Science.gov

Sample records for electron-deficient double bonds

  1. Domino Reactions Based on Combinatorial Bond Transformations in Electron-Deficient Tertiary Enamines.

    PubMed

    Wan, Jie-Ping; Gao, Yong

    2016-06-01

    Electron-deficient enamines such as enaminones and enaminoesters are moieties showing widespread application in organic synthesis. Among the various available electron-deficient enamines, the N,N-disubstituted amino-functionalized ones (tertiary enamines) represent a class of special enamines with distinct properties and important applications. Based on our longstanding interest in exploring novel synthetic methods using electron-deficient tertiary enamines, we present herein the research advances in organic synthesis via domino reactions making use of the combinatorial C-N, C=C, C-H, and other bond transformations of electron-deficient tertiary enamines. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Activation of Electron-Deficient Quinones through Hydrogen-Bond-Donor-Coupled Electron Transfer.

    PubMed

    Turek, Amanda K; Hardee, David J; Ullman, Andrew M; Nocera, Daniel G; Jacobsen, Eric N

    2016-01-11

    Quinones are important organic oxidants in a variety of synthetic and biological contexts, and they are susceptible to activation towards electron transfer through hydrogen bonding. Whereas this effect of hydrogen bond donors (HBDs) has been observed for Lewis basic, weakly oxidizing quinones, comparable activation is not readily achieved when more reactive and synthetically useful electron-deficient quinones are used. We have successfully employed HBD-coupled electron transfer as a strategy to activate electron-deficient quinones. A systematic investigation of HBDs has led to the discovery that certain dicationic HBDs have an exceptionally large effect on the rate and thermodynamics of electron transfer. We further demonstrate that these HBDs can be used as catalysts in a quinone-mediated model synthetic transformation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Chemical bonding in electron-deficient boron oxide clusters: core boronyl groups, dual 3c-4e hypervalent bonds, and rhombic 4c-4e bonds.

    PubMed

    Chen, Qiang; Lu, Haigang; Zhai, Hua-Jin; Li, Si-Dian

    2014-04-28

    We explore the structural and bonding properties of the electron-deficient boron oxide clusters, using a series of B3On(-/0/+) (n = 2-4) clusters as examples. Global-minimum structures of these boron oxide clusters are identified via unbiased Coalescence Kick and Basin Hopping searches, which show a remarkable size and charge-state dependence. An array of new bonding elements are revealed: core boronyl groups, dual 3c-4e hypervalent bonds (ω-bonds), and rhombic 4c-4e bonds (o-bonds). In favorable cases, oxygen can exhaust all its 2s/2p electrons to facilitate the formation of B-O bonds. The current findings should help understand the bonding nature of low-dimensional boron oxide nanomaterials and bulk boron oxides.

  4. Nickel-Catalyzed Insertion of Alkynes and Electron-Deficient Olefins into Unactivated sp(3) C-H Bonds.

    PubMed

    Maity, Soham; Agasti, Soumitra; Earsad, Arif Mahammad; Hazra, Avijit; Maiti, Debabrata

    2015-08-03

    Insertion of unsaturated systems such as alkynes and olefins into unactivated sp(3) C-H bonds remains an unexplored problem. We herein address this issue by successfully incorporating a wide variety of functionalized alkynes and electron-deficient olefins into the unactivated sp(3) C-H bond of pivalic acid derivatives with excellent syn- and linear- selectivity. A strongly chelating 8-aminoquinoline directing group proved beneficial for these insertion reactions, while an air-stable and inexpensive Ni(II) salt has been employed as the active catalyst.

  5. Electron-deficient ruthenium and osmium complexes: From 14-electron species to C-F bond cleavage reactions

    NASA Astrophysics Data System (ADS)

    Huang, Dejian

    1999-12-01

    Stepwise removal of the fluoride from RuRF(CO)L2 gives [RuR(CO)L 2]BAr'4 (L = PtBu 2Me, R = H, CH3, Ph, Ar' = 3,5- bis(trifluoromethyl)phenyl). This 14-electron cation has a saw-horse shape with two bulky L trans and CO and R cis. The two vacant sites are in fact occupied weakly by C-H bonds from the phosphines. [RuH(CO)L2] + has a strong Lewis acidic but weakened π- basic Ru center as it is illustrated by its reactivity pattern towards olefins and alkynes. While organic fluorocarbon is notorious for its inertness due to the strong C-F bond, the α-C-F bond of a transition metal fluorocarbyl complex is activated. The chemistry in Chapter 3 illustrates this argument. Attempts to replace fluoride of MHF(CO)L2 with CF3 using Me 3SiCF3 do not give MH(CF3)(CO)L2, instead, M[HF(CF2)(CO)L2 is isolated. Fast equilibrium exists between RuHF(CF2)(CO)L2 and RuH(CF3)(CO)L 2 but not for OsHF(CF2)(CO)L2, which is converted to OsF2(CFH)(CO)L2 upon heating. In contrast, isomerization of RuHF(CF2)(CO)L2 gives RUF(CF2H)(CO)L 2.

  6. Scope and Mechanisms of Frustrated Lewis Pair Catalyzed Hydrogenation Reactions of Electron-Deficient C=C Double Bonds.

    PubMed

    Morozova, Varvara; Mayer, Peter; Berionni, Guillaume

    2015-11-23

    Several phosphonium and ammonium triarylborohydrides, which are intermediates in hydrogenation reactions catalyzed by frustrated Lewis pairs, were synthesized in high yield under mild conditions from triaryl boranes, ammonium or phosphonium halides, and triethylsilane. The kinetics and mechanisms of the reactions of these hydridoborate salts with benzhydrylium ions, iminium ions, quinone methides, and Michael acceptors were investigated, and their nucleophilicity was determined and compared with that of other hydride donors.

  7. Valence state driven site preference in the quaternary compound Ca5MgAgGe5: an electron-deficient phase with optimized bonding.

    PubMed

    Ponou, Siméon; Lidin, Sven; Zhang, Yuemei; Miller, Gordon J

    2014-05-05

    The quaternary phase Ca5Mg0.95Ag1.05(1)Ge5 (3) was synthesized by high-temperature solid-state techniques, and its crystal structure was determined by single-crystal diffraction methods in the orthorhombic space group Pnma-Wyckoff sequence c(12) with a = 23.1481(4) Å, b = 4.4736(1) Å, c = 11.0128(2) Å, V = 1140.43(4) Å(3), Z = 4. The crystal structure can be described as linear intergrowths of slabs cut from the CaGe (CrB-type) and the CaMGe (TiNiSi-type; M = Mg, Ag) structures. Hence, 3 is a hettotype of the hitherto missing n = 3 member of the structure series with the general formula R(2+n)T2X(2+n), previously described with n = 1, 2, and 4. The member with n = 3 was predicted in the space group Cmcm-Wyckoff sequence f(5)c(2). The experimental space group Pnma (in the nonstandard setting Pmcn) corresponds to a klassengleiche symmetry reduction of index two of the predicted space group Cmcm. This transition originates from the switching of one Ge and one Ag position in the TiNiSi-related slab, a process that triggers an uncoupling of each of the five 8f sites in Cmcm into two 4c sites in Pnma. The Mg/Ag site preference was investigated using VASP calculations and revealed a remarkable example of an intermetallic compound for which the electrostatic valency principle is a critical structure-directing force. The compound is deficient by one valence electron according to the Zintl concept, but LMTO electronic structure calculations indicate electronic stabilization and overall bonding optimization in the polyanionic network. Other stability factors beyond the Zintl concept that may account for the electronic stabilization are discussed.

  8. Understanding Rotation about a C=C Double Bond

    ERIC Educational Resources Information Center

    Barrows, Susan E.; Eberlein, Thomas H.

    2005-01-01

    The study focuses on the process and energetic cost of twisting around a C=C double bond and provides instructors with a simple vehicle for rectifying the common misrepresentation of C=C double bonds as rigid and inflexible. Discussions of cis and trans isomers of cycloalkenes are a good entry point for introducing students to the idea of a…

  9. Understanding Rotation about a C=C Double Bond

    ERIC Educational Resources Information Center

    Barrows, Susan E.; Eberlein, Thomas H.

    2005-01-01

    The study focuses on the process and energetic cost of twisting around a C=C double bond and provides instructors with a simple vehicle for rectifying the common misrepresentation of C=C double bonds as rigid and inflexible. Discussions of cis and trans isomers of cycloalkenes are a good entry point for introducing students to the idea of a…

  10. Zinc-Zinc Double Bonds: A Theoretical Study.

    PubMed

    Echeverría, Jorge; Falceto, Andrés; Alvarez, Santiago

    2017-08-14

    While double bonds are known for transition metals of Groups 9 and 10 as well as for boron and p-block elements of Groups 14-16, Zn sits in a small region of the periodic table with no well-characterized double bonds. A qualitative reasoning indicates that zero-valent zinc has the potential to form Zn=Zn double bonds. A computational study in search for complexes that might showcase this new bond type is presented here. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Theoretical characterization of the sulfilimine bond: Double or single?

    NASA Astrophysics Data System (ADS)

    Pichierri, Fabio

    2010-03-01

    Using quantum mechanical calculations in combination with AIM and NBO analyses, we investigate the properties of the sulfilimine bond, which has been recently detected in collagen IV [Vanacore et al., Science 325 (2009) 1230]. Contrary to the general belief that this is a double bond, -N dbnd S<, our analysis of the wavefunction of a model compound indicates it being a coordinate covalent (dative) single bond, -N ← S<, with a strong polarization towards nitrogen.

  12. A History of the Double-Bond Rule

    NASA Astrophysics Data System (ADS)

    Hoogenboom, Bernard E.

    1998-05-01

    The tautomeric polar systems recognized by Laar in 1886 contain an active atom that appeared to migrate from its original position. The tautomeric systems are of a general structural form and can be represented as X=Y-Z-A. Later workers recognized the same bond weakening effect in a variety of organic structures in which atom A is halogen, hydrogen, carbon, or nitrogen. Hermann Staudinger recognized the weakness of that bond, an allyl bond, in hydrocarbons and exploited the behavior for the preparation of isoprene from terpene hydrocarbons. In 1922 he formulated a generality, a rule, regarding the allyl bond reactivity He noted that natural rubber also decomposed to form isoprene and therefore concluded that natural rubber is an unsaturated hydrocarbon, that isoprene units in natural rubber represent weakly held allyl substituents, and that natural rubber is a macromolecular combination of isoprene units. From his different experience as an industrial chemist, Otto Schmidt recognized the same bond weakening effect in hydrocarbons and in 1932 postulated the "Double-Bond Rule," stating that the presence of a double bond in a hydrocarbon has an alternating strengthening and weakening effect on single bonds throughout the molecule, diminishing with distance from the double bond. Schmidt not only understood the practical benefit of this rule, but he also offered an explanation for the Rule on theoretical grounds. Novel in its time, his theoretical explanation did not find popular acceptance, despite his considerable efforts to promote it in the literature. His concept of the Rule was supplanted by the new theory of resonance devised by Pauling and Wheland and by the implied notion of the stabilization of products by delocalization effects.

  13. Understanding Rotation about a C=C Double Bond

    NASA Astrophysics Data System (ADS)

    Barrows, Susan E.; Eberlein, Thomas H.

    2005-09-01

    In this article, twisting about the C=C double bond and the consequential pyramidalization of sp 2 carbon atoms in alkenes were examined in a molecular modeling study using trans -2-butene as a model system. According to our trans -2-butene model and other similar work, most of the strength of a π bond is retained upon twisting, even for remarkably large C C=C C dihedral angles (up to 90°). The phenomenon of sp 2 carbon atom pyramidalization and preservation of π bond strength upon twisting a C=C double bond is well established in the literature, but is rarely discussed in introductory textbooks. This absence is noteworthy because profound manifestations of this effect do occur in compounds that are covered in an introductory organic chemistry curriculum. We present a simple method of introducing the concept of a flexible C=C π bond into beginning organic chemistry courses. We report the energetic demands of partial twisting about the C=C bond in 2-butene as calculated using DFT, LMP2, and MCSCF methods. Finally, using the results of these calculations, we assessed the degree of strain introduced by the twisted nature of the C=C bond in trans cycloalkenes.

  14. Free radical addition of butanethiol to vegetable oil double bonds.

    PubMed

    Bantchev, Grigor B; Kenar, James A; Biresaw, Girma; Han, Moon Gyu

    2009-02-25

    Butanethiol was used in ultraviolet-initiated thiol-ene reaction with canola and corn oils to produce sulfide-modified vegetable oils (SMVO). The crude SMVO product was successfully purified by solvent extraction, vacuum evaporation, and silica gel chromatography. The SMVO products were characterized by nuclear magnetic resonance and Fourier transform infrared spectroscopy. Further product characterization and analysis was conducted using GC and GC-MS on the fatty acid methyl esters obtained by the transesterification of the SMVO products. Investigation of the effect of reaction conditions showed that high yield and high conversion of double bonds into thiol were favored at low reaction temperatures and high butanethiol/vegetable oil ratios. Canola and corn oils gave similar double-bond conversions and yields of the desired SMVO product even though they have big differences in the relative numbers of single and multiple double bonds in their structures. Under best reaction conditions, up to 97% of double-bond conversion and 61% isolated yields of the purified SMVO products were attained.

  15. [Determination of double bonds in olive and sunflower oils by ozonize method].

    PubMed

    Evteeva, N M

    2007-01-01

    Kinetics of spending double bonds of tocotherol and accumulation of peroxides during oxidation of olive and sunflower oils were investigated. Date on spending double bonds during oxidation of commercial oils were measured for the first time.

  16. Facile and promising method for michael addition of indole and pyrrole to electron-deficient trans-β-nitroolefins catalyzed by a hydrogen bond donor catalyst Feist's acid and preliminary study of antimicrobial activity.

    PubMed

    Al Majid, Abdullah M A; Islam, Mohammad Shahidul; Barakat, Assem; Al-Agamy, Mohamed H M; Naushad, Mu

    2014-01-01

    The importance of cooperative hydrogen-bonding effects has been demonstrated using novel 3-methylenecyclopropane-1,2-dicarboxylic acid (Feist's acid (FA)) as hydrogen bond donor catalysts for the addition of indole and pyrrole to trans-β-nitrostyrene derivatives. Because of the hydrogen bond donor (HBD) ability, Feist's acid (FA) has been introduced as a new class of hydrogen bond donor catalysts for the activation of nitroolefin towards nucleophilic substitution reaction. It has effectively catalyzed the Michael addition of indoles and pyrrole to β-nitroolefins under optimum reaction condition to furnish the corresponding Michael adducts in good to excellent yields (up to 98%). The method is general, atom-economical, convenient, and eco-friendly and could provide excellent yields and regioselectivities. Some newly synthesized compounds were for examined in vitro antimicrobial activity and their preliminary results are reported.

  17. Facile and Promising Method for Michael Addition of Indole and Pyrrole to Electron-Deficient trans-β-Nitroolefins Catalyzed by a Hydrogen Bond Donor Catalyst Feist's Acid and Preliminary Study of Antimicrobial Activity

    PubMed Central

    Al Majid, Abdullah M. A.; Islam, Mohammad Shahidul; Barakat, Assem; Al-Agamy, Mohamed H. M.; Naushad, Mu.

    2014-01-01

    The importance of cooperative hydrogen-bonding effects has been demonstrated using novel 3-methylenecyclopropane-1,2-dicarboxylic acid (Feist's acid (FA)) as hydrogen bond donor catalysts for the addition of indole and pyrrole to trans-β-nitrostyrene derivatives. Because of the hydrogen bond donor (HBD) ability, Feist's acid (FA) has been introduced as a new class of hydrogen bond donor catalysts for the activation of nitroolefin towards nucleophilic substitution reaction. It has effectively catalyzed the Michael addition of indoles and pyrrole to β-nitroolefins under optimum reaction condition to furnish the corresponding Michael adducts in good to excellent yields (up to 98%). The method is general, atom-economical, convenient, and eco-friendly and could provide excellent yields and regioselectivities. Some newly synthesized compounds were for examined in vitro antimicrobial activity and their preliminary results are reported. PMID:24574906

  18. Stress analysis of adhesive bonded stiffener plates and double joints

    NASA Technical Reports Server (NTRS)

    Yuceoglu, U.; Updike, D. P.

    1975-01-01

    The general problem of adhesive bonded stiffener plates and double joints of dissimilar orthotropic adherends with transverse shear deformations are analyzed. Adhesive layers are assumed to be of an isotropic, elastic and relatively flexible material. It is shown that the stress distributions in the adhesive layers are very much dependent on the bending deformations in adherends. Also, it is found that, in the adhesive layer, maximum transverse normal stress is, in many cases, larger than the longitudinal shear stress and that both occur at the edge of the joint. The general method of solution developed is applied to several practical examples.

  19. Bonding and redox properties of [Os(3)(CO)(9)(tmbp)(L)] (tmbp=4,4',5,5'-tetramethyl-2,2'-biphosphinine; L=CO, PPh(3)) clusters with an unprecedented electron-deficient metallic core and doubly bridging biphosphinine dianion.

    PubMed

    Bakker, Maarten J; Vergeer, Frank W; Hartl, Frantisek; Rosa, Patrick; Ricard, Louis; Le Floch, Pascal; Calhorda, Maria J

    2002-04-02

    Herein we describe in detail the bonding properties and electrochemical behavior of the first known triosmium carbonyl clusters with a coordinated redox-active ligand 4,4',5,5'-tetramethyl-2,2'-biphosphinine (tmbp), the phosphorus derivative of 2,2'-bipyridine. The clusters investigated were [Os(3)(CO)(10)(tmbp)] (1) and its derivative [Os(3)(CO)(9)(PPh(3))(tmbp)] (2). The crystal structures of both clusters are compared with those of relevant compounds; they served as the basis for density functional theory (DFT and time-dependent DFT) calculations. The experimental and theoretical data reveal an unexpected and unprecedented bridging coordination mode of tmbp, with each P atom bridging two metal atoms. The tmbp ligand is formally reduced by transfer of two electrons from the triangular cluster core that consequently lacks one of the metal-metal bonds. Both 1 and 2 therefore represent 50e(-) clusters with a coordinated 8e(-) donor, [tmbp](2-). The HOMO and LUMO of 1 and 2 possess a predominant contribution from different pi*(tmbp) orbitals, implying that the lowest energy excited state possesses a significant intraligand character. This is in agreement with the photostability of these clusters. DFT calculations also predict the experimentally observed structure of 1 to be the most stable one in a series of several plausible structural isomers. Stepwise two-electron electrochemical reduction of 1 and 2 results in dissociation of CO and PPh(3), respectively, and formation of the [Os(3)(CO)(9)(tmbp)](2-) ion. The initially produced radical anions of the parent clusters, in which the odd electron is predominantly localized on the tmbp ligand, are sufficiently stable at low temperatures and can be observed with IR spectroelectrochemistry. The electron-deficiency of the cluster core in 1 permits facile electrocatalytic substitution of a CO ligand by tertiary phosphane and phosphite donors.

  20. A Simple Visualization of Double Bond Properties: Chemical Reactivity and UV Fluorescence

    ERIC Educational Resources Information Center

    Grayson, Scott M.

    2012-01-01

    A simple, easily visualized thin-layer chromatography (TLC) staining experiment is presented that highlights the difference in reactivity between aromatic double bonds and nonaromatic double bonds. Although the stability of aromatic systems is a major theme in organic chemistry, the concept is rarely reinforced "visually" in the undergraduate…

  1. A Simple Visualization of Double Bond Properties: Chemical Reactivity and UV Fluorescence

    ERIC Educational Resources Information Center

    Grayson, Scott M.

    2012-01-01

    A simple, easily visualized thin-layer chromatography (TLC) staining experiment is presented that highlights the difference in reactivity between aromatic double bonds and nonaromatic double bonds. Although the stability of aromatic systems is a major theme in organic chemistry, the concept is rarely reinforced "visually" in the undergraduate…

  2. Radiation Crosslinking of Polyurethane Enhanced by Introducing Terminal Double-Bonds

    NASA Astrophysics Data System (ADS)

    Zhou, Cheng-Fei; Liu, Yang; Jiu, Yong-Bin; Cao, Wei; Zhai, Tong; Wang, Lian-Cai

    2016-05-01

    In this article, the enhanced radiation crosslinking of polyurethane via double-bond capping method were discussed in detail. Meanwhile, the Enhanced radiation crosslinking of polyurethane based on polyimide as hard segment were emphasized. In addition, the preparation of radiation crosslinking foam by introducing terminal double-bond were introduced.

  3. Double dative bond configuration: pyrimidine on Ge(100).

    PubMed

    Lee, Jun Young; Jung, Soon Jung; Hong, Suklyun; Kim, Sehun

    2005-01-13

    The adsorption of pyrimidine onto Ge(100) surfaces has been investigated using real-time scanning tunneling microscopy (STM), temperature-programmed desorption (TPD), and density-functional theory (DFT) calculations. Our results show that the adsorbed pyrimidine molecules are tilted about 40 degrees with respect to the Ge surface, and through a Lewis acid-base reaction form bridges between the down-Ge atoms of neighboring Ge dimer rows by double Ge-N dative bonding without loss of aromaticity. For coverages of pyrimidine up to 0.25 ML, a well-ordered c(4x2) structure results from states that appear in STM micrographs as oval-shaped protrusions, which correspond to pyrimidine molecules datively adsorbed on every other dimer. However, above 0.25 ML, the oval-shaped protrusions gradually change into brighter zigzag lines. At 0.50 ML, a p(2x2) structure results from the states that appear in STM as zigzag lines. The zigzag lines are formed by the attachment of pyrimidine molecules to the down-Ge atoms of every Ge dimer. However, the unstable p(2x2) structure eventually reconstructs into a c(4x2) structure due to steric hindrance between the adsorbed pyrimidine molecules after stopping the exposure of pyrimidine to the surface.

  4. The sEDA(=) and pEDA(=) descriptors of the double bonded substituent effect.

    PubMed

    Mazurek, Andrzej; Dobrowolski, Jan Cz

    2013-05-14

    New descriptors of the double bonded substituent effect, sEDA(=) and pEDA(=), were constructed based on quantum chemical calculations and NBO methodology. They show to what extent the σ and π electrons are donated to or withdrawn from the substituted system by a double bonded substituent. The new descriptors differ from descriptors of the classical substituent effect for which the pz orbital of the ipso carbon atom is engaged in the π-electron system of the two neighboring atoms in the ring. For double bonded substituents, the pz orbital participates in double bond formation with only one external atom. Moreover, the external double bond forces localization of the double bond system of the ring, significantly changing the core molecule. We demonstrated good agreement between our descriptors and the Weinhold and Landis' "natural σ and π-electronegativities": so far only descriptors allowing for evaluation of the substitution effect by a double bonded atom. The equivalency between descriptors constructed for 5- and 6-membered model structures as well as linear dependence/independence of the constructed parameters was discussed. Some interrelations between sEDA(=) and pEDA(=) and the other descriptors of (hetero)cyclic systems such as aromaticity and electron density in the ring and bond critical points were also examined.

  5. Two-center two-electron covalent bonds with deficient bonding densities.

    PubMed

    Yang, Yang

    2012-10-18

    Electron-deficient covalent bonds are a type of covalent bonds without electron accumulation at their bonding regions. Compared with normal covalent bonds, they are quite sensitive to chemical environments. Electron-deficient and normal covalent bonds are not isolated from each other. An electron-deficient bond may change to a normal one upon the change of substituting groups. Neither bond elongation nor atom electronegativity is directly related to the electron deficiency in an electron-deficient bond. Atoms in molecules (AIM) analyses suggest that electron-deficient bonds are characterized by positive Laplacians and small ρ(BCP) values. The positive Laplacian is caused by insignificant electron accumulation perpendicular to the bond path. On the basis of electron localization function (ELF) descriptors, electron-deficient bonds have small basin populations, low η values and high relative fluctuations. There may be one or two bond basins for an electron-deficient bond. In addition, such a bond may correlate with two more valence basins close to the two participating atoms. Electron-deficient bonds are usually weak and long. This is consistent with the low s characters in their natural bond orbitals (NBOs).

  6. Transition metal-catalyzed process for addition of amines to carbon-carbon double bonds

    DOEpatents

    Hartwig, John F.; Kawatsura, Motoi; Loeber, Oliver

    2002-01-01

    The present invention is directed to a process for addition of amines to carbon-carbon double bonds in a substrate, comprising: reacting an amine with a compound containing at least one carbon-carbon double bond in the presence a transition metal catalyst under reaction conditions effective to form a product having a covalent bond between the amine and a carbon atom of the former carbon-carbon double bond. The transition metal catalyst comprises a Group 8 metal and a ligand containing one or more 2-electron donor atoms. The present invention is also directed to enantioselective reactions of amine compounds with compounds containing carbon-carbon double bonds, and a calorimetric assay to evaluate potential catalysts in these reactions.

  7. Pinpointing double bonds in lipids by Paternò-Büchi reactions and mass spectrometry.

    PubMed

    Ma, Xiaoxiao; Xia, Yu

    2014-03-03

    The positions of double bonds in lipids play critical roles in their biochemical and biophysical properties. In this study, by coupling Paternò-Büchi (P-B) reaction with tandem mass spectrometry, we developed a novel method that can achieve confident, fast, and sensitive determination of double bond locations within various types of lipids. The P-B reaction is facilitated by UV irradiation of a nanoelectrospray plume entraining lipids and acetone. Tandem mass spectrometry of the on-line reaction products via collision activation leads to the rupture of oxetane rings and the formation of diagnostic ions specific to the double bond location.

  8. Borohydride-mediated radical addition reactions of organic iodides to electron-deficient alkenes.

    PubMed

    Kawamoto, Takuji; Uehara, Shohei; Hirao, Hidefumi; Fukuyama, Takahide; Matsubara, Hiroshi; Ryu, Ilhyong

    2014-05-02

    Cyanoborohydrides are efficient reagents in the reductive addition reactions of alkyl iodides and electron-deficient olefins. In contrast to using tin reagents, the reaction took place chemoselectively at the carbon-iodine bond but not at the carbon-bromine or carbon-chlorine bond. The reaction system was successfully applied to three-component reactions, including radical carbonylation. The rate constant for the hydrogen abstraction of a primary alkyl radical from tetrabutylammonium cyanoborohydride was estimated to be <1 × 10(4) M(-1) s(-1) at 25 °C by a kinetic competition method. This value is 3 orders of magnitude smaller than that of tributyltin hydride.

  9. Double hydrogen bond mediating self-assembly structure of cyanides on metal surface

    NASA Astrophysics Data System (ADS)

    Wang, Zhongping; Xiang, Feifei; Lu, Yan; Wei, Sheng; Li, Chao; Liu, Xiaoqing; Liu, Lacheng; Wang, Li

    2016-10-01

    Cyanides with different numbers of -C≡N, 1,2,4,5-Tetracyanobenzene (TCNB) and 2,3-Dicyanonaphthalene (2,3-DCN) deposited on Ag(111) and Ag(110) surfaces, have been investigated by room temperature scanning tunneling microscopy (RTSTM), respectively. High resolution STM images show double hydrogen bond is the main driving force to form variety of self-assembly structures, indicating the double hydrogen bond affects the electron distribution of cyanides and leads to a more stable structure with lower energy. In addition, the difference between Ag(111) and Ag(110) surfaces in their lattice structure induces a bigger assembly structural change of 2,3-DCN than that of 1,2,4,5-TCNB, which confirms the fact that the opposite double hydrogen bond formation formed by 1,2,4,5-TCNB is more stable than the neighboring double hydrogen bond formation formed by molecule 2,3-DCN.

  10. A novel palladium-catalyzed hydroalkoxylation of alkenes with a migration of double bond.

    PubMed

    Tan, Jiajing; Zhang, Zuhui; Wang, Zhiyong

    2008-04-21

    A novel palladium-catalyzed addition of alcohols to olefins was developed, in which a migration of double bond was involved. By this new method, a variety of allylic ethers were prepared with moderate to high yields under mild conditions.

  11. Cavity partition and functionalization of a [2+3] organic molecular cage by inserting polar P[double bond, length as m-dash]O bonds.

    PubMed

    Feng, Genfeng; Liu, Wei; Peng, Yuxin; Zhao, Bo; Huang, Wei; Dai, Yafei

    2016-07-28

    The cavity of a [2+3] organic molecular cage was partitioned and functionalized by inserting inner-directed P[double bond, length as m-dash]O bonds, which shows CO2 capture and CH4 exclusion due to the size-matching and polarity effects. Computational results demonstrate that the successful segmentation via polar P[double bond, length as m-dash]O bonds facilitates the CO2 molecules to reside selectively inside the cavity.

  12. α-Halogenoacetanilides as hydrogen-bonding organocatalysts that activate carbonyl bonds: fluorine versus chlorine and bromine.

    PubMed

    Koeller, Sylvain; Thomas, Coralie; Peruch, Fréderic; Deffieux, Alain; Massip, Stéphane; Léger, Jean-Michel; Desvergne, Jean-Pierre; Milet, Anne; Bibal, Brigitte

    2014-03-03

    α-Halogenoacetanilides (X=F, Cl, Br) were examined as H-bonding organocatalysts designed for the double activation of CO bonds through NH and CH donor groups. Depending on the halide substituents, the double H-bond involved a nonconventional CH⋅⋅⋅O interaction with either a HCXn (n=1-2, X=Cl, Br) or a HCAr bond (X=F), as shown in the solid-state crystal structures and by molecular modeling. In addition, the catalytic properties of α-halogenoacetanilides were evaluated in the ring-opening polymerization of lactide, in the presence of a tertiary amine as cocatalyst. The α-dichloro- and α-dibromoacetanilides containing electron-deficient aromatic groups afforded the most attractive double H-bonding properties towards CO bonds, with a NH⋅⋅⋅O⋅⋅⋅HCX2 interaction.

  13. Single, double, triple bonds and chains: the formation of electron-precise B-B bonds.

    PubMed

    Braunschweig, Holger; Dewhurst, Rian D

    2013-03-25

    The construction of boron-boron bonds, despite the intense synthetic interest in diboranes and the high B-B bond enthalpy, is still difficult, uncontrollable, and unpredictable. Methods for the construction of B-B multiple bonds are rarer still. These problems have witnessed some progress in recent years; this Minireview attempts to provide a background to the history of B-B bond synthesis and summarize the recent results in the area. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Preparation of tert-butyl-capped polyenes containing up to 15 double bonds

    SciTech Connect

    Knoll, K.; Schrock, R.R. )

    1989-11-27

    7,8-Bis(trifluoromethyl)tricyclo(4.2.2.0{sup 2.5})deca-3,7,9-triene (TCDT) can be ring-opened in a controlled manner by W(CH-t-Bu)(NAr)(O-t-Bu){sub 2} (Ar = 2,6-C{sub 6}H{sub 3}-i-Pr{sub 2}) to give living oligomers from which the metal can be removed in a Wittig-like reaction with pivaldehyde or 4,4-dimethyl-trans-2-pentenal. Mixtures of odd and even polyenes have been analyzed by reversed-phase HPLC methods, and those having as many as 13 double bonds have been isolated by column chromatography on silica gel under dinitrogen at {minus}40{degree}C and characterized by {sup 1}H and {sup 13}C NMR and UV-vis studies. The 17-ene has been observed by HPLC. Polyenes containing more than 17 double bonds are relatively unstable under the reaction and subsequent isolation conditions; those containing between 11 and 15 double bonds decompose thermally progressively more readily. UV-vis and {sup 13}C and {sup 1}H NMR data have been collected and analyzed in detail for the trans(cis,trans){sub x} isomers for x = 1-5 (up to 11 double bonds) and for the odd and even all-trans forms containing up to nine double bonds.

  15. The Double-Bond Configuration of Corynanthean Alkaloids and Its Impact on Monoterpenoid Indole Alkaloid Biosynthesis.

    PubMed

    Eckermann, Ruben; Gaich, Tanja

    2016-04-11

    Experimental evidence is provided for the coherence of the double-bond geometry and the occurrence of "secondary cyclizations" in the biosynthesis of monoterpenoid indole alkaloids. Biosynthetically, akuammiline, C-mavacurine, and Strychnos alkaloids are proposed to be derived from the corynanthean alkaloid geissoschizine, a key intermediate in the biosynthetic pathway of these monoterpenoid indole alkaloids. This process occurs by so-called "secondary cyclizations" from geissoschizine or its derivatives. Although corynanthean alkaloids like geissoschizine incorporate E or Z double bonds located at C19-C20, the alkaloids downstream in the biosynthesis exclusively exhibit the E double bond. This study shows that secondary cyclizations preferentially occur with the E isomer of geissoschizine or its derivatives. This is attributed to the flexibility of the quinolizidine system of the corynanthean alkaloids, which can adopt a cis or trans conformation. For the secondary cyclization to take place, the cis-quinolizidine conformation is required. Experimental evidence supports the hypothesis that the E double bond of geissoschizine induces the cis conformation, whereas the Z double bond induces the trans conformation, which prohibits secondary cyclization of the Z compounds.

  16. Carbon-carbon double-bond reductases in nature.

    PubMed

    Huang, Minmin; Hu, Haihong; Ma, Li; Zhou, Quan; Yu, Lushan; Zeng, Su

    2014-08-01

    Reduction of C = C bonds by reductases, found in a variety of microorganisms (e.g. yeasts, bacteria, and lower fungi), animals, and plants has applications in the production of metabolites that include pharmacologically active drugs and other chemicals. Therefore, the reductase enzymes that mediate this transformation have become important therapeutic targets and biotechnological tools. These reductases are broad-spectrum, in that, they can act on isolation/conjugation C = C-bond compounds, α,β-unsaturated carbonyl compounds, carboxylic acids, acid derivatives, and nitro compounds. In addition, several mutations in the reductase gene have been identified, some associated with diseases. Several of these reductases have been cloned and/or purified, and studies to further characterize them and determine their structure in order to identify potential industrial biocatalysts are still in progress. In this study, crucial reductases for bioreduction of C = C bonds have been reviewed with emphasis on their principal substrates and effective inhibitors, their distribution, genetic polymorphisms, and implications in human disease and treatment.

  17. Coordination of a Si[double bond, length as m-dash]O subunit to metals: complexes of donor-stabilized silanone featuring a terminal Si[double bond, length as m-dash]O→M coordination (M = Zn, Al).

    PubMed

    Xiong, Yun; Yao, Shenglai; Driess, Matthias

    2010-10-21

    The striking reactivity of donor-stabilised silanone LSi(DMAP)[double bond, length as m-dash]O () [L = N(Ar)C([double bond, length as m-dash]CH(2))CH[double bond, length as m-dash]C(Me)N(Ar), Ar = 2,6-iPr(2)C(6)H(3), DMAP = p-dimethylaminopyridine] toward Lewis acidic metal substrates Zn(OAc)(2), ZnMe(2), and AlMe(3) is reported. Two unprecedented addition products onto the Si[double bond, length as m-dash]O double bond, [LSi(OAc)(μ-O)Zn(OAc)(DMAP)(2)] () and [LSi(OAc)(μ-O)](2)Zn(DMAP) (), and two terminal complexes LSi(DMAP)[double bond, length as m-dash]O→ZnMe(2) () and LSi(DMAP)[double bond, length as m-dash]O→AlMe(3) () were obtained. Compounds and are unique, representing the first isolable and structurally characterised terminal Si[double bond, length as m-dash]O→Zn and Si[double bond, length as m-dash]O→Al complexes. All new compounds were fully characterised by (1)H, (13)C, and (29)Si NMR spectroscopy, EI-MS, elemental analysis and single-crystal X-ray diffraction analyses.

  18. Mechanistic insights into intramolecular ortho-amination/hydroxylation by nonheme Fe(IV)[double bond, length as m-dash]NTs/Fe(IV)[double bond, length as m-dash]O species: the σ vs. the π channels.

    PubMed

    Pandey, Bhawana; Jaccob, Madhavan; Rajaraman, Gopalan

    2017-03-14

    Comparative oxidative abilities of nonheme Fe(IV)[double bond, length as m-dash]NTs and Fe(IV)[double bond, length as m-dash]O species using DFT has been explored. Our calculations reveal that the Fe(IV)[double bond, length as m-dash]NTs is found to be a stronger oxidant in two electron transfer reactions and react exclusively via π channels while the Fe(IV)[double bond, length as m-dash]O species is found to be a stronger oxidant when the σ-pathway is activated such as in HAT reactions.

  19. Double-bond-containing polyallene-based triblock copolymers via phenoxyallene and (meth)acrylate

    PubMed Central

    Ding, Aishun; Lu, Guolin; Guo, Hao; Huang, Xiaoyu

    2017-01-01

    A series of ABA triblock copolymers, consisting of double-bond-containing poly(phenoxyallene) (PPOA), poly(methyl methacrylate) (PMMA), or poly(butyl acrylate) (PBA) segments, were synthesized by sequential free radical polymerization and atom transfer radical polymerization (ATRP). A new bifunctional initiator bearing azo and halogen-containing ATRP initiating groups was first prepared followed by initiating conventional free radical homopolymerization of phenoxyallene with cumulated double bond to give a PPOA-based macroinitiator with ATRP initiating groups at both ends. Next, PMMA-b-PPOA-b-PMMA and PBA-b-PPOA-b-PBA triblock copolymers were synthesized by ATRP of methyl methacrylate and n-butyl acrylate initiated by the PPOA-based macroinitiator through the site transformation strategy. These double-bond-containing triblock copolymers are stable under UV irradiation and free radical circumstances. PMID:28252049

  20. Double-bond-containing polyallene-based triblock copolymers via phenoxyallene and (meth)acrylate

    NASA Astrophysics Data System (ADS)

    Ding, Aishun; Lu, Guolin; Guo, Hao; Huang, Xiaoyu

    2017-03-01

    A series of ABA triblock copolymers, consisting of double-bond-containing poly(phenoxyallene) (PPOA), poly(methyl methacrylate) (PMMA), or poly(butyl acrylate) (PBA) segments, were synthesized by sequential free radical polymerization and atom transfer radical polymerization (ATRP). A new bifunctional initiator bearing azo and halogen-containing ATRP initiating groups was first prepared followed by initiating conventional free radical homopolymerization of phenoxyallene with cumulated double bond to give a PPOA-based macroinitiator with ATRP initiating groups at both ends. Next, PMMA-b-PPOA-b-PMMA and PBA-b-PPOA-b-PBA triblock copolymers were synthesized by ATRP of methyl methacrylate and n-butyl acrylate initiated by the PPOA-based macroinitiator through the site transformation strategy. These double-bond-containing triblock copolymers are stable under UV irradiation and free radical circumstances.

  1. Double-bond-containing polyallene-based triblock copolymers via phenoxyallene and (meth)acrylate.

    PubMed

    Ding, Aishun; Lu, Guolin; Guo, Hao; Huang, Xiaoyu

    2017-03-02

    A series of ABA triblock copolymers, consisting of double-bond-containing poly(phenoxyallene) (PPOA), poly(methyl methacrylate) (PMMA), or poly(butyl acrylate) (PBA) segments, were synthesized by sequential free radical polymerization and atom transfer radical polymerization (ATRP). A new bifunctional initiator bearing azo and halogen-containing ATRP initiating groups was first prepared followed by initiating conventional free radical homopolymerization of phenoxyallene with cumulated double bond to give a PPOA-based macroinitiator with ATRP initiating groups at both ends. Next, PMMA-b-PPOA-b-PMMA and PBA-b-PPOA-b-PBA triblock copolymers were synthesized by ATRP of methyl methacrylate and n-butyl acrylate initiated by the PPOA-based macroinitiator through the site transformation strategy. These double-bond-containing triblock copolymers are stable under UV irradiation and free radical circumstances.

  2. Access to B=S and B=Se double bonds via sulfur and selenium insertion into a B-H bond and hydrogen migration.

    PubMed

    Wang, Hao; Zhang, Jianying; Hu, Hongfan; Cui, Chunming

    2010-08-18

    Stable compounds with a boron-chalcogen (S or Se) valence double bond have been prepared via sequences involving insertion of the chalcogen into a B-H bond and subsequent hydrogen migration. X-ray diffraction studies and density functional theory calculations on the resulting compounds provide convincing evidence for the boron-chalcogen multiple bonding.

  3. Reactions of (Cp(CO) sub 2 Fe double bond CHAr) sup + (Ar = p-C sub 6 H sub 4 OMe) with O double bond N-Ar prime (Ar prime = C sub 6 H sub 5 , p-C sub 6 H sub 4 NMe sub 2 ) and PhN double bond NPh

    SciTech Connect

    Peng, Wei-Jun; Gamble, A.S.; Templeton, J.L.; Brookhart, M. )

    1990-02-07

    Organometallic products formed from the reaction of an electrophilic iron carbene complex with nitrosoarenes or azobenzene reflect net insertion of the ArN{double bond}X moiety into the Fe{double bond}CHAr bond. Cp(CO){sub 2}Fe-O-N(Ar{prime}){double bond}CHAr{sup +} and Cp(CO){sub 2}FeN(Ph)-N(Ph){double bond}CHAr{sup +} (Ar = p-C{sub 6}H{sub 4}OMe, Ar{prime} = p-C{sub 6}H{sub 4}NMe{sub 2}) have been isolated and spectroscopically characterized; the crystal structure of Cp(CO){sub 2}Fe-O-N(Ph){double bond}CHAr{sup +} is reported. Exposure of acetone solutions of Cp(CO){sub 2}Fe-O-N(Ar{prime}){double bond}CHAr{sup +} or Cp(CO){sub 2}FeN(Ph)-N(Ph){double bond}char{sup +} to light yields imine products Ar{prime}N{double bond}CHAr or PhN{double bond}CHAr, respectively. There is no evidence to support the formation of the simple stoichiometric iron-containing products of these reactions, the oxo and nitrene complexes Cp(CO){sub 2}Fe{double bond}O{sup +} and Cp(CO){sub 2}Fe{double bond}NPh{sup +}. Hydrolysis of the nitrone complexes Cp(CO){sub 2}Fe-O-N(Ar{prime}){double bond}CHAr{sup +} in aqueous acetone yields aldehyde products Ar{prime}CHO. 30 refs., 1 fig., 4 tabs.

  4. On the existence of Si-C double bonded graphene-like layers

    NASA Astrophysics Data System (ADS)

    Huda, Muhammad N.; Yan, Yanfa; Al-Jassim, Mowafak M.

    2009-09-01

    Upon analyzing an earlier experimental study by density-functional theory we have shown that graphene-like SiC layers can exist. We found that, for a particular stacking sequence, Si dbnd C double bond was responsible for the much larger interlayer distances observed in synthesized multi-walled SiC nanotubes. The Si/C ratios in SiC layers determine the extent of interlayer distances and bonding nature. It has been also shown that for some intermediate ratios of Si:C and/or with other stacking sequences, a collapse of SiC layers to tetrahedrally bonded system is possible. We have argued that these synthesized Si dbnd C double-bonded multi-wall silicon-carbide nanotubes may provide a pathway for future realization of SiC graphene-like materials.

  5. Linear, planar, and tubular molecular structures constructed by double planar tetracoordinate carbon D2hC2(BeH)4 species via hydrogen-bridged -BeH2Be- bonds.

    PubMed

    Zhao, Xue-Feng; Li, Haixia; Yuan, Cai-Xia; Li, Yan-Qin; Wu, Yan-Bo; Wang, Zhi-Xiang

    2016-01-15

    This computational study identifies the rhombic D2hC2 (BeH)4 (2a) to be a species featuring double planar tetracoordinate carbons (ptCs). Aromaticity and the peripheral BeBeBeBe bonding around CC core contribute to the stabilization of the ptC structure. Although the ptC structure is not a global minimum, its high kinetic stability and its distinct feature of having a bonded C2 core from having two separated carbon atoms in the global minimum and other low-lying minima could make the ptC structure to be preferred if the carbon source is dominated by C2 species. The electron deficiency of the BeH group allows the ptC species to serve as building blocks to construct large/nanostructures, such as linear chains, planar sheets, and tubes, via intermolecular hydrogen-bridged bonds (HBBs). Formation of one HBB bond releases more than 30.0 kcal/mol of energy, implying the highly exothermic formation processes and the possibility to synthesize these nano-size structures.

  6. [Effects of double transparent pressure diaphragm transfer tray on indirect bonding].

    PubMed

    Huang, Xiao-Hong; Xu, Liang; Lin, Shan

    2016-12-01

    To compare the time-consuming and bonding effectiveness of full dental arch and segmented dental arch, when double transparent pressure diaphragm technology was used for indirect bracket bonding. METHODS: Forty-five orthodontic cases were selected, and classified into 3 groups according to different bonding methods and arches. There were 15 cases in each group, a total of 270 brackets and 120 buccal tubes were used. Patients in group A and B received double transparent pressure diaphragm technology to bond brackets indirectly. Among them, full dental arch tray was applied in group A, segmented dental arch tray was applied in group B; the brackets was bonded directly in group C. High posterior teeth pad did not affect the mandibular bracket during occlusion. The amount of time to bond brackets in group A and B (started from brackets bonding to the end of light-cure) was recorded as T1, the time of making arches was recorded as T2 (started from pressed film to the end of the arches made) and the average chair-side time of group A, B and C (started from acid etching in the mouth until all brackets are finished bonding and curing). Time-consuming of each stage in group A, B, immediate bracket failure rate and immediate buccal tube failure rate in group A, B, C were compared. SPSS 22.0 software package was used for statistical analysis. There was no significant difference in T1 and T2 between group A and B (P>0.05). T2 in group A was significantly less than in group B (P<0.05). Immediate buccal tube and braces failure rate in group A was significantly greater than in group B and C. Using double transparent pressure diaphragm technology to bond bracket indirectly is convenient and simple. The segmented dental arch is more time-consuming compared to full dental arch. However, the immediate bracket failure rate is lower.

  7. Double bonding system for deeply impacted tooth--a technic clinic.

    PubMed

    Singh, Gyan P; Tandon, Pradeep; Shastri, Dipti; Verma, Sneh Lata; Verma, Sneh Lata; Verma, Umesh P

    2013-01-01

    Close eruption technique is preferred in deep, buried, intraosseous and labially impacted teeth to provide healthy and fuinctional attached gingiva but in this technique failure of bonded attachment usually means, repeat exposure of the impacted tooth. This article describes an innovative method for bonding two attachments (Double Bonding System) in combination instead of one. It provides the safe and determinate system for ortho-eruption, avoid the trauma of patient from re-exposure and enhance the comfort as well the confidence of the operator.

  8. THP-1 macrophage lipid accumulation unaffected by fatty acid double bond geometric or positional configuration

    USDA-ARS?s Scientific Manuscript database

    Dietary fatty acid type alters atherosclerotic lesion progression and macrophage lipid accumulation. Incompletely elucidated are the mechanisms by which fatty acids differing in double-bond geometric or positional configuration alter arterial lipid accumulation. The objective of this study was to ev...

  9. NBS mediated nitriles synthesis through C=C double bond cleavage.

    PubMed

    Zong, Xiaolin; Zheng, Qing-Zhong; Jiao, Ning

    2014-02-28

    An NBS mediated nitriles synthesis through C=C double bond cleavage has been developed. TMSN3 was employed as the nitrogen source for this Cu(OAc)2 promoted nitrogenation reaction. This transformation has a relatively high regio-selectivity to form aromatic nitriles.

  10. Self-assembly of a "double dynamic covalent" amphiphile featuring a glucose-responsive imine bond.

    PubMed

    Wu, Xin; Chen, Xuan-Xuan; Zhang, Miao; Li, Zhao; Gale, Philip A; Jiang, Yun-Bao

    2016-05-19

    Glucose binding via boronate ester linkages selectively triggers imine bond formation between 4-formylphenylboronic acid and octylamine, leading to the formation of vesicular aggregates in aqueous solutions. This "double dynamic covalent assembly" allows the facile selective sensing of glucose against the otherwise serious interferant fructose, without the need to resort to synthetic effort.

  11. The first side-on bound metal complex of diazene, HN[double bond]NH.

    PubMed

    Field, Leslie D; Li, Hsiu L; Dalgarno, Scott J; Turner, Peter

    2008-04-14

    The side-on bound metal complex of diazene cis-[Fe(NH[double bond]NH)(dmpe)(2)] was synthesised by reaction of [Fe(dmpe)(2)Cl(2)] with hydrazine in the presence of potassium graphite and characterised by (15)N NMR spectroscopy and X-ray crystallography.

  12. Directionality of Double-Bond Photoisomerization Dynamics Induced by a Single Stereogenic Center.

    PubMed

    Marchand, Gabriel; Eng, Julien; Schapiro, Igor; Valentini, Alessio; Frutos, Luis Manuel; Pieri, Elisa; Olivucci, Massimo; Léonard, Jérémie; Gindensperger, Etienne

    2015-02-19

    In light-driven single-molecule rotary motors, the photoisomerization of a double bond converts light energy into the rotation of a moiety (the rotor) with respect to another (the stator). However, at the level of a molecular population, an effective rotary motion can only be achieved if a large majority of the rotors rotate in the same, specific direction. Here we present a quantitative investigation of the directionality (clockwise vs counterclockwise) induced by a single stereogenic center placed in allylic position with respect to the reactive double bond of a model of the biomimetic indanylidene-pyrrolinium framework. By computing ensembles of nonadiabatic trajectories at 300 K, we predict that the photoisomerization is >70% unidirectional for the Z → E and E → Z conversions. Most importantly, we show that such directionality, resulting from the asymmetry of the excited state force field, can still be observed in the presence of a small (ca. 2°) pretwist or helicity of the reactive double bond. This questions the validity of the conjecture that a significant double-bond pretwist (e.g., >10°) in the ground state equilibrium structure of synthetic or natural rotary motors would be required for unidirectional motion.

  13. Reduction of carbon-carbon double bonds using organocatalytically generated diimide.

    PubMed

    Smit, Christian; Fraaije, Marco W; Minnaard, Adriaan J

    2008-12-05

    An efficient method has been developed for the reduction of carbon-carbon double bonds with diimide, catalytically generated in situ from hydrazine hydrate. The employed catalyst is prepared in one step from riboflavin (vitamin B(2)). Reactions are carried out in air and are a valuable alternative when metal-catalyzed hydrogenations are problematic.

  14. Determination of Double Bond Positions and Geometry of Methyl Linoleate Isomers with Dimethyl Disulfide Adducts by GC/MS.

    PubMed

    Shibamoto, Shigeaki; Murata, Tasuku; Yamamoto, Kouhei

    2016-09-01

    The dimethyl disulfide (DMDS) adduct method is one of the convenient and effective methods for determining double bond positions of unsaturated fatty acid methyl esters (FAME) except conjugated FAME. When analyzed using gas chromatography/electron ionization-mass spectrometry (GC/EI-MS), unsaturated FAME with DMDS added to the double bonds yields high intensity MS spectra of characteristic ions. The MS spectra of characteristic ions can then be used to easily confirm double bond positions. Here we explore the GC/EI-MS analysis of the DMDS adducts of methyl linoleate geometrical isomers isolated by high performance liquid chromatography (HPLC) with a silver nitrate column. For C18:2-c9, c12 and C18:2-t9, t12, DMDS randomly formed adducts with double bonds at either carbon 9-10 or carbon 12-13, but not both at the same time due to steric hindrance. For C18:2-c9, t12 and C18:2-t9, c12, however, DMDS only formed adducts with the double bond in the cis configuration. Consequently, when analyzing fatty acids with methylene interrupted double bonds, with one double bond in the cis and one in the trans configuration, double bond positions cannot be completely confirmed.

  15. Flow in out-of-plane double S-bonds

    NASA Technical Reports Server (NTRS)

    Schmidt, M. C.; Whitelaw, J. H.; Yianneskis, M.

    1986-01-01

    Developing flows in two out-of-plane double S-bend configurations have been measured by laser-Doppler anemometry. The first duct had a rectangular cross-section 40mmx40mm at the inlet and consisted of a uniform area 22.5 deg. - 22.5 deg. S-duct upstream with a 22.5 deg.- 22.5 deg. S- diffuser downstream. The second duct had a circular cross-section and consisted of a 45 deg. - 45 deg. uniform area S-duct upstream with a 22.5 deg. -22.5 deg. S-diffuser downstream. In both configurations the ratio of the mean radius of curvature to the inlet hydraulic diameter was 7.0, the exit-to-inlet area ratio of the diffusers was 1.5 and the ducts were connected so that the centerline of the S-duct lay in a plane normal to that of the S-diffuser. Streamwise and cross-stream velocity components were measured in laminar flow for the rectangular duct and in turbulent flow for both configurations; measurements of the turbulence levels, cross-correlations and wall static pressures were also made in the turbulent flow cases. Secondary flows of the first kind are present in the first S-duct and they are complemented or counteracted by the secondary flows generated by the area expansion and by the curvature of the S-diffusers downstream. Cross-stream velocities with magnitudes up to 0.19 and 0.11 of the bulk velocity were measured in the laminar and turbulent flows respectively in the rectangular duct and six cross-flow vortices were evident at the exit of the duct in both flow cases. The turbulent flow in the circular duct was qualitatively similar to that in the rectangular configuration, but the cross-stream velocities measured at the exit plane were smaller in the circular geometry. The results are presented in sufficient detail and accuracy for the assessment of numerical calculation methods and are listed in tabular form for this purpose.

  16. A diabatic state model for double proton transfer in hydrogen bonded complexes.

    PubMed

    McKenzie, Ross H

    2014-09-14

    Four diabatic states are used to construct a simple model for double proton transfer in hydrogen bonded complexes. Key parameters in the model are the proton donor-acceptor separation R and the ratio, D1/D2, between the proton affinity of a donor with one and two protons. Depending on the values of these two parameters the model describes four qualitatively different ground state potential energy surfaces, having zero, one, two, or four saddle points. Only for the latter are there four stable tautomers. In the limit D2 = D1 the model reduces to two decoupled hydrogen bonds. As R decreases a transition can occur from a synchronous concerted to an asynchronous concerted to a sequential mechanism for double proton transfer.

  17. Diastereoselective imine-bond formation through complementary double-helix formation.

    PubMed

    Yamada, Hidekazu; Furusho, Yoshio; Yashima, Eiji

    2012-05-02

    Optically active amidine dimer strands having a variety of chiral and achiral linkers with different stereostructures are synthesized and used as templates for diastereoselective imine-bond formations between two achiral carboxylic acid monomers bearing a terminal aldehyde group and racemic 1,2-cyclohexanediamine, resulting in a preferred-handed double helix stabilized by complementary salt bridges. The diastereoselectivity of the racemic amine is significantly affected by the chirality of the amidine residues along with the rigidity and/or chirality of the linkers in the templates. NMR and kinetic studies reveal that the present imine-bond formation involves a two-step reversible reaction. The second step involves formation of a preferred-handed complementary double helix assisted by the chiral amidine templates and determines the overall reaction rate and diastereoselectivity of the amine. © 2012 American Chemical Society

  18. Mechanistic study of maleic anhydride grafting onto fatty double bonds using mass spectrometry.

    PubMed

    Loutelier-Bourhis, Corinne; Zovi, Ornella; Lecamp, Laurence; Bunel, Claude; Hubert-Roux, Marie; Lange, Catherine M

    2012-06-15

    The grafting of maleic anhydride onto fatty C=C double bonds is a well-known and used method to functionalize triglyceride molecules. Nevertheless, grafted products are not actually structurally well defined. In this work, the thermal grafting of maleic anhydride onto (un)saturated fatty acid esters without the use of an initiator was characterized in order to determine the nature of the products formed during this reaction. Complementary spectrometric techniques, ESI-MS(n) (ion-trap mass spectrometer), IMS-MS(n) (Q-IMS-TOFMS) and GC/MS, were used to identify the grafted products which were prepared using either ethyl oleate (EtO) or methyl linoleate (MeL) as model molecules and maleic anhydride (MA). Lithiated adducts were investigated since they yield useful structural information when subjected to collision-induced dissociation (CID) in tandem mass spectrometry. A high number of products are formed during MA grafting and various reaction types could occur. Radical addition of maleic anhydride followed by combination or elimination reactions led to succinic and maleic anhydride grafting, respectively. The addition occurred with or without double-bond shift; the resulting derivatives showed succinic and maleic anhydride branching in the α-position relative to the double bond or onto the carbon atom of the initial double bond. Some structures obtained by radical addition and combination were also consistent with the Alder ene functionalization reaction. The Diels-Alder addition between di-unsaturated fatty acid chains and maleic anhydride could yield cyclic forms of MA-grafted derivatives. We have shown that ESI-MS(n) and IMS-MS(n) allow the identification of grafted products providing relevant structural information concerning isomers. These methods permit the rapid and direct analyses of 'crude reaction mixtures'. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Discovery of alkenones with variable methylene-interrupted double bonds: implications for the biosynthetic pathway.

    PubMed

    Zheng, Yinsui; Dillon, James T; Zhang, Yifan; Huang, Yongsong

    2016-12-01

    Alkenones (C37 -C40 ) are highly specific biomarkers produced by certain haptophyte algae in ocean and lacustrine environments and have been widely used for paleoclimate studies. Unusual shorter-chain alkenones (SCA; e.g., C35 and C36 ) have been found in environmental and culture samples, but the origin and structure of these compounds are much less understood. The marine alkenone producer, Emiliania huxleyi CCMP2758 strain, was reported with abundant C35:2 Me (∆(12, 19) ) alkenones when cultured at 15°C (Prahl et al. 2006). Here we show, when this strain is cultured at 4°C-10°C, that CCMP2758 produces abundant C35:3 Me, C36:3 Me, and small amounts of C36:3 Et alkenones with unusual double-bond positions of ∆(7, 12, 19) . We determine the double-bond positions of the C35:3 Me and C36:3 Me alkenones by GC-MS analysis of the dimethyl disulfide and cyclobutylamine derivatives, and we provide the first temperature calibrations based on the unsaturation ratios of the C35 and C36 alkenones. Previous studies have found C35:2 Me (∆(14, 19) ) and C36:2 Et (∆(14, 19) ) alkenones with three-methylene interruption in the Black Sea sediments, but this is the first reported instance of alkenones with a mixed three- and five-methylene interruption configuration in the double-bond positions. The discovery of these alkenones allows us to propose a novel biosynthetic scheme, termed the SCA biosynthesis pathway, that simultaneously rationalizes the formation of both the C35:3 Me (∆(7, 12, 19) ) alkenone in our culture and the ∆(14, 19) Black Sea type alkenones without invoking new desaturases for the unusual double-bond positions.

  20. Effect of double-layer application on dentin bond durability of one-step self-etch adhesives.

    PubMed

    Taschner, M; Kümmerling, M; Lohbauer, U; Breschi, L; Petschelt, A; Frankenberger, R

    2014-01-01

    The aim of this in vitro study was 1) to analyze the influence of a double-layer application technique of four one-step self-etch adhesive systems on dentin and 2) to determine its effect on the stability of the adhesive interfaces stored under different conditions. Four different one-step self-etch adhesives were selected for the study (iBondSE, Clearfil S(3) Bond, XenoV(+), and Scotchbond Universal). Adhesives were applied according to manufacturers' instructions or with a double-layer application technique (without light curing of the first layer). After bonding, resin-dentin specimens were sectioned for microtensile bond strength testing in accordance with the nontrimming technique and divided into 3 subgroups of storage: a) 24 hours (immediate bond strength, T0), b) six months (T6) in artificial saliva at 37°C, or c) five hours in 10 % NaOCl at room temperature. After storage, specimens were stressed to failure. Fracture mode was assessed under a light microscope. At T0, iBond SE showed a significant increase in microtensile bond strength when the double-application technique was applied. All adhesive systems showed reduced bond strengths after six months of storage in artificial saliva and after storage in 10% NaOCl for five hours; however at T6, iBond SE, Clearfil S(3) Bond, and XenoV(+) showed significantly higher microtensile bond strength results for the double-application technique compared with the single-application technique. Scotchbond Universal showed no difference between single- or double-application, irrespective of the storage conditions. The results of this study show that improvements in bond strength of one-step self-etch adhesives by using the double-application technique are adhesive dependent.

  1. Using ambient ozone for assignment of double bond position in unsaturated lipids.

    PubMed

    Ellis, Shane R; Hughes, Jessica R; Mitchell, Todd W; in het Panhuis, Marc; Blanksby, Stephen J

    2012-03-07

    Unsaturated lipids deposited onto a range of materials are observed to react with the low concentrations of ozone present in normal laboratory air. Parent lipids and ozonolysis cleavage products are both detected directly from surfaces by desorption electrospray ionisation mass spectrometry (DESI-MS) with the resulting mass spectra providing clear evidence of the double bond position within these molecules. This serendipitous process has been coupled with thin-layer chromatography (TLC) to provide a simple but powerful approach for the detailed structural elucidation of lipids present in complex biological extracts. Lipid extracts from human lens were deposited onto normal phase TLC plates and then developed to separate components according to lipid class. Exposure of the developed plates to laboratory air for ca. 1 h prior to DESI-MS analysis gave rise to ozonolysis products allowing for the unambiguous identification of double bond positions in even low abundant, unsaturated lipids. In particular, the co-localization of intact unsaturated lactosylceramides (LacCer) with products from their oxidative cleavage provide the first evidence for the presence of three isomeric LacCer (d18:0/24:1) species in the ocular lens lipidome, i.e., variants with double bonds at the n-9, n-7 and n-5 positions.

  2. Hydrogen Bonding in 4-AMINOPHENYL Ethanol: a Combined Ir-Uv Double Resonance and Microwave Study

    NASA Astrophysics Data System (ADS)

    Bray, Caitlin; Rivera, Cara Rae; Arsenault, E. A.; Obenchain, Daniel A.; Novick, Stewart E.; Knee, Joseph L.

    2015-06-01

    Both amine and hydroxyl functional groups are present in 4-aminophenyl ethanol (4-AE), and each functional group can form hydrogen bonds with carboxylic acids, such as formic acid and acetic acid. Predicting the structures of such complexes involving 4-AE is rather complex, given the many possible conformations and their similar (and method and basis-dependent) energies. In particular, the carboxyl group, -COOH, can act as both as a hydrogen bond donor or acceptor, or both at once. In this study we report the formic acid - 4-AE hydrogen bonded complex. An infrared-ultraviolet double resonance spectrometer is used to examine the shifts in IR frequencies of 4-AE from the monomer to the complex. Fourier transform microwave spectroscopy is used to determine structures of the species. Results from both experiments are compared to DFT and ab initio results. Time permitting, results of the water complex with 4-AE will also be presented.

  3. Adhesive-bonded double-lap joints. [analytical solutions for static load carrying capacity

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1973-01-01

    Explicit analytical solutions are derived for the static load carrying capacity of double-lap adhesive-bonded joints. The analyses extend the elastic solution Volkersen and cover adhesive plasticity, adherend stiffness imbalance and thermal mismatch between the adherends. Both elastic-plastic and bi-elastic adhesive representations lead to the explicit result that the influence of the adhesive on the maximum potential bond strength is defined uniquely by the strain energy in shear per unit area of bond. Failures induced by peel stresses at the ends of the joint are examined. This failure mode is particularly important for composite adherends. The explicit solutions are sufficiently simple to be used for design purposes

  4. Single Molecule Study of Force-Induced Rotation of Carbon-Carbon Double Bonds in Polymers.

    PubMed

    Huang, Wenmao; Zhu, Zhenshu; Wen, Jing; Wang, Xin; Qin, Meng; Cao, Yi; Ma, Haibo; Wang, Wei

    2017-01-24

    Carbon-carbon double bonds (C═C) are ubiquitous in natural and synthetic polymers. In bulk studies, due to limited ways to control applied force, they are thought to be mechanically inert and not to contribute to the extensibility of polymers. Here, we report a single molecule force spectroscopy study on a polymer containing C═C bonds using atomic force microscope. Surprisingly, we found that it is possible to directly observe the cis-to-trans isomerization of C═C bonds at the time scale of ∼1 ms at room temperature by applying a tensile force ∼1.7 nN. The reaction proceeds through a diradical intermediate state, as confirmed by both a free radical quenching experiment and quantum chemical modeling. The force-free activation length to convert the cis C═C bonds to the transition state is ∼0.5 Å, indicating that the reaction rate is accelerated by ∼10(9) times at the transition force. On the basis of the density functional theory optimized structure, we propose that because the pulling direction is not parallel to C═C double bonds in the polymer, stretching the polymer not only provides tension to lower the transition barrier but also provides torsion to facilitate the rotation of cis C═C bonds. This explains the apparently low transition force for such thermally "forbidden" reactions and offers an additional explanation of the "lever-arm effect" of polymer backbones on the activation force for many mechanophores. This work demonstrates the importance of precisely controlling the force direction at the nanoscale to the force-activated reactions and may have many implications on the design of stress-responsive materials.

  5. Rhodium-catalyzed enantioselective cyclopropanation of electron deficient alkenes

    PubMed Central

    Wang, Hengbin; Guptill, David M.; Alvarez, Adrian Varela

    2013-01-01

    The rhodium-catalyzed reaction of electron-deficient alkenes with substituted aryldiazoacetates and vinyldiazoacetates results in highly stereoselective cyclopropanations. With adamantylglycine derived catalyst Rh2(S-TCPTAD)4, high asymmetric induction (up to 98% ee) can be obtained with a range of substrates. Computational studies suggest that the reaction is facilitated by weak interaction between the carbenoid and the substrate carbonyl but subsequently proceeds via different pathways depending on the nature of the carbonyl.. Acrylates and acrylamides result in the formation of cyclopropanation products while the use of unsaturated aldehydes and ketones results in the formation of epoxides. PMID:24049630

  6. Friedel-Crafts Coupling of Electron-Deficient Benzoylacetones Tuned by Remote Electronic Effects.

    PubMed

    Luo, Hongmei; Pan, Ling; Xu, Xianxiu; Liu, Qun

    2015-08-21

    Acid-catalyzed electrophilic aromatic substitution for C-C bond formation, commonly referred to as the Friedel-Crafts reaction in recognition of its discoverers, has been one of the most useful reactions in organic chemistry for over a century. However, the Friedel-Crafts reaction cannot occur on a benzene ring having a strongly electron withdrawing group, such as an acyl group, which deactivates the aromatic ring toward electrophilic substitutions and remains a major challenge. Herein, the synthesis of naphthoquinones and 1,3-indandiones, bearing two acyl groups at positions ortho to each other on a benzene ring, are demonstrated by means of copper-catalyzed intramolecular aerobic oxidative acylation of benzoylacetone derivative precursors. This unusual Friedel-Crafts reaction reveals a new activation mode for the in situ polarity reverse of an electron-deficient aromatic ring to a reactive, electron-rich ring tuned by remote electronic effects.

  7. An efficient approach to functionalized benzo[a]xanthones through reactions of 2-methyl-3-(1-alkynyl)chromones with electron-deficient chromone-fused dienes.

    PubMed

    Gong, Jian; Xie, Fuchun; Chen, Hong; Hu, Youhong

    2010-09-03

    An efficient tandem process was developed to synthesize diversified benzo[a]xanthones from 2-methyl-3-(1-alkynyl)chromones with electron-deficient chromone-fused dienes. This unusual reaction, involving multiple steps and not requiring the use of transition metal catalysts or an inert atmosphere, results in the formation of three new C-C bonds and one C-O bond.

  8. Atmospheric chemistry of Z- and E-CF3CH[double bond, length as m-dash]CHCF3.

    PubMed

    Østerstrøm, Freja F; Andersen, Simone Thirstrup; Sølling, Theis I; Nielsen, Ole John; Sulbaek Andersen, Mads P

    2016-12-21

    The atmospheric fates of Z- and E-CF3CH[double bond, length as m-dash]CHCF3 have been studied, investigating the kinetics and the products of the reactions of the two compounds with Cl atoms, OH radicals, OD radicals, and O3. FTIR smog chamber experiments measured: k(Cl + Z-CF3CH[double bond, length as m-dash]CHCF3) = (2.59 ± 0.47) × 10(-11), k(Cl + E-CF3CH[double bond, length as m-dash]CHCF3) = (1.36 ± 0.27) × 10(-11), k(OH + Z-CF3CH[double bond, length as m-dash]CHCF3) = (4.21 ± 0.62) × 10(-13), k(OH + E-CF3CH[double bond, length as m-dash]CHCF3) = (1.72 ± 0.42) × 10(-13), k(OD + Z-CF3CH[double bond, length as m-dash]CHCF3) = (6.94 ± 1.25) × 10(-13), k(OD + E-CF3CH[double bond, length as m-dash]CHCF3) = (5.61 ± 0.98) × 10(-13), k(O3 + Z-CF3CH[double bond, length as m-dash]CHCF3) = (6.25 ± 0.70) × 10(-22), and k(O3 + E-CF3CH[double bond, length as m-dash]CHCF3) = (4.14 ± 0.42) × 10(-22) cm(3) molecule(-1) s(-1) in 700 Torr of air/N2/O2 diluents at 296 ± 2 K. E-CF3CH[double bond, length as m-dash]CHCF3 reacts with Cl atoms to give CF3CHClC(O)CF3 in a yield indistinguishable from 100%. Z-CF3CH[double bond, length as m-dash]CHCF3 reacts with Cl atoms to give (95 ± 10)% CF3CHClC(O)CF3 and (7 ± 1)% E-CF3CH[double bond, length as m-dash]CHCF3. CF3CHClC(O)CF3 reacts with Cl atoms to give the secondary product CF3C(O)Cl in a yield indistinguishable from 100%, with the observed co-products C(O)F2 and CF3O3CF3. The main atmospheric fate for Z- and E-CF3CH[double bond, length as m-dash]CHCF3 is reaction with OH radicals. The atmospheric lifetimes of Z- and E-CF3CH[double bond, length as m-dash]CHCF3 are estimated as 27 and 67 days, respectively. IR absorption cross sections are reported and the global warming potentials (GWPs) of Z- and E-CF3CH[double bond, length as m-dash]CHCF3 for the 100 year time horizon are calculated to be GWP100 = 2 and 7, respectively. This study provides a comprehensive description of the atmospheric fate and impact of Z- and E

  9. Theoretical Analysis of the Effect of C═C Double Bonds on the Low-Temperature Reactivity of Alkenylperoxy Radicals.

    PubMed

    You, Xiaoqing; Chi, Yawei; He, Tanjin

    2016-08-04

    Biodiesel contains a large proportion of unsaturated fatty acid methyl esters. Its combustion characteristics, especially its ignition behavior at low temperatures, have been greatly affected by these C═C double bonds. In this work, we performed a theoretical analysis of the effect of C═C double bonds on the low-temperature reactivity of alkenylperoxy radicals, the key intermediates from the low-temperature combustion of biodiesel. To understand how double bonds affect the fate of peroxy radicals, we selected three representative peroxy radicals from heptane, heptene, and heptadiene having zero, one, and two double C═C bonds, respectively, for study. The potential energy surfaces were explored at the CBS-QB3 level, and the reaction rate constants were computed using canonical/variational transition state theories. We have found that the double bond is responsible for the very different bond dissociation energies of the various types of C-H bonds, which in turn affect significantly the reaction kinetics of alkenylperoxy radicals.

  10. Substituent effects in double-helical hydrogen-bonded AAA-DDD complexes.

    PubMed

    Wang, Hong-Bo; Mudraboyina, Bhanu P; Wisner, James A

    2012-01-27

    Two series of DDD and AAA hydrogen-bond arrays were synthesized that form triply-hydrogen-bonded double-helical complexes when combined in CDCl(3) solution. Derivatization of the DDD arrays with electron-withdrawing groups increases the complex association constants by up to a factor of 30 in those arrays examined. Derivatization of the AAA arrays with electron donating substituents reveals a similar magnitude effect on the complex stabilities. The effect of substitution on both types of arrays are modeled quite satisfactorily (R(2) > 0.96 in all cases) as free energy relationships with respect to the sums of their Hammett substituent constants. In all, the complex stabilities can be manipulated over more than three orders of magnitude (>20 kJ mol(-1)) using this type of modification. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A fusion of the closed-shell coupled cluster singles and doubles method and valence-bond theory for bond breaking.

    PubMed

    Small, David W; Head-Gordon, Martin

    2012-09-21

    Closed-shell coupled cluster singles and doubles (CCSD) is among the most important of electronic-structure methods. However, it fails qualitatively when applied to molecular systems with more than two strongly correlated electrons, such as those with stretched or broken covalent bonds. We show that it is possible to modify the doubles amplitudes to obtain a closed-shell CCSD method that retains the computational cost and desirable features of standard closed-shell CCSD, e.g., correct spin symmetry, size extensivity, orbital invariance, etc., but produces greatly improved energies upon bond dissociation of multiple electron pairs; indeed, under certain conditions the dissociation energies are exact.

  12. Superplastic Forming/Diffusion Bonding Without Interlayer of 5A90 Al-Li Alloy Hollow Double-Layer Structure

    NASA Astrophysics Data System (ADS)

    Jiang, Shaosong; Jia, Yong; Lu, Zhen; Shi, Chengcheng; Zhang, Kaifeng

    2017-09-01

    The hollow double-layer structure of 5A90 Al-Li alloy was fabricated by SPF/DB process in this study. The characteristics and mechanism of 5A90 Al-Li alloy with respect to superplasticity and diffusion bonding were investigated. Tensile tests showed that the optimal elongation of tensile specimens was 243.97% at the temperature of 400 °C and the strain rate of 0.001 s-1. Effect of the surface roughness, bonding temperature and bonding time to determine the microstructure and mechanical properties of diffusion bonding joints was investigated, and the optimum bonding parameters were 540 °C/2.5 h/Ra18. Through the finite element simulation, it could be found that the SPF/DB process of hollow double-layer structure was feasible. The hollow double-layer structure of 5A90 Al-Li alloy was manufactured, showing that the thickness distribution of the bonding area was uniform and the thinnest part was the round corner. The SEM images of diffusion bonding joints showed that sound bonding interfaces were obtained in which no discontinuity existed.

  13. Restorative resins: hardness and strength vs. quantity of remaining double bonds.

    PubMed

    Asmussen, E

    1982-12-01

    It has been hypothesized that the Wallace indentation hardness of smooth surface resins is a factor of prime importance for the abrasion by food of Class 1 restorations. In the present work factors affecting the hardness of polymers were investigated. In addition the tensile strength of composite resins was measured and related to the catalytic system of the polymer. It was found that for a given composition of the monomer the Wallace hardness number increased with increasing content of inhibitor, decreased with increasing content of peroxide, and was unaffected by changes in the content of amine. The hardness was well correlated with the quantity of double bonds remaining in the polymer. BISGMA-based polymers showed no variation in hardness when the originating monomer varied with respect to content of a bi- or a trifunctional diluting monomer. Light-polymerized polymers were relatively hard as compared to chemically cured materials of adequate setting time. The tensile strength of composite resins was predominantly determined by the monomer content of peroxide and increased herewith. The tensile strength was well correlated with the quantity of remaining double bonds in the constituting polymer.

  14. The direct determination of double bond positions in lipid mixtures by liquid chromatography/in-line ozonolysis/mass spectrometry.

    PubMed

    Sun, Chenxing; Zhao, Yuan-Yuan; Curtis, Jonathan M

    2013-01-31

    The direct determination of double bond positions in unsaturated lipids using in-line ozonolysis-mass spectrometry (O(3)-MS) is described. In this experiment, ozone penetrates through the semi-permeable Teflon AF-2400 tubing containing a flow of a solution of fatty acid methyl esters (FAME). Unsaturated FAME are thus oxidized by the ozone and cleaved at the double bond positions. The ozonolysis products then flow directly into the atmospheric pressure photoionization (APPI) source of a mass spectrometer for analysis. Aldehyde products retaining the methyl ester group are indicative of the double bond positions in unsaturated FAME. For the first time, O(3)-MS is able to couple directly to high performance liquid chromatography (HPLC), making the double bond localization in lipid mixtures possible. The application of LC/O(3)-MS has been demonstrated for a fat sample from bovine adipose tissue. A total of 9 unsaturated FAME including 6 positional isomers were identified unambiguously, without comparison to standards. The in-line ozonolysis reaction apparatus is applicable to most mass spectrometers without instrumental modification; it is also directly compatible with various LC columns. The LC/O(3)-MS method described here is thus a practical, versatile and easy to use new approach to the direct determination of double bond positions in lipids, even in complex mixtures.

  15. On the bonding nature of electron states for the Fe-Mo double perovskite

    NASA Astrophysics Data System (ADS)

    Carvajal, E.; Oviedo-Roa, R.; Cruz-Irisson, M.; Navarro, O.

    2014-05-01

    The electronic transport as well as the effect of an external magnetic field has been investigated on manganese-based materials, spinels and perovskites. Potential applications of double perovskites go from magnetic sensors to electrodes in solid-oxide fuel cells; besides the practical interests, it is known that small changes in composition modify radically the physical properties of double perovskites. We have studied the Sr2FeMoO6 double perovskite compound (SFMO) using first-principles density functional theory. The calculations were done within the generalized gradient approximation (GGA) scheme with the Perdew-Burke-Ernzerhof (PBE) functional. We have made a detailed analysis of each electronic state and the charge density maps around the Fermi level. For the electronic properties of SFMO it was used a primitive cell, for which we found the characteristic half-metallic behavior density of states composed by eg and t2g electrons from Fe and Mo atoms. Those peaks were tagged as bonding or antibonding around the Fermi level at both, valence and conduction bands.

  16. On the bonding nature of electron states for the Fe-Mo double perovskite

    SciTech Connect

    Carvajal, E.; Cruz-Irisson, M.; Oviedo-Roa, R.; Navarro, O.

    2014-05-15

    The electronic transport as well as the effect of an external magnetic field has been investigated on manganese-based materials, spinels and perovskites. Potential applications of double perovskites go from magnetic sensors to electrodes in solid-oxide fuel cells; besides the practical interests, it is known that small changes in composition modify radically the physical properties of double perovskites. We have studied the Sr{sub 2}FeMoO{sub 6} double perovskite compound (SFMO) using first-principles density functional theory. The calculations were done within the generalized gradient approximation (GGA) scheme with the Perdew-Burke-Ernzerhof (PBE) functional. We have made a detailed analysis of each electronic state and the charge density maps around the Fermi level. For the electronic properties of SFMO it was used a primitive cell, for which we found the characteristic half-metallic behavior density of states composed by e{sub g} and t{sub 2g} electrons from Fe and Mo atoms. Those peaks were tagged as bonding or antibonding around the Fermi level at both, valence and conduction bands.

  17. A search for thermal isomerization of olefins to carbenes: Thermal generations of the silicon-nitrogen double bond

    SciTech Connect

    Zhang, Xianping.

    1990-09-21

    The first part of this thesis will search for the thermal isomerization of olefins to carbenes which is predicted to be a high energy process by calculations and has only been observed in a few strained olefins. The possibility of thermal isomerization of simple olefins to carbenes will be explored. Substitution of a silyl group on the double bond of an olefin allows a potential intermediate which has a {beta}-radical to the silyl group during the cis-trans isomerization. The effects of a trimethylsilyl group on this isomerization are the subject of this study. The second part of this thesis will include the generation and chemistry of intermediates containing a silicon-nitrogen double bond. The isomerization of parent silanimine to the aminosilylene was calculated to be a high energy process. New approaches to the silicon-nitrogen double bond will also be presented. 92 refs., 12 figs., 11 tabs.

  18. Importance of the sphingosine base double-bond geometry for the structural and thermodynamic properties of sphingomyelin bilayers.

    PubMed

    Janosi, Lorant; Gorfe, Alemayehu

    2010-11-03

    The precise role of the sphingosine base trans double bond for the unique properties of sphingomyelins (SMs), one of the main lipid components in raftlike structures of biological membranes, has not been fully explored. Several reports comparing the hydration, lipid packing, and hydrogen-bonding behaviors of SM and glycerophospholipid bilayers found remarkable differences overall. However, the atomic interactions linking the double-bond geometry with these thermodynamic and structural changes remained elusive. A recent report on ceramides, which differ from SMs only by their hydroxyl headgroup, has shown that replacing the trans double bond of the sphingosine base by cis weakens the hydrogen-bonding potential of these lipids and thereby alters their biological activity. Based on data from extensive (a total 0.75 μs) atomistic molecular dynamics simulations of bilayers composed of all-trans, all-cis, and a trans/cis (4:1 ratio) racemic mixture of sphingomyelin lipids, here we show that the trans configuration allows for the formation of significantly more hydrogen bonds than the cis. The extra hydrogen bonds enabled tighter packing of lipids in the all-trans and trans/cis bilayers, thus reducing the average area per lipid while increasing the chain order and the bilayer thickness. Moreover, fewer water molecules access the lipid-water interface of the all-trans bilayer than of the all-cis bilayer. These results provide the atomic basis for the importance of the natural sphingomyelin trans double-bond conformation for the formation of ordered membrane domains.

  19. Nuclear magnetic resonance and molecular modeling study of exocyclic carbon-carbon double bond polarization in benzylidene barbiturates

    NASA Astrophysics Data System (ADS)

    Figueroa-Villar, J. Daniel; Vieira, Andreia A.

    2013-02-01

    Benzylidene barbiturates are important materials for the synthesis of heterocyclic compounds with potential for the development of new drugs. The reactivity of benzylidene barbiturates is mainly controlled by their exocyclic carbon-carbon double bond. In this work, the exocyclic double bond polarization was estimated experimentally by NMR and correlated with the Hammett σ values of the aromatic ring substituents and the molecular modeling calculated atomic charge difference. It is demonstrated that carbon chemical shift differences and NBO charge differences can be used to predict their reactivity.

  20. Thermodynamic analysis of chain-melting transition temperatures for monounsaturated phospholipid membranes: dependence on cis-monoenoic double bond position.

    PubMed Central

    Marsh, D

    1999-01-01

    Unsaturated phospholipid is the membrane component that is essential to the dynamic environment needed for biomembrane function. The dependence of the chain-melting transition temperature, T(t), of phospholipid bilayer membranes on the position, n(u), of the cis double bond in the glycerophospholipid sn-2 chain can be described by an expression of the form T(t) = T(t)(c)(1 + h'(c)|n(u) - n(c)|)/(1 + s'(c)|n(u) - n(c)|), where n(c) is the chain position of the double bond corresponding to the minimum transition temperature, T(t)(c), for constant diacyl lipid chain lengths. This implies that the incremental transition enthalpy (and entropy) contributed by the sn-2 chain is greater for whichever of the chain segments, above or below the double-bond position, is the longer. The critical position, n(c), of the double bond is offset from the center of the sn-2 chain by an approximately constant amount, deltan(c) approximately 1. 5 C-atom units. The dependence of the parameters T(t)(c), h'(c), and s'(c) on sn-1 and sn-2 chain lengths can be interpreted consistently when allowance is made for the chain packing mismatch between the sn-1 and sn-2 chains. The length of the sn-2 chain is reduced by approximately 0.8 C-atom units by the cis double bond, in addition to a shortening by approximately 1.3 C-atom units by the bent configuration at the C-2 position. Based on this analysis, a general thermodynamic expression is proposed for the dependence of the chain-melting transition temperature on the position of the cis double bond and on the sn-1 and sn-2 chain lengths. The above treatment is restricted mostly to double-bond positions close to the center of the sn-2 chain. For double bonds positioned closer to the carboxyl or terminal methyl ends of the sn-2 chain, the effects on transition enthalpy can be considerably larger. They may be interpreted by the same formalism, but with different characteristic parameters, h'(c) and s'(c), such that the shorter of the chain segments

  1. o-Phthalaldehyde catalyzed hydrolysis of organophosphinic amides and other P([double bond, length as m-dash]O)-NH containing compounds.

    PubMed

    Li, Bin-Jie; Simard, Ryan D; Beauchemin, André M

    2017-08-11

    Over 50 years ago, Jencks and Gilchrist showed that formaldehyde catalyses the hydrolysis of phosphoramidate through electrophilic activation, induced by covalent attachment to its nitrogen atom. Given our interest in the use of aldehydes as catalysts, this work was revisited to identify a superior catalyst, o-phthalaldehyde, which facilitates hydrolyses of various organophosphorus compounds bearing P([double bond, length as m-dash]O)-NH subunits under mild conditions. Interestingly, chemoselective hydrolysis of the P([double bond, length as m-dash]O)-N bonds could be accomplished in the presence of P([double bond, length as m-dash]O)-OR bonds.

  2. Pancake π–π Bonding Goes Double: Unexpected 4e/All-Sites Bonding in Boron- and Nitrogen-Doped Phenalenyls

    DOE PAGES

    Tian, Yong-Hui; Sumpter, Bobby G.; Du, Shiyu; ...

    2015-06-03

    Phenalenyl is an important neutral pi-radical due to its capability to form unconventional pancake pi-pi bonding interactions, whereas its analogues with graphitic boron (B) or nitrogen (N)-doping have been regarded as closed-shell systems and therefore received much less attention. By using high-level quantum chemistry calculations, we also show that the B- and N-doped closed-shell phenalenyls unexpectedly form open-shell singlet pi-dimers with diradicaloid character featuring 2e/all-sites double pi-pi bonding. Moreover, by proper substitutions, the doped phenalenyl derivatives can be made open-shell species that form closed shell singlet pi-dimers bound by stronger 4e/all-sites double pi-pi bonding. Moreover, covalent pi-pi bonding overlap ismore » distributed on all of the atomic sites giving robust and genuine pancake-shaped pi-dimers which, depending on the number of electrons available in the bonding interactions, are equally or more stable than the pi-dimers of the pristine phenalenyl.« less

  3. Pancake π–π Bonding Goes Double: Unexpected 4e/All-Sites Bonding in Boron- and Nitrogen-Doped Phenalenyls

    SciTech Connect

    Tian, Yong-Hui; Sumpter, Bobby G.; Du, Shiyu; Huang, Jingsong

    2015-06-03

    Phenalenyl is an important neutral pi-radical due to its capability to form unconventional pancake pi-pi bonding interactions, whereas its analogues with graphitic boron (B) or nitrogen (N)-doping have been regarded as closed-shell systems and therefore received much less attention. By using high-level quantum chemistry calculations, we also show that the B- and N-doped closed-shell phenalenyls unexpectedly form open-shell singlet pi-dimers with diradicaloid character featuring 2e/all-sites double pi-pi bonding. Moreover, by proper substitutions, the doped phenalenyl derivatives can be made open-shell species that form closed shell singlet pi-dimers bound by stronger 4e/all-sites double pi-pi bonding. Moreover, covalent pi-pi bonding overlap is distributed on all of the atomic sites giving robust and genuine pancake-shaped pi-dimers which, depending on the number of electrons available in the bonding interactions, are equally or more stable than the pi-dimers of the pristine phenalenyl.

  4. Conjugated Double Bonds in Lipid Bilayers: A Molecular Dynamic Simulation Study

    PubMed Central

    Zhao, Guijun; Subbaiah, P. V.; Chiu, See-Wing; Jakobsson, Eric; Scott, H. L.

    2011-01-01

    Conjugated linoleic acids (CLA) are found naturally in dairy products. Two isomers of CLA, that differ only in the location of cis and trans double bonds, are found to have distinct and different biological effects. The cis 9 trans 11 (C9T11) isomer is attributed to have the anti-carcinogenic effects, while the trans 10 cis 12 (T10C12) isomer is believed to be responsible for the anti-obesity effects. Since dietary CLA are incorporated into membrane phospholipids, we have used Molecular Dynamics (MD) simulations to investigate the comparative effects of the two isomers on lipid bilayer structure. Specifically, simulations of phosphatidylcholine lipid bilayers in which the sn-2 chains contained one of the two isomers of CLA were performed. Force field parameters for the torsional potential of double bonds were obtained from ab initio calculations. From the MD trajectories we calculated and compared structural properties of the two lipid bilayers, including areas per molecule, density profiles, thickness of bilayers, tilt angle of tail chains, order parameters profiles, radial distribution function (RDF) and lateral pressure profiles. The main differences found between bilayers of the two CLA isomers, are (1) the order parameter profile for C9T11 has a dip in the middle of sn-2 chain while the profile for T10C12 has a deeper dip close to terminal of sn-2 chain, and (2) the lateral pressure profiles show differences between the two isomers. Our simulation results reveal localized physical structural differences between bilayers of the two CLA isomers that may contribute to different biological effects through differential interactions with membrane proteins or cholesterol. PMID:21320475

  5. Ozone-induced dissociation: elucidation of double bond position within mass-selected lipid ions.

    PubMed

    Thomas, Michael C; Mitchell, Todd W; Harman, David G; Deeley, Jane M; Nealon, Jessica R; Blanksby, Stephen J

    2008-01-01

    Ions formed from lipids during electrospray ionization of crude lipid extracts have been mass-selected within a quadrupole linear ion trap mass spectrometer and allowed to react with ozone vapor. Gas-phase ion-molecule reactions between unsaturated lipid ions and ozone are found to yield two primary product ions for each carbon-carbon double bond within the molecule. The mass-to-charge ratios of these chemically induced fragments are diagnostic of the position of unsaturation within the precursor ion. This novel analytical technique, dubbed ozone-induced dissociation (OzID), can be applied both in series and in parallel with conventional collision-induced dissociation (CID) to provide near-complete structural assignment of unknown lipids within complex mixtures without prior fractionation or derivatization. In this study, OzID is applied to a suite of complex lipid extracts from sources including human lens, bovine kidney, and commercial olive oil, thus demonstrating the technique to be applicable to a broad range of lipid classes including both neutral and acidic glycerophospholipids, sphingomyelins, and triacylglycerols. Gas-phase ozonolysis reactions are also observed with different types of precursor ions including [M+H]+, [M+Li]+, [M+Na]+, and [M-H]-: in each case yielding fragmentation data that allow double bond position to be unambiguously assigned. Within the human lens lipid extract, three sphingomyelin regioisomers, namely SM(d18:0/15Z-24:1), SM(d18:0/17Z-24:1), and SM(d18:0/19Z-24:1), and a novel phosphatidylethanolamine alkyl ether, GPEtn(11Z-18:1e/9Z-18:1), are identified using a combination of CID and OzID. These discoveries demonstrate that lipid identification based on CID alone belies the natural structural diversity in lipid biochemistry and illustrate the potential of OzID as a complementary approach within automated, high-throughput lipid analysis protocols.

  6. Influence of chain length and double bond on the aqueous behavior of choline carboxylate soaps.

    PubMed

    Rengstl, Doris; Diat, Olivier; Klein, Regina; Kunz, Werner

    2013-02-26

    In preceding studies, we demonstrated that choline carboxylates ChC(m) with alkyl chain lengths of m = 12 - 18 are highly water-soluble (for m = 12, soluble up to 93 wt % soap and 0 °C). In addition, choline soaps are featured by an extraordinary lyotropic phase behavior. With decreasing water concentration, the following phases were found: micellar phase (L(1)), discontinuous cubic phase (I(1)' and I(1)"), hexagonal phase (H(1)), bicontinuous cubic phase (V(1)), and lamellar phase (L(α)). The present work is also focused on the lyotropic phase behavior of choline soaps but with shorter alkyl chains or different alkyl chain properties. We have investigated the aqueous phase behavior of choline soaps with C(8) and C(10) chain-lengths (choline octanoate and choline decanoate) and with a C(18) chain-length with a cis-double bond (choline oleate). We found that choline decanoate follows the lyotropic phase behavior of the longer-chain homologues mentioned above. Choline octanoate in water shows no discontinuous cubic phases, but an extended, isotropic micellar solution phase. In addition, choline octanoate is at the limit between a surfactant and a hydrotrope. The double bond in choline oleate leads also to a better solubility in water and a decrease of the solubilization temperature. It also influences the Gaussian curvature of the aggregates which results in a loss of discontinuous cubic phases in the binary phase diagram. The different lyotropic mesophases were identified by the penetration scan technique with polarizing light microscope and visual observations. To clarify the structural behavior small (SAXS) and wide (WAXS) angle X-ray scattering were performed. To further characterize the extended, isotropic micellar solution phase in the binary phase diagram of choline octanoate viscosity and conductivity measurements were also carried out.

  7. Biocatalytic Asymmetric Alkene Reduction: Crystal Structure and Characterization of a Double Bond Reductase from Nicotiana tabacum

    PubMed Central

    2013-01-01

    The application of biocatalysis for the asymmetric reduction of activated C=C is a powerful tool for the manufacture of high-value chemical commodities. The biocatalytic potential of “-ene” reductases from the Old Yellow Enzyme (OYE) family of oxidoreductases is well-known; however, the specificity of these enzymes toward mainly small molecule substrates has highlighted the need to discover “-ene” reductases from different enzymatic classes to broaden industrial applicability. Here, we describe the characterization of a flavin-free double bond reductase from Nicotiana tabacum (NtDBR), which belongs to the leukotriene B4 dehydrogenase (LTD) subfamily of the zinc-independent, medium chain dehydrogenase/reductase superfamily of enzymes. Using steady-state kinetics and biotransformation reactions, we have demonstrated the regio- and stereospecificity of NtDBR against a variety of α,β-unsaturated activated alkenes. In addition to catalyzing the reduction of typical LTD substrates and several classical OYE-like substrates, NtDBR also exhibited complementary activity by reducing non-OYE substrates (i.e., reducing the exocyclic C=C double bond of (R)-pulegone) and in some cases showing an opposite stereopreference in comparison with the OYE family member pentaerythritol tetranitrate (PETN) reductase. This serves to augment classical OYE “-ene” reductase activity and, coupled with its aerobic stability, emphasizes the potential industrial value of NtDBR. Furthermore, we also report the X-ray crystal structures of the holo-, binary NADP(H)-bound, and ternary [NADP+ and 4-hydroxy-3-methoxycinnamaldehyde (9a)-bound] NtDBR complexes. These will underpin structure-driven site-saturated mutagenesis studies aimed at enhancing the reactivity, stereochemistry, and specificity of this enzyme. PMID:27547488

  8. (Oligo)aromatic species with one or two conjugated Si[double bond, length as m-dash]Si bonds: near-IR emission of anthracenyl-bridged tetrasiladiene.

    PubMed

    Obeid, Naim M; Klemmer, Lukas; Maus, Daniel; Zimmer, Michael; Jeck, Jonathan; Bejan, Iulia; White, Andrew J P; Huch, Volker; Jung, Gregor; Scheschkewitz, David

    2017-07-11

    A series of aryl disilenes Tip2Si[double bond, length as m-dash]Si(Tip)Ar (2a-c) and para-arylene bridged tetrasiladienes, Tip2Si[double bond, length as m-dash]Si(Tip)-LU-Si(Tip)[double bond, length as m-dash]SiTip2 (3a-d) are synthesized by the transfer of the Tip2Si[double bond, length as m-dash]SiTip unit to aryl halides and dihalides by nucleophilic disilenides Tip2Si[double bond, length as m-dash]SiTipLi (Tip = 2,4,6-iPr3C6H2, Ar = aryl substituent, LU = para-arylene linking unit). The scope of the nucleophilic Si[double bond, length as m-dash]Si transfer reaction is demonstrated to also include substrates of considerable steric bulk such as mesityl or duryl halides Ar-X (Ar = Mes = 2,4,6-Me3C6H2; Ar = Dur = 2,3,5,6-Me4C6H, X = Br or I). Bridged tetrasiladienes Tip2Si[double bond, length as m-dash]Si(Tip)-LU-Si(Tip)[double bond, length as m-dash]SiTip2 with more extended linking units surprisingly exhibit fluorescence at room temperature, albeit weak. DFT calculations suggest that partial charge transfer character of the excited state is a possible explanation.

  9. Theoretical Investigation of Electrophilic Transannular Addition Reactions of Bromine to Face-to-Face (Juxtaposed) Double Bonds in Strained Polycyclic Hydrocarbons.

    PubMed

    Abbasoglu, Rza

    2017-06-01

    Transannular electrophilic addition reaction of halogens to face-to-face(juxtaposed) double bonded strained alkenes were theoretically investigated. General rules that allow us to stipulate the factors that direct the main steps of the energy hypersurface of reactions as well as the products were established. Direction of the reaction flow is determined by direction of intramolecular skeletal isomerisation of cyclic-bridged halogenium cation and isomerisation takes place to create a more stable skeletal structure. Stability of resultant skeletal structure is determined by the number of σ bonds between isolated double bonds of the alkene and bonding-type of double bonds (N- and U-type). When the number of σ bonds between double bonds of the alkene is three (m = 3), the reaction takes place to predominantly give an N-type product, and when four (m = 4), N- and U-type products are formed. Structure and stability of cation intermediates (bridged, N- and U-type cations) of electrophilic addition reaction of homohipostrofen molecule, whose double bonds were linked by three σ bonds, with bromine were investigated by DFT methods in detail. Also the addition reaction of endo,endo-tetracyclo[6.2.2.23,6.02,7]tetradeca-4,9-dien molecule, whose double bonds were linked by four σ bonds, with bromine were investigated by quantum chemistry.

  10. Three-Component Azidation of Styrene-Type Double Bonds: Light-Switchable Behavior of a Copper Photoredox Catalyst.

    PubMed

    Fumagalli, Gabriele; Rabet, Pauline T G; Boyd, Scott; Greaney, Michael F

    2015-09-21

    [Cu(dap)2]Cl effectively catalyzes azide addition from the Zhdankin reagent to styrene-type double bonds, and subsequent addition of a third component to the benzylic position. In the presence of light, a photoredox cycle is implicated with polar components such as methanol or bromide adding to a benzylic cation. In the absence of light, by contrast, double azidation takes place to give diazides. Therefore, regioselective double functionalization can be achieved in good to excellent yields, with a switch between light and dark controlling the degree of azidation.

  11. Bent Bonds and Multiple Bonds.

    ERIC Educational Resources Information Center

    Robinson, Edward A.; Gillespie, Ronald J.

    1980-01-01

    Considers carbon-carbon multiple bonds in terms of Pauling's bent bond model, which allows direct calculation of double and triple bonds from the length of a CC single bond. Lengths of these multiple bonds are estimated from direct measurements on "bent-bond" models constructed of plastic tubing and standard kits. (CS)

  12. A new fluorogenic sensing platform for salicylic acid derivatives based on π-π and NH-π interactions between electron-deficient and electron-rich aromatics

    NASA Astrophysics Data System (ADS)

    Pandith, Anup; Hazra, Giridhari; Kim, Hong-Seok

    2017-05-01

    A novel simple fluorescent probe was designed for the recognition of electron-rich salicylic acid derivatives (SAs). The imidazole-appended aminomethyl perylene probe 1 selectively differentiated between electron-rich amino-SAs and electron-deficient nitro-SAs in EtOH, exhibiting the highest selectivity and sensitivity toward 5-aminosalicylic acid (5-ASA) and showing strong 1:1 binding (Ka = 1.37 × 107 M- 1). This high selectivity and sensitivity resulted from the synergistic multiple hydrogen bonding interactions of secondary amine and imidazole units and π-π interactions between electron-rich and electron-deficient rings, along with the unusual NH-π interactions between 5-ASA and the perylene moiety of 1. The limit of detection (LOD) for 5-ASA in EtOH was 0.012 ppb.

  13. A new fluorogenic sensing platform for salicylic acid derivatives based on π-π and NH-π interactions between electron-deficient and electron-rich aromatics.

    PubMed

    Pandith, Anup; Hazra, Giridhari; Kim, Hong-Seok

    2017-02-03

    A novel simple fluorescent probe was designed for the recognition of electron-rich salicylic acid derivatives (SAs). The imidazole-appended aminomethyl perylene probe 1 selectively differentiated between electron-rich amino-SAs and electron-deficient nitro-SAs in EtOH, exhibiting the highest selectivity and sensitivity toward 5-aminosalicylic acid (5-ASA) and showing strong 1:1 binding (Ka=1.37×10(7)M(-1)). This high selectivity and sensitivity resulted from the synergistic multiple hydrogen bonding interactions of secondary amine and imidazole units and π-π interactions between electron-rich and electron-deficient rings, along with the unusual NH-π interactions between 5-ASA and the perylene moiety of 1. The limit of detection (LOD) for 5-ASA in EtOH was 0.012ppb.

  14. The unexpected mechanism of carbonyl hydrosilylation catalyzed by (Cp)(ArN[double bond, length as m-dash])Mo(H)(PMe(3)).

    PubMed

    Shirobokov, Oleg G; Gorelsky, Serge I; Simionescu, Razvan; Kuzmina, Lyudmila G; Nikonov, Georgii I

    2010-11-07

    Complex (Cp)(ArN[double bond, length as m-dash])Mo(H)(PMe(3)) (2, Ar = 2,6-diisopropylphenyl) catalyzes the hydrosilylation of carbonyls by an unexpected associative mechanism. Complex 2 also reacts with PhSiH(3) by a σ-bond metathesis mechanism to give the silyl derivative (Cp)(ArN[double bond, length as m-dash])Mo(SiH(2)Ph)(PMe(3)).

  15. Excited-state double-proton transfer of pyrimidines mediated by hydrogen-bonded complexes

    NASA Astrophysics Data System (ADS)

    El-Kemary, M. A.; El-Gezawy, H. S.; El-Baradie, H. Y.; Issa, R. M.

    2001-04-01

    The spectroscopy and dynamics of the excited-state double-proton transfer (ESDPT) in 2-amino-4,6-dimethyl pyrimidine (ADMP) and 2-amino-4-methoxy-6-methyl pyrimidine (AMMP) have been studied by means of steady-state and time-resolved measurements. The thermodynamic data indicating that dual hydrogen-bonding formation for ADMP/acid and AMMP/acid complexes are stronger than those obtained from ADMP and AMMP self-association. The fluorescence from the ADMP dimer in cyclohexane decays with rate ( kf) of (1.1±0.1)×10 9 s -1 (0.9 ns), where the fluorescence from its tautomeric excited state formed by the proton transfer reaction decays with rate of (8.26±0.2)×10 8 s -1 (1.21 ns). However, the obtained kf (1.7±0.1)×10 9 s -1 for ADMP/acid tautomer of (0.58 ns) in cyclohexane is higher than that of the dimer. The results show that ˜89% molecules form dimers in the ground state and ˜86% of the excited molecules are present as dimers while the rest are present as monomers in 1×10 -2 M cyclohexane solution.

  16. Double Pancake Versus Long Chalcogen-Chalcogen Bonds in Six-Membered C,N,S-Heterocycles.

    PubMed

    Haberhauer, Gebhard; Gleiter, Rolf

    2016-06-13

    The double "pancake" bonding in the dimers of the six-membered heterocycles 1,3-dithia-2,4,6-triazine (4) and 1,3-dithia-2,4-diazine (16) were investigated by means of high-level quantum chemical calculations (B3LYP and CCSD(T)). It was found that the S-S dimers, 20 a and 27, are not the most stable isomers, but the dimers showing short S-N (21 a) and S-C (25, 28) bonds. An investigation of the 5-phenyl-1,3-dithia-2,4,6-triazine (4 b) yields that the syn dimer with two S-S bonds (2.57 Å) is the most stable one. In this dimer, the phenyl groups are placed on top of each other. The additional dispersion energy of the phenyl rings causes a stabilization of the syn-S-S (C2v -like) isomer. As a result, two weak albeit relevant single S-S bonds (2.57 Å) are predicted. These findings contradict the recently published concept of double "pancake" bonding in the dimer 4 b2 .

  17. Fabrication of extremely thermal-stable GaN template on Mo substrate using double bonding and step annealing process

    NASA Astrophysics Data System (ADS)

    Qing, Wang; Yang, Liu; Yongjian, Sun; Yuzhen, Tong; Guoyi, Zhang

    2016-08-01

    A new layer transfer technique which comprised double bonding and a step annealing process was utilized to transfer the GaN epilayer from a sapphire substrate to a Mo substrate. Combined with the application of the thermal-stable bonding medium, the resulting two-inch-diameter GaN template showed extremely good stability under high temperature and low stress state. Moreover, no cracks and winkles were observed. The transferred GaN template was suitable for homogeneous epitaxial, thus could be used for the direct fabrication of vertical LED chips as well as power electron devices. It has been confirmed that the double bonding and step annealing technique together with the thermal-stable bonding layer could significantly improve the bonding strength and stress relief, finally enhancing the thermal stability of the transferred GaN template. Project supported by the Guangdong Innovative Research Team Program (No. 2009010044), the China Postdoctoral Science Foundation (No. 2014M562233), the National Natural Science Foundation of Guangdong, China (No. 2015A030312011), and the Opened Fund of the State Key Laboratory on Integrated Optoelectronics (No. IOSKL2014KF17).

  18. THE PROTOTYPE ALUMINUM - CARBON SINGLE, DOUBLE, AND TRIPLE BONDS: Al - CH3, Al = CH2, AND Al. = CH

    SciTech Connect

    Fox, Douglas J.; Ray, Douglas; Rubesin, Philip C.; Schaefer III, Henry F.

    1980-06-01

    Nonempirical quantum mechanical methods have been used to investigate the A{ell}CH{sub 3}, A{ell}CH{sub 2}, and A{ell}CH molecules, which may be considered to represent the simplest aluminum-carbon single, double, and triple bonds. Equilibrium geometries and vibrational frequencies were determined at the self-consistent-field level of theory using double zeta basis set: A{ell}(11s7p/6s4p), C(9s5p/4s2p), H(4s/2s). The {sup 1}A{sub 1} ground state of A{ell}CH{sub 3} has a reasonably conventional A{ell}-C single bond of length 2.013 {angstrom}, compared to 1.96 {angstrom} in the known molecule A{ell}(CH{sub 3}){sub 3}. The CH equilibrium distance is 1.093 {angstrom} and the A{ell}-C-H angle 111.9{sup o}. The structures of three electron states each of A{ell}CH{sub 2} and A{ell}CH were similarly predicted, The interesting result is that the ground state of A{ell}CH{sub 2} does not contain an A{ell}-C double bond, and the ground state of A{ell}CH is not characterized by an A{ell}{triple_bond}C bond. The multiply-bonded electronic states do exist but they lie 21 kcal (A{ell}CH{sub 2}) and 86 kcal (A{ell}CH) above the respective ground states. The dissociation energies of the three ground electronic states are predicted to be 68 kcal (A{ell}CH{sub 3}), 77 kcal (A{ell}CH{sub 2}), and 88 kcal (A{ell}CH), Vibrational frequencies are also predicted for the three molecules, and their electronic structures are discussed with reference to Mulliken populations and dipole moments.

  19. The effect of double-coating and times on the immediate and 6-month dentin bonding of universal adhesives.

    PubMed

    Pashaev, Diial; Demirci, Mustafa; Tekçe, Neslihan; Tuncer, Safa; Baydemir, Canan

    2017-01-01

    The purpose of this study was to evaluate the effect of double-application coats and times on microtensile bond strength (μTBS) and adhesive-dentin interfaces created by dentin adhesive systems after 6 months of storage in water. Two-hundred sixteen extracted non-carious human third molars were selected for the study. Single-Bond Universal (SU) and All-Bond Universal (AU), Adper Easy One (Eo) Self-Etch adhesive and Adper Single-Bond 2 (Sb) etch-and-rinse adhesive were applied to a flat dentin surface using three methods (1): dentin adhesives were applied as recommended by the manufacturers; (2): two consecutive coats of dentin adhesives were applied before photo-polymerization; and (3): a single coat of adhesive was applied but with twice the manufacturers recommended application time. Microtensile bond strength was determined either immediately or after 6 months of water storage. Data were analyzed using one-way analysis of variance and Tukey's post-hoc tests. At 24 h, groups 1, 2, and 3 exhibited statistically similar results for all dentin adhesive systems. For AU-Er, group 3 showed significantly higher bond strength than all group of AU-Se after 6 months. Universal adhesives seemed more stable against water degradation than traditional two-step etch-and-rinse and all-in-one systems within the 6-month period.

  20. Competitive Low Pressure Oxygen Plasma Interactions with Different= Carbon-Carbon Double Bonds

    NASA Astrophysics Data System (ADS)

    Patiño, P.; Sifontes, A.; Gambús, G.

    1999-10-01

    Recently we have shown advances from reactions of O(^3P) with both, l ong-chain hydrocarbons and refinery residuum. The oxidation products of t he process, a mixture of alcohols, epoxides and carbonyl compounds, might have potential properties as additives in formulating fuels. This work s hows the results of the interactions of an oxygen plasma with double bond s, both olefin and aromatic, in the same compound. The reactions have bee n carried out by making the plasma, created by a high voltage glow discha rge, reach the low vapor pressure surface of liquid 4-phenyl-1-butene. Th is (3 mL) was cooled down to -45 ^oC in a glass reactor, applied power was 24 W, at an oxygen pressure of 20 Pa. Products were analyzed by IR, N MR and mass spectroscopies. Conversions were studied as a function of the reaction time, this ranging from 5 to 120 minutes. At short times the O( ^3P) atoms produced in the discharge only reacted with the alkene fra ction of the hydrocarbon, 4-phenyl-1,2-epoxibutane (52%) and 4-phenyl-bu tanal (48%) being the products. Reactions on the benzene ring were obser ved from about 30 minutes on, the corresponding phenols having being prod uced at ratios ortho:para:meta :: 4:1:0.7. At 120 minutes, the ol efin have been completely oxidized and a low fraction of the non-equivale nt two methylene groups have reacted to produce alcohols and ketones.

  1. Dynamic covalent bond based on reversible photo [4 + 4] cycloaddition of anthracene for construction of double-dynamic polymers.

    PubMed

    Xu, Jiang-Fei; Chen, Yu-Zhe; Wu, Li-Zhu; Tung, Chen-Ho; Yang, Qing-Zheng

    2013-12-20

    Dynamic covalent bonds supplied by reversible anthracene dimerization were combined with pillar[5]arene/imidazole host-guest interactions to construct double-dynamic polymers. Heating such polymers (in solution or as a gel) led to depolymerization by dissociation of either the host-guest complexes alone or the complexes and the anthracene dimers, depending on the extent of heating. The polymers reformed readily upon cooling or irradiation.

  2. Functionalization of the benzobicyclo[3.2.1] octadiene skeleton possessing one isolated double bond via photocatalytic oxygenation

    NASA Astrophysics Data System (ADS)

    Vuk, Dragana; Horváth, Ottó; Marinić, Željko; Škorić, Irena

    2016-03-01

    Photocatalytic oxygenation of three phenyl derivatives of a bicyclic skeleton with a free double bond 1a, 1b and 1c were carried out by utilizing a cationic and an anionic manganese(III) porphyrin irradiated in the visible range. While photocatalysis of 1a and 1b led to the formation of the corresponding hydroperoxy derivatives 2 and 3, respectively, (besides unidentified high-molecular-weight products) in the presence of the anionic Mn(III) porphyrin, the cationic photocatalyst proved to be less efficient and less selective with 1a. In the case of 1b, also with the cationic porphyrin, the corresponding hydroperoxy derivative (3) was the main product at a shorter reaction time (2 h), whereas a longer irradiation (4 h) led to the significant formation of a keto derivative (5) with a hydroperoxy substituent and a free double bond at positions deviating from those in the previous products (2 and 3). A dramatic change in the reactivity was observed for the methoxy derivative (1c). It gave only traces of identifiable products by using the anionic photocatalyst, while application of the cationic Mn(III) porphyrin resulted in a relatively efficient formation of an epoxy derivative (6) due to the reaction of the isolated double bond.

  3. A density functional theory for association of fluid molecules with a functionalized surface: fluid-wall single and double bonding.

    PubMed

    Haghmoradi, Amin; Wang, Le; Chapman, Walter G

    2017-02-01

    In this manuscript we extend Wertheim's two-density formalism beyond its first order to model a system of fluid molecules with a single association site close to a planar hard wall with association sites on its surface in a density functional theory framework. The association sites of the fluid molecules are small enough that they can form only one bond, while the wall association sites are large enough to bond with more than one fluid molecule. The effects of temperature and of bulk fluid and wall site densities on the fluid density profile, extent of association, and competition between single and double bonding of fluid segments at the wall sites versus distance from the wall are presented. The theory predictions are compared with new Monte Carlo simulation results and they are in good agreement. The theory captures the surface coverage over wide ranges of temperature and bulk density by introducing the effect of steric hindrance in fluid association at a wall site.

  4. Fracture Analysis of Double-Side Adhesively Bonded Composite Repairs to Cracked Aluminium Plate Using Line Spring Model

    NASA Astrophysics Data System (ADS)

    Niu, Yong; Su, Weiguo

    2016-06-01

    A line spring model is developed for analyzing the fracture problem of cracked metallic plate repaired with the double-sided adhesively bonded composite patch. The restraining action of the bonded patch is modeled as continuous distributed linear springs bridging the crack faces provided that the cracked plate is subjected to extensional load. The effective spring constant is determined from 1-D bonded joint theory. The hyper-singular integral equation (HSIE), which can be solved using the second kind Chebyshev polynomial expansion method, is applied to determine the crack opening displacements (COD) and the crack tip stress intensity factors (SIF) of the repaired cracked plate. The numerical result of SIF for the crack-tip correlates very well with the finite element (FE) computations based on the virtual crack closure technique (VCCT). The present analysis approaches and mathematical techniques are critical to the successful design, analysis and implementation of crack patching.

  5. Selective oxidation of the double bonds in the 4-phenyl-1,2,4-triazoline-3,5-dione diels-alder adduct of ergosterol acetate.

    PubMed

    Piatak, D M; Swenson, R P

    1984-01-01

    Methods for oxidations at the 6(7)- and 22(23)-double bonds in the phenyltriazoline adduct of ergosterol acetate (I) are described. KMnO4 and OsO4 were found to react with the 6(7)-double bond to yield the 6,7-glycol and osmate ester, respectively. Other reagents (I2/AgOAc, H2O2, m-chloroperbenzoic acid, HCO3H) formed either isomeric epoxides or glycols with the 22(23)-double bond, with the latter two reagents giving their products in quite high yields.

  6. Double-bridge bonding of aluminium and hydrogen in the crystal structure of gamma-AlH3.

    PubMed

    Yartys, Volodymyr A; Denys, Roman V; Maehlen, Jan Petter; Frommen, Christoph; Fichtner, Maximilian; Bulychev, Boris M; Emerich, Hermann

    2007-02-19

    Aluminum trihydride (alane) is one of the most promising among the prospective solid hydrogen-storage materials, with a high gravimetric and volumetric density of hydrogen. In the present work, the alane, crystallizing in the gamma-AlH3 polymorphic modification, was synthesized and then structurally characterized by means of synchrotron X-ray powder diffraction. This study revealed that gamma-AlH3 crystallizes with an orthorhombic unit cell (space group Pnnm, a = 5.3806(1) A, b = 7.3555(2) A, c = 5.77509(5) A). The crystal structure of gamma-AlH3 contains two types of AlH6 octahedra as the building blocks. The Al-H bond distances in the structure vary in the range of 1.66-1.79 A. A prominent feature of the crystal structure is the formation of the bifurcated double-bridge bonds, Al-2H-Al, in addition to the normal bridge bonds, Al-H-Al. This former feature has not been previously reported for Al-containing hydrides so far. The geometry of the double-bridge bond shows formation of short Al-Al (2.606 A) and Al-H (1.68-1.70 A) bonds compared to the Al-Al distances in Al metal (2.86 A) and Al-H distances for Al atoms involved in the formation of normal bridge bonds (1.769-1.784 A). The crystal structure of gamma-AlH3 contains large cavities between the AlH6 octahedra. As a consequence, the density is 11% less than for alpha-AlH3.

  7. Localization of double bonds in triacylglycerols using high-performance liquid chromatography/atmospheric pressure chemical ionization ion-trap mass spectrometry.

    PubMed

    Háková, Eva; Vrkoslav, Vladimír; Míková, Radka; Schwarzová-Pecková, Karolina; Bosáková, Zuzana; Cvačka, Josef

    2015-07-01

    A method for localizing double bonds in triacylglycerols using high-performance liquid chromatography-tandem mass spectrometry with atmospheric pressure chemical ionization (APCI) was developed. The technique was based on collision-induced dissociation or pulsed Q collision-induced dissociation of the C3H5N(+•) adducts ([M + 55](+•)) formed in the presence of acetonitrile in the APCI source. The spectra were investigated using a large series of standards obtained from commercial sources and prepared by randomization. The fragmentation spectra made it possible to determine (i) the total number of carbons and double bonds in the molecule, (ii) the number of carbons and double bonds in acyls, (iii) the acyl in the sn-2 position on the glycerol backbone, and (iv) the double-bond positions in acyls. The double-bond positions were determined based on two types of fragments (alpha and omega ions) formed by cleavages of C-C bonds vinylic to the original double bond. The composition of the acyls and their positions on glycerol were established from the masses and intensities of the ions formed by the elimination of fatty acids from the [M + 55](+•) precursor. The method was applied for the analysis of triacylglycerols in olive oil and vernix caseosa.

  8. Double-stage nematic bond ordering above double stripe magnetism: Application to BaTi2Sb2O

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Glasbrenner, J. K.; Flint, R.; Mazin, I. I.; Fernandes, R. M.

    2017-05-01

    Spin-driven nematicity, or the breaking of the point-group symmetry of the lattice without long-range magnetic order, is clearly quite important in iron-based superconductors. From a symmetry point of view, nematic order can be described as a coherent locking of spin fluctuations in two interpenetrating Néel sublattices with ensuing nearest-neighbor bond order and an absence of static magnetism. Here, we argue that the low-temperature state of the recently discovered superconductor BaTi2Sb2O is a strong candidate for a more exotic form of spin-driven nematic order, in which fluctuations occurring in four Néel sublattices promote both nearest- and next-nearest-neighbor bond order. We develop a low-energy field theory of this state and show that it can have, as a function of temperature, up to two separate bond-order phase transitions, namely, one that breaks rotation symmetry and one that breaks reflection and translation symmetries of the lattice. The resulting state has an orthorhombic lattice distortion, an intra-unit-cell charge density wave, and no long-range magnetic order, all consistent with reported measurements of the low-temperature phase of BaTi2Sb2O . We then use density functional theory calculations to extract exchange parameters to confirm that the model is applicable to BaTi2Sb2O .

  9. Double-stage nematic bond ordering above double stripe magnetism: Application to BaTi2Sb2O

    DOE PAGES

    Zhang, G.; Glasbrenner, J. K.; Flint, R.; ...

    2017-05-01

    Spin-driven nemore » maticity, or the breaking of the point-group symmetry of the lattice without long-range magnetic order, is clearly quite important in iron-based superconductors. From a symmetry point of view, nematic order can be described as a coherent locking of spin fluctuations in two interpenetrating Néel sublattices with ensuing nearest-neighbor bond order and an absence of static magnetism. In this paper, we argue that the low-temperature state of the recently discovered superconductor BaTi2Sb2O is a strong candidate for a more exotic form of spin-driven nematic order, in which fluctuations occurring in four Néel sublattices promote both nearest- and next-nearest-neighbor bond order. We develop a low-energy field theory of this state and show that it can have, as a function of temperature, up to two separate bond-order phase transitions, namely, one that breaks rotation symmetry and one that breaks reflection and translation symmetries of the lattice. The resulting state has an orthorhombic lattice distortion, an intra-unit-cell charge density wave, and no long-range magnetic order, all consistent with reported measurements of the low-temperature phase of BaTi2Sb2O. Finally, we then use density functional theory calculations to extract exchange parameters to confirm that the model is applicable to BaTi2Sb2O.« less

  10. Characterization of Wax Esters by Electrospray Ionization Tandem Mass Spectrometry: Double Bond Effect and Unusual Product Ions

    PubMed Central

    Chen, Jianzhong; Green, Kari B; Nichols, Kelly K

    2015-01-01

    A series of different types of wax esters (represented by RCOOR′) were systematically studied by using electrospray ionization (ESI) collision-induced dissociation tandem mass spectrometry (MS/MS) along with pseudo MS3 (in-source dissociation combined with MS/MS) on a quadrupole time-of-flight (Q-TOF) mass spectrometer. The tandem mass spectra patterns resulting from dissociation of ammonium/proton adducts of these wax esters were influenced by the wax ester type and the collision energy applied. The product ions [RCOOH2]+, [RCO]+ and [RCO – H2O]+ that have been reported previously were detected; however, different primary product ions were demonstrated for the three wax ester types including: 1) [RCOOH2]+ for saturated wax esters, 2) [RCOOH2]+, [RCO]+ and [RCO – H2O]+ for unsaturated wax esters containing only one double bond in the fatty acid moiety or with one additional double bond in the fatty alcohol moiety, and 3) [RCOOH2]+ and [RCO]+ for unsaturated wax esters containing a double bond in the fatty alcohol moiety alone. Other fragments included [R′]+ and several series of product ions for all types of wax esters. Interestingly, unusual product ions were detected, such as neutral molecule (including water, methanol and ammonia) adducts of [RCOOH2]+ ions for all types of wax esters and [R′ – 2H]+ ions for unsaturated fatty acyl-containing wax esters. The patterns of tandem mass spectra for different types of wax esters will inform future identification and quantification approaches of wax esters in biological samples as supported by a preliminary study of quantification of isomeric wax esters in human meibomian gland secretions. PMID:26178197

  11. Characterization of Wax Esters by Electrospray Ionization Tandem Mass Spectrometry: Double Bond Effect and Unusual Product Ions.

    PubMed

    Chen, Jianzhong; Green, Kari B; Nichols, Kelly K

    2015-08-01

    A series of different types of wax esters (represented by RCOOR') were systematically studied by using electrospray ionization (ESI) collision-induced dissociation tandem mass spectrometry (MS/MS) along with pseudo MS(3) (in-source dissociation combined with MS/MS) on a quadrupole time-of-flight (Q-TOF) mass spectrometer. The tandem mass spectra patterns resulting from dissociation of ammonium/proton adducts of these wax esters were influenced by the wax ester type and the collision energy applied. The product ions [RCOOH2](+), [RCO](+) and [RCO-H2O](+) that have been reported previously were detected; however, different primary product ions were demonstrated for the three wax ester types including: (1) [RCOOH2](+) for saturated wax esters, (2) [RCOOH2](+), [RCO](+) and [RCO-H2O](+) for unsaturated wax esters containing only one double bond in the fatty acid moiety or with one additional double bond in the fatty alcohol moiety, and (3) [RCOOH2](+) and [RCO](+) for unsaturated wax esters containing a double bond in the fatty alcohol moiety alone. Other fragments included [R'](+) and several series of product ions for all types of wax esters. Interestingly, unusual product ions were detected, such as neutral molecule (including water, methanol and ammonia) adducts of [RCOOH2](+) ions for all types of wax esters and [R'-2H](+) ions for unsaturated fatty acyl-containing wax esters. The patterns of tandem mass spectra for different types of wax esters will inform future identification and quantification approaches of wax esters in biological samples as supported by a preliminary study of quantification of isomeric wax esters in human meibomian gland secretions.

  12. Double bond localization in minor homoallylic fatty acid methyl esters using acetonitrile chemical ionization tandem mass spectrometry.

    PubMed

    Michaud, Anthony L; Diau, Guan-Yeu; Abril, Reuben; Brenna, J Thomas

    2002-08-15

    Double bond position in natural fatty acids is critical to biochemical properties, however, common instrument-based methods cannot locate double bonds in fatty acid methyl esters (FAME), the predominant analysis form of fatty acids. A recently described mass spectrometry (MS) method for locating double bonds in FAME is reported here for the analysis of minor (<1%) components of real FAME mixtures derived from three natural sources; golden algae (Schizochytrium sp.), primate brain white matter, and transgenic mouse liver. Acetonitrile chemical ionization tandem MS was used to determine double bond positions in 39 FAME, most at concentrations well below 1% of all fatty acid methyl esters. FAME identified in golden algae are 14:1n-6, 14:3n-3, 16:1n-7, 16:2n-6, 16:3n-6, 16:3n-3, 16:4n-3, 18:2n-7, 18:3n-7, 18:3n-8, 18:4n-3, 18:4n-5, 20:3n-7, 20:4n-3, 20:4n-5, 20:4n-7, 20:5n-3, and 22:4n-9. Additional FAME identified in primate brain white matter are 20:1n-7, 20:1n-9, 20:2n-7, 20:2n-9, 22:1n-7, 22:1n-9, 22:1n-13, 22:2n-6, 22:2n-7, 22:2n-9, 22:3n-6, 22:3n-7, 22:3n-9, 22:4n-6, 24:1n-7, 24:1n-9, and 24:4n-6. Additional FAME identified in mouse liver are 26:5n-6, 26:6n-3, 28:5n-6, and 28:6n-3. The primate brain 22:3n-7 and algae 18:4n-5 are novel fatty acids. These results demonstrate the usefulness of the technique for analysis of real samples. Tables are presented to aid in interpretation of acetonitrile CIMS/MS spectra.

  13. Low-lying singlet states of carotenoids having 8-13 conjugated double bonds as determined by electronic absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Nakamura, Ryosuke; Kanematsu, Yasuo; Koyama, Yasushi; Nagae, Hiroyoshi; Nishio, Tomohiro; Hashimoto, Hideki; Zhang, Jian-Ping

    2005-07-01

    Electronic absorption spectra were recorded at room temperature in solutions of carotenoids having different numbers of conjugated double bonds, n = 8-13, including a spheroidene derivatives, neurosporene, spheroidene, lycopene, anhydrorhodovibrin and spirilloxanthin. The vibronic states of 1Bu+(v=0-4), 2Ag-(v=0-3), 3Ag- (0) and 1Bu- (0) were clearly identified. The arrangement of the four electronic states determined by electronic absorption spectroscopy was identical to that determined by measurement of resonance Raman excitation profiles [K. Furuichi et al., Chem. Phys. Lett. 356 (2002) 547] for carotenoids in crystals.

  14. ELECTRON DONOR ACCEPTOR DESCRIPTORS OF THE SINGLE AND DOUBLE BONDED SUBSTITUENT AND HETEROATOM INCORPORATION EFFECTS. A REVIEW.

    PubMed

    Mazurek, Andrzej

    2016-01-01

    The properties of the series of Electron Donor-Acceptor (EDA) descriptors of classical substituent effect (sEDA(I), pEDA(I)), double bonded substituent effect (sEDA(=), pEDA(=)), heteroatom incorporation effect in monocyclic systems (sEDA(II), pEDA(II)), and in ring-junction position (sEDA(III), pEDA(III)), are reviewed. The descriptors show the amount of electrons donated to or withdrawn from the σ-(sEDA) or π(pEDA) valence orbitals by the substituent or incorporant. The new descriptors are expected to enrich the potency of QSAR analyses in drug design and materials chemistry.

  15. Dirhodium carboxylates catalyzed enantioselective coupling reactions of α-diazophosphonates, anilines, and electron-deficient aldehydes.

    PubMed

    Zhou, Cong-Ying; Wang, Jing-Cui; Wei, Jinhu; Xu, Zhen-Jiang; Guo, Zhen; Low, Kam-Hung; Che, Chi-Ming

    2012-11-05

    Chiral dirhodium carboxylate complexes ([Rh(2)(S-PTAD)(4)] or [Rh(2)(S-PTTL)(4)]) efficiently catalyze asymmetric three-component coupling reactions of α-diazophosphonates, anilines, and electron-deficient aldehydes to give α-amino-β-hydroxyphosphonates. The high level of enantiocontrol provides evidence for the intermediacy of metal-bound ammonium ylide in the product-forming step.

  16. A π-electron deficient diaminotriazine functionalized MOF for selective sorption of benzene over cyclohexane.

    PubMed

    Manna, Biplab; Mukherjee, Soumya; Desai, Aamod V; Sharma, Shivani; Krishna, Rajamani; Ghosh, Sujit K

    2015-10-28

    A diaminotriazine functionalized novel MOF (DAT-MOF-1) has been synthesized stemming out of a π-electron-deficient pore-surface functionalization based linker-design principle, which results in efficient selectivity of benzene sorption over its aliphatic analogue cyclohexane, crucial from the industrial standpoint.

  17. Car-Parrinello Molecular Dynamics Simulations of Infrared Spectra of Crystalline Vitamin C with Analysis of Double Minimum Proton Potentials for Medium-Strong Hydrogen Bonds.

    PubMed

    Brela, Mateusz Z; Wójcik, Marek J; Boczar, Marek; Witek, Łukasz; Yasuda, Mitsuru; Ozaki, Yukihiro

    2015-06-25

    We studied proton dynamics of a hydrogen bonds of the crystalline l-ascorbic acid. Our approach was based on the Car-Parrinello molecular dynamics. The focal point of our study was simulation of the infrared spectra of l-ascorbic acid associated with the O-H stretching modes that are very sensitive to the strength of hydrogen bonding. In the l-ascorbic acid there are four kinds of hydrogen bonds. We calculated their spectra by using anharmonic approximation and the time course of the dipole moment function as obtained from the Car-Parrinello simulation. The quantization of the nuclear motion of the protons was made to perform detailed analysis of strength and properties of hydrogen bonds. We presented double minimum proton potentials with small value of barriers for medium-strong hydrogen bonds. We have also shown the difference character of medium-strong hydrogen bonds compared to weaker hydrogen bonds in the l-ascorbic acid.

  18. Novel ruthenium(ii) complexes containing the N-phosphorylated iminophosphorane-phosphine ligand Ph(2)PCH(2)P{[double bond, length as m-dash]NP([double bond, length as m-dash]O)(OEt)(2)}Ph(2): a new coordination mode of its methanide anion.

    PubMed

    Cadierno, Victorio; Díez, Josefina; García-Alvarez, Joaquín; Gimeno, José; Rubio-García, Javier

    2008-11-14

    The reactivity of complex [Ru(eta(6)-p-cymene)(kappa(3)P,N,O-Ph(2)PCH(2)P{[double bond, length as m-dash]NP([double bond, length as m-dash]O)(OEt)(2)}Ph(2))][SbF(6)](2) towards a variety of mono- and bidentate neutral ligands has been studied, allowing the high-yield synthesis of the novel half-sandwich Ru(ii) derivatives [Ru(eta(6)-p-cymene)(L)(kappa(2)P,O-Ph(2)PCH(2)P{[double bond, length as m-dash]NP([double bond, length as m-dash]O)(OEt)(2)}Ph(2))][SbF(6)](2) (L = N[triple bond, length as m-dash]CMe , N[triple bond, length as m-dash]CEt , PMe(3), PMe(2)Ph , PMePh(2), PPh(3), P(OMe)(3), P(OEt)(3), P(OPh)(3), py , kappa(1)P-dppm , kappa(1)P-dppe ), as well as the octahedral species [Ru(Ninsertion markN)(2)(kappa(2)P,O-Ph(2)PCH(2)P{[double bond, length as m-dash]NP([double bond, length as m-dash]O)(OEt)(2)}Ph(2))][SbF(6)](2) (Ninsertion markN = bipy , phen ). Deprotonation of complexes ,, upon treatment with an excess of NaOH in CH(2)Cl(2), generates the monocationic derivatives [Ru(Ninsertion markN)(2)(kappa(2)P,N-Ph(2)PC(H)[double bond, length as m-dash]P{NP([double bond, length as m-dash]O)(OEt)(2)}Ph(2))][Cl] (Ninsertion markN = bipy , phen ) in which the methanide anion adopts an unprecedented kappa(2)P,N bidentate coordination mode. The structures of compounds , and have been determined by single-crystal X-ray diffraction methods.

  19. Quantum dynamics study of fulvene double bond photoisomerization: The role of intramolecular vibrational energy redistribution and excitation energy

    SciTech Connect

    Blancafort, Lluis; Gatti, Fabien; Meyer, Hans-Dieter

    2011-10-07

    The double bond photoisomerization of fulvene has been studied with quantum dynamics calculations using the multi-configuration time-dependent Hartree method. Fulvene is a test case to develop optical control strategies based on the knowledge of the excited state decay mechanism. The decay takes place on a time scale of several hundred femtoseconds, and the potential energy surface is centered around a conical intersection seam between the ground and excited state. The competition between unreactive decay and photoisomerization depends on the region of the seam accessed during the decay. The dynamics are carried out on a four-dimensional model surface, parametrized from complete active space self-consistent field calculations, that captures the main features of the seam (energy and locus of the seam and associated branching space vectors). Wave packet propagations initiated by single laser pulses of 5-25 fs duration and 1.85-4 eV excitation energy show the principal characteristics of the first 150 fs of the photodynamics. Initially, the excitation energy is transferred to a bond stretching mode that leads the wave packet to the seam, inducing the regeneration of the reactant. The photoisomerization starts after the vibrational energy has flowed from the bond stretching to the torsional mode. In our propagations, intramolecular energy redistribution (IVR) is accelerated for higher excess energies along the bond stretch mode. Thus, the competition between unreactive decay and isomerization depends on the rate of IVR between the bond stretch and torsion coordinates, which in turn depends on the excitation energy. These results set the ground for the development of future optical control strategies.

  20. Double bond stereochemistry influences the susceptibility of short-chain isoprenoids and polyprenols to decomposition by thermo-oxidation.

    PubMed

    Molińska, Ewa; Klimczak, Urszula; Komaszyło, Joanna; Derewiaka, Dorota; Obiedziński, Mieczysław; Kania, Magdalena; Danikiewicz, Witold; Swiezewska, Ewa

    2015-04-01

    Isoprenoid alcohols are common constituents of living cells. They are usually assigned a role in the adaptation of the cell to environmental stimuli, and this process might give rise to their oxidation by reactive oxygen species. Moreover, cellular isoprenoids may also undergo various chemical modifications resulting from the physico-chemical treatment of the tissues, e.g., heating during food processing. Susceptibility of isoprenoid alcohols to heat treatment has not been studied in detail so far. In this study, isoprenoid alcohols differing in the number of isoprene units and geometry of the double bonds, β-citronellol, geraniol, nerol, farnesol, solanesol and Pren-9, were subjected to thermo-oxidation at 80 °C. Thermo-oxidation resulted in the decomposition of the tested short-chain isoprenoids as well as medium-chain polyprenols with simultaneous formation of oxidized derivatives, such as hydroperoxides, monoepoxides, diepoxides and aldehydes, and possible formation of oligomeric derivatives. Oxidation products were monitored by GC-FID, GC-MS, ESI-MS and spectrophotometric methods. Interestingly, nerol, a short-chain isoprenoid with a double bond in the cis (Z) configuration, was more oxidatively stable than its trans (E) isomer, geraniol. However, the opposite effect was observed for medium-chain polyprenols, since Pren-9 (di-trans-poly-cis-prenol) was more susceptible to thermo-oxidation than its all-trans isomer, solanesol. Taken together, these results experimentally confirm that both short- and long-chain polyisoprenoid alcohols are prone to thermo-oxidation.

  1. Chemical bonding and dynamic fluxionality of a B15(+) cluster: a nanoscale double-axle tank tread.

    PubMed

    Wang, Ying-Jin; You, Xue-Rui; Chen, Qiang; Feng, Lin-Yan; Wang, Kang; Ou, Ting; Zhao, Xiao-Yun; Zhai, Hua-Jin; Li, Si-Dian

    2016-06-21

    A planar, elongated B15(+) cationic cluster is shown to be structurally fluxional and functions as a nanoscale tank tread on the basis of electronic structure calculations, bonding analyses, and molecular dynamics simulations. The outer B11 peripheral ring behaves like a flexible chain gliding around an inner B4 rhombus core, almost freely at the temperature of 500 K. The rotational energy barrier is only 1.37 kcal mol(-1) (0.06 eV) at the PBE0/6-311+G* level, further refined to 1.66 kcal mol(-1) (0.07 eV) at the single-point CCSD(T)/6-311G*//CCSD/6-311G* level. Two soft vibrational modes of 166.3 and 258.3 cm(-1) are associated with the rotation, serving as double engines for the system. Bonding analysis suggests that the "island" electron clouds, both σ and π, between the peripheral ring and inner core flow and shift continuously during the intramolecular rotation, facilitating the dynamic fluxionality of the system with a small rotational barrier. The B15(+) cluster, roughly 0.6 nm in dimension, is the first double-axle nanoscale tank tread equipped with two engines, which expands the concepts of molecular wheels, Wankel motors, and molecular tanks.

  2. The Reductive Activation of CO2 Across a Ti=Ti Double Bond: Synthetic, Structural, and Mechanistic Studies.

    PubMed

    Kilpatrick, Alexander F R; Green, Jennifer C; Cloke, F Geoffrey N

    2015-10-26

    The reactivity of the bis(pentalene)dititanium double-sandwich compound Ti2Pn(†)2 (1) (Pn(†) = 1,4-{Si(i)Pr3}2C8H4) with CO2 is investigated in detail using spectroscopic, X-ray crystallographic, and computational studies. When the CO2 reaction is performed at -78 °C, the 1:1 adduct 4 is formed, and low-temperature spectroscopic measurements are consistent with a CO2 molecule bound symmetrically to the two Ti centers in a μ:η(2),η(2) binding mode, a structure also indicated by theory. Upon warming to room temperature the coordinated CO2 is quantitatively reduced over a period of minutes to give the bis(oxo)-bridged dimer 2 and the dicarbonyl complex 3. In situ NMR studies indicated that this decomposition proceeds in a stepwise process via monooxo (5) and monocarbonyl (7) double-sandwich complexes, which have been independently synthesized and structurally characterized. 5 is thermally unstable with respect to a μ-O dimer in which the Ti-Ti bond has been cleaved and one pentalene ligand binds in an η(8) fashion to each of the formally Ti(III) centers. The molecular structure of 7 shows a "side-on" bound carbonyl ligand. Bonding of the double-sandwich species Ti2Pn2 (Pn = C8H6) to other fragments has been investigated by density functional theory calculations and fragment analysis, providing insight into the CO2 reaction pathway consistent with the experimentally observed intermediates. A key step in the proposed mechanism is disproportionation of a mono(oxo) di-Ti(III) species to yield di-Ti(II) and di-Ti(IV) products. 1 forms a structurally characterized, thermally stable CS2 adduct 8 that shows symmetrical binding to the Ti2 unit and supports the formulation of 4. The reaction of 1 with COS forms a thermally unstable complex 9 that undergoes scission to give mono(μ-S) mono(CO) species 10. Ph3PS is an effective sulfur transfer agent for 1, enabling the synthesis of mono(μ-S) complex 11 with a double-sandwich structure and bis(μ-S) dimer 12 in which

  3. The Reductive Activation of CO2 Across a Ti=Ti Double Bond: Synthetic, Structural, and Mechanistic Studies

    PubMed Central

    2015-01-01

    The reactivity of the bis(pentalene)dititanium double-sandwich compound Ti2Pn†2 (1) (Pn† = 1,4-{SiiPr3}2C8H4) with CO2 is investigated in detail using spectroscopic, X-ray crystallographic, and computational studies. When the CO2 reaction is performed at −78 °C, the 1:1 adduct 4 is formed, and low-temperature spectroscopic measurements are consistent with a CO2 molecule bound symmetrically to the two Ti centers in a μ:η2,η2 binding mode, a structure also indicated by theory. Upon warming to room temperature the coordinated CO2 is quantitatively reduced over a period of minutes to give the bis(oxo)-bridged dimer 2 and the dicarbonyl complex 3. In situ NMR studies indicated that this decomposition proceeds in a stepwise process via monooxo (5) and monocarbonyl (7) double-sandwich complexes, which have been independently synthesized and structurally characterized. 5 is thermally unstable with respect to a μ-O dimer in which the Ti–Ti bond has been cleaved and one pentalene ligand binds in an η8 fashion to each of the formally TiIII centers. The molecular structure of 7 shows a “side-on” bound carbonyl ligand. Bonding of the double-sandwich species Ti2Pn2 (Pn = C8H6) to other fragments has been investigated by density functional theory calculations and fragment analysis, providing insight into the CO2 reaction pathway consistent with the experimentally observed intermediates. A key step in the proposed mechanism is disproportionation of a mono(oxo) di-TiIII species to yield di-TiII and di-TiIV products. 1 forms a structurally characterized, thermally stable CS2 adduct 8 that shows symmetrical binding to the Ti2 unit and supports the formulation of 4. The reaction of 1 with COS forms a thermally unstable complex 9 that undergoes scission to give mono(μ-S) mono(CO) species 10. Ph3PS is an effective sulfur transfer agent for 1, enabling the synthesis of mono(μ-S) complex 11 with a double-sandwich structure and bis(μ-S) dimer 12 in which the Ti

  4. A density functional theory for association of fluid molecules with a functionalized surface: fluid-wall single and double bonding

    NASA Astrophysics Data System (ADS)

    Haghmoradi, Amin; Wang, Le; Chapman, Walter G.

    2017-02-01

    In this manuscript we extend Wertheim’s two-density formalism beyond its first order to model a system of fluid molecules with a single association site close to a planar hard wall with association sites on its surface in a density functional theory framework. The association sites of the fluid molecules are small enough that they can form only one bond, while the wall association sites are large enough to bond with more than one fluid molecule. The effects of temperature and of bulk fluid and wall site densities on the fluid density profile, extent of association, and competition between single and double bonding of fluid segments at the wall sites versus distance from the wall are presented. The theory predictions are compared with new Monte Carlo simulation results and they are in good agreement. The theory captures the surface coverage over wide ranges of temperature and bulk density by introducing the effect of steric hindrance in fluid association at a wall site.

  5. Theoretical in-Solution Conformational/Tautomeric Analyses for Chain Systems with Conjugated Double Bonds Involving Nitrogen(s)

    PubMed Central

    Nagy, Peter I.

    2015-01-01

    Conformational/tautomeric transformations for X=CH–CH=Y structures (X = CH2, O, NH and Y = NH) have been studied in the gas phase, in dichloromethane and in aqueous solutions. The paper is a continuation of a former study where s-cis/s-trans conformational equilibria were predicted for analogues. The s-trans conformation is preferred for the present molecules in the gas phase on the basis of its lowest internal free energy as calculated at the B97D/aug-cc-pvqz and CCSD(T)CBS (coupled-cluster singles and doubles with non-iterative triples extrapolated to the complete basis set) levels. Transition state barriers are of 29–36 kJ/mol for rotations about the central C–C bonds. In solution, an s-trans form is still favored on the basis of its considerably lower internal free energy compared with the s-cis forms as calculated by IEF-PCM (integral-equation formalism of the polarizable continuum dielectric solvent model) at the theoretical levels indicated. A tetrahydrate model in the supermolecule/continuum approach helped explore the 2solute-solvent hydrogen bond pattern. The calculated transition state barrier for rotation about the C–C bond decreased to 27 kJ/mol for the tetrahydrate. Considering explicit solvent models, relative solvation free energies were calculated by means of the free energy perturbation method through Monte Carlo simulations. These calculated values differ remarkably from those by the PCM approach in aqueous solution, nonetheless the same prevalent conformation was predicted by the two methods. Aqueous solution structure-characteristics were determined by Monte Carlo. Equilibration of conformers/tautomers through water-assisted double proton-relay is discussed. This mechanism is not viable, however, in non-protic solvents where the calculated potential of mean force curve does not predict remarkable solute dimerization and subsequent favorable orientation. PMID:25984602

  6. Synthesis, structure, and reactivity of iridium perfluorocarbene complexes: regio- and stereo-specific addition of HCl across a metal carbon double bond.

    PubMed

    Yuan, Jian; Bourgeois, Cheryl J; Rheingold, Arnold L; Hughes, Russell P

    2015-12-07

    Reductive activation of an α-fluorine in the perfluoroalkyl complexes Cp*(L)(i)Ir-CF2RF using Mg/graphite leads to perfluorocarbene complexes Cp*(L)Ir[double bond, length as m-dash]CFRF (L = CO, PMe3; RF = CF3, C2F5, C6F5). New complexes E-Cp*(PMe3)Ir[double bond, length as m-dash]CFC2F5 and E-Cp*(CO)Ir[double bond, length as m-dash]CFC6F5 have been characterized by single crystal X-ray diffraction studies, and a comparison of metric parameters with previously reported analogues is reported. Experimental NMR and computational DFT (B3LYP/LACV3P**++) studies agree that for Ir[double bond, length as m-dash]CFRF complexes (RF = CF3, CF2CF3) the thermodynamic preference for the E or Z isomer depends on the steric requirements of ligand L; when L = CO the Z-isomer (F cis to Cp*) is preferred and for L = PMe3 the E-isomer is preferred. When reduction of the precursors is carried out in the dark the reaction is completely selective to produce E- or Z-isomers. Exposure of solutions of these compounds to ambient light results in slow conversion to a photostationary non-equilibrium mixture of E and Z isomers. In the dark, these E/Z mixtures convert thermally to their preferred E or Z equilibrium geometries in an even slower reaction. A study of the temperature dependent kinetics of this dark transformation allows ΔG(‡)298 for rotation about the Ir[double bond, length as m-dash]CFCF3 double bond to be experimentally determined as 25 kcal mol(-1); a DFT/B3LYP/LACV3P**++ calculation of this rotation barrier is in excellent agreement (27 kcal mol(-1)) with the experimental value. Reaction of HCl with toluene solutions of Cp*(L)Ir[double bond, length as m-dash]CFRF (L = CO, PMe3) or Cp*(CO)Ir[double bond, length as m-dash]C(CF3)2 at low temperature resulted in regiospecific addition of HCl across the metal carbon double bond, ultimately yielding Cp*(L)Ir(CHFRF)Cl and Cp*(CO)Ir[CH(CF3)2]Cl. Reaction of HCl with single E or Z diastereomers of Cp*(L)Ir[double bond, length as m

  7. Electrostatic and Charge-Induced Methane Activation by a Concerted Double C-H Bond Insertion.

    PubMed

    Geng, Caiyun; Li, Jilai; Weiske, Thomas; Schlangen, Maria; Shaik, Sason; Schwarz, Helmut

    2017-02-01

    A mechanistically unique, simultaneous activation of two C-H bonds of methane has been identified during the course of its reaction with the cationic copper carbide, [Cu-C](+). Detailed high-level quantum chemical calculations support the experimental findings obtained in the highly diluted gas phase using FT-ICR mass spectrometry. The behavior of [Cu-C](+)/CH4 contrasts that of [Au-C](+)/CH4, for which a stepwise bond-activation scenario prevails. An explanation for the distinct mechanistic differences of the two coinage metal complexes is given. It is demonstrated that the coupling of [Cu-C](+) with methane to form ethylene and Cu(+) is modeled very well by the reaction of a carbon atom with methane mediated by an oriented external electric field of a positive point charge.

  8. Double C-H bond activation of acetylene by atomic boron in forming aromatic cyclic-HBC2BH in solid neon.

    PubMed

    Jian, Jiwen; Li, Wei; Wu, Xuan; Zhou, Mingfei

    2017-06-01

    The organo-boron species formed from the reactions of boron atoms with acetylene in solid neon are investigated using matrix isolation infrared spectroscopy with isotopic substitutions as well as quantum chemical calculations. Besides the previously reported single C-H bond activation species, a cyclic-HBC2BH diboron species is formed via double C-H bond activation of acetylene. It is characterized to have a closed-shell singlet ground state with planar D2h symmetry. Bonding analysis indicates that it is a doubly aromatic species involving two delocalized σ electrons and two delocalized π electrons. This finding reveals the very first example of double C-H bond activation of acetylene in forming new organo-boron compounds.

  9. Construction of hybrid material with double chemical bond from functional bridge ligand: Molecular modification, lotus root-like micromorphology and strong luminescence

    NASA Astrophysics Data System (ADS)

    Yan, Bing; Sui, Yu-Long

    2006-07-01

    Modifying benzoic acid with a cross-linking molecule (3-aminopropyl)triethoxysilane (abbreviated as APES), a fictional molecular bridge with double reactivity was achieved by the amidation reaction between them. Then the modified functional molecule, which behaving as a bridge, both coordinate with terbium ion through amide's oxygen atom and form the Si-O chemical bond in an in situ sol-gel process with matrix precursor (tetraethoxysilane, TEOS). As a result, a novel molecular hybrid material (Tb-BA-APES) with double chemical bond (Tb-O coordination bond and Si-O covalent bond) was constructed. The strong luminescence of Tb 3+ substantiates optimum energy couple and effective intramolecular energy transfer between the triplet state energy of modified ligand bridge and emissive energy level of Tb 3+. Especially SEM of the molecular hybrid material exhibits unexpected microlotus root-like pore morphology.

  10. Stereodivergent Aminocatalytic Synthesis of Z- and E-Trisubstituted Double Bonds from Alkynals.

    PubMed

    Marzo, Leyre; Luis-Barrera, Javier; Mas-Ballesté, Rubén; Ruano, José Luis García; Alemán, José

    2016-11-07

    A highly diastereoselective synthesis of trisubstituted Z- or E-enals, which are important intermediates in organic synthesis, as well as being present in natural products, is described using different alkynals and nucleophiles as starting materials. Diastereocontrol is mainly governed by the appropriate catalyst. Therefore, those reactions controlled by steric effects, such as the Jørgensen-Hayashi's catalyst, give access to E isomers, and those catalysts that facilitate hydrogen bonding, such as tetrazol-pyrrolidine Ley's catalyst, allow the synthesis of Z isomers. A stereochemical model based on DFT calculations is proposed. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Identification and cloning of an NADPH-dependent hydroxycinnamoyl-CoA double bond reductase involved in dihydrochalcone formation in Malus×domestica Borkh.

    PubMed

    Ibdah, Mwafaq; Berim, Anna; Martens, Stefan; Valderrama, Andrea Lorena Herrera; Palmieri, Luisa; Lewinsohn, Efraim; Gang, David R

    2014-11-01

    The apple tree (Malus sp.) is an agriculturally and economically important source of food and beverages. Many of the health beneficial properties of apples are due to (poly)phenolic metabolites that they contain, including various dihydrochalcones. Although many of the genes and enzymes involved in polyphenol biosynthesis are known in many plant species, the specific reactions that lead to the biosynthesis of the dihydrochalcone precursor, p-dihydrocoumaroyl-CoA (3), are unknown. To identify genes involved in the synthesis of these metabolites, existing genome databases of the Rosaceae were screened for apple genes with significant sequence similarity to Arabidopsis alkenal double bond reductases. Herein described are the isolation and characterization of a Malus hydroxycinnamoyl-CoA double bond reductase, which catalyzed the NADPH-dependent reduction of p-coumaroyl-CoA and feruloyl-CoA to p-dihydrocoumaroyl-CoA and dihydroferuloyl-CoA, respectively. Its apparent Km values for p-coumaroyl-CoA, feruloyl-CoA and NADPH were 96.6, 92.9 and 101.3μM, respectively. The Malus double bond reductase preferred feruloyl-CoA to p-coumaroyl-CoA as a substrate by a factor of 2.1 when comparing catalytic efficiencies in vitro. Expression analysis of the hydroxycinnamoyl-CoA double bond reductase gene revealed that its transcript levels showed significant variation in tissues of different developmental stages, but was expressed when expected for involvement in dihydrochalcone formation. Thus, the hydroxycinnamoyl-CoA double bond reductase appears to be responsible for the reduction of the α,β-unsaturated double bond of p-coumaroyl-CoA, the first step of dihydrochalcone biosynthesis in apple tissues, and may be involved in the production of these compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Double hydrogen bonded ferroelectric liquid crystals: A study of field induced transition (FiT)

    NASA Astrophysics Data System (ADS)

    Vijayakumar, V. N.; Madhu Mohan, M. L. N.

    2009-12-01

    A novel series of chiral hydrogen bonded liquid crystals have been isolated. Hydrogen bond was formed between chiral nonmesogen ingredient levo tartaric acid and mesogenic p-n-alkoxybenzoic acids. Phase diagram was constructed from the transition temperatures obtained by DSC and polarizing optical microscopic (POM) studies. Thermal and electrical properties exhibited by three complexes namely LTA+8BA, LTA+7BA and LTA+5BA were discussed. Salient feature of the present work was the observation of a reentrant smectic ordering in LTA+8BA complex designated as C r∗ phase. This reentrant phenomenon was confirmed by DSC thermograms, optical textures of POM and temperature variation of capacitance and dielectric loss studies. Tilt angle was measured in smectic C ∗ and reentrant smectic C r∗ phases. Another interesting feature of the present investigation was the observation of a field induced transition (FiT) in the LTA+ nBA homologous series. Three threshold field values were noticed which give rise to two new phases (E 1 and E 2) induced by electric field and on further enhancement of the applied field the mesogen behaves like an optical shutter. FiT is reversible in the sense that when applied field is removed the original texture was restored.

  13. A monotopic aluminum telluride with an Al=Te double bond stabilized by N-heterocyclic carbenes

    PubMed Central

    Franz, Daniel; Szilvási, Tibor; Irran, Elisabeth; Inoue, Shigeyoshi

    2015-01-01

    Aluminum chalcogenides are mostly encountered in the form of bulk aluminum oxides that are structurally diverse but typically consist of networks with high lattice energy in which the chalcogen atoms bridge the metal centres. This makes their molecular congeners difficult to synthesize because of a pronounced tendency for oligomerization. Here we describe the isolation of the monotopic aluminum chalcogenide (LDipN)AlTe(LEt)2 (LDip=1,3-(2,6-diisopropylphenyl)-imidazolin-2-imine, LEt=1,3-diethyl-4,5-dimethyl-imidazolin-2-ylidene). Unique features of (LDipN)AlTe(LEt)2 are the terminal position of the tellurium atom, the shortest aluminum–tellurium distance hitherto reported for a molecular complex and the highest bond order reported for an interaction between these elements, to the best of our knowledge. At elevated temperature (LDipN)AlTe(LEt)2 equilibrates with dimeric {(LDipN)AlTe(LEt)}2 in which the chalcogen atoms assume their common role as bridges between the metal centres. These findings demonstrate that (LDipN)AlTe(LEt)2 comprises the elusive Al=Te double bond in the form of an N-heterocyclic carbene-stabilized species. PMID:26612781

  14. The rate of homolysis of adducts of peroxynitrite to the C=O double bond.

    PubMed

    Merényi, Gábor; Lind, Johan; Goldstein, Sara

    2002-01-09

    Nucleophilic addition of the peroxynitrite anion, ONOO(-), to the two prototypical carbonyl compounds, acetaldehyde and acetone, was investigated in the pH interval 7.4-14. The process is initiated by fast equilibration between the reactants and the corresponding tetrahedral adduct anion, the equilibrium being strongly shifted to the reactant side. The adduct anion also undergoes fast protonation by water and added buffers. Consequently, the rate of the bimolecular reaction between ONOO(-) and the carbonyl is strongly dependent on the pH and on the concentration of the buffer. The pK(a) of the carbonyl-ONOO adduct was estimated to be approximately 11.8 and approximately 12.3 for acetone and acetaldehyde, respectively. It is shown that both the anionic and the neutral adducts suffer fast homolysis along the weak O-O bond to yield free alkoxyl and nitrogen dioxide radicals. The yield of free radicals was determined to be about 15% with both carbonyl compounds at low and high pH, while the remainder collapses to molecular products in the solvent cage. The rate constants for the homolysis of the adducts vary from ca. 3 x 10(5) to ca. 5 x 10(6) s(-1), suggesting that they cannot act as oxidants in biological systems. This small variation around a mean value of about 10(6) s(-1) suggests that the O-O bond in the adduct is rather insensitive to its protonation state and to the nature of its carbonyl precursor. An overall reaction scheme was proposed, and all the corresponding rate constants were evaluated. Finally, thermokinetic considerations were employed to argue that the formation of dioxirane as an intermediate in the reaction of ONOO(-) with acetone is an unlikely process.

  15. Energy and structure of bonds in the interaction of organic anions with layered double hydroxide nanosheets: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Tsukanov, A. A.; Psakhie, S. G.

    2016-01-01

    The application of hybrid and hierarchical nanomaterials based on layered hydroxides and oxyhydroxides of metals is a swiftly progressing field in biomedicine. Layered double hydroxides (LDH) possess a large specific surface area, significant surface electric charge and biocompatibility. Their physical and structural properties enable them to adsorb various kinds of anionic species and to transport them into cells. However, possible side effects resulting from the interaction of LDH with anions of the intercellular and intracellular medium need to be considered, since such interaction can potentially disrupt ion transport, signaling processes, apoptosis, nutrition and proliferation of living cells. In the present paper molecular dynamics is used to determine the energies of interaction of organic anions (aspartic acid, glutamic acid and bicarbonate) with a fragment of layered double hydroxide Mg/Al-LDH. The average number of hydrogen bonds between the anions and the hydroxide surface and characteristic binding configurations are determined. Possible effects of LDH on the cell resulting from binding of protein fragments and replacement of native intracellular anions with delivered anions are considered.

  16. Energy and structure of bonds in the interaction of organic anions with layered double hydroxide nanosheets: A molecular dynamics study

    PubMed Central

    Tsukanov, A.A.; Psakhie, S.G.

    2016-01-01

    The application of hybrid and hierarchical nanomaterials based on layered hydroxides and oxyhydroxides of metals is a swiftly progressing field in biomedicine. Layered double hydroxides (LDH) possess a large specific surface area, significant surface electric charge and biocompatibility. Their physical and structural properties enable them to adsorb various kinds of anionic species and to transport them into cells. However, possible side effects resulting from the interaction of LDH with anions of the intercellular and intracellular medium need to be considered, since such interaction can potentially disrupt ion transport, signaling processes, apoptosis, nutrition and proliferation of living cells. In the present paper molecular dynamics is used to determine the energies of interaction of organic anions (aspartic acid, glutamic acid and bicarbonate) with a fragment of layered double hydroxide Mg/Al-LDH. The average number of hydrogen bonds between the anions and the hydroxide surface and characteristic binding configurations are determined. Possible effects of LDH on the cell resulting from binding of protein fragments and replacement of native intracellular anions with delivered anions are considered. PMID:26817816

  17. Stability of Criegee intermediates formed by ozonolysis of different double bonds.

    PubMed

    Kalinowski, Jaroslaw; Heinonen, Petri; Kilpeläinen, Ilkka; Räsänen, Markku; Gerber, R Benny

    2015-03-19

    The formation of Criegee intermediates by ozonolysis of different species containing C═N and C═P bonds is studied computationally. Electronic structure calculations are carried out for the energetics of ozonolysis, and the lifetime of the Criegee intermediate formed is computed by transition state theory. All calculations are carried out for formation of CH2OO, the simplest Criegee intermediate. Extremely large differences are found for the lifetime of CH2OO depending on the specific C═N, C═P, and C═C precursor, due to the great variations in the exoergicity of the ozonolysis. The largest lifetimes of CH2OO are found to be up to a millisecond range for a Schiff base precursor, being orders of magnitude greater than for C═C and C═P precursors at the same conditions. The results provide insights into the role of the precursor in determining the stability of the Criegee species formed and suggest an approach for preparing Criegee intermediates of relatively long lifetimes.

  18. Synthesis of -C[double bond, length as m-dash]N- linked covalent organic frameworks via the direct condensation of acetals and amines.

    PubMed

    Li, Zhi-Jun; Ding, San-Yuan; Xue, Hua-Dong; Cao, Wei; Wang, Wei

    2016-06-07

    We demonstrate herein a facile approach for constructing -C[double bond, length as m-dash]N- linked COFs from acetals. Three new COFs (imine-linked LZU-20, hydrazone-linked LZU-21, and azine-linked LZU-22) were synthesized by the direct condensation of dimethyl acetals and amines. All the synthesized COFs are highly crystalline and exhibit good thermal stability.

  19. Isolation of β-indomycinone guided by cytotoxicity tests from Streptomyces sp. IFM11607 and revision of its double bond geometry.

    PubMed

    Tsukahara, Kentaro; Toume, Kazufumi; Ito, Hanako; Ishikawa, Naoki; Ishibashi, Masami

    2014-09-01

    The antibiotic β-indomycinone was isolated from Streptomyces sp. IFM11607 by cytotoxicity-guided fractionation against human gastric adenocarcinoma AGS cells, and the geometry of its δ17,18-double bond was revised from E to Z based on the coupling constant.

  20. Copper-catalyzed double C-S bonds formation via different paths: synthesis of benzothiazoles from N-benzyl-2-iodoaniline and potassium sulfide.

    PubMed

    Zhang, Xiaoyun; Zeng, Weilan; Yang, Yuan; Huang, Hui; Liang, Yun

    2014-02-07

    A new, highly efficient procedure for the synthesis of benzothiazoles from easily available N-benzyl-2-iodoaniline and potassium sulfide has been developed. The results show copper-catalyzed double C-S bond formation via a traditional cross-coupling reaction and an oxidative cross-coupling reaction.

  1. Dependence of bonding interactions in Layered Double Hydroxides on metal cation chemistry

    NASA Astrophysics Data System (ADS)

    Shamim, Mostofa; Dana, Kausik

    2016-12-01

    The evolution of various Infrared bands of Layered Double Hydroxides (LDH) with variable Zn:Al ratio was analyzed to correlate it with the changes in octahedral metal cation chemistry, interlayer carbonate anion and hydroxyl content of LDH. The synthesized phase-pure LDHs were crystallized as hexagonal 2H polytype with a Manasseite structure. The broad and asymmetric hydroxyl stretching region (2400-4000 cm-1) can be deconvoluted into four different bands. With increase in Zn2+:Al3+ metal ratio, the peak position of stretching frequencies of Al3+sbnd OH and carbonate-bridged hydroxyl (water) decrease almost linearly. Individual band's peak position and area under the curve have been successfully correlated with the carbonate and hydroxyl content of LDH. Due to lowering of symmetry of the carbonate anion, the IR-inactive peak νCsbnd O, symm at 1064 cm-1 becomes IR active. The peak position of metal-oxygen bands and carbonate bending modes are practically unaffected by the Zn2+:Al3+ ratio but the area under the individual M-O bands shows a direct correlation.

  2. Radical formation in the FMN-photosensitized reactions of unsaturated fatty acids bearing double bonds at different positions.

    PubMed

    Nishihama, Nao; Iwahashi, Hideo

    2016-08-15

    Although the reaction mechanisms through which flavin mononucleotide works as an endogenous photosensitizer have been investigated (Baier et al., 2006; Edwards and Silva, 2001; Pajares et al., 2001; Criado et al., 2003; Massad et al., 2008) [23-27], few studies have been performed for the reactions of flavin mononucleotide with unsaturated fatty acids. To examine the reactions of flavin mononucleotide with unsaturated fatty acids bearing a double bond at different positions, an electron spin resonance, a high performance liquid chromatography-electron spin resonance and a high performance liquid chromatography-electron spin resonance-mass spectrometry were employed. The control reaction mixtures contained 25μmolL(-1) of flavin mononucleotide, 1.0mmolL(-1) of FeSO4(NH4)2SO4, 10mmolL(-1) of cholic acid, 30mmolL(-1) of phosphate buffer (pH 7.4) and 0.1molL(-1) of α-(4-pyridyl-1-oxide)-N-tert-butylnitrone in deuterium oxide. In addition, it also contained 4.3mmolL(-1) of one of the following: (z)-11-octadecenoic acid, (z)-6-octadecenoic acid, (z)-9-octadecenoic acid or (z, z)-9, 12-octadecadienoic acid. The control reaction mixtures without FeSO4(NH4)2SO4 and α-(4-pyridyl-1-oxide)-N-tert-butylnitrone were exposed to the visible light at 436nm (7.8Jcm(-2)). After the irradiation, α-(4-pyridyl-1-oxide)-N-tert-butylnitrone was added. The reactions started from adding FeSO4(NH4)2SO4 and performed at 25°C for 1min. Electron spin resonance measurements of the control reaction mixtures showed prominent signals (α(N)=1.58mT and α(Hβ)=0.26mT). High performance liquid chromatography-electron spin resonance analyses of the control reaction mixtures showed prominent peaks at the retention times of 31.1min {(z)-6-octadecenoic acid}, 39.6min {(z)-9-octadecenoic acid}, 44.9min {(z)-11-octadecenoic acid} and 40.2min {(z, z)-9, 12-octadecadienoic acid}. High performance liquid chromatography-electron spin resonance-mass analyses of the control reaction mixtures showed that 4

  3. A method of coupling the Paternò-Büchi reaction with direct infusion ESI-MS/MS for locating the C[double bond, length as m-dash]C bond in glycerophospholipids.

    PubMed

    Stinson, Craig A; Xia, Yu

    2016-06-21

    Tandem mass spectrometry (MS/MS) coupled with soft ionization is established as an essential platform for lipid analysis; however, determining high order structural information, such as the carbon-carbon double bond (C[double bond, length as m-dash]C) location, remains challenging. Recently, our group demonstrated a method for sensitive and confident lipid C[double bond, length as m-dash]C location determination by coupling online the Paternò-Büchi (PB) reaction with nanoelectrospray ionization (nanoESI) and MS/MS. Herein, we aimed to expand the scope of the PB reaction for lipid analysis by enabling the reaction with infusion ESI-MS/MS at much higher flow rates than demonstrated in the nanoESI setup (∼20 nL min(-1)). In the new design, the PB reaction was effected in a fused silica capillary solution transfer line, which also served as a microflow UV reactor, prior to ESI. This setup allowed PB reaction optimization and kinetics studies. Under optimized conditions, a maximum of 50% PB reaction yield could be achieved for a standard glycerophosphocholine (PC) within 6 s of UV exposure over a wide flow rate range (0.1-10 μL min(-1)). A solvent composition of 7 : 3 acetone : H2O (with 1% acid or base modifier) allowed the highest PB yields and good lipid ionization, while lower yields were obtained with an addition of a variety of organic solvents. Radical induced lipid peroxidation was identified to induce undesirable side reactions, which could be effectively suppressed by eliminating trace oxygen in the solution via N2 purge. Finally, the utility of coupling the PB reaction with infusion ESI-MS/MS was demonstrated by analyzing a yeast polar lipid extract where C[double bond, length as m-dash]C bond locations were revealed for 35 glycerophospholipids (GPs).

  4. An Electron-Deficient Building Block Based on the B←N Unit: An Electron Acceptor for All-Polymer Solar Cells.

    PubMed

    Dou, Chuandong; Long, Xiaojing; Ding, Zicheng; Xie, Zhiyuan; Liu, Jun; Wang, Lixiang

    2016-01-22

    A double B←N bridged bipyridyl (BNBP) is a novel electron-deficient building block for polymer electron acceptors in all-polymer solar cells. The B←N bridging units endow BNBP with fixed planar configuration and low-lying LUMO/HOMO energy levels. As a result, the polymer based on BNBP units (P-BNBP-T) exhibits high electron mobility, low-lying LUMO/HOMO energy levels, and strong absorbance in the visible region, which is desirable for polymer electron acceptors. Preliminary all-polymer solar cell (all-PSC) devices with P-BNBP-T as the electron acceptor and PTB7 as the electron donor exhibit a power conversion efficiency (PCE) of 3.38%, which is among the highest values of all-PSCs with PTB7 as the electron donor.

  5. Bithiazole: An Intriguing Electron-Deficient Building for Plastic Electronic Applications.

    PubMed

    Su, Haw-Lih; Sredojevic, Dusan N; Bronstein, Hugo; Marks, Tobin J; Schroeder, Bob C; Al-Hashimi, Mohammed

    2017-05-01

    The heterocyclic thiazole unit has been extensively used as electron-deficient building block in π-conjugated materials over the last decade. Its incorporation into organic semiconducting materials is particularly interesting due to its structural resemblance to the more commonly used thiophene building block, thus allowing the optoelectronic properties of a material to be tuned without significantly perturbing its molecular structure. Here, we discuss the structural differences between thiazole- and thiophene-based organic semiconductors, and the effects on the physical properties of the materials. An overview of thiazole-based polymers is provided, which have emerged over the past decade for organic electronic applications and it is discussed how the incorporation of thiazole has affected the device performance of organic solar cells and organic field-effect transistors. Finally, in conclusion, an outlook is presented on how thiazole-based polymers can be incorporated into all-electron deficient polymers in order to obtain high-performance acceptor polymers for use in bulk-heterojunction solar cells and as organic field-effect transistors. Computational methods are used to discuss some newly designed acceptor building blocks that have the potential to be polymerized with a fused bithiazole moiety, hence propelling the advancement of air-stable n-type organic semiconductors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Aborted double bicycle-pedal isomerization with hydrogen bond breaking is the primary event of bacteriorhodopsin proton pumping

    PubMed Central

    Altoè, Piero; Cembran, Alessandro; Olivucci, Massimo; Garavelli, Marco

    2010-01-01

    Quantum mechanics/molecular mechanics calculations based on ab initio multiconfigurational second order perturbation theory are employed to construct a computer model of Bacteriorhodopsin that reproduces the observed static and transient electronic spectra, the dipole moment changes, and the energy stored in the photocycle intermediate K. The computed reaction coordinate indicates that the isomerization of the retinal chromophore occurs via a complex motion accounting for three distinct regimes: (i) production of the excited state intermediate I, (ii) evolution of I toward a conical intersection between the excited state and the ground state, and (iii) formation of K. We show that, during stage ii, a space-saving mechanism dominated by an asynchronous double bicycle-pedal deformation of the C10═C11─C12═C13─C14═N moiety of the chromophore dominates the isomerization. On this same stage a N─H/water hydrogen bond is weakened and initiates a breaking process that is completed during stage iii. PMID:21048087

  7. Aborted double bicycle-pedal isomerization with hydrogen bond breaking is the primary event of bacteriorhodopsin proton pumping.

    PubMed

    Altoè, Piero; Cembran, Alessandro; Olivucci, Massimo; Garavelli, Marco

    2010-11-23

    Quantum mechanics/molecular mechanics calculations based on ab initio multiconfigurational second order perturbation theory are employed to construct a computer model of Bacteriorhodopsin that reproduces the observed static and transient electronic spectra, the dipole moment changes, and the energy stored in the photocycle intermediate K. The computed reaction coordinate indicates that the isomerization of the retinal chromophore occurs via a complex motion accounting for three distinct regimes: (i) production of the excited state intermediate I, (ii) evolution of I toward a conical intersection between the excited state and the ground state, and (iii) formation of K. We show that, during stage ii, a space-saving mechanism dominated by an asynchronous double bicycle-pedal deformation of the C10═C11─C12═C13─C14═N moiety of the chromophore dominates the isomerization. On this same stage a N─H/water hydrogen bond is weakened and initiates a breaking process that is completed during stage iii.

  8. Novel Odd-Chain Fatty Acids with a Terminal Double Bond in Ovaries of the Limpet Cellana toreuma.

    PubMed

    Kawashima, Hideki; Ohnishi, Masao

    2017-04-01

    Our previous study characterized highly diverse dienoic fatty acids (FA), in particular an uncommon non-methylene-interrupted (NMI) FA, in the ovaries of the Japanese limpet Cellana toreuma belonging to the archaeogastropods, but many minor chemically unidentified FA remain. In this study, among previously unidentified FA (less than 0.1% of total FA), four novel NMI FA with a terminal double bond [7,18-nonadecadienoic (19:2Δ7,18), 11,18-nonadecadienoic (19:2Δ11,18), 7,20-heneicosadienoic (21:2Δ7,20), and 11,20-heneicosadienoic (21:2Δ11,20) acids] were found, along with known 14-pentadecenoic (15:1Δ14), 16-heptadecenoic (17:1Δ16), and 9,18-nonadecadienoic (19:2Δ9,18) acids, based on capillary GC-MS of their methyl esters, 3-pyridylcarbinol derivatives, and argentation thin-layer chromatography. From our findings, possible biosynthetic pathways for the novel FA are discussed.

  9. A novel vitamin D analog with two double bonds in its side chain. A potent inducer of osteoblastic cell differentiation.

    PubMed

    Mahonen, A; Jääskeläinen, T; Mäenpää, P H

    1996-04-12

    EB 1089 (1 alpha,25-dihydroxy-22,24-diene-24,26,27-trihomovitamin D3) is a novel, synthetic analog of calcitriol, characterized by two extra double bonds in its side chain. It is less potent than calcitriol in its calcemic action, but is an order of magnitude more potent in its antiproliferative action. The aim of this study was to determine the ability of EB 1089 to induce the well-known biological effects of calcitriol in MG-63 human osteosarcoma cells (i.e. by inhibiting cell proliferation and by induction of differentiation). Both calcitriol and EB 1089 significantly decreased cell growth after 2 days in culture. At 5 days, however, Eb 1089 was more potent than the natural hormone in inhibiting the proliferation of MG-63 cells. Potent effects of EB 1089 on cell differentiation were also seen in the stimulation of alkaline phosphatase activity, cellular vitamin D receptor mRNA levels, and medium osteocalcin synthesis. EB 1089 was clearly more effective than calcitriol in stimulating alkaline phosphatase activity and osteocalcin synthesis. In gel shift assays, the binding of vitamin D receptor to the composite AP-1 plus vitamin-D responsive promoter region of the human osteocalcin gene after EB 1089 treatment was stronger and longer-lasting than after calcitriol treatment.

  10. Micro-raman assessment of the ratio of carbon-carbon double bonds of two adhesive systems cured with LED or halogen light-curing units.

    PubMed

    Miletic, Vesna; Santini, Ario

    2010-12-01

    the purpose of the study was to compare the ratio of carbon-carbon double bonds (RDB) of two adhesive systems cured by five different light-curing units (LCUs) using micro-Raman spectroscopy. materials and methods: ten samples of an etch-and-rinse (Excite), a two-step self-etching adhesive system (AdheSE) - ie, primer and bond mixed - and AdheSE Bond only were prepared and cured with one of the following LEDs: Elipar Freelight2; Bluephase; SmartLite; Coltolux, each for 10 s; or a conventional halogen Prismetics Lite for 10 s or 20 s. Micro-Raman spectra were obtained from uncured and cured samples of all three groups to calculate the RDB. Data were statistically analyzed using ANOVA. the mean RDB values were 62% to 76% (Excite), 36% to 50% (AdheSE Primer+Bond) and 58% to 63% (AdheSE Bond). At 20 s, Prismetics Lite produced significantly higher RDB in Excite than the other LCUs and Prismetics Lite at 10 s (p < 0.05). Prismetics Lite at 20 s and Elipar produced comparable RDB values of AdheSE Bond and AdheSE Primer+Bond (p > 0.05). Excite showed significantly higher RDB values than AdheSE (p < 0.05) whilst AdheSE Bond showed significantly higher RDB than AdheSE Primer+Bond (p < 0.05). the etch-and-rinse adhesive cured with the halogen LCU for 20 s gave higher conversion than LED LCUs or halogen for 10 s curing time. The highest intensity LED [Elipar] produced higher or comparable conversion compared to the lower intensity LED LCUs for the same curing time. The etch-and-rinse adhesive showed higher RDB than the self-etching adhesive system. The presence of the primer in the self-etching adhesive compromised polymerisation.

  11. Phosphate-intercalated Ca-Fe-layered double hydroxides: Crystal structure, bonding character, and release kinetics of phosphate

    SciTech Connect

    Woo, Myong A.; Woo Kim, Tae; Paek, Mi-Jeong; Ha, Hyung-Wook; Choy, Jin-Ho; Hwang, Seong-Ju

    2011-01-15

    The nitrate-form of Ca-Fe-layered double hydroxide (Ca-Fe-LDH) was synthesized via co-precipitation method, and its phosphate-intercalates were prepared by ion-exchange reaction. According to X-ray diffraction analysis, the Ca-Fe-LDH-NO{sub 3}{sup -} compound and its H{sub 2}PO{sub 4}{sup -}-intercalate showed hexagonal layered structures, whereas the ion-exchange reaction with HPO{sub 4}{sup 2-} caused a frustration of the layer ordering of LDH. Fe K-edge X-ray absorption spectroscopy clearly demonstrated that the Ca-Fe-LDH lattice with trivalent iron ions was well-maintained after the ion-exchange with HPO{sub 4}{sup 2-} and H{sub 2}PO{sub 4}{sup -}. Under acidic conditions, phosphate ions were slowly released from the Ca-Fe-LDH lattice and the simultaneous release of hydroxide caused the neutralization of acidic media. Fitting analysis based on kinetic models indicated a heterogeneous diffusion process of phosphates and a distinct dependence of release rate on the charge of phosphates. This study strongly suggested that Ca-Fe-LDH is applicable as bifunctional vector for slow release of phosphate fertilizer and for the neutralization of acid soil. -- Graphical abstract: We synthesized phosphate-intercalated Ca-Fe-LDH materials that can act as bifunctional inorganic vectors for the slow release of phosphate fertilizer and also the neutralization of acid soil. Fitting analysis based on kinetic models indicated a heterogeneous diffusion process of phosphates and a distinct dependence of release rate on the charge of phosphates. Display Omitted Research Highlights: {yields} The phosphate forms of Ca-Fe-layered double hydroxide (Ca-Fe-LDH) were synthesized via co-precipitation method. The crystal structure, bonding character, and release kinetics of phosphate of the phosphate-intercalates were investigated. These Ca-Fe-LDH materials are applicable as bifunctional vector for slow release of phosphate fertilizer and for the neutralization of acid soil.

  12. Visualization and quantification of the anisotropic effect of C=C double bonds on 1H NMR spectra of highly congested hydrocarbons-indirect estimates of steric strain.

    PubMed

    Kleinpeter, Erich; Koch, Andreas; Seidl, Peter R

    2008-06-05

    The anisotropic effect of the olefinic C=C double bond has been calculated by employing the NICS ( nucleus independent chemical shift) concept and visualized as an anisotropic cone by a through space NMR shielding grid. Sign and size of this spatial effect on (1)H chemical shifts of protons in norbornene, exo- and endo-2-methylnorbornenes, and in three highly congested tetracyclic norbornene analogs have been compared with the experimental (1)H NMR spectra as far as published. (1)H NMR spectra have also been calculated at the HF/6-31G* level of theory to get a full, comparable set of proton chemical shifts. Differences between delta( (1)H)/ppm and the calculated anisotropic effect of the CC double bond are discussed in terms of the steric compression that occurs in the compounds studied.

  13. Latex Clearing Protein—an Oxygenase Cleaving Poly(cis-1,4-Isoprene) Rubber at the cis Double Bonds

    PubMed Central

    Hiessl, Sebastian; Böse, Dietrich; Oetermann, Sylvia; Eggers, Jessica; Pietruszka, Jörg

    2014-01-01

    Gordonia polyisoprenivorans strain VH2, a potent rubber-degrading actinomycete, harbors two latex clearing proteins (Lcps), which are known to be essential for the microbial degradation of rubber. However, biochemical information on the exact role of this protein in the degradation of polyisoprene was lacking. In this study, the gene encoding Lcp1VH2 was heterologously expressed in strains of Escherichia coli, the corresponding protein was purified, and its role in rubber degradation was examined by measurement of oxygen consumption as well as by chromatographic and spectroscopic methods. It turned out that active Lcp1VH2 is a monomer and is responsible for the oxidative cleavage of poly(cis-1,4-isoprene) in synthetic as well as in natural rubber by the addition of oxygen (O2) to the cis double bonds. The resulting oligomers possess repetitive isoprene units with aldehyde (CHO-CH2—) and ketone (—CH2-CO-CH3) functional groups at the termini. Two fractions with average isoprene contents of 18 and 10, respectively, were isolated, thus indicating an endocleavage mechanism. The activity of Lcp1VH2 was determined by applying a polarographic assay. Alkenes, acyclic terpenes, or other rubber-like polymers, such as poly(cis-1,4-butadiene) or poly(trans-1,4-isoprene), are not oxidatively cleaved by Lcp1VH2. The pH and temperature optima of the enzyme are at pH 7 and 30°C, respectively. Furthermore, it was demonstrated that active Lcp1VH2 is a Cu(II)-containing oxygenase that exhibits a conserved domain of unknown function which cannot be detected in any other hitherto-characterized enzyme. The results presented here indicate that this domain might represent a new protein family of oxygenases. PMID:24928880

  14. Latex clearing protein-an oxygenase cleaving poly(cis-1,4-isoprene) rubber at the cis double bonds.

    PubMed

    Hiessl, Sebastian; Böse, Dietrich; Oetermann, Sylvia; Eggers, Jessica; Pietruszka, Jörg; Steinbüchel, Alexander

    2014-09-01

    Gordonia polyisoprenivorans strain VH2, a potent rubber-degrading actinomycete, harbors two latex clearing proteins (Lcps), which are known to be essential for the microbial degradation of rubber. However, biochemical information on the exact role of this protein in the degradation of polyisoprene was lacking. In this study, the gene encoding Lcp1VH2 was heterologously expressed in strains of Escherichia coli, the corresponding protein was purified, and its role in rubber degradation was examined by measurement of oxygen consumption as well as by chromatographic and spectroscopic methods. It turned out that active Lcp1VH2 is a monomer and is responsible for the oxidative cleavage of poly(cis-1,4-isoprene) in synthetic as well as in natural rubber by the addition of oxygen (O2) to the cis double bonds. The resulting oligomers possess repetitive isoprene units with aldehyde (CHO-CH2-) and ketone (-CH2-CO-CH3) functional groups at the termini. Two fractions with average isoprene contents of 18 and 10, respectively, were isolated, thus indicating an endocleavage mechanism. The activity of Lcp1VH2 was determined by applying a polarographic assay. Alkenes, acyclic terpenes, or other rubber-like polymers, such as poly(cis-1,4-butadiene) or poly(trans-1,4-isoprene), are not oxidatively cleaved by Lcp1VH2. The pH and temperature optima of the enzyme are at pH 7 and 30°C, respectively. Furthermore, it was demonstrated that active Lcp1VH2 is a Cu(II)-containing oxygenase that exhibits a conserved domain of unknown function which cannot be detected in any other hitherto-characterized enzyme. The results presented here indicate that this domain might represent a new protein family of oxygenases.

  15. Synthesis of Benzo[c]silole Derivatives Bearing a Tetrasubstituted Exocyclic C=C Double Bond by Palladium-Catalyzed Domino Reactions.

    PubMed

    Wagner, Patrick; Gulea, Mihaela; Suffert, Jean; Donnard, Morgan

    2017-06-01

    The synthesis of diversely substituted 2,3-dihydro-benzo[c]siloles through an unprecedented palladium-catalyzed domino sequence is reported, involving a cyclocarbopalladation of an internal silylalkyne. This reaction proceeds with complete stereoselectivity to lead to a fully substituted exocyclic C=C double bond. Notably, the overall domino sequence appears to be crucial to obtain the desired cyclic vinylsilanes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Origin of the 900 cm{sup −1} broad double-hump OH vibrational feature of strongly hydrogen-bonded carboxylic acids

    SciTech Connect

    Van Hoozen, Brian L.; Petersen, Poul B.

    2015-03-14

    Medium and strong hydrogen bonds are common in biological systems. Here, they provide structural support and can act as proton transfer relays to drive electron and/or energy transfer. Infrared spectroscopy is a sensitive probe of molecular structure and hydrogen bond strength but strongly hydrogen-bonded structures often exhibit very broad and complex vibrational bands. As an example, strong hydrogen bonds between carboxylic acids and nitrogen-containing aromatic bases commonly display a 900 cm{sup −1} broad feature with a remarkable double-hump structure. Although previous studies have assigned this feature to the OH, the exact origin of the shape and width of this unusual feature is not well understood. In this study, we present ab initio calculations of the contributions of the OH stretch and bend vibrational modes to the vibrational spectrum of strongly hydrogen-bonded heterodimers of carboxylic acids and nitrogen-containing aromatic bases, taking the 7-azaindole—acetic acid and pyridine—acetic acid dimers as examples. Our calculations take into account coupling between the OH stretch and bend modes as well as how both of these modes are affected by lower frequency dimer stretch modes, which modulate the distance between the monomers. Our calculations reproduce the broadness and the double-hump structure of the OH vibrational feature. Where the spectral broadness is primarily caused by the dimer stretch modes strongly modulating the frequency of the OH stretch mode, the double-hump structure results from a Fermi resonance between the out of the plane OH bend and the OH stretch modes.

  17. Electron-deficient anthraquinone derivatives as cathodic material for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Takeda, Takashi; Taniki, Ryosuke; Masuda, Asuna; Honma, Itaru; Akutagawa, Tomoyuki

    2016-10-01

    We studied the electronic and structural properties of electron-deficient anthraquinone (AQ) derivatives, Me4N4AQ and TCNAQ, and investigated their charge-discharge properties in lithium ion batteries along with those of AQ. Cyclic voltammogram, X-ray structure analysis and theoretical calculations revealed that these three acceptors have different features, such as different electron-accepting properties with different reduction processes and lithium coordination abilities, and different packing arrangements with different intermolecular interactions. These differences greatly affect the charge-discharge properties of lithium ion batteries that use these compounds as cathode materials. Among these compounds, Me4N4AQ showed a high charge/discharge voltage (2.9-2.5 V) with high cyclability (>65% of the theoretical capacity after 30 cycles; no decrease after 15 cycles). These results provide insight into more in-depth design principles for lithium ion batteries using AQ derivatives as cathodic materials.

  18. An Electron-Deficient Azacoronene Obtained by Radial π Extension.

    PubMed

    Żyła-Karwowska, Marika; Zhylitskaya, Halina; Cybińska, Joanna; Lis, Tadeusz; Chmielewski, Piotr J; Stępień, Marcin

    2016-11-14

    A hexapyrrolohexaazacoronene derivative containing 37 fused rings, the largest such system to date, was obtained from a naphthalenomonoimide-pyrrole hybrid in a concise and efficient synthesis. This large heterocycle is electron-deficient and shows extended redox activity, spanning at least 13 oxidation levels, but is otherwise chemically stable. Radial expansion of the π system creates a chromophore characterized by strong fluorescence and solvatochromism in the neutral state, and strong near-infrared absorption in the charged states. Additionally, the enlarged and ruffled aromatic surface supports a unique self-assembly mode in the crystal, leading to the formation of highly solvated organic clathrates. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Rationally designed calix[4]arene-pyrrolotetrathiafulvalene receptors for electron-deficient neutral guests.

    PubMed

    Düker, Matthias H; Schäfer, Hannes; Zeller, Matthias; Azov, Vladimir A

    2013-05-17

    Four upper rim bis-monopyrrolotetrathiafulvalene-calix[4]arene conjugates 2a,b and 3a,b have been efficiently synthesized using a modular construction approach. The new compounds feature a molecular tweezer architecture with a quasi-parallel arrangement of redox-active tetrathiafulvalene (TTF) arms, which serve as the guest binding centers. Complexation studies using UV/vis binding titrations revealed a high affinity of the calixarene-TTF receptors for planar electron-deficient guests, leading to formation of deeply colored charge-transfer complexes in solution. The binding efficiency of the receptors depends on the flexibility of the calixarene scaffolds and the electronic nature of the TTF arms: the highest binding efficiency is shown by receptor 2b, featuring a highly preorganized molecular structure and an electron-rich TTF moiety.

  20. Identification of bacterial carotenoid cleavage dioxygenase homologs that cleave the interphenyl α,β double bond of stilbene derivatives via a monooxygenase reaction

    PubMed Central

    Marasco, Erin K.; Schmidt-Dannert, Claudia

    2013-01-01

    Carotenoid cleavage oxygenases (CCOs, also referred to as carotenoid cleavage dioxygenases (CCDs) in the literature) are a new class of non-heme iron-type enzymes that oxidatively cleave double bonds in the conjugated carbon chain of carotenoids. The oxidative cleavage mechanism of these enzymes is not clear and both monooxygenase and dioxygenase mechanisms have been proposed for different carotenoid cleavage enzymes. CCOs have been described from plants, animals, fungi and cyanobacteria but little is known about their distribution and activities in bacteria other than cyanobacteria. We surveyed bacterial genome sequences for CCO homologs and report the characterization of CCO homologs identified in Novosphingobium aromaticivorans DSM 12444 (NOV1 and NOV2) and in Bradyrhizobium sp. (BRA-J and BRA-S). In vitro and in vivo assays with carotenoid and stilbene compounds were used to investigate cleavage activities of the recombinant enzymes. The NOV enzymes cleaved the interphenyl α-β double bond of stilbenes with an oxygen functional group at the 4’ carbon (e.g. resveratrol, piceatannol, and rhaponticin) to the corresponding aldehyde products. Carotenoids and apocarotenoids were not substrates for these enzymes. The two homologous enzymes from Bradyrhizobium sp. did not possess carotenoid or stilbene cleavage oxygenase activities, but showed activity with farnesol. To investigate whether oxidative cleavage of stilbenes proceeds via a monooxygenase or dioxygenase reaction, oxygen labeling studies were conducted with NOV2. Our labeling studies show that double-bond cleavage of stilbenes occurs via a monooxygenase reaction mechanism. PMID:18478524

  1. The conversion of cholest-7-en-3β-ol into cholesterol. General comments on the mechanism of the introduction of double bonds in enzymic reactions

    PubMed Central

    Dewhurst, S. Marsh; Akhtar, M.

    1967-01-01

    Convenient syntheses of 6β-tritiated Δ7-cholestenol and 3α-tritiated Δ7-cholestene-3β,5α-diol are described. It was shown that the conversion of 6β-tritiated Δ7-cholestenol into cholesterol is accompanied by the complete retention of label. It was unambiguously established that the overall reaction leading to the introduction of the double bond in the 5,6-position in cholesterol occurs via a cis-elimination involving the 5α- and 6α-hydrogen atoms and that during this process the 6β-hydrogen atom remains completely undisturbed. Metabolic studies with 3α-tritiated Δ7-cholestene-3β,5α-diol revealed that under anaerobic conditions the compound is not converted into cholesterol. This observation, coupled with the previous work of Slaytor & Bloch (1965), is interpreted to exclude a hydroxylation–dehydration mechanism for the origin of the 5,6-double bond in cholesterol. It was also shown that under aerobic conditions 3α-tritiated Δ7-cholestene-3β,5α-diol is efficiently converted into cholesterol and that this conversion occurs through the intermediacy of 7-dehydrocholesterol. Cumulative experimental evidence presented in this paper and elsewhere is used to suggest that the 5,6-double bond in cholesterol originates through an oxygen-dependent dehydrogenation process and a hypothetical mechanism for this and related reactions is outlined. PMID:16742545

  2. Ultrafast excited state relaxation dynamics of electron deficient porphyrins: Conformational and electronic factors

    NASA Astrophysics Data System (ADS)

    Okhrimenko, Albert N.

    Metallo-tetrapyrroles (MTP) are highly stable macrocyclic pi-systems that display interesting properties that make them potential candidates for various applications. Among these applications are optoelectronics, magnetic materials, photoconductive materials, non-linear optical materials and photo tumor therapeutic drugs. These applications are generally related to their high stability and efficient light absorption ability in the visible and near-infrared region of the optical spectrum. Metallo porphyrins are well known and widely studied representatives of metallotetrapyrroles. Electron deficient substituents in the meso positions are well known to greatly influence the interaction between the metal d-orbitals and the nitrogen orbitals of the tetrapyrrole macrocycle. In this work, a series of electron deficient porphyrins has been studied to gain some knowledge about the change in the excited state dynamics with structural and electronic modifications. Among these porphyrins is nickel and iron modified species bearing perfluoro-, perprotio-, p-nitrophenyl- and perfluorophenyl-meso substituents. Ultrafast transient absorption spectrometry has been used as the main research instrument along with other spectroscopic and electrochemical methods. A new technique has been employed to study the photophysical properties of zinc (II) tetraphenylporphine cation radical. It employs a combination of controlled potential coulometry and femtosecond absorption spectrometry. The fast transient lifetime of 17 ps of the pi-cation species originates in very efficient mixing of the a2u HOMO cation orbital that places electronic density mainly on pyrrolic nitrogens and metal d-orbitals. That explains the lack of any emission of the cationic species. This non-radiative decay process might elucidate the processes taking place in photosynthetic systems when electron is removed from porphyrinic moiety and the hole is produced. In this work zinc(II) meso-tetraphenylporphine radial cation

  3. Double Hydrogen Bonding between Side Chain Carboxyl Groups in Aqueous Solutions of Poly (β-L-Malic Acid): Implication for the Evolutionary Origin of Nucleic Acids

    PubMed Central

    Francis, Brian R.; Watkins, Kevin; Kubelka, Jan

    2017-01-01

    The RNA world hypothesis holds that in the evolutionary events that led to the emergence of life RNA preceded proteins and DNA and is supported by the ability of RNA to act as both a genetic polymer and a catalyst. On the other hand, biosynthesis of nucleic acids requires a large number of enzymes and chemical synthesis of RNA under presumed prebiotic conditions is complicated and requires many sequential steps. These observations suggest that biosynthesis of RNA is the end product of a long evolutionary process. If so, what was the original polymer from which RNA and DNA evolved? In most syntheses of simpler RNA or DNA analogs, the D-ribose phosphate polymer backbone is altered and the purine and pyrimidine bases are retained for hydrogen bonding between complementary base pairs. However, the bases are themselves products of complex biosynthetic pathways and hence they too may have evolved from simpler polymer side chains that had the ability to form hydrogen bonds. We hypothesize that the earliest evolutionary predecessor of nucleic acids was the simple linear polyester, poly (β-D-malic acid), for which the carboxyl side chains could form double hydrogen bonds. In this study, we show that in accord with this hypothesis a closely related polyester, poly (β-L-malic acid), uses carboxyl side chains to form robust intramolecular double hydrogen bonds in moderately acidic solution.

  4. Q-Band Electron-Nuclear Double Resonance Reveals Out-of-Plane Hydrogen Bonds Stabilize an Anionic Ubisemiquinone in Cytochrome bo3 from Escherichia coli.

    PubMed

    Sun, Chang; Taguchi, Alexander T; Vermaas, Josh V; Beal, Nathan J; O'Malley, Patrick J; Tajkhorshid, Emad; Gennis, Robert B; Dikanov, Sergei A

    2016-10-11

    The respiratory cytochrome bo3 ubiquinol oxidase from Escherichia coli has a high-affinity ubiquinone binding site that stabilizes the one-electron reduced ubisemiquinone (SQH), which is a transient intermediate during the electron-mediated reduction of O2 to water. It is known that SQH is stabilized by two strong hydrogen bonds from R71 and D75 to ubiquinone carbonyl oxygen O1 and weak hydrogen bonds from H98 and Q101 to O4. In this work, SQH was investigated with orientation-selective Q-band (∼34 GHz) pulsed (1)H electron-nuclear double resonance (ENDOR) spectroscopy on fully deuterated cytochrome (cyt) bo3 in a H2O solvent so that only exchangeable protons contribute to the observed ENDOR spectra. Simulations of the experimental ENDOR spectra provided the principal values and directions of the hyperfine (hfi) tensors for the two strongly coupled H-bond protons (H1 and H2). For H1, the largest principal component of the proton anisotropic hfi tensor Tz' = 11.8 MHz, whereas for H2, Tz' = 8.6 MHz. Remarkably, the data show that the direction of the H1 H-bond is nearly perpendicular to the quinone plane (∼70° out of plane). The orientation of the second strong hydrogen bond, H2, is out of plane by ∼25°. Equilibrium molecular dynamics simulations on a membrane-embedded model of the cyt bo3 QH site show that these H-bond orientations are plausible but do not distinguish which H-bond, from R71 or D75, is nearly perpendicular to the quinone ring. Density functional theory calculations support the idea that the distances and geometries of the H-bonds to the ubiquinone carbonyl oxygens, along with the measured proton anisotropic hfi couplings, are most compatible with an anionic (deprotonated) ubisemiquinone.

  5. Structure elucidation of unsaturated fatty acids after vicinal hydroxylation of the double bonds by negative electrospray ionisation low-energy tandem mass spectrometry.

    PubMed

    Moe, Morten K; Jensen, Einar

    2004-01-01

    A method for determining the positions of double bonds in unsaturated fatty acids by use of negative electrospray ionisation low-energy tandem mass spectrometry is described. First, a vicinal hydroxylation of the double bonds of mono- and poly-unsaturated fatty acids was performed. Low-energy collision activation dissociation of the deprotonated molecules produced structurally informative ions formed by a-cleavages relative to the hydroxyl groups. Abundant fragment ions that confirmed the positions of all hydroxyl groups, and thus the positions of the double bonds in the native fatty acids, were observed in the spectra of derivatised mono-, di-, and tri-unsaturated fatty acids. Two types of ions were observed, called [alpha'(n)](-) and [alpha(n)](-). The letter n indicates the positions of the hydroxyl groups. The structurally diagnostic ions [alpha'(n)](-) were produced by cleavages distal to the hydroxyl-groups with the charge retained on the carboxylate. [alpha'(n)](-) ions originating from all hydroxyl-groups were observed in the spectra of modified mono-, di-, and tri-unsaturated fatty acids. Initial proton transfer of a hydroxyl proton to the carboxylate with subsequent cleavages proximal to the hydroxyl groups, relative to the carboxylate, resulted in the two structurally diagnostic [alpha(n)](-) ions. In hydroxylated fatty acids having two or more double bonds in their native structure, [alpha(n)](-) ions originating only from the two final hydroxyl-groups were observed. The formation of all ions of [alpha'(n)](-) and [alpha(n)](-) type can be rationalised by a six-membered transition state. Hydroxylated deprotonated tetra-, penta-, and hexa-unsaturated fatty acids also produced [alpha'(n)](-) ions indicating the positions of most of the hydroxyl-groups, whereas the [alpha(n)](-) ions were observed as described above. The method described offers a simple approach to the determination of the positions of double bonds in unsaturated fatty acids, and is an

  6. Effect of calcium hydroxide and double and triple antibiotic pastes on the bond strength of epoxy resin-based sealer to root canal dentin.

    PubMed

    Akcay, Merve; Arslan, Hakan; Topcuoglu, Hüseyin Sinan; Tuncay, Oznur

    2014-10-01

    The aim of this study was to evaluate the effects of calcium hydroxide (CH) and triple (TAP) and double (DAP) antibiotic pastes on the bond strength of an epoxy resin-based sealer (AH Plus Jet; Dentsply DeTrey, Konstanz, Germany) to the root canal dentin. Sixty-four single-rooted human mandibular premolars were decoronated and prepared using the rotary system to size 40. The specimens were randomly divided into a control group (without intracanal dressing) and 3 experimental groups that received an intracanal dressing with either CH, DAP, or TAP (n = 16). The intracanal dressing was removed by rinsing with 10 mL 17% EDTA followed by 10 mL 2.5% sodium hypochlorite. The root canals were then obturated with gutta-percha and AH Plus Jet sealer. A push-out test was used to measure the bond strength between the root canal dentin and the sealer. The data were analyzed using 2-way analysis of variance and Tukey post hoc tests to detect the effect of the independent variables (intracanal medicaments and root canal thirds) and their interactions on the push-out bond strength of the root canal filling material to the root dentin (P = .05). The push-out bond strength values were significantly affected by the intracanal medicaments (P < .001) but not by the root canal thirds (P > .05). In the middle and apical third, the bond strength of the TAP group was higher than those of the CH and DAP groups (P < .05). The DAP and CH did not affect the bond strength of the epoxy resin-based sealer. Additionally, the TAP improved the bond strength of the epoxy resin-based sealer in the middle and apical thirds. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Biotransformation of the double bond in allyl glycidyl ether to an epoxide ring. Evidence from hemoglobin adducts in mice.

    PubMed

    Pérez, H L; Osterman-Golkar, S

    2000-02-15

    Allyl glycidyl ether (AGE) is used industrially in the production of various epoxy resins. The compound is mutagenic and evidence for carcinogenicity in mice and rats has been reported. A previous study in mice showed that AGE reacts directly, without metabolic activation, with N-terminal valine in hemoglobin to form adducts (AGEVal). Metabolism of AGE may lead to formation of diglycidyl ether (I) through epoxidation of the double bond or 1-allyloxy-2,3-dihydroxypropane (II) through hydrolysis of the epoxide ring. 2,3-Dihydroxypropyl glycidyl ether (III) may be formed either by hydrolysis of I or epoxidation of II. The main aim of the present study was to investigate if AGE is metabolized to the reactive epoxides I or III by analysis of adducts with hemoglobin. Nine male mice (C3H/Hej) were administered AGE dissolved in tricaprylin, 4 mg/mouse, by intraperitoneal (i.p.) injection. Eleven male mice were administered 4 mg/mouse of AGE dissolved in acetone, by skin application. Adducts of I or III with N-terminal valine, N-(2-hydroxy-3-(2,3-dihydroxy)propyloxy)propylvaline (diOHPrGEVal), were demonstrated in mice administered AGE by i.p. injection. The levels were in the range 1600-5600 pmol/g globin. The level of diOHPrGEVal in mice administered AGE by skin application (n = 5) was below the detection limit of the analytical method, 20 pmol/g globin. The level of AGEVal, analyzed in mice administered AGE by skin application (n = 6), was about 20 pmol/g globin (median value), as compared with 1600 pmol/g globin previously found in mice administered AGE by i.p. injection. Neither AGEVal nor diOHPrGEVal were detected in control animals. Both adducts were analyzed using a modified Edman method for derivatization and using gas chromatography/tandem mass spectrometry for detection. The hydroxyl groups of the Edman derivative of diOHPrGEVal were protected by acetylation.

  8. Lewis base catalyzed [4+2] annulation of electron-deficient chromone-derived heterodienes and acetylenes.

    PubMed

    Dückert, Heiko; Khedkar, Vivek; Waldmann, Herbert; Kumar, Kamal

    2011-04-26

    Lewis base catalyzed [4+2] annulation reactions between electron-deficient chromone oxa- and azadienes and acetylene carboxylates provide tricyclic benzopyrones inspired by natural products. An asymmetric synthesis of the tricyclic benzopyrones was developed by using modified cinchona alkaloids as enantiodifferentiating Lewis base catalysts.

  9. Synthesis of 2-aminoindolizines by 1,3-dipolar cycloaddition of pyridinium ylides with electron-deficient ynamides.

    PubMed

    Brioche, Julien; Meyer, Christophe; Cossy, Janine

    2015-06-05

    Electron-deficient ynamides, possessing an ynoate or an ynone moiety, have been successfully involved for the first time in a 1,3-dipolar cycloaddition with stabilized pyridinium ylides. These reactions afford an efficient and general access toward a variety of substituted 2-aminoindolizines which can serve as useful precursors for the synthesis of other more complex nitrogen heterocycles.

  10. Energetics of tert-butoxyl addition reaction to norbornadiene: a method for estimating the pi-bond strength of a carbon-carbon double bond.

    PubMed

    Nunes, Paulo M; Estácio, Sílvia G; Lopes, Gustavo T; Agapito, Filipe; Santos, Rui C; Costa Cabral, Benedito J; Borges dos Santos, Rui M; Martinho Simões, José A

    2009-06-11

    The energetics of tert-butoxyl radical addition reaction to norbornadiene was investigated by time-resolved photoacoustic calorimetry (TR-PAC). The result, together with the C-O bond dissociation enthalpy (BDE) in the addition product, allowed us to calculate the pi-bond dissociation enthalpy in norbornadiene. Quantum chemistry (QC) methods were also used to obtain several enthalpies of reaction of the addition of oxygen-centered radicals to alkenes. The pi-bond dissociation enthalpies in these molecules were calculated by a procedure similar to that used in the case of norbornadiene and were compared with the pi-BDE values obtained by the method proposed by Benson. These two different approaches yield similar values for the pi-BDEs in alkenes, indicating that the addition method proposed in the present study is a valid way to derive that quantity. The influence of strain in the pi-BDEs of cyclic alkenes was investigated and allowed us to justify the difference between the pi-BDE in norbornene and norbornadiene. Finally, the thermochemistry of the addition and abstraction reactions involving these two molecules and tert-butoxyl radical was analyzed.

  11. Study of double bond equivalents and the numbers of carbon and oxygen atom distribution of dissolved organic matter with negative-mode FT-ICR MS.

    PubMed

    Bae, EunJung; Yeo, In Joon; Jeong, Byungkwan; Shin, Yongsik; Shin, Kyung-Hoon; Kim, Sunghwan

    2011-06-01

    A strong linear relationship was observed between the average double bond equivalence (DBE) and the ratio of carbon to oxygen atoms in oxygenated compounds of dissolved organic matter (DOM). Data were acquired by a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS), equipped with a negative-mode electrospray ionization source. The slope and y-intercepts extracted from the linear relationship can be used to compare DOM samples originating from different locations. Significant differences in these parameters were observed between inland riverine and offshore coastal DOM samples. Offshore coastal DOM molecules underwent a change of one DBE for each removal or addition of two oxygen atoms. This suggested the existence of multiple carboxyl groups, each of which contains a double bond and two oxygen atoms. Inland riverine samples exhibited a change of ~1.5 DBE following the addition or removal of two oxygen atoms. This extra change in DBE was attributed to cyclic structures or unsaturated chemical bonds. The DBE value with maximum relative abundance and the minimum DBE value for each class of oxygenated compounds showed that approximately two oxygen atoms contributed to a unity change in DBE. The qualitative analyses given here are in a good agreement with results obtained from analyses using orthogonal analytical techniques. This study demonstrates that DBE and the carbon number distribution, observed by high resolution mass spectrometry, can be valuable in elucidating and comparing structural features of oxygenated molecules of DOM.

  12. Pd-Catalyzed Autotandem Reactions with N-Tosylhydrazones. Synthesis of Condensed Carbo- and Heterocycles by Formation of a C-C Single Bond and a C═C Double Bond on the Same Carbon Atom.

    PubMed

    Paraja, Miguel; Valdés, Carlos

    2017-04-05

    A new Pd-catalyzed autotandem reaction is introduced that consists of the cross-coupling of a benzyl bromide with a N-tosylhydrazone followed by an intramolecular Heck reaction with an aryl bromide. During the process, a single and a double C-C bond are formed on the same carbon atom. Two different arrangements for the reactive functional groups are possible, rendering great flexibility to the transformation. The same strategy led to 9-methylene-9H-fluorenes, 9-methylene-9H-xanthenes, 9-methylene-9,10-dihydroacridines, and also dihydropyrroloisoquinoline and dihydroindoloisoquinoline derivatives.

  13. O-H...O versus O-H...S hydrogen bonding. 3. IR-UV double resonance study of hydrogen bonded complexes of p-cresol with diethyl ether and its sulfur analog.

    PubMed

    Biswal, Himansu S; Wategaonkar, Sanjay

    2010-05-20

    In this work the hydrogen bonded complexes of diethyl ether (DEE) and diethyl sulfide (DES) with p-cresol (p-CR) were investigated. Only one conformer of the p-CR.DEE complex and three conformers of the p-CR.DES complex were found to be present under the supersonic jet expansion conditions. The conformational assignments were done with the help of IR-UV double resonance studies and ab initio calculations. The red shifts in the OH stretching frequency for the O-H...O and O-H...S hydrogen bonded complexes were quite close to each other. In fact, one of the p-CR.DES conformers showed a slightly larger red shift in the OH stretch than that in the p-CR.DEE conformer, which suggests that in this case sulfur is not a weak hydrogen bond acceptor as noted previously in case of the p-CR.H(2)O and p-CR.H(2)S complexes (Biswal et al. J. Phys. Chem. A 2009, 113, 5633). The natural bond orbital analysis also shows that the extent of overlap between sulfur lone pair orbitals (LP) and OH antibonding orbital (sigma*(OH)) was comparable to the oxygen (LP) and sigma*(OH) overlap, consistent with the similar magnitudes of the red shifts of OH stretch in the DES and DEE complexes. The computed binding energy of the p-CR.DES complex, however, was about 80% of the p-CR.DEE complex. The electron densities at the bond critical points indicated that the O-H...S interaction was weaker than the O-H...O interaction in this particular system also. The important finding of this study was that the IR red shifts in the H-bond donor X-H stretching frequency were not quite consistent with the computed binding energies and the atoms-in-molecules analysis contrary to the general understanding. Energy decomposition analysis suggests that O-H...S hydrogen bonding interaction is dispersive in nature and the dispersion contribution decreases with the increase in the length of the alkyl chain of the "S" hydrogen bond acceptor.

  14. The position effect of electron-deficient quinoxaline moiety in porphyrin based sensitizers

    NASA Astrophysics Data System (ADS)

    Fan, Suhua; Lv, Kai; Sun, Hong; Zhou, Gang; Wang, Zhong-Sheng

    2015-04-01

    An electron-deficient group, 2,3-diphenylquinoxaline (DPQ), is incorporated as an auxiliary acceptor into the different positions of the porphyrin (Por) based donor-π bridge-acceptor (D-π-A) dye (FNE57) to construct D-A‧-Por-π-A (FNE58) and D-Por-A‧-π-A (FNE59) configurations. The incorporation of DPQ unit between the donor and porphyrin unit has negligible influence on the absorption property, whereas the DPQ unit located between the porphyrin unit and acceptor significantly increases the absorbance for the Soret band and the valley between the Soret and Q bands. Theoretical calculation reveals that incorporating the DPQ unit adjacent to the acceptor is more advantageous to delocalize the lowest unoccupied molecular orbital and enhance the electronic asymmetry, which facilitates the intramolecular charge transfer. The effect of DPQ unit and its linkage position on the performance of related quasi-solid-state dye-sensitized solar cells (DSSCs) is systematically investigated. The quasi-solid-state DSSC with sensitizer FNE59 displays a power conversion efficiency of 6.02%, which is 23% and 51% higher than those for FNE57 and FNE58 based DSSCs. Our studies facilitate the understanding of the crucial importance of molecular engineering and pave a new path to design novel porphyrin based sensitizers for highly efficient DSSCs.

  15. Reduction of electron deficient guanine radical species in plasmid DNA by tyrosine derivatives.

    PubMed

    Tsoi, Mandi; Do, Trinh T; Tang, Vicky J; Aguilera, Joseph A; Milligan, Jamie R

    2010-06-07

    Guanine bases are the most easily oxidized sites in DNA and therefore electron deficient guanine radical species are major intermediates in the direct effect of ionizing radiation (ionization of the DNA itself) on DNA as a consequence of hole migration to guanine. As a model for this process we have used gamma-irradiation in the presence of thiocyanate ions to generate single electron oxidized guanine radicals in a plasmid target in aqueous solution. The stable species formed from these radicals can be detected and quantified by the formation of strand breaks in the plasmid after a post-irradiation incubation using a suitable enzyme. If a tyrosine derivative is also present during irradiation, the production of guanine oxidation products is decreased by electron transfer from tyrosine to the intermediate guanyl radical species. By using cationic tyrosine containing ligands we are able to observe this process when the tyrosine is electrostatically bound to the plasmid. The driving force dependence of this reaction was determined by comparing the reactivity of tyrosine with its 3-nitro analog. The results imply that the electron transfer reaction is coupled to a proton transfer. The experimental conditions used in this model system provide a reasonable approximation to those involved in the radioprotection of DNA by tightly bound proteins in chromatin.

  16. Platinum-based organometallic folders for the recognition of electron deficient aromatic substrates.

    PubMed

    Peris, Eduardo Victor; Nuevo, Daniel; Gonell, Sergio; Poyatos, Macarena

    2017-04-12

    A series of platinum complexes with cis-oriented polyaromatic N-heterocyclic carbene ligands were prepared and characterized. The relative disposition of the polyaromatic ligands about the metal make these compounds to behave as a metallofolder, with a pocket defined by the void space between the polyaromatic functionalities. The complexes were used as receptors of organic molecules, where they showed selective affinity for binding electron-deficient aromatic substrates, such as 1,2,4,5-tetracyanobenzene (TCNB), 2,4,7-trinitro-9-fluorenone (NTFLU) and 1,4,5,8-naphtalenetetracarboxylic dianhydride (NTCDA). The binding affinities of two of the metallofolders with these substrates were determined by means of 1H NMR titrations. Electrospay mass spectrometry (ESI-MS) was also used to assess the affinities. The molecular structure of one of the platinum folders was determined in the presence of TCNB, showing the clear interaction between this guest molecule and the folder formed by the two mutually cis polyaromatic ligands. This work demonstrates how the presence of the mutually cis polyaromatic ligands may constitute a very useful tool for the preparation of metal-based receptors.

  17. Collision-induced dissociation of fatty acid [M - 2H + Na]- ions: charge-directed fragmentation and assignment of double bond position.

    PubMed

    Thomas, Michael C; Altvater, Jens; Gallagher, Thomas J; Nette, Geoffrey W

    2014-11-01

    The collision-induced dissociation (CID) of cationic fatty acid-metal ion complexes has been extensively studied and, in general, provides rich structural information. In particular, charge-remote fragmentation processes are commonly observed allowing the assignment of double bond position. In a previous manuscript, we presented two methods to doubly deprotonate polyunsaturated fatty acids to form anionic fatty acid-sodium ion complexes, referred to as [M - 2H + Na] (-) ions. In the current manuscript, the CID behavior of these [M - 2H + Na] (-) ions is investigated for the first time. Significantly, we also present a deuterium-labeling experiment, which excludes the possibility that deprotonation occurs predominately at the α-carbon in the formation of fatty acid [M - H + NaF](-) ions. This supports our original proposal where deprotonation occurs at the bis-allylic positions of polyunsaturated fatty acids. CID spectra of polyunsaturated fatty acid [M - 2H + Na](-) ions display abundant product ions arising from acyl chain cleavages. Through the examination of fatty acid isomers, it is demonstrated that double bond position may be unequivocally determined for methylene-interrupted polyunsaturated fatty acids with three or more carbon-carbon double bonds. In addition, CID of [M - 2H + Na](-) ions was applied to 18:3 isomers of Nannochloropsis oculata and three isomers were tentatively identified: ∆(9,12,15)18:3, ∆(6,9,12)18:3, and ∆(5,8,11)18:3. We propose that structurally-informative product ions are formed via charge-driven fragmentation processes at the site of the resonance-stabilized carbanion as opposed to charge-remote fragmentation processes, which could be inferred if deprotonation occurred predominately at the α-carbon.

  18. The role of the trans double bond in skin barrier sphingolipids: permeability and infrared spectroscopic study of model ceramide and dihydroceramide membranes.

    PubMed

    Skolová, Barbora; Jandovská, Kateřina; Pullmannová, Petra; Tesař, Ondřej; Roh, Jaroslav; Hrabálek, Alexandr; Vávrová, Kateřina

    2014-05-20

    Dihydroceramides (dCer) are members of the sphingolipid family that lack the C4 trans double bond in their sphingoid backbone. In addition to being precursors of ceramides (Cer) and phytoceramides, dCer have also been found in the extracellular lipid membranes of the epidermal barrier, the stratum corneum. However, their role in barrier homeostasis is not known. We studied how the lack of the trans double bond in dCer compared to Cer influences the permeability, lipid chain order, and packing of multilamellar membranes composed of the major skin barrier lipids: (d)Cer, fatty acids, cholesterol, and cholesteryl sulfate. The permeability of the membranes with long-chain dCer was measured using various markers and was either comparable to or only slightly greater than (by up to 35%, not significant) that of the Cer membranes. The dCer were less sensitive to acyl chain shortening than Cer (the short dCer membranes were up to 6-fold less permeable that the corresponding short Cer membranes). Infrared spectroscopy showed that long dCer mixed less with fatty acids but formed more thermally stable ordered domains than Cer. The key parameter explaining the differences in permeability in the short dCer and Cer was the proportion of the orthorhombic phase. Our results suggest that the presence of the trans double bond in Cer is not crucial for the permeability of skin lipid membranes and that dCer may be underappreciated members of the stratum corneum lipid barrier that increase its heterogeneity.

  19. Infrared spectroscopic studies on 4-amino-6-oxopyrimidine in a low-temperature Xe matrix and crystalline polymorphs composed of double hydrogen-bonded ribbons

    NASA Astrophysics Data System (ADS)

    Ohyama, Kazuko; Goto, Kenta; Shinmyozu, Teruo; Yamamoto, Norifumi; Iizumi, Shota; Miyagawa, Masaya; Nakata, Munetaka; Sekiya, Hiroshi

    2014-03-01

    Infrared (IR) spectra of the enol and keto forms of 4-amino-6-oxopyrimidine (AOP) isolated in a low-temperature Xe matrix were recorded, where the change from the keto to the enol form was found to be induced by UV irradiation (λ > 270 nm). On the other hand, the hydrated crystal of AOP exhibited a similar IR spectrum to the anhydrous crystal by dehydration, suggesting that the dehydrated and anhydrous crystals are polymorphs. It has been found from the IR spectral analyses that the AOP crystal is dominated by infinite double H-bonded ribbons, which has been supported by quantum chemical calculations.

  20. Selective reduction of C=C double bonds in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of microcystins.

    PubMed

    Deleuze, Christelle; De Pauw, Edwin; Quinton, Loic

    2010-01-01

    Cyanobacteria are photosynthetic bacteria encountered in various aquatic environments. Some of them are able to produce powerful toxins called cyanotoxins. Among cyanotoxins, microcystins (MCs) constitute a group of closely related cyclic heptapeptides. Their sequences are made up of classical amino acids as well as post- translational modified ones. Interestingly, in vivo metabolism of microcystins seems to be greatly dependent on various minor structural differences and particularly those of the seventh amino acid, which can be either dehydroalanine (or a derivative), dehydroaminobutyric acid (or a derivative), serine or alanine. As a consequence, microcystins have been classified on the basis of the nature of this singular amino acid. A major difficulty in the classification of such toxins is that some of them share the same molecular masses and the same molecular formulas. Consequently, a simple mass measurement is not sufficient to determine the structure and the class of a toxin of interest. Heavy and expensive techniques are used to classify them, such as multi-dimensional nuclear magnetic resonance and amino acid analysis. In this work, a new matrix-assisted laser desorption/ionization time-of-flight method leading to an easy classification of MCs is proposed. The methodology relies on the reductive properties of the matrix 1,5-diaminonaphtalene (1,5-DAN) which appears to be able to selectively reduce the double carbon-carbon bond belonging to the seventh amino acid. Moreover, the yield of reduction seems to be influenced by the degree of substitution of this double bond, allowing a discrimination between dehydroalanine and dehydroaminobutyric acid. This selective reduction was confirmed by the study of three synthetic peptides by mass spectrometry and tandem mass spectrometry. According to these results, the use of reductive matrices seems to be promising in the study of microcystins and in their classification. More generally, 1,5-DAN allows the selective

  1. Resolution of concerted versus sequential mechanisms in photo-induced double-proton transfer reaction in 7-azaindole H-bonded dimer

    PubMed Central

    Catalán, Javier; del Valle, Juan Carlos; Kasha, Michael

    1999-01-01

    The experimental and theoretical bases for a synchronous or concerted double-proton transfer in centro-symmetric H-bonded electronically excited molecular dimers are presented. The prototype model is the 7-azaindole dimer. New research offers confirmation of a concerted mechanism for excited-state biprotonic transfer. Recent femtosecond photoionization and coulombic explosion techniques have given rise to time-of-flight MS observations suggesting sequential two-step biprotonic transfer for the same dimer. We interpret the overall species observed in the time-of-flight experiments as explicable without conflict with the concerted mechanism of proton transfer. PMID:10411876

  2. Reactions of organoaluminum compounds with acetylene as a method for the synthesis of aliphatic derivatives with a z-disubstituted double bond

    SciTech Connect

    Andreeva, N.I.; Kuchin, A.V.; Tolstikov, G.A.

    1985-11-01

    This paper develops a method for the synthesis of aliphatic compounds with a Z-disubstituted double bond, which are important synthons for the preparation of such natural products as insect pheromones, aromatic principles, etc. In the carbalumination reaction of acetylene Z-alkenyldialkylaluminums are formed selectively. A-Alkenyldialkylaluminums are highly reactive and can readily be converted into Z-allyl alcohols and their ethers, and into Z-iodovinyl derivatives. By the reactions of vinyl organoaluminum compounds with the complex CH/sub 3/COClhaAlCl/sub 3/ E-conjugated ketones were obtained.

  3. A Facile Method to Prepare Double-Layer Isoporous Hollow Fiber Membrane by In Situ Hydrogen Bond Formation in the Spinning Line.

    PubMed

    Noor, Nazia; Koll, Joachim; Radjabian, Maryam; Abetz, Clarissa; Abetz, Volker

    2016-03-01

    A double-layer hollow fiber is fabricated where an isoporous surface of polystyrene-block-poly(4-vinylpyridine) is fixed on a support layer by co-extrusion. Due to the sulfonation of the support layer material, delamination of the two layers is suppressed without increasing the number of subsequent processing steps for isoporous composite membrane formation. Electron microscope-energy-dispersive X-ray spectroscopy images unveil the existence of a high sulfur concentration in the interfacial region by which in-process H-bond formation between the layers is evidenced. For the very first time, our study reports a facile method to fabricate a sturdy isoporous double-layer hollow fiber.

  4. Bis(alkyl) rare-earth complexes coordinated by bulky tridentate amidinate ligands bearing pendant Ph2P[double bond, length as m-dash]O and Ph2P[double bond, length as m-dash]NR groups. Synthesis, structures and catalytic activity in stereospecific isoprene polymerization.

    PubMed

    Rad'kova, Natalia Yu; Tolpygin, Aleksei O; Rad'kov, Vasily Yu; Khamaletdinova, Nadia M; Cherkasov, Anton V; Fukin, Georgi K; Trifonov, Alexander A

    2016-11-22

    A series of new tridentate amidines 2-[Ph2P[double bond, length as m-dash]X]C6H4NHC(tBu)[double bond, length as m-dash]N(2,6-R2C6H3) (X = O, R = iPr (1); X = S, R = Me (2); X = NPh, R = Me (3); X = N(2,6-Me2C6H3), R = Me (4)) bearing various types of donor Ph2P[double bond, length as m-dash]X groups in a pendant chain was synthesized. Bis(alkyl) complexes {2-[Ph2P[double bond, length as m-dash]X]C6H4NC(tBu)N(2,6-R2C6H3)}Ln(CH2SiMe3)2 (Ln = Y, X = O, R = iPr (5); Ln = Er, X = O, R = iPr (6); Ln = Lu, X = O, R = iPr (7); Ln = Y, X = NPh, R = Me (8); Ln = Lu, X = NPh, R = Me (9); Ln = Lu, X = N(2,6-Me2C6H3), R = Me (10)) were prepared using alkane elimination reactions of 1, 3 and 4 with Ln(CH2SiMe3)3(THF)2 (Ln = Y, Er, Lu) in toluene and were isolated in 45 (5), 62 (6), 56 (7), 65 (8), 60 (9), and 60 (10) % yields respectively. The X-ray diffraction studies showed that complexes 6-8 are solvent free and feature intramolecular coordination of the P[double bond, length as m-dash]X (X = O, NPh) group to the lanthanide ions. The ternary systems 5-10/borate/AlR3 (borate = [PhNHMe2][B(C6F5)4], [Ph3C][B(C6F5)4], AlR3 = AliBu3, AliBu2H; molar ratio = 1/1/10 or 1/1/1, toluene) proved to be active in isoprene polymerization and enable complete conversion of 1000-10 000 equivalents of the monomer into a polymer at 25 °C within 0.5-24 h affording polyisoprenes with polydispersities Mw/Mn = 1.22-3.18. A comparative study of the catalytic performance of the bis(alkyl) complexes coordinated by tridentate amidinate ligands containing different pendant donor groups demonstrated that replacement of the Ph2P[double bond, length as m-dash]O group by Ph2P[double bond, length as m-dash]NPh leads to a switch of stereoselectivity in isoprene polymerization from cis-1,4 (up to 98.5%) to trans-1,4 (up to 84.8%). And conversely introduction of methyl substituents in the 2,6 positions of the phenyl group of the Ph2P[double bond, length as m-dash]NPh fragment allows us to restore the 1,4-cis

  5. Dynamic 1H-NMR study of unusually high barrier to rotation about the partial Csbnd N double bond in N,N-dimethyl carbamoyl 5-aryloxytetrazoles

    NASA Astrophysics Data System (ADS)

    Movahedifar, Fahimeh; Modarresi-Alam, Ali Reza; Kleinpeter, Erich; Schilde, Uwe

    2017-04-01

    The synthesis of new N,N-dimethyl carbamoyl 5-aryloxytetrazoles have been reported. Their dynamic 1H-NMR via rotation about Csbnd N bonds in moiety of urea group [a; CO-NMe2 and b; (2-tetrazolyl)N-CO rotations] in the solvents CDCl3 (223-333 K) and DMSO (298-363 K) is studied. Accordingly, the free energies of activation, obtained 16.5 and 16.9 kcal mol-1 respectively, attributed to the conformational isomerization about the Me2Nsbnd Cdbnd O bond (a rotation). Moreover, a and b barrier to rotations in 5-((4-methylphenoxy)-N,N-dimethyl-2H-tetrazole-2-carboxamide (P) also were computed at level of B3LYP using 6-311++G** basis set. The optimized geometry parameters are in good agreement with X-ray structure data. The computation of energy barrier for a and b was determined 16.9 and 2.5 kcal mol-1, respectively. The former is completely in agreement with the result obtained via dynamic NMR. X-ray structure analysis data demonstrate that just 2-acylated tetrazole was formed in the case of 5-(p-tolyloxy)-N,N-dimethyl-2H-tetrazole-2-carboxamide. X-ray data also revealed a planar trigonal orientation of the Me2N group which is coplanar to carbonyl group with the partial double-bond Csbnd N character. It also demonstrates the synperiplanar position of Cdbnd O group with tetrazolyl ring. On average, in solution the plane containing carbonyl bond is almost perpendicular to the plane of the tetrazolyl ring (because of steric effects as confirmed by B3LYP/6-311++G**) while the plane containing Me2N group is coplanar with carbonyl bond which is in contrast with similar urea derivatives and it demonstrates the unusually high rotational energy barrier of these compounds.

  6. Bandgap Engineering in π-Extended Pyrroles. A Modular Approach to Electron-Deficient Chromophores with Multi-Redox Activity.

    PubMed

    Zhylitskaya, Halina; Cybińska, Joanna; Chmielewski, Piotr; Lis, Tadeusz; Stępień, Marcin

    2016-09-07

    A family of bandgap-tunable pyrroles structurally related to rylene dyes was computationally designed and prepared using robust, easily scalable chemistry. These pyrroles show highly variable fluorescence properties and can be used as building blocks for the synthesis of electron-deficient oligopyrroles. The latter application is demonstrated through the development of π-extended porphyrins containing naphthalenediamide or naphthalenediimide units. These new macrocycles exhibit simultaneously tunable visible and near-IR absorptions, an ability to accept up to 8 electrons via electrochemical reduction, and high internal molecular free volumes. When chemically reduced under inert conditions, the most electron-deficient of these macrocycles revealed reversible formation of eight charged states, characterized by remarkably red-shifted optical absorptions, extending beyond 2200 nm. Such features make these oligopyrroles of interest as functional chromophores, charge-storage materials, and tectons for crystal engineering.

  7. Differential roles of internal and terminal double bonds in docosahexaenoic acid: Comparative study of cytotoxicity of polyunsaturated fatty acids to HT-29 human colorectal tumor cell line.

    PubMed

    Sato, Satoshi B; Sato, Sho; Kawamoto, Jun; Kurihara, Tatsuo

    2011-01-01

    The role of the double bonds in docosahexaenoic acid (22:6(Δ4,7,10,13,16,19); DHA) in cytotoxic lipid peroxidation was studied in a superoxide dismutase-defective human colorectal tumor cell line, HT-29. In a conventional culture, DHA and other polyunsaturated fatty acids (PUFAs) were found to induce acute lipid peroxidation and subsequent cell death. PUFAs that lack one or both the terminal double bonds (Δ19 and Δ4) but share Δ7,10,13,16 such as 22:5(Δ7,10,13,16,19), 22:5(Δ4,7,10,13,16), and 22:4(Δ7,10,13,16) were more effective than DHA. Lipid peroxidation and cell death were completely inhibited, except by 22:4(Δ7,10,13,16) when radical-mediated reactions were suppressed by culturing cells in 2% O(2) in the presence of vitamin E. DHA and C22:5 PUFAs but not 22:4(Δ7,10,13,16) were efficiently incorporated in phosphatidylinositol, regardless of the culturing conditions. These and other results suggested that the internal unsaturations Δ7,10,13,16 were sensitive to lipid peroxidation, whereas the terminal ones Δ19 and Δ4 appeared to be involved in assimilation into phospholipids.

  8. Determination of the bond-angle distribution in vitreous B{sub 2}O{sub 3} by {sup 11}B double rotation (DOR) NMR spectroscopy

    SciTech Connect

    Hung, I.; Howes, A.P.; Parkinson, B.G.; Anupold, T.; Samoson, A.; Brown, S.P.; Harrison, P.F.; Holland, D.; Dupree, R.

    2009-09-15

    The B-O-B bond angle distributions for both ring and non-ring boron sites in vitreous B{sub 2}O{sub 3} have been determined by {sup 11}B double rotation (DOR) NMR and multiple-quantum (MQ) DOR NMR. The [B{sub 3}O{sub 6}] boroxol rings are observed to have a mean internal B-O-B angle of 120.0+-0.7 deg. with a small standard deviation, sigma{sub R}=3.2+-0.4 deg., indicating that the rings are near-perfect planar, hexagonal structures. The rings are linked predominantly by non-ring [BO{sub 3}] units, which share oxygens with the boroxol ring, with a mean B{sub ring}-O-B{sub non-ring} angle of 135.1+-0.6 deg. and sigma{sub NR}=6.7+-0.4 deg. In addition, the fraction of boron atoms, f, which reside in the boroxol rings has been measured for this sample as f=0.73+-0.01. - Graphical abstract: Connectivities and B-O-B bond angle distributions of ring and non-ring boron atoms in v-B{sub 2}O{sub 3} have been determined by {sup 11}B double rotation (DOR) NMR, multiple-quantum (MQ) DOR NMR and spin-diffusion DOR. Near-perfect planar, hexagonal [B{sub 3}O{sub 6}] boroxol rings are shown to be present. Display Omitted

  9. Unveiling of novel regio-selective fatty acid double bond hydratases from Lactobacillus acidophilus involved in the selective oxyfunctionalization of mono- and di-hydroxy fatty acids.

    PubMed

    Kim, Kyoung-Rok; Oh, Hye-Jin; Park, Chul-Soon; Hong, Seung-Hye; Park, Ji-Young; Oh, Deok-Kun

    2015-11-01

    The aim of this study is the first time demonstration of cis-12 regio-selective linoleate double-bond hydratase. Hydroxylation of fatty acids, abundant feedstock in nature, is an emerging alternative route for many petroleum replaceable products thorough hydroxy fatty acids, carboxylic acids, and lactones. However, chemical route for selective hydroxylation is still quite challenging owing to low selectivity and many environmental concerns. Hydroxylation of fatty acids by hydroxy fatty acid forming enzymes is an important route for selective biocatalytic oxyfunctionalization of fatty acids. Therefore, novel fatty acid hydroxylation enzymes should be discovered. The two hydratase genes of Lactobacillus acidophilus were identified by genomic analysis, and the expressed two recombinant hydratases were identified as cis-9 and cis-12 double-bond selective linoleate hydratases by in vitro functional validation, including the identification of products and the determination of regio-selectivity, substrate specificity, and kinetic parameters. The two different linoleate hydratases were the involved enzymes in the 10,13-dihydroxyoctadecanoic acid biosynthesis. Linoleate 13-hydratase (LHT-13) selectively converted 10 mM linoleic acid to 13S-hydroxy-9(Z)-octadecenoic acid with high titer (8.1 mM) and yield (81%). Our study will expand knowledge for microbial fatty acid-hydroxylation enzymes and facilitate the designed production of the regio-selective hydroxy fatty acids for useful chemicals from polyunsaturated fatty acid feedstocks. © 2015 Wiley Periodicals, Inc.

  10. Cyclic thioanhydrides: linchpins for multicomponent coupling reactions based on the reaction of thioacids with electron-deficient sulfonamides and azides.

    PubMed

    Crich, David; Bowers, Albert A

    2007-12-06

    Reaction of cyclic thioanhydrides with amines affords amides functionalized with thioacids, which can be trapped in situ with electron-deficient azides or, preferably, 2,4-dinitrobenzenesulfonamides. In this manner the cyclic thioanhydride serves as a linchpin in a three-component coupling sequence. The use of thiomaleic anhydride and a bifunctional nucleophile extends the process to heterocycle synthesis, while a cyclic thioanhydride prepared from aspartic acid directly provides N-functionalized asparagine derivatives.

  11. Thieno[3,4-b]pyrazine as an Electron Deficient π-Bridge in D-A-π-A DSCs.

    PubMed

    Liyanage, Nalaka P; Yella, Aswani; Nazeeruddin, Mohammad; Grätzel, Michael; Delcamp, Jared H

    2016-03-02

    Thieno[3,4-b]pyrazine (TPz) is examined as an electron deficient π-bridge enabling near-infrared (NIR) spectral access in dye-sensitized solar cells (DSCs). Seven dissymmetric dyes for DSCs were synthesized (NL2-NL8) with TPz as the π-bridge utilizing palladium catalyzed C-H activation methodology. C-H bond cross-coupling was uniquely effective among the cross-couplings and electrophilic aromatic substitution reactions analyzed in monofunctionalizing the TPz building block. The TPz-based NL2-NL8 dyes examine the effects of various donors, π-spacers, and acceptors within the donor-π bridge-acceptor (D-π-A) dye design. Proaromatic TPz stabilizes the excited-state oxidation potential (E(s+/s*)) of the dyes by maintaining aromaticity upon excitation of the dye molecule. This leads to concise conjugated systems capable of accessing the NIR region. Through judicious structural modifications, dye band gaps were reduced to 1.48 eV, and power conversion efficiencies (PCEs) reached 7.1% in this first generation TPz-dye series.

  12. An electron-deficient small molecule accessible from sustainable synthesis and building blocks for use as a fullerene alternative in organic photovoltaics.

    PubMed

    McAfee, Seth M; Topple, Jessica M; Payne, Abby-Jo; Sun, Jon-Paul; Hill, Ian G; Welch, Gregory C

    2015-04-27

    An electron-deficient small molecule accessible from sustainable isoindigo and phthalimide building blocks was synthesized via optimized synthetic procedures that incorporate microwave-assisted synthesis and a heterogeneous catalyst for Suzuki coupling, and direct heteroarylation carbon-carbon bond forming reactions. The material was designed as a non-fullerene acceptor with the help of DFT calculations and characterized by optical, electronic, and thermal analysis. Further investigation of the material revealed a differing solid-state morphology with the use of three well-known processing conditions: thermal annealing, solvent vapor annealing and small volume fractions of 1,8-diiodooctane (DIO) additive. These unique morphologies persist in the active layer blends and have demonstrated a distinct influence on device performance. Organic photovoltaic-bulk heterojunction (OPV-BHJ) devices show an inherently high open circuit voltage (Voc ) with the best power conversion efficiency (PCE) cells reaching 1.0 V with 0.4 v/v % DIO as a processing additive.

  13. Determination of the hydrocarbon core structure of fluid dioleoylphosphocholine (DOPC) bilayers by x-ray diffraction using specific bromination of the double-bonds: effect of hydration.

    PubMed Central

    Hristova, K; White, S H

    1998-01-01

    Changes in the structure of the hydrocarbon core (HC) of fluid lipid bilayers can reveal how bilayers respond to the partitioning of peptides and other solutes (Jacobs, R. E., and S. H. White. 1989. Biochemistry. 28:3421-3437). The structure of the HC of dioleoylphosphocholine (DOPC) bilayers can be determined from the transbilayer distribution of the double-bonds (Wiener, M. C., and S. H. White. 1992. Biophys. J. 61:434-447). This distribution, representing the time-averaged projection of the double-bond positions onto the bilayer normal (z), can be obtained by means of neutron diffraction and double-bond specific deuteration (Wiener, M. C., G. I. King, and S. H. White. 1991. Biophys. J. 60:568-576). For fully resolved bilayer profiles, a close approximation of the distribution could be obtained by x-ray diffraction and isomorphous bromine labeling at the double-bonds of the DOPC sn-2 acyl chain (Wiener, M. C., and S. H. White. 1991. Biochemistry. 30:6997-7008). We have modified the bromine-labeling approach in a manner that permits determination of the distribution in under-resolved bilayer profiles observed at high water contents. We used this new method to determine the transbilayer distribution of the double-bond bromine labels of DOPC over a hydration range of 5.4 to 16 waters per lipid, which reveals how the HC structure changes with hydration. We found that the transbilayer distributions of the bromines can be described by a pair of Gaussians of 1/e half-width A(Br) located at z = +Z(Br) relative to the bilayer center. For hydrations from 5.4 waters up to 9.4 waters per lipid, Z(Br) decreases from 7.97 +/- 0.27 A to 6.59 +/- 0.15 A, while A(Br) increased from 4.62 +/- 0.62 A to 5.92 +/- 0.37 A, consistent with the expected hydration-induced decrease in HC thickness and increase in area per lipid. After the phosphocholine hydration shell was filled at approximately 12 waters per lipid, we observed a shift in Z(Br) to approximately 7.3 A, indicative of a

  14. Determination of the hydrocarbon core structure of fluid dioleoylphosphocholine (DOPC) bilayers by x-ray diffraction using specific bromination of the double-bonds: effect of hydration.

    PubMed

    Hristova, K; White, S H

    1998-05-01

    Changes in the structure of the hydrocarbon core (HC) of fluid lipid bilayers can reveal how bilayers respond to the partitioning of peptides and other solutes (Jacobs, R. E., and S. H. White. 1989. Biochemistry. 28:3421-3437). The structure of the HC of dioleoylphosphocholine (DOPC) bilayers can be determined from the transbilayer distribution of the double-bonds (Wiener, M. C., and S. H. White. 1992. Biophys. J. 61:434-447). This distribution, representing the time-averaged projection of the double-bond positions onto the bilayer normal (z), can be obtained by means of neutron diffraction and double-bond specific deuteration (Wiener, M. C., G. I. King, and S. H. White. 1991. Biophys. J. 60:568-576). For fully resolved bilayer profiles, a close approximation of the distribution could be obtained by x-ray diffraction and isomorphous bromine labeling at the double-bonds of the DOPC sn-2 acyl chain (Wiener, M. C., and S. H. White. 1991. Biochemistry. 30:6997-7008). We have modified the bromine-labeling approach in a manner that permits determination of the distribution in under-resolved bilayer profiles observed at high water contents. We used this new method to determine the transbilayer distribution of the double-bond bromine labels of DOPC over a hydration range of 5.4 to 16 waters per lipid, which reveals how the HC structure changes with hydration. We found that the transbilayer distributions of the bromines can be described by a pair of Gaussians of 1/e half-width A(Br) located at z = +Z(Br) relative to the bilayer center. For hydrations from 5.4 waters up to 9.4 waters per lipid, Z(Br) decreases from 7.97 +/- 0.27 A to 6.59 +/- 0.15 A, while A(Br) increased from 4.62 +/- 0.62 A to 5.92 +/- 0.37 A, consistent with the expected hydration-induced decrease in HC thickness and increase in area per lipid. After the phosphocholine hydration shell was filled at approximately 12 waters per lipid, we observed a shift in Z(Br) to approximately 7.3 A, indicative of a

  15. Effect of double coating of one-step self-etching adhesive on micromorphology and microtensile bond strength to sound vs demineralized dentin.

    PubMed

    Oliveira, Cerida Aurelia Rodrigues; França, Fabiana Mantovani Gomes; Basting, Roberta Tarkany; Turssi, Cecília Pedroso; do Amaral, Flavia Lucisano Botelho

    2014-07-01

    The purpose of the present study was to evaluate (1) the one-step adhesive system application method (doubling the adhesive coatings) in regard to microtensile bond strength (MTB) and (2) the interfacial morphology of one-step adhesives to sound vs demineralized dentin. Forty dentin fragments were randomly allocated to 2 groups: D. demineralized dentin and S. sound dentin. Specimens were also subdivided into 2 groups (n = 10), according to the one-step adhesive [AEO (Adper Easy One), 3M ESPE] application method: M, According to the manufacturer's instructions, and D, based on the application of two consecutive layers. After adhesive light polymerization, a resin composite block (Filtek Z250, 3M ESPE) was built on the dentin surface. Resin-tooth blocks were sectioned into 0.9 mm thick slabs, and one slab of each block was prepared for adhesive interface analysis by scanning electron microscopy (SEM). The remaining slabs were sectioned into 0.8 mm(2) sticks that were subjected to tensile stress (0.5 mm/min). Data were subjected to two-way ANOVA and Tukey's test (α = 0.05). The application of two consecutive layers of AEO adhesive system did not Influence MTB values for sound dentin. When two consecutive layers of one-step adhesive system were applied, MTB was statistically greater in demineralized vs sound dentin. SEM analysis demonstrated that the application of two consecutive adhesive layers to sound and demineralized dentin produced longer resin tags. It can be concluded that the application of two consecutive adhesive layers improved bond strength to deminera-lized dentin, but no such effect was observed for sound dentin. Application of double coats of one-step self-etching adhesive improved bond strength to demineralized dentin.

  16. The Development of a Modified Double Cantilever Beam Specimen for Measuring the Fracture Energy of Rubber to Metal Bonds

    DTIC Science & Technology

    1986-11-20

    dissolved oxygen or water at the adhesive to metal oxide interface occurs and locally increases the pH. When these reaction products are sequestered inside...double cantilever beam (DCB) originally proposed by Ripling , it al. (7]. The specimen is shown with an extensometer mounted on the unit for measuring the

  17. Simple but Stronger UO, Double but Weaker UNMe Bonds: The Tale Told by Cp2UO and Cp2UNR

    SciTech Connect

    LPCNO, CNRS-UPS-INSA, INSA Toulouse; Institut Charles Gerhardt, CNRS, Universite Montpellier; Laboratoire de Chimie et Physique Quantiques, CNRS, IRSAMC, Universite Paul Sabatier; Andersen, Richard; Barros, Noemi; Maynau, Daniel; Maron, Laurent; Eisenstein, Odile; Zi, Guofu; Andersen, Richard

    2007-06-27

    The free energies of reaction and the activation energies are calculated, with DFT (B3PW91) and small RECP (relativistic core potential) for uranium, for the reaction of Cp2UNMe and Cp2UO with MeCCMe and H3Si-Cl that yields the corresponding addition products. CAS(2,7) and DFT calculations on Cp2UO and Cp2UNMe give similar results, which validates the use of DFT calculations in these cases. The calculated results mirror the experimental reaction of [1,2,4-(CMe3)3C5H2]2UNMe with dimethylacetylene and [1,2,4-(CMe3)3C5H2]2UO with Me3SiCl. The net reactions are controlled by the change in free energy between the products and reactants, not by the activation energies, and therefore by the nature of the UO and UNMe bonds in the initial and final states. A NBO analysis indicates that the U-O interaction in Cp2UO is composed of a single U-O bond with three lone pairs of electrons localized on oxygen, leading to a polarized U-O fragment. In contrast, the U-NMe interaction in Cp2UNMe is composed of a and component and a lone pairof electrons localized on the nitrogen, resulting in a less polarized UNMe fragment, in accord with the lower electronegativity of NMe relative to O. The strongly polarized U(+)-O(-) bond is calculated to be about 70 kcal mol-1 stronger than the less polarized U=NMe bond.

  18. [The content of individual fatty acids and numbers of double bonds, insulin, C-peptide and unesterified fatty acids in blood plasma in testing tolerance to glucose].

    PubMed

    Titov, V N; Sazhina, N N; Aripovskiĭ, A V; Evteeva, N M; Tkhagalizhokova, É M; Parkhimovich, R M

    2014-10-01

    The glucose tolerance test demonstrates that content of unesterified fatty acids in blood plasma decreases up to three times and the content of oleic and linoleic acids is more decreased in the pool of fatty acids lipids. Out of resistance to insulin, hormone secretion increases up to three times. The decreasing of level of individual fatty acids occurs in a larger extent. Under resistance to insulin secretion of insulin is increasing up to eight times. The decreasing of level of each fatty acid is less expressed. The effect of insulin reflects decreasing of content of double bonds in blood plasma. The number of double bonds characterizes the degree of unsaturation of fatty acids in lipids of blood plasma. The higher number of double bonds is in the pool of unesterified fatty acids the more active is the effect of insulin. The hyper-secretion of insulin is directly proportional to content of palmitic fatty acid in lipids of blood plasma on fasting. According the phylogenetic theory of general pathology, the effect of insulin on metabolism of glucose is mediated by fatty acids. The insulin is blocking lipolysis in insulin-depended subcutaneous adipocytes and decreases content of unesterified fatty acids in blood plasma. The insulin is depriving all cells of possibility to absorb unesterified fatty acids and "forces" them to absorb glucose increasing hereby number of GLUT4 on cell membrane. The resistance to insulin is manifested in high concentration of unesterfied fatty acids, hyperinsulinemia, hyperalbuminemia and increasing of concentration of C-reactive protein-monomer. The resistance to insulin is groundlessly referred to as a symptom of diabetes mellitus type II. The resistance to insulin is only a functional disorder lasting for years. It can be successfully arrested. The diabetes mellitus is developed against the background of resistance to insulin only after long-term hyper-secretion of insulin and under emaciation and death of β-cells. The diabetes

  19. [The titration of double bonds in fatty acids of blood plasma in patients in testing of glucose tolerance].

    PubMed

    Titov, V N; Sazhina, N N; Evteeva, N M; Aripovskiĭ, A V; Tkhagalizhokova, E M

    2015-01-01

    The article deals with per oral glucose tolerance test applied to 20 patients with arterial hypertension. The blood plasma was analyzed to detect content of individual fatty acids, double bounds, glucose, insulin and metabolites of fatty acids. In patients with different resistance to insulin content of non-etherized fatty acids decreased approximatively up to 3 times. Without insulin resistance secretion of insulin in 2 hours after glucose load increased up to 3 times and content of individual fatty acids decreases in greater extent. Under insulin resistance secretion of insulin increases up to 8 times and decreasing of content of fatty acids is less expressed. The decrease in blood plasma of content of oleic and linoleic fatty acids and double bounds reflects effectiveness of effect of insulin--blockade of hydrolysis of triglycerides in subcutaneous adipocytes. The concentration of insulin positively correlates with initial content of palmitic fatty acid in the pool of lipids of blood plasma.

  20. Addition of quadricyclane to C[sub 60]: Easy access to fullerene derivatives bearing a reactive double bond in the side chain

    SciTech Connect

    Prato, M. ); Maggini, M.; Scorrano, G. ); Lucchini, V. )

    1993-07-02

    The reaction of C[sub 60] with quadricyclane gives a stable 6,6 adduct which has been spectroscopically characterized. The double bond of the [2.2.1]bicycloheptene moiety reacts readily with electrophiles (e.g., PhSCl). Soon after the isolation and characterization of fullerene C[sub 60], the electrophilic character of this carbon cluster was disclosed by both experimental and theoretical results. Additions of several electrophiles to C[sub 60] have also been reported, but the conditions necessary for these reactions to occur led often to inseparable mixtures of products of multiple addition. In order to allow a controlled addition of electrophiles and to enrich the chemistry of functionalization, C[sub 60] has to be structurally modified. Herein the authors report a simple cycloaddition approach to a stable and characterizable C[sub 60] derivative, in which the incorporated olefinic moiety shows high reactivity toward electrophiles. 3 figs.

  1. Ambiphilic properties of SF5CF2CF2Br derived perfluorinated radical in addition reactions across carbon-carbon double bonds.

    PubMed

    Dudziński, Piotr; Matsnev, Andrej V; Thrasher, Joseph S; Haufe, Günter

    2015-03-06

    The extraordinary properties of the pentafluorosulfanyl (SF5) group attract attention of organic chemists. While numerous SF5-substituted compounds have been synthesized, the direct introduction of SF5(CF2)n moieties has remained almost unexplored. Our investigations revealed the ambiphilic character of the SF5CF2CF2 radical. Addition reactions to electron-rich or electron-deficient alkenes profit either from its electrophilic or nucleophilic properties. Thus, the readily available SF5CF2CF2Br proved to be a promising and versatile building block for the introduction of this perfluorinated moiety.

  2. Metal composition of layered double hydroxides (LDHs) regulating ClO(-)4 adsorption to calcined LDHs via the memory effect and hydrogen bonding.

    PubMed

    Lin, Yajie; Fang, Qile; Chen, Baoliang

    2014-03-01

    A series of calcined carbonate layered double hydroxides (CLDHs) with various metal compositions and different M(2+)/M(3+) ratios were prepared as adsorbents for perchlorate. Adsorption isotherms fit Langmuir model well, and the adsorption amount followed the order of MgAl-CLDHs ≥ MgFe-CLDHs > ZnAl-CLDHs. The isotherms of MgAl-CLDHs and MgFe-CLDHs displayed a two-step shape at low and high concentration ranges and increased with an increase in the M(2+)/M(3+) ratio from 2 to 4. The two-step isotherm was not observed for ZnAl-CLDHs, and the adsorption was minimally affected by the M(2+)/M(3+) ratio. The LDHs, CLDHs and the reconstructed samples were characterized by X-ray diffraction, SEM, FT-IR and Raman spectra to delineate the analysis of perchlorate adsorption mechanisms. The perchlorate adsorption of MgAl-CLDHs and MgFe-CLDHs was dominated by the structural memory effect and the hydrogen bonds between the free hydroxyl groups on the reconstructed-LDHs and the oxygen atoms of the perchlorates. For ZnAl-CLDHs, the perchlorate adsorption was controlled by the structural memory effect only, as the hydroxyl groups on the hydroxide layers preferred to form strong hydrogen bonds with carbonate over perchlorate, which locked the intercalated perchlorate into a more confined nano-interlayer. Several distinct binding mechanisms of perchlorate by CLDHs with unique M(2+) ions were proposed.

  3. Vibration analysis of bonded double-FGM viscoelastic nanoplate systems based on a modified strain gradient theory incorporating surface effects

    NASA Astrophysics Data System (ADS)

    Jamalpoor, Ali; Kiani, Ali

    2017-03-01

    On the basis of the modified strain gradient theory, the present paper deals with the theoretical analysis of the free vibration of coupled double-FGM viscoelastic nanoplates by Kelvin-Voigt visco-Pasternak medium. To establish static equilibrium of atoms on the each nanoplate surface, the effects of the surface layers are considered. The properties of material in the thickness direction vary according to the power low distribution. Kirchhoff plate assumption and Hamilton's variational principle are employed to achieve the partial differential equations for three different cases of vibration (out-of-phase, in-phase, and one nanoplate of the system being stationary) and corresponding boundary conditions. Navier's approach which satisfies the simply supported boundary conditions applied to analytically investigate the size effect on the natural frequencies of double-FGM viscoelastic nanoplate systems. Numerical studies are carried out to illustrate the influence of viscoelastic damping structural of the nanoplates, damping coefficient of the visco-Pasternak medium, independent length scale parameter, aspect ratio, surface properties, and other factors on the frequency behavior system. Some numerical results of this research illustrate that the frequencies may increase or decrease with respect to the sign of the surface properties of FGMs.

  4. Diastereoselective aziridination of chiral electron-deficient olefins with N-chloro-N-sodiocarbamates catalyzed by chiral quaternary ammonium salts.

    PubMed

    Murakami, Yuta; Takeda, Youhei; Minakata, Satoshi

    2011-08-05

    Chiral quaternary ammonium salt-catalyzed diastereoselective aziridination of electron-deficient olefins that possess a chiral auxiliary with N-chloro-N-sodiocarbamates was developed. The key to high stereoselectivity was found to be the employment of the "matching" stereochemical combination of chiral auxiliary/ammonium salt. For example, when 3-phenyl-(4R,7S)-4-methyl-7-isopropyl-4,5,6,7-tetrahydroindazole (L-menthopyrazole) as a chiral auxiliary and a cinchonidine-derived chiral ammonium salt as a catalyst were applied to the reaction system, perfect diastereoselectivity was realized. Furthermore, the preparation of enantiomerically pure aziridines by removal of the chiral auxiliary was demonstrated.

  5. How the electron-deficient cavity of heterocalixarenes recognizes anions: insights from computation.

    PubMed

    Ortolan, Alexandre O; Caramori, Giovanni F; Matthias Bickelhaupt, F; Parreira, Renato L T; Muñoz-Castro, Alvaro; Kar, Tapas

    2017-09-01

    We have quantum chemically analyzed the bonding mechanism behind the affinity of various heterocalixarenes for anions with a range of geometries and net charges, using modern dispersion-corrected density functional theory (DFT-D3BJ). The purpose is to better understand the physical factors that are responsible for the computed affinities and thus to develop principles for a more rational design of anion receptors. Our model systems comprise heterocalixarenes 1-4 as hosts, which are characterized by different bridging heteroatoms (O, N, S) as well as the anionic guests Cl(-), Br(-), I(-), BF4(-), CH3CO2(-), H2PO4(-), HSO4(-), NCS(-), NO3(-), PF6(-), and SO4(2-). We use various analysis schemes (EDA, NCI, and NBO) to elucidate the interactions between the calixarene cavity and the anions to probe the importance of the different bonding modes (anion-π, lone-pair electron-π, σ-complexes, hydrogen bonds, and others) of the interactions. Electrostatic interactions appear to be dominant for heterocalixarenes with oxygen bridges whereas orbital interactions prevail in the case of nitrogen and sulfur bridges. Dispersion interactions are however in all cases non-negligible.

  6. Structure-performance correlations of organic dyes with an electron-deficient diphenylquinoxaline moiety for dye-sensitized solar cells.

    PubMed

    Li, Sie-Rong; Lee, Chuan-Pei; Yang, Po-Fan; Liao, Chia-Wei; Lee, Mandy M; Su, Wei-Lin; Li, Chun-Ting; Lin, Hao-Wu; Ho, Kuo-Chuan; Sun, Shih-Sheng

    2014-08-04

    The high performances of dye-sensitized solar cells (DSSCs) based on seven new dyes are disclosed. Herein, the synthesis and electrochemical and photophysical properties of a series of intentionally designed dipolar organic dyes and their application in DSSCs are reported. The molecular structures of the seven organic dyes are composed of a triphenylamine group as an electron donor, a cyanoacrylic acid as an electron acceptor, and an electron-deficient diphenylquinoxaline moiety integrated in the π-conjugated spacer between the electron donor and acceptor moieties. The DSSCs based on the dye DJ104 gave the best overall cell performance of 8.06 %; the efficiency of the DSSC based on the standard N719 dye under the same experimental conditions was 8.82 %. The spectral coverage of incident photon-to-electron conversion efficiencies extends to the onset at the near-infrared region due to strong internal charge-transfer transition as well as the effect of electron-deficient diphenylquinoxaline to lower the energy gap in these organic dyes. A combined tetraphenyl segment as a hydrophobic barrier in these organic dyes effectively slows down the charge recombination from TiO2 to the electrolyte and boosts the photovoltage, comparable to their Ru(II) counterparts. Detailed spectroscopic studies have revealed the dye structure-cell performance correlations, to allow future design of efficient light-harvesting organic dyes.

  7. Surface Oxidation under Ambient Air—Not Only a Fast and Economical Method to Identify Double Bond Positions in Unsaturated Lipids But Also a Reminder of Proper Lipid Processing

    PubMed Central

    2015-01-01

    A simple, fast approach elucidated carbon–carbon double bond positions in unsaturated lipids. Lipids were deposited onto various surfaces and the products from their oxidation in ambient air were observed by electrospray ionization (ESI) mass spectrometry (MS). The most common oxidative products, aldehydes, were detected as transformations at the cleaved double bond positions. Ozonides and carboxylic acids were generated in certain lipids. Investigations of the conditions controlling the appearance of these products indicated that the surface oxidation depends on light and ambient air. Since the lipid oxidation was slower in a high concentration of ozone, singlet oxygen appeared to be a parallel oxidant for unsaturated lipids. The 3-hydroxyl group in the sphingoid base of sulfatides offered some protection from oxidation for the Δ4,5-double bond, slowing its oxidation rate relative to that of the isolated double bond in the N-linked fatty acyl chain. Direct sampling by thin-layer chromatography (TLC)-ESI-MS provides a powerful approach to elucidate detailed structural information on biological samples. Co-localization of the starting lipids and their oxidation products after TLC separation allowed assignment of the native unsaturation sites. Phosphatidylserine and N,N-dimethyl phosphatidylethanolamine isomers in a bovine brain total lipid extract were distinguished on the basis of their oxidation products. Meanwhile, the findings reported herein reveal a potential pitfall in the assignment of structures to lipids extracted from TLC plates because of artifactual oxidation after the plate development. PMID:24832382

  8. Bond-rearrangement and ionization mechanisms in the photo-double-ionization of simple hydrocarbons (C2H4, C2H3F, and 1,1-C2H2F2) near and above threshold

    SciTech Connect

    Gaire, B.; Gatton, A. S.; Wiegandt, F.; Neff, J.; Janke, C.; Zeller, S.; Reedy, D.; Rajput, J.; Ben-Itzahk, I.; Landers, A. L.; Belkacem, A.; Weber, Th.

    2016-09-14

    We have investigated bond-rearrangement driven by photo-double-ionization (PDI) near and above the double ionization threshold in a sequence of carbon-carbon double bonded hydrocarbon molecules: ethylene, fluoroethylene, and 1,1-difluoroethylene. We employ the kinematically complete cold target recoil ion momentum spectroscopy (COLTRIMS) method to resolve all photo-double-ionization events leading to two-ionic fragments. We observe changes in the branching ratios of different dissociative ionization channels depending on the presence of none, one, or two fluorine atoms. The role of the fluorine atom in the bond-rearrangement channels is intriguing as evident by the re-ordering of the threshold energies of the PDI in the fluorinated molecules. These effects offer a compelling argument that the electronegativity of the fluorine (or the polarity of the molecule) strongly influences the potential energy surfaces of the molcules and drives bond-rearrangement during the dissociation process. The energy sharing and the relative angle between the 3D-momentum vectors of the two electrons provide clear evidence of direct and indirect PDI processes.

  9. Bond-rearrangement and ionization mechanisms in the photo-double-ionization of simple hydrocarbons (C2H4, C2H3F, and 1,1-C2H2F2) near and above threshold

    DOE PAGES

    Gaire, B.; Gatton, A. S.; Wiegandt, F.; ...

    2016-09-14

    We have investigated bond-rearrangement driven by photo-double-ionization (PDI) near and above the double ionization threshold in a sequence of carbon-carbon double bonded hydrocarbon molecules: ethylene, fluoroethylene, and 1,1-difluoroethylene. We employ the kinematically complete cold target recoil ion momentum spectroscopy (COLTRIMS) method to resolve all photo-double-ionization events leading to two-ionic fragments. We observe changes in the branching ratios of different dissociative ionization channels depending on the presence of none, one, or two fluorine atoms. The role of the fluorine atom in the bond-rearrangement channels is intriguing as evident by the re-ordering of the threshold energies of the PDI in the fluorinatedmore » molecules. These effects offer a compelling argument that the electronegativity of the fluorine (or the polarity of the molecule) strongly influences the potential energy surfaces of the molcules and drives bond-rearrangement during the dissociation process. The energy sharing and the relative angle between the 3D-momentum vectors of the two electrons provide clear evidence of direct and indirect PDI processes.« less

  10. Surface oxidation under ambient air--not only a fast and economical method to identify double bond positions in unsaturated lipids but also a reminder of proper lipid processing.

    PubMed

    Zhou, Ying; Park, Hyejung; Kim, Philseok; Jiang, Yan; Costello, Catherine E

    2014-06-17

    A simple, fast approach elucidated carbon-carbon double bond positions in unsaturated lipids. Lipids were deposited onto various surfaces and the products from their oxidation in ambient air were observed by electrospray ionization (ESI) mass spectrometry (MS). The most common oxidative products, aldehydes, were detected as transformations at the cleaved double bond positions. Ozonides and carboxylic acids were generated in certain lipids. Investigations of the conditions controlling the appearance of these products indicated that the surface oxidation depends on light and ambient air. Since the lipid oxidation was slower in a high concentration of ozone, singlet oxygen appeared to be a parallel oxidant for unsaturated lipids. The 3-hydroxyl group in the sphingoid base of sulfatides offered some protection from oxidation for the Δ4,5-double bond, slowing its oxidation rate relative to that of the isolated double bond in the N-linked fatty acyl chain. Direct sampling by thin-layer chromatography (TLC)-ESI-MS provides a powerful approach to elucidate detailed structural information on biological samples. Co-localization of the starting lipids and their oxidation products after TLC separation allowed assignment of the native unsaturation sites. Phosphatidylserine and N,N-dimethyl phosphatidylethanolamine isomers in a bovine brain total lipid extract were distinguished on the basis of their oxidation products. Meanwhile, the findings reported herein reveal a potential pitfall in the assignment of structures to lipids extracted from TLC plates because of artifactual oxidation after the plate development.

  11. Bond-rearrangement and ionization mechanisms in the photo-double-ionization of simple hydrocarbons (C2H4 , C2H3F , and 1 ,1 -C2H2F2 ) near and above threshold

    NASA Astrophysics Data System (ADS)

    Gaire, B.; Gatton, A.; Wiegandt, F.; Neff, J.; Janke, C.; Zeller, S.; Reedy, D.; Rajput, J.; Ben-Itzhak, I.; Landers, A. L.; Belkacem, A.; Weber, Th.

    2016-09-01

    We investigate bond-rearrangement driven by photo-double-ionization (PDI) near and above the double-ionization threshold in a sequence of carbon-carbon double-bonded hydrocarbon molecules: ethylene, fluoroethylene, and 1,1-difluoroethylene. We employ the kinematically complete cold target recoil ion momentum spectroscopy method to resolve all photo-double-ionization events leading to two-ion fragments. We observe changes in the branching ratios of different dissociative ionization channels depending on the presence of no, one, or two fluorine atoms. The role of the fluorine atom in the bond-rearrangement channels is intriguing, as evident by the reordering of the threshold energies of the PDI in the fluorinated molecules. These effects offer a compelling argument that the electronegativity of the fluorine (or the polarity of the molecule) strongly influences the potential energy surfaces of the molecules and drives bond rearrangement during the dissociation process. The energy sharing and the relative angle between the three-dimensional momentum vectors of the two electrons enable us to distinguish between knockout and other ionization mechanisms of the PDI processes.

  12. Correction: Weak backbone CHO[double bond, length as m-dash]C and side chain tButBu London interactions help promote helix folding of achiral NtBu peptoids.

    PubMed

    Angelici, G; Bhattacharjee, N; Roy, O; Faure, S; Didierjean, C; Jouffret, L; Jolibois, F; Perrin, L; Taillefumier, C

    2016-05-14

    Correction for 'Weak backbone CHO[double bond, length as m-dash]C and side chain tButBu London interactions help promote helix folding of achiral NtBu peptoids' by G. Angelici et al., Chem. Commun., 2016, 52, 4573-4576.

  13. Phosphate-intercalated Ca-Fe-layered double hydroxides: Crystal structure, bonding character, and release kinetics of phosphate

    NASA Astrophysics Data System (ADS)

    Woo, Myong A.; Woo Kim, Tae; Paek, Mi-Jeong; Ha, Hyung-Wook; Choy, Jin-Ho; Hwang, Seong-Ju

    2011-01-01

    The nitrate-form of Ca-Fe-layered double hydroxide (Ca-Fe-LDH) was synthesized via co-precipitation method, and its phosphate-intercalates were prepared by ion-exchange reaction. According to X-ray diffraction analysis, the Ca-Fe-LDH-NO 3- compound and its H 2PO 4--intercalate showed hexagonal layered structures, whereas the ion-exchange reaction with HPO 42- caused a frustration of the layer ordering of LDH. Fe K-edge X-ray absorption spectroscopy clearly demonstrated that the Ca-Fe-LDH lattice with trivalent iron ions was well-maintained after the ion-exchange with HPO 42- and H 2PO 4-. Under acidic conditions, phosphate ions were slowly released from the Ca-Fe-LDH lattice and the simultaneous release of hydroxide caused the neutralization of acidic media. Fitting analysis based on kinetic models indicated a heterogeneous diffusion process of phosphates and a distinct dependence of release rate on the charge of phosphates. This study strongly suggested that Ca-Fe-LDH is applicable as bifunctional vector for slow release of phosphate fertilizer and for the neutralization of acid soil.

  14. NMR study of conformational exchange and double-well proton potential in intramolecular hydrogen bonds in monoanions of succinic acid and derivatives.

    PubMed

    Guo, Jing; Tolstoy, Peter M; Koeppe, B; Denisov, Gleb S; Limbach, Hans-Heinrich

    2011-09-08

    We present a (1)H, (2)H, and (13)C NMR study of the monoanions of succinic (1), meso- and rac-dimethylsuccinic (2, 3), and methylsuccinic (4) acids (with tetraalkylammonium as the counterion) dissolved in CDF(3)/CDF(2)Cl at 300-120 K. In all four monoanions, the carboxylic groups are linked by a short intramolecular OHO hydrogen bond revealed by the bridging-proton chemical shift of about 20 ppm. We show that the flexibility of the carbon skeleton allows for two gauche isomers in monoanions 1, 2, and 4, interconverting through experimental energy barriers of 10-15 kcal/mol (the process itself and the energy barrier are also reproduced in MP2/6-311++G** calculations). In 3, one of the gauche forms is absent because of the steric repulsion of the methyl groups. In all four monoanions, the bridging proton is located in a double-well potential and subject, at least to some extent, to proton tautomerism, for which we estimate the two proton positions to be separated by ca. 0.2 Å. In 1 and 3, the proton potential is symmetric. In 2, slowing the conformational interconversion introduces an asymmetry to the proton potential, an effect that might be strong enough even to synchronize the proton tautomerism with the interconversion of the two gauche forms. In 4, the asymmetry of the proton potential is due to the asymmetric substitution. The intramolecular H-bond is likely to remain intact during the interconversion of the gauche forms in 1, 3, and 4, whereas the situation in 2 is less clear.

  15. Computational study of the double C-Cl bond activation of dichloromethane and phosphine alkylation at [CoCl(PR3)3].

    PubMed

    Algarra, Andrés G; Braunstein, Pierre; Macgregor, Stuart A

    2013-03-28

    Density functional theory calculations have been employed to model the double C-Cl bond activation of CH(2)Cl(2) at [CoCl(PR(3))(3)] to give [CoCl(3)(CH(2)PR(3))(PR(3))(2)]. Calculations incorporating dichloromethane solution (PCM approach) on a [CoCl(PMe(3))(3)] model system showed the two C-Cl cleavage steps to involve different mechanisms. The first C-Cl cleavage step occurs on the triplet surface and proceeds via Cl abstraction with a barrier of 19.1 kcal mol(-1). Radical recombination would then give singlet mer,trans-[CoCl(2)(CH(2)Cl)(PMe(3))(3)] with an overall free energy change of +1.8 kcal mol(-1). Alternative C-Cl activation processes based on nucleophilic attack by the Co centre at dichloromethane with loss of Cl(-) have significantly higher barriers. The second C-Cl cleavage occurs via nucleophilic attack of PMe(3) at the CH(2)Cl ligand with formation of a new P-C bond and displacement of Cl(-). This may either occur in an intermolecular fashion (after prior PMe(3) dissociation) or intramolecularly. Both processes have similar barriers of ca. 12 kcal mol(-1). The comproportionation of [CoCl(3)(CH(2)PMe(3))(PMe(3))(2)] with [CoCl(PMe(3))(3)] to give [CoCl(2)(CH(2)PMe(3))(PMe(3))], [CoCl(2)(PMe(3))(2)] and 2 PMe(3) is computed to be strongly exergonic, consistent with the observation of this process in analogous experimental systems.

  16. Making Fe(BPBP)-catalyzed C-H and C[double bond, length as m-dash]C oxidations more affordable.

    PubMed

    Yazerski, Vital A; Spannring, Peter; Gatineau, David; Woerde, Charlotte H M; Wieclawska, Sara M; Lutz, Martin; Kleijn, Henk; Gebbink, Robertus J M Klein

    2014-04-07

    The limited availability of catalytic reaction components may represent a major hurdle for the practical application of many catalytic procedures in organic synthesis. In this work, we demonstrate that the mixture of isomeric iron complexes [Fe(OTf)2(mix-BPBP)] (mix-1), composed of Λ-α-[Fe(OTf)2(S,S-BPBP)] (S,S-1), Δ-α-[Fe(OTf)2(R,R-BPBP)] (R,R-1) and Δ/Λ-β-[Fe(OTf)2(R,S-BPBP)] (R,S-1), is a practical catalyst for the preparative oxidation of various aliphatic compounds including model hydrocarbons and optically pure natural products using hydrogen peroxide as an oxidant. Among the species present in mix-1, S,S-1 and R,R-1 are catalytically active, act independently and represent ca. 75% of mix-1. The remaining 25% of mix-1 is represented by mesomeric R,S-1 which nominally plays a spectator role in both C-H and C[double bond, length as m-dash]C bond oxidation reactions. Overall, this mixture of iron complexes displays the same catalytic profile as its enantiopure components that have been previously used separately in sp(3) C-H oxidations. In contrast to them, mix-1 is readily available on a multi-gram scale via two high yielding steps from crude dl/meso-2,2'-bipyrrolidine. Next to its use in C-H oxidation, mix-1 is active in chemospecific epoxidation reactions, which has allowed us to develop a practical catalytic protocol for the synthesis of epoxides.

  17. Double bonds in motion: bis(oxazolinylmethyl)pyrroles and their metal-induced planarization to a new class of rigid chiral C2-symmetric complexes.

    PubMed

    Mazet, Clément; Gade, Lutz H

    2003-04-14

    The synthesis of a new class of chiral C(2)-symmetric tridentate N-donor ligands, a series of 2,5-bis(2-oxazolinylmethyl)pyrroles, was achieved in four steps starting from the known 2,5-bis(trimethylammoniomethyl)pyrrole diiodide (1). Reaction of 1 with NaCN in dimethyl sulfoxide gave 2,5-bis(cyanomethyl)pyrrole (2) cleanly, which was then cyclized with amino alcohols to give the 2,5-bis(2-oxazolinylmethyl)pyrroles 3 a-c (3 a: bis[2-(4,4'-dimethyl-5-hydrooxazolyl)methyl]pyrrole; 3 b: (S,S)-bis[2-(4-isopropyl-4,5-dihydrooxazolyl)methyl]pyrrole; 3 c: (S,S)-bis[2-(4-tertiobutyl-4,5-dihydrooxazolyl)methyl]pyrrole). Metallation of 3 a-c with one molar equivalent of tBuLi and their subsequent reaction with a stoichiometric amount of [PdCl(2)(cod)] (cod=cyclooctadiene) gave the palladium(II) complexes 4 a-c. Whereas the arrangement of the N-donor atoms in the crystallographically characterized complex 4 a is almost ideally square planar, all three heterocycles in the ligand are twisted out of the coordination plane, leading to a chiral conformation of the complex. Attempts to freeze out these two conformers in solution at 200 K (NMR) failed, and this suggests that the activation barrier for conformational racemization is significantly below 10 kcal mol(-1). The palladium-induced shift of two double bonds as well as the porphyrinogen/porphyrin-type oxidation of the complexes 4 a-c led to the planarization of the 2,5-bis(oxazolinylmethyl)pyrrolide ligands in the palladium(II) complexes 5 a-c, 6 b, and 6 c, and to the formation of rigid chiral C(2)-symmetric systems as shown by X-ray diffraction studies. The formation of the conjugated system of double bonds in this transformation is accompanied by the emergence of an intra-ligand chromophore. This is evident in the absorption spectrum of 6 c which displays an intense band with a maximum at 485 nm attributable to an intra-ligand pi*<--pi transition and a characteristic vibrational progression of nu approximately 1350 cm(-1

  18. MCSCF/MP2 Study of the Cheletropic Addition of Singlet and Triplet CF(2) and C(OH)(2) to the Ethene Double Bond.

    PubMed

    Bernardi, Fernando; Bottoni, Andrea; Canepa, Carlo; Olivucci, Massimo; Robb, Michael A.; Tonachini, Glauco

    1997-04-04

    CAS-MCSCF calculations describe the addition of singlet CF(2) and C(OH)(2) to the ethene double bond as a two-step reaction. The energy barriers that separate, in the first rate-determining step, loosely bound pi-complexes from stable CH(2)CH(2)CX(2) diradical intermediates show the expected ordering, smaller for CF(2) than for C(OH)(2). Back-dissociation of the diradicals into reactants requires the overcoming of non-negligible energy barriers. In both diradicals, the CAS-MCSCF activation energy for ring closure is smaller than that required for rotation of their terminal methylenic groups, which models, in these simple systems, an isomerization process. However, when the activation free energies are computed, in the case of the difluoro diradical the isomerization process appears to be less disfavored (and possibly competitive to some extent at higher temperatures); in contrast, in the case of the dioxy diradical, isomerization is never competitive with ring closure. The small energy barriers for ring closure of the diradicals disappear altogether when multireference MP2 energy calculations are carried out on the CAS-MCSCF critical points, casting doubts on the very existence of these intermediates. However, in contrast with the ethene reaction, the addition of singlet CF(2) to isobutene involves the formation of a diradical intermediate whose barrier for ring closure persists also at the MP2 level. These results suggest that cyclopropanation is likely to be a two-step process (with formation of a diradical intermediate) only with bulky substituted alkenes, while the attack to an unsubstituted double bond could be an asynchronous but concerted process. The analogous triplet reactions go through transition and stable structures of lower symmetry than the singlet and see the intervention of diradical intermediates. Their formation is easier than that in the singlet case and their stability with respect to back-dissociation higher. Also the isomerization processes

  19. Respective contributions of polar vs enthalpy effects in the addition/fragmentation of mercaptobenzoxazole-derived thiyl radicals and analogues to double bonds.

    PubMed

    Lalevée, J; Allonas, X; Morlet-Savary, F; Fouassier, J P

    2006-10-19

    The formation and the reactivity of three selected sulfur-centered radicals formed from mercaptobenzoxazole, mercaptobenzimidazole, and mercaptobenzothiazole toward four double bonds (methyl acrylate, acrylonitrile, vinyl ether, and vinyl acetate) are investigated. The reversibility of the addition/fragmentation reaction in these widely used photoinitiating systems of radical polymerization was studied, for the first time, through the measurement of the corresponding rate constants by time-resolved laser spectroscopy. The combination of these results with quantum mechanical calculations clearly evidences that, contrary to previous studies on other aryl thiyl radicals, the addition rate constants (ka) are governed here by the polar effects associated with the very high electrophilic character of these radicals. However, interestingly, the back-fragmentation reaction (k-a) is mainly influenced by the enthalpy effects as supported by the relationship between the rate constants and the addition reaction enthalpy DeltaHR. The addition and fragmentation rate constants calculated from the transition state theory (TST) are in satisfactory agreement with the experimental ones. Therefore, molecular orbital (MO) calculations offered new opportunities for a better understanding of the sulfur-centered radical reactivity.

  20. Carbon-double-bond-free printed solar cells from TiO₂/CH₃NH₃PbI₃/CuSCN/Au: structural control and photoaging effects.

    PubMed

    Ito, Seigo; Tanaka, Soichiro; Vahlman, Henri; Nishino, Hitoshi; Manabe, Kyohei; Lund, Peter

    2014-04-14

    Carbon double bond-free printed solar cells have been fabricated with the structure and , in which CuSCN acts as a hole conductor. The thickness of the CH3NH3PbI3 layer is controlled by a hot air flow during spin coating. The best conversion efficiency (4.86%) is obtained with . However, a thick CH3NH3PbI3 layer on CuSCN is better for light-exposure stability (100 mW cm(-2) AM 1.5) when not encapsulated. Without the CuSCN coverage, the black CH3NH3PbI3 crystal changes to yellow during the light-exposure stability test, which is due to the transformation of the CH3NH3PbI3 perovskite crystal into hexagonal PbI2. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Tomato carotenoid cleavage dioxygenases 1A and 1B: Relaxed double bond specificity leads to a plenitude of dialdehydes, mono-apocarotenoids and isoprenoid volatiles

    PubMed Central

    Ilg, Andrea; Bruno, Mark; Beyer, Peter; Al-Babili, Salim

    2014-01-01

    The biosynthetic processes leading to many of the isoprenoid volatiles released by tomato fruits are still unknown, though previous reports suggested a clear correlation with the carotenoids contained within the fruit. In this study, we investigated the activity of the tomato (Solanum lycopersicum) carotenoid cleavage dioxygenase (SlCCD1B), which is highly expressed in fruits, and of its homolog SlCCD1A. Using in vitro assays performed with purified recombinant enzymes and by analyzing products formed by the two enzymes in carotene-accumulating Escherichia coli strains, we demonstrate that SlCCD1A and, to a larger extent, SlCCD1B, have a very relaxed specificity for both substrate and cleavage site, mediating the oxidative cleavage of cis- and all-trans-carotenoids as well as of different apocarotenoids at many more double bonds than previously reported. This activity gives rise to a plenitude of volatiles, mono-apocarotenoids and dialdehyde products, including cis-pseudoionone, neral, geranial, and farnesylacetone. Our results provide a direct evidence for a carotenoid origin of these compounds and point to CCD1s as the enzymes catalyzing the formation of the vast majority of tomato isoprenoid volatiles, many of which are aroma constituents. PMID:25057464

  2. Addition of thiols to the double bond of dipeptide C-terminal dehydroalanine as a source of new inhibitors of cathepsin C.

    PubMed

    Lenartowicz, Paweł; Makowski, Maciej; Oszywa, Bartosz; Haremza, Kinga; Latajka, Rafał; Pawełczak, Małgorzata; Kafarski, Paweł

    2017-08-01

    Addition of thiols to double bond of glycyl-dehydroalanine and phenyl-dehydroalanine esters provided micromolar inhibitors of cathepsin C. The structure-activity studies indicated that dipeptides containing N-terminal phenylalanine exhibit higher affinity towards the enzyme. A series of C-terminal S-substituted cysteines are responsible for varying interaction with S1 binding pocket of cathepsin C. Depending on diastereomer these compounds most likely act as slowly reacting substrates or competitive inhibitors. This was proved by TLC analysis of the medium in which interaction of methyl (S)-phenylalanyl-(R,S)-(S-adamantyl)cysteinate (7i) with the enzyme was studied. Molecular modeling enabled to establish their mode of binding showed that S2 pocket is long and narrow and accommodates phenyl group of phenylalanine while significantly spacious sites located at the surface of the enzyme (one of them being S1 pocket) bind the adamantyl moiety oriented in different direction for each stereoisomer. Finally replacement of carboxymethyl moiety of methyl (S)-phenylalanyl-(R,S)-(S-phenyl)cysteinate (7c) with nitrile group provided about 650-times more potent inhibitor of cathepsin C indicating that the studied C-terminal S-substituted cysteines are good activity probes for S1 binding pocket of this enzyme. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  3. Theoretical investigation of the mechanisms for the reaction of fused tricyclic dimetallenes containing highly strained E═E (E = C, Si, Ge, Sn, and Pb) double bonds.

    PubMed

    Li, Bo-Ying; Su, Ming-Der

    2012-04-26

    The potential energy surfaces for the reactions of fused tricyclic dimetallenes that feature a highly strained E═E double bond, Rea-E═E, where E = C, Si, Ge, Sn, and Pb, were studied using density functional theory (B3LYP/LANL2DZ). Three types of chemical reactions (i.e., a self-isomerization reaction, a [2 + 2] cycloaddition with a ketone and a methanol 1,2-addition reaction) were used to determine the reactivity of the Rea-E═E molecules. The theoretical findings reveal that the smaller the singlet-triplet splitting of the Rea-E═E, the lower are its activation barriers and, in turn, the more rapid are its chemical reactions with other chemical molecules. Theoretical observations suggest that the relative reactivity increases in the following order: C═C ≪ Si═Si < Ge═Ge < Sn═Sn < Pb═Pb. Namely, the smaller the atomic weight of the group 14 atom (E), the smaller is the atomic radius of E and the more stable is its fused tricyclic Rea-E═E to chemical reaction. It is thus predicted that the fused tricyclic Rea-C═C and Rea-Si═Si molecules should be stable and readily synthesized and isolated at room temperature. The computational results show good agreement with the available experimental observations. The theoretical results obtained from this work allow a number of predictions to be made.

  4. Temperature-induced melting of double-stranded DNA in the absence and presence of covalently bonded antitumour drugs: insight from molecular dynamics simulations.

    PubMed

    Bueren-Calabuig, Juan A; Giraudon, Christophe; Galmarini, Carlos M; Egly, Jean Marc; Gago, Federico

    2011-10-01

    The difference in melting temperature of a double-stranded (ds) DNA molecule in the absence and presence of bound ligands can provide experimental information about the stabilization brought about by ligand binding. By simulating the dynamic behaviour of a duplex of sequence 5'-d(TAATAACGGATTATT)·5'-d(AATAATCCGTTATTA) in 0.1 M NaCl aqueous solution at 400 K, we have characterized in atomic detail its complete thermal denaturation profile in <200 ns. A striking asymmetry was observed on both sides of the central CGG triplet and the strand separation process was shown to be strongly affected by bonding in the minor groove of the prototypical interstrand crosslinker mitomycin C or the monofunctional tetrahydroisoquinolines trabectedin (Yondelis), Zalypsis and PM01183. Progressive helix unzipping was clearly interspersed with some reannealing events, which were most noticeable in the oligonucleotides containing the monoadducts, which maintained an average of 6 bp in the central region at the end of the simulations. These significant differences attest to the demonstrated ability of these drugs to stabilize dsDNA, stall replication and transcription forks, and recruit DNA repair proteins. This stabilization, quantified here in terms of undisrupted base pairs, supports the view that these monoadducts can functionally mimic a DNA interstrand crosslink.

  5. Temperature-induced melting of double-stranded DNA in the absence and presence of covalently bonded antitumour drugs: insight from molecular dynamics simulations

    PubMed Central

    Bueren-Calabuig, Juan A.; Giraudon, Christophe; Galmarini, Carlos M.; Egly, Jean Marc; Gago, Federico

    2011-01-01

    The difference in melting temperature of a double-stranded (ds) DNA molecule in the absence and presence of bound ligands can provide experimental information about the stabilization brought about by ligand binding. By simulating the dynamic behaviour of a duplex of sequence 5′-d(TAATAACGGATTATT)·5′-d(AATAATCCGTTATTA) in 0.1 M NaCl aqueous solution at 400 K, we have characterized in atomic detail its complete thermal denaturation profile in <200 ns. A striking asymmetry was observed on both sides of the central CGG triplet and the strand separation process was shown to be strongly affected by bonding in the minor groove of the prototypical interstrand crosslinker mitomycin C or the monofunctional tetrahydroisoquinolines trabectedin (Yondelis®), Zalypsis® and PM01183®. Progressive helix unzipping was clearly interspersed with some reannealing events, which were most noticeable in the oligonucleotides containing the monoadducts, which maintained an average of 6 bp in the central region at the end of the simulations. These significant differences attest to the demonstrated ability of these drugs to stabilize dsDNA, stall replication and transcription forks, and recruit DNA repair proteins. This stabilization, quantified here in terms of undisrupted base pairs, supports the view that these monoadducts can functionally mimic a DNA interstrand crosslink. PMID:21727089

  6. Investigation of double bond conversion, mechanical properties, and antibacterial activity of dental resins with different alkyl chain length quaternary ammonium methacrylate monomers (QAM).

    PubMed

    He, Jingwei; Söderling, Eva; Vallittu, Pekka K; Lassila, Lippo V J

    2013-01-01

    In order to endow dental resin with antibacterial activity, a series of antibacterial quaternary ammonium methacrylate monomers (QAM) with different substituted alkyl chain length (from 10 to 18) were incorporated into commonly used 2,2-bis[4-(2'-hydroxy-3'-methacryloyloxy-propoxy)-phenyl]propane (Bis-GMA)/triethyleneglycol dimethacrylate (TEGDMA) (50 wt/50 wt) dental resin as immobilized antibacterial agents. Double bond conversion (DC), flexural strength (FS) and modulus (FM), and young and mature biofilms inhibition effectiveness of prepared dental resins were studied and Bis-GMA/TEGDMA without QAM was used as reference. Results showed that there was no significant difference on DC, FS, and FM between copolymer with and without 5 wt% QAM. Substituted alkyl chain length of QAM had no influence on DC, FS, and FM of copolymer, but had influence on antibacterial activity of copolymer. Antibacterial activity of copolymer increased with increasing of substituted alkyl chain length of QAM, and the sequence followed as 5%C10 < 5%C11 ≈ 5%C12 < 5%C16 ≈ 5%C18. Copolymers containing C18 and C16 had the best inhibition effectiveness on both young biofilm and mature biofilm, copolymers containing C12 and C11 only had inhibition effectiveness on young biofilm and copolymer containing C10 had none inhibition effectiveness on neither young biofilm nor mature biofilm.

  7. Molecular structures and hydrogen bonding in the crystalline hydrates of two flexible double betaines with different quaternary ammonio groups in the adipic acid skeleton

    NASA Astrophysics Data System (ADS)

    Wu, De-Dong; Mak, Thomas C. W.

    1995-12-01

    Crystalline dihydrates of two flexible double betaines -O 2CCH(R)CH 2CH 2CH(R)CO -2 ( 1, R = Me 3N +, 2, R = C 5H 5N +) have been characterized by single-crystal X-ray analysis. Both compounds crystallize in the monoclinic space group {P2 1}/{c} with a = 7.463(4), b = 10.312(6), c = 9.978(5) Å, β = 90.18(5)°, Z = 2 for 1·2H 2O and a = 9.063(2), b = 7.665(1), c = 11.962(1) Å, β = 94.89(1)°, Z = 2 for 2·2H 2O. Both betaine molecules occupy l¯ sites but differ with regard to the orientation of the carboxylate groups and ammonio groups. In each crystal structure, the formation of donor hydrogen bonds from the water molecules to adjacent carboxylate groups gives rise to an infinte two-dimensional network composed of a packing of identical 26-membered rings.

  8. The behavior of pyrrolyl ligands within the rare-earth metal alkyl complexes. Insertion of C=N and C=O double bonds into Ln-sigma-C bonds.

    PubMed

    Yang, Yi; Cui, Dongmei; Chen, Xuesi

    2010-04-28

    This paper presents some unusual reactions of lanthanide tris(alkyl)s or lanthanide mono-Cp' (Cp' = (C(5)Me(4))SiMe(3)) bis(alkyl)s with pyrrolyl ligands, and the eta(5)- or eta(1)-coordination mode of the pyrrolyl ring, as well as C=N and C=O double bonds insertion into Ln-sigma-C moities. N,N,O-tridentate ligand HL(1), 2-(2-CH(3)OC(6)H(3)N=CH)-C(4)H(3)NH, was prepared. Treatment of HL(1) with rare-earth metal tris(alkyl)s, Ln(CH(2)SiMe(3))(3)(THF)(2), generated centrosymmetric bimetallic (pyrrolylaldiminato)lanthanide mono(alkyl) complexes [{2-(2-CH(3)OC(6)H(3)NC(H)R)-C(4)H(3)N}LnR](2) (1a: Ln = Y; 1b: Ln = Lu) (R = CH(2)SiMe(3)). In this process, HL(1) was deprotonated by the metal alkyl and its imino C=N group was deactivated by the intramolecular alkylation, generating dianionic species that bridged the two metal alkyl units in eta(5)/eta(1):kappa(1) modes. When the reaction was carried out in dimethoxyethane (DME), asymmetric complex [2-(2-CH(3)OC(6)H(3)NC(H)R)-C(4)H(3)N](2)Y(2)R(2)(DME) (2) was given. Furthermore, the reaction of alkyl complex 1b and benzophenone (Ph(2)C=O) afforded alkyl-insertion product [{2-(2-CH(3)OC(6)H(3)NC(H)R)-C(4)H(3)N}LuOC(R)Ph(2)](2) (3). Both the intermolecular alkylation and the pyrrole's behavior as the hetero-cyclopentadienyl ligand were also observed in complexes 2 and 3. HL(1) reacted with (eta(5)-Cp')Y(CH(2)SiMe(3))(2)(THF) (E) to form a mixed ligands supported alkyl complex [(eta(5)-Cp')(L(1))]Y(CH(2)SiMe(3))(THF) (4), whilst complex E was treated with 2-(2,6-iPr(2)C(6)H(3)N=CH)-C(4)H(3)NH (HL(2)) to yield [(eta(5)-Cp')(L(2))]Y(CH(2)SiMe(3))(THF) (5). However, reaction of E and 2-(Me(2)NCH(2))-C(4)H(3)NH (HL(3)) afforded Y[(eta(5)-Cp')(L(3))(2)] (6), and ligand redistribution was found in this process. The molecular structures of complexes 5 and 6 were confirmed by X-ray diffraction, which indicated that the C=N double bond survived and the pyrrolyl ring coordinated to the metal center in eta(1)-mode.

  9. Reversible methanol addition to copper Schiff base complexes: a kinetic, structural and spectroscopic study of reactions at azomethine C[double bond, length as m-dash]N bonds.

    PubMed

    Zhang, Wuyu; Saraei, Nina; Nie, Hanlin; Vaughn, John R; Jones, Alexis S; Mashuta, Mark S; Buchanan, Robert M; Grapperhaus, Craig A

    2016-10-12

    The reversible methanolysis of an azomethine C[double bond, length as m-dash]N in a series of copper(ii) Schiff base complexes has been investigated through combined spectroscopic, structural, and kinetic studies. Pentadentate copper(ii) complexes [L1-Cu(X)]Y (L1 = 1,2-bis[(1-methyl-2-imidazolyl)methyleneamino]ethane; X = Y = ClO4(-) (1); X = Y = TfO(-) (2); X = Y = BF4(-) (3); X = H2O, Y = (ClO4(-))2 (4) spontaneously add methanol in a ligand centered reaction to yield stable, isolable hemiaminal ether product complexes 5-8. In methanol free solution, 5-8 spontaneously release alcohol to regenerate 1-4. The methanol addition reaction is first-order in methanol and first-order in complex with second-order rate constants varying from 1.1 × 10(-4) to 187 × 10(-4) M(-1) s(-1) dependent on the donor ability of the axial ligand. Rate constants for methanol elimination vary from 0.67 to 3.7 × 10(-4) s(-1) with dependence on the counterion and water content of the solvent. Equilibrium constants for methanolysis range from 1.5 to 51 M(-1). Structural comparisons of the Schiff base complexes 1-4 and the hemiaminal ether complexes 5-8 suggest methanol addition is favored by the release of ligand strain associated with three planar five-membered chelates in 1-4.

  10. Pectenotoxin-2 synthetic studies. 3. Assessment of the capacity for stereocontrolled cyclization to form the entire C1-C26 subunit based upon the double bond geometry across C15-C16.

    PubMed

    O'Connor, Patrick D; Knight, Christopher K; Friedrich, Dirk; Peng, Xiaowen; Paquette, Leo A

    2007-03-02

    Second-generation synthetic routes to enantiopure sulfone 21 and aldehyde 24 are described. The union of these two intermediates by means of a Julia-Kocienski coupling gave rise to a series of E-configured building blocks that did not prove amenable to transannular cyclization. Alternatively, when the C15-C16 double bond was introduced with Z-geometry by Wittig olefination, spontaneous closure to generate a tetrahydrofuran culminated an ensuing direct dihydroxylation step. The structural assignment to 35, undergirded by detailed 1H and 13C NMR studies, is consistent with proper transannular bonding so as to deliver the entire C1-C26 fragment of PTX2.

  11. [2,3]-Wittig rearrangement of enantiomerically enriched 3-substituted 1-propenyloxy-1-phenyl-2-propen-1-yl carbanions: effect of heteroatoms and conjugating groups on planarization of an alpha-oxy-benzylcarbanion through a double bond.

    PubMed

    Sasaki, Michiko; Ikemoto, Hidaka; Kawahata, Masatoshi; Yamaguchi, Kentaro; Takeda, Kei

    2009-01-01

    Don't get trapped: The effect of conjugating electron-withdrawing groups and alpha-anion-stabilizing heteroatom substituents on configurational stability of chiral carbanions through a double bond was examined on the basis of extent of chirality transfer in intramolecular trapping in [2,3]-Wittig rearrangement of chiral 3-substituted 1-propenyloxy-1-phenyl-2-propen-1-yl carbanions (see scheme).The effect of conjugating electron-withdrawing groups and alpha-anion-stabilizing heteroatom substituents on configurational stability of chiral carbanions through a double bond was examined on the basis of extent of chirality transfer in intramolecular trapping in [2,3]-Wittig rearrangement of chiral 3-substituted 1-propenyloxy-1-phenyl-2-propen-1-yl carbanions.

  12. Chlorine atom-initiated low-temperature oxidation of prenol and isoprenol: The effect of C=C double bonds on the peroxy radical chemistry in alcohol oxidation

    DOE PAGES

    Welz, Oliver; Savee, John D.; Osborn, David L.; ...

    2014-07-04

    The chlorine atom-initiated oxidation of two unsaturated primary C5 alcohols, prenol (3-methyl-2-buten-1-ol, (CH3)2CCHCH2OH) and isoprenol (3-methyl-3-buten-1-ol, CH2C(CH3)CH2CH2OH), is studied at 550 K and low pressure (8 Torr). The time- and isomer-resolved formation of products is probed with multiplexed photoionization mass spectrometry (MPIMS) using tunable vacuum ultraviolet ionizing synchrotron radiation. The peroxy radical chemistry of the unsaturated alcohols appears much less rich than that of saturated C4 and C5 alcohols. The main products observed are the corresponding unsaturated aldehydes – prenal (3-methyl-2-butenal) from prenol oxidation and isoprenal (3-methyl-3-butenal) from isoprenol oxidation. No significant products arising from QOOH chemistry are observed. Thesemore » results can be qualitatively explained by the formation of resonance stabilized allylic radicals via H-abstraction in the Cl + prenol and Cl + isoprenol initiation reactions. The loss of resonance stabilization upon O2 addition causes the energies of the intermediate wells, saddle points, and products to increase relative to the energy of the initial radicals and O2. These energetic shifts make most product channels observed in the peroxy radical chemistry of saturated alcohols inaccessible for these unsaturated alcohols. The experimental findings are underpinned by quantum-chemical calculations for stationary points on the potential energy surfaces for the reactions of the initial radicals with O2. Under our conditions, the dominant channels in prenol and isoprenol oxidation are the chain-terminating HO2-forming channels arising from radicals, in which the unpaired electron and the –OH group are on the same carbon atom, with stable prenal and isoprenal co-products, respectively. These results suggest that the presence of C=C double bonds in alcohols will reduce low-temperature reactivity during autoignition.« less

  13. A double-leg donor-acceptor molecular elevator: new insight into controlling the distance of two platforms.

    PubMed

    Zhang, Zhi-Jun; Han, Min; Zhang, Heng-Yi; Liu, Yu

    2013-04-05

    A double-leg elevator with an electron-rich anthracene moiety at the platformlike component and an electron-deficient naphthalenediimide unit in the middle of a double-leg riglike component was prepared through "click chemistry", in which the reversible elevator movement between different levels could be controlled upon the addition of base and acid.

  14. Solvent effects on the a sub g C double bond C stretching mode in the 2 sup 1 A sub g sup minus excited state of. beta. -carotene and two derivatives: Picosecond time-resolved resonance Raman spectroscopy

    SciTech Connect

    Noguchi, T.; Hayashi, H. Univ. of Tokyo ); Tasumi, M. ); Atkinson, G.H. Hebrew Univ., Jerusalem )

    1991-04-18

    Picosecond time-resolved resonance Raman spectra in the C{double bond}C stretching region are presented for {beta}-carotene and two of its derivatives, {beta}-apo-8{prime}-carotenal and ethyl {beta}-apo-8{prime}-carotenoate. The solvent effects on the Franck-Condon-active a{sub g} C{double bond}C stretching mode in the {sup 1}A{sub g}{sup {minus}} ground state (S{sub 0}) and the 2{sup 1}A{sub g}{sup {minus}} excited state (S{sub 1}) of each carotenoid are described. The C{double bond}C stretching frequencies in S{sub 1} are affected by the solvent and show a correlation with the absorption maxima of the S{sub 2} ({sup 1}B{sub u}{sup +}) {l arrow} S{sub 0} transition, while those in S{sub 0} are not significantly affected. These results are interpreted in terms of the vibronic coupling among the S{sub 0}, S{sub 1}, and S{sub 2} electronic states, the solvent effect on the energy of the S{sub 1} and S{sub 2} states, and the structures of carotenoid molecules.

  15. Effects of electron-deficient beta-diketiminate and formazan supporting ligands on copper(I)-mediated dioxygen activation.

    PubMed

    Hong, Sungjun; Hill, Lyndal M R; Gupta, Aalo K; Naab, Benjamin D; Gilroy, Joe B; Hicks, Robin G; Cramer, Christopher J; Tolman, William B

    2009-05-18

    Copper(I) complexes of a diketiminate featuring CF(3) groups on the backbone and dimethylphenyl substituents (4) and a nitroformazan (5) were synthesized and shown by spectroscopy, X-ray crystallography, cyclic voltammetry, and theory to contain copper(I) sites electron-deficient relative to those supported by previously studied diketiminate complexes comprising alkyl or aryl backbone substituents. Despite their electron-poor nature, oxygenation of LCu(CH(3)CN) (L = 4 or 5) at room temperature yielded bis(hydroxo)dicopper(II) compounds and at -80 degrees C yielded bis(mu-oxo)dicopper complexes that were identified on the basis of UV-vis and resonance Raman spectroscopy, spectrophotometric titration results (2:1 Cu/O(2) ratio), electron paramagnetic resonance spectroscopy (silent), and density functional theory calculations. The bis(mu-oxo)dicopper complex supported by 5 exhibited unusual spectroscopic properties and decayed via a novel intermediate proposed to be a metallaverdazyl radical complex, findings that highlight the potential for the formazan ligand to exhibit "noninnocent" behavior.

  16. Ozone-induced dissociation on a traveling wave high-resolution mass spectrometer for determination of double-bond position in lipids.

    PubMed

    Vu, Ngoc; Brown, Jeffery; Giles, Kevin; Zhang, Qibin

    2017-09-15

    The position of C=C within fatty acyl chains affects the biological function of lipids. Ozone-induced dissociation mass spectrometry (OzID-MS) has great potential in determination of lipid double-bond position, but has generally been implemented on low-resolution ion trap mass spectrometers. In addition, most of the OzID-MS experiments carried out so far were focused on the sodiated adducts of lipids; fragmentation of the most commonly observed protonated ions generated in LC/MS-based lipidomics workflow has been less explored. Ozone generated in line from an ozone generator was connected to the trap and transfer gas supply line of a Synapt G2 high-resolution mass spectrometer. Protonated ions of different phosphatidylcholines (PC) were generated by electrospray ionization through direct infusion. Different parameters, including traveling wave height and velocity, trap entrance and DC potential, were adjusted to maximize the OzID efficiency. sn-positional isomers and cis/trans isomers of lipids were compared for their reactivity with ozone. Traveling wave height and velocity were tuned to prolong the encounter time between lipid ions and ozone, and resulted in improved OzID efficiency, as did increasing trapping region DC and entrance potential. Under optimized settings, at least 1000 times enhancement in OzID efficiency was achieved compared to that under default settings for monounsaturated PC standards. Monounsaturated C=C in the sn-2 PC isomer reacted faster with ozone than the sn-1 isomer. Similarly, the C=C in trans PC reacted faster than in cis PC. This is the first implementation of OzID in the trap and transfer region of a traveling wave enabled high-resolution mass spectrometer. The OzID reaction efficiency is significantly improved by slowing down ions in the trap region for their prolonged interaction with ozone. This will facilitate application of high-resolution OzID-MS in lipidomics. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Chlorine atom-initiated low-temperature oxidation of prenol and isoprenol: The effect of C=C double bonds on the peroxy radical chemistry in alcohol oxidation

    SciTech Connect

    Welz, Oliver; Savee, John D.; Osborn, David L.; Taatjes, Craig A.

    2014-07-04

    The chlorine atom-initiated oxidation of two unsaturated primary C5 alcohols, prenol (3-methyl-2-buten-1-ol, (CH3)2CCHCH2OH) and isoprenol (3-methyl-3-buten-1-ol, CH2C(CH3)CH2CH2OH), is studied at 550 K and low pressure (8 Torr). The time- and isomer-resolved formation of products is probed with multiplexed photoionization mass spectrometry (MPIMS) using tunable vacuum ultraviolet ionizing synchrotron radiation. The peroxy radical chemistry of the unsaturated alcohols appears much less rich than that of saturated C4 and C5 alcohols. The main products observed are the corresponding unsaturated aldehydes – prenal (3-methyl-2-butenal) from prenol oxidation and isoprenal (3-methyl-3-butenal) from isoprenol oxidation. No significant products arising from QOOH chemistry are observed. These results can be qualitatively explained by the formation of resonance stabilized allylic radicals via H-abstraction in the Cl + prenol and Cl + isoprenol initiation reactions. The loss of resonance stabilization upon O2 addition causes the energies of the intermediate wells, saddle points, and products to increase relative to the energy of the initial radicals and O2. These energetic shifts make most product channels observed in the peroxy radical chemistry of saturated alcohols inaccessible for these unsaturated alcohols. The experimental findings are underpinned by quantum-chemical calculations for stationary points on the potential energy surfaces for the reactions of the initial radicals with O2. Under our conditions, the dominant channels in prenol and isoprenol oxidation are the chain-terminating HO2-forming channels arising from radicals, in which the unpaired electron and the –OH group are on the same carbon atom, with stable prenal and isoprenal co-products, respectively. These results suggest that the presence of C=C double bonds in alcohols will reduce

  18. Influence of spacer moiety and length of end chain for the phase stability in complementary, double hydrogen bonded liquid crystals, MA:nOBAs

    NASA Astrophysics Data System (ADS)

    Ashok Kumar, A. V. N.; Chalapathi, P. V.; Srinivasulu, M.; Muniprasad, M.; Potukuchi, D. M.

    2015-01-01

    Supra molecular liquid crystals formed by the Hydrogen Bonding interaction between a non-mesogenic aliphatic dicarboxylic acid viz., COOHsbnd CH2sbnd COOH (Malonic Acid, MA); and mesogenic aromatic, N-(p-n-alkoxy benzoic)Acids, (i.e., nOBAs) for n = 3, 4, 5, 7, 8, 9, 10, 11 and 12, labeled as nOBA:COOHsbnd [CH2]msbnd COOH:nOBAs, abbreviated as MA:nOBAs are reported. 1H NMR and 13C NMR studies confirm the formation of HBLC complexes. Infrared (IR) studies confirm the complementary, double, alternative type of HB. Polarized Optical Microscopy (POM) and Differential Scanning Calorimetry (DSC) studies infer N, SmC, SmX, SmCRE, SmF, SmG LC phase variance. SmX phase exhibiting finger print texture grows in MA:nOBAs for n = 10, 11 and 12 by the interruption of SmC phase with decreasing temperature. Re-Entrant SmC (SmCRE) grows by the cooling of SmX. I-N, N-C, X-CRE, C-G, CRE-F, F-G and G-Solid transitions exhibit first order nature. C-X is found to be second order nature in n = 10 and 11. C-X in n = 12 and X-CRE and CRE-F transitions are found to be weak first order nature. Influence of lengths of end chain (n) and spacer (m) for the overall LC phase [ΔT]LC; tilted phase [ΔT]Tilt; SmC phase [ΔT]C and SmX phase [ΔT]X stabilities is discussed in the wake of data on other HBLCs with similar molecular structure. Prevalence of SmX phase in MA:nOBAs with m = 1 infers repulsive interaction between the π-electronic cloud of aromatic boards of nOBAs. Model molecule predicts a twisted configuration of π-cloud around the molecular long axis. Finger print texture of SmX validates the model.

  19. Palladium-catalyzed cross-coupling of aryl fluorides with N-tosylhydrazones via C-F bond activation.

    PubMed

    Luo, Haiqing; Wu, Guojiao; Xu, Shuai; Wang, Kang; Wu, Chaoqiang; Zhang, Yan; Wang, Jianbo

    2015-09-04

    A palladium-catalyzed cross-coupling reaction of electron-deficient aryl fluorides with aryl N-tosylhydrazones has been reported. Mechanistically, this approach involves C-F bond activation and migratory insertion of palladium carbene as the two key steps.

  20. X-ray Crystal Structure of a Metalled Double-Helix Generated by Infinite and Consecutive C*-Ag(I) -C* (C*:N(1) -Hexylcytosine) Base Pairs through Argentophilic and Hydrogen Bond Interactions.

    PubMed

    Terrón, Angel; Moreno-Vachiano, Blas; Bauzá, Antonio; García-Raso, Angel; Fiol, Juan Jesús; Barceló-Oliver, Miquel; Molins, Elies; Frontera, Antonio

    2017-02-10

    The synthesis of a metalled double-helix containing exclusively silver-mediated C*-C* base pairs is reported herein (C*=N(1) hexylcytosine). Remarkably, it is the first crystal structure containing infinite and consecutive C*-Ag(I) -C* base pairs that form a double helix. The Ag(I) ion occupies the center between two C* residues with N(3)-Ag bond lengths of 2.1 Å and short Ag(I) -Ag(I) distances (3.1 Å) suggesting an interesting argentophilic attraction as a stabilization source of the helical disposition. The solid-state structure is further stabilized by metal-mediated base-pairs, hydrogen bonding and π-stacking interactions. Moreover, the angle N(3)-Ag-N(3) is almost linear in the [Ag(N(1) hexylcytosine)2 ](+) motif and the bases are not coplanar, thus generating a double-strand helical aggregate in the solid state. The noncovalent and argentophilic interactions have been rationalized based on DFT calculations.

  1. Modification of extended open frameworks with fluorescent tags for sensing explosives: competition between size selectivity and electron deficiency.

    PubMed

    Gole, Bappaditya; Bar, Arun Kumar; Mukherjee, Partha Sarathi

    2014-02-17

    Three new electron-rich metal-organic frameworks (MOF-1-MOF-3) have been synthesized by employing ligands bearing aromatic tags. The key role of the chosen aromatic tags is to enhance the π-electron density of the luminescent MOFs. Single-crystal X-ray structures have revealed that these MOFs form three-dimensional porous networks with the aromatic tags projecting inwardly into the pores. These highly luminescent electron-rich MOFs have been successfully utilized for the detection of explosive nitroaromatic compounds (NACs) on the basis of fluorescence quenching. Although all of the prepared MOFs can serve as sensors for NACs, MOF-1 and MOF-2 exhibit superior sensitivity towards 4-nitrotoluene (4-NT) and 2,4-dinitrotoluene (DNT) compared to 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitrobenzene (TNB). MOF-3, on the other hand, shows an order of sensitivity in accordance with the electron deficiencies of the substrates. To understand such anomalous behavior, we have thoroughly analyzed both the steady-state and time-resolved fluorescence quenching associated with these interactions. Determination of static Stern-Volmer constants (KS) as well as collisional constants (KC) has revealed that MOF-1 and MOF-2 have higher KS values with 4-NT than with TNT, whereas for MOF-3 the reverse order is observed. This apparently anomalous phenomenon was well corroborated by theoretical calculations. Moreover, recyclability and sensitivity studies have revealed that these MOFs can be reused several times and that their sensitivities towards TNT solution are at the parts per billion (ppb) level. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Controlling the electron-deficiency of self-assembling pyrazine-acenes: a collaborative experimental and theoretical investigation.

    PubMed

    Brownell, Lacie V; Jang, Kyoungmi; Robins, Kathleen A; Tran, Ich C; Heske, Clemens; Lee, Dong-Chan

    2013-04-28

    This paper reports novel pyrazine-acenes containing electron-deficient heteroaromatic π-extenders, such as pyridine, pyrazine, and benzothiadiazole, directly fused with pyrazine. Electronic properties of these systems were characterized by UV-Vis, fluorescence spectroscopy, and cyclic voltammetry. Computational electronic property evaluation of all experimentally synthesized compounds is provided, and is coupled with electronic calculations of closely related compounds that were not synthetically feasible. Our theoretical results provide insight into the overall analysis and interpretation of the experimentally observed trends. In this study, we found a systematic decrease in the LUMO energy (E(LUMO)) with an increasing number of imine functions in the π-extender. Additionally, when comparing the pyrazine-acene containing pyrazine π-extender to a reference compound with C≡N peripheral substituents, we found that the imine function is comparable to the C≡N substituent in lowering E(LUMO). The most dramatic E(LUMO) lowering was experimentally observed using dibromobenzothiadiazole as a π-extender. In all cases, the HOMO energy (EHOMO) was negligibly affected, thus we found options for electronic property control based solely on E(LUMO) manipulation. This is computationally validated by an examination of the molecular orbitals in which the LUMO orbital was found predominantly on the π-extender section of the molecules, while the HOMO orbital was localized away from the π-extender. Interestingly, the self-assembly of all the experimentally synthesized compounds showed excellent one-dimensional fiber formation in spite of their large π-core framework. These fibers were characterized by atomic force microscopy and UV-Vis spectroscopy.

  3. Analysis of the vibronic structure of the trans-stilbene fluorescence and excitation spectra: the S0 and S1 PES along the Ce[double bond, length as m-dash]Ce and Ce-Cph torsions.

    PubMed

    Orlandi, Giorgio; Garavelli, Marco; Zerbetto, Francesco

    2017-09-20

    We analyze the highly resolved vibronic structure of the low energy (≤200 cm(-1)) region of the fluorescence and fluorescence excitation spectra of trans-stilbene in supersonic beams. In this spectral region the vibronic structure is associated mainly with vibrational levels of the Ce-Ce torsion (τ) and the au combination of the two Ce-Cph bond twisting (ϕ). We base this analysis on the well-established S0(τ, ϕ) two-dimensional potential energy surface (PES) and on a newly refined S1(τ, ϕ) PES. We obtain vibrational eigenvalues and eigenvectors of the anharmonic S0(τ, ϕ) and S1(τ, ϕ) PES using a numerical procedure based on the Meyer's flexible model [R. Meyer, J. Mol. Spectrosc., 1979, 76, 266]. Then we derive Franck-Condon factors and therefore intensities of the relevant vibronic bands for the S0 → S1 excitation and S1 → S0 fluorescence spectra. Furthermore, we assess the role of the bg combination of the two Ce-Cph bond twisting (ν48) in the structure of the S1 → S0 fluorescence spectra. By the use of these results we are able to assign most of the low energy vibrational levels of the S0 → S1 excitation spectra and of the fluorescence spectra of the emission from several low energy S1 vibronic levels. The good agreement between the observed and the computed vibrational structure of the S0 → S1 and S1 → S0 spectra suggests that the proposed picture of the E1(τ, ϕ) and E0(τ, ϕ) PES, in particular along the coordinate τ governing trans-cis photo-isomerization in S1, is accurate. In S0, the barriers for the Ce[double bond, length as m-dash]Ce torsion and for the au type Ce-Cph bond twisting are 16 080 cm(-1) and 3125 cm(-1), respectively, while in S1, where the bond orders of the Ce[double bond, length as m-dash]Ce and Ce-Cph bonds are reversed, the two barriers become 1350 cm(-1) and 8780 cm(-1), respectively.

  4. The concept of bond order

    NASA Astrophysics Data System (ADS)

    Elliott, Robert J.; Richards, W. Graham

    A method for obtaining precise charge densities in defined regions of space from ab initio molecular wavefunctions is employed to place the concept of bond order on a firm theoretical footing. The bond orders obtained for carbon—carbon bonds in a range of organic compounds are assessed: those for buta-1,3-diene confirm that it consists of essentially localised double and single bonds.

  5. Double bond in the side chain of 1alpha,25-dihydroxy-22-ene-vitamin D(3) is reduced during its metabolism: studies in chronic myeloid leukemia (RWLeu-4) cells and rat kidney.

    PubMed

    Sunita Rao, D; Balkundi, D; Uskokovic, M R; Tserng, K; Clark, J W; Horst, R L; Satyanarayana Reddy, G

    2001-08-01

    1alpha,25-Dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] is mainly metabolized via the C-24 oxidation pathway and undergoes several side chain modifications which include C-24 hydroxylation, C-24 ketonization, C-23 hydroxylation and side chain cleavage between C-23 and C-24 to form the final product, calcitroic acid. In a recent study we reported that 1alpha,25-dihydroxyvitamin D(2) [1alpha,25(OH)(2)D(2)] like 1alpha,25(OH)(2)D(3), is also converted into the same final product, calcitroic acid. This finding indicated that 1alpha,25(OH)(2)D(2) also undergoes side chain cleavage between C-23 and C-24. As the side chain of 1alpha,25(OH)(2)D(2) when compared to the side chain of 1alpha,25(OH)(2)D(3), has a double bond between C-22 and C-23 and an extra methyl group at C-24 position, it opens the possibility for both (a) double bond reduction and (b) demethylation to occur during the metabolism of 1alpha,25(OH)(2)D(2). We undertook the present study to establish firmly the possibility of double bond reduction in the metabolism of vitamin D(2) related compounds. We compared the metabolism of 1alpha,25-dihydroxy-22-ene-vitamin D(3) [1alpha,25(OH)(2)-22-ene-D(3)], a synthetic vitamin D analog whose side chain differs from that of 1alpha,25(OH)(2)D(3) only through a single modification namely the presence of a double bond between C-22 and C-23. Metabolism studies were performed in the chronic myeloid leukemic cell line (RWLeu-4) and in the isolated perfused rat kidney. Our results indicate that both 1alpha,25(OH)(2)-22-ene-D(3) and 1alpha,25(OH)(2)D(3) are converted into common metabolites namely, 1alpha,24(R),25-trihydroxyvitamin D(3) [1alpha,24(R),25(OH)(3)D(3)], 1alpha,25-dihydroxy-24-oxovitamin D(3) [1alpha,25(OH)(2)-24-oxo-D(3)], 1alpha,23(S),25-trihydroxy-24-oxovitamin D(3) and 1alpha,23-dihydroxy-24,25,26,27-tetranorvitamin D(3). This finding indicates that the double bond in the side chain of 1alpha,25(OH)(2)-22-ene-D(3) is reduced during its metabolism. Along with

  6. Formation of unexpected silicon- and disiloxane-bridged multiferrocenyl derivatives bearing Si-O-CH[double bond, length as m-dash]CH2 and Si-(CH2)2C(CH3)3 substituents via cleavage of tetrahydrofuran and trapping of its ring fragments.

    PubMed

    Bruña, Sonia; González-Vadillo, Ana Mª; Ferrández, Marta; Perles, Josefina; Montero-Campillo, M Merced; Mó, Otilia; Cuadrado, Isabel

    2017-09-12

    The formation of a family of silicon- and siloxane-bridged multiferrocenyl derivatives carrying different functional groups attached to silicon, including Fc2(CH3)3C(CH2)2SiCH[double bond, length as m-dash]CH2 (5), Fc2(CH2[double bond, length as m-dash]CH-O)SiCH[double bond, length as m-dash]CH2 (6), Fc2(OH)SiCH[double bond, length as m-dash]CH2 (7), Fc2(CH2[double bond, length as m-dash]CH-O)Si-O-Si(O-CH[double bond, length as m-dash]CH2)Fc2 (8) and Fc2(CH2[double bond, length as m-dash]CH-O)Si-O-SiFc3 (9) is described. Silyl vinyl ether molecules 6, 8 and 9 and the heteroleptic vinylsilane 5 resulted from the competing metathesis reaction of lithioferrocene (FcLi), CH2[double bond, length as m-dash]CH-OLi or (CH3)3C(CH2)2Li with the corresponding multifunctional chlorosilane, Cl3SiCH[double bond, length as m-dash]CH2 or Cl3Si-O-SiCl3. The last two organolithium species have been likely formed in situ by fragmentation of the tetrahydrofuran solvent. Diferrocenylvinyloxyvinylsilane 6 is noteworthy since it represents a rare example of a redox-active silyl mononomer in which two different C[double bond, length as m-dash]C polymerisable groups are directly connected to silicon. The molecular structures of the silicon-containing multiferrocenyl species 5, 6, 8 and 9 have been investigated by single-crystal X-ray diffraction studies, demonstrating the capture and storage processes of two ring fragments resulting from the cleavage of cyclic THF in redox-active and stable crystalline organometallic compounds. From electrochemical studies we found that by changing the anion of the supporting electrolyte from [PF6](-) to [B(C6F5)4](-), the redox behaviour of tetrametallic disiloxane 8 can be switched from a poorly resolved multistep redox process to four consecutive well-separated one-electron oxidations, corresponding to the sequential oxidation of the four ferrocenyl moieties.

  7. Promoting C–C Bond Coupling of Benzyne and Methyl Ligands in Electron-Deficient (triphos)Pt–CH3+ Complexes

    PubMed Central

    2016-01-01

    In situ generated benzyne reacts at room temperature with (triphos)Pt–CH3+ to form a five-coordinate π-complex (2) that is isolable and stable in solution. Thermolysis of 2 at 60 °C generates (triphos)Pt(o-tolyl)+ (3), which is the product of formal migratory insertion of CH3– onto the coordinated benzyne. The reaction of 2 with the acid Ph2NH2+ yields toluene at room temperature over the course of 8 h, while the same reaction with 3 only proceeds to 40% conversion over 2 days. These data indicate that the protonolysis of 2 does not proceed by CH3 migration onto benzyne to form 3 followed by protodemetalation. Instead, the data suggest either that protonation of 2 is first and is followed by H migration to yield a PtIVPh(Me) dication or that this latter species is generated by direct protonolysis of coordinated benzyne prior to reductive elimination of toluene. PMID:26146438

  8. A Simple Base-Mediated Halogenation of Acidic sp2 C-H Bonds under Non-Cryogenic Conditions

    PubMed Central

    Do, Hien-Quang; Daugulis, Olafs

    2009-01-01

    A new method has been developed for in situ halogenation of acidic sp2 carbon-hydrogen bonds in heterocycles and electron-deficient arenes. Either selective monohalogenation or one-step exhaustive polyhalogenation is possible for substrates possessing several C-H bonds that are flanked by electron-withdrawing groups. For the most acidic arenes, such as pentafluorobenzene, K3PO4 base can be employed instead of BuLi for metalation/halogenation sequences. PMID:19102661

  9. Utilization of N-X bonds in the synthesis of N-heterocycles.

    PubMed

    Minakata, Satoshi

    2009-08-18

    Nitrogen-containing heterocycles--such as aziridines, pyrrolidines, piperidines, and oxazolines--frequently show up as substructures in natural products. In addition, some of these species show potent biological activities. Therefore, researchers would like to develop practical and convenient methods for constructing these heterocycles. Among the available methods, the transfer of N(1) units to organic molecules, especially olefins, is a versatile method for the synthesis of N-heterocycles. This Account reviews some of our recent work on the synthesis of N-heterocycles using the N-X bond. A nitrogen-halogen bond bearing an electron-withdrawing group on the nitrogen can be converted to a halonium ion. In the presence of C-C double bonds, these species produce three-membered cyclic halonium intermediates, which can be strong electrophiles and can produce stereocontrolled products. N-Halosuccinimides are representative sources of halonium ions, and the nitrogen of succinimide is rarely used in organic synthesis. If the nitrogen could act as a nucleophile, after releasing halonium ions to C-C double bonds, we expect great advances would be possible in the stereoselective functionalization of olefins. We chose N-chloro-N-sodio-p-toluenesulfonamide (chloramine-T, CT), an inexpensive and commercially available reagent, as our desired reactant. In the presence of a catalytic amount of CuCl or I(2) and AgNO(3), we achieved the direct aziridination of olefins with CT. The reaction catalyzed by I(2) could be carried out in water or silica-water as a green process. The reaction of iodoolefins with CT gave pyrrolidine derivatives under extremely mild conditions with complete stereoselectivity. We also extended the utility of the N-chloro-N-metallo reagent, which is often unstable and difficult to work with. Although CT does not react with electron-deficient olefins without a metal catalyst or an additive, we found that N-chloro-N-sodiocarbamates react with electron-deficient

  10. Sequential and selective hydrogenation of the C(alpha)-C(beta) and M-C(alpha) double bonds of an allenylidene ligand coordinated to osmium: new reaction patterns between an allenylidene complex and alcohols.

    PubMed

    Bolaño, Tamara; Castarlenas, Ricardo; Esteruelas, Miguel A; Oñate, Enrique

    2007-07-18

    Complex [OsH(=C=C=CPh2)(CH3CN)2(PiPr3)2]BF4 (1) reacts with primary and secondary alcohols to give the corresponding dehydrogenated alcohols and the hydride-carbene derivative [OsH(=CHCH=CPh2)(CH3CN)2(PiPr3)2]BF4 (2), as a result of hydrogen transfer reactions from the alcohols to the Calpha-Cbeta double bond of the allenylidene ligand of 1. The reactions with phenol and t-butanol, which do not contain any beta-hydrogen, afford the alkoxy-hydride-carbyne complexes [OsH(OR)(CCH=CPh2)(CH3CN)(PiPr3)2]BF4 (R = Ph (3), tBu (4)), as a consequence of the 1,3-addition of the O-H bond of the alcohols to the metallic center and the Cbeta atom of the allenylidene of 1. On the basis of the reactions of 1 with these tertiary alcohols, deuterium labeling experiments, and DFT calculations, the mechanism of the hydrogenation is proposed. In acetonitrile under reflux, the Os-C double bond of 2 undergoes hydrogenation to give 1,1-diphenylpropene and [Os{CH2CH(CH3)PiPr2(CH3CN)3(PiPr3)]BF4 (11), containing a metalated phosphine ligand. This reaction is a first-order process with activation parameters of DeltaH = 89.0 +/- 6.3 kJ mol-1 and DeltaS = -43.5 +/- 9.6 J mol-1 K-1. The X-ray structures of 2 and 3 are also reported.

  11. Intermolecular cross-double-michael addition between nitro and carbonyl activated olefins as a new approach in C-C bond formation.

    PubMed

    Sun, Xiaohua; Sengupta, Sujata; Petersen, Jeffrey L; Wang, Hong; Lewis, James P; Shi, Xiaodong

    2007-10-25

    A novel intermolecular cross-double-Michael addition between nitro and carbonyl activated olefins has been developed through Lewis base catalysis. The reaction took place with a large group of beta-alkyl nitroalkenes and alpha,beta-unsaturated ketone/esters, producing an allylic nitro compound in good to excellent yields.

  12. Efficient Cu-catalyzed atom transfer radical addition reactions of fluoroalkylsulfonyl chlorides with electron-deficient alkenes induced by visible light.

    PubMed

    Tang, Xiao-Jun; Dolbier, William R

    2015-03-27

    Fluoroalkylsulfonyl chlorides, R(f)SO2Cl, in which R(f)=CF3, C4F9, CF2H, CH2F, and CH2CF3, are used as a source of fluorinated radicals to add fluoroalkyl groups to electron-deficient, unsaturated carbonyl compounds. Photochemical conditions, using Cu mediation, are used to produce the respective α-chloro-β-fluoroalkylcarbonyl products in excellent yields through an atom transfer radical addition (ATRA) process. Facile nucleophilic replacement of the α-chloro substituent is shown to lead to further diverse functionalization of the products.

  13. Stereoselective synthesis of 3-methyleneisoindolin-1-ones via base-catalyzed intermolecular reactions of electron-deficient alkynes with N-hydroxyphthalimides.

    PubMed

    Chen, Xin; Ge, Fei-Fei; Lu, Tao; Zhou, Qing-Fa

    2015-03-20

    Highly stereoselective intermolecular reactions of electron-deficient alkynes with N-hydroxyphthalimides for efficient construction of N-unprotected 3-methyleneisoindolin-1-ones have been developed through base catalytic strategies. The reaction of alkynoates with N-hydroxyphthalimides catalyzed by Bu3P in DMF at 150 °C gave the corresponding 3-methyleneisoindolin-1-ones with a (Z)-configuration, while the reaction of alkynoates with N-hydroxyphthalimides catalyzed by K2CO3 in DMF at 60 °C gave the corresponding 3-methyleneisoindolin-1-ones with an (E)-configuration, and (Z)-3-methyleneisoindolin-1-ones were obtained when alkyne ketones reacted with N-hydroxyphthalimide.

  14. Achieving high performance non-fullerene organic solar cells through tuning the numbers of electron deficient building blocks of molecular acceptors

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Chen, Yusheng; Chen, Shangshang; Dong, Tao; Deng, Wei; Lv, Lei; Yang, Saina; Yan, He; Huang, Hui

    2016-08-01

    Two analogous dimer and tetramer compounds, SF-PDI2 and SF-PDI4, were designed, theoretically calculated, synthesized, and developed as electron acceptors for organic solar cells. The effects of the number of the electron deficient building blocks on the optical absorption, energy levels, charge transport, morphology, crystallinity, and photovoltaic performance of the molecules were investigated. In combination with two different donors, PTB7-Th and PffBT4T-2OD, the results showed that increasing the numbers of PDI building blocks is beneficial to photovoltaic performance and leads to efficiency over 5%.

  15. C-O bond Formation in a Microfluidic Reactor: High Yield SNAr Substitution of Heteroaryl Chlorides.

    PubMed

    Alam, Mohammad Parvez; Jagodzinska, Barbara; Campagna, Jesus; Spilman, Patricia; John, Varghese

    2016-05-11

    This study describes our development of a novel and efficient procedure for C-O bond formation under mild conditions, for coupling heteroaryl chlorides with phenols or primary aliphatic alcohols. We utilized a continuous-flow microfluidic reactor for C-O bond formation in electron-deficient pyrimidines and pyridines in a much more facile manner with a cleaner reaction profile, high yield, quick scalability and without the need for the transition metal catalyst. This approach can be of general utility to make C-O bond containing intermediates of industrial importance in a continuous and safe manner.

  16. Hypovalency--a kinetic-energy density description of a 4c-2e bond.

    PubMed

    Jacobsen, Heiko

    2009-06-07

    A bond descriptor based on the kinetic energy density, the localized-orbital locator (LOL), is used to characterize the nature of the chemical bond in electron deficient multi-center bonds. The boranes B(2)H(6), B(4)H(4), B(4)H(10), [B(6)H(6)](2-), and [B(6)H(7)](-) serve as prototypical examples of hypovalent 3c-2e and 4c-2e bonding. The kinetic energy density is derived from a set of Kohn-Sham orbitals obtained from pure density functional calculations (PBE/TZVP), and the topology of LOL is analyzed in terms of (3,-3) attractors (Gamma). The B-B-B and B-H-B 3c-2e, and the B-B-H-B 4c-2e bonding situations are defined by their own characteristic LOL profiles. The presence of one attractor in relation to the three or four atoms that are engaged in electron deficient bonding provides sufficient indication of the type of 3c-2e or 4c-2e bond present. For the 4c-2e bond in [B(6)H(7)](-) the LOL analysis is compared to results from an experimental QTAIM study.

  17. Factors Controlling the Spectroscopic Properties and Supramolecular Chemistry of an Electron Deficient 5,5- Dimethylphlorin Architecture

    SciTech Connect

    Pistner, Allen; Lutterman, Daniel A; Ghidiu, Michael J.; Walker, Eric; Yapp, Glenn P. A.; Rosenthal, Joel

    2014-01-01

    A new 5,5-dimethylphlorin derivative (3H-(PhlCF3)) was prepared and studied through a combination of redox, photophysical, and computational experiments. The phlorin macrocycle is significantly distorted from planarity compared to more traditional tetrapyrrole architectures and displays solvatochroism in the soret region of the UV vis spectrum ( 370 420 nm). DFT calculations indicate that this solvatochromic behavior stems from the polarized nature of the frontier orbital (LUMO+1) that is most heavily involved in these transitions. Compound 3H(PhlCF3) also displays an intriguing supramolecular chemistry with certain anions; this phlorin can cooperatively hydrogen-bond two equivalents of fluoride to form 3H(PhlCF3) 2F but does not bind larger halides such as Cl or Br . Analogous studies revealed that the phlorin can hydrogen-bond with carboxylate anions such as acetate to form 1:1 complexes such as 3H(PhlCF3) OAc . These supramolecular assemblies are robust and form even in relatively polar solvents such as MeCN. Hydrogen-bonding of fluoride and acetate anions to the phlorin N H residues significantly attenuates the redox and photophysical properties of the phlorin. Moreover, The ability to independently vary the size and pKa of a series of carboxylate hydrogen-bond acceptors has allowed us to probe how phlorin anion association is controlled by the anion s size and/or basicity. These studies elucidate the physical properties and the electronic effects that shape the supramolecular chemistry displayed by the phlorin platform.

  18. Halogen bonding in water results in enhanced anion recognition in acyclic and rotaxane hosts

    NASA Astrophysics Data System (ADS)

    Langton, Matthew J.; Robinson, Sean W.; Marques, Igor; Félix, Vítor; Beer, Paul D.

    2014-12-01

    Halogen bonding (XB), the attractive interaction between an electron-deficient halogen atom and a Lewis base, has undergone a dramatic development as an intermolecular force analogous to hydrogen bonding (HB). However, its utilization in the solution phase remains underdeveloped. Furthermore, the design of receptors capable of strong and selective recognition of anions in water remains a significant challenge. Here we demonstrate the superiority of halogen bonding over hydrogen bonding for strong anion binding in water, to the extent that halide recognition by a simple acyclic mono-charged receptor is achievable. Quantification of iodide binding by rotaxane hosts reveals the strong binding by the XB-rotaxane is driven exclusively by favourable enthalpic contributions arising from the halogen-bonding interactions, whereas weaker association with the HB-rotaxanes is entropically driven. These observations demonstrate the unique nature of halogen bonding in water as a strong alternative interaction to the ubiquitous hydrogen bonding in molecular recognition and assembly.

  19. Double C–H bond activation of acetylene by atomic boron in forming aromatic cyclic-HBC2BH in solid neon† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc01399j Click here for additional data file.

    PubMed Central

    Jian, Jiwen; Li, Wei; Wu, Xuan

    2017-01-01

    The organo-boron species formed from the reactions of boron atoms with acetylene in solid neon are investigated using matrix isolation infrared spectroscopy with isotopic substitutions as well as quantum chemical calculations. Besides the previously reported single C–H bond activation species, a cyclic-HBC2BH diboron species is formed via double C–H bond activation of acetylene. It is characterized to have a closed-shell singlet ground state with planar D 2h symmetry. Bonding analysis indicates that it is a doubly aromatic species involving two delocalized σ electrons and two delocalized π electrons. This finding reveals the very first example of double C–H bond activation of acetylene in forming new organo-boron compounds. PMID:28936331

  20. Double-Diels-Alder Approach to Maoecrystal V. Unexpected C-C Bond-Forming Fragmentations of the [2.2.2]-Bicyclic Core.

    PubMed

    Smith, Brandon R; Njardarson, Jon T

    2017-09-14

    Synthetic studies toward maoecrystal V are reported. An oxidative dearomatization/Diels-Alder cascade to assemble the natural product carbocyclic core in one step is proposed. A facile electrocyclization is shown to suppress the intramolecular allene Diels-Alder pathway. This obstacle is alleviated via a stepwise approach with an allene equivalent to access the key cyclopentadiene-fused [2.2.2]-bicyclic core. Upon treatment with Lewis acid, the proposed intramolecular hetero-Diels-Alder reaction is cleanly and unexpectedly diverted either via C-C bond-forming fragmentation to the spiro-indene product (when R = OMe) or via elimination (when R = H).

  1. Recent Progress in Visible-Light Photoredox-Catalyzed Intermolecular 1,2-Difunctionalization of Double Bonds via an ATRA-Type Mechanism.

    PubMed

    Courant, Thibaut; Masson, Géraldine

    2016-08-19

    Radical difunctionalizations of alkenes constitute an efficient method for the construction of complex organic molecules. This synopsis focuses on visible-light catalysis, a recent and very promising technological refinement of this class of transformations. Examples taken from the literature illustrate the use of a variety of (metallic or nonmetallic) systems, which allow us to leverage the energy of readily available visible-light radiation to efficiently create some of the most commonly looked for types of bonds (C-X, C-O, C-N, and C-C) under mild conditions and starting from unsaturated substrates.

  2. Hydrogen bonding and stacking pi-pi interactions in solid 6-thioguanine and 6-mercaptopurine (antileukemia and antineoplastic drugs) studied by NMR-NQR double resonance spectroscopy and density functional theory.

    PubMed

    Latosińska, J N; Seliger, J; Zagar, V; Burchardt, D V

    2009-07-30

    A chemotherapeutic drug 6-thioguanine (2-amino-1,7-dihydro-6H-purine-6-thione, 6-TG) has been studied experimentally in the solid state by NMR-NQR double resonance and theoretically by the density functional theory. Fourteen resonance frequencies on (14)N have been detected and assigned to particular nitrogen sites in the 6-TG molecule. A valid assignment of NQR frequencies for 6-mercaptopurine (6-MP) has been proposed. The effects of molecular aggregations, related to intermolecular hydrogen bonding and stacking pi-pi interactions on the NQR parameters have been analyzed within the DFT and AIM (atoms in molecules) formalism for 6-TG and 6-mercaptopurine (6-MP). The so-called global reactivity descriptors have been calculated to compare the properties of molecules of 6-TG and 6-MP, to check the effect of -NH(2) group as well as to identify the differences in crystal packing.

  3. Reactivity of the zwitterionic ligand EtNHC(S)Ph2P[double bond, length as m-dash]NPPh2C(S)NEt towards [Ru3(CO)12]. Sulfur transfer and ligand fragmentation leading to the methideylamide [-N(Et)-CH(R)-] micro3-bridging moiety.

    PubMed

    Delferro, Massimiliano; Pattacini, Roberto; Cauzzi, Daniele; Graiff, Claudia; Terenghi, Mattia; Predieri, Giovanni; Tiripicchio, Antonio

    2009-01-21

    The reaction of EtNHC(S)Ph2P[double bond, length as m-dash]NP+Ph2C(S)N(-)Et (HEtSNS) with [Ru3(CO)12] has been carried out under two different experimental conditions: in the first case [Ru3(CO)12], previously turned into the labile intermediate [Ru3(CO)10(CH3CN)2], afforded, at room temperature in dichloromethane, the trinuclear clusters [Ru3(CO)11(CNEt)] (1), [Ru3(CO)9(micro-H)[(micro-S:kappa-P)Ph2PN[double bond, length as m-dash]PPh2C(S)NEt

  4. Bonding aerogels with polyurethanes

    SciTech Connect

    Matthews, F.M.; Hoffman, D.M.

    1989-11-01

    Aerogels, porous silica glasses with ultra-fine cell size (30nm), are made by a solution gelation (sol-gel) process. The resulting gel is critical point dried to densities from 0.15--0.60 g/cc. This material is machinable, homogeneous, transparent, coatable and bondable. To bond aerogel an adhesive should have long cure time, no attack on the aerogel structure, and high strength. Several epoxies and urethanes were examined to determine if they satisfied these conditions. Bond strengths above 13 psi were found with double bubble and DP-110 epoxies and XI-208/ODA-1000 and Castall U-2630 urethanes. Hardman Kalex Tough Stuff'' A-85 hardness urethane gave 18 psi bond strength. Hardman A-85, Tuff-Stuff'' was selected for further evaluation because it produced bond strengths comparable to the adherend cohesive strength. 5 refs., 2 figs.

  5. Carbon-to-metal bonds: Electrochemical reduction of 2-butenenitrile

    NASA Astrophysics Data System (ADS)

    Deniau, Guy; Azoulay, Laurent; Jégou, Pascale; Le Chevallier, Gilles; Palacin, Serge

    2006-02-01

    2-Butenenitrile belongs to the large family of electron deficient vinylic monomers that usually form 100 to 500 nm thick grafted polymer films by electroreduction. However, 2-butenenitrile exhibits a slightly acidic hydrogen atom on its CH 3 group that inhibits the anionic polymerization usually observed with 'classical' organic monomers such as its isomer methacrylonitrile. 2-Butenenitrile thus gives nanometer thick grafted film by electroreduction, essentially composed of a mixture of monomers, dimers and trimers and in the same way, allows an easy observation by XPS of the chemical signature of the grafting, i.e. the carbon-to-nickel bond, observed at 283.6 eV.

  6. Sticker Bonding.

    ERIC Educational Resources Information Center

    Frazier, Laura Corbin

    2000-01-01

    Introduces a science activity on the bonding of chemical compounds. Assigns students the role of either a cation or anion and asks them to write the ions they may bond with. Assesses students' understanding of charge, bonding, and other concepts. (YDS)

  7. Sticker Bonding.

    ERIC Educational Resources Information Center

    Frazier, Laura Corbin

    2000-01-01

    Introduces a science activity on the bonding of chemical compounds. Assigns students the role of either a cation or anion and asks them to write the ions they may bond with. Assesses students' understanding of charge, bonding, and other concepts. (YDS)

  8. Separating electrophilicity and Lewis acidity: the synthesis, characterization, and electrochemistry of the electron deficient tris(aryl)boranes B(C6F5)(3-n)(C6Cl5)n (n = 1-3).

    PubMed

    Ashley, Andrew E; Herrington, Thomas J; Wildgoose, Gregory G; Zaher, Hasna; Thompson, Amber L; Rees, Nicholas H; Krämer, Tobias; O'Hare, Dermot

    2011-09-21

    A new family of electron-deficient tris(aryl)boranes, B(C(6)F(5))(3-n)(C(6)Cl(5))(n) (n = 1-3), has been synthesized, permitting an investigation into the steric and electronic effects resulting from the gradual replacement of C(6)F(5) with C(6)Cl(5) ligands. B(C(6)F(5))(2)(C(6)Cl(5)) (3) is accessed via C(6)Cl(5)BBr(2), itself prepared from donor-free Zn(C(6)Cl(5))(2) and BBr(3). Reaction of C(6)Cl(5)Li with BCl(3) in a Et(2)O/hexane slurry selectively produced B(C(6)Cl(5))(2)Cl, which undergoes B-Cl exchange with CuC(6)F(5) to afford B(C(6)F(5))(C(6)Cl(5))(2) (5). While 3 forms a complex with H(2)O, which can be rapidly removed under vacuum or in the presence of molecular sieves, B(C(6)Cl(5))(3) (6) is completely stable to refluxing toluene/H(2)O for several days. Compounds 3, 5, and 6 have been structurally characterized using single crystal X-ray diffraction and represent the first structure determinations for compounds featuring B-C(6)Cl(5) bonds; each exhibits a trigonal planar geometry about B, despite having different ligand sets. The spectroscopic characterization using (11)B, (19)F, and (13)C NMR indicates that the boron center becomes more electron-deficient as n increases. Optimized structures of B(C(6)F(5))(3-n)(C(6)Cl(5))(n) (n = 0-3) using density functional theory (B3LYP/TZVP) are all fully consistent with the experimental structural data. Computed (11)B shielding constants also replicate the experimental trend almost quantitatively, and the computed natural charges on the boron center increase in the order n = 0 (0.81) < n = 1 (0.89) < n = 2 (1.02) < n = 3 (1.16), supporting the hypothesis that electrophilicity increases concomitantly with substitution of C(6)F(5) for C(6)Cl(5). The direct solution cyclic voltammetry of B(C(6)F(5))(3) has been obtained for the first time and electrochemical measurements upon the entire series B(C(6)F(5))(3-n)(C(6)Cl(5))(n) (n = 0-3) corroborate the spectroscopic data, revealing C(6)Cl(5) to be a more electron

  9. Recycling of MSWI fly ash by means of cementitious double step cold bonding pelletization: Technological assessment for the production of lightweight artificial aggregates.

    PubMed

    Colangelo, Francesco; Messina, Francesco; Cioffi, Raffaele

    2015-12-15

    In this work, an extensive study on the recycling of municipal solid waste incinerator fly ash by means of cold bonding pelletization is presented. The ash comes from an incineration plant equipped with rotary and stoker furnaces, in which municipal, hospital and industrial wastes are treated. Fly ash from waste incineration is classified as hazardous and cannot be utilized or even landfilled without prior treatment. The pelletization process uses cement, lime and coal fly ash as components of the binding systems. This process has been applied to several mixes in which the ash content has been varied from 50% (wt.%) up to a maximum of 70%. An innovative additional pelletization step with only cementitious binder has been performed in order to achieve satisfactory immobilization levels. The obtained lightweight porous aggregates are mostly suitable for recovery in the field of building materials with enhanced sustainability properties. Density, water absorption and crushing strength ranged from 1000 to 1600 kg/m(3), 7 to 16% and 1.3 to 6.2 MPa, respectively, and the second pelletization step increased stabilization efficiency. The feasibility of the process has been analyzed by testing also concrete specimens containing the artificial aggregates, resulting in lightweight concrete of average performance.

  10. Zn-catalyzed enantio- and diastereoselective formal [4 + 2] cycloaddition involving two electron-deficient partners: asymmetric synthesis of piperidines from 1-azadienes and nitro-alkenes.

    PubMed

    Chu, John C K; Dalton, Derek M; Rovis, Tomislav

    2015-04-08

    We report a catalytic asymmetric synthesis of piperidines through [4 + 2] cycloaddition of 1-azadienes and nitro-alkenes. The reaction uses earth abundant Zn as catalyst and is highly diastereo- and regioselective. A novel BOPA ligand (F-BOPA) confers high reactivity and enantioselectivity in the process. The presence of ortho substitution on the arenes adjacent to the bis(oxazolines) was found to be particularly impactful, due to limiting the undesired coordination of 1-azadiene to the Lewis acid and thus allowing the reaction to be carried out at lower temperature. A series of secondary kinetic isotope effect studies using a range of ligands implicates a stepwise mechanism for the transformation, involving an initial Michael-type addition of the imine to the nitro-alkene followed by a cyclization event. The stepwise mechanism obviates the electronic requirement inherent to a concerted mechanism, explaining the successful cycloaddition between two electron-deficient partners.

  11. Bond-rearrangement and ionization mechanisms in the photo-double-ionization of simple hydrocarbons (C2H4, C2H3F, and 1,1-C2H2F2) near and above threshold

    SciTech Connect

    Gaire, B.; Gatton, A. S.; Wiegandt, F.; Neff, J.; Janke, C.; Zeller, S.; Reedy, D.; Rajput, J.; Ben-Itzahk, I.; Landers, A. L.; Belkacem, A.; Weber, Th.

    2016-09-14

    We have investigated bond-rearrangement driven by photo-double-ionization (PDI) near and above the double ionization threshold in a sequence of carbon-carbon double bonded hydrocarbon molecules: ethylene, fluoroethylene, and 1,1-difluoroethylene. We employ the kinematically complete cold target recoil ion momentum spectroscopy (COLTRIMS) method to resolve all photo-double-ionization events leading to two-ionic fragments. We observe changes in the branching ratios of different dissociative ionization channels depending on the presence of none, one, or two fluorine atoms. The role of the fluorine atom in the bond-rearrangement channels is intriguing as evident by the re-ordering of the threshold energies of the PDI in the fluorinated molecules. These effects offer a compelling argument that the electronegativity of the fluorine (or the polarity of the molecule) strongly influences the potential energy surfaces of the molcules and drives bond-rearrangement during the dissociation process. The energy sharing and the relative angle between the 3D-momentum vectors of the two electrons provide clear evidence of direct and indirect PDI processes.

  12. Charge transfer excitations from particle-particle random phase approximation—Opportunities and challenges arising from two-electron deficient systems

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Dominguez, Adriel; Zhang, Du; Lutsker, Vitalij; Niehaus, Thomas A.; Frauenheim, Thomas; Yang, Weitao

    2017-03-01

    The particle-particle random phase approximation (pp-RPA) is a promising method for studying charge transfer (CT) excitations. Through a detailed analysis on two-electron deficient systems, we show that the pp-RPA is always able to recover the long-distance asymptotic -1/R trend for CT excitations as a result of the concerted effect between orbital energies and the pp-RPA kernel. We also provide quantitative results for systems with relatively short donor-acceptor distances. With conventional hybrid or range-separated functionals, the pp-RPA performs much better than time-dependent density functional theory (TDDFT), although it still gives underestimated results which are not as good as TDDFT with system-dependent tuned functionals. For pp-RPA, there remain three great challenges in dealing with CT excitations. First, the delocalized frontier orbitals in strongly correlated systems often lead to difficulty with self-consistent field convergence as well as an incorrect picture with about half an electron transferred. Second, the commonly used density functionals often underestimate the energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital (LUMO) for the two-electron deficient species, resulting in systems with delocalized orbitals. Third, the performance of pp-RPA greatly depends on the energy difference between the LUMO and a higher virtual orbital. However, the meaning of the orbital energies for higher virtual orbitals is still not clear. We also discuss the performance of an approximate pp-RPA scheme that uses density functional tight binding (pp-DFTB) as reference and demonstrate that the aforementioned challenges can be overcome by adopting suitable range-separated hybrid functionals. The pp-RPA and pp-DFTB are thus promising general approaches for describing charge transfer excitations.

  13. Charge transfer excitations from particle-particle random phase approximation-Opportunities and challenges arising from two-electron deficient systems.

    PubMed

    Yang, Yang; Dominguez, Adriel; Zhang, Du; Lutsker, Vitalij; Niehaus, Thomas A; Frauenheim, Thomas; Yang, Weitao

    2017-03-28

    The particle-particle random phase approximation (pp-RPA) is a promising method for studying charge transfer(CT) excitations. Through a detailed analysis on two-electron deficient systems, we show that the pp-RPA is always able to recover the long-distance asymptotic -1/R trend for CT excitations as a result of the concerted effect between orbital energies and the pp-RPA kernel. We also provide quantitative results for systems with relatively short donor-acceptor distances. With conventional hybrid or range-separated functionals, the pp-RPA performs much better than time-dependent density functional theory (TDDFT), although it still gives underestimated results which are not as good as TDDFT with system-dependent tuned functionals. For pp-RPA, there remain three great challenges in dealing with CT excitations. First, the delocalized frontier orbitals in strongly correlated systems often lead to difficulty with self-consistent field convergence as well as an incorrect picture with about half an electron transferred. Second, the commonly used density functionals often underestimate the energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital (LUMO) for the two-electron deficient species, resulting in systems with delocalized orbitals. Third, the performance of pp-RPA greatly depends on the energy difference between the LUMO and a higher virtual orbital. However, the meaning of the orbital energies for higher virtual orbitals is still not clear. We also discuss the performance of an approximate pp-RPA scheme that uses density functional tight binding (pp-DFTB) as reference and demonstrate that the aforementioned challenges can be overcome by adopting suitable range-separated hybrid functionals. The pp-RPA and pp-DFTB are thus promising general approaches for describing charge transfer excitations.

  14. Formation of a C–C double bond from two aliphatic carbons. Multiple C–H activations in an iridium pincer complex† †Electronic supplementary information (ESI) available: Experimental details, characterization data, Cartesian coordinates, additional graphs and computational details. CCDC 1024127–1024129. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4sc03839h Click here for additional data file. Click here for additional data file.

    PubMed Central

    Polukeev, Alexey V.; Marcos, Rocío; Ahlquist, Mårten S. G.

    2015-01-01

    The search for novel, atom-economic methods for the formation of C–C bonds is of crucial importance in synthetic chemistry. Especially attractive are reactions where C–C bonds are formed through C–H activation, but the coupling of unactivated, alkane-type Csp3–H bonds remains an unsolved challenge. Here, we report iridium-mediated intramolecular coupling reactions involving up to four unactivated Csp3–H bonds to give carbon–carbon double bonds under the extrusion of dihydrogen. The reaction described herein is completely reversible and the direction can be controlled by altering the reaction conditions. With a hydrogen acceptor present a C–C double bond is formed, while reacting under dihydrogen pressure leads to the reverse process, with some of the steps representing net Csp3–Csp3 bond cleavage. Mechanistic investigations revealed a conceptually-novel overall reactivity pattern where insertion or deinsertion of an Ir carbene moiety, formed via double C–H activation, into an Ir–C bond is responsible for the key C–C bond formation and cleavage steps. PMID:28717458

  15. Role of the inner-sphere reorganization in the photoinduced electron transfer reaction of Ru(II) complexes containing imine C=N or Azo N=N double bonds in the ligands

    SciTech Connect

    Maruyama, Mutsuhiro; Kaizu, Youkoh

    1995-04-20

    Photoinduced oxidative and reductive electron transfer (ET) reactions of excited Ru(imin){sub 3}{sup 2+} (imin = 2-(N-methylformimidoyl)pyridine), Ru(imin){sub 2}(CN){sub 2}, and Ru(azpy){sub 3}{sup 2+} (azpy = 2-(phenylazo)pyridine), where imin and azpy contain imine C=N and azo N=N double bonds, respectively, with organic quenchers were investigated in acetonitrile solutions, and their {Delta}G dependencies of the quenching rate constants (k{sub q}) were compared with those of Ru(bpy){sub 3}{sup 2+} (bpy = 2,2`-bipyridine) and Ru(L){sub 2}(CN){sub 2} complexes where L = 4,4`- or 5,5`-dmbpy (dmbpy = dimethyl-2,2`-bipyridine) and phen (phen = 1,10-phenanthroline). The oxidative quenching rate constants of Ru(imin){sub 3}{sup 2+} and Ru(imin){sub 2}(CN){sub 2} are smaller than those of the corresponding bpy, dmbpy, and phen complexes at the same {Delta}G value in the normal region. However, the {Delta}G dependencies of the reductive quenching rate constants of Ru(imin){sub 3}{sup 2+} and Ru(azpy){sub 3}{sup 2+} coincide with that of the corresponding bpy complex. The inner-sphere reorganization ({lambda}{sub in}) caused by the deformation of the C=N bond of imin is considered to be the main reason for the disadvantage of ET in the normal region of the oxidative ET reactions of excited Ru(imin){sub 3}{sup 2+} and Ru(imin){sub 2}(CN){sub 2}. 44 refs., 6 figs., 6 tabs.

  16. Rb(16)Cd(25.39(3))sb(36): an electron-deficient zintl phase containing infinite dodecahedron chains.

    PubMed

    Zheng, Wu-Zui; Wang, Peng; Wu, Li-Ming; Liu, Yi; Chen, Ling

    2010-07-05

    A novel ternary antimonide Rb(16)Cd(25.39(3))Sb(36) has been synthesized by a solid-state reaction of the appropriate amount of elements in a welded niobium tube at 530 degrees C. The compound crystallizes in orthorhombic space group Cmcm (No. 63) with a = 16.499(5) A, b = 12.391(4) A, c = 12.400(4) A, and Z = 1. The structure features a new 3D network constructed of chains of Rb(+)-centered dodecahedra running along [001]. The atomic distribution of the Cd(8)Sb(12) dodecahedron presents an energetically favored pattern without any Cd-Cd bonding. The formation of the phase and the occurrence of a very narrow phase width of Rb(16)Cd(24+x)Sb(36) [0.94(2) < or = x < or = 1.47(3)] have been studied in detail. The Fermi level of the title compound is expected to be located between those of the hypothetical models of "[Rb(16)Cd(24)Sb(36)](0)" (I, poor metallic) and "[Rb(16)Cd(24)Sb(36)] + 4e" (II, narrow-band-gap semiconductor), which agrees well with the experimental measurements. In the temperature range of 300-473 K, the as-synthesized Rb(16)Cd(25.39(3))Sb(36) exhibits p-type semiconductor behavior and shows temperature-independent thermal conductivities (around 0.49 W/m.K). The electrical conductivity, Seebeck coefficient, and figure of merit (ZT) of Rb(16)Cd(25.39(3))Sb(36) are temperature-dependent; these values are 57.4 S/cm, +81.4 microV/K, and 0.04, respectively, at 466 K.

  17. Catalysis of Heterocyclic Azadiene Cycloaddition Reactions by Solvent Hydrogen Bonding: Concise Total Synthesis of Methoxatin.

    PubMed

    Glinkerman, Christopher M; Boger, Dale L

    2016-09-28

    Although it has been examined for decades, no general approach to catalysis of the inverse electron demand Diels-Alder reactions of heterocyclic azadienes has been introduced. Typically, additives such as Lewis acids lead to nonproductive consumption of the electron-rich dienophiles without productive activation of the electron-deficient heterocyclic azadienes. Herein, we report the first general method for catalysis of such cycloaddition reactions by using solvent hydrogen bonding of non-nucleophilic perfluoroalcohols, including hexafluoroisopropanol (HFIP) and trifluoroethanol (TFE), to activate the electron-deficient heterocyclic azadienes. Its use in promoting the cycloaddition of 1,2,3-triazine 4 with enamine 3 as the key step of a concise total synthesis of methoxatin is described.

  18. Crucial Role of the Double Bond Isomerism in the Steroid B-Ring on the Membrane Properties of Sterols. Grazing Incidence X-Ray Diffraction and Brewster Angle Microscopy Studies.

    PubMed

    Flasiński, Michał; Wydro, Paweł; Broniatowski, Marcin; Hąc-Wydro, Katarzyna; Fontaine, Philippe

    2015-07-07

    Three cholesterol precursors-desmosterol, zymosterol, and lanosterol-were comprehensively characterized in monolayers formed at the air/water interface. The studies were based on registration of the surface pressure (π)-area (A) isotherms complemented with in situ analysis performed with application of modern physicochemical techniques: grazing incidence X-ray diffraction (GIXD) and Brewster angle microscopy (BAM). In this approach we were interested in the correlation between molecular structures of the studied sterols found in the cholesterol biosynthetic pathway and their membrane properties. Our results revealed that only desmosterol behaves in Langmuir monolayers comparably to cholesterol, the molecules of which arrange in the monolayers into a hexagonal lattice, while the two remaining sterols possess extremely different properties. We found that molecules of both zymosterol and lanosterol are organized on the water surface in the two-dimensional oblique unit cells despite the fact that they are oriented perpendicular to the monolayer plane. The comparison of chemical structures of the investigated sterols leads to the conclusion that the only structural motive that can be responsible for such unusual behavior is the double bond in the B sterol ring, which is located in desmosterol in a different position from in the other two sterols. This issue, which was neglected in the scientific literature, seems to have crucial importance for sterol activity in biomembranes. We showed that this structural modification in sterol molecules is directly responsible for their adaptation to proper functioning in biomembranes.

  19. Novel photofunctional multicomponent rare earth (Eu3+, Tb3+, Sm3+ and Dy3+) hybrids with double cross-linking siloxane covalently bonding SiO2/ZnS nanocomposite.

    PubMed

    Yan, Bing; Zhao, Yan; Li, Ya-Juan

    2011-01-01

    Zinc sulfide (ZnS) quantum dot is modified with 3-mercaptopropyltrimethoxysilane (MPTMS) to obtain MPTMS functionalized SiO(2)/ZnS nanocomposite. Novel rare earth/inorganic/organic hybrid materials are prepared by using 3-(triethoxysilyl)-propyl isocyanate (TESPIC) as an organic bridge molecule that can both coordinate to rare earth ions (Eu(3+), Tb(3+), Sm(3+) and Dy(3+)) and form an inorganic Si-O-Si network with SiO(2) ZnS nanocomposite after cohydrolysis and copolycondensation through a sol-gel process. These multicomponent hybrids with double cross-linking siloxane (TESPIC-MPTMS) covalently bonding SiO(2)/ZnS and assistant ligands (Phen = 1,10-phenanthroline, Bipy = 2,2'-bipyridyl) are characterized and especially the photoluminescence properties of them are studied in detail. The luminescent spectra of the hybrids show the dominant excitation of TESPIC-MPTMS-SiO(2)/ZnS unit and the unique emission of rare earth ions, suggesting that TESPIC-MPTMS-SiO(2)/ZnS unit behaves as the main energy donor and effective energy transfer take place between it and rare earth ions. Besides, the luminescent performance of Bipy-RE-TESPIC-MPTM-SiO(2)/ZnS hybrids are superior to that of Phen-RE-TESPIC-MPTMS-SiO(2)/ZnS ones (RE=Eu, Tb, Sm, Dy), which reveals that Bipy or Phen only act as structural ligand within the hybrid systems.

  20. Ratiometric and colorimetric "naked eye" selective detection of CN(-) ions by electron deficient Ni(II) porphyrins and their reversibility studies.

    PubMed

    Kumar, Ravi; Chaudhri, Nivedita; Sankar, Muniappan

    2015-05-21

    Highly electron deficient β-substituted Ni(II) porphyrins (1-5) were synthesized and utilized as novel sensors for selective rapid visual detection of CN(-) ions. This article describes the single crystal X-ray structures, electronic spectral and electrochemical redox properties of these sensors. The ratiometric and colorimetric responses of these porphyrins were monitored by the change in optical absorption spectra. These sensors were found to be highly selective for cyanide ions with extremely high binding constants (10(16)-10(8) M(-2)) through axial ligation of CN(-) ions and are able to detect <0.11 ppm of CN(-) ions. 1-5 were recovered from 1-5·2CN(-) adducts by acid treatment and reused without loss of sensing ability. CN(-) binding strongly perturbs the redox properties of the parent porphyrin π-system. The applicability of 1-5 as practical visible colorimetric test kits for CN(-) ions in aqueous and non-aqueous media has also been explored. The mode of binding was confirmed by single crystal X-ray, spectroscopic studies and DFT calculations.

  1. The partial reduction of electron-deficient pyrroles: procedures describing both Birch (Li/NH3) and ammonia-free (Li/DBB) conditions.

    PubMed

    Donohoe, Timothy J; Thomas, Rhian E

    2007-01-01

    The partial reduction of electron-deficient pyrroles using either Birch (Li/NH(3)) or ammonia-free (Li/di-tert-butyl biphenyl) conditions allows formation of pyrroline compounds in good yield and, when combined with a reductive alkylation or similar approach, leads to highly functionalized, synthetically useful compounds. This methodology has been proven in the syntheses of several complex natural products, all of which show interesting biological activity. This protocol describes in detail the following stages of the partial reduction procedure: formation of the reducing solution, partial reduction of the pyrrole compound and finally quench of the resulting anion/dianion using either protonating agents or an aldehyde. The ammonia-free conditions described herein are particularly useful for reactions requiring the use of reactive electrophiles, such as acid chlorides or enolizable aldehydes, which are incompatible with the standard Birch reduction conditions. The reaction procedure for the ammonia Birch reduction (procedure A) takes about 9.5 h to complete. Those described for the ammonia-free reductions, procedure B and procedure C, can be expected to take approximately 33 and 8 h, respectively.

  2. Gas Chromatographic-Ion Trap Mass Spectrometric Analysis of Volatile Organic Compounds by Ion-Molecule Reactions Using the Electron-Deficient Reagent Ion CCl{3/+}

    NASA Astrophysics Data System (ADS)

    Wang, Cheng-Zhong; Su, Yue; Wang, Hao-Yang; Guo, Yin-Long

    2011-10-01

    When using tetrachloromethane as the reagent gas in gas chromatography-ion trap mass spectrometry equipped with hybrid ionization source, the cation CCl{3/+} was generated in high abundance and further gas-phase experiments showed that such an electron-deficient reagent ion CCl{3/+} could undergo interesting ion-molecule reactions with various volatile organic compounds, which not only present some informative gas-phase reactions, but also facilitate qualitative analysis of diverse volatile compounds by providing unique mass spectral data that are characteristic of particular chemical structures. The ion-molecule reactions of the reagent ion CCl{3/+} with different types of compounds were studied, and results showed that such reactions could give rise to structurally diagnostic ions, such as [M + CCl3 - HCl]+ for aromatic hydrocarbons, [M - OH]+ for saturated cyclic ether, ketone, and alcoholic compounds, [M - H]+ ion for monoterpenes, M·+ for sesquiterpenes, [M - CH3CO]+ for esters, as well as the further fragment ions. The mechanisms of ion-molecule reactions of aromatic hydrocarbons, aliphatic ketones and alcoholic compounds with the reagent ion CCl{3/+} were investigated and proposed according to the information provided by MS/MS experiments and theoretical calculations. Then, this method was applied to study volatile organic compounds in Dendranthema indicum var. aromaticum and 20 compounds, including monoterpenes and their oxygen-containing derivatives, aromatic hydrocarbon and sesquiterpenes were identified using such ion-molecule reactions. This study offers a perspective and an alternative tool for the analysis and identification of various volatile compounds.

  3. Organic chemistry: No double bond left behind

    NASA Astrophysics Data System (ADS)

    Sarlah, David

    2016-03-01

    Alkenyl halides are some of the most useful building blocks for synthesizing small organic molecules. A catalyst has now allowed their direct preparation from widely available alkenes using the cross-metathesis reaction. See Article p.459

  4. Crystal and molecular structure of W(eta/sup 2/-HC double bond COAlCl/sub 3/)(CO)(PMe/sub 3/)/sub 3/Cl, a product of the coupling of methylidyne and carbonyl ligands on tungsten

    SciTech Connect

    Churchill, M.R.; Wasserman, H.J.

    1983-01-05

    A single-crystal x-ray diffraction analysis has been performed on the title complex, which was prepared by Holmes and Schrock through AlCl/sub 3/-promoted coupling of W(CH)(PMe/sub 3/)/sub 4/Cl with carbon monoxide. The complex crystallizes in the centrosymmetric monoclinic space group P2/sub 1//c with a = 10.420 (2) A, b = 12.896 (2) A, c = 19.319 (4) A, ..beta.. = 105.880 (15)/sup 0/, V = 2497.1 (9) A/sup 3/, rho(calcd) = 1.73 g cm/sup -3/ for Z = 4, and mol wt = 650.0. Automated four-circle diffractometer intensity data (Syntex P2/sub 1/) were used to solve the structure; refinement led to R/sub F/ = 3.2% and R/sub wF/ = 3.0% for all 4423 unique reflections with 4.0/sup 0/ < 2 theta < 50.0/sup 0/ (Mo K..cap alpha.. radiation). The octahedral coordination environment about the central tungsten atom consists of three meridional PMe/sub 3/ ligands, a terminal carbonyl, a chloride, and an eta/sup 2/-HC double bond COAlCl/sub 3/ ligand. The last is oriented parallel to the carbonyl ligand and is best described as a substituted acetylene with an acetylenic carbon-carbon linkage of 1.316 (6) A and short tungsten-carbon distances of 2.034 (4) and 2.009 (5) A. The aluminum-oxygen distance is 1.751 (3) A; this value represents a significantly stronger Al-O interaction than has been observed in other structures containing Al-O (carbonyl; acyl) linkages.

  5. Reaction of the thermo-labile triazenide Na[tBu3SiNNNSiMe3] with CO2: formation of the imido carbonate (tBu3SiO)(Me3SiO)C[double bond, length as m-dash]N-SitBu3 and carbamine acid (tBu3SiO)CONH2.

    PubMed

    Lerner, H-W; Bolte, M; Wagner, M

    2017-07-11

    The thermo-labile triazenide Na[tBu3SiNNNSiMe3] was prepared by the reaction of Me3SiN3 with Na(thf)2[SitBu3] in pentane at -78 °C. Treatment of Na[tBu3SiNNNSiMe3] with an excess of carbon dioxide in pentane at -78 °C yielded the imido carbonate (tBu3SiO)(Me3SiO)C[double bond, length as m-dash]N-SitBu3 and the carbamine acid (tBu3SiO)CONH2 along with other products. From the reaction solution we could isolate the imido carbonate (tBu3SiO)(Me3SiO)C[double bond, length as m-dash]N-SitBu3 and carbamine acid (tBu3SiO)CONH2. At first single crystals of the carbamine acid (tBu3SiO)CONH2 (triclinic, space group P1[combining macron]) were grown from this solution at room temperature. A second crop of crystals were obtained by concentrating the solution. The second charge consisted of the imido carbonate (tBu3SiO)(Me3SiO)C[double bond, length as m-dash]N-SitBu3 (monoclinic, space group P21/n).

  6. Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for 4F 3/2-->4I 11/2 and 4F 3/2-->4I 13/2 transitions.

    PubMed

    Chang, Y T; Huang, Y P; Su, K W; Chen, Y F

    2008-12-08

    The effective focal lengths of thermal lens in diode-end-pumped continuous-wave Nd:YVO(4) lasers for the (4)F(3/2)-->(4)I(11/2) and (4)F(3/2)-->(4)I(13/2) transitions were determined. The experimental results revealed that the thermal lensing effect for the (4)F(3/2)-->(4)I(11/2) transition can be sufficiently improved by employing a single-end diffusion-bonded Nd:YVO(4) crystal replacing a conventional Nd:YVO(4) crystal. However, using a double-end diffusion-bonded Nd:YVO(4) crystal was a great improvement over a single-end diffusion-bonded Nd:YVO(4) crystal for the (4)F(3/2)-->(4)I(13/2) transition with stronger thermal lensing effect.

  7. Gas chromatographic-ion trap mass spectrometric analysis of volatile organic compounds by ion-molecule reactions using the electron-deficient reagent ion CCl3(+).

    PubMed

    Wang, Cheng-Zhong; Su, Yue; Wang, Hao-Yang; Guo, Yin-Long

    2011-10-01

    When using tetrachloromethane as the reagent gas in gas chromatography-ion trap mass spectrometry equipped with hybrid ionization source, the cation CCl(3)(+) was generated in high abundance and further gas-phase experiments showed that such an electron-deficient reagent ion CCl(3)(+) could undergo interesting ion-molecule reactions with various volatile organic compounds, which not only present some informative gas-phase reactions, but also facilitate qualitative analysis of diverse volatile compounds by providing unique mass spectral data that are characteristic of particular chemical structures. The ion-molecule reactions of the reagent ion CCl(3)(+) with different types of compounds were studied, and results showed that such reactions could give rise to structurally diagnostic ions, such as [M+CCl(3) - HCl](+) for aromatic hydrocarbons, [M - OH](+) for saturated cyclic ether, ketone, and alcoholic compounds, [M - H](+) ion for monoterpenes, M(·+) for sesquiterpenes, [M - CH(3)CO](+) for esters, as well as the further fragment ions. The mechanisms of ion-molecule reactions of aromatic hydrocarbons, aliphatic ketones and alcoholic compounds with the reagent ion CCl(3)(+) were investigated and proposed according to the information provided by MS/MS experiments and theoretical calculations. Then, this method was applied to study volatile organic compounds in Dendranthema indicum var. aromaticum and 20 compounds, including monoterpenes and their oxygen-containing derivatives, aromatic hydrocarbon and sesquiterpenes were identified using such ion-molecule reactions. This study offers a perspective and an alternative tool for the analysis and identification of various volatile compounds. © American Society for Mass Spectrometry, 2011

  8. Reaction of Aldehydes/Ketones with Electron-Deficient 1,3,5-Triazines Leading to Functionalized Pyrimidines as Diels-Alder/Retro-Diels-Alder Reaction Products: Reaction Development and Mechanistic Studies.

    PubMed

    Yang, Kai; Dang, Qun; Cai, Pei-Jun; Gao, Yang; Yu, Zhi-Xiang; Bai, Xu

    2017-03-03

    Catalytic inverse electron demand Diels-Alder (IEDDA) reactions of heterocyclic aza-dienes are rarely reported since highly reactive and electron-rich dienophiles are often found not compatible with strong acids such as Lewis acids. Herein, we disclose that TFA-catalyzed reactions of electron-deficient 1,3,5-triazines and electron-deficient aldehydes/ketones can take place. These reactions led to highly functionalized pyrimidines as products in fair to good yields. The reaction mechanism was carefully studied by the combination of experimental and computational studies. The reactions involve a cascade of stepwise inverse electron demand hetero-Diels-Alder (ihDA) reactions, followed by retro-Diels-Alder (rDA) reactions and elimination of water. An acid was required for both ihDA and rDA reactions. This mechanism was further verified by comparing the relative reactivity of aldehydes/ketones and their corresponding vinyl ethers in the current reaction system.

  9. Yankee bonds

    SciTech Connect

    Delaney, P. )

    1993-10-01

    Yankee and Euromarket bonds may soon find their way into the financing of power projects in Latin America. For developers seeking long-term commitments under build, own, operate, and transfer (BOOT) power projects in Latin America, the benefits are substantial.

  10. Extension of the analytical window for characterizing aromatic compounds in oils using a comprehensive suite of high-resolution mass spectrometry techniques and double bond equivalence versus carbon number plot

    USGS Publications Warehouse

    Cho, Yunju; Birdwell, Justin E.; Hur, Manhoi; Lee, Joonhee; Kim, Byungjoo; Kim, Sunghwan

    2017-01-01

    In this study, comprehensive two-dimensional (2D) gas chromatography–mass spectrometry (GC–MS), atmospheric pressure photoionization (APPI) quadrupole-Orbitrap mass spectrometry (MS), and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were used to study the aromatic fractions of crude oil and oil shale pyrolysates (shale oils). The collected data were compared and combined in the double bond equivalence (DBE) versus carbon number plot to obtain a more complete understanding of the composition of the oil fractions. The numbers of peaks observed by each technique followed the order 2D GC–MS < Orbitrap MS < FT-ICR MS. The class distributions observed by Orbitrap MS and FT-ICR MS were similar to each other but different from that observed by 2D GC–MS. The DBE and carbon number distributions of the 2D GC–MS and Orbitrap MS data were similar for crude oil aromatics. The FT-ICR MS plots of DBE and carbon number showed an extended range of higher values relative to the other methods. For the aromatic fraction of an oil shale pyrolysate generated by the Fischer assay, only a few nitrogen-containing compounds were observed by 2D GC–MS but a large number of these compounds were detected by Orbitrap MS and FT-ICR MS. This comparison clearly shows that the data obtained from these three techniques can be combined to more completely characterize oil composition. The data obtained by Orbitrap MS and FT-ICR MS agreed well with one another, and the combined DBE versus carbon number plot provided more complete coverage of compounds present in the fractions. In addition, the chemical structure information provided by 2D GC–MS could be matched with the chemical formulas in the DBE versus carbon number plots, providing information not available in ultrahigh-resolution MS results. It was therefore concluded that the combination of 2D GC–MS, Orbitrap MS, and FT-ICR MS in the DBE versus carbon number space facilitates structural assignment of heavy

  11. Annulation of Aromatic Imines via Directed C-H BondActivation

    SciTech Connect

    Thalji, Reema K.; Ahrendt, Kateri A.; Bergman, Robert G.; Ellman,Jonathan A.

    2005-04-14

    A directed C-H bond activation approach to the synthesis of indans, tetralins, dihydrofurans, dihydroindoles, and other polycyclic aromatic compounds is presented. Cyclization of aromatic ketimines and aldimines containing alkenyl groups tethered at the meta position relative to the imine directing group has been achieved using (PPh{sub 3}){sub 3}RhCl (Wilkinson's catalyst). The cyclization of a range of aromatic ketimines and aldimines provides bi- and tricyclic ring systems with good regioselectivity. Different ring sizes and substitution patterns can be accessed through the coupling of monosubstituted, 1,1- or 1,2-disubstituted, and trisubstituted alkenes bearing both electron-rich and electron-deficient functionality.

  12. The Quadruple Bonding in C2 Reproduces the Properties of the Molecule.

    PubMed

    Shaik, Sason; Danovich, David; Braida, Benoit; Hiberty, Philippe C

    2016-03-14

    Ever since Lewis depicted the triple bond for acetylene, triple bonding has been considered as the highest limit of multiple bonding for main elements. Here we show that C2 is bonded by a quadruple bond that can be distinctly characterized by valence-bond (VB) calculations. We demonstrate that the quadruply-bonded structure determines the key observables of the molecule, and accounts by itself for about 90% of the molecule's bond dissociation energy, and for its bond lengths and its force constant. The quadruply-bonded structure is made of two strong π bonds, one strong σ bond and a weaker fourth σ-type bond, the bond strength of which is estimated as 17-21 kcal mol(-1). Alternative VB structures with double bonds; either two π bonds or one π bond and one σ bond lie at 129.5 and 106.1 kcal mol(-1), respectively, above the quadruply-bonded structure, and they collapse to the latter structure given freedom to improve their double bonding by dative σ bonding. The usefulness of the quadruply-bonded model is underscored by "predicting" the properties of the (3)Σ+u state. C2's very high reactivity is rooted in its fourth weak bond. Thus, carbon and first-row main elements are open to quadruple bonding!

  13. Diffusion bonding

    DOEpatents

    Anderson, Robert C.

    1976-06-22

    1. A method for joining beryllium to beryllium by diffusion bonding, comprising the steps of coating at least one surface portion of at least two beryllium pieces with nickel, positioning a coated surface portion in a contiguous relationship with an other surface portion, subjecting the contiguously disposed surface portions to an environment having an atmosphere at a pressure lower than ambient pressure, applying a force upon the beryllium pieces for causing the contiguous surface portions to abut against each other, heating the contiguous surface portions to a maximum temperature less than the melting temperature of the beryllium, substantially uniformly decreasing the applied force while increasing the temperature after attaining a temperature substantially above room temperature, and maintaining a portion of the applied force at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions.

  14. Constructing Models in Teaching of Chemical Bonds: Ionic Bond, Covalent Bond, Double and Triple Bonds, Hydrogen Bond and Molecular Geometry

    ERIC Educational Resources Information Center

    Uce, Musa

    2015-01-01

    Studies in chemistry education show that chemistry topics are considered as abstract, complicated and hard to understand by students. For this reason, it is important to develop new materials and use them in classes for better understanding of abstract concepts. Moving from this point, a student-centered research guided by a teacher was conducted…

  15. Constructing Models in Teaching of Chemical Bonds: Ionic Bond, Covalent Bond, Double and Triple Bonds, Hydrogen Bond and Molecular Geometry

    ERIC Educational Resources Information Center

    Uce, Musa

    2015-01-01

    Studies in chemistry education show that chemistry topics are considered as abstract, complicated and hard to understand by students. For this reason, it is important to develop new materials and use them in classes for better understanding of abstract concepts. Moving from this point, a student-centered research guided by a teacher was conducted…

  16. Functionalized olefin cross-coupling to construct carbon–carbon bonds

    PubMed Central

    Lo, Julian C.; Gui, Jinghan; Yabe, Yuki; Pan, Chung-Mao; Baran, Phil S.

    2014-01-01

    Carbon–carbon (C–C) bonds form the backbone of many important molecules, including polymers, dyes, and pharmaceutical agents. The development of new methods to create these essential connections in a rapid and practical fashion has been the focus of numerous organic chemists. This endeavor heavily relies on the ability to form C–C bonds in the presence of sensitive functional groups and congested structural environments. Here we report a fundamentally new chemical transformation that allows for the facile construction of highly substituted and uniquely functionalized C–C bonds. Using a simple iron catalyst, an inexpensive silane, and a benign solvent under an ambient atmosphere, heteroatom-substituted olefins are easily merged with electron-deficient olefins to create molecular architectures that were previously difficult or impossible to access. More than sixty examples are presented with a wide array of substrates, demonstrating the unique chemoselectivity and mildness of this simple reaction. PMID:25519131

  17. Functionalized olefin cross-coupling to construct carbon-carbon bonds

    NASA Astrophysics Data System (ADS)

    Lo, Julian C.; Gui, Jinghan; Yabe, Yuki; Pan, Chung-Mao; Baran, Phil S.

    2014-12-01

    Carbon-carbon (C-C) bonds form the backbone of many important molecules, including polymers, dyes and pharmaceutical agents. The development of new methods to create these essential connections in a rapid and practical fashion has been the focus of numerous organic chemists. This endeavour relies heavily on the ability to form C-C bonds in the presence of sensitive functional groups and congested structural environments. Here we report a chemical transformation that allows the facile construction of highly substituted and uniquely functionalized C-C bonds. Using a simple iron catalyst, an inexpensive silane and a benign solvent under ambient atmosphere, heteroatom-substituted olefins are easily reacted with electron-deficient olefins to create molecular architectures that were previously difficult or impossible to access. More than 60 examples are presented with a wide array of substrates, demonstrating the chemoselectivity and mildness of this simple reaction.

  18. Effect of bond thickness on fracture and fatigue strength of adhesively bonded composite joints

    NASA Technical Reports Server (NTRS)

    Mall, S.; Ramamurthy, G.

    1989-01-01

    An experimental investigation of composite to composite bonded joints was undertaken to study the effect of bond thickness on debond growth rate under cyclic loading and critical strain energy release rate under static loading. Double cantilever beam specimens of graphite/epoxy adherends bonded with EC 3445 were tested under mode I loading. A different behavior of fracture and fatigue strength was observed with variation of bondline thickness.

  19. Pi Bond Orders and Bond Lengths

    ERIC Educational Resources Information Center

    Herndon, William C.; Parkanyi, Cyril

    1976-01-01

    Discusses three methods of correlating bond orders and bond lengths in unsaturated hydrocarbons: the Pauling theory, the Huckel molecular orbital technique, and self-consistent-field techniques. (MLH)

  20. Pi Bond Orders and Bond Lengths

    ERIC Educational Resources Information Center

    Herndon, William C.; Parkanyi, Cyril

    1976-01-01

    Discusses three methods of correlating bond orders and bond lengths in unsaturated hydrocarbons: the Pauling theory, the Huckel molecular orbital technique, and self-consistent-field techniques. (MLH)

  1. Exocyclic push-pull conjugated compounds. Part 3. An experimental NMR and theoretical MO ab initio study of the structure, the electronic properties and barriers to rotation about the exocyclic partial double bond in 2- exo-methylene- and 2-cyanoimino-quinazolines and -benzodiazepines

    NASA Astrophysics Data System (ADS)

    Benassi, R.; Bertarini, C.; Hilfert, L.; Kempter, G.; Kleinpeter, E.; Spindler, J.; Taddei, F.; Thomas, S.

    2000-03-01

    The structure of a number of 2- exo-methylene substituted quinazolines and benzodiazepines, respectively, 1, 3a, b, 4( X=-CN, -COOEt ) and their 2-cyanoimino substituted analogues 2, 3c, d( X=-CN, -SO 2C 6H 4-Me (p) was completely assigned by the whole arsenal of 1D and 2D NMR spectroscopic methods. The E/ Z isomerism at the exo-cyclic double bond was determined by both NMR spectroscopy and confirmed by ab initio quantum chemical calculations; the Z isomer is the preferred one, its amount proved dependent on steric hindrance. Due to the push-pull effect in this part of the molecules the restricted rotation about the partial C 2,C 11 and C 2,N 11 double bonds, could also be studied and the barrier to rotation measured by dynamic NMR spectroscopy. The free energies of activation of this dynamic process proved very similar along the compounds studied but being dependent on the polarity of the solvent. Quantum chemical calculations at the ab initio level were employed to prove the stereochemistry at the exo-cyclic partial double bonds of 1- 4, to calculate the barriers to rotation but also to discuss in detail both the ground and the transition state of the latter dynamic process in order to better understand electronic, inter- and intramolecular effects on the barrier to rotation which could be determined experimentally. In the cyanoimino substituted compounds 2, 3c, d, the MO ab initio calculations evidence the isomer interconversion to be better described by the internal rotation process than by the lateral shift mechanism.

  2. Bonded Lubricants

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Another spinoff to the food processing industry involves a dry lubricant developed by General Magnaplate Corp. of Linden, N.J. Used in such spacecraft as Apollo, Skylab and Viking, the lubricant is a coating bonded to metal surfaces providing permanent lubrication and corrosion resistance. The coating lengthens equipment life and permits machinery to be operated at greater speed, thus increasing productivity and reducing costs. Bonded lubricants are used in scores of commercia1 applications. They have proved particularly valuable to food processing firms because, while increasing production efficiency, they also help meet the stringent USDA sanitation codes for food-handling equipment. For example, a cookie manufacturer plagued production interruptions because sticky batter was clogging the cookie molds had the brass molds coated to solve the problem. Similarly, a pasta producer faced USDA action on a sanitation violation because dough was clinging to an automatic ravioli-forming machine; use of the anti-stick coating on the steel forming plates solved the dual problem of sanitation deficiency and production line downtime.

  3. Molar efficiency study of chlorinated NPG substitutes in dentin bonding.

    PubMed

    Miniotis, N J; Bennett, P S; Johnston, A D

    1993-06-01

    This study evaluated and compared the contributions to dentin adhesive bonding of three N-phenylglycine analogues with electron-withdrawing substituents on the aromatic ring. These electron-deficient "N-compounds" included: N-(4-chlorophenyl)-glycine (NCPG), N-methyl-N-(4-chlorophenyl)-glycine (NMNCPG), and N-(3,4-dichlorophenyl)-glycine (NDCPG). An experimental three-step dentin-bonding protocol that consisted of sequential application of acidic ferric oxalate solution, an N-compound in acetone, and a surface-active comonomer in acetone was used. The first and third steps were held constant throughout the study. Each N-compound (NCPG, NMNCPG, NDCPG) was used in step two at ten concentrations ranging from 0.0 mol/L (pure acetone) to 5 x 10(-1) mol/L, depending on solubility. After overnight storage in distilled water, the dentin-to-composite bonds were broken in tension. The data were analyzed with ANOVA, and multiple comparisons were performed with Duncan's Multiple Range test. All statistical tests were controlled at alpha = 0.05. At 5 x 10(-3) mol/L, the relative effectiveness of the three N-compounds (as measured by tensile bond strengths) was NMNCPG > NCPG > NDCPG. Of all concentrations studied, the mean bond strengths produced with NMNCPG were statistically as good as or better than those produced by the other two compounds, and NCPG was always as good as or better than NDCPG. Increased electron-withdrawing from the nitrogen of the amine group by the substituents narrowed the effective concentration range for dentin bonding and, in general, produced lower mean bond strengths between dentin and composite.

  4. Substituent Effects on the [N–I–N]+ Halogen Bond

    PubMed Central

    2016-01-01

    We have investigated the influence of electron density on the three-center [N–I–N]+ halogen bond. A series of [bis(pyridine)iodine]+ and [1,2-bis((pyridine-2-ylethynyl)benzene)iodine]+ BF4– complexes substituted with electron withdrawing and donating functionalities in the para-position of their pyridine nitrogen were synthesized and studied by spectroscopic and computational methods. The systematic change of electron density of the pyridine nitrogens upon alteration of the para-substituent (NO2, CF3, H, F, Me, OMe, NMe2) was confirmed by 15N NMR and by computation of the natural atomic population and the π electron population of the nitrogen atoms. Formation of the [N–I–N]+ halogen bond resulted in >100 ppm 15N NMR coordination shifts. Substituent effects on the 15N NMR chemical shift are governed by the π population rather than the total electron population at the nitrogens. Isotopic perturbation of equilibrium NMR studies along with computation on the DFT level indicate that all studied systems possess static, symmetric [N–I–N]+ halogen bonds, independent of their electron density. This was further confirmed by single crystal X-ray diffraction data of 4-substituted [bis(pyridine)iodine]+ complexes. An increased electron density of the halogen bond acceptor stabilizes the [N···I···N]+ bond, whereas electron deficiency reduces the stability of the complexes, as demonstrated by UV-kinetics and computation. In contrast, the N–I bond length is virtually unaffected by changes of the electron density. The understanding of electronic effects on the [N–X–N]+ halogen bond is expected to provide a useful handle for the modulation of the reactivity of [bis(pyridine)halogen]+-type synthetic reagents. PMID:27265247

  5. Marginal adaptation of dentin bonded ceramic inlays: effects of bonding systems and luting resin composites.

    PubMed

    Haller, Bernd; Hässner, Katrin; Moll, Karlheinz

    2003-01-01

    This in vitro study evaluated the marginal adaptation of bonded inlays of lucite-reinforced glass ceramic (Empress) to dentin as influenced by different bonding systems and by luting resin composites (LRCs) with different curing modes. Forty-eight Empress inlays etched with 5% hydrofluoric acid and treated with a silane-coupling agent (Monobond-S) were bonded to two-surface Class II cavities. Two total-etch bonding systems (OptiBond FL, Nexus) and one bonding system with selective enamel etching and a self-conditioning dentin primer (ART Bond) were included in the study. ART Bond was tested with and without the pre-curing of a first layer of adhesive resin selectively applied to the cervical cavity floor (selective double-bond technique). Each bonding system was used in combination with a light-cured resin composite (Prodigy) and a dual-cured LRC (Nexus or Vita Cerec Duo Cement). Marginal integrity was evaluated before and after thermocycling (TC) in a scanning electron microscope (SEM). Dye penetration tests were performed after TC was completed. The median percentages of continuous margin in dentin ranged from 80% to 100% before TC and from 53.5% to 96.1 % after TC. After TC, the influence of the bonding system was more pronounced than that of the LRC. In combination with the LC resin composite, ART Bond with precuring was significantly higher and the Nexus bonding system had significantly lower proportions of continuous margin than all the other bonding systems investigated. Swelling of the adhesive along the gingival margins was frequently found with the Nexus bonding system and with ART Bond without pre-curing. Microleakage was detected with all bonding system/LRC combinations, with somewhat lower rates in specimens completed using the selective double-bond technique. With the exception of the Nexus bonding system, post-TC marginal integrity was not influenced by the curing mode of the LRC (LC vs DC). In conclusion, the marginal quality of dentin bonded

  6. Stereochemistry of enzymatic water addition to C=C bonds.

    PubMed

    Chen, Bi-Shuang; Otten, Linda G; Hanefeld, Ulf

    2015-01-01

    Water addition to carbon-carbon double bonds using hydratases is attracting great interest in biochemistry. Most of the known hydratases are involved in primary metabolism and to a lesser extent in secondary metabolism. New hydratases have recently been added to the toolbox, both from natural sources or artificial metalloenzymes. In order to comprehensively understand how the hydratases are able to catalyse the water addition to carbon-carbon double bonds, this review will highlight the mechanistic and stereochemical studies of the enzymatic water addition to carbon-carbon double bonds, focusing on the syn/anti-addition and stereochemistry of the reaction.

  7. In-silico bonding schemes to encode chemical bonds involving sharing of electrons in molecular structures.

    PubMed

    Punnaivanam, Sankar; Sathiadhas, Jerome Pastal Raj; Panneerselvam, Vinoth

    2016-05-01

    Encoding of covalent and coordinate covalent bonds in molecular structures using ground state valence electronic configuration is achieved. The bonding due to electron sharing in the molecular structures is described with five fundamental bonding categories viz. uPair-uPair, lPair-uPair, uPair-lPair, vPair-lPair, and lPair-lPair. The involvement of lone pair electrons and the vacant electron orbitals in chemical bonding are explained with bonding schemes namely "target vacant promotion", "source vacant promotion", "target pairing promotion", "source pairing promotion", "source cation promotion", "source pairing double bond", "target vacant occupation", and "double pairing promotion" schemes. The bonding schemes are verified with a chemical structure editor. The bonding in the structures like ylides, PCl5, SF6, IF7, N-Oxides, BF4(-), AlCl4(-) etc. are explained and encoded unambiguously. The encoding of bonding in the structures of various organic compounds, transition metals compounds, coordination complexes and metal carbonyls is accomplished.

  8. Towards ideal synthesis: alkenylation of aryl C-H bonds by a Fujiwara-Moritani reaction.

    PubMed

    Zhou, Lihong; Lu, Wenjun

    2014-01-13

    An overview of recent progress in the Fujiwara-Moritani reaction, which is the palladium-catalyzed oxidative coupling of arenes with olefins to afford alkenyl arenes, is described. It is emphasized that regioselectivity on aryl ortho- or meta-CH activation could be controlled very well in the presence of Pd, Rh, or Ru catalysts with the assistance of various chelation groups on aromatic rings in this coupling reaction. Catalytic alkenylation of aryl CH bonds from simple arenes is also discussed, especially from electron-deficient arenes. These advanced protocols would not only make the Fujiwara-Moritani reaction more useful and applicable in organic synthesis but also light the way for the further development of the functionalization of normal CH bonds.

  9. Donor-Stabilized 1,3-Disila-2,4-diazacyclobutadiene with a Nonbonded Si⋅⋅⋅Si Distance Compressed to a Si=Si Double Bond Length.

    PubMed

    Gau, David; Nougué, Raphael; Saffon-Merceron, Nathalie; Baceiredo, Antoine; De Cózar, Abel; Cossío, Fernando P; Hashizume, Daisuke; Kato, Tsuyoshi

    2016-11-14

    A donor-stabilized 1,3-disila-2,4-diazacyclobutadiene presents an exceptionally short nonbonded Si⋅⋅⋅Si distance (2.23 Å), which is as short as that of Si=Si bonds (2.15-2.23 Å). Theoretical investigations indicate that there is no bond between the two silicon atoms, and that the unusual geometry can be related to a significant coulomb repulsion between the two ring nitrogen atoms. This chemical pressure phenomenon could provide an alternative and superior way of squeezing out van der Waals space in highly strained structures, as compared to the classical physical methods. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Chemical Bonds II

    ERIC Educational Resources Information Center

    Sanderson, R. T.

    1972-01-01

    The continuation of a paper discussing chemical bonding from a bond energy viewpoint, with a number of examples of single and multiple bonds. (Part I appeared in volume 1 number 3, pages 16-23, February 1972.) (AL)

  11. Chemical Bonds II

    ERIC Educational Resources Information Center

    Sanderson, R. T.

    1972-01-01

    The continuation of a paper discussing chemical bonding from a bond energy viewpoint, with a number of examples of single and multiple bonds. (Part I appeared in volume 1 number 3, pages 16-23, February 1972.) (AL)

  12. What Determines Bond Costs. Municipal Bonds Series.

    ERIC Educational Resources Information Center

    Young, Douglas; And Others

    Public officials in small towns who participate infrequently in the bond market need information about bond financing. This publication, one in a series of booklets published by the Western Rural Development Center using research gathered between 1967-77, discusses factors influencing the marketability and cost of bond financing for towns and…

  13. Shear bond strengths of a single-step bonding system to enamel and dentin.

    PubMed

    Nikaido, T; Nakajima, M; Higashi, T; Kanemura, N; Pereira, P N; Tagami, J

    1997-06-01

    An experimental primer was developed as a single-step bonding system for resin-modified glass ionomer cements (GIC). Efficacy of this primer on adhesion of resin-modified GICs and resin composite to enamel and dentin was evaluated by shear bond test and SEM observation. Good bond strengths to enamel were obtained (> 11 MPa), whereas significantly low bond strengths to dentin were obtained using a single coat of the primer. However, double-coating improved the bond strengths to dentin (> 8 MPa). SEM observations indicated that the primer functioned as a mild conditioner to remove the smear layer on enamel or dentin surfaces. A hybrid layer was observed at the cross-sectional view of the GIC/dentin interface. These findings suggested that good adhesion to enamel and dentin could be achieved using a single-step bonding system.

  14. The direct arylation of allylic sp3 C–H bonds via organocatalysis and photoredox catalysis

    PubMed Central

    Cuthbertson, James D.; MacMillan, David W. C.

    2015-01-01

    The direct functionalization of unactivated sp3 C–H bonds is still one of the most challenging problems facing synthetic organic chemists. The appeal of such transformations derives from their capacity to facilitate the construction of complex organic molecules via the coupling of simple and otherwise inert building blocks, without introducing extraneous functional groups. Despite notable recent efforts,1 the establishment of general and mild strategies for the engagement of sp3 C–H bonds in carbon–carbon bond forming reactions has proven difficult. Within this context, the discovery of chemical transformations that are able to directly functionalize allylic methyl, methylene, and methine carbons in a catalytic manner is a priority. While protocols for direct allylic C–H oxidation and amination have become widely established,2,3 the engagement of allylic substrates in carbon–carbon bond-forming reactions has thus far required the use of pre-functionalized coupling partners.4 In particular, the direct arylation of non-functionalized allylic systems would enable chemists to rapidly access a series of known pharmacophores, though a general solution to this longstanding challenge remains elusive. We describe herein the use of both photoredox and organic catalysis to accomplish the first mild, broadly effective direct allylic C–H arylation. This new C–C bond-forming reaction readily accommodates a broad range of alkene and electron-deficient arene reactants and has been used in the direct arylation of benzylic C–H bonds. PMID:25739630

  15. Protocols for the selective cleavage of carbon-sulfur bonds in coal

    SciTech Connect

    Bausch, M.

    1991-01-01

    Removal of the organic sulfur in coal constitutes one of the major challenges facing fossil fuel scientists today. A cost--effective of desulfurizing Illinois coal is non-existent at the present time. Research in our group aims to develop a simple protocol for sulfur removal by gaining understanding of how various additives can enhance the rates of C-S bond cleavage in Illinois coal and coal model compounds, relative to fragmentation of the coal macromolecule via C-C, C-O, and C-N bond cleavage. During this funding period, we plan to carry out examinations of: (a) the effects of various reaction conditions on radical-initiated and Lewis acid-catalyzed C-S bond cleavages; (b) the effects of caustic impregnation and subsequent alcoholic reflux on C-S bond cleavage strategies; (c) the reactions of coal model compounds with electron-deficient substrates; (d) examinations of photooxidative C-S bond cleavage reactions; (e) the effects of moderate (300--400{degrees}C) temperatures and pressures as well as ultrasonic radiation on (a) - (c). Also planned are differential scanning calorimetric (DSC) examinations of selected C-S bond cleavage protocols, including those on Illinois coals that possess varying amounts of organic and inorganic sulfur.

  16. Systematic Comparison of Second-Order Polarization Propagator Approximation (SOPPA) and Equation-of-Motion Coupled Cluster Singles and Doubles (EOM-CCSD) Spin-Spin Coupling Constants for Molecules with C, N, and O Double and Triple Bonds and Selected F-Substituted Derivatives.

    PubMed

    Del Bene, Janet E; Alkorta, Ibon; Elguero, José

    2009-01-13

    Ab initio EOM-CCSD and SOPPA calculations with the Ahlrichs (qzp,qz2p) basis set have been carried out to evaluate one-, two-, and three-bond spin-spin coupling constants for molecules HmXYHn and HmXYHn for X, Y = (13)C, (15)N, and (17)O, and selected (19)F-substituted derivatives. In the great majority of cases, EOM-CCSD one-bond C-C, C-N, C-O, C-F, N-N, N-O, and N-F coupling constants and three-bond F-F coupling constants are smaller in absolute value than the corresponding SOPPA coupling constants, with the EOM-CCSD values in better agreement with experimental data. SOPPA tends to significantly overestimate the absolute values of large one- and three-bond couplings involving fluorine. The majority of two-bond SOPPA coupling constants are in better agreement with experiment than EOM-CCSD, although differences between EOM-CCSD and experimental values are not dramatic. A statistical analysis of thirty EOM-CCSD and SOPPA coupling constants versus experimental coupling constants demonstrates that better agreement with experiment is found when EOM-CCSD is the computational method.

  17. Cycloaddition reaction of 2-azadienes derived from beta-amino acids with electron-rich and electron-deficient alkenes and carbonyl compounds. Synthesis of pyridine and 1,3-oxazine derivatives.

    PubMed

    Palacios, Francisco; Herrán, Esther; Rubiales, Gloria; Ezpeleta, Jose María

    2002-04-05

    Functionalized keto-enamines 6 were obtained by nucleophilic addition of enol ethers to the imine moiety of 2-azadienes derived from dehydroaspartic esters 4. Reactions of 2-azadiene 4c containing three electron-withdrawing substituents (CO(2)R) with enol ethers 5 in the presence of lithium perchlorate led to the formation of tetrahydropyridine derivatives 7 in a regio- and stereoselective fashion. 2H-[1,3]-oxazines 10 and pyridine derivatives 12 and 13 were obtained by heterocycloaddition reactions of electron-poor azadienes 4d-g containing two electron-withdrawing substituents (4-O(2)N-C(6)H(4), CO(2)R) in positions 1 and 4 with carbonyl derivatives (ethyl glyoxalate 9a and diethyl ketomalonate 9b) and the electron-deficient olefin tetracyanoethylene 11.

  18. Double helicenes

    NASA Astrophysics Data System (ADS)

    Bachrach, Steven M.

    2016-12-01

    The even double helicenes with 4-12 phenyl groups in each helix were examined at B3LYP-D3/6-311G(d). The double helicenes with 4-10 phenyl rings are less than twice as strained as their component helicenes; the strain results from twisting about the shared naphthyl moiety, with accompanying loss of aromaticity. These compounds should be reasonable synthetic targets, and computed NMR shifts are provided to aid in their characterization.

  19. Using Multiple Bonding Strategies.

    PubMed

    Larson, Thomas D

    2015-01-01

    There are many ways to bond to tooth structure, some micro-mechanical some chemical, some a combination. Different dentin bonding materials have different bonding strengths to differently prepared surfaces, and because of differences in their nature, different areas of tooth structure present peculiar bonding challenges. This paper will review a variety of material types, elucidating their particular bonding strengths and commenting on improved bonding strategies to increase durability, strength, and favorable pulpal response. In this discussion, resin dentin bonding systems, glass ionomers, Gluma, resin cements, and newer combined products will br reviewed.

  20. A double mutation of Escherichia coli 2C-methyl-d-erythritol-2,4-cyclodiphosphate synthase disrupts six hydrogen bonds with, yet fails to prevent binding of, an isoprenoid diphosphate

    PubMed Central

    Sgraja, Tanja; Kemp, Lauris E.; Ramsden, Nicola; Hunter, William N.

    2005-01-01

    The essential enzyme 2C-methyl-d-erythritol-2,4-cyclodiphosphate (MECP) synthase, found in most eubacteria and the apicomplexan parasites, participates in isoprenoid-precursor biosynthesis and is a validated target for the development of broad-spectrum antimicrobial drugs. The structure and mechanism of the enzyme have been elucidated and the recent exciting finding that the enzyme actually binds diphosphate-containing isoprenoids at the interface formed by the three subunits that constitute the active protein suggests the possibility of feedback regulation of MECP synthase. To investigate such a possibility, a form of the enzyme was sought that did not bind these ligands but which would retain the quaternary structure necessary to create the active site. Two amino acids, Arg142 and Glu144, in Escherichia coli MECP synthase were identified as contributing to ligand binding. Glu144 interacts directly with Arg142 and positions the basic residue to form two hydrogen bonds with the terminal phosphate group of the isoprenoid diphosphate ligand. This association occurs at the trimer interface and three of these arginines interact with the ligand phosphate group. A dual mutation was designed (Arg142 to methionine and Glu144 to leucine) to disrupt the electrostatic attractions between the enzyme and the phosphate group to investigate whether an enzyme without isoprenoid diphosphate could be obtained. A low-resolution crystal structure of the mutated MECP synthase Met142/Leu144 revealed that geranyl diphosphate was retained despite the removal of six hydrogen bonds normally formed with the enzyme. This indicates that these two hydrophilic residues on the surface of the enzyme are not major determinants of isoprenoid binding at the trimer interface but rather that hydrophobic interactions between the hydrocarbon tail and the core of the enzyme trimer dominate ligand binding. PMID:16511114

  1. Double stranded nucleic acid biochips

    DOEpatents

    Chernov, Boris; Golova, Julia

    2006-05-23

    This invention describes a new method of constructing double-stranded DNA (dsDNA) microarrays based on the use of pre-synthesized or natural DNA duplexes without a stem-loop structure. The complementary oligonucleotide chains are bonded together by a novel connector that includes a linker for immobilization on a matrix. A non-enzymatic method for synthesizing double-stranded nucleic acids with this novel connector enables the construction of inexpensive and robust dsDNA/dsRNA microarrays. DNA-DNA and DNA-protein interactions are investigated using the microarrays.

  2. The direct arylation of allylic sp(3) C-H bonds via organic and photoredox catalysis.

    PubMed

    Cuthbertson, James D; MacMillan, David W C

    2015-03-05

    The direct functionalization of unactivated sp(3) C-H bonds is still one of the most challenging problems facing synthetic organic chemists. The appeal of such transformations derives from their capacity to facilitate the construction of complex organic molecules via the coupling of simple and otherwise inert building blocks, without introducing extraneous functional groups. Despite notable recent efforts, the establishment of general and mild strategies for the engagement of sp(3) C-H bonds in C-C bond forming reactions has proved difficult. Within this context, the discovery of chemical transformations that are able to directly functionalize allylic methyl, methylene and methine carbons in a catalytic manner is a priority. Although protocols for direct oxidation and amination of allylic C-H bonds (that is, C-H bonds where an adjacent carbon is involved in a C = C bond) have become widely established, the engagement of allylic substrates in C-C bond forming reactions has thus far required the use of pre-functionalized coupling partners. In particular, the direct arylation of non-functionalized allylic systems would enable access to a series of known pharmacophores (molecular features responsible for a drug's action), though a general solution to this long-standing challenge remains elusive. Here we report the use of both photoredox and organic catalysis to accomplish a mild, broadly effective direct allylic C-H arylation. This C-C bond forming reaction readily accommodates a broad range of alkene and electron-deficient arene reactants, and has been used in the direct arylation of benzylic C-H bonds.

  3. The direct arylation of allylic sp3 C-H bonds via organic and photoredox catalysis

    NASA Astrophysics Data System (ADS)

    Cuthbertson, James D.; MacMillan, David W. C.

    2015-03-01

    The direct functionalization of unactivated sp3 C-H bonds is still one of the most challenging problems facing synthetic organic chemists. The appeal of such transformations derives from their capacity to facilitate the construction of complex organic molecules via the coupling of simple and otherwise inert building blocks, without introducing extraneous functional groups. Despite notable recent efforts, the establishment of general and mild strategies for the engagement of sp3 C-H bonds in C-C bond forming reactions has proved difficult. Within this context, the discovery of chemical transformations that are able to directly functionalize allylic methyl, methylene and methine carbons in a catalytic manner is a priority. Although protocols for direct oxidation and amination of allylic C-H bonds (that is, C-H bonds where an adjacent carbon is involved in a C = C bond) have become widely established, the engagement of allylic substrates in C-C bond forming reactions has thus far required the use of pre-functionalized coupling partners. In particular, the direct arylation of non-functionalized allylic systems would enable access to a series of known pharmacophores (molecular features responsible for a drug's action), though a general solution to this long-standing challenge remains elusive. Here we report the use of both photoredox and organic catalysis to accomplish a mild, broadly effective direct allylic C-H arylation. This C-C bond forming reaction readily accommodates a broad range of alkene and electron-deficient arene reactants, and has been used in the direct arylation of benzylic C-H bonds.

  4. Hydroxide-catalyzed bonding

    NASA Technical Reports Server (NTRS)

    Gwo, Dz-Hung (Inventor)

    2003-01-01

    A method of bonding substrates by hydroxide-catalyzed hydration/dehydration involves applying a bonding material to at least one surface to be bonded, and placing the at least one surface sufficiently close to another surface such that a bonding interface is formed between them. A bonding material of the invention comprises a source of hydroxide ions, and may optionally include a silicate component, a particulate filling material, and a property-modifying component. Bonding methods of the invention reliably and reproducibly provide bonds which are strong and precise, and which may be tailored according to a wide range of possible applications. Possible applications for bonding materials of the invention include: forming composite materials, coating substrates, forming laminate structures, assembly of precision optical components, and preparing objects of defined geometry and composition. Bonding materials and methods of preparing the same are also disclosed.

  5. [Double responses].

    PubMed

    Motté, G; Dinanian, S; Sebag, C; Drieu, L; Slama, M

    1995-12-01

    Double response is a rare electrocardiographic phenomenon requiring two atrioventricular conduction pathways with very different electrophysiological properties. Double ventricular responses are the usual manifestation: an atrial depolarisation (spontaneous or provoked, anticipated or not) is followed by a first ventricular response dependent on an accessory pathway or a rapid nodal pathway and then a second response resulting from sufficiently delayed transmission through a nodal pathway for the ventricles to have recovered their excitability when the second wave of activation reaches them. A simple curiosity when isolated and occurring under unusual conditions, particularly during electrophysiological investigation of the Wolff-Parkinson-White syndrome, the double response may initiate symptomatic non-reentrant junctional tachycardia when associated with nodal duality and repeating from atria in sinus rhythm. The functional incapacity and resistance to antiarrhythmic therapy may require referral for ablation of the slow pathway.

  6. From ketones to esters by a Cu-catalyzed highly selective C(CO)-C(alkyl) bond cleavage: aerobic oxidation and oxygenation with air.

    PubMed

    Huang, Xiaoqiang; Li, Xinyao; Zou, Miancheng; Song, Song; Tang, Conghui; Yuan, Yizhi; Jiao, Ning

    2014-10-22

    The Cu-catalyzed aerobic oxidative esterification of simple ketones via C-C bond cleavage has been developed. Varieties of common ketones, even inactive aryl long-chain alkyl ketones, are selectively converted into esters. The reaction tolerates a wide range of alcohols, including primary and secondary alcohols, chiral alcohols with retention of the configuration, electron-deficient phenols, as well as various natural alcohols. The usage of inexpensive copper catalyst, broad substrate scope, and neutral and open air conditions make this protocol very practical. (18)O labeling experiments reveal that oxygenation occurs during this transformation. Preliminary mechanism studies indicate that two novel pathways are mainly involved in this process.

  7. Measurement of bonding energy in an anhydrous nitrogen atmosphere and its application to silicon direct bonding technology

    NASA Astrophysics Data System (ADS)

    Fournel, F.; Continni, L.; Morales, C.; Da Fonseca, J.; Moriceau, H.; Rieutord, F.; Barthelemy, A.; Radu, I.

    2012-05-01

    Bonding energy represents an important parameter for direct bonding applications as well as for the elaboration of physical mechanisms at bonding interfaces. Measurement of bonding energy using double cantilever beam (DCB) under prescribed displacement is the most used technique thanks to its simplicity. The measurements are typically done in standard atmosphere with relative humidity above 30%. Therefore, the obtained bonding energies are strongly impacted by the water stress corrosion at the bonding interfaces. This paper presents measurements of bonding energies of directly bonded silicon wafers under anhydrous nitrogen conditions in order to prevent the water stress corrosion effect. It is shown that the measurements under anhydrous nitrogen conditions (less than 0.2 ppm of water in nitrogen) lead to high stable debonding lengths under static load and to higher bonding energies compared to the values measured under standard ambient conditions. Moreover, the bonding energies of Si/SiO2 or SiO2/SiO2 bonding interfaces are measured overall the classical post bond annealing temperature range. These new results allow to revisit the reported bonding mechanisms and to highlight physical and chemical phenomena in the absence of stress corrosion effect.

  8. Double Crater

    NASA Image and Video Library

    2012-03-23

    A double crater, called a crater doublet, is seen in the bottom right part of this image from NASA Dawn spacecraft of asteroid Vesta. This crater doublet was likely formed by the simultaneous impact of two fragments of a split projectile.

  9. Aromatic C–H bond cleavage by using a Cu( i ) ate-complex

    SciTech Connect

    Zhang, Guanghui; Yi, Hong; Xin, Jie; Deng, Yi; Bai, Ruopeng; Huang, Zhiliang; Miller, Jeffrey T.; Kropf, A. Jeremy; Bunel, Emilio E.; Qi, Xiaotian; Lan, Yu; Lei, Aiwen

    2016-01-01

    In situ X-ray absorption spectroscopy (XAS), infrared (IR) and nuclear magnetic resonance (NMR) techniques were used to identify the structures and reactivity of copper-containing active intermediates in the sp2 C–H bond cleavage reaction of electron-deficient aromatics. An ate-complex [Cu(OtBu)2]Na was found to be able to cleave the C–H bond of benzothiazole (ArH) producing [ArCuI(OtBu)]Na with a rate constant of 3.2 × 10-2 mol-1 L s-1 at -50 °C and with an activation enthalpy of 0.73 kcal mol-1 at room temperature.

  10. Effects of carbon chain substituents on the P⋯N noncovalent bond

    NASA Astrophysics Data System (ADS)

    Adhikari, Upendra; Scheiner, Steve

    2012-05-01

    The effects of carbon chains placed on the electron-accepting P atom of a P⋯N bond are examined via ab initio calculations. Saturated alkyl groups have a mild weakening effect, regardless of chain length. In contrast, incorporation of double bonds into the chain strengthens the interaction, Ctbnd C triple bonds even more so. These effects are only slightly enhanced by additional conjugated double bonds or an aromatic ring. Placing F atoms onto the carbon chains strengthens the P⋯N bond, but only by a small amount, which wanes as the F atom is displaced further from the P along the chain.

  11. Dielectric Circuit Board Bonding.

    DTIC Science & Technology

    circuit boards to form subassemblies and the bonding of subassemblies together. The finished circuit may include a bonded-in ground plate of copper...The patent application describes a method and apparatus for bonding of dielectric circuit boards for microwave use, the bonding together of several...wire cloth or the like and may include through- plate holes. The technique includes the build-up of thin films to provide strength, toughness and

  12. Diffusion bonding aeroengine components

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, G. A.; Broughton, T.

    1988-10-01

    The use of diffusion bonding processes at Rolls-Royce for the manufacture of titanium-alloy aircraft engine components and structures is described. A liquid-phase diffusion bonding process called activated diffusion bonding has been developed for the manufacture of the hollow titanium wide chord fan blade. In addition, solid-state diffusion bonding is being used in the manufacture of hollow vane/blade airfoil constructions mainly in conjunction with superplastic forming and hot forming techniques.

  13. AFOSR Wafer Bonding

    DTIC Science & Technology

    2009-07-31

    cleanliness (foreign particles) and surface morphology (roughness). Two silicon wafers, when properly cleaned, can easily bond at room temperature because of...4 Figure IV data for nSi-nGaN bond. Structure is similar to that shown in Figure Difficulties and Knowledge Added Surface Morphology and...Particles One of the most important features of materials in determining whether they will bond is the quality of the bonding surfaces , in both

  14. Acrylic mechanical bond tests

    SciTech Connect

    Wouters, J.M.; Doe, P.J.

    1991-02-01

    The tensile strength of bonded acrylic is tested as a function of bond joint thickness. 0.125 in. thick bond joints were found to posses the maximum strength while the acceptable range of joints varied from 0.063 in. to almost 0.25 in. Such joints are used in the Sudbury Neutrino Observatory.

  15. Bonding aluminum beam leads

    NASA Technical Reports Server (NTRS)

    Burkett, F. S.

    1978-01-01

    Report makes it relatively easy for hybrid-circuit manufacturers to convert integrated circuit chips with aluminum bead leads. Report covers: techniques for handling tiny chips; proper geometries for ultrasonic bonding tips; best combinations of pressure, pulse time, and ultrasonic energy for bonding; and best thickness for metal films to which beam leads are bonded.

  16. Rapid adhesive bonding concepts

    NASA Technical Reports Server (NTRS)

    Stein, B. A.; Tyeryar, J. R.; Hodges, W. T.

    1984-01-01

    Adhesive bonding in the aerospace industry typically utilizes autoclaves or presses which have considerable thermal mass. As a consequence, the rates of heatup and cooldown of the bonded parts are limited and the total time and cost of the bonding process is often relatively high. Many of the adhesives themselves do not inherently require long processing times. Bonding could be performed rapidly if the heat was concentrated in the bond lines or at least in the adherends. Rapid adhesive bonding concepts were developed to utilize induction heating techniques to provide heat directly to the bond line and/or adherends without heating the entire structure, supports, and fixtures of a bonding assembly. Bonding times for specimens are cut by a factor of 10 to 100 compared to standard press bonding. The development of rapid adhesive bonding for lap shear specimens (per ASTM D1003 and D3163), for aerospace panel bonding, and for field repair needs of metallic and advanced fiber reinforced polymeric matrix composite structures are reviewed.

  17. Double Layers in Astrophysics

    NASA Technical Reports Server (NTRS)

    Williams, Alton C. (Editor); Moorehead, Tauna W. (Editor)

    1987-01-01

    Topics addressed include: laboratory double layers; ion-acoustic double layers; pumping potential wells; ion phase-space vortices; weak double layers; electric fields and double layers in plasmas; auroral double layers; double layer formation in a plasma; beamed emission from gamma-ray burst source; double layers and extragalactic jets; and electric potential between plasma sheet clouds.

  18. Bonding thermoplastic polymers

    SciTech Connect

    Wallow, Thomas I.; Hunter, Marion C.; Krafcik, Karen Lee; Morales, Alfredo M.; Simmons, Blake A.; Domeier, Linda A.

    2008-06-24

    We demonstrate a new method for joining patterned thermoplastic parts into layered structures. The method takes advantage of case-II permeant diffusion to generate dimensionally controlled, activated bonding layers at the surfaces being joined. It is capable of producing bonds characterized by cohesive failure while preserving the fidelity of patterned features in the bonding surfaces. This approach is uniquely suited to production of microfluidic multilayer structures, as it allows the bond-forming interface between plastic parts to be precisely manipulated at micrometer length scales. The bond enhancing procedure is easily integrated in standard process flows and requires no specialized equipment.

  19. Double screening

    SciTech Connect

    Gratia, Pierre; Hu, Wayne; Joyce, Austin; Ribeiro, Raquel H.

    2016-06-15

    Attempts to modify gravity in the infrared typically require a screening mechanism to ensure consistency with local tests of gravity. These screening mechanisms fit into three broad classes; we investigate theories which are capable of exhibiting more than one type of screening. Specifically, we focus on a simple model which exhibits both Vainshtein and kinetic screening. We point out that due to the two characteristic length scales in the problem, the type of screening that dominates depends on the mass of the sourcing object, allowing for different phenomenology at different scales. We consider embedding this double screening phenomenology in a broader cosmological scenario and show that the simplest examples that exhibit double screening are radiatively stable.

  20. Theoretical study of prebiotic precursors: the peptide bond and its silicon, sulphur and phosphorous analogues

    NASA Astrophysics Data System (ADS)

    Chiaramello, J. M.; Talbi, D.; Berthier, G.; Ellinger, Y.

    2005-04-01

    This paper looks at the possibility that the peptide bond may be more common than originally thought, leading to molecules of prebiotic interest containing heavier atoms of the second row of the periodic table. Ab initio Möller-Plesset (MP2) coupled-cluster molecular orbital methods and density functional theory have been used. A first investigation of the six-atom system [C,3H,O,N] showed that formamide, NH2[bond]CH[double bond]O, is the most stable system that can be formed. Systematic studies on this same system in which C, O and N were respectively replaced by Si, S and P were then carried out. It has been found that the peptide-like linkage is the most stable for [C,3H,S,N] and [Si,3H,O,N] where NH2[bond]CH[double bond]S and NH2[bond]SiH[double bond]O are about 10-14 kcal mol[minus sign]1 more favourable than the corresponding enol tautomers and well below other isomers on the energy scale. For [C,3H,O,P], the most stable species is CH3[bond]P[double bond]O, which is found 18 kcal mol[minus sign]1 below the PH2[bond]CH[double bond]O peptide analogue. By correcting the known inadequacies in the calculations with the average theoretical to experimental ratio from the benchmark molecules of the system, it is possible to obtain a best estimate of rotational constants and infrared frequencies that should be precise enough to initiate laboratory experiments and/or observations. The corrected values of B=6.0342 GHz and C=5.4921 GHz for NH2[bond]CH[double bond]S; B=9.2292 GHz and C=6.1164 GHz for NH2[bond]SiH[double bond]O; B=8.0275 GHz and C=6.4779 GHz for CH3[bond]P[double bond]O should be accurate to within a few tenths of a per cent. Theoretical infrared spectra are also provided to assist in identification of these exotic species.

  1. Protocols for the selective cleavage of carbon-sulfur bonds in coal. Quarterly report, September 1, 1991--November 30, 1991

    SciTech Connect

    Bausch, M.

    1991-12-31

    Removal of the organic sulfur in coal constitutes one of the major challenges facing fossil fuel scientists today. A cost--effective of desulfurizing Illinois coal is non-existent at the present time. Research in our group aims to develop a simple protocol for sulfur removal by gaining understanding of how various additives can enhance the rates of C-S bond cleavage in Illinois coal and coal model compounds, relative to fragmentation of the coal macromolecule via C-C, C-O, and C-N bond cleavage. During this funding period, we plan to carry out examinations of: (a) the effects of various reaction conditions on radical-initiated and Lewis acid-catalyzed C-S bond cleavages; (b) the effects of caustic impregnation and subsequent alcoholic reflux on C-S bond cleavage strategies; (c) the reactions of coal model compounds with electron-deficient substrates; (d) examinations of photooxidative C-S bond cleavage reactions; (e) the effects of moderate (300--400{degrees}C) temperatures and pressures as well as ultrasonic radiation on (a) - (c). Also planned are differential scanning calorimetric (DSC) examinations of selected C-S bond cleavage protocols, including those on Illinois coals that possess varying amounts of organic and inorganic sulfur.

  2. Hydrogen multicentre bonds.

    PubMed

    Janotti, Anderson; Van de Walle, Chris G

    2007-01-01

    The concept of a chemical bond stands out as a major development in the process of understanding how atoms are held together in molecules and solids. Lewis' classical picture of chemical bonds as shared-electron pairs evolved to the quantum-mechanical valence-bond and molecular-orbital theories, and the classification of molecules and solids in terms of their bonding type: covalent, ionic, van der Waals and metallic. Along with the more complex hydrogen bonds and three-centre bonds, they form a paradigm within which the structure of almost all molecules and solids can be understood. Here, we present evidence for hydrogen multicentre bonds-a generalization of three-centre bonds-in which a hydrogen atom equally bonds to four or more other atoms. When substituting for oxygen in metal oxides, hydrogen bonds equally to all the surrounding metal atoms, becoming fourfold coordinated in ZnO, and sixfold coordinated in MgO. These multicentre bonds are remarkably strong despite their large hydrogen-metal distances. The calculated local vibration mode frequency in MgO agrees with infrared spectroscopy measurements. Multicoordinated hydrogen also explains the dependence of electrical conductivity on oxygen partial pressure, resolving a long-standing controversy on the role of point defects in unintentional n-type conductivity of ZnO (refs 8-10).

  3. Direct and Auger Electron-Induced, Single- and Double-Strand Breaks on Plasmid DNA Caused by 99mTc-Labeled Pyrene Derivatives and the Effect of Bonding Distance

    PubMed Central

    Reissig, Falco; Mamat, Constantin; Steinbach, Joerg; Pietzsch, Hans-Juergen; Freudenberg, Robert; Navarro-Retamal, Carlos; Caballero, Julio; Kotzerke, Joerg; Wunderlich, Gerd

    2016-01-01

    It is evident that 99mTc causes radical-mediated DNA damage due to Auger electrons, which were emitted simultaneously with the known γ-emission of 99mTc. We have synthesized a series of new 99mTc-labeled pyrene derivatives with varied distances between the pyrene moiety and the radionuclide. The pyrene motif is a common DNA intercalator and allowed us to test the influence of the radionuclide distance on damages of the DNA helix. In general, pUC 19 plasmid DNA enables the investigation of the unprotected interactions between the radiotracers and DNA that results in single-strand breaks (SSB) or double-strand breaks (DSB). The resulting DNA fragments were separated by gel electrophoresis and quantified by fluorescent staining. Direct DNA damage and radical-induced indirect DNA damage by radiolysis products of water were evaluated in the presence or absence of the radical scavenger DMSO. We demonstrated that Auger electrons directly induced both SSB and DSB in high efficiency when 99mTc was tightly bound to the plasmid DNA and this damage could not be completely prevented by DMSO, a free radical scavenger. For the first time, we were able to minimize this effect by increasing the carbon chain lengths between the pyrene moiety and the 99mTc nuclide. However, a critical distance between the 99mTc atom and the DNA helix could not be determined due to the significantly lowered DSB generation resulting from the interaction which is dependent on the type of the 99mTc binding motif. The effect of variable DNA damage caused by the different chain length between the pyrene residue and the Tc-core as well as the possible conformations of the applied Tc-complexes was supplemented with molecular dynamics (MD) calculations. The effectiveness of the DNA-binding 99mTc-labeled pyrene derivatives was demonstrated by comparison to non-DNA-binding 99mTcO4–, since nearly all DNA damage caused by 99mTcO4– was prevented by incubating with DMSO. PMID:27583677

  4. Direct and Auger Electron-Induced, Single- and Double-Strand Breaks on Plasmid DNA Caused by 99mTc-Labeled Pyrene Derivatives and the Effect of Bonding Distance.

    PubMed

    Reissig, Falco; Mamat, Constantin; Steinbach, Joerg; Pietzsch, Hans-Juergen; Freudenberg, Robert; Navarro-Retamal, Carlos; Caballero, Julio; Kotzerke, Joerg; Wunderlich, Gerd

    2016-01-01

    It is evident that 99mTc causes radical-mediated DNA damage due to Auger electrons, which were emitted simultaneously with the known γ-emission of 99mTc. We have synthesized a series of new 99mTc-labeled pyrene derivatives with varied distances between the pyrene moiety and the radionuclide. The pyrene motif is a common DNA intercalator and allowed us to test the influence of the radionuclide distance on damages of the DNA helix. In general, pUC 19 plasmid DNA enables the investigation of the unprotected interactions between the radiotracers and DNA that results in single-strand breaks (SSB) or double-strand breaks (DSB). The resulting DNA fragments were separated by gel electrophoresis and quantified by fluorescent staining. Direct DNA damage and radical-induced indirect DNA damage by radiolysis products of water were evaluated in the presence or absence of the radical scavenger DMSO. We demonstrated that Auger electrons directly induced both SSB and DSB in high efficiency when 99mTc was tightly bound to the plasmid DNA and this damage could not be completely prevented by DMSO, a free radical scavenger. For the first time, we were able to minimize this effect by increasing the carbon chain lengths between the pyrene moiety and the 99mTc nuclide. However, a critical distance between the 99mTc atom and the DNA helix could not be determined due to the significantly lowered DSB generation resulting from the interaction which is dependent on the type of the 99mTc binding motif. The effect of variable DNA damage caused by the different chain length between the pyrene residue and the Tc-core as well as the possible conformations of the applied Tc-complexes was supplemented with molecular dynamics (MD) calculations. The effectiveness of the DNA-binding 99mTc-labeled pyrene derivatives was demonstrated by comparison to non-DNA-binding 99mTcO4-, since nearly all DNA damage caused by 99mTcO4- was prevented by incubating with DMSO.

  5. Synthesis, structure, electronic spectroscopy, photophysics, electrochemistry, and X-ray photoelectron spectroscopy of highly-electron-deficient [5,10,15,20-tetrakis(perfluoroalkyl)porphinato]zinc(II ) complexes and their free base derivatives

    SciTech Connect

    Goll, J.G.; Moore, K.T.; Therien, M.J.; Ghosh, A.

    1996-09-04

    The synthesis, optical spectroscopy, photophysical properties, electrochemistry, and X-ray photoelectron spectroscopy of a series of [5,10,15,20-tetrakis(perfluoroalkyl)porphinato]zinc(II ) complexes and their free base analogs are reported. The title compounds were prepared by a condensation methodology that utilizes perfluoro-1-(2`-pyrrolyl)-1-alkanol precursors and employs continuous water removal throughout the course of the reaction to yield the meso perfluorocarbon-substituted porphyrins. The nature of the porphyrin-pendant meso-perfluoroalkyl group exerts considerable influence over the macrocycle`s solubility properties. The structure of the monopyridyl adduct of [5,10,15,20-tetrakis(heptafluoropropyl)porphinato] zinc(II) features an S{sub 4}-distorted porphyrin core; X-ray data are given. Electrochemical studies carried out on these porphyrin and (porphinato)zinc(II) complexes indicate that meso-perfluoroalkylporphyrins are among the most electron-deficient porphyrinic species known. X-ray photoelectron spectroscopy experiments corroborate the electron poor nature of these systems and evince extreme stabilization of the nitrogen ls orbitals, consonant with particularly effective removal of electron density from the macrocycle by the meso-perfluoroalkyl moieties that is modulated by {sigma}-symmetry orbitals. 27 refs., 8 figs., 6 tabs.

  6. The effect of sulfur covalent bonding on the electronic shells of silver clusters.

    PubMed

    Pedicini, Anthony F; Reber, Arthur C; Khanna, Shiv N

    2013-10-28

    The nature of the bonding in Ag(n)S(m)(0∕-) clusters, n = 1-7; m = 1-4, has been analyzed to understand its effect on the electronic shell structure of silver clusters. First-principle investigations reveal that the sulfur atoms prefer 2 or 3-coordinate sites around a silver core, and that the addition of sulfur makes the planar structures compact. Molecular orbital analysis finds that the 3p orbitals of sulfur form a bonding orbital and two weakly bonding lone pairs with silver. We examine the electronic shell structures of Ag6Sm, which are two electrons deficient of a spherical closed electronic shell prior to the addition of sulfur, and Ag7S(m)(-) clusters that contain closed electronic shells prior to the addition of sulfur. The Ag6S4 cluster has a distorted octahedral silver core and an open shell with a multiplicity of 3, while the Ag7S(n_(-) clusters have compact geometries with enhanced stability, confirming that the clusters maintain their electronic shell structure after bonding with sulfur.

  7. σ-Bond Prevents Short π-Bonds: A Detailed Theoretical Study on the Compounds of Main Group and Transition Metal Complexes

    NASA Astrophysics Data System (ADS)

    Pathak, Biswarup; Umayal, Muthaiah; Jemmis, Eluvathingal D.

    The unusual shortness of the bond length in several main group and transition metal compounds is explained on the basis of their π-alone bonding. The detailed electronic structure calculation on C2, HBBH, and Fe2(CO)6 shows that each of them has two π-alone bonds (unsupported by an underlying σ-bond), whereas B2 has two-half π-bonds. The C-C bond length in C2 is 1.240 Å, shorter than any C-C double (σ + π, in C2H4, C-C=1.338 Å) bonded species. The B-B bond distance in B2 (1.590 Å, two half-π bonds) is shorter than any B-B single σ-bonded (~1.706 Å) species. The calculated Fe-Fe bond distance of 2.002 Å in Fe2(CO)6 is shorter than those of some experimentally known M-M single bonded compounds in the range of 2.904-3.228 Å. Here, our detailed studies on the second and third row diatomics (five, six, seven and eight valence electrons species) and transition metal complexes show that π-alone bonds left to themselves are shorter than σ-bonds; in many ways, σ-bonds prevent π-bonds from adopting their optimal shorter distances.

  8. Sulfide bonded atomic radii

    NASA Astrophysics Data System (ADS)

    Gibbs, G. V.; Ross, N. L.; Cox, D. F.

    2017-03-01

    The bonded radius, r b(S), of the S atom, calculated for first- and second-row non-transition metal sulfide crystals and third-row transition metal sulfide molecules and crystals indicates that the radius of the sulfur atom is not fixed as traditionally assumed, but that it decreases systematically along the bond paths of the bonded atoms with decreasing bond length as observed in an earlier study of the bonded radius of the oxygen atom. When bonded to non-transition metal atoms, r b(S) decreases systematically with decreasing bond length from 1.68 Å when the S atom is bonded to the electropositive VINa atom to 1.25 Å when bonded to the more electronegative IVP atom. In the case of transition metal atoms, rb(S) likewise decreases with decreasing bond length from 1.82 Å when bonded to Cu and to 1.12 Å when bonded to Fe. As r b(S) is not fixed at a given value but varies substantially depending on the bond length and the field strength of the bonded atoms, it is apparent that sets of crystal and atomic sulfide atomic radii based on an assumed fixed radius for the sulfur atom are satisfactory in that they reproduce bond lengths, on the one hand, whereas on the other, they are unsatisfactory in that they fail to define the actual sizes of the bonded atoms determined in terms of the minima in the electron density between the atoms. As such, we urge that the crystal chemistry and the properties of sulfides be studied in terms of the bond lengths determined by adding the radii of either the atomic and crystal radii of the atoms but not in terms of existing sets of crystal and atomic radii. After all, the bond lengths were used to determine the radii that were experimentally determined, whereas the individual radii were determined on the basis of an assumed radius for the sulfur atom.

  9. Sulfide bonded atomic radii

    NASA Astrophysics Data System (ADS)

    Gibbs, G. V.; Ross, N. L.; Cox, D. F.

    2017-09-01

    The bonded radius, r b(S), of the S atom, calculated for first- and second-row non-transition metal sulfide crystals and third-row transition metal sulfide molecules and crystals indicates that the radius of the sulfur atom is not fixed as traditionally assumed, but that it decreases systematically along the bond paths of the bonded atoms with decreasing bond length as observed in an earlier study of the bonded radius of the oxygen atom. When bonded to non-transition metal atoms, r b(S) decreases systematically with decreasing bond length from 1.68 Å when the S atom is bonded to the electropositive VINa atom to 1.25 Å when bonded to the more electronegative IVP atom. In the case of transition metal atoms, rb(S) likewise decreases with decreasing bond length from 1.82 Å when bonded to Cu and to 1.12 Å when bonded to Fe. As r b(S) is not fixed at a given value but varies substantially depending on the bond length and the field strength of the bonded atoms, it is apparent that sets of crystal and atomic sulfide atomic radii based on an assumed fixed radius for the sulfur atom are satisfactory in that they reproduce bond lengths, on the one hand, whereas on the other, they are unsatisfactory in that they fail to define the actual sizes of the bonded atoms determined in terms of the minima in the electron density between the atoms. As such, we urge that the crystal chemistry and the properties of sulfides be studied in terms of the bond lengths determined by adding the radii of either the atomic and crystal radii of the atoms but not in terms of existing sets of crystal and atomic radii. After all, the bond lengths were used to determine the radii that were experimentally determined, whereas the individual radii were determined on the basis of an assumed radius for the sulfur atom.

  10. Weak bond screening system

    NASA Astrophysics Data System (ADS)

    Chuang, S. Y.; Chang, F. H.; Bell, J. R.

    Consideration is given to the development of a weak bond screening system which is based on the utilization of a high power ultrasonic (HPU) technique. The instrumentation of the prototype bond strength screening system is described, and the adhesively bonded specimens used in the system developmental effort are detailed. Test results obtained from these specimens are presented in terms of bond strength and level of high power ultrasound irradiation. The following observations were made: (1) for Al/Al specimens, 2.6 sec of HPU irradiation will screen weak bond conditions due to improper preparation of bonding surfaces; (2) for composite/composite specimens, 2.0 sec of HPU irradiation will disrupt weak bonds due to under-cured conditions; (3) for Al honeycomb core with composite skin structure, 3.5 sec of HPU irradiation will disrupt weak bonds due to bad adhesive or oils contamination of bonding surfaces; and (4) for Nomex honeycomb with Al skin structure, 1.3 sec of HPU irradiation will disrupt weak bonds due to bad adhesive.

  11. Bonded semiconductor substrate

    DOEpatents

    Atwater, Jr.; Harry A. , Zahler; James M.

    2010-07-13

    Ge/Si and other nonsilicon film heterostructures are formed by hydrogen-induced exfoliation of the Ge film which is wafer bonded to a cheaper substrate, such as Si. A thin, single-crystal layer of Ge is transferred to Si substrate. The bond at the interface of the Ge/Si heterostructures is covalent to ensure good thermal contact, mechanical strength, and to enable the formation of an ohmic contact between the Si substrate and Ge layers. To accomplish this type of bond, hydrophobic wafer bonding is used, because as the invention demonstrates the hydrogen-surface-terminating species that facilitate van der Waals bonding evolves at temperatures above 600.degree. C. into covalent bonding in hydrophobically bound Ge/Si layer transferred systems.

  12. Competitive pi interactions and hydrogen bonding within imidazolium ionic liquids.

    PubMed

    Matthews, Richard P; Welton, Tom; Hunt, Patricia A

    2014-02-21

    In this paper we have explored the structural and energetic landscape of potential π(+)-π(+) stacked motifs, hydrogen-bonding arrangements and anion-π(+) interactions for gas-phase ion pair (IP) conformers and IP-dimers of 1,3-dimethylimidazolium chloride, [C1C1im]Cl. We classify cation-cation ring stacking as an electron deficient π(+)-π(+) interaction, and a competitive anion on-top IP motif as an anion-donor π(+)-acceptor interaction. 21 stable IP-dimers have been obtained within an energy range of 0-126 kJ mol(-1). The structures have been found to exhibit a complex interplay of structural features. We have found that low energy IP-dimers are not necessarily formed from the lowest energy IP conformers. The sampled range of IP-dimers exhibits new structural forms that cannot be recovered by examining the ion-pairs alone, moreover the IP-dimers are recovering additional key features of the local liquid structure. Including dispersion is shown to impact both the relative energy ordering and the geometry of the IPs and IP-dimers, however the impact is found to be subtle and dependent on the underlying functional.

  13. Double helix quinine-based supergelator.

    PubMed

    Roszak, Kinga; Piasecka, Monika; Katrusiak, Andrzej; Kacprzak, Karol

    2016-02-07

    10,11-Didehydroquinine is a simple, low molecular weight supergelator which forms, in nonpolar media, stable chiral organogels composed of unique double-helix nano-sized fibers. A novel gelation mechanism involves a hydrogen bonding network formed by an acidic alkyne proton of the Cinchona gelator and the carbonyl group of ethyl acetate used as a solvent.

  14. Chemical bonding technology

    NASA Technical Reports Server (NTRS)

    Plueddemann, E.

    1986-01-01

    Primers employed in bonding together the various material interfaces in a photovoltaic module are being developed. The approach develops interfacial adhesion by generating actual chemical bonds between the various materials bonded together. The current status of the program is described along with the progress toward developing two general purpose primers for ethylene vinyl acetate (EVA), one for glass and metals, and another for plastic films.

  15. BONDING ALUMINUM METALS

    DOEpatents

    Noland, R.A.; Walker, D.E.

    1961-06-13

    A process is given for bonding aluminum to aluminum. Silicon powder is applied to at least one of the two surfaces of the two elements to be bonded, the two elements are assembled and rubbed against each other at room temperature whereby any oxide film is ruptured by the silicon crystals in the interface; thereafter heat and pressure are applied whereby an aluminum-silicon alloy is formed, squeezed out from the interface together with any oxide film, and the elements are bonded.

  16. Energy pulse bonding

    NASA Technical Reports Server (NTRS)

    Smith, G. C.

    1972-01-01

    To eliminate many of the present termination problems a technique called energy pulse bonding (EPB) was developed. The process demonstrated the capability of: (1) joining conductors without prior removal of insulations, (2) joining conductors without danger of brittle intermetallics, (3) increased joint temperature capability, (4) simultaneous formation of several bonds, (5) capability of higher joint density, and (6) a production oriented process. The following metals were successfully bonded in the solid state: copper, beryllium copper, phosphor bronze, aluminum, brass, and Kovar.

  17. Hydrogen bonding and anaesthesia

    NASA Astrophysics Data System (ADS)

    Sándorfy, C.

    2004-12-01

    General anaesthetics act by perturbing intermolecular associations without breaking or forming covalent bonds. These associations might be due to a variety of van der Waals interactions or hydrogen bonding. Neurotransmitters all contain OH or NH groups, which are prone to form hydrogen bonds with those of the neurotransmitter receptors. These could be perturbed by anaesthetics. Aromatic rings in amino acids can act as weak hydrogen bond acceptors. On the other hand the acidic hydrogen in halothane type anaesthetics are weak proton donors. These two facts together lead to a probable mechanism of action for all general anaesthetics.

  18. An electron-deficient porphyrin tape.

    PubMed

    Mori, Hirotaka; Tanaka, Takayuki; Aratani, Naoki; Lee, Byung Sun; Kim, Pyosang; Kim, Dongho; Osuka, Atsuhiro

    2012-08-01

    Hexakis(pentafluorophenyl)-substituted meso-meso-linked Zn(II)-diporphyrin (9), which was prepared by the acid-catalyzed cross-condensation of 1,1,2,2-tetrapyrroethane (5) with dipyrromethane dicarbinol (6), was converted into meso-meso,β-β,β-β triply linked Zn(II)-diporphyrin 3 by oxidation with 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) and Sc(OTf)(3). Beside the red-shifted absorption spectrum and split first oxidation potential that are common to the triply-linked Zn(II)-diporphyrins, diporphyrin 3 exhibited considerably improved chemical stability owing to a lowered HOMO and good solubility in common organic solvents. The two-photon absorption (TPA) cross-section and S(1)-state lifetime of compound 3 were 1700 GM and 3.3 ps, respectively.

  19. High reliability bond program using small diameter aluminum wire

    NASA Technical Reports Server (NTRS)

    Macha, M.; Thiel, R. A.

    1975-01-01

    The program was undertaken to characterize the performance of small diameter aluminum wire ultrasonically bonded to conductors commonly encountered in hybrid assemblies, and to recommend guidelines for improving this performance. Wire, 25.4, 38.1 and 50.8 um (1, 1.5 and 2 mil), was used with bonding metallization consisting of thick film gold, thin film gold and aluminum as well as conventional aluminum pads on semiconductor chips. The chief tool for evaluating the performance was the double bond pull test in conjunction with a 72 hour - 150 C heat soak and -65 C to +150 C thermal cycling. In practice the thermal cycling was found to have relatively little effect compared to the heat soak. Pull strength will decrease after heat soak as a result of annealing of the aluminum wire; when bonded to thick film gold, the pull strength decreased by about 50% (weakening of the bond interface was the major cause of the reduction). Bonds to thin film gold lost about 30 - 40% of their initial pull strenth; weakening of the wire itself at the bond heel was the predominant cause. Bonds to aluminum substrate metallization lost only about 22%. Bonds between thick and thin film gold substrate metallization and semiconductor chips substantiated the previous conclusions but also showed that in about 20 to 25% of the cases, bond interface failure occurred at the semiconductor chip.

  20. 27 CFR 24.147 - Operations bond or unit bond.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Operations bond or unit... § 24.147 Operations bond or unit bond. Notwithstanding the provisions of § 24.146, each person... amended, give an operations bond or unit bond in accordance with the applicable provisions of 27 CFR part...

  1. Kinetic solvent effects on the reactions of the cumyloxyl radical with tertiary amides. Control over the hydrogen atom transfer reactivity and selectivity through solvent polarity and hydrogen bonding.

    PubMed

    Salamone, Michela; Mangiacapra, Livia; Bietti, Massimo

    2015-01-16

    A laser flash photolysis study on the role of solvent effects on hydrogen atom transfer (HAT) from the C-H bonds of N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMA), N-formylpyrrolidine (FPRD), and N-acetylpyrrolidine (APRD) to the cumyloxyl radical (CumO(•)) was carried out. From large to very large increases in the HAT rate constant (kH) were measured on going from MeOH and TFE to isooctane (kH(isooctane)/kH(MeOH) = 5-12; kH(isooctane)/kH(TFE) > 80). This behavior was explained in terms of the increase in the extent of charge separation in the amides determined by polar solvents through solvent-amide dipole-dipole interactions and hydrogen bonding, where the latter interactions appear to play a major role with strong HBD solvents such as TFE. These interactions increase the electron deficiency of the amide C-H bonds, deactivating these bonds toward HAT to an electrophilic radical such as CumO(•), indicating that changes in solvent polarity and hydrogen bonding can provide a convenient method for deactivation of the C-H bond of amides toward HAT. With DMF, a solvent-induced change in HAT selectivity was observed, suggesting that solvent effects can be successfully employed to control the reaction selectivity in HAT-based procedures for the functionalization of C-H bonds.

  2. Chemical Bonds I

    ERIC Educational Resources Information Center

    Sanderson, R. T.

    1972-01-01

    Chemical bonding is discussed from a bond energy, rather than a wave mechanics, viewpoint. This approach is considered to be more suitable for the average student. (The second part of the article will appear in a later issue of the journal.) (AL)

  3. Interfacial bonding stability

    NASA Technical Reports Server (NTRS)

    Boerio, J.

    1984-01-01

    Interfacial bonding stability by in situ ellipsometry was investigated. It is found that: (1) gamma MPS is an effective primer for bonding ethylene vinyl acetate (EVA) to aluminum; (2) ellipsometry is an effective in situ technique for monitoring the stability of polymer/metal interfaces; (3) the aluminized back surface of silicon wafers contain significant amounts of silicon and may have glass like properties.

  4. Mother-Child Bonding.

    ERIC Educational Resources Information Center

    Pearce, Joseph Chilton

    1994-01-01

    Examines the nature of mother-child bonding from the prenatal stage through early infancy, discussing how the mother's actions, even before birth, stimulate her child's senses. Explains the crucial role that physical contact, breastfeeding, and visual stimuli have on mother-child bonding in human and animal newborns. (MDM)

  5. The dissociative bond.

    PubMed

    Gordon, Nirit

    2013-01-01

    Dissociation leaves a psychic void and a lingering sense of psychic absence. How do 2 people bond while they are both suffering from dissociation? The author explores the notion of a dissociative bond that occurs in the aftermath of trauma--a bond that holds at its core an understanding and shared detachment from the self. Such a bond is confined to unspoken terms that are established in the relational unconscious. The author proposes understanding the dissociative bond as a transitional space that may not lead to full integration of dissociated knowledge yet offers some healing. This is exemplified by R. Prince's (2009) clinical case study. A relational perspective is adopted, focusing on the intersubjective aspects of a dyadic relationship. In the dissociative bond, recognition of the need to experience mutual dissociation can accommodate a psychic state that yearns for relationship when the psyche cannot fully confront past wounds. Such a bond speaks to the need to reestablish a sense of human relatedness and connection when both parties in the relationship suffer from disconnection. This bond is bound to a silence that becomes both a means of protection against the horror of traumatic memory and a way to convey unspoken gestures toward the other.

  6. Chemical Bonds I

    ERIC Educational Resources Information Center

    Sanderson, R. T.

    1972-01-01

    Chemical bonding is discussed from a bond energy, rather than a wave mechanics, viewpoint. This approach is considered to be more suitable for the average student. (The second part of the article will appear in a later issue of the journal.) (AL)

  7. Shape Bonding method

    NASA Technical Reports Server (NTRS)

    Pontius, James T. (Inventor)

    2010-01-01

    The present invention is directed to a method of bonding at least two surfaces together. The methods step of the present invention include applying a strip of adhesive to a first surface along a predefined outer boundary of a bond area and thereby defining a remaining open area there within. A second surface, or gusset plate, is affixed onto the adhesive before the adhesive cures. The strip of adhesive is allowed to cure and then a second amount of adhesive is applied to cover the remaining open area and substantially fill a void between said first and second surfaces about said bond area. A stencil may be used to precisely apply the strip of adhesive. When the strip cures, it acts as a dam to prevent overflow of the subsequent application of adhesive to undesired areas. The method results in a precise bond area free of undesired shapes and of a preferred profile which eliminate the drawbacks of the prior art bonds.

  8. Wood Bond Testing

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A joint development program between Hartford Steam Boiler Inspection Technologies and The Weyerhaeuser Company resulted in an internal bond analyzer (IBA), a device which combines ultrasonics with acoustic emission testing techniques. It is actually a spinoff from a spinoff, stemming from a NASA Lewis invented acousto-ultrasonic technique that became a system for testing bond strength of composite materials. Hartford's parent company, Acoustic Emission Technology Corporation (AET) refined and commercialized the technology. The IBA builds on the original system and incorporates on-line process control systems. The IBA determines bond strength by measuring changes in pulsar ultrasonic waves injected into a board. Analysis of the wave determines the average internal bond strength for the panel. Results are displayed immediately. Using the system, a mill operator can adjust resin/wood proportion, reduce setup time and waste, produce internal bonds of a consistent quality and automatically mark deficient products.

  9. Tetrel Bonding Interactions.

    PubMed

    Bauzá, Antonio; Mooibroek, Tiddo J; Frontera, Antonio

    2016-02-01

    Tetrel (Tr) bonding is first placed into perspective as a σ-hole bonding interaction with atoms of the Tr family. An sp(3) R4Tr unit has four σ-holes with which a Lewis base can form a complex. We then highlight some inspiring crystal structures where Tr bonding is obvious, followed by an account of our own work. We have shown that Tr bonding is ubiquitous in the solid state and we have highlighted that Tr bonding with carbon is possible when C is placed in the appropriate chemical context. We hope that this account serves as an initial guide and source of inspiration for others wishing to exploit this vastly underexplored interaction.

  10. Are One-Electron Bonds Any Different from Standard Two-Electron Covalent Bonds?

    PubMed

    Sousa, David Wilian Oliveira de; Nascimento, Marco Antonio Chaer

    2017-09-19

    The nature of the chemical bond is perhaps the central subject in theoretical chemistry. Our understanding of the behavior of molecules developed amazingly in the last century, mostly with the rise of quantum mechanics (QM) and QM-based theories such as valence bond theory and molecular orbital theory. Such theories are very successful in describing molecular properties, but they are not able to explain the origin of the chemical bond. This problem was first analyzed in the 1960s by Ruedenberg, who showed that covalent bonds are the direct result of quantum interference between one-electron states. The generality of this result and its quantification were made possible through the recent development of the generalized product function energy partitioning (GPF-EP) method by our group, which allows the partitioning of the electronic density and energy into their interference and quasi-classical (noninterference) contributions. Furthermore, with GPF wave functions these effects can be analyzed separately for each bond of a molecule. This interference energy analysis has been applied to a large variety of molecules, including diatomics and polyatomics, molecules with single, double, and triple bonds, molecules with different degrees of polarity, linear or branched molecules, cyclic or acyclic molecules, conjugated molecules, and aromatics, in order to verify the role played by quantum interference. In all cases the conclusion is exactly the same: for each bond in each of the molecules considered, the main contribution to its stability comes from the interference term. Two-center one-electron (2c1e) bonds are the simplest kind of chemical bonds. Yet they are often viewed as odd or unconventional cases of bonding. Are they any different from conventional (2c2e) bonds? If so, what differences can we expect in the nature of (2c1e) bonds relative to electron-pair bonds? In this Account, we extend the GPF-EP method to describe bonds involving N electrons in M orbitals (N < M

  11. Disulfide Bond Requirements for Active Wnt Ligands*

    PubMed Central

    MacDonald, Bryan T.; Hien, Annie; Zhang, Xinjun; Iranloye, Oladoyin; Virshup, David M.; Waterman, Marian L.; He, Xi

    2014-01-01

    Secreted Wnt lipoproteins are cysteine-rich and lipid-modified morphogens that bind to the Frizzled (FZD) receptor and LDL receptor-related protein 6 (LRP6). Wnt engages FZD through protruding thumb and index finger domains, which are each assembled from paired β strands secured by disulfide bonds and grasp two sides of the FZD ectodomain. The importance of Wnt disulfide bonds has been assumed but uncharacterized. We systematically analyzed cysteines and associated disulfide bonds in the prototypic Wnt3a. Our data show that mutation of any individual cysteine of Wnt3a results in covalent Wnt oligomers through ectopic intermolecular disulfide bond formation and diminishes/abolishes Wnt signaling. Although individual cysteine mutations in the amino part of the saposin-like domain and in the base of the index finger are better tolerated and permit residual Wnt3a secretion/activity, those in the amino terminus, the thumb, and at the tip of the index finger are incompatible with secretion and/or activity. A few select double cysteine mutants based on the disulfide bond pattern restore Wnt secretion/activity. Further, a double cysteine mutation at the index finger tip results in a Wnt3a with normal secretion but minimal FZD binding and dominant negative properties. Our results experimentally validate predictions from the Wnt crystal structure and highlight critical but different roles of the saposin-like and cytokine-like domains, including the thumb and the index finger in Wnt folding/secretion and FZD binding. Finally, we modified existing expression vectors for 19 epitope-tagged human WNT proteins by removal of a tag-supplied ectopic cysteine, thereby generating tagged WNT ligands active in canonical and non-canonical signaling. PMID:24841207

  12. The Halogen Bond.

    PubMed

    Cavallo, Gabriella; Metrangolo, Pierangelo; Milani, Roberto; Pilati, Tullio; Priimagi, Arri; Resnati, Giuseppe; Terraneo, Giancarlo

    2016-02-24

    The halogen bond occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity. In this fairly extensive review, after a brief history of the interaction, we will provide the reader with a snapshot of where the research on the halogen bond is now, and, perhaps, where it is going. The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design.

  13. The Halogen Bond

    PubMed Central

    2016-01-01

    The halogen bond occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity. In this fairly extensive review, after a brief history of the interaction, we will provide the reader with a snapshot of where the research on the halogen bond is now, and, perhaps, where it is going. The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design. PMID:26812185

  14. Double inflation

    SciTech Connect

    Silk, J.; Turner, M.S.

    1986-04-01

    The Zel'dovich spectrum of adiabatic density perturbations is a generic prediction of inflation. There is increasing evidence that when the spectrum is normalized by observational data on small scales, there is not enough power on large scales to account for the observed large-scale structure in the Universe. Decoupling the spectrum on large and small scales could solve this problem. As a means of decoupling the large and small scales we propose double inflation (i.e., two episodes of inflation). In this scenario the spectrum on large scales is determined by the first episode of inflation and those on small scales by a second episode of inflation. We present three models for such a scenario. By nearly saturating the large angular-scale cosmic microwave anisotropy bound, we can easily account for the observed large-scale structure. We take the perturbations on small scales to be very large, deltarho/rho approx. = 0.1 to 0.01, which results in the production of primordial black holes (PBHs), early formation of structure, reionization of the Universe, and a rich array of astrophysical events. The ..cap omega..-problem is also addressed by our scenario. Allowing the density perturbations produced by the second episode of inflation to be large also lessens the fine-tuning required in the scalar potential and makes reheating much easier. We briefly speculate on the possibility that the second episode of inflation proceeds through the nucleation of bubbles, which today manifest themselves as empty bubbles whose surfaces are covered with galaxies. 37 refs., 1 fig.

  15. Seeing Double

    NASA Astrophysics Data System (ADS)

    Pesic, Peter

    2003-10-01

    The separateness and connection of individuals is perhaps the central question of human life: What, exactly, is my individuality? To what degree is it unique? To what degree can it be shared, and how? To the many philosophical and literary speculations about these topics over time, modern science has added the curious twist of quantum theory, which requires that the elementary particles of which everything consists have no individuality at all. All aspects of chemistry depend on this lack of individuality, as do many branches of physics. From where, then, does our individuality come? In Seeing Double, Peter Pesic invites readers to explore this intriguing set of questions. He draws on literary and historical examples that open the mind (from Homer to Martin Guerre to Kafka), philosophical analyses that have helped to make our thinking and speech more precise, and scientific work that has enabled us to characterize the phenomena of nature. Though he does not try to be all-inclusive, Pesic presents a broad range of ideas, building toward a specific point of view: that the crux of modern quantum theory is its clash with our ordinary concept of individuality. This represents a departure from the usual understanding of quantum theory. Pesic argues that what is bizarre about quantum theory becomes more intelligible as we reconsider what we mean by individuality and identity in ordinary experience. In turn, quantum identity opens a new perspective on us. Peter Pesic is a Tutor and Musician-in-Residence at St. John's College, Santa Fe, New Mexico. He has a Ph.D. in physics from Stanford University.

  16. Covalent versus Ionic Bonding in Al-C Clusters.

    PubMed

    Du, Ning; Yang, Huihui; Chen, Hongshan

    2017-05-25

    The low-energy structures of AlnCm (n = 4, 6; m = 1-4) are determined by using the genetic algorithm combined with density functional theory and the QCISD models. The electronic structures and bonding features are analyzed through the density of states (DOS), valence molecular orbitals (MOs), and electron localization function (ELF). The results show that the carbon atoms tend to aggregate and sit at the center of the clusters. The C-C bond lengths in most cases agree with the double C═C bond. Because of the large difference between the electronegativities of carbon and aluminum atoms, almost all of the 3p electrons of Al transfer to C atoms. The 3s orbitals of Al and the 2s2p orbitals of C form bonding and antibonding orbitals; the bonding orbitals correspond to the covalent C-Al bonds, and the antibonding orbitals form lone pair electrons on the outer side of Al atoms. The lone pair electrons form large local dipole moments and enhance the electrostatic interactions between C and Al atoms. Planar geometry and multiconnection are prominent structural patterns in small AlnCm clusters. However, the multiconnection does not correspond to multicenter chemical bonding. There are multicenter bonds, but they are much weaker than the σ C-Al bonds.

  17. Oxygen switch in visible-light photoredox catalysis: radical additions and cyclizations and unexpected C-C-bond cleavage reactions.

    PubMed

    Zhu, Shaoqun; Das, Arindam; Bui, Lan; Zhou, Hanjun; Curran, Dennis P; Rueping, Magnus

    2013-02-06

    Visible light photoredox catalyzed inter- and intramolecular C-H functionalization reactions of tertiary amines have been developed. Oxygen was found to act as chemical switch to trigger two different reaction pathways and to obtain two different types of products from the same starting material. In the absence of oxygen, the intermolecular addition of N,N-dimethyl-anilines to electron-deficient alkenes provided γ-amino nitriles in good to high yields. In the presence of oxygen, a radical addition/cyclization reaction occurred which resulted in the formation of tetrahydroquinoline derivatives in good yields under mild reaction conditions. The intramolecular version of the radical addition led to the unexpected formation of indole-3-carboxaldehyde derivatives. Mechanistic investigations of this reaction cascade uncovered a new photoredox catalyzed C-C bond cleavage reaction.

  18. On the nature of the bonding in Mg4 and Ca4 clusters

    NASA Astrophysics Data System (ADS)

    Pacchioni, Gianfranco; Koutecký, Jaroslav

    1982-12-01

    The bonding in the Mg4 and Ca4 clusters is studied using a pseudopotential multireference double-excitation configuration interaction method. The results confirm the calculations of chiles et al5.(AIP)

  19. Double Your Major, Double Your Return?

    ERIC Educational Resources Information Center

    Del Rossi, Alison F.; Hersch, Joni

    2008-01-01

    We use the 2003 National Survey of College Graduates to provide the first estimates of the effect on earnings of having a double major. Overall, double majoring increases earnings by 2.3% relative to having a single major among college graduates without graduate degrees. Most of the gains from having a double major come from choosing fields across…

  20. Effect of adhesive layers on microshear bond strength of nanocomposite resin to dentin

    PubMed Central

    Ebrahim, Mohamed I.

    2017-01-01

    Background Bond strength of adhesive layer can absorb unwanted stresses of polymerization shrinkage in composite resin restorations; increased microshear bond strength can prevent failure of restoration materials, the purpose of this study was to evaluate the effect of adhesive layers on microshear bond strength of nanocomposite resin to dentin. Material and Methods Two different types of adhesive systems: universal adhesive (ExciTE) and newly developed adhesive (Nano-Bond), and one type of light-cured resin restorative material (Nanocomposite resin) were used in this study. The occlusal surfaces of extracted human molar teeth were ground perpendicular to the long axis of each tooth to expose a flat dentin surface. The adhesives were applied on dentin surfaces (single application or double application). Nanocomposite resin was then placed and light cured for 40 seconds. After 24 hours of immersion in water at 37°C, then subjected to thermocycling before testing, a microshear bond test was carried out. The data were analyzed by a two-way ANOVA. For comparison between groups, Tukey’s post-hoc test was used. Results The mean bond strengths of ExciTE and Nano-Bond adhesives with a single application were 8.8 and 16.6 MPa, respectively. The mean bond strengths of ExciTE and Nano-Bond adhesives with double application were 13.2 and 21.8MPa, respectively. There were no statistically significant differences in microshear bond strengths between the single application of Nano-Bond and the double application of ExciTE adhesives. Conclusions Microshear bond strength increased significantly as the applied adhesive layer was doubled. Key words:Adhesive, microshear, bond, strength, nanocomposite. PMID:28210433

  1. The Nature of Activated Non-classical Hydrogen Bonds: A Case Study on Acetylcholinesterase-Ligand Complexes.

    PubMed

    Berg, Lotta; Mishra, Brijesh Kumar; Andersson, C David; Ekström, Fredrik; Linusson, Anna

    2016-02-18

    Molecular recognition events in biological systems are driven by non-covalent interactions between interacting species. Here, we have studied hydrogen bonds of the CH⋅⋅⋅Y type involving electron-deficient CH donors using dispersion-corrected density functional theory (DFT) calculations applied to acetylcholinesterase-ligand complexes. The strengths of CH⋅⋅⋅Y interactions activated by a proximal cation were considerably strong; comparable to or greater than those of classical hydrogen bonds. Significant differences in the energetic components compared to classical hydrogen bonds and non-activated CH⋅⋅⋅Y interactions were observed. Comparison between DFT and molecular mechanics calculations showed that common force fields could not reproduce the interaction energy values of the studied hydrogen bonds. The presented results highlight the importance of considering CH⋅⋅⋅Y interactions when analysing protein-ligand complexes, call for a review of current force fields, and opens up possibilities for the development of improved design tools for drug discovery.

  2. Aspects of glycosidic bond formation in aqueous solution: chemical bonding and the role of water.

    PubMed

    Stubbs, John M; Marx, Dominik

    2005-04-22

    A model of the specific acid-catalyzed glycosidic bond formation in liquid water at ambient conditions is studied based on constrained Car-Parrinello ab initio molecular dynamics. Specifically the reaction of alpha-D-glucopyranose and methanol is found to proceed by a D(N)A(N) mechanism. The D(N) step consists of a concerted protonation of the O(1) hydroxyl leaving group; this process results in the breaking of the C(1)-O(1) bond, and oxocarbenium ion formation involving C(1)=O(5). The second step, A(N), is the formation of the C(1)-O(m) glycosidic bond, deprotonation of the methanol hydroxyl group O(m)H(m), and re-formation of the C(1)-O(5) single bond. A focus of this study is the analysis of the electronic structure during this condensed phase reaction relying on both Boys/Wannier localized orbitals and the electron localization function ELF. This analysis allows the clear elucidation of the chemical bonding features of the intermediate bracketed by the D(N) and A(N) steps, which is a non-solvent equilibrated oxocarbenium cation. Most interestingly, it is found that the oxygen in the pyranose ring becomes "desolvated" upon double bond/oxocarbenium formation, whereas it is engaged in the hydrogen-bonded water network before and after this period. This demonstrates that hydrogen bonding and thus the aqueous solvent play an active role in this reaction implying that microsolvation studies in the gas phase, both theoretical and experimental, might lead to qualitatively different reaction mechanisms compared to solution.

  3. 27 CFR 24.147 - Operations bond or unit bond.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Establishment and Operations Bonds and Consents of Surety § 24.147 Operations bond or unit bond. Notwithstanding the provisions of § 24.146, each person intending to commence or to continue business as the proprietor of a bonded wine premises with an adjacent...

  4. 30 CFR 281.33 - Bonds and bonding requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Bonds and bonding requirements. 281.33 Section 281.33 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF... SHELF Financial Considerations § 281.33 Bonds and bonding requirements. (a) When the leasing...

  5. Adhesive bonding and performance testing of bonded wood products

    Treesearch

    Charles R. Frihart

    2005-01-01

    Despite the importance of durable wood bonds, the factors that lead to durability are not well understood, and the internal forces exerted upon the bondline are often overlooked. Durability requires that the bonded assembly resist dimensional changes of wood with fluctuation of wood moisture levels. Both bonding and bond breaking steps need to be understood at cellular...

  6. Intrinsic bond strength of metal films on polymer substrates

    NASA Technical Reports Server (NTRS)

    Wheeler, Donald R.; Osaki, Hiroyuki

    1990-01-01

    A semiquantitative method for the measurement of the intrinsic bond strength between elastic substrates and elastic films that fail by brittle fracture is described. Measurements on a polyethylene terephthalate (PET)-Ni couple were used to verify the essential features of the analysis. It was found that the interfacial shear strength of Ni on PET doubled after ion etching.

  7. Intrinsic bond strength of metal films on polymer substrates

    NASA Technical Reports Server (NTRS)

    Wheeler, Donald R.; Osaki, Hiroyuki

    1990-01-01

    A semiquantitative method for the measurement of the intrinsic bond strength between elastic substrates and elastic films that fail by brittle fracture is described. Measurements on a polyethylene terephthalate (PET)-Ni couple were used to verify the essential features of the analysis. It was found that the interfacial shear strength of Ni on PET doubled after ion etching.

  8. C-C bond-forming desulfurizations of sulfoximines.

    PubMed

    Reggelin, M; Slavik, S; Bühle, P

    2008-09-18

    Highly substituted, enantiomerically pure azaheterocyclic ring systems play an important role in medicinal chemistry as potential peptide mimetics. Metalated 2-alkenyl sulfoximines offer an efficient entry to this class of compounds. In this paper, we describe a new means to remove the sulfonimidoyl auxiliary with concomitant formation of a C-C double bond.

  9. The single donator-single acceptor hydrogen bonding structure in water probed by Raman spectroscopy.

    PubMed

    Sun, Qiang

    2010-02-07

    In this work, the Raman spectra of aqueous C(12)E(5) solutions are recorded and utilized to demonstrate the existence of single donator-single acceptor (DA) hydrogen bonding in water. From Raman OH stretching bands of aqueous C(12)E(5) solutions, the relative intensity of 3430 cm(-1) subband increases with C(12)E(5) concentrations. For confined water, the DA hydrogen bonding can be expected to be the important hydrogen bonding species. Therefore, the 3430 cm(-1) component can be ascribed to OH vibration engaged in DA hydrogen bonding. This is in agreement with our recent explanation on Raman OH stretching band of water. For water at ambient conditions, the double donor-double acceptor (DDAA) and DA should be the dominant hydrogen bonding species, the ratio of DDAA to DA can be approximately to be 0.75:1, and the mean hydrogen bonding can be determined to be 2.75.

  10. The single donator-single acceptor hydrogen bonding structure in water probed by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Sun, Qiang

    2010-02-01

    In this work, the Raman spectra of aqueous C12E5 solutions are recorded and utilized to demonstrate the existence of single donator-single acceptor (DA) hydrogen bonding in water. From Raman OH stretching bands of aqueous C12E5 solutions, the relative intensity of 3430 cm-1 subband increases with C12E5 concentrations. For confined water, the DA hydrogen bonding can be expected to be the important hydrogen bonding species. Therefore, the 3430 cm-1 component can be ascribed to OH vibration engaged in DA hydrogen bonding. This is in agreement with our recent explanation on Raman OH stretching band of water. For water at ambient conditions, the double donor-double acceptor (DDAA) and DA should be the dominant hydrogen bonding species, the ratio of DDAA to DA can be approximately to be 0.75:1, and the mean hydrogen bonding can be determined to be 2.75.

  11. Fundamentals of fiber bonding in thermally point-bonded nonwovens

    NASA Astrophysics Data System (ADS)

    Chidambaram, Aparna

    Thermal point bonding (TPB) uses heat and pressure to bond a web of fibers at discrete points imparting strength to the manufactured fabric. This process significantly reduces the strength and elongation of the bridging fibers between bond points while strengthening the web. Single fiber experiments were performed with four structurally different polypropylene fibers to analyze the inter-relationships between fiber structure, fiber properties and bonding process. Two fiber types had a low birefringence sheath or surface layer while the remaining had uniform birefringence profiles through their thickness. Bonds were formed between isolated pairs of fibers by subjecting the fibers to a calendering process and simulating TPB process conditions. The dependence of bond strength on bonding temperature and on the type of fiber used was evaluated. Fiber strengths before and after bonding were measured and compared to understand the effect of bonding on fiber strength. Additionally, bonded fiber strength was compared to the strength of single fibers which had experienced the same process conditions as the bonded pairs. This comparison estimated the effect of mechanical damage from pressing fibers together with steel rolls while creating bonds in TPB. Interfiber bond strength increased with bonding temperature for all fiber types. Fiber strength decreased with increasing bonding temperature for all fiber types except for one type of low birefringent sheath fibers. Fiber strength degradation was unavoidable at temperatures required for successful bonding. Mechanical damage from compression of fibers between rolls was an insignificant factor in this strength loss. Thermal damage during bonding was the sole significant contributor to fiber strength degradation. Fibers with low birefringence skins formed strong bonds with minimal fiber strength loss and were superior to fibers without such surface layers in TPB performance. A simple model to predict the behavior of a two-bond

  12. Urethane/Silicone Adhesives for Bonding Flexing Metal Parts

    NASA Technical Reports Server (NTRS)

    Edwards, Paul D.

    2004-01-01

    Adhesives that are blends of commercially available urethane and silicone adhesives have been found to be useful for bonding metal parts that flex somewhat during use. These urethane/silicone adhesives are formulated for the specific metal parts to be bonded. The bonds formed by these adhesives have peel and shear strengths greater than those of bonds formed by double-sided tapes and by other adhesives, including epoxies and neat silicones. In addition, unlike the bonds formed by epoxies, the bonds formed by these adhesives retain flexibility. In the initial application for which the urethane/silicone adhesives were devised, there was a need to bond spring rings, which provide longitudinal rigidity for inflatable satellite booms, with the blades that provide the booms axial strength. The problem was to make the bonds withstand the stresses, associated with differences in curvature between the bonded parts, that arose when the booms were deflated and the springs were compressed. In experiments using single adhesives (that is, not the urethane/ silicone blends), the bonds were broken and, in each experiment, it was found that the adhesive bonded well with either the ring or with the blade, but not both. After numerous experiments, the adhesive that bonded best with the rings and the adhesive that bonded best with the blades were identified. These adhesives were then blended and, as expected, the blend bonded well with both the rings and the blades. The two adhesives are Kalex (or equivalent) high-shear-strength urethane and Dow Corning 732 (or equivalent) silicone. The nominal mixture ratio is 5 volume parts of the urethane per 1 volume part of the silicone. Increasing the proportion of silicone makes the bond weaker but more flexible, and decreasing the proportion of silicone makes the bond stronger but more brittle. The urethane/silicone blend must be prepared and used quickly because of the limited working time of the urethane: The precursor of the urethane

  13. Structure and Bonding in Group 14 Congeners of Ethene: DFT Calculations in the Inorganic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Streit, Bennett R.; Geiger, David K.

    2005-01-01

    A computational experiment is devised for advanced inorganic laboratory course that allows the students to explore the structure and bonding patterns of ethene and some heavier analogues. The HOMO-LUMO gaps, double bond dissociation energetics, and optimized geometries of ethene, disilene, and digermene are explored.

  14. Strength of Chemical Bonds

    NASA Technical Reports Server (NTRS)

    Christian, Jerry D.

    1973-01-01

    Students are not generally made aware of the extraordinary magnitude of the strengths of chemical bonds in terms of the forces required to pull them apart. Molecular bonds are usually considered in terms of the energies required to break them, and we are not astonished at the values encountered. For example, the Cl2 bond energy, 57.00 kcal/mole, amounts to only 9.46 x 10(sup -20) cal/molecule, a very small amount of energy, indeed, and impossible to measure directly. However, the forces involved in realizing the energy when breaking the bond operate over a very small distance, only 2.94 A, and, thus, f(sub ave) approx. equals De/(r - r(sub e)) must be very large. The forces involved in dissociating the molecule are discussed in the following. In consideration of average forces, the molecule shall be assumed arbitrarily to be dissociated when the atoms are far enough separated so that the potential, relative to that of the infinitely separated atoms, is reduced by 99.5% from the potential of the molecule at the equilibrium bond length (r(sub e)) for Cl2 of 1.988 A this occurs at 4.928 A.

  15. Vibrational states and optical transitions in hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Johannsen, P. G.

    1998-03-01

    Proton energies in hydrogen bonds are mostly calculated using a double Morse potential (the DMP model). This form, however, does not reproduce the experimentally observed correlation between the proton stretching frequency and the bond length in an extended bond-length region sufficiently well. An alternative potential is proposed in the present paper. The quantum states of this non-symmetric double-well potential are calculated numerically using the Numerov (Fox-Goodwin) algorithm. It is shown that the optical spectra of hydrogen bonds in various substances can be well approximated on the basis of the transition frequencies and intensities predicted by the present model. For weakly interacting OH impurities in 0953-8984/10/10/008/img1, the overtone spectrum and line intensities are well reproduced, whereas the line broadenings and the decrease of the fundamental stretching frequencies in intermediate and strong hydrogen bonds are traced back to the influence of the reduced height of the central barrier. The model is also extrapolated to the range of symmetric hydrogen bonds, and the calculated transition frequencies are discussed with respect to most recent infra-red experiments on ice under strong compression. A possible artificial infra-red signal from strained diamond anvils is thereby noted.

  16. Nucleation-dependant chemical bonding paradigm: the effect of rare earth ions on the nucleation of urea in aqueous solution.

    PubMed

    Chen, Xiaoyan; Sun, Congting; Wu, Sixin; Xue, Dongfeng

    2017-03-29

    Rare earth ions can be used to construct a variety of novel structures and are favorable to chemical bonding regulation and design. In this study, the chemical bonding paradigm between rare earth ions (Ln(3+)) and urea molecules in an aqueous solution can be tracked by the evolution of C[double bond, length as m-dash]O, NH2, and CN vibration bands during the urea nucleation stage. Rare earth ions such as La(3+), Gd(3+), and Lu(3+) can manipulate the nucleation time of urea via regulating the nucleation-dependant N-C[double bond, length as m-dash]OH-N hydrogen-bonding between urea molecules. Two types of chemical bondings between Ln(3+) and urea molecules have been confirmed, which are Ln(3+)O[double bond, length as m-dash]C-N and Ln(3+)NH2-C. Compared with Ln(3+)NH2-C, Ln(3+) prefers to coordinate with the O[double bond, length as m-dash]C bond in urea. With a higher concentration of rare earth ions in the solution, some N-C[double bond, length as m-dash]OH-N hydrogen bonds are broken as a consequence of the incorporation of Ln(3+) into the lattice, resulting in the decreased symmetry of local urea molecules in the crystalline nuclei and the consequent Ln(3+) concentration-dependent nucleation time of urea. Moreover, using the ionic electronegativity scale of Ln(3+), the different effects of La(3+), Gd(3+), and Lu(3+) on urea nucleation can be further distinguished. The present study provides basic data for unrevealing the chemical bonding regulation role of rare earth ions in the formation of hydrogen bonded materials, which may give insight into the design and fabrication of novel materials utilizing rare earth ions to adjust the chemical bonding process.

  17. Biomolecular halogen bonds.

    PubMed

    Ho, P Shing

    2015-01-01

    Halogens are atypical elements in biology, but are common as substituents in ligands, including thyroid hormones and inhibitors, which bind specifically to proteins and nucleic acids. The short-range, stabilizing interactions of halogens - now seen as relatively common in biology - conform generally to halogen bonds characterized in small molecule systems and as described by the σ-hole model. The unique properties of biomolecular halogen bonds (BXBs), particularly in their geometric and energetic relationship to classic hydrogen bonds, make them potentially powerful tools for inhibitor design and molecular engineering. This chapter reviews the current research on BXBs, focusing on experimental studies on their structure-energy relationships, how these studies inform the development of computational methods to model BXBs, and considers how BXBs can be applied to the rational design of more effective inhibitors against therapeutic targets and of new biological-based materials.

  18. Insulation bonding test system

    NASA Technical Reports Server (NTRS)

    Beggs, J. M.; Johnston, G. D.; Coleman, A. D.; Portwood, J. N.; Saunders, J. M.; Redmon, J. W.; Porter, A. C. (Inventor)

    1984-01-01

    A method and a system for testing the bonding of foam insulation attached to metal is described. The system involves the use of an impacter which has a calibrated load cell mounted on a plunger and a hammer head mounted on the end of the plunger. When the impacter strikes the insulation at a point to be tested, the load cell measures the force of the impact and the precise time interval during which the hammer head is in contact with the insulation. This information is transmitted as an electrical signal to a load cell amplifier where the signal is conditioned and then transmitted to a fast Fourier transform (FFT) analyzer. The FFT analyzer produces energy spectral density curves which are displayed on a video screen. The termination frequency of the energy spectral density curve may be compared with a predetermined empirical scale to determine whether a igh quality bond, good bond, or debond is present at the point of impact.

  19. Metallic-like bonding in plasma-born silicon nanocrystals for nanoscale bandgap engineering.

    PubMed

    Vach, Holger; Ivanova, Lena V; Timerghazin, Qadir K; Jardali, Fatme; Le, Ha-Linh Thi

    2016-10-27

    Based on ab initio molecular dynamics simulations, we show that small nanoclusters of about 1 nm size spontaneously generated in a low-temperature silane plasma do not possess tetrahedral structures, but are ultrastable. Apparently small differences in the cluster structure result in substantial modifications in their electric, magnetic, and optical properties, without the need for any dopants. Their non-tetrahedral geometries notably lead to electron deficient bonds that introduce efficient electron delocalization that strongly resembles the one of a homogeneous electron gas leading to metallic-like bonding within a semiconductor nanocrystal. As a result, pure hydrogenated silicon clusters that form by self-assembly in a plasma reactor possess optical gaps covering most of the solar spectrum from 1.0 eV to 5.2 eV depending simply on their structure and, in turn, on their degree of electron delocalization. This feature makes them ideal candidates for future bandgap engineering not only for photovoltaics, but also for many nano-electronic devices employing nothing else but silicon and hydrogen atoms.

  20. Electronic structure and bonding of β -rhombohedral boron using cluster fragment approach

    NASA Astrophysics Data System (ADS)

    Prasad, Dasari L. V. K.; Balakrishnarajan, Musiri M.; Jemmis, Eluvathingal D.

    2005-11-01

    Theoretical studies using density functional theory are carried out to understand the electronic structure and bonding and electronic properties of elemental β -rhombohedral boron. The calculated band structure of ideal β -rhombohedral boron (B105) shows valence electron deficiency and depicts metallic behavior. This is in contrast to the experimental result that it is a semiconductor. To understand this ambiguity we discuss the electronic structure and bonding of this allotrope with cluster fragment approach using our recently proposed mno rule. This helps us to comprehend in greater detail the structure of B105 and materials which are closely related to β -rhombohedral boron. The molecular structures B12H12-2 , B28H21+1 , BeB27H21 , LiB27H21-1 , CB27H21+2 , B57H36+3 , Be3B54H36 , and Li2CB54H36 , and corresponding solids Li8Be3B102 and Li10CB102 are arrived at using these ideas and studied using first principles density functional theory calculations.

  1. Cast Aluminum Bonding Study

    DTIC Science & Technology

    1988-05-01

    fabricated using P?-’r;est11 bur)ld II19 te(hnll I Oly with 6 cIsL nqs. The cast a lumi num alloy used was A357 . The sur- face preparation was phosphoric acid...from a cast aluminum alloy designated A357 . The bonding surfaces of the adherends were prepared using PAA. One primer and two adhesives considered...System, Cast Aluminum Lap Shear 18 11 Bond Area of 350°F Adhesive System, Cast Aluminum Lap Shear 19 vi LIST OF TABLES TABLE PAGE 1 A357 Chemical

  2. Cooperativity in beryllium bonds.

    PubMed

    Alkorta, Ibon; Elguero, José; Yáñez, Manuel; Mó, Otilia

    2014-03-07

    A theoretical study of the beryllium bonded clusters of the (iminomethyl)beryllium hydride and (iminomethyl)beryllium fluoride [HC(BeX)=NH, X = H, F] molecules has been carried out at the B3LYP/6-311++G(3df,2p) level of theory. Linear and cyclic clusters have been characterized up to the decamer. The geometric, energetic, electronic and NMR properties of the clusters clearly indicate positive cooperativity. The evolution of the molecular properties, as the size of the cluster increases, is similar to those reported in polymers held together by hydrogen bonds.

  3. Anodic bonded graphene

    NASA Astrophysics Data System (ADS)

    Balan, Adrian; Kumar, Rakesh; Boukhicha, Mohamed; Beyssac, Olivier; Bouillard, Jean-Claude; Taverna, Dario; Sacks, William; Marangolo, Massimiliano; Lacaze, Emanuelle; Gohler, Roger; Escoffier, Walter; Poumirol, Jean-Marie; Shukla, Abhay

    2010-09-01

    We show how to prepare graphene samples on a glass substrate with the anodic bonding method. In this method, a graphite precursor in flake form is bonded to a glass substrate with the help of an electrostatic field and then cleaved off to leave few layer graphene on the substrate. Now that several methods are available for producing graphene, the relevance of our method is in its simplicity and practicality for producing graphene samples of about 100 µm lateral dimensions. This method is also extensible to other layered materials. We discuss some detailed aspects of the fabrication and results from Raman spectroscopy, local probe microscopy and transport measurements on these samples.

  4. Continuing bonds and place.

    PubMed

    Jonsson, Annika; Walter, Tony

    2017-08-01

    Where do people feel closest to those they have lost? This article explores how continuing bonds with a deceased person can be rooted in a particular place or places. Some conceptual resources are sketched, namely continuing bonds, place attachment, ancestral places, home, reminder theory, and loss of place. The authors use these concepts to analyze interview material with seven Swedes and five Britons who often thought warmly of the deceased as residing in a particular place and often performing characteristic actions. The destruction of such a place, by contrast, could create a troubling, haunting absence, complicating the deceased's absent-presence.

  5. Metallic Adhesion and Bonding

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Smith, J. R.; Rose, J. H.

    1984-01-01

    Although metallic adhesion has played a central part in much tribological speculation, few quantitative theoretical calculations are available. This is in part because of the difficulties involved in such calculations and in part because the theoretical physics community is not particularly involved with tribology. The calculations currently involved in metallic adhesion are summarized and shown that these can be generalized into a scaled universal relationship. Relationships exist to other types of covalent bonding, such as cohesive, chemisorptive, and molecular bonding. A simple relationship between surface energy and cohesive energy is offered.

  6. 29 CFR 2580.412-20 - Use of existing bonds, separate bonds and additional bonding.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... bonding. 2580.412-20 Section 2580.412-20 Labor Regulations Relating to Labor (Continued) EMPLOYEE BENEFITS SECURITY ADMINISTRATION, DEPARTMENT OF LABOR TEMPORARY BONDING RULES UNDER THE EMPLOYEE RETIREMENT INCOME SECURITY ACT OF 1974 TEMPORARY BONDING RULES General Bond Rules § 2580.412-20 Use of existing...

  7. SHM system using rectangular versus circular piezoceramic for the inspection within the bond of a composite bonded joint

    NASA Astrophysics Data System (ADS)

    Quaegebeur, Nicolas; Micheau, Philippe; Masson, Patrice; Castaings, Michel

    2012-04-01

    A bonded joint between an aluminum plate and CFRP plate (7 plies) is considered using a titanium spar. The bonding is ensured by double sided adhesive that is prone to degradation with aging structures. The problem is to detect the disbond occurring at the CFRP plate/titanium spar interface using guided waves generated by piezoceramic transducers (PZT) bonded on the CFRP plate. The objective of the present work is to optimize the SHM configuration (PZT location, Lamb wave mode, size and shape of the PZT) for pitch and catch measurements within the bond. 1D, 2D and 3D numerical simulations of the instrumented structure were performed to optimize the SHM configuration. It appears that the rectangular shape can ensure a plane wave front within the bond, since the circular shape generates complex wave fronts. For experimental investigation, coupon structure was manufactured with synthetic damages inserted using two hemispherical Teflon tapes between adhesive and titanium spar. The structure was instrumented for inspection within the bond by using rectangular PZT. Experimental validation of propagation characteristics and damage sensitivity are performed using LDV measurement within the bond line. Damage detectability using rectangular piezoceramics in pitch-catch configuration within the bond is validated.

  8. Shear bond strength of the Tenure Solution dentin bonding system.

    PubMed

    Barkmeier, W W; Cooley, R L

    1989-10-01

    A liquid solution of an oxalate bonding system containing NTG-GMA and PMDM has become commercially available. The bond strength of this oxalate adhesive (Tenure Solution) to dentin was determined by bonding composite resin cylinders to extracted teeth. The bond strengths obtained in this study are compared to the bond strengths obtained in earlier studies with the first and second generation oxalate adhesives whose components were supplied as powders and required mixing. The oxalate solutions developed significantly higher bond strengths than the original powder type systems.

  9. GRAPHITE BONDING METHOD

    DOEpatents

    King, L.D.P.

    1964-02-25

    A process for bonding or joining graphite members together in which a thin platinum foil is placed between the members, heated in an inert atmosphere to a temperature of 1800 deg C, and then cooled to room temperature is described. (AEC)

  10. Bonding with Your Baby

    MedlinePlus

    ... can take nearly all of your attention and energy — especially for a breastfeeding mom. Bonding will be much easier if you aren't exhausted by all of the other things going on at home, such as housework, meals, and laundry. It's helpful ...

  11. Photochemical tissue bonding

    DOEpatents

    Redmond, Robert W [Brookline, MA; Kochevar, Irene E [Charlestown, MA

    2012-01-10

    Photochemical tissue bonding methods include the application of a photosensitizer to a tissue and/or tissue graft, followed by irradiation with electromagnetic energy to produce a tissue seal. The methods are useful for tissue adhesion, such as in wound closure, tissue grafting, skin grafting, musculoskeletal tissue repair, ligament or tendon repair and corneal repair.

  12. Dialogic Bonds and Boundaries.

    ERIC Educational Resources Information Center

    Khawaja, Mabel

    A study of literature cannot be divorced from cultural contexts, nor can it ignore the humanist vision in interpreting literary texts. To discover dialogic bonds and boundaries between the reader and the text, or the writer and the audience, English classes should have two objectives: (1) to explore the diversity of perspectives, and (2) to relate…

  13. Bonding with the Past.

    ERIC Educational Resources Information Center

    Common Ground: Archeology and Ethnography in the Public Interest, 1998

    1998-01-01

    An interview with Linda Mayro, archaeologist and cultural resources manager for Pima County, Arizona, discusses efforts of local groups to preserve local Native-American and Mexican cultural-heritage sites in oppositon to commercial land developers. A public information campaign led to passage of a $6.4 million historic preservation bond. (SAS)

  14. Bonding without Tears.

    ERIC Educational Resources Information Center

    Akeroyd, F. Michael

    1982-01-01

    Discusses merits of using sigma-pi model of ethylene as a teaching aid in introductory organic chemistry. The nonmathematical treatment of sigma-pi bonding is then extended to such phenomena as conjugation, hyperconjugation, Markovnikoff addition, aromaticity, and aromatic substitution. (SK)

  15. Metallography of solid state bonds

    SciTech Connect

    Johns, W.L.; Doyle, J.H.

    1985-01-01

    Two methods of bonding dissimilar metals have been described: silver-assisted solid state bonding and friction welding. Both methods can produce bonds that are very strong at room temperature with ultimate strengths greater than the lower strength metal. Two distinct types of defects have been observed in friction welds between 1100 aluminum and 316 stainless steel: voids or tearing at the bond interface and formation of brittle intermetallic. Silver-assisted solid state bonds have been made that have very high ultimate strengths. This process requires a large amount of handling of the piece parts prior to being bonded, with the chance for contamination or damage. There are numerous metallurgical problems in the silver-assisted solid state bonding technique. The types of surface preparation method should be considered. In the case of 1100 aluminum bonded to 316 stainless steel, as-machined surfaces are adequate. There is a definite relationship between silver microstructure and substrate temperature. The microstructures produced have significant differences in hardness and ductility. A change in microstructure does not appear to have any effect on the resulting bond strength. Optimum bonding parameters are needed to produce high strength bonds. Low bonding pressure and/or temperature can result in low strength failures. High bonding temperatures can result in the growth of brittle intermetallics. Metallography is an important tool in studying solid state bonds. Both SEM and optical metallography methods are employed.

  16. Bond strengths of conventional and simplified bonding systems.

    PubMed

    Wilder, A D; Swift, E J; May, K N; Waddell, S L

    1998-06-01

    To compare the shear bond strengths of composite to dentin using conventional (three-component) and simplified (two-component) adhesive systems. 100 bovine teeth were mounted in phenolic rings and ground to 600-grit to obtain 90 flat facial dentin surfaces and 10 flat facial enamel surfaces. The dentin specimens were assigned to nine treatment groups of 10 teeth each. Three groups were assigned to conventional, three-component bonding systems: All-Bond 2, OptiBond FL, and Scotchbond Multi-Purpose Plus. Six groups were assigned to simplified, two-component bonding systems: Clearfil Liner Bond 2, Fuji Bond LC, One-Step, OptiBond Solo, Prime & Bond 2.1, and Tenure Quik with Fluoride. The enamel specimens were used as the control group with Scotchbond Multi-Purpose Plus Adhesive. Each ground surface was first conditioned according to the manufacturers' directions. After rinsing, the surface of each specimen was left visibly moist prior to application of the bonding system. Each bonding system was applied according to its manufacturer's directions. The corresponding composite restorative materials were applied in 4.4 mm diameter molds to the adhesive surface and light-cured from four directions. The completed specimens were stored in water 48 hours before testing. Shear bond strengths were measured using an Instron universal testing machine. Data were subjected to one-way ANOVA and Tukey's multiple comparison test. Mean shear bond strengths of the conventional systems ranged from 16.3 to 20.6 MPa. Mean shear bond strengths of the simplified systems ranged from 14.7 to 17.4 MPa. The mean shear bond strength of the control (enamel bonding) was 21.4 MPa. The mean shear bond strengths of the conventional and simplified systems were not significantly different from each other or from the control system.

  17. Advanced double layer capacitors

    NASA Technical Reports Server (NTRS)

    Sarangapani, S.; Lessner, P.; Forchione, J.; Laconti, A. B.

    1989-01-01

    There is a need for large amounts of power to be delivered rapidly in a number of airborne and space systems. Conventional, portable power sources, such as batteries, are not suited to delivering high peak power pulses. The charge stored at the electrode-electrolyte double layer is, however, much more assessible on a short time scale. Devices exploiting this concept were fabricated using carbon and metal oxides (Pinnacle Research) as the electrodes and sulfuric acid as the electrolyte. The approach reported, replaces the liquid sulfuric acid electrolyte with a solid ionomer electrolyte. The challenge is to form a solid electrode-solid ionomer electrolyte composite which has a high capacitance per geometric area. The approach to maximize contact between the electrode particles and the ionomer was to impregnate the electrode particles using a liquid ionomer solution and to bond the solvent-free structure to a solid ionomer membrane. Ruthenium dioxide is the electrode material used. Three strategies are being pursued to provide for a high area electrode-ionomer contact: mixing of the RuOx with a small volume of ionomer solution followed by filtration to remove the solvent, and impregnation of the ionomer into an already formed RuOx electrode. RuOx powder and electrodes were examined by non-electrochemical techniques. X-ray diffraction has shown that the material is almost pure RuO2. The electrode structure depends on the processing technique used to introduce the Nafion. Impregnated electrodes have Nafion concentrated near the surface. Electrodes prepared by the evaporation method show large aggregates of crystals surrounded by Nafion.

  18. Quintuple super bonding between the superatoms of metallic clusters.

    PubMed

    Wang, Haiyan; Cheng, Longjiu

    2017-09-14

    The synthesis of a stable compound with Cr-Cr quintuple bonding (σ, 2π, 2δ) opened the door to a new field of chemistry (T. Nguyen, A. D. Sutton, M. Brynda, J. C. Fettinger, G. J. Long and P. P. Power, Science, 2005, 310, 844). Looking back to the mass experiments on sodium clusters (W. D. Knight, K. Clemenger, W. A. de Heer, W. A. Saunders, M. Y. Chou and M. L. Cohen, Phys. Rev. Lett., 1984, 52, 2141), this work tells some new stories about the experimentally viewed magic numbers 26e and 30e. By unbiased global search, the 26e Li20Mg3 cluster has a perfect double-icosahedral motif with a large HOMO-LUMO energy gap (1.44 eV). We theoretically found that each icosahedron is an independent superatom and molecule-like electronic shell-closure is achieved via quintuple super bonding between two superatoms: [8e](1D2S)(5)-(1D2S)(5)[8e]. Similar quintuple bonding also exists in the 30e double-icosahedral Li18Mg3Al2 cluster: [8e](1D2S)(7)-(1D2S)(7)[8e]. The 26e/30e quintuple bonding was verified by the beautiful analogies in molecular orbital diagrams and chemical bonding patterns with V2/Re2 molecules. Such a quintuple super bonding makes a bridge between the jellium model and chemical bonding, which further expands the community of chemical bonds.

  19. A double-double/double-single computation package

    SciTech Connect

    Bailey, David H.

    2004-12-01

    The DDFUNIDSFUN software permits a new or existing Fortran-90 program to utilize double-double precision (approx. 31 digits) or double-single precision (approx. 14 digits) arithmetic. Double-double precision is required by a rapidly expandirtg body of scientific computations in physics and mathematics, for which the conventional 64-bit IEEE computer arithmetic (about 16 decimal digit accuracy) is not sufficient. Double-single precision permits users of systems that do not have hardware 64-bit IEEE arithmetic (such as some game systems) to perform arithmetic at a precision nearly as high as that of systems that do. Both packages run significantly faster Than using multiple precision or arbitrary precision software for this purpose. The package includes an extensive set of low-level routines to perform high-precision arithmetic, including routines to calculate various algebraic and transcendental functions, such as square roots, sin, ccc, exp, log and others. In addition, the package includes high-level translation facilities, so that Fortran programs can utilize these facilities by making only a few changes to conventional Fortran programs. In most cases, the only changes that are required are to change the type statements of variables that one wishes to be treated as multiple precision, plus a few other minor changes. The DDFUN package is similar in functionality to the double-double part of the GD package, which was previously written at LBNL. However, the DDFUN package is written exclusively in Fortran-90, thus avoidIng difficulties that some users experience when using GD, which includes both Fortran-90 and C++ code.

  20. Reductive Insertion of Elemental Chalcogens into Boron-Boron Multiple Bonds.

    PubMed

    Braunschweig, Holger; Dellermann, Theresa; Ewing, William C; Kramer, Thomas; Schneider, Christoph; Ullrich, Stefan

    2015-08-24

    The syntheses of sulfur- and selenium-bridged cyclic compounds containing boron stabilized by N-heterocyclic carbenes (NHCs) have been achieved by the reductive insertion of elemental chalcogens into boron-boron multiple bonds. The three pairs of bonding electrons between the boron atoms in the triply bonded diboryne enabled six-electron reduction reactions, resulting in the formation of [2.2.1]-bicyclic systems wherein bridgehead boron atoms are spanned by three chalcogen bridges. A similar reaction using a diborene (boron-boron double bond) resulted in the reductive transfer of both pairs of bonding electrons to three sulfur atoms, yielding a NHC-stabilized trisulfidodiborolane. The demonstration of these six- and four-electron reductions lends support to the presence of three and two pairs of bonding electrons between the boron atoms of the diboryne and diborene, respectively, a fact that may be useful in future discussions on bond order.

  1. Bond-slip behavior of CFRP plate-concrete interface

    NASA Astrophysics Data System (ADS)

    Cho, D. Y.; Park, S. K.; Hong, S. N.

    2011-11-01

    The paper deals with evaluation of the bond performance between a CFRP plate and concrete with respect to various compressive strengths of concrete and bond lengths of the CFRP plate as parameters. To consider stress conditions in the tensile zone of reinforced concrete (RC) structures, double-lap axial tension tests were conducted for eight specimens with CFRP plates bonded to concrete prisms. In addition, a simple linear bond-slip model for the CFRP plate/concrete joints, developed from the bond tests, was used. To verify the model proposed, a total of seven RC beams were strengthened with CFRP plates and tested in flexure employing various bond lengths, strengthening methods, and numbers of CFRP plates. A nonlinear finite-element analysis, with the bond-slip model incorporated in the DIANA program, was performed for the strengthened RC beams. Also, the results of flexural test and analytical predictions are found to be in close agreement in terms of yield and ultimate loads and ductility.

  2. [A double gallbladder].

    PubMed

    Mink van der Molen, A B; Salu, M K

    1991-04-06

    A 59-year-old woman is described with symptomatic cholelithiasis. A double gallbladder was incidentally found during abdominal surgery. The literature on a double gallbladder is reviewed with respect to incidence, anatomy, diagnosis and therapy.

  3. Double photoionization of halogenated benzene

    SciTech Connect

    AlKhaldi, Mashaal Q.; Wehlitz, Ralf

    2016-01-28

    We have experimentally investigated the double-photoionization process in C{sub 6}BrF{sub 5} using monochromatized synchrotron radiation. We compare our results with previously published data for partially deuterated benzene (C{sub 6}H{sub 3}D{sub 3}) over a wide range of photon energies from threshold to 270 eV. A broad resonance in the ratio of doubly to singly charged parent ions at about 65 eV appears shifted in energy compared to benzene data. This shift is due to the difference in the bond lengths in two molecules. A simple model can explain the shape of this resonance. At higher photon energies, we observe another broad resonance that can be explained as a second harmonic of the first resonance.

  4. Photocatalytic alkene reduction by a B12-TiO2 hybrid catalyst coupled with C-F bond cleavage for gem-difluoroolefin synthesis.

    PubMed

    Tian, Hui; Shimakoshi, Hisashi; Imamura, Kenji; Shiota, Yoshihito; Yoshizawa, Kazunari; Hisaeda, Yoshio

    2017-08-22

    Photocatalytic syntheses of gem-difluoroolefins were performed using the B12-TiO2 hybrid catalyst during the C[double bond, length as m-dash]C bond reduction of α-trifluoromethyl styrenes with C-F bond cleavage at room temperature under nitrogen. The gem-difluoroolefins were used as synthetic precursors for fluorinated cyclopropanes.

  5. The Nature of the Idealized Triple Bonds Between Principal Elements and the σ Origins of Trans-Bent Geometries-A Valence Bond Study.

    PubMed

    Ploshnik, Elina; Danovich, David; Hiberty, Philippe C; Shaik, Sason

    2011-04-12

    We describe herein a valence bond (VB) study of 27 triply bonded molecules of the general type X≡Y, where X and Y are main element atoms/fragments from groups 13-15 in the periodic table. The following conclusions were derived from the computational data: (a) Single π-bond and double π-bond energies for the entire set correlate with the "molecular electronegativity", which is the sum of the X and Y electronegativites for X≡Y. The correlation with the molecular electronegativity establishes a simple rule of periodicity: π-bonding strength generally increases from left to right in a period and decreases down a column in the periodic table. (b) The σ frame invariably prefers trans bending, while π-bonding gets destabilized and opposes the trans distortion. In HC≡CH, the π-bonding destabilization overrides the propensity of the σ frame to distort, while in the higher row molecules, the σ frame wins out and establishes trans-bent molecules with 2(1)/2 bonds, in accord with recent experimental evidence based on solid state (29)Si NMR of the Sekiguchi compound. Thus, in the trans-bent molecules "less bonds pay more". (c) All of the π bonds show significant bonding contributions from the resonance energy due to covalent-ionic mixing. This quantity is shown to correlate linearly with the corresponding "molecular electronegativity" and to reflect the mechanism required to satisfy the equilibrium condition for the bond. The π bonds for molecules possessing high molecular electronegativity are charge-shift bonds, wherein bonding is dominated by the resonance energy of the covalent and ionic forms, rather than by either form by itself.

  6. Chromosome doubling method

    DOEpatents

    Kato, Akio

    2006-11-14

    The invention provides methods for chromosome doubling in plants. The technique overcomes the low yields of doubled progeny associated with the use of prior techniques for doubling chromosomes in plants such as grasses. The technique can be used in large scale applications and has been demonstrated to be highly effective in maize. Following treatment in accordance with the invention, plants remain amenable to self fertilization, thereby allowing the efficient isolation of doubled progeny plants.

  7. Low temperature reactive bonding

    DOEpatents

    Makowiecki, Daniel M.; Bionta, Richard M.

    1995-01-01

    The joining technique requires no external heat source and generates very little heat during joining. It involves the reaction of thin multilayered films deposited on faying surfaces to create a stable compound that functions as an intermediate or braze material in order to create a high strength bond. While high temperatures are reached in the reaction of the multilayer film, very little heat is generated because the films are very thin. It is essentially a room temperature joining process.

  8. The double identity of linguistic doubling.

    PubMed

    Berent, Iris; Bat-El, Outi; Brentari, Diane; Dupuis, Amanda; Vaknin-Nusbaum, Vered

    2016-11-29

    Does knowledge of language consist of abstract principles, or is it fully embodied in the sensorimotor system? To address this question, we investigate the double identity of doubling (e.g., slaflaf, or generally, XX; where X stands for a phonological constituent). Across languages, doubling is known to elicit conflicting preferences at different levels of linguistic analysis (phonology vs. morphology). Here, we show that these preferences are active in the brains of individual speakers, and they are demonstrably distinct from sensorimotor pressures. We first demonstrate that doubling in novel English words elicits divergent percepts: Viewed as meaningless (phonological) forms, doubling is disliked (e.g., slaflaf < slafmak), but once doubling in form is systematically linked to meaning (e.g., slaf = ball, slaflaf = balls), the doubling aversion shifts into a reliable (morphological) preference. We next show that sign-naive speakers spontaneously project these principles to novel signs in American Sign Language, and their capacity to do so depends on the structure of their spoken language (English vs. Hebrew). These results demonstrate that linguistic preferences doubly dissociate from sensorimotor demands: A single stimulus can elicit diverse percepts, yet these percepts are invariant across stimulus modality--for speech and signs. These conclusions are in line with the possibility that some linguistic principles are abstract, and they apply broadly across language modality.

  9. IMPROVED BONDING METHOD

    DOEpatents

    Padgett, E.V. Jr.; Warf, D.H.

    1964-04-28

    An improved process of bonding aluminum to aluminum without fusion by ultrasonic vibrations plus pressure is described. The surfaces to be bonded are coated with an aqueous solution of alkali metal stearate prior to assembling for bonding. (AEC) O H19504 Present information is reviewed on steady state proliferation, differentiation, and maturation of blood cells in mammals. Data are cited from metabolic tracer studies, autoradiographic studies, cytologic studies, studies of hematopoietic response to radiation injuries, and computer analyses of blood cell production. A 3-step model for erythropoiesis and a model for granulocyte kinetics are presented. New approaches to the study of lymphocytopoiesis described include extracorporeal blood irradiation to deplete lymphocytic tissue without direct injury to the formative tissues as a means to study the stressed system, function control, and rates of proliferation. It is pointed out that present knowledge indicates that lymphocytes comprise a mixed family, with diverse life spans, functions, and migration patterns with apparent aimless recycling from modes to lymph to blood to nodes that has not yet been quantitated. Areas of future research are postulated. (70 references.) (C.H.)

  10. Reliable four-point flexion test and model for die-to-wafer direct bonding

    SciTech Connect

    Tabata, T. Sanchez, L.; Fournel, F.; Moriceau, H.

    2015-07-07

    For many years, wafer-to-wafer (W2W) direct bonding has been very developed particularly in terms of bonding energy measurement and bonding mechanism comprehension. Nowadays, die-to-wafer (D2W) direct bonding has gained significant attention, for instance, in photonics and microelectro-mechanics, which supposes controlled and reliable fabrication processes. So, whatever the stuck materials may be, it is not obvious whether bonded D2W structures have the same bonding strength as bonded W2W ones, because of possible edge effects of dies. For that reason, it has been strongly required to develop a bonding energy measurement technique which is suitable for D2W structures. In this paper, both D2W- and W2W-type standard SiO{sub 2}-to-SiO{sub 2} direct bonding samples are fabricated from the same full-wafer bonding. Modifications of the four-point flexion test (4PT) technique and applications for measuring D2W direct bonding energies are reported. Thus, the comparison between the modified 4PT and the double-cantilever beam techniques is drawn, also considering possible impacts of the conditions of measures such as the water stress corrosion at the debonding interface and the friction error at the loading contact points. Finally, reliability of a modified technique and a new model established for measuring D2W direct bonding energies is demonstrated.

  11. Coulombic Models in Chemical Bonding.

    ERIC Educational Resources Information Center

    Sacks, Lawrence J.

    1986-01-01

    Compares the coulumbic point charge model for hydrogen chloride with the valence bond model. It is not possible to assign either a nonpolar or ionic canonical form of the valence bond model, while the covalent-ionic bond distribution does conform to the point charge model. (JM)

  12. Coulombic Models in Chemical Bonding.

    ERIC Educational Resources Information Center

    Sacks, Lawrence J.

    1986-01-01

    Compares the coulumbic point charge model for hydrogen chloride with the valence bond model. It is not possible to assign either a nonpolar or ionic canonical form of the valence bond model, while the covalent-ionic bond distribution does conform to the point charge model. (JM)

  13. 46 CFR Sec. 10 - Bonds.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... REPAIRS UNDER NATIONAL SHIPPING AUTHORITY MASTER LUMP SUM REPAIR CONTRACT-NSA-LUMPSUMREP Sec. 10 Bonds. (a... awarded work and the furnishing of the performance and payment bonds required by Article 14 of the NSA... of the NSA-LUMPSUMREP Contract, the standard form of individual performance bond (Standard Form 25...

  14. 46 CFR Sec. 10 - Bonds.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... REPAIRS UNDER NATIONAL SHIPPING AUTHORITY MASTER LUMP SUM REPAIR CONTRACT-NSA-LUMPSUMREP Sec. 10 Bonds. (a... awarded work and the furnishing of the performance and payment bonds required by Article 14 of the NSA... of the NSA-LUMPSUMREP Contract, the standard form of individual performance bond (Standard Form 25...

  15. Rapid Adhesive Bonding of Composites

    NASA Technical Reports Server (NTRS)

    Stein, B. A.; Tyeryar, J. R.; Fox, R. L.; Sterling, S. Elmo, Jr.; Buckley, J. D.; Inge, Spencer V., Jr.; Burcher, L. G.; Wright, Robert E., Jr.

    1986-01-01

    Strong bonds created in less time and with less power than use of conventional bonding methods. Rapid adhesive bonding (RAB) technique for composites uses high-frequency induction heating toroids to quickly heat metallic susceptor impregnated with thermoplastic adhesive or sandwiched between thermoset or thermoplastic adhesive cloths or films. Susceptor steel screen or perforated steel foil.

  16. Rapid Adhesive Bonding of Composites

    NASA Technical Reports Server (NTRS)

    Stein, B. A.; Tyeryar, J. R.; Fox, R. L.; Sterling, S. Elmo, Jr.; Buckley, J. D.; Inge, Spencer V., Jr.; Burcher, L. G.; Wright, Robert E., Jr.

    1986-01-01

    Strong bonds created in less time and with less power than use of conventional bonding methods. Rapid adhesive bonding (RAB) technique for composites uses high-frequency induction heating toroids to quickly heat metallic susceptor impregnated with thermoplastic adhesive or sandwiched between thermoset or thermoplastic adhesive cloths or films. Susceptor steel screen or perforated steel foil.

  17. Communication: Frequency shifts of an intramolecular hydrogen bond as a measure of intermolecular hydrogen bond strengths

    NASA Astrophysics Data System (ADS)

    Gu, Quanli; Trindle, Carl; Knee, J. L.

    2012-09-01

    Infrared-ultraviolet double resonance spectroscopy has been applied to study the infrared spectra of the supersonically cooled gas phase complexes of formic acid, acetic acid, propionic acid, formamide, and water with 9-hydroxy-9-fluorenecarboxylic acid (9HFCA), an analog of glycolic acid. In these complexes each binding partner to 9HFCA can function as both proton donor and acceptor. Relative to its frequency in free 9HFCA, the 9-hydroxy (9OH) stretch is blue shifted in complexes with formic, acetic, and propionic acids, but is red shifted in the complexes with formamide and water. Density functional calculations on complexes of 9HFCA to a variety of H bonding partners with differing proton donor and acceptor abilities reveal that the quantitative frequency shift of the 9OH can be attributed to the balance struck between two competing intermolecular H bonds. More extensive calculations on complexes of glycolic acid show excellent consistency with the experimental frequency shifts.

  18. Communication: Frequency shifts of an intramolecular hydrogen bond as a measure of intermolecular hydrogen bond strengths.

    PubMed

    Gu, Quanli; Trindle, Carl; Knee, J L

    2012-09-07

    Infrared-ultraviolet double resonance spectroscopy has been applied to study the infrared spectra of the supersonically cooled gas phase complexes of formic acid, acetic acid, propionic acid, formamide, and water with 9-hydroxy-9-fluorenecarboxylic acid (9HFCA), an analog of glycolic acid. In these complexes each binding partner to 9HFCA can function as both proton donor and acceptor. Relative to its frequency in free 9HFCA, the 9-hydroxy (9OH) stretch is blue shifted in complexes with formic, acetic, and propionic acids, but is red shifted in the complexes with formamide and water. Density functional calculations on complexes of 9HFCA to a variety of H bonding partners with differing proton donor and acceptor abilities reveal that the quantitative frequency shift of the 9OH can be attributed to the balance struck between two competing intermolecular H bonds. More extensive calculations on complexes of glycolic acid show excellent consistency with the experimental frequency shifts.

  19. Hydrogen bonding in ionic liquids.

    PubMed

    Hunt, Patricia A; Ashworth, Claire R; Matthews, Richard P

    2015-03-07

    Ionic liquids (IL) and hydrogen bonding (H-bonding) are two diverse fields for which there is a developing recognition of significant overlap. Doubly ionic H-bonds occur when a H-bond forms between a cation and anion, and are a key feature of ILs. Doubly ionic H-bonds represent a wide area of H-bonding which has yet to be fully recognised, characterised or explored. H-bonds in ILs (both protic and aprotic) are bifurcated and chelating, and unlike many molecular liquids a significant variety of distinct H-bonds are formed between different types and numbers of donor and acceptor sites within a given IL. Traditional more neutral H-bonds can also be formed in functionalised ILs, adding a further level of complexity. Ab initio computed parameters; association energies, partial charges, density descriptors as encompassed by the QTAIM methodology (ρBCP), qualitative molecular orbital theory and NBO analysis provide established and robust mechanisms for understanding and interpreting traditional neutral and ionic H-bonds. In this review the applicability and extension of these parameters to describe and quantify the doubly ionic H-bond has been explored. Estimating the H-bonding energy is difficult because at a fundamental level the H-bond and ionic interaction are coupled. The NBO and QTAIM methodologies, unlike the total energy, are local descriptors and therefore can be used to directly compare neutral, ionic and doubly ionic H-bonds. The charged nature of the ions influences the ionic characteristics of the H-bond and vice versa, in addition the close association of the ions leads to enhanced orbital overlap and covalent contributions. The charge on the ions raises the energy of the Ylp and lowers the energy of the X-H σ* NBOs resulting in greater charge transfer, strengthening the H-bond. Using this range of parameters and comparing doubly ionic H-bonds to more traditional neutral and ionic H-bonds it is clear that doubly ionic H-bonds cover the full range of weak

  20. Synthesis of a uranium(VI)-carbene: reductive formation of uranyl(V)-methanides, oxidative preparation of a [R2C═U═O]2+ analogue of the [O═U═O]2+ uranyl ion (R = Ph2PNSiMe3), and comparison of the nature of U(IV)═C, U(V)═C, and U(VI)═C double bonds.

    PubMed

    Mills, David P; Cooper, Oliver J; Tuna, Floriana; McInnes, Eric J L; Davies, E Stephen; McMaster, Jonathan; Moro, Fabrizio; Lewis, William; Blake, Alexander J; Liddle, Stephen T

    2012-06-20

    We report attempts to prepare uranyl(VI)- and uranium(VI) carbenes utilizing deprotonation and oxidation strategies. Treatment of the uranyl(VI)-methanide complex [(BIPMH)UO(2)Cl(THF)] [1, BIPMH = HC(PPh(2)NSiMe(3))(2)] with benzyl-sodium did not afford a uranyl(VI)-carbene via deprotonation. Instead, one-electron reduction and isolation of di- and trinuclear [UO(2)(BIPMH)(μ-Cl)UO(μ-O){BIPMH}] (2) and [UO(μ-O)(BIPMH)(μ(3)-Cl){UO(μ-O)(BIPMH)}(2)] (3), respectively, with concomitant elimination of dibenzyl, was observed. Complexes 2 and 3 represent the first examples of organometallic uranyl(V), and 3 is notable for exhibiting rare cation-cation interactions between uranyl(VI) and uranyl(V) groups. In contrast, two-electron oxidation of the uranium(IV)-carbene [(BIPM)UCl(3)Li(THF)(2)] (4) by 4-morpholine N-oxide afforded the first uranium(VI)-carbene [(BIPM)UOCl(2)] (6). Complex 6 exhibits a trans-CUO linkage that represents a [R(2)C═U═O](2+) analogue of the uranyl ion. Notably, treatment of 4 with other oxidants such as Me(3)NO, C(5)H(5)NO, and TEMPO afforded 1 as the only isolable product. Computational studies of 4, the uranium(V)-carbene [(BIPM)UCl(2)I] (5), and 6 reveal polarized covalent U═C double bonds in each case whose nature is significantly affected by the oxidation state of uranium. Natural Bond Order analyses indicate that upon oxidation from uranium(IV) to (V) to (VI) the uranium contribution to the U═C σ-bond can increase from ca. 18 to 32% and within this component the orbital composition is dominated by 5f character. For the corresponding U═C π-components, the uranium contribution increases from ca. 18 to 26% but then decreases to ca. 24% and is again dominated by 5f contributions. The calculations suggest that as a function of increasing oxidation state of uranium the radial contraction of the valence 5f and 6d orbitals of uranium may outweigh the increased polarizing power of uranium in 6 compared to 5.

  1. Evaluation of composite bonded joints

    SciTech Connect

    Whitworth, H.A.; Othieno, M.; Yin, S.W.

    1995-12-31

    The present investigation evaluates the influence of joining technique on the static and fatigue behavior of composite bonded joints. Specimens used in this investigation were LDF AS4/PEKK graphite/thermoplastic composites and IM6/3501-6 graphite/poxy composite laminates. Joints were made by either adhesive bonding or fusing bonding. For the adhesive bonded joints, in some cases specimens were bonded without any surface pretreatment while in other cases the surfaces were either grit blast or corona. treated prior to bonding. For the fusion bonded joints, joints were prepared by either induction welding or thermabonding. In addition, some specimens were conditioned in a wet environment for thirty days in order to observe the influence of moisture on the static strengths. During fatigue testing, the residual stiffness was continually monitored in order to assess the extent of fatigue damage development.

  2. Bond strength of direct and indirect bonded brackets after thermocycling.

    PubMed

    Daub, Jacob; Berzins, David W; Linn, Brandon James; Bradley, Thomas Gerard

    2006-03-01

    Thermocycling simulates the temperature dynamics in the oral environment. With direct bonding, thermocycling reduces the bond strength of orthodontic adhesives to tooth structure. The purpose of this study was to evaluate the shear bond strengths (SBS) of one direct and two indirect bonding methods/adhesives after thermocycling. Sixty human premolars were divided into three groups. Teeth in group 1 were bonded directly with Transbond XT. Teeth in group 2 were indirect bonded with Transbond XT/Sondhi Rapid Set, which is chemically cured. Teeth in group 3 were indirect bonded with Enlight LV/Orthosolo and light cured. Each sample was thermocycled between 5 degrees C and 55 degrees C for 500 cycles. Mean SBS in groups 1, 2, and 3 were not statistically significantly different (13.6 +/- 2.9, 12.3 +/- 3.0, and 11.6 +/- 3.2 MPa, respectively; P > .05). However, when these values were compared with the results of a previous study using the same protocol, but without thermocycling, the SBS was reduced significantly (P = .001). Weibull analysis further showed that group 3 had the lowest bonding survival rate at the minimum clinically acceptable bond-strength range. The Adhesive Remnant Index was also determined, and group 2 had a significantly (P < .05) higher percentage of bond failures at the resin/enamel interface.

  3. Topological hydrogen-bond definition to characterize the structure and dynamics of liquid water.

    PubMed

    Henchman, Richard H; Irudayam, Sheeba Jem

    2010-12-23

    A definition that equates a hydrogen bond topologically with a local energy well in the potential energy surface is used to study the structure and dynamics of liquid water. We demonstrate the robustness of this hydrogen-bond definition versus the many other definitions which use fixed, arbitrary parameters, do not account for variable molecular environments, and cannot effectively resolve transition states. Our topology definition unambiguously shows that most water molecules are double acceptors but sizable proportions are single or triple acceptors. Almost all hydrogens are found to take part in hydrogen bonds. Broken hydrogen bonds only form when two molecules try to form two hydrogen bonds between them. The double acceptors have tetrahedral geometry, lower potential energy, entropy, and density, and slower dynamics. The single and triple acceptors have trigonal and trigonal bipyramidal geometry and when considered together have higher density, potential energy, and entropy, faster dynamics, and a tendency to cluster. These calculations use an extended theory for the entropy of liquid water that takes into account the variable number of hydrogen bonds. Hydrogen-bond switching is shown to depend explicitly on the variable number of hydrogen bonds accepted and the presence of interstitial water molecules. Transition state theory indicates that the switching of hydrogen bonds is a mildly activated process, requiring only a moderate distortion of hydrogen bonds. Three main types of switching events are observed depending on whether the donor and acceptor are already sharing a hydrogen bond. The switch may proceed with no intermediate or via a bifurcated-oxygen or cyclic dimer, both of which have a broken hydrogen bond and symmetric and asymmetric forms. Switching is found to be strongly coupled to whole-molecule vibration, particularly for the more mobile single and triple acceptors. Our analysis suggests that even though water is heterogeneous in terms of the

  4. Doubly ionic hydrogen bond interactions within the choline chloride-urea deep eutectic solvent.

    PubMed

    Ashworth, Claire R; Matthews, Richard P; Welton, Tom; Hunt, Patricia A

    2016-07-21

    Deep eutectic solvents (DESs) are exemplars of systems with the ability to form neutral, ionic and doubly ionic H-bonds. Herein, the pairwise interactions of the constituent components of the choline chloride-urea DES are examined. Evidence is found for a tripodal CHCl doubly ionic H-bond motif. Moreover it is found that the covalency of doubly ionic H-bonds can be greater than, or comparable with, neutral and ionic examples. In contrast to many traditional solvents, an "alphabet soup" of many different types of H-bond (OHO[double bond, length as m-dash]C, NHO[double bond, length as m-dash]C, OHCl, NHCl, OHNH, CHCl, CHO[double bond, length as m-dash]C, NHOH and NHNH) can form. These H-bonds exhibit substantial flexibility in terms of number and strength. It is anticipated that H-bonding will have a significant impact on the entropy of the system and thus could play an important role in the formation of the eutectic. The 2 : 1 urea : choline-chloride eutectic point of this DES is often associated with the formation of a [Cl(urea)2](-) complexed anion. However, urea is found to form a H-bonded urea[choline](+) complexed cation that is energetically competitive with [Cl(urea)2](-). The negative charge on [Cl(urea)2](-) is found to remain localised on the chloride, moreover, the urea[choline](+) complexed cation forms the strongest H-bond studied here. Thus, there is potential to consider a urea[choline](+)·urea[Cl](-) interaction.

  5. Low temperature reactive bonding

    SciTech Connect

    Makowiecki, D.M.; Bionta, R.M.

    1995-06-23

    Disclosed is a joining technique that requires no external heat source and generates very little heat. It involves the reaction of thin multilayered films deposited on faying (closely fit or joining) surfaces to create a stable compound that functions as an intermediate or braze material in order to create a high strength bond. While high temperatures are reached in the reaction of the multilayer film, very little heat is generated because the films are very thin. It is essentially a room temperature joining process. It can be used for joining silicon wafers and integrated circuits.

  6. Disulfide bond structure of glycoprotein D of herpes simplex virus types 1 and 2.

    PubMed Central

    Long, D; Wilcox, W C; Abrams, W R; Cohen, G H; Eisenberg, R J

    1992-01-01

    Glycoprotein D (gD) is a structural component of the herpes simplex virus envelope which is essential for virus penetration. The function of this protein is highly dependent on its structure, and its structure is dependent on maintenance of three intact disulfide bonds. gD contains six cysteines in its ectodomain whose spacing is conserved among all its homologs in other alphaherpesviruses as well as Marek's disease virus. For other proteins, conservation of cysteine spacing correlates with conservation of disulfide bond structure. We have now solved the disulfide bond structure of gD-1 and gD-2 of herpes simplex virus types 1 and 2, respectively. Two approaches were used. First, we constructed 15 double-Cys mutants of gD-1, representing all possible disulfide pairs. In each case, codons for cysteines were changed to serine. We reasoned that if two cysteines normally form a disulfide bond, double mutations which eliminate one proper bond should be less harmful to gD structure than double mutations which eliminate two disulfide bonds. The mutated genes were cloned into a eucaryotic expression vector, and the proteins were expressed in transiently transfected cells. Three double mutations, Cys-1,5, Cys-2,6, and Cys-3,4 permitted gD-1 folding, processing, transport to the cell surface, and function in virus infection, whereas 12 other double mutations each produced a malfolded and nonfunctional protein. Thus, the three functional double-Cys mutants may represent the actual partners in disulfide bond linkages. The second approach was to define the actual disulfide bond structure of gD by biochemical means. Purified native gD-2 was cleaved by CNBr and proteases, and the peptides were separated by high-performance liquid chromatography. Disulfide-linked peptides were subjected to N-terminal amino acid sequencing. The results show that cysteine 1 (amino acid [aa] 66) is bonded to cysteine 5 (aa 189), cysteine 2 (aa 106) is bonded to cysteine 6 (aa 202), and cysteine 3 (aa

  7. Characterization of Dentine to Assess Bond Strength of Dental Composites

    PubMed Central

    Liaqat, Saad; Aljabo, Anas; Khan, Muhammad Adnan; Ben Nuba, Hesham; Bozec, Laurent; Ashley, Paul; Young, Anne

    2015-01-01

    This study was performed to develop alternating dentine adhesion models that could help in the evaluation of a self-bonding dental composite. For this purpose dentine from human and ivory was characterized chemically and microscopically before and after acid etching using Raman and SEM. Mechanical properties of dentine were determined using 3 point bend test. Composite bonding to dentine, with and without use of acid pre-treatment and/or the adhesive, were assessed using a shear bond test. Furthermore, micro gap formation after restoration of 3 mm diameter cavities in dentine was assessed by SEM. Initial hydroxyapatite level in ivory was half that in human dentine. Surface hydroxyapatites decreased by approximately half with every 23 s of acid etch. The human dentine strength (56 MPa) was approximately double that of ivory, while the modulus was almost comparable to that of ivory. With adhesive use, average shear bond strengths were 30 and 26 MPa with and without acid etching. With no adhesive, average bond strength was 6 MPa for conventional composites. This, however, increased to 14 MPa with a commercial flowable “self–bonding” composite or upon addition of low levels of an acidic monomer to the experimental composite. The acidic monomer additionally reduced micro-gap formation with the experimental composite. Improved bonding and mechanical properties should reduce composite failures due to recurrent caries or fracture respectively.

  8. How many hydrogen-bonded α-turns are possible?

    PubMed

    Schreiber, Anette; Schramm, Peter; Hofmann, Hans-Jörg

    2011-06-01

    The formation of α-turns is a possibility to reverse the direction of peptide sequences via five amino acids. In this paper, a systematic conformational analysis was performed to find the possible isolated α-turns with a hydrogen bond between the first and fifth amino acid employing the methods of ab initio MO theory in vacuum (HF/6-31G*, B3LYP/6-311 + G*) and in solution (CPCM/HF/6-31G*). Only few α-turn structures with glycine and alanine backbones fulfill the geometry criteria for the i←(i + 4) hydrogen bond satisfactorily. The most stable representatives agree with structures found in the Protein Data Bank. There is a general tendency to form additional hydrogen bonds for smaller pseudocycles corresponding to β- and γ-turns with better hydrogen bond geometries. Sometimes, this competition weakens or even destroys the i←(i + 4) hydrogen bond leading to very stable double β-turn structures. This is also the reason why an "ideal" α-turn with three central amino acids having the perfect backbone angle values of an α-helix could not be localized. There are numerous hints for stable α-turns with a distance between the C(α)-atoms of the first and fifth amino acid smaller than 6-7 Å, but without an i←(i + 4) hydrogen bond.

  9. Efficient simulation of semiflexible polymers with stiff bonds

    NASA Astrophysics Data System (ADS)

    Barkema, Gerard T.; van Leeuwen, J. M. J.

    2017-01-01

    We investigate the simulation of stiff (extensible) and rigid (inextensible) semiflexible polymers in solution. In particular, we focus on polymers represented as chains of beads, interconnected by bonds with a low to zero extensibility, and significant persistence in the bond orientations along the chain, whose dynamical behavior is described by the Langevin equation. We review the derivation of the pseudopotential needed for rigid bonds. The efficiency of a number of routines for such simulations is determined. We propose a routine for handling rigid bonds which is, for longer chains, substantially more efficient than the existing ones. We also show that for extensible polymers, the Rouse modes can be exploited to achieve highly efficient simulations. At realistic values for the extensibility, e.g., that of double-stranded DNA, the simulations are orders of magnitude faster than those for rigid bonds. With increasing stiffness, however, the allowable time step and hence the efficiency decreases, until a crossover point is reached below which the routines with rigid bonds are more efficient; we present a numerical estimate of this crossover point.

  10. Comparison of Bond in Roll-bonded and Adhesively Bonded Aluminums

    NASA Technical Reports Server (NTRS)

    Schwensfeir, R. J., Jr.; Trenkler, G.; Delagi, R. G.; Forster, J. A.

    1985-01-01

    Lap-shear and peel test measurements of bond strength have been carried out as part of an investigation of roll bonding of 2024 and 7075 aluminum alloys. Shear strengths of the bonded material in the F temper are in the range of 14 to 16 ksi. Corresponding peel strengths are 120 to 130 lb/inch. These values, which are three to five times those reported in the literature for adhesively bonded 2024 and 7075, are a result of the true metallurgical bond achieved. The effects of heat-treating the bonded material are described and the improvements in bond strength discussed relative to the shear strength of the parent material. The significance of the findings for aerospace applications is discussed.

  11. NMR parameters and geometries of OHN and ODN hydrogen bonds of pyridine-acid complexes.

    PubMed

    Limbach, Hans-Heinrich; Pietrzak, Mariusz; Sharif, Shasad; Tolstoy, Peter M; Shenderovich, Ilya G; Smirnov, Sergei N; Golubev, Nikolai S; Denisov, Gleb S

    2004-10-11

    In this paper, equations are proposed which relate various NMR parameters of OHN hydrogen-bonded pyridine-acid complexes to their bond valences which are in turn correlated with their hydrogen-bond geometries. As the valence bond model is strictly valid only for weak hydrogen bonds appropriate empirical correction factors are proposed which take into account anharmonic zero-point energy vibrations. The correction factors are different for OHN and ODN hydrogen bonds and depend on whether a double or a single well potential is realized in the strong hydrogen-bond regime. One correction factor was determined from the known experimental structure of a very strong OHN hydrogen bond between pentachlorophenol and 4-methylpyridine, determined by the neutron diffraction method. The remaining correction factors which allow one also to describe H/D isotope effects on the NMR parameters and geometries of OHN hydrogen bond were determined by analysing the NMR parameters of the series of protonated and deuterated pyridine- and collidine-acid complexes. The method may be used in the future to establish hydrogen-bond geometries in biologically relevant functional OHN hydrogen bonds.

  12. Polyimide adhesive bonding

    NASA Technical Reports Server (NTRS)

    Progar, D.

    1979-01-01

    Adhesive systems which could be used to bond composite-to-composite, composite-to-titanium, and honeycomb sandwich structures with operational capability at 589K for a minimum of 125 hours were evaluated. Evaluations were based on mechanical property tests such as lap shear and flatwise tensile and on processability. Quasi-isotropic Celion 6000/PMR-15 composite adherend was used to construct lap shear and flatwise tensile specimens. Hexcel's HRH-327-3/16-6.0 glass polyimide honeycomb core was also utilized in the flatwise tensile specimens. Numerous processing variations were also studied that led to selected cure cycles for each adhesive. Shear specimens having either 12 mm or 75 mm overlaps were used to determine the effect of bond size on processability and lap shear properties. The data indicate that processing of FM-34, FM-34B-18, LARC-13 and NRO56X can be achieved using a cure compatible with the composite adherend. No significant differences in mechanical properties were observed among the three adhesive systems and all three are suitable candidates for 589K/125 hour service.

  13. [SIBSytem: innovation for bracket bonding?].

    PubMed

    Moreau, Alexis

    2013-06-01

    The orthodontic bracket placement has known two major improvements these last fifty years: first with the ability of bonding brackets directly on the enamel (Newmann 1965); second with the indirect bonding procedure introduced by Silvermann and Cohen in 1972. If we put aside the technological evolutions of bonding materials (brackets and adhesives), few refinements have occurred regarding the protocols in this period of time. Furthermore, direct bonding procedure seems to be used by a majority of orthodontists despite the rapidity, accuracy and ergonomics promised by indirect bonding protocol. The main originality of the system detailed in this article is to bond orthodontic brackets in a virtually predetermined position with indirect bonding advantages but with the efficiency of direct bonding because the adhesive is applied directly on the bracket base without pre-bonding necessity. This innovation has been allowed by the use of up-to-date CFAO technology. The article first describes the two components of the SIBSystem (SIBClip and SIBTray) and details the manufacturing stages. The clinical use is then evoked as well as the cautions and limits of this innovative bonding system.

  14. Bond strength with custom base indirect bonding techniques.

    PubMed

    Klocke, Arndt; Shi, Jianmin; Kahl-Nieke, Bärbel; Bismayer, Ulrich

    2003-04-01

    Different types of adhesives for indirect bonding techniques have been introduced recently. But there is limited information regarding bond strength with these new materials. In this in vitro investigation, stainless steel brackets were bonded to 100 permanent bovine incisors using the Thomas technique, the modified Thomas technique, and light-cured direct bonding for a control group. The following five groups of 20 teeth each were formed: (1) modified Thomas technique with thermally cured base composite (Therma Cure) and chemically cured sealant (Maximum Cure), (2) Thomas technique with thermally cured base composite (Therma Cure) and chemically cured sealant (Custom I Q), (3) Thomas technique with light-cured base composite (Transbond XT) and chemically cured sealant (Sondhi Rapid Set), (4) modified Thomas technique with chemically cured base adhesive (Phase II) and chemically cured sealant (Maximum Cure), and (5) control group directly bonded with light-cured adhesive (Transbond XT). Mean bond strengths in groups 3, 4, and 5 were 14.99 +/- 2.85, 15.41 +/- 3.21, and 13.88 +/- 2.33 MPa, respectively, and these groups were not significantly different from each other. Groups 1 (mean bond strength 7.28 +/- 4.88 MPa) and 2 (mean bond strength 7.07 +/- 4.11 MPa) showed significantly lower bond strengths than groups 3, 4, and 5 and a higher probability of bond failure. Both the original (group 2) and the modified (group 1) Thomas technique were able to achieve bond strengths comparable to the light-cured direct bonded control group.

  15. 27 CFR 28.66 - Strengthening bonds.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... bonds. In all cases where the penal sum of any bond becomes insufficient, the principal shall either give a strengthening bond with the same surety to attain a sufficient penal sum, or give a new bond to... of any bond to less than its full penal sum. Strengthening bonds shall show the current date of...

  16. Mothers and Daughters in the Fiction of Joyce Carol Oates: The Terror and Beauty of Doubling.

    ERIC Educational Resources Information Center

    Mattes, Eleanor

    Joyce Carol Oates is unique in American fiction for her portrayals of the terror and the beauty in the mother-daughter relationship--the tensions and the bonds created by this particular form of doubling. Her more interesting explorations portraying some deeply pathological and some positive aspects of this form of doubling include the following:…

  17. Solder extrusion pressure bonding process and bonded products produced thereby

    DOEpatents

    Beavis, Leonard C.; Karnowsky, Maurice M.; Yost, Frederick G.

    1992-01-01

    Production of soldered joints which are highly reliable and capable of surviving 10,000 thermal cycles between about -40.degree. C. and 110.degree. C. Process involves interposing a thin layer of a metal solder composition between the metal surfaces of members to be bonded and applying heat and up to about 1000 psi compression pressure to the superposed members, in the presence of a reducing atmosphere, to extrude the major amount of the solder composition, contaminants including fluxing gases and air, from between the members being bonded, to form a very thin, strong intermetallic bonding layer having a thermal expansion tolerant with that of the bonded members.

  18. Solder extrusion pressure bonding process and bonded products produced thereby

    DOEpatents

    Beavis, L.C.; Karnowsky, M.M.; Yost, F.G.

    1992-06-16

    Disclosed is a process for production of soldered joints which are highly reliable and capable of surviving 10,000 thermal cycles between about [minus]40 C and 110 C. Process involves interposing a thin layer of a metal solder composition between the metal surfaces of members to be bonded and applying heat and up to about 1000 psi compression pressure to the superposed members, in the presence of a reducing atmosphere, to extrude the major amount of the solder composition, contaminants including fluxing gases and air, from between the members being bonded, to form a very thin, strong intermetallic bonding layer having a thermal expansion tolerant with that of the bonded members.

  19. Double-Bounce Switching

    DTIC Science & Technology

    1983-06-01

    module. Adjustments provided to investigate double- bounce switching are noted. limitation is at a higher level and occurs in the conventionally...To be presented at the 4th IEEE PUlsed Power Conference, June 6-8, 1983, Albuquerque, NM. DOUBLE- BOUNCE SWITCHING* George B. Frazier and Steven R...Ashby Physics International Company 2700 Merced Street San Leandro, California 94577 Abstract Double- bounce switching is a technique for

  20. The source of chemical bonding.

    PubMed

    Needham, Paul

    2014-03-01

    Developments in the application of quantum mechanics to the understanding of the chemical bond are traced with a view to examining the evolving conception of the covalent bond. Beginning with the first quantum mechanical resolution of the apparent paradox in Lewis's conception of a shared electron pair bond by Heitler and London, the ensuing account takes up the challenge molecular orbital theory seemed to pose to the classical conception of the bond. We will see that the threat of delocalisation can be overstated, although it is questionable whether this should be seen as reinstating the issue of the existence of the chemical bond. More salient are some recent developments in a longstanding discussion of how to understand the causal aspects of the bonding interaction--the nature of the force involved in the covalent link--which are taken up in the latter part of the paper.

  1. LARC-13 polyimide adhesive bonding

    NASA Technical Reports Server (NTRS)

    Saint Clair, T. L.; Progar, D. J.

    1979-01-01

    The development of an addition-curing polyimide adhesive suitable for low pressure bonding without the generation of volatiles during cure is reported. LARC-13 is designed for bonding of polyimide matrix composites and of titanium to be used above 500 F, and is based on an oligomeric bis-nadimide which allows its processing at 50 psi or less, making it suitable for the bonding of fragile honeycomb sandwich structures. Few volatiles are evolved during its cure allowing large enclosed structures to be bonded, and it has high room and elevated temperature strengths and good strength retention after short terms up to 1100 F. LARC-13 was successfully used to bond the outer and inner skins of a polyimide/graphite wing shear panel for 500 F use, and for a short-term exposure up to 1100 F. Preparation of the adhesive, bonding, aging, and testing of lap shear and honeycomb samples are discussed.

  2. Better Bonded Ethernet Load Balancing

    SciTech Connect

    Gabler, Jason

    2006-09-29

    When a High Performance Storage System's mover shuttles large amounts of data to storage over a single Ethernet device that single channel can rapidly become saturated. Using Linux Ethernet channel bonding to address this and similar situations was not, until now, a viable solution. The various modes in which channel bonding could be configured always offered some benefit but only under strict conditions or at a system resource cost that was greater than the benefit gained by using channel bonding. Newer bonding modes designed by various networking hardware companies, helpful in such networking scenarios, were already present in their own switches. However, Linux-based systems were unable to take advantage of those new modes as they had not yet been implemented in the Linux kernel bonding driver. So, except for basic fault tolerance, Linux channel bonding could not positively combine separate Ethernet devices to provide the necessary bandwidth.

  3. Bond Sensitivity to Silicone Contamination

    NASA Technical Reports Server (NTRS)

    Caldwell, G. A.; Hudson, W. D.; Hudson, W. D.; Cash, Stephen F. (Technical Monitor)

    2003-01-01

    Currently during fabrication of the Space Shuttle booster rocket motors, the use of silicone and silicone-containing products is prohibited in most applications. Many shop aids and other materials containing silicone have the potential, if they make contact with a bond surface, to transfer some of the silicone to the substrates being bonded. Such transfer could result in a reduction of the bond strength or even failure of the subsequent bonds. This concern is driving the need to understand the effect of silicones and the concentration needed to affect a given bond-line strength. Additionally, as silicone detection methods used for materials acceptance improve what may have gone unnoticed earlier is now being detected. Thus, realistic silicone limits for process materials (below which bond performance is satisfactory) are needed rather than having an absolute no silicone permitted policy.

  4. Observing Double Stars

    NASA Astrophysics Data System (ADS)

    Genet, Russell M.; Fulton, B. J.; Bianco, Federica B.; Martinez, John; Baxter, John; Brewer, Mark; Carro, Joseph; Collins, Sarah; Estrada, Chris; Johnson, Jolyon; Salam, Akash; Wallen, Vera; Warren, Naomi; Smith, Thomas C.; Armstrong, James D.; McGaughey, Steve; Pye, John; Mohanan, Kakkala; Church, Rebecca

    2012-05-01

    Double stars have been systematically observed since William Herschel initiated his program in 1779. In 1803 he reported that, to his surprise, many of the systems he had been observing for a quarter century were gravitationally bound binary stars. In 1830 the first binary orbital solution was obtained, leading eventually to the determination of stellar masses. Double star observations have been a prolific field, with observations and discoveries - often made by students and amateurs - routinely published in a number of specialized journals such as the Journal of Double Star Observations. All published double star observations from Herschel's to the present have been incorporated in the Washington Double Star Catalog. In addition to reviewing the history of visual double stars, we discuss four observational technologies and illustrate these with our own observational results from both California and Hawaii on telescopes ranging from small SCTs to the 2-meter Faulkes Telescope North on Haleakala. Two of these technologies are visual observations aimed primarily at published "hands-on" student science education, and CCD observations of both bright and very faint doubles. The other two are recent technologies that have launched a double star renaissance. These are lucky imaging and speckle interferometry, both of which can use electron-multiplying CCD cameras to allow short (30 ms or less) exposures that are read out at high speed with very low noise. Analysis of thousands of high speed exposures allows normal seeing limitations to be overcome so very close doubles can be accurately measured.

  5. Anion transport with halogen bonds.

    PubMed

    Jentzsch, Andreas Vargas; Matile, Stefan

    2015-01-01

    This review covers the application of halogen bonds to transport anions across lipid bilayer membranes. The introduction provides a brief description of biological and synthetic transport systems. Emphasis is on examples that explore interactions beyond the coordination with lone pairs or hydrogen bonds for the recognition of cations and anions, particularly cation-π and anion-π interactions, and on structural motifs that are relevant for transport studies with halogen bonds. Section 2 summarizes the use of macrocyclic scaffolds to achieve transport with halogen bonds, focusing on cyclic arrays of halogen-bond donors of different strengths on top of calixarene scaffolds. This section also introduces methods to study anion binding in solution and anion transport in fluorogenic vesicles. In Sect. 3, transport studies with monomeric halogen bond-donors are summarized. This includes the smallest possible organic anion transporter, trifluoroiodomethane, a gas that can be bubbled through a suspension of vesicles to turn on transport. Anion transport with a gas nicely illustrates the power of halogen bonds for anion transport. Like hydrogen bonds, they are directional and strong, but compared to hydrogen-bond donors, halogen-bond donors are more lipophilic. Section 3 also offers a concise introduction to the measurement of ion selectivity in fluorogenic vesicles and conductance experiments in planar bilayer membranes. Section 4 introduces the formal unrolling of cyclic scaffolds into linear scaffolds that can span lipid bilayers. As privileged transmembrane scaffolds, the importance of hydrophobically matching fluorescent p-oligophenyl rods is fully confirmed. The first formal synthetic ion channel that operates by cooperative multiion hopping along transmembrane halogen-bonding cascades is described. Compared to homologs for anion-π interactions, transport with halogen bonds is clearly more powerful.

  6. Push-out bond strengths of two fiber post types bonded with different dentin bonding agents.

    PubMed

    Topcu, Fulya Toksoy; Erdemir, Ugur; Sahinkesen, Gunes; Mumcu, Emre; Yildiz, Esra; Uslan, Ibrahim

    2010-05-01

    The aim of this study was to evaluate the regional push-out bond strengths for two fiber-reinforced post types using three different dentin bonding agents. Sixty single-rooted extracted human first premolar teeth were sectioned below the cemento-enamel junction, and the roots were endodontically treated. Following standardized post space preparations, the roots were divided into two fiber-post groups (Glassix and Carbopost), and further divided into three subgroups of 10 specimens each for the bonding systems self-etching dentin bonding agents (Clearfil SE Bond and Optibond all-in-one), and total-etching dentin bonding agent (XP Bond). A dual-cure resin luting cement (Maxcem) was then placed in the post spaces and posts were then seated into the root canals polymerized through the cervical portion. The roots were then cut into 3-mm thick sections. Push-out tests were performed at a crosshead speed of 0.5 mm/min. The data were analyzed with multivariate ANOVA (alpha = 0.05). The morphology of interface between different dentin bonding agents from the cervical sections were analyzed with SEM. Glass fiber-reinforced posts demonstrated significantly higher push-out bond strengths than carbon fiber-reinforced posts (p < 0.001). Bond strength values decreased significantly from the cervical to the apical root canal regions (p < 0.001). Self-etching dentin adhesive Clearfil SE Bond and total-etching dentin adhesive XP Bond demonstrated similar bond strengths values and this was significantly higher compared with the Optibond all-in-one in cervical root canal region. In conclusion, in all root segments, the glass fiber-reinforced posts provided significantly increased post retention than the carbon fiber-reinforced posts, regardless of the adhesive used.

  7. Wafer bonded epitaxial templates for silicon heterostructures

    DOEpatents

    Atwater, Jr., Harry A.; Zahler, James M.; Morral, Anna Fontcubera I

    2008-03-11

    A heterostructure device layer is epitaxially grown on a virtual substrate, such as an InP/InGaAs/InP double heterostructure. A device substrate and a handle substrate form the virtual substrate. The device substrate is bonded to the handle substrate and is composed of a material suitable for fabrication of optoelectronic devices. The handle substrate is composed of a material suitable for providing mechanical support. The mechanical strength of the device and handle substrates is improved and the device substrate is thinned to leave a single-crystal film on the virtual substrate such as by exfoliation of a device film from the device substrate. An upper portion of the device film exfoliated from the device substrate is removed to provide a smoother and less defect prone surface for an optoelectronic device. A heterostructure is epitaxially grown on the smoothed surface in which an optoelectronic device may be fabricated.

  8. Wafer bonded epitaxial templates for silicon heterostructures

    NASA Technical Reports Server (NTRS)

    Atwater, Harry A., Jr. (Inventor); Zahler, James M. (Inventor); Morral, Anna Fontcubera I (Inventor)

    2008-01-01

    A heterostructure device layer is epitaxially grown on a virtual substrate, such as an InP/InGaAs/InP double heterostructure. A device substrate and a handle substrate form the virtual substrate. The device substrate is bonded to the handle substrate and is composed of a material suitable for fabrication of optoelectronic devices. The handle substrate is composed of a material suitable for providing mechanical support. The mechanical strength of the device and handle substrates is improved and the device substrate is thinned to leave a single-crystal film on the virtual substrate such as by exfoliation of a device film from the device substrate. An upper portion of the device film exfoliated from the device substrate is removed to provide a smoother and less defect prone surface for an optoelectronic device. A heterostructure is epitaxially grown on the smoothed surface in which an optoelectronic device may be fabricated.

  9. Fatigue life prediction of bonded primary joints

    NASA Technical Reports Server (NTRS)

    Knauss, J. F.

    1979-01-01

    The validation of a proposed fatigue life prediction methodology was sought through the use of aluminum butt and scarf joint and graphite/epoxy butt joint specimens in a constant amplitude fatigue environment. The structural properties of the HYSOL 9313 adhesive system were obtained by mechanical test of molded heat adhesive specimens. Aluminum contoured double cantilever beam specimens were used to generate crack velocity versus stress intensity factor data. The specific objectives were: (1) to ascertain the feasibility of predicting fatigue failure of an adhesive in a primary bonded composite structure by incorporating linear elastic crack growth behavior; and (2) to ascertain if acoustic emission and/or compliance measurement techniques can be used to detect flaws.

  10. Combined effect of chemical pressure and valence electron concentration through the electron-deficient Li substitution on the RE{sub 4}LiGe{sub 4} (RE=La, Ce, Pr, and Sm) system

    SciTech Connect

    Nam, Gnu; Jeon, Jieun; Kim, Youngjo; Kwon Kang, Sung; Ahn, Kyunghan; You, Tae-Soo

    2013-09-15

    Four members of the RE{sub 4}LiGe{sub 4} (RE=La, Ce, Pr, and Sm) system have been prepared by high-temperature reaction method and characterized by X-ray diffractions. All compounds crystallize in the orthorhombic Gd{sub 5}Si{sub 4}-type structure (space group Pnma, Pearson code oP16) with bonding interactions for interslab Ge{sub 2} dimers. The Li substitution for rare-earth elements in the RE{sub 4}LiGe{sub 4} system leads to a combined effect of the increased chemical pressure and the decreased valance electron concentration (VEC), which eventually results in the structure transformation from the Sm{sub 5}Ge{sub 4}-type with all broken interslab Ge–Ge bond for the parental RE{sub 5}Ge{sub 4} to the Gd{sub 5}Si{sub 4}-type structure for the ternary RE{sub 4}LiGe{sub 4} (RE=La, Ce, Pr, and Sm) system. Site-preference between rare-earth metals and Li is proven to generate energetically the most favorable atomic arrangements according to coloring-problem, and the rationale is provided using both the size-factor and the electronic-factor related, respectively, to site-volume and electronegativity as well as QVAL values. Tight-binding, linear-muffin-tin-orbital (TB-LMTO) calculations are performed to investigate electronic densities of states (DOS) and crystal orbital Hamilton population (COHP) curves. The influence of reduced VEC for chemical bonding including the formation of interslab Ge{sub 2} dimers is also discussed. The magnetic property measurements prove that the non-magnetic Li substitution leads to the ferromagnetic (FM)-like ground state for Ce{sub 4}LiGe{sub 4} and the co-existence of antiferromagntic (AFM) and FM ground states for Sm{sub 4}LiGe{sub 4}. - Graphical abstract: Reported is a combined effect of the chemical pressure and the reduced VEC caused by the smaller monovalent non-magnetic Li substitution for the larger trivalent magnetic rare-earth metals in the RE{sub 4}LiGe{sub 4} (RE=La, Ce, Pr, and Sm) system. This results in the structure

  11. Unwilling U-U bonding in U2@C80: cage-driven metal-metal bonds in di-uranium fullerenes.

    PubMed

    Foroutan-Nejad, Cina; Vícha, Jan; Marek, Radek; Patzschke, Michael; Straka, Michal

    2015-10-07

    Endohedral actinide fullerenes are rare and a little is known about their molecular properties. Here we characterize the U2@C80 system, which was recently detected experimentally by means of mass spectrometry (Akiyama et al., JACS, 2001, 123, 181). Theoretical calculations predict a stable endohedral system, (7)U2@C80, derived from the C80:7 IPR fullerene cage, with six unpaired electrons. Bonding analysis reveals a double ferromagnetic (one-electron-two-center) U-U bond at an rU-U distance of 3.9 Å. This bonding is realized mainly via U(5f) orbitals. The U-U interaction inside the cage is estimated to be about -18 kcal mol(-1). U-U bonding is further studied along the U2@Cn (n = 60, 70, 80, 84, 90) series and the U-U bonds are also identified in U2@C70 and U2@C84 systems at rU-U∼ 4 Å. It is found that the character of U-U bonding depends on the U-U distance, which is dictated by the cage type. A concept of unwilling metal-metal bonding is suggested: uranium atoms are strongly bound to the cage and carry a positive charge. Pushing the U(5f) electron density into the U-U bonding region reduces electrostatic repulsion between enclosed atoms, thus forcing U-U bonds.

  12. Hydrogen bonding in the hexagonal ice surface.

    PubMed

    Barnett, Irene Li; Groenzin, Henning; Shultz, Mary Jane

    2011-06-16

    A recently developed technique in sum frequency generation spectroscopy, polarization angle null (or PAN-SFG), is applied to two orientations of the prism face of hexagonal ice. It is found that the vibrational modes of the surface are similar in different faces. As in the basal face, the prism face of ice contains five dominant resonances: 3096, 3146, 3205, 3253, and 3386 cm(-1). On the basal face, the reddest resonance occurs at 3098 cm(-1); within the bandwidth, the same as the prism face. On both the prism and basal faces, this mode contains a significant quadrupole component and is assigned to the bilayer stitching hydrogen bonds. The bluest of the resonances, 3386 cm(-1), occurs slightly blue-shifted at 3393 cm(-1) in the basal face. The prism face has two orientations: one with the optic or c axis in the input plane (the plane formed by the surface normal and the interrogating beam propagation) and one with the c axis perpendicular to the input plane. The 3386 cm(-1) mode has significant intensity only with the c axis in the input plane. On the basis of these orientation characteristics, the 3386 cm(-1) mode is assigned to double-donor molecules in either the top half bilayer or in the lower half bilayer. On the basis of frequency considerations, it is assigned to double-donor molecules in the top half bilayer. These are water molecules containing a nonbonded lone pair. In addition to identification of the components of the broad hydrogen-bonded region, PAN-SFG measures the tangential vs longitudinal content of the vibrational modes. In accord with previous suggestions, the lower frequency modes are predominantly tangential, whereas the higher frequency modes are mainly longitudinal. On the prism face, the 3386 cm(-1) mode is entirely longitudinal.

  13. 30 CFR 281.33 - Bonds and bonding requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Bonds and bonding requirements. 281.33 Section 281.33 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF MINERALS OTHER THAN OIL, GAS, AND SULPHUR IN THE OUTER CONTINENTAL SHELF Financial Considerations § 281.33...

  14. Bonding resin thixotropy and viscosity influence on dentine bond strength.

    PubMed

    Niem, Thomas; Schmidt, Alexander; Wöstmann, Bernd

    2016-08-01

    To investigate the influence of bonding resin thixotropy and viscosity on dentine tubule penetration, blister formation and consequently on dentine bond strength as a function of air-blowing pressure (air-bp) intensity. Two HEMA-free, acetone-based, one-bottle self-etch adhesives with similar composition except disparate silica filler contents and different bonding resin viscosities were investigated. The high-filler-containing adhesive (G-Bond) featured a lower viscous bonding resin with inherent thixotropic resin (TR) properties compared to the low-filler-containing adhesive (iBond) exhibiting a higher viscous bonding resin with non-thixotropic resin (NTR) properties. Shear bond strength tests for each adhesive with low (1.5bar; 0.15MPa; n=16) and high (3.0bar; 0.30MPa; n=16) air-bp application were performed after specimen storage in distilled water (24h; 37.0±1.0°C). Results were analysed using a Student's t-test to identify statistically significant differences (p<0.05). Fracture surfaces of TR adhesive specimens were morphologically characterised by SEM. Statistically significant bond strength differences were obtained for the thixotropic resin adhesive (high-pressure: 24.6MPa, low-pressure: 9.6MPa). While high air-bp specimens provided SEM images revealing resin-plugged dentine tubules, resin tags and only marginally blister structures, low air-bp left copious droplets and open dentine tubules. In contrast, the non-thixotropic resin adhesive showed no significant bond strength differences (high-pressure: 9.3MPa, low-pressure: 7.6MPa). A pressure-dependent distinct influence of bonding resin thixotropy and viscosity on dentine bond strength has been demonstrated. Stronger adhesion with high air-bp application is explained by improved resin fluidity and facilitated resin penetration into dentine tubules. Filler particles used in adhesive systems may induce thixotropic effects in bonding resin layers, accounting for improved free-flowing resin properties. In

  15. The double life of double effect.

    PubMed

    McIntyre, Alison

    2004-01-01

    The U.S. Supreme Court's majority opinion in Vacco v. Quill assumes that the principle of double effect explains the permissibility of hastening death in the context of ordinary palliative care and in extraordinary cases in which painkilling drugs have failed to relieve especially intractable suffering and terminal sedation has been adopted as a last resort. The traditional doctrine of double effect, understood as providing a prohibition on instrumental harming as opposed to incidental harming or harming as a side effect, must be distinguished from other ways in which the claim that a result is not intended might be offered as part of a justification for it. Although double effect might appropriately be invoked as a constraint on ordinary palliative care, it is not clear that it can be coherently extended to justify such practices as terminal sedation. A better approach would reconsider double effect's traditional prohibition on hastening death as a means to relieve suffering in the context of acute palliative care.

  16. Double metalization for VLSI

    NASA Technical Reports Server (NTRS)

    Trotter, J. D.; Wade, T. E.

    1980-01-01

    Postsintering process increases yield of double-layer metal conductors to almost 100 percent. When wafers containing double-metalized chips are sintered, metal layers react with oxide film remaining in insulation layer holes, breaking it up so that it no longer impedes electric current. Cooling also mechanically disrupts oxide film.

  17. Multidimensional period doubling structures.

    PubMed

    Lee, Jeong Yup; Flom, Dvir; Ben-Abraham, Shelomo I

    2016-05-01

    This paper develops the formalism necessary to generalize the period doubling sequence to arbitrary dimension by straightforward extension of the substitution and recursion rules. It is shown that the period doubling structures of arbitrary dimension are pure point diffractive. The symmetries of the structures are pointed out.

  18. Platinum complexes having redox-active PPh2C[triple bond]CFc and/or C[triple bond]CFc as terminal or bridging ligands.

    PubMed

    Díez, Alvaro; Lalinde, Elena; Teresa Moreno, M; Sánchez, Sergio

    2009-05-14

    A series of heteronuclear-Pt(ii) complexes containing ferrocenylethynyl units linked directly (Pt-C[triple bond]CFc) or through a phosphorous atom (Pt-PPh(2)C[triple bond]CFc) to the platinum center is reported. The reaction of derivative [cis-Pt(R(F))(2)(PPh(2)C[triple bond]CFc)(2)] (R(F) = C(6)F(5)) with the solvate complex [cis-Pt(R(F))(2)(thf)(2)] leads to the formation of an asymmetrical heteronuclear diplatinum complex [{Pt(R(F))(2)(mu-1kappaP:2eta(2)-PPh(2)C[triple bond]CFc)(2)}Pt(R(F))(2)] having the "cis-Pt(R(F))(2)" fragment coordinated to the triple bonds of both ferrocenylethynylphosphine units, while treatment of [cis-Pt(C[triple bond]CFc)(2)(PPh(2)C[triple bond]CR)(2)] (R = Fc , Ph , tBu ) with the same solvate [cis-Pt(R(F))(2)(thf)(2)], affords double ferrocenylacetylide-bridged diplatinum systems [{Pt(PPh(2)C[triple bond]CR)(2)(mu-eta(1):eta(2)-C[triple bond]CFc)(2)}Pt(R(F))(2)] . The solid-state structures of [cis/trans-Pt(R(F))(2)(PPh(2)C[triple bond]CFc)(2)] /, [cis-Pt(R(F))(2)(PPh(2)C[triple bond]CFc)(tht)] (tht = tetrahydrothiophene), [{Pt(R(F))(2)(mu-1kappaP:2eta(2)-PPh(2)C[triple bond]CFc)(2)}Pt(R(F))(2)] and [{Pt(PPh(2)C[triple bond]CtBu)(2)(mu-eta(1):eta(2)-C[triple bond]CFc)(2)}Pt(R(F))(2)] have been determined by X-ray diffraction methods. The electronic spectra and the electrochemical behaviour of all monoplatinum derivatives are discussed, showing a different extent of interaction between the remote ferrocenyl groups when they belong to PPh(2)C[triple bond]CFc or C[triple bond]CFc ligands. For the diplatinum systems and , containing bridging (kappaP:eta(2)-PPh(2)C[triple bond]CFc ) or (eta(1):eta(2)-C[triple bond, length as m-dash]CFc ) ligands, their electrochemical properties were also compared with the parent precursors.

  19. Pauling bond strength, bond length and electron density distribution

    SciTech Connect

    Gibbs, Gerald V.; Ross, Nancy L.; Cox, David F.; Rosso, Kevin M.; Iversen, Bo B.; Spackman, M. A.

    2014-01-18

    A power law regression equation, = 1.46(<ρ(rc)>/r)-0.19, connecting the average experimental bond lengths, , with the average accumulation of the electron density at the bond critical point, <ρ(rc)>, between bonded metal M and oxygen atoms, determined at ambient conditions for oxide crystals, where r is the row number of the M atom, is similar to the regression equation R(M-O) = 1.39(ρ(rc)/r)-0.21 determined for three perovskite crystals for pressures as high as 80 GPa. The two equations are also comparable with those, = 1.43(/r)-0.21, determined for a large number of oxide crystals at ambient conditions and = 1.39(/r)-0.22, determined for geometry optimized hydroxyacid molecules, that connect the bond lengths to the average Pauling electrostatic bond strength, , for the M-O bonded interactions. On the basis of the correspondence between the two sets of equations connecting ρ(rc) and the Pauling bond strength s with bond length, it appears that Pauling’s simple definition of bond strength closely mimics the accumulation of the electron density between bonded pairs of atoms. The similarity of the expressions for the crystals and molecules is compelling evidence that the M-O bonded interactions for the crystals and molecules 2 containing the same bonded interactions are comparable. Similar expressions, connecting bond lengths and bond strength, have also been found to hold for fluoride, nitride and sulfide molecules and crystals. The Brown-Shannon bond valence, σ, power law expression σ = [R1/(R(M-O)]N that has found wide use in crystal chemistry, is shown to be connected to a more universal expression determined for oxides and the perovskites, <ρ(rc)> = r[(1.41)/]4.76, demonstrating that the bond valence for a bonded interaction is likewise closely connected to the accumulation of the electron density between the bonded atoms. Unlike the Brown-Shannon expression, it is universal in that it holds for the M

  20. Weld-bonded titanium structures

    NASA Technical Reports Server (NTRS)

    Vaughan, R. W.; Creedon, J. F. (Inventor)

    1976-01-01

    Structurally stronger titanium articles are produced by a weld-bonding technique comprising fastening at least two plates of titanium together using spotwelding and curing an adhesive interspersed between the spot-weld nuggets. This weld-bonding may be employed to form lap joints or to stiffen titanium metal plates.

  1. Computational Chemistry of Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Phillips, Donald H.

    1999-01-01

    This investigation is intended to determine the electrical mechanical, and chemical properties of adhesive bonds at the molecular level. The initial determinations will be followed by investigations of the effects of environmental effects on the chemistry and properties of the bond layer.

  2. Microwave bonding of MEMS component

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B. (Inventor); Mai, John D. (Inventor); Jackson, Henry W. (Inventor); Budraa, Nasser K. (Inventor); Pike, William T. (Inventor)

    2005-01-01

    Bonding of MEMs materials is carried out using microwave. High microwave absorbing films are placed within a microwave cavity, and excited to cause selective heating in the skin of the material. This causes heating in one place more than another. Thereby minimizing the effects of the bonding microwave energy.

  3. Coulombic Models in Chemical Bonding.

    ERIC Educational Resources Information Center

    Sacks, Lawrence J.

    1986-01-01

    Describes a bonding theory which provides a framework for the description of a wide range of substances and provides quantitative information of remarkable accuracy with far less computational effort than that required of other approaches. Includes applications, such as calculation of bond energies of two binary hydrides (methane and diborane).…

  4. Coulombic Models in Chemical Bonding.

    ERIC Educational Resources Information Center

    Sacks, Lawrence J.

    1986-01-01

    Describes a bonding theory which provides a framework for the description of a wide range of substances and provides quantitative information of remarkable accuracy with far less computational effort than that required of other approaches. Includes applications, such as calculation of bond energies of two binary hydrides (methane and diborane).…

  5. Ultrasonic Bonding to Metalized Plastic

    NASA Technical Reports Server (NTRS)

    Conroy, B. L.; Cruzan, C. T.

    1986-01-01

    New technique makes it possible to bond wires ultrasonically to conductor patterns on such soft substrates as plain or ceramic-filled polytetrafluoroethylene. With ultrasonic bonding, unpackaged chips attached to soft circuit boards. Preferred because chips require substrate area and better matched electrically to circuit board at high frequencies.

  6. Ultrasonic phosphate bonding of nanoparticles.

    PubMed

    Bassett, David C; Merle, Geraldine; Lennox, Bruce; Rabiei, Reza; Barthelat, François; Grover, Liam M; Barralet, Jake E

    2013-11-06

    Low intensity ultrasound-induced radicals interact with surface adsorbed orthophosphate to bond nanoparticles with high mechanical strength and surface area. Dissimilar materials could be bonded to form robust metallic, ceramic, and organic composite microparticles. 3D nanostructures of a hydrated and amorphous electrocatalyst with carbon nanotubes were also constructed which exceeded the resistance-limited efficiency of 2D electrodes.

  7. Benchmarking Density Functionals for Chemical Bonds of Gold.

    PubMed

    Kepp, Kasper P

    2017-03-09

    Gold plays a major role in nanochemistry, catalysis, and electrochemistry. Accordingly, hundreds of studies apply density functionals to study chemical bonding with gold, yet there is no systematic attempt to assess the accuracy of these methods applied to gold. This paper reports a benchmark against 51 experimental bond enthalpies of AuX systems and seven additional polyatomic and cationic molecules. Twelve density functionals were tested, covering meta functionals, hybrids with variable HF exchange, double-hybrid, dispersion-corrected, and nonhybrid GGA functionals. The defined benchmark data set probes all types of bonding to gold from very electronegative halides that force Au(+) electronic structure, via covalently bonded systems, hard and soft Lewis acids and bases that either work against or complement the softness of gold, the Au2 molecule probing gold's bond with itself, and weak bonds between gold and noble gases. Zero-point vibrational corrections are relatively small for Au-X bonds, ∼ 11-12 kJ/mol except for Au-H bonds. Dispersion typically provides ∼5 kJ/mol of the total bond enthalpy but grows with system size and is 10 kJ/mol for AuXe and AuKr. HF exchange and LYP correlation produce weaker bonds to gold. Most functionals provide similar trend accuracy, though somewhat lower for M06 and M06L, but very different numerical accuracy. Notably, PBE and TPSS functionals with dispersion display the smallest numerical errors and very small mean signed errors (0-6 kJ/mol), i.e. no bias toward over- or under-binding. Errors are evenly distributed versus atomic number, suggesting that relativistic effects are treated fairly; the mean absolute error is almost halved from B3LYP (45 kJ/mol) to TPSS and PBE (23 kJ/mol, including difficult cases); 23 kJ/mol is quite respectable considering the diverse bonds to gold and the complication of relativistic effects. Thus, studies that use DFT with effective core potentials for gold chemistry, with no alternative due

  8. Tunable infrared generation with diffusion-bonded-stacked gallium arsenide

    NASA Astrophysics Data System (ADS)

    Zheng, Dong

    quantum gain, was measured at 16.6 μm. Other DBS GaAs devices for frequency doubling of CO2 laser radiation and difference frequency mixing of various laser sources were demonstrated. Tunable MIR radiation from 4.7 μm to 17.6 μm was generated demonstrating feasibility of diffusion bonded structures to generate broadly tunable MIR wavelengths.

  9. Social bonding: regulation by neuropeptides

    PubMed Central

    Lieberwirth, Claudia; Wang, Zuoxin

    2014-01-01

    Affiliative social relationships (e.g., among spouses, family members, and friends) play an essential role in human society. These relationships affect psychological, physiological, and behavioral functions. As positive and enduring bonds are critical for the overall well-being of humans, it is not surprising that considerable effort has been made to study the neurobiological mechanisms that underlie social bonding behaviors. The present review details the involvement of the nonapeptides, oxytocin (OT), and arginine vasopressin (AVP), in the regulation of social bonding in mammals including humans. In particular, we will discuss the role of OT and AVP in the formation of social bonds between partners of a mating pair as well as between parents and their offspring. Furthermore, the role of OT and AVP in the formation of interpersonal bonding involving trust is also discussed. PMID:25009457

  10. Halogen bonding (X-bonding): A biological perspective

    PubMed Central

    Scholfield, Matthew R; Zanden, Crystal M Vander; Carter, Megan; Ho, P Shing

    2013-01-01

    The concept of the halogen bond (or X-bond) has become recognized as contributing significantly to the specificity in recognition of a large class of halogenated compounds. The interaction is most easily understood as primarily an electrostatically driven molecular interaction, where an electropositive crown, or σ-hole, serves as a Lewis acid to attract a variety of electron-rich Lewis bases, in analogous fashion to a classic hydrogen bonding (H-bond) interaction. We present here a broad overview of X-bonds from the perspective of a biologist who may not be familiar with this recently rediscovered class of interactions and, consequently, may be interested in how they can be applied as a highly directional and specific component of the molecular toolbox. This overview includes a discussion for where X-bonds are found in biomolecular structures, and how their structure–energy relationships are studied experimentally and modeled computationally. In total, our understanding of these basic concepts will allow X-bonds to be incorporated into strategies for the rational design of new halogenated inhibitors against biomolecular targets or toward molecular engineering of new biological-based materials. PMID:23225628

  11. Emerging double helical nanostructures

    NASA Astrophysics Data System (ADS)

    Zhao, Meng-Qiang; Zhang, Qiang; Tian, Gui-Li; Wei, Fei

    2014-07-01

    As one of the most important and land-mark structures found in nature, a double helix consists of two congruent single helices with the same axis or a translation along the axis. This double helical structure renders the deoxyribonucleic acid (DNA) the crucial biomolecule in evolution and metabolism. DNA-like double helical nanostructures are probably the most fantastic yet ubiquitous geometry at the nanoscale level, which are expected to exhibit exceptional and even rather different properties due to the unique organization of the two single helices and their synergistic effect. The organization of nanomaterials into double helical structures is an emerging hot topic for nanomaterials science due to their promising exceptional unique properties and applications. This review focuses on the state-of-the-art research progress for the fabrication of double-helical nanostructures based on `bottom-up' and `top-down' strategies. The relevant nanoscale, mesoscale, and macroscopic scale fabrication methods, as well as the properties of the double helical nanostructures are included. Critical perspectives are devoted to the synthesis principles and potential applications in this emerging research area. A multidisciplinary approach from the scope of nanoscience, physics, chemistry, materials, engineering, and other application areas is still required to the well-controlled and large-scale synthesis, mechanism, property, and application exploration of double helical nanostructures.

  12. Emerging double helical nanostructures.

    PubMed

    Zhao, Meng-Qiang; Zhang, Qiang; Tian, Gui-Li; Wei, Fei

    2014-08-21

    As one of the most important and land-mark structures found in nature, a double helix consists of two congruent single helices with the same axis or a translation along the axis. This double helical structure renders the deoxyribonucleic acid (DNA) the crucial biomolecule in evolution and metabolism. DNA-like double helical nanostructures are probably the most fantastic yet ubiquitous geometry at the nanoscale level, which are expected to exhibit exceptional and even rather different properties due to the unique organization of the two single helices and their synergistic effect. The organization of nanomaterials into double helical structures is an emerging hot topic for nanomaterials science due to their promising exceptional unique properties and applications. This review focuses on the state-of-the-art research progress for the fabrication of double-helical nanostructures based on 'bottom-up' and 'top-down' strategies. The relevant nanoscale, mesoscale, and macroscopic scale fabrication methods, as well as the properties of the double helical nanostructures are included. Critical perspectives are devoted to the synthesis principles and potential applications in this emerging research area. A multidisciplinary approach from the scope of nanoscience, physics, chemistry, materials, engineering, and other application areas is still required to the well-controlled and large-scale synthesis, mechanism, property, and application exploration of double helical nanostructures.

  13. Topological Quantum Double

    NASA Astrophysics Data System (ADS)

    Bonneau, Philippe

    Following a preceding paper showing how the introduction of a t.v.s. topology on quantum groups led to a remarkable unification and rigidification of the different definitions, we adapt here, in the same way, the definition of quantum double. This topological double is dualizable and reflexive (even for infinite dimensional algebras). In a simple case we show, considering the double as the "zero class" of an extension theory, the uniqueness of the double structure as a quasi-Hopf algebra. A la suite d'un précédent article montrant comment l'introduction d'une topologie d'e.v.t. sur les groupes quantiques permet une unification et une rigidification remarquables des différentes définitions, on adapte ici de la même manière la définition du double quantique. Ce double topologique est alors dualisable et reflexif (même pour des algèbres de dimension infinie). Dans un cas simple on montre, en considérant le double comme la "classe zéro" d'une théorie d'extensions, l'unicité de cette structure comme algèbre quasi-Hopf.

  14. 21 CFR 1005.23 - Bonds.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... IMPORTATION OF ELECTRONIC PRODUCTS Bonding and Compliance Procedures § 1005.23 Bonds. The bond required under section 360(b) of the Act shall be executed by the owner or consignee on the appropriate form of a customs single-entry bond, customs Form 7551 or term bond, customs Form 7553 or 7595, containing a condition...

  15. 27 CFR 19.246 - Strengthening bonds.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Strengthening bonds. In all cases when the penal sum of any bond becomes insufficient, the principal shall either give a strengthening bond with the same surety to attain a sufficient penal sum, or give a new... amount of any bond to less than its full penal sum. Strengthening bonds shall show the current date of...

  16. 27 CFR 24.153 - Strengthening bonds.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Strengthening bonds. In any instance where the penal sum of the bond on file becomes insufficient, the principal shall either give a strengthening bond with the same surety to attain a sufficient penal sum or give a... limiting the amount of either bond to less than its full penal sum. Strengthening bonds will show the...

  17. 27 CFR 25.95 - New bond.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false New bond. 25.95 Section 25... TREASURY ALCOHOL BEER Bonds and Consents of Surety § 25.95 New bond. The appropriate TTB officer may at any time, at his or her discretion, require a new bond. A new bond is required immediately in the case of...

  18. 27 CFR 25.95 - New bond.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false New bond. 25.95 Section 25... TREASURY ALCOHOL BEER Bonds and Consents of Surety § 25.95 New bond. The appropriate TTB officer may at any time, at his or her discretion, require a new bond. A new bond is required immediately in the case of...

  19. 27 CFR 25.95 - New bond.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false New bond. 25.95 Section 25... TREASURY LIQUORS BEER Bonds and Consents of Surety § 25.95 New bond. The appropriate TTB officer may at any time, at his or her discretion, require a new bond. A new bond is required immediately in the case of...

  20. 27 CFR 25.95 - New bond.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false New bond. 25.95 Section 25... TREASURY LIQUORS BEER Bonds and Consents of Surety § 25.95 New bond. The appropriate TTB officer may at any time, at his or her discretion, require a new bond. A new bond is required immediately in the case of...