalent conformation was predicted by the two methods. Aqueous solution structure-characteristics were determined by Monte Carlo. Equilibration of conformers/tautomers through water-assisted double proton-relay is discussed. This mechanism is not viable, however, in non-protic solvents where the calculated potential of mean force curve does not predict remarkable solute dimerization and subsequent favorable orientation. PMID:25984602

  6. Copper-catalyzed oxyamination of electron-deficient alkenes with N-acyloxyamines.

    PubMed

    Ren, Shichao; Song, Shengjin; Ye, Lu; Feng, Chao; Loh, Teck-Peng

    2016-08-16

    A Cu(i)-catalyzed direct intermolecular oxyamination of electron deficient alkenes is disclosed. This process is characterized by difunctionalization of a variety of α,β-unsaturated ketones with easily available N-acyloxyamine reagents as both amine and oxygen donors, which delivers ester derivatives of β-amino alcohols in good yields as well as with high regioselectivity. Control studies suggested the involvement of alkyl radical species on the way of product formation. PMID:27481485

  7. Copper-catalyzed oxyamination of electron-deficient alkenes with N-acyloxyamines.

    PubMed

    Ren, Shichao; Song, Shengjin; Ye, Lu; Feng, Chao; Loh, Teck-Peng

    2016-08-16

    A Cu(i)-catalyzed direct intermolecular oxyamination of electron deficient alkenes is disclosed. This process is characterized by difunctionalization of a variety of α,β-unsaturated ketones with easily available N-acyloxyamine reagents as both amine and oxygen donors, which delivers ester derivatives of β-amino alcohols in good yields as well as with high regioselectivity. Control studies suggested the involvement of alkyl radical species on the way of product formation.

  8. Construction of hybrid material with double chemical bond from functional bridge ligand: Molecular modification, lotus root-like micromorphology and strong luminescence

    NASA Astrophysics Data System (ADS)

    Yan, Bing; Sui, Yu-Long

    2006-07-01

    Modifying benzoic acid with a cross-linking molecule (3-aminopropyl)triethoxysilane (abbreviated as APES), a fictional molecular bridge with double reactivity was achieved by the amidation reaction between them. Then the modified functional molecule, which behaving as a bridge, both coordinate with terbium ion through amide's oxygen atom and form the Si-O chemical bond in an in situ sol-gel process with matrix precursor (tetraethoxysilane, TEOS). As a result, a novel molecular hybrid material (Tb-BA-APES) with double chemical bond (Tb-O coordination bond and Si-O covalent bond) was constructed. The strong luminescence of Tb 3+ substantiates optimum energy couple and effective intramolecular energy transfer between the triplet state energy of modified ligand bridge and emissive energy level of Tb 3+. Especially SEM of the molecular hybrid material exhibits unexpected microlotus root-like pore morphology.

  9. Identification and cloning of an NADPH-dependent hydroxycinnamoyl-CoA double bond reductase involved in dihydrochalcone formation in Malus×domestica Borkh.

    PubMed

    Ibdah, Mwafaq; Berim, Anna; Martens, Stefan; Valderrama, Andrea Lorena Herrera; Palmieri, Luisa; Lewinsohn, Efraim; Gang, David R

    2014-11-01

    The apple tree (Malus sp.) is an agriculturally and economically important source of food and beverages. Many of the health beneficial properties of apples are due to (poly)phenolic metabolites that they contain, including various dihydrochalcones. Although many of the genes and enzymes involved in polyphenol biosynthesis are known in many plant species, the specific reactions that lead to the biosynthesis of the dihydrochalcone precursor, p-dihydrocoumaroyl-CoA (3), are unknown. To identify genes involved in the synthesis of these metabolites, existing genome databases of the Rosaceae were screened for apple genes with significant sequence similarity to Arabidopsis alkenal double bond reductases. Herein described are the isolation and characterization of a Malus hydroxycinnamoyl-CoA double bond reductase, which catalyzed the NADPH-dependent reduction of p-coumaroyl-CoA and feruloyl-CoA to p-dihydrocoumaroyl-CoA and dihydroferuloyl-CoA, respectively. Its apparent Km values for p-coumaroyl-CoA, feruloyl-CoA and NADPH were 96.6, 92.9 and 101.3μM, respectively. The Malus double bond reductase preferred feruloyl-CoA to p-coumaroyl-CoA as a substrate by a factor of 2.1 when comparing catalytic efficiencies in vitro. Expression analysis of the hydroxycinnamoyl-CoA double bond reductase gene revealed that its transcript levels showed significant variation in tissues of different developmental stages, but was expressed when expected for involvement in dihydrochalcone formation. Thus, the hydroxycinnamoyl-CoA double bond reductase appears to be responsible for the reduction of the α,β-unsaturated double bond of p-coumaroyl-CoA, the first step of dihydrochalcone biosynthesis in apple tissues, and may be involved in the production of these compounds.

  10. Contrast enhancement and polymer identification in the electron microscope by the formation and staining of unsaturated double bonds

    SciTech Connect

    Parker, M.A.; Vesely, D. )

    1993-03-01

    A new technique for the identification of phases contained within a polymer blend is described in this paper. The technique utilizes the beam damage which occurs when polymers are irradiated in an electron microscope. It has been found that during the irradiation process isolated double bonds are formed which can be revealed by staining with osmium tetroxide. The density of staining and its relationship to electron exposure is shown to be a characteristic feature of a particular chemical structure. It allows for polymer phase identification with a high spatial resolution and also for contrast enhancement and preservation. This technique offers a unique way of studying a fine dispersion of phases in polymer blends, even where only low atomic number elements such as C, H, and O are present.

  11. A monotopic aluminum telluride with an Al=Te double bond stabilized by N-heterocyclic carbenes

    PubMed Central

    Franz, Daniel; Szilvási, Tibor; Irran, Elisabeth; Inoue, Shigeyoshi

    2015-01-01

    Aluminum chalcogenides are mostly encountered in the form of bulk aluminum oxides that are structurally diverse but typically consist of networks with high lattice energy in which the chalcogen atoms bridge the metal centres. This makes their molecular congeners difficult to synthesize because of a pronounced tendency for oligomerization. Here we describe the isolation of the monotopic aluminum chalcogenide (LDipN)AlTe(LEt)2 (LDip=1,3-(2,6-diisopropylphenyl)-imidazolin-2-imine, LEt=1,3-diethyl-4,5-dimethyl-imidazolin-2-ylidene). Unique features of (LDipN)AlTe(LEt)2 are the terminal position of the tellurium atom, the shortest aluminum–tellurium distance hitherto reported for a molecular complex and the highest bond order reported for an interaction between these elements, to the best of our knowledge. At elevated temperature (LDipN)AlTe(LEt)2 equilibrates with dimeric {(LDipN)AlTe(LEt)}2 in which the chalcogen atoms assume their common role as bridges between the metal centres. These findings demonstrate that (LDipN)AlTe(LEt)2 comprises the elusive Al=Te double bond in the form of an N-heterocyclic carbene-stabilized species. PMID:26612781

  12. Energy and structure of bonds in the interaction of organic anions with layered double hydroxide nanosheets: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Tsukanov, A. A.; Psakhie, S. G.

    2016-01-01

    The application of hybrid and hierarchical nanomaterials based on layered hydroxides and oxyhydroxides of metals is a swiftly progressing field in biomedicine. Layered double hydroxides (LDH) possess a large specific surface area, significant surface electric charge and biocompatibility. Their physical and structural properties enable them to adsorb various kinds of anionic species and to transport them into cells. However, possible side effects resulting from the interaction of LDH with anions of the intercellular and intracellular medium need to be considered, since such interaction can potentially disrupt ion transport, signaling processes, apoptosis, nutrition and proliferation of living cells. In the present paper molecular dynamics is used to determine the energies of interaction of organic anions (aspartic acid, glutamic acid and bicarbonate) with a fragment of layered double hydroxide Mg/Al-LDH. The average number of hydrogen bonds between the anions and the hydroxide surface and characteristic binding configurations are determined. Possible effects of LDH on the cell resulting from binding of protein fragments and replacement of native intracellular anions with delivered anions are considered.

  13. Energy and structure of bonds in the interaction of organic anions with layered double hydroxide nanosheets: A molecular dynamics study

    PubMed Central

    Tsukanov, A.A.; Psakhie, S.G.

    2016-01-01

    The application of hybrid and hierarchical nanomaterials based on layered hydroxides and oxyhydroxides of metals is a swiftly progressing field in biomedicine. Layered double hydroxides (LDH) possess a large specific surface area, significant surface electric charge and biocompatibility. Their physical and structural properties enable them to adsorb various kinds of anionic species and to transport them into cells. However, possible side effects resulting from the interaction of LDH with anions of the intercellular and intracellular medium need to be considered, since such interaction can potentially disrupt ion transport, signaling processes, apoptosis, nutrition and proliferation of living cells. In the present paper molecular dynamics is used to determine the energies of interaction of organic anions (aspartic acid, glutamic acid and bicarbonate) with a fragment of layered double hydroxide Mg/Al-LDH. The average number of hydrogen bonds between the anions and the hydroxide surface and characteristic binding configurations are determined. Possible effects of LDH on the cell resulting from binding of protein fragments and replacement of native intracellular anions with delivered anions are considered. PMID:26817816

  14. Synthesis of -C[double bond, length as m-dash]N- linked covalent organic frameworks via the direct condensation of acetals and amines.

    PubMed

    Li, Zhi-Jun; Ding, San-Yuan; Xue, Hua-Dong; Cao, Wei; Wang, Wei

    2016-06-01

    We demonstrate herein a facile approach for constructing -C[double bond, length as m-dash]N- linked COFs from acetals. Three new COFs (imine-linked LZU-20, hydrazone-linked LZU-21, and azine-linked LZU-22) were synthesized by the direct condensation of dimethyl acetals and amines. All the synthesized COFs are highly crystalline and exhibit good thermal stability.

  15. A method of coupling the Paternò-Büchi reaction with direct infusion ESI-MS/MS for locating the C[double bond, length as m-dash]C bond in glycerophospholipids.

    PubMed

    Stinson, Craig A; Xia, Yu

    2016-06-21

    Tandem mass spectrometry (MS/MS) coupled with soft ionization is established as an essential platform for lipid analysis; however, determining high order structural information, such as the carbon-carbon double bond (C[double bond, length as m-dash]C) location, remains challenging. Recently, our group demonstrated a method for sensitive and confident lipid C[double bond, length as m-dash]C location determination by coupling online the Paternò-Büchi (PB) reaction with nanoelectrospray ionization (nanoESI) and MS/MS. Herein, we aimed to expand the scope of the PB reaction for lipid analysis by enabling the reaction with infusion ESI-MS/MS at much higher flow rates than demonstrated in the nanoESI setup (∼20 nL min(-1)). In the new design, the PB reaction was effected in a fused silica capillary solution transfer line, which also served as a microflow UV reactor, prior to ESI. This setup allowed PB reaction optimization and kinetics studies. Under optimized conditions, a maximum of 50% PB reaction yield could be achieved for a standard glycerophosphocholine (PC) within 6 s of UV exposure over a wide flow rate range (0.1-10 μL min(-1)). A solvent composition of 7 : 3 acetone : H2O (with 1% acid or base modifier) allowed the highest PB yields and good lipid ionization, while lower yields were obtained with an addition of a variety of organic solvents. Radical induced lipid peroxidation was identified to induce undesirable side reactions, which could be effectively suppressed by eliminating trace oxygen in the solution via N2 purge. Finally, the utility of coupling the PB reaction with infusion ESI-MS/MS was demonstrated by analyzing a yeast polar lipid extract where C[double bond, length as m-dash]C bond locations were revealed for 35 glycerophospholipids (GPs).

  16. Photochemical electron transfer mediated addition of naphthylamine derivatives to electron-deficient alkenes.

    PubMed

    Jahjah, Rabih; Gassama, Abdoulaye; Dumur, Frédéric; Marinković, Siniša; Richert, Sabine; Landgraf, Stephan; Lebrun, Aurélien; Cadiou, Cyril; Sellès, Patrice; Hoffmann, Norbert

    2011-09-01

    Using photochemical electron transfer, N,N-dimethylnaphthylamine derivatives are added to α,β-unsaturated carboxylates. The addition takes place exclusively in the α-position of electron-deficient alkenes and mainly in the 4-position of N,N-dimethylnaphthalen-1-amine. A minor regioisomer results from the addition in the 5-position of this naphthylamine. A physicochemical study reveals that the fluorescence quenching of N,N-dimethylnaphthalen-1-amine is diffusion-controlled and that the back electron transfer is highly efficient. Therefore no transformation is observed at lower concentrations. To overcome this limitation and to induce an efficient transformation, minor amounts of water or another proton donor as well as an excess of the naphthylamine derivative are necessary. A mechanism involving a contact radical ion pair is discussed. Isotopic labeling experiments reveal that no hydrogen is directly transferred between the substrates. The hydrogen transfer to the furanone moiety observed in the overall reaction therefore results from an exchange with the reaction medium. An electrophilic oxoallyl radical generated from the furanone reacts with the naphthylamine used in excess. Concerning some mechanistic details, the reaction is compared with radical and electrophilic aromatic substitutions. The transformation was carried out with a variety of electron-deficient alkenes. Sterically hindered furanone derivatives are less reactive under standard conditions. In a first experiment, such a compound was transformed using heterogeneous electron transfer photocatalysis with TiO(2).

  17. An Electron-Deficient Building Block Based on the B←N Unit: An Electron Acceptor for All-Polymer Solar Cells.

    PubMed

    Dou, Chuandong; Long, Xiaojing; Ding, Zicheng; Xie, Zhiyuan; Liu, Jun; Wang, Lixiang

    2016-01-22

    A double B←N bridged bipyridyl (BNBP) is a novel electron-deficient building block for polymer electron acceptors in all-polymer solar cells. The B←N bridging units endow BNBP with fixed planar configuration and low-lying LUMO/HOMO energy levels. As a result, the polymer based on BNBP units (P-BNBP-T) exhibits high electron mobility, low-lying LUMO/HOMO energy levels, and strong absorbance in the visible region, which is desirable for polymer electron acceptors. Preliminary all-polymer solar cell (all-PSC) devices with P-BNBP-T as the electron acceptor and PTB7 as the electron donor exhibit a power conversion efficiency (PCE) of 3.38%, which is among the highest values of all-PSCs with PTB7 as the electron donor.

  18. An Electron-Deficient Building Block Based on the B←N Unit: An Electron Acceptor for All-Polymer Solar Cells.

    PubMed

    Dou, Chuandong; Long, Xiaojing; Ding, Zicheng; Xie, Zhiyuan; Liu, Jun; Wang, Lixiang

    2016-01-22

    A double B←N bridged bipyridyl (BNBP) is a novel electron-deficient building block for polymer electron acceptors in all-polymer solar cells. The B←N bridging units endow BNBP with fixed planar configuration and low-lying LUMO/HOMO energy levels. As a result, the polymer based on BNBP units (P-BNBP-T) exhibits high electron mobility, low-lying LUMO/HOMO energy levels, and strong absorbance in the visible region, which is desirable for polymer electron acceptors. Preliminary all-polymer solar cell (all-PSC) devices with P-BNBP-T as the electron acceptor and PTB7 as the electron donor exhibit a power conversion efficiency (PCE) of 3.38%, which is among the highest values of all-PSCs with PTB7 as the electron donor. PMID:26663513

  19. Study and characterization of the smectic X* phase in binary mixtures of thermotropic double hydrogen bonded ferroelectric liquid crystals

    NASA Astrophysics Data System (ADS)

    Sangameswari, G.; Pongali Sathya Prabu, N.; Madhu Mohan, M. L. N.

    2015-09-01

    Thermotropic double hydrogen bonded ferroelectric liquid crystals (DHBFLCs) composed of N-carbamyl-L-glutamic acid (CGA) and p-n-alkyloxy benzoic acids (BAO) have been investigated. Variation in the molar proportion of X and Y (where X = CGA + 5BAO and Y = CGA + 6BAO, CGA + 7BAO, and CGA + 8BAO) composed of three series yielded 27 binary mixtures. Optical and thermal properties of these mixtures are meticulously studied in the present article. A novel smectic ordering, namely smectic X*, is observed in all the three series. The aim of the investigation is to obtain an abundance occurrence of smectic X* and hence the proportions of the binary mixtures are so chosen that the preamble task is accomplished. Phase diagrams of three series are constructed from the data obtained from polarizing optical microscope (POM) and differential scanning calorimetry (DSC) studies. Odd-even effect, order of the phase transition, thermal stability factor, thermal equilibrium, and optical tilt angle are also premeditated.

  20. Car-Parrinello Molecular Dynamics Simulations of Infrared Spectra of Crystalline Vitamin C with Analysis of Double Minimum Proton Potentials for Medium-Strong Hydrogen Bonds.

    PubMed

    Brela, Mateusz Z; Wójcik, Marek J; Boczar, Marek; Witek, Łukasz; Yasuda, Mitsuru; Ozaki, Yukihiro

    2015-06-25

    We studied proton dynamics of a hydrogen bonds of the crystalline l-ascorbic acid. Our approach was based on the Car-Parrinello molecular dynamics. The focal point of our study was simulation of the infrared spectra of l-ascorbic acid associated with the O-H stretching modes that are very sensitive to the strength of hydrogen bonding. In the l-ascorbic acid there are four kinds of hydrogen bonds. We calculated their spectra by using anharmonic approximation and the time course of the dipole moment function as obtained from the Car-Parrinello simulation. The quantization of the nuclear motion of the protons was made to perform detailed analysis of strength and properties of hydrogen bonds. We presented double minimum proton potentials with small value of barriers for medium-strong hydrogen bonds. We have also shown the difference character of medium-strong hydrogen bonds compared to weaker hydrogen bonds in the l-ascorbic acid. PMID:26028251

  1. Electron-deficient anthraquinone derivatives as cathodic material for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Takeda, Takashi; Taniki, Ryosuke; Masuda, Asuna; Honma, Itaru; Akutagawa, Tomoyuki

    2016-10-01

    We studied the electronic and structural properties of electron-deficient anthraquinone (AQ) derivatives, Me4N4AQ and TCNAQ, and investigated their charge-discharge properties in lithium ion batteries along with those of AQ. Cyclic voltammogram, X-ray structure analysis and theoretical calculations revealed that these three acceptors have different features, such as different electron-accepting properties with different reduction processes and lithium coordination abilities, and different packing arrangements with different intermolecular interactions. These differences greatly affect the charge-discharge properties of lithium ion batteries that use these compounds as cathode materials. Among these compounds, Me4N4AQ showed a high charge/discharge voltage (2.9-2.5 V) with high cyclability (>65% of the theoretical capacity after 30 cycles; no decrease after 15 cycles). These results provide insight into more in-depth design principles for lithium ion batteries using AQ derivatives as cathodic materials.

  2. Ultrafast excited state relaxation dynamics of electron deficient porphyrins: Conformational and electronic factors

    NASA Astrophysics Data System (ADS)

    Okhrimenko, Albert N.

    Metallo-tetrapyrroles (MTP) are highly stable macrocyclic pi-systems that display interesting properties that make them potential candidates for various applications. Among these applications are optoelectronics, magnetic materials, photoconductive materials, non-linear optical materials and photo tumor therapeutic drugs. These applications are generally related to their high stability and efficient light absorption ability in the visible and near-infrared region of the optical spectrum. Metallo porphyrins are well known and widely studied representatives of metallotetrapyrroles. Electron deficient substituents in the meso positions are well known to greatly influence the interaction between the metal d-orbitals and the nitrogen orbitals of the tetrapyrrole macrocycle. In this work, a series of electron deficient porphyrins has been studied to gain some knowledge about the change in the excited state dynamics with structural and electronic modifications. Among these porphyrins is nickel and iron modified species bearing perfluoro-, perprotio-, p-nitrophenyl- and perfluorophenyl-meso substituents. Ultrafast transient absorption spectrometry has been used as the main research instrument along with other spectroscopic and electrochemical methods. A new technique has been employed to study the photophysical properties of zinc (II) tetraphenylporphine cation radical. It employs a combination of controlled potential coulometry and femtosecond absorption spectrometry. The fast transient lifetime of 17 ps of the pi-cation species originates in very efficient mixing of the a2u HOMO cation orbital that places electronic density mainly on pyrrolic nitrogens and metal d-orbitals. That explains the lack of any emission of the cationic species. This non-radiative decay process might elucidate the processes taking place in photosynthetic systems when electron is removed from porphyrinic moiety and the hole is produced. In this work zinc(II) meso-tetraphenylporphine radial cation

  3. Electron deficient nonplanar β-octachlorovanadylporphyrin as a highly efficient and selective epoxidation catalyst for olefins.

    PubMed

    Kumar, Ravi; Chaudhary, Nikita; Sankar, Muniappan; Maurya, Mannar R

    2015-10-28

    We have synthesized 2,3,7,8,12,13,17,18-octachloro-meso-tetraphenylporphyrinatooxidovanadium(iv) (VOTPPCl8) and characterized by various spectroscopic (UV-Vis, IR and EPR) techniques, MALDI-TOF mass spectrometry and elemental analysis. The DFT optimized structure of VOTPPCl8 in CH3CN exhibited a highly nonplanar saddle shape conformation of the porphyrin macrocycle. The cyclic voltammogram of VOTPPCl8 showed a 500 mV anodic shift in the first ring reduction potential and 220 mV in the first ring oxidation potential compared to VOTPP indicating the electron deficient nature of the porphyrin π-system and further proving the existence of a nonplanar conformation of the macrocycle in solution. Further, VOTPPCl8 exhibited very high thermal stability till 390 °C as indicated in its thermogram. The oxidation state of the metal ion (V(IV)) was confirmed by EPR spectroscopy and VOTPPCl8 exhibited an axial spectrum which corresponds to the axially compressed dxy(1) configuration. VOTPPCl8 was utilised for the selective epoxidation of various olefins in good yields with very high TOF numbers (6566-9650 h(-1)) in the presence of H2O2 as an oxidant and NaHCO3 as a promoter in a CH3CN/H2O mixture. The oxidoperoxidovanadium(v) species is expected to be the intermediate during the catalytic reaction which is probed by (51)V NMR spectroscopy and MALDI-TOF mass analysis. Notably, VOTPPCl8 is stable after the catalytic reaction and doesn't form a μ-oxo dimer due to the highly electron deficient nonplanar porphyrin core and can be reused for several cycles.

  4. Phosphate-intercalated Ca-Fe-layered double hydroxides: Crystal structure, bonding character, and release kinetics of phosphate

    SciTech Connect

    Woo, Myong A.; Woo Kim, Tae; Paek, Mi-Jeong; Ha, Hyung-Wook; Choy, Jin-Ho; Hwang, Seong-Ju

    2011-01-15

    The nitrate-form of Ca-Fe-layered double hydroxide (Ca-Fe-LDH) was synthesized via co-precipitation method, and its phosphate-intercalates were prepared by ion-exchange reaction. According to X-ray diffraction analysis, the Ca-Fe-LDH-NO{sub 3}{sup -} compound and its H{sub 2}PO{sub 4}{sup -}-intercalate showed hexagonal layered structures, whereas the ion-exchange reaction with HPO{sub 4}{sup 2-} caused a frustration of the layer ordering of LDH. Fe K-edge X-ray absorption spectroscopy clearly demonstrated that the Ca-Fe-LDH lattice with trivalent iron ions was well-maintained after the ion-exchange with HPO{sub 4}{sup 2-} and H{sub 2}PO{sub 4}{sup -}. Under acidic conditions, phosphate ions were slowly released from the Ca-Fe-LDH lattice and the simultaneous release of hydroxide caused the neutralization of acidic media. Fitting analysis based on kinetic models indicated a heterogeneous diffusion process of phosphates and a distinct dependence of release rate on the charge of phosphates. This study strongly suggested that Ca-Fe-LDH is applicable as bifunctional vector for slow release of phosphate fertilizer and for the neutralization of acid soil. -- Graphical abstract: We synthesized phosphate-intercalated Ca-Fe-LDH materials that can act as bifunctional inorganic vectors for the slow release of phosphate fertilizer and also the neutralization of acid soil. Fitting analysis based on kinetic models indicated a heterogeneous diffusion process of phosphates and a distinct dependence of release rate on the charge of phosphates. Display Omitted Research Highlights: {yields} The phosphate forms of Ca-Fe-layered double hydroxide (Ca-Fe-LDH) were synthesized via co-precipitation method. The crystal structure, bonding character, and release kinetics of phosphate of the phosphate-intercalates were investigated. These Ca-Fe-LDH materials are applicable as bifunctional vector for slow release of phosphate fertilizer and for the neutralization of acid soil.

  5. Latex Clearing Protein—an Oxygenase Cleaving Poly(cis-1,4-Isoprene) Rubber at the cis Double Bonds

    PubMed Central

    Hiessl, Sebastian; Böse, Dietrich; Oetermann, Sylvia; Eggers, Jessica; Pietruszka, Jörg

    2014-01-01

    Gordonia polyisoprenivorans strain VH2, a potent rubber-degrading actinomycete, harbors two latex clearing proteins (Lcps), which are known to be essential for the microbial degradation of rubber. However, biochemical information on the exact role of this protein in the degradation of polyisoprene was lacking. In this study, the gene encoding Lcp1VH2 was heterologously expressed in strains of Escherichia coli, the corresponding protein was purified, and its role in rubber degradation was examined by measurement of oxygen consumption as well as by chromatographic and spectroscopic methods. It turned out that active Lcp1VH2 is a monomer and is responsible for the oxidative cleavage of poly(cis-1,4-isoprene) in synthetic as well as in natural rubber by the addition of oxygen (O2) to the cis double bonds. The resulting oligomers possess repetitive isoprene units with aldehyde (CHO-CH2—) and ketone (—CH2-CO-CH3) functional groups at the termini. Two fractions with average isoprene contents of 18 and 10, respectively, were isolated, thus indicating an endocleavage mechanism. The activity of Lcp1VH2 was determined by applying a polarographic assay. Alkenes, acyclic terpenes, or other rubber-like polymers, such as poly(cis-1,4-butadiene) or poly(trans-1,4-isoprene), are not oxidatively cleaved by Lcp1VH2. The pH and temperature optima of the enzyme are at pH 7 and 30°C, respectively. Furthermore, it was demonstrated that active Lcp1VH2 is a Cu(II)-containing oxygenase that exhibits a conserved domain of unknown function which cannot be detected in any other hitherto-characterized enzyme. The results presented here indicate that this domain might represent a new protein family of oxygenases. PMID:24928880

  6. Latex clearing protein-an oxygenase cleaving poly(cis-1,4-isoprene) rubber at the cis double bonds.

    PubMed

    Hiessl, Sebastian; Böse, Dietrich; Oetermann, Sylvia; Eggers, Jessica; Pietruszka, Jörg; Steinbüchel, Alexander

    2014-09-01

    Gordonia polyisoprenivorans strain VH2, a potent rubber-degrading actinomycete, harbors two latex clearing proteins (Lcps), which are known to be essential for the microbial degradation of rubber. However, biochemical information on the exact role of this protein in the degradation of polyisoprene was lacking. In this study, the gene encoding Lcp1VH2 was heterologously expressed in strains of Escherichia coli, the corresponding protein was purified, and its role in rubber degradation was examined by measurement of oxygen consumption as well as by chromatographic and spectroscopic methods. It turned out that active Lcp1VH2 is a monomer and is responsible for the oxidative cleavage of poly(cis-1,4-isoprene) in synthetic as well as in natural rubber by the addition of oxygen (O2) to the cis double bonds. The resulting oligomers possess repetitive isoprene units with aldehyde (CHO-CH2-) and ketone (-CH2-CO-CH3) functional groups at the termini. Two fractions with average isoprene contents of 18 and 10, respectively, were isolated, thus indicating an endocleavage mechanism. The activity of Lcp1VH2 was determined by applying a polarographic assay. Alkenes, acyclic terpenes, or other rubber-like polymers, such as poly(cis-1,4-butadiene) or poly(trans-1,4-isoprene), are not oxidatively cleaved by Lcp1VH2. The pH and temperature optima of the enzyme are at pH 7 and 30°C, respectively. Furthermore, it was demonstrated that active Lcp1VH2 is a Cu(II)-containing oxygenase that exhibits a conserved domain of unknown function which cannot be detected in any other hitherto-characterized enzyme. The results presented here indicate that this domain might represent a new protein family of oxygenases.

  7. Double hybrid functionals and the Π-system bond length alternation challenge: rivaling accuracy of post-HF methods.

    PubMed

    Wykes, Michael; Su, Neil Qiang; Xu, Xin; Adamo, Carlo; Sancho-García, Juan-Carlos

    2015-02-10

    Predicting accurate bond length alternations (BLAs) in long conjugated oligomers has been a significant challenge for electronic-structure methods for many decades, made particularly important by the close relationships between BLA and the rich optoelectronic properties of π-delocalized systems. Here, we test the accuracy of recently developed, and increasingly popular, double hybrid (DH) functionals, positioned at the top of Jacobs Ladder of DFT methods of increasing sophistication, computational cost, and accuracy, due to incorporation of MP2 correlation energy. Our test systems comprise oligomeric series of polyacetylene, polymethineimine, and polysilaacetylene up to six units long. MP2 calculations reveal a pronounced shift in BLAs between the 6-31G(d) basis set used in many studies of BLA to date and the larger cc-pVTZ basis set, but only modest shifts between cc-pVTZ and aug-cc-pVQZ results. We hence perform new reference CCSD(T)/cc-pVTZ calculations for all three series of oligomers against which we assess the performance of several families of DH functionals based on BLYP, PBE, and TPSS, along with lower-rung relatives including global- and range-separated hybrids. Our results show that DH functionals systematically improve the accuracy of BLAs relative to single hybrid functionals. xDH-PBE0 (N(4) scaling using SOS-MP2) emerges as a DH functional rivaling the BLA accuracy of SCS-MP2 (N(5) scaling), which was found to offer the best compromise between computational cost and accuracy the last time the BLA accuracy of DFT- and wave function-based methods was systematically investigated. Interestingly, xDH-PBE0 (XYG3), which differs to other DHs in that its MP2 term uses PBE0 (B3LYP) orbitals that are not self-consistent with the DH functional, is an outlier of trends of decreasing average BLA errors with increasing fractions of MP2 correlation and HF exchange. PMID:26579607

  8. Origin of the 900 cm{sup −1} broad double-hump OH vibrational feature of strongly hydrogen-bonded carboxylic acids

    SciTech Connect

    Van Hoozen, Brian L.; Petersen, Poul B.

    2015-03-14

    Medium and strong hydrogen bonds are common in biological systems. Here, they provide structural support and can act as proton transfer relays to drive electron and/or energy transfer. Infrared spectroscopy is a sensitive probe of molecular structure and hydrogen bond strength but strongly hydrogen-bonded structures often exhibit very broad and complex vibrational bands. As an example, strong hydrogen bonds between carboxylic acids and nitrogen-containing aromatic bases commonly display a 900 cm{sup −1} broad feature with a remarkable double-hump structure. Although previous studies have assigned this feature to the OH, the exact origin of the shape and width of this unusual feature is not well understood. In this study, we present ab initio calculations of the contributions of the OH stretch and bend vibrational modes to the vibrational spectrum of strongly hydrogen-bonded heterodimers of carboxylic acids and nitrogen-containing aromatic bases, taking the 7-azaindole—acetic acid and pyridine—acetic acid dimers as examples. Our calculations take into account coupling between the OH stretch and bend modes as well as how both of these modes are affected by lower frequency dimer stretch modes, which modulate the distance between the monomers. Our calculations reproduce the broadness and the double-hump structure of the OH vibrational feature. Where the spectral broadness is primarily caused by the dimer stretch modes strongly modulating the frequency of the OH stretch mode, the double-hump structure results from a Fermi resonance between the out of the plane OH bend and the OH stretch modes.

  9. Selective synthesis of eight-membered cyclic ureas by the [6 + 2] cycloaddition reaction of 2-vinylazetidines and electron-deficient isocyanates.

    PubMed

    Koya, Shunsuke; Yamanoi, Kenichi; Yamasaki, Ryu; Azumaya, Isao; Masu, Hyuma; Saito, Shinichi

    2009-12-01

    The [6 + 2] cycloaddition reaction of 2-vinylazetidines with electron-deficient isocyanates such as tosyl isocyanate proceeded smoothly in the absence of the catalyst at room temperature, and various cyclic ureas were isolated in good to high yields. Electron-deficient allenes also reacted with the 2-vinylazetidine, and the corresponding azocine derivatives were isolated.

  10. Mechanisms of the reaction between polyhalogenated nitrobutadienes and electron-deficient anilines: computational modeling.

    PubMed

    Sari, Ozlem; Erdem, Safiye Sağ; Kaufmann, Dieter E

    2014-03-01

    Nitro-substituted polyhalogenated butadienes are valuable synthetic precursors for polyfunctionalized bioactive heterocyclic compounds. Recently, a new reaction between 2-nitroperchloro-1,3-butadiene and electron-deficient anilines producing the Z stereoisomers of a variety of allylidene arylhydrazines has been reported. Although the formation of a chlorinated nitrile oxide intermediate was proved by trapping it with appropriate alkenes via 1,3-dipolar cycloaddition, the details of the overall mechanism remained unclear. The elucidation of the mechanism is important for a better understanding of polyhalogenated nitrobutadiene chemistry. We proposed six reaction paths for the formation of allylidene arylhydrazine, starting from 2-nitroperchloro-1,3-butadiene and para-nitro aniline, and generated the potential energy profiles with the DFT/B3LYP/6-31+G(d,p) method. To include the solvent effect, single-point energy calculations were carried out at the B3LYP/6-31+G(d,p) level by the polarizable continuum model with tetrahydrofuran, as used in the experimental study. The Gibbs activation energies of the rate-determining steps of each mechanism were defined. Taking into account the downhill nature of the overall potential energy profile, Paths 5 and 6 which proceed via extrusion of p-nitrophenylisocyanate and the formation of chlorinated nitrile oxide were chosen as plausible mechanisms. Results also provide insights into the chemistry of nitrile oxides, oximes, oxazete, and nitroso compounds as well as S(N)Vin reactions. PMID:24533665

  11. Highly accelerated inverse electron-demand cycloaddition of electron-deficient azides with aliphatic cyclooctynes.

    PubMed

    Dommerholt, Jan; van Rooijen, Olivia; Borrmann, Annika; Guerra, Célia Fonseca; Bickelhaupt, F Matthias; van Delft, Floris L

    2014-01-01

    Strain-promoted azide-alkyne cycloaddition (SPAAC) as a conjugation tool has found broad application in material sciences, chemical biology and even in vivo use. However, despite tremendous effort, SPAAC remains fairly slow (0.2-0.5 M(-1) s(-1)) and efforts to increase reaction rates by tailoring of cyclooctyne structure have suffered from a poor trade-off between cyclooctyne reactivity and stability. We here wish to report tremendous acceleration of strain-promoted cycloaddition of an aliphatic cyclooctyne (bicyclo[6.1.0]non-4-yne, BCN) with electron-deficient aryl azides, with reaction rate constants reaching 2.0-2.9 M(-1) s(-1). A remarkable difference in rate constants of aliphatic cyclooctynes versus benzoannulated cyclooctynes is noted, enabling a next level of orthogonality by a judicious choice of azide-cyclooctyne combinations, which is inter alia applied in one-pot three-component protein labelling. The pivotal role of azide electronegativity is explained by density-functional theory calculations and electronic-structure analyses, which indicates an inverse electron-demand mechanism is operative with an aliphatic cyclooctyne. PMID:25382411

  12. The position effect of electron-deficient quinoxaline moiety in porphyrin based sensitizers

    NASA Astrophysics Data System (ADS)

    Fan, Suhua; Lv, Kai; Sun, Hong; Zhou, Gang; Wang, Zhong-Sheng

    2015-04-01

    An electron-deficient group, 2,3-diphenylquinoxaline (DPQ), is incorporated as an auxiliary acceptor into the different positions of the porphyrin (Por) based donor-π bridge-acceptor (D-π-A) dye (FNE57) to construct D-A‧-Por-π-A (FNE58) and D-Por-A‧-π-A (FNE59) configurations. The incorporation of DPQ unit between the donor and porphyrin unit has negligible influence on the absorption property, whereas the DPQ unit located between the porphyrin unit and acceptor significantly increases the absorbance for the Soret band and the valley between the Soret and Q bands. Theoretical calculation reveals that incorporating the DPQ unit adjacent to the acceptor is more advantageous to delocalize the lowest unoccupied molecular orbital and enhance the electronic asymmetry, which facilitates the intramolecular charge transfer. The effect of DPQ unit and its linkage position on the performance of related quasi-solid-state dye-sensitized solar cells (DSSCs) is systematically investigated. The quasi-solid-state DSSC with sensitizer FNE59 displays a power conversion efficiency of 6.02%, which is 23% and 51% higher than those for FNE57 and FNE58 based DSSCs. Our studies facilitate the understanding of the crucial importance of molecular engineering and pave a new path to design novel porphyrin based sensitizers for highly efficient DSSCs.

  13. O-H...O versus O-H...S hydrogen bonding. 3. IR-UV double resonance study of hydrogen bonded complexes of p-cresol with diethyl ether and its sulfur analog.

    PubMed

    Biswal, Himansu S; Wategaonkar, Sanjay

    2010-05-20

    In this work the hydrogen bonded complexes of diethyl ether (DEE) and diethyl sulfide (DES) with p-cresol (p-CR) were investigated. Only one conformer of the p-CR.DEE complex and three conformers of the p-CR.DES complex were found to be present under the supersonic jet expansion conditions. The conformational assignments were done with the help of IR-UV double resonance studies and ab initio calculations. The red shifts in the OH stretching frequency for the O-H...O and O-H...S hydrogen bonded complexes were quite close to each other. In fact, one of the p-CR.DES conformers showed a slightly larger red shift in the OH stretch than that in the p-CR.DEE conformer, which suggests that in this case sulfur is not a weak hydrogen bond acceptor as noted previously in case of the p-CR.H(2)O and p-CR.H(2)S complexes (Biswal et al. J. Phys. Chem. A 2009, 113, 5633). The natural bond orbital analysis also shows that the extent of overlap between sulfur lone pair orbitals (LP) and OH antibonding orbital (sigma*(OH)) was comparable to the oxygen (LP) and sigma*(OH) overlap, consistent with the similar magnitudes of the red shifts of OH stretch in the DES and DEE complexes. The computed binding energy of the p-CR.DES complex, however, was about 80% of the p-CR.DEE complex. The electron densities at the bond critical points indicated that the O-H...S interaction was weaker than the O-H...O interaction in this particular system also. The important finding of this study was that the IR red shifts in the H-bond donor X-H stretching frequency were not quite consistent with the computed binding energies and the atoms-in-molecules analysis contrary to the general understanding. Energy decomposition analysis suggests that O-H...S hydrogen bonding interaction is dispersive in nature and the dispersion contribution decreases with the increase in the length of the alkyl chain of the "S" hydrogen bond acceptor.

  14. Collision-induced dissociation of fatty acid [M - 2H + Na]- ions: charge-directed fragmentation and assignment of double bond position.

    PubMed

    Thomas, Michael C; Altvater, Jens; Gallagher, Thomas J; Nette, Geoffrey W

    2014-11-01

    The collision-induced dissociation (CID) of cationic fatty acid-metal ion complexes has been extensively studied and, in general, provides rich structural information. In particular, charge-remote fragmentation processes are commonly observed allowing the assignment of double bond position. In a previous manuscript, we presented two methods to doubly deprotonate polyunsaturated fatty acids to form anionic fatty acid-sodium ion complexes, referred to as [M - 2H + Na] (-) ions. In the current manuscript, the CID behavior of these [M - 2H + Na] (-) ions is investigated for the first time. Significantly, we also present a deuterium-labeling experiment, which excludes the possibility that deprotonation occurs predominately at the α-carbon in the formation of fatty acid [M - H + NaF](-) ions. This supports our original proposal where deprotonation occurs at the bis-allylic positions of polyunsaturated fatty acids. CID spectra of polyunsaturated fatty acid [M - 2H + Na](-) ions display abundant product ions arising from acyl chain cleavages. Through the examination of fatty acid isomers, it is demonstrated that double bond position may be unequivocally determined for methylene-interrupted polyunsaturated fatty acids with three or more carbon-carbon double bonds. In addition, CID of [M - 2H + Na](-) ions was applied to 18:3 isomers of Nannochloropsis oculata and three isomers were tentatively identified: ∆(9,12,15)18:3, ∆(6,9,12)18:3, and ∆(5,8,11)18:3. We propose that structurally-informative product ions are formed via charge-driven fragmentation processes at the site of the resonance-stabilized carbanion as opposed to charge-remote fragmentation processes, which could be inferred if deprotonation occurred predominately at the α-carbon.

  15. Collision-Induced Dissociation of Fatty Acid [M - 2H + Na]- Ions: Charge-Directed Fragmentation and Assignment of Double Bond Position

    NASA Astrophysics Data System (ADS)

    Thomas, Michael C.; Altvater, Jens; Gallagher, Thomas J.; Nette, Geoffrey W.

    2014-08-01

    The collision-induced dissociation (CID) of cationic fatty acid-metal ion complexes has been extensively studied and, in general, provides rich structural information. In particular, charge-remote fragmentation processes are commonly observed allowing the assignment of double bond position. In a previous manuscript, we presented two methods to doubly deprotonate polyunsaturated fatty acids to form anionic fatty acid-sodium ion complexes, referred to as [M - 2H + Na] - ions. In the current manuscript, the CID behavior of these [M - 2H + Na] - ions is investigated for the first time. Significantly, we also present a deuterium-labeling experiment, which excludes the possibility that deprotonation occurs predominately at the α-carbon in the formation of fatty acid [M - H + NaF]- ions. This supports our original proposal where deprotonation occurs at the bis-allylic positions of polyunsaturated fatty acids. CID spectra of polyunsaturated fatty acid [M - 2H + Na]- ions display abundant product ions arising from acyl chain cleavages. Through the examination of fatty acid isomers, it is demonstrated that double bond position may be unequivocally determined for methylene-interrupted polyunsaturated fatty acids with three or more carbon-carbon double bonds. In addition, CID of [M - 2H + Na]- ions was applied to 18:3 isomers of Nannochloropsis oculata and three isomers were tentatively identified: ∆9,12,1518:3, ∆6,9,1218:3, and ∆5,8,1118:3. We propose that structurally-informative product ions are formed via charge-driven fragmentation processes at the site of the resonance-stabilized carbanion as opposed to charge-remote fragmentation processes, which could be inferred if deprotonation occurred predominately at the α-carbon.

  16. Localization of fatty acyl and double bond positions in phosphatidylcholines using a dual stage CID fragmentation coupled with ion mobility mass spectrometry.

    PubMed

    Castro-Perez, Jose; Roddy, Thomas P; Nibbering, Nico M M; Shah, Vinit; McLaren, David G; Previs, Stephen; Attygalle, Athula B; Herath, Kithsiri; Chen, Zhu; Wang, Sheng-Ping; Mitnaul, Lyndon; Hubbard, Brian K; Vreeken, Rob J; Johns, Douglas G; Hankemeier, Thomas

    2011-09-01

    A high content molecular fragmentation for the analysis of phosphatidylcholines (PC) was achieved utilizing a two-stage [trap (first generation fragmentation) and transfer (second generation fragmentation)] collision-induced dissociation (CID) in combination with travelling-wave ion mobility spectrometry (TWIMS). The novel aspects of this work reside in the fact that a TWIMS arrangement was used to obtain a high level structural information including location of fatty acyl substituents and double bonds for PCs in plasma, and the presence of alkali metal adduct ions such as [M + Li](+) was not required to obtain double bond positions. Elemental compositions for fragment ions were confirmed by accurate mass measurements. A very specific first generation fragment ion m/z 577 (M-phosphoryl choline) from the PC [16:0/18:1 (9Z)] was produced, which by further CID generated acylium ions containing either the fatty acyl 16:0 (C(15)H(31)CO(+), m/z 239) or 18:1 (9Z) (C(17)H(33)CO(+), m/z 265) substituent. Subsequent water loss from these acylium ions was key in producing hydrocarbon fragment ions mainly from the α-proximal position of the carbonyl group such as the hydrocarbon ion m/z 67 (+H(2)C-HC = CH-CH = CH(2)). Formation of these ions was of important significance for determining double bonds in the fatty acyl chains. In addition to this, and with the aid of (13)C labeled lyso-phosphatidylcholine (LPC) 18:1 (9Z) in the ω-position (methyl) TAP fragmentation produced the ion at m/z 57. And was proven to be derived from the α-proximal (carboxylate) or distant ω-position (methyl) in the LPC.

  17. Reactions of organoaluminum compounds with acetylene as a method for the synthesis of aliphatic derivatives with a z-disubstituted double bond

    SciTech Connect

    Andreeva, N.I.; Kuchin, A.V.; Tolstikov, G.A.

    1985-11-01

    This paper develops a method for the synthesis of aliphatic compounds with a Z-disubstituted double bond, which are important synthons for the preparation of such natural products as insect pheromones, aromatic principles, etc. In the carbalumination reaction of acetylene Z-alkenyldialkylaluminums are formed selectively. A-Alkenyldialkylaluminums are highly reactive and can readily be converted into Z-allyl alcohols and their ethers, and into Z-iodovinyl derivatives. By the reactions of vinyl organoaluminum compounds with the complex CH/sub 3/COClhaAlCl/sub 3/ E-conjugated ketones were obtained.

  18. Δ(11,12) double bond formation in tirandamycin biosynthesis is atypically catalyzed by TrdE, a glycoside hydrolase family enzyme.

    PubMed

    Mo, Xuhua; Ma, Junying; Huang, Hongbo; Wang, Bo; Song, Yongxiang; Zhang, Si; Zhang, Changsheng; Ju, Jianhua

    2012-02-15

    The tirandamycins (TAMs) are a small group of Streptomyces-derived natural products that target bacterial RNA polymerase. Within the TAM biosynthetic cluster, trdE encodes a glycoside hydrolase whose role in TAM biosynthesis has been undefined until now. We report that in vivo trdE inactivation leads to accumulation of pre-tirandamycin, the earliest intermediate released from its mixed polyketide/nonribosomal peptide biosynthetic assembly line. In vitro and site-directed mutagenesis studies showed that TrdE, a putative glycoside hydrolase, catalyzes in a highly atypical fashion the installation of the Δ(11,12) double bond during TAM biosynthesis.

  19. A Facile Method to Prepare Double-Layer Isoporous Hollow Fiber Membrane by In Situ Hydrogen Bond Formation in the Spinning Line.

    PubMed

    Noor, Nazia; Koll, Joachim; Radjabian, Maryam; Abetz, Clarissa; Abetz, Volker

    2016-03-01

    A double-layer hollow fiber is fabricated where an isoporous surface of polystyrene-block-poly(4-vinylpyridine) is fixed on a support layer by co-extrusion. Due to the sulfonation of the support layer material, delamination of the two layers is suppressed without increasing the number of subsequent processing steps for isoporous composite membrane formation. Electron microscope-energy-dispersive X-ray spectroscopy images unveil the existence of a high sulfur concentration in the interfacial region by which in-process H-bond formation between the layers is evidenced. For the very first time, our study reports a facile method to fabricate a sturdy isoporous double-layer hollow fiber.

  20. Bandgap Engineering in π-Extended Pyrroles. A Modular Approach to Electron-Deficient Chromophores with Multi-Redox Activity.

    PubMed

    Zhylitskaya, Halina; Cybińska, Joanna; Chmielewski, Piotr; Lis, Tadeusz; Stępień, Marcin

    2016-09-01

    A family of bandgap-tunable pyrroles structurally related to rylene dyes was computationally designed and prepared using robust, easily scalable chemistry. These pyrroles show highly variable fluorescence properties and can be used as building blocks for the synthesis of electron-deficient oligopyrroles. The latter application is demonstrated through the development of π-extended porphyrins containing naphthalenediamide or naphthalenediimide units. These new macrocycles exhibit simultaneously tunable visible and near-IR absorptions, an ability to accept up to 8 electrons via electrochemical reduction, and high internal molecular free volumes. When chemically reduced under inert conditions, the most electron-deficient of these macrocycles revealed reversible formation of eight charged states, characterized by remarkably red-shifted optical absorptions, extending beyond 2200 nm. Such features make these oligopyrroles of interest as functional chromophores, charge-storage materials, and tectons for crystal engineering. PMID:27533895

  1. Mechanochemical C-H bond activation: rapid and regioselective double cyclopalladation monitored by in situ Raman spectroscopy.

    PubMed

    Juribašić, Marina; Užarević, Krunoslav; Gracin, Davor; Ćurić, Manda

    2014-09-14

    The first direct mechanochemical transition-metal-mediated activation of strong phenyl C-H bonds is reported. The mechanochemical procedure, resulting in cyclopalladated complexes, is quantitative and significantly faster than solution synthesis and allows highly regioselective activation of two C-H bonds by palladium(II) acetate in asymmetrically substituted azobenzene. Milling is monitored by in situ solid-state Raman spectroscopy which in combination with quantum-chemical calculations enabled characterization of involved reaction species, direct insight into the dynamics and reaction pathways, as well as the optimization of a milling process.

  2. Thieno[3,4-b]pyrazine as an Electron Deficient π-Bridge in D-A-π-A DSCs.

    PubMed

    Liyanage, Nalaka P; Yella, Aswani; Nazeeruddin, Mohammad; Grätzel, Michael; Delcamp, Jared H

    2016-03-01

    Thieno[3,4-b]pyrazine (TPz) is examined as an electron deficient π-bridge enabling near-infrared (NIR) spectral access in dye-sensitized solar cells (DSCs). Seven dissymmetric dyes for DSCs were synthesized (NL2-NL8) with TPz as the π-bridge utilizing palladium catalyzed C-H activation methodology. C-H bond cross-coupling was uniquely effective among the cross-couplings and electrophilic aromatic substitution reactions analyzed in monofunctionalizing the TPz building block. The TPz-based NL2-NL8 dyes examine the effects of various donors, π-spacers, and acceptors within the donor-π bridge-acceptor (D-π-A) dye design. Proaromatic TPz stabilizes the excited-state oxidation potential (E(s+/s*)) of the dyes by maintaining aromaticity upon excitation of the dye molecule. This leads to concise conjugated systems capable of accessing the NIR region. Through judicious structural modifications, dye band gaps were reduced to 1.48 eV, and power conversion efficiencies (PCEs) reached 7.1% in this first generation TPz-dye series. PMID:26866909

  3. Thieno[3,4-b]pyrazine as an Electron Deficient π-Bridge in D-A-π-A DSCs.

    PubMed

    Liyanage, Nalaka P; Yella, Aswani; Nazeeruddin, Mohammad; Grätzel, Michael; Delcamp, Jared H

    2016-03-01

    Thieno[3,4-b]pyrazine (TPz) is examined as an electron deficient π-bridge enabling near-infrared (NIR) spectral access in dye-sensitized solar cells (DSCs). Seven dissymmetric dyes for DSCs were synthesized (NL2-NL8) with TPz as the π-bridge utilizing palladium catalyzed C-H activation methodology. C-H bond cross-coupling was uniquely effective among the cross-couplings and electrophilic aromatic substitution reactions analyzed in monofunctionalizing the TPz building block. The TPz-based NL2-NL8 dyes examine the effects of various donors, π-spacers, and acceptors within the donor-π bridge-acceptor (D-π-A) dye design. Proaromatic TPz stabilizes the excited-state oxidation potential (E(s+/s*)) of the dyes by maintaining aromaticity upon excitation of the dye molecule. This leads to concise conjugated systems capable of accessing the NIR region. Through judicious structural modifications, dye band gaps were reduced to 1.48 eV, and power conversion efficiencies (PCEs) reached 7.1% in this first generation TPz-dye series.

  4. An electron-deficient small molecule accessible from sustainable synthesis and building blocks for use as a fullerene alternative in organic photovoltaics.

    PubMed

    McAfee, Seth M; Topple, Jessica M; Payne, Abby-Jo; Sun, Jon-Paul; Hill, Ian G; Welch, Gregory C

    2015-04-27

    An electron-deficient small molecule accessible from sustainable isoindigo and phthalimide building blocks was synthesized via optimized synthetic procedures that incorporate microwave-assisted synthesis and a heterogeneous catalyst for Suzuki coupling, and direct heteroarylation carbon-carbon bond forming reactions. The material was designed as a non-fullerene acceptor with the help of DFT calculations and characterized by optical, electronic, and thermal analysis. Further investigation of the material revealed a differing solid-state morphology with the use of three well-known processing conditions: thermal annealing, solvent vapor annealing and small volume fractions of 1,8-diiodooctane (DIO) additive. These unique morphologies persist in the active layer blends and have demonstrated a distinct influence on device performance. Organic photovoltaic-bulk heterojunction (OPV-BHJ) devices show an inherently high open circuit voltage (Voc ) with the best power conversion efficiency (PCE) cells reaching 1.0 V with 0.4 v/v % DIO as a processing additive.

  5. Determination of the bond-angle distribution in vitreous B{sub 2}O{sub 3} by {sup 11}B double rotation (DOR) NMR spectroscopy

    SciTech Connect

    Hung, I.; Howes, A.P.; Parkinson, B.G.; Anupold, T.; Samoson, A.; Brown, S.P.; Harrison, P.F.; Holland, D.; Dupree, R.

    2009-09-15

    The B-O-B bond angle distributions for both ring and non-ring boron sites in vitreous B{sub 2}O{sub 3} have been determined by {sup 11}B double rotation (DOR) NMR and multiple-quantum (MQ) DOR NMR. The [B{sub 3}O{sub 6}] boroxol rings are observed to have a mean internal B-O-B angle of 120.0+-0.7 deg. with a small standard deviation, sigma{sub R}=3.2+-0.4 deg., indicating that the rings are near-perfect planar, hexagonal structures. The rings are linked predominantly by non-ring [BO{sub 3}] units, which share oxygens with the boroxol ring, with a mean B{sub ring}-O-B{sub non-ring} angle of 135.1+-0.6 deg. and sigma{sub NR}=6.7+-0.4 deg. In addition, the fraction of boron atoms, f, which reside in the boroxol rings has been measured for this sample as f=0.73+-0.01. - Graphical abstract: Connectivities and B-O-B bond angle distributions of ring and non-ring boron atoms in v-B{sub 2}O{sub 3} have been determined by {sup 11}B double rotation (DOR) NMR, multiple-quantum (MQ) DOR NMR and spin-diffusion DOR. Near-perfect planar, hexagonal [B{sub 3}O{sub 6}] boroxol rings are shown to be present. Display Omitted

  6. Unveiling of novel regio-selective fatty acid double bond hydratases from Lactobacillus acidophilus involved in the selective oxyfunctionalization of mono- and di-hydroxy fatty acids.

    PubMed

    Kim, Kyoung-Rok; Oh, Hye-Jin; Park, Chul-Soon; Hong, Seung-Hye; Park, Ji-Young; Oh, Deok-Kun

    2015-11-01

    The aim of this study is the first time demonstration of cis-12 regio-selective linoleate double-bond hydratase. Hydroxylation of fatty acids, abundant feedstock in nature, is an emerging alternative route for many petroleum replaceable products thorough hydroxy fatty acids, carboxylic acids, and lactones. However, chemical route for selective hydroxylation is still quite challenging owing to low selectivity and many environmental concerns. Hydroxylation of fatty acids by hydroxy fatty acid forming enzymes is an important route for selective biocatalytic oxyfunctionalization of fatty acids. Therefore, novel fatty acid hydroxylation enzymes should be discovered. The two hydratase genes of Lactobacillus acidophilus were identified by genomic analysis, and the expressed two recombinant hydratases were identified as cis-9 and cis-12 double-bond selective linoleate hydratases by in vitro functional validation, including the identification of products and the determination of regio-selectivity, substrate specificity, and kinetic parameters. The two different linoleate hydratases were the involved enzymes in the 10,13-dihydroxyoctadecanoic acid biosynthesis. Linoleate 13-hydratase (LHT-13) selectively converted 10 mM linoleic acid to 13S-hydroxy-9(Z)-octadecenoic acid with high titer (8.1 mM) and yield (81%). Our study will expand knowledge for microbial fatty acid-hydroxylation enzymes and facilitate the designed production of the regio-selective hydroxy fatty acids for useful chemicals from polyunsaturated fatty acid feedstocks.

  7. Ambiphilic properties of SF5CF2CF2Br derived perfluorinated radical in addition reactions across carbon-carbon double bonds.

    PubMed

    Dudziński, Piotr; Matsnev, Andrej V; Thrasher, Joseph S; Haufe, Günter

    2015-03-01

    The extraordinary properties of the pentafluorosulfanyl (SF5) group attract attention of organic chemists. While numerous SF5-substituted compounds have been synthesized, the direct introduction of SF5(CF2)n moieties has remained almost unexplored. Our investigations revealed the ambiphilic character of the SF5CF2CF2 radical. Addition reactions to electron-rich or electron-deficient alkenes profit either from its electrophilic or nucleophilic properties. Thus, the readily available SF5CF2CF2Br proved to be a promising and versatile building block for the introduction of this perfluorinated moiety.

  8. Pancreatic lipase selectively hydrolyses DPA over EPA and DHA due to location of double bonds in the fatty acid rather than regioselectivity.

    PubMed

    Akanbi, Taiwo O; Sinclair, Andrew J; Barrow, Colin J

    2014-10-01

    The enzymatic hydrolysis of canola, anchovy and seal oils with different types and amounts of polyunsaturated fatty acids was measured using porcine pancreatic lipase (PPL) to establish the fatty acid selectivity of PPL. Substrates were subjected to the same conditions of hydrolysis, with percent hydrolysis monitored using Iatroscan and fatty acid selectivity monitored using gas chromatography (GC). Regardless of their distribution on the glycerol backbone, as monitored by (13)C nuclear magnetic resonance (NMR), α-linolenic acid (ALA) and docosapentaenoic acid (DPA) were rapidly cleaved by PPL while eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and stearidonic acid (STA) were hydrolysed more slowly. Results show that PPL preferentially hydrolyses ALA and DPA over EPA, DHA and STA, and this selectivity is due to fatty acid rather than regioselectivity. The primary structural factor associated with resistance to PPL appears to be the distance of the first double bond from the ester linkage being hydrolysed.

  9. Diastereoselective aziridination of chiral electron-deficient olefins with N-chloro-N-sodiocarbamates catalyzed by chiral quaternary ammonium salts.

    PubMed

    Murakami, Yuta; Takeda, Youhei; Minakata, Satoshi

    2011-08-01

    Chiral quaternary ammonium salt-catalyzed diastereoselective aziridination of electron-deficient olefins that possess a chiral auxiliary with N-chloro-N-sodiocarbamates was developed. The key to high stereoselectivity was found to be the employment of the "matching" stereochemical combination of chiral auxiliary/ammonium salt. For example, when 3-phenyl-(4R,7S)-4-methyl-7-isopropyl-4,5,6,7-tetrahydroindazole (L-menthopyrazole) as a chiral auxiliary and a cinchonidine-derived chiral ammonium salt as a catalyst were applied to the reaction system, perfect diastereoselectivity was realized. Furthermore, the preparation of enantiomerically pure aziridines by removal of the chiral auxiliary was demonstrated.

  10. Ability of zirconia double coated with titanium and hydroxyapatite to bond to bone under load-bearing conditions.

    PubMed

    Suzuki, Takashi; Fujibayashi, Shunsuke; Nakagawa, Yasuaki; Noda, Iwao; Nakamura, Takashi

    2006-03-01

    As a preclinical study, we evaluated the ability of hydroxyapatite and titanium on zirconia (HTOZ) to bond to bone under load-bearing conditions in animal experiments. HTOZ, HA, and Ti on Co-Cr alloy (HTOC) and Ti on Co-Cr alloy (TOC) were implanted into the weight-bearing portion of the femoral condyles of nine beagle dogs. Femurs were extracted 4, 12, and 52 weeks after implantation and examined mechanically by pullout testing, and histologically by toluidine blue staining, SEM, and calculation of the affinity index. The interfacial shear strengths (mean+/-SD) of the HTOZ, HTOC, and TOC groups were 4.42+/-0.453, 3.90+/-0.903, and 4.08+/-0.790 MPa at 4 weeks; 6.82+/-2.64, 6.00+/-1.88, and 6.63+/-1.63 MPa at 12 weeks; and 13.98+/-1.94, 11.95+/-1.51, and 10.78+/-0.83 MPa at 52 weeks. There were no significant differences in the interfacial shear strengths between the three groups at any time. Affinity indices (mean+/-SD) obtained from SEM images of the HTOZ, HTOC, and TOC groups were 49.6+/-6.52%, 43.3+/-10.43%, and 23.7+/-3.95% at 4 weeks; 55.0+/-6.72%, 51.5+/-3.07%, and 28.6+/-4.09% at 12 weeks; and 59.1+/-6.73%, 63.0+/-6.40%, and 34.3+/-6.72% at 52 weeks. HA-coated implants (HTOZ, HTOC) had significantly higher affinity indices than non-HA-coated implants (TOC) at all times. HTOZ has the ability to bond to bone equivalent to HTOC and TOC. HTOZ is an excellent material for components of cementless joint prostheses.

  11. Anion Transport with Chalcogen Bonds.

    PubMed

    Benz, Sebastian; Macchione, Mariano; Verolet, Quentin; Mareda, Jiri; Sakai, Naomi; Matile, Stefan

    2016-07-27

    In this report, we introduce synthetic anion transporters that operate with chalcogen bonds. Electron-deficient dithieno[3,2-b;2',3'-d]thiophenes (DTTs) are identified as ideal to bind anions in the focal point of the σ holes on the cofacial endocyclic sulfur atoms. Anion binding in solution and anion transport across lipid bilayers are found to increase with the depth of the σ holes of the DTT anionophores. These results introduce DTTs and related architectures as a privileged motif to engineer chalcogen bonds into functional systems, complementary in scope to classics such as 2,2'-bipyrroles or 2,2'-bipyridines that operate with hydrogen bonds and lone pairs, respectively. PMID:27433964

  12. Photochemical reactions of electron-deficient olefins with N,N,N‧,N‧-tetramethylbenzidine via photoinduced electron-transfer

    NASA Astrophysics Data System (ADS)

    Pan, Yang; Zhao, Junshu; Ji, Yuanyuan; Yan, Lei; Yu, Shuqin

    2006-01-01

    Photoinduced electron transfer reactions of several electron-deficient olefins with N, N, N', N'-tetramethylbenzidine (TMB) in acetonitrile solution have been studied by using laser flash photolysis technique and steady-state fluorescence quenching method. Laser pulse excitation of TMB yields 3TMB* after rapid intersystem crossing from 1TMB*. The triplet which located at 480 nm is found to undergo fast quenching with the electron acceptors fumaronitrile (FN), dimethyl fumarate (DMF), diethyl fumarate (DEF), cinnamonitrile (CN), α-acetoxyacrylonitrile (AAN), crotononitrile (CrN) and 3-methoxyacrylonitrile (MAN). Substituents binding to olefin molecule own different electron-donating/withdrawing powers, which determine the electron-deficient property (π-cloud density) of olefin molecule as well as control the electron transfer rate constant directly. The detection of ion radical intermediates in the photolysis reactions confirms the proposed electron transfer mechanism, as expected from thermodynamics. The quenching rate constants of triplet TMB by these olefins have been determined at 510 nm to avoid the disturbance of formed TMB cation radical around 475 nm. All the kqT values approach or reach to the diffusion-controlled limit. In addition, fluorescence quenching rate constants kqS have been also obtained by calculating with Stern-Volmer equation. A correlation between experimental electron transfer rate constants and free energy changes has been explained by Marcus theory of adiabatic outer-sphere electron transfer. Disharmonic kq values for CN and CrN in endergonic region may be the disturbance of exciplexs formation.

  13. Structure-performance correlations of organic dyes with an electron-deficient diphenylquinoxaline moiety for dye-sensitized solar cells.

    PubMed

    Li, Sie-Rong; Lee, Chuan-Pei; Yang, Po-Fan; Liao, Chia-Wei; Lee, Mandy M; Su, Wei-Lin; Li, Chun-Ting; Lin, Hao-Wu; Ho, Kuo-Chuan; Sun, Shih-Sheng

    2014-08-01

    The high performances of dye-sensitized solar cells (DSSCs) based on seven new dyes are disclosed. Herein, the synthesis and electrochemical and photophysical properties of a series of intentionally designed dipolar organic dyes and their application in DSSCs are reported. The molecular structures of the seven organic dyes are composed of a triphenylamine group as an electron donor, a cyanoacrylic acid as an electron acceptor, and an electron-deficient diphenylquinoxaline moiety integrated in the π-conjugated spacer between the electron donor and acceptor moieties. The DSSCs based on the dye DJ104 gave the best overall cell performance of 8.06 %; the efficiency of the DSSC based on the standard N719 dye under the same experimental conditions was 8.82 %. The spectral coverage of incident photon-to-electron conversion efficiencies extends to the onset at the near-infrared region due to strong internal charge-transfer transition as well as the effect of electron-deficient diphenylquinoxaline to lower the energy gap in these organic dyes. A combined tetraphenyl segment as a hydrophobic barrier in these organic dyes effectively slows down the charge recombination from TiO2 to the electrolyte and boosts the photovoltage, comparable to their Ru(II) counterparts. Detailed spectroscopic studies have revealed the dye structure-cell performance correlations, to allow future design of efficient light-harvesting organic dyes.

  14. An unusual P-P double bond formed via phospha-Wittig transformation of a terminal PO complex.

    PubMed

    Piro, Nicholas A; Cummins, Christopher C

    2009-07-01

    The terminal phosphorus monoxide complex (OP)Mo(N[(t)Bu]Ar)(3), 1 (Ar = 3,5-Me(2)C(6)H(3)), undergoes an O-for-PSiR(3) metathesis reaction with the niobium phosphinidene complex (i)Pr(3)SiPNb(N[CH(2)(t)Bu]Ar)(3), 2, to generate the oxoniobium complex ONb(N[CH(2)(t)Bu]Ar)(3), 3, and the diphosphenido complex (i)Pr(3)SiPPMo(N[(t)Bu]Ar)(3), 4. The structure of 4, as determined by X-ray crystallography, contains a "singly bent" diphosphenido moiety, suggesting that the diphosphenido ligand serves as a 3e(-) donor to a formally d(2) metal center. This bonding characterization was supported by DFT calculations and is unique among known diphosphenido complexes. Diphosphenido 4 was found to react over time to produce products consistent with a bimolecular degradation pathway where the terminal phosphide complex PMo(N[(t)Bu]Ar)(3), 5, serves as a stable leaving group. Mixtures of 4 and PPh(3) were observed to set up an equilibrium (K(eq) = 0.7) between 4, PPh(3), and the products of phosphinidene transfer, 5 and (i)Pr(3)SiP=PPh(3).

  15. Surface oxidation under ambient air--not only a fast and economical method to identify double bond positions in unsaturated lipids but also a reminder of proper lipid processing.

    PubMed

    Zhou, Ying; Park, Hyejung; Kim, Philseok; Jiang, Yan; Costello, Catherine E

    2014-06-17

    A simple, fast approach elucidated carbon-carbon double bond positions in unsaturated lipids. Lipids were deposited onto various surfaces and the products from their oxidation in ambient air were observed by electrospray ionization (ESI) mass spectrometry (MS). The most common oxidative products, aldehydes, were detected as transformations at the cleaved double bond positions. Ozonides and carboxylic acids were generated in certain lipids. Investigations of the conditions controlling the appearance of these products indicated that the surface oxidation depends on light and ambient air. Since the lipid oxidation was slower in a high concentration of ozone, singlet oxygen appeared to be a parallel oxidant for unsaturated lipids. The 3-hydroxyl group in the sphingoid base of sulfatides offered some protection from oxidation for the Δ4,5-double bond, slowing its oxidation rate relative to that of the isolated double bond in the N-linked fatty acyl chain. Direct sampling by thin-layer chromatography (TLC)-ESI-MS provides a powerful approach to elucidate detailed structural information on biological samples. Co-localization of the starting lipids and their oxidation products after TLC separation allowed assignment of the native unsaturation sites. Phosphatidylserine and N,N-dimethyl phosphatidylethanolamine isomers in a bovine brain total lipid extract were distinguished on the basis of their oxidation products. Meanwhile, the findings reported herein reveal a potential pitfall in the assignment of structures to lipids extracted from TLC plates because of artifactual oxidation after the plate development.

  16. Double C-H bond activation of hydrocarbons by a gas phase neutral oxide cluster: the importance of spin state.

    PubMed

    Wang, Zhe-Chen; Yin, Shi; Bernstein, Elliot R

    2013-03-21

    The neutral cluster V2O5 is generated and detected in the gas phase. Its reactivity toward butane is studied both experimentally and theoretically. Experimental results show clearly that neutral V2O5 can react with n-butane (C4H10) to generate V2O5H2, indicating double hydrogen atom transfer from C4H10 to V2O5 to produce C4H8. Further experimental evidence indicates that V2O5 is only partially reacted even at very high concentrations of C4H10. Density functional theory (DFT) studies show that the lowest energy triplet state of V2O5 is reactive toward C4H10, whereas the ground state singlet V2O5 is inert. Calculated results are in agreement with experimental findings, and a detailed reaction mechanism is provided. Reactions of V2O5H2 with several oxidants are also studied theoretically to find a path to regenerate V2O5. Neutral (3)V2O5 can also react with C2H6 to form V2O5H2 and C2H4, but only as a minor reaction channel; the major product is the adsorption product V2O5(C2H6). PMID:23441829

  17. Cationic palladium(ii)-catalyzed dehydrative nucleophilic substitutions of benzhydryl alcohols with electron-deficient benzenethiols in water.

    PubMed

    Hikawa, Hidemasa; Machino, Yumo; Toyomoto, Mariko; Kikkawa, Shoko; Azumaya, Isao

    2016-08-01

    An efficient direct nucleophilic substitution of benzhydryl alcohols with electron-deficient benzenethiols using cationic Pd(ii) catalysts as Lewis acids in water is reported. Atom economical and environmentally benign protocols afford S-benzylated products in moderate to excellent yields. Commercially available Pd(MeCN)4(OTf)2, PdCl2(MeCN)2, and Na2PdCl4 are highly efficient catalysts. Notably, this simple protocol can be achieved without any other additives such as acids, bases, or external ligands. A Hammett study on the rate constants of S-benzylation by using various substituted benzhydryl alcohols yielded negative ρ values, suggesting that there is a build-up of positive charge in the transition state. PMID:27363665

  18. Applications of and alternatives to pi-electron-deficient azine organometallics in metal catalyzed cross-coupling reactions.

    PubMed

    Campeau, Louis-Charles; Fagnou, Keith

    2007-07-01

    While the use of pi-deficient azine halides in palladium catalyzed cross-coupling reactions is common, the use of pi-electron deficient azine organometallics has been less intensively examined. In recent years, important advances have been made that are beginning to address this deficiency and need. The purpose of this tutorial review is to highlight and discuss the innovations that facilitate the synthesis of azine-containing biaryls with a focus on the pyridine structural motif. Given the number of important compounds which exhibit azine-heterobiaryls and the wide use of cross-coupling methods in their synthesis, this review should be of interest among synthetic organic chemists and organometallic chemists alike.

  19. Pd(II)-catalyzed cascade Wacker-Heck reaction: chemoselective coupling of two electron-deficient reactants.

    PubMed

    Silva, Franck; Reiter, Maud; Mills-Webb, Rebecca; Sawicki, Marcin; Klär, Daniel; Bensel, Nicolas; Wagner, Alain; Gouverneur, Véronique

    2006-10-27

    A novel palladium(II)-catalyzed oxy-carbopalladation process was developed allowing for the orchestrated union of hydroxy ynones with ethyl acrylate, two electron-deficient reactants. With beta-hydroxy ynones, this cascade Wacker-Heck process gave access to highly functionalized tri- or tetrasubstituted dihydropyranones featuring an unusual dienic system. For diastereomerically pure and for enantioenriched beta-hydroxyynones, these reactions proceed without affecting the stereochemical integrity of the existing stereocenters. In addition, tetrasubstituted furanones can be prepared when alpha-hydroxyynones and ethyl acrylate are used as starting materials. The dihydropyranones and furanones obtained upon cyclization are novel compounds, but structurally related carbohydrate derivatives featuring a similar dienic system have been used as starting materials for the construction of polyannulated products, suggesting that these cascade Pd(II)-mediated oxidative heterocyclizations are of value for various synthetic applications.

  20. Investigation of double bond conversion, mechanical properties, and antibacterial activity of dental resins with different alkyl chain length quaternary ammonium methacrylate monomers (QAM).

    PubMed

    He, Jingwei; Söderling, Eva; Vallittu, Pekka K; Lassila, Lippo V J

    2013-01-01

    In order to endow dental resin with antibacterial activity, a series of antibacterial quaternary ammonium methacrylate monomers (QAM) with different substituted alkyl chain length (from 10 to 18) were incorporated into commonly used 2,2-bis[4-(2'-hydroxy-3'-methacryloyloxy-propoxy)-phenyl]propane (Bis-GMA)/triethyleneglycol dimethacrylate (TEGDMA) (50 wt/50 wt) dental resin as immobilized antibacterial agents. Double bond conversion (DC), flexural strength (FS) and modulus (FM), and young and mature biofilms inhibition effectiveness of prepared dental resins were studied and Bis-GMA/TEGDMA without QAM was used as reference. Results showed that there was no significant difference on DC, FS, and FM between copolymer with and without 5 wt% QAM. Substituted alkyl chain length of QAM had no influence on DC, FS, and FM of copolymer, but had influence on antibacterial activity of copolymer. Antibacterial activity of copolymer increased with increasing of substituted alkyl chain length of QAM, and the sequence followed as 5%C10 < 5%C11 ≈ 5%C12 < 5%C16 ≈ 5%C18. Copolymers containing C18 and C16 had the best inhibition effectiveness on both young biofilm and mature biofilm, copolymers containing C12 and C11 only had inhibition effectiveness on young biofilm and copolymer containing C10 had none inhibition effectiveness on neither young biofilm nor mature biofilm.

  1. Adsorption of water on reconstructed rutile TiO2(011)-(2 x 1): Ti=O double bonds and surface reactivity.

    PubMed

    Di Valentin, Cristiana; Tilocca, Antonio; Selloni, Annabella; Beck, T J; Klust, Andreas; Batzill, Matthias; Losovyj, Yaroslav; Diebold, Ulrike

    2005-07-13

    Recent combined experimental and theoretical studies (Beck et al., Phys. Rev. Lett. 2004, 93, 036104) have provided evidence for Ti=O double-bonded titanyl groups on the reconstructed rutile TiO(2)(011)-(2 x 1) surface. The adsorption of water on the same surface is now investigated to further probe the properties of these groups, as well as to confirm their existence. Ultraviolet photoemission experiments show that water is adsorbed in molecular form at a sample temperature of 110 K. At the same time, the presence of a 3sigma state in the photoemission spectra and work function measurements indicate a significant amount of hydroxyls within the first monolayer of water. At room temperature, scanning tunneling microscopy (STM) suggests that dissociated water is present, and about 30% of the surface active sites are hydroxylated. These findings are well explained by total energy density functional theory calculations and Car-Parrinello molecular dynamics simulations for water adsorption on the titanyl model of TiO(2)(011)-(2 x 1). The theoretical results show that a mixed molecular/dissociative layer is the most stable configuration in the monolayer regime at low temperatures, while complete dissociation takes place at 250 K. The arrangement of the protonated mono-coordinated oxygens in the mixed molecular/dissociated layer is consistent with the observed short-range order of the hydroxyls in the STM images.

  2. Cholesterol induces surface localization of polyphenols in model membranes thus enhancing vesicle stability against lysozyme, but reduces protection of distant double bonds from reactive-oxygen species.

    PubMed

    de Athayde Moncorvo Collado, Alejandro; Dupuy, Fernando G; Morero, Roberto D; Minahk, Carlos

    2016-07-01

    The main scope of the present study was to analyze the membrane interaction of members of different classes of polyphenols, i.e. resveratrol, naringenin, epigallocatechin gallate and enterodiol, in model systems of different compositions and phase states. In addition, the possible association between membrane affinity and membrane protection against both lipid oxidation and bilayer-disruptive compounds was studied. Gibbs monolayer experiments indicated that even though polyphenols showed poor surface activity, it readily interacted with lipid films. Actually, a preferential interaction with expanded monolayers was observed, while condensed and cholesterol-containing monolayers decreased the affinity of these phenolic compounds. On the other hand, fluorescence anisotropy studies showed that polyphenols were able to modulate membrane order degree, but again this effect was dependent on the cholesterol concentration and membrane phase state. In fact, cholesterol induced a surface rather than deep into the hydrophobic core localization of phenolic compounds in the membranes. In general, the polyphenolic molecules tested had a better antioxidant activity when they were allowed to get inserted into the bilayers, i.e. in cholesterol-free membranes. On the other hand, a membrane-protective effect against bilayer permeabilizing activity of lysozyme, particularly in the presence of cholesterol, could be assessed. It can be hypothesized that phenolic compounds may protect membrane integrity by loosely covering the surface of lipid vesicles, once cholesterol push them off from the membrane hydrophobic core. However, this cholesterol-driven distribution may lead to a reduced antioxidant activity of linoleic acid double bonds.

  3. Tomato carotenoid cleavage dioxygenases 1A and 1B: Relaxed double bond specificity leads to a plenitude of dialdehydes, mono-apocarotenoids and isoprenoid volatiles

    PubMed Central

    Ilg, Andrea; Bruno, Mark; Beyer, Peter; Al-Babili, Salim

    2014-01-01

    The biosynthetic processes leading to many of the isoprenoid volatiles released by tomato fruits are still unknown, though previous reports suggested a clear correlation with the carotenoids contained within the fruit. In this study, we investigated the activity of the tomato (Solanum lycopersicum) carotenoid cleavage dioxygenase (SlCCD1B), which is highly expressed in fruits, and of its homolog SlCCD1A. Using in vitro assays performed with purified recombinant enzymes and by analyzing products formed by the two enzymes in carotene-accumulating Escherichia coli strains, we demonstrate that SlCCD1A and, to a larger extent, SlCCD1B, have a very relaxed specificity for both substrate and cleavage site, mediating the oxidative cleavage of cis- and all-trans-carotenoids as well as of different apocarotenoids at many more double bonds than previously reported. This activity gives rise to a plenitude of volatiles, mono-apocarotenoids and dialdehyde products, including cis-pseudoionone, neral, geranial, and farnesylacetone. Our results provide a direct evidence for a carotenoid origin of these compounds and point to CCD1s as the enzymes catalyzing the formation of the vast majority of tomato isoprenoid volatiles, many of which are aroma constituents. PMID:25057464

  4. Temperature-induced melting of double-stranded DNA in the absence and presence of covalently bonded antitumour drugs: insight from molecular dynamics simulations

    PubMed Central

    Bueren-Calabuig, Juan A.; Giraudon, Christophe; Galmarini, Carlos M.; Egly, Jean Marc; Gago, Federico

    2011-01-01

    The difference in melting temperature of a double-stranded (ds) DNA molecule in the absence and presence of bound ligands can provide experimental information about the stabilization brought about by ligand binding. By simulating the dynamic behaviour of a duplex of sequence 5′-d(TAATAACGGATTATT)·5′-d(AATAATCCGTTATTA) in 0.1 M NaCl aqueous solution at 400 K, we have characterized in atomic detail its complete thermal denaturation profile in <200 ns. A striking asymmetry was observed on both sides of the central CGG triplet and the strand separation process was shown to be strongly affected by bonding in the minor groove of the prototypical interstrand crosslinker mitomycin C or the monofunctional tetrahydroisoquinolines trabectedin (Yondelis®), Zalypsis® and PM01183®. Progressive helix unzipping was clearly interspersed with some reannealing events, which were most noticeable in the oligonucleotides containing the monoadducts, which maintained an average of 6 bp in the central region at the end of the simulations. These significant differences attest to the demonstrated ability of these drugs to stabilize dsDNA, stall replication and transcription forks, and recruit DNA repair proteins. This stabilization, quantified here in terms of undisrupted base pairs, supports the view that these monoadducts can functionally mimic a DNA interstrand crosslink. PMID:21727089

  5. Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. I. Scaling of neutron data and the distributions of double bonds and water.

    PubMed Central

    Wiener, M. C.; King, G. I.; White, S. H.

    1991-01-01

    We described in two previous papers a method for the joint refinement of the structure of fluid bilayers using neutron and x-ray diffraction data (Wiener, M. C., and S. H. White 1991a, b. Biophys. J. 59: 162-173 and 174-185). An essential part of the method is the appropriate scaling of the diffraction data. Here we describe the scaling of the neutron data and the determination of the transbilayer distribution of double bonds in liquid-crystalline (L alpha phase) phospholipid bilayers of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). The distribution was determined by neutron diffraction of oriented multilayers (66% RH) of DOPC specifically deuterated at the 9- and 10-position of both acyl chains. The double-bond distribution is described accurately by a pair of Gaussian functions each located at a position Zcc = 7.88 +/- 0.09 A from the bilayer center with 1/e-halfwidths of Acc = 4.29 +/- 0.16 A. Previously, we determined the transbilayer distribution of bromine atoms in a specifically halogenated lipid, 1-oleoyl-2-9,10-dibromostearoyl-sn-glycero-3-phosphocholine (OBPC), and showed it to be an isomorphous replacement for DOPC (Wiener, M. C., and S. H. White, 1991c. Biochemistry. In press). A comparison of the double-bond and bromine profiles indicates that the positions of the centers of the deuterated double bond and the brominated methylene Gaussian distributions are equal within experimental error and that each label undergoes similar average thermal motions with respect to the bilayer normal. The observation that the average position of a label on both acyl chains (the deuterated double bonds) is similar to the average position of a label on the 2-chain alone (the brominated methylenes) indicates that the maximum separation along the bilayer normal between the double bonds of the acyl chains is 1 A or less. The fully-resolved transbilayer water distribution, previously determined at lower resolution (Jacobs, R. E., and S. H. White. 1989. Biochemistry. 28

  6. Influence of the cis-9, cis-12 and cis-15 double bond position in octadecenoic acid (18:1) isomers on the rat FADS2-catalyzed Δ6-desaturation.

    PubMed

    Rioux, Vincent; Choque, Benjamin; Ezanno, Hélène; Duby, Cécile; Catheline, Daniel; Legrand, Philippe

    2015-04-01

    Oleic (cis9-18:1), linoleic (cis9,cis12-18:2) and α-linolenic (cis9,cis12,cis15-18:3) acids are well described substrates of the Δ6-desaturase encoded by the mammalian fatty acid desaturase 2 (FADS2) gene. In addition, at least 9 other very structurally different fatty acids have been shown to be Δ6- or even Δ8-desaturated by the FADS2 protein. A better characterization of the substrate specificity of this enzyme is therefore needed. By using commercial cis9-18:1 and chemically synthesized cis12- and cis15-18:1 (sharing the n-6 double bond with 18:2 n-6 and the n-3 double bond with 18:3 n-3, respectively), we tried to decrypt the fatty acid structure driving the FADS2 substrate affinity. We first showed that both recombinant and native rat FADS2 were able to Δ6-desaturate not only the cis9- but also the cis12- and cis15-18:1 isomers. Next, the inhibitory effect of increasing concentrations of each 18:1 isomer was investigated in vitro on the Δ6-desaturation of α-linolenic acid. At equimolar inhibitor/substrate ratio (60 μM), the cis9-18:1 exhibited a significantly higher inhibition (25%) than the cis12- (8%) and cis15-18:1 (5%). This study shows that a single cis double bond in 12- or 15-position in 18:1 is enough to make them low Δ6-desaturable substrates. If a preexisting cis9-double bond is not absolutely required for the Δ6-desaturation of octadecenoic acids, its presence is however crucial to explain the higher enzyme affinity. Compared with oleic acid, the additional presence of a cis12-double bond in linoleic acid increased its inhibitory effect on the Δ6-desaturation of α-linolenic acid at low concentration (30 μM) but not at higher concentrations (60 and 120 μM). In this classification of the decreasing impact of the double bond when it comes closer to the methyl end of octadecenoic acids, the cis11-18:1 (cis-vaccenic acid) should be considered apart since it is itself not Δ6-desaturated but still a good competitive inhibitor of the

  7. Junk-Bond Colleges.

    ERIC Educational Resources Information Center

    Van Der Werf, Martin

    2003-01-01

    Describes how a long-predicted decline in the fortunes of small private colleges is beginning to show up in the bond market, as the number of colleges now rated in the junk category has nearly doubled. (EV)

  8. Dynamic NMR study of the mechanisms of double, triple, and quadruple proton and deuteron transfer in cyclic hydrogen bonded solids of pyrazole derivatives.

    PubMed

    Klein, Oliver; Aguilar-Parrilla, Francisco; Lopez, Juan Miguel; Jagerovic, Nadine; Elguero, José; Limbach, Hans-Heinrich

    2004-09-22

    Using dynamic solid state (15)N CPMAS NMR spectroscopy (CP = cross polarization, MAS = magic angle spinning), the kinetics of the degenerate intermolecular double and quadruple proton and deuteron transfers in the cyclic dimer of (15)N labeled polycrystalline 3,5-diphenyl-4-bromopyrazole (DPBrP) and in the cyclic tetramer of (15)N labeled polycrystalline 3,5-diphenylpyrazole (DPP) have been studied in a wide temperature range at different deuterium fractions in the mobile proton sites. Rate constants were measured on a millisecond time scale by line shape analysis of the doubly (15)N labeled compounds, and by magnetization transfer experiments on a second timescale of the singly (15)N labeled compounds in order to minimize the effects of proton-driven (15)N spin diffusion. For DPBrP the multiple kinetic HH/HD/DD isotope effects could be directly obtained. By contrast, four rate constants k(1) to k(4) were obtained for DPP at different deuterium fractions. Whereas k(1) corresponds to the rate constant k(HHHH) of the HHHH isotopolog, an appropriate kinetic reaction model was needed for the kinetic assignment of the other rate constants. Using the model described by Limbach, H. H.; Klein, O.; Lopez Del Amo, J. M.; Elguero, J. Z. Phys. Chem. 2004,218, 17, a concerted quadruple proton-transfer mechanism as well as a stepwise consecutive single transfer mechanism could be excluded. By contrast, using the kinetic assignment k(2) approximately k(3) approximately k(HHHD) approximately k(HDHD) and k(3) approximately k(HDDD) approximately k(DDDD), the results could be explained in terms of a two-step process involving a zwitterionic intermediate. In this mechanism, each reaction step involves the concerted transfer of two hydrons, giving rise to primary kinetic HH/HD/DD isotope effects, whereas the nontransferred hydrons only contribute small secondary effects, which are not resolved experimentally. By contrast, the multiple kinetic isotope effects of the double proton

  9. Chlorine atom-initiated low-temperature oxidation of prenol and isoprenol: The effect of C=C double bonds on the peroxy radical chemistry in alcohol oxidation

    DOE PAGES

    Welz, Oliver; Savee, John D.; Osborn, David L.; Taatjes, Craig A.

    2014-07-04

    The chlorine atom-initiated oxidation of two unsaturated primary C5 alcohols, prenol (3-methyl-2-buten-1-ol, (CH3)2CCHCH2OH) and isoprenol (3-methyl-3-buten-1-ol, CH2C(CH3)CH2CH2OH), is studied at 550 K and low pressure (8 Torr). The time- and isomer-resolved formation of products is probed with multiplexed photoionization mass spectrometry (MPIMS) using tunable vacuum ultraviolet ionizing synchrotron radiation. The peroxy radical chemistry of the unsaturated alcohols appears much less rich than that of saturated C4 and C5 alcohols. The main products observed are the corresponding unsaturated aldehydes – prenal (3-methyl-2-butenal) from prenol oxidation and isoprenal (3-methyl-3-butenal) from isoprenol oxidation. No significant products arising from QOOH chemistry are observed. Thesemore » results can be qualitatively explained by the formation of resonance stabilized allylic radicals via H-abstraction in the Cl + prenol and Cl + isoprenol initiation reactions. The loss of resonance stabilization upon O2 addition causes the energies of the intermediate wells, saddle points, and products to increase relative to the energy of the initial radicals and O2. These energetic shifts make most product channels observed in the peroxy radical chemistry of saturated alcohols inaccessible for these unsaturated alcohols. The experimental findings are underpinned by quantum-chemical calculations for stationary points on the potential energy surfaces for the reactions of the initial radicals with O2. Under our conditions, the dominant channels in prenol and isoprenol oxidation are the chain-terminating HO2-forming channels arising from radicals, in which the unpaired electron and the –OH group are on the same carbon atom, with stable prenal and isoprenal co-products, respectively. These results suggest that the presence of C=C double bonds in alcohols will reduce low-temperature reactivity during autoignition.« less

  10. Double Bond Position Plays an Important Role in Delta-9 Desaturation and Lipogenic Properties of Trans 18:1 Isomers in Mouse Adipocytes.

    PubMed

    Vahmani, P; Meadus, W J; Mapiye, C; Duff, P; Rolland, D C; Dugan, M E R

    2015-12-01

    The objective of this research was to study the delta-9 desaturation of individual trans (t) fatty acids that can be found in ruminant fat or partially hydrogenated vegetable oils (PHVO) and determine their effects on lipogenic gene expression in adipocytes. It was hypothesized that delta-9 desaturation and lipogenic properties of t-18:1 isomers depend on the position of double bond. Differentiated 3T3-L1 adipocytes were treated with 200 µM of t6-18:1, t9-18:1, t11-18:1, t13-18:1 or t16-18:1, cis (c)-9 18:1 or bovine serum albumin (BSA) vehicle control for 48 h. Cells were then harvested for fatty acid and gene expression analyses using gas chromatography and quantitative PCR respectively. Among t-18:1 isomers, t13-18:1 and t11-8:1 had the greatest percent delta-9 desaturation (44 and 41 % respectively) followed by t16-18:1 and t6-18:1 (32 and 17 % respectively), while c9-18:1 and t9-18:1 did not undergo delta-9 desaturation. Trans9-18:1 up-regulated (P < 0.05) the expression of lipogenic genes including fatty acid synthase and stearoyl-CoA desaturase-1 (P < 0.05), whereas the expression of these genes were not affected with other t-18:1 isomers (P > 0.05). Consistent with gene expression results, t9-18:1 increased the de novo lipogenic index (16:0/18:2n-6) compared with control cells and increased delta-9 desaturation index (c9-16:1/18:0) compared to other t-18:1 isomers (P < 0.05). The current study provides further evidence that the predominant trans fatty acid in PHVO (t9-18:1) has isomer specific lipogenic properties. PMID:26476931

  11. Double Bond Position Plays an Important Role in Delta-9 Desaturation and Lipogenic Properties of Trans 18:1 Isomers in Mouse Adipocytes.

    PubMed

    Vahmani, P; Meadus, W J; Mapiye, C; Duff, P; Rolland, D C; Dugan, M E R

    2015-12-01

    The objective of this research was to study the delta-9 desaturation of individual trans (t) fatty acids that can be found in ruminant fat or partially hydrogenated vegetable oils (PHVO) and determine their effects on lipogenic gene expression in adipocytes. It was hypothesized that delta-9 desaturation and lipogenic properties of t-18:1 isomers depend on the position of double bond. Differentiated 3T3-L1 adipocytes were treated with 200 µM of t6-18:1, t9-18:1, t11-18:1, t13-18:1 or t16-18:1, cis (c)-9 18:1 or bovine serum albumin (BSA) vehicle control for 48 h. Cells were then harvested for fatty acid and gene expression analyses using gas chromatography and quantitative PCR respectively. Among t-18:1 isomers, t13-18:1 and t11-8:1 had the greatest percent delta-9 desaturation (44 and 41 % respectively) followed by t16-18:1 and t6-18:1 (32 and 17 % respectively), while c9-18:1 and t9-18:1 did not undergo delta-9 desaturation. Trans9-18:1 up-regulated (P < 0.05) the expression of lipogenic genes including fatty acid synthase and stearoyl-CoA desaturase-1 (P < 0.05), whereas the expression of these genes were not affected with other t-18:1 isomers (P > 0.05). Consistent with gene expression results, t9-18:1 increased the de novo lipogenic index (16:0/18:2n-6) compared with control cells and increased delta-9 desaturation index (c9-16:1/18:0) compared to other t-18:1 isomers (P < 0.05). The current study provides further evidence that the predominant trans fatty acid in PHVO (t9-18:1) has isomer specific lipogenic properties.

  12. A double-leg donor-acceptor molecular elevator: new insight into controlling the distance of two platforms.

    PubMed

    Zhang, Zhi-Jun; Han, Min; Zhang, Heng-Yi; Liu, Yu

    2013-04-01

    A double-leg elevator with an electron-rich anthracene moiety at the platformlike component and an electron-deficient naphthalenediimide unit in the middle of a double-leg riglike component was prepared through "click chemistry", in which the reversible elevator movement between different levels could be controlled upon the addition of base and acid. PMID:23534551

  13. Possible interstellar formation of glycine through a concerted mechanism: a computational study on the reaction of CH2[double bond, length as m-dash]NH, CO2 and H2.

    PubMed

    Nhlabatsi, Zanele P; Bhasi, Priya; Sitha, Sanyasi

    2016-07-27

    Glycine being the simplest amino acid and also having significant astrobiological implications, has meant that intensive investigations have been carried out in the past, starting from its detection in the interstellar medium (ISM) to analysis of meteorites and cometary samples and laboratory synthesis, as well as computational studies on the possible reaction paths. In this present work quantum chemical calculations have been performed to investigate the possible interstellar formation of glycine via two different paths; (1) in a two-step process via a dihydroxy carbene intermediate and (2) through a one-step concerted mechanism, starting from reactants like CH2[double bond, length as m-dash]NH, CO, CO2, H2O and H2. For the two reactions representing the carbene route, it was observed that the formation of dihydroxy carbene from either CO + H2O or CO2 + H2 is highly endothermic with large barrier heights, whereas the subsequent step of interaction of this carbene with CH2[double bond, length as m-dash]NH to give glycine is exothermic and the barrier is below the reactants. Based on this observation it is suggested that the formation of glycine via the carbene route is a least favourable or even unfavourable path. On the other hand, the two reactions CH2[double bond, length as m-dash]NH + CO + H2O and CH2[double bond, length as m-dash]NH + CO2 + H2 representing the concerted paths were found to be favourable in leading to the formation of glycine. After an extensive study on the first concerted reaction in our previous work (Phys. Chem. Chem. Phys., 2016, 18, 375-381), in this work a detailed investigation has been carried out for the second concerted reaction, CH2[double bond, length as m-dash]NH + CO2 + H2, which can possibly lead to the interstellar formation of glycine. It was observed that this reaction proceeds through a large barrier and at the same time the transition state shows prominent hydrogen dynamics, indicating a tunnelling possibility for this

  14. Possible interstellar formation of glycine through a concerted mechanism: a computational study on the reaction of CH2[double bond, length as m-dash]NH, CO2 and H2.

    PubMed

    Nhlabatsi, Zanele P; Bhasi, Priya; Sitha, Sanyasi

    2016-07-27

    Glycine being the simplest amino acid and also having significant astrobiological implications, has meant that intensive investigations have been carried out in the past, starting from its detection in the interstellar medium (ISM) to analysis of meteorites and cometary samples and laboratory synthesis, as well as computational studies on the possible reaction paths. In this present work quantum chemical calculations have been performed to investigate the possible interstellar formation of glycine via two different paths; (1) in a two-step process via a dihydroxy carbene intermediate and (2) through a one-step concerted mechanism, starting from reactants like CH2[double bond, length as m-dash]NH, CO, CO2, H2O and H2. For the two reactions representing the carbene route, it was observed that the formation of dihydroxy carbene from either CO + H2O or CO2 + H2 is highly endothermic with large barrier heights, whereas the subsequent step of interaction of this carbene with CH2[double bond, length as m-dash]NH to give glycine is exothermic and the barrier is below the reactants. Based on this observation it is suggested that the formation of glycine via the carbene route is a least favourable or even unfavourable path. On the other hand, the two reactions CH2[double bond, length as m-dash]NH + CO + H2O and CH2[double bond, length as m-dash]NH + CO2 + H2 representing the concerted paths were found to be favourable in leading to the formation of glycine. After an extensive study on the first concerted reaction in our previous work (Phys. Chem. Chem. Phys., 2016, 18, 375-381), in this work a detailed investigation has been carried out for the second concerted reaction, CH2[double bond, length as m-dash]NH + CO2 + H2, which can possibly lead to the interstellar formation of glycine. It was observed that this reaction proceeds through a large barrier and at the same time the transition state shows prominent hydrogen dynamics, indicating a tunnelling possibility for this

  15. Influence of spacer moiety and length of end chain for the phase stability in complementary, double hydrogen bonded liquid crystals, MA:nOBAs

    NASA Astrophysics Data System (ADS)

    Ashok Kumar, A. V. N.; Chalapathi, P. V.; Srinivasulu, M.; Muniprasad, M.; Potukuchi, D. M.

    2015-01-01

    Supra molecular liquid crystals formed by the Hydrogen Bonding interaction between a non-mesogenic aliphatic dicarboxylic acid viz., COOHsbnd CH2sbnd COOH (Malonic Acid, MA); and mesogenic aromatic, N-(p-n-alkoxy benzoic)Acids, (i.e., nOBAs) for n = 3, 4, 5, 7, 8, 9, 10, 11 and 12, labeled as nOBA:COOHsbnd [CH2]msbnd COOH:nOBAs, abbreviated as MA:nOBAs are reported. 1H NMR and 13C NMR studies confirm the formation of HBLC complexes. Infrared (IR) studies confirm the complementary, double, alternative type of HB. Polarized Optical Microscopy (POM) and Differential Scanning Calorimetry (DSC) studies infer N, SmC, SmX, SmCRE, SmF, SmG LC phase variance. SmX phase exhibiting finger print texture grows in MA:nOBAs for n = 10, 11 and 12 by the interruption of SmC phase with decreasing temperature. Re-Entrant SmC (SmCRE) grows by the cooling of SmX. I-N, N-C, X-CRE, C-G, CRE-F, F-G and G-Solid transitions exhibit first order nature. C-X is found to be second order nature in n = 10 and 11. C-X in n = 12 and X-CRE and CRE-F transitions are found to be weak first order nature. Influence of lengths of end chain (n) and spacer (m) for the overall LC phase [ΔT]LC; tilted phase [ΔT]Tilt; SmC phase [ΔT]C and SmX phase [ΔT]X stabilities is discussed in the wake of data on other HBLCs with similar molecular structure. Prevalence of SmX phase in MA:nOBAs with m = 1 infers repulsive interaction between the π-electronic cloud of aromatic boards of nOBAs. Model molecule predicts a twisted configuration of π-cloud around the molecular long axis. Finger print texture of SmX validates the model.

  16. Chlorine atom-initiated low-temperature oxidation of prenol and isoprenol: The effect of C=C double bonds on the peroxy radical chemistry in alcohol oxidation

    SciTech Connect

    Welz, Oliver; Savee, John D.; Osborn, David L.; Taatjes, Craig A.

    2014-07-04

    The chlorine atom-initiated oxidation of two unsaturated primary C5 alcohols, prenol (3-methyl-2-buten-1-ol, (CH3)2CCHCH2OH) and isoprenol (3-methyl-3-buten-1-ol, CH2C(CH3)CH2CH2OH), is studied at 550 K and low pressure (8 Torr). The time- and isomer-resolved formation of products is probed with multiplexed photoionization mass spectrometry (MPIMS) using tunable vacuum ultraviolet ionizing synchrotron radiation. The peroxy radical chemistry of the unsaturated alcohols appears much less rich than that of saturated C4 and C5 alcohols. The main products observed are the corresponding unsaturated aldehydes – prenal (3-methyl-2-butenal) from prenol oxidation and isoprenal (3-methyl-3-butenal) from isoprenol oxidation. No significant products arising from QOOH chemistry are observed. These results can be qualitatively explained by the formation of resonance stabilized allylic radicals via H-abstraction in the Cl + prenol and Cl + isoprenol initiation reactions. The loss of resonance stabilization upon O2 addition causes the energies of the intermediate wells, saddle points, and products to increase relative to the energy of the initial radicals and O2. These energetic shifts make most product channels observed in the peroxy radical chemistry of saturated alcohols inaccessible for these unsaturated alcohols. The experimental findings are underpinned by quantum-chemical calculations for stationary points on the potential energy surfaces for the reactions of the initial radicals with O2. Under our conditions, the dominant channels in prenol and isoprenol oxidation are the chain-terminating HO2-forming channels arising from radicals, in which the unpaired electron and the –OH group are on the same carbon atom, with stable prenal and isoprenal co-products, respectively. These results suggest that the presence of C=C double bonds in alcohols will reduce

  17. Low-valent niobium-mediated double activation of C-F/C-H bonds: fluorene synthesis from o-arylated alpha,alpha,alpha-trifluorotoluene derivatives.

    PubMed

    Fuchibe, Kohei; Akiyama, Takahiko

    2006-02-01

    By the treatment of 0.3 molar amount of NbCl5 and LiAlH4, o-arylated alpha,alpha,alpha-trifluorotoluenes afforded fluorene derivatives in good yields. C-F bonds of the CF3 group and the neighboring ortho C-H bond were doubly activated to give the coupling products. PMID:16448098

  18. A Cofacially Stacked Electron-Deficient Small Molecule with a High Electron Mobility of over 10 cm(2) V(-1) s(-1) in Air.

    PubMed

    Dou, Jin-Hu; Zheng, Yu-Qing; Yao, Ze-Fan; Lei, Ting; Shen, Xingxing; Luo, Xu-Yi; Yu, Zhi-Ao; Zhang, Shi-Ding; Han, Guangchao; Wang, Zhi; Yi, Yuanping; Wang, Jie-Yu; Pei, Jian

    2015-12-22

    A strong, electron-deficient small molecule, F4 -BDOPV, has a lowest unoccupied molecular orbital (LUMO) level down to -4.44 eV and exhibits cofacial packing in single crystals. These features provide F4 -BDOPV with good ambient stability and large charge-transfer integrals for electrons, leading to a high electron mobility of up to 12.6 cm(2) V(-1) s(-1) in air.

  19. Tuning of the electronic properties of a cyclopentadienylruthenium catalyst to match racemization of electron-rich and electron-deficient alcohols.

    PubMed

    Verho, Oscar; Johnston, Eric V; Karlsson, Erik; Bäckvall, Jan-E

    2011-09-26

    The synthesis of a new series of cyclopentadienylruthenium catalysts with varying electronic properties and their application in racemization of secondary alcohols are described. These racemizations involve two key steps: 1) β-hydride elimination (dehydrogenation) and 2) re-addition of the hydride to the intermediate ketone. The results obtained confirm our previous theory that the electronic properties of the substrate determine which of these two steps is rate determining. For an electron-deficient alcohol the rate-determining step is the β-hydride elimination (dehydrogenation), whereas for an electron-rich alcohol the re-addition of the hydride becomes the rate-determining step. By matching the electronic properties of the catalyst with the electronic properties of the alcohol, we have now shown that a dramatic increase in racemization rate can be obtained. For example, electron-deficient alcohol 15 racemized 30 times faster with electron-deficient catalyst 6 than with the unmodified standard catalyst 4. The application of these protocols will extend the scope of cyclopentadienylruthenium catalysts in racemization and dynamic kinetic resolution. PMID:21882268

  20. Nuclear Quadrupole Double Resonance Investigation of the Anomalous Temperature Coefficients of the Strong Hydrogen Bonds in Sodium and Potassium Deuterium Diacetate.

    NASA Astrophysics Data System (ADS)

    Shaw, Eric Max

    This thesis was directed at learning more about the unusual electronic environment near hydrogen within strong hydrogen bonds. "Strong" hydrogen bonds are unique in that the hydrogen atom is symmetrically located, or nearly so, between two electronegative atoms; the bond energies are relatively large. In a "normal" hydrogen bond the hydrogen atom is bonded to, and thus physically closer to, a parent atom, and only weakly attracted to another electronegative atom; bond energies are typically small. To examine these bonds, deuterium was substituted for hydrogen and the electric quadrupole coupling constant (QCC) of deuterium was measured using field cycling nuclear magnetic resonance. The electric quadrupole moment of deuterium is sensitive to changes in the surrounding electric field gradient, and is thus a good probe of the immediate electronic structure. The results show that the temperature dependence of the QCC is opposite to, and much larger than, what one would normally expect to observe for deuterium. The QCC is found to decrease strongly with decreasing temperature. This project was the first to study in detail the temperature dependence of deuterium QCCs in strong hydrogen bonds. The magnitude of the deuterium QCCs for the diacetates was found to be strongly depressed relative to typical values for deuterium. These results parallel large shifts in the infrared vibrational frequencies observed in many molecules which contain strong hydrogen bonds. The asymmetry parameter, which is a measure of the departure from axial symmetry of the electric field gradient (EFG) at deuterium, was found to be unusually large for what are known to be linear, or nearly linear, three-center bonds. Based on ab initio Hartree-Fock calculations aimed at determining the EFG at H in the archetypal bifluoride ion, F-H-F^-, the electronic charge density is drastically depleted at H. It is believed that the large reduction in the charge density allows the deuterium EFG to be highly

  1. Study on the d state of platinum in Pt/SiO sub 2 and Na/Pt/SiO sub 2 catalysts under C double bond C hydrogenation conditions by X-ray absorption near-edge structure spectroscopy

    SciTech Connect

    Yoshitake, Hideaki; Iwasawa, Yasuhiro )

    1991-09-19

    The change in the d-electron density of platinum during D{sub 2} + CH{sub 2}{double bond}CHX reactions on Pt/SiO{sub 2} and Na/Pt/SiO{sub 2} catalysts and its influence on the catalysis were studied by X-ray absorption near-edge structure (XANES) spectroscopy, kinetics and FT-IR. It was demonstrated from the change of the white lines in XANES spectra at Pt L{sub 2} and L{sub 3} edges that CH{sub 2}{double bond}CHX (X = H, CH{sub 3}, COCH{sub 3}, CF{sub 3}, and CN) is adsorbed on the Pt surface and extracts the electrons of the d state. Hence, the deuterogenation rate is reduced as the value of Hammett's {sigma}{sub P} increases. The linear free energy relationship between the reaction rate and {sigma}{sub P} was observed for the deuterogenation of CH{sub 2}{double bond}CHX. The rate of ethene deuterogenation was promoted by Na{sub 2}O addition. The electron density of unoccupied d states of pt under vacuum decreased by Na{sub 2}O addition, indicating the electron donation from Na{sub 2}O addition. The electron density of unoccupied d states of Pt under vacuum decreased by Na{sub 2}O addition, indicating the electron donation from Na{sub 2}O addition. However, most of these additional electrons were observed to move to ethene under reaction conditions. The acceptor of the electrons was suggested by di-{sigma}-ethene by the shift of {upsilon}(C-H). The kinetic parameters are discussed in relation to the change in the d state of Pt as a function of {sigma}{sub P} and Na quantity.

  2. Promoting C–C Bond Coupling of Benzyne and Methyl Ligands in Electron-Deficient (triphos)Pt–CH3+ Complexes

    PubMed Central

    2016-01-01

    In situ generated benzyne reacts at room temperature with (triphos)Pt–CH3+ to form a five-coordinate π-complex (2) that is isolable and stable in solution. Thermolysis of 2 at 60 °C generates (triphos)Pt(o-tolyl)+ (3), which is the product of formal migratory insertion of CH3– onto the coordinated benzyne. The reaction of 2 with the acid Ph2NH2+ yields toluene at room temperature over the course of 8 h, while the same reaction with 3 only proceeds to 40% conversion over 2 days. These data indicate that the protonolysis of 2 does not proceed by CH3 migration onto benzyne to form 3 followed by protodemetalation. Instead, the data suggest either that protonation of 2 is first and is followed by H migration to yield a PtIVPh(Me) dication or that this latter species is generated by direct protonolysis of coordinated benzyne prior to reductive elimination of toluene. PMID:26146438

  3. Insertion of phosphinidene complexes into the P-H bond of secondary phosphine oxides: a new version of the phospha-Wittig synthesis of P=C double bonds.

    PubMed

    Hao, Yanwei; Wu, Di; Tian, Rongqiang; Duan, Zheng; Mathey, François

    2016-01-21

    Terminal phosphinidene complexes [RP-W(CO)5], as generated at 60 °C in the presence of copper chloride from the appropriate 7-phosphanorbornadiene complexes, react with secondary phosphine oxides Ar2P(O)H to give the insertion products into the P-H bonds. After metalation with NaH, these products react with aldehydes to give the corresponding phosphaalkenes which are trapped by dimethylbutadiene. PMID:26661055

  4. Mechanism, regioselectivity, and the kinetics of phosphine-catalyzed [3+2] cycloaddition reactions of allenoates and electron-deficient alkenes.

    PubMed

    Liang, Yong; Liu, Song; Xia, Yuanzhi; Li, Yahong; Yu, Zhi-Xiang

    2008-01-01

    With the aid of computations and experiments, the detailed mechanism of the phosphine-catalyzed [3+2] cycloaddition reactions of allenoates and electron-deficient alkenes has been investigated. It was found that this reaction includes four consecutive processes: 1) In situ generation of a 1,3-dipole from allenoate and phosphine, 2) stepwise [3+2] cycloaddition, 3) a water-catalyzed [1,2]-hydrogen shift, and 4) elimination of the phosphine catalyst. In situ generation of the 1,3-dipole is key to all nucleophilic phosphine-catalyzed reactions. Through a kinetic study we have shown that the generation of the 1,3-dipole is the rate-determining step of the phosphine-catalyzed [3+2] cycloaddition reaction of allenoates and electron-deficient alkenes. DFT calculations and FMO analysis revealed that an electron-withdrawing group is required in the allene to ensure the generation of the 1,3-dipole kinetically and thermodynamically. Atoms-in-molecules (AIM) theory was used to analyze the stability of the 1,3-dipole. The regioselectivity of the [3+2] cycloaddition can be rationalized very well by FMO and AIM theories. Isotopic labeling experiments combined with DFT calculations showed that the commonly accepted intramolecular [1,2]-proton shift should be corrected to a water-catalyzed [1,2]-proton shift. Additional isotopic labeling experiments of the hetero-[3+2] cycloaddition of allenoates and electron-deficient imines further support this finding. This investigation has also been extended to the study of the phosphine-catalyzed [3+2] cycloaddition reaction of alkynoates as the three-carbon synthon, which showed that the generation of the 1,3-dipole in this reaction also occurs by a water-catalyzed process.

  5. Achieving high performance non-fullerene organic solar cells through tuning the numbers of electron deficient building blocks of molecular acceptors

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Chen, Yusheng; Chen, Shangshang; Dong, Tao; Deng, Wei; Lv, Lei; Yang, Saina; Yan, He; Huang, Hui

    2016-08-01

    Two analogous dimer and tetramer compounds, SF-PDI2 and SF-PDI4, were designed, theoretically calculated, synthesized, and developed as electron acceptors for organic solar cells. The effects of the number of the electron deficient building blocks on the optical absorption, energy levels, charge transport, morphology, crystallinity, and photovoltaic performance of the molecules were investigated. In combination with two different donors, PTB7-Th and PffBT4T-2OD, the results showed that increasing the numbers of PDI building blocks is beneficial to photovoltaic performance and leads to efficiency over 5%.

  6. Efficient Cu-catalyzed atom transfer radical addition reactions of fluoroalkylsulfonyl chlorides with electron-deficient alkenes induced by visible light.

    PubMed

    Tang, Xiao-Jun; Dolbier, William R

    2015-03-27

    Fluoroalkylsulfonyl chlorides, R(f)SO2Cl, in which R(f)=CF3, C4F9, CF2H, CH2F, and CH2CF3, are used as a source of fluorinated radicals to add fluoroalkyl groups to electron-deficient, unsaturated carbonyl compounds. Photochemical conditions, using Cu mediation, are used to produce the respective α-chloro-β-fluoroalkylcarbonyl products in excellent yields through an atom transfer radical addition (ATRA) process. Facile nucleophilic replacement of the α-chloro substituent is shown to lead to further diverse functionalization of the products.

  7. Equilibrium CO bond lengths

    NASA Astrophysics Data System (ADS)

    Demaison, Jean; Császár, Attila G.

    2012-09-01

    Based on a sample of 38 molecules, 47 accurate equilibrium CO bond lengths have been collected and analyzed. These ultimate experimental (reEX), semiexperimental (reSE), and Born-Oppenheimer (reBO) equilibrium structures are compared to reBO estimates from two lower-level techniques of electronic structure theory, MP2(FC)/cc-pVQZ and B3LYP/6-311+G(3df,2pd). A linear relationship is found between the best equilibrium bond lengths and their MP2 or B3LYP estimates. These (and similar) linear relationships permit to estimate the CO bond length with an accuracy of 0.002 Å within the full range of 1.10-1.43 Å, corresponding to single, double, and triple CO bonds, for a large number of molecules. The variation of the CO bond length is qualitatively explained using the Atoms in Molecules method. In particular, a nice correlation is found between the CO bond length and the bond critical point density and it appears that the CO bond is at the same time covalent and ionic. Conditions which permit the computation of an accurate ab initio Born-Oppenheimer equilibrium structure are discussed. In particular, the core-core and core-valence correlation is investigated and it is shown to roughly increase with the bond length.

  8. A unique quinolineboronic acid-based supramolecular structure that relies on double intermolecular B-N bonds for self-assembly in solid state and in solution.

    PubMed

    Zhang, Yanling; Li, Minyong; Chandrasekaran, Sekar; Gao, Xingming; Fang, Xikui; Lee, Hsiau-Wei; Hardcastle, Kenneth; Yang, Jenny; Wang, Binghe

    2007-04-16

    The boronic acid functional group plays very important roles in sugar recognition, catalysis, organic synthesis, and supramolecular assembly. Therefore, understanding the unique properties of this functional group is very important. 8-Quinolineboronic acid (8-QBA) is found to be capable of self-assembling in solid state through a unique intermolecular B-N bond mechanism reinforced by intermolecular boronic anhydride formation, π-π stacking, and hydrogen bond formation. NMR NOE and diffusion studies indicate that intermolecular B-N interaction also exists in solution with 8-QBA. In contrast, a positional isomer of 8-QBA, 5-quinolineboronic acid (5-QBA) showed very different behaviors in crystal packing and in solution and therefore different supramolecular network. Understanding the structural features of this unique 8-QBA assembly could be very helpful for the future design of new sugar sensors, molecular catalysts, and supramolecular assemblies. PMID:18414645

  9. A unique quinolineboronic acid-based supramolecular structure that relies on double intermolecular B-N bonds for self-assembly in solid state and in solution

    PubMed Central

    Zhang, Yanling; Li, Minyong; Chandrasekaran, Sekar; Gao, Xingming; Fang, Xikui; Lee, Hsiau-Wei; Hardcastle, Kenneth; Yang, Jenny; Wang, Binghe

    2007-01-01

    The boronic acid functional group plays very important roles in sugar recognition, catalysis, organic synthesis, and supramolecular assembly. Therefore, understanding the unique properties of this functional group is very important. 8-Quinolineboronic acid (8-QBA) is found to be capable of self-assembling in solid state through a unique intermolecular B-N bond mechanism reinforced by intermolecular boronic anhydride formation, π-π stacking, and hydrogen bond formation. NMR NOE and diffusion studies indicate that intermolecular B-N interaction also exists in solution with 8-QBA. In contrast, a positional isomer of 8-QBA, 5-quinolineboronic acid (5-QBA) showed very different behaviors in crystal packing and in solution and therefore different supramolecular network. Understanding the structural features of this unique 8-QBA assembly could be very helpful for the future design of new sugar sensors, molecular catalysts, and supramolecular assemblies. PMID:18414645

  10. Factors Controlling the Spectroscopic Properties and Supramolecular Chemistry of an Electron Deficient 5,5- Dimethylphlorin Architecture

    SciTech Connect

    Pistner, Allen; Lutterman, Daniel A; Ghidiu, Michael J.; Walker, Eric; Yapp, Glenn P. A.; Rosenthal, Joel

    2014-01-01

    A new 5,5-dimethylphlorin derivative (3H-(PhlCF3)) was prepared and studied through a combination of redox, photophysical, and computational experiments. The phlorin macrocycle is significantly distorted from planarity compared to more traditional tetrapyrrole architectures and displays solvatochroism in the soret region of the UV vis spectrum ( 370 420 nm). DFT calculations indicate that this solvatochromic behavior stems from the polarized nature of the frontier orbital (LUMO+1) that is most heavily involved in these transitions. Compound 3H(PhlCF3) also displays an intriguing supramolecular chemistry with certain anions; this phlorin can cooperatively hydrogen-bond two equivalents of fluoride to form 3H(PhlCF3) 2F but does not bind larger halides such as Cl or Br . Analogous studies revealed that the phlorin can hydrogen-bond with carboxylate anions such as acetate to form 1:1 complexes such as 3H(PhlCF3) OAc . These supramolecular assemblies are robust and form even in relatively polar solvents such as MeCN. Hydrogen-bonding of fluoride and acetate anions to the phlorin N H residues significantly attenuates the redox and photophysical properties of the phlorin. Moreover, The ability to independently vary the size and pKa of a series of carboxylate hydrogen-bond acceptors has allowed us to probe how phlorin anion association is controlled by the anion s size and/or basicity. These studies elucidate the physical properties and the electronic effects that shape the supramolecular chemistry displayed by the phlorin platform.

  11. Hypovalency--a kinetic-energy density description of a 4c-2e bond.

    PubMed

    Jacobsen, Heiko

    2009-06-01

    A bond descriptor based on the kinetic energy density, the localized-orbital locator (LOL), is used to characterize the nature of the chemical bond in electron deficient multi-center bonds. The boranes B(2)H(6), B(4)H(4), B(4)H(10), [B(6)H(6)](2-), and [B(6)H(7)](-) serve as prototypical examples of hypovalent 3c-2e and 4c-2e bonding. The kinetic energy density is derived from a set of Kohn-Sham orbitals obtained from pure density functional calculations (PBE/TZVP), and the topology of LOL is analyzed in terms of (3,-3) attractors (Gamma). The B-B-B and B-H-B 3c-2e, and the B-B-H-B 4c-2e bonding situations are defined by their own characteristic LOL profiles. The presence of one attractor in relation to the three or four atoms that are engaged in electron deficient bonding provides sufficient indication of the type of 3c-2e or 4c-2e bond present. For the 4c-2e bond in [B(6)H(7)](-) the LOL analysis is compared to results from an experimental QTAIM study. PMID:19452076

  12. Hypovalency--a kinetic-energy density description of a 4c-2e bond.

    PubMed

    Jacobsen, Heiko

    2009-06-01

    A bond descriptor based on the kinetic energy density, the localized-orbital locator (LOL), is used to characterize the nature of the chemical bond in electron deficient multi-center bonds. The boranes B(2)H(6), B(4)H(4), B(4)H(10), [B(6)H(6)](2-), and [B(6)H(7)](-) serve as prototypical examples of hypovalent 3c-2e and 4c-2e bonding. The kinetic energy density is derived from a set of Kohn-Sham orbitals obtained from pure density functional calculations (PBE/TZVP), and the topology of LOL is analyzed in terms of (3,-3) attractors (Gamma). The B-B-B and B-H-B 3c-2e, and the B-B-H-B 4c-2e bonding situations are defined by their own characteristic LOL profiles. The presence of one attractor in relation to the three or four atoms that are engaged in electron deficient bonding provides sufficient indication of the type of 3c-2e or 4c-2e bond present. For the 4c-2e bond in [B(6)H(7)](-) the LOL analysis is compared to results from an experimental QTAIM study.

  13. General and facile method for exo-methlyene synthesis via regioselective C-C double-bond formation using a copper-amine catalyst system.

    PubMed

    Nishikata, Takashi; Nakamura, Kimiaki; Itonaga, Kohei; Ishikawa, Shingo

    2014-11-01

    In this study, for distal-selective β-hydride elimination to produce exomethylene compounds with a newly formed Csp(3)-Csp(3) bond between tertiary alkyl halides and α-alkylated styrenes, a combination of a Cu(I) salt and a pyridine-based amine ligand (TPMA) is found to be a very efficient catalyst system. The yields and regioselectivities were high, and the regioselectivity was found to be dependent on the structure of the alkyl halide, with bulky alkyl halides showing the highest distal selectivities. PMID:25315319

  14. Halogen bonding in water results in enhanced anion recognition in acyclic and rotaxane hosts

    NASA Astrophysics Data System (ADS)

    Langton, Matthew J.; Robinson, Sean W.; Marques, Igor; Félix, Vítor; Beer, Paul D.

    2014-12-01

    Halogen bonding (XB), the attractive interaction between an electron-deficient halogen atom and a Lewis base, has undergone a dramatic development as an intermolecular force analogous to hydrogen bonding (HB). However, its utilization in the solution phase remains underdeveloped. Furthermore, the design of receptors capable of strong and selective recognition of anions in water remains a significant challenge. Here we demonstrate the superiority of halogen bonding over hydrogen bonding for strong anion binding in water, to the extent that halide recognition by a simple acyclic mono-charged receptor is achievable. Quantification of iodide binding by rotaxane hosts reveals the strong binding by the XB-rotaxane is driven exclusively by favourable enthalpic contributions arising from the halogen-bonding interactions, whereas weaker association with the HB-rotaxanes is entropically driven. These observations demonstrate the unique nature of halogen bonding in water as a strong alternative interaction to the ubiquitous hydrogen bonding in molecular recognition and assembly.

  15. Colochiroside E, an Unusual Non-holostane Triterpene Sulfated Trioside from the Sea Cucumber Colochirus robustus and Evidence of the Impossibility of a 7(8)-Double Bond Migration in Lanostane Derivatives having an 18(16)-Lactone.

    PubMed

    Silchenko, Alexandra S; Kalinovsky, Anatoly I; Avilov, Sergey A; Andryjaschenko, Pelageya V; Dmitrenok, Pavel S; Yurchenko, Ekaterina A; Dolmatov, Igor Yu; Dautov, Salim Sh; Stonik, Valentin A; Kalinin, Vladimir I

    2016-06-01

    The unusual non-holostane triterpene glycoside, colochiroside E (1) was isolated from the sea cucumber Colochirus robustus (Cucumariidae, Dendrochirotida). The structure of 1 was established by analysis of 1D, 2D NMR and HRESI MS data. Colochiroside E (1) belongs to a rare group of glycosylated 9β-H-lanosta-18(16)-lactones and has an unprecedented sulfated trisaccharide carbohydrate chain consisting of two glucose and one xylose units. In contrast with (9β-H)-7(8)-unsaturated holostane glycosides, the 7(8)-double bond in the having (9β-H)-configuration aglycone of colochiroside E is not capable of migration into the 8(9)- and then into the 9(11)-position on treatment with HCl. The formation of a chlorine derivative of 1 was observed under these conditions. PMID:27534106

  16. Colochiroside E, an Unusual Non-holostane Triterpene Sulfated Trioside from the Sea Cucumber Colochirus robustus and Evidence of the Impossibility of a 7(8)-Double Bond Migration in Lanostane Derivatives having an 18(16)-Lactone.

    PubMed

    Silchenko, Alexandra S; Kalinovsky, Anatoly I; Avilov, Sergey A; Andryjaschenko, Pelageya V; Dmitrenok, Pavel S; Yurchenko, Ekaterina A; Dolmatov, Igor Yu; Dautov, Salim Sh; Stonik, Valentin A; Kalinin, Vladimir I

    2016-06-01

    The unusual non-holostane triterpene glycoside, colochiroside E (1) was isolated from the sea cucumber Colochirus robustus (Cucumariidae, Dendrochirotida). The structure of 1 was established by analysis of 1D, 2D NMR and HRESI MS data. Colochiroside E (1) belongs to a rare group of glycosylated 9β-H-lanosta-18(16)-lactones and has an unprecedented sulfated trisaccharide carbohydrate chain consisting of two glucose and one xylose units. In contrast with (9β-H)-7(8)-unsaturated holostane glycosides, the 7(8)-double bond in the having (9β-H)-configuration aglycone of colochiroside E is not capable of migration into the 8(9)- and then into the 9(11)-position on treatment with HCl. The formation of a chlorine derivative of 1 was observed under these conditions.

  17. Anatomy of bond formation. Bond length dependence of the extent of electron sharing in chemical bonds from the analysis of domain-averaged Fermi holes.

    PubMed

    Ponec, Robert; Cooper, David L

    2007-01-01

    We demonstrate that domain-average Fermi hole (DAFH) analysis, which has previously been used at the Hartree-Fock level, remains useful after the proper introduction of electron correlation. We perform a systematic investigation of the variation of the picture of bonding with increasing bond length in simple diatomic molecules such as N2 and LiH. Alongside values of a shared-electron distribution index (SEDI), this analysis provides further insight into the geometry dependence of the extent of electron sharing in polar and non-polar systems. We also use DAFH analysis, with correlated wave functions, to evaluate the (potential) multicentre bonding in the electron-deficient and electron-rich molecules CH2Li2 and CH2N2, respectively.

  18. Bonding aerogels with polyurethanes

    SciTech Connect

    Matthews, F.M.; Hoffman, D.M.

    1989-11-01

    Aerogels, porous silica glasses with ultra-fine cell size (30nm), are made by a solution gelation (sol-gel) process. The resulting gel is critical point dried to densities from 0.15--0.60 g/cc. This material is machinable, homogeneous, transparent, coatable and bondable. To bond aerogel an adhesive should have long cure time, no attack on the aerogel structure, and high strength. Several epoxies and urethanes were examined to determine if they satisfied these conditions. Bond strengths above 13 psi were found with double bubble and DP-110 epoxies and XI-208/ODA-1000 and Castall U-2630 urethanes. Hardman Kalex Tough Stuff'' A-85 hardness urethane gave 18 psi bond strength. Hardman A-85, Tuff-Stuff'' was selected for further evaluation because it produced bond strengths comparable to the adherend cohesive strength. 5 refs., 2 figs.

  19. Bond Issues.

    ERIC Educational Resources Information Center

    Pollack, Rachel H.

    2000-01-01

    Notes trends toward increased borrowing by colleges and universities and offers guidelines for institutions that are considering issuing bonds to raise money for capital projects. Discussion covers advantages of using bond financing, how use of bonds impacts on traditional fund raising, other cautions and concerns, and some troubling aspects of…

  20. Sticker Bonding.

    ERIC Educational Resources Information Center

    Frazier, Laura Corbin

    2000-01-01

    Introduces a science activity on the bonding of chemical compounds. Assigns students the role of either a cation or anion and asks them to write the ions they may bond with. Assesses students' understanding of charge, bonding, and other concepts. (YDS)

  1. Recycling of MSWI fly ash by means of cementitious double step cold bonding pelletization: Technological assessment for the production of lightweight artificial aggregates.

    PubMed

    Colangelo, Francesco; Messina, Francesco; Cioffi, Raffaele

    2015-12-15

    In this work, an extensive study on the recycling of municipal solid waste incinerator fly ash by means of cold bonding pelletization is presented. The ash comes from an incineration plant equipped with rotary and stoker furnaces, in which municipal, hospital and industrial wastes are treated. Fly ash from waste incineration is classified as hazardous and cannot be utilized or even landfilled without prior treatment. The pelletization process uses cement, lime and coal fly ash as components of the binding systems. This process has been applied to several mixes in which the ash content has been varied from 50% (wt.%) up to a maximum of 70%. An innovative additional pelletization step with only cementitious binder has been performed in order to achieve satisfactory immobilization levels. The obtained lightweight porous aggregates are mostly suitable for recovery in the field of building materials with enhanced sustainability properties. Density, water absorption and crushing strength ranged from 1000 to 1600 kg/m(3), 7 to 16% and 1.3 to 6.2 MPa, respectively, and the second pelletization step increased stabilization efficiency. The feasibility of the process has been analyzed by testing also concrete specimens containing the artificial aggregates, resulting in lightweight concrete of average performance. PMID:26124064

  2. Recycling of MSWI fly ash by means of cementitious double step cold bonding pelletization: Technological assessment for the production of lightweight artificial aggregates.

    PubMed

    Colangelo, Francesco; Messina, Francesco; Cioffi, Raffaele

    2015-12-15

    In this work, an extensive study on the recycling of municipal solid waste incinerator fly ash by means of cold bonding pelletization is presented. The ash comes from an incineration plant equipped with rotary and stoker furnaces, in which municipal, hospital and industrial wastes are treated. Fly ash from waste incineration is classified as hazardous and cannot be utilized or even landfilled without prior treatment. The pelletization process uses cement, lime and coal fly ash as components of the binding systems. This process has been applied to several mixes in which the ash content has been varied from 50% (wt.%) up to a maximum of 70%. An innovative additional pelletization step with only cementitious binder has been performed in order to achieve satisfactory immobilization levels. The obtained lightweight porous aggregates are mostly suitable for recovery in the field of building materials with enhanced sustainability properties. Density, water absorption and crushing strength ranged from 1000 to 1600 kg/m(3), 7 to 16% and 1.3 to 6.2 MPa, respectively, and the second pelletization step increased stabilization efficiency. The feasibility of the process has been analyzed by testing also concrete specimens containing the artificial aggregates, resulting in lightweight concrete of average performance.

  3. Exploring the Potential of Diarylacetylenediols as Hydrogen Bonding Catalysts

    PubMed Central

    Türkmen, Yunus E.; Rawal, Viresh H.

    2014-01-01

    In the course of a search for new classes of hydrogen bonding catalysts, we have examined diarylacetylenediols as potential catalysts for the Diels-Alder reaction. General and efficient methods have been developed for the preparation of these diols. Their structures were systematically modified and increased activity was observed for those possessing an electron-withdrawing group on the aryl groups. The electron-deficient diarylacetylenediol catalysts, while more active, undergo spontaneous cyclization to the corresponding benzo[b]furans. A mechanism is postulated to explain this facile transformation. Computational studies performed on 2-ethynylphenol help to explain the effect of the alkyne on the conformation and hydrogen bond donating ability of the adjacent OH group. Finally, the crystal structure of one of the diols is reported, and it displays an intricate network of intermolecular hydrogen bonds. PMID:23869597

  4. Multiple bonds between transition metals and main-group elements. 73. Synthetic routes to rhenium(V) alkyl and rhenium(VII) alkylidyne complexes. X-ray crystal structures of (. eta. sup 5 -C sub 5 Me sub 5 )Re( double bond O)(CH sub 3 )(CH sub 2 C(CH sub 3 ) sub 3 ) and (. eta. sup 5 -C sub 5 Me sub 5 )(Br) sub 3 Re triple bond CC(CH sub 3 ) sub 3

    SciTech Connect

    Herrmann, W.A.; Felixberger, J.K.; Anwander, R.; Herdtweck, E.; Kiprof, P.; Riede, J. )

    1990-05-01

    Dialkyloxo({eta}{sup 5}pentamethylcyclopentadienyl)rhenium(V) complexes ({eta}{sup 5}-C{sub 5}Me{sub 5})Re({double bond}O)(CH{sub 3})R{prime}(R{prime} = C{sub 2}H{sub 5}, CH{sub 2}Si(CH{sub 3}){sub 3}, CH{sub 2}C(CH{sub 3}){sub 3}), 1c-e, have become accessible through alkylation of ({eta}{sup 5}-C{sub 5}Me{sub 5})Re({double bond}O)(Cl)(CH{sub 3}) (7) with R{prime}MgCl. 1c-e are the first rhenium complexes containing different alkyl ligands. The neopentyl derivative 1e (R{prime} = CH{sub 2}C(CH{sub 3}){sub 3}) crystallizes in the orthorhombic space group Pbca with a = 960.7 (2), b = 2.844.5 (4), c = 1,260.7 (2) pm, and Z = 8. The X-ray crystal structure was refined to R{sub W} = 3.9%. The chiral molecule shows a distorted tetrahedral geometry around the rhenium center. The tribromide 3b has been structurally characterized. Brown crystals of 3b belong to space group P2{sub 1}/c with unit cell dimensions a = 1,311.5 (2), b = 723.0 (1), c = 1,901.6 (2) pm, {beta} = 92.68 (1){degree}, and Z = 4. The structure exhibits a four-legged piano stool geometry with no trans influence of the neopentylidyne ligand to the bromine atom.

  5. Photo-deactivation pathways of a double H-bonded photochromic Schiff base investigated by combined theoretical calculations and experimental time-resolved studies.

    PubMed

    Randino, Carlos; Ziółek, Marcin; Gelabert, Ricard; Organero, Juan Angel; Gil, Michal; Moreno, Miquel; Lluch, José M; Douhal, Abderrazzak

    2011-09-01

    The photophysics of N,N'-bis(salicylidene)-p-phenylenediamine (BSP) is analyzed both theoretically and experimentally. The alternative intramolecular proton-transfer reactions lead to three different tautomers. We performed DFT and TDDFT calculations to analyze the topography of the reactions connecting the three tautomers. Deactivation paths through a Conical Intersection (CI) region are also analyzed to explain the low fluorescence quantum yield of the phototautomers. The complex molecular structure of BSP provides a large number of deactivation paths, almost all of them energetically available following the initial photoexcitation. Femtosecond (fs) time-resolved emission studies in solution and flash photolysis experiments (nano to millisecond regime) were performed to get detailed information on the time domain of the full photocycle. The picture that emerges by combining theoretical and experimental results shows a very fast (less than 100 fs) photoinduced single proton transfer process leading to a phototautomer where a single proton has moved. This species may deactivate through a low-energy CI leading in about 20 ps to a rotameric form in the ground state that has a lifetime of several tens of microseconds in solution. This process competes with another deactivation path taking place prior to the proton-transfer reaction which involves a low-energy CI leading to a rotamer of the enol structure. In the flash photolysis studies, the rotamer of the enol structure was directly identified by the positive transient absorption band in the 250-260 nm and its lifetime in n-hexane (10 ms) is almost 3 orders of magnitude longer than the lifetime of the photochrome (around 40 μs). Our findings do not exclude a double proton transfer reaction in the excited enol form to give a tautomer in less than 100 fs during the first (impulsive) phase of the reaction which reverts back to the photoproducts of the simple proton transfer in 1-3 ps.

  6. Hypervalent iodine(III)-induced oxidative [4+2] annulation of o-phenylenediamines and electron-deficient alkynes: direct synthesis of quinoxalines from alkyne substrates under metal-free conditions.

    PubMed

    Okumura, Sota; Takeda, Youhei; Kiyokawa, Kensuke; Minakata, Satoshi

    2013-10-18

    Hypervalent iodine(III)-induced oxidative [4+2] annulation of o-phenylenediamines and electron-deficient alkynes under metal-free conditions has been developed. The reaction allows for direct access to quinoxalines bearing two electron-withdrawing groups in an efficient manner.

  7. Crucial Role of the Double Bond Isomerism in the Steroid B-Ring on the Membrane Properties of Sterols. Grazing Incidence X-Ray Diffraction and Brewster Angle Microscopy Studies.

    PubMed

    Flasiński, Michał; Wydro, Paweł; Broniatowski, Marcin; Hąc-Wydro, Katarzyna; Fontaine, Philippe

    2015-07-01

    Three cholesterol precursors-desmosterol, zymosterol, and lanosterol-were comprehensively characterized in monolayers formed at the air/water interface. The studies were based on registration of the surface pressure (π)-area (A) isotherms complemented with in situ analysis performed with application of modern physicochemical techniques: grazing incidence X-ray diffraction (GIXD) and Brewster angle microscopy (BAM). In this approach we were interested in the correlation between molecular structures of the studied sterols found in the cholesterol biosynthetic pathway and their membrane properties. Our results revealed that only desmosterol behaves in Langmuir monolayers comparably to cholesterol, the molecules of which arrange in the monolayers into a hexagonal lattice, while the two remaining sterols possess extremely different properties. We found that molecules of both zymosterol and lanosterol are organized on the water surface in the two-dimensional oblique unit cells despite the fact that they are oriented perpendicular to the monolayer plane. The comparison of chemical structures of the investigated sterols leads to the conclusion that the only structural motive that can be responsible for such unusual behavior is the double bond in the B sterol ring, which is located in desmosterol in a different position from in the other two sterols. This issue, which was neglected in the scientific literature, seems to have crucial importance for sterol activity in biomembranes. We showed that this structural modification in sterol molecules is directly responsible for their adaptation to proper functioning in biomembranes.

  8. Gas Chromatographic-Ion Trap Mass Spectrometric Analysis of Volatile Organic Compounds by Ion-Molecule Reactions Using the Electron-Deficient Reagent Ion CCl{3/+}

    NASA Astrophysics Data System (ADS)

    Wang, Cheng-Zhong; Su, Yue; Wang, Hao-Yang; Guo, Yin-Long

    2011-10-01

    When using tetrachloromethane as the reagent gas in gas chromatography-ion trap mass spectrometry equipped with hybrid ionization source, the cation CCl{3/+} was generated in high abundance and further gas-phase experiments showed that such an electron-deficient reagent ion CCl{3/+} could undergo interesting ion-molecule reactions with various volatile organic compounds, which not only present some informative gas-phase reactions, but also facilitate qualitative analysis of diverse volatile compounds by providing unique mass spectral data that are characteristic of particular chemical structures. The ion-molecule reactions of the reagent ion CCl{3/+} with different types of compounds were studied, and results showed that such reactions could give rise to structurally diagnostic ions, such as [M + CCl3 - HCl]+ for aromatic hydrocarbons, [M - OH]+ for saturated cyclic ether, ketone, and alcoholic compounds, [M - H]+ ion for monoterpenes, M·+ for sesquiterpenes, [M - CH3CO]+ for esters, as well as the further fragment ions. The mechanisms of ion-molecule reactions of aromatic hydrocarbons, aliphatic ketones and alcoholic compounds with the reagent ion CCl{3/+} were investigated and proposed according to the information provided by MS/MS experiments and theoretical calculations. Then, this method was applied to study volatile organic compounds in Dendranthema indicum var. aromaticum and 20 compounds, including monoterpenes and their oxygen-containing derivatives, aromatic hydrocarbon and sesquiterpenes were identified using such ion-molecule reactions. This study offers a perspective and an alternative tool for the analysis and identification of various volatile compounds.

  9. Organic chemistry: No double bond left behind

    NASA Astrophysics Data System (ADS)

    Sarlah, David

    2016-03-01

    Alkenyl halides are some of the most useful building blocks for synthesizing small organic molecules. A catalyst has now allowed their direct preparation from widely available alkenes using the cross-metathesis reaction. See Article p.459

  10. Rate of steroid double-bond reduction catalysed by the human steroid 5β-reductase (AKR1D1) is sensitive to steroid structure: implications for steroid metabolism and bile acid synthesis.

    PubMed

    Jin, Yi; Chen, Mo; Penning, Trevor M

    2014-08-15

    Human AKR1D1 (steroid 5β-reductase/aldo-keto reductase 1D1) catalyses the stereospecific reduction of double bonds in Δ4-3-oxosteroids, a unique reaction that introduces a 90° bend at the A/B ring fusion to yield 5β-dihydrosteroids. AKR1D1 is the only enzyme capable of steroid 5β-reduction in humans and plays critical physiological roles. In steroid hormone metabolism, AKR1D1 serves mainly to inactivate the major classes of steroid hormones. AKR1D1 also catalyses key steps of the biosynthetic pathway of bile acids, which regulate lipid emulsification and cholesterol homoeostasis. Interestingly, AKR1D1 displayed a 20-fold variation in the kcat values, with steroid hormone substrates (e.g. aldosterone, testosterone and cortisone) having significantly higher kcat values than steroids with longer side chains (e.g. 7α-hydroxycholestenone, a bile acid precursor). Transient kinetic analysis revealed striking variations up to two orders of magnitude in the rate of the chemistry step (kchem), which resulted in different rate determining steps for the fast and slow substrates. By contrast, similar Kd values were observed for representative fast and slow substrates, suggesting similar rates of release for different steroid products. The release of NADP+ was shown to control the overall turnover for fast substrates, but not for slow substrates. Despite having high kchem values with steroid hormones, the kinetic control of AKR1D1 is consistent with the enzyme catalysing the slowest step in the catabolic sequence of steroid hormone transformation in the liver. The inherent slowness of the conversion of the bile acid precursor by AKR1D1 is also indicative of a regulatory role in bile acid synthesis.

  11. Gas chromatographic-ion trap mass spectrometric analysis of volatile organic compounds by ion-molecule reactions using the electron-deficient reagent ion CCl3(+).

    PubMed

    Wang, Cheng-Zhong; Su, Yue; Wang, Hao-Yang; Guo, Yin-Long

    2011-10-01

    When using tetrachloromethane as the reagent gas in gas chromatography-ion trap mass spectrometry equipped with hybrid ionization source, the cation CCl(3)(+) was generated in high abundance and further gas-phase experiments showed that such an electron-deficient reagent ion CCl(3)(+) could undergo interesting ion-molecule reactions with various volatile organic compounds, which not only present some informative gas-phase reactions, but also facilitate qualitative analysis of diverse volatile compounds by providing unique mass spectral data that are characteristic of particular chemical structures. The ion-molecule reactions of the reagent ion CCl(3)(+) with different types of compounds were studied, and results showed that such reactions could give rise to structurally diagnostic ions, such as [M+CCl(3) - HCl](+) for aromatic hydrocarbons, [M - OH](+) for saturated cyclic ether, ketone, and alcoholic compounds, [M - H](+) ion for monoterpenes, M(·+) for sesquiterpenes, [M - CH(3)CO](+) for esters, as well as the further fragment ions. The mechanisms of ion-molecule reactions of aromatic hydrocarbons, aliphatic ketones and alcoholic compounds with the reagent ion CCl(3)(+) were investigated and proposed according to the information provided by MS/MS experiments and theoretical calculations. Then, this method was applied to study volatile organic compounds in Dendranthema indicum var. aromaticum and 20 compounds, including monoterpenes and their oxygen-containing derivatives, aromatic hydrocarbon and sesquiterpenes were identified using such ion-molecule reactions. This study offers a perspective and an alternative tool for the analysis and identification of various volatile compounds. PMID:21952897

  12. Creating σ-holes through the formation of beryllium bonds.

    PubMed

    Brea, Oriana; Mó, Otilia; Yáñez, Manuel; Alkorta, Ibon; Elguero, José

    2015-09-01

    Through the use of ab initio theoretical models based on MP2/aug-cc-pVDZ-optimized geometries and CCSD(T)/aug-cc-pVTZ and CCSD(T)/aug-c-pVDZ total energies, it has been shown that the significant electron density rearrangements that follow the formation of a beryllium bond may lead to the appearance of a σ-hole in systems that previously do not exhibit this feature, such as CH3 OF, NO2 F, NO3 F, and other fluorine-containing systems. The creation of the σ-hole is another manifestation of the bond activation-reinforcement (BAR) rule. The appearance of a σ-hole on the F atoms of CH3 OF is due to the enhancement of the electronegativity of the O atom that participates in the beryllium bond. This atom recovers part of the charge transferred to Be by polarizing the valence density of the F into the bonding region. An analysis of the electron density shows that indeed this bond becomes reinforced, but the F atom becomes more electron deficient with the appearance of the σ-hole. Importantly, similar effects are also observed even when the atom participating in the beryllium bond is not directly attached to the F atom, as in NO2 F, NO3 F, or NCF. Hence, whereas the isolated CH3 OF, NO2 F, and NO3 F are unable to yield F⋅⋅⋅Base halogen bonds, their complexes with BeX2 derivatives are able to yield such bonds. Significant cooperative effects between the new halogen bond and the beryllium bond reinforce the strength of both noncovalent interactions.

  13. Distinguishing Bonds.

    PubMed

    Rahm, Martin; Hoffmann, Roald

    2016-03-23

    The energy change per electron in a chemical or physical transformation, ΔE/n, may be expressed as Δχ̅ + Δ(VNN + ω)/n, where Δχ̅ is the average electron binding energy, a generalized electronegativity, ΔVNN is the change in nuclear repulsions, and Δω is the change in multielectron interactions in the process considered. The last term can be obtained by the difference from experimental or theoretical estimates of the first terms. Previously obtained consequences of this energy partitioning are extended here to a different analysis of bonding in a great variety of diatomics, including more or less polar ones. Arguments are presented for associating the average change in electron binding energy with covalence, and the change in multielectron interactions with electron transfer, either to, out, or within a molecule. A new descriptor Q, essentially the scaled difference between the Δχ̅ and Δ(VNN + ω)/n terms, when plotted versus the bond energy, separates nicely a wide variety of bonding types, covalent, covalent but more correlated, polar and increasingly ionic, metallogenic, electrostatic, charge-shift bonds, and dispersion interactions. Also, Q itself shows a set of interesting relations with the correlation energy of a bond.

  14. Bonds Boom.

    ERIC Educational Resources Information Center

    Reynolds, Cathryn

    1989-01-01

    The combined effect of the "Serrano" decision and Proposition 13 left California school districts with aging, overcrowded facilities. Chico schools won a $18.5 million general obligation bond election for facilities construction. With $11 billion needed for new school construction, California will need to tap local sources. A sidebar outlines…

  15. Yankee bonds

    SciTech Connect

    Delaney, P. )

    1993-10-01

    Yankee and Euromarket bonds may soon find their way into the financing of power projects in Latin America. For developers seeking long-term commitments under build, own, operate, and transfer (BOOT) power projects in Latin America, the benefits are substantial.

  16. Silylene extrusion from organosilanes via double geminal Si-H bond activation by a Cp*Ru(kappa2-P,N)+ complex: observation of a key stoichiometric step in the glaser-tilley alkene hydrosilylation mechanism.

    PubMed

    Rankin, Matthew A; MacLean, Darren F; Schatte, Gabriele; McDonald, Robert; Stradiotto, Mark

    2007-12-26

    Treatment of Cp*RuCl(kappa2-P,N-2b) (2b = 2-NMe2-3-PiPr2-indene) with TlSO3CF3 produced the cyclometalated complex [4]+SO3CF3- in 94% isolated yield. Exposure of [4]+X- (X = B(C6F5)4 or SO3CF3) to Ph2SiH2 (10 equiv) or PhSiH3 afforded the corresponding [Cp*(mu-P,N-2b)(H)2Ru=SiRPh]+X- complexes, [5]+X- (R = Ph; X = B(C6F5)4, 82%; X = SO3CF3, 39%) and [6]+X- (R = H; X = B(C6F5)4, 94%; X = SO3CF3, 95%). Notably, these transformations represent the first documented examples of Ru-mediated silylene extrusion via double geminal Si-H bond activation of an organosilane-a key step in the recently proposed Glaser-Tilley (G-T) alkene hydrosilylation mechanism. Treatment of [5]+B(C6F5)4- with KN(SiMe3)2 or [6]+SO3CF3- with NaN(SiMe3)2 afforded the corresponding zwitterionic Cp*(mu-2-NMe2-3-PiPr2-indenide)(H)2Ru=SiRPh complex in 69% (R = Ph, 7) or 86% (R = H, 8) isolated yield. Both [6]+X- and 8 proved unreactive toward 1-hexene and styrene and provided negligible catalytic turnover in the attempted metal-mediated hydrosilylation of these substrates with PhSiH3, thereby providing further empirical evidence for the required intermediacy of base-free Ru=Si species in the G-T mechanism. Isomerization of the P,N-indene ligand backbone in [6]+X-, giving rise to [Cp*(mu-1-PiPr2-2-NMe2-indene)(H)2Ru=SiHPh]+X- ([9]+X-), was observed. In the case of [9]+SO3CF3-, net intramolecular addition of the Ru=Si-H group across the styrene-like C=C unit within the ligand backbone to give 10 (96% isolated yield) was observed. Crystallographic characterization data are provided for [4]+X-, [5]+X-, [6]+X-, 8, and 10.

  17. Annulation of aromatic imines via directed C-H bond activation.

    PubMed

    Thalji, Reema K; Ahrendt, Kateri A; Bergman, Robert G; Ellman, Jonathan A

    2005-08-19

    A directed C-H bond activation approach to the synthesis of indans, tetralins, dihydrofurans, dihydroindoles, and other polycyclic aromatic compounds is presented. Cyclization of aromatic ketimines and aldimines containing alkenyl groups tethered at the meta position relative to the imine directing group has been achieved using (PPh3)3RhCl (Wilkinson's catalyst). The cyclization of a range of aromatic ketimines and aldimines provides bi- and tricyclic ring systems with good regioselectivity. Different ring sizes and substitution patterns can be accessed through the coupling of monosubstituted, 1,1- or 1,2-disubstituted, and trisubstituted alkenes bearing both electron-rich and electron-deficient functionality.

  18. Electronic effect directed Au(I)-catalyzed cyclic C2-H bond functionalization of 3-allenylindoles.

    PubMed

    Chen, Bo; Fan, Wu; Chai, Guobi; Ma, Shengming

    2012-07-20

    Gold-catalyzed cyclization reactions of indoles with an electron-deficient allene at the 3-position led to formation of dihydrocyclopenta[b]indole derivatives in moderate to excellent yields via C2-H bond functionalization of the indole unit. The presence of the electron-withdrawing alkoxycarbonyl, dialkoxyphosphono, or phenyl is crutial for this transformation. The potential synthetic dihydrocyclopenta[b]indole with the electron-withdrawing group has been demonstrated by applying a [3 + 2] cycloaddition reaction to construct the tretracycloskeleton.

  19. Diffusion bonding

    DOEpatents

    Anderson, Robert C.

    1976-06-22

    1. A method for joining beryllium to beryllium by diffusion bonding, comprising the steps of coating at least one surface portion of at least two beryllium pieces with nickel, positioning a coated surface portion in a contiguous relationship with an other surface portion, subjecting the contiguously disposed surface portions to an environment having an atmosphere at a pressure lower than ambient pressure, applying a force upon the beryllium pieces for causing the contiguous surface portions to abut against each other, heating the contiguous surface portions to a maximum temperature less than the melting temperature of the beryllium, substantially uniformly decreasing the applied force while increasing the temperature after attaining a temperature substantially above room temperature, and maintaining a portion of the applied force at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions.

  20. The Quadruple Bonding in C2 Reproduces the Properties of the Molecule.

    PubMed

    Shaik, Sason; Danovich, David; Braida, Benoit; Hiberty, Philippe C

    2016-03-14

    Ever since Lewis depicted the triple bond for acetylene, triple bonding has been considered as the highest limit of multiple bonding for main elements. Here we show that C2 is bonded by a quadruple bond that can be distinctly characterized by valence-bond (VB) calculations. We demonstrate that the quadruply-bonded structure determines the key observables of the molecule, and accounts by itself for about 90% of the molecule's bond dissociation energy, and for its bond lengths and its force constant. The quadruply-bonded structure is made of two strong π bonds, one strong σ bond and a weaker fourth σ-type bond, the bond strength of which is estimated as 17-21 kcal mol(-1). Alternative VB structures with double bonds; either two π bonds or one π bond and one σ bond lie at 129.5 and 106.1 kcal mol(-1), respectively, above the quadruply-bonded structure, and they collapse to the latter structure given freedom to improve their double bonding by dative σ bonding. The usefulness of the quadruply-bonded model is underscored by "predicting" the properties of the (3)Σ+u state. C2's very high reactivity is rooted in its fourth weak bond. Thus, carbon and first-row main elements are open to quadruple bonding! PMID:26880488

  1. The Quadruple Bonding in C2 Reproduces the Properties of the Molecule.

    PubMed

    Shaik, Sason; Danovich, David; Braida, Benoit; Hiberty, Philippe C

    2016-03-14

    Ever since Lewis depicted the triple bond for acetylene, triple bonding has been considered as the highest limit of multiple bonding for main elements. Here we show that C2 is bonded by a quadruple bond that can be distinctly characterized by valence-bond (VB) calculations. We demonstrate that the quadruply-bonded structure determines the key observables of the molecule, and accounts by itself for about 90% of the molecule's bond dissociation energy, and for its bond lengths and its force constant. The quadruply-bonded structure is made of two strong π bonds, one strong σ bond and a weaker fourth σ-type bond, the bond strength of which is estimated as 17-21 kcal mol(-1). Alternative VB structures with double bonds; either two π bonds or one π bond and one σ bond lie at 129.5 and 106.1 kcal mol(-1), respectively, above the quadruply-bonded structure, and they collapse to the latter structure given freedom to improve their double bonding by dative σ bonding. The usefulness of the quadruply-bonded model is underscored by "predicting" the properties of the (3)Σ+u state. C2's very high reactivity is rooted in its fourth weak bond. Thus, carbon and first-row main elements are open to quadruple bonding!

  2. Constructing Models in Teaching of Chemical Bonds: Ionic Bond, Covalent Bond, Double and Triple Bonds, Hydrogen Bond and Molecular Geometry

    ERIC Educational Resources Information Center

    Uce, Musa

    2015-01-01

    Studies in chemistry education show that chemistry topics are considered as abstract, complicated and hard to understand by students. For this reason, it is important to develop new materials and use them in classes for better understanding of abstract concepts. Moving from this point, a student-centered research guided by a teacher was conducted…

  3. Chalcogen bond: a sister noncovalent bond to halogen bond.

    PubMed

    Wang, Weizhou; Ji, Baoming; Zhang, Yu

    2009-07-16

    A sister noncovalent bond to halogen bond, termed chalcogen bond, is defined in this article. By selecting the complexes H(2)CS...Cl(-), F(2)CS...Cl(-), OCS...Cl(-), and SCS...Cl(-) as models, the bond-length change, interaction energy, topological property of the electron charge density and its Laplacian, and the charge transfer of the chalcogen bond have been investigated in detail theoretically. It was found that the similar misshaped electron clouds of the chalcogen atom and the halogen atom result in the similar properties of the chalcogen bond and the halogen bond. Experimental results are in good agreement with the theoretical predictions.

  4. Effect of bond thickness on fracture and fatigue strength of adhesively bonded composite joints

    NASA Technical Reports Server (NTRS)

    Mall, S.; Ramamurthy, G.

    1989-01-01

    An experimental investigation of composite to composite bonded joints was undertaken to study the effect of bond thickness on debond growth rate under cyclic loading and critical strain energy release rate under static loading. Double cantilever beam specimens of graphite/epoxy adherends bonded with EC 3445 were tested under mode I loading. A different behavior of fracture and fatigue strength was observed with variation of bondline thickness.

  5. Pi Bond Orders and Bond Lengths

    ERIC Educational Resources Information Center

    Herndon, William C.; Parkanyi, Cyril

    1976-01-01

    Discusses three methods of correlating bond orders and bond lengths in unsaturated hydrocarbons: the Pauling theory, the Huckel molecular orbital technique, and self-consistent-field techniques. (MLH)

  6. Exocyclic push-pull conjugated compounds. Part 3. An experimental NMR and theoretical MO ab initio study of the structure, the electronic properties and barriers to rotation about the exocyclic partial double bond in 2- exo-methylene- and 2-cyanoimino-quinazolines and -benzodiazepines

    NASA Astrophysics Data System (ADS)

    Benassi, R.; Bertarini, C.; Hilfert, L.; Kempter, G.; Kleinpeter, E.; Spindler, J.; Taddei, F.; Thomas, S.

    2000-03-01

    The structure of a number of 2- exo-methylene substituted quinazolines and benzodiazepines, respectively, 1, 3a, b, 4( X=-CN, -COOEt ) and their 2-cyanoimino substituted analogues 2, 3c, d( X=-CN, -SO 2C 6H 4-Me (p) was completely assigned by the whole arsenal of 1D and 2D NMR spectroscopic methods. The E/ Z isomerism at the exo-cyclic double bond was determined by both NMR spectroscopy and confirmed by ab initio quantum chemical calculations; the Z isomer is the preferred one, its amount proved dependent on steric hindrance. Due to the push-pull effect in this part of the molecules the restricted rotation about the partial C 2,C 11 and C 2,N 11 double bonds, could also be studied and the barrier to rotation measured by dynamic NMR spectroscopy. The free energies of activation of this dynamic process proved very similar along the compounds studied but being dependent on the polarity of the solvent. Quantum chemical calculations at the ab initio level were employed to prove the stereochemistry at the exo-cyclic partial double bonds of 1- 4, to calculate the barriers to rotation but also to discuss in detail both the ground and the transition state of the latter dynamic process in order to better understand electronic, inter- and intramolecular effects on the barrier to rotation which could be determined experimentally. In the cyanoimino substituted compounds 2, 3c, d, the MO ab initio calculations evidence the isomer interconversion to be better described by the internal rotation process than by the lateral shift mechanism.

  7. Bonded Lubricants

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Another spinoff to the food processing industry involves a dry lubricant developed by General Magnaplate Corp. of Linden, N.J. Used in such spacecraft as Apollo, Skylab and Viking, the lubricant is a coating bonded to metal surfaces providing permanent lubrication and corrosion resistance. The coating lengthens equipment life and permits machinery to be operated at greater speed, thus increasing productivity and reducing costs. Bonded lubricants are used in scores of commercia1 applications. They have proved particularly valuable to food processing firms because, while increasing production efficiency, they also help meet the stringent USDA sanitation codes for food-handling equipment. For example, a cookie manufacturer plagued production interruptions because sticky batter was clogging the cookie molds had the brass molds coated to solve the problem. Similarly, a pasta producer faced USDA action on a sanitation violation because dough was clinging to an automatic ravioli-forming machine; use of the anti-stick coating on the steel forming plates solved the dual problem of sanitation deficiency and production line downtime.

  8. "Densified" tiles form stronger bonds

    NASA Technical Reports Server (NTRS)

    Dotts, R. L.; Holt, J. W.

    1981-01-01

    Application of colloidal silica more than doubles bond strength of ceramic tile/substrate attachments. "Densification" process strengthens surface where tile attaches to felt strain-isolator pad, redistributing stresses and preventing failures at that point. First, isopropyl alcohol is applied to bottom tile surface. Second, aqueous mixture of cementing colloidal silica and reinforcing ball-milled silica particles is painted on tile. Finally, after drying, tile is rewaterproofed by exposure to vapors or methyltrimethoxysilane and acetic acid.

  9. Substituent Effects on the [N–I–N]+ Halogen Bond

    PubMed Central

    2016-01-01

    We have investigated the influence of electron density on the three-center [N–I–N]+ halogen bond. A series of [bis(pyridine)iodine]+ and [1,2-bis((pyridine-2-ylethynyl)benzene)iodine]+ BF4– complexes substituted with electron withdrawing and donating functionalities in the para-position of their pyridine nitrogen were synthesized and studied by spectroscopic and computational methods. The systematic change of electron density of the pyridine nitrogens upon alteration of the para-substituent (NO2, CF3, H, F, Me, OMe, NMe2) was confirmed by 15N NMR and by computation of the natural atomic population and the π electron population of the nitrogen atoms. Formation of the [N–I–N]+ halogen bond resulted in >100 ppm 15N NMR coordination shifts. Substituent effects on the 15N NMR chemical shift are governed by the π population rather than the total electron population at the nitrogens. Isotopic perturbation of equilibrium NMR studies along with computation on the DFT level indicate that all studied systems possess static, symmetric [N–I–N]+ halogen bonds, independent of their electron density. This was further confirmed by single crystal X-ray diffraction data of 4-substituted [bis(pyridine)iodine]+ complexes. An increased electron density of the halogen bond acceptor stabilizes the [N···I···N]+ bond, whereas electron deficiency reduces the stability of the complexes, as demonstrated by UV-kinetics and computation. In contrast, the N–I bond length is virtually unaffected by changes of the electron density. The understanding of electronic effects on the [N–X–N]+ halogen bond is expected to provide a useful handle for the modulation of the reactivity of [bis(pyridine)halogen]+-type synthetic reagents. PMID:27265247

  10. Double space with double line

    SciTech Connect

    Cheltsov, I A

    2004-10-31

    For a singular double cover of P{sup 3} ramified in a sextic with double line, its birational maps into Fano 3-folds with canonical singularities, elliptic fibrations, and fibrations on surfaces of Kodaira dimension zero are described.

  11. Double space with double line

    NASA Astrophysics Data System (ADS)

    Cheltsov, I. A.

    2004-10-01

    For a singular double cover of \\mathbb P^3 ramified in a sextic with double line, its birational maps into Fano 3-folds with canonical singularities, elliptic fibrations, and fibrations on surfaces of Kodaira dimension zero are described.

  12. [Double teeth].

    PubMed

    Schuurs, A H B; van Loveren, C

    2002-04-01

    Double teeth are not really rare, but it is still enigmatic why and how they develop. Based upon the clinical, morphological and anatomical appearance and the number of teeth in mouths with double teeth, the double teeth are labelled as products of 'fusion' and 'clefting', but the criteria to attach such etiological names are lacking. It is assumed that heredity is involved in the development of double teeth. Therefore it is attempted to explain why only one of a homozygotic twin had a double tooth. PMID:11982209

  13. Chiral Aminophosphines as Catalysts for Enantioselective Double-Michael Indoline Syntheses

    PubMed Central

    Khong, San N.; Kwon, Ohyun

    2014-01-01

    The bisphosphine-catalyzed double-Michael addition of dinucleophiles to electron-deficient acetylenes is an efficient process for the synthesis of many nitrogen-containing heterocycles. Because the resulting heterocycles contain at least one stereogenic center, this double-Michael reaction would be even more useful if an asymmetric variant of the reaction were to be developed. Aminophosphines can also facilitate the double-Michael reaction and chiral amines are more readily available in Nature and synthetically; therefore, in this study we prepared several new chiral aminophosphines. When employed in the asymmetric double-Michael reaction between ortho-tosylamidophenyl malonate and 3-butyn-2-one, the chiral aminophosphines produced indolines in excellent yields with moderate asymmetric induction. PMID:22580397

  14. Ru3(CO)12-catalyzed reactions of catechols with alkynes: an atom-economic process for the synthesis of 2,2-disubstituted 1,3-benzodioxoles from the double addition of the O-H bond across a triple bond.

    PubMed

    Li, Ming; Hua, Ruimao

    2008-11-01

    Ru3(CO)12 has been found to be the efficient catalyst for the addition reactions of catechols with both terminal and internal alkynes to selectively afford 2,2-disubstituted 1,3-benzodioxoles in good to high yields. The formation of 2,2-substituted 1,3-benzodioxoles results from the tandem addition of two O-H bonds of catechols to alkyne's triple bond.

  15. Chalcogen bonding in solution: interactions of benzotelluradiazoles with anionic and uncharged Lewis bases.

    PubMed

    Garrett, Graham E; Gibson, Gregory L; Straus, Rita N; Seferos, Dwight S; Taylor, Mark S

    2015-04-01

    Chalcogen bonding is the noncovalent interaction between an electron-deficient, covalently bonded chalcogen (Te, Se, S) and a Lewis base. Although substantial evidence supports the existence of chalcogen bonding in the solid state, quantitative data regarding the strengths of the interactions in the solution phase are lacking. Herein, determinations of the association constants of benzotelluradiazoles with a variety of Lewis bases (Cl(-), Br(-), I(-), NO3(-) and quinuclidine, in organic solvent) are described. The participation of the benzotelluradiazoles in chalcogen bonding interactions was probed by UV-vis, (1)H and (19)F NMR spectroscopy as well as nano-ESI mass spectrometry. Trends in the free energy of chalcogen bonds upon variation of the donor, acceptor and solvent are evident from these data, including a linear free energy relationship between chalcogen bond donor ability and calculated electrostatic potential at the tellurium center. Calculations using the dispersion-corrected B97-D3 functional were found to give good agreement with the experimental free energies of chalcogen bonding.

  16. Boron-Boron One-Electron Sigma Bonds versus B-X-B Bridged Structures.

    PubMed

    Kusevska, Elena; Montero-Campillo, M Merced; Mó, Otilia; Yáñez, Manuel

    2016-09-12

    The existence of one-electron B-B σ bonds, for two different sets of compounds, was investigated by analyzing their electron density with different tools, namely QTAIM, ELF, NCIPLOT, and NBO approaches. Our results indicate that although the generic label "one-electron sigma bond" is often used in the literature, the nature of these bonds varies considerably, or they even do not exist. The [B2 X6 ](-) radical anions give place to true covalent one-electron σ bonds, the stronger the more electronegative is the X substituent. When both boron atoms are substituents in a rigid aromatic moiety, such as naphthalene, to yield 1,8-disubstituted derivatives, two kinds of equilibrium structures are found, those also stabilized through a one-electron σ bond (X=OH, F, Cl, CN) and those stabilized by the formation of B-X-B bridges (X=H, OMe). These 1,8-BX2 naphthalene derivatives can be considered as analogues of 1,8-NX2 naphthalene proton sponges. While the latter are able to stabilize a proton between the two basic sites, the former are able to stabilize an electron between the two electron-deficient B atoms. Interestingly, when all the H atoms attached to B are substituted by phenyl groups no one-electron σ bonds B-B bonds are formed, due to the dispersion of the unpaired electron in the aromatic substituents. PMID:27530734

  17. In-silico bonding schemes to encode chemical bonds involving sharing of electrons in molecular structures.

    PubMed

    Punnaivanam, Sankar; Sathiadhas, Jerome Pastal Raj; Panneerselvam, Vinoth

    2016-05-01

    Encoding of covalent and coordinate covalent bonds in molecular structures using ground state valence electronic configuration is achieved. The bonding due to electron sharing in the molecular structures is described with five fundamental bonding categories viz. uPair-uPair, lPair-uPair, uPair-lPair, vPair-lPair, and lPair-lPair. The involvement of lone pair electrons and the vacant electron orbitals in chemical bonding are explained with bonding schemes namely "target vacant promotion", "source vacant promotion", "target pairing promotion", "source pairing promotion", "source cation promotion", "source pairing double bond", "target vacant occupation", and "double pairing promotion" schemes. The bonding schemes are verified with a chemical structure editor. The bonding in the structures like ylides, PCl5, SF6, IF7, N-Oxides, BF4(-), AlCl4(-) etc. are explained and encoded unambiguously. The encoding of bonding in the structures of various organic compounds, transition metals compounds, coordination complexes and metal carbonyls is accomplished.

  18. Barriers to rotation adjacent to double bonds. 3. The C-O barrier in formic acid, methyl formate, acetic acid, and methyl acetate. The origin of ester and amide resonance

    SciTech Connect

    Wiberg, K.B.; Laidig, K.E.

    1987-09-30

    The structures of the rotamers about the C-O bonds of formic acid, methyl formate, acetic acid, and methyl acetate were calculated by using the 6-31G* basis set and complete geometrical relaxation. Large basis sets (6-311+G**) and correction for electron correlation were needed in order to obtain calculated barriers that were in good agreement with the available experimental data. The factors that control the geometry at a carbonyl group are considered, and it is shown that an analysis in terms of bond path angles leads to a direct connection with electronegativity. The nature of the interaction between an amino group and a carbonyl, as in an amide, is examined and shown not to involve charge transfer from the nitrogen to the carbonyl oxygen, but rather it involves charge transfer between carbon and nitrogen. The origin of the rotational barrier in esters and of the difference in energy between the E and Z conformers is discussed.

  19. Chemical Bonds II

    ERIC Educational Resources Information Center

    Sanderson, R. T.

    1972-01-01

    The continuation of a paper discussing chemical bonding from a bond energy viewpoint, with a number of examples of single and multiple bonds. (Part I appeared in volume 1 number 3, pages 16-23, February 1972.) (AL)

  20. What Determines Bond Costs. Municipal Bonds Series.

    ERIC Educational Resources Information Center

    Young, Douglas; And Others

    Public officials in small towns who participate infrequently in the bond market need information about bond financing. This publication, one in a series of booklets published by the Western Rural Development Center using research gathered between 1967-77, discusses factors influencing the marketability and cost of bond financing for towns and…

  1. Protocols for the selective cleavage of carbon-sulfur bonds in coal

    SciTech Connect

    Bausch, M.

    1991-01-01

    Removal of the organic sulfur in coal constitutes one of the major challenges facing fossil fuel scientists today. A cost--effective of desulfurizing Illinois coal is non-existent at the present time. Research in our group aims to develop a simple protocol for sulfur removal by gaining understanding of how various additives can enhance the rates of C-S bond cleavage in Illinois coal and coal model compounds, relative to fragmentation of the coal macromolecule via C-C, C-O, and C-N bond cleavage. During this funding period, we plan to carry out examinations of: (a) the effects of various reaction conditions on radical-initiated and Lewis acid-catalyzed C-S bond cleavages; (b) the effects of caustic impregnation and subsequent alcoholic reflux on C-S bond cleavage strategies; (c) the reactions of coal model compounds with electron-deficient substrates; (d) examinations of photooxidative C-S bond cleavage reactions; (e) the effects of moderate (300--400{degrees}C) temperatures and pressures as well as ultrasonic radiation on (a) - (c). Also planned are differential scanning calorimetric (DSC) examinations of selected C-S bond cleavage protocols, including those on Illinois coals that possess varying amounts of organic and inorganic sulfur.

  2. Transistor bonding pad configuration for uniform injection and low inductance

    NASA Technical Reports Server (NTRS)

    Jacobson, D. S.

    1970-01-01

    Modification of process for fabricating transistors, which comprises a metallization-pattern design for emitter and base areas together with a double bonding configuration for each emitter and base-bonding lead, improves uniformity of carrier injection in transistors and of reducing lead inductances at base-emitter terminals.

  3. Using Multiple Bonding Strategies.

    PubMed

    Larson, Thomas D

    2015-01-01

    There are many ways to bond to tooth structure, some micro-mechanical some chemical, some a combination. Different dentin bonding materials have different bonding strengths to differently prepared surfaces, and because of differences in their nature, different areas of tooth structure present peculiar bonding challenges. This paper will review a variety of material types, elucidating their particular bonding strengths and commenting on improved bonding strategies to increase durability, strength, and favorable pulpal response. In this discussion, resin dentin bonding systems, glass ionomers, Gluma, resin cements, and newer combined products will br reviewed. PMID:26485903

  4. Using Multiple Bonding Strategies.

    PubMed

    Larson, Thomas D

    2015-01-01

    There are many ways to bond to tooth structure, some micro-mechanical some chemical, some a combination. Different dentin bonding materials have different bonding strengths to differently prepared surfaces, and because of differences in their nature, different areas of tooth structure present peculiar bonding challenges. This paper will review a variety of material types, elucidating their particular bonding strengths and commenting on improved bonding strategies to increase durability, strength, and favorable pulpal response. In this discussion, resin dentin bonding systems, glass ionomers, Gluma, resin cements, and newer combined products will br reviewed.

  5. Properties of the Nucleic-acid Bases in Free and Watson-Crick Hydrogen-bonded States: Computational Insights into the Sequence-dependent Features of Double-helical DNA

    PubMed Central

    Srinivasan, A. R.; Sauers, Ronald R.; Fenley, Marcia O.; Boschitsch, Alexander H.; Matsumoto, Atsushi; Colasanti, Andrew V.; Olson, Wilma K.

    2010-01-01

    The nucleic-acid bases carry structural and energetic signatures that contribute to the unique features of genetic sequences. Here we review the connection between the chemical structure of the constituent nucleotides and the polymeric properties of DNA. The sequence-dependent accumulation of charge on the major- and minor-groove edges of the Watson-Crick base pairs, obtained from ab initio calculations, presents unique motifs for direct sequence recognition. The optimization of base interactions generates a propellering of base-pair planes of the same handedness as that found in high-resolution double-helical structures. The optimized base pairs also deform along conformational pathways, i.e., normal modes, of the same type induced by the binding of proteins. Empirical energy computations that incorporate the properties of the base pairs account satisfactorily for general features of the next level of double-helical structure, but miss key sequence-dependent differences in dimeric structure and deformability. The latter discrepancies appear to reflect factors other than intrinsic base-pair structure. PMID:21218180

  6. Double stranded nucleic acid biochips

    DOEpatents

    Chernov, Boris; Golova, Julia

    2006-05-23

    This invention describes a new method of constructing double-stranded DNA (dsDNA) microarrays based on the use of pre-synthesized or natural DNA duplexes without a stem-loop structure. The complementary oligonucleotide chains are bonded together by a novel connector that includes a linker for immobilization on a matrix. A non-enzymatic method for synthesizing double-stranded nucleic acids with this novel connector enables the construction of inexpensive and robust dsDNA/dsRNA microarrays. DNA-DNA and DNA-protein interactions are investigated using the microarrays.

  7. Hydroxide-catalyzed bonding

    NASA Technical Reports Server (NTRS)

    Gwo, Dz-Hung (Inventor)

    2003-01-01

    A method of bonding substrates by hydroxide-catalyzed hydration/dehydration involves applying a bonding material to at least one surface to be bonded, and placing the at least one surface sufficiently close to another surface such that a bonding interface is formed between them. A bonding material of the invention comprises a source of hydroxide ions, and may optionally include a silicate component, a particulate filling material, and a property-modifying component. Bonding methods of the invention reliably and reproducibly provide bonds which are strong and precise, and which may be tailored according to a wide range of possible applications. Possible applications for bonding materials of the invention include: forming composite materials, coating substrates, forming laminate structures, assembly of precision optical components, and preparing objects of defined geometry and composition. Bonding materials and methods of preparing the same are also disclosed.

  8. Anharmonic Vibrational Spectra of Hydrogen Bonded Clusters

    NASA Astrophysics Data System (ADS)

    Xantheas, Sotiris S.

    2006-03-01

    We report anharmonic vibrational spectra for a variety of hydrogen bonded clusters such as (H2O)n and (HF)n, n=1-5. We investigate the convergence of the hydrogen bonded frequencies with basis set and level of electron correlation and compare with the available experimental data. For this purpose we employ the correlation-consistent basis sets up to quintuple zeta (5z) quality and compute the spectra at the second order Møller-Plesset (MP2) and Coupled Cluster plus Single and Double with perturbative estimate of Triple excitations [CCSD(T)]. The correlation between the calculated elongations in the hydrogen bonding stretches and the corresponding computed/observed vibrational frequencies suggest an extension of Badger's rule for these hydrogen bonded systems.

  9. The direct arylation of allylic sp(3) C-H bonds via organic and photoredox catalysis.

    PubMed

    Cuthbertson, James D; MacMillan, David W C

    2015-03-01

    The direct functionalization of unactivated sp(3) C-H bonds is still one of the most challenging problems facing synthetic organic chemists. The appeal of such transformations derives from their capacity to facilitate the construction of complex organic molecules via the coupling of simple and otherwise inert building blocks, without introducing extraneous functional groups. Despite notable recent efforts, the establishment of general and mild strategies for the engagement of sp(3) C-H bonds in C-C bond forming reactions has proved difficult. Within this context, the discovery of chemical transformations that are able to directly functionalize allylic methyl, methylene and methine carbons in a catalytic manner is a priority. Although protocols for direct oxidation and amination of allylic C-H bonds (that is, C-H bonds where an adjacent carbon is involved in a C = C bond) have become widely established, the engagement of allylic substrates in C-C bond forming reactions has thus far required the use of pre-functionalized coupling partners. In particular, the direct arylation of non-functionalized allylic systems would enable access to a series of known pharmacophores (molecular features responsible for a drug's action), though a general solution to this long-standing challenge remains elusive. Here we report the use of both photoredox and organic catalysis to accomplish a mild, broadly effective direct allylic C-H arylation. This C-C bond forming reaction readily accommodates a broad range of alkene and electron-deficient arene reactants, and has been used in the direct arylation of benzylic C-H bonds. PMID:25739630

  10. The direct arylation of allylic sp(3) C-H bonds via organic and photoredox catalysis.

    PubMed

    Cuthbertson, James D; MacMillan, David W C

    2015-03-01

    The direct functionalization of unactivated sp(3) C-H bonds is still one of the most challenging problems facing synthetic organic chemists. The appeal of such transformations derives from their capacity to facilitate the construction of complex organic molecules via the coupling of simple and otherwise inert building blocks, without introducing extraneous functional groups. Despite notable recent efforts, the establishment of general and mild strategies for the engagement of sp(3) C-H bonds in C-C bond forming reactions has proved difficult. Within this context, the discovery of chemical transformations that are able to directly functionalize allylic methyl, methylene and methine carbons in a catalytic manner is a priority. Although protocols for direct oxidation and amination of allylic C-H bonds (that is, C-H bonds where an adjacent carbon is involved in a C = C bond) have become widely established, the engagement of allylic substrates in C-C bond forming reactions has thus far required the use of pre-functionalized coupling partners. In particular, the direct arylation of non-functionalized allylic systems would enable access to a series of known pharmacophores (molecular features responsible for a drug's action), though a general solution to this long-standing challenge remains elusive. Here we report the use of both photoredox and organic catalysis to accomplish a mild, broadly effective direct allylic C-H arylation. This C-C bond forming reaction readily accommodates a broad range of alkene and electron-deficient arene reactants, and has been used in the direct arylation of benzylic C-H bonds.

  11. The direct arylation of allylic sp3 C-H bonds via organic and photoredox catalysis

    NASA Astrophysics Data System (ADS)

    Cuthbertson, James D.; MacMillan, David W. C.

    2015-03-01

    The direct functionalization of unactivated sp3 C-H bonds is still one of the most challenging problems facing synthetic organic chemists. The appeal of such transformations derives from their capacity to facilitate the construction of complex organic molecules via the coupling of simple and otherwise inert building blocks, without introducing extraneous functional groups. Despite notable recent efforts, the establishment of general and mild strategies for the engagement of sp3 C-H bonds in C-C bond forming reactions has proved difficult. Within this context, the discovery of chemical transformations that are able to directly functionalize allylic methyl, methylene and methine carbons in a catalytic manner is a priority. Although protocols for direct oxidation and amination of allylic C-H bonds (that is, C-H bonds where an adjacent carbon is involved in a C = C bond) have become widely established, the engagement of allylic substrates in C-C bond forming reactions has thus far required the use of pre-functionalized coupling partners. In particular, the direct arylation of non-functionalized allylic systems would enable access to a series of known pharmacophores (molecular features responsible for a drug's action), though a general solution to this long-standing challenge remains elusive. Here we report the use of both photoredox and organic catalysis to accomplish a mild, broadly effective direct allylic C-H arylation. This C-C bond forming reaction readily accommodates a broad range of alkene and electron-deficient arene reactants, and has been used in the direct arylation of benzylic C-H bonds.

  12. From ketones to esters by a Cu-catalyzed highly selective C(CO)-C(alkyl) bond cleavage: aerobic oxidation and oxygenation with air.

    PubMed

    Huang, Xiaoqiang; Li, Xinyao; Zou, Miancheng; Song, Song; Tang, Conghui; Yuan, Yizhi; Jiao, Ning

    2014-10-22

    The Cu-catalyzed aerobic oxidative esterification of simple ketones via C-C bond cleavage has been developed. Varieties of common ketones, even inactive aryl long-chain alkyl ketones, are selectively converted into esters. The reaction tolerates a wide range of alcohols, including primary and secondary alcohols, chiral alcohols with retention of the configuration, electron-deficient phenols, as well as various natural alcohols. The usage of inexpensive copper catalyst, broad substrate scope, and neutral and open air conditions make this protocol very practical. (18)O labeling experiments reveal that oxygenation occurs during this transformation. Preliminary mechanism studies indicate that two novel pathways are mainly involved in this process. PMID:25251943

  13. Diffusion bonding aeroengine components

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, G. A.; Broughton, T.

    1988-10-01

    The use of diffusion bonding processes at Rolls-Royce for the manufacture of titanium-alloy aircraft engine components and structures is described. A liquid-phase diffusion bonding process called activated diffusion bonding has been developed for the manufacture of the hollow titanium wide chord fan blade. In addition, solid-state diffusion bonding is being used in the manufacture of hollow vane/blade airfoil constructions mainly in conjunction with superplastic forming and hot forming techniques.

  14. Bond percolation in films

    NASA Astrophysics Data System (ADS)

    Korneta, W.; Pytel, Z.

    1988-04-01

    Bond percolation in films with simple cubic structure is considered. It is assumed that the probability of a bond being present between nearest-neighbor sites depends on the distances to surfaces. Based on the relation between the Potts model and the bond percolation model, and using the mean-field approximation, the phase diagram and profiles of the percolation probability have been obtained.

  15. Rapid adhesive bonding concepts

    NASA Technical Reports Server (NTRS)

    Stein, B. A.; Tyeryar, J. R.; Hodges, W. T.

    1984-01-01

    Adhesive bonding in the aerospace industry typically utilizes autoclaves or presses which have considerable thermal mass. As a consequence, the rates of heatup and cooldown of the bonded parts are limited and the total time and cost of the bonding process is often relatively high. Many of the adhesives themselves do not inherently require long processing times. Bonding could be performed rapidly if the heat was concentrated in the bond lines or at least in the adherends. Rapid adhesive bonding concepts were developed to utilize induction heating techniques to provide heat directly to the bond line and/or adherends without heating the entire structure, supports, and fixtures of a bonding assembly. Bonding times for specimens are cut by a factor of 10 to 100 compared to standard press bonding. The development of rapid adhesive bonding for lap shear specimens (per ASTM D1003 and D3163), for aerospace panel bonding, and for field repair needs of metallic and advanced fiber reinforced polymeric matrix composite structures are reviewed.

  16. Acrylic mechanical bond tests

    SciTech Connect

    Wouters, J.M.; Doe, P.J.

    1991-02-01

    The tensile strength of bonded acrylic is tested as a function of bond joint thickness. 0.125 in. thick bond joints were found to posses the maximum strength while the acceptable range of joints varied from 0.063 in. to almost 0.25 in. Such joints are used in the Sudbury Neutrino Observatory.

  17. Copper-catalyzed aerobic conversion of the C=O bond of ketones to a C≡N bond using ammonium salts as the nitrogen source.

    PubMed

    Xu, Bin; Jiang, Qing; Zhao, An; Jia, Jing; Liu, Qiang; Luo, Weiping; Guo, Cancheng

    2015-06-30

    The conversion of the C[double bond, length as m-dash]O bond of ketones to a C[triple bond, length as m-dash]N bond is described. This conversion is catalyzed by copper salts with ammonium salts as the nitrogen source in the presence of molecular oxygen. A wide variety of ketones can be converted into the corresponding compounds containing a C[triple bond, length as m-dash]N bond. Based on the preliminary experiments, a plausible mechanism of this transformation is disclosed.

  18. Explosives sensing by using electron-rich supramolecular polymers: role of intermolecular hydrogen bonding in significant enhancement of sensitivity.

    PubMed

    Gole, Bappaditya; Song, Wentao; Lackinger, Markus; Mukherjee, Partha Sarathi

    2014-10-13

    We demonstrate here that supramolecular interactions enhance the sensitivity towards detection of electron-deficient nitro-aromatic compounds (NACs) over discrete analogues. NACs are the most commonly used explosive ingredients and are common constituents of many unexploded landmines used during World War II. In this study, we have synthesised a series of pyrene-based polycarboxylic acids along with their corresponding discrete esters. Due to the electron richness and the fluorescent behaviour of the pyrene moiety, all the compounds act as sensors for electron-deficient NACs through a fluorescence quenching mechanism. A Stern-Volmer quenching constant determination revealed that the carboxylic acids are more sensitive than the corresponding esters towards NACs in solution. The high sensitivity of the acids was attributed to supramolecular polymer formation through hydrogen bonding in the case of the acids, and the enhancement mechanism is based on an exciton energy migration upon excitation along the hydrogen-bond backbone. The presence of intermolecular hydrogen bonding in the acids in solution was established by solvent-dependent fluorescence studies and dynamic light scattering (DLS) experiments. In addition, the importance of intermolecular hydrogen bonds in solid-state sensing was further explored by scanning tunnelling microscopy (STM) experiments at the liquid-solid interface, in which structures of self-assembled monolayer of the acids and the corresponding esters were compared. The sensitivity tests revealed that these supramolecular sensors can even detect picric acid and trinitrotoluene in solution at levels as low as parts per trillion (ppt), which is much below the recommended permissible level of these constituents in drinking water. PMID:25187022

  19. Ag(I)-Catalyzed C-H Activation: The Role of the Ag(I) Salt in Pd/Ag-Mediated C-H Arylation of Electron-Deficient Arenes.

    PubMed

    Whitaker, Daniel; Burés, Jordi; Larrosa, Igor

    2016-07-13

    The use of stoichiometric Ag(I)-salts as additives in Pd-catalyzed C-H functionalization reactions is widespread. It is commonly proposed that this additive acts as an oxidant or as a halide scavenger promoting Pd-catalyst turnover. We demonstrate that, contrary to current proposals, phosphine ligated Ag(I)-carboxylates can efficiently carry out C-H activation on electron-deficient arenes. We show through a combination of stoichiometric and kinetic studies that a (PPh3)Ag-carboxylate is responsible for the C-H activation step in the Pd-catalyzed arylation of Cr(CO)3-complexed fluorobenzene. Furthermore, the reaction rate is controlled by the rate of Ag(I)-C-H activation, leading to an order zero on the Pd-catalyst. H/D scrambling studies indicate that this Ag(I) complex can carry out C-H activation on a variety of aromatic compounds traditionally used in Pd/Ag-mediated C-H functionalization methodologies. PMID:27303956

  20. Double Layers in Astrophysics

    NASA Technical Reports Server (NTRS)

    Williams, Alton C. (Editor); Moorehead, Tauna W. (Editor)

    1987-01-01

    Topics addressed include: laboratory double layers; ion-acoustic double layers; pumping potential wells; ion phase-space vortices; weak double layers; electric fields and double layers in plasmas; auroral double layers; double layer formation in a plasma; beamed emission from gamma-ray burst source; double layers and extragalactic jets; and electric potential between plasma sheet clouds.

  1. Bonding thermoplastic polymers

    DOEpatents

    Wallow, Thomas I.; Hunter, Marion C.; Krafcik, Karen Lee; Morales, Alfredo M.; Simmons, Blake A.; Domeier, Linda A.

    2008-06-24

    We demonstrate a new method for joining patterned thermoplastic parts into layered structures. The method takes advantage of case-II permeant diffusion to generate dimensionally controlled, activated bonding layers at the surfaces being joined. It is capable of producing bonds characterized by cohesive failure while preserving the fidelity of patterned features in the bonding surfaces. This approach is uniquely suited to production of microfluidic multilayer structures, as it allows the bond-forming interface between plastic parts to be precisely manipulated at micrometer length scales. The bond enhancing procedure is easily integrated in standard process flows and requires no specialized equipment.

  2. Direct and Auger Electron-Induced, Single- and Double-Strand Breaks on Plasmid DNA Caused by 99mTc-Labeled Pyrene Derivatives and the Effect of Bonding Distance

    PubMed Central

    Reissig, Falco; Mamat, Constantin; Steinbach, Joerg; Pietzsch, Hans-Juergen; Freudenberg, Robert; Navarro-Retamal, Carlos; Caballero, Julio; Kotzerke, Joerg; Wunderlich, Gerd

    2016-01-01

    It is evident that 99mTc causes radical-mediated DNA damage due to Auger electrons, which were emitted simultaneously with the known γ-emission of 99mTc. We have synthesized a series of new 99mTc-labeled pyrene derivatives with varied distances between the pyrene moiety and the radionuclide. The pyrene motif is a common DNA intercalator and allowed us to test the influence of the radionuclide distance on damages of the DNA helix. In general, pUC 19 plasmid DNA enables the investigation of the unprotected interactions between the radiotracers and DNA that results in single-strand breaks (SSB) or double-strand breaks (DSB). The resulting DNA fragments were separated by gel electrophoresis and quantified by fluorescent staining. Direct DNA damage and radical-induced indirect DNA damage by radiolysis products of water were evaluated in the presence or absence of the radical scavenger DMSO. We demonstrated that Auger electrons directly induced both SSB and DSB in high efficiency when 99mTc was tightly bound to the plasmid DNA and this damage could not be completely prevented by DMSO, a free radical scavenger. For the first time, we were able to minimize this effect by increasing the carbon chain lengths between the pyrene moiety and the 99mTc nuclide. However, a critical distance between the 99mTc atom and the DNA helix could not be determined due to the significantly lowered DSB generation resulting from the interaction which is dependent on the type of the 99mTc binding motif. The effect of variable DNA damage caused by the different chain length between the pyrene residue and the Tc-core as well as the possible conformations of the applied Tc-complexes was supplemented with molecular dynamics (MD) calculations. The effectiveness of the DNA-binding 99mTc-labeled pyrene derivatives was demonstrated by comparison to non-DNA-binding 99mTcO4–, since nearly all DNA damage caused by 99mTcO4– was prevented by incubating with DMSO. PMID:27583677

  3. Direct and Auger Electron-Induced, Single- and Double-Strand Breaks on Plasmid DNA Caused by 99mTc-Labeled Pyrene Derivatives and the Effect of Bonding Distance.

    PubMed

    Reissig, Falco; Mamat, Constantin; Steinbach, Joerg; Pietzsch, Hans-Juergen; Freudenberg, Robert; Navarro-Retamal, Carlos; Caballero, Julio; Kotzerke, Joerg; Wunderlich, Gerd

    2016-01-01

    It is evident that 99mTc causes radical-mediated DNA damage due to Auger electrons, which were emitted simultaneously with the known γ-emission of 99mTc. We have synthesized a series of new 99mTc-labeled pyrene derivatives with varied distances between the pyrene moiety and the radionuclide. The pyrene motif is a common DNA intercalator and allowed us to test the influence of the radionuclide distance on damages of the DNA helix. In general, pUC 19 plasmid DNA enables the investigation of the unprotected interactions between the radiotracers and DNA that results in single-strand breaks (SSB) or double-strand breaks (DSB). The resulting DNA fragments were separated by gel electrophoresis and quantified by fluorescent staining. Direct DNA damage and radical-induced indirect DNA damage by radiolysis products of water were evaluated in the presence or absence of the radical scavenger DMSO. We demonstrated that Auger electrons directly induced both SSB and DSB in high efficiency when 99mTc was tightly bound to the plasmid DNA and this damage could not be completely prevented by DMSO, a free radical scavenger. For the first time, we were able to minimize this effect by increasing the carbon chain lengths between the pyrene moiety and the 99mTc nuclide. However, a critical distance between the 99mTc atom and the DNA helix could not be determined due to the significantly lowered DSB generation resulting from the interaction which is dependent on the type of the 99mTc binding motif. The effect of variable DNA damage caused by the different chain length between the pyrene residue and the Tc-core as well as the possible conformations of the applied Tc-complexes was supplemented with molecular dynamics (MD) calculations. The effectiveness of the DNA-binding 99mTc-labeled pyrene derivatives was demonstrated by comparison to non-DNA-binding 99mTcO4-, since nearly all DNA damage caused by 99mTcO4- was prevented by incubating with DMSO. PMID:27583677

  4. Theoretical study of prebiotic precursors: the peptide bond and its silicon, sulphur and phosphorous analogues

    NASA Astrophysics Data System (ADS)

    Chiaramello, J. M.; Talbi, D.; Berthier, G.; Ellinger, Y.

    2005-04-01

    This paper looks at the possibility that the peptide bond may be more common than originally thought, leading to molecules of prebiotic interest containing heavier atoms of the second row of the periodic table. Ab initio Möller-Plesset (MP2) coupled-cluster molecular orbital methods and density functional theory have been used. A first investigation of the six-atom system [C,3H,O,N] showed that formamide, NH2[bond]CH[double bond]O, is the most stable system that can be formed. Systematic studies on this same system in which C, O and N were respectively replaced by Si, S and P were then carried out. It has been found that the peptide-like linkage is the most stable for [C,3H,S,N] and [Si,3H,O,N] where NH2[bond]CH[double bond]S and NH2[bond]SiH[double bond]O are about 10-14 kcal mol[minus sign]1 more favourable than the corresponding enol tautomers and well below other isomers on the energy scale. For [C,3H,O,P], the most stable species is CH3[bond]P[double bond]O, which is found 18 kcal mol[minus sign]1 below the PH2[bond]CH[double bond]O peptide analogue. By correcting the known inadequacies in the calculations with the average theoretical to experimental ratio from the benchmark molecules of the system, it is possible to obtain a best estimate of rotational constants and infrared frequencies that should be precise enough to initiate laboratory experiments and/or observations. The corrected values of B=6.0342 GHz and C=5.4921 GHz for NH2[bond]CH[double bond]S; B=9.2292 GHz and C=6.1164 GHz for NH2[bond]SiH[double bond]O; B=8.0275 GHz and C=6.4779 GHz for CH3[bond]P[double bond]O should be accurate to within a few tenths of a per cent. Theoretical infrared spectra are also provided to assist in identification of these exotic species.

  5. Simple Bond Cleavage

    SciTech Connect

    Gary S. Groenewold

    2005-08-01

    Simple bond cleavage is a class of fragmentation reactions in which a single bond is broken, without formation of new bonds between previously unconnected atoms. Because no bond making is involved, simple bond cleavages are endothermic, and activation energies are generally higher than for rearrangement eliminations. The rate of simple bond cleavage reactions is a strong function of the internal energy of the molecular ion, which reflects a loose transition state that resembles reaction products, and has a high density of accessible states. For this reason, simple bond cleavages tend to dominate fragmentation reactions for highly energized molecular ions. Simple bond cleavages have negligible reverse activation energy, and hence they are used as valuable probes of ion thermochemistry, since the energy dependence of the reactions can be related to the bond energy. In organic mass spectrometry, simple bond cleavages of odd electron ions can be either homolytic or heterolytic, depending on whether the fragmentation is driven by the radical site or the charge site. Simple bond cleavages of even electron ions tend to be heterolytic, producing even electron product ions and neutrals.

  6. Protocols for the selective cleavage of carbon-sulfur bonds in coal. Quarterly report, September 1, 1991--November 30, 1991

    SciTech Connect

    Bausch, M.

    1991-12-31

    Removal of the organic sulfur in coal constitutes one of the major challenges facing fossil fuel scientists today. A cost--effective of desulfurizing Illinois coal is non-existent at the present time. Research in our group aims to develop a simple protocol for sulfur removal by gaining understanding of how various additives can enhance the rates of C-S bond cleavage in Illinois coal and coal model compounds, relative to fragmentation of the coal macromolecule via C-C, C-O, and C-N bond cleavage. During this funding period, we plan to carry out examinations of: (a) the effects of various reaction conditions on radical-initiated and Lewis acid-catalyzed C-S bond cleavages; (b) the effects of caustic impregnation and subsequent alcoholic reflux on C-S bond cleavage strategies; (c) the reactions of coal model compounds with electron-deficient substrates; (d) examinations of photooxidative C-S bond cleavage reactions; (e) the effects of moderate (300--400{degrees}C) temperatures and pressures as well as ultrasonic radiation on (a) - (c). Also planned are differential scanning calorimetric (DSC) examinations of selected C-S bond cleavage protocols, including those on Illinois coals that possess varying amounts of organic and inorganic sulfur.

  7. Weak bond screening system

    NASA Astrophysics Data System (ADS)

    Chuang, S. Y.; Chang, F. H.; Bell, J. R.

    Consideration is given to the development of a weak bond screening system which is based on the utilization of a high power ultrasonic (HPU) technique. The instrumentation of the prototype bond strength screening system is described, and the adhesively bonded specimens used in the system developmental effort are detailed. Test results obtained from these specimens are presented in terms of bond strength and level of high power ultrasound irradiation. The following observations were made: (1) for Al/Al specimens, 2.6 sec of HPU irradiation will screen weak bond conditions due to improper preparation of bonding surfaces; (2) for composite/composite specimens, 2.0 sec of HPU irradiation will disrupt weak bonds due to under-cured conditions; (3) for Al honeycomb core with composite skin structure, 3.5 sec of HPU irradiation will disrupt weak bonds due to bad adhesive or oils contamination of bonding surfaces; and (4) for Nomex honeycomb with Al skin structure, 1.3 sec of HPU irradiation will disrupt weak bonds due to bad adhesive.

  8. Double aortic arch

    MedlinePlus

    Aortic arch anomaly; Double arch; Congenital heart defect - double aortic arch; Birth defect heart - double aortic arch ... aorta is a single arch that leaves the heart and moves leftward. In double aortic arch, some ...

  9. On the nature of bonding in binary Be2O2 and Si2O2 clusters: rhombic four-center four-electron π and σ bonds.

    PubMed

    Wang, Kang; Wang, Ying-Jin; Li, Da-Zhi; Ou, Ting; Zhao, Xiao-Yun; Zhai, Hua-Jin

    2016-04-14

    The structural and electronic properties and chemical bonding of binary Be2O2 and Si2O2 clusters have been studied using quantum chemical calculations at the B3LYP level. For the Be2O2 cluster, the potential energy surface is probed by unbiased structural searches and the global-minimum structure was established using the B3LYP calculations, complemented by PBE0 and single-point CCSD(T) calculations for top isomers. The perfectly planar D2h Be2O2 ((1)Ag) global minimum is well defined, being at least 3.64 eV lower in energy than alternative structures at the CCSD(T)//B3LYP/aug-cc-pVTZ level. Chemical bonding analyses show that D2h Be2O2 and Si2O2 clusters possess the rhombic four-center four-electron (4c-4e) π bond, that is, the o-bond, a conception derived from electron-deficient boron oxide clusters lately. Furthermore, the Be2O2 and Si2O2 clusters also exhibit rhombic 4c-4e σ bonds, both for the radial and tangential σ frameworks (σr and σt). The σt framework is classified as an o-bond only formally, due to the secondary contribution from the Be/Si s component. The three-fold (π, σr, and σt) o-bonds in Be2O2 and Si2O2 are considered to resemble the three-fold aromaticity in all-metal Al4(2-) dianions. A 4c-4e o-bond makes use of four O 2p electrons, which would otherwise be two lone-pairs, for a delocalized and completely bonding orbital, as well as a residual nonbonding orbital. Three-fold o-bonds thus greatly stabilize the binary Be2O2 and Si2O2 clusters. We anticipate that the bonding concept should be applicable to additional molecular systems, including those with larger heterocyclic rings.

  10. Comparison of supramolecular hydrogen bonded liquid crystals

    NASA Astrophysics Data System (ADS)

    Pongali Sathya Prabu, N.; Vijayakumar, V. N.; Madhu Mohan, M. L. N.

    2012-01-01

    Supramolecular hydrogen bonded liquid crystals are formed by methoxy hydroquinone (MHQ) and alkyloxy benzoic acids are isolated and characterised. MHQ formed double hydrogen bonds with p-n-alkyloxy benzoic acids. Fourier Transform-Infrared studies confirm the hydrogen bond formation in the complex. Polarising Optical Microscopic (POM) studies revealed the textural information, while the transition and enthalpy values are experimentally deduced from Differential Scanning Calorimetry (DSC) studies. Phase diagram has been constructed from the POM and DSC data, respectively. Experimental data of optical tilt angle in Smectic C phase have been fitted to a power law and it has been observed that the temperature variation of the tilt angle follows Mean Field theory prediction. Present homologous are compared with hydroquinone alkyloxy benzoic acids complexes and the influence of methyl group on the occurrence of phases and its transition temperatures are discussed.

  11. Bonded semiconductor substrate

    DOEpatents

    Atwater, Jr.; Harry A. , Zahler; James M.

    2010-07-13

    Ge/Si and other nonsilicon film heterostructures are formed by hydrogen-induced exfoliation of the Ge film which is wafer bonded to a cheaper substrate, such as Si. A thin, single-crystal layer of Ge is transferred to Si substrate. The bond at the interface of the Ge/Si heterostructures is covalent to ensure good thermal contact, mechanical strength, and to enable the formation of an ohmic contact between the Si substrate and Ge layers. To accomplish this type of bond, hydrophobic wafer bonding is used, because as the invention demonstrates the hydrogen-surface-terminating species that facilitate van der Waals bonding evolves at temperatures above 600.degree. C. into covalent bonding in hydrophobically bound Ge/Si layer transferred systems.

  12. BONDING ALUMINUM METALS

    DOEpatents

    Noland, R.A.; Walker, D.E.

    1961-06-13

    A process is given for bonding aluminum to aluminum. Silicon powder is applied to at least one of the two surfaces of the two elements to be bonded, the two elements are assembled and rubbed against each other at room temperature whereby any oxide film is ruptured by the silicon crystals in the interface; thereafter heat and pressure are applied whereby an aluminum-silicon alloy is formed, squeezed out from the interface together with any oxide film, and the elements are bonded.

  13. Chemical bonding technology

    NASA Technical Reports Server (NTRS)

    Plueddemann, E.

    1986-01-01

    Primers employed in bonding together the various material interfaces in a photovoltaic module are being developed. The approach develops interfacial adhesion by generating actual chemical bonds between the various materials bonded together. The current status of the program is described along with the progress toward developing two general purpose primers for ethylene vinyl acetate (EVA), one for glass and metals, and another for plastic films.

  14. High reliability bond program using small diameter aluminum wire

    NASA Technical Reports Server (NTRS)

    Macha, M.; Thiel, R. A.

    1975-01-01

    The program was undertaken to characterize the performance of small diameter aluminum wire ultrasonically bonded to conductors commonly encountered in hybrid assemblies, and to recommend guidelines for improving this performance. Wire, 25.4, 38.1 and 50.8 um (1, 1.5 and 2 mil), was used with bonding metallization consisting of thick film gold, thin film gold and aluminum as well as conventional aluminum pads on semiconductor chips. The chief tool for evaluating the performance was the double bond pull test in conjunction with a 72 hour - 150 C heat soak and -65 C to +150 C thermal cycling. In practice the thermal cycling was found to have relatively little effect compared to the heat soak. Pull strength will decrease after heat soak as a result of annealing of the aluminum wire; when bonded to thick film gold, the pull strength decreased by about 50% (weakening of the bond interface was the major cause of the reduction). Bonds to thin film gold lost about 30 - 40% of their initial pull strenth; weakening of the wire itself at the bond heel was the predominant cause. Bonds to aluminum substrate metallization lost only about 22%. Bonds between thick and thin film gold substrate metallization and semiconductor chips substantiated the previous conclusions but also showed that in about 20 to 25% of the cases, bond interface failure occurred at the semiconductor chip.

  15. The Sibling Bond.

    ERIC Educational Resources Information Center

    Bank, Stephen P.; Kahn, Michael D.

    The relationships among brothers and sisters are infinitely varied, but whatever their characteristics, these bonds last throughout life. This book examines the sibling relationship as a distinctive emotional, passionate, painful, and solacing power. Chapter 1, "Unraveling the Sibling Bond," addresses research on siblings and development of the…

  16. Chemical Bonds I

    ERIC Educational Resources Information Center

    Sanderson, R. T.

    1972-01-01

    Chemical bonding is discussed from a bond energy, rather than a wave mechanics, viewpoint. This approach is considered to be more suitable for the average student. (The second part of the article will appear in a later issue of the journal.) (AL)

  17. Universal nanopatternable interfacial bonding.

    PubMed

    Ding, Yuzhe; Garland, Shaun; Howland, Michael; Revzin, Alexander; Pan, Tingrui

    2011-12-01

    A nanopatternable polydimethylsiloxane (PDMS) oligomer layer is demonstrated as an interfacial adhesive for its intrinsic transferability and universal adhesiveness. Utilizing the well-established surface modification and bonding techniques of PDMS surfaces, irreversible bonding is formed (up to 400 kPa) between a wide range of substrate pairs, representing ones within and across different materials categories, including metals, ceramics, thermoset, and thermoplastic polymers.

  18. The dissociative bond.

    PubMed

    Gordon, Nirit

    2013-01-01

    Dissociation leaves a psychic void and a lingering sense of psychic absence. How do 2 people bond while they are both suffering from dissociation? The author explores the notion of a dissociative bond that occurs in the aftermath of trauma--a bond that holds at its core an understanding and shared detachment from the self. Such a bond is confined to unspoken terms that are established in the relational unconscious. The author proposes understanding the dissociative bond as a transitional space that may not lead to full integration of dissociated knowledge yet offers some healing. This is exemplified by R. Prince's (2009) clinical case study. A relational perspective is adopted, focusing on the intersubjective aspects of a dyadic relationship. In the dissociative bond, recognition of the need to experience mutual dissociation can accommodate a psychic state that yearns for relationship when the psyche cannot fully confront past wounds. Such a bond speaks to the need to reestablish a sense of human relatedness and connection when both parties in the relationship suffer from disconnection. This bond is bound to a silence that becomes both a means of protection against the horror of traumatic memory and a way to convey unspoken gestures toward the other.

  19. Mother-Child Bonding.

    ERIC Educational Resources Information Center

    Pearce, Joseph Chilton

    1994-01-01

    Examines the nature of mother-child bonding from the prenatal stage through early infancy, discussing how the mother's actions, even before birth, stimulate her child's senses. Explains the crucial role that physical contact, breastfeeding, and visual stimuli have on mother-child bonding in human and animal newborns. (MDM)

  20. The dissociative bond.

    PubMed

    Gordon, Nirit

    2013-01-01

    Dissociation leaves a psychic void and a lingering sense of psychic absence. How do 2 people bond while they are both suffering from dissociation? The author explores the notion of a dissociative bond that occurs in the aftermath of trauma--a bond that holds at its core an understanding and shared detachment from the self. Such a bond is confined to unspoken terms that are established in the relational unconscious. The author proposes understanding the dissociative bond as a transitional space that may not lead to full integration of dissociated knowledge yet offers some healing. This is exemplified by R. Prince's (2009) clinical case study. A relational perspective is adopted, focusing on the intersubjective aspects of a dyadic relationship. In the dissociative bond, recognition of the need to experience mutual dissociation can accommodate a psychic state that yearns for relationship when the psyche cannot fully confront past wounds. Such a bond speaks to the need to reestablish a sense of human relatedness and connection when both parties in the relationship suffer from disconnection. This bond is bound to a silence that becomes both a means of protection against the horror of traumatic memory and a way to convey unspoken gestures toward the other. PMID:23282044

  1. Shape Bonding method

    NASA Technical Reports Server (NTRS)

    Pontius, James T. (Inventor)

    2010-01-01

    The present invention is directed to a method of bonding at least two surfaces together. The methods step of the present invention include applying a strip of adhesive to a first surface along a predefined outer boundary of a bond area and thereby defining a remaining open area there within. A second surface, or gusset plate, is affixed onto the adhesive before the adhesive cures. The strip of adhesive is allowed to cure and then a second amount of adhesive is applied to cover the remaining open area and substantially fill a void between said first and second surfaces about said bond area. A stencil may be used to precisely apply the strip of adhesive. When the strip cures, it acts as a dam to prevent overflow of the subsequent application of adhesive to undesired areas. The method results in a precise bond area free of undesired shapes and of a preferred profile which eliminate the drawbacks of the prior art bonds.

  2. Wood Bond Testing

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A joint development program between Hartford Steam Boiler Inspection Technologies and The Weyerhaeuser Company resulted in an internal bond analyzer (IBA), a device which combines ultrasonics with acoustic emission testing techniques. It is actually a spinoff from a spinoff, stemming from a NASA Lewis invented acousto-ultrasonic technique that became a system for testing bond strength of composite materials. Hartford's parent company, Acoustic Emission Technology Corporation (AET) refined and commercialized the technology. The IBA builds on the original system and incorporates on-line process control systems. The IBA determines bond strength by measuring changes in pulsar ultrasonic waves injected into a board. Analysis of the wave determines the average internal bond strength for the panel. Results are displayed immediately. Using the system, a mill operator can adjust resin/wood proportion, reduce setup time and waste, produce internal bonds of a consistent quality and automatically mark deficient products.

  3. Bonding in elemental boron: a view from electronic structure calculations using maximally localized Wannier functions

    NASA Astrophysics Data System (ADS)

    Ogitsu, Tadashi; Gygi, Francois; Reed, John; Schwegler, Eric; Galli, Giulia

    2007-03-01

    Boron exhibits the most complex structure of all elemental solids, with more than 300 atoms per unit cell arranged in interconnecting icosahedra, and some crystallographic positions occupied with a probability of less than one. The precise determination of the ground state geometry of boron---the so-called β-boron structure--has been elusive and its electronic and bonding properties have been difficult to rationalize. Using lattice model Monte Carlo optimization techniques and ab-initio simulations, we have shown that a defective, quasi-ordered β solid is the most stable structure at zero as well as finite T. In the absence of partially occupied sites (POS), the perfect β-boron crystal is unstable; the presence of POS lower its internal energy below that of an ordered α-phase, not mere an entropic effect. We present a picture of the intricate and unique bonding in boron based on maximally localized Wannier (MLWF) functions, which indicates that the presence of POS provides a subtle, yet essential spatial balance between electron deficient and fully saturated bonds. This work was performed under the auspices of the U.S. Dept. of Energy at the University of California/ LLNL under contract no. W-7405-Eng-48.

  4. Chelation-assisted regioselective C-O bond clevage reactions

    SciTech Connect

    Sue-Min Yeh; yu-Huei Chen; Ruey-Min Chen

    1995-12-31

    Chelation demonstrates a unique role to direct the chemo- and regioselectivity on a variety of fascinating transformations. The strategy has been extensively employed in the regioselective intramolecular addition of an organometallic species to a coordinated double bond and in the activation of a neighboring C-H bond. In this paper, the authors present the recent progress on applications of the chelation-assisted C-O bond cleavage reactions in acetals. Thus, treatments of various acetonides of monosaccharide and inositol derivatives with the Grignard reagent afford regioselectively the corresponding products having only one free hydroxy group.

  5. The Halogen Bond.

    PubMed

    Cavallo, Gabriella; Metrangolo, Pierangelo; Milani, Roberto; Pilati, Tullio; Priimagi, Arri; Resnati, Giuseppe; Terraneo, Giancarlo

    2016-02-24

    The halogen bond occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity. In this fairly extensive review, after a brief history of the interaction, we will provide the reader with a snapshot of where the research on the halogen bond is now, and, perhaps, where it is going. The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design. PMID:26812185

  6. The Halogen Bond

    PubMed Central

    2016-01-01

    The halogen bond occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity. In this fairly extensive review, after a brief history of the interaction, we will provide the reader with a snapshot of where the research on the halogen bond is now, and, perhaps, where it is going. The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design. PMID:26812185

  7. Seeing Double

    NASA Astrophysics Data System (ADS)

    Pesic, Peter

    2003-10-01

    The separateness and connection of individuals is perhaps the central question of human life: What, exactly, is my individuality? To what degree is it unique? To what degree can it be shared, and how? To the many philosophical and literary speculations about these topics over time, modern science has added the curious twist of quantum theory, which requires that the elementary particles of which everything consists have no individuality at all. All aspects of chemistry depend on this lack of individuality, as do many branches of physics. From where, then, does our individuality come? In Seeing Double, Peter Pesic invites readers to explore this intriguing set of questions. He draws on literary and historical examples that open the mind (from Homer to Martin Guerre to Kafka), philosophical analyses that have helped to make our thinking and speech more precise, and scientific work that has enabled us to characterize the phenomena of nature. Though he does not try to be all-inclusive, Pesic presents a broad range of ideas, building toward a specific point of view: that the crux of modern quantum theory is its clash with our ordinary concept of individuality. This represents a departure from the usual understanding of quantum theory. Pesic argues that what is bizarre about quantum theory becomes more intelligible as we reconsider what we mean by individuality and identity in ordinary experience. In turn, quantum identity opens a new perspective on us. Peter Pesic is a Tutor and Musician-in-Residence at St. John's College, Santa Fe, New Mexico. He has a Ph.D. in physics from Stanford University.

  8. Double inflation

    SciTech Connect

    Silk, J.; Turner, M.S.

    1986-04-01

    The Zel'dovich spectrum of adiabatic density perturbations is a generic prediction of inflation. There is increasing evidence that when the spectrum is normalized by observational data on small scales, there is not enough power on large scales to account for the observed large-scale structure in the Universe. Decoupling the spectrum on large and small scales could solve this problem. As a means of decoupling the large and small scales we propose double inflation (i.e., two episodes of inflation). In this scenario the spectrum on large scales is determined by the first episode of inflation and those on small scales by a second episode of inflation. We present three models for such a scenario. By nearly saturating the large angular-scale cosmic microwave anisotropy bound, we can easily account for the observed large-scale structure. We take the perturbations on small scales to be very large, deltarho/rho approx. = 0.1 to 0.01, which results in the production of primordial black holes (PBHs), early formation of structure, reionization of the Universe, and a rich array of astrophysical events. The ..cap omega..-problem is also addressed by our scenario. Allowing the density perturbations produced by the second episode of inflation to be large also lessens the fine-tuning required in the scalar potential and makes reheating much easier. We briefly speculate on the possibility that the second episode of inflation proceeds through the nucleation of bubbles, which today manifest themselves as empty bubbles whose surfaces are covered with galaxies. 37 refs., 1 fig.

  9. Bonding with your newborn

    MedlinePlus

    ... and your baby begin to feel a strong attachment with each other. You may feel great love ... L, Saison J, et al. Building a secure attachment bond with your baby. Helpguide.org. www.helpguide. ...

  10. Detecting Defective Solder Bonds

    NASA Technical Reports Server (NTRS)

    Paulson, R.; Barney, J.; Decker, H. J.

    1984-01-01

    Method is noncontact and nondestructive. Technique detects solder bonds in solar array of other large circuit board, using thermal-imaging camera. Board placed between heat lamp and camera. Poor joints indiated by "cold" spots on the infrared image.

  11. Oxygen switch in visible-light photoredox catalysis: radical additions and cyclizations and unexpected C-C-bond cleavage reactions.

    PubMed

    Zhu, Shaoqun; Das, Arindam; Bui, Lan; Zhou, Hanjun; Curran, Dennis P; Rueping, Magnus

    2013-02-01

    Visible light photoredox catalyzed inter- and intramolecular C-H functionalization reactions of tertiary amines have been developed. Oxygen was found to act as chemical switch to trigger two different reaction pathways and to obtain two different types of products from the same starting material. In the absence of oxygen, the intermolecular addition of N,N-dimethyl-anilines to electron-deficient alkenes provided γ-amino nitriles in good to high yields. In the presence of oxygen, a radical addition/cyclization reaction occurred which resulted in the formation of tetrahydroquinoline derivatives in good yields under mild reaction conditions. The intramolecular version of the radical addition led to the unexpected formation of indole-3-carboxaldehyde derivatives. Mechanistic investigations of this reaction cascade uncovered a new photoredox catalyzed C-C bond cleavage reaction.

  12. A healable supramolecular polymer blend based on aromatic pi-pi stacking and hydrogen-bonding interactions.

    PubMed

    Burattini, Stefano; Greenland, Barnaby W; Merino, Daniel Hermida; Weng, Wengui; Seppala, Jonathan; Colquhoun, Howard M; Hayes, Wayne; Mackay, Michael E; Hamley, Ian W; Rowan, Stuart J

    2010-09-01

    An elastomeric, healable, supramolecular polymer blend comprising a chain-folding polyimide and a telechelic polyurethane with pyrenyl end groups is compatibilized by aromatic pi-pi stacking between the pi-electron-deficient diimide groups and the pi-electron-rich pyrenyl units. This interpolymer interaction is the key to forming a tough, healable, elastomeric material. Variable-temperature FTIR analysis of the bulk material also conclusively demonstrates the presence of hydrogen bonding, which complements the pi-pi stacking interactions. Variable-temperature SAXS analysis shows that the healable polymeric blend has a nanophase-separated morphology and that the X-ray contrast between the two types of domain increases with increasing temperature, a feature that is repeatable over several heating and cooling cycles. A fractured sample of this material reproducibly regains more than 95% of the tensile modulus, 91% of the elongation to break, and 77% of the modulus of toughness of the pristine material.

  13. Photocatalytic benzylic C-H bond oxidation with a flavin scandium complex.

    PubMed

    Mühldorf, Bernd; Wolf, Robert

    2015-05-18

    The enhanced reduction potential of riboflavin tetraacetate coordinating to scandium triflate enables the challenging photocatalytic C-H oxidation of electron-deficient alkylbenzenes and benzyl alcohols.

  14. Intrinsic bond strength of metal films on polymer substrates

    NASA Technical Reports Server (NTRS)

    Wheeler, Donald R.; Osaki, Hiroyuki

    1990-01-01

    A semiquantitative method for the measurement of the intrinsic bond strength between elastic substrates and elastic films that fail by brittle fracture is described. Measurements on a polyethylene terephthalate (PET)-Ni couple were used to verify the essential features of the analysis. It was found that the interfacial shear strength of Ni on PET doubled after ion etching.

  15. Strength of Chemical Bonds

    NASA Technical Reports Server (NTRS)

    Christian, Jerry D.

    1973-01-01

    Students are not generally made aware of the extraordinary magnitude of the strengths of chemical bonds in terms of the forces required to pull them apart. Molecular bonds are usually considered in terms of the energies required to break them, and we are not astonished at the values encountered. For example, the Cl2 bond energy, 57.00 kcal/mole, amounts to only 9.46 x 10(sup -20) cal/molecule, a very small amount of energy, indeed, and impossible to measure directly. However, the forces involved in realizing the energy when breaking the bond operate over a very small distance, only 2.94 A, and, thus, f(sub ave) approx. equals De/(r - r(sub e)) must be very large. The forces involved in dissociating the molecule are discussed in the following. In consideration of average forces, the molecule shall be assumed arbitrarily to be dissociated when the atoms are far enough separated so that the potential, relative to that of the infinitely separated atoms, is reduced by 99.5% from the potential of the molecule at the equilibrium bond length (r(sub e)) for Cl2 of 1.988 A this occurs at 4.928 A.

  16. Urethane/Silicone Adhesives for Bonding Flexing Metal Parts

    NASA Technical Reports Server (NTRS)

    Edwards, Paul D.

    2004-01-01

    Adhesives that are blends of commercially available urethane and silicone adhesives have been found to be useful for bonding metal parts that flex somewhat during use. These urethane/silicone adhesives are formulated for the specific metal parts to be bonded. The bonds formed by these adhesives have peel and shear strengths greater than those of bonds formed by double-sided tapes and by other adhesives, including epoxies and neat silicones. In addition, unlike the bonds formed by epoxies, the bonds formed by these adhesives retain flexibility. In the initial application for which the urethane/silicone adhesives were devised, there was a need to bond spring rings, which provide longitudinal rigidity for inflatable satellite booms, with the blades that provide the booms axial strength. The problem was to make the bonds withstand the stresses, associated with differences in curvature between the bonded parts, that arose when the booms were deflated and the springs were compressed. In experiments using single adhesives (that is, not the urethane/ silicone blends), the bonds were broken and, in each experiment, it was found that the adhesive bonded well with either the ring or with the blade, but not both. After numerous experiments, the adhesive that bonded best with the rings and the adhesive that bonded best with the blades were identified. These adhesives were then blended and, as expected, the blend bonded well with both the rings and the blades. The two adhesives are Kalex (or equivalent) high-shear-strength urethane and Dow Corning 732 (or equivalent) silicone. The nominal mixture ratio is 5 volume parts of the urethane per 1 volume part of the silicone. Increasing the proportion of silicone makes the bond weaker but more flexible, and decreasing the proportion of silicone makes the bond stronger but more brittle. The urethane/silicone blend must be prepared and used quickly because of the limited working time of the urethane: The precursor of the urethane

  17. Structure and Bonding in Group 14 Congeners of Ethene: DFT Calculations in the Inorganic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Streit, Bennett R.; Geiger, David K.

    2005-01-01

    A computational experiment is devised for advanced inorganic laboratory course that allows the students to explore the structure and bonding patterns of ethene and some heavier analogues. The HOMO-LUMO gaps, double bond dissociation energetics, and optimized geometries of ethene, disilene, and digermene are explored.

  18. Analysis of adhesively bonded composite lap joints

    SciTech Connect

    Tong, L.; Kuruppu, M.; Kelly, D.

    1994-12-31

    A new nonlinear formulation is developed for the governing equations for the shear and peel stresses in adhesively bonded composite double lap joints. The new formulation allows arbitrary nonlinear stress-strain characteristics in both shear and peel behavior. The equations are numerically integrated using a shooting technique and Newton-Raphson method behind a user friendly interface. The failure loads are predicted by utilizing the maximum stress criterion, interlaminar delamination and the energy density failure criteria. Numerical examples are presented to demonstrate the effect of the nonlinear adhesive behavior on the stress distribution and predict the failure load and the associated mode.

  19. Biomolecular halogen bonds.

    PubMed

    Ho, P Shing

    2015-01-01

    Halogens are atypical elements in biology, but are common as substituents in ligands, including thyroid hormones and inhibitors, which bind specifically to proteins and nucleic acids. The short-range, stabilizing interactions of halogens - now seen as relatively common in biology - conform generally to halogen bonds characterized in small molecule systems and as described by the σ-hole model. The unique properties of biomolecular halogen bonds (BXBs), particularly in their geometric and energetic relationship to classic hydrogen bonds, make them potentially powerful tools for inhibitor design and molecular engineering. This chapter reviews the current research on BXBs, focusing on experimental studies on their structure-energy relationships, how these studies inform the development of computational methods to model BXBs, and considers how BXBs can be applied to the rational design of more effective inhibitors against therapeutic targets and of new biological-based materials.

  20. Insulation bonding test system

    NASA Technical Reports Server (NTRS)

    Beggs, J. M.; Johnston, G. D.; Coleman, A. D.; Portwood, J. N.; Saunders, J. M.; Redmon, J. W.; Porter, A. C. (Inventor)

    1984-01-01

    A method and a system for testing the bonding of foam insulation attached to metal is described. The system involves the use of an impacter which has a calibrated load cell mounted on a plunger and a hammer head mounted on the end of the plunger. When the impacter strikes the insulation at a point to be tested, the load cell measures the force of the impact and the precise time interval during which the hammer head is in contact with the insulation. This information is transmitted as an electrical signal to a load cell amplifier where the signal is conditioned and then transmitted to a fast Fourier transform (FFT) analyzer. The FFT analyzer produces energy spectral density curves which are displayed on a video screen. The termination frequency of the energy spectral density curve may be compared with a predetermined empirical scale to determine whether a igh quality bond, good bond, or debond is present at the point of impact.

  1. Cooperativity in beryllium bonds.

    PubMed

    Alkorta, Ibon; Elguero, José; Yáñez, Manuel; Mó, Otilia

    2014-03-01

    A theoretical study of the beryllium bonded clusters of the (iminomethyl)beryllium hydride and (iminomethyl)beryllium fluoride [HC(BeX)=NH, X = H, F] molecules has been carried out at the B3LYP/6-311++G(3df,2p) level of theory. Linear and cyclic clusters have been characterized up to the decamer. The geometric, energetic, electronic and NMR properties of the clusters clearly indicate positive cooperativity. The evolution of the molecular properties, as the size of the cluster increases, is similar to those reported in polymers held together by hydrogen bonds.

  2. Hydrogen bond and halogen bond inside the carbon nanotube

    NASA Astrophysics Data System (ADS)

    Wang, Weizhou; Wang, Donglai; Zhang, Yu; Ji, Baoming; Tian, Anmin

    2011-02-01

    The hydrogen bond and halogen bond inside the open-ended single-walled carbon nanotubes have been investigated theoretically employing the newly developed density functional M06 with the suitable basis set and the natural bond orbital analysis. Comparing with the hydrogen or halogen bond in the gas phase, we find that the strength of the hydrogen or halogen bond inside the carbon nanotube will become weaker if there is a larger intramolecular electron-density transfer from the electron-rich region of the hydrogen or halogen atom donor to the antibonding orbital of the X-H or X-Hal bond involved in the formation of the hydrogen or halogen bond and will become stronger if there is a larger intermolecular electron-density transfer from the electron-rich region of the hydrogen or halogen atom acceptor to the antibonding orbital of the X-H or X-Hal bond. According to the analysis of the molecular electrostatic potential of the carbon nanotube, the driving force for the electron-density transfer is found to be the negative electric field formed in the carbon nanotube inner phase. Our results also show that the X-H bond involved in the formation of the hydrogen bond and the X-Hal bond involved in the formation of the halogen bond are all elongated when encapsulating the hydrogen bond and halogen bond within the carbon nanotube, so the carbon nanotube confinement may change the blue-shifting hydrogen bond and the blue-shifting halogen bond into the red-shifting hydrogen bond and the red-shifting halogen bond. The possibility to replace the all electron nanotube-confined calculation by the simple polarizable continuum model is also evaluated.

  3. Bonds Between Atoms.

    ERIC Educational Resources Information Center

    Holden, Alan

    The field of inquiry into how atoms are bonded together to form molecules and solids crosses the borderlines between physics and chemistry encompassing methods characteristic of both sciences. At one extreme, the inquiry is pursued with care and rigor into the simplest cases; at the other extreme, suggestions derived from the more careful inquiry…

  4. Dialogic Bonds and Boundaries.

    ERIC Educational Resources Information Center

    Khawaja, Mabel

    A study of literature cannot be divorced from cultural contexts, nor can it ignore the humanist vision in interpreting literary texts. To discover dialogic bonds and boundaries between the reader and the text, or the writer and the audience, English classes should have two objectives: (1) to explore the diversity of perspectives, and (2) to relate…

  5. Photochemical tissue bonding

    DOEpatents

    Redmond, Robert W.; Kochevar, Irene E.

    2012-01-10

    Photochemical tissue bonding methods include the application of a photosensitizer to a tissue and/or tissue graft, followed by irradiation with electromagnetic energy to produce a tissue seal. The methods are useful for tissue adhesion, such as in wound closure, tissue grafting, skin grafting, musculoskeletal tissue repair, ligament or tendon repair and corneal repair.

  6. Bonding without Tears.

    ERIC Educational Resources Information Center

    Akeroyd, F. Michael

    1982-01-01

    Discusses merits of using sigma-pi model of ethylene as a teaching aid in introductory organic chemistry. The nonmathematical treatment of sigma-pi bonding is then extended to such phenomena as conjugation, hyperconjugation, Markovnikoff addition, aromaticity, and aromatic substitution. (SK)

  7. GRAPHITE BONDING METHOD

    DOEpatents

    King, L.D.P.

    1964-02-25

    A process for bonding or joining graphite members together in which a thin platinum foil is placed between the members, heated in an inert atmosphere to a temperature of 1800 deg C, and then cooled to room temperature is described. (AEC)

  8. Bonding with the Past.

    ERIC Educational Resources Information Center

    Common Ground: Archeology and Ethnography in the Public Interest, 1998

    1998-01-01

    An interview with Linda Mayro, archaeologist and cultural resources manager for Pima County, Arizona, discusses efforts of local groups to preserve local Native-American and Mexican cultural-heritage sites in oppositon to commercial land developers. A public information campaign led to passage of a $6.4 million historic preservation bond. (SAS)

  9. Athermal fracture of covalent bonds

    SciTech Connect

    Gilman, J.J.

    1999-08-01

    Most fracture is athermal. Either because it occurs at low temperatures or because it occurs too fast for thermal activation to be effective. Thus it must be directly activated by applied stresses. This can occur via quantum tunneling when the chemical bonding of a solid resides in localized (covalent) bonds. Then applied stresses can cause the bonding electrons to become delocalized (anti-bonded) through quantum tunneling. That is, the bonds become broken. The process is related to the Zener tunneling process that is thought to be responsible for dielectric breakdown in semiconductors. Under a driving force, bonding electrons tunnel at constant energy from their bonding states into anti-bonding states through the forbidden gap in the bonding energy spectrum.

  10. Further developments in gold-stud bump bonding

    NASA Astrophysics Data System (ADS)

    Neher, C.; Lander, R. L.; Moskaleva, A.; Pasner, J.; Tripathi, M.; Woods, M.

    2012-02-01

    As silicon detectors in high energy physics experiments require increasingly complex assembly procedures, the availability of a wide variety of interconnect technologies provides more options for overcoming obstacles in generic R&D. Gold ball bonding has been a staple in the interconnect industry due to its ease of use and reliability. However, due to some limitations in the standard technique, alternate methods of gold-stud bonding are being developed. This paper presents recent progress and challenges faced in the development of double gold-stud bonding and 0.5 mil wire gold-stud bonding at the UC Davis Facility for Interconnect Technology. Advantages and limitations of each technique are analyzed to provide insight into potential applications for each method. Optimization of procedures and parameters is also presented.

  11. Dual resin bonded joints in polyetheretherketone (PEEK) matrix composites

    NASA Astrophysics Data System (ADS)

    Zelenak, Steve; Radford, Donald W.; Dean, Michael W.

    1993-04-01

    The paper describes applications of the dual resin (miscible polymer) bonding technique (Smiley, 1989) developed as an alternative to traditional bonding approaches to joining thermoplastic matrix composite subassemblies into structures. In the experiments, the performance of joint geometries, such as those that could be used to assemble large truss structures in space, are investigated using truss joint models consisting of woven carbon fiber/PEEK tubes of about 1 mm wall thickness. Specific process conditions and hand-held hardware used to apply heat and pressure were chosen to simulate a field asembly technique. Results are presented on tube/cruciform double lap shear tests, pinned-pinned tube compression tests, and single lap shear bond tests of joints obtained using the dual resin bonding technique.

  12. Advanced double layer capacitors

    NASA Technical Reports Server (NTRS)

    Sarangapani, S.; Lessner, P.; Forchione, J.; Laconti, A. B.

    1989-01-01

    There is a need for large amounts of power to be delivered rapidly in a number of airborne and space systems. Conventional, portable power sources, such as batteries, are not suited to delivering high peak power pulses. The charge stored at the electrode-electrolyte double layer is, however, much more assessible on a short time scale. Devices exploiting this concept were fabricated using carbon and metal oxides (Pinnacle Research) as the electrodes and sulfuric acid as the electrolyte. The approach reported, replaces the liquid sulfuric acid electrolyte with a solid ionomer electrolyte. The challenge is to form a solid electrode-solid ionomer electrolyte composite which has a high capacitance per geometric area. The approach to maximize contact between the electrode particles and the ionomer was to impregnate the electrode particles using a liquid ionomer solution and to bond the solvent-free structure to a solid ionomer membrane. Ruthenium dioxide is the electrode material used. Three strategies are being pursued to provide for a high area electrode-ionomer contact: mixing of the RuOx with a small volume of ionomer solution followed by filtration to remove the solvent, and impregnation of the ionomer into an already formed RuOx electrode. RuOx powder and electrodes were examined by non-electrochemical techniques. X-ray diffraction has shown that the material is almost pure RuO2. The electrode structure depends on the processing technique used to introduce the Nafion. Impregnated electrodes have Nafion concentrated near the surface. Electrodes prepared by the evaporation method show large aggregates of crystals surrounded by Nafion.

  13. Hydrate frameworks involving the pyridazino[4,5-d]pyridazine unit as a multiple hydrogen-bond acceptor.

    PubMed

    Zhylenko, Iryna S; Solntsev, Pavlo V; Rusanov, Eduard B; Chernega, Alexander N; Domasevitch, Konstantin V

    2008-04-01

    1,4,5,8-Tetramethylpyridazino[4,5-d]pyridazine trihydrate, C(10)H(12)N(4) x 3 H(2)O, (I), and 1,2,3,6,7,8-hexahydrocinnolino[5,4,3-cde]cinnoline tetrahydrate, C(12)H(12)N(4) x 4 H(2)O, (II), exhibit exceptional functionality of the condensed N(4)-heteroaromatic frame as a symmetric acceptor of four hydrogen bonds [N...O = 2.843 (2)-2.8716 (10) A]. Thus, all the N atoms of the electron-deficient and highly pi-acidic polynitrogen heterocycles function as lone-pair donors. In (I), all the molecular components lie on or across special positions; the site symmetry is 2/m for the organic and m2m and m for the two water molecules. In (II), the organic polycycle lies across a crystallographic inversion center. Both structures involve a hydrogen-bonded centrosymmetric water-pyridazine dimer as the basic supramolecular unit, which is integrated into two-dimensional [in (I)] and three-dimensional [in (II)] hydrate frameworks by hydrogen bonding with the additional water molecules [O...O = 2.744 (2)-2.8827 (19) A]. The hydrate connectivity exists in the form of an (H(2)O)(3) trimer in (I) and as a one-dimensional zigzag (H(2)O)(n) chain in (II).

  14. A double-double/double-single computation package

    2004-12-01

    The DDFUNIDSFUN software permits a new or existing Fortran-90 program to utilize double-double precision (approx. 31 digits) or double-single precision (approx. 14 digits) arithmetic. Double-double precision is required by a rapidly expandirtg body of scientific computations in physics and mathematics, for which the conventional 64-bit IEEE computer arithmetic (about 16 decimal digit accuracy) is not sufficient. Double-single precision permits users of systems that do not have hardware 64-bit IEEE arithmetic (such as some game systems)more » to perform arithmetic at a precision nearly as high as that of systems that do. Both packages run significantly faster Than using multiple precision or arbitrary precision software for this purpose. The package includes an extensive set of low-level routines to perform high-precision arithmetic, including routines to calculate various algebraic and transcendental functions, such as square roots, sin, ccc, exp, log and others. In addition, the package includes high-level translation facilities, so that Fortran programs can utilize these facilities by making only a few changes to conventional Fortran programs. In most cases, the only changes that are required are to change the type statements of variables that one wishes to be treated as multiple precision, plus a few other minor changes. The DDFUN package is similar in functionality to the double-double part of the GD package, which was previously written at LBNL. However, the DDFUN package is written exclusively in Fortran-90, thus avoidIng difficulties that some users experience when using GD, which includes both Fortran-90 and C++ code.« less

  15. 27 CFR 24.147 - Operations bond or unit bond.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... or contiguous distilled spirits plant qualified under 27 CFR part 19 for the production of distilled... amended, give an operations bond or unit bond in accordance with the applicable provisions of 27 CFR part... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Establishment and Operations Bonds and Consents of...

  16. How a Community Decides to Issue Bonds. Municipal Bonds Series.

    ERIC Educational Resources Information Center

    Wandschneider, Philip; And Others

    Intended for local municipal officials and their advisors on public finance issues, this publication describes the legal environment surrounding bonds and examines some of the factors affecting the political feasibility of bond issues. Four categories of state controls of municipal bonds are discussed: limits on the amount of debt municipalities…

  17. Transition-Metal-Catalyzed Redox-Neutral and Redox-Green C-H Bond Functionalization.

    PubMed

    Wang, Hongli; Huang, Hanmin

    2016-08-01

    Transition-metal-catalyzed C-H bond functionalization has become one of the most promising strategies to prepare complex molecules from simple precursors. However, the utilization of environmentally unfriendly oxidants in the oxidative C-H bond functionalization reactions reduces their potential applications in organic synthesis. This account describes our recent efforts in the development of a redox-neutral C-H bond functionalization strategy for direct addition of inert C-H bonds to unsaturated double bonds and a redox-green C-H bond functionalization strategy for realization of oxidative C-H functionalization with O2 as the sole oxidant, aiming to circumvent the problems posed by utilizing environmentally unfriendly oxidants. In principle, these redox-neutral and redox-green strategies pave the way for establishing new environmentally benign transition-metal-catalyzed C-H bond functionalization strategies.

  18. Transition-Metal-Catalyzed Redox-Neutral and Redox-Green C-H Bond Functionalization.

    PubMed

    Wang, Hongli; Huang, Hanmin

    2016-08-01

    Transition-metal-catalyzed C-H bond functionalization has become one of the most promising strategies to prepare complex molecules from simple precursors. However, the utilization of environmentally unfriendly oxidants in the oxidative C-H bond functionalization reactions reduces their potential applications in organic synthesis. This account describes our recent efforts in the development of a redox-neutral C-H bond functionalization strategy for direct addition of inert C-H bonds to unsaturated double bonds and a redox-green C-H bond functionalization strategy for realization of oxidative C-H functionalization with O2 as the sole oxidant, aiming to circumvent the problems posed by utilizing environmentally unfriendly oxidants. In principle, these redox-neutral and redox-green strategies pave the way for establishing new environmentally benign transition-metal-catalyzed C-H bond functionalization strategies. PMID:27258190

  19. The Cambridge Double Star Atlas

    NASA Astrophysics Data System (ADS)

    MacEvoy, Bruce; Tirion, Wil

    2015-12-01

    Preface; What are double stars?; The binary orbit; Double star dynamics; Stellar mass and the binary life cycle; The double star population; Detecting double stars; Double star catalogs; Telescope optics; Preparing to observe; Helpful accessories; Viewing challenges; Next steps; Appendices: target list; Useful formulas; Double star orbits; Double star catalogs; The Greek alphabet.

  20. Double outlet right ventricle

    MedlinePlus

    ... medlineplus.gov/ency/article/007328.htm Double outlet right ventricle To use the sharing features on this page, please enable JavaScript. Double outlet right ventricle (DORV) is a heart disease that is ...

  1. Chromosome doubling method

    DOEpatents

    Kato, Akio

    2006-11-14

    The invention provides methods for chromosome doubling in plants. The technique overcomes the low yields of doubled progeny associated with the use of prior techniques for doubling chromosomes in plants such as grasses. The technique can be used in large scale applications and has been demonstrated to be highly effective in maize. Following treatment in accordance with the invention, plants remain amenable to self fertilization, thereby allowing the efficient isolation of doubled progeny plants.

  2. Critical behaviors of transverse crystal field and bimodal magnetic field mixed spin Ising model with bond dilution or bond percolation threshold

    NASA Astrophysics Data System (ADS)

    Xu, C. Q.; Yan, S. L.

    2016-10-01

    Within the effective field theory, we investigate critical behaviors of transverse crystal field and bimodal magnetic field mixed spin-1/2 and spin-1 Ising model with bond dilution or percolation threshold on a simple cubic lattice. A-type double tricritical points and zigzag reentrant phenomenon can be found at pure bond and large bimodal magnetic field status. The ordered phase is impaired sharply due to bond dilution. The positive transverse crystal field can induce ordered phase at ordinary bond percolation threshold. The bimodal magnetic field can suppress the induced ordered phase and form a series of closed ordered regions. An extraordinary bond percolation threshold is determined, at which the induced ordered phase vanishes completely. The different effects of bimodal magnetic field and bond percolation threshold on induced ordered phase are discussed.

  3. Double Potoionization of Molecular Hydrogen

    NASA Astrophysics Data System (ADS)

    Vanroose, Wim

    2006-05-01

    We report a complete numerical solution of the Schr"odinger equation for the double photoionization of H2, a process where a single photon emits two electrons. The results suggest that the distribution of photoelectrons emitted from aligned molecules reflects electron correlation effects that are purely molecular in origin. It confirms recent experimental results in experiments on oriented hydrogen molecules. These experiments observed that the ejection pattern of the electrons depends sensitively on the bond distance between the two nuclei as well as the orientation with respect to the polarization of the photon. We give an overview of the numerical methods we used to solve the exact Schrodinger equation for this problem. We also discuss the different molecular effect we observe in our calculations and compare with experimental observations

  4. Combined effect of chemical pressure and valence electron concentration through the electron-deficient Li substitution on the RE4LiGe4 (RE=La, Ce, Pr, and Sm) system

    NASA Astrophysics Data System (ADS)

    Nam, Gnu; Jeon, Jieun; Kim, Youngjo; Kwon Kang, Sung; Ahn, Kyunghan; You, Tae-Soo

    2013-09-01

    Four members of the RE4LiGe4 (RE=La, Ce, Pr, and Sm) system have been prepared by high-temperature reaction method and characterized by X-ray diffractions. All compounds crystallize in the orthorhombic Gd5Si4-type structure (space group Pnma, Pearson code oP16) with bonding interactions for interslab Ge2 dimers. The Li substitution for rare-earth elements in the RE4LiGe4 system leads to a combined effect of the increased chemical pressure and the decreased valance electron concentration (VEC), which eventually results in the structure transformation from the Sm5Ge4-type with all broken interslab Ge-Ge bond for the parental RE5Ge4 to the Gd5Si4-type structure for the ternary RE4LiGe4 (RE=La, Ce, Pr, and Sm) system. Site-preference between rare-earth metals and Li is proven to generate energetically the most favorable atomic arrangements according to coloring-problem, and the rationale is provided using both the size-factor and the electronic-factor related, respectively, to site-volume and electronegativity as well as QVAL values. Tight-binding, linear-muffin-tin-orbital (TB-LMTO) calculations are performed to investigate electronic densities of states (DOS) and crystal orbital Hamilton population (COHP) curves. The influence of reduced VEC for chemical bonding including the formation of interslab Ge2 dimers is also discussed. The magnetic property measurements prove that the non-magnetic Li substitution leads to the ferromagnetic (FM)-like ground state for Ce4LiGe4 and the co-existence of antiferromagntic (AFM) and FM ground states for Sm4LiGe4.

  5. IMPROVED BONDING METHOD

    DOEpatents

    Padgett, E.V. Jr.; Warf, D.H.

    1964-04-28

    An improved process of bonding aluminum to aluminum without fusion by ultrasonic vibrations plus pressure is described. The surfaces to be bonded are coated with an aqueous solution of alkali metal stearate prior to assembling for bonding. (AEC) O H19504 Present information is reviewed on steady state proliferation, differentiation, and maturation of blood cells in mammals. Data are cited from metabolic tracer studies, autoradiographic studies, cytologic studies, studies of hematopoietic response to radiation injuries, and computer analyses of blood cell production. A 3-step model for erythropoiesis and a model for granulocyte kinetics are presented. New approaches to the study of lymphocytopoiesis described include extracorporeal blood irradiation to deplete lymphocytic tissue without direct injury to the formative tissues as a means to study the stressed system, function control, and rates of proliferation. It is pointed out that present knowledge indicates that lymphocytes comprise a mixed family, with diverse life spans, functions, and migration patterns with apparent aimless recycling from modes to lymph to blood to nodes that has not yet been quantitated. Areas of future research are postulated. (70 references.) (C.H.)

  6. Disulfide bonds of acetylcholinesterase

    SciTech Connect

    MacPhee-Quigley, K.; Vedvick, T.; Taylor, P.; Taylor, S.

    1986-05-01

    The positions of the inter- and intrasubunit disulfide bridges were established for the 11S form of acetylcholinesterase (AChE) isolated from Torpedo californica. A major form of AChE localized within the basal lamina of the synapse is a dimensionally asymmetric molecule which contains either two (13S) or three (17S) sets of catalytic subunits linked to collagenous and non-collagenous structural subunits. Limited proteolysis yields a tetramer of catalytic subunits which sediments at 11S. Each catalytic subunit contains 8 cysteine residues. Initially, these Cys residues were identified following trypsin digestion of the reduced protein alkylated with (/sup 14/C)-iodoacetate. Peptides were resolved by gel filtration followed by reverse phase HPLC. To determine the disulfide bonding profile, native non-reduced 11S AChE was treated with a fluorescent, sulfhydryl-specific reagent, monobromobimane, prior to proteolytic digestion. One fluorescent Cys peptide was identified indicating that a single sulfhydryl residue was present in its reduced form. Three pairs of disulfide bonded peptides were identified, sequenced, and localized in the polypeptide chain. The Cys residue that is located in the C-terminal tryptic peptide was disulfide bonded to an identical peptide and thus forms the intersubunit crosslink. Finally, the cysteine positions have been compared with the sequence of the homologous protein, thyroglobulin. Both likely share a common pattern of folding.

  7. Cooperativity in Tetrel Bonds.

    PubMed

    Marín-Luna, Marta; Alkorta, Ibon; Elguero, José

    2016-02-01

    A theoretical study of the cooperativity in linear chains of (H3SiCN)n and (H3SiNC)n complexes connected by tetrel bonds has been carried out by means of MP2 and CCSD(T) computational methods. In all cases, a favorable cooperativity is observed, especially in some of the largest linear chains of (H3SiNC)n, where the effect is so large that the SiH3 group is almost equidistant to the two surrounding CN groups and it becomes planar. In addition, the combination of tetrel bonds with other weak interactions (halogen, chalcogen, pnicogen, triel, beryllium, lithium, and hydrogen bond) has been explored using ternary complexes, (H3SiCN)2:XY and (H3SiNC)2:XY. In all cases, positive cooperativity is obtained, especially in the (H3SiNC)2:ClF and (H3SiNC)2:SHF ternary complexes, where, respectively, halogen and chalcogen shared complexes are formed. PMID:26756083

  8. Direct bonded space maintainers.

    PubMed

    Santos, V L; Almeida, M A; Mello, H S; Keith, O

    1993-01-01

    The aim of this study was to evaluate clinically a bonded space maintainer, which would reduce chair-side time and cost. Sixty appliances were fabricated from 0.7 mm stainless steel round wire and bonded using light-cured composite to the two teeth adjacent to the site of extraction of a posterior primary tooth. Twenty males and sixteen females (age range 5-9-years-old) were selected from the Pedodontic clinic of the State University of Rio de Janeiro. The sixty space maintainers were divided into two groups according to the site in which they were placed: a) absent first primary molar and b) absent second primary molar. Impressions and study models were obtained prior to and 6 months after bonding the appliances. During this period only 8.3% of failures were observed, most of them from occlusal or facial trauma. Student t-test did not show statistically significant alterations in the sizes of the maintained spaces during the trial period.

  9. The Nature of the Idealized Triple Bonds Between Principal Elements and the σ Origins of Trans-Bent Geometries-A Valence Bond Study.

    PubMed

    Ploshnik, Elina; Danovich, David; Hiberty, Philippe C; Shaik, Sason

    2011-04-12

    We describe herein a valence bond (VB) study of 27 triply bonded molecules of the general type X≡Y, where X and Y are main element atoms/fragments from groups 13-15 in the periodic table. The following conclusions were derived from the computational data: (a) Single π-bond and double π-bond energies for the entire set correlate with the "molecular electronegativity", which is the sum of the X and Y electronegativites for X≡Y. The correlation with the molecular electronegativity establishes a simple rule of periodicity: π-bonding strength generally increases from left to right in a period and decreases down a column in the periodic table. (b) The σ frame invariably prefers trans bending, while π-bonding gets destabilized and opposes the trans distortion. In HC≡CH, the π-bonding destabilization overrides the propensity of the σ frame to distort, while in the higher row molecules, the σ frame wins out and establishes trans-bent molecules with 2(1)/2 bonds, in accord with recent experimental evidence based on solid state (29)Si NMR of the Sekiguchi compound. Thus, in the trans-bent molecules "less bonds pay more". (c) All of the π bonds show significant bonding contributions from the resonance energy due to covalent-ionic mixing. This quantity is shown to correlate linearly with the corresponding "molecular electronegativity" and to reflect the mechanism required to satisfy the equilibrium condition for the bond. The π bonds for molecules possessing high molecular electronegativity are charge-shift bonds, wherein bonding is dominated by the resonance energy of the covalent and ionic forms, rather than by either form by itself.

  10. 46 CFR Sec. 10 - Bonds.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... REPAIRS UNDER NATIONAL SHIPPING AUTHORITY MASTER LUMP SUM REPAIR CONTRACT-NSA-LUMPSUMREP Sec. 10 Bonds. (a... awarded work and the furnishing of the performance and payment bonds required by Article 14 of the NSA... of the NSA-LUMPSUMREP Contract, the standard form of individual performance bond (Standard Form...

  11. 46 CFR Sec. 10 - Bonds.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... REPAIRS UNDER NATIONAL SHIPPING AUTHORITY MASTER LUMP SUM REPAIR CONTRACT-NSA-LUMPSUMREP Sec. 10 Bonds. (a... awarded work and the furnishing of the performance and payment bonds required by Article 14 of the NSA... of the NSA-LUMPSUMREP Contract, the standard form of individual performance bond (Standard Form...

  12. 46 CFR Sec. 10 - Bonds.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... REPAIRS UNDER NATIONAL SHIPPING AUTHORITY MASTER LUMP SUM REPAIR CONTRACT-NSA-LUMPSUMREP Sec. 10 Bonds. (a... awarded work and the furnishing of the performance and payment bonds required by Article 14 of the NSA... of the NSA-LUMPSUMREP Contract, the standard form of individual performance bond (Standard Form...

  13. 46 CFR Sec. 10 - Bonds.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... REPAIRS UNDER NATIONAL SHIPPING AUTHORITY MASTER LUMP SUM REPAIR CONTRACT-NSA-LUMPSUMREP Sec. 10 Bonds. (a... awarded work and the furnishing of the performance and payment bonds required by Article 14 of the NSA... of the NSA-LUMPSUMREP Contract, the standard form of individual performance bond (Standard Form...

  14. Coulombic Models in Chemical Bonding.

    ERIC Educational Resources Information Center

    Sacks, Lawrence J.

    1986-01-01

    Compares the coulumbic point charge model for hydrogen chloride with the valence bond model. It is not possible to assign either a nonpolar or ionic canonical form of the valence bond model, while the covalent-ionic bond distribution does conform to the point charge model. (JM)

  15. Reliable four-point flexion test and model for die-to-wafer direct bonding

    SciTech Connect

    Tabata, T. Sanchez, L.; Fournel, F.; Moriceau, H.

    2015-07-07

    For many years, wafer-to-wafer (W2W) direct bonding has been very developed particularly in terms of bonding energy measurement and bonding mechanism comprehension. Nowadays, die-to-wafer (D2W) direct bonding has gained significant attention, for instance, in photonics and microelectro-mechanics, which supposes controlled and reliable fabrication processes. So, whatever the stuck materials may be, it is not obvious whether bonded D2W structures have the same bonding strength as bonded W2W ones, because of possible edge effects of dies. For that reason, it has been strongly required to develop a bonding energy measurement technique which is suitable for D2W structures. In this paper, both D2W- and W2W-type standard SiO{sub 2}-to-SiO{sub 2} direct bonding samples are fabricated from the same full-wafer bonding. Modifications of the four-point flexion test (4PT) technique and applications for measuring D2W direct bonding energies are reported. Thus, the comparison between the modified 4PT and the double-cantilever beam techniques is drawn, also considering possible impacts of the conditions of measures such as the water stress corrosion at the debonding interface and the friction error at the loading contact points. Finally, reliability of a modified technique and a new model established for measuring D2W direct bonding energies is demonstrated.

  16. Functionalized alkynyl-chlorogermanes: hydrometallation, Ge-Cl bond activation, Ge-H bond formation and chlorine-tert-butyl exchange via a transient germyl cation.

    PubMed

    Honacker, Christian; Qu, Zheng-Wang; Tannert, Jens; Layh, Marcus; Hepp, Alexander; Grimme, Stefan; Uhl, Werner

    2016-04-14

    Treatment of alkynyl-arylchlorogermanes ArylnGe(Cl)(C[triple bond, length as m-dash]C-(t)Bu)3-n (n = 1, 2) with HM(t)Bu2 (M = Al, Ga) yielded mixed Al or Ga alkenyl-alkynylchlorogermanes via hydrometallation reactions. Intramolecular interactions between the Lewis-basic Cl atoms and the Lewis-acidic Al or Ga atoms afforded MCGeCl heterocycles. The endocyclic M-Cl distances were significantly lengthened compared to the starting compounds and indicated Ge-Cl bond activation. Dual hydrometallation succeeded only with HGa(t)Bu2. One Ga atom of the product was involved in a Ga-Cl bond, while the second one had an interaction to a C-H bond of a phenyl group. In two cases treatment of chlorogermanes with two equivalents of HAl(t)Bu2 resulted in hydroalumination of one alkynyl group and formation of unprecedented Ge-H functionalized germanes, Aryl-Ge(H)(C[triple bond, length as m-dash]C-(t)Bu)[C(Al(t)Bu2)[double bond, length as m-dash]C(H)-(t)Bu] (Aryl = mesityl, triisopropylphenyl). The Al atoms of these compounds interacted with the α-C atoms of the alkynyl groups. Ph(Cl)Ge(C[triple bond, length as m-dash]C-(t)Bu)[C(Al(t)Bu2}[double bond, length as m-dash]C(H)-(t)Bu] reacted in an unusual Cl/(t)Bu exchange to yield the tert-butylgermane Ph((t)Bu)Ge(C[triple bond, length as m-dash]C-(t)Bu)[C{Al((t)Bu)(Cl)}[double bond, length as m-dash]C(H)-(t)Bu]. Quantum chemical calculations suggested the formation of a germyl cation as a transient intermediate.

  17. Hydrogen bonding in ionic liquids.

    PubMed

    Hunt, Patricia A; Ashworth, Claire R; Matthews, Richard P

    2015-03-01

    Ionic liquids (IL) and hydrogen bonding (H-bonding) are two diverse fields for which there is a developing recognition of significant overlap. Doubly ionic H-bonds occur when a H-bond forms between a cation and anion, and are a key feature of ILs. Doubly ionic H-bonds represent a wide area of H-bonding which has yet to be fully recognised, characterised or explored. H-bonds in ILs (both protic and aprotic) are bifurcated and chelating, and unlike many molecular liquids a significant variety of distinct H-bonds are formed between different types and numbers of donor and acceptor sites within a given IL. Traditional more neutral H-bonds can also be formed in functionalised ILs, adding a further level of complexity. Ab initio computed parameters; association energies, partial charges, density descriptors as encompassed by the QTAIM methodology (ρBCP), qualitative molecular orbital theory and NBO analysis provide established and robust mechanisms for understanding and interpreting traditional neutral and ionic H-bonds. In this review the applicability and extension of these parameters to describe and quantify the doubly ionic H-bond has been explored. Estimating the H-bonding energy is difficult because at a fundamental level the H-bond and ionic interaction are coupled. The NBO and QTAIM methodologies, unlike the total energy, are local descriptors and therefore can be used to directly compare neutral, ionic and doubly ionic H-bonds. The charged nature of the ions influences the ionic characteristics of the H-bond and vice versa, in addition the close association of the ions leads to enhanced orbital overlap and covalent contributions. The charge on the ions raises the energy of the Ylp and lowers the energy of the X-H σ* NBOs resulting in greater charge transfer, strengthening the H-bond. Using this range of parameters and comparing doubly ionic H-bonds to more traditional neutral and ionic H-bonds it is clear that doubly ionic H-bonds cover the full range of weak

  18. Doubly ionic hydrogen bond interactions within the choline chloride-urea deep eutectic solvent.

    PubMed

    Ashworth, Claire R; Matthews, Richard P; Welton, Tom; Hunt, Patricia A

    2016-07-21

    Deep eutectic solvents (DESs) are exemplars of systems with the ability to form neutral, ionic and doubly ionic H-bonds. Herein, the pairwise interactions of the constituent components of the choline chloride-urea DES are examined. Evidence is found for a tripodal CHCl doubly ionic H-bond motif. Moreover it is found that the covalency of doubly ionic H-bonds can be greater than, or comparable with, neutral and ionic examples. In contrast to many traditional solvents, an "alphabet soup" of many different types of H-bond (OHO[double bond, length as m-dash]C, NHO[double bond, length as m-dash]C, OHCl, NHCl, OHNH, CHCl, CHO[double bond, length as m-dash]C, NHOH and NHNH) can form. These H-bonds exhibit substantial flexibility in terms of number and strength. It is anticipated that H-bonding will have a significant impact on the entropy of the system and thus could play an important role in the formation of the eutectic. The 2 : 1 urea : choline-chloride eutectic point of this DES is often associated with the formation of a [Cl(urea)2](-) complexed anion. However, urea is found to form a H-bonded urea[choline](+) complexed cation that is energetically competitive with [Cl(urea)2](-). The negative charge on [Cl(urea)2](-) is found to remain localised on the chloride, moreover, the urea[choline](+) complexed cation forms the strongest H-bond studied here. Thus, there is potential to consider a urea[choline](+)·urea[Cl](-) interaction. PMID:27328990

  19. Doubly ionic hydrogen bond interactions within the choline chloride-urea deep eutectic solvent.

    PubMed

    Ashworth, Claire R; Matthews, Richard P; Welton, Tom; Hunt, Patricia A

    2016-07-21

    Deep eutectic solvents (DESs) are exemplars of systems with the ability to form neutral, ionic and doubly ionic H-bonds. Herein, the pairwise interactions of the constituent components of the choline chloride-urea DES are examined. Evidence is found for a tripodal CHCl doubly ionic H-bond motif. Moreover it is found that the covalency of doubly ionic H-bonds can be greater than, or comparable with, neutral and ionic examples. In contrast to many traditional solvents, an "alphabet soup" of many different types of H-bond (OHO[double bond, length as m-dash]C, NHO[double bond, length as m-dash]C, OHCl, NHCl, OHNH, CHCl, CHO[double bond, length as m-dash]C, NHOH and NHNH) can form. These H-bonds exhibit substantial flexibility in terms of number and strength. It is anticipated that H-bonding will have a significant impact on the entropy of the system and thus could play an important role in the formation of the eutectic. The 2 : 1 urea : choline-chloride eutectic point of this DES is often associated with the formation of a [Cl(urea)2](-) complexed anion. However, urea is found to form a H-bonded urea[choline](+) complexed cation that is energetically competitive with [Cl(urea)2](-). The negative charge on [Cl(urea)2](-) is found to remain localised on the chloride, moreover, the urea[choline](+) complexed cation forms the strongest H-bond studied here. Thus, there is potential to consider a urea[choline](+)·urea[Cl](-) interaction.

  20. Topological hydrogen-bond definition to characterize the structure and dynamics of liquid water.

    PubMed

    Henchman, Richard H; Irudayam, Sheeba Jem

    2010-12-23

    A definition that equates a hydrogen bond topologically with a local energy well in the potential energy surface is used to study the structure and dynamics of liquid water. We demonstrate the robustness of this hydrogen-bond definition versus the many other definitions which use fixed, arbitrary parameters, do not account for variable molecular environments, and cannot effectively resolve transition states. Our topology definition unambiguously shows that most water molecules are double acceptors but sizable proportions are single or triple acceptors. Almost all hydrogens are found to take part in hydrogen bonds. Broken hydrogen bonds only form when two molecules try to form two hydrogen bonds between them. The double acceptors have tetrahedral geometry, lower potential energy, entropy, and density, and slower dynamics. The single and triple acceptors have trigonal and trigonal bipyramidal geometry and when considered together have higher density, potential energy, and entropy, faster dynamics, and a tendency to cluster. These calculations use an extended theory for the entropy of liquid water that takes into account the variable number of hydrogen bonds. Hydrogen-bond switching is shown to depend explicitly on the variable number of hydrogen bonds accepted and the presence of interstitial water molecules. Transition state theory indicates that the switching of hydrogen bonds is a mildly activated process, requiring only a moderate distortion of hydrogen bonds. Three main types of switching events are observed depending on whether the donor and acceptor are already sharing a hydrogen bond. The switch may proceed with no intermediate or via a bifurcated-oxygen or cyclic dimer, both of which have a broken hydrogen bond and symmetric and asymmetric forms. Switching is found to be strongly coupled to whole-molecule vibration, particularly for the more mobile single and triple acceptors. Our analysis suggests that even though water is heterogeneous in terms of the

  1. Disulfide bond structure of glycoprotein D of herpes simplex virus types 1 and 2.

    PubMed Central

    Long, D; Wilcox, W C; Abrams, W R; Cohen, G H; Eisenberg, R J

    1992-01-01

    Glycoprotein D (gD) is a structural component of the herpes simplex virus envelope which is essential for virus penetration. The function of this protein is highly dependent on its structure, and its structure is dependent on maintenance of three intact disulfide bonds. gD contains six cysteines in its ectodomain whose spacing is conserved among all its homologs in other alphaherpesviruses as well as Marek's disease virus. For other proteins, conservation of cysteine spacing correlates with conservation of disulfide bond structure. We have now solved the disulfide bond structure of gD-1 and gD-2 of herpes simplex virus types 1 and 2, respectively. Two approaches were used. First, we constructed 15 double-Cys mutants of gD-1, representing all possible disulfide pairs. In each case, codons for cysteines were changed to serine. We reasoned that if two cysteines normally form a disulfide bond, double mutations which eliminate one proper bond should be less harmful to gD structure than double mutations which eliminate two disulfide bonds. The mutated genes were cloned into a eucaryotic expression vector, and the proteins were expressed in transiently transfected cells. Three double mutations, Cys-1,5, Cys-2,6, and Cys-3,4 permitted gD-1 folding, processing, transport to the cell surface, and function in virus infection, whereas 12 other double mutations each produced a malfolded and nonfunctional protein. Thus, the three functional double-Cys mutants may represent the actual partners in disulfide bond linkages. The second approach was to define the actual disulfide bond structure of gD by biochemical means. Purified native gD-2 was cleaved by CNBr and proteases, and the peptides were separated by high-performance liquid chromatography. Disulfide-linked peptides were subjected to N-terminal amino acid sequencing. The results show that cysteine 1 (amino acid [aa] 66) is bonded to cysteine 5 (aa 189), cysteine 2 (aa 106) is bonded to cysteine 6 (aa 202), and cysteine 3 (aa

  2. 26 CFR 1.144-1 - Qualified small issue bonds, qualified student loan bonds, and qualified redevelopment bonds.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... student loan bonds, and qualified redevelopment bonds. (a) Overview. Interest on a private activity bond... 26 Internal Revenue 2 2010-04-01 2010-04-01 false Qualified small issue bonds, qualified student loan bonds, and qualified redevelopment bonds. 1.144-1 Section 1.144-1 Internal Revenue...

  3. 26 CFR 1.144-1 - Qualified small issue bonds, qualified student loan bonds, and qualified redevelopment bonds.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... student loan bonds, and qualified redevelopment bonds. (a) Overview. Interest on a private activity bond... 26 Internal Revenue 2 2012-04-01 2012-04-01 false Qualified small issue bonds, qualified student loan bonds, and qualified redevelopment bonds. 1.144-1 Section 1.144-1 Internal Revenue...

  4. 26 CFR 1.144-1 - Qualified small issue bonds, qualified student loan bonds, and qualified redevelopment bonds.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... student loan bonds, and qualified redevelopment bonds. (a) Overview. Interest on a private activity bond... 26 Internal Revenue 2 2014-04-01 2014-04-01 false Qualified small issue bonds, qualified student loan bonds, and qualified redevelopment bonds. 1.144-1 Section 1.144-1 Internal Revenue...

  5. 26 CFR 1.144-1 - Qualified small issue bonds, qualified student loan bonds, and qualified redevelopment bonds.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... student loan bonds, and qualified redevelopment bonds. (a) Overview. Interest on a private activity bond... 26 Internal Revenue 2 2011-04-01 2011-04-01 false Qualified small issue bonds, qualified student loan bonds, and qualified redevelopment bonds. 1.144-1 Section 1.144-1 Internal Revenue...

  6. 26 CFR 1.144-1 - Qualified small issue bonds, qualified student loan bonds, and qualified redevelopment bonds.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... student loan bonds, and qualified redevelopment bonds. (a) Overview. Interest on a private activity bond... 26 Internal Revenue 2 2013-04-01 2013-04-01 false Qualified small issue bonds, qualified student loan bonds, and qualified redevelopment bonds. 1.144-1 Section 1.144-1 Internal Revenue...

  7. On homogeneous L-bonds and heterogeneous L-bonds

    NASA Astrophysics Data System (ADS)

    Konecny, Jan; Ojeda-Aciego, Manuel

    2016-02-01

    In this paper, we deal with suitable generalizations of the notion of bond between contexts, as part of the research area of Formal Concept Analysis. We study different generalizations of the notion of bond within the ? -fuzzy setting. Specifically, given a formal context, there are three prototypical pairs of concept-forming operators, and this immediately leads to three possible versions of the notion of bond (so-called homogeneous bond wrt certain pair of concept-forming operators). The first results show a close correspondence between a homogeneous bond between two contexts and certain special types of mappings between the sets of extents (or intents) of the corresponding concept lattices. Later, we introduce the so-called heterogeneous bonds (considering simultaneously two types of concept-forming operators) and generalize the previous relationship to mappings between the sets of extents (or intents) of the corresponding concept lattices.

  8. Valence bond cluster studies of alkali metal/semiconductor bonding

    NASA Astrophysics Data System (ADS)

    Tatar, Robert C.; Messmer, Richard P.

    1986-12-01

    We present results of cluster studies of alkali metal/semiconductor bonding. Using the Generalized Valence Bond (GVB) method, we find a remarkable consistency in the behavoir of bonding orbitals for a variety of systems, including: LiH, CLi4, LiH4 and several hypervalent systems, such as SiH3Li2, SiH4Li2. Our results show that the metal-semiconductor bonding in these systems can be understood in terms of a pairing between McAdon-Goddard type metallic bonding orbitals and a set of equivalent orbitals of the non-metallic species. We propose that the results are relevant to the initial stages of alkali overlayer growth on semiconductor surfaces and lead to a simple picture of the bonding including the transition from a non-conducting to a conducting layer. We have considered numerous proposed hypervalent structures in light of the above results and find that they can be understood.

  9. How many hydrogen-bonded α-turns are possible?

    PubMed

    Schreiber, Anette; Schramm, Peter; Hofmann, Hans-Jörg

    2011-06-01

    The formation of α-turns is a possibility to reverse the direction of peptide sequences via five amino acids. In this paper, a systematic conformational analysis was performed to find the possible isolated α-turns with a hydrogen bond between the first and fifth amino acid employing the methods of ab initio MO theory in vacuum (HF/6-31G*, B3LYP/6-311 + G*) and in solution (CPCM/HF/6-31G*). Only few α-turn structures with glycine and alanine backbones fulfill the geometry criteria for the i←(i + 4) hydrogen bond satisfactorily. The most stable representatives agree with structures found in the Protein Data Bank. There is a general tendency to form additional hydrogen bonds for smaller pseudocycles corresponding to β- and γ-turns with better hydrogen bond geometries. Sometimes, this competition weakens or even destroys the i←(i + 4) hydrogen bond leading to very stable double β-turn structures. This is also the reason why an "ideal" α-turn with three central amino acids having the perfect backbone angle values of an α-helix could not be localized. There are numerous hints for stable α-turns with a distance between the C(α)-atoms of the first and fifth amino acid smaller than 6-7 Å, but without an i←(i + 4) hydrogen bond. PMID:20842396

  10. Bond strength with custom base indirect bonding techniques.

    PubMed

    Klocke, Arndt; Shi, Jianmin; Kahl-Nieke, Bärbel; Bismayer, Ulrich

    2003-04-01

    Different types of adhesives for indirect bonding techniques have been introduced recently. But there is limited information regarding bond strength with these new materials. In this in vitro investigation, stainless steel brackets were bonded to 100 permanent bovine incisors using the Thomas technique, the modified Thomas technique, and light-cured direct bonding for a control group. The following five groups of 20 teeth each were formed: (1) modified Thomas technique with thermally cured base composite (Therma Cure) and chemically cured sealant (Maximum Cure), (2) Thomas technique with thermally cured base composite (Therma Cure) and chemically cured sealant (Custom I Q), (3) Thomas technique with light-cured base composite (Transbond XT) and chemically cured sealant (Sondhi Rapid Set), (4) modified Thomas technique with chemically cured base adhesive (Phase II) and chemically cured sealant (Maximum Cure), and (5) control group directly bonded with light-cured adhesive (Transbond XT). Mean bond strengths in groups 3, 4, and 5 were 14.99 +/- 2.85, 15.41 +/- 3.21, and 13.88 +/- 2.33 MPa, respectively, and these groups were not significantly different from each other. Groups 1 (mean bond strength 7.28 +/- 4.88 MPa) and 2 (mean bond strength 7.07 +/- 4.11 MPa) showed significantly lower bond strengths than groups 3, 4, and 5 and a higher probability of bond failure. Both the original (group 2) and the modified (group 1) Thomas technique were able to achieve bond strengths comparable to the light-cured direct bonded control group.

  11. Modulating the strength of tetrel bonding through beryllium bonding.

    PubMed

    Liu, Mingxiu; Yang, Li; Li, Qingzhong; Li, Wenzuo; Cheng, Jianbo; Xiao, Bo; Yu, Xuefang

    2016-08-01

    Quantum chemical calculations were performed to investigate the stability of the ternary complexes BeH2···XMH3···NH3 (X = F, Cl, and Br; M = C, Si, and Ge) and the corresponding binary complexes at the atomic level. Our results reveal that the stability of the XMH3···BeH2 complexes is mainly due to both a strong beryllium bond and a weak tetrel-hydride interaction, while the XMH3···NH3 complexes are stabilized by a tetrel bond. The beryllium bond with a halogen atom as the electron donor has many features in common with a beryllium bond with an O or N atom as the electron donor, although they do exhibit some different characteristics. The stability of the XMH3···NH3 complex is dominated by the electrostatic interaction, while the orbital interaction also makes an important contribution. Interestingly, as the identities of the X and M atoms are varied, the strength of the tetrel bond fluctuates in an irregular manner, which can explained by changes in electrostatic potentials and orbital interactions. In the ternary systems, both the beryllium bond and the tetrel bond are enhanced, which is mainly ascribed to increased electrostatic potentials on the corresponding atoms and charge transfer. In particular, when compared to the strengths of the tetrel and beryllium bonds in the binary systems, in the ternary systems the tetrel bond is enhanced to a greater degree than the beryllium bond. Graphical Abstract A tetrel bond can be strengthened greatly by a beryllium bond. PMID:27464738

  12. Modulating the strength of tetrel bonding through beryllium bonding.

    PubMed

    Liu, Mingxiu; Yang, Li; Li, Qingzhong; Li, Wenzuo; Cheng, Jianbo; Xiao, Bo; Yu, Xuefang

    2016-08-01

    Quantum chemical calculations were performed to investigate the stability of the ternary complexes BeH2···XMH3···NH3 (X = F, Cl, and Br; M = C, Si, and Ge) and the corresponding binary complexes at the atomic level. Our results reveal that the stability of the XMH3···BeH2 complexes is mainly due to both a strong beryllium bond and a weak tetrel-hydride interaction, while the XMH3···NH3 complexes are stabilized by a tetrel bond. The beryllium bond with a halogen atom as the electron donor has many features in common with a beryllium bond with an O or N atom as the electron donor, although they do exhibit some different characteristics. The stability of the XMH3···NH3 complex is dominated by the electrostatic interaction, while the orbital interaction also makes an important contribution. Interestingly, as the identities of the X and M atoms are varied, the strength of the tetrel bond fluctuates in an irregular manner, which can explained by changes in electrostatic potentials and orbital interactions. In the ternary systems, both the beryllium bond and the tetrel bond are enhanced, which is mainly ascribed to increased electrostatic potentials on the corresponding atoms and charge transfer. In particular, when compared to the strengths of the tetrel and beryllium bonds in the binary systems, in the ternary systems the tetrel bond is enhanced to a greater degree than the beryllium bond. Graphical Abstract A tetrel bond can be strengthened greatly by a beryllium bond.

  13. Solder extrusion pressure bonding process and bonded products produced thereby

    DOEpatents

    Beavis, L.C.; Karnowsky, M.M.; Yost, F.G.

    1992-06-16

    Disclosed is a process for production of soldered joints which are highly reliable and capable of surviving 10,000 thermal cycles between about [minus]40 C and 110 C. Process involves interposing a thin layer of a metal solder composition between the metal surfaces of members to be bonded and applying heat and up to about 1000 psi compression pressure to the superposed members, in the presence of a reducing atmosphere, to extrude the major amount of the solder composition, contaminants including fluxing gases and air, from between the members being bonded, to form a very thin, strong intermetallic bonding layer having a thermal expansion tolerant with that of the bonded members.

  14. Solder extrusion pressure bonding process and bonded products produced thereby

    DOEpatents

    Beavis, Leonard C.; Karnowsky, Maurice M.; Yost, Frederick G.

    1992-01-01

    Production of soldered joints which are highly reliable and capable of surviving 10,000 thermal cycles between about -40.degree. C. and 110.degree. C. Process involves interposing a thin layer of a metal solder composition between the metal surfaces of members to be bonded and applying heat and up to about 1000 psi compression pressure to the superposed members, in the presence of a reducing atmosphere, to extrude the major amount of the solder composition, contaminants including fluxing gases and air, from between the members being bonded, to form a very thin, strong intermetallic bonding layer having a thermal expansion tolerant with that of the bonded members.

  15. Solder extrusion pressure bonding process and bonded products produced thereby

    SciTech Connect

    Beavis, L.C.; Karnowsky, M.M.; Yost, F.G.

    1990-12-31

    Production of soldiered joints which are highly reliable and capable of surviving 10,000 thermal cycles between about {minus}40{degrees}C and 110{degrees}C. Process involves interposing a thin layer of a metal solder composition between the metal surfaces of members to be bonded and applying heat and up to about 1000 psi compression pressure to the superposed members, in the presence of a reducing atmosphere, to extrude the major amount of the solder composition, contaminants including fluxing gases and air, from between the members being bonded, to form a very thin, strong intermetallic bonding layer having a thermal expansion tolerant with that of the bonded members.

  16. 27 CFR 28.66 - Strengthening bonds.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... bonds. In all cases where the penal sum of any bond becomes insufficient, the principal shall either give a strengthening bond with the same surety to attain a sufficient penal sum, or give a new bond to... of any bond to less than its full penal sum. Strengthening bonds shall show the current date...

  17. Combined effect of chemical pressure and valence electron concentration through the electron-deficient Li substitution on the RE{sub 4}LiGe{sub 4} (RE=La, Ce, Pr, and Sm) system

    SciTech Connect

    Nam, Gnu; Jeon, Jieun; Kim, Youngjo; Kwon Kang, Sung; Ahn, Kyunghan; You, Tae-Soo

    2013-09-15

    Four members of the RE{sub 4}LiGe{sub 4} (RE=La, Ce, Pr, and Sm) system have been prepared by high-temperature reaction method and characterized by X-ray diffractions. All compounds crystallize in the orthorhombic Gd{sub 5}Si{sub 4}-type structure (space group Pnma, Pearson code oP16) with bonding interactions for interslab Ge{sub 2} dimers. The Li substitution for rare-earth elements in the RE{sub 4}LiGe{sub 4} system leads to a combined effect of the increased chemical pressure and the decreased valance electron concentration (VEC), which eventually results in the structure transformation from the Sm{sub 5}Ge{sub 4}-type with all broken interslab Ge–Ge bond for the parental RE{sub 5}Ge{sub 4} to the Gd{sub 5}Si{sub 4}-type structure for the ternary RE{sub 4}LiGe{sub 4} (RE=La, Ce, Pr, and Sm) system. Site-preference between rare-earth metals and Li is proven to generate energetically the most favorable atomic arrangements according to coloring-problem, and the rationale is provided using both the size-factor and the electronic-factor related, respectively, to site-volume and electronegativity as well as QVAL values. Tight-binding, linear-muffin-tin-orbital (TB-LMTO) calculations are performed to investigate electronic densities of states (DOS) and crystal orbital Hamilton population (COHP) curves. The influence of reduced VEC for chemical bonding including the formation of interslab Ge{sub 2} dimers is also discussed. The magnetic property measurements prove that the non-magnetic Li substitution leads to the ferromagnetic (FM)-like ground state for Ce{sub 4}LiGe{sub 4} and the co-existence of antiferromagntic (AFM) and FM ground states for Sm{sub 4}LiGe{sub 4}. - Graphical abstract: Reported is a combined effect of the chemical pressure and the reduced VEC caused by the smaller monovalent non-magnetic Li substitution for the larger trivalent magnetic rare-earth metals in the RE{sub 4}LiGe{sub 4} (RE=La, Ce, Pr, and Sm) system. This results in the structure

  18. Density functional theory and hydrogen bonds: are we there yet?

    PubMed

    Boese, A Daniel

    2015-04-01

    Density functional theory (DFT) has become more successful at introducing dispersion interactions, and can be thus applied to a wide range of systems. Amongst these are systems that contain hydrogen bonds, which are extremely important for the biological regime. Here, the description of hydrogen-bonded interactions by DFT with and without dispersion corrections is investigated. For small complexes, for which electrostatics are the determining factor in the intermolecular interactions, the inclusion of dispersion with most functionals yields large errors. Only for larger systems, in which van der Waals interactions are more important, do dispersion corrections improve the performance of DFT for hydrogen-bonded systems. None of the studied functionals, including double hybrid functionals (with the exception of DSD-PBEP86 without dispersion corrections), are more accurate than MP2 for the investigated species.

  19. Observing Double Stars

    NASA Astrophysics Data System (ADS)

    Genet, Russell M.; Fulton, B. J.; Bianco, Federica B.; Martinez, John; Baxter, John; Brewer, Mark; Carro, Joseph; Collins, Sarah; Estrada, Chris; Johnson, Jolyon; Salam, Akash; Wallen, Vera; Warren, Naomi; Smith, Thomas C.; Armstrong, James D.; McGaughey, Steve; Pye, John; Mohanan, Kakkala; Church, Rebecca

    2012-05-01

    Double stars have been systematically observed since William Herschel initiated his program in 1779. In 1803 he reported that, to his surprise, many of the systems he had been observing for a quarter century were gravitationally bound binary stars. In 1830 the first binary orbital solution was obtained, leading eventually to the determination of stellar masses. Double star observations have been a prolific field, with observations and discoveries - often made by students and amateurs - routinely published in a number of specialized journals such as the Journal of Double Star Observations. All published double star observations from Herschel's to the present have been incorporated in the Washington Double Star Catalog. In addition to reviewing the history of visual double stars, we discuss four observational technologies and illustrate these with our own observational results from both California and Hawaii on telescopes ranging from small SCTs to the 2-meter Faulkes Telescope North on Haleakala. Two of these technologies are visual observations aimed primarily at published "hands-on" student science education, and CCD observations of both bright and very faint doubles. The other two are recent technologies that have launched a double star renaissance. These are lucky imaging and speckle interferometry, both of which can use electron-multiplying CCD cameras to allow short (30 ms or less) exposures that are read out at high speed with very low noise. Analysis of thousands of high speed exposures allows normal seeing limitations to be overcome so very close doubles can be accurately measured.

  20. Bond Sensitivity to Silicone Contamination

    NASA Technical Reports Server (NTRS)

    Caldwell, G. A.; Hudson, W. D.; Hudson, W. D.; Cash, Stephen F. (Technical Monitor)

    2003-01-01

    Currently during fabrication of the Space Shuttle booster rocket motors, the use of silicone and silicone-containing products is prohibited in most applications. Many shop aids and other materials containing silicone have the potential, if they make contact with a bond surface, to transfer some of the silicone to the substrates being bonded. Such transfer could result in a reduction of the bond strength or even failure of the subsequent bonds. This concern is driving the need to understand the effect of silicones and the concentration needed to affect a given bond-line strength. Additionally, as silicone detection methods used for materials acceptance improve what may have gone unnoticed earlier is now being detected. Thus, realistic silicone limits for process materials (below which bond performance is satisfactory) are needed rather than having an absolute no silicone permitted policy.

  1. Better Bonded Ethernet Load Balancing

    SciTech Connect

    Gabler, Jason

    2006-09-29

    When a High Performance Storage System's mover shuttles large amounts of data to storage over a single Ethernet device that single channel can rapidly become saturated. Using Linux Ethernet channel bonding to address this and similar situations was not, until now, a viable solution. The various modes in which channel bonding could be configured always offered some benefit but only under strict conditions or at a system resource cost that was greater than the benefit gained by using channel bonding. Newer bonding modes designed by various networking hardware companies, helpful in such networking scenarios, were already present in their own switches. However, Linux-based systems were unable to take advantage of those new modes as they had not yet been implemented in the Linux kernel bonding driver. So, except for basic fault tolerance, Linux channel bonding could not positively combine separate Ethernet devices to provide the necessary bandwidth.

  2. Anion transport with halogen bonds.

    PubMed

    Jentzsch, Andreas Vargas; Matile, Stefan

    2015-01-01

    This review covers the application of halogen bonds to transport anions across lipid bilayer membranes. The introduction provides a brief description of biological and synthetic transport systems. Emphasis is on examples that explore interactions beyond the coordination with lone pairs or hydrogen bonds for the recognition of cations and anions, particularly cation-π and anion-π interactions, and on structural motifs that are relevant for transport studies with halogen bonds. Section 2 summarizes the use of macrocyclic scaffolds to achieve transport with halogen bonds, focusing on cyclic arrays of halogen-bond donors of different strengths on top of calixarene scaffolds. This section also introduces methods to study anion binding in solution and anion transport in fluorogenic vesicles. In Sect. 3, transport studies with monomeric halogen bond-donors are summarized. This includes the smallest possible organic anion transporter, trifluoroiodomethane, a gas that can be bubbled through a suspension of vesicles to turn on transport. Anion transport with a gas nicely illustrates the power of halogen bonds for anion transport. Like hydrogen bonds, they are directional and strong, but compared to hydrogen-bond donors, halogen-bond donors are more lipophilic. Section 3 also offers a concise introduction to the measurement of ion selectivity in fluorogenic vesicles and conductance experiments in planar bilayer membranes. Section 4 introduces the formal unrolling of cyclic scaffolds into linear scaffolds that can span lipid bilayers. As privileged transmembrane scaffolds, the importance of hydrophobically matching fluorescent p-oligophenyl rods is fully confirmed. The first formal synthetic ion channel that operates by cooperative multiion hopping along transmembrane halogen-bonding cascades is described. Compared to homologs for anion-π interactions, transport with halogen bonds is clearly more powerful.

  3. Optical Tweezers Analysis of Double-Stranded DNA Denaturation in the Presence of Urea

    NASA Astrophysics Data System (ADS)

    Zhu, Chunli; Li, Jing

    2016-09-01

    Urea is a kind of denaturant prone to form hydrogen bonds with the electronegative centers of the nitrogenous bases, threatening the stability of hydrogen bonds between DNA base pairs. In this paper, the stability and stiffness of DNA double helix influenced by urea are investigated at single-molecule level using optical tweezers. Experimental results show that DNA's double helix stability and stiffness both decrease with increasing urea concentration. In addition, the re-forming of ruptured hydrogen bonds between the base pairs is blocked by urea as the tension on DNA is released.

  4. Wafer bonded epitaxial templates for silicon heterostructures

    NASA Technical Reports Server (NTRS)

    Atwater, Harry A., Jr. (Inventor); Zahler, James M. (Inventor); Morral, Anna Fontcubera I (Inventor)

    2008-01-01

    A heterostructure device layer is epitaxially grown on a virtual substrate, such as an InP/InGaAs/InP double heterostructure. A device substrate and a handle substrate form the virtual substrate. The device substrate is bonded to the handle substrate and is composed of a material suitable for fabrication of optoelectronic devices. The handle substrate is composed of a material suitable for providing mechanical support. The mechanical strength of the device and handle substrates is improved and the device substrate is thinned to leave a single-crystal film on the virtual substrate such as by exfoliation of a device film from the device substrate. An upper portion of the device film exfoliated from the device substrate is removed to provide a smoother and less defect prone surface for an optoelectronic device. A heterostructure is epitaxially grown on the smoothed surface in which an optoelectronic device may be fabricated.

  5. Fatigue life prediction of bonded primary joints

    NASA Technical Reports Server (NTRS)

    Knauss, J. F.

    1979-01-01

    The validation of a proposed fatigue life prediction methodology was sought through the use of aluminum butt and scarf joint and graphite/epoxy butt joint specimens in a constant amplitude fatigue environment. The structural properties of the HYSOL 9313 adhesive system were obtained by mechanical test of molded heat adhesive specimens. Aluminum contoured double cantilever beam specimens were used to generate crack velocity versus stress intensity factor data. The specific objectives were: (1) to ascertain the feasibility of predicting fatigue failure of an adhesive in a primary bonded composite structure by incorporating linear elastic crack growth behavior; and (2) to ascertain if acoustic emission and/or compliance measurement techniques can be used to detect flaws.

  6. Wafer bonded epitaxial templates for silicon heterostructures

    DOEpatents

    Atwater, Jr., Harry A.; Zahler, James M.; Morral, Anna Fontcubera I

    2008-03-11

    A heterostructure device layer is epitaxially grown on a virtual substrate, such as an InP/InGaAs/InP double heterostructure. A device substrate and a handle substrate form the virtual substrate. The device substrate is bonded to the handle substrate and is composed of a material suitable for fabrication of optoelectronic devices. The handle substrate is composed of a material suitable for providing mechanical support. The mechanical strength of the device and handle substrates is improved and the device substrate is thinned to leave a single-crystal film on the virtual substrate such as by exfoliation of a device film from the device substrate. An upper portion of the device film exfoliated from the device substrate is removed to provide a smoother and less defect prone surface for an optoelectronic device. A heterostructure is epitaxially grown on the smoothed surface in which an optoelectronic device may be fabricated.

  7. Photoinduced hydrogen-bonding dynamics.

    PubMed

    Chu, Tian-Shu; Xu, Jinmei

    2016-09-01

    Hydrogen bonding dynamics has received extensive research attention in recent years due to the significant advances in femtolaser spectroscopy experiments and quantum chemistry calculations. Usually, photoexcitation would cause changes in the hydrogen bonding formed through the interaction between hydrogen donor and acceptor molecules on their ground electronic states, and such transient strengthening or weakening of hydrogen bonding could be crucial for the photophysical transformations and the subsequent photochemical reactions that occurred on a time scale from tens of femtosecond to a few nanoseconds. In this article, we review the combined experimental and theoretical studies focusing on the ultrafast electronic and vibrational hydrogen bonding dynamics. Through these studies, new mechanisms and proposals and common rules have been put forward to advance our understanding of the hydrogen bondings dynamics in a variety of important photoinduced phenomena like photosynthesis, dual fluorescence emission, rotational reorientation, excited-state proton transfer and charge transfer processes, chemosensor fluorescence sensing, rearrangements of the hydrogen-bond network including forming and breaking hydrogen bond in water. Graphical Abstract We review the recent advances on exploring the photoinduced hydrogen bonding dynamics in solutions through a joint approach of laser spectroscopy and theoretical calculation. The reviewed studies have put forward a new mechanism, new proposal, and new rule for a variety of photoinduced phenomena such as photosynthesis, dual fluorescence emission, rotational reorientation, excited-state proton transfer and charge transfer, chemosensor fluorescence sensing, and rearrangements of the hydrogen-bond network in water. PMID:27491849

  8. Bond failure patterns in vivo.

    PubMed

    Linklater, Rognvald A; Gordon, Peter H

    2003-05-01

    The aim of this study was to identify the presence and pattern of differences in bond failure between tooth types in vivo when bonding orthodontic brackets with the no-mix orthodontic composite adhesive Right-On. In vivo bond failure for a single operator was recorded for 108 consecutive patients undergoing fixed-appliance orthodontic treatment. The bond failure data were analyzed by survival analysis. Time to first failure or censorship was recorded for each bonded attachment. Overall failure in the sample matched previous clinical studies but conflicted with previous ex vivo bond strength data. Mandibular and posterior teeth had significantly higher rates of failure than did maxillary and anterior teeth. The type of attachment used had a significant effect on bond survival. The results of this study confirm that in vivo bond survival is not uniform for all teeth. Comparisons between the findings of this study and those of a previous ex vivo study by the same authors failed to validate ex vivo bond strength testing as clinically relevant.

  9. Insights into the Electronic Structure of Ozone and Sulfur Dioxide from Generalized Valence Bond Theory: Bonding in O3 and SO2.

    PubMed

    Takeshita, Tyler Y; Lindquist, Beth A; Dunning, Thom H

    2015-07-16

    There are many well-known differences in the physical and chemical properties of ozone (O3) and sulfur dioxide (SO2). O3 has longer and weaker bonds than O2, whereas SO2 has shorter and stronger bonds than SO. The O-O2 bond is dramatically weaker than the O-SO bond, and the singlet-triplet gap in SO2 is more than double that in O3. In addition, O3 is a very reactive species, while SO2 is far less so. These disparities have been attributed to variations in the amount of diradical character in the two molecules. In this work, we use generalized valence bond (GVB) theory to characterize the electronic structure of ozone and sulfur dioxide, showing O3 does indeed possess significant diradical character, whereas SO2 is effectively a closed shell molecule. The GVB results provide critical insights into the genesis of the observed difference in these two isoelectronic species. SO2 possesses a recoupled pair bond dyad in the a"(π) system, resulting in SO double bonds. The π system of O3, on the other hand, has a lone pair on the central oxygen atom plus a pair of electrons in orbitals on the terminal oxygen atoms that give rise to a relatively weak π interaction.

  10. 30 CFR 281.33 - Bonds and bonding requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Bonds and bonding requirements. 281.33 Section 281.33 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF MINERALS OTHER THAN OIL, GAS, AND SULPHUR IN THE OUTER CONTINENTAL SHELF Financial Considerations §...

  11. Multidimensional period doubling structures.

    PubMed

    Lee, Jeong Yup; Flom, Dvir; Ben-Abraham, Shelomo I

    2016-05-01

    This paper develops the formalism necessary to generalize the period doubling sequence to arbitrary dimension by straightforward extension of the substitution and recursion rules. It is shown that the period doubling structures of arbitrary dimension are pure point diffractive. The symmetries of the structures are pointed out. PMID:27126116

  12. 29 CFR 2580.412-19 - Term of the bond, discovery period, other bond clauses.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SECURITY ACT OF 1974 TEMPORARY BONDING RULES General Bond Rules § 2580.412-19 Term of the bond, discovery... 29 Labor 9 2010-07-01 2010-07-01 false Term of the bond, discovery period, other bond clauses... new bond must be obtained each year. There is nothing in the Act that prohibits a bond for a...

  13. Pauling bond strength, bond length and electron density distribution

    SciTech Connect

    Gibbs, Gerald V.; Ross, Nancy L.; Cox, David F.; Rosso, Kevin M.; Iversen, Bo B.; Spackman, M. A.

    2014-01-18

    A power law regression equation, = 1.46(<ρ(rc)>/r)-0.19, connecting the average experimental bond lengths, , with the average accumulation of the electron density at the bond critical point, <ρ(rc)>, between bonded metal M and oxygen atoms, determined at ambient conditions for oxide crystals, where r is the row number of the M atom, is similar to the regression equation R(M-O) = 1.39(ρ(rc)/r)-0.21 determined for three perovskite crystals for pressures as high as 80 GPa. The two equations are also comparable with those, = 1.43(/r)-0.21, determined for a large number of oxide crystals at ambient conditions and = 1.39(/r)-0.22, determined for geometry optimized hydroxyacid molecules, that connect the bond lengths to the average Pauling electrostatic bond strength, , for the M-O bonded interactions. On the basis of the correspondence between the two sets of equations connecting ρ(rc) and the Pauling bond strength s with bond length, it appears that Pauling’s simple definition of bond strength closely mimics the accumulation of the electron density between bonded pairs of atoms. The similarity of the expressions for the crystals and molecules is compelling evidence that the M-O bonded interactions for the crystals and molecules 2 containing the same bonded interactions are comparable. Similar expressions, connecting bond lengths and bond strength, have also been found to hold for fluoride, nitride and sulfide molecules and crystals. The Brown-Shannon bond valence, σ, power law expression σ = [R1/(R(M-O)]N that has found wide use in crystal chemistry, is shown to be connected to a more universal expression determined for oxides and the perovskites, <ρ(rc)> = r[(1.41)/]4.76, demonstrating that the bond valence for a bonded interaction is likewise closely connected to the accumulation of the electron density between the bonded atoms. Unlike the Brown-Shannon expression, it is universal in that it holds for the M

  14. Microwave bonding of MEMS component

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B. (Inventor); Mai, John D. (Inventor); Jackson, Henry W. (Inventor); Budraa, Nasser K. (Inventor); Pike, William T. (Inventor)

    2005-01-01

    Bonding of MEMs materials is carried out using microwave. High microwave absorbing films are placed within a microwave cavity, and excited to cause selective heating in the skin of the material. This causes heating in one place more than another. Thereby minimizing the effects of the bonding microwave energy.

  15. Coulombic Models in Chemical Bonding.

    ERIC Educational Resources Information Center

    Sacks, Lawrence J.

    1986-01-01

    Describes a bonding theory which provides a framework for the description of a wide range of substances and provides quantitative information of remarkable accuracy with far less computational effort than that required of other approaches. Includes applications, such as calculation of bond energies of two binary hydrides (methane and diborane).…

  16. Computational Chemistry of Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Phillips, Donald H.

    1999-01-01

    This investigation is intended to determine the electrical mechanical, and chemical properties of adhesive bonds at the molecular level. The initial determinations will be followed by investigations of the effects of environmental effects on the chemistry and properties of the bond layer.

  17. Social bonding: regulation by neuropeptides

    PubMed Central

    Lieberwirth, Claudia; Wang, Zuoxin

    2014-01-01

    Affiliative social relationships (e.g., among spouses, family members, and friends) play an essential role in human society. These relationships affect psychological, physiological, and behavioral functions. As positive and enduring bonds are critical for the overall well-being of humans, it is not surprising that considerable effort has been made to study the neurobiological mechanisms that underlie social bonding behaviors. The present review details the involvement of the nonapeptides, oxytocin (OT), and arginine vasopressin (AVP), in the regulation of social bonding in mammals including humans. In particular, we will discuss the role of OT and AVP in the formation of social bonds between partners of a mating pair as well as between parents and their offspring. Furthermore, the role of OT and AVP in the formation of interpersonal bonding involving trust is also discussed. PMID:25009457

  18. Strained-bond semiconductors

    NASA Astrophysics Data System (ADS)

    Dow, John D.

    1994-05-01

    Theories of strained-bond semiconductors and superconductors have been developed that promise to have significant impact on future electronic devices of interest to the Air Force. These include: (1) development of a theory of high-temperature superconductivity based on the idea of strained-layer superlattices, (2) elucidation of the physics of doping in Type-2 semiconductor superlattices, which is now central to the development of high-speed field-effect transistors, (3) a theory of dimerization and reconstruction on (001) semiconductor surfaces, (4) theory of Mobius transforms as applied to physics and remote sensing, (5) new understanding of how defects affect the vibrational properties of semiconductors, (6) new methods of efficiently computing the trajectories of atoms in semiconductors by a priori molecular dynamics, (7) elucidation of the criteria affecting quantum-well luminescence from Si, (8) models of the effects of vacancies in large-gap Al(x)Ga(1-x)N alloys, (9) physics of rare-earth-doped silicon, (10) models of Co adsorption to silicon surfaces, (11) theories of how defects affect the properties of large band-gap superlattices, and (12) models of the effects of electronic structure on the properties of semiconductors.

  19. Hydrostatic intrapulpal pressure and bond strength of bonding systems.

    PubMed

    Prati, C; Pashley, D H; Montanari, G

    1991-01-01

    The purpose of this study was to evaluate the effect of intra-pulpal pressure on shear bond strength of three light-cured glass-ionomer cements (GC lining cement, Vitrabond, and Zionomer) and four dentin bonding agents [Gluma/Scotchbond, Scotchbond 2, MBL, and Clearfil Photo Bond]. Buccal dentin surfaces were prepared just below the DEJ by means of a diamond bur. Dentin treatments were made for Zionomer (Zionomer conditioner), Scotchbond 2 (Scotchprep), MBL (10-3 solution), Clearfil PB (H3PO4), GC lining cement (Polyacrylic acid), and Gluma/Scotchbond (EDTA). Resin composites were inserted into tubes, positioned on dentin, cured, tested after five min or 24 h, and compared with samples bonded and stored under an intra-pulpal pressure of 36 cm of saline. After 24 h in superficial dentin, intrapulpal pressure reduced the bond strength only in MBL, Scotchbond 2, and Zionomer. Clearfil PB bond strength was increased, while Vitrabond, GC lining cement, and Gluma/Scotchbond were unaffected by the presence of pulpal pressure. However, in deep dentin, Scotchbond 2 and Clearfil PB shear bond strengths were significantly reduced by storage in the presence of 36-cm H2O pulpal pressure. Only Vitrabond remained unaffected by pulpal pressure in deep dentin. PMID:1901813

  20. 27 CFR 25.95 - New bond.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false New bond. 25.95 Section 25... TREASURY LIQUORS BEER Bonds and Consents of Surety § 25.95 New bond. The appropriate TTB officer may at any time, at his or her discretion, require a new bond. A new bond is required immediately in the case...

  1. 27 CFR 25.95 - New bond.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false New bond. 25.95 Section 25... TREASURY LIQUORS BEER Bonds and Consents of Surety § 25.95 New bond. The appropriate TTB officer may at any time, at his or her discretion, require a new bond. A new bond is required immediately in the case...

  2. 27 CFR 24.153 - Strengthening bonds.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Strengthening bonds. In any instance where the penal sum of the bond on file becomes insufficient, the principal shall either give a strengthening bond with the same surety to attain a sufficient penal sum or give a... limiting the amount of either bond to less than its full penal sum. Strengthening bonds will show...

  3. 27 CFR 19.246 - Strengthening bonds.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Strengthening bonds. In all cases when the penal sum of any bond becomes insufficient, the principal shall either give a strengthening bond with the same surety to attain a sufficient penal sum, or give a new... amount of any bond to less than its full penal sum. Strengthening bonds shall show the current date...

  4. Atomic contributions to bond dissociation energies in aliphatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Matta, Chérif F.; Castillo, Norberto; Boyd, Russell J.

    2006-11-01

    This paper explores the atomic contributions to the electronic vibrationless bond dissociation enthalpy (BDE) at 0K of the central C-C bond in straight-chain alkanes (CnH2n+2) and trans-alkenes (CnH2n) with an even number of carbon atoms, where n =2, 4, 6, 8. This is achieved using the partitioning of the total molecular energy according to the quantum theory of atoms in molecules by comparing the atomic energies in the intact molecule and its dissociation products. The study is conducted at the MP2(full)/6-311++G(d,p) level of theory. It is found that the bulk of the electronic energy necessary to sever a single C-C bond is not supplied by these two carbon atoms (the α-carbons) but instead by the atoms directly bonded to them. Thus, the burden of the electronic part of the BDE is primarily carried by the two hydrogens attached to each of the α-carbons and by the β-carbons. The effect drops off rapidly with distance along the hydrocarbon chain. The situation is more complex in the case of the double bond in alkenes, since here the burden is shared between the α-carbons as well as the atoms directly bonded to them, namely, again the α-hydrogens and the β-carbons. These observations may lead to a better understanding of the bond dissociation process and should be taken into account when locally dense basis sets are introduced to improve the accuracy of BDE calculations.

  5. Method of bonding

    DOEpatents

    Saller, deceased, Henry A.; Hodge, Edwin S.; Paprocki, Stanley J.; Dayton, Russell W.

    1987-12-01

    1. A method of making a fuel-containing structure for nuclear reactors, comprising providing an assembly comprising a plurality of fuel units; each fuel unit consisting of a core plate containing thermal-neutron-fissionable material, sheets of cladding metal on its bottom and top surfaces, said cladding sheets being of greater width and length than said core plates whereby recesses are formed at the ends and sides of said core plate, and end pieces and first side pieces of cladding metal of the same thickness as the core plate positioned in said recesses, the assembly further comprising a plurality of second side pieces of cladding metal engaging the cladding sheets so as to space the fuel units from one another, and a plurality of filler plates of an acid-dissolvable nonresilient material whose melting point is above 2000.degree. F., each filler plate being arranged between a pair of said second side pieces and the cladding plates of two adjacent fuel units, the filler plates having the same thickness as the second side pieces; the method further comprising enclosing the entire assembly in an envelope; evacuating the interior of the entire assembly through said envelope; applying inert gas under a pressure of about 10,000 psi to the outside of said envelope while at the same time heating the assembly to a temperature above the flow point of the cladding metal but below the melting point of any material of the assembly, whereby the envelope is pressed against the assembly and integral bonds are formed between plates, sheets, first side pieces, and end pieces and between the sheets and the second side pieces; slowly cooling the assembly to room temperature; removing the envelope; and dissolving the filler plates without attacking the cladding metal.

  6. Hydroperoxides as Hydrogen Bond Donors

    NASA Astrophysics Data System (ADS)

    Møller, Kristian H.; Tram, Camilla M.; Hansen, Anne S.; Kjaergaard, Henrik G.

    2016-06-01

    Hydroperoxides are formed in the atmosphere following autooxidation of a wide variety of volatile organics emitted from both natural and anthropogenic sources. This raises the question of whether they can form hydrogen bonds that facilitate aerosol formation and growth. Using a combination of Fourier transform infrared spectroscopy, FT-IR, and ab initio calculations, we have compared the gas phase hydrogen bonding ability of tert-butylhydroperoxide (tBuOOH) to that of tert-butanol (tBuOH) for a series of bimolecular complexes with different acceptors. The hydrogen bond acceptor atoms studied are nitrogen, oxygen, phosphorus and sulphur. Both in terms of calculated redshifts and binding energies (BE), our results suggest that hydroperoxides are better hydrogen bond donors than the corresponding alcohols. In terms of hydrogen bond acceptor ability, we find that nitrogen is a significantly better acceptor than the other three atoms, which are of similar strength. We observe a similar trend in hydrogen bond acceptor ability with other hydrogen bond donors including methanol and dimethylamine.

  7. Tensile Bond Strength of Latex-Modified Bonded Concrete Overlays

    NASA Astrophysics Data System (ADS)

    Dubois, Cameron; Ramseyer, Chris

    2010-10-01

    The tensile bond strength of bonded concrete overlays was tested using the in-situ pull-off method described in ASTM C 1583 with the goal of determining whether adding latex to the mix design increases bond strength. One slab of ductile concrete (f'c > 12,000 psi) was cast with one half tined, i.e. roughened, and one half steel-troweled, i.e. smooth. The slab surface was sectioned off and overlay mixtures containing different latex contents cast in each section. Partial cores were drilled perpendicular to the surface through the overlay into the substrate. A tensile loading device applied a direct tensile load to each specimen and the load was increased until failure occurred. The tensile bond strength was then calculated for comparison between the specimens.

  8. Hydrogen bonded arrays: the power of multiple hydrogen bonds.

    PubMed

    Shokri, Alireza; Schmidt, Jacob; Wang, Xue-Bin; Kass, Steven R

    2012-02-01

    Hydrogen bond interactions in small covalent model compounds (i.e., deprotonated polyhydroxy alcohols) were measured by negative ion photoelectron spectroscopy. The experimentally determined vertical and adiabatic electron detachment energies for (HOCH(2)CH(2))(2)CHO(-)(2a), (HOCH(2)CH(2))(3)CO(-) (3a), and (HOCH(2)CH(2)CH(OH)CH(2))(3)CO(-) (4a)reveal that hydrogen-bonded networks can provide enormous stabilizations and that a single charge center not only can be stabilized by up to three hydrogen bonds but also can increase the interaction energy between noncharged OH groups by 5.8 kcal mol(-1) or more per hydrogen bond. This can lead to pK(a) values that are very different from those in water and can provide some of the impetus for catalytic processes.

  9. Improved Method for the Diimide Reduction of Multiple Bonds on Solid-Supported Substrates

    PubMed Central

    Buszek, Keith R.; Brown, Neil

    2009-01-01

    A mild and improved method for reducing multiple bonds on various resins with diimide is described. The simple procedure readily generates diimide from 2-nitrobenzenesulfonohydrazide and triethylamine at room temperature. A number of representative multiple bonds in various steric and electronic environments were examined, including polar double bonds such as carbonyl and azo, for ease and selectivity of reduction. A general trend of reactivity was identified which revealed, inter alia, that terminal olefins, 1,2-disubstituted olefins, electron-poor olefins, and terminal alkynes were the most easily reduced. PMID:17367188

  10. Molecular theory for the phase equilibria and cluster distribution of associating fluids with small bond angles.

    PubMed

    Marshall, Bennett D; Chapman, Walter G

    2013-08-01

    We develop a new theory for associating fluids with multiple association sites. The theory accounts for small bond angle effects such as steric hindrance, ring formation, and double bonding. The theory is validated against Monte Carlo simulations for the case of a fluid of patchy colloid particles with three patches and is found to be very accurate. Once validated, the theory is applied to study the phase diagram of a fluid composed of three patch colloids. It is found that bond angle has a significant effect on the phase diagram and the very existence of a liquid-vapor transition.

  11. Double Degenerate Binary Systems

    SciTech Connect

    Yakut, K.

    2011-09-21

    In this study, angular momentum loss via gravitational radiation in double degenerate binary (DDB)systems (NS + NS, NS + WD, WD + WD, and AM CVn) is studied. Energy loss by gravitational waves has been estimated for each type of systems.

  12. Method for vacuum fusion bonding

    DOEpatents

    Ackler, Harold D.; Swierkowski, Stefan P.; Tarte, Lisa A.; Hicks, Randall K.

    2001-01-01

    An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

  13. Fusion bonding and alignment fixture

    DOEpatents

    Ackler, Harold D.; Swierkowski, Stefan P.; Tarte, Lisa A.; Hicks, Randall K.

    2000-01-01

    An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all the components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

  14. Fast and accurate predictions of covalent bonds in chemical space.

    PubMed

    Chang, K Y Samuel; Fias, Stijn; Ramakrishnan, Raghunathan; von Lilienfeld, O Anatole

    2016-05-01

    We assess the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among molecules. We have investigated σ bonding to hydrogen, as well as σ and π bonding between main-group elements, occurring in small sets of iso-valence-electronic molecules with elements drawn from second to fourth rows in the p-block of the periodic table. Numerical evidence suggests that first order Taylor expansions of covalent bonding potentials can achieve high accuracy if (i) the alchemical interpolation is vertical (fixed geometry), (ii) it involves elements from the third and fourth rows of the periodic table, and (iii) an optimal reference geometry is used. This leads to near linear changes in the bonding potential, resulting in analytical predictions with chemical accuracy (∼1 kcal/mol). Second order estimates deteriorate the prediction. If initial and final molecules differ not only in composition but also in geometry, all estimates become substantially worse, with second order being slightly more accurate than first order. The independent particle approximation based second order perturbation theory performs poorly when compared to the coupled perturbed or finite difference approach. Taylor series expansions up to fourth order of the potential energy curve of highly symmetric systems indicate a finite radius of convergence, as illustrated for the alchemical stretching of H2 (+). Results are presented for (i) covalent bonds to hydrogen in 12 molecules with 8 valence electrons (CH4, NH3, H2O, HF, SiH4, PH3, H2S, HCl, GeH4, AsH3, H2Se, HBr); (ii) main-group single bonds in 9 molecules with 14 valence electrons (CH3F, CH3Cl, CH3Br, SiH3F, SiH3Cl, SiH3Br, GeH3F, GeH3Cl, GeH3Br); (iii) main-group double bonds in 9 molecules with 12 valence electrons (CH2O, CH2S, CH2Se, SiH2O, SiH2S, SiH2Se, GeH2O, GeH2S, GeH2Se); (iv) main-group triple bonds in 9 molecules with 10 valence electrons (HCN, HCP, HCAs, HSiN, HSi

  15. Fast and accurate predictions of covalent bonds in chemical space

    NASA Astrophysics Data System (ADS)

    Chang, K. Y. Samuel; Fias, Stijn; Ramakrishnan, Raghunathan; von Lilienfeld, O. Anatole

    2016-05-01

    We assess the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among molecules. We have investigated σ bonding to hydrogen, as well as σ and π bonding between main-group elements, occurring in small sets of iso-valence-electronic molecules with elements drawn from second to fourth rows in the p-block of the periodic table. Numerical evidence suggests that first order Taylor expansions of covalent bonding potentials can achieve high accuracy if (i) the alchemical interpolation is vertical (fixed geometry), (ii) it involves elements from the third and fourth rows of the periodic table, and (iii) an optimal reference geometry is used. This leads to near linear changes in the bonding potential, resulting in analytical predictions with chemical accuracy (˜1 kcal/mol). Second order estimates deteriorate the prediction. If initial and final molecules differ not only in composition but also in geometry, all estimates become substantially worse, with second order being slightly more accurate than first order. The independent particle approximation based second order perturbation theory performs poorly when compared to the coupled perturbed or finite difference approach. Taylor series expansions up to fourth order of the potential energy curve of highly symmetric systems indicate a finite radius of convergence, as illustrated for the alchemical stretching of H 2+ . Results are presented for (i) covalent bonds to hydrogen in 12 molecules with 8 valence electrons (CH4, NH3, H2O, HF, SiH4, PH3, H2S, HCl, GeH4, AsH3, H2Se, HBr); (ii) main-group single bonds in 9 molecules with 14 valence electrons (CH3F, CH3Cl, CH3Br, SiH3F, SiH3Cl, SiH3Br, GeH3F, GeH3Cl, GeH3Br); (iii) main-group double bonds in 9 molecules with 12 valence electrons (CH2O, CH2S, CH2Se, SiH2O, SiH2S, SiH2Se, GeH2O, GeH2S, GeH2Se); (iv) main-group triple bonds in 9 molecules with 10 valence electrons (HCN, HCP, HCAs, HSiN, HSi

  16. Fast and accurate predictions of covalent bonds in chemical space.

    PubMed

    Chang, K Y Samuel; Fias, Stijn; Ramakrishnan, Raghunathan; von Lilienfeld, O Anatole

    2016-05-01

    We assess the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among molecules. We have investigated σ bonding to hydrogen, as well as σ and π bonding between main-group elements, occurring in small sets of iso-valence-electronic molecules with elements drawn from second to fourth rows in the p-block of the periodic table. Numerical evidence suggests that first order Taylor expansions of covalent bonding potentials can achieve high accuracy if (i) the alchemical interpolation is vertical (fixed geometry), (ii) it involves elements from the third and fourth rows of the periodic table, and (iii) an optimal reference geometry is used. This leads to near linear changes in the bonding potential, resulting in analytical predictions with chemical accuracy (∼1 kcal/mol). Second order estimates deteriorate the prediction. If initial and final molecules differ not only in composition but also in geometry, all estimates become substantially worse, with second order being slightly more accurate than first order. The independent particle approximation based second order perturbation theory performs poorly when compared to the coupled perturbed or finite difference approach. Taylor series expansions up to fourth order of the potential energy curve of highly symmetric systems indicate a finite radius of convergence, as illustrated for the alchemical stretching of H2 (+). Results are presented for (i) covalent bonds to hydrogen in 12 molecules with 8 valence electrons (CH4, NH3, H2O, HF, SiH4, PH3, H2S, HCl, GeH4, AsH3, H2Se, HBr); (ii) main-group single bonds in 9 molecules with 14 valence electrons (CH3F, CH3Cl, CH3Br, SiH3F, SiH3Cl, SiH3Br, GeH3F, GeH3Cl, GeH3Br); (iii) main-group double bonds in 9 molecules with 12 valence electrons (CH2O, CH2S, CH2Se, SiH2O, SiH2S, SiH2Se, GeH2O, GeH2S, GeH2Se); (iv) main-group triple bonds in 9 molecules with 10 valence electrons (HCN, HCP, HCAs, HSiN, HSi

  17. Mechanics and fracture of hybrid material interface bond

    NASA Astrophysics Data System (ADS)

    Wang, Jialai

    Considering current and future applications of hybrid materials and structures in civil engineering, the strength and durability of interface bond between the conventional materials and composites are critical to development of such products. Conventional methods mostly used for analysis of isotropic materials may not be well suitable or accurate enough for a system made of anisotropic materials with relatively low shear stiffness. A need exists for developing more accurate and explicit analytical solutions for hybrid material interface analysis and related novel experimental characterization techniques. In this study, a combined analytical and experimental approach to characterize hybrid material interface bond is developed. Using a shear deformable plate theory and an elastic interface model, a mechanics approach for interface analysis of hybrid material bond under general loading is first proposed. The resulting closed-form solution of interface stress distribution is used to compute strain energy release rate (SERB) and stress intensity factor (SIF) of the interface with or without adhesive bond. This approach is then extended to delamination of composite structures under generic loading conditions. Second, novel experimental approaches for characterization of hybrid material bonded interfaces are presented. To account for the crack tip deformations, a tapered beam on elastic foundation (TBEF) is developed. Based on the TBEF model, analysis and design of two novel fracture specimens, Tapered Double Cantilever Beam (TDCB) and Tapered End Notched Flexure (TENF), are proposed, and they are effectively used in fracture toughness tests of bonded interface under Mode-I and Mode-II loadings, respectively. A constant compliance rate change over certain crack length range is achieved for the TDCB and TENF specimens, and it alleviates the necessity of experimental compliance calibration tests. The fracture toughness data obtained from the experiments are useful to

  18. Locally measuring the adhesion of InP directly bonded on sub-100 nm patterned Si.

    PubMed

    Pantzas, K; Le Bourhis, E; Patriarche, G; Troadec, D; Beaudoin, G; Itawi, A; Sagnes, I; Talneau, A

    2016-03-18

    A nano-scale analogue to the double cantilever experiment that combines instrumented nano-indentation and atomic force microscopy is used to precisely and locally measure the adhesion of InP bonded on sub-100 nm patterned Si using oxide-free or oxide-mediated bonding. Surface-bonding energies of 0.548 and 0.628 J m(-2), respectively, are reported. These energies correspond in turn to 51% and 57% of the surface bonding energy measured in unpatterned regions on the same samples, i.e. the proportion of unetched Si surface in the patterned areas. The results show that bonding on patterned surfaces can be as robust as on unpatterned surfaces, provided care is taken with the post-patterning surface preparation process and, therefore, open the path towards innovative designs that include patterns embedded in the Si guiding layer of hybrid III-V/Si photonic integrated circuits. PMID:26878333

  19. Locally measuring the adhesion of InP directly bonded on sub-100 nm patterned Si

    NASA Astrophysics Data System (ADS)

    Pantzas, K.; Le Bourhis, E.; Patriarche, G.; Troadec, D.; Beaudoin, G.; Itawi, A.; Sagnes, I.; Talneau, A.

    2016-03-01

    A nano-scale analogue to the double cantilever experiment that combines instrumented nano-indentation and atomic force microscopy is used to precisely and locally measure the adhesion of InP bonded on sub-100 nm patterned Si using oxide-free or oxide-mediated bonding. Surface-bonding energies of 0.548 and 0.628 J m-2, respectively, are reported. These energies correspond in turn to 51% and 57% of the surface bonding energy measured in unpatterned regions on the same samples, i.e. the proportion of unetched Si surface in the patterned areas. The results show that bonding on patterned surfaces can be as robust as on unpatterned surfaces, provided care is taken with the post-patterning surface preparation process and, therefore, open the path towards innovative designs that include patterns embedded in the Si guiding layer of hybrid III-V/Si photonic integrated circuits.

  20. Average bond energies between boron and elements of the fourth, fifth, sixth, and seventh groups of the periodic table

    NASA Technical Reports Server (NTRS)

    Altshuller, Aubrey P

    1955-01-01

    The average bond energies D(gm)(B-Z) for boron-containing molecules have been calculated by the Pauling geometric-mean equation. These calculated bond energies are compared with the average bond energies D(exp)(B-Z) obtained from experimental data. The higher values of D(exp)(B-Z) in comparison with D(gm)(B-Z) when Z is an element in the fifth, sixth, or seventh periodic group may be attributed to resonance stabilization or double-bond character.

  1. 27 CFR 19.245 - Bonds and penal sums of bonds.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bonds and penal sums of... Bonds and penal sums of bonds. The bonds, and the penal sums thereof, required by this subpart, are as follows: Penal Sum Type of bond Basis Minimum Maximum (a) Operations bond: (1) One plant bond—...

  2. 27 CFR 25.94 - Strengthening bonds.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Requirement. When the penal sum of the brewer's bond (calculated as provided in § 25.93) in effect is not... strengthening bond in sufficient penal sum if the surety is the same as on the bond in effect. If the surety is... bond may not in any way release a former bond or limit a bond to less than the full penal sum. (c)...

  3. Evaluation of Microleakage of Dental Composites Using Bonding Agents with Different Placement Techniques: An Invitro Study

    PubMed Central

    Kaur, Jasvir; Garg, Deepanshu; Sunil, MK; Sawhney, Anshul; Malaviya, Neha; Tripathi, Shashank; Arora, Saloni

    2015-01-01

    Background The rapid progress of adhesive dentistry over the past decade has been attributed to the significant advances in dentin bonding technology. Requirements of an ideal bonding agent are quite similar to those indicated by Buonocore despite of many improvements. As we enter the new millennium, it is important for us to examine the past. Objective To evaluate the microleakage of three bonding agents namely Single Bond, Prime & Bond NT and Excite using different composite materials namely Z100, Spectrum TPH, Tetric with three different placement techniques. Materials and Methods Fifty four extracted human premolars were taken & divided into 9 groups depending upon application of bonding agents followed by composite restorations. Specimens were subjected to thermal cycling at 60C, 370C, 540C and again at 370C & then placed in 10 ml each of freshly prepared 50% silver nitrate solution for 2 hour in darkness, washed & placed under sun light for 24 hours. The sectioned specimens were then observed under stereomicroscope to detect microleakage. Results On comparing the mean microleakage scores among the three groups, maximum microleakage scores have been obtained when no bonding agent was used, while least microleakage scores were obtained with double coat of bonding agent. Conclusion The present study suggests that the placement of bonding agent technique before composite restoration can be effective to limit the microleakage at the tooth restoration interface. PMID:26501015

  4. Modified bonded bridge space maintainer.

    PubMed

    Liegeois, F; Limme, M

    1999-01-01

    The premature loss of primary teeth can create the need for space maintenance and restoration of function. This article presents a fixed bonded space maintainer, which allows space to be maintained with economy of dental tissues.

  5. Bond percolation in higher dimensions

    NASA Astrophysics Data System (ADS)

    Corwin, Eric I.; Stinchcombe, Robin; Thorpe, M. F.

    2013-07-01

    We collect results for bond percolation on various lattices from two to fourteen dimensions that, in the limit of large dimension d or number of neighbors z, smoothly approach a randomly diluted Erdős-Rényi graph. We include results on bond-diluted hypersphere packs in up to nine dimensions, which show the mean coordination, excess kurtosis, and skewness evolving smoothly with dimension towards the Erdős-Rényi limit.

  6. Method to improve commercial bonded SOI material

    DOEpatents

    Maris, Humphrey John; Sadana, Devendra Kumar

    2000-07-11

    A method of improving the bonding characteristics of a previously bonded silicon on insulator (SOI) structure is provided. The improvement in the bonding characteristics is achieved in the present invention by, optionally, forming an oxide cap layer on the silicon surface of the bonded SOI structure and then annealing either the uncapped or oxide capped structure in a slightly oxidizing ambient at temperatures greater than 1200.degree. C. Also provided herein is a method for detecting the bonding characteristics of previously bonded SOI structures. According to this aspect of the present invention, a pico-second laser pulse technique is employed to determine the bonding imperfections of previously bonded SOI structures.

  7. Hydrogen bond templated 1:1 macrocyclization through an olefin metathesis/hydrogenation sequence.

    PubMed

    Trita, Andrada Stefania; Roisnel, Thierry; Mongin, Florence; Chevallier, Floris

    2013-07-19

    The construction of pyridine-containing macrocyclic architectures using a nonmetallic template is described. 4,6-Dichlororesorcinol was used as an exotemplate to self-organize two aza-heterocyclic units by OH···N hydrogen bonds. Subsequent sequential double olefin metathesis/hydrogenation reactions employing a single ruthenium-alkylidene precatalyst open access to macrocyclic molecules. PMID:23829609

  8. Hydrogen bond templated 1:1 macrocyclization through an olefin metathesis/hydrogenation sequence.

    PubMed

    Trita, Andrada Stefania; Roisnel, Thierry; Mongin, Florence; Chevallier, Floris

    2013-07-19

    The construction of pyridine-containing macrocyclic architectures using a nonmetallic template is described. 4,6-Dichlororesorcinol was used as an exotemplate to self-organize two aza-heterocyclic units by OH···N hydrogen bonds. Subsequent sequential double olefin metathesis/hydrogenation reactions employing a single ruthenium-alkylidene precatalyst open access to macrocyclic molecules.

  9. Relationship between chemical structure and supramolecular effective molarity for formation of intramolecular H-bonds.

    PubMed

    Sun, Hongmei; Hunter, Christopher A; Navarro, Cristina; Turega, Simon

    2013-09-01

    Effective molarity (EM) is a key parameter that determines the efficiency of a range of supramolecular phenomena from the folding of macromolecules to multivalent ligand binding. Coordination complexes formed between zinc porphyrins equipped H-bond donor sites and pyridine ligands equipped with H-bond acceptor sites have allowed systematic quantification of EM values for the formation of intramolecular H-bonds in 240 different systems. The results provide insights into the relationship of EM to supramolecular architecture, H-bond strength, and solvent. Previous studies on ligands equipped with phosphonate diester and ether H-bond acceptors were inconclusive, but the experiments described here on ligands equipped with phosphine oxide, amide, and ester H-bond acceptors resolve these ambiguities. Chemical double-mutant cycles were used to dissect the thermodynamic contributions of individual H-bond interactions to the overall stabilities of the complexes and hence determine the values of EM, which fall in the range 1-1000 mM. Solvent has little effect on EM, and the values measured in toluene and 1,1,2,2-tetrachloroethane are similar. For H-bond acceptors that have similar geometries but different H-bond strengths (amide and ester), the values of EM are very similar. For H-bond acceptors that have different geometries but similar H-bond strengths (amide and phosphonate diester), there is little correlation between the values of EM. These results imply that supramolecular EMs are independent of solvent and intrinsic H-bond strength but depend on supramolecular architecture and geometric complementarity.

  10. Topology of electron charge density for chemical bonds from valence bond theory: a probe of bonding types.

    PubMed

    Zhang, Lixian; Ying, Fuming; Wu, Wei; Hiberty, Philippe C; Shaik, Sason

    2009-01-01

    To characterize the nature of bonding we derive the topological properties of the electron charge density of a variety of bonds based on ab initio valence bond methods. The electron density and its associated Laplacian are partitioned into covalent, ionic, and resonance components in the valence bond spirit. The analysis provides a density-based signature of bonding types and reveals, along with the classical covalent and ionic bonds, the existence of two-electron bonds in which most of the bonding arises from the covalent-ionic resonance energy, so-called charge-shift bonds. As expected, the covalent component of the Laplacian at the bond critical point is found to be largely negative for classical covalent bonds. In contrast, for charge-shift bonds, the covalent part of the Laplacian is small or positive, in agreement with the weakly attractive or repulsive character of the covalent interaction in these bonds. On the other hand, the resonance component of the Laplacian is always negative or nearly zero, and it increases in absolute value with the charge-shift character of the bond, in agreement with the decrease of kinetic energy associated with covalent-ionic mixing. A new interpretation of the topology of the total density at the bond critical point is proposed to characterize covalent, ionic, and charge-shift bonding from the density point of view.

  11. Dynamics of Double Stochastic Operators

    NASA Astrophysics Data System (ADS)

    Saburov, Mansoor

    2016-03-01

    A double stochastic operator is a generalization of a double stochastic matrix. In this paper, we study the dynamics of double stochastic operators. We give a criterion for a regularity of a double stochastic operator in terms of absences of its periodic points. We provide some examples to insure that, in general, a trajectory of a double stochastic operator may converge to any interior point of the simplex.

  12. Double Helical Fluid Containment

    NASA Astrophysics Data System (ADS)

    Lowry, Brian

    2003-11-01

    In the absence of gravity or at micro-scales, helical wires can support cylindrical volumes of fluid of infinite length, making them convenient as conduits. However, fixed contact line double helical fluid volumes have the additional property that they can be drained to zero volume without loss of stability to constant pressure disturbances. Thus the two-wire support is a convenient microgravity or micro-scale container as well as conduit. For evenly spaced wires, continuous draining of a cylindrical volume to zero is possible for double helices ranging from moderate pitch to the parallel wire case. Double helices of steeper pitch are stable as cylinders and at zero volume, but are unstable for some range of intermediate volumes. This unstable zone is very strongly dependent on the offset between the helical wires, varying rapidly for offsets other than 180 degrees. Preliminary experimental results validate the theoretical predictions.

  13. Double face sealing device

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce C. (Inventor)

    1991-01-01

    A double face sealing device for mounting between two surfaces to provide an airtight and fluid-tight seal between a closure member bearing one of the surfaces and a structure or housing bearing the other surface which extends around the opening or hatchway to be closed. The double face sealing device includes a plurality of sections or segments mounted to one of the surfaces, each having a main body portion, a pair of outwardly extending and diverging, cantilever, spring arms, and a pair of inwardly extending and diverging, cantilever, spring arms, an elastomeric cover on the distal, free, ends of the outwardly extending and diverging spring arms, and an elastomeric cover on the distal, free, ends of the inwardly extending and diverging spring arms. The double face sealing device has application or use in all environments requiring a seal, but is particularly useful to seal openings or hatchways between compartments of spacecraft or aircraft.

  14. Double Emulsion Templated Celloidosomes

    NASA Astrophysics Data System (ADS)

    Arriaga, Laura R.; Marquez, Samantha M.; Kim, Shin-Hyun; Chang, Connie; Wilking, Jim; Monroy, Francisco; Marquez, Manuel; Weitz, David A.

    2012-02-01

    We present a novel approach for fabricating celloidosomes, which represent a hollow and spherical three-dimensional self-assembly of living cells encapsulating an aqueous core. Glass- capillary microfluidics is used to generate monodisperse water-in-oil-in-water double emulsion templates using lipids as stabilizers. Such templates allow for obtaining single but also double concentric celloidosomes. In addition, after a solvent removal step the double emulsion templates turn into monodisperse lipid vesicles, whose membrane spontaneously phase separates when choosing the adequate lipid composition, providing the adequate scaffold for fabricating Janus-celloidosomes. These structures may find applications in the development of bioreactors in which the synergistic effects of two different types of cells selectively adsorbed on one of the vesicle hemispheres may be exploited.

  15. Revisting the Double Helix

    SciTech Connect

    Ha, Taekjip

    2010-12-08

    Properties of DNA double helix have been studied for over 60 years. Yet as more sensitive tools become available, fundamental assumptions in our understanding of these properties are being challenged. One such question is over the flexibility of DNA. Looping or bending of DNA on short length scales is essential for many cellular processes but it is highly controversial exactly how flexible the DNA is. Using a new, single-molecule based method, we found that DNA of lengths as short as 50 base pairs can form a circle more than 108 times faster than theoretical predictions. Another question concerns the physical principles governing the reversible, helix-coil transitions of DNA between the double helix and single strands. Using porous nanocontainers, we found that the rate of double helix formation shows an abrupt 100 fold change depending on whether there are 7 or more contiguous base pairs or not.

  16. Tracking The Double Eagle

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Last summer a trio of aeronauts made aviation history. Ben Abruzzo, Maxie Anderson and Larry Newman, all of Albuquerque, New Mexico, piloted their balloon Double Eagle I1 from Presque Isle, Maine to Miserey, France, some 50 miles from Paris. They were the first to negotiate a successful Atlantic crossing in a freeflying balloon after a score of attempts over a span of more than a century. A year earlier, Abruzzo and Anderson had made an unsuccessful try in their predecessor balloon Double Eagle. On that occasion, a NASA-developed satellite beacon helped save their lives. Carried aboard the balloon, the simple, seven-pound beacon continuously transmitted signals to NASA's Nimbus-6 satellite. Nimbus relayed the signals to monitors at Goddard Space Flight Center, enabling Goddard to compute the balloon's position. Position reports were then telephoned regularly to Double Eagle's control center at Bedford, Massachusetts. This monitoring system proved invaluable when the balloon encountered trouble several days after liftoff.

  17. Halogen bonds in crystal engineering: like hydrogen bonds yet different.

    PubMed

    Mukherjee, Arijit; Tothadi, Srinu; Desiraju, Gautam R

    2014-08-19

    The halogen bond is an attractive interaction in which an electrophilic halogen atom approaches a negatively polarized species. Short halogen atom contacts in crystals have been known for around 50 years. Such contacts are found in two varieties: type I, which is symmetrical, and type II, which is bent. Both are influenced by geometric and chemical considerations. Our research group has been using halogen atom interactions as design elements in crystal engineering, for nearly 30 years. These interactions include halogen···halogen interactions (X···X) and halogen···heteroatom interactions (X···B). Many X···X and almost all X···B contacts can be classified as halogen bonds. In this Account, we illustrate examples of crystal engineering where one can build up from previous knowledge with a focus that is provided by the modern definition of the halogen bond. We also comment on the similarities and differences between halogen bonds and hydrogen bonds. These interactions are similar because the protagonist atoms-halogen and hydrogen-are both electrophilic in nature. The interactions are distinctive because the size of a halogen atom is of consequence when compared with the atomic sizes of, for example, C, N, and O, unlike that of a hydrogen atom. Conclusions may be drawn pertaining to the nature of X···X interactions from the Cambridge Structural Database (CSD). There is a clear geometric and chemical distinction between type I and type II, with only type II being halogen bonds. Cl/Br isostructurality is explained based on a geometric model. In parallel, experimental studies on 3,4-dichlorophenol and its congeners shed light on the nature of halogen···halogen interactions and reveal the chemical difference between Cl and Br. Variable temperature studies also show differences between type I and type II contacts. In terms of crystal design, halogen bonds offer a unique opportunity in the strength, atom size and interaction gradation; this may be

  18. "Vibrational bonding": a new type of chemical bond is discovered.

    PubMed

    Rhodes, Christopher J; Macrae, Roderick M

    2015-01-01

    A long-sought but elusive new type of chemical bond, occurring on a minimum-free, purely repulsive potential energy surface, has recently been convincingly shown to be possible on the basis of high-level quantum-chemical calculations. This type of bond, termed a vibrational bond, forms because the total energy, including the dynamical energy of the nuclei, is lower than the total energy of the dissociated products, including their vibrational zero-point energy. For this to be the case, the ZPE of the product molecule must be very high, which is ensured by replacing a conventional hydrogen atom with its light isotope muonium (Mu, mass = 1/9 u) in the system Br-H-Br, a natural transition state in the reaction between Br and HBr. A paramagnetic species observed in the reaction Mu +Br2 has been proposed as a first experimental sighting of this species, but definitive identification remains challenging.

  19. Design friendly double patterning

    NASA Astrophysics Data System (ADS)

    Yesilada, Emek

    2012-03-01

    Double patterning using 193nm immersion has been adapted as the solution to enable 2x nm technology nodes until the arrival of EUV tools. As a result the past few years have seen a huge effort in creating double patterning friendly design flows. These flows have so far proposed a combination of decomposition rules at cell level and/or at placement level as well as sophisticated decomposition tools with varying density, design iteration and decomposition complexity penalties. What is more, designers have to familiarize themselves with double patterning challenges and decomposition tools. In this paper an alternative approach is presented that allows the development of dense standard cells with minimal impact on design flow due to double patterning. A real case study is done on 20nm node first metal layer where standard cells are designed without considering decomposition restrictions. The resulting layout is carefully studied in order to establish decomposition or color rules that can map the layout into two masks required for double patterning but without the need of complex coloring algorithms. Since the rules are derived from a decomposition unaware design they do not in return impose heavy restrictions on the design at the cell or placement level and show substantial density gains compared to previously proposed methods. Other key advantages are a simplified design flow without complex decomposition tools that can generate a faster time to market solution all at the same time keeping designers isolated from the challenges of the double patterning. The derived design rules highlight process development path required for design driven manufacturing.

  20. Influence of receptor flexibility on intramolecular H-bonding interactions.

    PubMed

    Sun, Hongmei; Guo, Kai; Gan, Haifeng; Li, Xin; Hunter, Christopher A

    2015-08-01

    Atropisomers of a series of zinc tetraphenyl porphyrins were synthesized and used as supramolecular receptors. Rotation around the porphyrin-meso phenyl bonds is restricted by installing ortho-chlorine substituents on the phenyl groups. The chlorine substituents allowed chromatographic separation of atropisomers, which did not interconvert at room temperature. The porphyrin meso phenyl groups were also equipped with phenol groups, which led to the formation of intramolecular H-bonds when the zinc porphyrins were bound to pyridine ligands equipped with ester or amide side arms. Binding of the pyridine ligands with the conformationally locked chloroporphyrins was compared with the corresponding unsubstituted porphyrins, which are more flexible. The association constants of 150 zinc porphyrin-pyridine complexes were measured in two different solvents, toluene and 1,1,2,2-tetrachloroethane (TCE). These association constants were then used to construct 120 chemical double mutant cycles to quantify the influence of chlorine substitution on the free energy of intramolecular H-bonds formed between the phenol side arms of the porphyrins and the ester or amide side arms of the pyridine ligands. Conformational restriction leads to increases in the stability of some complexes and decreases in the stability of others with variations in the free energy contribution due to intramolecular H-bonding of -5 to +6 kJ mol(-1).

  1. Link atom bond length effect in ONIOM excited state calculations.

    PubMed

    Caricato, Marco; Vreven, Thom; Trucks, Gary W; Frisch, Michael J

    2010-08-01

    We investigate how the choice of the link atom bond length affects an electronic transition energy calculation with the so-called our own N-layer integrated molecular orbital molecular mechanics (ONIOM) hybrid method. This follows our previous paper [M. Caricato et al., J. Chem. Phys. 131, 134105 (2009)], where we showed that ONIOM is able to accurately approximate electronic transition energies computed at a high level of theory such as the equation of motion coupled cluster singles and doubles (EOM-CCSD) method. In this study we show that the same guidelines used in ONIOM ground state calculations can also be followed in excited state calculations, and that the link atom bond length has little effect on the ONIOM energy when a sensible model system is chosen. We also suggest further guidelines for excited state calculations which can help in checking the effectiveness of the definition of the model system and controlling the noise in the calculation.

  2. Bond length, dipole moment, and harmonic frequency of CO

    NASA Technical Reports Server (NTRS)

    Barnes, Leslie A.; Liu, Bowen; Lindh, Roland

    1993-01-01

    A detailed comparison of some properties of CO is given, at the modified coupled-pair functional, single and double excitation coupled-cluster (CCSD), and CCSD(T) levels of theory (including a perturbational estimate for connected triple excitations), using a variety of basis sets. With very large one-particle basis sets, the CCSD(T) method gives excellent results for the bond distance, dipole moment, and harmonic frequency of CO. In a (6s 5p 4d 3f 2g 1h) + (1s 1p 1d) basis set, the bond distance is about 0.005a0 too large, the dipole moment about 0.005 a.u. too small, and the frequency about 6/cm too small, when compared with experimental results.

  3. Double checking: a second look

    PubMed Central

    Chreim, Samia; Forster, Alan

    2015-01-01

    Abstract Rationale, aims and objectives Double checking is a standard practice in many areas of health care, notwithstanding the lack of evidence supporting its efficacy. We ask in this study: ‘How do front line practitioners conceptualize double checking? What are the weaknesses of double checking? What alternate views of double checking could render it a more robust process?’ Method This is part of a larger qualitative study based on 85 semi‐structured interviews of health care practitioners in general internal medicine and obstetrics and neonatology; thematic analysis of the transcribed interviews was undertaken. Inductive and deductive themes are reported. Results Weaknesses in the double checking process include inconsistent conceptualization of double checking, double (or more) checking as a costly and time‐consuming procedure, double checking trusted as an accepted and stand‐alone process, and double checking as preventing reporting of near misses. Alternate views of double checking that would render it a more robust process include recognizing that double checking requires training and a dedicated environment, Introducing automated double checking, and expanding double checking beyond error detection. These results are linked with the concepts of collective efficiency thoroughness trade off (ETTO), an in‐family approach, and resilience. Conclusion(s) Double checking deserves more questioning, as there are limitations to the process. Practitioners could view double checking through alternate lenses, and thus help strengthen this ubiquitous practice that is rarely challenged. PMID:26568537

  4. Double Bragg Interferometry.

    PubMed

    Ahlers, H; Müntinga, H; Wenzlawski, A; Krutzik, M; Tackmann, G; Abend, S; Gaaloul, N; Giese, E; Roura, A; Kuhl, R; Lämmerzahl, C; Peters, A; Windpassinger, P; Sengstock, K; Schleich, W P; Ertmer, W; Rasel, E M

    2016-04-29

    We employ light-induced double Bragg diffraction of delta-kick collimated Bose-Einstein condensates to create three symmetric Mach-Zehnder interferometers. They rely on (i) first-order, (ii) two successive first-order, and (iii) second-order processes which demonstrate the scalability of the corresponding momentum transfer. With respect to devices based on conventional Bragg scattering, these symmetric interferometers double the scale factor and feature a better suppression of noise and systematic uncertainties intrinsic to the diffraction process. Moreover, we utilize these interferometers as tiltmeters for monitoring their inclination with respect to gravity. PMID:27176520

  5. Double arch mirror study

    NASA Technical Reports Server (NTRS)

    Vukobratovich, D.; Hillman, D.

    1983-01-01

    The development of a method of mounting light weight glass mirrors for astronomical telescopes compatible with the goals of the Shuttle Infrared Telescope Facility (SIRTF) was investigated. A 20 in. diameter double arch lightweight mirror previously fabricated was modified to use a new mount configuration. This mount concept was developed and fabricated. The mounting concept of the double mounting mirror is outlined. The modifications made to the mirror, fabrication of the mirror mount, and room temperature testing of the mirror and mount and the extension of the mirror and mount concept to a full size (40 in. diameter) primary mirror for SIRTF are discussed.

  6. ? - ? Double twinning in magnesium

    NASA Astrophysics Data System (ADS)

    Jäger, Aleš; Ostapovets, Andriy; Molnár, Peter; Lejček, Pavel

    2011-08-01

    It is demonstrated that metalworking processes performed at different temperatures can lead to the ? - ? double twinning. This twinning mode has been observed during direct extrusion of the coarse-grained Mg-0.3at.%Al alloy at 433 K and analysed in detail on room-temperature rolled magnesium single crystal with the c-axis parallel to transverse direction and the a-axis parallel to rolling direction. The ? - ? double twins originated during initial stage of the formation on coarse-grained and single-crystalline structure.

  7. Double Photoionization Near Threshold

    NASA Technical Reports Server (NTRS)

    Wehlitz, Ralf

    2007-01-01

    The threshold region of the double-photoionization cross section is of particular interest because both ejected electrons move slowly in the Coulomb field of the residual ion. Near threshold both electrons have time to interact with each other and with the residual ion. Also, different theoretical models compete to describe the double-photoionization cross section in the threshold region. We have investigated that cross section for lithium and beryllium and have analyzed our data with respect to the latest results in the Coulomb-dipole theory. We find that our data support the idea of a Coulomb-dipole interaction.

  8. Methandiide as a non-innocent ligand in carbene complexes: from the electronic structure to bond activation reactions and cooperative catalysis.

    PubMed

    Becker, Julia; Modl, Tanja; Gessner, Viktoria H

    2014-09-01

    The synthesis of a ruthenium carbene complex based on a sulfonyl-substituted methandiide and its application in bond activation reactions and cooperative catalysis is reported. In the complex, the metal-carbon interaction can be tuned between a Ru-C single bond with additional electrostatic interactions and a Ru=C double bond, thus allowing the control of the stability and reactivity of the complex. Hence, activation of polar and non-polar bonds (O-H, H-H) as well as dehydrogenation reactions become possible. In these reactions the carbene acts as a non-innocent ligand supporting the bond activation as nucleophilic center in the 1,2-addition across the metal-carbon double bond. This metal-ligand cooperativity can be applied in the catalytic transfer hydrogenation for the reduction of ketones. This concept opens new ways for the application of carbene complexes in catalysis. PMID:25047390

  9. Methandiide as a non-innocent ligand in carbene complexes: from the electronic structure to bond activation reactions and cooperative catalysis.

    PubMed

    Becker, Julia; Modl, Tanja; Gessner, Viktoria H

    2014-09-01

    The synthesis of a ruthenium carbene complex based on a sulfonyl-substituted methandiide and its application in bond activation reactions and cooperative catalysis is reported. In the complex, the metal-carbon interaction can be tuned between a Ru-C single bond with additional electrostatic interactions and a Ru=C double bond, thus allowing the control of the stability and reactivity of the complex. Hence, activation of polar and non-polar bonds (O-H, H-H) as well as dehydrogenation reactions become possible. In these reactions the carbene acts as a non-innocent ligand supporting the bond activation as nucleophilic center in the 1,2-addition across the metal-carbon double bond. This metal-ligand cooperativity can be applied in the catalytic transfer hydrogenation for the reduction of ketones. This concept opens new ways for the application of carbene complexes in catalysis.

  10. Double-Stranded Water on Stepped Platinum Surfaces

    NASA Astrophysics Data System (ADS)

    Kolb, Manuel J.; Farber, Rachael G.; Derouin, Jonathan; Badan, Cansin; Calle-Vallejo, Federico; Juurlink, Ludo B. F.; Killelea, Daniel R.; Koper, Marc T. M.

    2016-04-01

    The interaction of platinum with water plays a key role in (electro)catalysis. Herein, we describe a combined theoretical and experimental study that resolves the preferred adsorption structure of water wetting the Pt(111)-step type with adjacent (111) terraces. Double stranded lines wet the step edge forming water tetragons with dissimilar hydrogen bonds within and between the lines. Our results qualitatively explain experimental observations of water desorption and impact our thinking of solvation at the Pt electrochemical interface.

  11. Relative stability of multiple bonds between silicon and bismuth. A theoretical study

    NASA Astrophysics Data System (ADS)

    Ma, Jia-Ying; Su, Ming-Der

    2011-08-01

    Substituent effects on the potential energy surface of XSiBi (X = H, Li, Na, BeH, MgH, BH2, AlH2, CH3, SiH3, NH2, PH2, OH, SH, F, and Cl) were investigated by using B3LYP/Def2-TZVP, B3PW91/Def2-TZVPP, and CCSD(T) methods. The isomers include structures with formal double (Sidbnd BiX) and triple (XSitbnd Bi) bonds to silicon-bismuth, so a direct comparison of these types of species is possible. Our model calculations indicate that electropositively substituted Sidbnd BiX species are thermodynamically and kinetically more stable than their isomeric XSitbnd Bi molecules. Moreover, the theoretical findings suggest that F, OH, NH2, and CH3 substitution prefer to shift the double bond (Sidbnd BiX) by forming a triple bond (XSitbnd Bi).

  12. Effects of substituents on germanium-bismuth multiple bonds. A theoretical study

    NASA Astrophysics Data System (ADS)

    Li, Yu-Chi; Ma, Jia-Ying; Su, Ming-Der

    2012-11-01

    Substituent effects on the potential energy surface of XGeBi (X = H, Li, Na, BeH, MgH, BH2, AlH2, CH3, SiH3, NH2, PH2, OH, SH, F, and Cl) were investigated by using B3LYP/Def2-TZVP, B3PW91/Def2-TZVPP, and CCSD(T) methods. The isomers include structures with formal double (Gedbnd BiX) and triple (XGetbnd Bi) bonds to germanium-bismuth, so a direct comparison of these types of species is possible. Our model calculations indicate that electropositively substituted:Gedbnd BiX species are thermodynamically and kinetically more stable than their isomeric XGetbnd Bi molecules. Moreover, the theoretical findings suggest that F, OH, and CH3 substitutions prefer to shift the double bond (:Gedbnd BiX) by forming a triple bond (XGetbnd Bi).

  13. Transient liquid phase ceramic bonding

    DOEpatents

    Glaeser, Andreas M.

    1994-01-01

    Ceramics are joined to themselves or to metals using a transient liquid phase method employing three layers, one of which is a refractory metal, ceramic or alloy. The refractory layer is placed between two metal layers, each of which has a lower melting point than the refractory layer. The three layers are pressed between the two articles to be bonded to form an assembly. The assembly is heated to a bonding temperature at which the refractory layer remains solid, but the two metal layers melt to form a liquid. The refractory layer reacts with the surrounding liquid and a single solid bonding layer is eventually formed. The layers may be designed to react completely with each other and form refractory intermetallic bonding layers. Impurities incorporated into the refractory metal may react with the metal layers to form refractory compounds. Another method for joining ceramic articles employs a ceramic interlayer sandwiched between two metal layers. In alternative embodiments, the metal layers may include sublayers. A method is also provided for joining two ceramic articles using a single interlayer. An alternate bonding method provides a refractory-metal oxide interlayer placed adjacent to a strong oxide former. Aluminum or aluminum alloys are joined together using metal interlayers.

  14. Welding, Bonding and Fastening, 1984

    NASA Technical Reports Server (NTRS)

    Buckley, J. D. (Editor); Stein, B. A. (Editor)

    1985-01-01

    A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Soceity, and Society of Manufacturing Engineers conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.

  15. Immediate bonding to bleached enamel.

    PubMed

    Nour El-din, Amal K; Miller, Barbara H; Griggs, Jason A; Wakefield, Charles

    2006-01-01

    This research sought to determine the shear bond strength, degree of resin infiltration and failure mode when organic solvent-based adhesives (acetone or ethanol) were used in immediate bonding to enamel bleached with 10% carbamide peroxide or 38% hydrogen peroxide systems. Seventy-two non-carious bovine incisors were randomly assigned to three groups of 24 specimens each-control group (deionized water), 38% hydrogen peroxide bleach group and 10% carbamide peroxide bleach group. Each group was further subdivided into two subgroups of 12 specimens each according to the adhesive system used to bond the resin composite to enamel surfaces. The two adhesive systems used were Single Bond, an ethanol-based adhesive, and One Step, an acetone-based adhesive. The shear bond strengths of 38% hydrogen peroxide and 10% carbamide peroxide were significantly lower compared to the non-bleached controls. Fractography revealed an adhesive failure mode in all specimens. Qualitative comparisons of resin tags present in the bleached and unbleached specimens using scanning electron microscopy (SEM) revealed few, thin and fragmented resin tags when 38% hydrogen peroxide and 10% carbamide peroxide were used.

  16. 21 CFR 1005.23 - Bonds.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Bonds. 1005.23 Section 1005.23 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) RADIOLOGICAL HEALTH IMPORTATION OF ELECTRONIC PRODUCTS Bonding and Compliance Procedures § 1005.23 Bonds. The bond required...

  17. 27 CFR 26.69 - Strengthening bonds.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Liquors and Articles in Puerto Rico Bonds § 26.69 Strengthening bonds. In all cases where the penal sum of... surety to attain a sufficient penal sum, or give a new bond to cover the entire liability. Strengthening... penal sum. Strengthening bonds shall show the current date of execution and the effective date....

  18. Pet Bonding and Pet Bereavement among Adolescents.

    ERIC Educational Resources Information Center

    Brown, Brenda H.; And Others

    1996-01-01

    Studied adolescent-pet bonding and bereavement following pet loss (n=55). Hypothesized that highly-bonded adolescents experience more intense grief when a pet dies than do those less bonded; degree of bonding is greater for girls than for boys; and intensity of bereavement is greater for girls than for boys. Results supported the hypotheses. (RB)

  19. 27 CFR 25.96 - Superseding bond.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Superseding bond. 25.96 Section 25.96 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... principal submits a new bond to supersede a bond or bonds in effect, the appropriate TTB officer,...

  20. How to maximize return on bond proceeds.

    PubMed

    Deluccia, D J

    1989-09-01

    Healthcare organizations issuing tax-exempt bonds to finance the acquisition, construction, or renovation of their facilities often neglect to invest bond proceeds to gain the maximum allowable return. Bond indentures--documents that contain all the terms and provisions of the financing plan--generally spell out a number of options for investing bond proceeds.

  1. 27 CFR 24.146 - Bonds.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... (c) Wine vinegar plant bond. The proprietor of a wine vinegar plant who withdraws wine from a bonded wine premises without payment of tax for use in the manufacture of vinegar shall file a bond on TTB F 5510.2, Bond Covering Removal to and Use of Wine at Vinegar Plant, to ensure the payment of the tax...

  2. 27 CFR 24.146 - Bonds.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... (c) Wine vinegar plant bond. The proprietor of a wine vinegar plant who withdraws wine from a bonded wine premises without payment of tax for use in the manufacture of vinegar shall file a bond on TTB F 5510.2, Bond Covering Removal to and Use of Wine at Vinegar Plant, to ensure the payment of the tax...

  3. 27 CFR 24.146 - Bonds.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... (c) Wine vinegar plant bond. The proprietor of a wine vinegar plant who withdraws wine from a bonded wine premises without payment of tax for use in the manufacture of vinegar shall file a bond on TTB F 5510.2, Bond Covering Removal to and Use of Wine at Vinegar Plant, to ensure the payment of the tax...

  4. 27 CFR 24.146 - Bonds.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... (c) Wine vinegar plant bond. The proprietor of a wine vinegar plant who withdraws wine from a bonded wine premises without payment of tax for use in the manufacture of vinegar shall file a bond on TTB F 5510.2, Bond Covering Removal to and Use of Wine at Vinegar Plant, to ensure the payment of the tax...

  5. 27 CFR 24.146 - Bonds.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... (c) Wine vinegar plant bond. The proprietor of a wine vinegar plant who withdraws wine from a bonded wine premises without payment of tax for use in the manufacture of vinegar shall file a bond on TTB F 5510.2, Bond Covering Removal to and Use of Wine at Vinegar Plant, to ensure the payment of the tax...

  6. School Bond Success: An Exploratory Case Study

    ERIC Educational Resources Information Center

    Holt, Carleton R.; Wendt, Matthew A,; Smith, Roland M.

    2006-01-01

    Following two-failed school bond issues in 1995 and 1998, one mid-sized rural school district organized an effort that led to two successful school bond elections in 2001 and 2003. The school district's strategic plan mirrored many of the recommendations for successful bond referendums published in School Bond Success: A Strategy for Building…

  7. 21 CFR 1005.23 - Bonds.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Bonds. 1005.23 Section 1005.23 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) RADIOLOGICAL HEALTH IMPORTATION OF ELECTRONIC PRODUCTS Bonding and Compliance Procedures § 1005.23 Bonds. The bond required...

  8. 21 CFR 1005.23 - Bonds.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Bonds. 1005.23 Section 1005.23 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) RADIOLOGICAL HEALTH IMPORTATION OF ELECTRONIC PRODUCTS Bonding and Compliance Procedures § 1005.23 Bonds. The bond required...

  9. 21 CFR 1005.23 - Bonds.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Bonds. 1005.23 Section 1005.23 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) RADIOLOGICAL HEALTH IMPORTATION OF ELECTRONIC PRODUCTS Bonding and Compliance Procedures § 1005.23 Bonds. The bond required...

  10. 21 CFR 1005.23 - Bonds.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Bonds. 1005.23 Section 1005.23 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) RADIOLOGICAL HEALTH IMPORTATION OF ELECTRONIC PRODUCTS Bonding and Compliance Procedures § 1005.23 Bonds. The bond required under section 360(b) of the Act shall...

  11. 46 CFR Sec. 4 - Posting of bond.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Posting of bond. Sec. 4 Section 4 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION A-NATIONAL SHIPPING AUTHORITY BONDING OF SHIP'S PERSONNEL Sec. 4 Posting of bond. The General Agent shall retain an executed copy of each such bond in its principal...

  12. 46 CFR Sec. 2 - Amount of bond.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Amount of bond. Sec. 2 Section 2 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION A-NATIONAL SHIPPING AUTHORITY BONDING OF SHIP'S PERSONNEL Sec. 2 Amount of bond. The amount of the bond must be governed by the amount of monies advanced or value of...

  13. 46 CFR Sec. 2 - Amount of bond.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 8 2013-10-01 2013-10-01 false Amount of bond. Sec. 2 Section 2 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION A-NATIONAL SHIPPING AUTHORITY BONDING OF SHIP'S PERSONNEL Sec. 2 Amount of bond. The amount of the bond must be governed by the amount of monies advanced or value of...

  14. 46 CFR Sec. 4 - Posting of bond.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 8 2012-10-01 2012-10-01 false Posting of bond. Sec. 4 Section 4 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION A-NATIONAL SHIPPING AUTHORITY BONDING OF SHIP'S PERSONNEL Sec. 4 Posting of bond. The General Agent shall retain an executed copy of each such bond in its principal...

  15. 46 CFR Sec. 4 - Posting of bond.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Posting of bond. Sec. 4 Section 4 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION A-NATIONAL SHIPPING AUTHORITY BONDING OF SHIP'S PERSONNEL Sec. 4 Posting of bond. The General Agent shall retain an executed copy of each such bond in its principal...

  16. 46 CFR Sec. 4 - Posting of bond.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false Posting of bond. Sec. 4 Section 4 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION A-NATIONAL SHIPPING AUTHORITY BONDING OF SHIP'S PERSONNEL Sec. 4 Posting of bond. The General Agent shall retain an executed copy of each such bond in its principal...

  17. 46 CFR Sec. 4 - Posting of bond.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 8 2013-10-01 2013-10-01 false Posting of bond. Sec. 4 Section 4 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION A-NATIONAL SHIPPING AUTHORITY BONDING OF SHIP'S PERSONNEL Sec. 4 Posting of bond. The General Agent shall retain an executed copy of each such bond in its principal...

  18. 46 CFR Sec. 2 - Amount of bond.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false Amount of bond. Sec. 2 Section 2 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION A-NATIONAL SHIPPING AUTHORITY BONDING OF SHIP'S PERSONNEL Sec. 2 Amount of bond. The amount of the bond must be governed by the amount of monies advanced or value of...

  19. 46 CFR Sec. 2 - Amount of bond.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 8 2012-10-01 2012-10-01 false Amount of bond. Sec. 2 Section 2 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION A-NATIONAL SHIPPING AUTHORITY BONDING OF SHIP'S PERSONNEL Sec. 2 Amount of bond. The amount of the bond must be governed by the amount of monies advanced or value of...

  20. 46 CFR Sec. 2 - Amount of bond.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Amount of bond. Sec. 2 Section 2 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION A-NATIONAL SHIPPING AUTHORITY BONDING OF SHIP'S PERSONNEL Sec. 2 Amount of bond. The amount of the bond must be governed by the amount of monies advanced or value of...

  1. The behavior of bonded doubler splices for composite sandwich panels

    NASA Technical Reports Server (NTRS)

    Zeller, T. A.; Weisahaar, T. A.

    1980-01-01

    The results of an investigation into the behavior of adhesively bonded doubler splices of two composite material sandwich panels are presented. The splices are studied from three approaches: analytical; numerical (finite elements); and experimental. Several parameters that characterize the splice are developed to determine their influence upon joint strength. These parameters are: doubler overlap length; core stiffness; laminate bending stiffness; the size of the gap between the spliced sandwich panels; and room and elevated temperatures. Similarities and contrasts between these splices and the physically similar single and double lap joints are discussed. The results of this investigation suggest several possible approaches to improving the strength of the sandwich splices.

  2. THz quantum cascade lasers with wafer bonded active regions.

    PubMed

    Brandstetter, M; Deutsch, C; Benz, A; Cole, G D; Detz, H; Andrews, A M; Schrenk, W; Strasser, G; Unterrainer, K

    2012-10-01

    We demonstrate terahertz quantum-cascade lasers with a 30 μm thick double-metal waveguide, which are fabricated by stacking two 15 μm thick active regions using a wafer bonding process. By increasing the active region thickness more optical power is generated inside the cavity, the waveguide losses are decreased and the far-field is improved due to a larger facet aperture. In this way the output power is increased by significantly more than a factor of 2 without reducing the maximum operating temperature and without increasing the threshold current.

  3. Chromism based on supramolecular H-bonds.

    PubMed

    Yu, Xiaowei; Zhan, Chuanlang; Ding, Xunlei; Zhang, Shanlin; Zhang, Xin; Liu, Huiying; Chen, Lili; Wu, Yishi; Fu, Hongbing; He, Shenggui; Huang, Yan; Yao, Jiannian

    2013-07-28

    Normal solvatochromic phenomena are induced by different polarities of the ground and excited states of a compound when it is dissolved in a solvent. A compound such as the perylene diimide (PDI) derivative, which has a small difference in the dipole moments of the excited and ground states, generally shows a weak color change. Herein, we found that a dilute dichloromethane (DCM) solution of the PDI derivative 1,6,7,12-tetra(4-tert-butylphenoxyl) PDI (1) with a typical concentration of 1 × 10(-5) M distinctly changed colour from red to dark blue with a distinct red-shift of both the absorption (Δλ(a)max = 32 nm) and the fluorescence (Δλ(f)max = 45 nm) when 50,000 equivalents of trifluoroacetic acid (TFA) were added. Such a new chromism originates from the stronger decrease of the energy level of the LUMO than that of the HOMO after the step-by-step H-bonding of TFA with the PDI chromophore: firstly, the imide C[double bond, length as m-dash]O functionality, then the bridged -O- and finally the TFA molecules undergo H-bonding, forming a highly polar TFA shell around the PDI molecule, as proved by the concentration variable UV-vis absorption, fluorescence, (1)H NMR, (13)C NMR, and NOE spectra, cyclic voltammetry, and quantum chemical calculations. The degree of the solution's color change (Δλ(a)max/Δλ(f)max) depends (1) on the number of the bay-substituted 4-n-butylphenoxyl groups: it amounts to 25/38 and 17/22 nm for 1,7-bis(4-tert-butylphenoxyl) PDI (2) and the bay-unsubstituted PDI 3, respectively, and (2) on the polarity of the -OH functionality: in HOOC-CX3, for example, the value of Δλ(a)max/Δλ(f)max of PDI 1 amounts to 9.5/17 nm for trichloroacetic acid (TClA, X = Cl) and 0/3.6 nm for acetic acid (AA, X = H). The protons are necessary for the chromism, and thus ethyl trifluoroacetic acid ester, EtOTFA, cannot produce any obvious red-shifting of the absorption and fluorescence for 1-3. However, 2,2,2-trifluoroethanol (TFEtOH) produces an obvious

  4. Three methods to measure RH bond energies

    SciTech Connect

    Berkowitz, J.; Ellison, G.B.; Gutman, D.

    1993-03-21

    In this paper the authors compare and contrast three powerful methods for experimentally measuring bond energies in polyatomic molecules. The methods are: radical kinetics; gas phase acidity cycles; and photoionization mass spectroscopy. The knowledge of the values of bond energies are a basic piece of information to a chemist. Chemical reactions involve the making and breaking of chemical bonds. It has been shown that comparable bonds in polyatomic molecules, compared to the same bonds in radicals, can be significantly different. These bond energies can be measured in terms of bond dissociation energies.

  5. Halogen Bonding in Organic Synthesis and Organocatalysis.

    PubMed

    Bulfield, David; Huber, Stefan M

    2016-10-01

    Halogen bonding is a noncovalent interaction similar to hydrogen bonding, which is based on electrophilic halogen substituents. Hydrogen-bonding-based organocatalysis is a well-established strategy which has found numerous applications in recent years. In light of this, halogen bonding has recently been introduced as a key interaction for the design of activators or organocatalysts that is complementary to hydrogen bonding. This Concept features a discussion on the history and electronic origin of halogen bonding, summarizes all relevant examples of its application in organocatalysis, and provides an overview on the use of cationic or polyfluorinated halogen-bond donors in halide abstraction reactions or in the activation of neutral organic substrates.

  6. Substituent Directed Phototransformations of BN-Heterocycles: Elimination vs Isomerization via Selective B-C Bond Cleavage.

    PubMed

    Yang, Deng-Tao; Mellerup, Soren K; Peng, Jin-Bao; Wang, Xiang; Li, Quan-Song; Wang, Suning

    2016-09-14

    Electron-rich and -poor BN-heterocycles with benzyl-pyridyl backbones and two bulky aryls on the boron (Ar = tipp, BN-1, Ar = MesF, BN-2) have been found to display distinct molecular transformations upon irradiation by UV light. BN-1 undergoes an efficient photoelimination reaction forming a BN-phenanthrene with ΦPE = 0.25, whereas BN-2 undergoes a thermally reversible, stereoselective, and quantitative isomerization to a dark colored BN-1,3,5-cyclooctatriene (BN-1,3,5-COT, BN-2a). This unusual photoisomerization persists for other BN-heterocycles with electron-deficient aryls such as BN-3 with a benzyl-benzothiazolyl backbone and Mes(F) substituents or BN-4 with a benzyl-pyridyl backbone and two C6F5 groups on the boron. The photoisomerization of BN-4 goes beyond BN-1,3,5-COT (BN-4a), forming a new species (BN-1,3,6-COT, BN-4b) via C-F bond cleavage and [1,3]-F atom sigmatropic migration. Computational studies support that BN-4a is an intermediate in the formation of BN-4b. This work establishes that steric and electronic factors can effectively control the transformations of BN-heterocycles, allowing access to important and previously unknown BN-embedded species. PMID:27580241

  7. Two Comments on Bond Angles

    NASA Astrophysics Data System (ADS)

    Glaister, P.

    1997-09-01

    Tetrahedral Bond Angle from Elementary Trigonometry The alternative approach of using the scalar (or dot) product of vectors enables the determination of the bond angle in a tetrahedral molecule in a simple way. There is, of course, an even more straightforward derivation suitable for students who are unfamiliar with vectors, or products thereof, but who do know some elementary trigonometry. The starting point is the figure showing triangle OAB. The point O is the center of a cube, and A and B are at opposite corners of a face of that cube in which fits a regular tetrahedron. The required bond angle alpha = AÔB; and using Pythagoras' theorem, AB = 2(square root 2) is the diagonal of a face of the cube. Hence from right-angled triangle OEB, tan(alpha/2) = (square root 2) and therefore alpha = 2tan-1(square root 2) is approx. 109° 28' (see Fig. 1).

  8. Weathering the Double Whammy.

    ERIC Educational Resources Information Center

    Wellman, Jane V.

    2002-01-01

    Discusses how governing boards can help their institutions weather the "double-whammy" of doing more with less: identify the institution's short-term and long-term challenges; refocus the institution's mission, planning, and programming; assess and integrate the institution's tuition, aid, and outreach strategies; redouble the institution's…

  9. Sun Packs Double Punch

    NASA Video Gallery

    On August 3, the sun packed a double punch, emitting a M6.0-class flare at 9:43 am EDT. This video is of the second, slightly stronger M9.3-class flare at 11:41 pm EDT. Both flares had significant ...

  10. Double resonator cantilever accelerometer

    DOEpatents

    Koehler, Dale R.

    1984-01-01

    A digital quartz accelerometer includes a pair of spaced double-ended tuning forks fastened at one end to a base and at the other end through a spacer mass. Transverse movement of the resonator members stresses one and compresses the other, providing a differential frequency output which is indicative of acceleration.

  11. Double resonator cantilever accelerometer

    DOEpatents

    Koehler, D.R.

    1982-09-23

    A digital quartz accelerometer includes a pair of spaced double-ended tuning forks fastened at one end to a base and at the other end through a spacer mass. Transverse movement of the resonator members stresses one and compresses the other, providing a differential frequency output which is indicative of acceleration.

  12. Venezuela to double Supermetanol

    SciTech Connect

    1997-04-23

    Pequiven, the petrochemical arm of Venezuelan state oil company PDVSA, is conducting feasibility studies to double the size of its 750,000-m.t./year Supermetanol methanol joint venture with Ecofuel at Jose. The twin unit would be onstream by the end of the decade and would increase Pequiven`s capacity to 2.3 million m.t./year.

  13. Optimal approximate doubles

    NASA Astrophysics Data System (ADS)

    Huang, Siendong

    2009-11-01

    The nonlocality of quantum states on a bipartite system \\mathcal {A+B} is tested by comparing probabilistic outcomes of two local observables of different subsystems. For a fixed observable A of the subsystem \\mathcal {A,} its optimal approximate double A' of the other system \\mathcal {B} is defined such that the probabilistic outcomes of A' are almost similar to those of the fixed observable A. The case of σ-finite standard von Neumann algebras is considered and the optimal approximate double A' of an observable A is explicitly determined. The connection between optimal approximate doubles and quantum correlations is explained. Inspired by quantum states with perfect correlation, like Einstein-Podolsky-Rosen states and Bohm states, the nonlocality power of an observable A for general quantum states is defined as the similarity that the outcomes of A look like the properties of the subsystem \\mathcal {B} corresponding to A'. As an application of optimal approximate doubles, maximal Bell correlation of a pure entangled state on \\mathcal {B}(\\mathbb {C}^{2})\\otimes \\mathcal {B}(\\mathbb {C}^{2}) is found explicitly.

  14. Replace Double Replacement

    NASA Astrophysics Data System (ADS)

    Martin, R. Bruce

    1999-01-01

    Reactions described as double replacements in high school texts are poorly described by this designation. The driving force for such reactions is precipitation of a solid derived from ions in solution or the production of water in acid-base reactions.

  15. Double-Entry Bookkeeping.

    ERIC Educational Resources Information Center

    Snyder, Herbert

    1999-01-01

    Explains the principles and mechanics of double-entry bookkeeping as a part of the accounting cycle to produce a functioning set of accounting records. Suggests that libraries need to have accurate and timely information about their spending to gain financial control and protect against fraud and abuse. (LRW)

  16. Double Helix Revisited.

    ERIC Educational Resources Information Center

    Glickstein, Neil M.

    1995-01-01

    Describes the use of James Watson's book, "The Double Helix," as a multidisciplinary way of introducing students to actual science; the scientific method; dilemmas encountered in the world of research; and the rich setting of personalities, politics, and history in post-World War II Europe. (MKR)

  17. A matterless double slit

    NASA Astrophysics Data System (ADS)

    King, Ben; di Piazza, Antonino; Keitel, Christoph H.

    2010-02-01

    Double slits provide incoming particles with a choice. Those that survive passage through the slits have chosen from two possible paths, which interfere to distribute them in a wave-like manner. Such wave-particle duality continues to be challenged and investigated in a broad range of disciplines with electrons, neutrons, helium atoms, C60 fullerenes, Bose-Einstein condensates and biological molecules. All variants have hitherto involved material constituents. We present a matterless double-slit scenario in which photons generated from virtual electron-positron pair annihilation in head-on collisions of a probe laser field with two ultra-intense laser beams form a double-slit interference pattern. Such electromagnetic fields are predicted to induce material-like behaviour in vacuum, supporting elastic scattering between photons. Our double-slit scenario presents, on the one hand, a realizable method with which to observe photon-photon scattering and, on the other hand, demonstrates the possibility of both controlling light with light and non-locally investigating features of the quantum vacuum structure.

  18. Double-Glazing Interferometry

    ERIC Educational Resources Information Center

    Toal, Vincent; Mihaylova, Emilia M.

    2009-01-01

    This note describes how white light interference fringes can be seen by observing the Moon through a double-glazed window. White light interferometric fringes are normally observed only in a well-aligned interferometer whose optical path difference is less than the coherence length of the light source, which is approximately one micrometer for…

  19. Design for Double Rainbow

    ERIC Educational Resources Information Center

    Thomas, Lisa Carlucci

    2011-01-01

    Rare is the inspirational, spontaneous, transformative moment shared among 20 million people. In the summer of 2010, people around the world were moved by the sighting of a double rainbow--almost a triple rainbow--"all the way across the sky" in Yosemite National Park. Caught on video and posted to by YouTube by Paul Vasquez in January 2010, the…

  20. Teaching the Double Layer.

    ERIC Educational Resources Information Center

    Bockris, J. O'M.

    1983-01-01

    Suggests various methods for teaching the double layer in electrochemistry courses. Topics addressed include measuring change in absolute potential difference (PD) at interphase, conventional electrode potential scale, analyzing absolute PD, metal-metal and overlap electron PDs, accumulation of material at interphase, thermodynamics of electrified…

  1. To Bond or Not to Bond? That Is the Question

    ERIC Educational Resources Information Center

    Balzer, Wayne E.

    2015-01-01

    This case, inspired by a real school district scenario, was developed for use in a graduate-level course in school finance. James Spencer had just been selected as the new superintendent of a low-income, 400-student, rural school district in need of many capital improvements. The previous superintendent had refused to hold a bond election because…

  2. Anodic bonding using a hybrid electrode with a two-step bonding process

    NASA Astrophysics Data System (ADS)

    Wei, Luo; Jing, Xie; Yang, Zhang; Chaobo, Li; Yang, Xia

    2012-06-01

    A two-step bonding process using a novel hybrid electrode is presented. The effects of different electrodes on bonding time, bond strength and the bonded interface are analyzed. The anodic bonding is studied using a domestic bonding system, which carries out a detailed analysis of the integrity of the bonded interface and the bond strength measurement. With the aid of the hybrid electrode, a bubble-free anodic bonding process could be accomplished within 15-20 min, with a shear strength in excess of 10 MPa. These results show that the proposed method has a high degree of application value, including in most wafer-level MEMS packaging.

  3. Fluxless flip chip bonding processes and aerial fluxless bonding technology

    NASA Astrophysics Data System (ADS)

    Kim, Dongwook

    New fluxless flip chip processes of Sn-rich non-eutectic Au-Sn solder bumps were developed using vacuum deposition and electroplating technique. It is believed that this is the first report that non-eutectic Au-Sn flip chip solder bonding is achieved without the use of flux. In order to make 200mum diameter and 10mum thick Au-Sn solder bump 0.03mum of Cr, 10mum of Sn and 0.3mum of Au were vacuum deposited on the Si wafer through the high carbon steal stencil mask. Nearly void-free solder bumps with small grains of AuSn4 intermetallic compound were achieved. The re-melting temperature of solder bumps was measured to be 220°C. In the second part, first, the fluxless bonding process was performed in hydrogen environment with electroplated 4 mm x 4mm Au-Sn multi-layer chips if electroplating technique is compatible with our process. High quality and nearly void free solder joint was successfully achieved with this new process. After proving compatibility of the process, tall electroplated Sn/Au bumps (50 mum) were produced by photolithography method using Su-8 photoresist. The bumps in the chip were flip chip bonded to the borosilicate glass wafer coated with Cr (0.03 mum) and Au (0.05 mum) pads without using any flux. Fluxless and lead-free bonding technology in air ambient based on non eutectic 5 at. % Au-95 at. % Sn and eutectic 57 at. %Sn-43 at. % Bi with Au capping layer have been developed and studied. To understand the fluxless bonding principles in air ambient, phase formation mechanism of Au-Sn intermetallics embedded in Bi matrix has been postulated. The Au-Sn intermetallic-capping layer covers most outer surface of the samples and inhibits formation of oxide layer due to the minimizing exposure of (beta-Sn) phase to the air. In conclusion, new-lead free and fluxless bonding processes for flip chip packages were developed. In this work, Sn-rich Au-Sn flip chip solder bumps using vacuum deposition and electroplating process were successfully produced. It is

  4. Reliable and repeatable bonding technology for high temperature automotive power modules for electrified vehicles

    NASA Astrophysics Data System (ADS)

    Yoon, Sang Won; Glover, Michael D.; Mantooth, H. Alan; Shiozaki, Koji

    2013-01-01

    This paper presents the feasibility of highly reliable and repeatable copper-tin transient liquid phase (Cu-Sn TLP) bonding as applied to die attachment in high temperature operational power modules. Electrified vehicles are attracting particular interest as eco-friendly vehicles, but their power modules are challenged because of increasing power densities which lead to high temperatures. Such high temperature operation addresses the importance of advanced bonding technology that is highly reliable (for high temperature operation) and repeatable (for fabrication of advanced structures). Cu-Sn TLP bonding is employed herein because of its high remelting temperature and desirable thermal and electrical conductivities. The bonding starts with a stack of Cu-Sn-Cu metal layers that eventually transforms to Cu-Sn alloys. As the alloys have melting temperatures (Cu3Sn: > 600 °C, Cu6Sn5: > 400 °C) significantly higher than the process temperature, the process can be repeated without damaging previously bonded layers. A Cu-Sn TLP bonding process was developed using thin Sn metal sheets inserted between copper layers on silicon die and direct bonded copper substrates, emulating the process used to construct automotive power modules. Bond quality is characterized using (1) proof-of-concept fabrication, (2) material identification using scanning electron microscopy and energy-dispersive x-ray spectroscopy analysis, and (3) optical analysis using optical microscopy and scanning acoustic microscope. The feasibility of multiple-sided Cu-Sn TLP bonding is demonstrated by the absence of bondline damage in multiple test samples fabricated with double- or four-sided bonding using the TLP bonding process.

  5. Structural and electromagnetic properties of double C chains decorated zigzag silicene nanoribbon

    NASA Astrophysics Data System (ADS)

    Song, Yu-Ling; Zhang, Jian-Min; Lu, Dao-Bang; Xu, Ke-Wei

    2014-02-01

    Using the first-principles calculation, we investigate the structural and electromagnetic properties of the zigzag edge Si nanoribbons (ZSiNRs) decorated with double C chains. The results show that double C chains decorated ZSiNRs are always metallic independent of the ribbon width. The defect states contributed from double C chains are composed of two degenerated bands across the Fermi level. The perfect ZSiNR has a FM ground state, while double C chains decorated one have an AFM ground state. The C chains are always close to straight ones thereby resulting in a transverse contraction near the C chains and thus the ribbon width. The C-Si bond displays an ionic binding feature and the C-H bond is a typical covalent one because of the electronegativity and the bound force difference between H, C and Si atoms.

  6. Double Degrees: Double the Trouble or Twice the Return?

    ERIC Educational Resources Information Center

    Russell, A. Wendy; Dolnicar, Sara; Ayoub, Marina

    2008-01-01

    Double degrees (also called joint or combined degrees)--programs of study combining two bachelor degrees--are increasingly popular in Australian universities, particularly among women. A case study using qualitative and quantitative surveys of current and past double degree students is presented. The study indicates that double degrees benefit…

  7. 46 CFR Sec. 10 - Bonds.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... November 1950) respectively, shall be used. Such bonds (in the respective penal sums of 50 percent of the... penal sum of 40 percent of such job order contract price) shall guarantee the Contractor's performance... contractors to the awarding offices (General Agents or local offices of NSA) to verify the correctness of...

  8. Mother-To-Infant 'Bonding'.

    ERIC Educational Resources Information Center

    Herbert, M.; And Others

    1982-01-01

    Critically reviews the concept of "bonding," exploring its empirical basis and the implications that follow from its application in practice. Among the conclusions reached are that there is a tendency to oversimplify attachment phenomena and that the notion of a sensitive period for attachment has no direct empirical support. (RH)

  9. Electronegativity and the Bond Triangle

    ERIC Educational Resources Information Center

    Meek, Terry L.; Garner, Leah D.

    2005-01-01

    The usefulness of the bond triangle for categorizing compounds of the main-group elements may be extended by the use of weighted average electronegativities to allow distinction between compounds of the same elements with different stoichiometries. In such cases a higher valency for the central atom leads to greater covalent character and the…

  10. Bonding Elastomers To Metal Substrates

    NASA Technical Reports Server (NTRS)

    Dickerson, George E.; Kelley, Henry L.

    1990-01-01

    Improved, economical method for bonding elastomers to metals prevents failures caused by debonding. In new technique, vulcanization and curing occur simultaneously in specially designed mold that acts as form for desired shape of elastomer and as container that positions and supports metal parts. Increases interface adhesion between metal, adhesive, and elastomer.

  11. Enhanced rigid-bond restraints

    SciTech Connect

    Thorn, Andrea; Dittrich, Birger; Sheldrick, George M.

    2012-07-01

    An extension is proposed to the rigid-bond description of atomic thermal motion in crystals. The rigid-bond model [Hirshfeld (1976 ▶). Acta Cryst. A32, 239–244] states that the mean-square displacements of two atoms are equal in the direction of the bond joining them. This criterion is widely used for verification (as intended by Hirshfeld) and also as a restraint in structure refinement as suggested by Rollett [Crystallographic Computing (1970 ▶), edited by F. R. Ahmed et al., pp. 167–181. Copenhagen: Munksgaard]. By reformulating this condition, so that the relative motion of the two atoms is required to be perpendicular to the bond, the number of restraints that can be applied per anisotropic atom is increased from about one to about three. Application of this condition to 1,3-distances in addition to the 1,2-distances means that on average just over six restraints can be applied to the six anisotropic displacement parameters of each atom. This concept is tested against very high resolution data of a small peptide and employed as a restraint for protein refinement at more modest resolution (e.g. 1.7 Å)

  12. Bonded polyimide fuel cell package

    DOEpatents

    Morse, Jeffrey D.; Jankowski, Alan; Graff, Robert T.; Bettencourt, Kerry

    2010-06-08

    Described herein are processes for fabricating microfluidic fuel cell systems with embedded components in which micron-scale features are formed by bonding layers of DuPont Kapton.TM. polyimide laminate. A microfluidic fuel cell system fabricated using this process is also described.

  13. Non-bonded ultrasonic transducer

    DOEpatents

    Eoff, J.M.

    1984-07-06

    A mechanically assembled non-bonded ultrasonic transducer includes a substrate, a piezoelectric film, a wetting agent, a thin metal electrode, and a lens held in intimate contact by a mechanical clamp. No epoxy or glue is used in the assembly of this device.

  14. Double aromaticity in transition metal centered double-ring boron clusters M@B2n (M = Ti, Cr, Fe, Ni, Zn; n = 6, 7, 8).

    PubMed

    Xu, Chang; Cheng, Longjiu; Yang, Jinlong

    2014-09-28

    It is well known that double-ring boron clusters have got the special double aromaticity with delocalized π orbitals in two directions (tangential and radial), which are potential ligands centered by a transition metal. In this article, the transition metal centered double-ring boron clusters M@B2n (M = Ti, Cr, Fe, Ni, Zn; n = 6, 7, 8) are theoretically investigated by density functional theory calculations. These endohedral compounds have also got double aromaticity in both tangential and radial directions. Interestingly, the tangential delocalized π orbitals of boron ligands following the Huckle's (4n + 2) rule do not interact with the central metal, while the radial π orbitals of boron ligands are bonded with the central mental to form spd-π endohedral bonding. The spd-π endohedral bonding follows the 18e-principle in Ni@B14 and Fe@B16. However, due to the flat shape of the compounds, 14e (Cr@B14) and 16e (Ni@B12) can also be electronically very stable where the energy levels of the spd-π orbitals delocalized in z-direction rise up. This intriguing bonding model makes sense in further study of the boron chemistry.

  15. Tests on Double Layer Metalization

    NASA Technical Reports Server (NTRS)

    Woo, D. S.

    1983-01-01

    28 page report describes experiments in fabrication of integrated circuits with double-layer metalization. Double-layer metalization requires much less silicon "real estate" and allows more flexibility in placement of circuit elements than does single-layer metalization.

  16. Characterization of mode 1 and mixed-mode failure of adhesive bonds between composite adherends

    NASA Technical Reports Server (NTRS)

    Mall, S.; Johnson, W. S.

    1985-01-01

    A combined experimental and analytical investigation of an adhesively bonded composite joint was conducted to characterize both the static and fatigue beyond growth mechanism under mode 1 and mixed-mode 1 and 2 loadings. Two bonded systems were studied: graphite/epoxy adherends bonded with EC 3445 and FM-300 adhesives. For each bonded system, two specimen types were tested: a double-cantilever-beam specimen for mode 1 loading and a cracked-lapshear specimen for mixed-mode 1 and 2 loading. In all specimens tested, failure occurred in the form of debond growth. Debonding always occurred in a cohesive manner with EC 3445 adhesive. The FM-300 adhesive debonded in a cohesive manner under mixed-mode 1 and 2 loading, but in a cohesive, adhesive, or combined cohesive and adhesive manner under mode 1 loading. Total strain-energy release rate appeared to be the driving parameter for debond growth under static and fatigue loadings.

  17. Characterization of mode I and mixed-mode failure of adhesive bonds between composite adherends

    NASA Technical Reports Server (NTRS)

    Mall, S.; Johnson, W. S.

    1986-01-01

    A combined experimental and analytical investigation of an adhesively bonded composite joint was conducted to characterize both the static and fatigue beyond growth mechanism under mode 1 and mixed-mode 1 and 2 loadings. Two bonded systems were studied: graphite/epoxy adherends bonded with EC 3445 and FM-300 adhesives. For each bonded system, two specimen types were tested: a double-cantilever-beam specimen for mode 1 loading and a cracked-lapshear specimen for mixed-mode 1 and 2 loading. In all specimens tested, failure occurred in the form of debond growth. Debonding always occurred in a cohesive manner with EC 3445 adhesive. The FM-300 adhesive debonded in a cohesive manner under mixed-mode 1 and 2 loading, but in a cohesive, adhesive, or combined cohesive and adhesive manner under mode 1 loading. Total strain-energy release rate appeared to be the driving parameter for debond growth under static and fatigue loadings.

  18. Double Ring Craters

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A faint double ring crater is seen at upper right in this picture of Mercury (FDS 166601) taken one hour and 40 minutes before Mariner 10's second rendezvous with the planet September 21. Located 35 degrees S. Lat. The outer ring is 170 kilometers (10 miles) across. Double ring craters are common features on Mercury. This particular feature and the bright rayed crater to its left were seen from a different viewing angle in pictures taken by Mariner 10 during its first Mercury flyby last March 29.

    The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon.

    Image Credit: NASA/JPL/Northwestern University

  19. Measuring the Double Helix

    SciTech Connect

    Mathew-Fenn, R.S.; Das, R.; Harbury, P.A.B.

    2009-05-26

    DNA is thought to behave as a stiff elastic rod with respect to the ubiquitous mechanical deformations inherent to its biology. To test this model at short DNA lengths, we measured the mean and variance of end-to-end length for a series of DNA double helices in solution, using small-angle x-ray scattering interference between gold nanocrystal labels. In the absence of applied tension, DNA is at least one order of magnitude softer than measured by single-molecule stretching experiments. Further, the data rule out the conventional elastic rod model. The variance in end-to-end length follows a quadratic dependence on the number of base pairs rather than the expected linear dependence, indicating that DNA stretching is cooperative over more than two turns of the DNA double helix. Our observations support the idea of long-range allosteric communication through DNA structure.

  20. (11)C[double bond, length as m-dash]O bonds made easily for positron emission tomography radiopharmaceuticals.

    PubMed

    Rotstein, Benjamin H; Liang, Steven H; Placzek, Michael S; Hooker, Jacob M; Gee, Antony D; Dollé, Frédéric; Wilson, Alan A; Vasdev, Neil

    2016-08-22

    The positron-emitting radionuclide carbon-11 ((11)C, t1/2 = 20.3 min) possesses the unique potential for radiolabeling of any biological, naturally occurring, or synthetic organic molecule for in vivo positron emission tomography (PET) imaging. Carbon-11 is most often incorporated into small molecules by methylation of alcohol, thiol, amine or carboxylic acid precursors using [(11)C]methyl iodide or [(11)C]methyl triflate (generated from [(11)C]carbon dioxide or [(11)C]methane). Consequently, small molecules that lack an easily substituted (11)C-methyl group are often considered to have non-obvious strategies for radiolabeling and require a more customized approach. [(11)C]Carbon dioxide itself, [(11)C]carbon monoxide, [(11)C]cyanide, and [(11)C]phosgene represent alternative reactants to enable (11)C-carbonylation. Methodologies developed for preparation of (11)C-carbonyl groups have had a tremendous impact on the development of novel PET tracers and provided key tools for clinical research. (11)C-Carbonyl radiopharmaceuticals based on labeled carboxylic acids, amides, carbamates and ureas now account for a substantial number of important imaging agents that have seen translation to higher species and clinical research of previously inaccessible targets, which is a testament to the creativity, utility and practicality of the underlying radiochemistry. PMID:27276357

  1. Effect of moisture, saliva, and blood contamination on the shear bond strength of brackets bonded with a conventional bonding system and self-etched bonding system

    PubMed Central

    Prasad, Mandava; Mohamed, Shamil; Nayak, Krishna; Shetty, Sharath Kumar; Talapaneni, Ashok Kumar

    2014-01-01

    Background: The success of bonding brackets to enamel with resin bonding systems is negatively affected by contamination with oral fluids such as blood and saliva. The new self-etch primer systems combine conditioning and priming agents into a single application, making the procedure more cost effective. Objective: The purpose of the study was to investigate the effect of moisture, saliva and blood contamination on shear bond strength of orthodontic brackets bonded with conventional bonding system and self-etch bonding system. Materials and Methods: Each system was examined under four enamel surface conditions (dry, water, saliva, and blood), and 80 human teeth were divided into two groups with four subgroups each of 10 according to enamel surface condition. Group 1 used conventional bonding system and Group 2 used self-etched bonding system. Subgroups 1a and 2a under dry enamel surface conditions; Subgroups 1b and 2b under moist enamel surface condition; Subgroups 3a and 3b under saliva enamel surface condition and Subgroup 4a and 4b under blood enamel surface condition. Brackets were bonded, and all the samples were then submitted to a shear bond test with a universal testing machine with a cross head speed of 1mm/sec. Results: The results showed that the contamination reduced the shear bond strength of all groups. In self-etch bonding system water and saliva had significantly higher bond strength when compared to other groups. Conclusion: It was concluded that the blood contamination showed lowest bond strength from both bonding systems. Self-etch bonding system resulted in higher bond strength than conventional bonding system under all conditions except the dry enamel surface. PMID:24678210

  2. On the nature of chemical bonding in the all-metal aromatic [Sb3Au3Sb3](3-) sandwich complex.

    PubMed

    You, Xue-Rui; Tian, Wen-Juan; Li, Da-Zhi; Wang, Ying-Jin; Li, Rui; Feng, Lin-Yan; Zhai, Hua-Jin

    2016-05-21

    In a recent communication, an all-metal aromatic sandwich [Sb3Au3Sb3](3-) was synthesized and characterized. We report herein a density-functional theory (DFT) study on the chemical bonding of this unique cluster, which makes use of a number of computational tools, including the canonical molecular orbital (CMO), adaptive natural density partitioning (AdNDP), Wiberg bond index, and orbital composition analyses. The 24-electron, triangular prismatic sandwich is intrinsically electron-deficient, being held together via six Sb-Sb, three Au-Au, and six Sb-Au links. A standard, qualitative bonding analysis suggests that all CMOs are primarily located on the three Sb3/Au3/Sb3 layers, three Au 6s based CMOs are fully occupied, and the three extra charges are equally shared by the two cyclo-Sb3 ligands. This bonding picture is referred to as the zeroth order model, in which the cluster can be formally formulated as [Sb3(1.5+)Au3(3-)Sb3(1.5+)](3-) or [Sb3(0)Au3(3-)Sb3(0)]. However, the system is far more complex and covalent than the above picture. Seventeen CMOs out of 33 in total involve remarkable Sb → Au electron donation and Sb ← Au back-donation, which are characteristic of covalent bonding and effectively redistribute electrons from the Sb3 and Au3 layers to the interlayer edges. This effect collectively leads to three Sb-Au-Sb three-center two-electron (3c-2e) σ bonds as revealed in the AdNDP analyses, despite the fact that not a single such bond can be identified from the CMOs. Orbital composition analyses for the 17 CMOs allow a quantitative understanding of how electron donation and back-donation redistribute the charges within the system from the formal Sb3(0)/Au3(3-) charge states in the zeroth order model to the effective Sb3(1.5-)/Au3(0) charge states, the latter being revealed from the natural bond orbital analysis.

  3. Configuring bonds between first-row transition metals.

    PubMed

    Eisenhart, Reed J; Clouston, Laura J; Lu, Connie C

    2015-11-17

    Alfred Werner, who pioneered the field of coordination chemistry, envisioned coordination complexes as a single, transition metal atom at the epicenter of a vast ligand space. The idea that the locus of a coordination complex could be shared by multiple metals held together with covalent bonds would eventually lead to the discovery of the quadruple and quintuple bond, which have no analogues outside of the transition metal block. Metal-metal bonding can be classified into homometallic and heterometallic groups. Although the former is dominant, the latter is arguably more intriguing because of the inherently larger chemical space in which metal-metal bonding can be explored. In 2013, Lu and Thomas independently reported the isolation of heterometallic multiple bonds with exclusively first-row transition metals. Structural and theoretical data supported triply bonded Fe-Cr and Fe-V cores. This Account describes our continued efforts to configure bonds between first-row transition metals from titanium to copper. Double-decker ligands, or binucleating platforms that brace two transition metals in proximity, have enabled the modular synthesis of diverse metal-metal complexes. The resulting complexes are also ideal for investigating the effects of an "ancillary" metal on the properties and reactivities of an "active" metal center. A total of 38 bimetallic complexes have been compiled comprising 18 unique metal-metal pairings. Twenty-one of these bimetallics are strictly isostructural, allowing for a systematic comparison of metal-metal bonding. The nature of the chemical bond between first-row metals is remarkably variable and depends on two primary factors: the total d-electron count, and the metals' relative d-orbital energies. Showcasing the range of covalent bonding are a quintuply bonded (d-d)(10) Mn-Cr heterobimetallic and the singly bonded late-late pairings, e.g., Fe-Co, which adopt unusually high spin states. A long-term goal is to rationally tailor the

  4. Configuring bonds between first-row transition metals.

    PubMed

    Eisenhart, Reed J; Clouston, Laura J; Lu, Connie C

    2015-11-17

    Alfred Werner, who pioneered the field of coordination chemistry, envisioned coordination complexes as a single, transition metal atom at the epicenter of a vast ligand space. The idea that the locus of a coordination complex could be shared by multiple metals held together with covalent bonds would eventually lead to the discovery of the quadruple and quintuple bond, which have no analogues outside of the transition metal block. Metal-metal bonding can be classified into homometallic and heterometallic groups. Although the former is dominant, the latter is arguably more intriguing because of the inherently larger chemical space in which metal-metal bonding can be explored. In 2013, Lu and Thomas independently reported the isolation of heterometallic multiple bonds with exclusively first-row transition metals. Structural and theoretical data supported triply bonded Fe-Cr and Fe-V cores. This Account describes our continued efforts to configure bonds between first-row transition metals from titanium to copper. Double-decker ligands, or binucleating platforms that brace two transition metals in proximity, have enabled the modular synthesis of diverse metal-metal complexes. The resulting complexes are also ideal for investigating the effects of an "ancillary" metal on the properties and reactivities of an "active" metal center. A total of 38 bimetallic complexes have been compiled comprising 18 unique metal-metal pairings. Twenty-one of these bimetallics are strictly isostructural, allowing for a systematic comparison of metal-metal bonding. The nature of the chemical bond between first-row metals is remarkably variable and depends on two primary factors: the total d-electron count, and the metals' relative d-orbital energies. Showcasing the range of covalent bonding are a quintuply bonded (d-d)(10) Mn-Cr heterobimetallic and the singly bonded late-late pairings, e.g., Fe-Co, which adopt unusually high spin states. A long-term goal is to rationally tailor the

  5. Homologous Pairing between Long DNA Double Helices

    NASA Astrophysics Data System (ADS)

    Mazur, Alexey K.

    2016-04-01

    Molecular recognition between two double stranded (ds) DNA with homologous sequences may not seem compatible with the B-DNA structure because the sequence information is hidden when it is used for joining the two strands. Nevertheless, it has to be invoked to account for various biological data. Using quantum chemistry, molecular mechanics, and hints from recent genetics experiments, I show here that direct recognition between homologous dsDNA is possible through the formation of short quadruplexes due to direct complementary hydrogen bonding of major-groove surfaces in parallel alignment. The constraints imposed by the predicted structures of the recognition units determine the mechanism of complexation between long dsDNA. This mechanism and concomitant predictions agree with the available experimental data and shed light upon the sequence effects and the possible involvement of topoisomerase II in the recognition.

  6. Double shell liner implosions

    SciTech Connect

    Sorokin, S. A.; Chaikovsky, S. A.

    1997-05-05

    Experiments on the double shell liner (DSL) implosions with and without an initial axial magnetic were performed on the SNOP-3 pulse generator (1.1 MA, 100 ns). In implosions of a DSL without an initial axial magnetic field, high radial compressions of the inner shell were observed, as in previous experiments with an initial axial magnetic field. Possible mechanisms for the formation of the initial azimuthal magnetic field are discussed.

  7. Algebra of Majorana doubling.

    PubMed

    Lee, Jaehoon; Wilczek, Frank

    2013-11-27

    Motivated by the problem of identifying Majorana mode operators at junctions, we analyze a basic algebraic structure leading to a doubled spectrum. For general (nonlinear) interactions the emergent mode creation operator is highly nonlinear in the original effective mode operators, and therefore also in the underlying electron creation and destruction operators. This phenomenon could open up new possibilities for controlled dynamical manipulation of the modes. We briefly compare and contrast related issues in the Pfaffian quantum Hall state.

  8. The double massa intermedia

    PubMed Central

    Baydin, Serhat; Gungor, Abuzer; Baran, Oguz; Tanriover, Necmettin; Rhoton, Albert L.

    2016-01-01

    Background: To describe the rare finding of a double massa intermedia (MI). Typically, the MI (interthalamic adhesion) is a single bridge of gray matter connecting the medial surfaces of the thalami. Methods: Twelve formalin- and alcohol-fixed human third ventricles were examined from superior to inferior by fiber dissection technique under ×6 to ×40 magnifications and with the endoscope. Results: In all hemispheres, the anterior and posterior commissure were defined. The MI, which bridges the medial surfaces of the thalami, was defined in all hemispheres. In one hemisphere, there was a second bridge between the thalami, located posteroinferior to the common MI. Endoscopic view confirmed that there was a second MI in this specimen. The MI usually traverses the third ventricle posterior to the foramen of Monro and connects the paired thalami. The MI is an important landmark during endoscopic and microscopic surgeries of the third ventricle. Although a double MI is very rare, surgeons should be aware of the possibility in their surgical planning. Conclusion: The surgeon should be aware of the possibility of a double MI to avoid confusion during third ventricle surgery. PMID:27127695

  9. Double face sealing device

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce (Inventor)

    1991-01-01

    A double face sealing device is disclosed for mounting between two surfaces to provide an air-tight and fluid-tight seal between a closure member bearing one of the surfaces and a structure or housing bearing the other surface which extends around the opening or hatchway to be closed. The double face sealing device includes a plurality of sections or segments mounted to one of the surfaces, each having a main body portion, a pair of outwardly extending and diverging, cantilever, spring arms, and a pair of inwardly extending and diverging, cantilever, spring arms, an elastomeric cover on the distal, free ends of the outwardly extending and diverging spring arms, and an elastomeric cover on the distal, free, ends of the outwardly extending and diverging spring arms, and an elastomeric cover on the distal, free ends of the inwardly extending and diverging spring arms. The double face sealing device has application or use in all environments requiring a seal, but is particularly useful to seal openings or hatchways between compartments of spacecraft or aircraft.

  10. Method for fusion bonding thermoplastic composites

    SciTech Connect

    Benatar, A.; Gutowski, T.G.

    1986-10-01

    Bonding of thermoplastic composites is a critical step in the manufacture of aerospace structures. The objective of this project is to investigate different methods for fusion bonding thermoplastic composites quickly, with a good bond strength, and without warping and deconsolidation. This is best accomplished by heating and melting the thermoplastic on the bond surface only, and then pressing the parts together for a fusion bond. For this purpose, a variety of surface heating techniques were examined for bonding of PEEK and J Polymer composites. These included: resistance heating, infrared heating, induction heating, dielectric/microwave heating, and ultrasonic welding. 20 references, 10 figures, 1 table.

  11. Chemical Bonding Technology: Direct Investigation of Interfacial Bonds

    NASA Technical Reports Server (NTRS)

    Koenig, J. L.; Boerio, F. J.; Plueddemann, E. P.; Miller, J.; Willis, P. B.; Cuddihy, E. F.

    1986-01-01

    This is the third Flat-Plate Solar Array (FSA) Project document reporting on chemical bonding technology for terrestrial photovoltaic (PV) modules. The impetus for this work originated in the late 1970s when PV modules employing silicone encapsulation materials were undergoing delamination during outdoor exposure. At that time, manufacturers were not employing adhesion promoters and, hence, module interfaces in common with the silicone materials were only in physical contact and therefore easily prone to separation if, for example, water were to penetrate to the interfaces. Delamination with silicone materials virtually vanished when adhesion promoters, recommended by silicone manufacturers, were used. The activities related to the direct investigation of chemically bonded interfaces are described.

  12. Accurate bond energies of biodiesel methyl esters from multireference averaged coupled-pair functional calculations.

    PubMed

    Oyeyemi, Victor B; Keith, John A; Carter, Emily A

    2014-09-01

    Accurate bond dissociation energies (BDEs) are important for characterizing combustion chemistry, particularly the initial stages of pyrolysis. Here we contribute to evaluating the thermochemistry of biodiesel methyl ester molecules using ab initio BDEs derived from a multireference averaged coupled-pair functional (MRACPF2)-based scheme. Having previously validated this approach for hydrocarbons and a variety of oxygenates, herein we provide further validation for bonds within carboxylic acids and methyl esters, finding our scheme predicts BDEs within chemical accuracy (i.e., within 1 kcal/mol) for these molecules. Insights into BDE trends with ester size are then analyzed for methyl formate through methyl crotonate. We find that the carbonyl group in the ester moiety has only a local effect on BDEs. C═C double bonds in ester alkyl chains are found to increase the strengths of bonds adjacent to the double bond. An important exception are bonds beta to C═C or C═O bonds, which produce allylic-like radicals upon dissociation. The observed trends arise from different degrees of geometric relaxation and resonance stabilization in the radicals produced. We also compute BDEs in various small alkanes and alkenes as models for the long hydrocarbon chain of actual biodiesel methyl esters. We again show that allylic bonds in the alkenes are much weaker than those in the small methyl esters, indicating that hydrogen abstractions are more likely at the allylic site and even more likely at bis-allylic sites of alkyl chains due to more electrons involved in π-resonance in the latter. Lastly, we use the BDEs in small surrogates to estimate heretofore unknown BDEs in large methyl esters of biodiesel fuels.

  13. The effect of nitrogen incorporation on the bonding structure of hydrogenated carbon nitride films

    SciTech Connect

    Camero, M.; Buijnsters, J. G.; Gomez-Aleixandre, C.; Gago, R.; Caretti, I.; Jimenez, I.

    2007-03-15

    This work describes the composition and bonding structure of hydrogenated carbon nitride (a-CN{sub x}:H) films synthesized by electron cyclotron resonance chemical vapor deposition using as precursor gases argon, methane, and nitrogen. The composition of the films was derived from Rutherford backscattering and elastic recoil detection analysis and the bonding structure was examined by infrared (IR) spectroscopy and x-ray absorption near edge spectroscopy (XANES). By varying the nitrogen to methane ratio in the applied gas mixture, polymeric a-CN{sub x}:H films with N/C contents varying from 0.06 to 0.49 were obtained. Remarkably, the H content of the films ({approx}40 at. %) was rather unaffected by the nitrogenation process. The different bonding states as detected in the measured XANES C(1s) and N(1s) spectra have been correlated with those of a large number of reference samples. The XANES and IR spectroscopy results indicate that N atoms are efficiently incorporated into the amorphous carbon network and can be found in different bonding environments, such as pyridinelike, graphitelike, nitrilelike, and amino groups. The nitrogenation of the films results in the formation of N-H bonding environments at the cost of C-H structures. Also, the insertion of N induces a higher fraction of double bonds in the structure at the expense of the linear polymerlike chains, hence resulting in a more cross-linked solid. The formation of double bonds takes place through complex C=N structures and not by formation of graphitic aromatic rings. Also, the mechanical and tribological properties (hardness, friction, and wear) of the films have been studied as a function of the nitrogen content. Despite the major modifications in the bonding structure with nitrogen uptake, no significant changes in these properties are observed.

  14. Accurate bond energies of biodiesel methyl esters from multireference averaged coupled-pair functional calculations.

    PubMed

    Oyeyemi, Victor B; Keith, John A; Carter, Emily A

    2014-09-01

    Accurate bond dissociation energies (BDEs) are important for characterizing combustion chemistry, particularly the initial stages of pyrolysis. Here we contribute to evaluating the thermochemistry of biodiesel methyl ester molecules using ab initio BDEs derived from a multireference averaged coupled-pair functional (MRACPF2)-based scheme. Having previously validated this approach for hydrocarbons and a variety of oxygenates, herein we provide further validation for bonds within carboxylic acids and methyl esters, finding our scheme predicts BDEs within chemical accuracy (i.e., within 1 kcal/mol) for these molecules. Insights into BDE trends with ester size are then analyzed for methyl formate through methyl crotonate. We find that the carbonyl group in the ester moiety has only a local effect on BDEs. C═C double bonds in ester alkyl chains are found to increase the strengths of bonds adjacent to the double bond. An important exception are bonds beta to C═C or C═O bonds, which produce allylic-like radicals upon dissociation. The observed trends arise from different degrees of geometric relaxation and resonance stabilization in the radicals produced. We also compute BDEs in various small alkanes and alkenes as models for the long hydrocarbon chain of actual biodiesel methyl esters. We again show that allylic bonds in the alkenes are much weaker than those in the small methyl esters, indicating that hydrogen abstractions are more likely at the allylic site and even more likely at bis-allylic sites of alkyl chains due to more electrons involved in π-resonance in the latter. Lastly, we use the BDEs in small surrogates to estimate heretofore unknown BDEs in large methyl esters of biodiesel fuels. PMID:24621192

  15. Adhesive-bonded scarf and stepped-lap joints

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1973-01-01

    Continuum mechanics solutions are derived for the static load-carrying capacity of scarf and stepped-lap adhesive-bonded joints. The analyses account for adhesive plasticity and adherend stiffness imbalance and thermal mismatch. The scarf joint solutions include a simple algebraic formula which serves as a close lower bound, within a small fraction of a per cent of the true answer for most practical geometries and materials. Digital computer programs were developed and, for the stepped-lap joints, the critical adherend and adhesive stresses are computed for each step. The scarf joint solutions exhibit grossly different behavior from that for double-lap joints for long overlaps inasmuch as that the potential bond shear strength continues to increase with indefinitely long overlaps on the scarf joints. The stepped-lap joint solutions exhibit some characteristics of both the scarf and double-lap joints. The stepped-lap computer program handles arbitrary (different) step lengths and thickness and the solutions obtained have clarified potentially weak design details and the remedies. The program has been used effectively to optimize the joint proportions.

  16. Colloidal Double Quantum Dots

    PubMed Central

    2016-01-01

    Conspectus Pairs of coupled quantum dots with controlled coupling between the two potential wells serve as an extremely rich system, exhibiting a plethora of optical phenomena that do not exist in each of the isolated constituent dots. Over the past decade, coupled quantum systems have been under extensive study in the context of epitaxially grown quantum dots (QDs), but only a handful of examples have been reported with colloidal QDs. This is mostly due to the difficulties in controllably growing nanoparticles that encapsulate within them two dots separated by an energetic barrier via colloidal synthesis methods. Recent advances in colloidal synthesis methods have enabled the first clear demonstrations of colloidal double quantum dots and allowed for the first exploratory studies into their optical properties. Nevertheless, colloidal double QDs can offer an extended level of structural manipulation that allows not only for a broader range of materials to be used as compared with epitaxially grown counterparts but also for more complex control over the coupling mechanisms and coupling strength between two spatially separated quantum dots. The photophysics of these nanostructures is governed by the balance between two coupling mechanisms. The first is via dipole–dipole interactions between the two constituent components, leading to energy transfer between them. The second is associated with overlap of excited carrier wave functions, leading to charge transfer and multicarrier interactions between the two components. The magnitude of the coupling between the two subcomponents is determined by the detailed potential landscape within the nanocrystals (NCs). One of the hallmarks of double QDs is the observation of dual-color emission from a single nanoparticle, which allows for detailed spectroscopy of their properties down to the single particle level. Furthermore, rational design of the two coupled subsystems enables one to tune the emission statistics from single

  17. Complexes between hypohalous acids and phosphine derivatives. Pnicogen bond versus halogen bond versus hydrogen bond

    NASA Astrophysics Data System (ADS)

    Li, Qingzhong; Zhu, Hongjie; Zhuo, Hongying; Yang, Xin; Li, Wenzuo; Cheng, Jianbo

    2014-11-01

    The complexes of HOBr:PH2Y (Y = H, F, Cl, Br, CH3, NH2, OH, and NO2), HOCl:PH2F, and HOI:PH2F have been investigated with ab initio calculations at the MP2/aug-cc-pVTZ level. Four types of structures (1, 2, 3a, and 3b) were observed for these complexes. 1 is stabilized by an O⋯P pnicogen bond, 2 by a P⋯X halogen bond, 3a by a H⋯P hydrogen bond and a P⋯X pnicogen bond, and 3b by H⋯P and H⋯Br hydrogen bonds. Their relative stability is related to the halogen X of HOX and the substituent Y of PH2Y. These structures can compete with interaction energy of -10.22 ∼ -29.40 kJ/mol. The Hsbnd O stretch vibration shows a small red shift in 1, a small irregular shift in 2, but a prominent red shift in 3a and 3b. The Xsbnd O stretch vibration exhibits a smaller red shift in 1, a larger red shift in 2, but an insignificant blue shift in 3a and 3b. The Psbnd Y stretch vibration displays a red shift in 1 but a blue shift in 2, 3a, and 3b. The formation mechanism, stability, and properties of these structures have been analyzed with molecular electrostatic potentials, orbital interactions, and non-covalent interaction index.

  18. Power module packaging with double sided planar interconnection and heat exchangers

    DOEpatents

    Liang, Zhenxian; Marlino, Laura D.; Ning, Puqi; Wang, Fei

    2015-05-26

    A double sided cooled power module package having a single phase leg topology includes two IGBT and two diode semiconductor dies. Each IGBT die is spaced apart from a diode semiconductor die, forming a switch unit. Two switch units are placed in a planar face-up and face-down configuration. A pair of DBC or other insulated metallic substrates is affixed to each side of the planar phase leg semiconductor dies to form a sandwich structure. Attachment layers are disposed on outer surfaces of the substrates and two heat exchangers are affixed to the substrates by rigid bond layers. The heat exchangers, made of copper or aluminum, have passages for carrying coolant. The power package is manufactured in a two-step assembly and heating process where direct bonds are formed for all bond layers by soldering, sintering, solid diffusion bonding or transient liquid diffusion bonding, with a specially designed jig and fixture.

  19. Catch Bond Interaction between Cell-Surface Sulfatase Sulf1 and Glycosaminoglycans

    PubMed Central

    Harder, Alexander; Möller, Ann-Kristin; Milz, Fabian; Neuhaus, Phillipp; Walhorn, Volker; Dierks, Thomas; Anselmetti, Dario

    2015-01-01

    In biological adhesion, the biophysical mechanism of specific biomolecular interaction can be divided in slip and catch bonds, respectively. Conceptually, slip bonds exhibit a reduced bond lifetime under increased external force and catch bonds, in contrast, exhibit an increased lifetime (for a certain force interval). Since 2003, a handful of biological systems have been identified to display catch bond properties. Upon investigating the specific interaction between the unique hydrophilic domain (HD) of the human cell-surface sulfatase Sulf1 against its physiological glycosaminoglycan (GAG) target heparan sulfate (HS) by single molecule force spectroscopy (SMFS), we found clear evidence of catch bond behavior in this system. The HD, ∼320 amino acids long with dominant positive charge, and its interaction with sulfated GAG-polymers were quantitatively investigated using atomic force microscopy (AFM) based force clamp spectroscopy (FCS) and dynamic force spectroscopy (DFS). In FCS experiments, we found that the catch bond character of HD against GAGs could be attributed to the GAG 6-O-sulfation site whereas only slip bond interaction can be observed in a GAG system where this site is explicitly lacking. We interpreted the binding data within the theoretical framework of a two state two path model, where two slip bonds are coupled forming a double-well interaction potential with an energy difference of ΔE ≈ 9 kBT and a compliance length of Δx ≈ 3.2 nm. Additional DFS experiments support this assumption and allow identification of these two coupled slip-bond states that behave consistently within the Kramers-Bell-Evans model of force-mediated dissociation. PMID:25863062

  20. Reactivity in the periphery of functionalised multiple bonds of heavier group 14 elements.

    PubMed

    Präsang, Carsten; Scheschkewitz, David

    2016-02-21

    Heavier group 14 multiple bonds have intrigued chemists since more than a century. The synthesis of stable compounds with double and triple bonds with silicon, germanium, tin and lead had considerable impact on modern ideas of chemical bonding. These developments were made possible by the use of bulky substituents that provide kinetic and thermodynamic protection. Since about a decade the compatibility of heavier multiple bonds with various functional groups has moved into focus. This review covers multiply bonded group 14 species with at least one additional reactive site. The vinylic functionalities of groups 1 and 17, resulting in nucleophilic and electrophilic disila vinyl groups, respectively, are the most prevalent and well-studied. They have been employed repeatedly for the transfer of heavier multiple bonds to yield low-valent group 14 compounds with novel structural motifs. Vinylic functionalities of groups 2 to 16 and a few σ-bonded transition metal complexes are experimentally known, but their reactivity has been studied to a lesser extent. Donor-coordinated multiple bonds are a relatively new field of research, but the large degree of unsaturation as isomers of alkynes (as well as residual functionality in some cases) offers considerable possibility for further manipulation, e.g. for the incorporation into more extended systems. Heavier allyl halides constitute the major part of heavier multiple bonds with a functional group in allylic position and some examples of successful transformations are given. At present, remote functionalities are basically limited to para-phenylene functionalised disilenes. The reported use of the latter for further derivatisation might encourage investigations in this direction. In summary, the study of peripherally functionalised multiple bonds with heavier group 14 elements is already well beyond its infancy and may be an instrumental factor in awakening the potential of group 14 chemistry for applications in polymers and