DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, Kurt H.; McCurdy, C. William; Orlando, Thomas M.
2000-09-01
This report is based largely on presentations and discussions at two workshops and contributions from workshop participants. The workshop on Fundamental Challenges in Electron-Driven Chemistry was held in Berkeley, October 9-10, 1998, and addressed questions regarding theory, computation, and simulation. The workshop on Electron-Driven Processes: Scientific Challenges and Technological Opportunities was held at Stevens Institute of Technology, March 16-17, 2000, and focused largely on experiments. Electron-molecule and electron-atom collisions initiate and drive almost all the relevant chemical processes associated with radiation chemistry, environmental chemistry, stability of waste repositories, plasma-enhanced chemical vapor deposition, plasma processing of materials for microelectronic devices andmore » other applications, and novel light sources for research purposes (e.g. excimer lamps in the extreme ultraviolet) and in everyday lighting applications. The life sciences are a rapidly advancing field where the important role of electron-driven processes is only now beginning to be recognized. Many of the applications of electron-initiated chemical processes require results in the near term. A large-scale, multidisciplinary and collaborative effort should be mounted to solve these problems in a timely way so that their solution will have the needed impact on the urgent questions of understanding the physico-chemical processes initiated and driven by electron interactions.« less
Coulomb-Driven Relativistic Electron Beam Compression
NASA Astrophysics Data System (ADS)
Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Xiang, Dao; Zhang, Jie
2018-01-01
Coulomb interaction between charged particles is a well-known phenomenon in many areas of research. In general, the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of the Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron-beam-based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.
Coulomb-Driven Relativistic Electron Beam Compression.
Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Xiang, Dao; Zhang, Jie
2018-01-26
Coulomb interaction between charged particles is a well-known phenomenon in many areas of research. In general, the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of the Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron-beam-based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.
Software-Reconfigurable Processors for Spacecraft
NASA Technical Reports Server (NTRS)
Farrington, Allen; Gray, Andrew; Bell, Bryan; Stanton, Valerie; Chong, Yong; Peters, Kenneth; Lee, Clement; Srinivasan, Jeffrey
2005-01-01
A report presents an overview of an architecture for a software-reconfigurable network data processor for a spacecraft engaged in scientific exploration. When executed on suitable electronic hardware, the software performs the functions of a physical layer (in effect, acts as a software radio in that it performs modulation, demodulation, pulse-shaping, error correction, coding, and decoding), a data-link layer, a network layer, a transport layer, and application-layer processing of scientific data. The software-reconfigurable network processor is undergoing development to enable rapid prototyping and rapid implementation of communication, navigation, and scientific signal-processing functions; to provide a long-lived communication infrastructure; and to provide greatly improved scientific-instrumentation and scientific-data-processing functions by enabling science-driven in-flight reconfiguration of computing resources devoted to these functions. This development is an extension of terrestrial radio and network developments (e.g., in the cellular-telephone industry) implemented in software running on such hardware as field-programmable gate arrays, digital signal processors, traditional digital circuits, and mixed-signal application-specific integrated circuits (ASICs).
In situ observation of shear-driven amorphization in silicon crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Yang; Zhong, Li; Fan, Feifei
Amorphous materials have attracted great interest in the scientific and technological fields. An amorphous solid usually forms under the externally driven conditions of melt-quenching, irradiation and severe mechanical deformation. However, its dynamic formation process remains elusive. Here we report the in situ atomic-scale observation of dynamic amorphization processes during mechanical straining of nanoscale silicon crystals by high resolution transmission electron microscopy (HRTEM). We observe the shear-driven amorphization (SDA) occurring in a dominant shear band. The SDA involves a sequence of processes starting with the shear-induced diamond-cubic to diamond-hexagonal phase transition that is followed by dislocation nucleation and accumulation in themore » newly formed phase, leading to the formation of amorphous silicon. The SDA formation through diamond-hexagonal phase is rationalized by its structural conformity with the order in the paracrystalline amorphous silicon, which maybe widely applied to diamond-cubic materials. Besides, the activation of SDA is orientation-dependent through the competition between full dislocation nucleation and partial gliding.« less
ERIC Educational Resources Information Center
Sampson, Victor; Grooms, Jonathon; Walker, Joi Phelps
2011-01-01
This exploratory study examines how a series of laboratory activities designed using a new instructional model, called Argument-Driven Inquiry (ADI), influences the ways students participate in scientific argumentation and the quality of the scientific arguments they craft as part of this process. The two outcomes of interest were assessed with a…
Research to Operations Transition of an Auroral Specification and Forecast Model
NASA Astrophysics Data System (ADS)
Jones, J.; Sanders, S.; Davis, B.; Hedrick, C.; Mitchell, E. J.; Cox, J. M.
Aurorae are generally caused by collisions of high-energy precipitating electrons and neutral molecules in Earth’s polar atmosphere. The electrons, originating in Earth’s magnetosphere, collide with oxygen and nitrogen molecules driving them to an excited state. As the molecules return to their normal state, a photon is released resulting in the aurora. Aurora can become troublesome for operations of UHF and L-Band radars since these radio frequencies can be scattered by these abundant free electrons and excited molecules. The presence of aurorae under some conditions can lead to radar clutter or false targets. It is important to know the state of the aurora and when radar clutter is likely. For this reason, models of the aurora have been developed and used in an operational center for many decades. Recently, a data-driven auroral precipitation model was integrated into the DoD operational center for space weather. The auroral precipitation model is data-driven in a sense that solar wind observations from the Lagrangian point L1 are used to drive a statistical model of Earth’s aurorae to provide nowcasts and short-duration forecasts of auroral activity. The project began with a laboratory-grade prototype and an algorithm theoretical basis document, then through a tailored Agile development process, deployed operational-grade code to a DoD operational center. The Agile development process promotes adaptive planning, evolutionary development, early delivery, continuous improvement, regular collaboration with the customer, and encourages rapid and flexible response to customer-driven changes. The result was an operational capability that met customer expectations for reliability, security, and scientific accuracy. Details of the model and the process of operational integration are discussed as well as lessons learned to improve performance on future projects.
Electron Driven Processes in Atmospheric Behaviour
NASA Astrophysics Data System (ADS)
Campbell, L.; Brunger, M. J.; Teubner, P. J. O.
2006-11-01
Electron impact plays an important role in many atmospheric processes. Calculation of these is important for basic understanding, atmospheric modeling and remote sensing. Accurate atomic and molecular data, including electron impact cross sections, are required for such calculations. Five electron-driven processes are considered: auroral and dayglow emissions, the reduction of atmospheric electron density by vibrationally excited N2, NO production and infrared emission from NO. In most cases the predictions are compared with measurements. The dependence on experimental atomic and molecular data is also investigated.
MSTD 2007 Publications and Patents
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, W E
2008-04-01
The Materials Science and Technology Division (MSTD) supports the central scientific and technological missions of the Laboratory, and at the same time, executes world-class, fundamental research and novel technological development over a wide range of disciplines. Our organization is driven by the institutional needs in nuclear weapons stockpile science, high-energy-density science, nuclear reactor science, and energy and environment science and technology. We maintain expertise and capabilities in many diverse areas, including actinide science, electron microscopy, laser-materials interactions, materials theory, simulation and modeling, materials synthesis and processing, materials science under extreme conditions, ultrafast materials science, metallurgy, nanoscience and technology, nuclear fuelsmore » and energy security, optical materials science, and surface science. MSTD scientists play leadership roles in the scientific community in these key and emerging areas.« less
2009-01-01
Background In recent years, the genome biology community has expended considerable effort to confront the challenges of managing heterogeneous data in a structured and organized way and developed laboratory information management systems (LIMS) for both raw and processed data. On the other hand, electronic notebooks were developed to record and manage scientific data, and facilitate data-sharing. Software which enables both, management of large datasets and digital recording of laboratory procedures would serve a real need in laboratories using medium and high-throughput techniques. Results We have developed iLAP (Laboratory data management, Analysis, and Protocol development), a workflow-driven information management system specifically designed to create and manage experimental protocols, and to analyze and share laboratory data. The system combines experimental protocol development, wizard-based data acquisition, and high-throughput data analysis into a single, integrated system. We demonstrate the power and the flexibility of the platform using a microscopy case study based on a combinatorial multiple fluorescence in situ hybridization (m-FISH) protocol and 3D-image reconstruction. iLAP is freely available under the open source license AGPL from http://genome.tugraz.at/iLAP/. Conclusion iLAP is a flexible and versatile information management system, which has the potential to close the gap between electronic notebooks and LIMS and can therefore be of great value for a broad scientific community. PMID:19941647
Yanagisawa, Hirofumi; Schnepp, Sascha; Hafner, Christian; Hengsberger, Matthias; Kim, Dong Eon; Kling, Matthias F.; Landsman, Alexandra; Gallmann, Lukas; Osterwalder, Jürg
2016-01-01
Illuminating a nano-sized metallic tip with ultrashort laser pulses leads to the emission of electrons due to multiphoton excitations. As optical fields become stronger, tunnelling emission directly from the Fermi level becomes prevalent. This can generate coherent electron waves in vacuum leading to a variety of attosecond phenomena. Working at high emission currents where multi-electron effects are significant, we were able to characterize the transition from one regime to the other. Specifically, we found that the onset of laser-driven tunnelling emission is heralded by the appearance of a peculiar delayed emission channel. In this channel, the electrons emitted via laser-driven tunnelling emission are driven back into the metal, and some of the electrons reappear in the vacuum with some delay time after undergoing inelastic scattering and cascading processes inside the metal. Our understanding of these processes gives insights on attosecond tunnelling emission from solids and should prove useful in designing new types of pulsed electron sources. PMID:27786287
Current Driven Instabilities and Anomalous Mobility in Hall-effect Thrusters
NASA Astrophysics Data System (ADS)
Tran, Jonathan; Eckhardt, Daniel; Martin, Robert
2017-10-01
Due to the extreme cost of fully resolving the Debye length and plasma frequency, hybrid plasma simulations utilizing kinetic ions and quasi-steady state fluid electrons have long been the principle workhorse methodology for Hall-effect thruster (HET) modeling. Plasma turbulence and the resulting anomalous electron transport in HETs is a promising candidate for developing predictive models for the observed anomalous transport. In this work, we investigate the implementation of an anomalous electron cross field transport model for hybrid HET simulations such a HPHall. A theory for anomalous transport in HETs and current driven instabilities has been recently studied by Lafleur et al. This work has shown collective electron-wave scattering due to large amplitude azimuthal fluctuations of the electric field. We will further adapt the previous results for related current driven instabilities to electric propulsion relevant mass ratios and conduct a preliminary study of resolving this instability with a modified hybrid (fluid electron and kinetic ion) simulation with the hope of integration with established hybrid HET simulations. This work is supported by the Air Force Office of Scientific Research award FA9950-17RQCOR465.
Performance and applications of the 14 MEV electron radiation linac at CIAE
NASA Astrophysics Data System (ADS)
Zhai, X. L.; Chen, G. C.; Qi, B. M.; Xu, F. J.; Pan, L. H.; Zhang, Z. M.; Shi, X. Z.; Chen, J. K.; Wang, F. Y.
1993-07-01
A 14 MeV electron linear accelerator which was designed and manufactured by the China Institute of Atomic Energy (CIAE) has been modified into an radiation processing accelerator in 1987. It consists of an electron gun, two prebunchers, one buncher, a three meter long accelerating section, and a 90 degree bending magnet. The linac is S-band (2856 MHz), travelling wave accelerator driven by a Chinese-made klystron. The energy of electrons can be adjusted from 8 MeV to 18 MeV and the average beam power is about 2 kW. The beam width is 600 mm and the uniformity of scanning beam is better than 10%. The linac is used to irradiate power semiconductor devices for controlling the minority carrier lifetime (MCL). More than twenty factories and scientific institutions use this linac to irradiate silicon controlled rectifiers (SCR) and the fast recovery diodes (FRD), and more than 0.2 million pieces of SCR have been irradiated. Tests have also been carried out for colour-change of topaz.
On the role of electron-driven processes in planetary atmospheres and comets
NASA Astrophysics Data System (ADS)
Campbell, L.; Brunger, M. J.
2009-11-01
After the presence of ionized layers in the Earth's atmosphere was inferred, it took 50 years to quantitatively understand them. The electron density could not be accounted for until Sir David Bates first suggested (along with Sir Harrie Massey) that the main electron-loss process was dissociative recombination with molecular ions, and he and colleagues then developed a theory to predict those rates of dissociative recombination. However, electron impact processes, particularly excitation, have been considered insignificant in most situations, in both planetary and cometary atmospheres. Here we describe cases where recent calculations have shown that electron impact excitation of molecules is important, suggesting that, just as in the time of Sir David Bates, electron-driven processes remain fundamental to our quantitative understanding of atmospheric and cometary phenomena.
Influence of field ionization effect on the divergence of laser-driven fast electrons
NASA Astrophysics Data System (ADS)
Lang, Y.; Yang, X. H.; Xu, H.; Jin, Z.; Zhuo, H. B.
2018-07-01
The effect of field ionization on the divergence of fast electrons (E k ≥ 50 keV), driven by ultrashort-ultraintense laser pulse interaction with plasma, is studied by using 2D3V particle-in-cell simulations. It is found that, due to temperature anisotropy of the fast electrons in the ionizing target, strong fluctuant magnetic fields in the preplasma region is generated through Weibel instability. In turn, the field induces an enhancement of the hot electron divergence for the target with ionization process. Meanwhile, compared with the target without an ionization process, larger divergence of hot electrons can also be seen in the ionizing target with laser intensity varying from 5 × 1019 W/cm2 to 5 × 1020 W/cm2 and the divergence is weakly dependent on target materials for a fixed profile of preplasma. The results here are useful for the application of laser-driven fast electron beams.
Imaging Plasmon Hybridization of Fano Resonances via Hot-Electron-Mediated Absorption Mapping.
Simoncelli, Sabrina; Li, Yi; Cortés, Emiliano; Maier, Stefan A
2018-06-13
The inhibition of radiative losses in dark plasmon modes allows storing electromagnetic energy more efficiently than in far-field excitable bright-plasmon modes. As such, processes benefiting from the enhanced absorption of light in plasmonic materials could also take profit of dark plasmon modes to boost and control nanoscale energy collection, storage, and transfer. We experimentally probe this process by imaging with nanoscale precision the hot-electron driven desorption of thiolated molecules from the surface of gold Fano nanostructures, investigating the effect of wavelength and polarization of the incident light. Spatially resolved absorption maps allow us to show the contribution of each element of the nanoantenna in the hot-electron driven process and their interplay in exciting a dark plasmon mode. Plasmon-mode engineering allows control of nanoscale reactivity and offers a route to further enhance and manipulate hot-electron driven chemical reactions and energy-conversion and transfer at the nanoscale.
NASA Astrophysics Data System (ADS)
Lin, Feng; Chan, Carol K. K.
2018-04-01
This study examined the role of computer-supported knowledge-building discourse and epistemic reflection in promoting elementary-school students' scientific epistemology and science learning. The participants were 39 Grade 5 students who were collectively pursuing ideas and inquiry for knowledge advance using Knowledge Forum (KF) while studying a unit on electricity; they also reflected on the epistemic nature of their discourse. A comparison class of 22 students, taught by the same teacher, studied the same unit using the school's established scientific investigation method. We hypothesised that engaging students in idea-driven and theory-building discourse, as well as scaffolding them to reflect on the epistemic nature of their discourse, would help them understand their own scientific collaborative discourse as a theory-building process, and therefore understand scientific inquiry as an idea-driven and theory-building process. As hypothesised, we found that students engaged in knowledge-building discourse and reflection outperformed comparison students in scientific epistemology and science learning, and that students' understanding of collaborative discourse predicted their post-test scientific epistemology and science learning. To further understand the epistemic change process among knowledge-building students, we analysed their KF discourse to understand whether and how their epistemic practice had changed after epistemic reflection. The implications on ways of promoting epistemic change are discussed.
Ultrafast dynamics of low-energy electron attachment via a non-valence correlation-bound state
NASA Astrophysics Data System (ADS)
Rogers, Joshua P.; Anstöter, Cate S.; Verlet, Jan R. R.
2018-03-01
The primary electron-attachment process in electron-driven chemistry represents one of the most fundamental chemical transformations with wide-ranging importance in science and technology. However, the mechanistic detail of the seemingly simple reaction of an electron and a neutral molecule to form an anion remains poorly understood, particularly at very low electron energies. Here, time-resolved photoelectron imaging was used to probe the electron-attachment process to a non-polar molecule using time-resolved methods. An initially populated diffuse non-valence state of the anion that is bound by correlation forces evolves coherently in ∼30 fs into a valence state of the anion. The extreme efficiency with which the correlation-bound state serves as a doorway state for low-energy electron attachment explains a number of electron-driven processes, such as anion formation in the interstellar medium and electron attachment to fullerenes.
Contributive research in compound semiconductor material and related devices
NASA Astrophysics Data System (ADS)
Twist, James R.
1988-05-01
The objective of this program was to provide the Electronic Device Branch (AFWAL/AADR) with the support needed to perform state of the art electronic device research. In the process of managing and performing on the project, UES has provided a wide variety of scientific and engineering talent who worked in-house for the Avionics Laboratory. These personnel worked on many different types of research programs from gas phase microwave driven lasers, CVD and MOCVD of electronic materials to Electronic Device Technology for new devices. The fields of research included MBE and theoretical research in this novel growth technique. Much of the work was slanted towards the rapidly developing technology of GaAs and the general thrust of the research that these tasks started has remained constant. This work was started because the Avionics Laboratory saw a chance to advance the knowledge and level of the current device technology by working in the compounds semiconductor field. UES is pleased to have had the opportunity to perform on this program and is looking forward to future efforts with the Avionics Laboratory.
Sun, Shuaishuai; Li, Zhongwen; Li, Zi-An; Xiao, Ruijuan; Zhang, Ming; Tian, Huanfang; Yang, Huaixin; Li, Jianqi
2018-04-26
Optical tuning and probing ultrafast structural response of nanomaterials driven by electronic excitation constitute a challenging but promising approach for understanding microscopic mechanisms and applications in microelectromechanical systems and optoelectrical devices. Here we use pulsed electron diffraction in a transmission electron microscope to investigate laser-induced tubular lattice dynamics of multi-walled carbon nanotubes (MWCNTs) with varying laser fluence and initial specimen temperature. Our photoexcitation experiments demonstrate cooperative and inverse collective atomic motions in intralayer and interlayer directions, whose strengths and rates depend on pump fluence. The electron-driven and thermally driven structural responses with opposite amplitudes cause a crossover between intralayer and interlayer directions. Our ab initio calculations support these findings and reveal that electrons excited from π to π* orbitals in a carbon tube weaken the intralayer bonds while strengthening the interlayer bonds along the radial direction. Moreover, by probing the structural dynamics of MWCNTs at initial temperatures of 300 and 100 K, we uncover the concomitance of thermal and nonthermal dynamical processes and their mutual influence in MWCNTs. Our results illustrate the nature of electron-driven nonthermal process and electron-phonon thermalization in the MWCNTs, and bear implications for the intricate energy conversion and transfer in materials at the nanoscale.
NASA Technical Reports Server (NTRS)
Miller, Matthew J.; Lim, Darlene S. S.; Brady, Allyson; Cardman, Zena; Bell, Ernest; Garry, Brent; Reid, Donnie; Chappell, Steve; Abercromby, Andrew F. J.
2016-01-01
The Pavilion Lake Research Project (PLRP) is a unique platform where the combination of scientific research and human space exploration concepts can be tested in an underwater spaceflight analog environment. The 2015 PLRP field season was performed at Pavilion Lake, Canada, where science-driven exploration techniques focusing on microbialite characterization and acquisition were evaluated within the context of crew and robotic extravehicular activity (EVA) operations. The primary objectives of this analog study were to detail the capabilities, decision-making process, and operational concepts required to meet non-simulated scientific objectives during 5-minute one-way communication latency utilizing crew and robotic assets. Furthermore, this field study served as an opportunity build upon previous tests at PLRP, NASA Desert Research and Technology Studies (DRATS), and NASA Extreme Environment Mission Operations (NEEMO) to characterize the functional roles and responsibilities of the personnel involved in the distributed flight control team and identify operational constraints imposed by science-driven EVA operations. The relationship and interaction between ground and flight crew was found to be dependent on the specific scientific activities being addressed. Furthermore, the addition of a second intravehicular operator was found to be highly enabling when conducting science-driven EVAs. Future human spaceflight activities will need to cope with the added complexity of dynamic and rapid execution of scientific priorities both during and between EVA execution to ensure scientific objectives are achieved.
[SciELO: method for electronic publishing].
Laerte Packer, A; Rocha Biojone, M; Antonio, I; Mayumi Takemaka, R; Pedroso García, A; Costa da Silva, A; Toshiyuki Murasaki, R; Mylek, C; Carvalho Reisl, O; Rocha F Delbucio, H C
2001-01-01
It describes the SciELO Methodology Scientific Electronic Library Online for electronic publishing of scientific periodicals, examining issues such as the transition from traditional printed publication to electronic publishing, the scientific communication process, the principles which founded the methodology development, its application in the building of the SciELO site, its modules and components, the tools use for its construction etc. The article also discusses the potentialities and trends for the area in Brazil and Latin America, pointing out questions and proposals which should be investigated and solved by the methodology. It concludes that the SciELO Methodology is an efficient, flexible and wide solution for the scientific electronic publishing.
Reactive tunnel junctions in electrically driven plasmonic nanorod metamaterials
NASA Astrophysics Data System (ADS)
Wang, Pan; Krasavin, Alexey V.; Nasir, Mazhar E.; Dickson, Wayne; Zayats, Anatoly V.
2018-02-01
Non-equilibrium hot carriers formed near the interfaces of semiconductors or metals play a crucial role in chemical catalysis and optoelectronic processes. In addition to optical illumination, an efficient way to generate hot carriers is by excitation with tunnelling electrons. Here, we show that the generation of hot electrons makes the nanoscale tunnel junctions highly reactive and facilitates strongly confined chemical reactions that can, in turn, modulate the tunnelling processes. We designed a device containing an array of electrically driven plasmonic nanorods with up to 1011 tunnel junctions per square centimetre, which demonstrates hot-electron activation of oxidation and reduction reactions in the junctions, induced by the presence of O2 and H2 molecules, respectively. The kinetics of the reactions can be monitored in situ following the radiative decay of tunnelling-induced surface plasmons. This electrically driven plasmonic nanorod metamaterial platform can be useful for the development of nanoscale chemical and optoelectronic devices based on electron tunnelling.
MeV electron acceleration at 1kHz with <10 mJ laser pulses
NASA Astrophysics Data System (ADS)
Salehi, Fatholah; Goers, Andy; Hine, George; Feder, Linus; Kuk, Donghoon; Kim, Ki-Yong; Milchberg, Howard
2016-10-01
We demonstrate laser driven acceleration of electrons at 1 kHz repetition rate with pC charge above 1MeV per shot using < 10 mJ pulse energies focused on a near-critical density He or H2 gas jet. Using the H2 gas jet, electron acceleration to 0.5 MeV in 10 fC bunches was observed with laser pulse energy as low as 1.3mJ . Using a near-critical density gas jet sets the critical power required for relativistic self-focusing low enough for mJ scale laser pulses to self- focus and drive strong wakefields. Experiments and particle-in-cell simulations show that optimal drive pulse duration and chirp for maximum electron bunch charge and energy depends on the target gas species. High repetition rate, high charge, and short duration electron bunches driven by very modest pulse energies constitutes an ideal portable electron source for applications such as ultrafast electron diffraction experiments and high rep. rate γ-ray production. This work is supported by the US Department of Energy, the National Science Foundation, and the Air Force Office of Scientific Research.
MeV electron acceleration at 1 kHz with <10 mJ laser pulses
NASA Astrophysics Data System (ADS)
Salehi, Fatholah; Goers, Andy; Hine, George; Feder, Linus; Kuk, Donghoon; Miao, Bo; Woodbury, Daniel; Kim, Ki-Yong; Milchberg, Howard
2017-01-01
We demonstrate laser driven acceleration of electrons to MeV-scale energies at 1 kHz repetition rate using <10 mJ pulses focused on near-critical density He and H2 gas jets. Using the H2 gas jet, electron acceleration to 0.5 MeV in 10 fC bunches was observed with laser pulse energy as low as 1.3 mJ. Increasing the pulse energy to 10 mJ, we measure 1pC charge bunches with >1 MeV energy for both He and H gas jets. Such a high repetition rate, high flux ultrafast source has immediate application to time resolved probing of matter for scientific, medical, or security applications, either using the electrons directly or using a high-Z foil converter to generate ultrafast γ-rays. This work is supported by the US Department of Energy, the National Science Foundation, and the Air Force Office of Scientific Research.
Sparks-Thissen, Rebecca L
2017-02-01
Biology education is undergoing a transformation toward a more student-centered, inquiry-driven classroom. Many educators have designed engaging assignments that are designed to help undergraduate students gain exposure to the scientific process and data analysis. One of these types of assignments is use of a grant proposal assignment. Many instructors have used these assignments in lecture-based courses to help students process information in the literature and apply that information to a novel problem such as design of an antiviral drug or a vaccine. These assignments have been helpful in engaging students in the scientific process in the absence of an inquiry-driven laboratory. This commentary discusses the application of these grant proposal writing assignments to undergraduate biology courses. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Theory-driven research in pediatric psychology: a little bit on why and how.
Wallander, J L
1992-10-01
Introduces a Special Issue, covering two published issues (5 and 6) of this journal, on theory-driven research in pediatric psychology. A rationale for conducting research from a conceptual basis is presented. It is emphasized that science is primarily an intellectual activity, demonstrated in the form of theory building, testing, and reformulation. Furthermore, it is argued theory serves as a planning and communication aide for scientific pursuit. The process and components of theory-driven research are then highlighted. Theoretical constructs, theoretical and empirical definitions of constructs, and the use of variables are discussed. A definition of scientific theory is offered. Theory testing is distinguished from post hoc theorizing. Differences in the scope of theories are noted. Connections between theory and hypothesis testing and research design are addressed, especially for nonexperimental or correlational research.
Computational challenges in atomic, molecular and optical physics.
Taylor, Kenneth T
2002-06-15
Six challenges are discussed. These are the laser-driven helium atom; the laser-driven hydrogen molecule and hydrogen molecular ion; electron scattering (with ionization) from one-electron atoms; the vibrational and rotational structure of molecules such as H(3)(+) and water at their dissociation limits; laser-heated clusters; and quantum degeneracy and Bose-Einstein condensation. The first four concern fundamental few-body systems where use of high-performance computing (HPC) is currently making possible accurate modelling from first principles. This leads to reliable predictions and support for laboratory experiment as well as true understanding of the dynamics. Important aspects of these challenges addressable only via a terascale facility are set out. Such a facility makes the last two challenges in the above list meaningfully accessible for the first time, and the scientific interest together with the prospective role for HPC in these is emphasized.
NASA Technical Reports Server (NTRS)
Roth, D. J.; Hull, D. R.
1994-01-01
IMAGEP manipulates digital image data to effect various processing, analysis, and enhancement functions. It is keyboard-driven program organized into nine subroutines. Within subroutines are sub-subroutines also selected via keyboard. Algorithm has possible scientific, industrial, and biomedical applications in study of flows in materials, analysis of steels and ores, and pathology, respectively.
Julius Edgar Lilienfeld Prize Talk: Quantum spintronics: abandoning perfection for new technologies
NASA Astrophysics Data System (ADS)
Awschalom, David D.
2015-03-01
There is a growing interest in exploiting the quantum properties of electronic and nuclear spins for the manipulation and storage of information in the solid state. Such schemes offer qualitatively new scientific and technological opportunities by leveraging elements of standard electronics to precisely control coherent interactions between electrons, nuclei, and electromagnetic fields. We provide an overview of the field, including a discussion of temporally- and spatially-resolved magneto-optical measurements designed for probing local moment dynamics in electrically and magnetically doped semiconductor nanostructures. These early studies provided a surprising proof-of-concept that quantum spin states can be created and controlled with high-speed optoelectronic techniques. However, as electronic structures approach the atomic scale, small amounts of disorder begin to have outsized negative effects. An intriguing solution to this conundrum is emerging from recent efforts to embrace semiconductor defects themselves as a route towards quantum machines. Individual defects in carbon-based materials possess an electronic spin state that can be employed as a solid state quantum bit at and above room temperature. Developments at the frontier of this field include gigahertz coherent control, nanofabricated spin arrays, nuclear spin quantum memories, and nanometer-scale sensing. We will describe advances towards quantum information processing driven by both physics and materials science to explore electronic, photonic, and magnetic control of spin. Work supported by the AFOSR, ARO, DARPA, NSF, and ONR.
Correlating electronic and vibrational motions in charge transfer systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalil, Munira
2014-06-27
The goal of this research program was to measure coupled electronic and nuclear motions during photoinduced charge transfer processes in transition metal complexes by developing and using novel femtosecond spectroscopies. The scientific highlights and the resulting scientific publications from the DOE supported work are outlined in the technical report.
Electron-rich driven electrochemical solid-state amorphization in Li-Si alloys.
Wang, Zhiguo; Gu, Meng; Zhou, Yungang; Zu, Xiaotao; Connell, Justin G; Xiao, Jie; Perea, Daniel; Lauhon, Lincoln J; Bang, Junhyeok; Zhang, Shengbai; Wang, Chongmin; Gao, Fei
2013-09-11
The physical and chemical behaviors of materials used in energy storage devices, such as lithium-ion batteries (LIBs), are mainly controlled by an electrochemical process, which normally involves insertion/extraction of ions into/from a host lattice with a concurrent flow of electrons to compensate charge balance. The fundamental physics and chemistry governing the behavior of materials in response to the ions insertion/extraction is not known. Herein, a combination of in situ lithiation experiments and large-scale ab initio molecular dynamics simulations are performed to explore the mechanisms of the electrochemically driven solid-state amorphization in Li-Si systems. We find that local electron-rich condition governs the electrochemically driven solid-state amorphization of Li-Si alloys. This discovery provides the fundamental explanation of why lithium insertion in semiconductor and insulators leads to amorphization, whereas in metals, it leads to a crystalline alloy. The present work correlates electrochemically driven reactions with ion insertion, electron transfer, lattice stability, and phase equilibrium.
Electron-Rich Driven Electrochemical Solid-State Amorphization in Li-Si Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhiguo; Gu, Meng; Zhou, Yungang
2013-08-14
The physical and chemical behaviors of materials used in energy storage devices, such as lithium-ion batteries (LIBs), are mainly controlled by an electrochemical process, which normally involves insertion/extraction of ions into/from a host lattice with a concurrent flow of electrons to compensate charge balance. The fundamental physics and chemistry governing the behavior of materials in response to the ions insertion/extraction is not known. Herein, a combination of in situ lithiation experiments and large-scale ab initio molecular dynamics simulations are performed to explore the mechanisms of the electrochemically driven solid-state amorphization in Li-Si systems. We find that local electron-rich condition governsmore » the electrochemically driven solid-state amorphization of Li-Si alloys. This discovery provides the fundamental explanation of why lithium insertion in semiconductor and insulators leads to amorphization, whereas in metals, it leads to a crystalline alloy. The present work correlates electrochemically driven reactions with ion insertion, electron transfer, lattice stability and phase equilibrium.« less
Test Driven Development of Scientific Models
NASA Technical Reports Server (NTRS)
Clune, Thomas L.
2012-01-01
Test-Driven Development (TDD) is a software development process that promises many advantages for developer productivity and has become widely accepted among professional software engineers. As the name suggests, TDD practitioners alternate between writing short automated tests and producing code that passes those tests. Although this overly simplified description will undoubtedly sound prohibitively burdensome to many uninitiated developers, the advent of powerful unit-testing frameworks greatly reduces the effort required to produce and routinely execute suites of tests. By testimony, many developers find TDD to be addicting after only a few days of exposure, and find it unthinkable to return to previous practices. Of course, scientific/technical software differs from other software categories in a number of important respects, but I nonetheless believe that TDD is quite applicable to the development of such software and has the potential to significantly improve programmer productivity and code quality within the scientific community. After a detailed introduction to TDD, I will present the experience within the Software Systems Support Office (SSSO) in applying the technique to various scientific applications. This discussion will emphasize the various direct and indirect benefits as well as some of the difficulties and limitations of the methodology. I will conclude with a brief description of pFUnit, a unit testing framework I co-developed to support test-driven development of parallel Fortran applications.
Ómarsson, Frímann H; Mason, Nigel J; Krishnakumar, E; Ingólfsson, Oddur
2014-11-03
In light of its substantially more environmentally friendly nature, CF3I is currently being considered as a replacement for the highly potent global-warming gas CF4, which is used extensively in plasma processing. In this context, we have studied the electron-driven dissociation of CF3I to form CF3(-) and I, and we compare this process to the corresponding photolysis channel. By using the velocity slice imaging (VSI) technique we can visualize the complete dynamics of this process and show that electron-driven dissociation proceeds from the same initial parent state as the corresponding photolysis process. However, in contrast to photolysis, which leads nearly exclusively to the (2)P(1/2) excited state of iodine, electron-induced dissociation leads predominantly to the (2)P(3/2) ground state. We believe that the changed spin state of the negative ion allows an adiabatic dissociation through a conical intersection, whereas this path is efficiently repressed by a required spin flip in the photolysis process. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Test Driven Development of Scientific Models
NASA Technical Reports Server (NTRS)
Clune, Thomas L.
2014-01-01
Test-Driven Development (TDD), a software development process that promises many advantages for developer productivity and software reliability, has become widely accepted among professional software engineers. As the name suggests, TDD practitioners alternate between writing short automated tests and producing code that passes those tests. Although this overly simplified description will undoubtedly sound prohibitively burdensome to many uninitiated developers, the advent of powerful unit-testing frameworks greatly reduces the effort required to produce and routinely execute suites of tests. By testimony, many developers find TDD to be addicting after only a few days of exposure, and find it unthinkable to return to previous practices.After a brief overview of the TDD process and my experience in applying the methodology for development activities at Goddard, I will delve more deeply into some of the challenges that are posed by numerical and scientific software as well as tools and implementation approaches that should address those challenges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plettner, T.; Byer, R.L.; Smith, T.I.
2006-02-17
We have observed acceleration of relativistic electrons in vacuum driven by a linearly polarized visible laser beam incident on a thin gold-coated reflective boundary. The observed energy modulation effect follows all the characteristics expected for linear acceleration caused by a longitudinal electric field. As predicted by the Lawson-Woodward theorem the laser driven modulation only appears in the presence of the boundary. It shows a linear dependence with the strength of the electric field of the laser beam and also it is critically dependent on the laser polarization. Finally, it appears to follow the expected angular dependence of the inverse transitionmore » radiation process. experiment as the Laser Electron Accelerator Project (LEAP).« less
Ultrafast Surface-Enhanced Raman Probing of the Role of Hot Electrons in Plasmon-Driven Chemistry.
Brandt, Nathaniel C; Keller, Emily L; Frontiera, Renee R
2016-08-18
Hot electrons generated through plasmonic excitations in metal nanostructures show great promise for efficiently driving chemical reactions with light. However, the lifetime, yield, and mechanism of action of plasmon-generated hot electrons involved in a given photocatalytic process are not well understood. Here, we develop ultrafast surface-enhanced Raman scattering (SERS) as a direct probe of plasmon-molecule interactions in the plasmon-catalyzed dimerization of 4-nitrobenzenethiol to p,p'-dimercaptoazobenzene. Ultrafast SERS probing of these molecular reporters in plasmonic hot spots reveals transient Fano resonances, which we attribute to near-field coupling of Stokes-shifted photons to hot electron-driven metal photoluminescence. Surprisingly, we find that hot spots that yield more photoluminescence are much more likely to drive the reaction, which indirectly proves that plasmon-generated hot electrons induce the photochemistry. These ultrafast SERS results provide insight into the relative reactivity of different plasmonic hot spot environments and quantify the ultrafast lifetime of hot electrons involved in plasmon-driven chemistry.
Modern Scientific Visualization is more than Just Pretty Pictures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bethel, E Wes; Rubel, Oliver; Wu, Kesheng
2008-12-05
While the primary product of scientific visualization is images and movies, its primary objective is really scientific insight. Too often, the focus of visualization research is on the product, not the mission. This paper presents two case studies, both that appear in previous publications, that focus on using visualization technology to produce insight. The first applies"Query-Driven Visualization" concepts to laser wakefield simulation data to help identify and analyze the process of beam formation. The second uses topological analysis to provide a quantitative basis for (i) understanding the mixing process in hydrodynamic simulations, and (ii) performing comparative analysis of data frommore » two different types of simulations that model hydrodynamic instability.« less
Martian Dust Devil Electron Avalanche Process and Associated Electrochemistry
NASA Technical Reports Server (NTRS)
Jackson, Telana L.; Farrell, William M.; Delory, Gregory T.; Nithianandam, Jeyasingh
2010-01-01
Mars' dynamic atmosphere displays localized dust devils and larger, global dust storms. Based on terrestrial analog studies, electrostatic modeling, and laboratory work these features will contain large electrostatic fields formed via triboelectric processes. In the low-pressure Martian atmosphere, these fields may create an electron avalanche and collisional plasma due to an increase in electron density driven by the internal electrical forces. To test the hypothesis that an electron avalanche is sustained under these conditions, a self-consistent atmospheric process model is created including electron impact ionization sources and electron losses via dust absorption, electron dissociation attachment, and electron/ion recombination. This new model is called the Dust Devil Electron Avalanche Model (DDEAM). This model solves simultaneously nine continuity equations describing the evolution of the primary gaseous chemical species involved in the electrochemistry. DDEAM monitors the evolution of the electrons and primary gas constituents, including electron/water interactions. We especially focus on electron dynamics and follow the electrons as they evolve in the E field driven collisional gas. When sources and losses are self-consistently included in the electron continuity equation, the electron density grows exponentially with increasing electric field, reaching an equilibrium that forms a sustained time-stable collisional plasma. However, the character of this plasma differs depending upon the assumed growth rate saturation process (chemical saturation versus space charge). DDEAM also shows the possibility of the loss of atmospheric methane as a function of electric field due to electron dissociative attachment of the hydrocarbon. The methane destruction rates are presented and can be included in other larger atmospheric models.
ERIC Educational Resources Information Center
Fedorowicz, Jane; Gogan, Janis L.
2001-01-01
Presents two types of fast-cycle curriculum development processes: research driven and stakeholder driven. Illustrates their application in the Bentley College business school's new course modules, elective courses, and graduate program on electronic commerce. (Contains 19 references.) (SK)
Test Driven Development: Lessons from a Simple Scientific Model
NASA Astrophysics Data System (ADS)
Clune, T. L.; Kuo, K.
2010-12-01
In the commercial software industry, unit testing frameworks have emerged as a disruptive technology that has permanently altered the process by which software is developed. Unit testing frameworks significantly reduce traditional barriers, both practical and psychological, to creating and executing tests that verify software implementations. A new development paradigm, known as test driven development (TDD), has emerged from unit testing practices, in which low-level tests (i.e. unit tests) are created by developers prior to implementing new pieces of code. Although somewhat counter-intuitive, this approach actually improves developer productivity. In addition to reducing the average time for detecting software defects (bugs), the requirement to provide procedure interfaces that enable testing frequently leads to superior design decisions. Although TDD is widely accepted in many software domains, its applicability to scientific modeling still warrants reasonable skepticism. While the technique is clearly relevant for infrastructure layers of scientific models such as the Earth System Modeling Framework (ESMF), numerical and scientific components pose a number of challenges to TDD that are not often encountered in commercial software. Nonetheless, our experience leads us to believe that the technique has great potential not only for developer productivity, but also as a tool for understanding and documenting the basic scientific assumptions upon which our models are implemented. We will provide a brief introduction to test driven development and then discuss our experience in using TDD to implement a relatively simple numerical model that simulates the growth of snowflakes. Many of the lessons learned are directly applicable to larger scientific models.
Energy-resolved coherent diffraction from laser-driven electronic motion in atoms
NASA Astrophysics Data System (ADS)
Shao, Hua-Chieh; Starace, Anthony F.
2017-10-01
We investigate theoretically the use of energy-resolved ultrafast electron diffraction to image laser-driven electronic motion in atoms. A chirped laser pulse is used to transfer the valence electron of the lithium atom from the ground state to the first excited state. During this process, the electronic motion is imaged by 100-fs and 1-fs electron pulses in energy-resolved diffraction measurements. Simulations show that the angle-resolved spectra reveal the time evolution of the energy content and symmetry of the electronic state. The time-dependent diffraction patterns are further interpreted in terms of the momentum transfer. For the case of incident 1-fs electron pulses, the rapid 2 s -2 p quantum beat motion of the target electron is imaged as a time-dependent asymmetric oscillation of the diffraction pattern.
F"orster-type mechanism of the redox-driven proton pump
NASA Astrophysics Data System (ADS)
Mourokh, Lev; Smirnov, Anatoly; Nori, Franco
2007-03-01
We propose a model to describe an electronically-driven proton pump in the cytochrome c oxidase (CcO). We examine the situation when the electron transport between the two sites embedded into the inner membrane of the mitochondrion occurs in parallel with the proton transfer from the protonable site that is close to the negative (inner) side of the membrane to the other protonable site located nearby the positive (outer) surface of the membrane. In addition to the conventional electron and proton tunnelings between the sites, the Coulomb interaction between electrons and protons localized on the corresponding sites leads to so-called F"orster transfer, i.e. to the process when the simultaneous electron and proton tunnelings are accompanied by the resonant energy transfer between the electrons and protons. Our calculations based on reasonable parameters have demonstrated that the F"orster process facilitates the proton pump at physiological temperatures. We have examined the effects of an electron voltage build-up, external temperature, and molecular electrostatics driving the electron and proton energies to the resonant conditions, and have shown that these parameters can control the proton pump operation.
Institutional Factors for Supporting Electronic Learning Communities
ERIC Educational Resources Information Center
Linton, Jayme N.
2017-01-01
This study was designed to explore how the electronic learning community (eLC) process at an established state virtual high school (SVHS) supported new and veteran online high school teachers through the communities of practice (CoP) framework. Specifically, this study focused on the institutionally-driven nature of the eLC process, using Wenger's…
SALTON SEA SCIENTIFIC DRILLING PROJECT: SCIENTIFIC PROGRAM.
Sass, J.H.; Elders, W.A.
1986-01-01
The Salton Sea Scientific Drilling Project, was spudded on 24 October 1985, and reached a total depth of 10,564 ft. (3. 2 km) on 17 March 1986. There followed a period of logging, a flow test, and downhole scientific measurements. The scientific goals were integrated smoothly with the engineering and economic objectives of the program and the ideal of 'science driving the drill' in continental scientific drilling projects was achieved in large measure. The principal scientific goals of the project were to study the physical and chemical processes involved in an active, magmatically driven hydrothermal system. To facilitate these studies, high priority was attached to four areas of sample and data collection, namely: (1) core and cuttings, (2) formation fluids, (3) geophysical logging, and (4) downhole physical measurements, particularly temperatures and pressures.
Rowland, Kevin C; Joy, Anita
2015-03-01
Reports on the status of dental education have concluded that there is a need for various types of curricular reform, making recommendations that include better integration of basic, behavioral, and clinical sciences, increased case-based teaching, emphasis on student-driven learning, and creation of lifelong learners. Dental schools faced with decreasing contact hours, increasing teaching material, and technological advancements have experimented with alternate curricular strategies. At Southern Illinois University School of Dental Medicine, curricular changes have begun with a series of integrated biomedical sciences courses. During the process of planning and implementing the integrated courses, a novel venue-the gross anatomy laboratory-was used to introduce all Year 1 students to critical thinking, self-directed learning, and the scientific method. The venture included student-driven documentation of anatomical variations encountered in the laboratory using robust scientific methods, thorough literature review, and subsequent presentation of findings in peer review settings. Students responded positively, with over 75% agreeing the experience intellectually challenged them. This article describes the process of re-envisioning the gross anatomy laboratory as an effective venue for small group-based, student-driven projects that focus on key pedagogical concepts to encourage the development of lifelong learners.
Seely, J. F.; Hudson, L. T.; Pereira, N.; ...
2016-02-24
Experiments were performed at the LLNL Titan laser to measure the propagation direction of the energetic electrons that were generated during the interaction of the polarized laser beam with solid targets in the case of normal incidence. The energetic electrons propagated through vacuum to spectator metal wires in the polarization direction and in the perpendicular direction, and the K shell spectra from the different wire materials were recorded as functions of the distance from the laser focal spot. It was found that the fluence of the energetic electrons driven into the spectator wires in the polarization direction compared to themore » perpendicular direction was larger and increased with the distance from the focal spot. Finally, this indicates that energetic electrons are preferentially driven in the direction of the intense oscillating electric field of the incident laser beam in agreement with the multiphoton inverse Bremsstrahlung absorption process.« less
NASA Astrophysics Data System (ADS)
Fox, W.; Porkolab, M.; Egedal, J.; Katz, N.; Le, A.
2012-03-01
This work presents detailed experimental observations of electron phase-space holes driven during magnetic reconnection events on the Versatile Toroidal Facility. The holes are observed to travel on the order of or faster than the electron thermal speed, and are of large size scale, with diameter of order 60 Debye lengths. In addition, they have 3D spheroidal structure with approximately unity aspect ratio. We estimate the direct anomalous resistivity due to ion interaction with the holes and find it to be too small to affect the reconnection rate; however, the holes may play a role in reining in a tail of accelerated electrons and they indicate the presence of other processes in the reconnection layer, such as electron energization and electron beam formation.
EarthCube Activities: Community Engagement Advancing Geoscience Research
NASA Astrophysics Data System (ADS)
Kinkade, D.
2015-12-01
Our ability to advance scientific research in order to better understand complex Earth systems, address emerging geoscience problems, and meet societal challenges is increasingly dependent upon the concept of Open Science and Data. Although these terms are relatively new to the world of research, Open Science and Data in this context may be described as transparency in the scientific process. This includes the discoverability, public accessibility and reusability of scientific data, as well as accessibility and transparency of scientific communication (www.openscience.org). Scientists and the US government alike are realizing the critical need for easy discovery and access to multidisciplinary data to advance research in the geosciences. The NSF-supported EarthCube project was created to meet this need. EarthCube is developing a community-driven common cyberinfrastructure for the purpose of accessing, integrating, analyzing, sharing and visualizing all forms of data and related resources through advanced technological and computational capabilities. Engaging the geoscience community in EarthCube's development is crucial to its success, and EarthCube is providing several opportunities for geoscience involvement. This presentation will provide an overview of the activities EarthCube is employing to entrain the community in the development process, from governance development and strategic planning, to technical needs gathering. Particular focus will be given to the collection of science-driven use cases as a means of capturing scientific and technical requirements. Such activities inform the development of key technical and computational components that collectively will form a cyberinfrastructure to meet the research needs of the geoscience community.
Dimensionality-driven insulator–metal transition in A-site excess non-stoichiometric perovskites
Wang, Zhongchang; Okude, Masaki; Saito, Mitsuhiro; Tsukimoto, Susumu; Ohtomo, Akira; Tsukada, Masaru; Kawasaki, Masashi; Ikuhara, Yuichi
2010-01-01
Coaxing correlated materials to the proximity of the insulator–metal transition region, where electronic wavefunctions transform from localized to itinerant, is currently the subject of intensive research because of the hopes it raises for technological applications and also for its fundamental scientific significance. In general, this tuning is achieved by either chemical doping to introduce charge carriers, or external stimuli to lower the ratio of Coulomb repulsion to bandwidth. In this study, we combine experiment and theory to show that the transition from well-localized insulating states to metallicity in a Ruddlesden-Popper series, La0.5Srn+1−0.5TinO3n+1, is driven by intercalating an intrinsically insulating SrTiO3 unit, in structural terms, by dimensionality n. This unconventional strategy, which can be understood upon a complex interplay between electron–phonon coupling and electron correlations, opens up a new avenue to obtain metallicity or even superconductivity in oxide superlattices that are normally expected to be insulators. PMID:21045824
Experimental realization of underdense plasma photocathode wakefield acceleration at FACET
NASA Astrophysics Data System (ADS)
Scherkl, Paul
2017-10-01
Novel electron beam sources from compact plasma accelerator concepts currently mature into the driving technology for next generation high-energy physics and light source facilities. Particularly electron beams of ultra-high brightness could pave the way for major advances for both scientific and commercial applications, but their generation remains tremendously challenging. The presentation outlines the experimental demonstration of the world's first bright electron beam source from spatiotemporally synchronized laser pulses injecting electrons into particle-driven plasma wakefields at FACET. Two distinctive types of operation - laser-triggered density downramp injection (``Plasma Torch'') and underdense plasma photocathode acceleration (``Trojan Horse'') - and their intermediate transitions are characterized and contrasted. Extensive particle-in-cell simulations substantiate the presentation of experimental results. In combination with novel techniques to minimize the beam energy spread, the acceleration scheme presented here promises ultra-high beam quality and brightness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Sha; Jones, R. R.
Electrons ejected from atoms and subsequently driven to high energies in strong laser fields enable techniques from attosecond pulse generation to imaging with rescattered electrons. Analogous processes govern strong-field electron emission from nanostructures, where long wavelength radiation and large local field enhancements hold the promise for producing electrons with substantially higher energies, allowing for higher resolution time-resolved imaging. Here we report on the use of single-cycle terahertz pulses to drive electron emission from unbiased nano-tips. Energies exceeding 5 keV are observed, substantially greater than previously attained at higher drive frequencies. Despite large differences in the magnitude of the respective localmore » fields, we find that the maximum electron energies are only weakly dependent on the tip radius, for 10 nm« less
Li, Sha; Jones, R. R.
2016-11-10
Electrons ejected from atoms and subsequently driven to high energies in strong laser fields enable techniques from attosecond pulse generation to imaging with rescattered electrons. Analogous processes govern strong-field electron emission from nanostructures, where long wavelength radiation and large local field enhancements hold the promise for producing electrons with substantially higher energies, allowing for higher resolution time-resolved imaging. Here we report on the use of single-cycle terahertz pulses to drive electron emission from unbiased nano-tips. Energies exceeding 5 keV are observed, substantially greater than previously attained at higher drive frequencies. Despite large differences in the magnitude of the respective localmore » fields, we find that the maximum electron energies are only weakly dependent on the tip radius, for 10 nm« less
Impact of New Camera Technologies on Discoveries in Cell Biology.
Stuurman, Nico; Vale, Ronald D
2016-08-01
New technologies can make previously invisible phenomena visible. Nowhere is this more obvious than in the field of light microscopy. Beginning with the observation of "animalcules" by Antonie van Leeuwenhoek, when he figured out how to achieve high magnification by shaping lenses, microscopy has advanced to this day by a continued march of discoveries driven by technical innovations. Recent advances in single-molecule-based technologies have achieved unprecedented resolution, and were the basis of the Nobel prize in Chemistry in 2014. In this article, we focus on developments in camera technologies and associated image processing that have been a major driver of technical innovations in light microscopy. We describe five types of developments in camera technology: video-based analog contrast enhancement, charge-coupled devices (CCDs), intensified sensors, electron multiplying gain, and scientific complementary metal-oxide-semiconductor cameras, which, together, have had major impacts in light microscopy. © 2016 Marine Biological Laboratory.
Particle-in-cell simulations of electron energization in laser-driven magnetic reconnection
Lu, San; Lu, Quanming; Guo, Fan; ...
2016-01-25
Electrons can be energized during laser-driven magnetic reconnection, and the energized electrons form three super-Alfvénic electron jets in the outflow region (Lu et al 2014 New J. Phys. 16 083021). In this paper, by performing two-dimensional particle-in-cell simulations, we find that the electrons can also be significantly energized before magnetic reconnection occurs. When two plasma bubbles with toroidal magnetic fields expand and squeeze each other, the electrons in the magnetic ribbons are energized through betatron acceleration due to the enhancement of the magnetic field, and an electron temperature anisotropymore » $${T}_{{\\rm{e}}\\perp }\\gt {T}_{{\\rm{e}}| | }$$ develops. Meanwhile, some electrons are trapped and bounced repeatedly between the two expanding/approaching bubbles and get energized through a Fermi-like process. Furthermore, the energization before magnetic reconnection is more significant (or important) than that during magnetic reconnection.« less
Disaster and Contingency Planning for Scientific Shared Resource Cores.
Mische, Sheenah; Wilkerson, Amy
2016-04-01
Progress in biomedical research is largely driven by improvements, innovations, and breakthroughs in technology, accelerating the research process, and an increasingly complex collaboration of both clinical and basic science. This increasing sophistication has driven the need for centralized shared resource cores ("cores") to serve the scientific community. From a biomedical research enterprise perspective, centralized resource cores are essential to increased scientific, operational, and cost effectiveness; however, the concentration of instrumentation and resources in the cores may render them highly vulnerable to damage from severe weather and other disasters. As such, protection of these assets and the ability to recover from a disaster is increasingly critical to the mission and success of the institution. Therefore, cores should develop and implement both disaster and business continuity plans and be an integral part of the institution's overall plans. Here we provide an overview of key elements required for core disaster and business continuity plans, guidance, and tools for developing these plans, and real-life lessons learned at a large research institution in the aftermath of Superstorm Sandy.
Science Driven Instrumentation for LCLS-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arthur, John; Bergmann, Uwe; Brunger, Axel
The world’s first x-ray free electron laser (XFEL), LCLS, has now been operating for more than three years and all six experimental stations are supporting user science and producing high impact scientific results. Other countries are rapidly catching up and a second XFEL, SACLA, is already operating in Japan with others coming on line in Germany, Korea and Switzerland within the next three to five years. In order to increase capability and capacity of LCLS, the Department of Energy has funded LCLS-II.
Traveling Wave Amplifier Driven by a Large Diameter Annular Electron Beam in a Disk-Loaded Structure
2015-10-30
IV MARY LOU ROBINSON, DR-IV Project Officer Chief, High Power Electromagnetics Division This report is published in the interest of scientific and...unlimited. 13. SUPPLEMENTARY NOTES OPS-15-9244 14. ABSTRACT This project studies the viability of a high - power traveling wave tube (TWT) using a novel...CHRISTINE codes. Fair agreement was observed. The preliminary conclusion is that the disk-on-rod TWT is a viable, high - power extension to the conventional
High-performance scientific computing in the cloud
NASA Astrophysics Data System (ADS)
Jorissen, Kevin; Vila, Fernando; Rehr, John
2011-03-01
Cloud computing has the potential to open up high-performance computational science to a much broader class of researchers, owing to its ability to provide on-demand, virtualized computational resources. However, before such approaches can become commonplace, user-friendly tools must be developed that hide the unfamiliar cloud environment and streamline the management of cloud resources for many scientific applications. We have recently shown that high-performance cloud computing is feasible for parallelized x-ray spectroscopy calculations. We now present benchmark results for a wider selection of scientific applications focusing on electronic structure and spectroscopic simulation software in condensed matter physics. These applications are driven by an improved portable interface that can manage virtual clusters and run various applications in the cloud. We also describe a next generation of cluster tools, aimed at improved performance and a more robust cluster deployment. Supported by NSF grant OCI-1048052.
Electron Collisions in our Atmosphere — How the Microscopic Drives the Macroscopic
NASA Astrophysics Data System (ADS)
Buckman, S. J.; Brunger, M. J.; Campbell, L.; Jelisavcic, M.; Petrovic, Z. Lj.
2005-05-01
Recent measurements of low energy, absolute electron scattering cross sections for vibrational excitation of NO have been used to update the cross set used for modeling atmospheric auroral processes. These new cross sections, which highlight the role that intermediate negative ions (resonances) play at energies below 5 eV in mediating vibrational excitation, also indicate that electron-driven processes play an important role in the infrared (˜5 um) auroral emissions from the NO molecule.
The microscopic Z-pinch process of current-carrying rarefied deuterium plasma shell
NASA Astrophysics Data System (ADS)
Ning, Cheng; Feng, Zhixing; Xue, Chuang; Li, Baiwen
2015-02-01
For insight into the microscopic mechanism of Z-pinch dynamic processes, a code of two-dimensional particle-in-cell (PIC) simulation has been developed in cylindrical coordinates. In principle, the Z-pinch of current-carrying rarefied deuterium plasma shell has been simulated by means of this code. Many results related to the microscopic processes of the Z-pinch are obtained. They include the spatio-temporal distributions of electromagnetic field, current density, forces experienced by the ions and electrons, positions and energy distributions of particles, and trailing mass and current. In radial direction, the electric and magnetic forces exerted on the electrons are comparable in magnitude, while the forces exerted on the ions are mainly the electric forces. So in the Z-pinch process, the electrons are first accelerated in Z direction and get higher velocities; then, they are driven inwards to the axis at the same time by the radial magnetic forces (i.e., Lorentz forces) of them. That causes the separations between the electrons and ions because the ion mass is much larger than the electron's, and in turn a strong electrostatic field is produced. The produced electrostatic field attracts the ions to move towards the electrons. When the electrons are driven along the radial direction to arrive at the axis, they shortly move inversely due to the static repellency among them and their tiny mass, while the ions continue to move inertially inwards, and later get into stagnation, and finally scatter outwards. Near the stagnation, the energies of the deuterium ions mostly range from 0.3 to 6 keV, while the electron energies are mostly from 5 to 35 keV. The radial components, which can contribute to the pinched plasma temperature, of the most probable energies of electron and ion at the stagnation are comparable to the Bennett equilibrium temperature (about 1 keV), and also to the highest temperatures of electron and ion obtained in one dimensional radiation magnetohydrodynamic simulation of the plasma shell Z-pinch. The trailing mass is about 20% of the total mass of the shell, and the maximum trailing current is about 7% of the driven current under our trailing definition. Our PIC simulation also demonstrates that the plasma shell first experiences a snow-plow like implosion process, which is relatively stable.
NASA Astrophysics Data System (ADS)
Li, M.; Yuan, T.; Xu, Y. X.; Luo, S. N.
2018-05-01
When an intense picosecond laser pulse is loaded upon a dense plasma, a high energy density plasma bunch, including electron bunch and ion bunch, can be generated in the target. We simulate this process through one-dimensional particle-in-cell simulation and find that the electron bunch generation is mainly due to a local high energy density electron sphere originated in the plasma skin layer. Once generated the sphere rapidly expands to compress the surrounding electrons and induce high density electron layer, coupled with that, hot electrons are efficiently triggered in the local sphere and traveling in the whole target. Under the compressions of light pressure, forward-running and backward-running hot electrons, a high energy density electron bunch generates. The bunch energy density is as high as TJ/m3 order of magnitude in our conditions, which is significant in laser driven dynamic high pressure generation and may find applications in high energy density physics.
Modelling of plasma processes in cometary and planetary atmospheres
NASA Astrophysics Data System (ADS)
Campbell, L.; Brunger, M. J.
2013-02-01
Electrons from the Sun, often accelerated by magnetospheric processes, produce low-density plasmas in the upper atmospheres of planets and their satellites. The secondary electrons can produce further ionization, dissociation and excitation, leading to enhancement of chemical reactions and light emission. Similar processes are driven by photoelectrons produced by sunlight in upper atmospheres during daytime. Sunlight and solar electrons drive the same processes in the atmospheres of comets. Thus for both understanding of planetary atmospheres and in predicting emissions for comparison with remote observations it is necessary to simulate the processes that produce upper atmosphere plasmas. In this review, we describe relevant models and their applications and address the importance of electron-impact excitation cross sections, towards gaining a quantitative understanding of the phenomena in question.
Vascular structure determines pulmonary blood flow distribution
NASA Technical Reports Server (NTRS)
Hlastala, M. P.; Glenny, R. W.
1999-01-01
Scientific knowledge develops through the evolution of new concepts. This process is usually driven by new methodologies that provide observations not previously available. Understanding of pulmonary blood flow determinants advanced significantly in the 1960s and is now changing rapidly again, because of increased spatial resolution of regional pulmonary blood flow measurements.
Science Instruments and Sensors Capability Roadmap: NRC Dialogue
NASA Technical Reports Server (NTRS)
Barney, Rich; Zuber, Maria
2005-01-01
The Science Instruments and Sensors roadmaps include capabilities associated with the collection, detection, conversion, and processing of scientific data required to answer compelling science questions driven by the Vision for Space Exploration and The New Age of Exploration (NASA's Direction for 2005 & Beyond). Viewgraphs on these instruments and sensors are presented.
1998-09-30
was to use field experiences to 1) enhance educator capability in science content and skills, 2) immerse school systems in an inquiry-driven, active ... learning process, and 3) establish links to real-time scientific information in support of classroom activities. Participants capability in marine
Creation of Artificial Ionospheric Layers Using High-Power HF Waves
2010-01-30
Program ( HAARP ) transmitter in Gakona, Alaska. The HF- driven ionization process is initiated near the 2nd electron gyroharmonic at 220 km altitude in...the 3.6 MW High-Frequency Active Auroral Program ( HAARP ) transmitter in Gakona, Alaska. The HF-driven ionization process is initiated near the 2nd...Maine. USA. Copyright 2010 by the American Geophysical Union. 0094-8276/I0/2009GLO41895SO5.0O Research Program ( HAARP ) transmitter facility, however
NASA Astrophysics Data System (ADS)
Li, C. K.; Seguin, F. H.; Frenje, J. A.; Rosenberg, M.; Zylstra, A. B.; Rinderknecht, H. G.; Petrasso, R. D.; Amendt, P. A.; Landen, O. L.; Town, R. P. J.; Betti, R.; Knauer, J. P.; Meyerhofer, D. D.; Back, C. A.; Kilkenny, J. D.; Nikroo, A.
2010-11-01
Backlighting of x-ray-driven implosions in empty hohlraums with mono-energetic protons on the OMEGA laser facility has allowed a number of important phenomena to be observed. Several critical parameters were determined, including plasma flow, three types of spontaneous electric fields and megaGauss magnetic fields. These results provide insight into important issues in indirect-drive ICF. Even though the cavity is effectively a Faraday cage, the strong, local fields inside the hohlraum can affect laser-plasma instabilities, electron distributions and implosion symmetry. They are of fundamental scientific importance for a range of new experiments at the frontiers of high-energy-density physics. Future experiments designed to characterize the field formation and evolution in low-Z gas fill hohlraums will be discussed.
Probing SEP Acceleration Processes With Near-relativistic Electrons
NASA Astrophysics Data System (ADS)
Haggerty, Dennis K.; Roelof, Edmond C.
2009-11-01
Processes in the solar corona are prodigious accelerators of near-relativistic electrons. Only a small fraction of these electrons escape the low corona, yet they are by far the most abundant species observed in Solar Energetic Particle events. These beam-like energetic electron events are sometimes time-associated with coronal mass ejections from the western solar hemisphere. However, a significant number of events are observed without any apparent association with a transient event. The relationship between solar energetic particle events, coronal mass ejections, and near-relativistic electron events are better ordered when we classify the intensity time profiles during the duration of the beam-like anisotropies into three broad categories: 1) Spikes (rapid and equal rise and decay) 2) Pulses (rapid rise, slower decay) and 3) Ramps (rapid rise followed by a plateau). We report on the results of a study that is based on our catalog (covering nearly the complete Solar Cycle 23) of 216 near-relativistic electron events and their association with: solar electromagnetic emissions, shocks driven by coronal mass ejections, models of the coronal magnetic fields and energetic protons. We conclude that electron events with time-intensity profiles of Spikes and Pulses are associated with explosive events in the low corona while events with time-intensity profiles of Ramps are associated with the injection/acceleration process of the CME driven shock.
Compression-Driven Enhancement of Electronic Correlations in Simple Alkali Metals
NASA Astrophysics Data System (ADS)
Fabbris, Gilberto; Lim, Jinhyuk; Veiga, Larissa; Haskel, Daniel; Schilling, James
2015-03-01
Alkali metals are the best realization of the nearly free electron model. This scenario appears to change dramatically as the alkalis are subjected to extreme pressure, leading to unexpected properties such as the departure from metallic behavior in Li and Na, and the occurrence of remarkable low-symmetry crystal structures in all alkalis. Although the mechanism behind these phase transitions is currently under debate, these are believed to be electronically driven. In this study the high-pressure electronic and structural ground state of Rb and Cs was investigated through low temperature XANES and XRD measurements combined with ab initio calculations. The results indicate that the pressure-induced localization of the conduction band triggers a Peierls-like mechanism, inducing the low symmetry phases. This localization process is evident by the pressure-driven increase in the number of d electrons, which takes place through strong spd hybridization. These experimental results indicate that compression turns the heavy alkali metals into strongly correlated electron systems. Work at Argonne was supported by DOE No. DE-AC02-06CH11357. Research at Washington University was supported by NSF DMR-1104742 and CDAC/DOE/NNSA DE-FC52-08NA28554.
Kinetic instabilities in the solar wind driven by temperature anisotropies
NASA Astrophysics Data System (ADS)
Yoon, Peter H.
2017-12-01
The present paper comprises a review of kinetic instabilities that may be operative in the solar wind, and how they influence the dynamics thereof. The review is limited to collective plasma instabilities driven by the temperature anisotropies. To limit the scope even further, the discussion is restricted to the temperature anisotropy-driven instabilities within the model of bi-Maxwellian plasma velocity distribution function. The effects of multiple particle species or the influence of field-aligned drift will not be included. The field-aligned drift or beam is particularly prominent for the solar wind electrons, and thus ignoring its effect leaves out a vast portion of important physics. Nevertheless, for the sake of limiting the scope, this effect will not be discussed. The exposition is within the context of linear and quasilinear Vlasov kinetic theories. The discussion does not cover either computer simulations or data analyses of observations, in any systematic manner, although references will be made to published works pertaining to these methods. The scientific rationale for the present analysis is that the anisotropic temperatures associated with charged particles are pervasively detected in the solar wind, and it is one of the key contemporary scientific research topics to correctly characterize how such anisotropies are generated, maintained, and regulated in the solar wind. The present article aims to provide an up-to-date theoretical development on this research topic, largely based on the author's own work.
NASA Technical Reports Server (NTRS)
Ganguli, Supriya B.; Mitchell, Horace G.; Palmadesso, Peter J.
1988-01-01
Fluid simulations of the plasma along auroral field lines in the return current region have been performed. It is shown that the onset of electrostatic ion cyclotron (EIC) related anomalous resistivity and the consequent heating of electrons leads to a transverse ion temperature that is much higher than that produced by the current driven EIC instability (CDICI) alone. Two processes are presented for the enhancement of ion heating by anomalous resistivity. The anomalous resistivity associated with the turbulence is limited by electron heating, so that CDICI saturates at transverse temperature that is substantially higher than in the absence of resistivity. It is suggested that this process demonstrates a positive feedback loop in the interaction between CDICI, anomalous resistivity, and parallel large-scale dynamics in the topside ionosphere.
Global MHD simulations driven by idealized Alfvenic fluctuations in the solar wind
NASA Astrophysics Data System (ADS)
Claudepierre, S. G.
2017-12-01
High speed solar wind streams (HSSs) and corotating interaction regions (CIRs) often lead to MeV electron flux enhancements the Earth's outer radiation belt. The relevant physical processes responsible for these enhancements are not entirely understood. We investigate the potential role that solar wind Alfvenic fluctuations, intrinsic structures embedded in the HSS/CIRs, play in radiation belt dynamics. In particular, we explore the hypothesis that magnetospheric ultra-low frequency (ULF) pulsations driven by interplanetary magnetic field fluctuations are the intermediary mechanism responsible for the pronounced effect that HSS/CIRs have on the outer electron radiation belt. We examine these effects using global, three-dimensional magnetohydrodynamic (MHD) simulations driven by idealized interplanetary Alfvenic fluctuations, both monochromatic and broadband noise (Kolmogorov turbulence).
Hosseinkhani, Baharak; Hennebel, Tom; Boon, Nico
2014-09-25
Fermentative production of bio-hydrogen (bio-H2) from organic residues has emerged as a promising alternative for providing the required electron source for hydrogen driven remediation strategies. Unlike the widely used production of H2 by bacteria in fresh water systems, few reports are available regarding the generation of biogenic H2 and optimisation processes in marine systems. The present research aims to optimise the capability of an indigenous marine bacterium for the production of bio-H2 in marine environments and subsequently develop this process for hydrogen driven remediation strategies. Fermentative conversion of organics in marine media to H2 using a marine isolate, Pseudoalteromonas sp. BH11, was determined. A Taguchi design of experimental methodology was employed to evaluate the optimal nutritional composition in batch tests to improve bio-H2 yields. Further optimisation experiments showed that alginate-immobilised bacterial cells were able to produce bio-H2 at the same rate as suspended cells over a period of several weeks. Finally, bio-H2 was used as electron donor to successfully dehalogenate trichloroethylene (TCE) using biogenic palladium nanoparticles as a catalyst. Fermentative production of bio-H2 can be a promising technique for concomitant generation of an electron source for hydrogen driven remediation strategies and treatment of organic residue in marine ecosystems. Copyright © 2014 Elsevier B.V. All rights reserved.
Li, Sha; Jones, R. R.
2016-01-01
Electrons ejected from atoms and subsequently driven to high energies in strong laser fields enable techniques from attosecond pulse generation to imaging with rescattered electrons. Analogous processes govern strong-field electron emission from nanostructures, where long wavelength radiation and large local field enhancements hold the promise for producing electrons with substantially higher energies, allowing for higher resolution time-resolved imaging. Here we report on the use of single-cycle terahertz pulses to drive electron emission from unbiased nano-tips. Energies exceeding 5 keV are observed, substantially greater than previously attained at higher drive frequencies. Despite large differences in the magnitude of the respective local fields, we find that the maximum electron energies are only weakly dependent on the tip radius, for 10 nm
Nuclear Physics with 10 PW laser beams at Extreme Light Infrastructure - Nuclear Physics (ELI-NP)
NASA Astrophysics Data System (ADS)
Zamfir, N. V.
2014-05-01
The field of the uncharted territory of high-intensity laser interaction with matter is confronted with new exotic phenomena and, consequently, opens new research perspectives. The intense laser beams interacting with a gas or solid target generate beams of electrons, protons and ions. These beams can induce nuclear reactions. Electrons also generate ions high-energy photons via bremsstrahlung processes which can also induce nuclear reactions. In this context a new research domain began to form in the last decade or so, namely nuclear physics with high power lasers. The observation of high brilliance proton beams of tens of MeV energy from solid targets has stimulated an intense research activity. The laser-driven particle beams have to compete with conventional nuclear accelerator-generated beams. The ultimate goal is aiming at applications of the laser produced beams in research, technology and medicine. The mechanism responsible for ion acceleration are currently subject of intensive research in many laboratories in the world. The existing results, experimental and theoretical, and their perspectives are reviewed in this article in the context of IZEST and the scientific program of ELI-NP.
High-intensity double-pulse X-ray free-electron laser
Marinelli, A.; Ratner, D.; Lutman, A. A.; ...
2015-03-06
The X-ray free-electron laser has opened a new era for photon science, improving the X-ray brightness by ten orders of magnitude over previously available sources. Similar to an optical laser, the spectral and temporal structure of the radiation pulses can be tailored to the specific needs of many experiments by accurately manipulating the lasing medium, that is, the electron beam. Here we report the generation of mJ-level two-colour hard X-ray pulses of few femtoseconds duration with an XFEL driven by twin electron bunches at the Linac Coherent Light Source. This performance represents an improvement of over an order of magnitudemore » in peak power over state-of-the-art two-colour XFELs. The unprecedented intensity and temporal coherence of this new two-colour X-ray free-electron laser enable an entirely new set of scientific applications, ranging from X-ray pump/X-ray probe experiments to the imaging of complex biological samples with multiple wavelength anomalous dispersion.« less
Heat currents in electronic junctions driven by telegraph noise
NASA Astrophysics Data System (ADS)
Entin-Wohlman, O.; Chowdhury, D.; Aharony, A.; Dattagupta, S.
2017-11-01
The energy and charge fluxes carried by electrons in a two-terminal junction subjected to a random telegraph noise, produced by a single electronic defect, are analyzed. The telegraph processes are imitated by the action of a stochastic electric field that acts on the electrons in the junction. Upon averaging over all random events of the telegraph process, it is found that this electric field supplies, on the average, energy to the electronic reservoirs, which is distributed unequally between them: the stronger is the coupling of the reservoir with the junction, the more energy it gains. Thus the noisy environment can lead to a temperature gradient across an unbiased junction.
NASA Technical Reports Server (NTRS)
1994-01-01
Charge Coupled Devices (CCDs) are high technology silicon chips that connect light directly into electronic or digital images, which can be manipulated or enhanced by computers. When Goddard Space Flight Center (GSFC) scientists realized that existing CCD technology could not meet scientific requirements for the Hubble Space Telescope Imagining Spectrograph, GSFC contracted with Scientific Imaging Technologies, Inc. (SITe) to develop an advanced CCD. SITe then applied many of the NASA-driven enhancements to the manufacture of CCDs for digital mammography. The resulting device images breast tissue more clearly and efficiently. The LORAD Stereo Guide Breast Biopsy system incorporates SITe's CCD as part of a digital camera system that is replacing surgical biopsy in many cases. Known as stereotactic needle biopsy, it is performed under local anesthesia with a needle and saves women time, pain, scarring, radiation exposure and money.
Direct Heating of a Laser-Imploded Core by Ultraintense Laser-Driven Ions
NASA Astrophysics Data System (ADS)
Kitagawa, Y.; Mori, Y.; Komeda, O.; Ishii, K.; Hanayama, R.; Fujita, K.; Okihara, S.; Sekine, T.; Satoh, N.; Kurita, T.; Takagi, M.; Watari, T.; Kawashima, T.; Kan, H.; Nishimura, Y.; Sunahara, A.; Sentoku, Y.; Nakamura, N.; Kondo, T.; Fujine, M.; Azuma, H.; Motohiro, T.; Hioki, T.; Kakeno, M.; Miura, E.; Arikawa, Y.; Nagai, T.; Abe, Y.; Ozaki, S.; Noda, A.
2015-05-01
A novel direct core heating fusion process is introduced, in which a preimploded core is predominantly heated by energetic ions driven by LFEX, an extremely energetic ultrashort pulse laser. Consequently, we have observed the D (d ,n )
Direct heating of a laser-imploded core by ultraintense laser-driven ions.
Kitagawa, Y; Mori, Y; Komeda, O; Ishii, K; Hanayama, R; Fujita, K; Okihara, S; Sekine, T; Satoh, N; Kurita, T; Takagi, M; Watari, T; Kawashima, T; Kan, H; Nishimura, Y; Sunahara, A; Sentoku, Y; Nakamura, N; Kondo, T; Fujine, M; Azuma, H; Motohiro, T; Hioki, T; Kakeno, M; Miura, E; Arikawa, Y; Nagai, T; Abe, Y; Ozaki, S; Noda, A
2015-05-15
A novel direct core heating fusion process is introduced, in which a preimploded core is predominantly heated by energetic ions driven by LFEX, an extremely energetic ultrashort pulse laser. Consequently, we have observed the D(d,n)^{3}He-reacted neutrons (DD beam-fusion neutrons) with the yield of 5×10^{8} n/4π sr. Examination of the beam-fusion neutrons verified that the ions directly collide with the core plasma. While the hot electrons heat the whole core volume, the energetic ions deposit their energies locally in the core, forming hot spots for fuel ignition. As evidenced in the spectrum, the process simultaneously excited thermal neutrons with the yield of 6×10^{7} n/4π sr, raising the local core temperature from 0.8 to 1.8 keV. A one-dimensional hydrocode STAR 1D explains the shell implosion dynamics including the beam fusion and thermal fusion initiated by fast deuterons and carbon ions. A two-dimensional collisional particle-in-cell code predicts the core heating due to resistive processes driven by hot electrons, and also the generation of fast ions, which could be an additional heating source when they reach the core. Since the core density is limited to 2 g/cm^{3} in the current experiment, neither hot electrons nor fast ions can efficiently deposit their energy and the neutron yield remains low. In future work, we will achieve the higher core density (>10 g/cm^{3}); then hot electrons could contribute more to the core heating via drag heating. Together with hot electrons, the ion contribution to fast ignition is indispensable for realizing high-gain fusion. By virtue of its core heating and ignition, the proposed scheme can potentially achieve high gain fusion.
Electron scattering measurements from molecules of technological relevance
NASA Astrophysics Data System (ADS)
Jones, Darryl
2014-10-01
Biomass represents a significant opportunity to provide renewable and sustainable biofuels. Non-thermal atmospheric pressure plasmas provide an opportunity to efficiently breakdown the naturally-resilient biomass into its useful subunits. Free electrons produced in the plasma may assist in this process by inducing fragmentation though dissociative excitation, ionization or attachment processes. To assist in understanding and refining this process, we have performed electron energy loss experiments from phenol (C6H5OH), a key structural building block of biomass. This enables a quantitative assessment of the excited electronic states of phenol. Differential cross sections for the electron-driven excitation of phenol have also been obtained for incident electron energies in the 20--250 eV range and over 3--90° scattering angles. DBJ acknowledges financial support provided by an Australian Research Council DECRA.
NASA Astrophysics Data System (ADS)
Yoon, Young Dae
2017-10-01
A generalized, intuitive two-fluid picture of 2D non-driven collisionless magnetic reconnection is described using results from a full-3D numerical simulation. The relevant two-fluid equations simplify to the condition that the flux associated with canonical circulation Q =me ∇ ×ue +qe B is perfectly frozen into the electron fluid. Q is the curl of P =meue +qe A , which is the electron canonical momenrum. Since ∇ . Q = 0 , the Q flux tubes are incompressible and so have a fixed volume. Because they are perfectly frozen into the electron fluid, the Q flux tubes cannot reconnect. Following the behavior of these Q flux tubes provides an intuitive insight into 2D collisionless reconnection of B . In the reconnection geometry, a small perturbation to the central electron current sheet effectively brings a localized segment of a Q flux tube towards the X-point. This flux tube segment is convected downwards with the central electron current, effectively stretching the flux tube, decreasing its cross-section to maintain a fixed volume and so increasing the magnitude of Q . Also, because Q is the sum of the electron vorticity and the magnetic field, the two terms may change in such a way that one term becomes smaller while the other becomes larger while preserving constant Q flux. This allows magnetic reconnection, which is a conversion of magnetic field into particle velocity, to occur without any dissipation mechanism. The entire process has positive feedback with no restoring mechanism and therefore is an instability. The Q motion provides an interpretation for other phenomena as well, such as spiked central electron current filaments. The simulated reconnection rate was found to agree with a previous analytical calculation having the same geometry. Energy analysis shows that the magnetic energy is converted and propagated mainly in the form of the Poynting flux, while helicity analysis shows that the canonical helicity ∫ P . QdV as a whole must be considered when analyzing reconnection. A mechanism for whistler wave generation and propagation is also described, with comparisons to recent spacecraft observations. National Science Foundation under Award no. 1059519, Air Force Office of Scientific Research under Award No. FA9550-11-1-0184, U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences under Award No. DE-FG02-04ER54755.
Minnows as a Classroom Model for Human Environmental Health
ERIC Educational Resources Information Center
Weber, Daniel N.; Hesselbach, Renee; Kane, Andrew S.; Petering, David H.; Petering, Louise; Berg, Craig A.
2013-01-01
Understanding human environmental health is difficult for high school students, as is the process of scientific investigation. This module provides a framework to address both concerns through an inquiry-based approach using a hypothesis-driven set of experiments that draws upon a real-life concern, environmental exposures to lead (Pb2+). Students…
Nature-Inspired Capillary-Driven Welding Process for Boosting Metal-Oxide Nanofiber Electronics.
Meng, You; Lou, Kaihua; Qi, Rui; Guo, Zidong; Shin, Byoungchul; Liu, Guoxia; Shan, Fukai
2018-06-20
Recently, semiconducting nanofiber networks (NFNs) have been considered as one of the most promising platforms for large-area and low-cost electronics applications. However, the high contact resistance among stacking nanofibers remained to be a major challenge, leading to poor device performance and parasitic energy consumption. In this report, a controllable welding technique for NFNs was successfully demonstrated via a bioinspired capillary-driven process. The interfiber connections were well-achieved via a cooperative concept, combining localized capillary condensation and curvature-induced surface diffusion. With the improvements of the interfiber connections, the welded NFNs exhibited enhanced mechanical property and high electrical performance. The field-effect transistors (FETs) based on the welded Hf-doped In 2 O 3 (InHfO) NFNs were demonstrated for the first time. Meanwhile, the mechanisms involved in the grain-boundary modulation for polycrystalline metal-oxide nanofibers were discussed. When the high-k ZrO x dielectric thin films were integrated into the FETs, the field-effect mobility and operating voltage were further improved to be 25 cm 2 V -1 s -1 and 3 V, respectively. This is one of the best device performances among the reported nanofibers-based FETs. These results demonstrated the potencies of the capillary-driven welding process and grain-boundary modulation mechanism for metal-oxide NFNs, which could be applicable for high-performance, large-scale, and low-power functional electronics.
Disaster and Contingency Planning for Scientific Shared Resource Cores
Wilkerson, Amy
2016-01-01
Progress in biomedical research is largely driven by improvements, innovations, and breakthroughs in technology, accelerating the research process, and an increasingly complex collaboration of both clinical and basic science. This increasing sophistication has driven the need for centralized shared resource cores (“cores”) to serve the scientific community. From a biomedical research enterprise perspective, centralized resource cores are essential to increased scientific, operational, and cost effectiveness; however, the concentration of instrumentation and resources in the cores may render them highly vulnerable to damage from severe weather and other disasters. As such, protection of these assets and the ability to recover from a disaster is increasingly critical to the mission and success of the institution. Therefore, cores should develop and implement both disaster and business continuity plans and be an integral part of the institution’s overall plans. Here we provide an overview of key elements required for core disaster and business continuity plans, guidance, and tools for developing these plans, and real-life lessons learned at a large research institution in the aftermath of Superstorm Sandy. PMID:26848285
Improved performances of CIBER-X: a new tabletop laser-driven electron and x-ray source
NASA Astrophysics Data System (ADS)
Girardeau-Montaut, Jean-Pierre; Kiraly, Bela; Girardeau-Montaut, Claire
2000-11-01
We present the most recent data concerning the performances of the table-top laser driven electron and x-ray source developed in our laboratory. X-ray pulses are produced by a three-step process which consists of the photoelectron emission from a thin metallic photocathode illuminated by 16 ps duration laser pulse at 213 nm. The e-gun is a standard pierce diode electrode type, in which electrons are accelerated by a cw electric fields of 12 MV/m. The photoinjector produced a train of 90 - 100 keV electron pulses of approximately 1 nC and 40 A peak current at a repetition rate of 10 Hz. The electrons, transported outside the diode, are focused onto a target of thulium by magnetic fields produced by two electromagnetic coils to produce x-rays. Applications to low dose imagery of inert and living materials are also presented.
Direct in situ observation of the electron-driven synthesis of Ag filaments on α-Ag2WO4 crystals
Longo, E.; Cavalcante, L. S.; Volanti, D. P.; Gouveia, A. F.; Longo, V. M.; Varela, J. A.; Orlandi, M. O.; Andrés, J.
2013-01-01
In this letter, we report, for the first time, the real-time in situ nucleation and growth of Ag filaments on α-Ag2WO4 crystals driven by an accelerated electron beam from an electronic microscope under high vacuum. We employed several techniques to characterise the material in depth. By using these techniques combined with first-principles modelling based on density functional theory, a mechanism for the Ag filament formation followed by a subsequent growth process from the nano- to micro-scale was proposed. In general, we have shown that an accelerated electron beam from an electronic microscope under high vacuum enables in situ visualisation of Ag filaments with subnanometer resolution and offers great potential for addressing many fundamental issues in materials science, chemistry, physics and other fields of science. PMID:23591807
Studying Scientific Discovery by Computer Simulation.
1983-03-30
Mendel’s laws of inheritance, the law of Gay- Lussac for gaseous reactions, tile law of Dulong and Petit, the derivation of atomic weights by Avogadro...neceseary mid identify by block number) scientific discovery -ittri sic properties physical laws extensive terms data-driven heuristics intensive...terms theory-driven heuristics conservation laws 20. ABSTRACT (Continue on revere. side It necessary and identify by block number) Scientific discovery
Ding, Qianqian; Shi, Ying; Chen, Maodu; Li, Hui; Yang, Xianzhong; Qu, Yingqi; Liang, Wenjie; Sun, Mengtao
2016-01-01
Using the ultrafast pump-probe transient absorption spectroscopy, the femtosecond-resolved plasmon-exciton interaction of graphene-Ag nanowire hybrids is experimentally investigated, in the VIS-NIR region. The plasmonic lifetime of Ag nanowire is about 150 ± 7 femtosecond (fs). For a single layer of graphene, the fast dynamic process at 275 ± 77 fs is due to the excitation of graphene excitons, and the slow process at 1.4 ± 0.3 picosecond (ps) is due to the plasmonic hot electron interaction with phonons of graphene. For the graphene-Ag nanowire hybrids, the time scale of the plasmon-induced hot electron transferring to graphene is 534 ± 108 fs, and the metal plasmon enhanced graphene plasmon is about 3.2 ± 0.8 ps in the VIS region. The graphene-Ag nanowire hybrids can be used for plasmon-driven chemical reactions. This graphene-mediated surface-enhanced Raman scattering substrate significantly increases the probability and efficiency of surface catalytic reactions co-driven by graphene-Ag nanowire hybridization, in comparison with reactions individually driven by monolayer graphene or single Ag nanowire. This implies that the graphene-Ag nanowire hybrids can not only lead to a significant accumulation of high-density hot electrons, but also significantly increase the plasmon-to-electron conversion efficiency, due to strong plasmon-exciton coupling. PMID:27601199
NASA Astrophysics Data System (ADS)
Vidor, Fábio F.; Meyers, Thorsten; Müller, Kathrin; Wirth, Gilson I.; Hilleringmann, Ulrich
2017-11-01
Driven by the Internet of Things (IoT), flexible and transparent smart systems have been intensively researched by the scientific community and by several companies. This technology is already available for consumers in a wide range of innovative products, e.g., flexible displays, radio-frequency identification tags and wearable electronic skins which, for instance, collect and analyze data for medical applications. For these systems, thin-film transistors (TFTs) are the key elements responsible for the driving currents. Solution-based materials such as nanoparticle dispersions avail the fabrication on large-area substrates with high throughput processes. In this study, we discuss the integration of ZnO nanoparticle thin-film transistors and inverter circuits on freestanding polymeric substrates enclosing the main issues concerning the transfer of the integration process from a rigid substrate to a flexible one. The TFTs depict VON between -0.2 and 1 V, ION/IOFF > 104 and field-effect mobility >0.5 cm2 V-1 s-1. Additionally, in order to enhance the transistors and inverters performance, an adaptation on the device configuration, from an inverted coplanar to an inverted staggered setup, was conducted and analyzed. By employing the inverted staggered setup a considerable increase in the contact quality between the semiconductor and the drain and source electrodes was observed. As the integrated devices depict electrical characteristics which enable the fabrication of electronic circuits for the low-cost sector, inverters were fabricated and characterized, evaluating the circuit's gain as function of the applied supply voltage and circuit's geometric ratio.
Beam-plasma coupling physics in support of active experiments
NASA Astrophysics Data System (ADS)
Yakymenko, K.; Delzanno, G. L.; Roytershteyn, V.
2017-12-01
The recent development of compact relativistic accelerators might open up a new era of active experiments in space, driven by important scientific and national security applications. Examples include using electron beams to trace magnetic field lines and establish causality between physical processes occurring in the magnetosphere and those in the ionosphere. Another example is the use of electron beams to trigger waves in the near-Earth environment. Waves could induce pitch-angle scattering and precipitation of energetic electrons, acting as an effective radiation belt remediation scheme. In this work, we revisit the coupling between an electron beam and a magnetized plasma in the framework of linear cold-plasma theory. We show that coupling can occur through two different regimes. In the first, a non-relativistic beam radiates through whistler waves. This is well known, and was in fact the focus of many rockets and space-shuttle campaigns aimed at demonstrating whistler emissions in the eighties. In the second regime, the beam radiates through extraordinary (R-X) modes. Nonlinear simulations with a highly-accurate Vlasov code support the theoretical results qualitatively and demonstrate that the radiated power through R-X modes can be much larger than in the whistler regime. Test-particle simulations in the wave electromagnetic field will also be presented to assess the efficiency of these waves in inducing pitch-angle scattering via wave-particle interactions. Finally, the implications of these results for a rocket active experiment in the ionosphere and for a radiation belt remediation scheme will be discussed.
Will Allis Prize Talk: Electron Collisions - Experiment, Theory and Applications
NASA Astrophysics Data System (ADS)
Bartschat, Klaus
2016-05-01
Electron collisions with atoms, ions, and molecules represent one of the very early topics of quantum mechanics. In spite of the field's maturity, a number of recent developments in detector technology (e.g., the ``reaction microscope'' or the ``magnetic-angle changer'') and the rapid increase in computational resources have resulted in significant progress in the measurement, understanding, and theoretical/computational description of few-body Coulomb problems. Close collaborations between experimentalists and theorists worldwide continue to produce high-quality benchmark data, which allow for thoroughly testing and further developing a variety of theoretical approaches. As a result, it has now become possible to reliably calculate the vast amount of atomic data needed for detailed modelling of the physics and chemistry of planetary atmospheres, the interpretation of astrophysical data, optimizing the energy transport in reactive plasmas, and many other topics - including light-driven processes, in which electrons are produced by continuous or short-pulse ultra-intense electromagnetic radiation. In this talk, I will highlight some of the recent developments that have had a major impact on the field. This will be followed by showcasing examples, in which accurate electron collision data enabled applications in fields beyond traditional AMO physics. Finally, open problems and challenges for the future will be outlined. I am very grateful for fruitful scientific collaborations with many colleagues, and the long-term financial support by the NSF through the Theoretical AMO and Computational Physics programs, as well as supercomputer resources through TeraGrid and XSEDE.
NASA Astrophysics Data System (ADS)
Bartschat, Klaus
2016-09-01
Electron collisions with atoms, ions, and molecules represent one of the very early topics of quantum mechanics. In spite of the field's maturity, a number of recent developments in detector technology (e.g., the ``reaction microscope'' or the ``magnetic-angle changer'') and the rapid increase in computational resources have resulted in significant progress in the measurement, understanding, and theoretical/computational description of few-body Coulomb problems. Close collaborations between experimentalists and theorists worldwide continue to produce high-quality benchmark data, which allow for thoroughly testing and further developing a variety of theoretical approaches. As a result, it has now become possible to reliably calculate the vast amount of atomic data needed for detailed modelling of the physics and chemistry of planetary atmospheres, the interpretation of astrophysical data, optimizing the energy transport in reactive plasmas, and many other topics - including light-driven processes, in which electrons are produced by continuous or short-pulse ultra-intense electromagnetic radiation. I will highlight some of the recent developments that have had a major impact on the field. This will be followed by showcasing examples, in which accurate electron collision data enabled applications in fields beyond traditional AMO physics. Finally, open problems and challenges for the future will be outlined. I am very grateful for fruitful scientific collaborations with many colleagues, and the long-term financial support by the NSF through the Theoretical AMO and Computational Physics programs, as well as supercomputer resources through TeraGrid and XSEDE.
NASA Astrophysics Data System (ADS)
Akkermans, J. A. G.; Di Mitri, S.; Douglas, D.; Setija, I. D.
2017-08-01
High gain free electron lasers (FELs) driven by high repetition rate recirculating accelerators have received considerable attention in the scientific and industrial communities in recent years. Cost-performance optimization of such facilities encourages limiting machine size and complexity, and a compact machine can be realized by combining bending and bunch length compression during the last stage of recirculation, just before lasing. The impact of coherent synchrotron radiation (CSR) on electron beam quality during compression can, however, limit FEL output power. When methods to counteract CSR are implemented, appropriate beam diagnostics become critical to ensure that the target beam parameters are met before lasing, as well as to guarantee reliable, predictable performance and rapid machine setup and recovery. This article describes a beam line for bunch compression and recirculation, and beam switchyard accessing a diagnostic line for EUV lasing at 1 GeV beam energy. The footprint is modest, with 12 m compressive arc diameter and ˜20 m diagnostic line length. The design limits beam quality degradation due to CSR both in the compressor and in the switchyard. Advantages and drawbacks of two switchyard lines providing, respectively, off-line and on-line measurements are discussed. The entire design is scalable to different beam energies and charges.
Ontology-Driven Provenance Management in eScience: An Application in Parasite Research
NASA Astrophysics Data System (ADS)
Sahoo, Satya S.; Weatherly, D. Brent; Mutharaju, Raghava; Anantharam, Pramod; Sheth, Amit; Tarleton, Rick L.
Provenance, from the French word "provenir", describes the lineage or history of a data entity. Provenance is critical information in scientific applications to verify experiment process, validate data quality and associate trust values with scientific results. Current industrial scale eScience projects require an end-to-end provenance management infrastructure. This infrastructure needs to be underpinned by formal semantics to enable analysis of large scale provenance information by software applications. Further, effective analysis of provenance information requires well-defined query mechanisms to support complex queries over large datasets. This paper introduces an ontology-driven provenance management infrastructure for biology experiment data, as part of the Semantic Problem Solving Environment (SPSE) for Trypanosoma cruzi (T.cruzi). This provenance infrastructure, called T.cruzi Provenance Management System (PMS), is underpinned by (a) a domain-specific provenance ontology called Parasite Experiment ontology, (b) specialized query operators for provenance analysis, and (c) a provenance query engine. The query engine uses a novel optimization technique based on materialized views called materialized provenance views (MPV) to scale with increasing data size and query complexity. This comprehensive ontology-driven provenance infrastructure not only allows effective tracking and management of ongoing experiments in the Tarleton Research Group at the Center for Tropical and Emerging Global Diseases (CTEGD), but also enables researchers to retrieve the complete provenance information of scientific results for publication in literature.
Space Station - The base for tomorrow's electronic industry
NASA Technical Reports Server (NTRS)
Naumann, Robert J.
1985-01-01
The potential value of space material processing on the Space Station for the electronics industry is examined. The primary advantages of the space environment for producing high-purity semiconductors and electrooptical materials are identified as the virtual absence of gravity (suppressing buoyancy-driven convection in melts and density segregation of alloys) and the availabilty of high vacuum (with high pumping speed and heat rejection). The recent history of material development and processing technology in the electronics industry is reviewed, and the principal features of early space experiments are outlined.
Two-stage Electron Acceleration by 3D Collisionless Guide-field Magnetic Reconnection
NASA Astrophysics Data System (ADS)
Buechner, J.; Munoz, P.
2017-12-01
We discuss a two-stage process of electron acceleration near X-lines of 3D collisionless guide-field magnetic reconnection. Non-relativistic electrons are first pre-accelerated by magnetic-field-aligned (parallel) electric fields. At the nonlinear stage of 3D guide-field magnetic reconnection electric and magnetic fields become filamentary structured due to streaming instabilities. This causes an additional curvature-driven electron acceleration in the guide-field direction. The resulting spectrum of the accelerated electrons follows a power law.
Merging Electronic Health Record Data and Genomics for Cardiovascular Research
Hall, Jennifer L.; Ryan, John J.; Bray, Bruce E.; Brown, Candice; Lanfear, David; Newby, L. Kristin; Relling, Mary V.; Risch, Neil J.; Roden, Dan M.; Shaw, Stanley Y.; Tcheng, James E.; Tenenbaum, Jessica; Wang, Thomas N.; Weintraub, William S.
2017-01-01
The process of scientific discovery is rapidly evolving. The funding climate has influenced a favorable shift in scientific discovery toward the use of existing resources such as the electronic health record. The electronic health record enables long-term outlooks on human health and disease, in conjunction with multidimensional phenotypes that include laboratory data, images, vital signs, and other clinical information. Initial work has confirmed the utility of the electronic health record for understanding mechanisms and patterns of variability in disease susceptibility, disease evolution, and drug responses. The addition of biobanks and genomic data to the information contained in the electronic health record has been demonstrated. The purpose of this statement is to discuss the current challenges in and the potential for merging electronic health record data and genomics for cardiovascular research. PMID:26976545
Numerical simulation of plasma processes driven by transverse ion heating
NASA Technical Reports Server (NTRS)
Singh, Nagendra; Chan, C. B.
1993-01-01
The plasma processes driven by transverse ion heating in a diverging flux tube are investigated with numerical simulation. The heating is found to drive a host of plasma processes, in addition to the well-known phenomenon of ion conics. The downward electric field near the reverse shock generates a doublestreaming situation consisting of two upflowing ion populations with different average flow velocities. The electric field in the reverse shock region is modulated by the ion-ion instability driven by the multistreaming ions. The oscillating fields in this region have the possibility of heating electrons. These results from the simulations are compared with results from a previous study based on a hydrodynamical model. Effects of spatial resolutions provided by simulations on the evolution of the plasma are discussed.
Subfemtosecond directional control of chemical processes in molecules
NASA Astrophysics Data System (ADS)
Alnaser, Ali S.; Litvinyuk, Igor V.
2017-02-01
Laser pulses with a waveform-controlled electric field and broken inversion symmetry establish the opportunity to achieve directional control of molecular processes on a subfemtosecond timescale. Several techniques could be used to break the inversion symmetry of an electric field. The most common ones include combining a fundamental laser frequency with its second harmonic or with higher -frequency pulses (or pulse trains) as well as using few-cycle pulses with known carrier-envelope phase (CEP). In the case of CEP, control over chemical transformations, typically occurring on a timescale of many femtoseconds, is driven by much faster sub-cycle processes of subfemtosecond to few-femtosecond duration. This is possible because electrons are much lighter than nuclei and fast electron motion is coupled to the much slower nuclear motion. The control originates from populating coherent superpositions of different electronic or vibrational states with relative phases that are dependent on the CEP or phase offset between components of a two-color pulse. In this paper, we review the recent progress made in the directional control over chemical processes, driven by intense few-cycle laser pulses a of waveform-tailored electric field, in different molecules.
Science friction: data, metadata, and collaboration.
Edwards, Paul N; Mayernik, Matthew S; Batcheller, Archer L; Bowker, Geoffrey C; Borgman, Christine L
2011-10-01
When scientists from two or more disciplines work together on related problems, they often face what we call 'science friction'. As science becomes more data-driven, collaborative, and interdisciplinary, demand increases for interoperability among data, tools, and services. Metadata--usually viewed simply as 'data about data', describing objects such as books, journal articles, or datasets--serve key roles in interoperability. Yet we find that metadata may be a source of friction between scientific collaborators, impeding data sharing. We propose an alternative view of metadata, focusing on its role in an ephemeral process of scientific communication, rather than as an enduring outcome or product. We report examples of highly useful, yet ad hoc, incomplete, loosely structured, and mutable, descriptions of data found in our ethnographic studies of several large projects in the environmental sciences. Based on this evidence, we argue that while metadata products can be powerful resources, usually they must be supplemented with metadata processes. Metadata-as-process suggests the very large role of the ad hoc, the incomplete, and the unfinished in everyday scientific work.
Peer Review in Scientific Publications: Benefits, Critiques, & A Survival Guide
Kelly, Jacalyn; Sadeghieh, Tara
2014-01-01
Peer review has been defined as a process of subjecting an author’s scholarly work, research or ideas to the scrutiny of others who are experts in the same field. It functions to encourage authors to meet the accepted high standards of their discipline and to control the dissemination of research data to ensure that unwarranted claims, unacceptable interpretations or personal views are not published without prior expert review. Despite its wide-spread use by most journals, the peer review process has also been widely criticised due to the slowness of the process to publish new findings and due to perceived bias by the editors and/or reviewers. Within the scientific community, peer review has become an essential component of the academic writing process. It helps ensure that papers published in scientific journals answer meaningful research questions and draw accurate conclusions based on professionally executed experimentation. Submission of low quality manuscripts has become increasingly prevalent, and peer review acts as a filter to prevent this work from reaching the scientific community. The major advantage of a peer review process is that peer-reviewed articles provide a trusted form of scientific communication. Since scientific knowledge is cumulative and builds on itself, this trust is particularly important. Despite the positive impacts of peer review, critics argue that the peer review process stifles innovation in experimentation, and acts as a poor screen against plagiarism. Despite its downfalls, there has not yet been a foolproof system developed to take the place of peer review, however, researchers have been looking into electronic means of improving the peer review process. Unfortunately, the recent explosion in online only/electronic journals has led to mass publication of a large number of scientific articles with little or no peer review. This poses significant risk to advances in scientific knowledge and its future potential. The current article summarizes the peer review process, highlights the pros and cons associated with different types of peer review, and describes new methods for improving peer review. PMID:27683470
Simultaneous operation of two soft x-ray free-electron lasers driven by one linear accelerator
NASA Astrophysics Data System (ADS)
Faatz, B.; Plönjes, E.; Ackermann, S.; Agababyan, A.; Asgekar, V.; Ayvazyan, V.; Baark, S.; Baboi, N.; Balandin, V.; von Bargen, N.; Bican, Y.; Bilani, O.; Bödewadt, J.; Böhnert, M.; Böspflug, R.; Bonfigt, S.; Bolz, H.; Borges, F.; Borkenhagen, O.; Brachmanski, M.; Braune, M.; Brinkmann, A.; Brovko, O.; Bruns, T.; Castro, P.; Chen, J.; Czwalinna, M. K.; Damker, H.; Decking, W.; Degenhardt, M.; Delfs, A.; Delfs, T.; Deng, H.; Dressel, M.; Duhme, H.-T.; Düsterer, S.; Eckoldt, H.; Eislage, A.; Felber, M.; Feldhaus, J.; Gessler, P.; Gibau, M.; Golubeva, N.; Golz, T.; Gonschior, J.; Grebentsov, A.; Grecki, M.; Grün, C.; Grunewald, S.; Hacker, K.; Hänisch, L.; Hage, A.; Hans, T.; Hass, E.; Hauberg, A.; Hensler, O.; Hesse, M.; Heuck, K.; Hidvegi, A.; Holz, M.; Honkavaara, K.; Höppner, H.; Ignatenko, A.; Jäger, J.; Jastrow, U.; Kammering, R.; Karstensen, S.; Kaukher, A.; Kay, H.; Keil, B.; Klose, K.; Kocharyan, V.; Köpke, M.; Körfer, M.; Kook, W.; Krause, B.; Krebs, O.; Kreis, S.; Krivan, F.; Kuhlmann, J.; Kuhlmann, M.; Kube, G.; Laarmann, T.; Lechner, C.; Lederer, S.; Leuschner, A.; Liebertz, D.; Liebing, J.; Liedtke, A.; Lilje, L.; Limberg, T.; Lipka, D.; Liu, B.; Lorbeer, B.; Ludwig, K.; Mahn, H.; Marinkovic, G.; Martens, C.; Marutzky, F.; Maslocv, M.; Meissner, D.; Mildner, N.; Miltchev, V.; Molnar, S.; Mross, D.; Müller, F.; Neumann, R.; Neumann, P.; Nölle, D.; Obier, F.; Pelzer, M.; Peters, H.-B.; Petersen, K.; Petrosyan, A.; Petrosyan, G.; Petrosyan, L.; Petrosyan, V.; Petrov, A.; Pfeiffer, S.; Piotrowski, A.; Pisarov, Z.; Plath, T.; Pototzki, P.; Prandolini, M. J.; Prenting, J.; Priebe, G.; Racky, B.; Ramm, T.; Rehlich, K.; Riedel, R.; Roggli, M.; Röhling, M.; Rönsch-Schulenburg, J.; Rossbach, J.; Rybnikov, V.; Schäfer, J.; Schaffran, J.; Schlarb, H.; Schlesselmann, G.; Schlösser, M.; Schmid, P.; Schmidt, C.; Schmidt-Föhre, F.; Schmitz, M.; Schneidmiller, E.; Schöps, A.; Scholz, M.; Schreiber, S.; Schütt, K.; Schütz, U.; Schulte-Schrepping, H.; Schulz, M.; Shabunov, A.; Smirnov, P.; Sombrowski, E.; Sorokin, A.; Sparr, B.; Spengler, J.; Staack, M.; Stadler, M.; Stechmann, C.; Steffen, B.; Stojanovic, N.; Sychev, V.; Syresin, E.; Tanikawa, T.; Tavella, F.; Tesch, N.; Tiedtke, K.; Tischer, M.; Treusch, R.; Tripathi, S.; Vagin, P.; Vetrov, P.; Vilcins, S.; Vogt, M.; de Zubiaurre Wagner, A.; Wamsat, T.; Weddig, H.; Weichert, G.; Weigelt, H.; Wentowski, N.; Wiebers, C.; Wilksen, T.; Willner, A.; Wittenburg, K.; Wohlenberg, T.; Wortmann, J.; Wurth, W.; Yurkov, M.; Zagorodnov, I.; Zemella, J.
2016-06-01
Extreme-ultraviolet to x-ray free-electron lasers (FELs) in operation for scientific applications are up to now single-user facilities. While most FELs generate around 100 photon pulses per second, FLASH at DESY can deliver almost two orders of magnitude more pulses in this time span due to its superconducting accelerator technology. This makes the facility a prime candidate to realize the next step in FELs—dividing the electron pulse trains into several FEL lines and delivering photon pulses to several users at the same time. Hence, FLASH has been extended with a second undulator line and self-amplified spontaneous emission (SASE) is demonstrated in both FELs simultaneously. FLASH can now deliver MHz pulse trains to two user experiments in parallel with individually selected photon beam characteristics. First results of the capabilities of this extension are shown with emphasis on independent variation of wavelength, repetition rate, and photon pulse length.
Lei, Yu; Zhang, Xianyun; Xu, Dingding; Yu, Minfeng; Yi, Zhiran; Li, Zhixiang; Sun, Aihua; Xu, Gaojie; Cui, Ping; Guo, Jianjun
2018-05-03
Micro- and nanopatterning of cost-effective addressable metallic nanostructures has been a long endeavor in terms of both scientific understanding and industrial needs. Herein, a simple and efficient dynamic meniscus-confined electrodeposition (MCED) technique for precisely positioned copper line micropatterns with superior electrical conductivity (greater than 1.57 × 10 4 S/cm) on glass, silicon, and gold substrates is reported. An unexpected higher printing speed in the evaporative regime is realized for precisely positioned copper lines patterns with uniform width and height under horizontal scanning-mode. The final line height and width depend on the typical behavior of traditional flow coating process, while the surface morphologies and roughness are mainly governed by evaporation-driven electrocrystallization dynamics near the receding moving contact line. Integrated 3D structures and a rapid prototyping of 3D hot-wire anemometer are further demonstrated, which is very important for the freedom integration applications in advanced conceptual devices, such as miniaturized electronics and biomedical sensors and actuators.
ERIC Educational Resources Information Center
Peters, Brenda J.; Blair, Amy C.
2013-01-01
Many biology educators at the undergraduate level are revamping their laboratory curricula to incorporate inquiry-based research experiences so that students can directly participate in the process of science and improve their scientific reasoning skills. Slugs are an ideal organism for use in such a student-directed, hypothesis-driven experience.…
NASA Astrophysics Data System (ADS)
Ping, Y. L.; Zhong, J. Y.; Wang, X. G.; Sheng, Z. M.; Zhao, G.
2017-11-01
Pickup ring of energetic electrons found in relativistic magnetic reconnection (MR) driven by two relativistic intense femtosecond laser pulses is investigated by particle simulation in 3D geometry. Magnetic reconnection processes and configurations are characterized by plasma current density distributions at different axial positions. Two helical structures associated with the circular polarization of laser pulses break down in the reconnection processes to form a current sheet between them, where energetic electrons are found to pile up and the outflow relativistic electron jets are observed. In the field line diffusion region, electrons are accelerated to multi-MeV with a flatter power-law spectrum due to MR. The development of the pickup ring of energetic electrons is strongly dependent upon laser peak intensities.
Enhanced electron yield from laser-driven wakefield acceleration in high-Z gas jets.
Mirzaie, Mohammad; Hafz, Nasr A M; Li, Song; Liu, Feng; He, Fei; Cheng, Ya; Zhang, Jie
2015-10-01
An investigation of the electron beam yield (charge) form helium, nitrogen, and neon gas jet plasmas in a typical laser-plasma wakefield acceleration experiment is carried out. The charge measurement is made by imaging the electron beam intensity profile on a fluorescent screen into a charge coupled device which was cross-calibrated with an integrated current transformer. The dependence of electron beam charge on the laser and plasma conditions for the aforementioned gases are studied. We found that laser-driven wakefield acceleration in low Z-gas jet targets usually generates high-quality and well-collimated electron beams with modest yields at the level of 10-100 pC. On the other hand, filamentary electron beams which are observed from high-Z gases at higher densities reached much higher yields. Evidences for cluster formation were clearly observed in the nitrogen gas jet target, where we received the highest electron beam charge of ∼1.7 nC. Those intense electron beams will be beneficial for the applications on the generation of bright X-rays, gamma rays radiations, and energetic positrons via the bremsstrahlung or inverse-scattering processes.
Ultrafast dynamics during the photoinduced phase transition in VO2
NASA Astrophysics Data System (ADS)
Wegkamp, Daniel; Stähler, Julia
2015-12-01
The phase transition of VO2 from a monoclinic insulator to a rutile metal, which occurs thermally at TC = 340 K, can also be driven by strong photoexcitation. The ultrafast dynamics during this photoinduced phase transition (PIPT) have attracted great scientific attention for decades, as this approach promises to answer the question of whether the insulator-to-metal (IMT) transition is caused by electronic or crystallographic processes through disentanglement of the different contributions in the time domain. We review our recent results achieved by femtosecond time-resolved photoelectron, optical, and coherent phonon spectroscopy and discuss them within the framework of a selection of latest, complementary studies of the ultrafast PIPT in VO2. We show that the population change of electrons and holes caused by photoexcitation launches a highly non-equilibrium plasma phase characterized by enhanced screening due to quasi-free carriers and followed by two branches of non-equilibrium dynamics: (i) an instantaneous (within the time resolution) collapse of the insulating gap that precedes charge carrier relaxation and significant ionic motion and (ii) an instantaneous lattice potential symmetry change that represents the onset of the crystallographic phase transition through ionic motion on longer timescales. We discuss the interconnection between these two non-thermal pathways with particular focus on the meaning of the critical fluence of the PIPT in different types of experiments. Based on this, we conclude that the PIPT threshold identified in optical experiments is most probably determined by the excitation density required to drive the lattice potential change rather than the IMT. These considerations suggest that the IMT can be driven by weaker excitation, predicting a transiently metallic, monoclinic state of VO2 that is not stabilized by the non-thermal structural transition and, thus, decays on ultrafast timescales.
High Performance Visualization using Query-Driven Visualizationand Analytics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bethel, E. Wes; Campbell, Scott; Dart, Eli
2006-06-15
Query-driven visualization and analytics is a unique approach for high-performance visualization that offers new capabilities for knowledge discovery and hypothesis testing. The new capabilities akin to finding needles in haystacks are the result of combining technologies from the fields of scientific visualization and scientific data management. This approach is crucial for rapid data analysis and visualization in the petascale regime. This article describes how query-driven visualization is applied to a hero-sized network traffic analysis problem.
Biomimetic catalytic system driven by electron transfer for selective oxygenation of hydrocarbon.
Yang, Guanyu; Ma, Yinfa; Xu, Jie
2004-09-01
Hydrocarbon oxyfunctionalization is a crucial industrial process. Most metallic catalysts require higher temperatures and often show lower selectivities. One of the intellectual approaches is the mimicry for bio-oxidation. We have established a biomimetic system with a nonmetallic redox center, composed of anthraquinones, N-hydroxyphthalimide, and zeolite HY, for selective hydrocarbon oxygenation by molecular oxygen. Selectivity of 95.8% for acetophenone and 66.2% conversion were accomplished for oxygenation of ethylbenzene at temperatures as low as 80 degrees C. The redox cycle, driven by one-electron transfer and product orientation by Zeolite HY, opens up the possibility of mimicking bio-oxidation under mild conditions.
Waller, P; Cassell, J A; Saunders, M H; Stevens, R
2017-03-01
In order to promote understanding of UK governance and assurance relating to electronic health records research, we present and discuss the role of the Independent Scientific Advisory Committee (ISAC) for MHRA database research in evaluating protocols proposing the use of the Clinical Practice Research Datalink. We describe the development of the Committee's activities between 2006 and 2015, alongside growth in data linkage and wider national electronic health records programmes, including the application and assessment processes, and our approach to undertaking this work. Our model can provide independence, challenge and support to data providers such as the Clinical Practice Research Datalink database which has been used for well over 1,000 medical research projects. ISAC's role in scientific oversight ensures feasible and scientifically acceptable plans are in place, while having both lay and professional membership addresses governance issues in order to protect the integrity of the database and ensure that public confidence is maintained.
Enhanced electron/fuel-ion equilibration through impurity ions: Studies applicable to NIF and Omega
NASA Astrophysics Data System (ADS)
Petrasso, R. D.; Sio, H.; Kabadi, N.; Lahmann, B.; Simpson, R.; Parker, C.; Frenje, J.; Gatu Johnson, M.; Li, C. K.; Seguin, F. H.; Rinderknecht, H.; Casey, D.; Grabowski, P.; Graziani, F.; Taitano, W.; Le, A.; Chacon, L.; Hoffman, N.; Kagan, G.; Simakov, A.; Zylstra, A.; Rosenberg, M.; Betti, R.; Srinivasan, B.; Mancini, R.
2017-10-01
In shock-driven exploding-pushers, a platform used extensively to study multi-species and kinetic effects, electrons and fuel ions are far out of equilibrium, as reflected by very different temperatures. However, impurity ions, even in small quantities, can couple effectively to the electrons, because of a Z2 dependence, and in turn, impurity ions can then strongly couple to the fuel ions. Through this mechanism, electrons and fuel-ions can equilibrate much faster than they otherwise would. This is a quantitative issue, depending upon the amount and Z of the impurity. For NIF and Omega, we consider the role of this process. Coupled non-linear equations, reflecting the temperatures of the three species, are solved for a range of conditions. Consideration is also given to ablatively driven implosions, since impurities can similarly affect the equilibration. This work was supported in part by DOE/NNSA DE-NA0002949 and DE-NA0002726.
NASA Astrophysics Data System (ADS)
Labate, Luca; Andreassi, Maria Grazia; Baffigi, Federica; Basta, Giuseppina; Bizzarri, Ranieri; Borghini, Andrea; Candiano, Giuliana C.; Casarino, Carlo; Cresci, Monica; Di Martino, Fabio; Fulgentini, Lorenzo; Ghetti, Francesco; Gilardi, Maria Carla; Giulietti, Antonio; Köster, Petra; Lenci, Francesco; Levato, Tadzio; Oishi, Yuji; Russo, Giorgio; Sgarbossa, Antonella; Traino, Claudio; Gizzi, Leonida A.
2013-05-01
Laser-driven electron accelerators based on the Laser Wakefield Acceleration process has entered a mature phase to be considered as alternative devices to conventional radiofrequency linear accelerators used in medical applications. Before entering the medical practice, however, deep studies of the radiobiological effects of such short bunches as the ones produced by laser-driven accelerators have to be performed. Here we report on the setup, characterization and first test of a small-scale laser accelerator for radiobiology experiments. A brief description of the experimental setup will be given at first, followed by an overview of the electron bunch characterization, in particular in terms of dose delivered to the samples. Finally, the first results from the irradiation of biological samples will be briefly discussed.
Auspice: Automatic Service Planning in Cloud/Grid Environments
NASA Astrophysics Data System (ADS)
Chiu, David; Agrawal, Gagan
Recent scientific advances have fostered a mounting number of services and data sets available for utilization. These resources, though scattered across disparate locations, are often loosely coupled both semantically and operationally. This loosely coupled relationship implies the possibility of linking together operations and data sets to answer queries. This task, generally known as automatic service composition, therefore abstracts the process of complex scientific workflow planning from the user. We have been exploring a metadata-driven approach toward automatic service workflow composition, among other enabling mechanisms, in our system, Auspice: Automatic Service Planning in Cloud/Grid Environments. In this paper, we present a complete overview of our system's unique features and outlooks for future deployment as the Cloud computing paradigm becomes increasingly eminent in enabling scientific computing.
ERIC Educational Resources Information Center
Campbell, Neil A.
1984-01-01
Focusing on F. W. Lancaster's prediction that paperless communication systems are inevitable for science and technology, this article presents an analysis of role of editorial processing centers (EPC) in the development of electronic journals. The traditional scientific journal, the EPC, and the EPC and electronic journal are discussed. (60…
NASA Astrophysics Data System (ADS)
Mahootian, F.
2009-12-01
The rapid convergence of advancing sensor technology, computational power, and knowledge discovery techniques over the past decade has brought unprecedented volumes of astronomical data together with unprecedented capabilities of data assimilation and analysis. A key result is that a new, data-driven "observational-inductive'' framework for scientific inquiry is taking shape and proving viable. The anticipated rise in data flow and processing power will have profound effects, e.g., confirmations and disconfirmations of existing theoretical claims both for and against the big bang model. But beyond enabling new discoveries can new data-driven frameworks of scientific inquiry reshape the epistemic ideals of science? The history of physics offers a comparison. The Bohr-Einstein debate over the "completeness'' of quantum mechanics centered on a question of ideals: what counts as science? We briefly examine lessons from that episode and pose questions about their applicability to cosmology. If the history of 20th century physics is any indication, the abandonment of absolutes (e.g., space, time, simultaneity, continuity, determinacy) can produce fundamental changes in understanding. The classical ideal of science, operative in both physics and cosmology, descends from the European Enlightenment. This ideal has for over 200 years guided science to seek the ultimate order of nature, to pursue the absolute theory, the "theory of everything.'' But now that we have new models of scientific inquiry powered by new technologies and driven more by data than by theory, it is time, finally, to relinquish dreams of a "final'' theory.
A multi-physics study of Li-ion battery material Li1+xTi2O4
NASA Astrophysics Data System (ADS)
Jiang, Tonghu; Falk, Michael; Siva Shankar Rudraraju, Krishna; Garikipati, Krishna; van der Ven, Anton
2013-03-01
Recently, lithium ion batteries have been subject to intense scientific study due to growing demand arising from their utilization in portable electronics, electric vehicles and other applications. Most cathode materials in lithium ion batteries involve a two-phase process during charging and discharging, and the rate of these processes is typically limited by the slow interface mobility. We have undertaken modeling regarding how lithium diffusion in the interface region affects the motion of the phase boundary. We have developed a multi-physics computational method suitable for predicting time evolution of the driven interface. In this method, we calculate formation energies and migration energy barriers by ab initio methods, which are then approximated by cluster expansions. Monte Carlo calculation is further employed to obtain thermodynamic and kinetic information, e.g., anisotropic interfacial energies, and mobilities, which are used to parameterize continuum modeling of the charging and discharging processes. We test this methodology on spinel Li1+xTi2O4. Elastic effects are incorporated into the calculations to determine the effect of variations in modulus and strain on stress concentrations and failure modes within the material. We acknowledge support by the National Science Foundation Cyber Discovery and Innovation Program under Award No. 1027765.
Visualizing time-related data in biology, a review
Secrier, Maria; Schneider, Reinhard
2014-01-01
Time is of the essence in biology as in so much else. For example, monitoring disease progression or the timing of developmental defects is important for the processes of drug discovery and therapy trials. Furthermore, an understanding of the basic dynamics of biological phenomena that are often strictly time regulated (e.g. circadian rhythms) is needed to make accurate inferences about the evolution of biological processes. Recent advances in technologies have enabled us to measure timing effects more accurately and in more detail. This has driven related advances in visualization and analysis tools that try to effectively exploit this data. Beyond timeline plots, notable attempts at more involved temporal interpretation have been made in recent years, but awareness of the available resources is still limited within the scientific community. Here, we review some advances in biological visualization of time-driven processes and consider how they aid data analysis and interpretation. PMID:23585583
Terahertz-driven linear electron acceleration
Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.
2015-01-01
The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeV m−1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams. PMID:26439410
Terahertz-driven linear electron acceleration
Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; ...
2015-10-06
The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm -1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/protonmore » accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.« less
Hall, Jennifer L; Ryan, John J; Bray, Bruce E; Brown, Candice; Lanfear, David; Newby, L Kristin; Relling, Mary V; Risch, Neil J; Roden, Dan M; Shaw, Stanley Y; Tcheng, James E; Tenenbaum, Jessica; Wang, Thomas N; Weintraub, William S
2016-04-01
The process of scientific discovery is rapidly evolving. The funding climate has influenced a favorable shift in scientific discovery toward the use of existing resources such as the electronic health record. The electronic health record enables long-term outlooks on human health and disease, in conjunction with multidimensional phenotypes that include laboratory data, images, vital signs, and other clinical information. Initial work has confirmed the utility of the electronic health record for understanding mechanisms and patterns of variability in disease susceptibility, disease evolution, and drug responses. The addition of biobanks and genomic data to the information contained in the electronic health record has been demonstrated. The purpose of this statement is to discuss the current challenges in and the potential for merging electronic health record data and genomics for cardiovascular research. © 2016 American Heart Association, Inc.
NASA Astrophysics Data System (ADS)
Regel-Rosocka, Magdalena
2018-03-01
E-waste amount is growing at about 4% annually, and has become the fastest growing waste stream in the industrialized world. Over 50 million tons of e-waste are produced globally each year, and some of them end up in landfills causing danger of toxic chemicals leakage over time. E-waste is also sent to developing countries where informal processing of waste electrical and electronic equipment (WEEE) causes serious health and pollution problems. A huge interest in recovery of valuable metals from WEEE is clearly visible in a great number of scientific, popular scientific publications or government and industrial reports.
ERIC Educational Resources Information Center
C¸etin, Pinar Seda; Eymur, Gülüzar
2017-01-01
In this study, we employed a new instructional model that helps students develop scientific writing and presentation skills. Argument-driven inquiry (ADI) is one of the most novel instructional models that emphasizes the role of argumentation and inquiry in science education equally. This is an exploratory study where five ADI lab activities take…
Hatch latch mechanism for Spacelab scientific airlock
NASA Technical Reports Server (NTRS)
Terhaar, G. R.
1979-01-01
The requirements, design tradeoff, design, and performance of the Spacelab scientific airlock hatch latching mechanisms are described. At space side the hatch is closed and held against internal airlock/module pressure by 12 tangential overcenter hooks driven by a driver. At module side the hatch is held by 4 hooks driven by rollers running on a cammed driver.
Nanoantioxidant-driven plasmon enhanced proton-coupled electron transfer
NASA Astrophysics Data System (ADS)
Sotiriou, Georgios A.; Blattmann, Christoph O.; Deligiannakis, Yiannis
2015-12-01
Proton-coupled electron transfer (PCET) reactions involve the transfer of a proton and an electron and play an important role in a number of chemical and biological processes. Here, we describe a novel phenomenon, plasmon-enhanced PCET, which is manifested using SiO2-coated Ag nanoparticles functionalized with gallic acid (GA), a natural antioxidant molecule that can perform PCET. These GA-functionalized nanoparticles show enhanced plasmonic response at near-IR wavelengths, due to particle agglomeration caused by the GA molecules. Near-IR laser irradiation induces strong local hot-spots on the SiO2-coated Ag nanoparticles, as evidenced by surface enhanced Raman scattering (SERS). This leads to plasmon energy transfer to the grafted GA molecules that lowers the GA-OH bond dissociation enthalpy by at least 2 kcal mol-1 and therefore facilitates PCET. The nanoparticle-driven plasmon-enhancement of PCET brings together the so far unrelated research domains of nanoplasmonics and electron/proton translocation with significant impact on applications based on interfacial electron/proton transfer.Proton-coupled electron transfer (PCET) reactions involve the transfer of a proton and an electron and play an important role in a number of chemical and biological processes. Here, we describe a novel phenomenon, plasmon-enhanced PCET, which is manifested using SiO2-coated Ag nanoparticles functionalized with gallic acid (GA), a natural antioxidant molecule that can perform PCET. These GA-functionalized nanoparticles show enhanced plasmonic response at near-IR wavelengths, due to particle agglomeration caused by the GA molecules. Near-IR laser irradiation induces strong local hot-spots on the SiO2-coated Ag nanoparticles, as evidenced by surface enhanced Raman scattering (SERS). This leads to plasmon energy transfer to the grafted GA molecules that lowers the GA-OH bond dissociation enthalpy by at least 2 kcal mol-1 and therefore facilitates PCET. The nanoparticle-driven plasmon-enhancement of PCET brings together the so far unrelated research domains of nanoplasmonics and electron/proton translocation with significant impact on applications based on interfacial electron/proton transfer. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04942c
2017-12-01
Chung, Stephen Kelley, Kimberley Olver, Blair C. Connelly, Anand V. Sampath, and Meredith L. Reed Sensors and Electron Devices Directorate, ARL...nitride [GaN], indium nitride, and corresponding ternary alloys) provide a basis for a variety of electronic and photonic devices across several...and driven by an electron beam irradiation, which leads to high carrier densities. This necessitates the transfer/removal of the GaN substrate (or GaN
NASA Astrophysics Data System (ADS)
Davis, Daly; Sajeev, Y.
2017-02-01
Molecular modification induced through the resonant attachment of a low energy electron (LEE) is a novel approach for molecular engineering. In this communication, we explore the possibility to use the LEE as a quantum tool for the in situ preparation of short lived molecules. Using ab initio quantum chemical methods, this possibility is best illustrated for the in situ preparation of the intrinsically short-lived carbon-carbon covalent dimer of CO from a glyoxal molecule. The chemical conversion of glyoxal to the covalent dimer of CO is initiated and driven by the resonant capture of a near 11 eV electron by the glyoxal molecule. The resulting two-particle one-hole (2p-1h) negative ion resonant state (NIRS) of the glyoxal molecule undergoes a barrierless radical dehydrogenation reaction and produces the covalent dimer of CO. The autoionization electron spectra from the 2p-1h NIRS at the dissociation limit of the dehydrogenation reaction provides access to the electronic states of the CO dimer. The overall process is an example of a catalytic electron reaction channel.
Electron beam deflection control system of a welding and surface modification installation
NASA Astrophysics Data System (ADS)
Koleva, E.; Dzharov, V.; Gerasimov, V.; Tsvetkov, K.; Mladenov, G.
2018-03-01
In the present work, we examined the patterns of the electron beam motion when controlling the transverse with respect to the axis of the beam homogeneous magnetic field created by the coils of the deflection system the electron gun. During electron beam processes, the beam motion is determined the process type (welding, surface modification, etc.), the technological mode, the design dimensions of the electron gun and the shape of the processed samples. The electron beam motion is defined by the cumulative action of two cosine-like control signals generated by a functional generator. The signal control is related to changing the amplitudes, frequencies and phases (phase differences) of the generated voltages. We realized the motion control by applying a graphical user interface developed by us and an Arduino Uno programmable microcontroller. The signals generated were calibrated using experimental data from the available functional generator. The free and precise motion on arbitrary trajectories determines the possible applications of an electron beam process to carrying out various scientific research tasks in material processing.
The six critical attributes of the next generation of quality management software systems.
Clark, Kathleen
2011-07-01
Driven by both the need to meet regulatory requirements and a genuine desire to drive improved quality, quality management systems encompassing standard operating procedure, corrective and preventative actions and related processes have existed for many years, both in paper and electronic form. The impact of quality management systems on 'actual' quality, however, is often reported as far less than desired. A quality management software system that moves beyond formal forms-driven processes to include a true closed loop design, manage disparate processes across the enterprise, provide support for collaborative processes and deliver insight into the overall state of control has the potential to close the gap between simply accomplishing regulatory compliance and delivering measurable improvements in quality and efficiency.
Observation of correlated electronic decay in expanding clusters triggered by near-infrared fields
Schütte, B.; Arbeiter, M.; Fennel, T.; Jabbari, G.; Kuleff, A.I.; Vrakking, M.J.J.; Rouzée, A.
2015-01-01
When an excited atom is embedded into an environment, novel relaxation pathways can emerge that are absent for isolated atoms. A well-known example is interatomic Coulombic decay, where an excited atom relaxes by transferring its excess energy to another atom in the environment, leading to its ionization. Such processes have been observed in clusters ionized by extreme-ultraviolet and X-ray lasers. Here, we report on a correlated electronic decay process that occurs following nanoplasma formation and Rydberg atom generation in the ionization of clusters by intense, non-resonant infrared laser fields. Relaxation of the Rydberg states and transfer of the available electronic energy to adjacent electrons in Rydberg states or quasifree electrons in the expanding nanoplasma leaves a distinct signature in the electron kinetic energy spectrum. These so far unobserved electron-correlation-driven energy transfer processes may play a significant role in the response of any nano-scale system to intense laser light. PMID:26469997
Light-induced electronic non-equilibrium in plasmonic particles.
Kornbluth, Mordechai; Nitzan, Abraham; Seideman, Tamar
2013-05-07
We consider the transient non-equilibrium electronic distribution that is created in a metal nanoparticle upon plasmon excitation. Following light absorption, the created plasmons decohere within a few femtoseconds, producing uncorrelated electron-hole pairs. The corresponding non-thermal electronic distribution evolves in response to the photo-exciting pulse and to subsequent relaxation processes. First, on the femtosecond timescale, the electronic subsystem relaxes to a Fermi-Dirac distribution characterized by an electronic temperature. Next, within picoseconds, thermalization with the underlying lattice phonons leads to a hot particle in internal equilibrium that subsequently equilibrates with the environment. Here we focus on the early stage of this multistep relaxation process, and on the properties of the ensuing non-equilibrium electronic distribution. We consider the form of this distribution as derived from the balance between the optical absorption and the subsequent relaxation processes, and discuss its implication for (a) heating of illuminated plasmonic particles, (b) the possibility to optically induce current in junctions, and (c) the prospect for experimental observation of such light-driven transport phenomena.
UCSB FEL user-mode adaption project. Final report, 1 Jan 86-31 Dec 90
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaccarino, V.
1992-04-14
This research sponsored by the SDIO Biomedical and Materials Sciences FEL Program held the following objectives. Provide a facility in which in-house and outside user research in the materials and biological sciences can be carried out in the Far Infrared using-the unique properties of the UCSB electrostatic accelerator-driven FEL. Develop and implement new FEL concepts and FIR technology and encourage the transfer and application of this research. Train graduate students, post doctoral researchers and technical personnel in varied aspects of scientific user disciplines, FEL science and FIR technology in a cooperative, interdisciplinary environment. In summary, a free electron laser facilitymore » has been developed which is operational from 200 GH z, (6.6 cm -1), to 4.8 THz, (160 cm-1) tunable under computer control and able to deliver kilowatts of millimeter wave and far-infrared power. This facility has a well equipped user lab that has been used to perform ground breaking experiments in scientific areas as diverse as bio-physics. Nine graduate students and post doctoral researchers have been trained in the operation, use and application of these free-electron lasers.« less
NASA Astrophysics Data System (ADS)
Pinheiro da Silva, P.; CyberShARE Center of Excellence
2011-12-01
Scientists today face the challenge of rethinking the manner in which they document and make available their processes and data in an international cyber-infrastructure of shared resources. Some relevant examples of new scientific practices in the realm of computational and data extraction sciences include: large scale data discovery; data integration; data sharing across distinct scientific domains, systematic management of trust and uncertainty; and comprehensive support for explaining processes and results. This talk introduces CI-Miner - an innovative hands-on, open-source, community-driven methodology to integrate these new scientific practices. It has been developed in collaboration with scientists, with the purpose of capturing, storing and retrieving knowledge about scientific processes and their products, thereby further supporting a new generation of science techniques based on data exploration. CI-Miner uses semantic annotations in the form of W3C Ontology Web Language-based ontologies and Proof Markup Language (PML)-based provenance to represent knowledge. This methodology specializes in general-purpose ontologies, projected into workflow-driven ontologies(WDOs) and into semantic abstract workflows (SAWs). Provenance in PML is CI-Miner's integrative component, which allows scientists to retrieve and reason with the knowledge represented in these new semantic documents. It serves additionally as a platform to share such collected knowledge with the scientific community participating in the international cyber-infrastructure. The integrated semantic documents that are tailored for the use of human epistemic agents may also be utilized by machine epistemic agents, since the documents are based on W3C Resource Description Framework (RDF) notation. This talk is grounded upon interdisciplinary lessons learned through the use of CI-Miner in support of government-funded national and international cyber-infrastructure initiatives in the areas of geo-sciences (NSF-GEON and NSF-EarthScope), environmental sciences (CEON, NSF NEON, NSF-LTER and DOE-Ameri-Flux), and solar physics (VSTO and NSF-SPCDIS). The discussion on provenance is based on the use of PML in support of projects in collaboration with government organizations (DARPA, ARDA, NSF, DHS and DOE), research organizations (NCAR and PNNL), and industries (IBM and SRI International).
[Systemic therapies--a contribution to psychotherapy integration].
Schiepek, Günter
2012-06-01
Some converging lines from neuroscience, neurobiological psychotherapy research, process-outcome-research, internet-based change monitoring and the systems and complexity sciences actually allow for an open and generic definition of systemic therapies. The "family" of systemic therapies as designed here is not restricted to the field of psychotherapy. It is a scientifically founded and engaged, bio-psycho-social multi-level approach to a common or integrative psychotherapy, not restricted to a psychotherapeutic confession or exclusively to family or couples therapy. A core element of systemic therapy is the support of self-organizing processes and the use of data-driven feedback tools. The conclusion goes to a modified concept of evidence-based practice and, vice versa, practice-based evidence, to an integration of the medical model and the common factors model into a self-organization theory of human change processes, and to a list of criteria for scientifically based practice in psychotherapy. © Georg Thieme Verlag KG Stuttgart · New York.
ERIC Educational Resources Information Center
Grooms, Jonathon; Enderle, Patrick; Sampson, Victor
2015-01-01
Scientific argumentation is an essential activity for the development and refinement of scientific knowledge. Additionally, fostering argumentation related to scientific concepts can help students engage in a variety of essential scientific practices and enhance their science content knowledge. With the increasing prevalence and emphasis on…
Overview of Alternative Bunching and Current-shaping Techniques for Low-Energy Electron Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piot, Philippe
2015-12-01
Techniques to bunch or shape an electron beam at low energies (E <15 MeV) have important implications toward the realization of table-top radiation sources [1] or to the design of compact multi-user free-electron lasers[2]. This paper provides an overview of alternative methods recently developed including techniques such as wakefield-based bunching, space-charge-driven microbunching via wave-breaking [3], ab-initio shaping of the electron-emission process [4], and phase space exchangers. Practical applications of some of these methods to foreseen free-electron-laser configurations are also briefly discussed [5].
NASA Astrophysics Data System (ADS)
Worssam, J. B.
2017-12-01
Field research finally within classroom walls, data driven, hands on with students using a series of electronic projects to show evidence of scientific mentor collaboration. You do not want to miss this session in which I will be sharing the steps to develop an interactive mentor program between scientists in the field and students in the classroom. Using next generation science standards and common core language skills you will be able to blend scientific exploration with scientific writing and communication skills. Learn how to make connections in your own community with STEM businesses, agencies and organizations. Learn how to connect with scientists across the globe to make your classroom instruction interactive and live for all students. Scientists, you too will want to participate, see how you can reach out and be a part of the K-12 educational system with students learning about YOUR science, a great component for NSF grants! "Scientists in the Classroom," a model program for all, bringing real time science, data and knowledge into the classroom.
The Virtual Observatory as Critical Scientific Cyber Infrastructure.
NASA Astrophysics Data System (ADS)
Fox, P.
2006-12-01
Virtual Observatories can provide access to vast stores of scientific data: observations and models as well as services to analyze, visualize and assimilate multiple data sources. As these electronic resource become widely used, there is potential to improve the efficiency, interoperability, collaborative potential, and impact of a wide range of interdisciplinary scientific research. In addition, we know that as the diversity of collaborative science and volume of accompanying data and data generators/consumers grows so do the challenges. In order for Virtual Observatories to realize their potential and become indispensible infrastructure, social, political and technical challenges need to be addressed concerning (at least) roles and responsibilities, data and services policies, representations and interoperability of services, data search, access, and usability. In this presentation, we discuss several concepts and instances of the Virtual Observatory and related projects that may, and may not, be meeting the abovementioned challanges. We also argue that science driven needs and architecture development are critical in the development of sustainable (and thus agile) cyberinfrastructure. Finally we some present or emerging candidate technologies and organizational constructs that will need to be pursued.
Advances in positron and electron scattering*
NASA Astrophysics Data System (ADS)
Limão-Vieira, Paulo; García, Gustavo; Krishnakumar, E.; Petrović, Zoran; Sullivan, James; Tanuma, Hajime
2016-10-01
The topical issue on Advances in Positron and Electron Scattering" combines contributions from POSMOL 2015 together with others devoted to celebrate the unprecedented scientific careers of our loyal colleagues and trusted friends Steve Buckman (Australian National University, Australia) and Michael Allan (University of Fribourg, Switzerland) on the occasion of their retirements. POSMOL 2015, the XVIII International Workshop on Low-Energy Positron and Positronium Physics and the XIX International Symposium on Electron-Molecule Collisions and Swarms, was held at Universidade NOVA de Lisboa, Lisboa, Portugal, from 17-20 July 2015. The international workshop and symposium allowed to achieve a very privileged forum of sharing and developing our scientific expertise on current aspects of positron, positronium and antiproton interactions with electrons, atoms, molecules and solid surfaces, and related topics, as well as electron interactions with molecules in both gaseous and condensed phases. Particular topics include studies of electron interactions with biomolecules, electron induced surface chemistry and the study of plasma processes. Recent developments in the study of swarms are also fully addressed.
Tunable mega-ampere electron current propagation in solids by dynamic control of lattice melt
MacLellan, D. A.; Carroll, D. C.; Gray, R. J.; ...
2014-10-31
The influence of lattice-melt-induced resistivity gradients on the transport of mega-ampere currents of fast electrons in solids is investigated numerically and experimentally using laser-accelerated protons to induce isochoric heating. Tailoring the heating profile enables the resistive magnetic fields which strongly influence the current propagation to be manipulated. This tunable laser-driven process enables important fast electron beam properties, including the beam divergence, profile, and symmetry to be actively tailored, and without recourse to complex target manufacture.
Surface plasmon-enhanced photovoltaic device
Kostecki, Robert; Mao, Samuel
2014-10-07
Photovoltaic devices are driven by intense photoemission of "hot" electrons from a suitable nanostructured metal. The metal should be an electron source with surface plasmon resonance within the visible and near-visible spectrum range (near IR to near UV (about 300 to 1000 nm)). Suitable metals include silver, gold, copper and alloys of silver, gold and copper with each other. Silver is particularly preferred for its advantageous opto-electronic properties in the near UV and visible spectrum range, relatively low cost, and simplicity of processing.
Science-Driven Computing: NERSC's Plan for 2006-2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, Horst D.; Kramer, William T.C.; Bailey, David H.
NERSC has developed a five-year strategic plan focusing on three components: Science-Driven Systems, Science-Driven Services, and Science-Driven Analytics. (1) Science-Driven Systems: Balanced introduction of the best new technologies for complete computational systems--computing, storage, networking, visualization and analysis--coupled with the activities necessary to engage vendors in addressing the DOE computational science requirements in their future roadmaps. (2) Science-Driven Services: The entire range of support activities, from high-quality operations and user services to direct scientific support, that enable a broad range of scientists to effectively use NERSC systems in their research. NERSC will concentrate on resources needed to realize the promise ofmore » the new highly scalable architectures for scientific discovery in multidisciplinary computational science projects. (3) Science-Driven Analytics: The architectural and systems enhancements and services required to integrate NERSC's powerful computational and storage resources to provide scientists with new tools to effectively manipulate, visualize, and analyze the huge data sets derived from simulations and experiments.« less
Simultaneous operation of two soft x-ray free-electron lasers driven by one linear accelerator
Faatz, B.; Plönjes, E.; Ackermann, S.; ...
2016-06-20
Extreme-ultraviolet to x-ray free-electron lasers (FELs) in operation for scientific applications are up to now single-user facilities. While most FELs generate around 100 photon pulses per second, FLASH at DESY can deliver almost two orders of magnitude more pulses in this time span due to its superconducting accelerator technology. This makes the facility a prime candidate to realize the next step in FELs—dividing the electron pulse trains into several FEL lines and delivering photon pulses to several users at the same time. Hence, FLASH has been extended with a second undulator line and self-amplified spontaneous emission (SASE) is demonstrated inmore » both FELs simultaneously. Here, FLASH can now deliver MHz pulse trains to two user experiments in parallel with individually selected photon beam characteristics. First results of the capabilities of this extension are shown with emphasis on independent variation of wavelength, repetition rate, and photon pulse length.« less
NASA Astrophysics Data System (ADS)
Niu, Simiao; Wang, Xiaofeng; Yi, Fang; Zhou, Yu Sheng; Wang, Zhong Lin
2015-12-01
Human biomechanical energy is characterized by fluctuating amplitudes and variable low frequency, and an effective utilization of such energy cannot be achieved by classical energy-harvesting technologies. Here we report a high-efficient self-charging power system for sustainable operation of mobile electronics exploiting exclusively human biomechanical energy, which consists of a high-output triboelectric nanogenerator, a power management circuit to convert the random a.c. energy to d.c. electricity at 60% efficiency, and an energy storage device. With palm tapping as the only energy source, this power unit provides a continuous d.c. electricity of 1.044 mW (7.34 W m-3) in a regulated and managed manner. This self-charging unit can be universally applied as a standard `infinite-lifetime' power source for continuously driving numerous conventional electronics, such as thermometers, electrocardiograph system, pedometers, wearable watches, scientific calculators and wireless radio-frequency communication system, which indicates the immediate and broad applications in personal sensor systems and internet of things.
Niu, Simiao; Wang, Xiaofeng; Yi, Fang; Zhou, Yu Sheng; Wang, Zhong Lin
2015-12-11
Human biomechanical energy is characterized by fluctuating amplitudes and variable low frequency, and an effective utilization of such energy cannot be achieved by classical energy-harvesting technologies. Here we report a high-efficient self-charging power system for sustainable operation of mobile electronics exploiting exclusively human biomechanical energy, which consists of a high-output triboelectric nanogenerator, a power management circuit to convert the random a.c. energy to d.c. electricity at 60% efficiency, and an energy storage device. With palm tapping as the only energy source, this power unit provides a continuous d.c. electricity of 1.044 mW (7.34 W m(-3)) in a regulated and managed manner. This self-charging unit can be universally applied as a standard 'infinite-lifetime' power source for continuously driving numerous conventional electronics, such as thermometers, electrocardiograph system, pedometers, wearable watches, scientific calculators and wireless radio-frequency communication system, which indicates the immediate and broad applications in personal sensor systems and internet of things.
Target electron ionization in Li2+-Li collisions: A multi-electron perspective
NASA Astrophysics Data System (ADS)
Śpiewanowski, M. D.; Gulyás, L.; Horbatsch, M.; Kirchner, T.
2015-05-01
The recent development of the magneto-optical trap reaction-microscope has opened a new chapter for detailed investigations of charged-particle collisions from alkali atoms. It was shown that energy-differential cross sections for ionization from the outer-shell in O8+-Li collisions at 1500 keV/amu can be readily explained with the single-active-electron approximation. Understanding of K-shell ionization, however, requires incorporating many-electron effects. An ionization-excitation process was found to play an important role. We present a theoretical study of target electron removal in Li2+-Li collisions at 2290 keV/amu. The results indicate that in outer-shell ionization a single-electron process plays the dominant part. However, the K-shell ionization results are more difficult to interpret. On one hand, we find only weak contributions from multi-electron processes. On the other hand, a large discrepancy between experimental and single-particle theoretical results indicate that multi-electron processes involving ionization from the outer shell may be important for a complete understanding of the process. Work supported by NSERC, Canada and the Hungarian Scientific Research Fund.
NASA Astrophysics Data System (ADS)
Emmanouilidou, Agapi
2012-06-01
We present a theoretical quasiclassical treatment of the formation, during Coulomb explosion, of highly excited neutral H atoms for strongly-driven hydrogen molecule. This process, where after the laser field is turned off, one electron escapes to the continuum while the other occupies a Rydberg state, was recently reported in an experimental study in Phys. Rev. Lett 102, 113002 (2009). We find that two-electron effects are important in order to correctly account for all pathways leading to highly excited neutral hydrogen formation [1]. We identify two pathways where the electron that escapes to the continuum does so either very quickly or after remaining bound for a few periods of the laser field. These two pathways of highly excited neutral H formation have distinct traces in the probability distribution of the escaping electron momentum components. [4pt] [1] A. Emmanouilidou, C. Lazarou, A. Staudte and U. Eichmann, Phys. Rev. A (Rapid) 85 011402 (2012).
Image improvement and three-dimensional reconstruction using holographic image processing
NASA Technical Reports Server (NTRS)
Stroke, G. W.; Halioua, M.; Thon, F.; Willasch, D. H.
1977-01-01
Holographic computing principles make possible image improvement and synthesis in many cases of current scientific and engineering interest. Examples are given for the improvement of resolution in electron microscopy and 3-D reconstruction in electron microscopy and X-ray crystallography, following an analysis of optical versus digital computing in such applications.
DOT National Transportation Integrated Search
1997-09-01
The United States Department of Transportations (USDOTs) National ITS Program : Plan describes the national strategy for deploying advanced technologies and services into our : transportation system. To emphasize the need-driven (rather than te...
Technology to Establish a Factory for High QE Alkali Antimonide Photocathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultheiss, Thomas
2015-11-16
Intense electron beams are key to a large number of scientific endeavors, including electron cooling of hadron beams, electron-positron colliders, secondary-particle beams such as photons and positrons, sub-picosecond ultrafast electron diffraction (UED), and new high gradient accelerators that use electron-driven plasmas. The last decade has seen a considerable interest in pursuit and realization of novel light sources such as Free Electron Lasers [1] and Energy Recovery Linacs [2] that promise to deliver unprecedented quality x-ray beams. Many applications for high-intensity electron beams have arisen in recent years in high-energy physics, nuclear physics and energy sciences, such as recent designs formore » an electron-hadron collider at CERN (LHeC) [3], and beam coolers for hadron beams at LHC and eRHIC [4,5]. Photoinjectors are used at the majority of high-brightness electron linacs today, due to their efficiency, timing structure flexibility and ability to produce high power, high brightness beams. The performance of light source machines is strongly related to the brightness of the electron beam used for generating the x-rays. The brightness of the electron beam itself is mainly limited by the physical processes by which electrons are generated. For laser based photoemission sources this limit is ultimately related to the properties of photocathodes [6]. Most facilities are required to expend significant manpower and money to achieve a workable, albeit often non-ideal, compromise photocathode solution. If entirely fabricated in-house, the photocathode growth process itself is laborious and not always reproducible: it involves the human element while requiring close adherence to recipes and extremely strict control of deposition parameters. Lack of growth reliability and as a consequence, slow adoption of viable photoemitter types, can be partly attributed to the absence of any centralized facility or commercial entity to routinely provide high peak current capable, low emittance, visible-light sensitive photocathodes to the myriad of source systems in use and under development. Successful adoption of photocathodes requires strict adherence to proper fabrication, operation, and maintenance methodologies, necessitating specialized knowledge and skills. Key issues include the choice of photoemitter material, development of a more streamlined growth process to minimize human operator uncertainties, accommodation of varying photoemitter substrate materials and geometries, efficient transport and insertion mechanisms preserving the photo-yield, and properly conveyed photoemitter operational and maintenance methodologies. AES, in collaboration with Cornell University in a Phase I STTR, developed an on-demand industrialized growth and centralized delivery system for high-brightness photocathodes focused upon the alkali antimonide photoemitters. To the end user, future photoemitter sourcing will become as simple as other readily available consumables, rather than a research project requiring large investments in time and personnel.« less
An autonomous flying vehicle for Mars exploration
NASA Astrophysics Data System (ADS)
Bouras, Peter; Fox, Tim
1990-09-01
A remotely reprogrammable, autonomous flying craft for surveying and mapping the Martian surface environment is presented. This solar powered, modified flying wing design could cover about 2000 statute miles while maneuvering at Mach 0.3. The craft is configured to fly one km above the surface, measuring atmospheric properties, performing subsurface mapping, mapping the surface topography, and searching for the presence of water and perhaps life. A 35 kg scientific payload, plus communication and control electronics, are placed spanwise inside the flying wing, removing the requirement for a normal fuselage, and reducing structural needs. Thrust is provided by a two-bladed electrically driven propeller motorized by high-efficiency solar cells.
Enhancement of negative hydrogen ion production in an electron cyclotron resonance source
NASA Astrophysics Data System (ADS)
Dugar-Zhabon, V. D.; Murillo, M. T.; Karyaka, V. I.
2013-07-01
In this paper, we present a method for improving the negative hydrogen ion yield in the electron cyclotron resonance source with driven plasma rings where the negative ion production is realized in two stages. First, the hydrogen and deuterium molecules are excited in collisions with plasma electrons to high-laying Rydberg and high vibration levels in the plasma volume. The second stage leads to negative ion production through the process of repulsive attachment of low-energy electrons by the excited molecules. The low-energy electrons originate due to a bombardment of the plasma electrode surface by ions of a driven ring and the thermoelectrons produced by a rare earth ceramic electrode, which is appropriately installed in the source chamber. The experimental and calculation data on the negative hydrogen ion generation rate demonstrate that very low-energy thermoelectrons significantly enhance the negative-ion generation rate that occurs in the layer adjacent to the plasma electrode surface. It is found that heating of the tungsten filaments placed in the source chamber improves the discharge stability and extends the pressure operation range.
Ultrafast electronic dynamics driven by nuclear motion
NASA Astrophysics Data System (ADS)
Vendrell, Oriol
2016-05-01
The transfer of electrical charge on a microscopic scale plays a fundamental role in chemistry, in biology, and in technological applications. In this contribution, we will discuss situations in which nuclear motion plays a central role in driving the electronic dynamics of photo-excited or photo-ionized molecular systems. In particular, we will explore theoretically the ultrafast transfer of a double electron hole between the functional groups of glycine after K-shell ionization and subsequent Auger decay. Although a large energy gap of about 15 eV initially exists between the two electronic states involved and coherent electronic dynamics play no role in the hole transfer, we will illustrate how the double hole can be transferred within 3 to 4 fs between both functional ends of the glycine molecule driven solely by specific nuclear displacements and non-Born-Oppenheimer effects. This finding challenges the common wisdom that nuclear dynamics of the molecular skeleton are unimportant for charge transfer processes at the few-femtosecond time scale and shows that they can even play a prominent role. We thank the Hamburg Centre for Ultrafast Imaging and the Volkswagen Foundation for financial support.
Clinical Note Creation, Binning, and Artificial Intelligence
Deliberato, Rodrigo Octávio; Stone, David J
2017-01-01
The creation of medical notes in software applications poses an intrinsic problem in workflow as the technology inherently intervenes in the processes of collecting and assembling information, as well as the production of a data-driven note that meets both individual and healthcare system requirements. In addition, the note writing applications in currently available electronic health records (EHRs) do not function to support decision making to any substantial degree. We suggest that artificial intelligence (AI) could be utilized to facilitate the workflows of the data collection and assembly processes, as well as to support the development of personalized, yet data-driven assessments and plans. PMID:28778845
Influence of non-collisional laser heating on the electron dynamics in dielectric materials
NASA Astrophysics Data System (ADS)
Barilleau, L.; Duchateau, G.; Chimier, B.; Geoffroy, G.; Tikhonchuk, V.
2016-12-01
The electron dynamics in dielectric materials induced by intense femtosecond laser pulses is theoretically addressed. The laser driven temporal evolution of the energy distribution of electrons in the conduction band is described by a kinetic Boltzmann equation. In addition to the collisional processes for energy transfer such as electron-phonon-photon and electron-electron interactions, a non-collisional process for photon absorption in the conduction band is included. It relies on direct transitions between sub-bands of the conduction band through multiphoton absorption. This mechanism is shown to significantly contribute to the laser heating of conduction electrons for large enough laser intensities. It also increases the time required for the electron distribution to reach the equilibrium state as described by the Fermi-Dirac statistics. Quantitative results are provided for quartz irradiated by a femtosecond laser pulse with a wavelength of 800 nm and for intensities in the range of tens of TW cm-2, lower than the ablation threshold. The change in the energy deposition induced by this non-collisional heating process is expected to have a significant influence on the laser processing of dielectric materials.
Smart Electronic Laboratory Notebooks for the NIST Research Environment.
Gates, Richard S; McLean, Mark J; Osborn, William A
2015-01-01
Laboratory notebooks have been a staple of scientific research for centuries for organizing and documenting ideas and experiments. Modern laboratories are increasingly reliant on electronic data collection and analysis, so it seems inevitable that the digital revolution should come to the ordinary laboratory notebook. The most important aspect of this transition is to make the shift as comfortable and intuitive as possible, so that the creative process that is the hallmark of scientific investigation and engineering achievement is maintained, and ideally enhanced. The smart electronic laboratory notebooks described in this paper represent a paradigm shift from the old pen and paper style notebooks and provide a host of powerful operational and documentation capabilities in an intuitive format that is available anywhere at any time.
Smart Electronic Laboratory Notebooks for the NIST Research Environment
Gates, Richard S.; McLean, Mark J.; Osborn, William A.
2015-01-01
Laboratory notebooks have been a staple of scientific research for centuries for organizing and documenting ideas and experiments. Modern laboratories are increasingly reliant on electronic data collection and analysis, so it seems inevitable that the digital revolution should come to the ordinary laboratory notebook. The most important aspect of this transition is to make the shift as comfortable and intuitive as possible, so that the creative process that is the hallmark of scientific investigation and engineering achievement is maintained, and ideally enhanced. The smart electronic laboratory notebooks described in this paper represent a paradigm shift from the old pen and paper style notebooks and provide a host of powerful operational and documentation capabilities in an intuitive format that is available anywhere at any time. PMID:26958447
Towards Test Driven Development for Computational Science with pFUnit
NASA Technical Reports Server (NTRS)
Rilee, Michael L.; Clune, Thomas L.
2014-01-01
Developers working in Computational Science & Engineering (CSE)/High Performance Computing (HPC) must contend with constant change due to advances in computing technology and science. Test Driven Development (TDD) is a methodology that mitigates software development risks due to change at the cost of adding comprehensive and continuous testing to the development process. Testing frameworks tailored for CSE/HPC, like pFUnit, can lower the barriers to such testing, yet CSE software faces unique constraints foreign to the broader software engineering community. Effective testing of numerical software requires a comprehensive suite of oracles, i.e., use cases with known answers, as well as robust estimates for the unavoidable numerical errors associated with implementation with finite-precision arithmetic. At first glance these concerns often seem exceedingly challenging or even insurmountable for real-world scientific applications. However, we argue that this common perception is incorrect and driven by (1) a conflation between model validation and software verification and (2) the general tendency in the scientific community to develop relatively coarse-grained, large procedures that compound numerous algorithmic steps.We believe TDD can be applied routinely to numerical software if developers pursue fine-grained implementations that permit testing, neatly side-stepping concerns about needing nontrivial oracles as well as the accumulation of errors. We present an example of a successful, complex legacy CSE/HPC code whose development process shares some aspects with TDD, which we contrast with current and potential capabilities. A mix of our proposed methodology and framework support should enable everyday use of TDD by CSE-expert developers.
Stein, Dan J; Phillips, Katharine A
2013-05-17
The revision of the Diagnostic and Statistical Manual of Mental Disorders (DSM) provides a useful opportunity to revisit debates about the nature of psychiatric classification. An important debate concerns the involvement of mental health consumers in revisions of the classification. One perspective argues that psychiatric classification is a scientific process undertaken by scientific experts and that including consumers in the revision process is merely pandering to political correctness. A contrasting perspective is that psychiatric classification is a process driven by a range of different values and that the involvement of patients and patient advocates would enhance this process. Here we draw on our experiences with input from the public during the deliberations of the Obsessive Compulsive-Spectrum Disorders subworkgroup of DSM-5, to help make the argument that psychiatric classification does require reasoned debate on a range of different facts and values, and that it is appropriate for scientist experts to review their nosological recommendations in the light of rigorous consideration of patient experience and feedback.
Laser-driven relativistic electron dynamics in a cylindrical plasma channel
NASA Astrophysics Data System (ADS)
Geng, Pan-Fei; Lv, Wen-Juan; Li, Xiao-Liang; Tang, Rong-An; Xue, Ju-Kui
2018-03-01
The energy and trajectory of the electron, which is irradiated by a high-power laser pulse in a cylindrical plasma channel with a uniform positive charge and a uniform negative current, have been analyzed in terms of a single-electron model of direct laser acceleration. We find that the energy and trajectory of the electron strongly depend on the positive charge density, the negative current density, and the intensity of the laser pulse. The electron can be accelerated significantly only when the positive charge density, the negative current density, and the intensity of the laser pulse are in suitable ranges due to the dephasing rate between the wave and electron motion. Particularly, when their values satisfy a critical condition, the electron can stay in phase with the laser and gain the largest energy from the laser. With the enhancement of the electron energy, strong modulations of the relativistic factor cause a considerable enhancement of the electron transverse oscillations across the channel, which makes the electron trajectory become essentially three-dimensional, even if it is flat at the early stage of the acceleration. Project supported by the National Natural Science Foundation of China (Grant Nos. 11475027, 11765017, 11764039, 11305132, and 11274255), the Natural Science Foundation of Gansu Province, China (Grant No. 17JR5RA076), and the Scientific Research Project of Gansu Higher Education, China (Grant No. 2016A-005).
Paul, Norbert W
2009-09-01
Since decades, scientific change has been interpreted in the light of paradigm shifts and scientific revolutions. The Kuhnian interpretation of scientific change however is now more and more confronted with non-disciplinary thinking in both, science and studies on science. This paper explores how research in biomedicine and the life sciences can be characterized by different rationalities, sometimes converging, sometimes contradictory, all present at the same time with varying ways of influence, impact, and visibility. In general, the rationality of objects is generated by fitting new objects and findings into a new experimental context. The rationality of hypotheses is a move towards the construction of novel explanatory tools and models. This is often inseparable meshing with the third, the technological rationality, in which a technology-driven, self-supporting and sometimes self-referential refinement of methods and technologies comes along with an extension into other fields. During the second and the third phase, the new and emerging fields tend to expand their explanatory reach not only across disciplinary boundaries but also into the social sphere, creating what has been characterized as "exceptionalism" (e.g. genetic exceptionalism or neuro-exceptionalism). Finally, recent biomedicine and life-sciences reach a level in which experimental work becomes more and more data-driven because the technologically constructed experimental systems generate a plethora of findings (data) which at some point start to blur the original hypotheses. For the rationality of information the materiality of research practices becomes secondary and research objects are more and more getting out of sight. Finally, the credibility of science as a practice becomes more and more dependent on consensus about the applicability and relevance of its results. The rationality of interest (and accountability) has become more and more characteristic for a research process which is no longer primarily determined by the desire for knowledge but by the desire for relevance. This paper explores in which ways object-driven and hypotheses-driven experimental life-sciences transformed into domains of experimental research evolving in a technologically constructed, data-driven environment in which they are subjected to constant morphing due to the forces of different rationalities.
Applications of Ultra-Intense, Short Laser Pulses
NASA Astrophysics Data System (ADS)
Ledingham, Ken W. D.
The high intensity laser production of electron, proton, ion and photon beams is reviewed particularly with respect to the laser-plasma interaction which drives the acceleration process. A number of applications for these intense short pulse beams is discussed e.g. ion therapy, PET isotope production and laser driven transmutation studies. The future for laser driven nuclear physics at the huge new, multi-petawatt proposed laser installation ELI in Bucharest is described. Many people believe this will take European nuclear research to the next level.
Sobolewski, Andrzej L.; Domcke, Wolfgang; Hättig, C.
2005-01-01
The UV spectra of three different conformers of the guanine/cytosine base pair were recorded recently with UV-IR double-resonance techniques in a supersonic jet [Abo-Riziq, A., Grace, L., Nir, E., Kabelac, M., Hobza, P. & de Vries, M. S. (2005) Proc. Natl. Acad. Sci. USA 102, 20–23]. The spectra provide evidence for a very efficient excited-state deactivation mechanism that is specific for the Watson–Crick structure and may be essential for the photostability of DNA. Here we report results of ab initio electronic-structure calculations for the excited electronic states of the three lowest-energy conformers of the guanine/cytosine base pair. The calculations reveal that electron-driven interbase proton-transfer processes play an important role in the photochemistry of these systems. The exceptionally short lifetime of the UV-absorbing states of the Watson–Crick conformer is tentatively explained by the existence of a barrierless reaction path that connects the spectroscopic 1π π * excited state with the electronic ground state via two electronic curve crossings. For the non-Watson–Crick structures, the photochemically reactive state is located at higher energies, resulting in a barrier for proton transfer and, thus, a longer lifetime of the UV-absorbing 1π π * state. The computational results support the conjecture that the photochemistry of hydrogen bonds plays a decisive role for the photostability of the molecular encoding of the genetic information in isolated DNA base pairs. PMID:16330778
Electronic filters, hearing aids and methods
NASA Technical Reports Server (NTRS)
Engebretson, A. Maynard (Inventor)
1995-01-01
An electronic filter for an electroacoustic system. The system has a microphone for generating an electrical output from external sounds and an electrically driven transducer for emitting sound. Some of the sound emitted by the transducer returns to the microphone means to add a feedback contribution to its electrical output. The electronic filter includes a first circuit for electronic processing of the electrical output of the microphone to produce a first signal. An adaptive filter, interconnected with the first circuit, performs electronic processing of the first signal to produce an adaptive output to the first circuit to substantially offset the feedback contribution in the electrical output of the microphone, and the adaptive filter includes means for adapting only in response to polarities of signals supplied to and from the first circuit. Other electronic filters for hearing aids, public address systems and other electroacoustic systems, as well as such systems and methods of operating them are also disclosed.
Electronic filters, hearing aids and methods
NASA Technical Reports Server (NTRS)
Engebretson, A. Maynard (Inventor); O'Connell, Michael P. (Inventor); Zheng, Baohua (Inventor)
1991-01-01
An electronic filter for an electroacoustic system. The system has a microphone for generating an electrical output from external sounds and an electrically driven transducer for emitting sound. Some of the sound emitted by the transducer returns to the microphone means to add a feedback contribution to its electical output. The electronic filter includes a first circuit for electronic processing of the electrical output of the microphone to produce a filtered signal. An adaptive filter, interconnected with the first circuit, performs electronic processing of the filtered signal to produce an adaptive output to the first circuit to substantially offset the feedback contribution in the electrical output of the microphone, and the adaptive filter includes means for adapting only in response to polarities of signals supplied to and from the first circuit. Other electronic filters for hearing aids, public address systems and other electroacoustic systems, as well as such systems, and methods of operating them are also disclosed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nørskov, Jens; Chen, Jingguang; Miranda, Raul
Ammonia (NH 3) is essential to all life on our planet. Until about 100 years ago, NH 3 produced by reduction of dinitrogen (N 2) in air came almost exclusively from bacteria containing the enzyme nitrogenase.. DOE convened a roundtable of experts on February 18, 2016. Participants in the Roundtable discussions concluded that the scientific basis for sustainable processes for ammonia synthesis is currently lacking, and it needs to be enhanced substantially before it can form the foundation for alternative processes. The Roundtable Panel identified an overarching grand challenge and several additional scientific grand challenges and research opportunities: -Discovery ofmore » active, selective, scalable, long-lived catalysts for sustainable ammonia synthesis. -Development of relatively low pressure (<10 atm) and relatively low temperature (<200 C) thermal processes. -Integration of knowledge from nature (enzyme catalysis), molecular/homogeneous and heterogeneous catalysis. -Development of electrochemical and photochemical routes for N 2 reduction based on proton and electron transfer -Development of biochemical routes to N 2 reduction -Development of chemical looping (solar thermochemical) approaches -Identification of descriptors of catalytic activity using a combination of theory and experiments -Characterization of surface adsorbates and catalyst structures (chemical, physical and electronic) under conditions relevant to ammonia synthesis.« less
Search Pathways: Modeling GeoData Search Behavior to Support Usable Application Development
NASA Astrophysics Data System (ADS)
Yarmey, L.; Rosati, A.; Tressel, S.
2014-12-01
Recent technical advances have enabled development of new scientific data discovery systems. Metadata brokering, linked data, and other mechanisms allow users to discover scientific data of interes across growing volumes of heterogeneous content. Matching this complex content with existing discovery technologies, people looking for scientific data are presented with an ever-growing array of features to sort, filter, subset, and scan through search returns to help them find what they are looking for. This paper examines the applicability of available technologies in connecting searchers with the data of interest. What metrics can be used to track success given shifting baselines of content and technology? How well do existing technologies map to steps in user search patterns? Taking a user-driven development approach, the team behind the Arctic Data Explorer interdisciplinary data discovery application invested heavily in usability testing and user search behavior analysis. Building on earlier library community search behavior work, models were developed to better define the diverse set of thought processes and steps users took to find data of interest, here called 'search pathways'. This research builds a deeper understanding of the user community that seeks to reuse scientific data. This approach ensures that development decisions are driven by clearly articulated user needs instead of ad hoc technology trends. Initial results from this research will be presented along with lessons learned for other discovery platform development and future directions for informatics research into search pathways.
NASA Astrophysics Data System (ADS)
Simms, Laura; Engebretson, Mark; Clilverd, Mark; Rodger, Craig; Lessard, Marc; Gjerloev, Jesper; Reeves, Geoffrey
2018-05-01
Relativistic electron flux at geosynchronous orbit depends on enhancement and loss processes driven by ultralow frequency (ULF) Pc5, chorus, and electromagnetic ion cyclotron (EMIC) waves, seed electron flux, magnetosphere compression, the "Dst effect," and substorms, while solar wind inputs such as velocity, number density, and interplanetary magnetic field Bz drive these factors and thus correlate with flux. Distributed lag regression models show the time delay of highest influence of these factors on log10 high-energy electron flux (0.7-7.8 MeV, Los Alamos National Laboratory satellites). Multiple regression with an autoregressive term (flux persistence) allows direct comparison of the magnitude of each effect while controlling other correlated parameters. Flux enhancements due to ULF Pc5 and chorus waves are of equal importance. The direct effect of substorms on high-energy electron flux is strong, possibly due to injection of high-energy electrons by the substorms themselves. Loss due to electromagnetic ion cyclotron waves is less influential. Southward Bz shows only moderate influence when correlated processes are accounted for. Adding covariate compression effects (pressure and interplanetary magnetic field magnitude) allows wave-driven enhancements to be more clearly seen. Seed electrons (270 keV) are most influential at lower relativistic energies, showing that such a population must be available for acceleration. However, they are not accelerated directly to the highest energies. Source electrons (31.7 keV) show no direct influence when other factors are controlled. Their action appears to be indirect via the chorus waves they generate. Determination of specific effects of each parameter when studied in combination will be more helpful in furthering modeling work than studying them individually.
Electrically driven monolithic subwavelength plasmonic interconnect circuits
Liu, Yang; Zhang, Jiasen; Liu, Huaping; Wang, Sheng; Peng, Lian-Mao
2017-01-01
In the post-Moore era, an electrically driven monolithic optoelectronic integrated circuit (OEIC) fabricated from a single material is pursued globally to enable the construction of wafer-scale compact computing systems with powerful processing capabilities and low-power consumption. We report a monolithic plasmonic interconnect circuit (PIC) consisting of a photovoltaic (PV) cascading detector, Au-strip waveguides, and electrically driven surface plasmon polariton (SPP) sources. These components are fabricated from carbon nanotubes (CNTs) via a CMOS (complementary metal-oxide semiconductor)–compatible doping-free technique in the same feature size, which can be reduced to deep-subwavelength scale (~λ/7 to λ/95, λ = 1340 nm) compared with the 14-nm technique node. An OEIC could potentially be configured as a repeater for data transport because of its “photovoltaic” operation mode to transform SPP energy directly into electricity to drive subsequent electronic circuits. Moreover, chip-scale throughput capability has also been demonstrated by fabricating a 20 × 20 PIC array on a 10 mm × 10 mm wafer. Tailoring photonics for monolithic integration with electronics beyond the diffraction limit opens a new era of chip-level nanoscale electronic-photonic systems, introducing a new path to innovate toward much faster, smaller, and cheaper computing frameworks. PMID:29062890
Simulation of charge transfer and orbital rehybridization in molecular and condensed matter systems
NASA Astrophysics Data System (ADS)
Nistor, Razvan A.
The mixing and shifting of electronic orbitals in molecules, or between atoms in bulk systems, is crucially important to the overall structure and physical properties of materials. Understanding and accurately modeling these orbital interactions is of both scientific and industrial relevance. Electronic orbitals can be perturbed in several ways. Doping, adding or removing electrons from systems, can change the bond-order and the physical properties of certain materials. Orbital rehybridization, driven by either thermal or pressure excitation, alters the short-range structure of materials and changes their long-range transport properties. Macroscopically, during bond formation, the shifting of electronic orbitals can be interpreted as a charge transfer phenomenon, as electron density may pile up around, and hence, alter the effective charge of, a given atom in the changing chemical environment. Several levels of theory exist to elucidate the mechanisms behind these orbital interactions. Electronic structure calculations solve the time-independent Schrodinger equation to high chemical accuracy, but are computationally expensive and limited to small system sizes and simulation times. Less fundamental atomistic calculations use simpler parameterized functional expressions called force-fields to model atomic interactions. Atomistic simulations can describe systems and time-scales larger and longer than electronic-structure methods, but at the cost of chemical accuracy. In this thesis, both first-principles and phenomenological methods are addressed in the study of several encompassing problems dealing with charge transfer and orbital rehybridization. Firstly, a new charge-equilibration method is developed that improves upon existing models to allow next-generation force-fields to describe the electrostatics of changing chemical environments. Secondly, electronic structure calculations are used to investigate the doping dependent energy landscapes of several high-temperature superconducting materials in order to parameterize the apparently large nonlinear electron-phonon coupling. Thirdly, ab initio simulations are used to investigate the role of pressure-driven structural re-organization in the crystalline-to-amorphous (or, metallic-to-insulating) transition of a common binary phase-change material composed of Ge and Sb. Practical applications of each topic will be discussed. Keywords. Charge-equilibration methods, molecular dynamics, electronic structure calculations, ab initio simulations, high-temperature superconductors, phase-change materials.
Laser Wakefield Acceleration: Structural and Dynamic Studies. Final Technical Report ER40954
DOE Office of Scientific and Technical Information (OSTI.GOV)
Downer, Michael C.
2014-04-30
Particle accelerators enable scientists to study the fundamental structure of the universe, but have become the largest and most expensive of scientific instruments. In this project, we advanced the science and technology of laser-plasma accelerators, which are thousands of times smaller and less expensive than their conventional counterparts. In a laser-plasma accelerator, a powerful laser pulse exerts light pressure on an ionized gas, or plasma, thereby driving an electron density wave, which resembles the wake behind a boat. Electrostatic fields within this plasma wake reach tens of billions of volts per meter, fields far stronger than ordinary non-plasma matter (suchmore » as the matter that a conventional accelerator is made of) can withstand. Under the right conditions, stray electrons from the surrounding plasma become trapped within these “wake-fields”, surf them, and acquire energy much faster than is possible in a conventional accelerator. Laser-plasma accelerators thus might herald a new generation of compact, low-cost accelerators for future particle physics, x-ray and medical research. In this project, we made two major advances in the science of laser-plasma accelerators. The first of these was to accelerate electrons beyond 1 gigaelectronvolt (1 GeV) for the first time. In experimental results reported in Nature Communications in 2013, about 1 billion electrons were captured from a tenuous plasma (about 1/100 of atmosphere density) and accelerated to 2 GeV within about one inch, while maintaining less than 5% energy spread, and spreading out less than ½ milliradian (i.e. ½ millimeter per meter of travel). Low energy spread and high beam collimation are important for applications of accelerators as coherent x-ray sources or particle colliders. This advance was made possible by exploiting unique properties of the Texas Petawatt Laser, a powerful laser at the University of Texas at Austin that produces pulses of 150 femtoseconds (1 femtosecond is 10-15 seconds) in duration and 150 Joules in energy (equivalent to the muzzle energy of a small pistol bullet). This duration was well matched to the natural electron density oscillation period of plasma of 1/100 atmospheric density, enabling efficient excitation of a plasma wake, while this energy was sufficient to drive a high-amplitude wake of the right shape to produce an energetic, collimated electron beam. Continuing research is aimed at increasing electron energy even further, increasing the number of electrons captured and accelerated, and developing applications of the compact, multi-GeV accelerator as a coherent, hard x-ray source for materials science, biomedical imaging and homeland security applications. The second major advance under this project was to develop new methods of visualizing the laser-driven plasma wake structures that underlie laser-plasma accelerators. Visualizing these structures is essential to understanding, optimizing and scaling laser-plasma accelerators. Yet prior to work under this project, computer simulations based on estimated initial conditions were the sole source of detailed knowledge of the complex, evolving internal structure of laser-driven plasma wakes. In this project we developed and demonstrated a suite of optical visualization methods based on well-known methods such as holography, streak cameras, and coherence tomography, but adapted to the ultrafast, light-speed, microscopic world of laser-driven plasma wakes. Our methods output images of laser-driven plasma structures in a single laser shot. We first reported snapshots of low-amplitude laser wakes in Nature Physics in 2006. We subsequently reported images of high-amplitude laser-driven plasma “bubbles”, which are important for producing electron beams with low energy spread, in Physical Review Letters in 2010. More recently, we have figured out how to image laser-driven structures that change shape while propagating in a single laser shot. The latter techniques, which use the methods of computerized tomography, were demonstrated on test objects – e.g. laser-driven filaments in air and glass – and reported in Optics Letters in 2013 and Nature Communications in 2014. Their output is a multi-frame movie rather than a snapshot. Continuing research is aimed at applying these tomographic methods directly to evolving laser-driven plasma accelerator structures in our laboratory, then, once perfected, to exporting them to plasma-based accelerator laboratories around the world as standard in-line metrology instruments.« less
Chang'E-3 data pre-processing system based on scientific workflow
NASA Astrophysics Data System (ADS)
tan, xu; liu, jianjun; wang, yuanyuan; yan, wei; zhang, xiaoxia; li, chunlai
2016-04-01
The Chang'E-3(CE3) mission have obtained a huge amount of lunar scientific data. Data pre-processing is an important segment of CE3 ground research and application system. With a dramatic increase in the demand of data research and application, Chang'E-3 data pre-processing system(CEDPS) based on scientific workflow is proposed for the purpose of making scientists more flexible and productive by automating data-driven. The system should allow the planning, conduct and control of the data processing procedure with the following possibilities: • describe a data processing task, include:1)define input data/output data, 2)define the data relationship, 3)define the sequence of tasks,4)define the communication between tasks,5)define mathematical formula, 6)define the relationship between task and data. • automatic processing of tasks. Accordingly, Describing a task is the key point whether the system is flexible. We design a workflow designer which is a visual environment for capturing processes as workflows, the three-level model for the workflow designer is discussed:1) The data relationship is established through product tree.2)The process model is constructed based on directed acyclic graph(DAG). Especially, a set of process workflow constructs, including Sequence, Loop, Merge, Fork are compositional one with another.3)To reduce the modeling complexity of the mathematical formulas using DAG, semantic modeling based on MathML is approached. On top of that, we will present how processed the CE3 data with CEDPS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Yong Kyoung; Center for Biomicrosystems, Korea Institute of Science and Technology, Seoul 136-791; Lee, Sang-Myung
Combining a highly sensitive sensor platform with highly selective recognition elements is essential for micro/nanotechnology-based electronic nose applications. Particularly, the regeneration sensor surface and its conditions are key issues for practical e-nose applications. We propose a highly sensitive piezoelectric-driven microcantilever array chip with highly selective peptide receptors. By utilizing the peptide receptor, which was discovered by a phase display screening process, we immobilized a dinitrotoluene (DNT) specific peptide as well as a DNT nonspecific peptide on the surface of the cantilever array. The delivery of DNT gas via pressure-driven flow led to a greater instant response of ∼30 Hz, compared tomore » diffusion only (∼15 Hz for 15 h). Using a simple pressure-driven air flow of ∼50 sccm, we confirmed that a ratio of ∼70% of the specific-bounded sites from DNT gas molecules could be regenerated, showing re-usability of the peptide receptor in on-site monitoring for electronic nose applications.« less
Magnetic turbulence in a table-top laser-plasma relevant to astrophysical scenarios
NASA Astrophysics Data System (ADS)
Chatterjee, Gourab; Schoeffler, Kevin M.; Kumar Singh, Prashant; Adak, Amitava; Lad, Amit D.; Sengupta, Sudip; Kaw, Predhiman; Silva, Luis O.; Das, Amita; Kumar, G. Ravindra
2017-06-01
Turbulent magnetic fields abound in nature, pervading astrophysical, solar, terrestrial and laboratory plasmas. Understanding the ubiquity of magnetic turbulence and its role in the universe is an outstanding scientific challenge. Here, we report on the transition of magnetic turbulence from an initially electron-driven regime to one dominated by ion-magnetization in a laboratory plasma produced by an intense, table-top laser. Our observations at the magnetized ion scale of the saturated turbulent spectrum bear a striking resemblance with spacecraft measurements of the solar wind magnetic-field spectrum, including the emergence of a spectral kink. Despite originating from diverse energy injection sources (namely, electrons in the laboratory experiment and ion free-energy sources in the solar wind), the turbulent spectra exhibit remarkable parallels. This demonstrates the independence of turbulent spectral properties from the driving source of the turbulence and highlights the potential of small-scale, table-top laboratory experiments for investigating turbulence in astrophysical environments.
Vibrational relaxation of hot carriers in C60 molecule
NASA Astrophysics Data System (ADS)
Madjet, Mohamed; Chakraborty, Himadri
2017-04-01
Electron-phonon coupling in molecular systems is at the heart of several important physical phenomena, including the mobility of carriers in organic electronic devices. Following the optical absorption, the vibrational relaxation of excited (hot) electrons and holes to the fullerene band-edges driven by electron-phonon coupling, known as the hot carrier thermalization process, is of particular fundamental interest. Using the non-adiabatic molecular dynamical methodology (PYXAID + Quantum Espresso) based on density functional approach, we have performed a simulation of vibrionic relaxations of hot carriers in C60. Time-dependent population decays and transfers in the femtosecond scale from various excited states to the states at the band-edge are calculated to study the details of this relaxation process. This work was supported by the U.S. National Science Foundation.
Query-Driven Visualization and Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruebel, Oliver; Bethel, E. Wes; Prabhat, Mr.
2012-11-01
This report focuses on an approach to high performance visualization and analysis, termed query-driven visualization and analysis (QDV). QDV aims to reduce the amount of data that needs to be processed by the visualization, analysis, and rendering pipelines. The goal of the data reduction process is to separate out data that is "scientifically interesting'' and to focus visualization, analysis, and rendering on that interesting subset. The premise is that for any given visualization or analysis task, the data subset of interest is much smaller than the larger, complete data set. This strategy---extracting smaller data subsets of interest and focusing ofmore » the visualization processing on these subsets---is complementary to the approach of increasing the capacity of the visualization, analysis, and rendering pipelines through parallelism. This report discusses the fundamental concepts in QDV, their relationship to different stages in the visualization and analysis pipelines, and presents QDV's application to problems in diverse areas, ranging from forensic cybersecurity to high energy physics.« less
Design Considerations of a Virtual Laboratory for Advanced X-ray Sources
NASA Astrophysics Data System (ADS)
Luginsland, J. W.; Frese, M. H.; Frese, S. D.; Watrous, J. J.; Heileman, G. L.
2004-11-01
The field of scientific computation has greatly advanced in the last few years, resulting in the ability to perform complex computer simulations that can predict the performance of real-world experiments in a number of fields of study. Among the forces driving this new computational capability is the advent of parallel algorithms, allowing calculations in three-dimensional space with realistic time scales. Electromagnetic radiation sources driven by high-voltage, high-current electron beams offer an area to further push the state-of-the-art in high fidelity, first-principles simulation tools. The physics of these x-ray sources combine kinetic plasma physics (electron beams) with dense fluid-like plasma physics (anode plasmas) and x-ray generation (bremsstrahlung). There are a number of mature techniques and software packages for dealing with the individual aspects of these sources, such as Particle-In-Cell (PIC), Magneto-Hydrodynamics (MHD), and radiation transport codes. The current effort is focused on developing an object-oriented software environment using the Rational© Unified Process and the Unified Modeling Language (UML) to provide a framework where multiple 3D parallel physics packages, such as a PIC code (ICEPIC), a MHD code (MACH), and a x-ray transport code (ITS) can co-exist in a system-of-systems approach to modeling advanced x-ray sources. Initial software design and assessments of the various physics algorithms' fidelity will be presented.
Looking ahead through a rearview mirror
NASA Astrophysics Data System (ADS)
Koehler, Richard F.; Bares, Jan
1993-06-01
Electrophotography, as an original invention, was just another way to make a copy. Its development into a continuous process made it historic. As with any technology, the evolution proceeded along several fronts, in particular the advancement of enabling components including stimulation and sponsorship of research in related scientific disciplines, development of technology and engineering solutions, and expansion of the market while satisfying existing demand. The evolution, driven by customer and market requirements, has followed the paradigm of any other technology-based appliance: growth in performance and reliability and reduction in size and cost, ultimately enabling the transition all the way from highly functional centralized machines to personal devices. Besides this traditional evolution, xerography expanded when it could link with other technologies. The most dramatic breakthroughs that led to rapid market expansion occurred when digital electronics enabled printing and image processing, and the proliferation of personal computers launched a robust color creation and hardcopy market. The electrophotography industry was prepared for this opportunity and made possible desktop publishing, distributed printing, and recently, color copying and printing with acceptable color fidelity. What early indicators signaled the evolutionary paths, and the divergences, electrophotography would take? In this paper, we examine the history, including relevant publications, to find such indicators. Current literature is also considered in that light.
Electrically driven cation exchange for in situ fabrication of individual nanostructures
Zhang, Qiubo; Yin, Kuibo; Dong, Hui; ...
2017-04-12
Cation exchange (CE) has been recognized as a particularly powerful tool for the synthesis of heterogeneous nanocrystals. Presently, CE can be divided into two categories, namely ion solvation-driven CE reaction and thermally activated CE reaction. Here we report an electrically driven CE reaction to prepare individual nanostructures inside a transmission electron microscope. During the process, Cd is eliminated due to Ohmic heating, whereas Cu + migrates into the crystal driven by the electrical field force. Contrast experiments reveal that the feasibility of electrically driven CE is determined by the structural similarity of the sulfur sublattices between the initial and finalmore » phases, and the standard electrode potentials of the active electrodes. These experimental results demonstrate a strategy for the selective growth of individual nanocrystals and provide crucial insights into understanding of the microscopic pathways leading to the formation of heterogeneous structures.« less
ERIC Educational Resources Information Center
Bruley, Karina
1996-01-01
Provides a checklist of considerations for installing document image processing with an electronic document management system. Other topics include scanning; indexing; the image file life cycle; benefits of imaging; document-driven workflow; and planning for workplace changes like postsorting, creating a scanning room, redeveloping job tasks and…
[Automation of medical literature--and information services].
Bakker, S
1997-01-04
It is important for clinical practice to be able to find (or retrieve) relevant literature and to keep informed of the state of medical science. The fact that the contents of articles in journals are now accessible via computers is the result of integration of bibliographic techniques, medical knowledge and computer technology. Articles published in some 5000 medical journals can nowadays be retrieved electronically via Medline and Embase together (but medical literature in Dutch is underrepresented). Computerised insertion of publications into Internet dose not make information traceable or accessible, let alone reliable and readable. It cannot be predicted if electronic versions of scientific periodicals will replace the printed editions completely. However, valuable, reliable information will always have its price, even on Internet. It is unlikely that electronic information published privately (internet) will replace scientific publishers soon, for readers will still want selection and monitoring of contents and language. Good layout, professional typography and suitable illustrations to enhance reading comfort and cognitive processes, will even become more important. The problems arising from the immensity of scientific knowledge are not (any longer) of a technological nature-what is needed is a cultural about-turn of the information infrastructure in medical-scientific associations, organizations and institutions.
Arceo, Elena; Jurberg, Igor D; Alvarez-Fernández, Ana; Melchiorre, Paolo
2013-09-01
Asymmetric catalytic variants of sunlight-driven photochemical processes hold extraordinary potential for the sustainable preparation of chiral molecules. However, the involvement of short-lived electronically excited states inherent to any photochemical reaction makes it challenging for a chiral catalyst to dictate the stereochemistry of the products. Here, we report that readily available chiral organic catalysts, with well-known utility in thermal asymmetric processes, can also confer a high level of stereocontrol in synthetically relevant intermolecular carbon-carbon bond-forming reactions driven by visible light. A unique mechanism of catalysis is proposed, wherein the catalyst is involved actively in both the photochemical activation of the substrates (by inducing the transient formation of chiral electron donor-acceptor complexes) and the stereoselectivity-defining event. We use this approach to enable transformations that are extremely difficult under thermal conditions, such as the asymmetric α-alkylation of aldehydes with alkyl halides, the formation of all-carbon quaternary stereocentres and the control of remote stereochemistry.
Laser-Material Interactions for Flexible Applications.
Joe, Daniel J; Kim, Seungjun; Park, Jung Hwan; Park, Dae Yong; Lee, Han Eol; Im, Tae Hong; Choi, Insung; Ruoff, Rodney S; Lee, Keon Jae
2017-07-01
The use of lasers for industrial, scientific, and medical applications has received an enormous amount of attention due to the advantageous ability of precise parameter control for heat transfer. Laser-beam-induced photothermal heating and reactions can modify nanomaterials such as nanoparticles, nanowires, and two-dimensional materials including graphene, in a controlled manner. There have been numerous efforts to incorporate lasers into advanced electronic processing, especially for inorganic-based flexible electronics. In order to resolve temperature issues with plastic substrates, laser-material processing has been adopted for various applications in flexible electronics including energy devices, processors, displays, and other peripheral electronic components. Here, recent advances in laser-material interactions for inorganic-based flexible applications with regard to both materials and processes are presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Open data models for smart health interconnected applications: the example of openEHR.
Demski, Hans; Garde, Sebastian; Hildebrand, Claudia
2016-10-22
Smart Health is known as a concept that enhances networking, intelligent data processing and combining patient data with other parameters. Open data models can play an important role in creating a framework for providing interoperable data services that support the development of innovative Smart Health applications profiting from data fusion and sharing. This article describes a model-driven engineering approach based on standardized clinical information models and explores its application for the development of interoperable electronic health record systems. The following possible model-driven procedures were considered: provision of data schemes for data exchange, automated generation of artefacts for application development and native platforms that directly execute the models. The applicability of the approach in practice was examined using the openEHR framework as an example. A comprehensive infrastructure for model-driven engineering of electronic health records is presented using the example of the openEHR framework. It is shown that data schema definitions to be used in common practice software development processes can be derived from domain models. The capabilities for automatic creation of implementation artefacts (e.g., data entry forms) are demonstrated. Complementary programming libraries and frameworks that foster the use of open data models are introduced. Several compatible health data platforms are listed. They provide standard based interfaces for interconnecting with further applications. Open data models help build a framework for interoperable data services that support the development of innovative Smart Health applications. Related tools for model-driven application development foster semantic interoperability and interconnected innovative applications.
Light modulated electron beam driven radiofrequency emitter
Wilson, M.T.; Tallerico, P.J.
1979-10-10
The disclosure relates to a light modulated electron beam-driven radiofrequency emitter. Pulses of light impinge on a photoemissive device which generates an electron beam having the pulse characteristics of the light. The electron beam is accelerated through a radiofrequency resonator which produces radiofrequency emission in accordance with the electron, hence, the light pulses.
Weibel instability mediated collisionless shocks using intense laser-driven plasmas
NASA Astrophysics Data System (ADS)
Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald; Fernandez, Juan; Ma, Wenjun; Schreiber, Jorg; LANL Collaboration; LMU Team
2016-10-01
The origin of cosmic rays remains a long-standing challenge in astrophysics and continues to fascinate physicists. It is believed that ``collisionless shocks'' - where the particle Coulomb mean free path is much larger that the shock transition - are a dominant source of energetic cosmic rays. These shocks are ubiquitous in astrophysical environments such as gamma-ray bursts, supernova remnants, pulsar wind nebula and coronal mass ejections from the sun. Several spacecraft observations have revealed acceleration of charged particles, mostly electrons, to very high energies with in the shock front. There is now also clear observational evidence that supernova remnant shocks accelerate both protons and electrons. The understanding of the microphysics behind collisionless shocks and their particle acceleration is tightly related with nonlinear basic plasma processes and remains a grand challenge. In this poster, we will present results from recent experiments at the LANL Trident laser facility studying collisionless shocks using intense ps laser (80J, 650 fs - peak intensity of 1020 W/cm2) driven near-critical plasmas using carbon nanotube foam targets. A second short pulse laser driven protons from few microns thick aluminum foil is used to image the laser-driven plasma.
Schematic driven silicon photonics design
NASA Astrophysics Data System (ADS)
Chrostowski, Lukas; Lu, Zeqin; Flückiger, Jonas; Pond, James; Klein, Jackson; Wang, Xu; Li, Sarah; Tai, Wei; Hsu, En Yao; Kim, Chan; Ferguson, John; Cone, Chris
2016-03-01
Electronic circuit designers commonly start their design process with a schematic, namely an abstract representation of the physical circuit. In integrated photonics on the other hand, it is very common for the design to begin at the physical component level. In order to build large integrated photonic systems, it is crucial to design using a schematic-driven approach. This includes simulations based on schematics, schematic-driven layout, layout versus schematic verification, and post-layout simulations. This paper describes such a design framework implemented using Mentor Graphics and Lumerical Solutions design tools. In addition, we describe challenges in silicon photonics related to manufacturing, and how these can be taken into account in simulations and how these impact circuit performance.
NASA Technical Reports Server (NTRS)
Del Basso, Steve
2000-01-01
The world's space agencies have been conducting microgravity research since the beginning of space flight. Initially driven by the need to understand the impact of less than- earth gravity physics on manned space flight, microgravity research has evolved into a broad class of scientific experimentation that utilizes extreme low acceleration environments. The U.S. NASA microgravity research program supports both basic and applied research in five key areas: biotechnology - focusing on macro-molecular crystal growth as well as the use of the unique space environment to assemble and grow mammalian tissue; combustion science - focusing on the process of ignition, flame propagation, and extinction of gaseous, liquid, and solid fuels; fluid physics - including aspects of fluid dynamics and transport phenomena; fundamental physics - including the study of critical phenomena, low-temperature, atomic, and gravitational physics; and materials science - including electronic and photonic materials, glasses and ceramics, polymers, and metals and alloys. Similar activities prevail within the Chinese, European, Japanese, and Russian agencies with participation from additional international organizations as well. While scientific research remains the principal objective behind these program, all hope to drive toward commercialization to sustain a long range infrastructure which .benefits the national technology and economy. In the 1997 International Space Station Commercialization Study, conducted by the Potomac Institute for Policy Studies, some viable microgravity commercial ventures were identified, however, none appeared sufficiently robust to privately fund space access at that time. Thus, government funded micro gravity research continues on an evolutionary path with revolutionary potential.
3D Printing of Plant Golgi Stacks from Their Electron Tomographic Models.
Mai, Keith Ka Ki; Kang, Madison J; Kang, Byung-Ho
2017-01-01
Three-dimensional (3D) printing is an effective tool for preparing tangible 3D models from computer visualizations to assist in scientific research and education. With the recent popularization of 3D printing processes, it is now possible for individual laboratories to convert their scientific data into a physical form suitable for presentation or teaching purposes. Electron tomography is an electron microscopy method by which 3D structures of subcellular organelles or macromolecular complexes are determined at nanometer-level resolutions. Electron tomography analyses have revealed the convoluted membrane architectures of Golgi stacks, chloroplasts, and mitochondria. But the intricacy of their 3D organizations is difficult to grasp from tomographic models illustrated on computer screens. Despite the rapid development of 3D printing technologies, production of organelle models based on experimental data with 3D printing has rarely been documented. In this chapter, we present a simple guide to creating 3D prints of electron tomographic models of plant Golgi stacks using the two most accessible 3D printing technologies.
NASA Astrophysics Data System (ADS)
Rosenthal, S.; Kurtz, L.
2017-12-01
Open data plays an important role in facilitating scientific progress and developing sound public policies. However, sometimes important scientific initiatives can be subverted by those seeking to politicize science and attack scientists. There is a critical distinction between data openness, and forcing scientists to live in a fishbowl by demanding disclosure of traditionally confidential materials, such as peer review correspondence or preliminary drafts. The former is intended to promote scientific advances (which may well involve criticisms and disagreements), while the latter is an attempt to chill and disrupt research. Agenda-driven groups have sought to obtain scientists' private emails, preliminary drafts, and peer critiques - which may include technical jargon and "what if" debates that can easily be taken out of context - in an effort to intimidate researchers and disrupt their work. Fostering true transparency requires an understanding of what should be shared to advance scientific research, including disclosing information that might expose potential biases (such as funding information), while also protecting the candid debate, open collaboration, and academic freedom that is integral to the scientific process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asahi, Y., E-mail: y.asahi@nr.titech.ac.jp; Tsutsui, H.; Tsuji-Iio, S.
2014-05-15
Turbulent transport caused by electron temperature gradient (ETG) modes was investigated by means of gyrokinetic simulations. It was found that the ETG turbulence can be regulated by meso-scale zonal flows driven by trapped electron modes (TEMs), which are excited with much smaller growth rates than those of ETG modes. The zonal flows of which radial wavelengths are in between the ion and the electron banana widths are not shielded by trapped ions nor electrons, and hence they are effectively driven by the TEMs. It was also shown that an E × B shearing rate of the TEM-driven zonal flows is larger thanmore » or comparable to the growth rates of long-wavelength ETG modes and TEMs, which make a main contribution to the turbulent transport before excitation of the zonal flows.« less
Understanding the Role of Electron-driven Processes in Atmospheric Behaviour
NASA Astrophysics Data System (ADS)
Brunger, M. J.; Campbell, L.; Jones, D. B.; Cartwright, D. C.
2004-12-01
Electron-impact excitation plays a major role in emission from aurora and a less significant but nonetheless crucial role in the dayglow and nightglow. For some molecules, such as N2, O2 and NO, electron-impact excitation can be followed by radiative cascade through many different sets of energy levels, producing emission with a large number of lines. We review the application of our statistical equilibrium program to predict this rich spectrum of radiation, and we compare results we have obtained against available independent measurements. In addition, we also review the calculation of energy transfer rates from electrons to N2, O2 and NO in the thermosphere. Energy transfer from electrons to neutral gases and ions is one of the dominant electron cooling processes in the ionosphere, and the role of vibrationally excited N2 and O2 in this is particularly significant. The importance of the energy dependence and magnitude of the electron-impact vibrational cross sections in the calculation of these rates is assessed.
Data-driven ranch management: A vision for sustainable ranching
USDA-ARS?s Scientific Manuscript database
Introduction The 21st century has ushered in an era of tiny, inexpensive electronics with impressive capabilities for sensing the environment. Also emerging are new technologies for communicating data to computer systems where new analytical tools can process the data. Many of these technologies w...
Undergraduate Labs for Biological Physics: Brownian Motion and Optical Trapping
NASA Astrophysics Data System (ADS)
Chu, Kelvin; Laughney, A.; Williams, J.
2006-12-01
We describe a set of case-study driven labs for an upper-division biological physics course. These labs are motivated by case-studies and consist of inquiry-driven investigations of Brownian motion and optical-trapping experiments. Each lab incorporates two innovative educational techniques to drive the process and application aspects of scientific learning. Case studies are used to encourage students to think independently and apply the scientific method to a novel lab situation. Student input from this case study is then used to decide how to best do the measurement, guide the project and ultimately evaluate the success of the program. Where appropriate, visualization and simulation using VPython is used. Direct visualization of Brownian motion allows students to directly calculate Avogadro's number or the Boltzmann constant. Following case-study driven discussion, students use video microscopy to measure the motion of latex spheres in different viscosity fluids arrive at a good approximation of NA or kB. Optical trapping (laser tweezer) experiments allow students to investigate the consequences of 100-pN forces on small particles. The case study consists of a discussion of the Boltzmann distribution and equipartition theorem followed by a consideration of the shape of the potential. Students can then use video capture to measure the distribution of bead positions to determine the shape and depth of the trap. This work supported by NSF DUE-0536773.
Laser Program Annual Report - 1979 Unclassified Excerpts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindl, J D
The objective of the Lawrence Livermore National Laboratory (LLNL) Inertial Confinement Fusion (ICF) program is to demonstrate the scientific feasibility of ICF for military applications (to develop and utilize the capability to study nuclear weapons physics in support of the weapons program) and for energy-directed uses in the civilian sector. The demonstration of scientific feasibility for both military and civilian objectives will require achieving gains on the order of 10 to 100 in fusion microexplosions. Our major near-term milestones include the attainment of high compression, one-hundred to one-thousand times (100 to 1000X) liquid D-T density in the thermonuclear fuel andmore » ignition of thermonuclear burn. In 1979, our laser fusion experiments and analysis programs focused on two important areas related to achieving this goal: conducting x-ray-driven implosions of a variety of D-T-filled fuel capsule's to unprecedented high densities ({approx}> 50X liquid D-T density) and the determination of the scaling of hot electrons and thermal radiation in hohlraums.« less
Van Praag, H M
2001-05-01
A new subtype of depression is proposed, named: anxiety/aggression-driven depression. The psychopathological, psychopharmacological and biochemical evidence on which this construct is based, is being discussed. Selective postsynaptic 5-HT1A agonists together with CRH and/or cortisol antagonists are hypothesized to be a specific biological treatment for this depression type, in conjunction with psychological interventions to raise the stressor-threshold and to increase coping skills. The development of this depression construct has been contingent on the introduction of two new diagnostic procedures, called functionalization and verticalization of psychiatric diagnosis. These procedures are explained and it is stressed that they are essential to psychiatric diagnosing, in order to put this process on a scientific footing.
The Future of Testing: A Research Agenda for Cognitive Psychology and Psychometrics.
1981-02-01
sports, engineering technology in electronics and steel production, maintaining leads in scientific knowledge and theory , creative writing and other art...how the available individual difference data can be used even as a starting point for generating a theory as to the process nature of general...primarily addressed. In what follows, I review some recent scientific developments that I think will be influencing future theory and practices in
Basic Blue Skies Research in the UK: Are we losing out?
Linden, Belinda
2008-01-01
Background The term blue skies research implies a freedom to carry out flexible, curiosity-driven research that leads to outcomes not envisaged at the outset. This research often challenges accepted thinking and introduces new fields of study. Science policy in the UK has given growing support for short-term goal-oriented scientific research projects, with pressure being applied on researchers to demonstrate the future application of their work. These policies carry the risk of restricting freedom, curbing research direction, and stifling rather than stimulating the creativity needed for scientific discovery. Methods This study tracks the tortuous routes that led to three major discoveries in cardiology. It then investigates the constraints in current research, and opportunities that may be lost with existing funding processes, by interviewing selected scientists and fund providers for their views on curiosity-driven research and the freedom needed to allow science to flourish. The transcripts were analysed using a grounded theory approach to gather recurrent themes from the interviews. Results The results from these interviews suggest that scientists often cannot predict the future applications of research. Constraints such as lack of scientific freedom, and a narrow focus on relevance and accountability were believed to stifle the discovery process. Although it was acknowledged that some research projects do need a clear and measurable framework, the interviewees saw a need for inquisitive, blue skies research to be managed in a different way. They provided examples of situations where money allocated to 'safe' funding was used for more innovative research. Conclusion This sample of key UK scientists and grant providers acknowledge the importance of basic blue skies research. Yet the current evaluation process often requires that scientists predict their likely findings and estimate short-term impact, which does not permit freedom of research direction. There is a vital need for prominent scientists and for universities to help the media, the public, and policy makers to understand the importance of innovative thought along with the need for scientists to have the freedom to challenge accepted thinking. Encouraging an avenue for blue skies research could have immense influence over future scientific discoveries. PMID:18312612
Basic Blue Skies Research in the UK: Are we losing out?
Linden, Belinda
2008-02-29
The term blue skies research implies a freedom to carry out flexible, curiosity-driven research that leads to outcomes not envisaged at the outset. This research often challenges accepted thinking and introduces new fields of study. Science policy in the UK has given growing support for short-term goal-oriented scientific research projects, with pressure being applied on researchers to demonstrate the future application of their work. These policies carry the risk of restricting freedom, curbing research direction, and stifling rather than stimulating the creativity needed for scientific discovery. This study tracks the tortuous routes that led to three major discoveries in cardiology. It then investigates the constraints in current research, and opportunities that may be lost with existing funding processes, by interviewing selected scientists and fund providers for their views on curiosity-driven research and the freedom needed to allow science to flourish. The transcripts were analysed using a grounded theory approach to gather recurrent themes from the interviews. The results from these interviews suggest that scientists often cannot predict the future applications of research. Constraints such as lack of scientific freedom, and a narrow focus on relevance and accountability were believed to stifle the discovery process. Although it was acknowledged that some research projects do need a clear and measurable framework, the interviewees saw a need for inquisitive, blue skies research to be managed in a different way. They provided examples of situations where money allocated to 'safe' funding was used for more innovative research. This sample of key UK scientists and grant providers acknowledge the importance of basic blue skies research. Yet the current evaluation process often requires that scientists predict their likely findings and estimate short-term impact, which does not permit freedom of research direction. There is a vital need for prominent scientists and for universities to help the media, the public, and policy makers to understand the importance of innovative thought along with the need for scientists to have the freedom to challenge accepted thinking. Encouraging an avenue for blue skies research could have immense influence over future scientific discoveries.
Collaborative designing and job satisfaction of airplane manufacturing engineers: A case study
NASA Astrophysics Data System (ADS)
Johnson, Michael David, Sr.
The group III-nitride system of materials has had considerable commercial success in recent years in the solid state lighting (SSL) and power electronics markets. The need for high efficient general lighting applications has driven research into InGaN based blue light emitting diodes (LEDs), and demand for more efficient power electronics for telecommunications has driven research into AlGaN based high electron mobility transistors (HEMTs). However, the group III-nitrides material properties make them attractive for several other applications that have not received as much attention. This work focuses on developing group III-nitride based devices for novel applications. GaN is a robust, chemically inert, piezoelectric material, making it an ideal candidate for surface acoustic wave (SAW) devices designed for high temperature and/or harsh environment sensors. In this work, SAW devices based on GaN are developed for use in high temperature gas or chemical sensor applications. To increase device sensitivity, while maintaining a simple one-step photolithography fabrication process, devices were designed to operate at high harmonic frequencies. This allows for GHz regime operation without sub-micron fabrication. One potential market for this technology is continuous emissions monitoring of combustion gas vehicles. In addition to SAW devices, high electron mobility transistors (HEMTs) were developed. The epitaxial structure was characterized and the 2-D electron gas concentrations were simulated and compared to experimental results. Device fabrication processes were developed and are outlined. Fabricated devices were electrically measured and device performance is discussed.
Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser
Kupitz, Christopher; Basu, Shibom; Grotjohann, Ingo; Fromme, Raimund; Zatsepin, Nadia A.; Rendek, Kimberly N.; Hunter, Mark S.; Shoeman, Robert L.; White, Thomas A.; Wang, Dingjie; James, Daniel; Yang, Jay-How; Cobb, Danielle E.; Reeder, Brenda; Sierra, Raymond G.; Liu, Haiguang; Barty, Anton; Aquila, Andrew L.; Deponte, Daniel; Kirian, Richard A.; Bari, Sadia; Bergkamp, Jesse J.; Beyerlein, Kenneth R.; Bogan, Michael J.; Caleman, Carl; Chao, Tzu-Chiao; Conrad, Chelsie E.; Davis, Katherine M.; Fleckenstein, Holger; Galli, Lorenzo; Hau-Riege, Stefan P.; Kassemeyer, Stephan; Laksmono, Hartawan; Liang, Mengning; Lomb, Lukas; Marchesini, Stefano; Martin, Andrew V.; Messerschmidt, Marc; Milathianaki, Despina; Nass, Karol; Ros, Alexandra; Roy-Chowdhury, Shatabdi; Schmidt, Kevin; Seibert, Marvin; Steinbrener, Jan; Stellato, Francesco; Yan, Lifen; Yoon, Chunhong; Moore, Thomas A.; Moore, Ana L.; Pushkar, Yulia; Williams, Garth J.; Boutet, Sébastien; Doak, R. Bruce; Weierstall, Uwe; Frank, Matthias; Chapman, Henry N.; Spence, John C. H.; Fromme, Petra
2015-01-01
Photosynthesis, a process catalysed by plants, algae and cyanobacteria converts sunlight to energy thus sustaining all higher life on Earth. Two large membrane protein complexes, photosystem I and II (PSI and PSII), act in series to catalyse the light-driven reactions in photosynthesis. PSII catalyses the light-driven water splitting process, which maintains the Earth’s oxygenic atmosphere1. In this process, the oxygen-evolving complex (OEC) of PSII cycles through five states, S0 to S4, in which four electrons are sequentially extracted from the OEC in four light-driven charge-separation events. Here we describe time resolved experiments on PSII nano/microcrystals from Thermosynechococcus elongatus performed with the recently developed2 technique of serial femtosecond crystallography. Structures have been determined from PSII in the dark S1 state and after double laser excitation (putative S3 state) at 5 and 5.5 Å resolution, respectively. The results provide evidence that PSII undergoes significant conformational changes at the electron acceptor side and at the Mn4CaO5 core of the OEC. These include an elongation of the metal cluster, accompanied by changes in the protein environment, which could allow for binding of the second substrate water molecule between the more distant protruding Mn (referred to as the ‘dangler’ Mn) and the Mn3CaOx cubane in the S2 to S3 transition, as predicted by spectroscopic and computational studies3,4. This work shows the great potential for time-resolved serial femtosecond crystallography for investigation of catalytic processes in biomolecules. PMID:25043005
Report of the sensor readout electronics panel
NASA Technical Reports Server (NTRS)
Fossum, Eric R.; Carson, J.; Kleinhans, W.; Kosonocky, W.; Kozlowski, L.; Pecsalski, A.; Silver, A.; Spieler, H.; Woolaway, J.
1991-01-01
The findings of the Sensor Readout Electronics Panel are summarized in regard to technology assessment and recommended development plans. In addition to two specific readout issues, cryogenic readouts and sub-electron noise, the panel considered three advanced technology areas that impact the ability to achieve large format sensor arrays. These are mega-pixel focal plane packaging issues, focal plane to data processing module interfaces, and event driven readout architectures. Development in each of these five areas was judged to have significant impact in enabling the sensor performance desired for the Astrotech 21 mission set. Other readout issues, such as focal plane signal processing or other high volume data acquisition applications important for Eos-type mapping, were determined not to be relevant for astrophysics science goals.
Supporting Informed Decision Making - Center for Research Strategy
CRS conducts portfolio analyses and collects data on scientific topics, funding mechanisms, and investigator characteristics to help NCI leadership make data-driven decisions about the scientific research enterprise.
Heterogeneous catalysis with lasers
NASA Astrophysics Data System (ADS)
George, T. F.
1986-06-01
Theoretical techniques have been developed to describe a variety of laser-induced molecular rate processes occurring at solid surfaces which are involved in heterogeneous catalysis. Such processes include adsorption, migration, chemical reactions and desorption. The role of surface phonons in laser-selective processes and laser heating has been analyzed. The importance of electronic degrees of freedom has been considered for semiconductor and metal substrates, with special emphasis on the laser excitation of surface states. Surface-modified photochemistry has also been investigated, where the effect of a metal surface on the resonance fluorescence spectrum of a laser-driven atom/molecule has been assessed by means of surface-dressed optical Bloch equations. It is seen that the spectrum can be significantly different from the gas-phase case. Two related gas-surface collision processes have also been studied. First, the feasibility of the formation of the electron-hole pairs in a semiconductor by vibrationally excited molecules has been explored. Second, charge transfer in ion-surface collisions has been examined for both one-electron and two-electron transfer processes. Work has been initiated on microstructures and rough structures, including clusters and surface gratings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocharian, Armen N.; Fernando, Gayanath W.; Fang, Kun
Rashba spin-orbit effects and electron correlations in the two-dimensional cylindrical lattices of square geometries are assessed using mesoscopic two-, three- and four-leg ladder structures. Here the electron transport properties are systematically calculated by including the spin-orbit coupling in tight binding and Hubbard models threaded by a magnetic flux. These results highlight important aspects of possible symmetry breaking mechanisms in square ladder geometries driven by the combined effect of a magnetic gauge field spin-orbit interaction and temperature. The observed persistent current, spin and charge polarizations in the presence of spin-orbit coupling are driven by separation of electron and hole charges andmore » opposite spins in real-space. The modeled spin-flip processes on the pairing mechanism induced by the spin-orbit coupling in assembled nanostructures (as arrays of clusters) engineered in various two-dimensional multi-leg structures provide an ideal playground for understanding spatial charge and spin density inhomogeneities leading to electron pairing and spontaneous phase separation instabilities in unconventional superconductors. Such studies also fall under the scope of current challenging problems in superconductivity and magnetism, topological insulators and spin dependent transport associated with numerous interfaces and heterostructures.« less
Detailed Modeling of Physical Processes in Electron Sources for Accelerator Applications
NASA Astrophysics Data System (ADS)
Chubenko, Oksana; Afanasev, Andrei
2017-01-01
At present, electron sources are essential in a wide range of applications - from common technical use to exploring the nature of matter. Depending on the application requirements, different methods and materials are used to generate electrons. State-of-the-art accelerator applications set a number of often-conflicting requirements for electron sources (e.g., quantum efficiency vs. polarization, current density vs. lifetime, etc). Development of advanced electron sources includes modeling and design of cathodes, material growth, fabrication of cathodes, and cathode testing. The detailed simulation and modeling of physical processes is required in order to shed light on the exact mechanisms of electron emission and to develop new-generation electron sources with optimized efficiency. The purpose of the present work is to study physical processes in advanced electron sources and develop scientific tools, which could be used to predict electron emission from novel nano-structured materials. In particular, the area of interest includes bulk/superlattice gallium arsenide (bulk/SL GaAs) photo-emitters and nitrogen-incorporated ultrananocrystalline diamond ((N)UNCD) photo/field-emitters. Work supported by The George Washington University and Euclid TechLabs LLC.
Outward bound: women translators and scientific travel writing, 1780-1800.
Martin, Alison E
2016-04-01
As the Enlightenment drew to a close, translation had gradually acquired an increasingly important role in the international circulation and transmission of scientific knowledge. Yet comparatively little attention has been paid to the translators responsible for making such accounts accessible in other languages, some of whom were women. In this article I explore how European women cast themselves as intellectually enquiring, knowledgeable and authoritative figures in their translations. Focusing specifically on the genre of scientific travel writing, I investigate the narrative strategies deployed by women translators to mark their involvement in the process of scientific knowledge-making. These strategies ranged from rhetorical near-invisibility, driven by women's modest marginalization of their own public engagement in science, to the active advertisement of themselves as intellectually curious consumers of scientific knowledge. A detailed study of Elizabeth Helme's translation of the French ornithologist François le Vaillant's Voyage dans l'intérieur de l'Afrique [Voyage into the Interior of Africa] (1790) allows me to explore how her reworking of the original text for an Anglophone reading public enabled her to engage cautiously - or sometimes more openly - with questions regarding how scientific knowledge was constructed, for whom and with which aims in mind.
Improving Scientific Research and Writing Skills through Peer Review and Empirical Group Learning †
Senkevitch, Emilee; Smith, Ann C.; Marbach-Ad, Gili; Song, Wenxia
2011-01-01
Here we describe a semester-long, multipart activity called “Read and wRite to reveal the Research process” (R3) that was designed to teach students the elements of a scientific research paper. We implemented R3 in an advanced immunology course. In R3, we paralleled the activities of reading, discussion, and presentation of relevant immunology work from primary research papers with student writing, discussion, and presentation of their own lab findings. We used reading, discussing, and writing activities to introduce students to the rationale for basic components of a scientific research paper, the method of composing a scientific paper, and the applications of course content to scientific research. As a final part of R3, students worked collaboratively to construct a Group Research Paper that reported on a hypothesis-driven research project, followed by a peer review activity that mimicked the last stage of the scientific publishing process. Assessment of student learning revealed a statistically significant gain in student performance on writing in the style of a research paper from the start of the semester to the end of the semester. PMID:23653760
Chaotic Motion of Relativistic Electrons Driven by Whistler Waves
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Telnikhin, A. A.; Kronberg, Tatiana K.
2007-01-01
Canonical equations governing an electron motion in electromagnetic field of the whistler mode waves propagating along the direction of an ambient magnetic field are derived. The physical processes on which the equations of motion are based .are identified. It is shown that relativistic electrons interacting with these fields demonstrate chaotic motion, which is accompanied by the particle stochastic heating and significant pitch angle diffusion. Evolution of distribution functions is described by the Fokker-Planck-Kolmogorov equations. It is shown that the whistler mode waves could provide a viable mechanism for stochastic energization of electrons with energies up to 50 MeV in the Jovian magnetosphere.
Scientific Visualization in High Speed Network Environments
NASA Technical Reports Server (NTRS)
Vaziri, Arsi; Kutler, Paul (Technical Monitor)
1997-01-01
In several cases, new visualization techniques have vastly increased the researcher's ability to analyze and comprehend data. Similarly, the role of networks in providing an efficient supercomputing environment have become more critical and continue to grow at a faster rate than the increase in the processing capabilities of supercomputers. A close relationship between scientific visualization and high-speed networks in providing an important link to support efficient supercomputing is identified. The two technologies are driven by the increasing complexities and volume of supercomputer data. The interaction of scientific visualization and high-speed networks in a Computational Fluid Dynamics simulation/visualization environment are given. Current capabilities supported by high speed networks, supercomputers, and high-performance graphics workstations at the Numerical Aerodynamic Simulation Facility (NAS) at NASA Ames Research Center are described. Applied research in providing a supercomputer visualization environment to support future computational requirements are summarized.
The Colorado Student Space Weather Experiment : A CubeSat for Space Physics
NASA Astrophysics Data System (ADS)
Palo, Scott; Li, Xinlin; Gerhardt, David; Turner, Drew; Hoxie, V.; Kohnert, Rick; Batiste, Susan
Energetic particles, electrons and protons either directly associated with solar flares or trapped in the terrestrial radiation belt, have a profound space weather impact. A National Science Foundation supported 3U CubeSat mission with a single instrument, Relativistic Electrons and Proton Telescope integrated little experiment (REPTile), is proposed to address fundamental scientific questions relating to these high energy particles. Of key importance are the relation-ship between solar flares and energetic particles and the acceleration and loss mechanism of outer radiation belt electrons. REPTile, operating in a highly inclined low earth orbit, will measure differential fluxes of relativistic electrons in the energy range of 0.5-3.5 MeV and pro-tons in 10-40 MeV. The Colorado Student Space Weather Experiment cubesat will be designed, integrated and testing by students at the University of Colorado under the oversight of pro-fessional engineers with the Laboratory of Atmospheric and Space Physics who have extensive space hardware experience. Our design philosophy is to use commercially off the shelf (COTS) parts where available and only engage in detailed designed where COTS parts cannot meet the system needs. The top level science requirements for the mission have driven the system and subsystem level performance requirements and the specific design choices such as a passive magnetic attitude system and instrument design. In this paper we will present details of the CSSWE design and management approach. Specifically we will discuss the top level science requirements for the mission and show that these measurements are novel and will address open questions in the scientific community. The overall system architecture resulting from a flow-down of these requirements will be presented with a focus on the novel aspects of the system including the instrument design. Finally we will discuss how this project is organized and man-aged as part of the Department of Aerospace Engineering graduate projects course sequence along with the integration of professional engineers in the program. It is often underappreciated that the management of a student project, given the transient nature of the students in the program, is more challenging than many of the technical aspects. We will discuss our process to managing this project risk along with our pedagological philosophy for student learning and its relationship to a small satellite program.
Rhenter, Pauline; Tinland, Aurélie; Grard, Julien; Laval, Christian; Mantovani, Jean; Moreau, Delphine; Vidaud, Benjamin; Greacen, Tim; Auquier, Pascal; Girard, Vincent
2018-04-19
In 2006, a local collective combating homelessness set up an 'experimental squat' in an abandoned building in Marseille, France's second largest city. They envisioned the squat as an alternative to conventional health and social services for individuals experiencing long-term homelessness and severe psychiatric disorders. Building on what they learned from the squat, some then joined a larger coalition that succeeded in convincing national government decision-makers to develop a scientific, intervention-based programme based on the Housing First model. This article analyses the political process through which social movement activism gave way to support for a state-funded programme for homeless people with mental disorders. A qualitative study of this political process was conducted between 2006 and 2014, using a hybrid theoretical perspective that combines attention to both top-down and bottom-up actions with a modified Advocacy Coalition Framework. In addition to document analysis of published and grey literature linked to the policy process, researchers drew on participant observation and observant participation of the political process. Data analysis consisted primarily of a thematic analysis of field-notes and semi-structured interviews with 65 relevant actors. A coalition of local activists, state officials and national service providers transformed knowledge about a local innovation (an experimental therapeutic squat) into the rationale for a national, scientifically based project consisting of a randomised controlled trial of four state-supported Housing First sites, costing several million euros. The coalition's strategy was two-pronged, namely to defend a social cause (the right to housing) and to promote a scientifically validated means of realising positive outcomes (housing tenure) and cost-effectiveness (reduced hospitalisation costs). Activists' self-agency, especially that of making themselves audible to public authorities, was enhanced by the coalition's ability to seize 'windows of opportunities' to their advantage. However, in contrast to the United States and Canadian Housing First contexts, which are driven by implementation science and related approaches, it was grassroots activists who promoted a scientific-technical approach among government officials unfamiliar with evidence-based practices in France. The windows of opportunity nevertheless failed to attract participation of those most in need of housing, raising the question of whether and how marginalised and/or subordinate groups can be integrated into collaborative research when a social movement-driven innovation turns into a scientific approach. The current clinical trial number is NCT01570712 . Registered July 17, 2011. First patient enrolled August 18, 2011.
Laser-driven dielectric electron accelerator for radiobiology researches
NASA Astrophysics Data System (ADS)
Koyama, Kazuyoshi; Matsumura, Yosuke; Uesaka, Mitsuru; Yoshida, Mitsuhiro; Natsui, Takuya; Aimierding, Aimidula
2013-05-01
In order to estimate the health risk associated with a low dose radiation, the fundamental process of the radiation effects in a living cell must be understood. It is desired that an electron bunch or photon pulse precisely knock a cell nucleus and DNA. The required electron energy and electronic charge of the bunch are several tens keV to 1 MeV and 0.1 fC to 1 fC, respectively. The smaller beam size than micron is better for the precise observation. Since the laser-driven dielectric electron accelerator seems to suite for the compact micro-beam source, a phase-modulation-masked-type laser-driven dielectric accelerator was studied. Although the preliminary analysis made a conclusion that a grating period and an electron speed must satisfy the matching condition of LG/λ = v/c, a deformation of a wavefront in a pillar of the grating relaxed the matching condition and enabled the slow electron to be accelerated. The simulation results by using the free FDTD code, Meep, showed that the low energy electron of 20 keV felt the acceleration field strength of 20 MV/m and gradually felt higher field as the speed was increased. Finally the ultra relativistic electron felt the field strength of 600 MV/m. The Meep code also showed that a length of the accelerator to get energy of 1 MeV was 3.8 mm, the required laser power and energy were 11 GW and 350 mJ, respectively. Restrictions on the laser was eased by adopting sequential laser pulses. If the accelerator is illuminated by sequential N pulses, the pulse power, pulse width and the pulse energy are reduced to 1/N, 1/N and 1/N2, respectively. The required laser power per pulse is estimated to be 2.2 GW when ten pairs of sequential laser pulse is irradiated.
Table-top laser-driven ultrashort electron and X-ray source: the CIBER-X source project
NASA Astrophysics Data System (ADS)
Girardeau-Montaut, Jean-Pierre; Kiraly, Bélà; Girardeau-Montaut, Claire; Leboutet, Hubert
2000-09-01
We report on the development of a new laser-driven table-top ultrashort electron and X-ray source, also called the CIBER-X source . X-ray pulses are produced by a three-step process which consists of the photoelectron emission from a thin metallic photocathode illuminated by 16 ps duration laser pulses at 213 nm. The e-gun is a standard Pierce diode electrode type, in which electrons are accelerated by a cw electric field of ˜11 MV/m up to a hole made in the anode. The photoinjector produces a train of 70-80 keV electron pulses of ˜0.5 nC and 20 A peak current at a repetition rate of 10 Hz. The electrons are then transported outside the diode along a path of 20 cm length, and are focused onto a target of thullium by magnetic fields produced by two electromagnetic coils. X-rays are then produced by the impact of electrons on the target. Simulations of geometrical, electromagnetic fields and energetic characteristics of the complete source were performed previously with the assistance of the code PIXEL1 also developed at the laboratory. Finally, experimental electron and X-ray performances of the CIBER-X source as well as its application to very low dose imagery are presented and discussed. source Compacte d' Impulsions Brèves d' Electrons et de Rayons X
NASA Astrophysics Data System (ADS)
Stephen, Diggs; Lee, Allison
2014-05-01
The National Science Foundation's EarthCube initiative aims to create a community-driven data and knowledge management system that will allow for unprecedented data sharing across the geosciences. More than 2,500 participants through forums, work groups, EarthCube events, and virtual and in-person meetings have participated. The individuals that have engaged represent the core earth-system sciences of solid Earth, Atmosphere, Oceans, and Polar Sciences. EarthCube is a cornerstone of NSF's Cyberinfrastructure for the 21st Century (CIF21) initiative, whose chief objective is to develop a U.S. nationwide, sustainable, and community-based cyberinfrastructure for researchers and educators. Increasingly effective community-driven cyberinfrastructure allows global data discovery and knowledge management and achieves interoperability and data integration across scientific disciplines. There is growing convergence across scientific and technical communities on creating a networked, knowledge management system and scientific data cyberinfrastructure that integrates Earth system and human dimensions data in an open, transparent, and inclusive manner. EarthCube does not intend to replicate these efforts, but build upon them. An agile development process is underway for the development and governance of EarthCube. The agile approach was deliberately selected due to its iterative and incremental nature while promoting adaptive planning and rapid and flexible response. Such iterative deployment across a variety of EarthCube stakeholders encourages transparency, consensus, accountability, and inclusiveness.
Acceleration during magnetic reconnection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beresnyak, Andrey; Li, Hui
2015-07-16
The presentation begins with colorful depictions of solar x-ray flares and references to pulsar phenomena. Plasma reconnection is complex, could be x-point dominated or turbulent, field lines could break due to either resistivity or non-ideal effects, such as electron pressure anisotropy. Electron acceleration is sometimes observed, and sometimes not. One way to study this complex problem is to have many examples of the process (reconnection) and compare them; the other way is to simplify and come to something robust. Ideal MHD (E=0) turbulence driven by magnetic energy is assumed, and the first-order acceleration is sought. It is found that dissipationmore » in big (length >100 ion skin depths) current sheets is universal and independent on microscopic resistivity and the mean imposed field; particles are regularly accelerated while experiencing curvature drift in flows driven by magnetic tension. One example of such flow is spontaneous reconnection. This explains hot electrons with a power-law tail in solar flares, as well as ultrashort time variability in some astrophysical sources.« less
Kluge, T.; Rödel, C.; Rödel, M.; ...
2017-10-23
In this paper, we study the feasibility of using small angle X-ray scattering (SAXS) as a new experimental diagnostic for intense laser-solid interactions. By using X-ray pulses from a hard X-ray free electron laser, we can simultaneously achieve nanometer and femtosecond resolution of laser-driven samples. This is an important new capability for the Helmholtz international beamline for extreme fields at the high energy density endstation currently built at the European X-ray free electron laser. We review the relevant SAXS theory and its application to transient processes in solid density plasmas and report on first experimental results that confirm the feasibilitymore » of the method. Finally, we present results of two test experiments where the first experiment employs ultra-short laser pulses for studying relativistic laser plasma interactions, and the second one focuses on shock compression studies with a nanosecond laser system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kluge, T.; Rödel, C.; Rödel, M.
In this paper, we study the feasibility of using small angle X-ray scattering (SAXS) as a new experimental diagnostic for intense laser-solid interactions. By using X-ray pulses from a hard X-ray free electron laser, we can simultaneously achieve nanometer and femtosecond resolution of laser-driven samples. This is an important new capability for the Helmholtz international beamline for extreme fields at the high energy density endstation currently built at the European X-ray free electron laser. We review the relevant SAXS theory and its application to transient processes in solid density plasmas and report on first experimental results that confirm the feasibilitymore » of the method. Finally, we present results of two test experiments where the first experiment employs ultra-short laser pulses for studying relativistic laser plasma interactions, and the second one focuses on shock compression studies with a nanosecond laser system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeung, M.; Rykovanov, S.; Bierbach, J.
2016-12-05
Energy coupling during relativistically intense laser–matter interactions is encoded in the attosecond motion of strongly driven electrons at the pre-formed plasma–vacuum boundary. Studying and controlling this motion can reveal details about the microscopic processes that govern a vast array of light–matter interaction phenomena, including those at the forefront of extreme laser–plasma science such as laser-driven ion acceleration, bright attosecond pulse generation and efficient energy coupling for the generation and study of warm dense matter. Here in this paper, we experimentally demonstrate that by precisely adjusting the relative phase of an additional laser beam operating at the second harmonic of themore » driving laser it is possible to control the trajectories of relativistic electron bunches formed during the interaction with a solid target at the attosecond scale. Finally, we observe significant enhancements in the resulting high-harmonic yield, suggesting potential applications for sources of ultra-bright, extreme ultraviolet attosecond radiation to be used in atomic and molecular pump–probe experiments« less
Nonthermal Radiation Processes in Interplanetary Plasmas
NASA Astrophysics Data System (ADS)
Chian, A. C. L.
1990-11-01
RESUMEN. En la interacci6n de haces de electrones energeticos con plasmas interplanetarios, se excitan ondas intensas de Langmuir debido a inestabilidad del haz de plasma. Las ondas Langmuir a su vez interaccio nan con fluctuaciones de densidad de baja frecuencia para producir radiaciones. Si la longitud de las ondas de Langmujr exceden las condicio nes del umbral, se puede efectuar la conversi5n de modo no lineal a on- das electromagneticas a traves de inestabilidades parametricas. As se puede excitar en un plasma inestabilidades parametricas electromagneticas impulsadas por ondas intensas de Langmuir: (1) inestabilidades de decaimiento/fusi5n electromagnetica impulsadas por una bomba de Lang- muir que viaja; (2) inestabilidades dobles electromagneticas de decai- miento/fusi5n impulsadas por dos bombas de Langrnuir directamente opues- tas; y (3) inestabilidades de dos corrientes oscilatorias electromagne- ticas impulsadas por dos bombas de Langmuir de corrientes contrarias. Se concluye que las inestabilidades parametricas electromagneticas in- ducidas por las ondas de Langmuir son las fuentes posibles de radiacio- nes no termicas en plasmas interplanetarios. ABSTRACT: Nonthermal radio emissions near the local electron plasma frequency have been detected in various regions of interplanetary plasmas: solar wind, upstream of planetary bow shock, and heliopause. Energetic electron beams accelerated by solar flares, planetary bow shocks, and the terminal shock of heliosphere provide the energy source for these radio emissions. Thus, it is expected that similar nonthermal radiation processes may be responsible for the generation of these radio emissions. As energetic electron beams interact with interplanetary plasmas, intense Langmuir waves are excited due to a beam-plasma instability. The Langmuir waves then interact with low-frequency density fluctuations to produce radiations near the local electron plasma frequency. If Langmuir waves are of sufficiently large amplitude to exceed the thresfiold conditions, nonlinear mode conversion electromagnetic waves can be effected through parametric instabilities. A number of electromagnetic parametric instabilities driven by intense Langmuir waves can be excited in a plasma: (1) electromagnetic decay/fusion instabilities driven by a traveling Langmuir pump; (2) double electromagnetic decay/fusion instabilities driven by two oppositely directed Langmuir pumps; and (3) electromagnetic oscillating two-stream instabilities driven by two counterstreaming Langmuir pumps. It is concluded that the electromagnetic parametric instabilities induced by Langmuir waves are likely sources of nonthermal radiations in interplanetary plasmas. Keq ( : INTERPLANETARY MEDIUM - PLASMAS
THOR Turbulence Electron Analyser: TEA
NASA Astrophysics Data System (ADS)
Fazakerley, Andrew; Moore, Tom; Owen, Chris; Pollock, Craig; Wicks, Rob; Samara, Marilia; Rae, Jonny; Hancock, Barry; Kataria, Dhiren; Rust, Duncan
2016-04-01
Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. The Turbulence Electron Analyser (TEA) will measure the plasma electron populations in the mission's Regions of Interest. It will collect a 3D electron velocity distribution with cadences as short as 5 ms. The instrument will be capable of measuring energies up to 30 keV. TEA consists of multiple electrostatic analyser heads arranged so as to measure electrons arriving from look directions covering the full sky, i.e. 4 pi solid angle. The baseline concept is similar to the successful FPI-DES instrument currently operating on the MMS mission. TEA is intended to have a similar angular resolution, but a larger geometric factor. In comparison to earlier missions, TEA improves on the measurement cadence. For example, MMS FPI-DES routinely operates at 30 ms cadence. The objective of measuring distributions at rates as fast as 5 ms is driven by the mission's scientific requirements to resolve electron gyroscale size structures, where plasma heating and fluctuation dissipation is predicted to occur. TEA will therefore be capable of making measurements of the evolution of distribution functions across thin (a few km) current sheets travelling past the spacecraft at up to 600 km/s, of the Power Spectral Density of fluctuations of electron moments and of distributions fast enough to match frequencies with waves expected to be dissipating turbulence (e.g. with 100 Hz whistler waves).
A standard-driven approach for electronic submission to pharmaceutical regulatory authorities.
Lin, Ching-Heng; Chou, Hsin-I; Yang, Ueng-Cheng
2018-03-01
Using standards is not only useful for data interchange during the process of a clinical trial, but also useful for analyzing data in a review process. Any step, which speeds up approval of new drugs, may benefit patients. As a result, adopting standards for regulatory submission becomes mandatory in some countries. However, preparing standard-compliant documents, such as annotated case report form (aCRF), needs a great deal of knowledge and experience. The process is complex and labor-intensive. Therefore, there is a need to use information technology to facilitate this process. Instead of standardizing data after the completion of a clinical trial, this study proposed a standard-driven approach. This approach was achieved by implementing a computer-assisted "standard-driven pipeline (SDP)" in an existing clinical data management system. SDP used CDISC standards to drive all processes of a clinical trial, such as the design, data acquisition, tabulation, etc. RESULTS: A completed phase I/II trial was used to prove the concept and to evaluate the effects of this approach. By using the CDISC-compliant question library, aCRFs were generated automatically when the eCRFs were completed. For comparison purpose, the data collection process was simulated and the collected data was transformed by the SDP. This new approach reduced the missing data fields from sixty-two to eight and the controlled term mismatch field reduced from eight to zero during data tabulation. This standard-driven approach accelerated CRF annotation and assured data tabulation integrity. The benefits of this approach include an improvement in the use of standards during the clinical trial and a reduction in missing and unexpected data during tabulation. The standard-driven approach is an advanced design idea that can be used for future clinical information system development. Copyright © 2018 Elsevier Inc. All rights reserved.
Niu, Simiao; Wang, Xiaofeng; Yi, Fang; Zhou, Yu Sheng; Wang, Zhong Lin
2015-01-01
Human biomechanical energy is characterized by fluctuating amplitudes and variable low frequency, and an effective utilization of such energy cannot be achieved by classical energy-harvesting technologies. Here we report a high-efficient self-charging power system for sustainable operation of mobile electronics exploiting exclusively human biomechanical energy, which consists of a high-output triboelectric nanogenerator, a power management circuit to convert the random a.c. energy to d.c. electricity at 60% efficiency, and an energy storage device. With palm tapping as the only energy source, this power unit provides a continuous d.c. electricity of 1.044 mW (7.34 W m−3) in a regulated and managed manner. This self-charging unit can be universally applied as a standard ‘infinite-lifetime' power source for continuously driving numerous conventional electronics, such as thermometers, electrocardiograph system, pedometers, wearable watches, scientific calculators and wireless radio-frequency communication system, which indicates the immediate and broad applications in personal sensor systems and internet of things. PMID:26656252
Introduction to Agent Mining Interaction and Integration
NASA Astrophysics Data System (ADS)
Cao, Longbing
In recent years, more and more researchers have been involved in research on both agent technology and data mining. A clear disciplinary effort has been activated toward removing the boundary between them, that is the interaction and integration between agent technology and data mining. We refer this to agent mining as a new area. The marriage of agents and data mining is driven by challenges faced by both communities, and the need of developing more advanced intelligence, information processing and systems. This chapter presents an overall picture of agent mining from the perspective of positioning it as an emerging area. We summarize the main driving forces, complementary essence, disciplinary framework, applications, case studies, and trends and directions, as well as brief observation on agent-driven data mining, data mining-driven agents, and mutual issues in agent mining. Arguably, we draw the following conclusions: (1) agent mining emerges as a new area in the scientific family, (2) both agent technology and data mining can greatly benefit from agent mining, (3) it is very promising to result in additional advancement in intelligent information processing and systems. However, as a new open area, there are many issues waiting for research and development from theoretical, technological and practical perspectives.
Effects of excitation frequency on high-order terahertz sideband generation in semiconductors
NASA Astrophysics Data System (ADS)
Xie, Xiao-Tao; Zhu, Bang-Fen; Liu, Ren-Bao
2013-10-01
We theoretically investigate the effects of the excitation frequency on the plateau of high-order terahertz sideband generation (HSG) in semiconductors driven by intense terahertz (THz) fields. We find that the plateau of the sideband spectrum strongly depends on the detuning between the near-infrared laser field and the band gap. We use the quantum trajectory theory (three-step model) to understand the HSG. In the three-step model, an electron-hole pair is first excited by a weak laser, then driven by the strong THz field, and finally recombined to emit a photon with energy gain. When the laser is tuned below the band gap (negative detuning), the electron-hole generation is a virtual process that requires quantum tunneling to occur. When the energy gained by the electron-hole pair from the THz field is less than 3.17 times the ponderomotive energy (Up), the electron and the hole can be driven to the same position and recombined without quantum tunneling, so that the HSG will have large probability amplitude. This leads to a plateau feature of the HSG spectrum with a high-frequency cutoff at about 3.17Up above the band gap. Such a plateau feature is similar to the case of high-order harmonics generation in atoms where electrons have to overcome the binding energy to escape the atomic core. A particularly interesting excitation condition in HSG is that the laser can be tuned above the band gap (positive detuning), corresponding to the unphysical ‘negative’ binding energy in atoms for high-order harmonic generation. Now the electron-hole pair is generated by real excitation, but the recombination process can be real or virtual depending on the energy gained from the THz field, which determines the plateau feature in HSG. Both the numerical calculation and the quantum trajectory analysis reveal that for positive detuning, the HSG plateau cutoff depends on the frequency of the excitation laser. In particular, when the laser is tuned more than 3.17Up above the band gap, the HSG spectrum presents no plateau feature but instead sharp peaks near the band edge and near the excitation frequency.
Lakeside: Merging Urban Design with Scientific Analysis
Guzowski, Leah; Catlett, Charlie; Woodbury, Ed
2018-01-16
Researchers at the U.S. Department of Energy's Argonne National Laboratory and the University of Chicago are developing tools that merge urban design with scientific analysis to improve the decision-making process associated with large-scale urban developments. One such tool, called LakeSim, has been prototyped with an initial focus on consumer-driven energy and transportation demand, through a partnership with the Chicago-based architectural and engineering design firm Skidmore, Owings & Merrill, Clean Energy Trust and developer McCaffery Interests. LakeSim began with the need to answer practical questions about urban design and planning, requiring a better understanding about the long-term impact of design decisions on energy and transportation demand for a 600-acre development project on Chicago's South Side - the Chicago Lakeside Development project.
Orbital and spin dynamics of intraband electrons in quantum rings driven by twisted light.
Quinteiro, G F; Tamborenea, P I; Berakdar, J
2011-12-19
We theoretically investigate the effect that twisted light has on the orbital and spin dynamics of electrons in quantum rings possessing sizable Rashba spin-orbit interaction. The system Hamiltonian for such a strongly inhomogeneous light field exhibits terms which induce both spin-conserving and spin-flip processes. We analyze the dynamics in terms of the perturbation introduced by a weak light field on the Rasha electronic states, and describe the effects that the orbital angular momentum as well as the inhomogeneous character of the beam have on the orbital and the spin dynamics.
Resonant Production of Sterile Neutrinos in the Early Universe
NASA Astrophysics Data System (ADS)
Gilbert, Lauren; Grohs, Evan; Fuller, George M.
2016-06-01
This study examines the cosmological impacts of a light resonantly produced sterile neutrino in the early universe. Such a neutrino could be produced through lepton number-driven Mikheyev-Smirnov-Wolfenstein (MSW) conversion of active neutrinos around big bang nucleosynthesis (BBN), resulting in a non-thermal spectrum of both sterile and electron neutrinos. During BBN, the neutron-proton ratio depends sensitively on the electron neutrino flux. If electron neutrinos are being converted to sterile neutrinos, this makes the n/p ratio a probe of possible new physics. We use observations of primordial Yp and D/H to place limits on this process.
Advanced Fabrication Processes for Superconducting Very Large Scale Integrated Circuits
2015-10-13
transistors. There are several reasons for this gigantic disparity: insufficient funding and lack of profit-driven investments in superconductor ...Inductance of circuit structures for MIT LL superconductor electronics fabrication process with 8 niobium layers,” IEEE Trans. Appl. Supercond., vol...vol. 25, No. 3, 1301704, June 2015. [7] V. Ambegaokar and A. Baratoff, “Tunneling between superconductors ,” Phys. Rev. Lett., vol. 10, no. 11, pp
NASA Astrophysics Data System (ADS)
Horký, Miroslav; Omura, Yoshiharu; Santolík, Ondřej
2018-04-01
This paper presents the wave mode conversion between electrostatic and electromagnetic waves on the plasma density gradient. We use 2-D electromagnetic code KEMPO2 implemented with the generation of density gradient to simulate such a conversion process. In the dense region, we use ring beam instability to generate electron Bernstein waves and we study the temporal evolution of wave spectra, velocity distributions, Poynting flux, and electric and magnetic energies to observe the wave mode conversion. Such a conversion process can be a source of electromagnetic emissions which are routinely measured by spacecraft on the plasmapause density gradient.
Diffraction and microscopy with attosecond electron pulse trains
NASA Astrophysics Data System (ADS)
Morimoto, Yuya; Baum, Peter
2018-03-01
Attosecond spectroscopy1-7 can resolve electronic processes directly in time, but a movie-like space-time recording is impeded by the too long wavelength ( 100 times larger than atomic distances) or the source-sample entanglement in re-collision techniques8-11. Here we advance attosecond metrology to picometre wavelength and sub-atomic resolution by using free-space electrons instead of higher-harmonic photons1-7 or re-colliding wavepackets8-11. A beam of 70-keV electrons at 4.5-pm de Broglie wavelength is modulated by the electric field of laser cycles into a sequence of electron pulses with sub-optical-cycle duration. Time-resolved diffraction from crystalline silicon reveals a < 10-as delay of Bragg emission and demonstrates the possibility of analytic attosecond-ångström diffraction. Real-space electron microscopy visualizes with sub-light-cycle resolution how an optical wave propagates in space and time. This unification of attosecond science with electron microscopy and diffraction enables space-time imaging of light-driven processes in the entire range of sample morphologies that electron microscopy can access.
In situ observation of shear-driven amorphization in silicon crystals.
He, Yang; Zhong, Li; Fan, Feifei; Wang, Chongmin; Zhu, Ting; Mao, Scott X
2016-10-01
Amorphous materials are used for both structural and functional applications. An amorphous solid usually forms under driven conditions such as melt quenching, irradiation, shock loading or severe mechanical deformation. Such extreme conditions impose significant challenges on the direct observation of the amorphization process. Various experimental techniques have been used to detect how the amorphous phases form, including synchrotron X-ray diffraction, transmission electron microscopy (TEM) and Raman spectroscopy, but a dynamic, atomistic characterization has remained elusive. Here, by using in situ high-resolution TEM (HRTEM), we show the dynamic amorphization process in silicon nanocrystals during mechanical straining on the atomic scale. We find that shear-driven amorphization occurs in a dominant shear band starting with the diamond-cubic (dc) to diamond-hexagonal (dh) phase transition and then proceeds by dislocation nucleation and accumulation in the newly formed dh-Si phase. This process leads to the formation of an amorphous Si (a-Si) band, embedded with dh-Si nanodomains. The amorphization of dc-Si via an intermediate dh-Si phase is a previously unknown pathway of solid-state amorphization.
Data-Driven Exercises for Chemistry: A New Digital Collection
ERIC Educational Resources Information Center
Grubbs, W. Tandy
2007-01-01
The analysis presents a new digital collection for various data-driven exercises that are used for teaching chemistry to the students. Such methods are expected to help the students to think in a more scientific manner.
The SISMA Project: A pre-operative seismic hazard monitoring system.
NASA Astrophysics Data System (ADS)
Massimiliano Chersich, M. C.; Amodio, A. A. Angelo; Francia, A. F. Andrea; Sparpaglione, C. S. Claudio
2009-04-01
Galileian Plus is currently leading the development, in collaboration with several Italian Universities, of the SISMA (Seismic Information System for Monitoring and Alert) Pilot Project financed by the Italian Space Agency. The system is devoted to the continuous monitoring of the seismic risk and is addressed to support the Italian Civil Protection decisional process. Completion of the Pilot Project is planned at the beginning of 2010. Main scientific paradigm of SISMA is an innovative deterministic approach integrating geophysical models, geodesy and active tectonics. This paper will give a general overview of project along with its progress status and a particular focus will be put on the architectural design details and to the software implementation choices. SISMA is built on top of a software infrastructure developed by Galileian Plus to integrate the scientific programs devoted to the update of seismic risk maps. The main characteristics of the system may be resumed as follow: automatic download of input data; integration of scientific programs; definition and scheduling of chains of processes; monitoring and control of the system through a graphical user interface (GUI); compatibility of the products with ESRI ArcGIS, by mean of post-processing conversion. a) automatic download of input data SISMA needs input data such as GNSS observations, updated seismic catalogue, SAR satellites orbits, etc. that are periodically updated and made available from remote servers through FTP and HTTP. This task is accomplished by a dedicated user configurable component. b) integration of scientific programs SISMA integrates many scientific programs written in different languages (Fortran, C, C++, Perl and Bash) and running into different operating systems. This design requirements lead to the development of a distributed system which is platform independent and is able to run any terminal-based program following few simple predefined rules. c) definition and scheduling of chains of processes Processes are bound each other, in the sense that the output of process "A" should be passed as input to process "B". In this case the process "B" must run automatically as soon as the required input is ready. In SISMA this issue is handled with the "data-driven" activation concept allowing specifying that a process should be started as soon as the needed input datum has been made available in the archive. Moreover SISMA may run processes on a "time-driven" base. The infrastructure of SISMA provides a configurable scheduler allowing the user to define the start time and the periodicity of such processes. d) monitoring and control The operator of the system needs to monitor and control every process running in the system. The SISMA infrastructure allows, through its GUI, the user to: view log messages of running and old processes; stop running processes; monitor processes executions; monitor resource status (available ram, network reachability, and available disk space) for every machine in the system. e) compatibility with ESRI Shapefiles Nearly all the SISMA data has some geographic information, and it is useful to integrate it in a Geographic Information System (GIS). Processors output are georeferred, but they are generated as ASCII files in a proprietary format, and thus cannot directly loaded in a GIS. The infrastructures provides a simple framework for adding filters that reads the data in the proprietary format and converts it to ESRI Shapefile format.
Ball driven type MEMS SAD for artillery fuse
NASA Astrophysics Data System (ADS)
Seok, Jin Oh; Jeong, Ji-hun; Eom, Junseong; Lee, Seung S.; Lee, Chun Jae; Ryu, Sung Moon; Oh, Jong Soo
2017-01-01
The SAD (safety and arming device) is an indispensable fuse component that ensures safe and reliable performance during the use of ammunition. Because the application of electronic devices for smart munitions is increasing, miniaturization of the SAD has become one of the key issues for next-generation artillery fuses. Based on MEMS technology, various types of miniaturized SADs have been proposed and fabricated. However, none of them have been reported to have been used in actual munitions due to their lack of high impact endurance and complicated explosive train arrangements. In this research, a new MEMS SAD using a ball driven mechanism, is successfully demonstrated based on a UV LIGA (lithography, electroplating and molding) process. Unlike other MEMS SADs, both high impact endurance and simple structure were achieved by using a ball driven mechanism. The simple structural design also simplified the fabrication process and increased the processing yield. The ball driven type MEMS SAD performed successfully under the desired safe and arming conditions of a spin test and showed fine agreement with the FEM simulation result, conducted prior to its fabrication. A field test was also performed with a grenade launcher to evaluate the SAD performance in the firing environment. All 30 of the grenade samples equipped with the proposed MEMS SAD operated successfully under the high-G setback condition.
Molecular alignment effect on the photoassociation process via a pump-dump scheme.
Wang, Bin-Bin; Han, Yong-Chang; Cong, Shu-Lin
2015-09-07
The photoassociation processes via the pump-dump scheme for the heternuclear (Na + H → NaH) and the homonuclear (Na + Na → Na2) molecular systems are studied, respectively, using the time-dependent quantum wavepacket method. For both systems, the initial atom pair in the continuum of the ground electronic state (X(1)Σ(+)) is associated into the molecule in the bound states of the excited state (A(1)Σ(+)) by the pump pulse. Then driven by a time-delayed dumping pulse, the prepared excited-state molecule can be transferred to the bound states of the ground electronic state. It is found that the pump process can induce a superposition of the rovibrational levels |v, j〉 on the excited state, which can lead to the field-free alignment of the excited-state molecule. The molecular alignment can affect the dumping process by varying the effective coupling intensity between the two electronic states or by varying the population transfer pathways. As a result, the final population transferred to the bound states of the ground electronic state varies periodically with the delay time of the dumping pulse.
Molecular alignment effect on the photoassociation process via a pump-dump scheme
NASA Astrophysics Data System (ADS)
Wang, Bin-Bin; Han, Yong-Chang; Cong, Shu-Lin
2015-09-01
The photoassociation processes via the pump-dump scheme for the heternuclear (Na + H → NaH) and the homonuclear (Na + Na → Na2) molecular systems are studied, respectively, using the time-dependent quantum wavepacket method. For both systems, the initial atom pair in the continuum of the ground electronic state (X1Σ+) is associated into the molecule in the bound states of the excited state (A1Σ+) by the pump pulse. Then driven by a time-delayed dumping pulse, the prepared excited-state molecule can be transferred to the bound states of the ground electronic state. It is found that the pump process can induce a superposition of the rovibrational levels |v, j> on the excited state, which can lead to the field-free alignment of the excited-state molecule. The molecular alignment can affect the dumping process by varying the effective coupling intensity between the two electronic states or by varying the population transfer pathways. As a result, the final population transferred to the bound states of the ground electronic state varies periodically with the delay time of the dumping pulse.
NASA Technical Reports Server (NTRS)
Carnahan, Richard S., Jr.; Corey, Stephen M.; Snow, John B.
1989-01-01
Applications of rapid prototyping and Artificial Intelligence techniques to problems associated with Space Station-era information management systems are described. In particular, the work is centered on issues related to: (1) intelligent man-machine interfaces applied to scientific data user support, and (2) the requirement that intelligent information management systems (IIMS) be able to efficiently process metadata updates concerning types of data handled. The advanced IIMS represents functional capabilities driven almost entirely by the needs of potential users. Space Station-era scientific data projected to be generated is likely to be significantly greater than data currently processed and analyzed. Information about scientific data must be presented clearly, concisely, and with support features to allow users at all levels of expertise efficient and cost-effective data access. Additionally, mechanisms for allowing more efficient IIMS metadata update processes must be addressed. The work reported covers the following IIMS design aspects: IIMS data and metadata modeling, including the automatic updating of IIMS-contained metadata, IIMS user-system interface considerations, including significant problems associated with remote access, user profiles, and on-line tutorial capabilities, and development of an IIMS query and browse facility, including the capability to deal with spatial information. A working prototype has been developed and is being enhanced.
Christensen, P A; Mashhadani, Z T A W; Md Ali, Abd Halim Bin
2018-04-04
This paper reports the application of in situ reflectance Fourier Transform InfraRed spectroscopy to the study of the thermal and plasma driven reaction of IsoPropyl Alcohol (IPA) at SnO2-coated Macor, the latter a ceramic material comprised of the oxides of Al, Mg and Si. The data so obtained were compared to those obtained using uncoated Macor. When uncoated Macor was employed, no reaction of the IPA was observed up to 600 °C in the thermal experiments, whereas a number of products were observed in the plasma-driven experiments. The results obtained using coated Macor were somewhat different, with no reaction taking place in the plasma-driven experiments, whilst significant reaction took place in the thermally-driven process. In the latter experiments, the chemistry was observed to show four distinct temperature regions, with electron injection into the conduction band of the SnO2 playing a significant role, culminating in the production of CO2. The data were interpreted in terms of a model in which physisorbed IPA was converted to two forms of isopropoxide: this was converted to acetone and acetaldehyde via adsorbed enolate. The data clearly support the catalytic activity of Macor in the plasma-driven conversion of IPA.
A High-Average-Power Free Electron Laser for Microfabrication and Surface Applications
NASA Technical Reports Server (NTRS)
Dylla, H. F.; Benson, S.; Bisognano, J.; Bohn, C. L.; Cardman, L.; Engwall, D.; Fugitt, J.; Jordan, K.; Kehne, D.; Li, Z.;
1995-01-01
CEBAF has developed a comprehensive conceptual design of an industrial user facility based on a kilowatt ultraviolet (UV) (160-1000 mm) and infrared (IR) (2-25 micron) free electron laser (FEL) driven by a recirculating, energy recovering 200 MeV superconducting radio frequency (SRF) accelerator. FEL users, CEBAF's partners in the Lase Processing Consortium, including AT&T, DuPont, IBM, Northrop Grumman, 3M, and Xerox, are developing applications such as metal, ceramic, and electronic material micro-fabrication and polymer and metal surface processing, with the overall effort leading to later scale-up to industrial systems at 50-100 kW. Representative applications are described. The proposed high-average-power FEL overcomes limitations of conventional laser sources in available power, cost-effectiveness, tunability, and pulse structure.
Electron Bulk Acceleration and Thermalization at Earth's Quasiperpendicular Bow Shock.
Chen, L-J; Wang, S; Wilson, L B; Schwartz, S; Bessho, N; Moore, T; Gershman, D; Giles, B; Malaspina, D; Wilder, F D; Ergun, R E; Hesse, M; Lai, H; Russell, C; Strangeway, R; Torbert, R B; F-Vinas, A; Burch, J; Lee, S; Pollock, C; Dorelli, J; Paterson, W; Ahmadi, N; Goodrich, K; Lavraud, B; Le Contel, O; Khotyaintsev, Yu V; Lindqvist, P-A; Boardsen, S; Wei, H; Le, A; Avanov, L
2018-06-01
Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating.
Electron Bulk Acceleration and Thermalization at Earth's Quasiperpendicular Bow Shock
NASA Astrophysics Data System (ADS)
Chen, L.-J.; Wang, S.; Wilson, L. B.; Schwartz, S.; Bessho, N.; Moore, T.; Gershman, D.; Giles, B.; Malaspina, D.; Wilder, F. D.; Ergun, R. E.; Hesse, M.; Lai, H.; Russell, C.; Strangeway, R.; Torbert, R. B.; F.-Vinas, A.; Burch, J.; Lee, S.; Pollock, C.; Dorelli, J.; Paterson, W.; Ahmadi, N.; Goodrich, K.; Lavraud, B.; Le Contel, O.; Khotyaintsev, Yu. V.; Lindqvist, P.-A.; Boardsen, S.; Wei, H.; Le, A.; Avanov, L.
2018-06-01
Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating.
Electron bulk acceleration and thermalization at Earth's quasi-perpendicular bow shock
NASA Astrophysics Data System (ADS)
Chen, L.-J.; Wang, S.; Wilson, L. B., III; Schwartz, S. J.; Bessho, N.; Moore, T. E.; Gershman, D. J.; Giles, B. L.; Malaspina, D. M.; Wilder, F. D.; Ergun, R. E.; Hesse, M.; Lai, H.; Russell, C. T.; Strangeway, R. J.; Torbert, R. B.; Vinas, A. F.-; Burch, J. L.; Lee, S.; Pollock, C.; Dorelli, J.; Paterson, W. R.; Ahmadi, N.; Goodrich, K. A.; Lavraud, B.; Le Contel, O.; Khotyaintsev, Yu. V.; Lindqvist, P.-A.; Boardsen, S.; Wei, H.; Le, A.; Avanov, L. A.
2018-05-01
Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating.
Light-field-driven currents in graphene
NASA Astrophysics Data System (ADS)
Higuchi, Takuya; Heide, Christian; Ullmann, Konrad; Weber, Heiko B.; Hommelhoff, Peter
2017-10-01
The ability to steer electrons using the strong electromagnetic field of light has opened up the possibility of controlling electron dynamics on the sub-femtosecond (less than 10-15 seconds) timescale. In dielectrics and semiconductors, various light-field-driven effects have been explored, including high-harmonic generation, sub-optical-cycle interband population transfer and the non-perturbative change of the transient polarizability. In contrast, much less is known about light-field-driven electron dynamics in narrow-bandgap systems or in conductors, in which screening due to free carriers or light absorption hinders the application of strong optical fields. Graphene is a promising platform with which to achieve light-field-driven control of electrons in a conducting material, because of its broadband and ultrafast optical response, weak screening and high damage threshold. Here we show that a current induced in monolayer graphene by two-cycle laser pulses is sensitive to the electric-field waveform, that is, to the exact shape of the optical carrier field of the pulse, which is controlled by the carrier-envelope phase, with a precision on the attosecond (10-18 seconds) timescale. Such a current, dependent on the carrier-envelope phase, shows a striking reversal of the direction of the current as a function of the driving field amplitude at about two volts per nanometre. This reversal indicates a transition of light-matter interaction from the weak-field (photon-driven) regime to the strong-field (light-field-driven) regime, where the intraband dynamics influence interband transitions. We show that in this strong-field regime the electron dynamics are governed by sub-optical-cycle Landau-Zener-Stückelberg interference, composed of coherent repeated Landau-Zener transitions on the femtosecond timescale. Furthermore, the influence of this sub-optical-cycle interference can be controlled with the laser polarization state. These coherent electron dynamics in graphene take place on a hitherto unexplored timescale, faster than electron-electron scattering (tens of femtoseconds) and electron-phonon scattering (hundreds of femtoseconds). We expect these results to have direct ramifications for band-structure tomography and light-field-driven petahertz electronics.
Light-field-driven currents in graphene.
Higuchi, Takuya; Heide, Christian; Ullmann, Konrad; Weber, Heiko B; Hommelhoff, Peter
2017-10-12
The ability to steer electrons using the strong electromagnetic field of light has opened up the possibility of controlling electron dynamics on the sub-femtosecond (less than 10 -15 seconds) timescale. In dielectrics and semiconductors, various light-field-driven effects have been explored, including high-harmonic generation, sub-optical-cycle interband population transfer and the non-perturbative change of the transient polarizability. In contrast, much less is known about light-field-driven electron dynamics in narrow-bandgap systems or in conductors, in which screening due to free carriers or light absorption hinders the application of strong optical fields. Graphene is a promising platform with which to achieve light-field-driven control of electrons in a conducting material, because of its broadband and ultrafast optical response, weak screening and high damage threshold. Here we show that a current induced in monolayer graphene by two-cycle laser pulses is sensitive to the electric-field waveform, that is, to the exact shape of the optical carrier field of the pulse, which is controlled by the carrier-envelope phase, with a precision on the attosecond (10 -18 seconds) timescale. Such a current, dependent on the carrier-envelope phase, shows a striking reversal of the direction of the current as a function of the driving field amplitude at about two volts per nanometre. This reversal indicates a transition of light-matter interaction from the weak-field (photon-driven) regime to the strong-field (light-field-driven) regime, where the intraband dynamics influence interband transitions. We show that in this strong-field regime the electron dynamics are governed by sub-optical-cycle Landau-Zener-Stückelberg interference, composed of coherent repeated Landau-Zener transitions on the femtosecond timescale. Furthermore, the influence of this sub-optical-cycle interference can be controlled with the laser polarization state. These coherent electron dynamics in graphene take place on a hitherto unexplored timescale, faster than electron-electron scattering (tens of femtoseconds) and electron-phonon scattering (hundreds of femtoseconds). We expect these results to have direct ramifications for band-structure tomography and light-field-driven petahertz electronics.
Ultra high-speed x-ray imaging of laser-driven shock compression using synchrotron light
NASA Astrophysics Data System (ADS)
Olbinado, Margie P.; Cantelli, Valentina; Mathon, Olivier; Pascarelli, Sakura; Grenzer, Joerg; Pelka, Alexander; Roedel, Melanie; Prencipe, Irene; Laso Garcia, Alejandro; Helbig, Uwe; Kraus, Dominik; Schramm, Ulrich; Cowan, Tom; Scheel, Mario; Pradel, Pierre; De Resseguier, Thibaut; Rack, Alexander
2018-02-01
A high-power, nanosecond pulsed laser impacting the surface of a material can generate an ablation plasma that drives a shock wave into it; while in situ x-ray imaging can provide a time-resolved probe of the shock-induced material behaviour on macroscopic length scales. Here, we report on an investigation into laser-driven shock compression of a polyurethane foam and a graphite rod by means of single-pulse synchrotron x-ray phase-contrast imaging with MHz frame rate. A 6 J, 10 ns pulsed laser was used to generate shock compression. Physical processes governing the laser-induced dynamic response such as elastic compression, compaction, pore collapse, fracture, and fragmentation have been imaged; and the advantage of exploiting the partial spatial coherence of a synchrotron source for studying low-density, carbon-based materials is emphasized. The successful combination of a high-energy laser and ultra high-speed x-ray imaging using synchrotron light demonstrates the potentiality of accessing complementary information from scientific studies of laser-driven shock compression.
Joly, Laure; Antoine, Rodolphe; Broyer, Michel; Lemoine, Jérôme; Dugourd, Philippe
2008-02-07
Electron detachment from peptide dianions is studied as a function of the laser wavelength. The first step for the detachment is a resonant electronic excitation of the dianions. Electronic excitation spectra are reported for three peptides, including gramicidin. A comparative study of the detachment yield for 13 peptides was performed at 260 nm and at 220 nm. At 260 nm, the detachment yield is mainly driven by the sum of the absorption coefficients of the aromatic amino acids that are contained in the peptide. At 220 nm, no direct relation is observed between the electron photodetachement yields and the sum of absorption efficiencies. At this wavelength, the sequence and the structure of the peptide may have an influence on the photodetachment process.
Injection and trapping of tunnel-ionized electrons into laser-produced wakes.
Pak, A; Marsh, K A; Martins, S F; Lu, W; Mori, W B; Joshi, C
2010-01-15
A method, which utilizes the large difference in ionization potentials between successive ionization states of trace atoms, for injecting electrons into a laser-driven wakefield is presented. Here a mixture of helium and trace amounts of nitrogen gas was used. Electrons from the K shell of nitrogen were tunnel ionized near the peak of the laser pulse and were injected into and trapped by the wake created by electrons from majority helium atoms and the L shell of nitrogen. The spectrum of the accelerated electrons, the threshold intensity at which trapping occurs, the forward transmitted laser spectrum, and the beam divergence are all consistent with this injection process. The experimental measurements are supported by theory and 3D OSIRIS simulations.
Particle Demagnetization in Collisionless Magnetic Reconnection
NASA Technical Reports Server (NTRS)
Hesse, Michael
2006-01-01
The dissipation mechanism of magnetic reconnection remains a subject of intense scientific interest. On one hand, one set of recent studies have shown that particle inertia-based processes, which include thermal and bulk inertial effects, provide the reconnection electric field in the diffusion region. In this presentation, we present analytical theory results, as well as 2.5 and three-dimensional PIC simulations of guide field magnetic reconnection. We will show that diffusion region scale sizes in moderate and large guide field cases are determined by electron Larmor radii, and that analytical estimates of diffusion region dimensions need to include description of the heat flux tensor. The dominant electron dissipation process appears to be based on thermal electron inertia, expressed through nongyrotropic electron pressure tensors. We will argue that this process remains viable in three dimensions by means of a detailed comparison of high resolution particle-in-cell simulations.
Data Needs and Modeling of the Upper Atmosphere
NASA Astrophysics Data System (ADS)
Brunger, M. J.; Campbell, L.
2007-04-01
We present results from our enhanced statistical equilibrium and time-step codes for atmospheric modeling. In particular we use these results to illustrate the role of electron-driven processes in atmospheric phenomena and the sensitivity of the model results to data inputs such as integral cross sections, dissociative recombination rates and chemical reaction rates.
Note on in situ (scanning) transmission electron microscopy study of liquid samples.
Jiang, Nan
2017-08-01
Liquid cell (scanning) transmission electron microscopy has been developed rapidly, using amorphous SiN x membranes as electron transparent windows. The current interpretations of electron beam effects are mainly based on radiolytic processes. In this note, additional effects of the electric field due to electron-beam irradiation are discussed. The electric field can be produced by the charge accumulation due to the emission of secondary and Auger electrons. Besides various beam-induced phenomena, such as nanoparticle precipitation and gas bubble formation and motion, two other effects need to be considered; one is the change of Gibbs free energy of nucleation and the other is the violation of Brownian motion due to ion drifting driven by the electric field. Copyright © 2017 Elsevier B.V. All rights reserved.
Electron Impact Excitation of the Electronic States of Water
NASA Astrophysics Data System (ADS)
Thorn, Penny; Diakomichalis, N.; Brunger, M. J.; Campbell, L.; Teubner, P. J. O.; Kato, H.; Makochekanwa, C.; Hoshino, M.; Tanaka, H.
2006-10-01
We report differential and integral cross sections for excitation of the lowest lying ^3B1, ^1B1, ^3A1 and ^1A1 electronic states of water. The energy range of these measurements is 15-50eV and the angular range of the DCS measurements is 10-90^o. From these DCS the corresponding ICS is calculated using a molecular phase shift analysis technique. Where possible, comparison is made to the results of available theory. One of the main objectives of this study is to perform statistical equilibrium calculations to determine if the origin of the OH Meinel bands in our atmosphere are due to electron driven processes.
TRIO (Triplet Ionospheric Observatory) Mission
NASA Astrophysics Data System (ADS)
Lee, D.; Seon, J.; Jin, H.; Kim, K.; Lee, J.; Jang, M.; Pak, S.; Kim, K.; Lin, R. P.; Parks, G. K.; Halekas, J. S.; Larson, D. E.; Eastwood, J. P.; Roelof, E. C.; Horbury, T. S.
2009-12-01
Triplets of identical cubesats will be built to carry out the following scientific objectives: i) multi-observations of ionospheric ENA (Energetic Neutral Atom) imaging, ii) ionospheric signature of suprathermal electrons and ions associated with auroral acceleration as well as electron microbursts, and iii) complementary measurements of magnetic fields for particle data. Each satellite, a cubesat for ion, neutral, electron, and magnetic fields (CINEMA), is equipped with a suprathermal electron, ion, neutral (STEIN) instrument and a 3-axis magnetometer of magnetoresistive sensors. TRIO is developed by three institutes: i) two CINEMA by Kyung Hee University (KHU) under the WCU program, ii) one CINEMA by UC Berkeley under the NSF support, and iii) three magnetometers by Imperial College, respectively. Multi-spacecraft observations in the STEIN instruments will provide i) stereo ENA imaging with a wide angle in local times, which are sensitive to the evolution of ring current phase space distributions, ii) suprathermal electron measurements with narrow spacings, which reveal the differential signature of accelerated electrons driven by Alfven waves and/or double layer formation in the ionosphere between the acceleration region and the aurora, and iii) suprathermal ion precipitation when the storm-time ring current appears. In addition, multi-spacecraft magnetic field measurements in low earth orbits will allow the tracking of the phase fronts of ULF waves, FTEs, and quasi-periodic reconnection events between ground-based magnetometer data and upstream satellite data.
Rapid development of Proteomic applications with the AIBench framework.
López-Fernández, Hugo; Reboiro-Jato, Miguel; Glez-Peña, Daniel; Méndez Reboredo, José R; Santos, Hugo M; Carreira, Ricardo J; Capelo-Martínez, José L; Fdez-Riverola, Florentino
2011-09-15
In this paper we present two case studies of Proteomics applications development using the AIBench framework, a Java desktop application framework mainly focused in scientific software development. The applications presented in this work are Decision Peptide-Driven, for rapid and accurate protein quantification, and Bacterial Identification, for Tuberculosis biomarker search and diagnosis. Both tools work with mass spectrometry data, specifically with MALDI-TOF spectra, minimizing the time required to process and analyze the experimental data. Copyright 2011 The Author(s). Published by Journal of Integrative Bioinformatics.
Theoretical Technology Research for ISTP/SOLARMAX
NASA Technical Reports Server (NTRS)
Ashour-Abdalla, Maha; Acuna, Mario (Technical Monitor)
2000-01-01
During the last decade, we have been developing theoretical tools to support the scientific objectives of the International Solar Terrestrial Physics (ISTP) program. Results from our mission-oriented theory program have contributed significantly to the development of predictive capabilities by using real upstream solar wind conditions as input to our models and forecasting events observed downstream near Earth. We also developed the capability to unravel the complex information contained in ion velocity distribution functions measured near the Earth to determine their origin and energization process. During solar maximum, solar flares and coronal mass ejections (CMEs) dominate the sun's activity. It is now widely accepted that the impact of CMEs (or magnetic clouds) with the Earth's magnetosphere is the cause of most magnetic storms during solar maximum. One important aspect of a CME is the occurrence of solar energetic particle (SEP) events. During these events, protons, electrons, and heavy ions of solar origin are accelerated to very high energies by shock waves driven out from the sun. We carried out a series of large-scale kinetic (LSK) simulations to model the effect of SEPs on the near-Earth environment and the accessibility of these high-energy particles to the inner magnetosphere. We present the results of these studies.
Powder-Collection System for Ultrasonic/Sonic Drill/Corer
NASA Technical Reports Server (NTRS)
Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Chang, Zensheu; Blake, David; Bryson, Charles
2005-01-01
A system for collecting samples of powdered rock has been devised for use in conjunction with an ultrasonic/sonic drill/corer (USDC) -- a lightweight, lowpower apparatus designed to cut into, and acquire samples of, rock or other hard material for scientific analysis. The USDC includes a drill bit, corer, or other tool bit, in which ultrasonic and sonic vibrations are excited by an electronically driven piezoelectric actuator. The USDC advances into the rock or other material of interest by means of a hammering action and a resulting chiseling action at the tip of the tool bit. The hammering and chiseling actions are so effective that unlike in conventional twist drilling, a negligible amount of axial force is needed to make the USDC advance into the material. Also unlike a conventional twist drill, the USDC operates without need for torsional restraint, lubricant, or a sharp bit. The USDC generates powder as a byproduct of the drilling or coring process. The purpose served by the present samplecollection system is to remove the powder from the tool-bit/rock interface and deliver the powder to one or more designated location(s) for analysis or storage
Linking the micro and macro: L-H transition dynamics and threshold physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malkov, M. A., E-mail: mmalkov@ucsd.edu; Diamond, P. H.; Miki, K.
2015-03-15
The links between the microscopic dynamics and macroscopic threshold physics of the L → H transition are elucidated. Emphasis is placed on understanding the physics of power threshold scalings, and especially on understanding the minimum in the power threshold as a function of density P{sub thr} (n). By extending a numerical 1D model to evolve both electron and ion temperatures, including collisional coupling, we find that the decrease in P{sub thr} (n) along the low-density branch is due to the combination of an increase in collisional electron-to-ion energy transfer and an increase in the heating fraction coupled to the ions.more » Both processes strengthen the edge diamagnetic electric field needed to lock in the mean electric field shear for the L→H transition. The increase in P{sub thr} (n) along the high-density branch is due to the increase with ion collisionality of damping of turbulence-driven shear flows. Turbulence driven shear flows are needed to trigger the transition by extracting energy from the turbulence. Thus, we identify the critical transition physics components of the separatrix ion heat flux and the zonal flow excitation. The model reveals a power threshold minimum in density scans as a crossover between the threshold decrease supported by an increase in heat fraction received by ions (directly or indirectly, from electrons) and a threshold increase, supported by the rise in shear flow damping. The electron/ion heating mix emerges as important to the transition, in that it, together with electron-ion coupling, regulates the edge diamagnetic electric field shear. The importance of possible collisionless electron-ion heat transfer processes is explained.« less
Spectral Interferometry with Electron Microscopes
Talebi, Nahid
2016-01-01
Interference patterns are not only a defining characteristic of waves, but also have several applications; characterization of coherent processes and holography. Spatial holography with electron waves, has paved the way towards space-resolved characterization of magnetic domains and electrostatic potentials with angstrom spatial resolution. Another impetus in electron microscopy has been introduced by ultrafast electron microscopy which uses pulses of sub-picosecond durations for probing a laser induced excitation of the sample. However, attosecond temporal resolution has not yet been reported, merely due to the statistical distribution of arrival times of electrons at the sample, with respect to the laser time reference. This is however, the very time resolution which will be needed for performing time-frequency analysis. These difficulties are addressed here by proposing a new methodology to improve the synchronization between electron and optical excitations through introducing an efficient electron-driven photon source. We use focused transition radiation of the electron as a pump for the sample. Due to the nature of transition radiation, the process is coherent. This technique allows us to perform spectral interferometry with electron microscopes, with applications in retrieving the phase of electron-induced polarizations and reconstructing dynamics of the induced vector potential. PMID:27649932
Analytics-Driven Lossless Data Compression for Rapid In-situ Indexing, Storing, and Querying
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, John; Arkatkar, Isha; Lakshminarasimhan, Sriram
2013-01-01
The analysis of scientific simulations is highly data-intensive and is becoming an increasingly important challenge. Peta-scale data sets require the use of light-weight query-driven analysis methods, as opposed to heavy-weight schemes that optimize for speed at the expense of size. This paper is an attempt in the direction of query processing over losslessly compressed scientific data. We propose a co-designed double-precision compression and indexing methodology for range queries by performing unique-value-based binning on the most significant bytes of double precision data (sign, exponent, and most significant mantissa bits), and inverting the resulting metadata to produce an inverted index over amore » reduced data representation. Without the inverted index, our method matches or improves compression ratios over both general-purpose and floating-point compression utilities. The inverted index is light-weight, and the overall storage requirement for both reduced column and index is less than 135%, whereas existing DBMS technologies can require 200-400%. As a proof-of-concept, we evaluate univariate range queries that additionally return column values, a critical component of data analytics, against state-of-the-art bitmap indexing technology, showing multi-fold query performance improvements.« less
Andreassi, Maria Grazia; Borghini, Andrea; Pulignani, Silvia; Baffigi, Federica; Fulgentini, Lorenzo; Koester, Petra; Cresci, Monica; Vecoli, Cecilia; Lamia, Debora; Russo, Giorgio; Panetta, Daniele; Tripodi, Maria; Gizzi, Leonida A; Labate, Luca
2016-09-01
Laser-driven electron accelerators are capable of producing high-energy electron bunches in shorter distances than conventional radiofrequency accelerators. To date, our knowledge of the radiobiological effects in cells exposed to electrons using a laser-plasma accelerator is still very limited. In this study, we compared the dose-response curves for micronucleus (MN) frequency and telomere length in peripheral blood lymphocytes exposed to laser-driven electron pulse and X-ray radiations. Additionally, we evaluated the effects on cell survival of in vitro tumor cells after exposure to laser-driven electron pulse compared to electron beams produced by a conventional radiofrequency accelerator used for intraoperative radiation therapy. Blood samples from two different donors were exposed to six radiation doses ranging from 0 to 2 Gy. Relative biological effectiveness (RBE) for micronucleus induction was calculated from the alpha coefficients for electrons compared to X rays (RBE = alpha laser/alpha X rays). Cell viability was monitored in the OVCAR-3 ovarian cancer cell line using trypan blue exclusion assay at day 3, 5 and 7 postirradiation (2, 4, 6, 8 and 10 Gy). The RBE values obtained by comparing the alpha values were 1.3 and 1.2 for the two donors. Mean telomere length was also found to be reduced in a significant dose-dependent manner after irradiation with both electrons and X rays in both donors studied. Our findings showed a radiobiological response as mirrored by the induction of micronuclei and shortening of telomere as well as by the reduction of cell survival in blood samples and cancer cells exposed in vitro to laser-generated electron bunches. Additional studies are needed to improve preclinical validation of the radiobiological characteristics and efficacy of laser-driven electron accelerators in the future.
The Impact of Heterogeneity and Awareness in Modeling Epidemic Spreading on Multiplex Networks
Scatà, Marialisa; Di Stefano, Alessandro; Liò, Pietro; La Corte, Aurelio
2016-01-01
In the real world, dynamic processes involving human beings are not disjoint. To capture the real complexity of such dynamics, we propose a novel model of the coevolution of epidemic and awareness spreading processes on a multiplex network, also introducing a preventive isolation strategy. Our aim is to evaluate and quantify the joint impact of heterogeneity and awareness, under different socioeconomic conditions. Considering, as case study, an emerging public health threat, Zika virus, we introduce a data-driven analysis by exploiting multiple sources and different types of data, ranging from Big Five personality traits to Google Trends, related to different world countries where there is an ongoing epidemic outbreak. Our findings demonstrate how the proposed model allows delaying the epidemic outbreak and increasing the resilience of nodes, especially under critical economic conditions. Simulation results, using data-driven approach on Zika virus, which has a growing scientific research interest, are coherent with the proposed analytic model. PMID:27848978
Principles Supporting the Perceptional Teaching of Physics: A ``Practical Teaching Philosophy''
NASA Astrophysics Data System (ADS)
Kurki-Suonio, Kaarle
2011-03-01
This article sketches a framework of ideas developed in the context of decades of physics teacher-education that was entitled the "perceptional approach". Individual learning and the scientific enterprise are interpreted as different manifestations of the same process aimed at understanding the natural and social worlds. The process is understood to possess the basic nature of perception, where empirical meanings are first born and then conceptualised. The accumulation of perceived gestalts in the "structure of the mind" leads to structural perception and the generation of conceptual hierarchies, which form a general principle for the expansion of our understanding. The process undergoes hierarchical development from early sensory perception to individual learning and finally to science. The process is discussed in terms of a three-process dynamic. Scientific and technological processes are driven by the interaction of the mind and nature. They are embedded in the social process due to the interaction of individual minds. These sub-processes are defined by their aims: The scientific process affects the mind and aims at understanding; the technological process affects nature and aims at human well-being; and the social process aims at mutual agreement and cooperation. In hierarchical development the interaction of nature and the mind gets structured into a "methodical cycle" by procedures involving conscious activities. Its intuitive nature is preserved due to subordination of the procedures to empirical meanings. In physics, two dimensions of hierarchical development are distinguished: Unification development gives rise to a generalisation hierarchy of concepts; Quantification development transfers the empirical meanings to quantities, laws and theories representing successive hierarchical levels of quantitative concepts. Consequences for physics teaching are discussed in principle, and in the light of examples and experiences from physics teacher education.
Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Yueming; DuChene, Joseph S.; Wang, Yi-Chung
After more than a decade, it is still unknown whether the plasmon-mediated growth of silver nanostructures can be extended to the synthesis of other noble metals, as the molecular mechanisms governing the growth process remain elusive. Herein, we demonstrate the plasmon-driven synthesis of gold nanoprisms and elucidate the details of the photochemical growth mechanism at the single-nanoparticle level. Our investigation reveals that the surfactant polyvinylpyrrolidone preferentially adsorbs along the nanoprism perimeter and serves as a photochemical relay to direct the anisotropic growth of gold nanoprisms. This discovery confers a unique function to polyvinylpyrrolidone that is fundamentally diferent from its widelymore » accepted role as a crystal-face-blocking ligand. Additionally, we find that nanocrystal twinning exerts a profound influence on the kinetics of this photochemical process by controlling the transport of plasmon-generated hot electrons to polyvinylpyrrolidone. These insights establish a molecular-level description of the underlying mechanisms regulating the plasmon-driven synthesis of gold nanoprisms.« less
Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Yueming; DuChene, Joseph S.; Wang, Yi-Chung
After more than a decade, it is still unknown whether the plasmon-mediated growth of silver nanostructures can be extended to the synthesis of other noble metals, as the molecular mechanisms governing the growth process remain elusive. In this paper, we demonstrate the plasmon-driven synthesis of gold nanoprisms and elucidate the details of the photochemical growth mechanism at the single-nanoparticle level. Our investigation reveals that the surfactant polyvinylpyrrolidone preferentially adsorbs along the nanoprism perimeter and serves as a photochemical relay to direct the anisotropic growth of gold nanoprisms. This discovery confers a unique function to polyvinylpyrrolidone that is fundamentally different frommore » its widely accepted role as a crystal-face-blocking ligand. Additionally, we find that nanocrystal twinning exerts a profound influence on the kinetics of this photochemical process by controlling the transport of plasmon-generated hot electrons to polyvinylpyrrolidone. Finally, these insights establish a molecular-level description of the underlying mechanisms regulating the plasmon-driven synthesis of gold nanoprisms.« less
Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis
Zhai, Yueming; DuChene, Joseph S.; Wang, Yi-Chung; ...
2016-07-04
After more than a decade, it is still unknown whether the plasmon-mediated growth of silver nanostructures can be extended to the synthesis of other noble metals, as the molecular mechanisms governing the growth process remain elusive. In this paper, we demonstrate the plasmon-driven synthesis of gold nanoprisms and elucidate the details of the photochemical growth mechanism at the single-nanoparticle level. Our investigation reveals that the surfactant polyvinylpyrrolidone preferentially adsorbs along the nanoprism perimeter and serves as a photochemical relay to direct the anisotropic growth of gold nanoprisms. This discovery confers a unique function to polyvinylpyrrolidone that is fundamentally different frommore » its widely accepted role as a crystal-face-blocking ligand. Additionally, we find that nanocrystal twinning exerts a profound influence on the kinetics of this photochemical process by controlling the transport of plasmon-generated hot electrons to polyvinylpyrrolidone. Finally, these insights establish a molecular-level description of the underlying mechanisms regulating the plasmon-driven synthesis of gold nanoprisms.« less
Current-Driven Hydrogen Desorption from Graphene: Experiment and Theory.
Gao, Li; Pal, Partha Pratim; Seideman, Tamar; Guisinger, Nathan P; Guest, Jeffrey R
2016-02-04
Electron-stimulated desorption of hydrogen from the graphene/SiC(0001) surface at room temperature was investigated with ultrahigh vacuum scanning tunneling microscopy and ab initio calculations in order to elucidate the desorption mechanisms and pathways. Two different desorption processes were observed. In the high electron energy regime (4-8 eV), the desorption yield is independent of both voltage and current, which is attributed to the direct electronic excitation of the C-H bond. In the low electron energy regime (2-4 eV), however, the desorption yield exhibits a threshold dependence on voltage, which is explained by the vibrational excitation of the C-H bond via transient ionization induced by inelastic tunneling electrons. The observed current independence of the desorption yield suggests that the vibrational excitation is a single-electron process. We also observed that the curvature of graphene dramatically affects hydrogen desorption. Desorption from concave regions was measured to be much more probable than desorption from convex regions in the low electron energy regime (∼2 eV), as would be expected from the identified desorption mechanism.
NASA Astrophysics Data System (ADS)
Čenčariková, Hana; Strečka, Jozef; Gendiar, Andrej
2018-04-01
An alternative model for a description of magnetization processes in coupled 2D spin-electron systems has been introduced and rigorously examined using the generalized decoration-iteration transformation and the corner transfer matrix renormalization group method. The model consists of localized Ising spins placed on nodal lattice sites and mobile electrons delocalized over the pairs of decorating sites. It takes into account a hopping term for mobile electrons, the Ising coupling between mobile electrons and localized spins as well as the Zeeman term acting on both types of particles. The ground-state and finite-temperature phase diagrams were established and comprehensively analyzed. It was found that the ground-state phase diagrams are very rich depending on the electron hopping and applied magnetic field. The diversity of magnetization curves can be related to intermediate magnetization plateaus, which may be continuously tuned through the density of mobile electrons. In addition, the existence of several types of reentrant phase transitions driven either by temperature or magnetic field was proven.
Watching the dynamics of electrons and atoms at work in solar energy conversion.
Canton, S E; Zhang, X; Liu, Y; Zhang, J; Pápai, M; Corani, A; Smeigh, A L; Smolentsev, G; Attenkofer, K; Jennings, G; Kurtz, C A; Li, F; Harlang, T; Vithanage, D; Chabera, P; Bordage, A; Sun, L; Ott, S; Wärnmark, K; Sundström, V
2015-01-01
The photochemical reactions performed by transition metal complexes have been proposed as viable routes towards solar energy conversion and storage into other forms that can be conveniently used in our everyday applications. In order to develop efficient materials, it is necessary to identify, characterize and optimize the elementary steps of the entire process on the atomic scale. To this end, we have studied the photoinduced electronic and structural dynamics in two heterobimetallic ruthenium-cobalt dyads, which belong to the large family of donor-bridge-acceptor systems. Using a combination of ultrafast optical and X-ray absorption spectroscopies, we can clock the light-driven electron transfer processes with element and spin sensitivity. In addition, the changes in local structure around the two metal centers are monitored. These experiments show that the nature of the connecting bridge is decisive for controlling the forward and the backward electron transfer rates, a result supported by quantum chemistry calculations. More generally, this work illustrates how ultrafast optical and X-ray techniques can disentangle the influence of spin, electronic and nuclear factors on the intramolecular electron transfer process. Finally, some implications for further improving the design of bridged sensitizer-catalysts utilizing the presented methodology are outlined.
NASA Astrophysics Data System (ADS)
1995-05-01
English abstracts contained are from papers authored by the research staff of the Research Institute of Electrical Communication and the departments of Electrical Engineering, Electrical Communications, Electronic Engineering, and Information Engineering, Tohoku University, which originally appeared in scientific journals in 1994. The abstracts are organized under the following disciplines: electromagnetic theory; physics; fundamental theory of information; communication theory and systems; signal and image processing; systems control; computers; artificial intelligence; recording; acoustics and speech; ultrasonic electronics; antenna, propagation, and transmission; optoelectronics and optical communications; quantum electronics; superconducting materials and applications; magnetic materials and magnetics; semiconductors; electronic materials and parts; electronic devices and integrated circuits; electronic circuits; medical electronics and bionics; measurements and applied electronics; electric power; and miscellaneous.
Theoretical and technological building blocks for an innovation accelerator
NASA Astrophysics Data System (ADS)
van Harmelen, F.; Kampis, G.; Börner, K.; van den Besselaar, P.; Schultes, E.; Goble, C.; Groth, P.; Mons, B.; Anderson, S.; Decker, S.; Hayes, C.; Buecheler, T.; Helbing, D.
2012-11-01
Modern science is a main driver of technological innovation. The efficiency of the scientific system is of key importance to ensure the competitiveness of a nation or region. However, the scientific system that we use today was devised centuries ago and is inadequate for our current ICT-based society: the peer review system encourages conservatism, journal publications are monolithic and slow, data is often not available to other scientists, and the independent validation of results is limited. The resulting scientific process is hence slow and sloppy. Building on the Innovation Accelerator paper by Helbing and Balietti [1], this paper takes the initial global vision and reviews the theoretical and technological building blocks that can be used for implementing an innovation (in first place: science) accelerator platform driven by re-imagining the science system. The envisioned platform would rest on four pillars: (i) Redesign the incentive scheme to reduce behavior such as conservatism, herding and hyping; (ii) Advance scientific publications by breaking up the monolithic paper unit and introducing other building blocks such as data, tools, experiment workflows, resources; (iii) Use machine readable semantics for publications, debate structures, provenance etc. in order to include the computer as a partner in the scientific process, and (iv) Build an online platform for collaboration, including a network of trust and reputation among the different types of stakeholders in the scientific system: scientists, educators, funding agencies, policy makers, students and industrial innovators among others. Any such improvements to the scientific system must support the entire scientific process (unlike current tools that chop up the scientific process into disconnected pieces), must facilitate and encourage collaboration and interdisciplinarity (again unlike current tools), must facilitate the inclusion of intelligent computing in the scientific process, must facilitate not only the core scientific process, but also accommodate other stakeholders such science policy makers, industrial innovators, and the general public. We first describe the current state of the scientific system together with up to a dozen new key initiatives, including an analysis of the role of science as an innovation accelerator. Our brief survey will show that there exist many separate ideas and concepts and diverse stand-alone demonstrator systems for different components of the ecosystem with many parts are still unexplored, and overall integration lacking. By analyzing a matrix of stakeholders vs. functionalities, we identify the required innovations. We (non-exhaustively) discuss a few of them: Publications that are meaningful to machines, innovative reviewing processes, data publication, workflow archiving and reuse, alternative impact metrics, tools for the detection of trends, community formation and emergence, as well as modular publications, citation objects and debate graphs. To summarize, the core idea behind the Innovation Accelerator is to develop new incentive models, rules, and interaction mechanisms to stimulate true innovation, revolutionizing the way in which we create knowledge and disseminate information.
Yang, Lihua; Wu, Jianguo
2012-11-15
Understanding institutional changes is crucial for environmental management. Here we investigated how institutional changes influenced the process and result of desertification control in northern China between 1949 and 2004. Our analysis was based on a case study of 21 field sites and a meta-analysis of additional 29 sites reported in the literature. Our results show that imposed knowledge-driven institutional change was often perceived as a more progressive, scientific, and rational type of institutional change by entrepreneurs, scholars, experts, and technicians, while voluntary, knowledge-driven institutional change based on indigenous knowledge and experiences of local populations was discouraged. Our findings also demonstrate that eight working rules of imposed knowledge-driven institutional change can be applied to control desertification effectively. These rules address the issues of perception of potential gains, entrepreneurs' appeals and support, coordination of multiple goals, collaboration among multiple organizations, interest distribution and conflict resolution, incremental institutional change, external intervention, and coordination among the myriad institutions involved. Imposed knowledge-driven institutional change tended to be more successful when these rules were thoroughly implemented. These findings provide an outline for implementing future institutional changes and policy making to combat desertification and other types of ecological and environmental management. Copyright © 2012 Elsevier Ltd. All rights reserved.
Seebeck coefficient of one electron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durrani, Zahid A. K., E-mail: z.durrani@imperial.ac.uk
2014-03-07
The Seebeck coefficient of one electron, driven thermally into a semiconductor single-electron box, is investigated theoretically. With a finite temperature difference ΔT between the source and charging island, a single electron can charge the island in equilibrium, directly generating a Seebeck effect. Seebeck coefficients for small and finite ΔT are calculated and a thermally driven Coulomb staircase is predicted. Single-electron Seebeck oscillations occur with increasing ΔT, as one electron at a time charges the box. A method is proposed for experimental verification of these effects.
PIC simulations of post-pulse field reversal and secondary ionization in nanosecond argon discharges
NASA Astrophysics Data System (ADS)
Kim, H. Y.; Gołkowski, M.; Gołkowski, C.; Stoltz, P.; Cohen, M. B.; Walker, M.
2018-05-01
Post-pulse electric field reversal and secondary ionization are investigated with a full kinetic treatment in argon discharges between planar electrodes on nanosecond time scales. The secondary ionization, which occurs at the falling edge of the voltage pulse, is induced by charge separation in the bulk plasma region. This process is driven by a reverse in the electric field from the cathode sheath to the formerly driven anode. Under the influence of the reverse electric field, electrons in the bulk plasma and sheath regions are accelerated toward the cathode. The electron movement manifests itself as a strong electron current generating high electron energies with significant electron dissipated power. Accelerated electrons collide with Ar molecules and an increased ionization rate is achieved even though the driving voltage is no longer applied. With this secondary ionization, in a single pulse (SP), the maximum electron density achieved is 1.5 times higher and takes a shorter time to reach using 1 kV 2 ns pulse as compared to a 1 kV direct current voltage at 1 Torr. A bipolar dual pulse excitation can increase maximum density another 50%–70% above a SP excitation and in half the time of RF sinusoidal excitation of the same period. The first field reversal is most prominent but subsequent field reversals also occur and correspond to electron temperature increases. Targeted pulse designs can be used to condition plasma density as required for fast discharge applications.
Syntrophic anaerobic photosynthesis via direct interspecies electron transfer
Ha, Phuc T.; Lindemann, Stephen R.; Shi, Liang; ...
2017-01-09
Microbial phototrophs, key primary producers on Earth, use H 2O, H 2, H 2S and other reduced inorganic compounds as electron donors. Here we describe a form of metabolism linking anoxygenic photosynthesis to anaerobic respiration that we call ‘syntrophic anaerobic photosynthesis’. We show that photoautotrophy in the green sulfur bacterium Prosthecochloris aestaurii can be driven by either electrons from a solid electrode or acetate oxidation via direct interspecies electron transfer from a heterotrophic partner bacterium, Geobacter sulfurreducens. Photosynthetic growth of P. aestuarii using reductant provided by either an electrode or syntrophy is robust and light-dependent. In contrast, P. aestuarii doesmore » not grow in co-culture with a G. sulfurreducens mutant lacking a trans-outer membrane porin-cytochrome protein complex required for direct intercellular electron transfer. Syntrophic anaerobic photosynthesis is therefore a carbon cycling process that could take place in anoxic environments. Lastly, this process could be exploited for biotechnological applications, such as waste treatment and bioenergy production, using engineered phototrophic microbial communities.« less
Syntrophic anaerobic photosynthesis via direct interspecies electron transfer
Ha, Phuc T.; Lindemann, Stephen R.; Shi, Liang; Dohnalkova, Alice C.; Fredrickson, James K.; Madigan, Michael T.; Beyenal, Haluk
2017-01-01
Microbial phototrophs, key primary producers on Earth, use H2O, H2, H2S and other reduced inorganic compounds as electron donors. Here we describe a form of metabolism linking anoxygenic photosynthesis to anaerobic respiration that we call ‘syntrophic anaerobic photosynthesis'. We show that photoautotrophy in the green sulfur bacterium Prosthecochloris aestaurii can be driven by either electrons from a solid electrode or acetate oxidation via direct interspecies electron transfer from a heterotrophic partner bacterium, Geobacter sulfurreducens. Photosynthetic growth of P. aestuarii using reductant provided by either an electrode or syntrophy is robust and light-dependent. In contrast, P. aestuarii does not grow in co-culture with a G. sulfurreducens mutant lacking a trans-outer membrane porin-cytochrome protein complex required for direct intercellular electron transfer. Syntrophic anaerobic photosynthesis is therefore a carbon cycling process that could take place in anoxic environments. This process could be exploited for biotechnological applications, such as waste treatment and bioenergy production, using engineered phototrophic microbial communities. PMID:28067226
Scientific and technological advancements in inertial fusion energy
Hinkel, D. E.
2013-09-26
Scientific advancements in inertial fusion energy (IFE) were reported on at the IAEA Fusion Energy Conference, October 2012. Results presented transect the different ways to assemble the fuel, different scenarios for igniting the fuel, and progress in IFE technologies. The achievements of the National Ignition Campaign within the USA, using the National Ignition Facility (NIF) to indirectly drive laser fusion, have found beneficial the achievements in other IFE arenas such as directly driven laser fusion and target fabrication. Moreover, the successes at NIF have pay-off to alternative scenarios such as fast ignition, shock ignition, and heavy-ion fusion as well asmore » to directly driven laser fusion. As a result, this synergy is summarized here, and future scientific studies are detailed.« less
A Mechanical Cryogenic Cooler for the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Jedrich, Nicholas; Zimbelman, Darell; Swift, Walter; Dolan, Francis; Brumfield, Mark (Technical Monitor)
2002-01-01
This paper presents a description of the Hubble Space Telescope (HST) Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) Cryo Cooler (NCC), the cutting edge technology involved, its evolution, performance, and future space applications. The NCC is the primary hardware component of the NICMOS Cooling System comprised of the NCC, an Electronics Support Module, a Capillary Pumped Loop/Radiator, and associated interface harnessing. The system will be installed during extravehicular activities on HST during Servicing Mission 3B scheduled for launch in February 2002. The NCC will be used to revive the NICMOS instrument, which experienced a reduced operational lifetime due to an internal thermal short in its dewar structure, and restore HST scientific infrared capability to operational status. The NCC is a state-of-the-art reverse Turbo-Brayton cycle cooler employing gas bearing micro turbo machinery, driven by advanced power conversion electronics, operating at speeds up to 7300 revolutions per second (rps) to remove heat from the NICMOS instrument.
Ligand protons in a frozen solution of copper histidine relax via a T1e-driven three-spin mechanism
NASA Astrophysics Data System (ADS)
Stoll, S.; Epel, B.; Vega, S.; Goldfarb, D.
2007-10-01
Davies electron-nuclear double resonance spectra can exhibit strong asymmetries for long mixing times, short repetition times, and large thermal polarizations. These asymmetries can be used to determine nuclear relaxation rates in paramagnetic systems. Measurements of frozen solutions of copper(L-histidine)2 reveal a strong field dependence of the relaxation rates of the protons in the histidine ligand, increasing from low (g‖) to high (g⊥) field. It is shown that this can be attributed to a concentration-dependent T1e-driven relaxation process involving strongly mixed states of three spins: the histidine proton, the Cu(II) electron spin of the same complex, and another distant electron spin with a resonance frequency differing from the spectrometer frequency approximately by the proton Larmor frequency. The protons relax more efficiently in the g⊥ region, since the number of distant electrons able to participate in this relaxation mechanism is higher than in the g‖ region. Analytical expressions for the associated nuclear polarization decay rate Teen-1 are developed and Monte Carlo simulations are carried out, reproducing both the field and the concentration dependences of the nuclear relaxation.
Ultrafast Charge Transfer of a Valence Double Hole in Glycine Driven Exclusively by Nuclear Motion
NASA Astrophysics Data System (ADS)
Li, Zheng; Vendrell, Oriol; Santra, Robin
2015-10-01
We explore theoretically the ultrafast transfer of a double electron hole between the functional groups of glycine after K -shell ionization and subsequent Auger decay. Although a large energy gap of about 15 eV initially exists between the two electronic states involved and coherent electronic dynamics play no role in the hole transfer, we find that the double hole is transferred within 3 to 4 fs between both functional ends of the glycine molecule driven solely by specific nuclear displacements and non-Born-Oppenheimer effects. The nuclear displacements along specific vibrational modes are of the order of 15% of a typical chemical bond between carbon, oxygen, and nitrogen atoms and about 30% for bonds involving hydrogen atoms. The time required for the hole transfer corresponds to less than half a vibrational period of the involved nuclear modes. This finding challenges the common wisdom that nuclear dynamics of the molecular skeleton are unimportant for charge transfer processes at the few-femtosecond time scale and shows that they can even play a prominent role. It also indicates that in x-ray imaging experiments, in which ionization is unavoidable, valence electron redistribution caused by nuclear dynamics might be much faster than previously anticipated. Thus, non-Born-Oppenheimer effects may affect the apparent electron densities extracted from such measurements.
Ultrafast Charge Transfer of a Valence Double Hole in Glycine Driven Exclusively by Nuclear Motion.
Li, Zheng; Vendrell, Oriol; Santra, Robin
2015-10-02
We explore theoretically the ultrafast transfer of a double electron hole between the functional groups of glycine after K-shell ionization and subsequent Auger decay. Although a large energy gap of about 15 eV initially exists between the two electronic states involved and coherent electronic dynamics play no role in the hole transfer, we find that the double hole is transferred within 3 to 4 fs between both functional ends of the glycine molecule driven solely by specific nuclear displacements and non-Born-Oppenheimer effects. The nuclear displacements along specific vibrational modes are of the order of 15% of a typical chemical bond between carbon, oxygen, and nitrogen atoms and about 30% for bonds involving hydrogen atoms. The time required for the hole transfer corresponds to less than half a vibrational period of the involved nuclear modes. This finding challenges the common wisdom that nuclear dynamics of the molecular skeleton are unimportant for charge transfer processes at the few-femtosecond time scale and shows that they can even play a prominent role. It also indicates that in x-ray imaging experiments, in which ionization is unavoidable, valence electron redistribution caused by nuclear dynamics might be much faster than previously anticipated. Thus, non-Born-Oppenheimer effects may affect the apparent electron densities extracted from such measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stever, H.G.
1995-12-31
The author notes that much has been accomplished by catastrophe-driven scientific effort. Examples include World War II and the social wars against crime, poverty and hunger and famine. A positive approach is suggested to be more appropriate as the drivers of science. Three tables are presented and outline a positive base for justifying scientific endeavor: (1) Examples of Major Societal Goals to Which Science and Technology Contribute. (2) Policy Areas That Would Benefit from the Articulation of Long-Term S&T Goals; and (3) Major Components of the Science and Technology Base.
Relativistic electron precipitation during geomagnetic storm time in the years 2006-2010
NASA Astrophysics Data System (ADS)
Glesnes Ødegaard, Linn-Kristine; Nesse Tyssøy, Hilde; Sandanger, Marit irene; Stadsnes, Johan; Søraas, Finn
2015-04-01
The processes leading to acceleration or loss of relativistic electrons in the magnetosphere during geomagnetic storm time have yet to be fully understood, and whether a geomagnetic storm will lead to enhanced or depleted fluxes of relativistic electrons can not be known in advance. Relativistic Electron Precipitation (REP) can penetrate deep into the atmosphere and influence composition and dynamics. To study the effect of REP upon the atmosphere, the energy and intensity of the electrons need to be accurately represented. We use satellite measurements of electrons with energies E>300 keV and E>1000 keV to study the behaviour of these electron populations during geomagnetic storms. We use the MEPED detectors on board the POES satellites NOAA-17, NOAA-18, MetOp-02 and NOAA-19, where the vertical telescope measures precipitated flux, and the horizontal telescope trapped flux at satellite altitude (ca 850 km). Using a newly developed technique, we can derive the flux of electrons depositing their energy in the atmosphere from the pair of detectors on each satellite. 75 isolated storms were identified in the period 2006-2010. The storms include both typical CME driven storms, and weak long duration storms driven by CIRs. Each storm was divided into pre-storm phase, main phase and recovery phase, and the flux of relativistic electrons was monitored through the storms. By combining the measurements from several satellites, we obtain a close to global view of the relativistic electron fluxes, enabling us to study the relationship between the REP and different geomagnetic indices and solar wind drivers.
Framing of scientific knowledge as a new category of health care research.
Salvador-Carulla, Luis; Fernandez, Ana; Madden, Rosamond; Lukersmith, Sue; Colagiuri, Ruth; Torkfar, Ghazal; Sturmberg, Joachim
2014-12-01
The new area of health system research requires a revision of the taxonomy of scientific knowledge that may facilitate a better understanding and representation of complex health phenomena in research discovery, corroboration and implementation. A position paper by an expert group following and iterative approach. 'Scientific evidence' should be differentiated from 'elicited knowledge' of experts and users, and this latter typology should be described beyond the traditional qualitative framework. Within this context 'framing of scientific knowledge' (FSK) is defined as a group of studies of prior expert knowledge specifically aimed at generating formal scientific frames. To be distinguished from other unstructured frames, FSK must be explicit, standardized, based on the available evidence, agreed by a group of experts and subdued to the principles of commensurability, transparency for corroboration and transferability that characterize scientific research. A preliminary typology of scientific framing studies is presented. This typology includes, among others, health declarations, position papers, expert-based clinical guides, conceptual maps, classifications, expert-driven health atlases and expert-driven studies of costs and burden of illness. This grouping of expert-based studies constitutes a different kind of scientific knowledge and should be clearly differentiated from 'evidence' gathered from experimental and observational studies in health system research. © 2014 John Wiley & Sons, Ltd.
Guiding of relativistic electron beams in dense matter by laser-driven magnetostatic fields.
Bailly-Grandvaux, M; Santos, J J; Bellei, C; Forestier-Colleoni, P; Fujioka, S; Giuffrida, L; Honrubia, J J; Batani, D; Bouillaud, R; Chevrot, M; Cross, J E; Crowston, R; Dorard, S; Dubois, J-L; Ehret, M; Gregori, G; Hulin, S; Kojima, S; Loyez, E; Marquès, J-R; Morace, A; Nicolaï, Ph; Roth, M; Sakata, S; Schaumann, G; Serres, F; Servel, J; Tikhonchuk, V T; Woolsey, N; Zhang, Z
2018-01-09
Intense lasers interacting with dense targets accelerate relativistic electron beams, which transport part of the laser energy into the target depth. However, the overall laser-to-target energy coupling efficiency is impaired by the large divergence of the electron beam, intrinsic to the laser-plasma interaction. Here we demonstrate that an efficient guiding of MeV electrons with about 30 MA current in solid matter is obtained by imposing a laser-driven longitudinal magnetostatic field of 600 T. In the magnetized conditions the transported energy density and the peak background electron temperature at the 60-μm-thick target's rear surface rise by about a factor of five, as unfolded from benchmarked simulations. Such an improvement of energy-density flux through dense matter paves the ground for advances in laser-driven intense sources of energetic particles and radiation, driving matter to extreme temperatures, reaching states relevant for planetary or stellar science as yet inaccessible at the laboratory scale and achieving high-gain laser-driven thermonuclear fusion.
Artificial Intelligence and Expert Systems.
ERIC Educational Resources Information Center
Lawlor, Joseph
Artificial intelligence (AI) is the field of scientific inquiry concerned with designing machine systems that can simulate human mental processes. The field draws upon theoretical constructs from a wide variety of disciplines, including mathematics, psychology, linguistics, neurophysiology, computer science, and electronic engineering. Some of the…
NASA's computer science research program
NASA Technical Reports Server (NTRS)
Larsen, R. L.
1983-01-01
Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.
Scientific rigor through videogames.
Treuille, Adrien; Das, Rhiju
2014-11-01
Hypothesis-driven experimentation - the scientific method - can be subverted by fraud, irreproducibility, and lack of rigorous predictive tests. A robust solution to these problems may be the 'massive open laboratory' model, recently embodied in the internet-scale videogame EteRNA. Deploying similar platforms throughout biology could enforce the scientific method more broadly. Copyright © 2014 Elsevier Ltd. All rights reserved.
Introduction to the LaRC central scientific computing complex
NASA Technical Reports Server (NTRS)
Shoosmith, John N.
1993-01-01
The computers and associated equipment that make up the Central Scientific Computing Complex of the Langley Research Center are briefly described. The electronic networks that provide access to the various components of the complex and a number of areas that can be used by Langley and contractors staff for special applications (scientific visualization, image processing, software engineering, and grid generation) are also described. Flight simulation facilities that use the central computers are described. Management of the complex, procedures for its use, and available services and resources are discussed. This document is intended for new users of the complex, for current users who wish to keep appraised of changes, and for visitors who need to understand the role of central scientific computers at Langley.
Crossing Over: Nanostructures that Move Electrons and Ions Across Cellular Membranes
Ajo-Franklin, C. M.; Noy, A.
2015-04-27
Critical biological processes such as energy generation and signal transduction are driven by the flow of electrons and ions across the membranes of living cells. As a result, there is substantial interest in creating nanostructured materials that control transport of these charged species across biomembranes. The recent advances in the synthesis of de novo and protein nanostructures for transmembrane ion and electron transport and the mechanistic understanding underlying this transport are described. Moreover, this body of work highlights the promise such nanostructures hold for directing transmembrane transport of charged species as well as challenges that must be overcome to realizemore » that potential.« less
ERIC Educational Resources Information Center
Hall, Mona L.; Vardar-Ulu, Didem
2014-01-01
The laboratory setting is an exciting and gratifying place to teach because you can actively engage the students in the learning process through hands-on activities; it is a dynamic environment amenable to collaborative work, critical thinking, problem-solving and discovery. The guided inquiry-based approach described here guides the students…
Building and Using Digital Repository Certifications across Science
NASA Astrophysics Data System (ADS)
McIntosh, L.
2017-12-01
When scientific recommendations are made based upon research, the quality and integrity of the data should be rigorous enough to verify claims and in a trusted location. Key to ensuring the transparency and verifiability of research, reproducibility hinges not only on the availability of the documentation, analyses, and data, but the ongoing accessibility and viability of the files and documents, enhanced through a process of curation. The Research Data Alliance (RDA) is an international, community-driven, action-oriented, virtual organization committed to enabling the open sharing of data by building social and technical bridges. Within the RDA, multiple groups are working on consensus-building around the certification of digital repositories across scientific domains. For this section of the panel, we will discuss the work to date on repository certification from this RDA perspective.
Zhang, Chao; Guo, Jianbo; Lian, Jing; Lu, Caicai; Ngo, Huu Hao; Guo, Wenshan; Song, Yuanyuan; Guo, Yankai
2017-10-01
The mechanism for perchlorate reduction was investigated using thiosulfate-driven (T-driven) perchlorate reduction bacteria. The influences of various environmental conditions on perchlorate reduction, including pH, temperature and electron acceptors were examined. The maximum perchlorate removal rate was observed at pH 7.5 and 40 °C. Perchlorate reduction was delayed due to the coexistence of perchlorate-chlorate and perchlorate-nitrate. The mechanism of the T-driven perchlorate reduction electron transport chain (ETC) was also investigated by utilizing different inhibitors. The results were as follows: firstly, the NADH dehydrogenase was not involved in the ETC; secondly, the FAD dehydrogenase and quinone loop participated in the ETC; and thirdly, cytochrome oxidase was the main pathway in the ETC. Meanwhile, microbial consortium structure analysis indicated that Sulfurovum which can oxidize sulfur compounds coupled to the reduction of nitrate or perchlorate was the primary bacterium in the T-driven and sulfur-driven consortium. This study generates a better understanding of the mechanism of T-driven perchlorate reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Carbon Nanotube-Based Membrane for Light-Driven, Simultaneous Proton and Electron Transport
Pilgrim, Gregory A.; Amori, Amanda R.; Hou, Zhentao; ...
2016-12-07
Here we discuss the photon driven transport of protons and electrons over hundreds of microns through a membrane based on vertically aligned single walled carbon nanotubes (SWNTs). Electrons are photogenerated in colloidal CdSe quantum dots that have been noncovalently attached to the carbon nanotube membrane and can be delivered at potentials capable of reducing earth-abundant molecular catalysts that perform proton reduction. Proton transport is driven by the electron photocurrent and is shown to be faster through the SWNT based membrane than through the commercial polymer Nafion. Furthermore, the potential utility of SWNT membranes for solar water splitting applications is demonstratedmore » through their excellent proton and electron transport properties as well as their ability to interact with other components of water splitting systems, such as small molecule electron acceptors.« less
Clinical Note Creation, Binning, and Artificial Intelligence.
Deliberato, Rodrigo Octávio; Celi, Leo Anthony; Stone, David J
2017-08-03
The creation of medical notes in software applications poses an intrinsic problem in workflow as the technology inherently intervenes in the processes of collecting and assembling information, as well as the production of a data-driven note that meets both individual and healthcare system requirements. In addition, the note writing applications in currently available electronic health records (EHRs) do not function to support decision making to any substantial degree. We suggest that artificial intelligence (AI) could be utilized to facilitate the workflows of the data collection and assembly processes, as well as to support the development of personalized, yet data-driven assessments and plans. ©Rodrigo Octávio Deliberato, Leo Anthony Celi, David J Stone. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 03.08.2017.
Electronic quantization in dielectric nanolaminates
NASA Astrophysics Data System (ADS)
Willemsen, T.; Geerke, P.; Jupé, M.; Gallais, L.; Ristau, D.
2016-12-01
The scientific background in the field of the laser induced damage processes in optical coatings has been significantly extended during the last decades. Especially for the ultra-short pulse regime a clear correlation between the electronic material parameters and the laser damage threshold could be demonstrated. In the present study, the quantization in nanolaminates is investigated to gain a deeper insight into the behavior of the blue shift of the bandgap in specific coating materials as well as to find approximations for the effective mass of the electrons. The theoretical predictions are correlated to the measurements.
Temperature dependence of Brillouin light scattering spectra of acoustic phonons in silicon
NASA Astrophysics Data System (ADS)
Olsson, Kevin S.; Klimovich, Nikita; An, Kyongmo; Sullivan, Sean; Weathers, Annie; Shi, Li; Li, Xiaoqin
2015-02-01
Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. The need for a better understanding of such non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report the measured BLS spectra of silicon at different temperatures. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in order to evaluate their potential use as temperature sensors for acoustic phonons.
Adapting High Brightness Relativistic Electron Beams for Ultrafast Science
NASA Astrophysics Data System (ADS)
Scoby, Cheyne Matthew
This thesis explores the use of ultrashort bunches generated by a radiofrequency electron photoinjector driven by a femtosecond laser. Rf photoinjector technology has been developed to generate ultra high brightness beams for advanced accelerators and to drive advanced light source applications. The extremely good quality of the beams generated by this source has played a key role in the development of 4th generation light sources such as the Linac Coherent Light Source, thus opening the way to studies of materials science and biological systems with high temporal and spatial resolution. At the Pegasus Photoinjector Lab, we have developed the application of a BNL/SLAC/UCLA 1.6-cell rf photoinjector as a tool for ultrafast science in its own right. It is the aim of this work to explore the generation of ultrashort electron bunches, give descriptions of the novel ultrafast diagnostics developed to be able to characterize the electron bunch and synchronize it with a pump laser, and share some of the scientific results that were obtained with this technology at the UCLA Pegasus laboratory. This dissertation explains the requirements of the drive laser source and describes the principles of rf photoinjector design and operation necessary to produce electron bunches with an rms longitudinal length < 100 femtoseconds containing 107 - 108 electrons per bunch. In this condition, when the laser intensity is sufficiently high, multiphoton photoemission is demonstrated to be more efficient in terms of charge yield than single photon photoemission. When a short laser pulse hits the cathode the resulting beam dynamics are dominated by a strong space charge driven longitudinal expansion which leads to the creation of a nearly ideal uniformly filled ellipsoidal distribution. These beam distributions are characterized by linear space charge forces and hence by high peak brightness and small transverse emittances. This regime of operation of the RF photoinjector is also termed the “blow-out regime.” When the beam charge is maintained low, ultrashort electron bunches can be obtained enabling novel applications such as single shot Femtosecond Relativistic Electron Diffraction (FRED). High precision temporal diagnostic and synchronization techniques are integral to the use of femtosecond electron bunches for ultrafast science. An x-band rf streak camera provides measurements of the longitudinal profiles of sub-ps electron bunches. Spatial encoded electro-optic timestamping is developed to overcome the inherent rf-laser synchronization errors in rf photoinjectors. The ultrafast electron beams generated with the RF photoenjector are employed in pump-probe experiments wherein a target is illuminated with an intense pump laser to induce a transient behavior in the sample. FRED is used to study the melting of gold after heating with an intense femtosecond laser pulse. In a first experiment we study the process by taking different single-shot diffraction patterns at varying delays between the pump an probe beams. In a second experiment a variation of the technique is employed using the rf streak camera to time-stretch the beam after it has diffraction from the sample in order to capture the full melting dynamics in a single shot. Finally, relativistic ultrashort electron bunches are used as a probe of plasma dynamics in electron radiography/shadowgraphy experiments. This technique is used to study photoemission with intense laser pulses and the evolution of electromagnetic fields in a photoinduced dense plasma. This experiment is also performed in two different modes: one where different pictures are acquired at different time delays, and the other where a single streak image is used to obtain visualization of the propagation electromagnetic fields with an unprecedented 35 femtosecond resolution.
NASA Technical Reports Server (NTRS)
1992-01-01
The U.S. Global Change Reasearch Program (USGCRP) was established as a Presidential initiative in the FY-1990 Budget to help develop sound national and international policies related to global environmental issues, particularly global climate change. The USGCRP is implemented through a priority-driven scientific research agenda that is designed to be integrated, comprehensive, and multidisciplinary. It is designed explicitly to address scientific uncertainties in such areas as climate change, ozone depletion, changes in terrestrial and marine productivity, global water and energy cycles, sea level changes, the impact of global changes on human health and activities, and the impact of anthropogenic activities on the Earth system. The USGCRP addresses three parallel but interconnected streams of activity: documenting global change (observations); enhancing understanding of key processes (process research); and predicting global and regional environmental change (integrated modeling and prediction).
Current-Driven Hydrogen Desorption from Graphene: Experiment and Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, L.; Pal, Partha P.; Seideman, Tamar
2016-02-04
Electron-stimulated desorption of hydrogen from the graphene/SiC(0001) surface at room temperature was investigated with ultrahigh vacuum scanning tunneling microscopy and ab initio calculations in order to elucidate the desorption mechanisms and pathways. Two different desorption processes were observed. In the high electron energy regime (4-8 eV), the desorption yield is independent of both voltage and current, which is attributed to the direct electronic excitation of the C-H bond. In the low electron energy regime (2-4 eV), however, the desorption yield exhibits a threshold dependence on voltage, which is explained by the vibrational excitation of the C-H bond via transient ionizationmore » induced by inelastic tunneling electrons. The observed current-independence of the desorption yield suggests that the vibrational excitation is a singleelectron process. We also observed that the curvature of graphene dramatically affects hydrogen desorption. Desorption from concave regions was measured to be much more probable than desorption from convex regions in the low electron energy regime (~ 2 eV), as would be expected from the identified desorption mechanism« less
ERIC Educational Resources Information Center
Matthews, John; Seow, Peter
2007-01-01
This article investigates very young children's use of a stylus-driven, electronic painting and drawing on the tablet PC. The authors compare their development in the use of this device with their use of other mark-making media, including those which derive from pencil and paper technologies and also with mouse-driven electronic paintbox programs.…
Abbey, Brian; Dilanian, Ruben A.; Darmanin, Connie; Ryan, Rebecca A.; Putkunz, Corey T.; Martin, Andrew V.; Wood, David; Streltsov, Victor; Jones, Michael W. M.; Gaffney, Naylyn; Hofmann, Felix; Williams, Garth J.; Boutet, Sébastien; Messerschmidt, Marc; Seibert, M. Marvin; Williams, Sophie; Curwood, Evan; Balaur, Eugeniu; Peele, Andrew G.; Nugent, Keith A.; Quiney, Harry M.
2016-01-01
X-ray free-electron lasers (XFELs) deliver x-ray pulses with a coherent flux that is approximately eight orders of magnitude greater than that available from a modern third-generation synchrotron source. The power density of an XFEL pulse may be so high that it can modify the electronic properties of a sample on a femtosecond time scale. Exploration of the interaction of intense coherent x-ray pulses and matter is both of intrinsic scientific interest and of critical importance to the interpretation of experiments that probe the structures of materials using high-brightness femtosecond XFEL pulses. We report observations of the diffraction of extremely intense 32-fs nanofocused x-ray pulses by a powder sample of crystalline C60. We find that the diffraction pattern at the highest available incident power significantly differs from the one obtained using either third-generation synchrotron sources or XFEL sources operating at low output power and does not correspond to the diffraction pattern expected from any known phase of crystalline C60. We interpret these data as evidence of a long-range, coherent dynamic electronic distortion that is driven by the interaction of the periodic array of C60 molecular targets with intense x-ray pulses of femtosecond duration. PMID:27626076
Full Text Journal Subscriptions: An Evolutionary Process.
ERIC Educational Resources Information Center
Luther, Judy
1997-01-01
Provides an overview of companies offering Web accessible subscriptions to full text electronic versions of scientific, technical, and medical journals (Academic Press, Blackwell, EBSCO, Elsevier, Highwire Press, Information Quest, Institute of Physics, Johns Hopkins University Press, OCLC, OVID, Springer, and SWETS). Also lists guidelines for…
Science Goal Driven Observing and Spacecraft Autonomy
NASA Technical Reports Server (NTRS)
Koratkar, Amuradha; Grosvenor, Sandy; Jones, Jeremy; Wolf, Karl
2002-01-01
Spacecraft autonomy will be an integral part of mission operations in the coming decade. While recent missions have made great strides in the ability to autonomously monitor and react to changing health and physical status of spacecraft, little progress has been made in responding quickly to science driven events. For observations of inherently variable targets and targets of opportunity, the ability to recognize early if an observation will meet the science goals of a program, and react accordingly, can have a major positive impact on the overall scientific returns of an observatory and on its operational costs. If the onboard software can reprioritize the schedule to focus on alternate targets, discard uninteresting observations prior to downloading, or download a subset of observations at a reduced resolution, the spacecraft's overall efficiency will be dramatically increased. The science goal monitoring (SGM) system is a proof-of-concept effort to address the above challenge. The SGM will have an interface to help capture higher level science goals from the scientists and translate them into a flexible observing strategy that SGM can execute and monitor. We are developing an interactive distributed system that will use on-board processing and storage combined with event-driven interfaces with ground-based processing and operations, to enable fast re-prioritization of observing schedules, and to minimize time spent on non-optimized observations.
Salton Sea Scientific Drilling Program
Sass, J.H.
1988-01-01
The Salton Sea Scientific Drilling Program (SSSDP) was the first large-scale drilling project undertaken by the U.S Continental Scientific Drilling Program. The objectives of the SSSDP were (1) to drill a deep well into the Salton Sea Geothermal Field in the Imperial Valley of California, (2) to retrieve a high percentage of core and cuttings along the entire depth of the well, (3) to obtain a comprehensive suite of geophysical logs, (4) to conduct flow tests at two depths (and to take fluid samples therefrom), and (5) to carry out several downhole experiments. These activites enabled the U.S Geological Survey and cooperating agencies to study the physical and chemical processes involved in an active hydrothermal system driven by a molten-rock heat source. This program, orginally conceived by Wilfred A. Elders, professor of geology at the University of California at Riverside, was coordinated under an inter-agency accord among the Geological Survey, the U.S Department of Energy, and the National Science Foundation.
Hi-rel lead-free printed wiring assemblies
NASA Technical Reports Server (NTRS)
Mehta, A. C.; Bonner, J. K.; Castillo, L. del
2002-01-01
The use of lead in electronics has come under increasing scrutiny. Given the trends in both Japan and Europe, it is highly likely that the U.S. will be driven by commercial interests to phase out of lead in electronics usage. This paper presents data collected on a recent NASA project to focus on finding suitable alternatives to eutectic tin-lead solders and solder pastes. The first phase of this project dealt with determining the most feasible candidates to replace tin-lead and to determine suitable processing operations in assemblies printed wiring boards.
AstroImageJ: Image Processing and Photometric Extraction for Ultra-precise Astronomical Light Curves
NASA Astrophysics Data System (ADS)
Collins, Karen A.; Kielkopf, John F.; Stassun, Keivan G.; Hessman, Frederic V.
2017-02-01
ImageJ is a graphical user interface (GUI) driven, public domain, Java-based, software package for general image processing traditionally used mainly in life sciences fields. The image processing capabilities of ImageJ are useful and extendable to other scientific fields. Here we present AstroImageJ (AIJ), which provides an astronomy specific image display environment and tools for astronomy specific image calibration and data reduction. Although AIJ maintains the general purpose image processing capabilities of ImageJ, AIJ is streamlined for time-series differential photometry, light curve detrending and fitting, and light curve plotting, especially for applications requiring ultra-precise light curves (e.g., exoplanet transits). AIJ reads and writes standard Flexible Image Transport System (FITS) files, as well as other common image formats, provides FITS header viewing and editing, and is World Coordinate System aware, including an automated interface to the astrometry.net web portal for plate solving images. AIJ provides research grade image calibration and analysis tools with a GUI driven approach, and easily installed cross-platform compatibility. It enables new users, even at the level of undergraduate student, high school student, or amateur astronomer, to quickly start processing, modeling, and plotting astronomical image data with one tightly integrated software package.
PROCESS DEVELOPMENT FOR THE RECOVERY OF CRITICAL MATERIALS FROM ELECTRONIC WASTE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lister, T. E.; Diaz, L. A.; Clark, G. G.
As electronic technology continues to evolve there is a growing need to develop processes which recover valuable material from antiquated technology. This need follows from the environmental challenges associated with the availability of raw materials and fast growing generation of electronic waste. Although just present in small quantities in electronic devices, the availability of raw materials, such as rare earths and precious metals, becomes critical for the production of high tech electronic devices and the development of green technologies (i.e. wind turbines, electric motors, and solar panels). Therefore, the proper recycling and processing of increasing volumes of electronic waste presentmore » an opportunity to stabilize the market of critical materials, reducing the demand of mined products, and providing a proper disposal and treatment of a hazardous waste stream. This paper will describe development and techno-economic assessment of a comprehensive process for the recovery of value and critical materials from electronic waste. This hydrometallurgical scheme aims to selectively recover different value segments in the materials streams (base metals, precious metals, and rare earths). The economic feasibility for the recovery of rare earths from electronic waste is mostly driven by the efficient recovery of precious metals, such as Au and Pd (ca. 80 % of the total recoverable value). Rare earth elements contained in magnets (speakers, vibrators and hard disk storage) can be recovered as a mixture of rare earths oxides which can later be reduced to the production of new magnets.« less
Electrostatic waves driven by electron beam in lunar wake plasma
NASA Astrophysics Data System (ADS)
Sreeraj, T.; Singh, S. V.; Lakhina, G. S.
2018-05-01
A linear analysis of electrostatic waves propagating parallel to the ambient field in a four component homogeneous, collisionless, magnetised plasma comprising fluid protons, fluid He++, electron beam, and suprathermal electrons following kappa distribution is presented. In the absence of electron beam streaming, numerical analysis of the dispersion relation shows six modes: two electron acoustic modes (modes 1 and 6), two fast ion acoustic modes (modes 2 and 5), and two slow ion acoustic modes (modes 3 and 4). The modes 1, 2 and 3 and modes 4, 5, and 6 have positive and negative phase speeds, respectively. With an increase in electron beam speed, the mode 6 gets affected the most and the phase speed turns positive from negative. The mode 6 thus starts to merge with modes 2 and 3 and generates the electron beam driven fast and slow ion acoustic waves unstable with a finite growth. The electron beam driven slow ion-acoustic waves occur at lower wavenumbers, whereas fast ion-acoustic waves occur at a large value of wavenumbers. The effect of various other parameters has also been studied. We have applied this analysis to the electrostatic waves observed in lunar wake during the first flyby of the ARTEMIS mission. The analysis shows that the low (high) frequency waves observed in the lunar wake could be the electron beam driven slow (fast) ion-acoustic modes.
Discovery informatics in biological and biomedical sciences: research challenges and opportunities.
Honavar, Vasant
2015-01-01
New discoveries in biological, biomedical and health sciences are increasingly being driven by our ability to acquire, share, integrate and analyze, and construct and simulate predictive models of biological systems. While much attention has focused on automating routine aspects of management and analysis of "big data", realizing the full potential of "big data" to accelerate discovery calls for automating many other aspects of the scientific process that have so far largely resisted automation: identifying gaps in the current state of knowledge; generating and prioritizing questions; designing studies; designing, prioritizing, planning, and executing experiments; interpreting results; forming hypotheses; drawing conclusions; replicating studies; validating claims; documenting studies; communicating results; reviewing results; and integrating results into the larger body of knowledge in a discipline. Against this background, the PSB workshop on Discovery Informatics in Biological and Biomedical Sciences explores the opportunities and challenges of automating discovery or assisting humans in discovery through advances (i) Understanding, formalization, and information processing accounts of, the entire scientific process; (ii) Design, development, and evaluation of the computational artifacts (representations, processes) that embody such understanding; and (iii) Application of the resulting artifacts and systems to advance science (by augmenting individual or collective human efforts, or by fully automating science).
The communication of science to the public: A philosophy of television
NASA Astrophysics Data System (ADS)
Carter, Nicholas Brent
The communication of science to the public via the mass media, in particular the televisual format, requires a modified approach to the traditional presumptive models of communicative style. Conventional models of science communication are based on implicit but unexamined assumptions that the most effective and important means of transmission of scientific information are efforts aimed at the attentive segments of the population through specialized and detailed formats. Attempts to reach inattentive audiences with scientific information are customarily unsuccessful or have been deemed unnecessary altogether. The proposed model submits that not only are endeavors to communicate scientific ideas to the disinterested populace of overriding importance but can be quite successful if production styles are altered to reflect more "interest-motivating" designs. A new thrust toward capturing the attention of disinterested audiences before attempting to directly disseminate scientific ideas is proposed. By examining the constraints of both the scientific and communication systems, the model demonstrates that current methods utilized to transmit scientific information are incompatible with the notion of reaching more inattentive audiences. The assumptions of scientific communicators and the community of scientists are critiqued through analysis of the diverse body of research devoted to the public transmission of science and scientific concepts. The foundations of televisual communication are explored and a model of commercial television programming is proffered to redirect classical scientific production methods to more visually interesting, narrative-driven styles. A call to shift focus of scientific communication from the products of science to the process of science is also suggested in part to achieve such a direction. The model proposes that the most important aspect of this process is to begin to show scientists as human beings and the conceptual accessibility of both the scientists and their endeavors. For this to occur, scientists must begin to alter their behaviors and attitudes toward the public dissemination of their research and start by educating themselves on the communicative demands of the media. Communicators must also begin to change their long-held strategies of scientific communication by focusing on the interest factor of their stories before attempting to transmit complicated scientific information.
Genomics, "Discovery Science," Systems Biology, and Causal Explanation: What Really Works?
Davidson, Eric H
2015-01-01
Diverse and non-coherent sets of epistemological principles currently inform research in the general area of functional genomics. Here, from the personal point of view of a scientist with over half a century of immersion in hypothesis driven scientific discovery, I compare and deconstruct the ideological bases of prominent recent alternatives, such as "discovery science," some productions of the ENCODE project, and aspects of large data set systems biology. The outputs of these types of scientific enterprise qualitatively reflect their radical definitions of scientific knowledge, and of its logical requirements. Their properties emerge in high relief when contrasted (as an example) to a recent, system-wide, predictive analysis of a developmental regulatory apparatus that was instead based directly on hypothesis-driven experimental tests of mechanism.
Roles of Magnetic Reconnection and Developments of Modern Theory^*
NASA Astrophysics Data System (ADS)
Coppi, B.
2007-11-01
The role of reconnection was recognized in Solar and Space Physics and auroral substorms were suggested to originate in the night-side of the Earth's magnetosphere as a result collisionless reconnectionootnotetextB. Coppi, Nature 205, 998 (1965). well before the kind of modern theory employed for this became applied to laboratory plasmas. Experiments have reached low collisionality regimes where, like in space plasmas, the features of the electron distribution and in particular of the electron temperature gradient become important and the factors contributing to the electron thermal energy balance equation (transverse thermal and longitudinal diffusivities, or electron Landau dampingootnotetextB. Coppi, J.W.-K. Mark, L. Sugiyama, G. Bertin, Phys. Rev. Letters 42, 1058 (1978) and J. Drake, et al., Phys. Fluids 26, 2509 (1983). play a key role. For this an asymptotic theory of modes producing macroscopic islands has been developed involving 3 regions, the innermost one related to finite resistivity and the intermediate one to the finite ratio of the to thermal conductivitiesootnotetextB. Coppi, C. Crabtree, and V. Roytershteyn contribution to Paper TH/R2-19, I.A.E.A. Conference 2006.,^4. A background of excited micro-reconnecting modes, driven by the electron temperature gradient, is considered to make this ratio significantootnotetextB. Coppi, in``Collective Phenomena in Macroscopic Systems'' Eds. G. Bertin et al. (World Scientific, 2007) MIT-LNS Report 06/11(2006). ^*Supported in part by the US D.O.E.
ERIC Educational Resources Information Center
Resendes, Karen K.
2015-01-01
Incorporating scientific literacy into inquiry driven research is one of the most effective mechanisms for developing an undergraduate student's strength in writing. Additionally, discovery-based laboratories help develop students who approach science as critical thinkers. Thus, a three-week laboratory module for an introductory cell and molecular…
Applications of laser wakefield accelerator-based light sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, Felicie; Thomas, Alec G. R.
Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons inmore » the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. Here, we first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.« less
High repetition rate laser-driven MeV ion acceleration at variable background pressures
NASA Astrophysics Data System (ADS)
Snyder, Joseph; Ngirmang, Gregory; Orban, Chris; Feister, Scott; Morrison, John; Frische, Kyle; Chowdhury, Enam; Roquemore, W. M.
2017-10-01
Ultra-intense laser-plasma interactions (LPI) can produce highly energetic photons, electrons, and ions with numerous potential real-world applications. Many of these applications will require repeatable, high repetition targets that are suitable for LPI experiments. Liquid targets can meet many of these needs, but they typically require higher chamber pressure than is used for many low repetition rate experiments. The effect of background pressure on the LPI has not been thoroughly studied. With this in mind, the Extreme Light group at the Air Force Research Lab has carried out MeV ion and electron acceleration experiments at kHz repetition rate with background pressures ranging from 30 mTorr to >1 Torr using a submicron ethylene glycol liquid sheet target. We present these results and provide two-dimensional particle-in-cell simulation results that offer insight on the thresholds for the efficient acceleration of electrons and ions. This research is supported by the Air Force Office of Scientific Research under LRIR Project 17RQCOR504 under the management of Dr. Riq Parra and Dr. Jean-Luc Cambier. Support was also provided by the DOD HPCMP Internship Program.
Applications of laser wakefield accelerator-based light sources
Albert, Felicie; Thomas, Alec G. R.
2016-10-01
Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons inmore » the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. Here, we first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.« less
Campodonico, Miguel A; Vaisman, Daniela; Castro, Jean F; Razmilic, Valeria; Mercado, Francesca; Andrews, Barbara A; Feist, Adam M; Asenjo, Juan A
2016-12-01
Acidithiobacillus ferrooxidans is a gram-negative chemolithoautotrophic γ-proteobacterium. It typically grows at an external pH of 2 using the oxidation of ferrous ions by oxygen, producing ferric ions and water, while fixing carbon dioxide from the environment. A. ferrooxidans is of great interest for biomining and environmental applications, as it can process mineral ores and alleviate the negative environmental consequences derived from the mining processes. In this study, the first genome-scale metabolic reconstruction of A. ferrooxidans ATCC 23270 was generated ( i MC507). A total of 587 metabolic and transport/exchange reactions, 507 genes and 573 metabolites organized in over 42 subsystems were incorporated into the model. Based on a new genetic algorithm approach, that integrates flux balance analysis, chemiosmotic theory, and physiological data, the proton translocation stoichiometry for a number of enzymes and maintenance parameters under aerobic chemolithoautotrophic conditions using three different electron donors were estimated. Furthermore, a detailed electron transfer and carbon flux distributions during chemolithoautotrophic growth using ferrous ion, tetrathionate and thiosulfate were determined and reported. Finally, 134 growth-coupled designs were calculated that enables Extracellular Polysaccharide production. i MC507 serves as a knowledgebase for summarizing and categorizing the information currently available for A. ferrooxidans and enables the understanding and engineering of Acidithiobacillus and similar species from a comprehensive model-driven perspective for biomining applications.
WE-F-211-01: The Evolving Landscape of Scientific Publishing.
Armato, S; Hendee, W; Marshall, C; Curran, B
2012-06-01
The dissemination of scientific advances has changed little since the first peer-reviewed journal was published in 1665 - that is, until this past decade. The print journal, delivered by mail and stored on office shelves and in library reading rooms around the world, has been transformed by immediate, on-demand access to scientific discovery in electronic form. At the same time, the producers and consumers of that scientific content have greatly increased in number, and the balance between supply and demand has required innovations in the world of scientific publishing. In light of technological advances and societal expectations, the dissemination of scientific knowledge has assumed a new form, one that is dynamic and rapidly changing. The academic medical physicist must understand this evolution to ensure that appropriate decisions are made with regard to journal submission strategies and that relevant information on new findings is obtained in a timely manner. Medical Physics is adapting to these changes in substantive ways. This new scientific publishing landscape has implications for subscription models, targeted access through semantic enrichment, user interactivity with content, customized content delivery, and advertising opportunities. Many organizations, including the AAPM, depend on scientific publishing as a significant source of revenue, but web-based delivery raises the expectation that access should be free and threatens this model. The purpose of this symposium is to explore the factors that have contributed to the current state of scientific publishing, to anticipate future directions in this arena, and to convey how medical physicists may benefit from the expanded opportunities, both as authors and as readers. 1. To appreciate the importance of scientific and clinical practice communication for the advancement of the medical physics field 2. To understand the roles of the Editorial Board and the Journal Business Management Committee in the promotion and advancement of Medical Physics 3. To explore technology-driven content delivery mechanisms and their role in facilitating content access and driving content usage 4. To understand the potential benefits and pitfalls of various economic and editorial models of scientific publications and the recent shifts away from the traditional role of libraries. © 2012 American Association of Physicists in Medicine.
Molecular alignment effect on the photoassociation process via a pump-dump scheme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Bin-Bin; Han, Yong-Chang, E-mail: ychan@dlut.edu.cn; Cong, Shu-Lin
The photoassociation processes via the pump-dump scheme for the heternuclear (Na + H → NaH) and the homonuclear (Na + Na → Na{sub 2}) molecular systems are studied, respectively, using the time-dependent quantum wavepacket method. For both systems, the initial atom pair in the continuum of the ground electronic state (X{sup 1}Σ{sup +}) is associated into the molecule in the bound states of the excited state (A{sup 1}Σ{sup +}) by the pump pulse. Then driven by a time-delayed dumping pulse, the prepared excited-state molecule can be transferred to the bound states of the ground electronic state. It is found thatmore » the pump process can induce a superposition of the rovibrational levels |v, j〉 on the excited state, which can lead to the field-free alignment of the excited-state molecule. The molecular alignment can affect the dumping process by varying the effective coupling intensity between the two electronic states or by varying the population transfer pathways. As a result, the final population transferred to the bound states of the ground electronic state varies periodically with the delay time of the dumping pulse.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nusinovich, G.S.; Sinitsyn, O.V.
This paper contains a simple analytical theory that allows one to evaluate the effect of transverse nonuniformity of the rf field on the interaction efficiency in various microwave sources driven by linear electron beams. The theory is, first, applied to the systems where the beams of cylindrical symmetry interact with rf fields of microwave circuits having Cartesian geometry. Also, various kinds of microwave devices driven by sheet electron beams (orotrons, clinotrons) are considered. The theory can be used for evaluating the efficiency of novel sources of coherent terahertz radiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiang, J.; Ding, Y.; Emma, P.
The shot-noise driven microbunching instability can significantly degrade electron beam quality in x-ray free electron laser light sources. Experiments were carried out at the Linac Coherent Light Source (LCLS) to study this instability. Here in this paper, we present start-to-end simulations of the shot-noise driven microbunching instability experiment at the LCLS using the real number of electrons. The simulation results reproduce the measurements quite well. A microbunching self-heating mechanism is also illustrated in the simulation, which helps explain the experimental observation.
Qiang, J.; Ding, Y.; Emma, P.; ...
2017-05-23
The shot-noise driven microbunching instability can significantly degrade electron beam quality in x-ray free electron laser light sources. Experiments were carried out at the Linac Coherent Light Source (LCLS) to study this instability. Here in this paper, we present start-to-end simulations of the shot-noise driven microbunching instability experiment at the LCLS using the real number of electrons. The simulation results reproduce the measurements quite well. A microbunching self-heating mechanism is also illustrated in the simulation, which helps explain the experimental observation.
NASA Astrophysics Data System (ADS)
Siegel, Daniel M.; Metzger, Brian D.
2017-12-01
The merger of binary neutron stars, or of a neutron star and a stellar-mass black hole, can result in the formation of a massive rotating torus around a spinning black hole. In addition to providing collimating media for γ -ray burst jets, unbound outflows from these disks are an important source of mass ejection and rapid neutron capture (r -process) nucleosynthesis. We present the first three-dimensional general-relativistic magnetohydrodynamic (GRMHD) simulations of neutrino-cooled accretion disks in neutron star mergers, including a realistic equation of state valid at low densities and temperatures, self-consistent evolution of the electron fraction, and neutrino cooling through an approximate leakage scheme. After initial magnetic field amplification by magnetic winding, we witness the vigorous onset of turbulence driven by the magnetorotational instability (MRI). The disk quickly reaches a balance between heating from MRI-driven turbulence and neutrino cooling, which regulates the midplane electron fraction to a low equilibrium value Ye≈0.1 . Over the 380-ms duration of the simulation, we find that a fraction ≈20 % of the initial torus mass is unbound in powerful outflows with asymptotic velocities v ≈0.1 c and electron fractions Ye≈0.1 - 0.25 . Postprocessing the outflows through a nuclear reaction network shows the production of a robust second- and third-peak r process. Though broadly consistent with the results of previous axisymmetric hydrodynamical simulations, extrapolation of our results to late times suggests that the total ejecta mass from GRMHD disks is significantly higher. Our results provide strong evidence that postmerger disk outflows are an important site for the r process.
Siegel, Daniel M; Metzger, Brian D
2017-12-08
The merger of binary neutron stars, or of a neutron star and a stellar-mass black hole, can result in the formation of a massive rotating torus around a spinning black hole. In addition to providing collimating media for γ-ray burst jets, unbound outflows from these disks are an important source of mass ejection and rapid neutron capture (r-process) nucleosynthesis. We present the first three-dimensional general-relativistic magnetohydrodynamic (GRMHD) simulations of neutrino-cooled accretion disks in neutron star mergers, including a realistic equation of state valid at low densities and temperatures, self-consistent evolution of the electron fraction, and neutrino cooling through an approximate leakage scheme. After initial magnetic field amplification by magnetic winding, we witness the vigorous onset of turbulence driven by the magnetorotational instability (MRI). The disk quickly reaches a balance between heating from MRI-driven turbulence and neutrino cooling, which regulates the midplane electron fraction to a low equilibrium value Y_{e}≈0.1. Over the 380-ms duration of the simulation, we find that a fraction ≈20% of the initial torus mass is unbound in powerful outflows with asymptotic velocities v≈0.1c and electron fractions Y_{e}≈0.1-0.25. Postprocessing the outflows through a nuclear reaction network shows the production of a robust second- and third-peak r process. Though broadly consistent with the results of previous axisymmetric hydrodynamical simulations, extrapolation of our results to late times suggests that the total ejecta mass from GRMHD disks is significantly higher. Our results provide strong evidence that postmerger disk outflows are an important site for the r process.
NASA Astrophysics Data System (ADS)
Persano Adorno, Dominique; Pizzolato, Nicola; Fazio, Claudio
2015-09-01
Within the context of higher education for science or engineering undergraduates, we present an inquiry-driven learning path aimed at developing a more meaningful conceptual understanding of the electron dynamics in semiconductors in the presence of applied electric fields. The electron transport in a nondegenerate n-type indium phosphide bulk semiconductor is modelled using a multivalley Monte Carlo approach. The main characteristics of the electron dynamics are explored under different values of the driving electric field, lattice temperature and impurity density. Simulation results are presented by following a question-driven path of exploration, starting from the validation of the model and moving up to reasoned inquiries about the observed characteristics of electron dynamics. Our inquiry-driven learning path, based on numerical simulations, represents a viable example of how to integrate a traditional lecture-based teaching approach with effective learning strategies, providing science or engineering undergraduates with practical opportunities to enhance their comprehension of the physics governing the electron dynamics in semiconductors. Finally, we present a general discussion about the advantages and disadvantages of using an inquiry-based teaching approach within a learning environment based on semiconductor simulations.
Electrondriven processes in polyatomic molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKoy, Vincent
2017-03-20
This project developed and applied scalable computational methods to obtain information about low-energy electron collisions with larger polyatomic molecules. Such collisions are important in modeling radiation damage to living systems, in spark ignition and combustion, and in plasma processing of materials. The focus of the project was to develop efficient methods that could be used to obtain both fundamental scientific insights and data of practical value to applications.
Investigating Students' Similarity Judgments in Organic Chemistry
ERIC Educational Resources Information Center
Graulich, N.; Bhattacharyya, G.
2017-01-01
Organic chemistry is possibly the most visual science of all chemistry disciplines. The process of scientific inquiry in organic chemistry relies on external representations, such as Lewis structures, mechanisms, and electron arrows. Information about chemical properties or driving forces of mechanistic steps is not available through direct…
ObsPy: A Python Toolbox for Seismology
NASA Astrophysics Data System (ADS)
Wassermann, J. M.; Krischer, L.; Megies, T.; Barsch, R.; Beyreuther, M.
2013-12-01
Python combines the power of a full-blown programming language with the flexibility and accessibility of an interactive scripting language. Its extensive standard library and large variety of freely available high quality scientific modules cover most needs in developing scientific processing workflows. ObsPy is a community-driven, open-source project extending Python's capabilities to fit the specific needs that arise when working with seismological data. It a) comes with a continuously growing signal processing toolbox that covers most tasks common in seismological analysis, b) provides read and write support for many common waveform, station and event metadata formats and c) enables access to various data centers, webservices and databases to retrieve waveform data and station/event metadata. In combination with mature and free Python packages like NumPy, SciPy, Matplotlib, IPython, Pandas, lxml, and PyQt, ObsPy makes it possible to develop complete workflows in Python, ranging from reading locally stored data or requesting data from one or more different data centers via signal analysis and data processing to visualization in GUI and web applications, output of modified/derived data and the creation of publication-quality figures. All functionality is extensively documented and the ObsPy Tutorial and Gallery give a good impression of the wide range of possible use cases. ObsPy is tested and running on Linux, OS X and Windows and comes with installation routines for these systems. ObsPy is developed in a test-driven approach and is available under the LGPLv3 open source licence. Users are welcome to request help, report bugs, propose enhancements or contribute code via either the user mailing list or the project page on GitHub.
Near Real-time Scientific Data Analysis and Visualization with the ArcGIS Platform
NASA Astrophysics Data System (ADS)
Shrestha, S. R.; Viswambharan, V.; Doshi, A.
2017-12-01
Scientific multidimensional data are generated from a variety of sources and platforms. These datasets are mostly produced by earth observation and/or modeling systems. Agencies like NASA, NOAA, USGS, and ESA produce large volumes of near real-time observation, forecast, and historical data that drives fundamental research and its applications in larger aspects of humanity from basic decision making to disaster response. A common big data challenge for organizations working with multidimensional scientific data and imagery collections is the time and resources required to manage and process such large volumes and varieties of data. The challenge of adopting data driven real-time visualization and analysis, as well as the need to share these large datasets, workflows, and information products to wider and more diverse communities, brings an opportunity to use the ArcGIS platform to handle such demand. In recent years, a significant effort has put in expanding the capabilities of ArcGIS to support multidimensional scientific data across the platform. New capabilities in ArcGIS to support scientific data management, processing, and analysis as well as creating information products from large volumes of data using the image server technology are becoming widely used in earth science and across other domains. We will discuss and share the challenges associated with big data by the geospatial science community and how we have addressed these challenges in the ArcGIS platform. We will share few use cases, such as NOAA High Resolution Refresh Radar (HRRR) data, that demonstrate how we access large collections of near real-time data (that are stored on-premise or on the cloud), disseminate them dynamically, process and analyze them on-the-fly, and serve them to a variety of geospatial applications. We will also share how on-the-fly processing using raster functions capabilities, can be extended to create persisted data and information products using raster analytics capabilities that exploit distributed computing in an enterprise environment.
NASA Astrophysics Data System (ADS)
Vilà, A.; Zhu, J.; Scrinzi, A.; Emmanouilidou, A.
2018-03-01
We study frustrated double ionization (FDI) in a strongly-driven heteronuclear molecule HeH+ and compare with H2. We compute the probability distribution of the sum of the final kinetic energies of the nuclei for strongly-driven HeH+. We find that this distribution has more than one peak for strongly-driven HeH+, a feature we do not find to be present for strongly-driven H2. Moreover, we compute the probability distribution of the principal quantum number n of FDI. We find that this distribution has several peaks for strongly-driven HeH+, while the respective distribution has one main peak and a ‘shoulder’ at lower principal quantum numbers n for strongly-driven H2. Surprisingly, we find this feature to be a clear signature of the intertwined electron-nuclear motion.
Interactive Parallel Data Analysis within Data-Centric Cluster Facilities using the IPython Notebook
NASA Astrophysics Data System (ADS)
Pascoe, S.; Lansdowne, J.; Iwi, A.; Stephens, A.; Kershaw, P.
2012-12-01
The data deluge is making traditional analysis workflows for many researchers obsolete. Support for parallelism within popular tools such as matlab, IDL and NCO is not well developed and rarely used. However parallelism is necessary for processing modern data volumes on a timescale conducive to curiosity-driven analysis. Furthermore, for peta-scale datasets such as the CMIP5 archive, it is no longer practical to bring an entire dataset to a researcher's workstation for analysis, or even to their institutional cluster. Therefore, there is an increasing need to develop new analysis platforms which both enable processing at the point of data storage and which provides parallelism. Such an environment should, where possible, maintain the convenience and familiarity of our current analysis environments to encourage curiosity-driven research. We describe how we are combining the interactive python shell (IPython) with our JASMIN data-cluster infrastructure. IPython has been specifically designed to bridge the gap between the HPC-style parallel workflows and the opportunistic curiosity-driven analysis usually carried out using domain specific languages and scriptable tools. IPython offers a web-based interactive environment, the IPython notebook, and a cluster engine for parallelism all underpinned by the well-respected Python/Scipy scientific programming stack. JASMIN is designed to support the data analysis requirements of the UK and European climate and earth system modeling community. JASMIN, with its sister facility CEMS focusing the earth observation community, has 4.5 PB of fast parallel disk storage alongside over 370 computing cores provide local computation. Through the IPython interface to JASMIN, users can make efficient use of JASMIN's multi-core virtual machines to perform interactive analysis on all cores simultaneously or can configure IPython clusters across multiple VMs. Larger-scale clusters can be provisioned through JASMIN's batch scheduling system. Outputs can be summarised and visualised using the full power of Python's many scientific tools, including Scipy, Matplotlib, Pandas and CDAT. This rich user experience is delivered through the user's web browser; maintaining the interactive feel of a workstation-based environment with the parallel power of a remote data-centric processing facility.
THOR Turbulence Electron Analyser: TEA
NASA Astrophysics Data System (ADS)
Fazakerley, Andrew; Samara, Marilia; Hancock, Barry; Wicks, Robert; Moore, Tom; Rust, Duncan; Jones, Jonathan; Saito, Yoshifumi; Pollock, Craig; Owen, Chris; Rae, Jonny
2017-04-01
Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. The Turbulence Electron Analyser (TEA) will measure the plasma electron populations in the mission's Regions of Interest. It will collect a 3D electron velocity distribution with cadences as short as 5 ms. The instrument will be capable of measuring energies up to 30 keV. TEA consists of multiple electrostatic analyser heads arranged so as to measure electrons arriving from look directions covering the full sky, i.e. 4 pi solid angle. The baseline concept is similar to the successful FPI-DES instrument currently operating on the MMS mission. TEA is intended to have a similar angular resolution, but a larger geometric factor. In comparison to earlier missions, TEA improves on the measurement cadence. For example, MMS FPI-DES routinely operates at 30 ms cadence. The objective of measuring distributions at rates as fast as 5 ms is driven by the mission's scientific requirements to resolve electron gyroscale size structures, where plasma heating and fluctuation dissipation is predicted to occur. TEA will therefore be capable of making measurements of the evolution of distribution functions across thin (a few km) current sheets travelling past the spacecraft at up to 600 km/s, of the Power Spectral Density of fluctuations of electron moments and of distributions fast enough to match frequencies with waves expected to be dissipating turbulence (e.g. with 100 Hz whistler waves). A novel capability to time tag individual electron events during short intervals for the purposes of ground analysis of wave-particle interactions is also planned.
Management of scientific information with Google Drive.
Kubaszewski, Łukasz; Kaczmarczyk, Jacek; Nowakowski, Andrzej
2013-09-20
The amount and diversity of scientific publications requires a modern management system. By "management" we mean the process of gathering interesting information for the purpose of reading and archiving for quick access in future clinical practice and research activity. In the past, such system required physical existence of a library, either institutional or private. Nowadays in an era dominated by electronic information, it is natural to migrate entire systems to a digital form. In the following paper we describe the structure and functions of an individual electronic library system (IELiS) for the management of scientific publications based on the Google Drive service. Architecture of the system. Architecture system consists of a central element and peripheral devices. Central element of the system is virtual Google Drive provided by Google Inc. Physical elements of the system include: tablet with Android operating system and a personal computer, both with internet access. Required software includes a program to view and edit files in PDF format for mobile devices and another to synchronize the files. Functioning of the system. The first step in creating a system is collection of scientific papers in PDF format and their analysis. This step is performed most frequently on a tablet. At this stage, after being read, the papers are cataloged in a system of folders and subfolders, according to individual demands. During this stage, but not exclusively, the PDF files are annotated by the reader. This allows the user to quickly track down interesting information in review or research process. Modification of the document title is performed at this stage, as well. Second element of the system is creation of a mirror database in the Google Drive virtual memory. Modified and cataloged papers are synchronized with Google Drive. At this stage, a fully functional scientific information electronic library becomes available online. The third element of the system is a periodic two-way synchronization of data between Google Drive and tablet, as occasional modification of the files with annotation or recataloging may be performed at both locations. The system architecture is designed to gather, catalog and analyze scientific publications. All steps are electronic, eliminating paper forms. Indexed files are available for re-reading and modification. The system allows for fast access to full-text search with additional features making research easier. Team collaboration is also possible with full control of user privileges. Particularly important is the safety of collected data. In our opinion, the system exceeds many commercially available applications in terms of functionality and versatility.
Watching the dynamics of electrons and atoms at work in solar energy conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canton, S. E.; Zhang, X.; Liu, Y.
2015-07-06
The photochemical reactions performed by transition metal complexes have been proposed as viable routes towards solar energy conversion and storage into other forms that can be conveniently used in our everyday applications. In order to develop efficient materials, it is necessary to identify, characterize and optimize the elementary steps of the entire process on the atomic scale. To this end, we have studied the photoinduced electronic and structural dynamics in two heterobimetallic ruthenium–cobalt dyads, which belong to the large family of donor–bridge–acceptor systems. Using a combination of ultrafast optical and X-ray absorption spectroscopies, we can clock the light-driven electron transfermore » processes with element and spin sensitivity. In addition, the changes in local structure around the two metal centers are monitored. These experiments show that the nature of the connecting bridge is decisive for controlling the forward and the backward electron transfer rates, a result supported by quantum chemistry calculations. More generally, this work illustrates how ultrafast optical and X-ray techniques can disentangle the influence of spin, electronic and nuclear factors on the intramolecular electron transfer process. Finally, some implications for further improving the design of bridged sensitizer-catalysts utilizing the presented methodology are outlined.« less
Laser-driven electron beam and radiation sources for basic, medical and industrial sciences.
Nakajima, Kazuhisa
2015-01-01
To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker's review article on "Laser Acceleration and its future" [Toshiki Tajima, (2010)],(1)) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated.
WE-E-218-01: Writing and Reviewing Papers in Medical Physics.
Hendee, W; Slattery, P; Rogers, D; Karellas, A
2012-06-01
There is an art to writing a scientific paper so that it communicates accurately, succinctly, and comprehensively. Developing this art comes with experience, and sharing that experience with younger physicists is an obligation of senior scientists, especially those with editorial responsibilities for the journal. In this workshop, the preparation of a scientific manuscript will be dissected so participants can appreciate how each part is developed and then assembled into a complete paper. Then the review process for the paper will be discussed, including how to examine a paper and write an insightful and constructive review. Finally, we will consider the challenge of accommodating the concerns and recommendations of a reviewer in preparing a revision of the paper. A second feature of the workshop will be a discussion of the process of electronic submission of a paper for consideration by Medical Physics. The web-based PeerX-Press engine for manuscript submission and management will be examined, with attention to special features such as epaps and line-referencing. Finally, new features of Medical Physics will be explained, such as Vision 20/20 manuscripts, Physics Letters and the standardized formatting of book reviews. 1. Improve the participants' abilities to write a scientific manuscript. 2. Understand the review process for Medical Physics manuscripts and how to participate in and benefit from it. 3. Appreciate the many features of the PeerX-Press electronic management process for Medical Physics manuscripts. 4. Develop a knowledge of new features of Medical Physics. © 2012 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huerta, Gabriel
The objective of the project is to develop strategies for better representing scientific sensibilities within statistical measures of model skill that then can be used within a Bayesian statistical framework for data-driven climate model development and improved measures of model scientific uncertainty. One of the thorny issues in model evaluation is quantifying the effect of biases on climate projections. While any bias is not desirable, only those biases that affect feedbacks affect scatter in climate projections. The effort at the University of Texas is to analyze previously calculated ensembles of CAM3.1 with perturbed parameters to discover how biases affect projectionsmore » of global warming. The hypothesis is that compensating errors in the control model can be identified by their effect on a combination of processes and that developing metrics that are sensitive to dependencies among state variables would provide a way to select version of climate models that may reduce scatter in climate projections. Gabriel Huerta at the University of New Mexico is responsible for developing statistical methods for evaluating these field dependencies. The UT effort will incorporate these developments into MECS, which is a set of python scripts being developed at the University of Texas for managing the workflow associated with data-driven climate model development over HPC resources. This report reflects the main activities at the University of New Mexico where the PI (Huerta) and the Postdocs (Nosedal, Hattab and Karki) worked on the project.« less
Visible light-driven O2 reduction by a porphyrin-laccase system.
Lazarides, Theodore; Sazanovich, Igor V; Simaan, A Jalila; Kafentzi, Maria Chrisanthi; Delor, Milan; Mekmouche, Yasmina; Faure, Bruno; Réglier, Marius; Weinstein, Julia A; Coutsolelos, Athanassios G; Tron, Thierry
2013-02-27
Several recent studies have shown that the combination of photosensitizers with metalloenzymes can support a light-driven multielectron reduction of molecules such as CO(2) or HCN. Here we show that the association of the zinc tetramethylpyridinium porphyrin (ZnTMPyP(4+)) photosensitizer with the multicopper oxidase (MCO) laccase allows to link the oxidation of an organic molecule to the four electrons reduction of dioxygen into water. The enzyme is photoreduced within minutes with porphyrin/enzyme ratio as low as 1:40. With a 1:1 ratio, the dioxygen consumption rate is 1.7 μmol L(-1) s(-1). Flash photolysis experiments support the formation of the triplet excited state of ZnTMPyP(4+) which reduces the enzyme to form a radical cation of the porphyrin with a k(ET) ≈ 10(7) s(-1) M(-1). The long-lived triplet excited state of the ZnTMPyP(4+) (τ(0) = 0.72 ms) accounts for a substantial electron-transfer quantum yield, φ(ET) = 0.35. Consequently, the enzyme-dependent photo-oxidation of the electron donor occurs with a turnover of 8 min(-1) for the one-electron oxidation process, thereby supporting the suitability of such enzyme/sensitizer hybrid systems for aerobic photodriven transformations on substrates. This study is the first example of a phorphyrin-sensitized four-electron reduction of an enzyme of the MCO family, leading to photoreduction of dioxygen into water.
Zhang, Zhenyi; Jiang, Xiaoyi; Liu, Benkang; Guo, Lijiao; Lu, Na; Wang, Li; Huang, Jindou; Liu, Kuichao; Dong, Bin
2018-03-01
The ultrafast transfer of plasmon-induced hot electrons is considered an effective kinetics process to enhance the photoconversion efficiencies of semiconductors through strong localized surface plasmon resonance (LSPR) of plasmonic nanostructures. Although this classical sensitization approach is widely used in noble-metal-semiconductor systems, it remains unclear in nonmetallic plasmonic heterostructures. Here, by combining ultrafast transient absorption spectroscopy with theoretical simulations, IR-driven transfer of plasmon-induced hot electron in a nonmetallic branched heterostructure is demonstrated, which is fabricated through solvothermal growth of plasmonic W 18 O 49 nanowires (as branches) onto TiO 2 electrospun nanofibers (as backbones). The ultrafast transfer of hot electron from the W 18 O 49 branches to the TiO 2 backbones occurs within a timeframe on the order of 200 fs with very large rate constants ranging from 3.8 × 10 12 to 5.5 × 10 12 s -1 . Upon LSPR excitation by low-energy IR photons, the W 18 O 49 /TiO 2 branched heterostructure exhibits obviously enhanced catalytic H 2 generation from ammonia borane compared with that of W 18 O 49 nanowires. Further investigations by finely controlling experimental conditions unambiguously confirm that this plasmon-enhanced catalytic activity arises from the transfer of hot electron rather than from the photothermal effect. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Influence of the normal modes on the plasma uniformity in large scale CCP reactors
NASA Astrophysics Data System (ADS)
Eremin, Denis; Brinkmann, Ralf Peter; Mussenbrock, Thomas; Lane, Barton; Matsukuma, Masaaki; Ventzek, Peter
2016-09-01
Large scale capacitively coupled plasmas (CCP) driven by sources with high frequency components often exhibit phenomena which are absent in relatively well understood small scale CCPs driven at low frequencies. Of particular interest are such phenomena which affect discharge parameters of direct relevance to the plasma processing applications. One of such parameters is plasma uniformity. By using a self-consistent 2d3v Particle-in-cell/Monte-Carlo (PIC/MCC) code parallelized on GPU we have been able to show that uniformity of the plasma generated is influenced predominantly by two factors, the ionization pattern caused by high-energy electrons and the average temperature of low-energy plasma electrons. The heating mechanisms for these two groups of electrons appear to be different leading to different transversal (radial) profiles of the corresponding factors, which is well captured by the kinetic PIC/MCC code. We find that the heating mechanisms are intrinsically connected with excitation of normal modes inherent to a plasma-filled CCP reactor. In this work we study the wave nature of these phenomena, such as their excitation, propagation, and interaction with electrons. Supported by SFB-TR 87 project of the German Research Foundation and by the ``Experimental and numerical analysis of very high frequency capacitively coupled plasma discharges'' mutual research project between RUB and Tokyo Electron Ltd.
The Strongest 40 keV Electron Acceleration By ICME-driven Shocks At 1 AU
NASA Astrophysics Data System (ADS)
Yang, L.; Wang, L.; Li, G.; Wimmer-Schweingruber, R. F.; He, J.; Tu, C. Y.; Bale, S. D.
2017-12-01
Here we present a comprehensive case study of the in situ electron acceleration at the two ICME-driven shocks observed by WIND/3DP on February 11, 2000 and July 22, 2004. For the 11 February 2000 shock (the 22 July 2004 shock), the shocked electrons in the downstream show significant flux enhancements over the ambient solar wind electrons at energies up to 40 keV (66 keV) with a 6.0 times (1.9 times) ehancment at 40 keV, the strongest among all the quasi-perpendicular (quasi-parallel) ICME-driven shocks observed by the WIND spacecraft at 1 AU from 1995 through 2014. We find that in both shocks, the shocked electron fluxes at 0.5-40 keV fit well to a double power-law spectrum, J ˜ E-β, bending up at ˜2 keV. In the downstream, these shocked electrons show stronger fluxes in the anti-sunward direction, but their enhancement over the ambient fluxes peaks near 90° pitch angle (PA). For the 11 February 2000 shock, the electron spectral index, β, appears to not vary with the electron PA, while for the 22 July 2004 shock, β roughly decreases from the anti-sunward PA direction to the sunward PA direction. All of these spectral indexes are strongly larger than the theoretical prediction of diffusive shock acceleration. At energies above (below) 2 keV, however, the shocked electron β is similar to the solar wind superhalo (halo) electrons observed at quiet times. These results suggest that the electron acceleration at the ICME-driven shocks at 1 AU may favor the shock drift acceleration, and the superthermal electrons accelerated by the interplanetary shocks may contribute to the formation of the halo and superhalo electron populations in the solar wind.
An ultrafast electron microscope gun driven by two-photon photoemission from a nanotip cathode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bormann, Reiner; Strauch, Stefanie; Schäfer, Sascha, E-mail: schaefer@ph4.physik.uni-goettingen.de
We experimentally and numerically investigate the performance of an advanced ultrafast electron source, based on two-photon photoemission from a tungsten needle cathode incorporated in an electron microscope gun geometry. Emission properties are characterized as a function of the electrostatic gun settings, and operating conditions leading to laser-triggered electron beams of very low emittance (below 20 nm mrad) are identified. The results highlight the excellent suitability of optically driven nano-cathodes for the further development of ultrafast transmission electron microscopy.
USDA-ARS?s Scientific Manuscript database
Recent years have witnessed a call for evidence-based decisions in conservation and natural resource management, including data-driven decision-making. Adaptive management (AM) is one prevalent model for integrating scientific data into decision-making, yet AM has faced numerous challenges and limit...
Interaction physics for the stimulated Brillouin scattering of a laser in laser driven fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Pinki; Gupta, D.N.; Avinash, K., E-mail: dngupta@physics.du.ac.in
2014-07-01
Energy exchange between pump wave and ion-acoustic wave during the stimulated Brillouin Scattering process in relativistic laser-plasma interactions is studied, including the effect of damping coefficient of electron-ion collision by obeying the energy and momentum conservations. The variations of plasma density and damping coefficient of electron-ion collision change the amplitudes of the interacting wave. The relativistic mass effect modifies the dispersion relations of the interacting waves and consequently, the energy exchange during the stimulated Brillouin Scattering is affected. The collisional damping of electron-ion collision in the plasma is shown to have an important effect on the evolution of the interactingmore » waves. (author)« less
Electromagnetic Components of Auroral Hiss and Lower Hybrid Waves in the Polar Magnetosphere
NASA Technical Reports Server (NTRS)
Wong, H. K.
1995-01-01
DE-1 has frequently observed waves in the whistler and lower hybrid frequencies range. Besides the electrostatic components, these waves also exhibit electromagnetic components. It is generally believed that these waves are excited by the electron acoustic instability and the electron-beam-driven lower hybrid instability. Because the electron acoustic and the lower hybrid waves are predominately electrostatic waves, they cannot account for the observed electromagnetic components. In this work, it is suggested that these electromagnetic components can be explained by waves that are generated near the resonance cone and that propagate away from the source. The role that these electromagnetic waves can play in particle acceleration processes at low altitude is discussed.
Crossing Over: Nanostructures that Move Electrons and Ions across Cellular Membranes.
Ajo-Franklin, Caroline M; Noy, Aleksandr
2015-10-14
Critical biological processes such as energy generation and signal transduction are driven by the flow of electrons and ions across the membranes of living cells. As a result, there is substantial interest in creating nanostructured materials that control transport of these charged species across biomembranes. Recent advances in the synthesis of de novo and protein nanostructures for transmembrane ion and electron transport and the mechanistic understanding underlying this transport are described. This body of work highlights the promise such nanostructures hold for directing transmembrane transport of charged species as well as challenges that must be overcome to realize that potential. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patella, F.; Arciprete, F.; Fanfoni, M.
2005-12-19
We have followed by reflection high-energy electron diffraction the nucleation of InAs quantum dots on GaAs(001), grown by molecular-beam epitaxy with growth interruptions. Surface mass transport gives rise, at the critical InAs thickness, to a huge nucleation of three-dimensional islands within 0.2 monolayers (ML). Such surface mass diffusion has been evidenced by observing the transition of the reflection high-energy electron diffraction pattern from two- to three-dimensional during the growth interruption after the deposition of 1.59 ML of InAs. It is suggested that the process is driven by the As{sub 2} adsorption-desorption process and by the lowering of the In bindingmore » energy due to compressive strain. The last condition is met first in the region surrounding dots at step edges where nucleation predominantly occurs.« less
NASA Astrophysics Data System (ADS)
Kozlova, E. A.; Parmon, V. N.
2017-09-01
Current views on heterogeneous photocatalysts for visible- and near-UV-light-driven production of molecular hydrogen from water and aqueous solutions of inorganic and organic electron donors are analyzed and summarized. Main types of such photocatalysts and methods for their preparation are considered. Particular attention is paid to semiconductor photocatalysts based on sulfides that are known to be sensitive to visible light. The known methods for increasing the quantum efficiency of the target process are discussed, including design of the structure, composition and texture of semiconductor photocatalysts and variation of the medium pH and the substrate and photocatalyst concentrations. Some important aspects of the activation and deactivation of sulfide photocatalysts and the evolution of their properties in the course of hydrogen production processes in the presence of various types of electron donors are analyzed. The bibliography includes 276 references.
Plasma processes in inert gas thrusters
NASA Technical Reports Server (NTRS)
Kaufman, H. R.; Robinson, R. S.
1979-01-01
Inert gas thrusters, particularly with large diameters, have continued to be of interest for space propulsion applications. Two plasma processes are treated in this study: electron diffusion across magnetic fields and double ion production in inert-gas thrusters. A model is developed to describe electron diffusion across a magnetic field that is driven by both density and potential gradients, with Bohm diffusion used to predict the diffusion rate. This model has applications to conduction across magnetic fields inside a discharge chamber, as well as through a magnetic baffle region used to isolate a hollow cathode from the main chamber. A theory for double ion production is presented, which is not as complete as the electron diffusion theory described, but it should be a useful tool for predicting double ion sputter erosion. Correlations are developed that may be used, without experimental data, to predict double ion densities for the design of new and especially larger ion thrusters.
Harvesting multiple electron-hole pairs generated through plasmonic excitation of Au nanoparticles.
Kim, Youngsoo; Smith, Jeremy G; Jain, Prashant K
2018-05-07
Multi-electron redox reactions, although central to artificial photosynthesis, are kinetically sluggish. Amidst the search for synthetic catalysts for such processes, plasmonic nanoparticles have been found to catalyse multi-electron reduction of CO 2 under visible light. This example motivates the need for a general, insight-driven framework for plasmonic catalysis of such multi-electron chemistry. Here, we elucidate the principles underlying the extraction of multiple redox equivalents from a plasmonic photocatalyst. We measure the kinetics of electron harvesting from a gold nanoparticle photocatalyst as a function of photon flux. Our measurements, supported by theoretical modelling, reveal a regime where two-electron transfer from the excited gold nanoparticle becomes prevalent. Multiple electron harvesting becomes possible under continuous-wave, visible-light excitation of moderate intensity due to strong interband transitions in gold and electron-hole separation accomplished using a hole scavenger. These insights will help expand the utility of plasmonic photocatalysis beyond CO 2 reduction to other challenging multi-electron, multi-proton transformations such as N 2 fixation.
Collective Awareness and the New Institution Science
NASA Astrophysics Data System (ADS)
Pitt, Jeremy; Nowak, Andrzej
The following sections are included: * Introduction * Challenges for Institutions * Collective Awareness * A New Science of Institutions * Complex social ensembles * Interoceptive collective awareness * Planned emergence * Self-organising electronic institutions * Transformative Impact on Society * Social attitudes and processes * Innovative service creation and social innovation * Scientific impact * Big data * Self-regulation * Summary and Conclusions
Breakdown of Landau Fermi liquid theory: Restrictions on the degrees of freedom of quantum electrons
NASA Astrophysics Data System (ADS)
Su, Yue-Hua; Lu, Han-Tao
2018-04-01
One challenge in contemporary condensed matter physics is to understand unconventional electronic physics beyond the paradigm of Landau Fermi-liquid theory. Here, we present a perspective that posits that most such examples of unconventional electronic physics stem from restrictions on the degrees of freedom of quantum electrons in Landau Fermi liquids. Since the degrees of freedom are deeply connected to the system's symmetries and topology, these restrictions can thus be realized by external constraints or by interaction-driven processes via the following mechanisms: (i) symmetry breaking, (ii) new emergent symmetries, and (iii) nontrivial topology. Various examples of unconventional electronic physics beyond the reach of traditional Landau Fermi liquid theory are extensively investigated from this point of view. Our perspective yields basic pathways to study the breakdown of Landau Fermi liquids and also provides a guiding principle in the search for novel electronic systems and devices.
Temperature dependence of Brillouin light scattering spectra of acoustic phonons in silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsson, Kevin S.; Klimovich, Nikita; An, Kyongmo
2015-02-02
Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. The need for a better understanding of such non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report the measured BLS spectra of silicon at different temperatures. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in ordermore » to evaluate their potential use as temperature sensors for acoustic phonons.« less
Magnetic Reconnection Driven by Thermonuclear Burning
NASA Astrophysics Data System (ADS)
Gatto, R.; Coppi, B.
2017-10-01
Considering that fusion reaction products (e.g. α-particles) deposit their energy on the electrons, the relevant thermal energy balance equation is characterized by a fusion source term, a relatively large longitudinal thermal conductivity and an appropriate transverse thermal conductivity. Then, looking for modes that are radially localized around rational surfaces, reconnected field configurations are found that can be sustained by the electron thermal energy source due to fusion reactions. Then this process can be included in the category of endogenous reconnection processes and may be viewed as a form of the thermonuclear instability that can develop in an ignited inhomogeneous plasma. A complete analysis of the equations supporting the relevant theory is reported. Sponsored in part by the U.S. DoE.
Laser-induced breakup of helium 3S 1s2s with intermediate doubly excited states
NASA Astrophysics Data System (ADS)
Simonsen, A. S.; Bachau, H.; Førre, M.
2014-02-01
Solving the time-dependent Schrödinger equation in full dimensionality for two electrons, it is found that in the XUV regime the two-photon double ionization dynamics of He(1s2s) is predominantly dictated by the process of resonance enhanced multiphoton ionization via doubly excited states (DESs). We have studied a pump-probe scenario where the full laser-driven breakup of the 3S 1s2s metastable state is dominated by intermediate quasiresonant excitation to doubly excited (autoionizing) states in the 3Po series. Clear evidence of multipath interference effects is revealed in the resulting angular distributions of the ejected electrons in cases where more than one intermediate DES is populated in the process.
A Case Study in E-Journal Developments: The Scandinavian Position.
ERIC Educational Resources Information Center
Joa, Harald
1997-01-01
Provides an overview of peer-reviewed scientific and scholarly electronic journals in Scandinavia from a publisher's point of view. Discusses the electronic journals market in Scandinavia, international electronic publishing, the Institute for Scientific Information's Electronic Library Project, the one-stop shopping concept, and copyright and…
NASA Astrophysics Data System (ADS)
Chen, S. Y.; Hong, B. B.; Liu, Y.; Lu, W.; Huang, J.; Tang, C. J.; Ding, X. T.; Zhang, X. J.; Hu, Y. J.
2012-11-01
The synergy between electron cyclotron current drive (ECCD) and lower hybrid current drive (LHCD) is investigated numerically with the parameters of the HL-2A tokamak. Based on the understanding of the synergy mechanisms, a high current driven efficiency or a desired radial current profile can be achieved through properly matching the parameters of ECCD and LHCD due to the flexibility of ECCD. Meanwhile, it is found that the total current driven by the electron cyclotron wave (ECW) and the lower hybrid wave (LHW) simultaneously can be smaller than the sum of the currents driven by the ECW and LHW separately, when the power of the ECW is much larger than the LHW power. One of the reasons leading to this phenomenon (referred to as negative synergy in this context) is that fast current-carrying electrons tend to be trapped, when the perpendicular velocity driven by the ECW is large and the parallel velocity decided by the LHW is correspondingly small.
Rosenberg, M. J.; Li, C. K.; Fox, W.; ...
2015-05-20
An evolution of magnetic reconnection behavior, from fast jets to the slowing of reconnection and the establishment of a stable current sheet, has been observed in strongly-driven, β ≲ 20 laser-produced plasma experiments. This process has been inferred to occur alongside a slowing of plasma inflows carrying the oppositely-directed magnetic fields as well as the evolution of plasma conditions from collisionless to collisional. High-resolution proton radiography has revealed unprecedented detail of the forced interaction of magnetic fields and super-Alfvénic electron jets (V jet~ 20V A) ejected from the reconnection region, indicating that two-fluid or collisionless magnetic reconnection occurs early inmore » time. The absence of jets and the persistence of strong, stable magnetic fields at late times indicates that the reconnection process slows down, while plasma flows stagnate and plasma conditions evolve to a cooler, denser, more collisional state. These results demonstrate that powerful initial plasma flows are not sufficient to force a complete reconnection of magnetic fields, even in the strongly-driven regime.« less
Nishikawa, Masami; Shiroishi, Wataru; Honghao, Hou; Suizu, Hiroshi; Nagai, Hideyuki; Saito, Nobuo
2017-08-17
For an Ir-doped TiO 2 (Ir:TiO 2 ) photocatalyst, we examined the most dominant electron-transfer path for the visible-light-driven photocatalytic performance. The Ir:TiO 2 photocatalyst showed a much higher photocatalytic activity under visible-light irradiation than nondoped TiO 2 after grafting with the cocatalyst of Fe 3+ . For the Ir:TiO 2 photocatalyst, the two-step photoexcitation of an electron from the valence band to the conduction band through the Ir doping level occurred upon visible-light irradiation, as observed by electron spin resonance spectroscopy. The two-step photoexcitation through the doping level was found to be a more stable process with a lower recombination rate of hole-electron pairs than the two-step photoexcitation process through an oxygen vacancy. Once electrons are photoexcited to the conduction band by the two-step excitation, the electrons can easily transfer to the surface because the conduction band is a continuous electron path, whereas the electrons photoexcited at only the doping level could not easily transfer to the surface because of the discontinuity of this path. The observed two-step photoexcitation from the valence band to the conduction band through the doping level significantly contributes to the enhancement of the photocatalytic performance.
Optical components damage parameters database system
NASA Astrophysics Data System (ADS)
Tao, Yizheng; Li, Xinglan; Jin, Yuquan; Xie, Dongmei; Tang, Dingyong
2012-10-01
Optical component is the key to large-scale laser device developed by one of its load capacity is directly related to the device output capacity indicators, load capacity depends on many factors. Through the optical components will damage parameters database load capacity factors of various digital, information technology, for the load capacity of optical components to provide a scientific basis for data support; use of business processes and model-driven approach, the establishment of component damage parameter information model and database systems, system application results that meet the injury test optical components business processes and data management requirements of damage parameters, component parameters of flexible, configurable system is simple, easy to use, improve the efficiency of the optical component damage test.
Reference Architecture Model Enabling Standards Interoperability.
Blobel, Bernd
2017-01-01
Advanced health and social services paradigms are supported by a comprehensive set of domains managed by different scientific disciplines. Interoperability has to evolve beyond information and communication technology (ICT) concerns, including the real world business domains and their processes, but also the individual context of all actors involved. So, the system must properly reflect the environment in front and around the computer as essential and even defining part of the health system. This paper introduces an ICT-independent system-theoretical, ontology-driven reference architecture model allowing the representation and harmonization of all domains involved including the transformation into an appropriate ICT design and implementation. The entire process is completely formalized and can therefore be fully automated.
2016-01-01
Organometal halide perovskites show promising features for cost-effective application in photovoltaics. The material instability remains a major obstacle to broad application because of the poorly understood degradation pathways. Here, we apply simultaneous luminescence and electron microscopy on perovskites for the first time, allowing us to monitor in situ morphology evolution and optical properties upon perovskite degradation. Interestingly, morphology, photoluminescence (PL), and cathodoluminescence of perovskite samples evolve differently upon degradation driven by electron beam (e-beam) or by light. A transversal electric current generated by a scanning electron beam leads to dramatic changes in PL and tunes the energy band gaps continuously alongside film thinning. In contrast, light-induced degradation results in material decomposition to scattered particles and shows little PL spectral shifts. The differences in degradation can be ascribed to different electric currents that drive ion migration. Moreover, solution-processed perovskite cuboids show heterogeneity in stability which is likely related to crystallinity and morphology. Our results reveal the essential role of ion migration in perovskite degradation and provide potential avenues to rationally enhance the stability of perovskite materials by reducing ion migration while improving morphology and crystallinity. It is worth noting that even moderate e-beam currents (86 pA) and acceleration voltages (10 kV) readily induce significant perovskite degradation and alter their optical properties. Therefore, attention has to be paid while characterizing such materials using scanning electron microscopy or transmission electron microscopy techniques. PMID:26804213
Science Goal Driven Observing: A Step Towards Maximizing Science Returns and Spacecraft Autonomy
NASA Technical Reports Server (NTRS)
Koratkar, Anuradha; Grosvenor, Sandy; Jones, Jeremy; Memarsadeghi, Nargess; Wolf, Karl
2002-01-01
In the coming decade, the drive to increase the scientific returns on capital investment and to reduce costs will force automation to be implemented in many of the scientific tasks that have traditionally been manually overseen. Thus, spacecraft autonomy will become an even greater part of mission operations. While recent missions have made great strides in the ability to autonomously monitor and react to changing health and physical status of spacecraft, little progress has been made in responding quickly to science driven events. The new generation of space-based telescopes/observatories will see deeper, with greater clarity, and they will generate data at an unprecedented rate. Yet, while onboard data processing and storage capability will increase rapidly, bandwidth for downloading data will not increase as fast and can become a significant bottleneck and cost of a science program. For observations of inherently variable targets and targets of opportunity, the ability to recognize early if an observation will not meet the science goals of variability or minimum brightness, and react accordingly, can have a major positive impact on the overall scientific returns of an observatory and on its operational costs. If the observatory can reprioritize the schedule to focus on alternate targets, discard uninteresting observations prior to downloading, or download them at a reduced resolution its overall efficiency will be dramatically increased. We are investigating and developing tools for a science goal monitoring (SGM) system. The SGM will have an interface to help capture higher-level science goals from scientists and translate them into a flexible observing strategy that SGM can execute and monitor. SGM will then monitor the incoming data stream and interface with data processing systems to recognize significant events. When an event occurs, the system will use the science goals given it to reprioritize observations, and react appropriately and/or communicate with ground systems - both human and machine - for confirmation and/or further high priority analyses.
Neuromimetic Circuits with Synaptic Devices Based on Strongly Correlated Electron Systems
NASA Astrophysics Data System (ADS)
Ha, Sieu D.; Shi, Jian; Meroz, Yasmine; Mahadevan, L.; Ramanathan, Shriram
2014-12-01
Strongly correlated electron systems such as the rare-earth nickelates (R NiO3 , R denotes a rare-earth element) can exhibit synapselike continuous long-term potentiation and depression when gated with ionic liquids; exploiting the extreme sensitivity of coupled charge, spin, orbital, and lattice degrees of freedom to stoichiometry. We present experimental real-time, device-level classical conditioning and unlearning using nickelate-based synaptic devices in an electronic circuit compatible with both excitatory and inhibitory neurons. We establish a physical model for the device behavior based on electric-field-driven coupled ionic-electronic diffusion that can be utilized for design of more complex systems. We use the model to simulate a variety of associate and nonassociative learning mechanisms, as well as a feedforward recurrent network for storing memory. Our circuit intuitively parallels biological neural architectures, and it can be readily generalized to other forms of cellular learning and extinction. The simulation of neural function with electronic device analogs may provide insight into biological processes such as decision making, learning, and adaptation, while facilitating advanced parallel information processing in hardware.
NASA Astrophysics Data System (ADS)
Hussain, Muhammad M.; Rojas, Jhonathan P.; Torres Sevilla, Galo A.
2013-05-01
Today's information age is driven by silicon based electronics. For nearly four decades semiconductor industry has perfected the fabrication process of continuingly scaled transistor - heart of modern day electronics. In future, silicon industry will be more pervasive, whose application will range from ultra-mobile computation to bio-integrated medical electronics. Emergence of flexible electronics opens up interesting opportunities to expand the horizon of electronics industry. However, silicon - industry's darling material is rigid and brittle. Therefore, we report a generic batch fabrication process to convert nearly any silicon electronics into a flexible one without compromising its (i) performance; (ii) ultra-large-scale-integration complexity to integrate billions of transistors within small areas; (iii) state-of-the-art process compatibility, (iv) advanced materials used in modern semiconductor technology; (v) the most widely used and well-studied low-cost substrate mono-crystalline bulk silicon (100). In our process, we make trenches using anisotropic reactive ion etching (RIE) in the inactive areas (in between the devices) of a silicon substrate (after the devices have been fabricated following the regular CMOS process), followed by a dielectric based spacer formation to protect the sidewall of the trench and then performing an isotropic etch to create caves in silicon. When these caves meet with each other the top portion of the silicon with the devices is ready to be peeled off from the bottom silicon substrate. Release process does not need to use any external support. Released silicon fabric (25 μm thick) is mechanically flexible (5 mm bending radius) and the trenches make it semi-transparent (transparency of 7%).
Houplin, Justine; Dablemont, Céline; Sala, Leo; Lafosse, Anne; Amiaud, Lionel
2015-12-22
Aromatic self-assembled monolayers (SAMs) can serve as platforms for development of supramolecular assemblies driven by surface templates. For many applications, electron processing is used to locally reinforce the layer. To achieve better control of the irradiation step, chemical transformations induced by electron impact at 50 eV of terphenylthiol SAMs are studied, with these SAMs serving as model aromatic SAMs. High-resolution electron energy loss spectroscopy (HREELS) and electron-stimulated desorption (ESD) of neutral fragment measurements are combined to investigate electron-induced chemical transformation of the layer. The decrease of the CH stretching HREELS signature is mainly attributed to dehydrogenation, without a noticeable hybridization change of the hydrogenated carbon centers. Its evolution as a function of the irradiation dose gives an estimate of the effective hydrogen content loss cross-section, σ = 2.7-4.7 × 10(-17) cm(2). Electron impact ionization is the major primary mechanism involved, with the impact electronic excitation contributing only marginally. Therefore, special attention is given to the contribution of the low-energy secondary electrons to the induced chemistry. The effective cross-section related to dissociative secondary electron attachment at 6 eV is estimated to be 1 order of magnitude smaller. The 1 eV electrons do not induce significant chemical modification for a 2.5 mC cm(-2) dose, excluding their contribution.
NASA Astrophysics Data System (ADS)
Huang, Zhenguang; Tóth, Gábor; Gombosi, Tamas I.; Jia, Xianzhe; Rubin, Martin; Fougere, Nicolas; Tenishev, Valeriy; Combi, Michael R.; Bieler, Andre; Hansen, Kenneth C.; Shou, Yinsi; Altwegg, Kathrin
2016-05-01
The neutral and plasma environment is critical in understanding the interaction of the solar wind and comet 67P/Churyumov-Gerasimenko (CG), the target of the European Space Agency's Rosetta mission. To serve this need and support the Rosetta mission, we have developed a 3-D four-fluid model, which is based on BATS-R-US (Block-Adaptive Tree Solarwind Roe-type Upwind Scheme) within SWMF (Space Weather Modeling Framework) that solves the governing multifluid MHD equations and the Euler equations for the neutral gas fluid. These equations describe the behavior and interactions of the cometary heavy ions, the solar wind protons, the electrons, and the neutrals. This model incorporates different mass loading processes, including photoionization and electron impact ionization, charge exchange, dissociative ion-electron recombination, and collisional interactions between different fluids. We simulated the plasma and neutral gas environment near perihelion in three different cases: an idealized comet with a spherical body and uniform neutral gas outflow, an idealized comet with a spherical body and illumination-driven neutral gas outflow, and comet CG with a realistic shape model and illumination-driven neutral gas outflow. We compared the results of the three cases and showed that the simulations with illumination-driven neutral gas outflow have magnetic reconnection, a magnetic pileup region and nucleus directed plasma flow inside the nightside reconnection region, which have not been reported in the literature.
Final Technical Report for Grant DE-FG02-04ER54795
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merlino, Robert L
This is the final technical report for DOE Grant #DE-FG02-04ER54795-Experimental Investigations of Fundamental Processes in Dusty Plasmas. A plasma is an ionized gas, and a dusty plasmas is a plasma that contains, in addition to electrons and ions, micron-sized dust particles. The dust particles acquire and electric charge in the plasma by collecting electrons and ions. The electrons move more rapidly than the ions, so the dust charge is negative. A 1 micron dust particle in a typical low temperature plasma has a charge corresponding to approximately 2000 electrons. Dusty plasmas are naturally found in astrophysical plasmas, planetary rings, technologicalmore » plasmas, and magnetic fusion plasmas. The goal of this project was to study in the laboratory, the basic physical processes that occur in dusty plasmas. This report provides a summary of the major scientific products and activities of this award.« less
Probing plasma wakefields using electron bunches generated from a laser wakefield accelerator
NASA Astrophysics Data System (ADS)
Zhang, C. J.; Wan, Y.; Guo, B.; Hua, J. F.; Pai, C.-H.; Li, F.; Zhang, J.; Ma, Y.; Wu, Y. P.; Xu, X. L.; Mori, W. B.; Chu, H.-H.; Wang, J.; Lu, W.; Joshi, C.
2018-04-01
We show experimental results of probing the electric field structure of plasma wakes by using femtosecond relativistic electron bunches generated from a laser wakefield accelerator. Snapshots of laser-driven linear wakes in plasmas with different densities and density gradients are captured. The spatiotemporal evolution of the wake in a plasma density up-ramp is recorded. Two parallel wakes driven by a laser with a main spot and sidelobes are identified in the experiment and reproduced in simulations. The capability of this new method for capturing the electron- and positron-driven wakes is also shown via 3D particle-in-cell simulations.
NASA Astrophysics Data System (ADS)
Lunkenheimer, Peter; Müller, Jens; Krohns, Stephan; Schrettle, Florian; Loidl, Alois; Hartmann, Benedikt; Rommel, Robert; de Souza, Mariano; Hotta, Chisa; Schlueter, John A.; Lang, Michael
2012-09-01
Multiferroics, showing simultaneous ordering of electrical and magnetic degrees of freedom, are remarkable materials as seen from both the academic and technological points of view. A prominent mechanism of multiferroicity is the spin-driven ferroelectricity, often found in frustrated antiferromagnets with helical spin order. There, as for conventional ferroelectrics, the electrical dipoles arise from an off-centre displacement of ions. However, recently a different mechanism, namely purely electronic ferroelectricity, where charge order breaks inversion symmetry, has attracted considerable interest. Here we provide evidence for ferroelectricity, accompanied by antiferromagnetic spin order, in a two-dimensional organic charge-transfer salt, thus representing a new class of multiferroics. We propose a charge-order-driven mechanism leading to electronic ferroelectricity in this material. Quite unexpectedly for electronic ferroelectrics, dipolar and spin order arise nearly simultaneously. This can be ascribed to the loss of spin frustration induced by the ferroelectric ordering. Hence, here the spin order is driven by the ferroelectricity, in marked contrast to the spin-driven ferroelectricity in helical magnets.
NASA Astrophysics Data System (ADS)
Jones, D. B.; Campbell, L.; Bottema, M. J.; Teubner, P. J. O.; Cartwright, D. C.; Newell, W. R.; Brunger, M. J.
2006-01-01
Electron impact excitation of vibrational levels in the ground electronic state and seven excited electronic states in O 2 have been simulated for an International Brightness Coefficient-Category 2+ (IBC II+) night-time aurora, in order to predict O 2 excited state number densities and volume emission rates (VERs). These number densities and VERs are determined as a function of altitude (in the range 80-350 km) in the present study. Recent electron impact excitation cross-sections for O 2 were combined with appropriate altitude dependent IBC II+ auroral secondary electron distributions and the vibrational populations of the eight O 2 electronic states were determined under conditions of statistical equilibrium. Pre-dissociation, atmospheric chemistry involving atomic and molecular oxygen, radiative decay and quenching of excited states were included in this study. This model predicts relatively high number densities for the X3Σg-(v'⩽4),a1Δandb1Σg+ metastable electronic states and could represent a significant source of stored energy in O 2* for subsequent thermospheric chemical reactions. Particular attention is directed towards the emission intensities of the infrared (IR) atmospheric (1.27 μm), Atmospheric (0.76 μm) and the atomic oxygen 1S→ 1D transition (5577 Å) lines and the role of electron-driven processes in their origin. Aircraft, rocket and satellite observations have shown both the IR atmospheric and Atmospheric lines are dramatically enhanced under auroral conditions and, where possible, we compare our results to these measurements. Our calculated 5577 Å intensity is found to be in good agreement with values independently measured for a medium strength IBC II+ aurora.
Scientific Data Stewardship in the 21'st Century
NASA Astrophysics Data System (ADS)
Mabie, J. J.; Redmon, R.; Bullett, T.; Kihn, E. A.; Conkright, R.; Manley, J.; Horan, K.
2008-12-01
The Ionosonde Program at the National Geophysical Data Center (NGDC) serves as a case study for how to approach data stewardship in the 21'st century. As the number and sophistication of scientific instruments increase, along with the volumes and complexity of data that need to be preserved for future generations, the old approach of simply storing data in a library, physical or electronic, is no longer sufficient to ensure the long term preservation of our important environmental data. To ensure the data can be accessed, understood, and used by future generations, the data stewards must be familiar with the observation process before the data reach the archive and the scientific applications to which the data may be called to serve. This familiarity is best obtained by active participation. In the NGDC Ionosonde Program team, we strive to have activity and expertise in ionosonde field operations and scientific data analysis in addition to our core mission of preservation and distribution of data and metadata. We believe this approach produces superior data quality, proper documentation and evaluation tools for data customers as part of the archive process. We are presenting the Ionosonde Program as an example of modern scientific data stewardship.
Quasi Sturmian basis for the two-electon continuum
NASA Astrophysics Data System (ADS)
Zaytsev, A. S.; Ancarani, L. U.; Zaytsev, S. A.
2016-02-01
A new type of basis functions is proposed to describe a two-electron continuum which arises as a final state in electron-impact ionization and double photoionization of atomic systems. We name these functions, which are calculated in terms of the recently introduced quasi Sturmian functions, Convoluted Quasi Sturmian functions (CQS); by construction, they look asymptotically like a six-dimensional spherical wave. The driven equation describing an ( e, 3 e) process on helium in the framework of the Temkin-Poet model is solved numerically in the entire space (rather than in a finite region of space) using expansions on CQS basis functions. We show that quite rapid convergence of the solution expansion can be achieved by multiplying the basis functions by the logarithmic phase factor corresponding to the Coulomb electron-electron interaction.
Boxes of Model Building and Visualization.
Turk, Dušan
2017-01-01
Macromolecular crystallography and electron microscopy (single-particle and in situ tomography) are merging into a single approach used by the two coalescing scientific communities. The merger is a consequence of technical developments that enabled determination of atomic structures of macromolecules by electron microscopy. Technological progress in experimental methods of macromolecular structure determination, computer hardware, and software changed and continues to change the nature of model building and visualization of molecular structures. However, the increase in automation and availability of structure validation are reducing interactive manual model building to fiddling with details. On the other hand, interactive modeling tools increasingly rely on search and complex energy calculation procedures, which make manually driven changes in geometry increasingly powerful and at the same time less demanding. Thus, the need for accurate manual positioning of a model is decreasing. The user's push only needs to be sufficient to bring the model within the increasing convergence radius of the computing tools. It seems that we can now better than ever determine an average single structure. The tools work better, requirements for engagement of human brain are lowered, and the frontier of intellectual and scientific challenges has moved on. The quest for resolution of new challenges requires out-of-the-box thinking. A few issues such as model bias and correctness of structure, ongoing developments in parameters defining geometric restraints, limitations of the ideal average single structure, and limitations of Bragg spot data are discussed here, together with the challenges that lie ahead.
Simulation of high-energy radiation belt electron fluxes using NARMAX-VERB coupled codes
Pakhotin, I P; Drozdov, A Y; Shprits, Y Y; Boynton, R J; Subbotin, D A; Balikhin, M A
2014-01-01
This study presents a fusion of data-driven and physics-driven methodologies of energetic electron flux forecasting in the outer radiation belt. Data-driven NARMAX (Nonlinear AutoRegressive Moving Averages with eXogenous inputs) model predictions for geosynchronous orbit fluxes have been used as an outer boundary condition to drive the physics-based Versatile Electron Radiation Belt (VERB) code, to simulate energetic electron fluxes in the outer radiation belt environment. The coupled system has been tested for three extended time periods totalling several weeks of observations. The time periods involved periods of quiet, moderate, and strong geomagnetic activity and captured a range of dynamics typical of the radiation belts. The model has successfully simulated energetic electron fluxes for various magnetospheric conditions. Physical mechanisms that may be responsible for the discrepancies between the model results and observations are discussed. PMID:26167432
Laser-driven electron beam and radiation sources for basic, medical and industrial sciences
NAKAJIMA, Kazuhisa
2015-01-01
To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker’s review article on “Laser Acceleration and its future” [Toshiki Tajima, (2010)],1) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated. PMID:26062737
Infrared Auroral Emissions Driven by Resonant Electron Impact Excitation of NO Molecules
NASA Astrophysics Data System (ADS)
Campbell, L.; Brunger, M. J.; Petrovic, Z. Lj.; Jelisavcic, M.; Panajotovic, R.; Buckman, S. J.
2004-05-01
Although only a minor constituent of the earth's upper atmosphere, nitric oxide (NO) plays a major role in infrared auroral emissions due to radiation from vibrationally excited (NO*) states. The main process leading to the production of these excited molecules was thought to be chemiluminescence, whereby excited nitrogen atoms interact with oxygen molecules to form vibrationally excited nitric oxide (NO*) and atomic oxygen. Here we show evidence that a different production mechanism for NO*, due to low energy electron impact excitation of NO molecules, is responsible for more than 30% of the NO auroral emission near 5 μm.
Hot spots and dark current in advanced plasma wakefield accelerators
Manahan, G. G.; Deng, A.; Karger, O.; ...
2016-01-29
Dark current can spoil witness bunch beam quality and acceleration efficiency in particle beam-driven plasma wakefield accelerators. In advanced schemes, hot spots generated by the drive beam or the wakefield can release electrons from higher ionization threshold levels in the plasma media. Likewise, these electrons may be trapped inside the plasma wake and will then accumulate dark current, which is generally detrimental for a clear and unspoiled plasma acceleration process. The strategies for generating clean and robust, dark current free plasma wake cavities are devised and analyzed, and crucial aspects for experimental realization of such optimized scenarios are discussed.
Neutrino signal of electron-capture supernovae from core collapse to cooling.
Hüdepohl, L; Müller, B; Janka, H-T; Marek, A; Raffelt, G G
2010-06-25
An 8.8M{⊙} electron-capture supernova was simulated in spherical symmetry consistently from collapse through explosion to essentially complete deleptonization of the forming neutron star. The evolution time (∼9 s) is short because high-density effects suppress our neutrino opacities. After a short phase of accretion-enhanced luminosities (∼200 ms), luminosity equipartition among all species becomes almost perfect and the spectra of ν{e} and ν{μ,τ} very similar, ruling out the neutrino-driven wind as r-process site. We also discuss consequences for neutrino flavor oscillations.
Electronically steerable ultrasound-driven long narrow air stream
NASA Astrophysics Data System (ADS)
Hasegawa, Keisuke; Qiu, Liwei; Noda, Akihito; Inoue, Seki; Shinoda, Hiroyuki
2017-08-01
Acoustic streaming, which is the unidirectional movement of a medium driven by its internal intense acoustic vibrations, has been known for more than a century. Despite the long history of research, there have been no scientific reports on the creation of long stretching steerable airflows in an open space, generated by ultrasound. Here, we demonstrated the creation of a narrow, straight flow in air to a distance of 400 mm from an ultrasound phased array emitting a Bessel beam. We also demonstrated that the direction of the flow could be controlled by appropriately tuning the wavefronts of the emission from the phased array. Unlike conventional airflows such as those generated by jets or fans, which decelerate and spread out as they travel farther, the flow that we created proceeded while being accelerated by the kinetic energy supplied from the ultrasound beam and keeping the diameter as small as the wavelength. A flow of 3 m/s with a 10 mm diameter extended for several hundreds of millimeters in a room that was large enough to be regarded as an open-boundary environment. These properties of the generated flow will enable fine and rapid control of three-dimensional airflow distributions.
Oscillating two-stream instability in a magnetized electron-positron-ion plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tinakiche, Nouara; Faculty of Physics, U.S.T.H.B, Algiers 16111; Annou, R.
2015-04-15
Oscillating two-stream instability (OTSI) in a magnetized electron-ion plasma has been thoroughly studied, e.g., in ionospheric heating experiments [C. S. Liu and V. K. Tripathi, Interaction of Electromagnetic Waves With Electron Beams and Plasmas (World Scientific, 1994); V. K. Tripathi and P. V. Siva Rama Prasad, J. Plasma Phys. 41, 13 (1989); K. Ramachandran and V. K. Tripathi, IEEE Trans. Plasma Sci. 25, 423 (1997)]. In this paper, OTSI is investigated in a magnetized electron-positron-ion plasma. The dispersion relation of the process is established. The pump field threshold, along with the maximum growth rate of the instability is assessed usingmore » the Arecibo and HAARP parameters.« less
Oscillating two-stream instability in a magnetized electron-positron-ion plasma
NASA Astrophysics Data System (ADS)
Tinakiche, Nouara; Annou, R.
2015-04-01
Oscillating two-stream instability (OTSI) in a magnetized electron-ion plasma has been thoroughly studied, e.g., in ionospheric heating experiments [C. S. Liu and V. K. Tripathi, Interaction of Electromagnetic Waves With Electron Beams and Plasmas (World Scientific, 1994); V. K. Tripathi and P. V. Siva Rama Prasad, J. Plasma Phys. 41, 13 (1989); K. Ramachandran and V. K. Tripathi, IEEE Trans. Plasma Sci. 25, 423 (1997)]. In this paper, OTSI is investigated in a magnetized electron-positron-ion plasma. The dispersion relation of the process is established. The pump field threshold, along with the maximum growth rate of the instability is assessed using the Arecibo and HAARP parameters.
The New Morbidity and the Prevention of Mental Retardation.
ERIC Educational Resources Information Center
Baumeister, Alfred A.
1988-01-01
Efforts to prevent mental retardation have been encumbered by lack of scientific and technical knowledge, vague understanding of incidence and prevalence, and scarcity of resources to implement effective public policies. Scientific and social progress toward prevention has pursued a wavelike, erratic course, driven primarily by prevailing social,…
Ontology-Driven Discovery of Scientific Computational Entities
ERIC Educational Resources Information Center
Brazier, Pearl W.
2010-01-01
Many geoscientists use modern computational resources, such as software applications, Web services, scientific workflows and datasets that are readily available on the Internet, to support their research and many common tasks. These resources are often shared via human contact and sometimes stored in data portals; however, they are not necessarily…
Fermilab Friends for Science Education | Support Us
economy are driven by scientific and technological innovations. We want a strong future and must support our future scientists and their teachers now. We need a scientifically literate and aware society create new, innovative science education programs and make the best use of unique Fermilab resources
A User-Driven Annotation Framework for Scientific Data
ERIC Educational Resources Information Center
Li, Qinglan
2013-01-01
Annotations play an increasingly crucial role in scientific exploration and discovery, as the amount of data and the level of collaboration among scientists increases. There are many systems today focusing on annotation management, querying, and propagation. Although all such systems are implemented to take user input (i.e., the annotations…
Plasmon-driven sequential chemical reactions in an aqueous environment.
Zhang, Xin; Wang, Peijie; Zhang, Zhenglong; Fang, Yurui; Sun, Mengtao
2014-06-24
Plasmon-driven sequential chemical reactions were successfully realized in an aqueous environment. In an electrochemical environment, sequential chemical reactions were driven by an applied potential and laser irradiation. Furthermore, the rate of the chemical reaction was controlled via pH, which provides indirect evidence that the hot electrons generated from plasmon decay play an important role in plasmon-driven chemical reactions. In acidic conditions, the hot electrons were captured by the abundant H(+) in the aqueous environment, which prevented the chemical reaction. The developed plasmon-driven chemical reactions in an aqueous environment will significantly expand the applications of plasmon chemistry and may provide a promising avenue for green chemistry using plasmon catalysis in aqueous environments under irradiation by sunlight.
Plasmon-driven sequential chemical reactions in an aqueous environment
Zhang, Xin; Wang, Peijie; Zhang, Zhenglong; Fang, Yurui; Sun, Mengtao
2014-01-01
Plasmon-driven sequential chemical reactions were successfully realized in an aqueous environment. In an electrochemical environment, sequential chemical reactions were driven by an applied potential and laser irradiation. Furthermore, the rate of the chemical reaction was controlled via pH, which provides indirect evidence that the hot electrons generated from plasmon decay play an important role in plasmon-driven chemical reactions. In acidic conditions, the hot electrons were captured by the abundant H+ in the aqueous environment, which prevented the chemical reaction. The developed plasmon-driven chemical reactions in an aqueous environment will significantly expand the applications of plasmon chemistry and may provide a promising avenue for green chemistry using plasmon catalysis in aqueous environments under irradiation by sunlight. PMID:24958029
Thermally Driven Electronic Topological Transition in FeTi
NASA Astrophysics Data System (ADS)
Yang, F. C.; Muñoz, J. A.; Hellman, O.; Mauger, L.; Lucas, M. S.; Tracy, S. J.; Stone, M. B.; Abernathy, D. L.; Xiao, Yuming; Fultz, B.
2016-08-01
Ab initio molecular dynamics, supported by inelastic neutron scattering and nuclear resonant inelastic x-ray scattering, showed an anomalous thermal softening of the M5- phonon mode in B 2 -ordered FeTi that could not be explained by phonon-phonon interactions or electron-phonon interactions calculated at low temperatures. A computational investigation showed that the Fermi surface undergoes a novel thermally driven electronic topological transition, in which new features of the Fermi surface arise at elevated temperatures. The thermally induced electronic topological transition causes an increased electronic screening for the atom displacements in the M5- phonon mode and an adiabatic electron-phonon interaction with an unusual temperature dependence.
Dataset for an analysis of communicative aspects of finance.
Natalya Zavyalova
2017-04-01
The article describes a step-by-step strategy for designing a universal comprehensive vision of a vast majority of financial research topics. The strategy is focused around the analysis of the retrieval results of the word processing system Serelex which is based on the semantic similarity measure. While designing a research topic, scientists usually employ their individual background. They rely in most cases on their individual assumptions and hypotheses. The strategy, introduced in the article, highlights the method of identifying components of semantic maps which can lead to a better coverage of any scientific topic under analysis. On the example of the research field of finance we show the practical and theoretical value of semantic similarity measurements, i.e., a better coverage of the problems which might be included in the scientific analysis of financial field. At the designing stage of any research scientists are not immune to an insufficient and, thus, erroneous spectrum of problems under analysis. According to the famous maxima of St. Augustine, 'Fallor ergo sum', the researchers' activities are driven along the way from one mistake to another. However, this might not be the case for the 21st century science approach. Our strategy offers an innovative methodology, according to which the number of mistakes at the initial stage of any research may be significantly reduced. The data, obtained, was used in two articles (N. Zavyalova, 2017) [7], (N. Zavyalova, 2015) [8]. The second stage of our experiment was driven towards analyzing the correlation between the language and income level of the respondents. The article contains the information about data processing.
Nanoscale Engineering in VO2 Nanowires via Direct Electron Writing Process.
Zhang, Zhenhua; Guo, Hua; Ding, Wenqiang; Zhang, Bin; Lu, Yue; Ke, Xiaoxing; Liu, Weiwei; Chen, Furong; Sui, Manling
2017-02-08
Controlling phase transition in functional materials at nanoscale is not only of broad scientific interest but also important for practical applications in the fields of renewable energy, information storage, transducer, sensor, and so forth. As a model functional material, vanadium dioxide (VO 2 ) has its metal-insulator transition (MIT) usually at a sharp temperature around 68 °C. Here, we report a focused electron beam can directly lower down the transition temperature of a nanoarea to room temperature without prepatterning the VO 2 . This novel process is called radiolysis-assisted MIT (R-MIT). The electron beam irradiation fabricates a unique gradual MIT zone to several times of the beam size in which the temperature-dependent phase transition is achieved in an extended temperature range. The gradual transformation zone offers to precisely control the ratio of metal/insulator phases. This direct electron writing technique can open up an opportunity to precisely engineer nanodomains of diversified electronic properties in functional material-based devices.
Using Flexible Data-Driven Frameworks to Enhance School Psychology Training and Practice
ERIC Educational Resources Information Center
Coleman, Stephanie L.; Hendricker, Elise
2016-01-01
While a great number of scientific advances have been made in school psychology, the research to practice gap continues to exist, which has significant implications for training future school psychologists. Training in flexible, data-driven models may help school psychology trainees develop important competencies that will benefit them throughout…
Thompson, William K; Rasmussen, Luke V; Pacheco, Jennifer A; Peissig, Peggy L; Denny, Joshua C; Kho, Abel N; Miller, Aaron; Pathak, Jyotishman
2012-01-01
The development of Electronic Health Record (EHR)-based phenotype selection algorithms is a non-trivial and highly iterative process involving domain experts and informaticians. To make it easier to port algorithms across institutions, it is desirable to represent them using an unambiguous formal specification language. For this purpose we evaluated the recently developed National Quality Forum (NQF) information model designed for EHR-based quality measures: the Quality Data Model (QDM). We selected 9 phenotyping algorithms that had been previously developed as part of the eMERGE consortium and translated them into QDM format. Our study concluded that the QDM contains several core elements that make it a promising format for EHR-driven phenotyping algorithms for clinical research. However, we also found areas in which the QDM could be usefully extended, such as representing information extracted from clinical text, and the ability to handle algorithms that do not consist of Boolean combinations of criteria.
Dutch evidence statement for pelvic physical therapy in patients with anal incontinence.
Berghmans, L C M; Groot, J A M; van Heeswijk-Faase, I C; Bols, E M J
2015-04-01
To promote agreement among and support the quality of pelvic physiotherapists' skills and clinical reasoning in The Netherlands, an Evidence Statement Anal Incontinence (AI) was developed based on the practice-driven problem definitions outlined. We present a summary of the current state of knowledge and formulate recommendations for a methodical assessment and treatment for patients with AI, and place the evidence in a broader perspective of current developments. Electronic literature searches were conducted in relevant databases with regard to prevalence, incidence, costs, etiological and prognostic factors, predictors of response to therapy, prevention, assessment, and treatment. The recommendations have been formulated on the basis of scientific evidence and where no evidence was available, recommendations were consensus-based. The evidence statement incorporates a practice statement with corresponding notes that clarify the recommendations, and accompanying flowcharts, describing the steps and recommendations with regard to the diagnostic and therapeutic process. The diagnostic process consists of history-taking and physical examination supported by measurement instruments. For each problem category for patients with AI, a certain treatment plan can be distinguished dependent on the presence of pelvic floor dysfunction, awareness of loss of stools, comorbidity, neurological problems, adequate anorectal sensation, and (in)voluntary control. Available evidence and expert opinion support the use of education, pelvic floor muscle training, biofeedback, and electrostimulation in selected patients. The evidence statement reflects the current state of knowledge for a methodical and systematic physical therapeutic assessment and treatment for patients with AI.
Cryogenic Cooling of Infrared Electronics
1986-05-01
thermally driven, offers the potential of reducing operating and maintenance costs over the entire life cycle because of advan- tages in reduced wear due to...on demand. In addition to conventional mechanical cycles, it is possible to incorporate thermal, thermoelectric, and magnetic processes avoiding wear ...Considerable effort has been expended in improving the components of the Stirling cryocooler, especially in terms of minimizing the wear of the
First staging of two laser accelerators.
Kimura, W D; van Steenbergen, A; Babzien, M; Ben-Zvi, I; Campbell, L P; Cline, D B; Dilley, C E; Gallardo, J C; Gottschalk, S C; He, P; Kusche, K P; Liu, Y; Pantell, R H; Pogorelsky, I V; Quimby, D C; Skaritka, J; Steinhauer, L C; Yakimenko, V
2001-04-30
Staging of two laser-driven, relativistic electron accelerators has been demonstrated for the first time in a proof-of-principle experiment, whereby two distinct and serial laser accelerators acted on an electron beam in a coherently cumulative manner. Output from a CO2 laser was split into two beams to drive two inverse free electron lasers (IFEL) separated by 2.3 m. The first IFEL served to bunch the electrons into approximately 3 fs microbunches, which were rephased with the laser wave in the second IFEL. This represents a crucial step towards the development of practical laser-driven electron accelerators.
Ohnishi, S Tsuyoshi; Salerno, John C; Ohnishi, Tomoko
2010-12-01
In many energy transducing systems which couple electron and proton transport, for example, bacterial photosynthetic reaction center, cytochrome bc(1)-complex (complex III) and E. coli quinol oxidase (cytochrome bo(3) complex), two protein-associated quinone molecules are known to work together. T. Ohnishi and her collaborators reported that two distinct semiquinone species also play important roles in NADH-ubiquinone oxidoreductase (complex I). They were called SQ(Nf) (fast relaxing semiquinone) and SQ(Ns) (slow relaxing semiquinone). It was proposed that Q(Nf) serves as a "direct" proton carrier in the semiquinone-gated proton pump (Ohnishi and Salerno, FEBS Letters 579 (2005) 4555), while Q(Ns) works as a converter between one-electron and two-electron transport processes. This communication presents a revised hypothesis in which Q(Nf) plays a role in a "direct" redox-driven proton pump, while Q(Ns) triggers an "indirect" conformation-driven proton pump. Q(Nf) and Q(Ns) together serve as (1e(-)/2e(-)) converter, for the transfer of reducing equivalent to the Q-pool. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Roux, A.; Pellat, R.
1978-01-01
The propagation of electrostatic plasma waves in an inhomogeneous and magnetized plasma was studied. These waves, which are driven unstable by auroral beams of electrons, are shown to suffer a further geometrical amplification while they propagate towards resonances. Simultaneously, their group velocities tend to be aligned with the geomagnetic field. It is shown that the electrostatic energy tends to accumulate at, or near omega sub LH and omega sub UH, the local lower and upper hybrid frequencies. Due to this process, large amplitude electrostatic waves with very narrow spectra are observed near these frequencies at any place along the auroral field lines where intense beam driven instability takes place. These intense quasi-monochromatic electrostatic waves are shown to give rise to an intense electromagnetic radiation. Depending upon the ratio omega sub pe/omega sub ce between the electron plasma frequency and the electron gyro-frequency the electromagnetic wave can be radiated in the ordinary mode (at omega sub UH), or in the extraordinary (at 2 omega sub UH). As the ratio omega sub pe/omega sub ce tends to be rather small, it is shown that the most intense radiation should be boserved at 2 omega sub UH in the extraordinary mode.
Storey, Andrew P; Hieftje, Gary M
2016-12-01
Over the last several decades, science has benefited tremendously by the implementation of digital electronic components for analytical instrumentation. A pioneer in this area of scientific inquiry was Howard Malmstadt. Frequently, such revolutions in scientific history can be viewed as a series of discoveries without a great deal of attention as to how mentorship shapes the careers and methodologies of those who made great strides forward for science. This paper focuses on the verifiable relationships of those who are connected through the academic tree of Malmstadt and how their experiences and the context of world events influenced their scientific pursuits. Particular attention is dedicated to the development of American chemistry departments and the critical role played by many of the individuals in the tree in this process. © The Author(s) 2016.
Carbon nanotube-based three-dimensional monolithic optoelectronic integrated system
NASA Astrophysics Data System (ADS)
Liu, Yang; Wang, Sheng; Liu, Huaping; Peng, Lian-Mao
2017-06-01
Single material-based monolithic optoelectronic integration with complementary metal oxide semiconductor-compatible signal processing circuits is one of the most pursued approaches in the post-Moore era to realize rapid data communication and functional diversification in a limited three-dimensional space. Here, we report an electrically driven carbon nanotube-based on-chip three-dimensional optoelectronic integrated circuit. We demonstrate that photovoltaic receivers, electrically driven transmitters and on-chip electronic circuits can all be fabricated using carbon nanotubes via a complementary metal oxide semiconductor-compatible low-temperature process, providing a seamless integration platform for realizing monolithic three-dimensional optoelectronic integrated circuits with diversified functionality such as the heterogeneous AND gates. These circuits can be vertically scaled down to sub-30 nm and operates in photovoltaic mode at room temperature. Parallel optical communication between functional layers, for example, bottom-layer digital circuits and top-layer memory, has been demonstrated by mapping data using a 2 × 2 transmitter/receiver array, which could be extended as the next generation energy-efficient signal processing paradigm.
Stable transport in proton driven fast ignition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bret, A.
2009-09-15
Proton beam transport in the context of proton driven fast ignition is usually assumed to be stable due to proton high inertia, but an analytical analysis of the process is still lacking. The stability of a charge and current neutralized proton beam passing through a plasma is therefore conducted here, for typical proton driven fast ignition parameters. In the cold regime, two fast growing modes are found, with an inverse growth rate much smaller than the beam time of flight to the target core. The stability issue is thus not so obvious, and kinetic effects are investigated. One unstable modemore » is found stabilized by the background plasma proton and electron temperatures. The second mode is also damped, providing the proton beam thermal spread is larger than {approx}10 keV. In fusion conditions, the beam propagation should therefore be stable.« less
Carbon Nanotubes as an Ultrafast Emitter with a Narrow Energy Spread at Optical Frequency.
Li, Chi; Zhou, Xu; Zhai, Feng; Li, Zhenjun; Yao, Fengrui; Qiao, Ruixi; Chen, Ke; Cole, Matthew Thomas; Yu, Dapeng; Sun, Zhipei; Liu, Kaihui; Dai, Qing
2017-08-01
Ultrafast electron pulses, combined with laser-pump and electron-probe technologies, allow ultrafast dynamics to be characterized in materials. However, the pursuit of simultaneous ultimate spatial and temporal resolution of microscopy and spectroscopy is largely subdued by the low monochromaticity of the electron pulses and their poor phase synchronization to the optical excitation pulses. Field-driven photoemission from metal tips provides high light-phase synchronization, but suffers large electron energy spreads (3-100 eV) as driven by a long wavelength laser (>800 nm). Here, ultrafast electron emission from carbon nanotubes (≈1 nm radius) excited by a 410 nm femtosecond laser is realized in the field-driven regime. In addition, the emitted electrons have great monochromaticity with energy spread as low as 0.25 eV. This great performance benefits from the extraordinarily high field enhancement and great stability of carbon nanotubes, superior to metal tips. The new nanotube-based ultrafast electron source opens exciting prospects for extending current characterization to sub-femtosecond temporal resolution as well as sub-nanometer spatial resolution. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Technological Challenges to X-Ray FELs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuhn, Heinz-Dieter
1999-09-16
There is strong interest in the development of x-ray free electron lasers (x-ray FELs). The interest is driven by the scientific opportunities provided by intense, coherent x-rays. An x-ray FEL has all the characteristics of a fourth-generation source: brightness several orders of magnitude greater than presently achieved in third-generation sources, full transverse coherence, and sub-picosecond long pulses. The SLAC and DESY laboratories have presented detailed design studies for X-Ray FEL user facilities around the 0.1 nm wavelength-regime (LCLS at SLAC, TESLA X-Ray FEL at DESY). Both laboratories are engaged in proof-of-principle experiments are longer wavelengths (TTF FEL Phase I atmore » 71 nm, VISA at 600-800 nm) with results expected in 1999. The technologies needed to achieve the proposed performances are those of bright electron sources, of acceleration systems capable of preserving the brightness of the source, and of undulators capable of meeting the magnetic and mechanical tolerances that are required for operation in the SASE mode. This paper discusses the technological challenges presented by the X-Ray FEL projects.« less
EUV-driven ionospheres and electron transport on extrasolar giant planets orbiting active stars
NASA Astrophysics Data System (ADS)
Chadney, J. M.; Galand, M.; Koskinen, T. T.; Miller, S.; Sanz-Forcada, J.; Unruh, Y. C.; Yelle, R. V.
2016-03-01
The composition and structure of the upper atmospheres of extrasolar giant planets (EGPs) are affected by the high-energy spectrum of their host stars from soft X-rays to the extreme ultraviolet (EUV). This emission depends on the activity level of the star, which is primarily determined by its age. In this study, we focus upon EGPs orbiting K- and M-dwarf stars of different ages - ɛ Eridani, AD Leonis, AU Microscopii - and the Sun. X-ray and EUV (XUV) spectra for these stars are constructed using a coronal model. These spectra are used to drive both a thermospheric model and an ionospheric model, providing densities of neutral and ion species. Ionisation - as a result of stellar radiation deposition - is included through photo-ionisation and electron-impact processes. The former is calculated by solving the Lambert-Beer law, while the latter is calculated from a supra-thermal electron transport model. We find that EGP ionospheres at all orbital distances considered (0.1-1 AU) and around all stars selected are dominated by the long-lived H+ ion. In addition, planets with upper atmospheres where H2 is not substantially dissociated (at large orbital distances) have a layer in which H3+ is the major ion at the base of the ionosphere. For fast-rotating planets, densities of short-lived H3+ undergo significant diurnal variations, with the maximum value being driven by the stellar X-ray flux. In contrast, densities of longer-lived H+ show very little day/night variability and the magnitude is driven by the level of stellar EUV flux. The H3+ peak in EGPs with upper atmospheres where H2 is dissociated (orbiting close to their star) under strong stellar illumination is pushed to altitudes below the homopause, where this ion is likely to be destroyed through reactions with heavy species (e.g. hydrocarbons, water). The inclusion of secondary ionisation processes produces significantly enhanced ion and electron densities at altitudes below the main EUV ionisation peak, as compared to models that do not include electron-impact ionisation. We estimate infrared emissions from H3+, and while, in an H/H2/He atmosphere, these are larger from planets orbiting close to more active stars, they still appear too low to be detected with current observatories.
Ultrafast laser-induced modifications of energy bands of non-metal crystals
NASA Astrophysics Data System (ADS)
Gruzdev, Vitaly
2009-10-01
Ultrafast laser-induced variations of electron energy bands of transparent solids significantly influence ionization and conduction-band electron absorption driving the initial stage of laser-induced damage (LID). The mechanisms of the variations are attributed to changing electron functions from bonding to anti-bonding configuration via laser-induced ionization; laser-driven electron oscillations in quasi-momentum space; and direct distortion of the inter-atomic potential by electric field of laser radiation. The ionization results in the band-structure modification via accumulation of broken chemical bonds between atoms and provides significant contribution to the overall modification only when enough excited electrons are accumulated in the conduction band. The oscillations are associated with modification of electron energy by pondermotive potential of the oscillations. The direct action of radiation's electric field leads to specific high-frequency Franz-Keldysh effect (FKE) spreading the allowed electron states into the bands of forbidden energy. Those processes determine the effective band gap that is a laser-driven energy gap between the modified electron energy bands. Among those mechanisms, the latter two provide reversible band-structure modification that takes place from the beginning of the ionization and are, therefore, of special interest due to their strong influence on the initial stage of the ionization. The pondermotive potential results either in monotonous increase or oscillatory variations of the effective band gap that has been taken into account in some ionization models. The classical FKE provides decrease of the band gap. We analyzing the competition between those two opposite trends of the effective-band-gap variations and discuss applications of those effects for considerations of the laser-induced damage and its threshold in transparent solids.
76 FR 11199 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-01
... of the central nervous systems of freshwater prawns. Justification for Duty-Free Entry: There are no... 120 kV accelerating voltage, and an electron gun assembly with Cool Beam Illumination System--LaB6..., flexibility of software for signal acquisition and image processing, overall system stability, and ease of use...
An Electronic Engineering Curriculum Design Based on Concept-Mapping Techniques
ERIC Educational Resources Information Center
Toral, S. L.; Martinez-Torres, M. R.; Barrero, F.; Gallardo, S.; Duran, M. J.
2007-01-01
Curriculum design is a concern in European Universities as they face the forthcoming European Higher Education Area (EHEA). This process can be eased by the use of scientific tools such as Concept-Mapping Techniques (CMT) that extract and organize the most relevant information from experts' experience using statistics techniques, and helps a…
Between Two Ages; America's Role in the Technetronic Era.
ERIC Educational Resources Information Center
Brzezinski, Zbigniew
An attempt to define the meaning--within a dynamic framework--of the emerging global political process focuses on changes brought about by the increasing use of technology, especially electronic technology. The book is divided into five major parts. The first deals with the impact of the scientific-technological revolution on world affairs in…
Touch NMR: An NMR Data Processing Application for the iPad
ERIC Educational Resources Information Center
Li, Qiyue; Chen, Zhiwei; Yan, Zhiping; Wang, Cheng; Chen, Zhong
2014-01-01
Nuclear magnetic resonance (NMR) spectroscopy has become one of the most powerful technologies to aid research in numerous scientific disciplines. With the development of consumer electronics, mobile devices have played increasingly important roles in our daily life. However, there is currently no application available for mobile devices able to…
Mixed convection of nanofluids in a lid-driven rough cavity
NASA Astrophysics Data System (ADS)
Guo, Zhimeng; Wang, Jinyu; Mozumder, Aloke K.; Das, Prodip K.
2017-06-01
Mixed convection heat transfer and fluid flow of air, water or oil in enclosures have been studied extensively using experimental and numerical means for many years due to their ever-increasing applications in many engineering fields. In comparison, little effort has been given to the problem of mixed convection of nanofluids in spite of several applications in solar collectors, electronic cooling, lubrication technologies, food processing, and nuclear reactors. Mixed convection of nanofluids is a challenging problem due to the complex interactions among inertia, viscous, and buoyancy forces. In this study, mixed convection of nanofluids in a lid-driven square cavity with sinusoidal roughness elements at the bottom is studied numerically using the Navier-Stokes equations with the Boussinesq approximation. The numerical model is developed using commercial finite volume software ANSYS-FLUENT for Al2O3-water and CuO-water nanofluids inside a square cavity with various roughness elements. The effects of number and amplitude of roughness elements on the heat transfer and fluid flow are analysed for various volume concentrations of Al2O3 and CuO nanoparticles. The flow fields, temperature fields, and heat transfer rates are examined for different values of Rayleigh and Reynolds numbers. The outcome of this study provides some important insight into the heat transfer behaviour of Al2O3-water and CuO-water nanofluids inside a lid-driven rough cavity. This knowledge can be further used in developing novel geometries with enhanced and controlled heat transfer for solar collectors, electronic cooling, and food processing industries.
NASA Technical Reports Server (NTRS)
Kimble, Randy A.; Pain, Bedabrata; Norton, Timothy J.; Haas, J. Patrick; Oegerle, William R. (Technical Monitor)
2002-01-01
Silicon array readouts for microchannel plate intensifiers offer several attractive features. In this class of detector, the electron cloud output of the MCP intensifier is converted to visible light by a phosphor; that light is then fiber-optically coupled to the silicon array. In photon-counting mode, the resulting light splashes on the silicon array are recognized and centroided to fractional pixel accuracy by off-chip electronics. This process can result in very high (MCP-limited) spatial resolution while operating at a modest MCP gain (desirable for dynamic range and long term stability). The principal limitation of intensified CCD systems of this type is their severely limited local dynamic range, as accurate photon counting is achieved only if there are not overlapping event splashes within the frame time of the device. This problem can be ameliorated somewhat by processing events only in pre-selected windows of interest of by using an addressable charge injection device (CID) for the readout array. We are currently pursuing the development of an intriguing alternative readout concept based on using an event-driven CMOS Active Pixel Sensor. APS technology permits the incorporation of discriminator circuitry within each pixel. When coupled with suitable CMOS logic outside the array area, the discriminator circuitry can be used to trigger the readout of small sub-array windows only when and where an event splash has been detected, completely eliminating the local dynamic range problem, while achieving a high global count rate capability and maintaining high spatial resolution. We elaborate on this concept and present our progress toward implementing an event-driven APS readout.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahai, A. A.; Katsouleas, T. C.; Gessner, S.
2012-12-21
We study the various physical processes and their timescales involved in the excitation of wakefields in relativistically hot plasma. This has relevance to the design of a high repetition-rate plasma wakefield collider in which the plasma has not had time to cool between bunches in addition to understanding the physics of cosmic jets in relativistically hot astrophysical plasmas. When the plasma is relativistically hot (plasma temperature near m{sub e}c{sup 2}), the thermal pressure competes with the restoring force of ion space charge and can reduce or even eliminate the accelerating field of a wake. We will investigate explicitly the casemore » where the hot plasma is created by a preceding Wakefield drive bunch 10's of picoseconds to many nanoseconds ahead of the next drive bunch. The relativistically hot plasma is created when the excess energy (not coupled to the driven e{sup -} bunch) in the wake driven by the drive e{sup -} bunch is eventually converted into thermal energy on 10's of picosecond timescale. We will investigate the thermalization and diffusion processes of this non-equilibrium plasma on longer time scales, including the effects of ambi-polar diffusion of ions driven by hot electron expansion, possible Columbic explosion of ions producing higher ionization states and ionization of surrounding neutral atoms via collisions with hot electrons. Preliminary results of the transverse and longitudinal wakefields at different timescales of separation between a first and second bunch are presented and a possible experiment to study this topic at the FACET facility is described.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wootton, K. P.; Wu, Z.; Cowan, B. M.
Acceleration of electrons using laser-driven dielectric microstructures is a promising technology for the miniaturization of particle accelerators. In this work, experimental results are presented of relativistic electron acceleration with 690±100 MVm -1 gradient. This is a record-high accelerating gradient for a dielectric microstructure accelerator, nearly doubling the previous record gradient. To reach higher acceleration gradients the present experiment employs 90 fs duration laser pulses.
Data-driven gradient algorithm for high-precision quantum control
NASA Astrophysics Data System (ADS)
Wu, Re-Bing; Chu, Bing; Owens, David H.; Rabitz, Herschel
2018-04-01
In the quest to achieve scalable quantum information processing technologies, gradient-based optimal control algorithms (e.g., grape) are broadly used for implementing high-precision quantum gates, but their performance is often hindered by deterministic or random errors in the system model and the control electronics. In this paper, we show that grape can be taught to be more effective by jointly learning from the design model and the experimental data obtained from process tomography. The resulting data-driven gradient optimization algorithm (d-grape) can in principle correct all deterministic gate errors, with a mild efficiency loss. The d-grape algorithm may become more powerful with broadband controls that involve a large number of control parameters, while other algorithms usually slow down due to the increased size of the search space. These advantages are demonstrated by simulating the implementation of a two-qubit controlled-not gate.
Data-driven Ontology Development: A Case Study at NASA's Atmospheric Science Data Center
NASA Astrophysics Data System (ADS)
Hertz, J.; Huffer, E.; Kusterer, J.
2012-12-01
Well-founded ontologies are key to enabling transformative semantic technologies and accelerating scientific research. One example is semantically enabled search and discovery, making scientific data accessible and more understandable by accurately modeling a complex domain. The ontology creation process remains a challenge for many anxious to pursue semantic technologies. The key may be that the creation process -- whether formal, community-based, automated or semi-automated -- should encompass not only a foundational core and supplemental resources but also a focus on the purpose or mission the ontology is created to support. Are there tools or processes to de-mystify, assess or enhance the resulting ontology? We suggest that comparison and analysis of a domain-focused ontology can be made using text engineering tools for information extraction, tokenizers, named entity transducers and others. The results are analyzed to ensure the ontology reflects the core purpose of the domain's mission and that the ontology integrates and describes the supporting data in the language of the domain - how the science is analyzed and discussed among all users of the data. Commonalities and relationships among domain resources describing the Clouds and Earth's Radiant Energy (CERES) Bi-Directional Scan (BDS) datasets from NASA's Atmospheric Science Data Center are compared. The domain resources include: a formal ontology created for CERES; scientific works such as papers, conference proceedings and notes; information extracted from the datasets (i.e., header metadata); and BDS scientific documentation (Algorithm Theoretical Basis Documents, collection guides, data quality summaries and others). These resources are analyzed using the open source software General Architecture for Text Engineering, a mature framework for computational tasks involving human language.
NASA Astrophysics Data System (ADS)
Goulielmakis, Eleftherios
2017-04-01
Laser-driven generation of coherent radiation in bulk solids extending up to the extreme ultraviolet part of the spectrum has recently open up completely new possibilities for study of electronic phenomena which lie beyond the scope of standard condensed phase physics spectroscopies. I will present how previous and new tools of attosecond metrology can now allow us to gain detailed insight into the fundamental microscopic processes responsible for the EUV emission in solids. We will show that this emission is in reality a macroscopic probe of nanoscale intraband coherent electric currents the frequency of which is extending into multiPetahertz range. On the basis of these findings, I will try to persuade you that we are now entering the realm of coherent electronics. A regime in which electronic circuitry can be conceived on the atomic level and where electronic properties of materials can be accessed and controlled on attosecond time scales.
Bursty Precipitation Driven by Chorus Waves
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Telnikhin, A. A.; Kronberg, T. K.
2011-01-01
The electron precipitation bursts have been shown to be a major sink for the radiation belt relativistic electrons. As underlying mechanism of such bursts, we propose particle scattering into the loss cone due to nonlinear resonance interaction between electrons and chorus. Stochastic heating due to the coupling leads to diffusion in pitch angle, and the rate of diffusion would be sufficient to account for the emptying of the Earth's radiation belt over the time of the main phase of geomagnetic storms. The results obtained in the present paper account for a strong energy dependence in the electron precipitation event and the correlation between the energization and loss processes on macroscopic timescales, which is primarily attributed to the cooperative effects of the coupling. This mechanism of chorus scattering should produce pitch angle distributions that are energy-dependent and butterfly-shaped. The calculated timescales and the total energy input to the atmosphere from precipitating relativistic electrons are in reasonable agreement with experimental data.
Ultra high energy electrons powered by pulsar rotation.
Mahajan, Swadesh; Machabeli, George; Osmanov, Zaza; Chkheidze, Nino
2013-01-01
A new mechanism of particle acceleration, driven by the rotational slow down of the Crab pulsar, is explored. The rotation, through the time dependent centrifugal force, can efficiently excite unstable Langmuir waves in the electron-positron (hereafter e(±)) plasma of the star magnetosphere. These waves, then, Landau damp on electrons accelerating them in the process. The net transfer of energy is optimal when the wave growth and the Landau damping times are comparable and are both very short compared to the star rotation time. We show, by detailed calculations, that these are precisely the conditions for the parameters of the Crab pulsar. This highly efficient route for energy transfer allows the electrons in the primary beam to be catapulted to multiple TeV (~ 100 TeV) and even PeV energy domain. It is expected that the proposed mechanism may, unravel the puzzle of the origin of ultra high energy cosmic ray electrons.
Misfit strain driven cation inter-diffusion across an epitaxial multiferroic thin film interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sankara Rama Krishnan, P. S.; Munroe, Paul; Nagarajan, V.
Cation intermixing at functional oxide interfaces remains a highly controversial area directly relevant to interface-driven nanoelectronic device properties. Here, we systematically explore the cation intermixing in epitaxial (001) oriented multiferroic bismuth ferrite (BFO) grown on a (001) lanthanum aluminate (LAO) substrate. Aberration corrected dedicated scanning transmission electron microscopy and electron energy loss spectroscopy reveal that the interface is not chemically sharp, but with an intermixing of ∼2 nm. The driving force for this process is identified as misfit-driven elastic strain. Landau-Ginzburg-Devonshire-based phenomenological theory was combined with the Sheldon and Shenoy formula in order to understand the influence of boundary conditions andmore » depolarizing fields arising from misfit strain between the LAO substrate and BFO film. The theory predicts the presence of a strong potential gradient at the interface, which decays on moving into the bulk of the film. This potential gradient is significant enough to drive the cation migration across the interface, thereby mitigating the misfit strain. Our results offer new insights on how chemical roughening at oxide interfaces can be effective in stabilizing the structural integrity of the interface without the need for misfit dislocations. These findings offer a general formalism for understanding cation intermixing at highly strained oxide interfaces that are used in nanoelectronic devices.« less
The Design and Evaluation of "CAPTools"--A Computer Aided Parallelization Toolkit
NASA Technical Reports Server (NTRS)
Yan, Jerry; Frumkin, Michael; Hribar, Michelle; Jin, Haoqiang; Waheed, Abdul; Johnson, Steve; Cross, Jark; Evans, Emyr; Ierotheou, Constantinos; Leggett, Pete;
1998-01-01
Writing applications for high performance computers is a challenging task. Although writing code by hand still offers the best performance, it is extremely costly and often not very portable. The Computer Aided Parallelization Tools (CAPTools) are a toolkit designed to help automate the mapping of sequential FORTRAN scientific applications onto multiprocessors. CAPTools consists of the following major components: an inter-procedural dependence analysis module that incorporates user knowledge; a 'self-propagating' data partitioning module driven via user guidance; an execution control mask generation and optimization module for the user to fine tune parallel processing of individual partitions; a program transformation/restructuring facility for source code clean up and optimization; a set of browsers through which the user interacts with CAPTools at each stage of the parallelization process; and a code generator supporting multiple programming paradigms on various multiprocessors. Besides describing the rationale behind the architecture of CAPTools, the parallelization process is illustrated via case studies involving structured and unstructured meshes. The programming process and the performance of the generated parallel programs are compared against other programming alternatives based on the NAS Parallel Benchmarks, ARC3D and other scientific applications. Based on these results, a discussion on the feasibility of constructing architectural independent parallel applications is presented.
Qian, Jin; Zhang, Mingkuan; Wu, Yaoguo; Niu, Juntao; Chang, Xing; Yao, Hairui; Hu, Sihai; Pei, Xiangjun
2018-06-12
To exploit the advantages of less electron donor consumptions in partial-denitrification (denitratation, NO 3 - → NO 2 - ) as well as less sludge production in autotrophic denitrification (AD) and anammox, a novel biological nitrogen removal (BNR) process through combined anammox and thiosulfate-driven denitratation was proposed here. In this study, the ratio of S 2 O 3 2- -S/NO 3 - -N and pH are confirmed to be two key factors affecting the thiosulfate-driven denitratation activity and nitrite accumulation. Simultaneous high denitratation activity and substantial nitrite accumulation were observed at initial S 2 O 3 2- -S/NO 3 - -N ratio of 1.5:1 and pH of 8.0. The optimal pH for the anammox reaction is determined to be 8.0. A sequential batch reactor (SBR) and an up-flow anaerobic sludge blanket (UASB) reactor were established to proceed the anammox and the high-rate thiosulfate-driven denitratation, respectively. Under the ambient temperature of 35 °C, the total nitrogen removal efficiency and capacity are 73% and 0.35 kg N/day/m 3 in the anammox-SBR. At HRT of 30 min, the NO 3 - removal efficiency could achieve above 90% with the nitrate-to-nitrite transformation ratio of 0.8, implying the great potential to apply the thiosulfate-driven denitratation & anammox system for BNR with minimal sludge production. Without the occurrence of denitritation (NO 2 - → N 2 O → N 2 ), theoretically no N 2 O could be emitted from this BNR system. This study could shed light on how to operate a high rate BNR system targeting to electron donor and energy savings as well as biowastes minimization and greenhouse gas reductions. Copyright © 2018. Published by Elsevier Ltd.
Modeling laser-driven electron acceleration using WARP with Fourier decomposition
Lee, P.; Audet, T. L.; Lehe, R.; ...
2015-12-31
WARP is used with the recent implementation of the Fourier decomposition algorithm to model laser-driven electron acceleration in plasmas. Simulations were carried out to analyze the experimental results obtained on ionization-induced injection in a gas cell. The simulated results are in good agreement with the experimental ones, confirming the ability of the code to take into account the physics of electron injection and reduce calculation time. We present a detailed analysis of the laser propagation, the plasma wave generation and the electron beam dynamics.
Modeling laser-driven electron acceleration using WARP with Fourier decomposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, P.; Audet, T. L.; Lehe, R.
WARP is used with the recent implementation of the Fourier decomposition algorithm to model laser-driven electron acceleration in plasmas. Simulations were carried out to analyze the experimental results obtained on ionization-induced injection in a gas cell. The simulated results are in good agreement with the experimental ones, confirming the ability of the code to take into account the physics of electron injection and reduce calculation time. We present a detailed analysis of the laser propagation, the plasma wave generation and the electron beam dynamics.
Döppner, T; Dewald, E L; Divol, L; Thomas, C A; Burns, S; Celliers, P M; Izumi, N; Kline, J L; LaCaille, G; McNaney, J M; Prasad, R R; Robey, H F; Glenzer, S H; Landen, O L
2012-10-01
We have fielded a hard x-ray (>100 keV) imager with high aspect ratio pinholes to measure the spatially resolved bremsstrahlung emission from energetic electrons slowing in a plastic ablator shell during indirectly driven implosions at the National Ignition Facility. These electrons are generated in laser plasma interactions and are a source of preheat to the deuterium-tritium fuel. First measurements show that hot electron preheat does not limit obtaining the fuel areal densities required for ignition and burn.
Self-injection of electrons in a laser-wakefield accelerator by using longitudinal density ripple
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahiya, Deepak; Sharma, A. K.; Sajal, Vivek
By introducing a longitudinal density ripple (periodic modulation in background plasma density), we demonstrate self-injection of electrons in a laser-wakefield accelerator. The wakefield driven plasma wave, in presence of density ripple excites two side band waves of same frequency but different wave numbers. One of these side bands, having smaller phase velocity compared to wakefield driven plasma wave, preaccelerates the background plasma electrons. Significant number of these preaccelerated electrons get trapped in the laser-wakefield and further accelerated to higher energies.
A novel dismantling process of waste printed circuit boards using water-soluble ionic liquid.
Zeng, Xianlai; Li, Jinhui; Xie, Henghua; Liu, Lili
2013-10-01
Recycling processes for waste printed circuit boards (WPCBs) have been well established in terms of scientific research and field pilots. However, current dismantling procedures for WPCBs have restricted the recycling process, due to their low efficiency and negative impacts on environmental and human health. This work aimed to seek an environmental-friendly dismantling process through heating with water-soluble ionic liquid to separate electronic components and tin solder from two main types of WPCBs-cathode ray tubes and computer mainframes. The work systematically investigates the influence factors, heating mechanism, and optimal parameters for opening solder connections on WPCBs during the dismantling process, and addresses its environmental performance and economic assessment. The results obtained demonstrate that the optimal temperature, retention time, and turbulence resulting from impeller rotation during the dismantling process, were 250 °C, 12 min, and 45 rpm, respectively. Nearly 90% of the electronic components were separated from the WPCBs under the optimal experimental conditions. This novel process offers the possibility of large industrial-scale operations for separating electronic components and recovering tin solder, and for a more efficient and environmentally sound process for WPCBs recycling. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Frazier, Donald O.
2000-01-01
Technically, the field of integrated optics using organic/polymer materials as a new means of information processing, has emerged as of vital importance to optical computers, optical switching, optical communications, the defense industry, etc. The goal is to replace conventional electronic integrated circuits and wires by equivalent miniaturized optical integrated circuits and fibers, offering larger bandwidths, more compactness and reliability, immunity to electromagnetic interference and less cost. From the Code E perspective, this research area represents an opportunity to marry "front-line" education in science and technology with national scientific and technological interests while maximizing human resources utilization. This can be achieved by the development of untapped resources for scientific research - such as minorities, women, and universities traditionally uninvolved in scientific research.
Correlation-driven insulator-metal transition in near-ideal vanadium dioxide films
Gray, A. X.; Jeong, J.; Aetukuri, N. P.; ...
2016-03-18
We use polarization- and temperature-dependent x-ray absorption spectroscopy, in combination with photoelectron microscopy, x-ray diffraction, and electronic transport measurements, to study the driving force behind the insulator-metal transition in VO 2. We show that both the collapse of the insulating gap and the concomitant change in crystal symmetry in homogeneously strained single-crystalline VO 2 films are preceded by the purely electronic softening of Coulomb correlations within V-V singlet dimers. Furthermore, this process starts 7 K (±0.3 K) below the transition temperature, as conventionally defined by electronic transport and x-ray diffraction measurements, and sets the energy scale for driving the near-room-temperaturemore » insulator-metal transition in this technologically promising material.« less
First experimental demonstration of magnetic-field assisted fast heating of a dense plasma core
NASA Astrophysics Data System (ADS)
Fujioka, Shinsuke; Sakata, Shohei; Lee, Seung Ho; Matsuo, Kazuki; Sawada, Hiroshi; Iwasa, Yuki; Law, King Fai Farley; Morita, Hitoki; Kojima, Sadaoki; Abe, Yuki; Yao, Akira; Hata, Masayasu; Johzaki, Tomoyuki; Sunahara, Atsushi; Ozaki, Tetsuo; Sakagami, Hitoshi; Morace, Alessio; Arikawa, Yasunobu; Yogo, Akifumi; Nishimura, Hiroaki; Nakai, Mitsuo; Shiraga, Hiroyuki; Sentoku, Yasuhiko; Nagatomo, Hideo; Azechi, Hiroshi; Firex Project Team
2016-10-01
Fast heating of a dense plasma core by an energetic electron beam is being studied on GEKKO-LFEX laser facility. Here, we introduce a laser-driven kilo-tesla external magnetic field to guide the diverging electron beam to the dense plasma core. This involve placing a spherical target in the magnetic field, compressing it with the GEKKO-XII laser beams and then using the LFEX laser beams injected into the dense plasma to generate the electron beam which do the fast heating. Cu-Ka emission is used to visualize transport or heating processes of a dense plasma. X-ray spectrum from a highly ionized Cu ions indicates several keV of the temperature increment induced by the LFEX.
Silicon-carbon bond inversions driven by 60-keV electrons in graphene.
Susi, Toma; Kotakoski, Jani; Kepaptsoglou, Demie; Mangler, Clemens; Lovejoy, Tracy C; Krivanek, Ondrej L; Zan, Recep; Bangert, Ursel; Ayala, Paola; Meyer, Jannik C; Ramasse, Quentin
2014-09-12
We demonstrate that 60-keV electron irradiation drives the diffusion of threefold-coordinated Si dopants in graphene by one lattice site at a time. First principles simulations reveal that each step is caused by an electron impact on a C atom next to the dopant. Although the atomic motion happens below our experimental time resolution, stochastic analysis of 38 such lattice jumps reveals a probability for their occurrence in a good agreement with the simulations. Conversions from three- to fourfold coordinated dopant structures and the subsequent reverse process are significantly less likely than the direct bond inversion. Our results thus provide a model of nondestructive and atomically precise structural modification and detection for two-dimensional materials.
Plasma ignition and steady state simulations of the Linac4 H- ion source
NASA Astrophysics Data System (ADS)
Mattei, S.; Ohta, M.; Yasumoto, M.; Hatayama, A.; Lettry, J.; Grudiev, A.
2014-02-01
The RF heating of the plasma in the Linac4 H- ion source has been simulated using a particle-in-cell Monte Carlo collision method. This model is applied to investigate the plasma formation starting from an initial low electron density of 1012 m-3 and its stabilization at 1018 m-3. The plasma discharge at low electron density is driven by the capacitive coupling with the electric field generated by the antenna, and as the electron density increases the capacitive electric field is shielded by the plasma and induction drives the plasma heating process. Plasma properties such as e-/ion densities and energies, sheath formation, and shielding effect are presented and provide insight to the plasma properties of the hydrogen plasma.
A tale of two slinkies: learning about scientific models in a student-driven classroom
NASA Astrophysics Data System (ADS)
Gandhi, Punit; Berggren, Calvin; Livezey, Jesse; Olf, Ryan
2014-11-01
We describe a set of conceptual activities and hands-on experiments based around understanding the dynamics of a slinky that is hung vertically and released from rest. The motion, or lack thereof, of the bottom of the slinky after the top is dropped sparks students' curiosity by challenging their expectations and provides context for learning about scientific model building. This curriculum helps students learn about the model building process by giving them an opportunity to enlist their collective intellectual and creative resources to develop and explore two different physical models of the falling slinky system. By engaging with two complementary models, students not only have the opportunity to understand an intriguing phenomenon from multiple perspectives, but also learn deeper lessons about the nature of scientific understanding, the role of physical models, and the experience of doing science. The activities we present were part of a curriculum developed for a week-long summer program for incoming freshmen as a part of the Compass Project at UC Berkeley, but could easily be implemented in a wide range of classrooms at the high school or introductory college level.
Yoho, Rachel A; Vanmali, Binaben H
2016-03-01
The biological sciences encompass topics considered controversial by the American public, such as evolution and climate change. We believe that the development of climate change education in the biology classroom is better informed by an understanding of the history of the teaching of evolution. A common goal for science educators should be to engender a greater respect for and appreciation of science among students while teaching specific content knowledge. Citizen science has emerged as a viable yet underdeveloped method for engaging students of all ages in key scientific issues that impact society through authentic data-driven scientific research. Where successful, citizen science may open avenues of communication and engagement with the scientific process that would otherwise be more difficult to achieve. Citizen science projects demonstrate versatility in education and the ability to test hypotheses by collecting large amounts of often publishable data. We find a great possibility for science education research in the incorporation of citizen science projects in curriculum, especially with respect to "hot topics" of socioscientific debate based on our review of the findings of other authors. Journal of Microbiology & Biology Education.
NASA Astrophysics Data System (ADS)
Murakami, Mitsuko; Zhang, G. P.; Chu, Shih-I.
2017-05-01
We present the photoelectron momentum distributions (PMDs) of helium, neon, and argon atoms driven by a linearly polarized, visible (527-nm) or near-infrared (800-nm) laser pulse (20 optical cycles in duration) based on the time-dependent density-functional theory (TDDFT) under the local-density approximation with a self-interaction correction. A set of time-dependent Kohn-Sham equations for all electrons in an atom is numerically solved using the generalized pseudospectral method. An effect of the electron-electron interaction driven by a visible laser field is not recognizable in the helium and neon PMDs except for a reduction of the overall photoelectron yield, but there is a clear difference between the PMDs of an argon atom calculated with the frozen-core approximation and TDDFT, indicating an interference of its M -shell wave functions during the ionization. Furthermore, we find that the PMDs of degenerate p states are well separated in intensity when driven by a near-infrared laser field, so that the single-active-electron approximation can be adopted safely.
Hu, Shihu; Zeng, Raymond J.; Haroon, Mohamed F.; Keller, Jurg; Lant, Paul A.; Tyson, Gene W.; Yuan, Zhiguo
2015-01-01
This study investigates interactions between recently identified denitrifying anaerobic methane oxidation (DAMO) and anaerobic ammonium oxidation (anammox) processes in controlled anoxic laboratory reactors. Two reactors were seeded with the same inocula containing DAMO organisms Candidatus Methanoperedens nitroreducens and Candidatus Methylomirabilis oxyfera, and anammox organism Candidatus Kuenenia stuttgartiensis. Both were fed with ammonium and methane, but one was also fed with nitrate and the other with nitrite, providing anoxic environments with different electron acceptors. After steady state reached in several months, the DAMO process became solely/primarily responsible for nitrate reduction while the anammox process became solely responsible for nitrite reduction in both reactors. 16S rRNA gene amplicon sequencing showed that the nitrate-driven DAMO organism M. nitroreducens dominated both the nitrate-fed (~70%) and the nitrite-fed (~26%) reactors, while the nitrite-driven DAMO organism M. oxyfera disappeared in both communities. The elimination of M. oxyfera from both reactors was likely the results of this organism being outcompeted by anammox bacteria for nitrite. K. stuttgartiensis was detected at relatively low levels (1–3%) in both reactors. PMID:25732131
NASA Astrophysics Data System (ADS)
Pllumbi, Else; Tamborra, Irene; Wanajo, Shinya; Janka, Hans-Thomas; Hüdepohl, Lorenz
2015-08-01
Neutrino oscillations, especially to light sterile states, can affect nucleosynthesis yields because of their possible feedback effect on the electron fraction (Ye). For the first time, we perform nucleosynthesis calculations for neutrino-driven wind trajectories from the neutrino-cooling phase of an 8.8 {M}⊙ electron-capture supernova (SN), whose hydrodynamic evolution was computed in spherical symmetry with sophisticated neutrino transport and whose Ye evolution was post-processed by including neutrino oscillations between both active and active-sterile flavors. We also take into account the α-effect as well as weak magnetism and recoil corrections in the neutrino absorption and emission processes. We observe effects on the Ye evolution that depend in a subtle way on the relative radial positions of the sterile Mikheyev-Smirnov-Wolfenstein resonances, on collective flavor transformations, and on the formation of α particles. For the adopted SN progenitor, we find that neutrino oscillations, also to a sterile state with eV mass, do not significantly affect the element formation and in particular cannot make the post-explosion wind outflow neutron-rich enough to activate a strong r-process. Our conclusions become even more robust when, in order to mimic equation-of-state-dependent corrections due to nucleon potential effects in the dense-medium neutrino opacities, six cases with reduced Ye in the wind are considered. In these cases, despite the conversion of active neutrinos to sterile neutrinos, Ye increases or is not significantly lowered compared to the values obtained without oscillations and active flavor transformations. This is a consequence of a complicated interplay between sterile-neutrino production, neutrino-neutrino interactions, and α-effect.
Endogenous Magnetic Reconnection in Solar Coronal Loops
NASA Astrophysics Data System (ADS)
Asgari-Targhi, M.; Coppi, B.; Basu, B.; Fletcher, A.; Golub, L.
2017-12-01
We propose that a magneto-thermal reconnection process occurring in coronal loops be the source of the heating of the Solar Corona [1]. In the adopted model, magnetic reconnection is associated with electron temperature gradients, anisotropic electron temperature fluctuations and plasma current density gradients [2]. The input parameters for our theoretical model are derived from the most recent observations of the Solar Corona. In addition, the relevant (endogenous) collective modes can produce high energy particle populations. An endogenous reconnection process is defined as being driven by factors internal to the region where reconnection takes place. *Sponsored in part by the U.S. D.O.E. and the Kavli Foundation* [1] Beafume, P., Coppi, B. and Golub, L., (1992) Ap. J. 393, 396. [2] Coppi, B. and Basu, B. (2017) MIT-LNS Report HEP 17/01.
Nanoelectronics and Plasma Processing---The Next 15 Years and Beyond
NASA Astrophysics Data System (ADS)
Lieberman, Michael A.
2006-10-01
The number of transistors per chip has doubled every 2 years since 1959, and this doubling will continue over the next 15 years as transistor sizes shrink. There has been a 25 million-fold decrease in cost for the same performance, and in 15 years a desktop computer will be hundreds of times more powerful than one today. Transistors now have 37 nm (120 atoms) gate lengths and 1.5 nm (5 atoms) gate oxide thicknesses. The smallest working transistor has a 5 nm (17 atoms) gate length, close to the limiting gate length, from simulations, of about 4 nm. Plasma discharges are used to fabricate hundreds of billions of these nano-size transistors on a silicon wafer. These discharges have evolved from a first generation of ``low density'' reactors capacitively driven by a single source, to a second generation of ``high density'' reactors (inductive and electron cyclotron resonance) having two rf power sources, in order to control independently the ion flux and ion bombarding energy to the substrate. A third generation of ``moderate density'' reactors, driven capacitively by one high and one low frequency rf source, is now widely used. Recently, triple frequency and combined dc/dual frequency discharges have been investigated, to further control processing characteristics, such as ion energy distributions, uniformity, and plasma etch selectivities. There are many interesting physics issues associated with these discharges, including stochastic heating of discharge electrons by dual frequency sheaths, nonlinear frequency interactions, powers supplied by the multi-frequency sources, and electromagnetic effects such as standing waves and skin effects. Beyond the 4 nm transistor limit lies a decade of further performance improvements for conventional nanoelectronics, and beyond that, a dimly-seen future of spintronics, single-electron transistors, cross-bar latches, and molecular electronics.
NASA Astrophysics Data System (ADS)
Schaaf, Wolfgang; Gerwin, Werner; Hinz, Christoph; Zaplata, Markus
2016-04-01
Landscapes and ecosystems are complex systems with many feedback mechanisms acting between the various abiotic and biotic components. The knowledge about these interacting processes is mainly derived from mature ecosystems. The initial development of ecosystem complexity may involve state transitions following catastrophic shifts, disturbances or transgression of thresholds. The Chicken Creek catchment was constructed in 2005 in the mining area of Lusatia/Germany to study processes and feedback mechanisms during ecosystem evolution. The hillslope-shaped 6 ha site has defined boundary conditions and well-documented inner structures. The dominating substrate above the underlying clay layer is Pleistocene sandy material representing mainly the lower C horizon of the former landscape. Since 2005, the unrestricted, unmanaged development of the catchment was intensively monitored. During the ten years since then, we observed characteristic state transitions in catchment functioning driven by feedbacks between original substrate properties, surface structures, soil development and vegetation succession. Whereas surface runoff induced by surface crusting and infiltration dominated catchment hydrology in the first years, the impact of vegetation on hydrological pathways and groundwater levels became more and more evident during the last years. Discharge from the catchment changed from episodic events driven by precipitation and surface runoff to groundwater driven. This general picture is overlain by spatial patterns and single episodic events of external drivers. The scientific value of the Chicken Creek site with known boundary conditions and structure information could help in disentangling general feedback mechanisms between hydrologic, pedogenic, biological and geomorphological processes as well as a in gaining a more integrative view of succession and its drivers during the transition from initial, less complex systems to more mature ecosystems. Long-term time series of data are a key for a better understanding of these processes and the effects on ecosystem resilience and self-organization.
NASA Astrophysics Data System (ADS)
Anggraini, R.; Darvina, Y.; Amir, H.; Murtiani, M.; Yulkifli, Y.
2018-04-01
The availability of modules in schools is currently lacking. Learners have not used the module as a source in the learning process. In accordance with the demands of the 2013 curriculum, that learning should be conducted using a scientific approach and loaded with character values as well as learning using interactive learning resources. The solution of this problem is to create an interactive module with a scientifically charged character approach. This interactive module can be used by learners outside the classroom or in the classroom. This interactive module contains straight motion material, parabolic motion and circular motion of high school physics class X semester 1. The purpose of this research is to produce an interactive module with a scientific approach charged with character and determine the validity and practicality. The research is Research and Development. This study was conducted only until the validity test and practice test. The validity test was conducted by three lecturers of Physics of FMIPA UNP as experts. The instruments used in this research are validation sheet and worksheet sheet. Data analysis technique used is product validity analysis. The object of this research is electronic module, while the subject of this research is three validator.
Thermally Driven Electronic Topological Transition in FeTi
Yang, F. C.; Muñoz, J. A.; Hellman, O.; ...
2016-08-08
In this paper, ab initio molecular dynamics, supported by inelastic neutron scattering and nuclear resonant inelastic x-ray scattering, showed an anomalous thermal softening of the M 5 - phonon mode in B2-ordered FeTi that could not be explained by phonon-phonon interactions or electron-phonon interactions calculated at low temperatures. A computational investigation showed that the Fermi surface undergoes a novel thermally driven electronic topological transition, in which new features of the Fermi surface arise at elevated temperatures. Finally, the thermally induced electronic topological transition causes an increased electronic screening for the atom displacements in the M 5 - phonon mode andmore » an adiabatic electron-phonon interaction with an unusual temperature dependence.« less
NASA Astrophysics Data System (ADS)
Razzaq, Javaria; Haque, Q.; Khan, Majid; Bhatti, Adnan Mehmood; Kamran, M.; Mirza, Arshad M.
2018-02-01
Nonlinear structure formation in ion-temperature-gradient (ITG) driven waves is investigated in pair-ion plasma comprising ions and nonthermal electrons (kappa, Cairns). By using the transport equations of the Braginskii model, a new set of nonlinear equations are derived. A linear dispersion relation is obtained and discussed analytically as well as numerically. It is shown that the nonthermal population of electrons affects both the linear and nonlinear characteristics of the ITG mode in pair-ion plasma. This work will be useful in tokamaks and stellarators where non-Maxwellian population of electrons may exist due to resonant frequency heating, electron cyclotron heating, runaway electrons, etc.
Tracing Chromospheric Evaporation in Radio and Soft X-rays
NASA Technical Reports Server (NTRS)
Aschwanden, Markus J.
1997-01-01
There are three publications in refereed journals and several presentations at scientific conferences resulted from this work, over a period of 6 months during 1995/1996. In the first paper, the discovery of the chromospheric evaporation process at radio wavelengths is described. In the second paper, the radio detection is used to quantify electron densities in the upflowing heated plasma in flare loops, which is then compared with independent other density measurements from soft X-rays, or the plasma frequency of electron beams originating in the acceleration region. In the third paper, the diagnostic results of the chromospheric evaporation process are embedded into a broader picture of a standard flare scenario. Abstracts of these three papers are attached.
Lee, Patrick; Maynard, G.; Audet, T. L.; ...
2016-11-16
The dynamics of electron acceleration driven by laser wakefield is studied in detail using the particle-in-cell code WARP with the objective to generate high-quality electron bunches with narrow energy spread and small emittance, relevant for the electron injector of a multistage accelerator. Simulation results, using experimentally achievable parameters, show that electron bunches with an energy spread of ~11% can be obtained by using an ionization-induced injection mechanism in a mm-scale length plasma. By controlling the focusing of a moderate laser power and tailoring the longitudinal plasma density profile, the electron injection beginning and end positions can be adjusted, while themore » electron energy can be finely tuned in the last acceleration section.« less
Application of logic models in a large scientific research program.
O'Keefe, Christine M; Head, Richard J
2011-08-01
It is the purpose of this article to discuss the development and application of a logic model in the context of a large scientific research program within the Commonwealth Scientific and Industrial Research Organisation (CSIRO). CSIRO is Australia's national science agency and is a publicly funded part of Australia's innovation system. It conducts mission-driven scientific research focussed on delivering results with relevance and impact for Australia, where impact is defined and measured in economic, environmental and social terms at the national level. The Australian Government has recently signalled an increasing emphasis on performance assessment and evaluation, which in the CSIRO context implies an increasing emphasis on ensuring and demonstrating the impact of its research programs. CSIRO continues to develop and improve its approaches to impact planning and evaluation, including conducting a trial of a program logic approach in the CSIRO Preventative Health National Research Flagship. During the trial, improvements were observed in clarity of the research goals and path to impact, as well as in alignment of science and support function activities with national challenge goals. Further benefits were observed in terms of communication of the goals and expected impact of CSIRO's research programs both within CSIRO and externally. The key lesson learned was that significant value was achieved through the process itself, as well as the outcome. Recommendations based on the CSIRO trial may be of interest to managers of scientific research considering developing similar logic models for their research projects. The CSIRO experience has shown that there are significant benefits to be gained, especially if the project participants have a major role in the process of developing the logic model. Copyright © 2011 Elsevier Ltd. All rights reserved.
Management of information in distributed biomedical collaboratories.
Keator, David B
2009-01-01
Organizing and annotating biomedical data in structured ways has gained much interest and focus in the last 30 years. Driven by decreases in digital storage costs and advances in genetics sequencing, imaging, electronic data collection, and microarray technologies, data is being collected at an alarming rate. The specialization of fields in biology and medicine demonstrates the need for somewhat different structures for storage and retrieval of data. For biologists, the need for structured information and integration across a number of domains drives development. For clinical researchers and hospitals, the need for a structured medical record accessible to, ideally, any medical practitioner who might require it during the course of research or patient treatment, patient confidentiality, and security are the driving developmental factors. Scientific data management systems generally consist of a few core services: a backend database system, a front-end graphical user interface, and an export/import mechanism or data interchange format to both get data into and out of the database and share data with collaborators. The chapter introduces some existing databases, distributed file systems, and interchange languages used within the biomedical research and clinical communities for scientific data management and exchange.
Architectural Strategies for Enabling Data-Driven Science at Scale
NASA Astrophysics Data System (ADS)
Crichton, D. J.; Law, E. S.; Doyle, R. J.; Little, M. M.
2017-12-01
The analysis of large data collections from NASA or other agencies is often executed through traditional computational and data analysis approaches, which require users to bring data to their desktops and perform local data analysis. Alternatively, data are hauled to large computational environments that provide centralized data analysis via traditional High Performance Computing (HPC). Scientific data archives, however, are not only growing massive, but are also becoming highly distributed. Neither traditional approach provides a good solution for optimizing analysis into the future. Assumptions across the NASA mission and science data lifecycle, which historically assume that all data can be collected, transmitted, processed, and archived, will not scale as more capable instruments stress legacy-based systems. New paradigms are needed to increase the productivity and effectiveness of scientific data analysis. This paradigm must recognize that architectural and analytical choices are interrelated, and must be carefully coordinated in any system that aims to allow efficient, interactive scientific exploration and discovery to exploit massive data collections, from point of collection (e.g., onboard) to analysis and decision support. The most effective approach to analyzing a distributed set of massive data may involve some exploration and iteration, putting a premium on the flexibility afforded by the architectural framework. The framework should enable scientist users to assemble workflows efficiently, manage the uncertainties related to data analysis and inference, and optimize deep-dive analytics to enhance scalability. In many cases, this "data ecosystem" needs to be able to integrate multiple observing assets, ground environments, archives, and analytics, evolving from stewardship of measurements of data to using computational methodologies to better derive insight from the data that may be fused with other sets of data. This presentation will discuss architectural strategies, including a 2015-2016 NASA AIST Study on Big Data, for evolving scientific research towards massively distributed data-driven discovery. It will include example use cases across earth science, planetary science, and other disciplines.
Indigenous Carbonaceous Phases Embedded Within Surface Deposits on Apollo 17 Volcanic Glass Beads
NASA Technical Reports Server (NTRS)
Thomas-Keprta, K. L.; Clemett, S. J.; Ross, D. K.; Le, L.; McKay, D. S.; Gibson, E. K.; Gonzalez, C.
2012-01-01
The assessment of indigenous organic matter in returned lunar samples was one of the primary scientific goals of the Apollo program. Prior studies of Apollo samples have shown the total amount of organic matter to be in the range of approx 50 to 250 ppm. Low concentrations of lunar organics may be a consequence not only of its paucity but also its heterogeneous distribution. Several processes should have contributed to the lunar organic inventory including exogenous carbonaceous accretion from meteoroids and interplanetary dust particles, and endogenous synthesis driven by early planetary volcanism and cosmic and solar radiation.
Atomic Scale Control of Competing Electronic Phases in Ultrathin Correlated Oxides
NASA Astrophysics Data System (ADS)
Shen, Kyle
2015-03-01
Ultrathin epitaxial thin films offer a number of unique advantages for engineering the electronic properties of correlated transition metal oxides. For example, atomically thin films can be synthesized to artificially confine electrons in two dimensions. Furthermore, using a substrate with a mismatched lattice constant can impose large biaxial strains of larger than 3% (Δa / a), much larger than can achieved in bulk single crystals. Since these dimensionally confined or strained systems may necessarily be less than a few unit cells thick, investigating their properties and electronic structure can be particularly challenging. We employ a combination of reactive oxide molecular beam epitaxy (MBE) and angle-resolved photoemission spectroscopy (ARPES) to investigate how dimensional confinement and epitaxial strain can be used to manipulate electronic properties and structure in correlated transition metal oxide thin films. We describe some of our recent work manipulating and studying the electronic structure of ultrathin LaNiO3 through a thickness-driven metal-insulator transition between three and two unit cells (Nature Nanotechnology 9, 443, 2014), where coherent Fermi liquid-like quasiparticles are suppressed at the metal-insulator transition observed in transport. We also will describe some recent unpublished work using epitaxial strain to drive a Lifshitz transition in atomically thin films of the spin-triplet ruthenate superconductor Sr2RuO4, where we also can dramatically alter the quasiparticle scattering rates and drive the system towards non-Fermi liquid behavior near the critical point (B. Burganov, C. Adamo, in preparation). Funding provided by the Office of Naval Research and Air Force Office of Scientific Research.
Split ring resonator based THz-driven electron streak camera featuring femtosecond resolution
Fabiańska, Justyna; Kassier, Günther; Feurer, Thomas
2014-01-01
Through combined three-dimensional electromagnetic and particle tracking simulations we demonstrate a THz driven electron streak camera featuring a temporal resolution on the order of a femtosecond. The ultrafast streaking field is generated in a resonant THz sub-wavelength antenna which is illuminated by an intense single-cycle THz pulse. Since electron bunches and THz pulses are generated with parts of the same laser system, synchronization between the two is inherently guaranteed. PMID:25010060
NASA Astrophysics Data System (ADS)
Tran, Jonathan
Plasma turbulence and the resulting anomalous electron transport due to azimuthal current driven instabilities in Hall-effect thrusters is a promising candidate for developing predictive models for the observed anomalous transport. A theory for anomalous electron transport and current driven instabilities has been recently studied by [Lafluer et al., 2016a]. Due to the extreme cost of fully resolving the Debye length and plasma frequency, hybrid plasma simulations utilizing kinetic ions and quasi-steady state fluid electrons have long been the principle workhorse methodology for Hall-effect thruster modeling. Using a reduced dimension particle in cell simulation implemented in the Thermophysics Universal Research Framework developed by the Air Force Research Lab, we show collective electron-wave scattering due to large amplitude azimuthal fluctuations of the electric field and the plasma density. These high-frequency and short wavelength fluctuations can lead to an effective cross-field mobility many orders of magnitude larger than what is expected from classical electron-neutral momentum collisions in the low neutral density regime. We further adapt the previous study by [Lampe et al., 1971] and [Stringer, 1964] for related current driven instabilities to electric propulsion relevant mass ratios and conditions. Finally, we conduct a preliminary study of resolving this instability with a modified hybrid simulation with the hope of integration with established hybrid Hall-effect thruster simulations.
Nanoscale electron manipulation in metals with intense THz electric fields
NASA Astrophysics Data System (ADS)
Takeda, Jun; Yoshioka, Katsumasa; Minami, Yasuo; Katayama, Ikufumi
2018-03-01
Improved control over the electromagnetic properties of metals on a nanoscale is crucial for the development of next-generation nanoelectronics and plasmonic devices. Harnessing the terahertz (THz)-electric-field-induced nonlinearity for the motion of electrons is a promising method of manipulating the local electromagnetic properties of metals, while avoiding undesirable thermal effects and electronic transitions. In this review, we demonstrate the manipulation of electron delocalization in ultrathin gold (Au) films with nanostructures, by intense THz electric-field transients. On increasing the electric-field strength of the THz pulses, the transmittance in the THz-frequency region abruptly decreases around the percolation threshold. The observed THz-electric-field-induced nonlinearity is analysed, based on the Drude-Smith model. The results suggest that ultrafast electron delocalization occurs by electron tunnelling across the narrow insulating bridge between the Au nanostructures, without material breakdown. In order to quantitatively discuss the tunnelling process, we perform scanning tunnelling microscopy with carrier-envelope phase (CEP)-controlled single-cycle THz electric fields. By applying CEP-controlled THz electric fields to the 1 nm nanogap between a metal nanotip and graphite sample, many electrons could be coherently driven through the quantum tunnelling process, either from the nanotip to the sample or vice versa. The presented concept, namely, electron tunnelling mediated by CEP-controlled single-cycle THz electric fields, can facilitate the development of nanoscale electron manipulation, applicable to next-generation ultrafast nanoelectronics and plasmonic devices.
A Model to Translate Evidence-Based Interventions Into Community Practice
Christiansen, Ann L.; Peterson, Donna J.; Guse, Clare E.; Maurana, Cheryl A.; Brandenburg, Terry
2012-01-01
There is a tension between 2 alternative approaches to implementing community-based interventions. The evidence-based public health movement emphasizes the scientific basis of prevention by disseminating rigorously evaluated interventions from academic and governmental agencies to local communities. Models used by local health departments to incorporate community input into their planning, such as the community health improvement process (CHIP), emphasize community leadership in identifying health problems and developing and implementing health improvement strategies. Each approach has limitations. Modifying CHIP to formally include consideration of evidence-based interventions in both the planning and evaluation phases leads to an evidence-driven community health improvement process that can serve as a useful framework for uniting the different approaches while emphasizing community ownership, priorities, and wisdom. PMID:22397341
Particle Energization via Tearing Instability with Global Self-Organization Constraints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarff, John; Guo, Fan
The presentation reviews how tearing magnetic reconnection leads to powerful ion energization in reversed field pinch (RFP) plasmas. A mature MHD model for tearing instability has been developed that captures key nonlinear dynamics from the global to intermediate spatial scales. A turbulent cascade is also present that extends to at least the ion gyroradius scale, within which important particle energization mechanisms are anticipated. In summary, Ion heating and acceleration associated with magnetic reconnection from tearing instability is a powerful process in the RFP laboratory plasma (gyro-resonant and stochastic processes are likely candidates to support the observed rapid heating and othermore » features, reconnection-driven electron heating appears weaker or even absent, energetic tail formation for ions and electrons). Global self-organization strongly impacts particle energization (tearing interactions that span to core to edge, global magnetic flux change produces a larger electric field and runaway, correlations in electric and magnetic field fluctuations needed for dynamo feedback, impact of transport processes (which can be quite different for ions and electrons), inhomogeneity on the system scale, e.g., strong edge gradients).« less
High-quality electron beam generation in a proton-driven hollow plasma wakefield accelerator
NASA Astrophysics Data System (ADS)
Li, Y.; Xia, G.; Lotov, K. V.; Sosedkin, A. P.; Hanahoe, K.; Mete-Apsimon, O.
2017-10-01
Simulations of proton-driven plasma wakefield accelerators have demonstrated substantially higher accelerating gradients compared to conventional accelerators and the viability of accelerating electrons to the energy frontier in a single plasma stage. However, due to the strong intrinsic transverse fields varying both radially and in time, the witness beam quality is still far from suitable for practical application in future colliders. Here we demonstrate the efficient acceleration of electrons in proton-driven wakefields in a hollow plasma channel. In this regime, the witness bunch is positioned in the region with a strong accelerating field, free from plasma electrons and ions. We show that the electron beam carrying the charge of about 10% of 1 TeV proton driver charge can be accelerated to 0.6 TeV with a preserved normalized emittance in a single channel of 700 m. This high-quality and high-charge beam may pave the way for the development of future plasma-based energy frontier colliders.
An antilock molecular braking system.
Sun, Wei-Ting; Huang, Shou-Ling; Yao, Hsuan-Hsiao; Chen, I-Chia; Lin, Ying-Chih; Yang, Jye-Shane
2012-08-17
A light-driven molecular brake displaying an antilock function is constructed by introducing a nonradiative photoinduced electron transfer (PET) decay channel to compete with the trans (brake-off) → cis (brake-on) photoisomerization. A fast release of the brake can be achieved by deactivating the PET process through addition of protons. The cycle of irradiation-protonation-irradiation-deprotonation conducts the brake function and mimics the antilock braking system (ABS) of vehicles.
Devaraju, Naga Sai Gopi K; Unger, Marc A
2012-11-21
Advances in microfluidics now allow an unprecedented level of parallelization and integration of biochemical reactions. However, one challenge still faced by the field has been the complexity and cost of the control hardware: one external pressure signal has been required for each independently actuated set of valves on chip. Using a simple post-modification to the multilayer soft lithography fabrication process, we present a new implementation of digital fluidic logic fully analogous to electronic logic with significant performance advances over the previous implementations. We demonstrate a novel normally closed static gain valve capable of modulating pressure signals in a fashion analogous to an electronic transistor. We utilize these valves to build complex fluidic logic circuits capable of arbitrary control of flows by processing binary input signals (pressure (1) and atmosphere (0)). We demonstrate logic gates and devices including NOT, NAND and NOR gates, bi-stable flip-flops, gated flip-flops (latches), oscillators, self-driven peristaltic pumps, delay flip-flops, and a 12-bit shift register built using static gain valves. This fluidic logic shows cascade-ability, feedback, programmability, bi-stability, and autonomous control capability. This implementation of fluidic logic yields significantly smaller devices, higher clock rates, simple designs, easy fabrication, and integration into MSL microfluidics.
Excitation of Ion Acoustic Waves in Plasmas with Electron Emission from Walls
NASA Astrophysics Data System (ADS)
Khrabrov, A. V.; Wang, H.; Kaganovich, I. D.; Raitses, Y.; Sydorenko, D.
2015-11-01
Various plasma propulsion devices exhibit strong electron emission from the walls either as a result of secondary processes or due to thermionic emission. To understand details of electron kinetics in plasmas with strong emission, we have performed kinetic simulations of such plasmas using EDIPIC code. We show that excitation of ion acoustic waves is ubiquitous phenomena in many different plasma configurations with strong electron emission from walls. Ion acoustic waves were observed to be generated near sheath if the secondary electron emission from the walls is strong. Ion acoustic waves were also observed to be generated in the plasma bulk due to presence of an intense electron beam propagating from the cathode. This intense electron beam can excite strong plasma waves, which in turn drive the ion acoustic waves. Research supported by the U.S. Air Force Office of Scientific Research.
Bae, Wan Ki; Park, Young-Shin; Lim, Jaehoon; Lee, Donggu; Padilha, Lazaro A.; McDaniel, Hunter; Robel, Istvan; Lee, Changhee; Pietryga, Jeffrey M.; Klimov, Victor I.
2013-01-01
Development of light-emitting diodes (LEDs) based on colloidal quantum dots is driven by attractive properties of these fluorophores such as spectrally narrow, tunable emission and facile processibility via solution-based methods. A current obstacle towards improved LED performance is an incomplete understanding of the roles of extrinsic factors, such as non-radiative recombination at surface defects, versus intrinsic processes, such as multicarrier Auger recombination or electron-hole separation due to applied electric field. Here we address this problem with studies that correlate the excited state dynamics of structurally engineered quantum dots with their emissive performance within LEDs. We find that because of significant charging of quantum dots with extra electrons, Auger recombination greatly impacts both LED efficiency and the onset of efficiency roll-off at high currents. Further, we demonstrate two specific approaches for mitigating this problem using heterostructured quantum dots, either by suppressing Auger decay through the introduction of an intermediate alloyed layer, or by using an additional shell that impedes electron transfer into the quantum dot to help balance electron and hole injection. PMID:24157692
Intermolecular Coulombic Decay (ICD) Occuring in Triatomic Molecular Dimer
NASA Astrophysics Data System (ADS)
Iskandar, Wael; Gatton, Averell; Gaire, Bishwanath; Champenois, Elio; Larsen, Kirk; Shivaram, Niranjan; Moradmand, Ali; Severt, Travis; Williams, Joshua; Slaughter, Daniel; Weber, Thorsten
2017-04-01
For over two decades, the production of ICD process has been extensively investigated theoretically and experimentally in different systems bounded by a week force (ex. van-der-Waals or Hydrogen force). Furthermore, the ICD process has been demonstrated a strong implication in biological system (DNA damage and DNA repair mechanism) because of the production of genotoxic low energy electrons during the decay cascade. Studying large complex system such as triatomic molecular dimer may be helpful for further exploration of ``Auger electron driven cancer therapy''. The present experiment investigates the dissociation dynamics happened in collision between a photons and CO2 dimer. We will focus more specifically on the CO2++CO2+ fragmentation channel and the detection in coincidence of the two ionic fragments and the two electrons will be done using a COld Target Recoil Ion Momentum Spectroscopy (COLTRIMS). The measurements of the Kinetic Energy Release of the two fragments and the relative angular distribution of the electrons in the molecular frame reveal that the ICD is the only mechanism responsible for the production of this fragmentation channel.
The Science and Technology of Future Space Missions
NASA Astrophysics Data System (ADS)
Bonati, A.; Fusi, R.; Longoni, F.
1999-12-01
The future space missions span over a wide range of scientific objectives. After different successful scientific missions, other international cornerstone experiments are planned to study of the evolution of the universe and of the primordial stellar systems, and our solar system. Space missions for the survey of the microwave cosmic background radiation, deep-field search in the near and mid-infrared region and planetary exploration will be carried out. Several fields are open for research and development in the space business. Three major categories can be found: detector technology in different areas, electronics, and software. At LABEN, a Finmeccanica Company, we are focusing the technologies to respond to this challenging scientific demands. Particle trackers based on silicon micro-strips supported by lightweight structures (CFRP) are studied. In the X-ray field, CCD's are investigated with pixels of very small size so as to increase the spatial resolution of the focal plane detectors. High-efficiency and higly miniaturized high-voltage power supplies are developed for detectors with an increasingly large number of phototubes. Material research is underway to study material properties at extreme temperatures. Low-temperature mechanical structures are designed for cryogenic ( 20 K) detectors in order to maintain the high precision in pointing the instrument. Miniaturization of front end electronics with low power consumption and high number of signal processing channels is investigated; silicon-based microchips (ASIC's) are designed and developed using state-of-the-art technology. Miniaturized instruments to investigate the planets surface using X-Ray and Gamma-Ray scattering techniques are developed. The data obtained from the detectors have to be processed, compressed, formatted and stored before their transmission to ground. These tasks open up additional strategic areas of development such as microprocessor-based electronics for high-speed and parallel data processing. Powerful computers with customized architectures are designed and developed. High-speed intercommunication networks are studied and tested. In parallel to the hardware research activities, software development is undertaken for several purposes: digital and video compression algorithms, payload and spacecraft control and diagnostics, scientific processing algorithms, etc. Besides, embedded Java virtual machines are studied for tele-science applications (direct link between scientist console and scientific payload). At system engineering level, the demand for spacecraft autonomy is increased for planetology missions: reliable intelligent systems that can operate for long periods of time without human intervention from ground are requested and investigated. A technologically challenging but less glamorous area of development is represented by the laboratory equipment for end-to-end testing (on ground) of payload instruments. The main fields are cryogenics, laser and X-ray optics, microwave radiometry, UV and infrared testing systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahai, Aakash A.
We show the excitation of a nonlinear ion-wake mode by plasma electron modes in the bubble regime driven by intense energy sources, using analytical theory and simulations. The ion wake is shown to be a driven nonlinear ion-acoustic wave in the form of a long-lived cylindrical ion soliton which limits the repetition rate of a plasma-based particle accelerator in the bubble regime. We present the application of this evacuated and radially outwards propagating ion-wake channel with an electron skin-depth scale radius for the “crunch-in” regime of hollow-channel plasma. It is shown that the time-asymmetric focusing force phases in the bubblemore » couple to ion motion significantly differently than in the linear electron mode. The electron compression in the back of the bubble sucks in the ions whereas the space charge within the bubble cavity expels them, driving a cylindrical ion-soliton structure at the bubble radius. Once formed, the soliton is sustained and driven radially outwards by the thermal pressure of the wake energy in electrons. Particle-in-cell simulations are used to study the ion-wake soliton structure, its driven propagation and its use for positron acceleration in the crunch-in regime.« less
Sahai, Aakash A.
2017-08-23
We show the excitation of a nonlinear ion-wake mode by plasma electron modes in the bubble regime driven by intense energy sources, using analytical theory and simulations. The ion wake is shown to be a driven nonlinear ion-acoustic wave in the form of a long-lived cylindrical ion soliton which limits the repetition rate of a plasma-based particle accelerator in the bubble regime. We present the application of this evacuated and radially outwards propagating ion-wake channel with an electron skin-depth scale radius for the “crunch-in” regime of hollow-channel plasma. It is shown that the time-asymmetric focusing force phases in the bubblemore » couple to ion motion significantly differently than in the linear electron mode. The electron compression in the back of the bubble sucks in the ions whereas the space charge within the bubble cavity expels them, driving a cylindrical ion-soliton structure at the bubble radius. Once formed, the soliton is sustained and driven radially outwards by the thermal pressure of the wake energy in electrons. Particle-in-cell simulations are used to study the ion-wake soliton structure, its driven propagation and its use for positron acceleration in the crunch-in regime.« less
Singlet-to-triplet intermediates and triplet exciton dynamics in pentacene thinfilms
NASA Astrophysics Data System (ADS)
Thorsmolle, Verner; Korber, Michael; Obergfell, Emanuel; Kuhlman, Thomas; Campbell, Ian; Crone, Brian; Taylor, Antoinette; Averitt, Richard; Demsar, Jure
Singlet-to-triplet fission in organic semiconductors is a spin-conserving multiexciton process in which one spin-zero singlet excitation is converted into two spin-one triplet excitations on an ultrafast timescale. Current scientific interest into this carrier multiplication process is largely driven by prospects of enhancing the efficiency in photovoltaic applications by generating two long-lived triplet excitons by one photon. The fission process is known to involve intermediate states, known as correlated triplet pairs, with an overall singlet character, before being interchanged into uncorrelated triplets. Here we use broadband femtosecond real-time spectroscopy to study the excited state dynamics in pentacene thin films, elucidating the fission process and the role of intermediate triplet states. VKT and AJT acknowledge support by the LDRD program at Los Alamos National Laboratory and the Department of Energy, Grant No. DE-FG02-04ER118. MK, MO and JD acknowledge support by the Alexander von Humboldt Foundation.
Advances in Electrically Driven Thermal Management
NASA Technical Reports Server (NTRS)
Didion, Jeffrey R.
2017-01-01
Electrically Driven Thermal Management is a vibrant technology development initiative incorporating ISS based technology demonstrations, development of innovative fluid management techniques and fundamental research efforts. The program emphasizes high temperature high heat flux thermal management required for future generations of RF electronics and power electronic devices. This presentation reviews i.) preliminary results from the Electrohydrodynamic (EHD) Long Term Flight Demonstration launched on STP-H5 payload in February 2017 ii.) advances in liquid phase flow distribution control iii.) development of the Electrically Driven Liquid Film Boiling Experiment under the NASA Microgravity Fluid Physics Program.
NASA Astrophysics Data System (ADS)
Kukhar, Egor I.
2018-01-01
Quasienergy spectrum of electrons in biased bigraphene subjected to the linear polarized high-frequency electromagnetic radiation has been derived. Quasienergy bands of ac-driven bigraphene have been investigated. Dynamical appearing of the saddle points in band structure of biased bigraphene and energy gap modification have been predicted. Electromagnetic field equation has been written using obtained quasienergy spectrum. The solution corresponding to the soliton-like electromagnetic wave has been obtained. The conditions of soliton-like wave generation in ac-driven bigraphene have been discussed.
Theoretical insights into multiscale electronic processes in organic photovoltaics
NASA Astrophysics Data System (ADS)
Tretiak, Sergei
Present day electronic devices are enabled by design and implementation of precise interfaces that control the flow of charge carriers. This requires robust and predictive multiscale approaches for theoretical description of underlining complex phenomena. Combined with thorough experimental studies such approaches provide a reliable estimate of physical properties of nanostructured materials and enable a rational design of devices. From this perspective I will discuss first principle modeling of small-molecule bulk-heterojunction organic solar cells and push-pull chromophores for tunable-color organic light emitters. The emphasis is on electronic processes involving intra- and intermolecular energy or charge transfer driven by strong electron-phonon coupling inherent to pi-conjugated systems. Finally I will describe how precise manipulation and control of organic-organic interfaces in a photovoltaic device can increase its power conversion efficiency by 2-5 times in a model bilayer system. Applications of these design principles to practical architectures like bulk heterojunction devices lead to an enhancement in power conversion efficiency from 4.0% to 7.0%. These interface manipulation strategies are universally applicable to any donor-acceptor interface, making them both fundamentally interesting and technologically important for achieving high efficiency organic electronic devices.
Parallel, distributed and GPU computing technologies in single-particle electron microscopy
Schmeisser, Martin; Heisen, Burkhard C.; Luettich, Mario; Busche, Boris; Hauer, Florian; Koske, Tobias; Knauber, Karl-Heinz; Stark, Holger
2009-01-01
Most known methods for the determination of the structure of macromolecular complexes are limited or at least restricted at some point by their computational demands. Recent developments in information technology such as multicore, parallel and GPU processing can be used to overcome these limitations. In particular, graphics processing units (GPUs), which were originally developed for rendering real-time effects in computer games, are now ubiquitous and provide unprecedented computational power for scientific applications. Each parallel-processing paradigm alone can improve overall performance; the increased computational performance obtained by combining all paradigms, unleashing the full power of today’s technology, makes certain applications feasible that were previously virtually impossible. In this article, state-of-the-art paradigms are introduced, the tools and infrastructure needed to apply these paradigms are presented and a state-of-the-art infrastructure and solution strategy for moving scientific applications to the next generation of computer hardware is outlined. PMID:19564686
Parallel, distributed and GPU computing technologies in single-particle electron microscopy.
Schmeisser, Martin; Heisen, Burkhard C; Luettich, Mario; Busche, Boris; Hauer, Florian; Koske, Tobias; Knauber, Karl-Heinz; Stark, Holger
2009-07-01
Most known methods for the determination of the structure of macromolecular complexes are limited or at least restricted at some point by their computational demands. Recent developments in information technology such as multicore, parallel and GPU processing can be used to overcome these limitations. In particular, graphics processing units (GPUs), which were originally developed for rendering real-time effects in computer games, are now ubiquitous and provide unprecedented computational power for scientific applications. Each parallel-processing paradigm alone can improve overall performance; the increased computational performance obtained by combining all paradigms, unleashing the full power of today's technology, makes certain applications feasible that were previously virtually impossible. In this article, state-of-the-art paradigms are introduced, the tools and infrastructure needed to apply these paradigms are presented and a state-of-the-art infrastructure and solution strategy for moving scientific applications to the next generation of computer hardware is outlined.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-22
... submit comments, identified by RIN 0648-BB85 by any of the following methods: Electronic Submissions... Limit (ACL) prior to 2012) of Pacific whiting to the tribal fishery following the process established in... evaluation of the scientific information, and the need to negotiate a long-term tribal allocation following...
NASA Technical Reports Server (NTRS)
Goeke, R. F.
1975-01-01
Spacecraft electronic systems usually demand tight packaging. It was this consideration which initially forced us to consider hybrid circuits for the analog signal processing circuits in the Small Astronomy Satellite-C (SAS-C) scientific payload. We gradually discovered that increased reliability, low power consumption, and reduced program costs all followed. This paper will attempt to share our laboratory's first experience with hybrid circuits and indicate those areas which we found to be important.
Recent Advances in Ionospheric Modeling Using the USU GAIM Data Assimilation Models
NASA Astrophysics Data System (ADS)
Scherliess, L.; Thompson, D. C.; Schunk, R. W.
2009-12-01
The ionospheric plasma distribution at low and mid latitudes has been shown to display both a background state (climatology) and a disturbed state (weather). Ionospheric climatology has been successfully modeled, but ionospheric weather has been much more difficult to model because the ionosphere can vary significantly on an hour-by-hour basis. Unfortunately, ionospheric weather can have detrimental effects on several human activities and systems, including high-frequency communications, over-the-horizon radars, and survey and navigation systems using Global Positioning System (GPS) satellites. As shown by meteorologists and oceanographers, the most reliable weather models are physics-based, data-driven models that use Kalman filter or other data assimilation techniques. Since the state of a medium (ocean, lower atmosphere, ionosphere) is driven by complex and frequently nonlinear internal and external processes, it is not possible to accurately specify all of the drivers and initial conditions of the medium. Therefore physics-based models alone cannot provide reliable specifications and forecasts. In an effort to better understand the ionosphere and to mitigate its adverse effects on military and civilian operations, specification and forecast models are being developed that use state-of-the-art data assimilation techniques. Over the past decade, Utah State University (USU) has developed two data assimilation models for the ionosphere as part of the USU Global Assimilation of Ionospheric Measurements (GAIM) program and one of these models has been implemented at the Air Force Weather Agency for operational use. The USU-GAIM models are also being used for scientific studies, and this should lead to a dramatic advance in our understanding of ionospheric physics; similar to what occurred in meteorology and oceanography after the introduction of data assimilation models in those fields. Both USU-GAIM models are capable of assimilating data from a variety of data sources, including in situ electron densities from satellites, bottomside electron density profiles from ionosondes, total electron content (TEC) measurements between ground receivers and the GPS satellites, occultation data from satellite constellations, and ultraviolet emissions from the ionosphere measured by satellites. We will present the current status of the model development and discuss the employed data assimilation technique. Recent examples of the ionosphere specifications obtained from our model runs will be presented with an emphasis on the ionospheric plasma distribution during the current low solar activity conditions. Various comparisons with independent data will also be shown in an effort to validate the models.
Wootton, Kent P.; Wu, Ziran; Cowan, Benjamin M.; ...
2016-06-02
Acceleration of electrons using laser-driven dielectric microstructures is a promising technology for the miniaturization of particle accelerators. Achieving the desired GV m –1 accelerating gradients is possible only with laser pulse durations shorter than ~1 ps. In this Letter, we present, to the best of our knowledge, the first demonstration of acceleration of relativistic electrons at a dielectric microstructure driven by femtosecond duration laser pulses. Furthermore, using this technique, an electron accelerating gradient of 690±100 MV m –1 was measured—a record for dielectric laser accelerators.
Table-driven image transformation engine algorithm
NASA Astrophysics Data System (ADS)
Shichman, Marc
1993-04-01
A high speed image transformation engine (ITE) was designed and a prototype built for use in a generic electronic light table and image perspective transformation application code. The ITE takes any linear transformation, breaks the transformation into two passes and resamples the image appropriately for each pass. The system performance is achieved by driving the engine with a set of look up tables computed at start up time for the calculation of pixel output contributions. Anti-aliasing is done automatically in the image resampling process. Operations such as multiplications and trigonometric functions are minimized. This algorithm can be used for texture mapping, image perspective transformation, electronic light table, and virtual reality.
Electron impact vibrational excitation of carbon monoxide in the upper atmospheres of Mars and Venus
NASA Astrophysics Data System (ADS)
Campbell, L.; Allan, M.; Brunger, M. J.
2011-09-01
Infrared emission from CO in the upper atmospheres of Mars, Venus and several other planets is a subject of current theoretical and experimental interest. Electron impact excitation makes a contribution that has not been included in previous studies. Given this, and recent new measurements of absolute cross sections for low-energy electron impact excitation of the vibrational levels of the ground state of CO, results from calculations are presented showing the contribution of electron impact relative to emissions by other mechanisms. It is demonstrated that emissions due to the impact of thermal, photo- and auroral electrons are generally small compared to sunlight-driven (fluorescence and photolysis) emissions, but with some exceptions. It is also shown that thermal-electron emissions may dominate over other processes at nighttime at Mars and that auroral emissions certainly do so. While measurements and other calculations do not appear to be available for Venus, the volume emission rates presented should be valuable in planning such measurements.
Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions.
Parzefall, M; Bharadwaj, P; Jain, A; Taniguchi, T; Watanabe, K; Novotny, L
2015-12-01
The ultrafast conversion of electrical signals to optical signals at the nanoscale is of fundamental interest for data processing, telecommunication and optical interconnects. However, the modulation bandwidths of semiconductor light-emitting diodes are limited by the spontaneous recombination rate of electron-hole pairs, and the footprint of electrically driven ultrafast lasers is too large for practical on-chip integration. A metal-insulator-metal tunnel junction approaches the ultimate size limit of electronic devices and its operating speed is fundamentally limited only by the tunnelling time. Here, we study the conversion of electrons (localized in vertical gold-hexagonal boron nitride-gold tunnel junctions) to free-space photons, mediated by resonant slot antennas. Optical antennas efficiently bridge the size mismatch between nanoscale volumes and far-field radiation and strongly enhance the electron-photon conversion efficiency. We achieve polarized, directional and resonantly enhanced light emission from inelastic electron tunnelling and establish a novel platform for studying the interaction of electrons with strongly localized electromagnetic fields.
Laser-driven acceleration of electrons in a partially ionized plasma channel.
Rowlands-Rees, T P; Kamperidis, C; Kneip, S; Gonsalves, A J; Mangles, S P D; Gallacher, J G; Brunetti, E; Ibbotson, T; Murphy, C D; Foster, P S; Streeter, M J V; Budde, F; Norreys, P A; Jaroszynski, D A; Krushelnick, K; Najmudin, Z; Hooker, S M
2008-03-14
The generation of quasimonoenergetic electron beams, with energies up to 200 MeV, by a laser-plasma accelerator driven in a hydrogen-filled capillary discharge waveguide is investigated. Injection and acceleration of electrons is found to depend sensitively on the delay between the onset of the discharge current and the arrival of the laser pulse. A comparison of spectroscopic and interferometric measurements suggests that injection is assisted by laser ionization of atoms or ions within the channel.
NASA Astrophysics Data System (ADS)
Liu, Yang; Li, Feng; Li, Xue Wen; Shi, Wen Yong
2018-03-01
Rolling is currently a widely used method for manufacturing and processing high-performance magnesium alloy sheets and has received widespread attention in recent years. Here, we combined continuous variable cross-section direct extrusion (CVCDE) and rolling processes. The microstructure and mechanical properties of the resulting sheets rolled at different temperatures from CVCDE extrudate were investigated by optical microscopy, scanning electron microscope, transmission electron microscopy and electron backscatter diffraction. The results showed that a fine-grained microstructure was present with an average grain size of 3.62 μm in sheets rolled from CVCDE extrudate at 623 K. Dynamic recrystallization and a large strain were induced by the multi-pass rolling, which resulted in grain refinement. In the 573-673 K range, the yield strength, tensile strength and elongation initially increased and then declined as the CVCDE temperature increased. The above results provide an important scientific basis of processing, manufacturing and the active control on microstructure and property for high-performance magnesium alloy sheet.
The North American Bird Banding Program: Into the 21st century
Buckley, P.A.; Francis, C.M.; Blancher, P.; DeSante, D.F.; Robbins, C.S.; Smith, G.; Cannell, P.
1998-01-01
The authors examined the legal, scientific, and philosophical underpinnings of the North American Bird Banding Program [BBP], with emphasis on the U.S. Bird Banding Laboratory [BBL], but also considering the Canadian Bird Banding Office [BBO]. In this report, we review the value of banding data, enumerate and expand on tile principles under which any modern BBP should operate, and from them derive our recommendations. These are cast into a Mission Statement, a Role and Function Statement, and a series of specific recommendations addressing five areas: (1) permitting procedures and practices; (2) operational issues; (3) data management; (4) BBL organization and staffing; and (5) implementation. Our major tenets and recommendations are as follows: banding provides valuable data for numerous scientific, management, and educational purposes, and its benefits far outweigh necessary biological and fiscal costs, especially those incurred by the BBL and BBO; because of the value of banding data for management of avian resources, including both game and nongame birds, government support of the program is fully justified and appropriate; all banding data, if collected to appropriate standards, are potentially valuable; there are many ways to increase the value of banding data such as by endorsing, promoting, and applying competence and/or training standards for permit issuance; promoting bander participation in well-designed projects; and by encouraging the use of banding data for meta-analytical approaches; the BBL should apply, promote, and encourage such standards, participation, and approaches; the BBP should be driven by the needs of users, including scientists and managers; all exchange of data and most communication between banders and the BBL should become electronic in the near future; the computer system at the BBL should be modernized to one designed for a true client-server relationship and storage of data in on-line relational databases; the BBL should continue to maintain high quality control and editing standards and should strive to bring all data in the database up to current standards; however, the BBL should transfer a major portion of the responsibility for editing banding data to the bander by providing software that will permit the bander to edit his/her own data electronically before submission to the BBL; the BBL should build the capacity to store additional data tied to original band records able to be pre-edited and submitted electronically, such as recapture data, appropriate data from auxiliary marking (e.g. resightings of color-marked birds), and other data that gain value when pooled from many banders (e.g., measurements); however, the BBL should only accept such data if they are collected using standardized methods and as part of an established program designed to utilize such data; now is the time to consider options for implementing a Western Hemisphere banding program, with leadership from the BBL; the Patuxent Electronic Data Processing Section should become part of the BBL; additional scientific and technical staff must be added to the BBL; an Implementation Team should be formed to expedite our recommendations, following timetables outlined in this document.
Use and mis-use of supplementary material in science publications.
Pop, Mihai; Salzberg, Steven L
2015-11-03
Supplementary material is a ubiquitous feature of scientific articles, particularly in journals that limit the length of the articles. While the judicious use of supplementary material can improve the readability of scientific articles, its excessive use threatens the scientific review process and by extension the integrity of the scientific literature. In many cases supplementary material today is so extensive that it is reviewed superficially or not at all. Furthermore, citations buried within supplementary files rob other scientists of recognition of their contribution to the scientific record. These issues are exacerbated by the lack of guidance on the use of supplementary information from the journals to authors and reviewers. We propose that the removal of artificial length restrictions plus the use of interactive features made possible by modern electronic media can help to alleviate these problems. Many journals, in fact, have already removed article length limitations (as is the case for BMC Bioinformatics and other BioMed Central journals). We hope that the issues raised in our article will encourage publishers and scientists to work together towards a better use of supplementary information in scientific publishing.
NASA Astrophysics Data System (ADS)
Löwe, Peter; Plank, Margret; Ziedorn, Frauke
2015-04-01
In data driven research, the access to citation and preservation of the full triad consisting of journal article, research data and -software has started to become good scientific practice. To foster the adoption of this practice the significance of software tools has to be acknowledged, which enable scientists to harness auxiliary audiovisual content in their research work. The advent of ubiquitous computer-based audiovisual recording and corresponding Web 2.0 hosting platforms like Youtube, Slideshare and GitHub has created new ecosystems for contextual information related to scientific software and data, which continues to grow both in size and variety of content. The current Web 2.0 platforms lack capabilities for long term archiving and scientific citation, such as persistent identifiers allowing to reference specific intervals of the overall content. The audiovisual content currently shared by scientists ranges from commented howto-demonstrations on software handling, installation and data-processing, to aggregated visual analytics of the evolution of software projects over time. Such content are crucial additions to the scientific message, as they ensure that software-based data-processing workflows can be assessed, understood and reused in the future. In the context of data driven research, such content needs to be accessible by effective search capabilities, enabling the content to be retrieved and ensuring that the content producers receive credit for their efforts within the scientific community. Improved multimedia archiving and retrieval services for scientific audiovisual content which meet these requirements are currently implemented by the scientific library community. This paper exemplifies the existing challenges, requirements, benefits and the potential of the preservation, accessibility and citability of such audiovisual content for the Open Source communities based on the new audiovisual web service TIB|AV Portal of the German National Library of Science and Technology. The web-based portal allows for extended search capabilities based on enhanced metadata derived by automated video analysis. By combining state-of-the-art multimedia retrieval techniques such as speech-, text-, and image recognition with semantic analysis, content-based access to videos at the segment level is provided. Further, by using the open standard Media Fragment Identifier (MFID), a citable Digital Object Identifier is displayed for each video segment. In addition to the continuously growing footprint of contemporary content, the importance of vintage audiovisual information needs to be considered: This paper showcases the successful application of the TIB|AV-Portal in the preservation and provision of a newly discovered version of a GRASS GIS promotional video produced by US Army -Corps of Enginers Laboratory (US-CERL) in 1987. The video is provides insight into the constraints of the very early days of the GRASS GIS project, which is the oldest active Free and Open Source Software (FOSS) GIS project which has been active for over thirty years. GRASS itself has turned into a collaborative scientific platform and a repository of scientific peer-reviewed code and algorithm/knowledge hub for future generation of scientists [1]. This is a reference case for future preservation activities regarding semantic-enhanced Web 2.0 content from geospatial software projects within Academia and beyond. References: [1] Chemin, Y., Petras V., Petrasova, A., Landa, M., Gebbert, S., Zambelli, P., Neteler, M., Löwe, P.: GRASS GIS: a peer-reviewed scientific platform and future research Repository, Geophysical Research Abstracts, Vol. 17, EGU2015-8314-1, 2015 (submitted)
Wall, Matthew B; Mentink, Alexander; Lyons, Georgina; Kowalczyk, Oliwia S; Demetriou, Lysia; Newbould, Rexford D
2017-09-12
Cigarette addiction is driven partly by the physiological effects of nicotine, but also by the distinctive sensory and behavioural aspects of smoking, and understanding the neural effects of such processes is vital. There are many practical difficulties associated with subjects smoking in the modern neuroscientific laboratory environment, however electronic cigarettes obviate many of these issues, and provide a close simulation of smoking tobacco cigarettes. We have examined the neural effects of 'smoking' electronic cigarettes with concurrent functional Magnetic Resonance Imaging (fMRI). The results demonstrate the feasibility of using these devices in the MRI environment, and show brain activation in a network of cortical (motor cortex, insula, cingulate, amygdala) and sub-cortical (putamen, thalamus, globus pallidus, cerebellum) regions. Concomitant relative deactivations were seen in the ventral striatum and orbitofrontal cortex. These results reveal the brain processes involved in (simulated) smoking for the first time, and validate a novel approach to the study of smoking, and addiction more generally.
NASA Astrophysics Data System (ADS)
Wang, Huihui; Bokarev, Sergey I.; Aziz, Saadullah G.; Kühn, Oliver
2017-08-01
Recent developments in attosecond spectroscopy yield access to the correlated motion of electrons on their intrinsic timescales. Spin-flip dynamics is usually considered in the context of valence electronic states, where spin-orbit coupling is weak and processes related to the electron spin are usually driven by nuclear motion. However, for core-excited states, where the core-hole has a nonzero angular momentum, spin-orbit coupling is strong enough to drive spin-flips on a much shorter timescale. Using density matrix-based time-dependent restricted active space configuration interaction including spin-orbit coupling, we address an unprecedentedly short spin-crossover for the example of L-edge (2p→3d) excited states of a prototypical Fe(II) complex. This process occurs on a timescale, which is faster than that of Auger decay (∼4 fs) treated here explicitly. Modest variations of carrier frequency and pulse duration can lead to substantial changes in the spin-state yield, suggesting its control by soft X-ray light.
Diverse Electron and Ion Acceleration Characteristics Observed Over Jupiter's Main Aurora
NASA Astrophysics Data System (ADS)
Mauk, B. H.; Haggerty, D. K.; Paranicas, C.; Clark, G.; Kollmann, P.; Rymer, A. M.; Peachey, J. M.; Bolton, S. J.; Levin, S. M.; Adriani, A.; Allegrini, F.; Bagenal, F.; Bonfond, B.; Connerney, J. E. P.; Ebert, R. W.; Gladstone, G. R.; Kurth, W. S.; McComas, D. J.; Ranquist, D.; Valek, P.
2018-02-01
Two new Juno-observed particle features of Jupiter's main aurora demonstrate substantial diversity of processes generating Jupiter's mysterious auroral emissions. It was previously speculated that sometimes-observed potential-driven aurora (up to 400 kV) can turn into broadband stochastic acceleration (dominating at Jupiter) by means of instability. Here direct evidence for such a process is revealed with a "mono-energetic" electron inverted-V rising in energy to 200 keV, transforming into a region of broadband acceleration with downward energy fluxes tripling to 3,000 mW/m2, and then transforming back into a mono-energetic structure ramping down from 200 keV. But a second feature of interest observed nearby is unlikely to have operated in the same way. Here a downward accelerated proton inverted-V, with inferred potentials to 300-400 kV, occurred simultaneously with downward accelerated broadband electrons with downward energy fluxes as high as any observed ( 3,000 mW/m2). This latter feature has no known precedent with Earth auroral observations.
Water-chromophore electron transfer determines the photochemistry of cytosine and cytidine.
Szabla, Rafał; Kruse, Holger; Šponer, Jiří; Góra, Robert W
2017-07-21
Many of the UV-induced phenomena observed experimentally for aqueous cytidine were lacking the mechanistic interpretation for decades. These processes include the substantial population of the puzzling long-lived dark state, photohydration, cytidine to uridine conversion and oxazolidinone formation. Here, we present quantum-chemical simulations of excited-state spectra and potential energy surfaces of N1-methylcytosine clustered with two water molecules using the second-order approximate coupled cluster (CC2), complete active space with second-order perturbation theory (CASPT2), and multireference configuration interaction with single and double excitation (MR-CISD) methods. We argue that the assignment of the long-lived dark state to a singlet nπ* excitation involving water-chromophore electron transfer might serve as an explanation for the numerous experimental observations. While our simulated spectra for the state are in excellent agreement with experimentally acquired data, the electron-driven proton transfer process occurring on the surface may initiate the subsequent damage in the vibrationally hot ground state of the chromophore.
Direction-division multiplexed holographic free-electron-driven light sources
NASA Astrophysics Data System (ADS)
Clarke, Brendan P.; MacDonald, Kevin F.; Zheludev, Nikolay I.
2018-01-01
We report on a free-electron-driven light source with a controllable direction of emission. The source comprises a microscopic array of plasmonic surface-relief holographic domains, each tailored to direct electron-induced light emission at a selected wavelength into a collimated beam in a prescribed direction. The direction-division multiplexed source is tested by driving it with the 30 kV electron beam of a scanning electron microscope: light emission, at a wavelength of 800 nm in the present case, is switched among different output angles by micron-scale repositioning of the electron injection point among domains. Such sources, with directional switching/tuning possible at picosecond timescales, may be applied to field-emission and surface-conduction electron-emission display technologies, optical multiplexing, and charged-particle-beam position metrology.
NASA Astrophysics Data System (ADS)
Yao, Congwei; Chang, Zhengshi; Chen, Sile; Ma, Hengchi; Mu, Haibao; Zhang, Guan-Jun
2017-09-01
Dielectric barrier discharge (DBD) is widely applied in many fields, and the discharge characteristics of insert gas have been the research focus for years. In this paper, fluid models of atmospheric Ar and He DBDs driven by 22 kHz sinusoidal voltage are built to analyze their ignition processes. The contributions of different electron sources in ignition process are analyzed, including the direct ionization of ground state atom, stepwise ionization of metastable particles, and secondary electron emission from dielectric wall, and they play different roles in different discharge stages. The Townsend direct ionization coefficient of He is higher than Ar with the same electrical field intensity, which is the direct reason for the different ignition thresholds between He and Ar. Further, the electron energy loss per free electron produced in Ar and He DBDs is discussed. It is found that the total electron energy loss rate of Ar is higher than He when the same electrical field is applied. The excitation reaction of Ar consumes the major electron energy but cannot produce free electrons effectively, which is the essential reason for the higher ignition threshold of Ar. The computation results of He and Ar extinction voltages can be explained in the view of electron energy loss, as well as the experimental results of different extinction voltages between Ar/NH3 and He DBDs.
Paperless Work Package Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilgore, Jr., William R.; Morrell, Jr., Otto K.; Morrison, Dan
2014-07-31
Paperless Work Package (PWP) System is a computer program process that takes information from Asset Suite, provides a platform for other electronic inputs, Processes the inputs into an electronic package that can be downloaded onto an electronic work tablet or laptop computer, provides a platform for electronic inputs into the work tablet, and then transposes those inputs back into Asset Suite and to permanent SRS records. The PWP System will basically eliminate paper requirements from the maintenance work control system. The program electronically relays the instructions given by the planner to work on a piece of equipment which is currentlymore » relayed via a printed work package. The program does not control/approve what is done. The planner will continue to plan the work package, the package will continue to be routed, approved, and scheduled. The supervisor reviews and approves the work to be performed and assigns work to individuals or to a work group. (The supervisor conducts pre job briefings with the workers involved in the job) The Operations Manager (Work Controlling Entity) approves the work package electronically for the work that will be done in his facility prior to work starting. The PWP System will provide the package in an electronic form. All the reviews, approvals, and safety measures taken by people outside the electronic package does not change from the paper driven work packages.« less
NASA Astrophysics Data System (ADS)
Janssen, C.; Wirth, R.; Kienast, M.; Yabe, Y.; Sulem, J.; Dresen, G. H.
2015-12-01
Chemical and mechanical effects of fluids influence the fault mechanical behavior. We analyzed fresh fault rocks from several scientific drilling projects to study the effects of fluids on fault strength. For example, in drill core samples on a rupture plane of an Mw 2.2 earthquake in a deep gold mine in South Africa the main shock occurred on a preexisting plane of weakness that was formed by fluid-rock interaction (magnesiohornblende was intensively altered to chlinochlore). The plane acted as conduit for hydrothermal fluids at some time in the past. The chemical influence of fluids on mineralogical alteration and geomechanical processes in fault core samples from SAFOD (San Andreas Fault Observatory at Depth) is visible in pronounced dissolution-precipitation processes (stylolites, solution seams) as well as in the formation of new phases. Detrital quartz and feldspar grains are partially dissolved and replaced by authigenic illite-smectite (I-S) mixed-layer clay minerals. Transmission Electron Microscopy (TEM) imaging of these grains reveals that the alteration processes and healing were initiated within pores and small intra-grain fissures. Newly formed phyllosilicates growing into open pore spaces likely reduced the fluid permeability. The mechanical influence of fluids is indicated by TEM observations, which document open pores that formed in-situ in the gouge material during or after deformation. Pores were possibly filled with formation water and/or hydrothermal fluids suggesting elevated fluid pressure preventing pore collapse. Fluid-driven healing of fractures in samples from SAFOD and the DGLab Gulf of Corinth project is visible in cementation. Cathodoluminescence microscopy (CL) reveals different generations of calcite veins. Differences in CL-colors suggest repeated infiltration of fluids with different chemical composition from varying sources (formation and meteoric water).
The High Resolution Imaging Science Experiment (HiRISE) during MRO's Primary Science Phase (PSP)
McEwen, A.S.; Banks, M.E.; Baugh, N.; Becker, K.; Boyd, A.; Bergstrom, J.W.; Beyer, R.A.; Bortolini, E.; Bridges, N.T.; Byrne, S.; Castalia, B.; Chuang, F.C.; Crumpler, L.S.; Daubar, I.; Davatzes, A.K.; Deardorff, D.G.; DeJong, A.; Alan, Delamere W.; Dobrea, E.N.; Dundas, C.M.; Eliason, E.M.; Espinoza, Y.; Fennema, A.; Fishbaugh, K.E.; Forrester, T.; Geissler, P.E.; Grant, J. A.; Griffes, J.L.; Grotzinger, J.P.; Gulick, V.C.; Hansen, C.J.; Herkenhoff, K. E.; Heyd, R.; Jaeger, W.L.; Jones, D.; Kanefsky, B.; Keszthelyi, L.; King, R.; Kirk, R.L.; Kolb, K.J.; Lasco, J.; Lefort, A.; Leis, R.; Lewis, K.W.; Martinez-Alonso, S.; Mattson, S.; McArthur, G.; Mellon, M.T.; Metz, J.M.; Milazzo, M.P.; Milliken, R.E.; Motazedian, T.; Okubo, C.H.; Ortiz, A.; Philippoff, A.J.; Plassmann, J.; Polit, A.; Russell, P.S.; Schaller, C.; Searls, M.L.; Spriggs, T.; Squyres, S. W.; Tarr, S.; Thomas, N.; Thomson, B.J.; Tornabene, L.L.; Van Houten, C.; Verba, C.; Weitz, C.M.; Wray, J.J.
2010-01-01
The High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter (MRO) acquired 8 terapixels of data in 9137 images of Mars between October 2006 and December 2008, covering ???0.55% of the surface. Images are typically 5-6 km wide with 3-color coverage over the central 20% of the swath, and their scales usually range from 25 to 60 cm/pixel. Nine hundred and sixty stereo pairs were acquired and more than 50 digital terrain models (DTMs) completed; these data have led to some of the most significant science results. New methods to measure and correct distortions due to pointing jitter facilitate topographic and change-detection studies at sub-meter scales. Recent results address Noachian bedrock stratigraphy, fluvially deposited fans in craters and in or near Valles Marineris, groundwater flow in fractures and porous media, quasi-periodic layering in polar and non-polar deposits, tectonic history of west Candor Chasma, geometry of clay-rich deposits near and within Mawrth Vallis, dynamics of flood lavas in the Cerberus Palus region, evidence for pyroclastic deposits, columnar jointing in lava flows, recent collapse pits, evidence for water in well-preserved impact craters, newly discovered large rayed craters, and glacial and periglacial processes. Of particular interest are ongoing processes such as those driven by the wind, impact cratering, avalanches of dust and/or frost, relatively bright deposits on steep gullied slopes, and the dynamic seasonal processes over polar regions. HiRISE has acquired hundreds of large images of past, present and potential future landing sites and has contributed to scientific and engineering studies of those sites. Warming the focal-plane electronics prior to imaging has mitigated an instrument anomaly that produces bad data under cold operating conditions. ?? 2009 Elsevier Inc.
The Iterative Design Process in Research and Development: A Work Experience Paper
NASA Technical Reports Server (NTRS)
Sullivan, George F. III
2013-01-01
The iterative design process is one of many strategies used in new product development. Top-down development strategies, like waterfall development, place a heavy emphasis on planning and simulation. The iterative process, on the other hand, is better suited to the management of small to medium scale projects. Over the past four months, I have worked with engineers at Johnson Space Center on a multitude of electronics projects. By describing the work I have done these last few months, analyzing the factors that have driven design decisions, and examining the testing and verification process, I will demonstrate that iterative design is the obvious choice for research and development projects.
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Cummings, Rick; Jones, Brian
1992-01-01
The microgravity materials processing program has been instrumental in providing the crystal growth community with an experimental environment to better understand the phenomena associated with the growing of crystals. In many applications one may pursue the growth of large single crystals which cannot be grown on earth due to convective driven flows. A microgravity environment is characterized by neither convection of buoyancy. Consequently superior crystals are able to be grown in space. On the other hand, since neither convection nor buoyancy dominates the fluid flow in a microgravity environment, then lesser dominating phenomena can affect crystal growth, such as surface driven flows or diffusion limited solidification. In the case of experiments that are to be flown in space using the Fluid Experiments System (FES), diffusion limited growth should be the dominating phenomenon. The use of holographic and Schlieren optical techniques for studying the concentration gradients in solidification processes has been used by several investigators over the years. The Holographic Ground System (HGS) facility at MSFC has been a primary resource in researching this capability. Consequently scientific personnel have been able to utilize these techniques in both ground based research and in space experiments. An important event in the scientific utilization of the HGS facilities was the TGS (triglycine sulfate) Crystal Growth and the Casting and Solidification Technology (CAST) experiments that were flown on the International Microgravity Lab (IML) mission in March of this year. The preparation and processing of these space observations are the primary experiments reported in this work. This project provides some ground-based studies to optimize on the holographic techniques used to acquire information about the crystal growth processes flown on IML. Since the ground-based studies will be compared with the space-based experimental results, it is necessary to conduct sufficient ground based studies to best determine how the experiment in space worked. The current capabilities in computer based systems for image processing and numerical computation have certainly assisted in those efforts. As anticipated, this study has certainly shown that these advanced computing capabilities are helpful in the data analysis of such experiments.
New Space Weather Forecasting at NOAA with Michigan's Geospace Model
NASA Astrophysics Data System (ADS)
Singer, H. J.; Millward, G. H.; Balch, C. C.; Cash, M. D.; Onsager, T. G.; Toth, G.; Welling, D. T.; Gombosi, T. I.
2016-12-01
We will present first results from the University of Michigan's Geospace model that is transitioning, during 2016, from a research capability into operations at the NOAA Space Weather Prediction Center. The first generation of space weather products from this model will be described. These initial products will support power grid operators, as well as other users, with both global and regional, short-term predictions of geomagnetic activity. The Geospace model is a coupled system including three components: the BATS-R-US magnetohydrodynamic (MHD) model of the magnetosphere; the Ridley ionosphere electrodynamics model (RIM); and the Rice Convection Model (RCM), an inner magnetosphere ring-current model developed at Rice University. The model is driven by solar wind data from a satellite at L1 (now NOAA's DSCOVR satellite) and F10.7, a proxy for solar extreme ultra-violet radiation. The Geospace model runs continuously, driven by the 1-minute cadence real-time L1 data that is propagated to the inflow boundary of the MHD code. The model steps back to an earlier time and then continues forward if high-speed solar wind overtakes slower solar wind. This mode of operation is unique among the models at NOAA's National Center for Environment Prediction's Central Operations (NCO), and it is also different from the typical scientific simulation mode. All of this work has involved 3D graphical model displays and validation tools that are being developed to support forecasters and web-based external users. Lessons learned during the transition process will be described, as well as the iterative process that occurs between Research and Operations and the scientific challenges for future model and product improvements.
NASA Astrophysics Data System (ADS)
Ramachandran, R.; Nair, U. S.; Word, A.
2014-12-01
Threshold concepts in any discipline are the core concepts an individual must understand in order to master a discipline. By their very nature, these concepts are troublesome, irreversible, integrative, bounded, discursive, and reconstitutive. Although grasping threshold concepts can be extremely challenging for each learner as s/he moves through stages of cognitive development relative to a given discipline, the learner's grasp of these concepts determines the extent to which s/he is prepared to work competently and creatively within the field itself. The movement of individuals from a state of ignorance of these core concepts to one of mastery occurs not along a linear path but in iterative cycles of knowledge creation and adjustment in liminal spaces - conceptual spaces through which learners move from the vaguest awareness of concepts to mastery, accompanied by understanding of their relevance, connectivity, and usefulness relative to questions and constructs in a given discipline. With the explosive growth of data available in atmospheric science, driven largely by satellite Earth observations and high-resolution numerical simulations, paradigms such as that of data-intensive science have emerged. These paradigm shifts are based on the growing realization that current infrastructure, tools and processes will not allow us to analyze and fully utilize the complex and voluminous data that is being gathered. In this emerging paradigm, the scientific discovery process is driven by knowledge extracted from large volumes of data. In this presentation, we contend that this paradigm naturally lends to inquiry-driven pedagogy where knowledge is discovered through inductive engagement with large volumes of data rather than reached through traditional, deductive, hypothesis-driven analyses. In particular, data-intensive techniques married with an inductive methodology allow for exploration on a scale that is not possible in the traditional classroom with its typical problem sets and static, limited data samples. In addition, we identify existing gaps and possible solutions for addressing the infrastructure and tools as well as a pedagogical framework through which to implement this inductive approach.
NASA Technical Reports Server (NTRS)
Tuey, Richard C.; Collins, Mary; Caswell, Pamela; Haynes, Bob; Nelson, Michael L.; Holm, Jeanne; Buquo, Lynn; Tingle, Annette; Cooper, Bill; Stiltner, Roy
1996-01-01
This evaluation report contains an introduction, seven chapters, and five appendices. The Introduction describes the purpose, conceptual framework, functional description, and technical report server of the Scientific and Technical Information (STI) Electronic Document Distribution (EDD) project. Chapter 1 documents the results of the prototype STI EDD in actual operation. Chapter 2 documents each NASA center's post processing publication processes. Chapter 3 documents each center's STI software, hardware. and communications configurations. Chapter 7 documents STI EDD policy, practices, and procedures. The appendices consist of (A) the STI EDD Project Plan, (B) Team members, (C) Phasing Schedules, (D) Accessing On-line Reports, and (E) Creating an HTML File and Setting Up an xTRS. In summary, Stage 4 of the NASAwide Electronic Publishing System is the final phase of its implementation through the prototyping and gradual integration of each NASA center's electronic printing systems, desk top publishing systems, and technical report servers, to be able to provide to NASA's engineers, researchers, scientists, and external users, the widest practicable and appropriate dissemination of information concerning its activities and the result thereof to their work stations.
Spray printing of organic semiconducting single crystals
NASA Astrophysics Data System (ADS)
Rigas, Grigorios-Panagiotis; Payne, Marcia M.; Anthony, John E.; Horton, Peter N.; Castro, Fernando A.; Shkunov, Maxim
2016-11-01
Single-crystal semiconductors have been at the forefront of scientific interest for more than 70 years, serving as the backbone of electronic devices. Inorganic single crystals are typically grown from a melt using time-consuming and energy-intensive processes. Organic semiconductor single crystals, however, can be grown using solution-based methods at room temperature in air, opening up the possibility of large-scale production of inexpensive electronics targeting applications ranging from field-effect transistors and light-emitting diodes to medical X-ray detectors. Here we demonstrate a low-cost, scalable spray-printing process to fabricate high-quality organic single crystals, based on various semiconducting small molecules on virtually any substrate by combining the advantages of antisolvent crystallization and solution shearing. The crystals' size, shape and orientation are controlled by the sheer force generated by the spray droplets' impact onto the antisolvent's surface. This method demonstrates the feasibility of a spray-on single-crystal organic electronics.
NASA Astrophysics Data System (ADS)
Granados, R.; López, R.; Farah, Alejandro
2014-07-01
It is proposed the development and implementation of a High Speed Resolution Camera instrument. The basic principle of this technique is to take several pictures of short exposure using different filters of an astronomical object of interest . These images are subsequently processed using specialized software to remove aberrations from atmosphere and from the instrument itself such as blur and scintillation among others. In this paper are described electronic and control systems implemented for BERKUT instrument based on FPGA (Field Programmable Gate Array) generated with VHDL description. An UART communication, using serial protocol, is used with a friendly User Interface providing an easy way for the astronomer to choose between different lenses and different filters for capturing the images. All the movements are produced by stepper motors that are driven by a circuit that powers all the electronics. The camera and the lenses are placed into a linear positioner with the help of a stepper motor which give us repeatable movements for positioning these optical components. Besides it is planned to integrate in the same system a pipeline for image data reduction to have one sturdy system that could fulfill any astronomer needs in the usage of this technique. With this instrument we pretend to confirm the Hipparcos catalogue of binary stars besides finding exoplanets. This technique requires more simple optical equipment and it is less sensitive to environmental noise, making it cheaper and provides good quality and great resolution images for scientific purposes. This equipment will be installed on different 1-m class telescopes in Mexico1 and probably other countries which makes it a wide application instrument.
Roadmap on optical energy conversion
NASA Astrophysics Data System (ADS)
Boriskina, Svetlana V.; Green, Martin A.; Catchpole, Kylie; Yablonovitch, Eli; Beard, Matthew C.; Okada, Yoshitaka; Lany, Stephan; Gershon, Talia; Zakutayev, Andriy; Tahersima, Mohammad H.; Sorger, Volker J.; Naughton, Michael J.; Kempa, Krzysztof; Dagenais, Mario; Yao, Yuan; Xu, Lu; Sheng, Xing; Bronstein, Noah D.; Rogers, John A.; Alivisatos, A. Paul; Nuzzo, Ralph G.; Gordon, Jeffrey M.; Wu, Di M.; Wisser, Michael D.; Salleo, Alberto; Dionne, Jennifer; Bermel, Peter; Greffet, Jean-Jacques; Celanovic, Ivan; Soljacic, Marin; Manor, Assaf; Rotschild, Carmel; Raman, Aaswath; Zhu, Linxiao; Fan, Shanhui; Chen, Gang
2016-07-01
For decades, progress in the field of optical (including solar) energy conversion was dominated by advances in the conventional concentrating optics and materials design. In recent years, however, conceptual and technological breakthroughs in the fields of nanophotonics and plasmonics combined with a better understanding of the thermodynamics of the photon energy-conversion processes reshaped the landscape of energy-conversion schemes and devices. Nanostructured devices and materials that make use of size quantization effects to manipulate photon density of states offer a way to overcome the conventional light absorption limits. Novel optical spectrum splitting and photon-recycling schemes reduce the entropy production in the optical energy-conversion platforms and boost their efficiencies. Optical design concepts are rapidly expanding into the infrared energy band, offering new approaches to harvest waste heat, to reduce the thermal emission losses, and to achieve noncontact radiative cooling of solar cells as well as of optical and electronic circuitries. Light-matter interaction enabled by nanophotonics and plasmonics underlie the performance of the third- and fourth-generation energy-conversion devices, including up- and down-conversion of photon energy, near-field radiative energy transfer, and hot electron generation and harvesting. Finally, the increased market penetration of alternative solar energy-conversion technologies amplifies the role of cost-driven and environmental considerations. This roadmap on optical energy conversion provides a snapshot of the state of the art in optical energy conversion, remaining challenges, and most promising approaches to address these challenges. Leading experts authored 19 focused short sections of the roadmap where they share their vision on a specific aspect of this burgeoning research field. The roadmap opens up with a tutorial section, which introduces major concepts and terminology. It is our hope that the roadmap will serve as an important resource for the scientific community, new generations of researchers, funding agencies, industry experts, and investors.