Spin-electron acoustic soliton and exchange interaction in separate spin evolution quantum plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru
Separate spin evolution quantum hydrodynamics is generalized to include the Coulomb exchange interaction, which is considered as interaction between the spin-down electrons being in quantum states occupied by one electron. The generalized model is applied to study the non-linear spin-electron acoustic waves. Existence of the spin-electron acoustic soliton is demonstrated. Contributions of concentration, spin polarization, and exchange interaction to the properties of the spin electron acoustic soliton are studied.
Effect of electron spin-spin interaction on level crossings and spin flips in a spin-triplet system
NASA Astrophysics Data System (ADS)
Jia, Wei; Hu, Fang-Qi; Wu, Ning; Zhao, Qing
2017-12-01
We study level crossings and spin flips in a system consisting of a spin-1 (an electron spin triplet) coupled to a nuclear spin of arbitrary size K , in the presence of a uniform magnetic field and the electron spin-spin interaction within the triplet. Through an analytical diagonalization based on the SU (3 ) Lie algebra, we find that the electron spin-spin interaction not only removes the curious degeneracy which appears in the absence of the interaction, but also produces some level anticrossings (LACs) for strong interactions. The real-time dynamics of the system shows that periodic spin flips occur at the LACs for arbitrary K , which might provide an option for nuclear or electron spin polarization.
NASA Astrophysics Data System (ADS)
Yavari, H.; Mokhtari, M.; Bayervand, A.
2015-03-01
Based on Kubo's linear response formalism, temperature dependence of the spin-Hall conductivity of a two-dimensional impure (magnetic and nonmagnetic impurities) Rashba electron gas in the presence of electron-electron and electron-phonon interactions is analyzed theoretically. We will show that the temperature dependence of the spin-Hall conductivity is determined by the relaxation rates due to these interactions. At low temperature, the elastic lifetimes ( and are determined by magnetic and nonmagnetic impurity concentrations which are independent of the temperature, while the inelastic lifetimes ( and related to the electron-electron and electron-phonon interactions, decrease when the temperature increases. We will also show that since the spin-Hall conductivity is sensitive to temperature, we can distinguish the intrinsic and extrinsic contributions.
Dzhioev, R I; Korenev, V L
2007-07-20
The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.
NASA Astrophysics Data System (ADS)
Dzhioev, R. I.; Korenev, V. L.
2007-07-01
The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru
2015-06-15
We discuss the complete theory of spin-1/2 electron-positron quantum plasmas, when electrons and positrons move with velocities mach smaller than the speed of light. We derive a set of two fluid quantum hydrodynamic equations consisting of the continuity, Euler, spin (magnetic moment) evolution equations for each species. We explicitly include the Coulomb, spin-spin, Darwin and annihilation interactions. The annihilation interaction is the main topic of the paper. We consider the contribution of the annihilation interaction in the quantum hydrodynamic equations and in the spectrum of waves in magnetized electron-positron plasmas. We consider the propagation of waves parallel and perpendicular tomore » an external magnetic field. We also consider the oblique propagation of longitudinal waves. We derive the set of quantum kinetic equations for electron-positron plasmas with the Darwin and annihilation interactions. We apply the kinetic theory to the linear wave behavior in absence of external fields. We calculate the contribution of the Darwin and annihilation interactions in the Landau damping of the Langmuir waves. We should mention that the annihilation interaction does not change number of particles in the system. It does not related to annihilation itself, but it exists as a result of interaction of an electron-positron pair via conversion of the pair into virtual photon. A pair of the non-linear Schrodinger equations for the electron-positron plasmas including the Darwin and annihilation interactions is derived. Existence of the conserving helicity in electron-positron quantum plasmas of spinning particles with the Darwin and annihilation interactions is demonstrated. We show that the annihilation interaction plays an important role in the quantum electron-positron plasmas giving the contribution of the same magnitude as the spin-spin interaction.« less
NASA Astrophysics Data System (ADS)
Sklyadneva, I. Yu.; Heid, R.; Bohnen, K.-P.; Echenique, P. M.; Chulkov, E. V.
2018-05-01
The effect of spin-orbit coupling on the electron-phonon interaction in a (4/3)-monolayer of Pb on Si(111) is investigated within the density-functional theory and linear-response approach in the mixed-basis pseudopotential representation. We show that the spin-orbit interaction produces a large weakening of the electron-phonon coupling strength, which appears to be strongly overestimated in the scalar relativistic calculations. The effect of spin-orbit interaction is largely determined by the induced modification of Pb electronic bands and a stiffening of the low-energy part of phonon spectrum, which favor a weakening of the electron-phonon coupling strength. The state-dependent strength of the electron-phonon interaction in occupied Pb electronic bands varies depending on binding energy rather than electronic momentum. It is markedly larger than the value averaged over electron momentum because substrate electronic bands make a small contribution to the phonon-mediated scattering and agrees well with the experimental data.
NASA Technical Reports Server (NTRS)
Lee, Seungwon; vonAllmen, Paul; Oyafuso, Fabiano; Klimeck, Gerhard; Whale, K. Birgitta
2004-01-01
Electron spin dephasing and decoherence by its interaction with nuclear spins in self-assembled quantum dots are investigated in the framework of the empirical tight-binding model. Electron spin dephasing in an ensemble of dots is induced by the inhomogeneous precession frequencies of the electron among dots, while electron spin decoherence in a single dot arises from the inhomogeneous precession frequencies of nuclear spins in the dot. For In(x)Ga(1-x) As self-assembled dots containing 30000 nuclei, the dephasing and decoherence times are predicted to be on the order of 100 ps and 1 (micro)s.
Measurement of the magnetic interaction between two bound electrons of two separate ions.
Kotler, Shlomi; Akerman, Nitzan; Navon, Nir; Glickman, Yinnon; Ozeri, Roee
2014-06-19
Electrons have an intrinsic, indivisible, magnetic dipole aligned with their internal angular momentum (spin). The magnetic interaction between two electronic spins can therefore impose a change in their orientation. Similar dipolar magnetic interactions exist between other spin systems and have been studied experimentally. Examples include the interaction between an electron and its nucleus and the interaction between several multi-electron spin complexes. The challenge in observing such interactions for two electrons is twofold. First, at the atomic scale, where the coupling is relatively large, it is often dominated by the much larger Coulomb exchange counterpart. Second, on scales that are substantially larger than the atomic, the magnetic coupling is very weak and can be well below the ambient magnetic noise. Here we report the measurement of the magnetic interaction between the two ground-state spin-1/2 valence electrons of two (88)Sr(+) ions, co-trapped in an electric Paul trap. We varied the ion separation, d, between 2.18 and 2.76 micrometres and measured the electrons' weak, millihertz-scale, magnetic interaction as a function of distance, in the presence of magnetic noise that was six orders of magnitude larger than the magnetic fields the electrons apply on each other. The cooperative spin dynamics was kept coherent for 15 seconds, during which spin entanglement was generated, as verified by a negative measured value of -0.16 for the swap entanglement witness. The sensitivity necessary for this measurement was provided by restricting the spin evolution to a decoherence-free subspace that is immune to collective magnetic field noise. Our measurements show a d(-3.0(4)) distance dependence for the coupling, consistent with the inverse-cube law.
Deo, Vincent; Zhang, Yao; Soghomonian, Victoria; ...
2015-03-30
Quantum interference is used to measure the spin interactions between an InAs surface electron system and the iron center in the biomolecule hemin in nanometer proximity in a bio-organic/semiconductor device structure. The interference quantifies the influence of hemin on the spin decoherence properties of the surface electrons. The decoherence times of the electrons serve to characterize the biomolecule, in an electronic complement to the use of spin decoherence times in magnetic resonance. Hemin, prototypical for the heme group in hemoglobin, is used to demonstrate the method, as a representative biomolecule where the spin state of a metal ion affects biologicalmore » functions. The electronic determination of spin decoherence properties relies on the quantum correction of antilocalization, a result of quantum interference in the electron system. Spin-flip scattering is found to increase with temperature due to hemin, signifying a spin exchange between the iron center and the electrons, thus implying interactions between a biomolecule and a solid-state system in the hemin/InAs hybrid structure. The results also indicate the feasibility of artificial bioinspired materials using tunable carrier systems to mediate interactions between biological entities.« less
NASA Astrophysics Data System (ADS)
Heremans, J. J.; Chen, Hong; Peters, J. A.; Goel, N.; Chung, S. J.; Santos, M. B.; van Roy, W.; Borghs, G.
2006-03-01
Spin-orbit interaction in semiconductor heterostructures can lead to various spin-dependent electronic transport effects without the presence of magnetic materials. Mesoscopic samples were fabricated on InSb/InAlSb and InAs/AlGaSb two-dimensional electron systems, where spin-orbit interaction is strong. In mesoscopic devices, the effects of spin-orbit interaction are not averaged out over the geometry, and lead to observable electronic properties. We experimentally demonstrate spin-split ballistic transport and the creation of fully spin-polarized electron beams using spin-dependent reflection geometries and transverse magnetic focusing geometries. Spin-dependent transport properties in the semiconductor materials are also investigated using antidot lattices. Spin-orbit interaction effects in high-mobility semiconductor devices may be utilized toward the design of novel spintronics implementations. We acknowledge NSF DMR-0094055 (JJH), DMR-0080054, DMR-0209371 (MBS).
Spin noise spectroscopy of ZnO
NASA Astrophysics Data System (ADS)
Horn, H.; Berski, F.; Balocchi, A.; Marie, X.; Mansur-Al-Suleiman, M.; Bakin, A.; Waag, A.; Hübner, J.; Oestreich, M.
2013-12-01
We investigate the thermal equilibrium dynamics of electron spins bound to donors in nanoporous ZnO by optical spin noise spectroscopy. The spin noise spectra reveal two noise contributions: A weak spin noise signal from undisturbed localized donor electrons with a dephasing time of 24 ns due to hyperfine interaction and a strong spin noise signal with a spin dephasing time of 5 ns which we attribute to localized donor electrons which interact with lattice defects.
NASA Astrophysics Data System (ADS)
Garcia-Goiricelaya, Peio; Gurtubay, Idoia G.; Eiguren, Asier
2018-05-01
We investigate the role played by the electron spin and the spin-orbit interaction in the exceptional electron-phonon coupling at the Tl/Si(111) surface. Our first-principles calculations demonstrate that the particular spin pattern of this system dominates the whole low-energy electron-phonon physics, which is remarkably explained by forbidden spin-spin scattering channels. In particular, we show that the strength of the electron-phonon coupling appears drastically weakened for surface states close to the K ¯ and K'¯ valleys, which is unambiguously attributed to the spin polarization through the associated modulation due to the spinor overlaps. However, close to the Γ ¯ point, the particular spin pattern in this area is less effective in damping the electron-phonon matrix elements, and the result is an exceptional strength of the electron-phonon coupling parameter λ ˜1.4 . These results are rationalized by a simple model for the electron-phonon matrix elements including the spinor terms.
NASA Astrophysics Data System (ADS)
Čenčariková, Hana; Strečka, Jozef; Gendiar, Andrej; Tomašovičová, Natália
2018-05-01
An exhaustive ground-state analysis of extended two-dimensional (2D) correlated spin-electron model consisting of the Ising spins localized on nodal lattice sites and mobile electrons delocalized over pairs of decorating sites is performed within the framework of rigorous analytical calculations. The investigated model, defined on an arbitrary 2D doubly decorated lattice, takes into account the kinetic energy of mobile electrons, the nearest-neighbor Ising coupling between the localized spins and mobile electrons, the further-neighbor Ising coupling between the localized spins and the Zeeman energy. The ground-state phase diagrams are examined for a wide range of model parameters for both ferromagnetic as well as antiferromagnetic interaction between the nodal Ising spins and non-zero value of external magnetic field. It is found that non-zero values of further-neighbor interaction leads to a formation of new quantum states as a consequence of competition between all considered interaction terms. Moreover, the new quantum states are accompanied with different magnetic features and thus, several kinds of field-driven phase transitions are observed.
Loss, Daniel; Pedrocchi, Fabio L; Leggett, Anthony J
2011-09-02
We extend the Mermin-Wagner theorem to a system of lattice spins which are spin coupled to itinerant and interacting charge carriers. We use the Bogoliubov inequality to rigorously prove that neither (anti-) ferromagnetic nor helical long-range order is possible in one and two dimensions at any finite temperature. Our proof applies to a wide class of models including any form of electron-electron and single-electron interactions that are independent of spin. In the presence of Rashba or Dresselhaus spin-orbit interactions (SOI) magnetic order is not excluded and intimately connected to equilibrium spin currents. However, in the special case when Rashba and Dresselhaus SOIs are tuned to be equal, magnetic order is excluded again. This opens up a new possibility to control magnetism electrically.
Manipulation of the spin memory of electrons in n-GaAs.
Dzhioev, R I; Korenev, V L; Merkulov, I A; Zakharchenya, B P; Gammon, D; Efros, Al L; Katzer, D S
2002-06-24
We report on the optical manipulation of the electron spin relaxation time in a GaAs-based heterostructure. Experimental and theoretical study shows that the average electron spin relaxes through hyperfine interaction with the lattice nuclei, and that the rate can be controlled by electron-electron interactions. This time has been changed from 300 ns down to 5 ns by variation of the laser frequency. This modification originates in the optically induced depletion of an n-GaAs layer.
Search for exotic spin-dependent interactions with a spin-exchange relaxation-free magnetometer
Chu, Pinghan; Kim, Young Jin; Savukov, Igor Mykhaylovich
2016-08-15
We propose a novel experimental approach to explore exotic spin-dependent interactions using a spin-exchange relaxation-free (SERF) magnetometer, the most sensitive noncryogenic magnetic-field sensor. This approach studies the interactions between optically polarized electron spins located inside a vapor cell of the SERF magnetometer and unpolarized or polarized particles of external solid-state objects. The coupling of spin-dependent interactions to the polarized electron spins of the magnetometer induces the tilt of the electron spins, which can be detected with high sensitivity by a probe laser beam similarly as an external magnetic field. Lastly, we estimate that by moving unpolarized or polarized objects nextmore » to the SERF Rb vapor cell, the experimental limit to the spin-dependent interactions can be significantly improved over existing experiments, and new limits on the coupling strengths can be set in the interaction range below 10 –2 m.« less
A spin exchange model for singlet fission
NASA Astrophysics Data System (ADS)
Yago, Tomoaki; Wakasa, Masanobu
2018-03-01
Singlet fission has been analyzed with the Dexter model in which electron exchange occurs between chromophores, conserving the spin for each electron. In the present study, we propose a spin exchange model for singlet fission. In the spin exchange model, spins are exchanged by the exchange interaction between two electrons. Our analysis with simple spin functions demonstrates that singlet fission is possible by spin exchange. A necessary condition for spin exchange is a variation in exchange interactions. We also adapt the spin exchange model to triplet fusion and triplet energy transfer, which often occur after singlet fission in organic solids.
NASA Astrophysics Data System (ADS)
Zhang, Chao; Yao, Hui; Nie, Yi-Hang; Liang, Jiu-Qing; Niu, Peng-Bin
2018-04-01
In this work, we study the generation of spin-current in a single-molecule magnet (SMM) tunnel junction with Coulomb interaction of transport electrons and external magnetic field. In the absence of field the spin-up and -down currents are symmetric with respect to the initial polarizations of molecule. The existence of magnetic field breaks the time-reversal symmetry, which leads to unsymmetrical spin currents of parallel and antiparallel polarizations. Both the amplitude and polarization direction of spin current can be controlled by the applied magnetic field. Particularly when the magnetic field increases to a certain value the spin-current with antiparallel polarization is reversed along with the magnetization reversal of the SMM. The two-electron occupation indeed enhances the transport current compared with the single-electron process. However the increase of Coulomb interaction results in the suppression of spin-current amplitude at the electron-hole symmetry point. We propose a scheme to compensate the suppression with the magnetic field.
Quantum ring with the Rashba spin-orbit interaction in the regime of strong light-matter coupling
NASA Astrophysics Data System (ADS)
Kozin, V. K.; Iorsh, I. V.; Kibis, O. V.; Shelykh, I. A.
2018-04-01
We developed the theory of electronic properties of semiconductor quantum rings with the Rashba spin-orbit interaction irradiated by an off-resonant high-frequency electromagnetic field (dressing field). Within the Floquet theory of periodically driven quantum systems, it is demonstrated that the dressing field drastically modifies all electronic characteristics of the rings, including spin-orbit coupling, effective electron mass, and optical response. In particular, the present effect paves the way to controlling the spin polarization of electrons with light in prospective ring-shaped spintronic devices.
NASA Astrophysics Data System (ADS)
Puri, Shruti; McMahon, Peter L.; Yamamoto, Yoshihisa
2014-10-01
We propose a scheme to perform single-shot quantum nondemolition (QND) readout of the spin of an electron trapped in a semiconductor quantum dot (QD). Our proposal relies on the interaction of the QD electron spin with optically excited, quantum well (QW) microcavity exciton-polaritons. The spin-dependent Coulomb exchange interaction between the QD electron and cavity polaritons causes the phase and intensity response of left circularly polarized light to be different than that of right circularly polarized light, in such a way that the QD electron's spin can be inferred from the response to a linearly polarized probe reflected or transmitted from the cavity. We show that with careful device design it is possible to essentially eliminate spin-flip Raman transitions. Thus a QND measurement of the QD electron spin can be performed within a few tens of nanoseconds with fidelity ˜99.95%. This improves upon current optical QD spin readout techniques across multiple metrics, including speed and scalability.
Origin of the decoherence of the extended electron spin state in Ti-doped β-Ga2O3.
Mentink-Vigier, F; Binet, L; Gourier, D; Vezin, H
2013-08-07
The mechanism of decoherence of the electron spin of Ti(3+) in β-Ga2O3 was investigated by pulsed electron paramagnetic resonance. At 4.2 K, both instantaneous and spectral diffusion contribute to the decoherence. For electron spin concentrations ≈10(25) m(-3) in the studied samples, calculations indicate that electron-electron couplings and electron couplings with (69)Ga and (71)Ga nuclei yield similar contributions to the spectral diffusion, but that electron-nuclei interactions could become the dominant cause of spectral diffusion for only slightly lower spin concentrations. Above 20 K, an additional contribution to the decoherence as well as to the spin-lattice relaxation arises from a two-optical-phonon Raman process, which becomes the leading decoherence mechanism for T > 39 K. Rabi oscillations with a damping time of about 79 ns at 4.2 K could also be observed. The damping of the Rabi oscillations, independent of the oscillation frequency, is suspected to arise from electron-nuclei interactions.
NASA Astrophysics Data System (ADS)
Puttisong, Y.; Wang, X. J.; Buyanova, I. A.; Chen, W. M.
2013-03-01
The effect of hyperfine interaction (HFI) on the recently discovered room-temperature defect-enabled spin-filtering effect in GaNAs alloys is investigated both experimentally and theoretically based on a spin Hamiltonian analysis. We provide direct experimental evidence that the HFI between the electron and nuclear spin of the central Ga atom of the spin-filtering defect, namely, the Gai interstitials, causes strong mixing of the electron spin states of the defect, thereby degrading the efficiency of the spin-filtering effect. We also show that the HFI-induced spin mixing can be suppressed by an application of a longitudinal magnetic field such that the electronic Zeeman interaction overcomes the HFI, leading to well-defined electron spin states beneficial to the spin-filtering effect. The results provide a guideline for further optimization of the defect-engineered spin-filtering effect.
Electron acceleration in quantum plasma with spin-up and spin-down exchange interaction
NASA Astrophysics Data System (ADS)
Kumar, Punit; Singh, Shiv; Ahmad, Nafees
2018-05-01
Electron acceleration by ponderomotive force of an intense circularly polarized laser pulse in high density magnetized quantum plasma with two different spin states embedded in external static magnetic field. The basic mechanism involves electron acceleration by axial gradient in the ponderomotive potential of laser. The effects of Bohm potential, fermi pressure and intrinsic spin of electron have been taken into account. A simple solution for ponderomotive electron acceleration has been established and effect of spin polarization is analyzed.
NASA Astrophysics Data System (ADS)
Liu, Weizhe Edward; Chesi, Stefano; Webb, David; Zülicke, U.; Winkler, R.; Joynt, Robert; Culcer, Dimitrie
2017-12-01
Spin-orbit coupling is a single-particle phenomenon known to generate topological order, and electron-electron interactions cause ordered many-body phases to exist. The rich interplay of these two mechanisms is present in a broad range of materials and has been the subject of considerable ongoing research and controversy. Here we demonstrate that interacting two-dimensional electron systems with strong spin-orbit coupling exhibit a variety of time reversal symmetry breaking phases with unconventional spin alignment. We first prove that a Stoner-type criterion can be formulated for the spin polarization response to an electric field, which predicts that the spin polarization susceptibility diverges at a certain value of the electron-electron interaction strength. The divergence indicates the possibility of unconventional ferromagnetic phases even in the absence of any applied electric or magnetic field. This leads us, in the second part of this work, to study interacting Rashba spin-orbit coupled semiconductors in equilibrium in the Hartree-Fock approximation as a generic minimal model. Using classical Monte Carlo simulations, we construct the complete phase diagram of the system as a function of density and spin-orbit coupling strength. It includes both an out-of-plane spin-polarized phase and in-plane spin-polarized phases with shifted Fermi surfaces and rich spin textures, reminiscent of the Pomeranchuk instability, as well as two different Fermi-liquid phases having one and two Fermi surfaces, respectively, which are separated by a Lifshitz transition. We discuss possibilities for experimental observation and useful application of these novel phases, especially in the context of electric-field-controlled macroscopic spin polarizations.
Transferable Pseudo-Classical Electrons for Aufbau of Atomic Ions
Ekesan, Solen; Kale, Seyit; Herzfeld, Judith
2014-01-01
Generalizing the LEWIS reactive force field from electron pairs to single electrons, we present LEWIS• in which explicit valence electrons interact with each other and with nuclear cores via pairwise interactions. The valence electrons are independently mobile particles, following classical equations of motion according to potentials modified from Coulombic as required to capture quantum characteristics. As proof of principle, the aufbau of atomic ions is described for diverse main group elements from the first three rows of the periodic table, using a single potential for interactions between electrons of like spin and another for electrons of unlike spin. The electrons of each spin are found to distribute themselves in a fashion akin to the major lobes of the hybrid atomic orbitals, suggesting a pointillist description of the electron density. The broader validity of the LEWIS• force field is illustrated by predicting the vibrational frequencies of diatomic and triatomic hydrogen species. PMID:24752384
Transferable pseudoclassical electrons for aufbau of atomic ions.
Ekesan, Solen; Kale, Seyit; Herzfeld, Judith
2014-06-05
Generalizing the LEWIS reactive force field from electron pairs to single electrons, we present LEWIS• in which explicit valence electrons interact with each other and with nuclear cores via pairwise interactions. The valence electrons are independently mobile particles, following classical equations of motion according to potentials modified from Coulombic as required to capture quantum characteristics. As proof of principle, the aufbau of atomic ions is described for diverse main group elements from the first three rows of the periodic table, using a single potential for interactions between electrons of like spin and another for electrons of unlike spin. The electrons of each spin are found to distribute themselves in a fashion akin to the major lobes of the hybrid atomic orbitals, suggesting a pointillist description of the electron density. The broader validity of the LEWIS• force field is illustrated by predicting the vibrational frequencies of diatomic and triatomic hydrogen species. Copyright © 2014 Wiley Periodicals, Inc.
Relativistic spin-orbit interactions of photons and electrons
NASA Astrophysics Data System (ADS)
Smirnova, D. A.; Travin, V. M.; Bliokh, K. Y.; Nori, F.
2018-04-01
Laboratory optics, typically dealing with monochromatic light beams in a single reference frame, exhibits numerous spin-orbit interaction phenomena due to the coupling between the spin and orbital degrees of freedom of light. Similar phenomena appear for electrons and other spinning particles. Here we examine transformations of paraxial photon and relativistic-electron states carrying the spin and orbital angular momenta (AM) under the Lorentz boosts between different reference frames. We show that transverse boosts inevitably produce a rather nontrivial conversion from spin to orbital AM. The converted part is then separated between the intrinsic (vortex) and extrinsic (transverse shift or Hall effect) contributions. Although the spin, intrinsic-orbital, and extrinsic-orbital parts all point in different directions, such complex behavior is necessary for the proper Lorentz transformation of the total AM of the particle. Relativistic spin-orbit interactions can be important in scattering processes involving photons, electrons, and other relativistic spinning particles, as well as when studying light emitted by fast-moving bodies.
Electron-nuclear coherent spin oscillations probed by spin-dependent recombination
NASA Astrophysics Data System (ADS)
Azaizia, S.; Carrère, H.; Sandoval-Santana, J. C.; Ibarra-Sierra, V. G.; Kalevich, V. K.; Ivchenko, E. L.; Bakaleinikov, L. A.; Marie, X.; Amand, T.; Kunold, A.; Balocchi, A.
2018-04-01
We demonstrate the triggering and detection of coherent electron-nuclear spin oscillations related to the hyperfine interaction in Ga deep paramagnetic centers in GaAsN by band-to-band photoluminescence without an external magnetic field. In contrast to other point defects such as Cr4 + in SiC, Ce3 + in yttrium aluminum garnet crystals, nitrogen-vacancy centers in diamond, and P atoms in silicon, the bound-electron spin in Ga centers is not directly coupled to the electromagnetic field via the spin-orbit interaction. However, this apparent drawback can be turned into an advantage by exploiting the spin-selective capture of conduction band electrons to the Ga centers. On the basis of a pump-probe photoluminescence experiment we measure directly in the temporal domain the hyperfine constant of an electron coupled to a gallium defect in GaAsN by tracing the dynamical behavior of the conduction electron spin-dependent recombination to the defect site. The hyperfine constants and the relative abundance of the nuclei isotopes involved can be determined without the need of an electron spin resonance technique and in the absence of any magnetic field. Information on the nuclear and electron spin relaxation damping parameters can also be estimated from the oscillation amplitude decay and the long-time-delay behavior.
Prediction of Spin-Polarization Effects in Quantum Wire Transport
NASA Astrophysics Data System (ADS)
Fasol, Gerhard; Sakaki, Hiroyuki
1994-01-01
We predict a new effect for transport in quantum wires: spontaneous spin polarization. Most work on transport in mesoscopic devices has assumed a model of non interacting, spin-free electrons. We introduce spin, electron pair scattering and microscopic crystal properties into the design of mesoscopic devices. The new spin polarization effect results from the fact that in a single mode quantum wire, electron and hole bands still have two spin subbands. In general, these two spin subbands are expected to be split even in zero magnetic field. At sufficiently low temperatures the electron pair scattering rates for one spin subband ( e.g., the spin-down) can be much larger than for the other spin subband. This effect can be used for an active spin polarizer device: hot electrons in one subband ( e.g., `spin up') pass with weak pair scattering, while electrons in the opposite subband ( e.g., `spin down'), have high probability of scattering into the `spin-up' subband, resulting in spin polarization of a hot electron beam.
Spin and orbital exchange interactions from Dynamical Mean Field Theory
NASA Astrophysics Data System (ADS)
Secchi, A.; Lichtenstein, A. I.; Katsnelson, M. I.
2016-02-01
We derive a set of equations expressing the parameters of the magnetic interactions characterizing a strongly correlated electronic system in terms of single-electron Green's functions and self-energies. This allows to establish a mapping between the initial electronic system and a spin model including up to quadratic interactions between the effective spins, with a general interaction (exchange) tensor that accounts for anisotropic exchange, Dzyaloshinskii-Moriya interaction and other symmetric terms such as dipole-dipole interaction. We present the formulas in a format that can be used for computations via Dynamical Mean Field Theory algorithms.
Extraordinary SEAWs under influence of the spin-spin interaction and the quantum Bohm potential
NASA Astrophysics Data System (ADS)
Andreev, Pavel A.
2018-06-01
The separate spin evolution (SSE) of electrons causes the existence of the spin-electron acoustic wave. Extraordinary spin-electron acoustic waves (SEAWs) propagating perpendicular to the external magnetic field have a large contribution of the transverse electric field. Its spectrum has been studied in the quasi-classical limit at the consideration of the separate spin evolution. The spin-spin interaction and the quantum Bohm potential give contribution in the spectrum extraordinary SEAWs. This contribution is studied in this paper. Moreover, it is demonstrated that the spin-spin interaction leads to the existence of the extraordinary SEAWs if the SSE is neglected. It has been found that the SSE causes the instability of the extraordinary SEAW at the large wavelengths, but the quantum Bohm potential leads to the full stabilization of the spectrum.
NASA Astrophysics Data System (ADS)
Gräfenstein, Jürgen; Cremer, Dieter
2004-12-01
For the first time, the nuclear magnetic resonance (NMR) spin-spin coupling mechanism is decomposed into one-electron and electron-electron interaction contributions to demonstrate that spin-information transport between different orbitals is not exclusively an electron-exchange phenomenon. This is done using coupled perturbed density-functional theory in conjunction with the recently developed J-OC-PSP [=J-OC-OC-PSP: Decomposition of J into orbital contributions using orbital currents and partial spin polarization)] method. One-orbital contributions comprise Ramsey response and self-exchange effects and the two-orbital contributions describe first-order delocalization and steric exchange. The two-orbital effects can be characterized as external orbital, echo, and spin transport contributions. A relationship of these electronic effects to zeroth-order orbital theory is demonstrated and their sign and magnitude predicted using simple models and graphical representations of first order orbitals. In the case of methane the two NMR spin-spin coupling constants result from totally different Fermi contact coupling mechanisms. 1J(C,H) is the result of the Ramsey response and the self-exchange of the bond orbital diminished by external first-order delocalization external one-orbital effects whereas 2J(H,H) spin-spin coupling is almost exclusively mitigated by a two-orbital steric exchange effect. From this analysis, a series of prediction can be made how geometrical deformations, electron lone pairs, and substituent effects lead to a change in the values of 1J(C,H) and 2J(H,H), respectively, for hydrocarbons.
NASA Astrophysics Data System (ADS)
Wdowik, U. D.; Piekarz, P.; Legut, D.; Jagło, G.
2016-08-01
Uranium monocarbide, a potential fuel material for the generation IV reactors, is investigated within density functional theory. Its electronic, magnetic, elastic, and phonon properties are analyzed and discussed in terms of spin-orbit interaction and localized versus itinerant behavior of the 5 f electrons. The localization of the 5 f states is tuned by varying the local Coulomb repulsion interaction parameter. We demonstrate that the theoretical electronic structure, elastic constants, phonon dispersions, and their densities of states can reproduce accurately the results of x-ray photoemission and bremsstrahlung isochromat measurements as well as inelastic neutron scattering experiments only when the 5 f states experience the spin-orbit interaction and simultaneously remain partially localized. The partial localization of the 5 f electrons could be represented by a moderate value of the on-site Coulomb interaction parameter of about 2 eV. The results of the present studies indicate that both strong electron correlations and spin-orbit effects are crucial for realistic theoretical description of the ground-state properties of uranium carbide.
Generation of a spin-polarized electron beam by multipole magnetic fields.
Karimi, Ebrahim; Grillo, Vincenzo; Boyd, Robert W; Santamato, Enrico
2014-03-01
The propagation of an electron beam in the presence of transverse magnetic fields possessing integer topological charges is presented. The spin-magnetic interaction introduces a nonuniform spin precession of the electrons that gains a space-variant geometrical phase in the transverse plane proportional to the field's topological charge, whose handedness depends on the input electron's spin state. A combination of our proposed device with an electron orbital angular momentum sorter can be utilized as a spin-filter of electron beams in a mid-energy range. We examine these two different configurations of a partial spin-filter generator numerically. The results of this analysis could prove useful in the design of an improved electron microscope. Copyright © 2013 Elsevier B.V. All rights reserved.
Electron spin relaxation in two polymorphic structures of GaN
NASA Astrophysics Data System (ADS)
Kang, Nam Lyong
2015-03-01
The relaxation process of electron spin in systems of electrons interacting with piezoelectric deformation phonons that are mediated through spin-orbit interactions was interpreted from a microscopic point of view using the formula for the electron spin relaxation times derived by a projection-reduction method. The electron spin relaxation times in two polymorphic structures of GaN were calculated. The piezoelectric material constant for the wurtzite structure obtained by a comparison with a previously reported experimental result was {{P}pe}=1.5 × {{10}29} eV {{m}-1}. The temperature and magnetic field dependence of the relaxation times for both wurtzite and zinc-blende structures were similar, but the relaxation times in zinc-blende GaN were smaller and decreased more rapidly with increasing temperature and magnetic field than that in wurtzite GaN. This study also showed that the electron spin relaxation for wurtzite GaN at low density could be explained by the Elliot-Yafet process but not for zinc-blende GaN in the metallic regime.
Magnetic edge states in Aharonov-Bohm graphene quantum rings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farghadan, R., E-mail: rfarghadan@kashanu.ac.ir; Heidari Semiromi, E.; Saffarzadeh, A.
2013-12-07
The effect of electron-electron interaction on the electronic structure of Aharonov-Bohm (AB) graphene quantum rings (GQRs) is explored theoretically using the single-band tight-binding Hamiltonian and the mean-field Hubbard model. The electronic states and magnetic properties of hexagonal, triangular, and circular GQRs with different sizes and zigzag edge terminations are studied. The results show that, although the AB oscillations in the all types of nanoring are affected by the interaction, the spin splitting in the AB oscillations strongly depends on the geometry and the size of graphene nanorings. We found that the total spin of hexagonal and circular rings is zeromore » and therefore, no spin splitting can be observed in the AB oscillations. However, the non-zero magnetization of the triangular rings breaks the degeneracy between spin-up and spin-down electrons, which produces spin-polarized AB oscillations.« less
Coulomb versus spin-orbit interaction in few-electron carbon-nanotube quantum dots
NASA Astrophysics Data System (ADS)
Secchi, Andrea; Rontani, Massimo
2009-07-01
Few-electron states in carbon-nanotube quantum dots are studied by means of the configuration-interaction method. The peculiar noninteracting feature of the tunneling spectrum for two electrons, recently measured by F. Kuemmeth, S. Ilani, D. C. Ralph, and P. L. McEuen [Nature (London) 452, 448 (2008)], is explained by the splitting of a low-lying isospin multiplet due to spin-orbit interaction. Nevertheless, the strongly interacting ground state forms a “Wigner molecule” made of electrons localized in space. Signatures of the electron molecule may be seen in tunneling spectra by varying the tunable dot confinement potential.
King, R Bruce
2017-12-23
The vanadium-vanadium interactions in the polygonal aggregates of d¹ vanadium(IV) atoms, with a total of 4 k + 2 vanadium electrons ( k an integer) imbedded in an electronically inactive borate matrix in certain vanadoborate structures are analogous to the ring carbon-carbon interactions in diamagnetic planar cyclic hydrocarbons. They thus represent a high-spin analogue of aromaticity. Thus, the vanadoborate anion [V₆B 20 O 50 H₈] 8- with six V(IV) electrons (i.e., 4 k + 2 for k = 1) contains a macrohexagon of d¹ V(IV) atoms with four unpaired electrons. This high-spin system is related to the low-spin aromaticity in the diamagnetic benzene having six π electrons. Similarly, the vanadoborate anion [V 10 B 28 O 74 H₈] 16- with ten V(IV) electrons (i.e., 4 k + 2 for k = 2) contains a macrodecagon of d¹ V(IV) atoms with eight unpaired electrons. Again, this high-spin system is related to the aromaticity in the diamagnetic 1,6-methanol[10]annulene, having ten π electrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey-Collard, Patrick; Jacobson, N. Tobias; Rudolph, Martin
Individual donors in silicon chips are used as quantum bits with extremely low error rates. However, physical realizations have been limited to one donor because their atomic size causes fabrication challenges. Quantum dot qubits, in contrast, are highly adjustable using electrical gate voltages. This adjustability could be leveraged to deterministically couple donors to quantum dots in arrays of qubits. In this work, we demonstrate the coherent interaction of a 31P donor electron with the electron of a metal-oxide-semiconductor quantum dot. We form a logical qubit encoded in the spin singlet and triplet states of the two-electron system. We show thatmore » the donor nuclear spin drives coherent rotations between the electronic qubit states through the contact hyperfine interaction. This provides every key element for compact two-electron spin qubits requiring only a single dot and no additional magnetic field gradients, as well as a means to interact with the nuclear spin qubit.« less
Magnetic moments induce strong phonon renormalization in FeSi.
Krannich, S; Sidis, Y; Lamago, D; Heid, R; Mignot, J-M; Löhneysen, H v; Ivanov, A; Steffens, P; Keller, T; Wang, L; Goering, E; Weber, F
2015-11-27
The interactions of electronic, spin and lattice degrees of freedom in solids result in complex phase diagrams, new emergent phenomena and technical applications. While electron-phonon coupling is well understood, and interactions between spin and electronic excitations are intensely investigated, only little is known about the dynamic interactions between spin and lattice excitations. Noncentrosymmetric FeSi is known to undergo with increasing temperature a crossover from insulating to metallic behaviour with concomitant magnetic fluctuations, and exhibits strongly temperature-dependent phonon energies. Here we show by detailed inelastic neutron-scattering measurements and ab initio calculations that the phonon renormalization in FeSi is linked to its unconventional magnetic properties. Electronic states mediating conventional electron-phonon coupling are only activated in the presence of strong magnetic fluctuations. Furthermore, phonons entailing strongly varying Fe-Fe distances are damped via dynamic coupling to the temperature-induced magnetic moments, highlighting FeSi as a material with direct spin-phonon coupling and multiple interaction paths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gavrilenko, V. I.; Krishtopenko, S. S., E-mail: ds_a-teens@mail.ru; Goiran, M.
2011-01-15
The effect of electron-electron interaction on the spectrum of two-dimensional electron states in InAs/AlSb (001) heterostructures with a GaSb cap layer with one filled size-quantization subband. The energy spectrum of two-dimensional electrons is calculated in the Hartree and Hartree-Fock approximations. It is shown that the exchange interaction decreasing the electron energy in subbands increases the energy gap between subbands and the spin-orbit splitting of the spectrum in the entire region of electron concentrations, at which only the lower size-quantization band is filled. The nonlinear dependence of the Rashba splitting constant at the Fermi wave vector on the concentration of two-dimensionalmore » electrons is demonstrated.« less
Anomalous electron spin decoherence in an optically pumped quantum dot
NASA Astrophysics Data System (ADS)
Shi, Xiaofeng; Sham, L. J.
2013-03-01
We study the nuclear-spin-fluctuation induced spin decoherence of an electron (SDE) in an optically pumped quantum dot. The SDE is computed in terms of the steady distribution of the nuclear field (SDNF) formed through the hyperfine interaction (HI) with two different nuclear species in the dot. A feedback loop between the optically driven electron spin and the nuclear spin ensemble determines the SDNF [W. Yang and L. J. Sham, Phy. Rev. B 85, 235319(2012)]. Different from that work and others reviewed therein, where a bilinear HI, SαIβ , between the electron (or hole) spin S and the nuclear spin I is used, we use an effective nonlinear interaction of the form SαIβIγ derived from the Fermi-contact HI. Our feedback loop forms a multi-peak SDNF in which the SDE shows remarkable collapses and revivals in nanosecond time scale. Such an anomalous SDE results from a quantum interference effect of the electron Larmor precession in a multi-peak effective magnetic field. In the presence of a bilinear HI that suppresses the nuclear spin fluctuation, the non-Markovian SDE persists whenever there are finite Fermi contact interactions between two or more kinds of nuclei and the electron in the quantum dot. This work is supported by NSF(PHY 1104446) and the US Army Research Office MURI award W911NF0910406.
NASA Astrophysics Data System (ADS)
Dehghan, E.; Sanavi Khoshnoud, D.; Naeimi, A. S.
2018-01-01
The spin-resolved electron transport through a triangular network of quantum nanorings is studied in the presence of Rashba spin-orbit interaction (RSOI) and a magnetic flux using quantum waveguide theory. This study illustrates that, by tuning Rashba constant, magnetic flux and incoming electron energy, the triangular network of quantum rings can act as a perfect logical spin-filtering with high efficiency. By changing in the energy of incoming electron, at a proper value of the Rashba constant and magnetic flux, a reverse in the direction of spin can take place in the triangular network of quantum nanorings. Furthermore, the triangular network of quantum nanorings can be designed as a device and shows several simultaneous spintronic properties such as spin-splitter and spin-inverter. This spin-splitting is dependent on the energy of the incoming electron. Additionally, different polarizations can be achieved in the two outgoing leads from an originally incoming spin state that simulates a Stern-Gerlach apparatus.
van Schooten, Kipp J.; Baird, Douglas L.; Limes, Mark E.; Lupton, John M.; Boehme, Christoph
2015-01-01
Weakly coupled electron spin pairs that experience weak spin–orbit interaction can control electronic transitions in molecular and solid-state systems. Known to determine radical pair reactions, they have been invoked to explain phenomena ranging from avian magnetoreception to spin-dependent charge-carrier recombination and transport. Spin pairs exhibit persistent spin coherence, allowing minute magnetic fields to perturb spin precession and thus recombination rates and photoreaction yields, giving rise to a range of magneto-optoelectronic effects in devices. Little is known, however, about interparticle magnetic interactions within such pairs. Here we present pulsed electrically detected electron spin resonance experiments on poly(styrene-sulfonate)-doped poly(3,4-ethylenedioxythiophene) (PEDOT:PSS) devices, which show how interparticle spin–spin interactions (magnetic-dipolar and spin-exchange) between charge-carrier spin pairs can be probed through the detuning of spin-Rabi oscillations. The deviation from uncoupled precession frequencies quantifies both the exchange (<30 neV) and dipolar (23.5±1.5 neV) interaction energies responsible for the pair's zero-field splitting, implying quantum mechanical entanglement of charge-carrier spins over distances of 2.1±0.1 nm. PMID:25868686
van Schooten, Kipp J.; Baird, Douglas L.; Limes, Mark E.; ...
2015-04-14
Here, weakly coupled electron spin pairs that experience weak spin–orbit interaction can control electronic transitions in molecular and solid-state systems. Known to determine radical pair reactions, they have been invoked to explain phenomena ranging from avian magnetoreception to spin-dependent charge-carrier recombination and transport. Spin pairs exhibit persistent spin coherence, allowing minute magnetic fields to perturb spin precession and thus recombination rates and photoreaction yields, giving rise to a range of magneto-optoelectronic effects in devices. Little is known, however, about interparticle magnetic interactions within such pairs. Here we present pulsed electrically detected electron spin resonance experiments on poly(styrene-sulfonate)-doped poly(3,4-ethylenedioxythiophene) (PEDOT:PSS) devices,more » which show how interparticle spin–spin interactions (magnetic-dipolar and spin-exchange) between charge-carrier spin pairs can be probed through the detuning of spin-Rabi oscillations. The deviation from uncoupled precession frequencies quantifies both the exchange (<30 neV) and dipolar (23.5±1.5 neV) interaction energies responsible for the pair’s zero-field splitting, implying quantum mechanical entanglement of charge-carrier spins over distances of 2.1±0.1 nm.« less
Dynamic spin injection into a quantum well coupled to a spin-split bound state
NASA Astrophysics Data System (ADS)
Maslova, N. S.; Rozhansky, I. V.; Mantsevich, V. N.; Arseyev, P. I.; Averkiev, N. S.; Lähderanta, E.
2018-05-01
We present a theoretical analysis of dynamic spin injection due to spin-dependent tunneling between a quantum well (QW) and a bound state split in spin projection due to an exchange interaction or external magnetic field. We focus on the impact of Coulomb correlations at the bound state on spin polarization and sheet density kinetics of the charge carriers in the QW. The theoretical approach is based on kinetic equations for the electron occupation numbers taking into account high order correlation functions for the bound state electrons. It is shown that the on-site Coulomb repulsion leads to an enhanced dynamic spin polarization of the electrons in the QW and a delay in the carriers tunneling into the bound state. The interplay of these two effects leads to nontrivial dependence of the spin polarization degree, which can be probed experimentally using time-resolved photoluminescence experiments. It is demonstrated that the influence of the Coulomb interactions can be controlled by adjusting the relaxation rates. These findings open a new way of studying the Hubbard-like electron interactions experimentally.
Control of electron spin decoherence in nuclear spin baths
NASA Astrophysics Data System (ADS)
Liu, Ren-Bao
2011-03-01
Nuclear spin baths are a main mechanism of decoherence of spin qubits in solid-state systems, such as quantum dots and nitrogen-vacancy (NV) centers of diamond. The decoherence results from entanglement between the electron and nuclear spins, established by quantum evolution of the bath conditioned on the electron spin state. When the electron spin is flipped, the conditional bath evolution is manipulated. Such manipulation of bath through control of the electron spin not only leads to preservation of the center spin coherence but also demonstrates quantum nature of the bath. In an NV center system, the electron spin effectively interacts with hundreds of 13 C nuclear spins. Under repeated flip control (dynamical decoupling), the electron spin coherence can be preserved for a long time (> 1 ms) . Thereforesomecharacteristicoscillations , duetocouplingtoabonded 13 C nuclear spin pair (a dimer), are imprinted on the electron spin coherence profile, which are very sensitive to the position and orientation of the dimer. With such finger-print oscillations, a dimer can be uniquely identified. Thus, we propose magnetometry with single-nucleus sensitivity and atomic resolution, using NV center spin coherence to identify single molecules. Through the center spin coherence, we could also explore the many-body physics in an interacting spin bath. The information of elementary excitations and many-body correlations can be extracted from the center spin coherence under many-pulse dynamical decoupling control. Another application of the preserved spin coherence is identifying quantumness of a spin bath through the back-action of the electron spin to the bath. We show that the multiple transition of an NV center in a nuclear spin bath can have longer coherence time than the single transition does, when the classical noises due to inhomogeneous broadening is removed by spin echo. This counter-intuitive result unambiguously demonstrates the quantumness of the nuclear spin bath. This work was supported by Hong Kong RGC/GRF CUHK402207, CUHK402209, and CUHK402410. The author acknowledges collaboration with Nan Zhao, Jian-Liang Hu, Sai Wah Ho, Jones T. K. Wan, and Jiangfeng Du.
Maeda, Kiminori; Lodge, Matthew T.J.; Harmer, Jeffrey; Freed, Jack H.; Edwards, Peter P.
2012-01-01
Electron transfer or quantum tunneling dynamics for excess or solvated electrons in dilute lithium-ammonia solutions have been studied by pulse electron paramagnetic resonance (EPR) spectroscopy at both X- (9.7 GHz) and W-band (94 GHz) frequencies. The electron spin-lattice (T1) and spin-spin (T2) relaxation data indicate an extremely fast transfer or quantum tunneling rate of the solvated electron in these solutions which serves to modulate the hyperfine (Fermi-contact) interaction with nitrogen nuclei in the solvation shells of ammonia molecules surrounding the localized, solvated electron. The donor and acceptor states of the solvated electron in these solutions are the initial and final electron solvation sites found before, and after, the transfer or tunneling process. To interpret and model our electron spin relaxation data from the two observation EPR frequencies requires a consideration of a multi-exponential correlation function. The electron transfer or tunneling process that we monitor through the correlation time of the nitrogen Fermi-contact interaction has a time scale of (1–10)×10−12 s over a temperature range 230–290K in our most dilute solution of lithium in ammonia. Two types of electron-solvent interaction mechanisms are proposed to account for our experimental findings. The dominant electron spin relaxation mechanism results from an electron tunneling process characterized by a variable donor-acceptor distance or range (consistent with such a rapidly fluctuating liquid structure) in which the solvent shell that ultimately accepts the transferring electron is formed from random, thermal fluctuations of the liquid structure in, and around, a natural hole or Bjerrum-like defect vacancy in the liquid. Following transfer and capture of the tunneling electron, further solvent-cage relaxation with a timescale of ca. 10−13 s results in a minor contribution to the electron spin relaxation times. This investigation illustrates the great potential of multi-frequency EPR measurements to interrogate the microscopic nature and dynamics of ultra fast electron transfer or quantum-tunneling processes in liquids. Our results also impact on the universal issue of the role of a host solvent (or host matrix, e.g. a semiconductor) in mediating long-range electron transfer processes and we discuss the implications of our results with a range of other materials and systems exhibiting the phenomenon of electron transfer. PMID:22568866
CONDUCTION ELECTRON-MAGNETIC ION INTERACTION IN RARE EARTHS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, G.S.; Legvold, S.
1958-11-01
The proposal is maade that there is an additional effective electron- electron interaction in the rare earths which results from the conduction electron-magnetic ion exchange. The strength of the net electron-electron interaction should tnen be expected to be a function of spin as well as solute concentrations. (W.D.M.)
NASA Astrophysics Data System (ADS)
Turkin, Yaroslav V.; Kuptsov, Pavel V.
2018-04-01
A quantum model of spin dynamics of spin-orbit coupled two-dimensional electron gas in the presence of strong high- frequency electromagnetic field is suggested. Interaction of electrons with optical phonons is taken into account in the second order of perturbation theory.
Spin-orbit qubit in a semiconductor nanowire.
Nadj-Perge, S; Frolov, S M; Bakkers, E P A M; Kouwenhoven, L P
2010-12-23
Motion of electrons can influence their spins through a fundamental effect called spin-orbit interaction. This interaction provides a way to control spins electrically and thus lies at the foundation of spintronics. Even at the level of single electrons, the spin-orbit interaction has proven promising for coherent spin rotations. Here we implement a spin-orbit quantum bit (qubit) in an indium arsenide nanowire, where the spin-orbit interaction is so strong that spin and motion can no longer be separated. In this regime, we realize fast qubit rotations and universal single-qubit control using only electric fields; the qubits are hosted in single-electron quantum dots that are individually addressable. We enhance coherence by dynamically decoupling the qubits from the environment. Nanowires offer various advantages for quantum computing: they can serve as one-dimensional templates for scalable qubit registers, and it is possible to vary the material even during wire growth. Such flexibility can be used to design wires with suppressed decoherence and to push semiconductor qubit fidelities towards error correction levels. Furthermore, electrical dots can be integrated with optical dots in p-n junction nanowires. The coherence times achieved here are sufficient for the conversion of an electronic qubit into a photon, which can serve as a flying qubit for long-distance quantum communication.
Spin resonance and spin fluctuations in a quantum wire
NASA Astrophysics Data System (ADS)
Pokrovsky, V. L.
2017-02-01
This is a review of theoretical works on spin resonance in a quantum wire associated with the spin-orbit interaction. We demonstrate that the spin-orbit induced internal "magnetic field" leads to a narrow spin-flip resonance at low temperatures in the absence of an applied magnetic field. An applied dc magnetic field perpendicular to and small compared with the spin-orbit field enhances the resonance absorption by several orders of magnitude. The component of applied field parallel to the spin-orbit field separates the resonance frequencies of right and left movers and enables a linearly polarized ac electric field to produce a dynamic magnetization as well as electric and spin currents. We start with a simple model of noninteracting electrons and then consider the interaction that is not weak in 1d electron system. We show that electron spin resonance in the spin-orbit field persists in the Luttinger liquid. The interaction produces an additional singularity (cusp) in the spin-flip channel associated with the plasma oscillation. As it was shown earlier by Starykh and his coworkers, the interacting 1d electron system in the external field with sufficiently large parallel component becomes unstable with respect to the appearance of a spin-density wave. This instability suppresses the spin resonance. The observation of the electron spin resonance in a thin wires requires low temperature and high intensity of electromagnetic field in the terahertz diapason. The experiment satisfying these two requirements is possible but rather difficult. An alternative approach that does not require strong ac field is to study two-time correlations of the total spin of the wire with an optical method developed by Crooker and coworkers. We developed theory of such correlations. We prove that the correlation of the total spin component parallel to the internal magnetic field is dominant in systems with the developed spin-density waves but it vanishes in Luttinger liquid. Thus, the measurement of spin correlations is a diagnostic tool to distinguish between the two states of electronic liquid in the quantum wire.
Andreev, Pavel A
2015-03-01
The quantum hydrodynamic (QHD) model of charged spin-1/2 particles contains physical quantities defined for all particles of a species including particles with spin-up and with spin-down. Different populations of states with different spin directions are included in the spin density (the magnetization). In this paper I derive a QHD model, which separately describes spin-up electrons and spin-down electrons. Hence electrons with different projections of spins on the preferable direction are considered as two different species of particles. It is shown that the numbers of particles with different spin directions do not conserve. Hence the continuity equations contain sources of particles. These sources are caused by the interactions of the spins with the magnetic field. Terms of similar nature arise in the Euler equation. The z projection of the spin density is no longer an independent variable. It is proportional to the difference between the concentrations of the electrons with spin-up and the electrons with spin-down. The propagation of waves in the magnetized plasmas of degenerate electrons is considered. Two regimes for the ion dynamics, the motionless ions and the motion of the degenerate ions as the single species with no account of the spin dynamics, are considered. It is shown that this form of the QHD equations gives all solutions obtained from the traditional form of QHD equations with no distinction of spin-up and spin-down states. But it also reveals a soundlike solution called the spin-electron acoustic wave. Coincidence of most solutions is expected since this derivation was started with the same basic equation: the Pauli equation. Solutions arise due to the different Fermi pressures for the spin-up electrons and the spin-down electrons in the magnetic field. The results are applied to degenerate electron gas of paramagnetic and ferromagnetic metals in the external magnetic field. The dispersion of the spin-electron acoustic waves in the partially spin-polarized degenerate neutron matter are also considered.
NASA Astrophysics Data System (ADS)
Mentink-Vigier, Frédéric; Binet, Laurent; Vignoles, Gerard; Gourier, Didier; Vezin, Hervé
2010-11-01
The hyperfine interactions of the unpaired electron with eight surrounding G69a and G71a nuclei in Ti-doped β-Ga2O3 were analyzed by electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopies. They are dominated by strong isotropic hyperfine couplings due to a direct Fermi contact interaction with Ga nuclei in octahedral sites of rutile-type chains oriented along b axis, revealing a large anisotropic spatial extension of the electron wave function. Titanium in β-Ga2O3 is thus best described as a diffuse (Ti4+-e-) pair rather than as a localized Ti3+ . Both electron and G69a nuclear spin Rabi oscillations could be observed by pulsed EPR and pulsed ENDOR, respectively. The electron spin decoherence time is about 1μs (at 4 K) and an upper bound of 520μs (at 8 K) is estimated for the nuclear decoherence time. Thus, β-Ga2O3:Ti appears to be a potential spin-bus system for quantum information processing with a large nuclear spin quantum register.
Suppression of spin and optical gaps in phosphorene quantum dots
NASA Astrophysics Data System (ADS)
Zhang, Yingjie; Sheng, Weidong
2018-05-01
Electronic structure and optical properties of triangular phosphorene quantum dots have been investigated theoretically. Based on systematic configuration interaction calculations, the ground and excited states of the interacting many-electron system together with its optical absorption spectrum are obtained. For the nanodot with 60 phosphorus atoms in various dielectric environments, it is found that the spin gap of the correlated system surprisingly overlaps its optical gap over a large range of the effective dielectric constant. The overlapping of the spin and optical gaps can be attributed to the fact that the extra correlation energy in the spin singlet almost compensates the exchange energy in the spin triplet in the presence of strong long-range electron-electron interactions. Moreover, both the spin and optical gaps are shown to be greatly suppressed as the screening effect becomes strong. When the dielectric constant decreases below 2.65, it is seen that the spin gap becomes negative and the quantum dot undergoes a phase transition from nonmagnetic to ferromagnetic. Our results are compared with the previous experimental and theoretical works.
NASA Astrophysics Data System (ADS)
Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek
2017-12-01
The Monte Carlo simulation method is applied to study the relaxation of excited electrons in monolayer graphene. The presence of spin polarized background electrons population, with density corresponding to highly degenerate conditions is assumed. Formulas of electron-electron scattering rates, which properly account for electrons presence in two energetically degenerate, inequivalent valleys in this material are presented. The electron relaxation process can be divided into two phases: thermalization and cooling, which can be clearly distinguished when examining the standard deviation of electron energy distribution. The influence of the exchange effect in interactions between electrons with parallel spins is shown to be important only in transient conditions, especially during the thermalization phase.
Nature of magnetization and lateral spin-orbit interaction in gated semiconductor nanowires.
Karlsson, H; Yakimenko, I I; Berggren, K-F
2018-05-31
Semiconductor nanowires are interesting candidates for realization of spintronics devices. In this paper we study electronic states and effects of lateral spin-orbit coupling (LSOC) in a one-dimensional asymmetrically biased nanowire using the Hartree-Fock method with Dirac interaction. We have shown that spin polarization can be triggered by LSOC at finite source-drain bias,as a result of numerical noise representing a random magnetic field due to wiring or a random background magnetic field by Earth magnetic field, for instance. The electrons spontaneously arrange into spin rows in the wire due to electron interactions leading to a finite spin polarization. The direction of polarization is, however, random at zero source-drain bias. We have found that LSOC has an effect on orientation of spin rows only in the case when source-drain bias is applied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turro, N.J.; Khudyakov, I.V.; Dwyer, D.W.
1993-10-14
Time-resolved electron spin resonance (TR ESR) was employed to investigate the polarized ESR (CIDEP) spectra produced by interaction of mono- and polynitroxyls with reactive free radicals (r[sup [number sign
Coherent coupling between a quantum dot and a donor in silicon
Harvey-Collard, Patrick; Jacobson, N. Tobias; Rudolph, Martin; ...
2017-10-18
Individual donors in silicon chips are used as quantum bits with extremely low error rates. However, physical realizations have been limited to one donor because their atomic size causes fabrication challenges. Quantum dot qubits, in contrast, are highly adjustable using electrical gate voltages. This adjustability could be leveraged to deterministically couple donors to quantum dots in arrays of qubits. In this work, we demonstrate the coherent interaction of a 31P donor electron with the electron of a metal-oxide-semiconductor quantum dot. We form a logical qubit encoded in the spin singlet and triplet states of the two-electron system. We show thatmore » the donor nuclear spin drives coherent rotations between the electronic qubit states through the contact hyperfine interaction. This provides every key element for compact two-electron spin qubits requiring only a single dot and no additional magnetic field gradients, as well as a means to interact with the nuclear spin qubit.« less
Iridates and RuCl3 - from Heisenberg antiferromagnets to potential Kitaev spin-liquids
NASA Astrophysics Data System (ADS)
van den Brink, Jeroen
The observed richness of topological states on the single-electron level prompts the question what kind of topological phases can develop in more strongly correlated, many-body electron systems. Correlation effects, in particular intra- and inter-orbital electron-electron interactions, are very substantial in 3 d transition-metal compounds such as the copper oxides, but the spin-orbit coupling (SOC) is weak. In 5 d transition-metal compounds such as iridates, the interesting situation arises that the SOC and Coulomb interactions meet on the same energy scale. The electronic structure of iridates thus depends on a strong competition between the electronic hopping amplitudes, local energy-level splittings, electron-electron interaction strengths, and the SOC of the Ir 5d electrons. The interplay of these ingredients offers the potential to stabilise relatively well-understood states such as a 2D Heisenberg-like antiferromagnet in Sr2IrO4, but in principle also far more exotic ones, such a topological Kitaev quantum spin liquid, in (hyper)honeycomb iridates. I will discuss the microscopic electronic structures of these iridates, their proximity to idealized Heisenberg and Kitaev models and our contributions to establishing the physical factors that appear to have preempted the realization of quantum spin liquid phases so far and include a discussion on the 4d transition metal chloride RuCl3. Supported by SFB 1143 of the Deutsche Forschungsgemeinschaft.
Hyperfine interaction and its effects on spin dynamics in organic solids
NASA Astrophysics Data System (ADS)
Yu, Z. G.; Ding, Feizhi; Wang, Haobin
2013-05-01
Hyperfine interaction (HFI) and spin-orbit coupling are two major sources that affect electron spin dynamics. Here we present a systematic study of the HFI and its role in organic spintronic applications. For electron spin dynamics in disordered π-conjugated organics, the HFI can be characterized by an effective magnetic field whose modular square is a weighted sum of contact and dipolar contributions. We determine the effective HFI fields of some common π-conjugated organics studied in the literature via first-principles calculations. Most of them are found to be less than 2 mT. While the H atoms are the major source of the HFI in organics containing only the C and H atoms, many organics contain other nuclear spins, such as Al and N in tris-(8-hydroxyquinoline) aluminum, that contribute to the total HFI. Consequently, the deuteration effect on the HFI in the latter may be much weaker than in the former. The HFI gives rise to multiple resonance peaks in electron spin resonance. In disordered organic solids, these individual resonances are unresolved, leading to a broad peak whose width is proportional to the effective HFI field. As electrons hop among adjacent organic molecules, they experience a randomly varying local HFI field, inducing electron spin relaxation and diffusion. This is analyzed rigorously based on master equations. Electron spin relaxation undergoes a crossover along the ratio between the electron hopping rate η¯ and the Larmor frequency Ω of the HFI field. The spin relaxation rate increases (decreases) with η¯ when η¯≪Ω (η¯≫Ω). A coherent beating of electron spin at Ω is possible when the external field is small compared to the HFI. In this regime, the magnetic field is found to enhance the spin relaxation.
NASA Astrophysics Data System (ADS)
Puri, Shruti; McMahon, Peter; Yamamoto, Yoshihisa
2014-03-01
The quantum non-demolition (QND) measurement of a single electron spin is of great importance in measurement-based quantum computing schemes. The current single-shot readout demonstrations exhibit substantial spin-flip backaction. We propose a QND readout scheme for quantum dot (QD) electron spins in Faraday geometry, which differs from previous proposals and implementations in that it relies on a novel physical mechanism: the spin-dependent Coulomb exchange interaction between a QD spin and optically-excited quantum well (QW) microcavity exciton-polaritons. The Coulomb exchange interaction causes a spin-dependent shift in the resonance energy of the polarized polaritons, thus causing the phase and intensity response of left circularly polarized light to be different to that of the right circularly polarized light. As a result the QD electron's spin can be inferred from the response to a linearly polarized probe. We show that by a careful design of the system, any spin-flip backaction can be eliminated and a QND measurement of the QD electron spin can be performed within a few 10's of nanoseconds with fidelity 99:95%. This improves upon current optical QD spin readout techniques across multiple metrics, including fidelity, speed and scalability. National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan.
Tuning of few-electron states and optical absorption anisotropy in GaAs quantum rings.
Wu, Zhenhua; Li, Jian; Li, Jun; Yin, Huaxiang; Liu, Yu
2017-11-15
The electronic and optical properties of a GaAs quantum ring (QR) with few electrons in the presence of the Rashba spin-orbit interaction (RSOI) and the Dresselhaus spin-orbit interaction (DSOI) have been investigated theoretically. The configuration interaction (CI) method is employed to calculate the eigenvalues and eigenstates of the multiple-electron QR accurately. Our numerical results demonstrate that the symmetry breaking induced by the RSOI and DSOI leads to an anisotropic distribution of multi-electron states. The Coulomb interaction offers additional modulation of the electron distribution and thus the optical absorption indices in the quantum rings. By tuning the magnetic/electric fields and/or electron numbers in a quantum ring, one can change its optical properties significantly. Our theory provides a new way to control the multi-electron states and optical properties of a QR by hybrid modulations or by electrical means only.
NASA Astrophysics Data System (ADS)
Faúndez, J.; Jorge, T. N.; Craco, L.
2018-03-01
Using the tight-binding treatment for the spin-asymmetric Hubbard model we explore the effect of electronic interactions in the ferromagnetic, partially filled Lieb lattice. As a key result we demonstrate the formation of correlation satellites in the minority spin channel. In addition, we consider the role played by transverse-field spin fluctuations in metallic ferromagnets. We quantify the degree of electronic demagnetization, showing that the half-metallic state is rather robust to local spin flips. Not being restricted to the case of a partially filled Lieb lattice, our findings are expected to advance the general understanding of spin-selective electronic reconstruction in strongly correlated quantum ferromagnets.
Spin correlations in quantum wires
NASA Astrophysics Data System (ADS)
Sun, Chen; Pokrovsky, Valery L.
2015-04-01
We consider theoretically spin correlations in a one-dimensional quantum wire with Rashba-Dresselhaus spin-orbit interaction (RDI). The correlations of noninteracting electrons display electron spin resonance at a frequency proportional to the RDI coupling. Interacting electrons, upon varying the direction of the external magnetic field, transit from the state of Luttinger liquid (LL) to the spin-density wave (SDW) state. We show that the two-time total-spin correlations of these states are significantly different. In the LL, the projection of total spin to the direction of the RDI-induced field is conserved and the corresponding correlator is equal to zero. The correlators of two components perpendicular to the RDI field display a sharp electron-spin resonance driven by the RDI-induced intrinsic field. In contrast, in the SDW state, the longitudinal projection of spin dominates, whereas the transverse components are suppressed. This prediction indicates a simple way for an experimental diagnostic of the SDW in a quantum wire. We point out that the Luttinger model does not respect the spin conservation since it assumes the infinite Fermi sea. We propose a proper cutoff to correct this failure.
Liu, Jia; Han, Qiang; Shao, L B; Wang, Z D
2011-07-08
A type of electron pairing model with spin-orbit interactions or Zeeman coupling is solved exactly in the framework of the Richardson ansatz. Based on the exact solutions for the case with spin-orbit interactions, it is shown rigorously that the pairing symmetry is of the p + ip wave and the ground state possesses time-reversal symmetry, regardless of the strength of the pairing interaction. Intriguingly, how Majorana fermions can emerge in the system is also elaborated. Exact results are illustrated for two systems, respectively, with spin-orbit interactions and Zeeman coupling.
NASA Astrophysics Data System (ADS)
Mokhtari, P.; Rezaei, G.; Zamani, A.
2017-06-01
In this paper, electronic structure of a two dimensional elliptic quantum dot under the influence of external electric and magnetic fields are studied in the presence of Rashba and Dresselhaus spin-orbit interactions. This investigation is done computationally and to do this, at first, the effective Hamiltonian of the system by considering the spin-orbit coupling is demonstrated in the presence of applied electric and magnetic fields and afterwards the Schrödinger equation is solved using the finite difference approach. Utilizing finite element method, eigenvalues and eigenstates of the system are calculated and the effect of the external fields, the size of the dot as well as the strength of Rashba spin-orbit interaction are studied. Our results indicate that, Spin-orbit interactions, external fields and the dot size have a great influence on the electronic structure of the system.
Model of biological quantum logic in DNA.
Mihelic, F Matthew
2013-08-02
The DNA molecule has properties that allow it to act as a quantum logic processor. It has been demonstrated that there is coherent conduction of electrons longitudinally along the DNA molecule through pi stacking interactions of the aromatic nucleotide bases, and it has also been demonstrated that electrons moving longitudinally along the DNA molecule are subject to a very efficient electron spin filtering effect as the helicity of the DNA molecule interacts with the spin of the electron. This means that, in DNA, electrons are coherently conducted along a very efficient spin filter. Coherent electron spin is held in a logically and thermodynamically reversible chiral symmetry between the C2-endo and C3-endo enantiomers of the deoxyribose moiety in each nucleotide, which enables each nucleotide to function as a quantum gate. The symmetry break that provides for quantum decision in the system is determined by the spin direction of an electron that has an orbital angular momentum that is sufficient to overcome the energy barrier of the double well potential separating the C2-endo and C3-endo enantiomers, and that enantiomeric energy barrier is appropriate to the Landauer limit of the energy necessary to randomize one bit of information.
Pulse Double-Resonance EPR Techniques for the Study of Metallobiomolecules.
Cox, Nicholas; Nalepa, Anna; Pandelia, Maria-Eirini; Lubitz, Wolfgang; Savitsky, Anton
2015-01-01
Electron paramagnetic resonance (EPR) spectroscopy exploits an intrinsic property of matter, namely the electron spin and its related magnetic moment. This can be oriented in a magnetic field and thus, in the classical limit, acts like a little bar magnet. Its moment will align either parallel or antiparallel to the field, giving rise to different energies (termed Zeeman splitting). Transitions between these two quantized states can be driven by incident microwave frequency radiation, analogous to NMR experiments, where radiofrequency radiation is used. However, the electron Zeeman interaction alone provides only limited information. Instead, much of the usefulness of EPR is derived from the fact that the electron spin also interacts with its local magnetic environment and thus can be used to probe structure via detection of nearby spins, e.g., NMR-active magnetic nuclei and/or other electron spin(s). The latter is exploited in spin labeling techniques, an exciting new area in the development of noncrystallographic protein structure determination. Although these interactions are often smaller than the linewidth of the EPR experiment, sophisticated pulse EPR methods allow their detection. A number of such techniques are well established today and can be broadly described as double-resonance methods, in which the electron spin is used as a reporter. Below we give a brief description of pulse EPR methods, particularly their implementation at higher magnetic fields, and how to best exploit them for studying metallobiomolecules. © 2015 Elsevier Inc. All rights reserved.
Nuclear-driven electron spin rotations in a coupled silicon quantum dot and single donor system
NASA Astrophysics Data System (ADS)
Harvey-Collard, Patrick; Jacobson, Noah Tobias; Rudolph, Martin; Ten Eyck, Gregory A.; Wendt, Joel R.; Pluym, Tammy; Lilly, Michael P.; Pioro-Ladrière, Michel; Carroll, Malcolm S.
Single donors in silicon are very good qubits. However, a central challenge is to couple them to one another. To achieve this, many proposals rely on using a nearby quantum dot (QD) to mediate an interaction. In this work, we demonstrate the coherent coupling of electron spins between a single 31P donor and an enriched 28Si metal-oxide-semiconductor few-electron QD. We show that the electron-nuclear spin interaction can drive coherent rotations between singlet and triplet electron spin states. Moreover, we are able to tune electrically the exchange interaction between the QD and donor electrons. The combination of single-nucleus-driven rotations and voltage-tunable exchange provides all elements for future all-electrical control of a spin qubit, and requires only a single dot and no additional magnetic field gradients. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Seo, Dong-Kyun
2007-11-14
We present a theoretical scheme for a semiquantitative analysis of electronic structures of magnetic transition metal dimer complexes within spin density functional theory (DFT). Based on the spin polarization perturbational orbital theory [D.-K. Seo, J. Chem. Phys. 125, 154105 (2006)], explicit spin-dependent expressions of the spin orbital energies and coefficients are derived, which allows to understand how spin orbitals form and change their energies and shapes when two magnetic sites are coupled either ferromagnetically or antiferromagnetically. Upon employment of the concept of magnetic orbitals in the active-electron approximation, a general mathematical formula is obtained for the magnetic coupling constant J from the analytical expression for the electronic energy difference between low-spin broken-symmetry and high-spin states. The origin of the potential exchange and kinetic exchange terms based on the one-electron picture is also elucidated. In addition, we provide a general account of the DFT analysis of the magnetic exchange interactions in compounds for which the active-electron approximation is not appropriate.
Kumar, Krishan; Moudgil, R K
2012-10-17
We have studied symmetric electron-electron and electron-hole bilayers to explore the stable homogeneous spin phase and the feasibility of inhomogeneous charge-/spin-density ground states. The former is resolved by comparing the ground-state energies in states of different spin polarizations, while the latter is resolved by searching for a divergence in the wavevector-dependent static charge/spin susceptibility. For this endeavour, we have used the dielectric approach within the self-consistent mean-field theory of Singwi et al. We find that the inter-layer interactions tend to change an abrupt spin-polarization transition of an isolated layer into a nearly gradual one, even though the partially spin-polarized phases are not clearly stable within the accuracy of our calculation. The transition density is seen to decrease with a reduction in layer spacing, implying a suppression of spin polarization by inter-layer interactions. Indeed, the suppression shows up distinctly in the spin susceptibility computed from the spin-polarization dependence of the ground-state energy. However, below a critical layer spacing, the unpolarized liquid becomes unstable against a charge-density-wave (CDW) ground state at a density preceding full spin polarization, with the transition density for the CDW state increasing on further reduction in the layer spacing. Due to attractive e-h correlations, the CDW state is found to be more pronounced in the e-h bilayer. On the other hand, the static spin susceptibility diverges only in the long-wavelength limit, which simply represents a transition to the homogeneous spin-polarized phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tatara, Gen, E-mail: gen.tatara@riken.jp; Nakabayashi, Noriyuki; Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397 Japan
2014-05-07
Emergent electromagnetic field which couples to electron's spin in ferromagnetic metals is theoretically studied. Rashba spin-orbit interaction induces spin electromagnetic field which is in the linear order in gradient of magnetization texture. The Rashba-induced effective electric and magnetic fields satisfy in the absence of spin relaxation the Maxwell's equations as in the charge-based electromagnetism. When spin relaxation is taken into account besides spin dynamics, a monopole current emerges generating spin motive force via the Faraday's induction law. The monopole is expected to play an important role in spin-charge conversion and in the integration of spintronics into electronics.
Electron and nuclear spin interactions in the optical spectra of single GaAs quantum dots.
Gammon, D; Efros, A L; Kennedy, T A; Rosen, M; Katzer, D S; Park, D; Brown, S W; Korenev, V L; Merkulov, I A
2001-05-28
Fine and hyperfine splittings arising from electron, hole, and nuclear spin interactions in the magneto-optical spectra of individual localized excitons are studied. We explain the magnetic field dependence of the energy splitting through competition between Zeeman, exchange, and hyperfine interactions. An unexpectedly small hyperfine contribution to the splitting close to zero applied field is described well by the interplay between fluctuations of the hyperfine field experienced by the nuclear spin and nuclear dipole/dipole interactions.
NASA Technical Reports Server (NTRS)
Ting, David Z.
2007-01-01
The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.
Rotatable spin-polarized electron source for inverse-photoemission experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stolwijk, S. D., E-mail: Sebastian.Stolwijk@wwu.de; Wortelen, H.; Schmidt, A. B.
2014-01-15
We present a ROtatable Spin-polarized Electron source (ROSE) for the use in spin- and angle-resolved inverse-photoemission (SR-IPE) experiments. A key feature of the ROSE is a variable direction of the transversal electron beam polarization. As a result, the inverse-photoemission experiment becomes sensitive to two orthogonal in-plane polarization directions, and, for nonnormal electron incidence, to the out-of-plane polarization component. We characterize the ROSE and test its performance on the basis of SR-IPE experiments. Measurements on magnetized Ni films on W(110) serve as a reference to demonstrate the variable spin sensitivity. Moreover, investigations of the unoccupied spin-dependent surface electronic structure of Tl/Si(111)more » highlight the capability to analyze complex phenomena like spin rotations in momentum space. Essentially, the ROSE opens the way to further studies on complex spin-dependent effects in the field of surface magnetism and spin-orbit interaction at surfaces.« less
NASA Astrophysics Data System (ADS)
Korenev, V. L.
2011-06-01
The periodical modulation of circularly polarized light with a frequency close to the electron spin resonance frequency induces a sharp change of the single electron spin orientation. Hyperfine interaction provides a feedback, thus fixing the precession frequency of the electron spin in the external and the Overhauser field near the modulation frequency. The nuclear polarization is bidirectional and the electron-nuclear spin system (ENSS) possesses a few stable states. The same physics underlie the frequency-locking effect for two-color and mode-locked excitations. However, the pulsed excitation with mode-locked laser brings about the multitudes of stable states in ENSS in a quantum dot. The resulting precession frequencies of the electron spin differ in these states by the multiple of the modulation frequency. Under such conditions ENSS represents a digital frequency converter with more than 100 stable channels.
Electrical detection of nuclear spins in organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Malissa, H.; Kavand, M.; Waters, D. P.; Lupton, J. M.; Vardeny, Z. V.; Saam, B.; Boehme, C.
2014-03-01
We present pulsed combined electrically detected electron paramagnetic and nuclear magnetic resonance experiments on MEH-PPV OLEDs. Spin dynamics in these structures are governed by hyperfine interactions between charge carriers and the surrounding hydrogen nuclei, which are abundant in these materials. Hyperfine coupling has been observed by monitoring the device current during coherent spin excitation. Electron spin echoes (ESEs) are detected by applying one additional readout pulse at the time of echo formation. This allows for the application of high-resolution spectroscopy based on ESE detection, such as electron spin echo envelope modulation (ESEEM) and electron nuclear double resonance (ENDOR) available for electrical detection schemes. We conduct electrically detected ESEEM and ENDOR experiments and show how hyperfine interactions in MEH-PPV with and without deuterated polymer side groups can be observed by device current measurements. We acknowledge support by the Department of Energy, Office of Basic Energy Sciences under Award #DE-SC0000909.
NASA Astrophysics Data System (ADS)
Arnold, Thorsten; Siegmund, Marc; Pankratov, Oleg
2011-08-01
We apply exact-exchange spin-density functional theory in the Krieger-Li-Iafrate approximation to interacting electrons in quantum rings of different widths. The rings are threaded by a magnetic flux that induces a persistent current. A weak space and spin symmetry breaking potential is introduced to allow for localized solutions. As the electron-electron interaction strength described by the dimensionless parameter rS is increased, we observe—at a fixed spin magnetic moment—the subsequent transition of both spin sub-systems from the Fermi liquid to the Wigner crystal state. A dramatic signature of Wigner crystallization is that the persistent current drops sharply with increasing rS. We observe simultaneously the emergence of pronounced oscillations in the spin-resolved densities and in the electron localization functions indicating a spatial electron localization showing ferrimagnetic order after both spin sub-systems have undergone the Wigner crystallization. The critical rSc at the transition point is substantially smaller than in a fully spin-polarized system and decreases further with decreasing ring width. Relaxing the constraint of a fixed spin magnetic moment, we find that on increasing rS the stable phase changes from an unpolarized Fermi liquid to an antiferromagnetic Wigner crystal and finally to a fully polarized Fermi liquid.
Arnold, Thorsten; Siegmund, Marc; Pankratov, Oleg
2011-08-24
We apply exact-exchange spin-density functional theory in the Krieger-Li-Iafrate approximation to interacting electrons in quantum rings of different widths. The rings are threaded by a magnetic flux that induces a persistent current. A weak space and spin symmetry breaking potential is introduced to allow for localized solutions. As the electron-electron interaction strength described by the dimensionless parameter r(S) is increased, we observe-at a fixed spin magnetic moment-the subsequent transition of both spin sub-systems from the Fermi liquid to the Wigner crystal state. A dramatic signature of Wigner crystallization is that the persistent current drops sharply with increasing r(S). We observe simultaneously the emergence of pronounced oscillations in the spin-resolved densities and in the electron localization functions indicating a spatial electron localization showing ferrimagnetic order after both spin sub-systems have undergone the Wigner crystallization. The critical r(S)(c) at the transition point is substantially smaller than in a fully spin-polarized system and decreases further with decreasing ring width. Relaxing the constraint of a fixed spin magnetic moment, we find that on increasing r(S) the stable phase changes from an unpolarized Fermi liquid to an antiferromagnetic Wigner crystal and finally to a fully polarized Fermi liquid. © 2011 IOP Publishing Ltd
Electrical control of single hole spins in nanowire quantum dots.
Pribiag, V S; Nadj-Perge, S; Frolov, S M; van den Berg, J W G; van Weperen, I; Plissard, S R; Bakkers, E P A M; Kouwenhoven, L P
2013-03-01
The development of viable quantum computation devices will require the ability to preserve the coherence of quantum bits (qubits). Single electron spins in semiconductor quantum dots are a versatile platform for quantum information processing, but controlling decoherence remains a considerable challenge. Hole spins in III-V semiconductors have unique properties, such as a strong spin-orbit interaction and weak coupling to nuclear spins, and therefore, have the potential for enhanced spin control and longer coherence times. A weaker hyperfine interaction has previously been reported in self-assembled quantum dots using quantum optics techniques, but the development of hole-spin-based electronic devices in conventional III-V heterostructures has been limited by fabrication challenges. Here, we show that gate-tunable hole quantum dots can be formed in InSb nanowires and used to demonstrate Pauli spin blockade and electrical control of single hole spins. The devices are fully tunable between hole and electron quantum dots, which allows the hyperfine interaction strengths, g-factors and spin blockade anisotropies to be compared directly in the two regimes.
Suppression of electron spin relaxation in Mn-doped GaAs.
Astakhov, G V; Dzhioev, R I; Kavokin, K V; Korenev, V L; Lazarev, M V; Tkachuk, M N; Kusrayev, Yu G; Kiessling, T; Ossau, W; Molenkamp, L W
2008-08-15
We report a surprisingly long spin relaxation time of electrons in Mn-doped p-GaAs. The spin relaxation time scales with the optical pumping and increases from 12 ns in the dark to 160 ns upon saturation. This behavior is associated with the difference in spin relaxation rates of electrons precessing in the fluctuating fields of ionized or neutral Mn acceptors, respectively. For the latter, the antiferromagnetic exchange interaction between a Mn ion and a bound hole results in a partial compensation of these fluctuating fields, leading to the enhanced spin memory.
Suppression of Electron Spin Relaxation in Mn-Doped GaAs
NASA Astrophysics Data System (ADS)
Astakhov, G. V.; Dzhioev, R. I.; Kavokin, K. V.; Korenev, V. L.; Lazarev, M. V.; Tkachuk, M. N.; Kusrayev, Yu. G.; Kiessling, T.; Ossau, W.; Molenkamp, L. W.
2008-08-01
We report a surprisingly long spin relaxation time of electrons in Mn-doped p-GaAs. The spin relaxation time scales with the optical pumping and increases from 12 ns in the dark to 160 ns upon saturation. This behavior is associated with the difference in spin relaxation rates of electrons precessing in the fluctuating fields of ionized or neutral Mn acceptors, respectively. For the latter, the antiferromagnetic exchange interaction between a Mn ion and a bound hole results in a partial compensation of these fluctuating fields, leading to the enhanced spin memory.
Orbital and spin dynamics of intraband electrons in quantum rings driven by twisted light.
Quinteiro, G F; Tamborenea, P I; Berakdar, J
2011-12-19
We theoretically investigate the effect that twisted light has on the orbital and spin dynamics of electrons in quantum rings possessing sizable Rashba spin-orbit interaction. The system Hamiltonian for such a strongly inhomogeneous light field exhibits terms which induce both spin-conserving and spin-flip processes. We analyze the dynamics in terms of the perturbation introduced by a weak light field on the Rasha electronic states, and describe the effects that the orbital angular momentum as well as the inhomogeneous character of the beam have on the orbital and the spin dynamics.
Optical Orientation of Mn2+ Ions in GaAs in Weak Longitudinal Magnetic Fields
NASA Astrophysics Data System (ADS)
Akimov, I. A.; Dzhioev, R. I.; Korenev, V. L.; Kusrayev, Yu. G.; Sapega, V. F.; Yakovlev, D. R.; Bayer, M.
2011-04-01
We report on optical orientation of Mn2+ ions in bulk GaAs subject to weak longitudinal magnetic fields (B≤100mT). A manganese spin polarization of 25% is directly evaluated by using spin-flip Raman scattering. The dynamical Mn2+ polarization occurs due to the s-d exchange interaction with optically oriented conduction band electrons. Time-resolved photoluminescence reveals a nontrivial electron spin dynamics, where the oriented Mn2+ ions tend to stabilize the electron spins.
Optical orientation of Mn2+ ions in GaAs in weak longitudinal magnetic fields.
Akimov, I A; Dzhioev, R I; Korenev, V L; Kusrayev, Yu G; Sapega, V F; Yakovlev, D R; Bayer, M
2011-04-08
We report on optical orientation of Mn2+ ions in bulk GaAs subject to weak longitudinal magnetic fields (B≤100 mT). A manganese spin polarization of 25% is directly evaluated by using spin-flip Raman scattering. The dynamical Mn2+ polarization occurs due to the s-d exchange interaction with optically oriented conduction band electrons. Time-resolved photoluminescence reveals a nontrivial electron spin dynamics, where the oriented Mn2+ ions tend to stabilize the electron spins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Nam Lyong, E-mail: nlkang@pusan.ac.kr
2014-12-07
The electron spin relaxation times in a system of electrons interacting with piezoelectric phonons mediated through spin-orbit interactions were calculated using the formula derived from the projection-reduction method. The results showed that the temperature and magnetic field dependence of the relaxation times in InSb and InAs were similar. The piezoelectric material constants obtained by a comparison with the reported experimental result were P{sub pe}=4.0×10{sup 22} eV/m for InSb and P{sub pe}=1.2×10{sup 23} eV/m for InAs. The result also showed that the relaxation of the electron spin by the Elliot-Yafet process is more relevant for InSb than InAs at a low density.
Absence of magnetic order in low-dimensional (RKKY) systems
NASA Astrophysics Data System (ADS)
Pedrocchi, Fabio; Leggett, Anthony; Loss, Daniel
2012-02-01
We extend the Mermin-Wagner theorem to a system of lattice spins which are spin-coupled to itinerant and interacting charge carriers. We use the Bogoliubov inequality to rigorously prove that neither (anti-) ferromagnetic nor helical long-range order is possible in one and two dimensions at any finite temperature. Our proof applies to a wide class of models including any form of electron-electron and single-electron interactions that are independent of spin. In the presence of Rashba or Dresselhaus spin-orbit interactions (SOI) magnetic order is not excluded and intimately connected to equilibrium spin currents. However, in the special case when Rashba and Dresselhaus SOIs are tuned to be equal, magnetic order is excluded again. This opens up a new possibility to control magnetism electrically. [4pt] References: D. Loss, F. L. Pedrocchi, and A. J. Leggett, Phys. Rev. Lett. 107, 107201 (2011).
Towards Polarized Antiprotons at FAIR
NASA Astrophysics Data System (ADS)
Rathmann, Frank
2007-06-01
Understanding the interplay of the nuclear interaction with polarized protons and the electromagnetic interaction with polarized electrons in polarized atoms is crucial to progress towards the PAX goal to eventually produce stored polarized antiproton beams at FAIR. Presently, there exist two competing theoretical scenarios: one with substantial spin filtering of (anti)protons by atomic electrons, and a second one suggesting a self-cancellation of the electron contribution to spin filtering. After a brief review of the PAX physics case for polarized antiprotons at FAIR, a detailed discussion of future investigations, including spin-filtering experiments at COSY-Jülich and at the AD of CERN is presented.
Low temperature nano-spin filtering using a diluted magnetic semiconductor core-shell quantum dot
NASA Astrophysics Data System (ADS)
Chattopadhyay, Saikat; Sen, Pratima; Andrews, Joshep Thomas; Sen, Pranay Kumar
2014-07-01
The spin polarized electron transport properties and spin polarized tunneling current have been investigated analytically in a diluted magnetic semiconductor core-shell quantum dot in the presence of applied electric and magnetic fields. Assuming the electron wave function to satisfy WKB approximation, the electron energy eigenvalues have been calculated. The spin polarized tunneling current and the spin dependent tunneling coefficient are obtained by taking into account the exchange interaction and Zeeman splitting. Numerical estimates made for a specific diluted magnetic semiconductor, viz., Zn1-xMnxSe/ZnS core-shell quantum dot establishes the possibility of a nano-spin filter for a particular biasing voltage and applied magnetic field. Influence of applied voltage on spin polarized electron transport has been investigated in a CSQD.
A spin-orbital-entangled quantum liquid on a honeycomb lattice
NASA Astrophysics Data System (ADS)
Kitagawa, K.; Takayama, T.; Matsumoto, Y.; Kato, A.; Takano, R.; Kishimoto, Y.; Bette, S.; Dinnebier, R.; Jackeli, G.; Takagi, H.
2018-02-01
The honeycomb lattice is one of the simplest lattice structures. Electrons and spins on this simple lattice, however, often form exotic phases with non-trivial excitations. Massless Dirac fermions can emerge out of itinerant electrons, as demonstrated experimentally in graphene, and a topological quantum spin liquid with exotic quasiparticles can be realized in spin-1/2 magnets, as proposed theoretically in the Kitaev model. The quantum spin liquid is a long-sought exotic state of matter, in which interacting spins remain quantum-disordered without spontaneous symmetry breaking. The Kitaev model describes one example of a quantum spin liquid, and can be solved exactly by introducing two types of Majorana fermion. Realizing a Kitaev model in the laboratory, however, remains a challenge in materials science. Mott insulators with a honeycomb lattice of spin-orbital-entangled pseudospin-1/2 moments have been proposed, including the 5d-electron systems α-Na2IrO3 (ref. 5) and α-Li2IrO3 (ref. 6) and the 4d-electron system α-RuCl3 (ref. 7). However, these candidates were found to magnetically order rather than form a liquid at sufficiently low temperatures, owing to non-Kitaev interactions. Here we report a quantum-liquid state of pseudospin-1/2 moments in the 5d-electron honeycomb compound H3LiIr2O6. This iridate does not display magnetic ordering down to 0.05 kelvin, despite an interaction energy of about 100 kelvin. We observe signatures of low-energy fermionic excitations that originate from a small number of spin defects in the nuclear-magnetic-resonance relaxation and the specific heat. We therefore conclude that H3LiIr2O6 is a quantum spin liquid. This result opens the door to finding exotic quasiparticles in a strongly spin-orbit-coupled 5d-electron transition-metal oxide.
Broadband Transmission EPR Spectroscopy
Hagen, Wilfred R.
2013-01-01
EPR spectroscopy employs a resonator operating at a single microwave frequency and phase-sensitive detection using modulation of the magnetic field. The X-band spectrometer is the general standard with a frequency in the 9–10 GHz range. Most (bio)molecular EPR spectra are determined by a combination of the frequency-dependent electronic Zeeman interaction and a number of frequency-independent interactions, notably, electron spin – nuclear spin interactions and electron spin – electron spin interactions, and unambiguous analysis requires data collection at different frequencies. Extant and long-standing practice is to use a different spectrometer for each frequency. We explore the alternative of replacing the narrow-band source plus single-mode resonator with a continuously tunable microwave source plus a non-resonant coaxial transmission cell in an unmodulated external field. Our source is an arbitrary wave digital signal generator producing an amplitude-modulated sinusoidal microwave in combination with a broadband amplifier for 0.8–2.7 GHz. Theory is developed for coaxial transmission with EPR detection as a function of cell dimensions and materials. We explore examples of a doublet system, a high-spin system, and an integer-spin system. Long, straigth, helical, and helico-toroidal cells are developed and tested with dilute aqueous solutions of spin label hydroxy-tempo. A detection limit of circa 5 µM HO-tempo in water at 800 MHz is obtained for the present setup, and possibilities for future improvement are discussed. PMID:23555819
Searching for an exotic spin-dependent interaction with a single electron-spin quantum sensor.
Rong, Xing; Wang, Mengqi; Geng, Jianpei; Qin, Xi; Guo, Maosen; Jiao, Man; Xie, Yijin; Wang, Pengfei; Huang, Pu; Shi, Fazhan; Cai, Yi-Fu; Zou, Chongwen; Du, Jiangfeng
2018-02-21
Searching for new particles beyond the standard model is crucial for understanding several fundamental conundrums in physics and astrophysics. Several hypothetical particles can mediate exotic spin-dependent interactions between ordinary fermions, which enable laboratory searches via the detection of the interactions. Most laboratory searches utilize a macroscopic source and detector, thus allowing the detection of interactions with submillimeter force range and above. It remains a challenge to detect the interactions at shorter force ranges. Here we propose and demonstrate that a near-surface nitrogen-vacancy center in diamond can be utilized as a quantum sensor to detect the monopole-dipole interaction between an electron spin and nucleons. Our result sets a constraint for the electron-nucleon coupling, [Formula: see text], with the force range 0.1-23 μm. The obtained upper bound of the coupling at 20 μm is [Formula: see text] < 6.24 × 10 -15 .
Solitons in a nonlinear model of spin transport in helical molecules
NASA Astrophysics Data System (ADS)
Albares, P.; Díaz, E.; Cerveró, Jose M.; Domínguez-Adame, F.; Diez, E.; Estévez, P. G.
2018-02-01
We study an effective integrable nonlinear model describing an electron moving along the axis of a deformable helical molecule. The helical conformation of dipoles in the molecular backbone induces an unconventional Rashba-like interaction that couples the electron spin with its linear momentum. In addition, a focusing nonlinearity arises from the electron-lattice interaction, enabling the formation of a variety of stable solitons such as bright solitons, breathers, and rogue waves. A thorough study of the soliton solutions for both focusing and defocusing nonlinear interaction is presented and discussed.
Adiabatic quantum computing with spin qubits hosted by molecules.
Yamamoto, Satoru; Nakazawa, Shigeaki; Sugisaki, Kenji; Sato, Kazunobu; Toyota, Kazuo; Shiomi, Daisuke; Takui, Takeji
2015-01-28
A molecular spin quantum computer (MSQC) requires electron spin qubits, which pulse-based electron spin/magnetic resonance (ESR/MR) techniques can afford to manipulate for implementing quantum gate operations in open shell molecular entities. Importantly, nuclear spins, which are topologically connected, particularly in organic molecular spin systems, are client qubits, while electron spins play a role of bus qubits. Here, we introduce the implementation for an adiabatic quantum algorithm, suggesting the possible utilization of molecular spins with optimized spin structures for MSQCs. We exemplify the utilization of an adiabatic factorization problem of 21, compared with the corresponding nuclear magnetic resonance (NMR) case. Two molecular spins are selected: one is a molecular spin composed of three exchange-coupled electrons as electron-only qubits and the other an electron-bus qubit with two client nuclear spin qubits. Their electronic spin structures are well characterized in terms of the quantum mechanical behaviour in the spin Hamiltonian. The implementation of adiabatic quantum computing/computation (AQC) has, for the first time, been achieved by establishing ESR/MR pulse sequences for effective spin Hamiltonians in a fully controlled manner of spin manipulation. The conquered pulse sequences have been compared with the NMR experiments and shown much faster CPU times corresponding to the interaction strength between the spins. Significant differences are shown in rotational operations and pulse intervals for ESR/MR operations. As a result, we suggest the advantages and possible utilization of the time-evolution based AQC approach for molecular spin quantum computers and molecular spin quantum simulators underlain by sophisticated ESR/MR pulsed spin technology.
Control of electron spin and orbital resonances in quantum dots through spin-orbit interactions
NASA Astrophysics Data System (ADS)
Stano, Peter; Fabian, Jaroslav
2008-01-01
The influence of a resonant oscillating electromagnetic field on a single electron in coupled lateral quantum dots in the presence of phonon-induced relaxation and decoherence is investigated. Using symmetry arguments, it is shown that the spin and orbital resonances can be efficiently controlled by spin-orbit interactions. The control is possible due to the strong sensitivity of the Rabi frequency to the dot configuration (the orientation of the dot and the applied static magnetic field); the sensitivity is a result of the anisotropy of the spin-orbit interactions. The so-called easy passage configuration is shown to be particularly suitable for a magnetic manipulation of spin qubits, ensuring long spin relaxation times and protecting the spin qubits from electric field disturbances accompanying on-chip manipulations.
Spin decoherence of InAs surface electrons by transition metal ions
NASA Astrophysics Data System (ADS)
Zhang, Yao; Soghomonian, V.; Heremans, J. J.
2018-04-01
Spin interactions between a two-dimensional electron system at the InAs surface and transition metal ions, Fe3 +, Co2 +, and Ni2 +, deposited on the InAs surface, are probed by antilocalization measurements. The spin-dependent quantum interference phenomena underlying the quantum transport phenomenon of antilocalization render the technique sensitive to the spin states of the transition metal ions on the surface. The experiments yield data on the magnitude and temperature dependence of the electrons' inelastic scattering rates, spin-orbit scattering rates, and magnetic spin-flip rates as influenced by Fe3 +, Co2 +, and Ni2 +. A high magnetic spin-flip rate is shown to mask the effects of spin-orbit interaction, while the spin-flip rate is shown to scale with the effective magnetic moment of the surface species. The spin-flip rates and their dependence on temperature yield information about the spin states of the transition metal ions at the surface, and in the case of Co2 + suggest either a spin transition or formation of a spin-glass system.
NASA Astrophysics Data System (ADS)
Wang, Huihui; Bokarev, Sergey I.; Aziz, Saadullah G.; Kühn, Oliver
2017-08-01
Recent developments in attosecond spectroscopy yield access to the correlated motion of electrons on their intrinsic timescales. Spin-flip dynamics is usually considered in the context of valence electronic states, where spin-orbit coupling is weak and processes related to the electron spin are usually driven by nuclear motion. However, for core-excited states, where the core-hole has a nonzero angular momentum, spin-orbit coupling is strong enough to drive spin-flips on a much shorter timescale. Using density matrix-based time-dependent restricted active space configuration interaction including spin-orbit coupling, we address an unprecedentedly short spin-crossover for the example of L-edge (2p→3d) excited states of a prototypical Fe(II) complex. This process occurs on a timescale, which is faster than that of Auger decay (∼4 fs) treated here explicitly. Modest variations of carrier frequency and pulse duration can lead to substantial changes in the spin-state yield, suggesting its control by soft X-ray light.
Nature of magnetization and lateral spin–orbit interaction in gated semiconductor nanowires
NASA Astrophysics Data System (ADS)
Karlsson, H.; Yakimenko, I. I.; Berggren, K.-F.
2018-05-01
Semiconductor nanowires are interesting candidates for realization of spintronics devices. In this paper we study electronic states and effects of lateral spin–orbit coupling (LSOC) in a one-dimensional asymmetrically biased nanowire using the Hartree–Fock method with Dirac interaction. We have shown that spin polarization can be triggered by LSOC at finite source-drain bias,as a result of numerical noise representing a random magnetic field due to wiring or a random background magnetic field by Earth magnetic field, for instance. The electrons spontaneously arrange into spin rows in the wire due to electron interactions leading to a finite spin polarization. The direction of polarization is, however, random at zero source-drain bias. We have found that LSOC has an effect on orientation of spin rows only in the case when source-drain bias is applied.
Three-Dimensional Non-Fermi-Liquid Behavior from One-Dimensional Quantum Critical Local Moments
NASA Astrophysics Data System (ADS)
Classen, Laura; Zaliznyak, Igor; Tsvelik, Alexei M.
2018-04-01
We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three-dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb2 Pt2 Pb , a metal where itinerant electrons coexist with localized moments of Yb ions which can be described in terms of effective S =1 /2 spins with a dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the two interacting subsystems. We characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasilinear temperature dependence.
Spin-orbit signatures in the dynamics of singlet-triplet qubits in double quantum dots
NASA Astrophysics Data System (ADS)
Rolon, Juan E.; Cota, Ernesto; Ulloa, Sergio E.
2017-05-01
We characterize numerically and analytically the signatures of the spin-orbit interaction in a two-electron GaAs double quantum dot in the presence of an external magnetic field. In particular, we obtain the return probability of the singlet state by simulating Landau-Zener voltage detuning sweeps which traverse the singlet-triplet (S -T+ ) resonance. Our results indicate that non-spin-conserving interdot tunneling processes arising from the spin-orbit interaction have well defined signatures. These allow direct access to the spin-orbit interaction scales and are characterized by a frequency shift and Fourier amplitude modulation of the Rabi flopping dynamics of the singlet-triplet qubits S -T0 and S -T+ . By applying the Bloch-Feshbach projection formalism, we demonstrate analytically that the aforementioned effects originate from the interplay between spin-orbit interaction and processes driven by the hyperfine interaction between the electron spins and those of the GaAs nuclei.
Position, spin, and orbital angular momentum of a relativistic electron
NASA Astrophysics Data System (ADS)
Bliokh, Konstantin Y.; Dennis, Mark R.; Nori, Franco
2017-08-01
Motivated by recent interest in relativistic electron vortex states, we revisit the spin and orbital angular momentum properties of Dirac electrons. These are uniquely determined by the choice of the position operator for a relativistic electron. We consider two main approaches discussed in the literature: (i) the projection of operators onto the positive-energy subspace, which removes the Zitterbewegung effects and correctly describes spin-orbit interaction effects, and (ii) the use of Newton-Wigner-Foldy-Wouthuysen operators based on the inverse Foldy-Wouthuysen transformation. We argue that the first approach [previously described in application to Dirac vortex beams in K. Y. Bliokh et al., Phys. Rev. Lett. 107, 174802 (2011), 10.1103/PhysRevLett.107.174802] has a more natural physical interpretation, including spin-orbit interactions and a nonsingular zero-mass limit, than the second one [S. M. Barnett, Phys. Rev. Lett. 118, 114802 (2017), 10.1103/PhysRevLett.118.114802].
Quantum Control and Entanglement of Spins in Silicon Carbide
NASA Astrophysics Data System (ADS)
Klimov, Paul
Over the past several decades silicon carbide (SiC) has matured into a versatile material platform for high-power electronics and optoelectronic and micromechanical devices. Recent advances have also established SiC as a promising host for quantum technologies based on the spin of intrinsic defects, with the potential of leveraging existing device fabrication protocols alongside solid-state quantum control. Among these defects are the divacancies and related color centers, which have ground-state electron-spin triplets with coherence times as long as one millisecond and built-in optical interfaces operating near the telecommunication wavelengths. This rapidly developing field has prompted research into the SiC material host to understand how defect-bound electron spins interact with their surrounding nuclear spin bath. Although nuclear spins are a major source of decoherence in color-center spin systems, they are also a valuable resource since they can have coherence times that are orders of magnitude longer than electron spins. In this talk I will discuss our recent efforts to interface defect-bound electron spins in SiC with the nuclear spins of naturally occurring 29Si and 13C isotopic defects. I will discuss how the hyperfine interaction can be used to strongly initialize them, to coherently control them, to read them out, and to produce genuine electron-nuclear ensemble entanglement, all at ambient conditions. These demonstrations motivate further research into spins in SiC for prospective quantum technologies. In collaboration with A. Falk, D. Christle, K. Miao, H. Seo, V. Ivady, A. Gali, G. Galli, and D. D. Awschalom. This research was supported by the AFOSR, the NSF DMR-1306300, and the NSF Materials Research Science and Engineering Center.
NASA Astrophysics Data System (ADS)
Zhou, Sen; Jiang, Kun; Chen, Hua; Wang, Ziqiang
2017-10-01
Analogs of the high-Tc cuprates have been long sought after in transition metal oxides. Because of the strong spin-orbit coupling, the 5 d perovskite iridates Sr2 IrO4 exhibit a low-energy electronic structure remarkably similar to the cuprates. Whether a superconducting state exists as in the cuprates requires understanding the correlated spin-orbit entangled electronic states. Recent experiments discovered hidden order in the parent and electron-doped iridates, some with striking analogies to the cuprates, including Fermi surface pockets, Fermi arcs, and pseudogap. Here, we study the correlation and disorder effects in a five-orbital model derived from the band theory. We find that the experimental observations are consistent with a d -wave spin-orbit density wave order that breaks the symmetry of a joint twofold spin-orbital rotation followed by a lattice translation. There is a Berry phase and a plaquette spin flux due to spin procession as electrons hop between Ir atoms, akin to the intersite spin-orbit coupling in quantum spin Hall insulators. The associated staggered circulating Jeff=1 /2 spin current can be probed by advanced techniques of spin-current detection in spintronics. This electronic order can emerge spontaneously from the intersite Coulomb interactions between the spatially extended iridium 5 d orbitals, turning the metallic state into an electron-doped quasi-2D Dirac semimetal with important implications on the possible superconducting state suggested by recent experiments.
NASA Astrophysics Data System (ADS)
Chandrasekar, L. Bruno; Gnanasekar, K.; Karunakaran, M.
2018-06-01
The effect of δ-potential was studied in GaAs/Ga0.6Al0·4As double barrier heterostructure with Dresselhaus spin-orbit interaction. The role of barrier height and position of the δ- potential in the well region was analysed on spin-dependent electron tunneling using transfer matrix method. The spin-separation between spin-resonances on energy scale depends on both height and position of the δ- potential, whereas the tunneling life time of electrons highly influenced by the position of the δ- potential and not on the height. These results might be helpful for the fabrication of spin-filters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Subrata; Vijay, Amrendra, E-mail: avijay@iitm.ac.in
Using a second-quantized many-electron Hamiltonian, we obtain (a) an effective Hamiltonian suitable for materials whose electronic properties are governed by a set of strongly correlated bands in a narrow energy range and (b) an effective spin-only Hamiltonian for magnetic materials. The present Hamiltonians faithfully include phonon and spin-related interactions as well as the external fields to study the electromagnetic response properties of complex materials and they, in appropriate limits, reduce to the model Hamiltonians due to Hubbard and Heisenberg. With the Hamiltonian for narrow-band strongly correlated materials, we show that the spin-orbit interaction provides a mechanism for metal-insulator transition, whichmore » is distinct from the Mott-Hubbard (driven by the electron correlation) and the Anderson mechanism (driven by the disorder). Next, with the spin-only Hamiltonian, we demonstrate the spin-orbit interaction to be a reason for the existence of antiferromagnetic phase in materials which are characterized by a positive isotropic spin-exchange energy. This is distinct from the Néel-VanVleck-Anderson paradigm which posits a negative spin-exchange for the existence of antiferromagnetism. We also find that the Néel temperature increases as the absolute value of the spin-orbit coupling increases.« less
Langmuir instability in partially spin polarized bounded degenerate plasma
NASA Astrophysics Data System (ADS)
Iqbal, Z.; Jamil, M.; Murtaza, G.
2018-04-01
Some new features of waves inside the cylindrical waveguide on employing the separated spin evolution quantum hydrodynamic model are evoked. Primarily, the instability of Langmuir wave due to the electron beam in a partially spin polarized degenerate plasma considering a nano-cylindrical geometry is discussed. Besides, the evolution of a new spin-dependent wave (spin electron acoustic wave) due to electron spin polarization effects in the real wave spectrum is elaborated. Analyzing the growth rate, it is found that in the absence of Bohm potential, the electron spin effects or exchange interaction reduce the growth rate as well as k-domain but the inclusion of Bohm potential increases both the growth rate and k-domain. Further, we investigate the geometry effects expressed by R and pon and find that they have opposite effects on the growth rate and k-domain of the instability. Additionally, how the other parameters like electron beam density or streaming speed of beam electrons influence the growth rate is also investigated. This study may find its applications for the signal analysis in solid state devices at nanoscales.
Microscopic theory for coupled atomistic magnetization and lattice dynamics
NASA Astrophysics Data System (ADS)
Fransson, J.; Thonig, D.; Bessarab, P. F.; Bhattacharjee, S.; Hellsvik, J.; Nordström, L.
2017-12-01
A coupled atomistic spin and lattice dynamics approach is developed which merges the dynamics of these two degrees of freedom into a single set of coupled equations of motion. The underlying microscopic model comprises local exchange interactions between the electron spin and magnetic moment and the local couplings between the electronic charge and lattice displacements. An effective action for the spin and lattice variables is constructed in which the interactions among the spin and lattice components are determined by the underlying electronic structure. In this way, expressions are obtained for the electronically mediated couplings between the spin and lattice degrees of freedom, besides the well known interatomic force constants and spin-spin interactions. These former susceptibilities provide an atomistic ab initio description for the coupled spin and lattice dynamics. It is important to notice that this theory is strictly bilinear in the spin and lattice variables and provides a minimal model for the coupled dynamics of these subsystems and that the two subsystems are treated on the same footing. Questions concerning time-reversal and inversion symmetry are rigorously addressed and it is shown how these aspects are absorbed in the tensor structure of the interaction fields. By means of these results regarding the spin-lattice coupling, simple explanations of ionic dimerization in double-antiferromagnetic materials, as well as charge density waves induced by a nonuniform spin structure, are given. In the final parts, coupled equations of motion for the combined spin and lattice dynamics are constructed, which subsequently can be reduced to a form which is analogous to the Landau-Lifshitz-Gilbert equations for spin dynamics and a damped driven mechanical oscillator for the ionic motion. It is important to notice, however, that these equations comprise contributions that couple these descriptions into one unified formulation. Finally, Kubo-like expressions for the discussed exchanges in terms of integrals over the electronic structure and, moreover, analogous expressions for the damping within and between the subsystems are provided. The proposed formalism and types of couplings enable a step forward in the microscopic first principles modeling of coupled spin and lattice quantities in a consistent format.
Phonon-drag magnetothermopower in Rashba spin-split two-dimensional electron systems.
Biswas, Tutul; Ghosh, Tarun Kanti
2013-10-16
We study the phonon-drag contribution to the thermoelectric power in a quasi-two-dimensional electron system confined in GaAs/AlGaAs heterostructure in the presence of both Rashba spin-orbit interaction and perpendicular magnetic field at very low temperature. It is observed that the peaks in the phonon-drag thermopower split into two when the Rashba spin-orbit coupling constant is strong. This splitting is a direct consequence of the Rashba spin-orbit interaction. We show the dependence of phonon-drag thermopower on both magnetic field and temperature numerically. A power-law dependence of phonon-drag magnetothermopower on the temperature in the Bloch-Gruneisen regime is found. We also extract the exponent of the temperature dependence of phonon-drag thermopower for different parameters like electron density, magnetic field, and the spin-orbit coupling constant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruk, D., E-mail: danuta.kruk@matman.uwm.edu.pl; Hoffmann, S. K.; Goslar, J.
2013-12-28
Electron Spin Resonance (ESR) spectroscopy and Nuclear Magnetic Relaxation Dispersion (NMRD) experiments are reported for propylene glycol solutions of the nitroxide radical: 4-oxo-TEMPO-d{sub 16} containing {sup 15}N and {sup 14}N isotopes. The NMRD experiments refer to {sup 1}H spin-lattice relaxation measurements in a broad frequency range (10 kHz–20 MHz). A joint analysis of the ESR and NMRD data is performed. The ESR lineshapes give access to the nitrogen hyperfine tensor components and the rotational correlation time of the paramagnetic molecule. The NMRD data are interpreted in terms of the theory of paramagnetic relaxation enhancement in solutions of nitroxide radicals, recentlymore » presented by Kruk et al. [J. Chem. Phys. 138, 124506 (2013)]. The theory includes the effect of the electron spin relaxation on the {sup 1}H relaxation of the solvent. The {sup 1}H relaxation is caused by dipole-dipole interactions between the electron spin of the radical and the proton spins of the solvent molecules. These interactions are modulated by three dynamic processes: relative translational dynamics of the involved molecules, molecular rotation, and electron spin relaxation. The sensitivity to rotation originates from the non-central positions of the interacting spin in the molecules. The electronic relaxation is assumed to stem from the electron spin–nitrogen spin hyperfine coupling, modulated by rotation of the radical molecule. For the interpretation of the NMRD data, we use the nitrogen hyperfine coupling tensor obtained from ESR and fit the other relevant parameters. The consistency of the unified analysis of ESR and NMRD, evaluated by the agreement between the rotational correlation times obtained from ESR and NMRD, respectively, and the agreement of the translation diffusion coefficients with literature values obtained for pure propylene glycol, is demonstrated to be satisfactory.« less
Breit interaction effects in relativistic theory of the nuclear spin-rotation tensor.
Aucar, I Agustín; Gómez, Sergio S; Giribet, Claudia G; Ruiz de Azúa, Martín C
2013-09-07
In this work, relativistic effects on the nuclear spin-rotation (SR) tensor originated in the electron-nucleus and electron-electron Breit interactions are analysed. To this end, four-component numerical calculations were carried out in model systems HX (X=H,F,Cl,Br,I). The electron-nucleus Breit interaction couples the electrons and nuclei dynamics giving rise to a purely relativistic contribution to the SR tensor. Its leading order in 1/c is of the same value as that of relativistic corrections on the usual second order expression of the SR tensor considered in previous work [I. A. Aucar, S. S. Gómez, J. I. Melo, C. G. Giribet, and M. C. Ruiz de Azúa, J. Chem. Phys. 138, 134107 (2013)], and therefore it is absolutely necessary to establish its relative importance. For the sake of completeness, the corresponding effect originating in the electron-electron Breit interaction is also considered. It is verified that in all cases these Breit interactions yield only very small corrections to the SR tensors of both the X and H nuclei in the present series of compounds. Results of the present work strongly suggest that in order to achieve experimental accuracy in the theoretical study of the SR tensor both electron-nucleus and electron-electron Breit effects can be safely neglected.
Nuclear Spin Locking and Extended Two-Electron Spin Decoherence Time in an InAs Quantum Dot Molecule
NASA Astrophysics Data System (ADS)
Chow, Colin; Ross, Aaron; Steel, Duncan; Sham, L. J.; Bracker, Allan; Gammon, Daniel
2015-03-01
The spin eigenstates for two electrons confined in a self-assembled InAs quantum dot molecule (QDM) consist of the spin singlet state, S, with J = 0 and the triplet states T-, T0 and T+, with J = 1. When a transverse magnetic field (Voigt geometry) is applied, the two-electron system can be initialized to the different states with appropriate laser excitation. Under the excitation of a weak probe laser, non-Lorentzian lineshapes are obtained when the system is initialized to either T- or T+, where T- results in a ``resonance locking'' lineshape while T+ gives a ``resonance avoiding '' lineshape: two different manifestations of hysteresis showing the importance of memory in the system. These observations signify dynamic nuclear spin polarization (DNSP) arising from a feedback mechanism involving hyperfine interaction between lattice nuclei and delocalized electron spins, and Overhauser shift due to nuclear spin polarization. Using pump configurations that generate coherent population trapping, the isolation of the electron spin from the optical excitation shows the stabilization of the nuclear spin ensemble. The dark-state lineshape measures the lengthened electron spin decoherence time, from 1 ns to 1 μs. Our detailed spectra highlight the potential of QDM for realizing a two-qubit gate. This work is supported by NSF, ARO, AFOSR, DARPA, and ONR.
Three-Dimensional Non-Fermi-Liquid Behavior from One-Dimensional Quantum Critical Local Moments
Classen, Laura; Zaliznyak, Igor; Tsvelik, Alexei M.
2018-04-10
We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb 2Pt 2Pb, a metal where itinerant electrons coexist with localized moments of Yb-ions which can be described in terms of effective S = 1/2 spins with dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the twomore » interacting subsystems. Lastly, we characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasi linear temperature dependence.« less
Three-Dimensional Non-Fermi-Liquid Behavior from One-Dimensional Quantum Critical Local Moments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Classen, Laura; Zaliznyak, Igor; Tsvelik, Alexei M.
We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb 2Pt 2Pb, a metal where itinerant electrons coexist with localized moments of Yb-ions which can be described in terms of effective S = 1/2 spins with dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the twomore » interacting subsystems. Lastly, we characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasi linear temperature dependence.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocharian, Armen N.; Fernando, Gayanath W.; Fang, Kun
Rashba spin-orbit effects and electron correlations in the two-dimensional cylindrical lattices of square geometries are assessed using mesoscopic two-, three- and four-leg ladder structures. Here the electron transport properties are systematically calculated by including the spin-orbit coupling in tight binding and Hubbard models threaded by a magnetic flux. These results highlight important aspects of possible symmetry breaking mechanisms in square ladder geometries driven by the combined effect of a magnetic gauge field spin-orbit interaction and temperature. The observed persistent current, spin and charge polarizations in the presence of spin-orbit coupling are driven by separation of electron and hole charges andmore » opposite spins in real-space. The modeled spin-flip processes on the pairing mechanism induced by the spin-orbit coupling in assembled nanostructures (as arrays of clusters) engineered in various two-dimensional multi-leg structures provide an ideal playground for understanding spatial charge and spin density inhomogeneities leading to electron pairing and spontaneous phase separation instabilities in unconventional superconductors. Such studies also fall under the scope of current challenging problems in superconductivity and magnetism, topological insulators and spin dependent transport associated with numerous interfaces and heterostructures.« less
NASA Astrophysics Data System (ADS)
Ficek, Filip; Fadeev, Pavel; Flambaum, Victor V.; Jackson Kimball, Derek F.; Kozlov, Mikhail G.; Stadnik, Yevgeny V.; Budker, Dmitry
2018-05-01
Heretofore undiscovered spin-0 or spin-1 bosons can mediate exotic spin-dependent interactions between standard model particles. Here, we carry out the first search for semileptonic spin-dependent interactions between matter and antimatter. We compare theoretical calculations and spectroscopic measurements of the hyperfine structure of antiprotonic helium to constrain exotic spin- and velocity-dependent interactions between electrons and antiprotons.
Ficek, Filip; Fadeev, Pavel; Flambaum, Victor V; Jackson Kimball, Derek F; Kozlov, Mikhail G; Stadnik, Yevgeny V; Budker, Dmitry
2018-05-04
Heretofore undiscovered spin-0 or spin-1 bosons can mediate exotic spin-dependent interactions between standard model particles. Here, we carry out the first search for semileptonic spin-dependent interactions between matter and antimatter. We compare theoretical calculations and spectroscopic measurements of the hyperfine structure of antiprotonic helium to constrain exotic spin- and velocity-dependent interactions between electrons and antiprotons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivara-Minten, E.; Baglioni, P.; Kevan, L.
1988-05-05
Electron spin echo modulation (ESEM) and electron spin resonance (ESR) spectra of the photogenerated N,N,N',N'-tetramethylbenzidine cation radical (TMB/sup +/) in frozen mixed micelles of dodecyltrimethylammonium chloride (DTAC) and sodium dodecyl sulfate (SDS) have been studied as a function of the mixed micelle composition. ESEM effects due to TMB/sup +/ interactions with deuterium in D/sub 2/O show a decrease of the TMB/sup +/-water interaction that depends on the SDS-DTAC mixed micelle composition and reaches a minimum for the equimolar mixed micelle. The efficiency of charge separation upon photoionization of TMB to produce TMB/sup +/ measured by ESR correlates with the degreemore » of water penetration into the micelle. ESEM effects due to interaction of x-doxylstearic acid nitroxide probes with deuterium in D/sub 2/O show that the decrease of water penetration is due to higher surface packing due to electrostatic attraction among the polar headgroups of the two surfactants.« less
Generalized Elliott-Yafet spin-relaxation time for arbitrary spin mixing
NASA Astrophysics Data System (ADS)
Vollmar, Svenja; Hilton, David J.; Schneider, Hans Christian
2017-08-01
We extend our recent result for the spin-relaxation time due to acoustic electron-phonon scattering in degenerate bands with spin mixing [New J. Phys. 18, 023012 (2016), 10.1088/1367-2630/18/2/023012] to include interactions with optical phonons, and present a numerical evaluation of the spin-relaxation time for intraband hole-phonon scattering in the heavy-hole (HH) bands of bulk GaAs. Comparing our computed spin-relaxation times to the conventional Elliott-Yafet result quantitatively demonstrates that the latter underestimates the spin-relaxation time because it does not correctly describe how electron-phonon interactions change the (vector) spin expectation value of the single-particle states. We show that the conventional Elliott-Yafet spin relaxation time is a special case of our result for weak spin mixing.
Electron-Spin Filters Based on the Rashba Effect
NASA Technical Reports Server (NTRS)
Ting, David Z.-Y.; Cartoixa, Xavier; McGill, Thomas C.; Moon, Jeong S.; Chow, David H.; Schulman, Joel N.; Smith, Darryl L.
2004-01-01
Semiconductor electron-spin filters of a proposed type would be based on the Rashba effect, which is described briefly below. Electron-spin filters more precisely, sources of spin-polarized electron currents have been sought for research on, and development of, the emerging technological discipline of spintronics (spin-based electronics). There have been a number of successful demonstrations of injection of spin-polarized electrons from diluted magnetic semiconductors and from ferromagnetic metals into nonmagnetic semiconductors. In contrast, a device according to the proposal would be made from nonmagnetic semiconductor materials and would function without an applied magnetic field. The Rashba effect, named after one of its discoverers, is an energy splitting, of what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. The present proposal evolved from recent theoretical studies that suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling. Accordingly, a device according to the proposal would be denoted an asymmetric resonant interband tunneling diode [a-RITD]. An a-RITD could be implemented in a variety of forms, the form favored in the proposal being a double-barrier heterostructure containing an asymmetric quantum well. It is envisioned that a-RITDs would be designed and fabricated in the InAs/GaSb/AlSb material system for several reasons: Heterostructures in this material system are strong candidates for pronounced Rashba spin splitting because InAs and GaSb exhibit large spin-orbit interactions and because both InAs and GaSb would be available for the construction of highly asymmetric quantum wells. This mate-rial system affords a variety of energy-band alignments that can be exploited to obtain resonant tunneling and other desired effects. The no-common-atom InAs/GaSb and InAs/AlSb interfaces would present opportunities for engineering interface potentials for optimizing Rashba spin splitting.
Effect of the magnetic dipole interaction on a spin-1 system
NASA Astrophysics Data System (ADS)
Hu, Fangqi; Jia, Wei; Zhao, Qing
2018-05-01
We consider a hybrid system composed of a spin-1 triplet coupled to a nuclear spin. We study the effect of the axisymmetric and the quadrupole term of the magnetic dipole interaction between the two electrons forming the triplet on the energy spectrum in a static magnetic field. The energy spectrum obtained by directly diagonalizing the Hamiltonian of the system shows that these two terms not only remove the special crossings that appear in the absence of the magnetic dipole interaction, but also produce new (avoided) crossings by lifting the relevant levels. Specially, the gaps between the avoided crossing levels increase with the strength of the quadrupole term. In order to accurately illustrate these effects, we present the results for the discriminant and von Neumann entropy of one electron interacting with the rest of the whole system. Finally, by numerically solving the time-dependent Schrödinger equations of the system, we discover that the polarization oscillation of electron and nuclear spin is in-phase and the total average longitudinal spin is not conserved at location of avoided crossing, but the two results are opposite beyond that.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svane, A.; Trygg, J.; Johansson, B.
1997-09-01
Electronic-structure calculations of elemental praseodymium are presented. Several approximations are used to describe the Pr f electrons. It is found that the low-pressure, trivalent phase is well described using either the self-interaction corrected (SIC) local-spin-density (LSD) approximation or the generalized-gradient approximation (GGA) with spin and orbital polarization (OP). In the SIC-LSD approach the Pr f electrons are treated explicitly as localized with a localization energy given by the self-interaction of the f orbital. In the GGA+OP scheme the f-electron localization is described by the onset of spin and orbital polarization, the energetics of which is described by spin-moment formation energymore » and a term proportional to the total orbital moment, L{sub z}{sup 2}. The high-pressure phase is well described with the f electrons treated as band electrons, in either the LSD or the GGA approximations, of which the latter describes more accurately the experimental equation of state. The calculated pressure of the transition from localized to delocalized behavior is 280 kbar in the SIC-LSD approximation and 156 kbar in the GGA+OP approach, both comparing favorably with the experimentally observed transition pressure of 210 kbar. {copyright} {ital 1997} {ital The American Physical Society}« less
NASA Astrophysics Data System (ADS)
Wang, Zi-Wu; Li, Shu-Shen
2012-07-01
We investigate the spin-flip relaxation in quantum dots using a non-radiation transition approach based on the descriptions for the electron-phonon deformation potential and Fröhlich interaction in the Pavlov-Firsov spin-phonon Hamiltonian. We give the comparisons of the electron relaxations with and without spin-flip assisted by one and two-phonon processes. Calculations are performed for the dependence of the relaxation time on the external magnetic field, the temperature and the energy separation between the Zeeman sublevels of the ground and first-excited state. We find that the electron relaxation time of the spin-flip process is more longer by three orders of magnitudes than that of no spin-flip process.
NASA Astrophysics Data System (ADS)
Soulié, Edgar; Gaugenot, Jacques
1995-04-01
Nettar and Villafranca wrote in the FORTRAN programming language a computer program which simulates the electron paramagnetic resonance (EPR) spectra of powders (Journal of Magnetic Resonance, vol. 64 (1985) pp. 61-65). The spin Hamiltonian which their program can handle includes the Zeeman electronic interaction, the fine interaction up to the sixth order in the electron spin, a general hyperfine interaction, an isotropic nuclear Zeeman term; anisotropic ligand hyperfine terms are treated to first order in perturbation. The above Hamiltonian, without the ligand hyperfine terms, is treated exactly, i.e. the resonance equation for a transition between states labeled i and j is solved numerically: h.ν=Ei(H)-Ej(H).
Tunneling measurement of quantum spin oscillations
NASA Astrophysics Data System (ADS)
Bulaevskii, L. N.; Hruška, M.; Ortiz, G.
2003-09-01
We consider the problem of tunneling between two leads via a localized spin 1/2 or any other microscopic system (e.g., a quantum dot) which can be modeled by a two-level Hamiltonian. We assume that a constant magnetic field B0 acts on the spin, that electrons in the leads are in a voltage driven thermal equilibrium, and that the tunneling electrons are coupled to the spin through exchange and spin-orbit interactions. Using the nonequilibrium Keldysh formalism we find the dependence of the spin-spin and current-current correlation functions on the applied voltage between leads V, temperature T, B0, and on the degree and orientation mα of spin polarization of the electrons in the right (α=R) and left (α=L) leads. We show the following (a) The spin-spin correlation function exhibits a peak at the Larmor frequency, ωL, corresponding to the effective magnetic field B acting upon the spin as determined by B0 and the exchange field induced by tunneling of spin-polarized electrons. (b) If the mα’s are not parallel to B the second-order derivative of the average tunneling current I(V) with respect to V is proportional to the spectral density of the spin-spin correlation function, i.e., exhibits a peak at the voltage V=ħωL/e. (c) In the same situation when V>B the current-current correlation function exhibits a peak at the same frequency. (d) The signal-to-noise (shot-noise) ratio R for this peak reaches a maximum value of order unity, R⩽4, at large V when the spin is decoupled from the environment and the electrons in both leads are fully polarized in the direction perpendicular to B. (e) R≪1 if the electrons are weakly polarized, or if they are polarized in a direction close to B0, or if the spin interacts with the environment stronger than with the tunneling electrons. Our results of a full quantum-mechanical treatment of the tunneling-via-spin model when V≫B are in agreement with those previously obtained in the quasiclassical approach. We discuss also the experimental results observed using scanning tunneling microscopy dynamic probes of the localized spin.
NASA Astrophysics Data System (ADS)
Ulrich, C.; Khaliullin, G.; Guennou, M.; Roth, H.; Lorenz, T.; Keimer, B.
2015-10-01
Raman scattering experiments on stoichiometric, Mott-insulating LaTiO3 over a wide range of excitation energies reveal a broad electronic continuum which is featureless in the paramagnetic state, but develops a gap of ˜800 cm-1 upon cooling below the Néel temperature TN=146 K . In the antiferromagnetic state, the spectral weight below the gap is transferred to well-defined spectral features due to spin and orbital excitations. Low-energy phonons exhibit pronounced Fano anomalies indicative of strong interaction with the electron system for T >TN , but become sharp and symmetric for T
NASA Astrophysics Data System (ADS)
John, Sajeev; Golubentsev, Andrey
1995-01-01
It is suggested that an interacting many-electron system in a two-dimensional lattice may condense into a topological magnetic state distinct from any discussed previously. This condensate exhibits local spin-1/2 magnetic moments on the lattice sites but is composed of a Slater determinant of single-electron wave functions which exist in an orthogonal sector of the electronic Hilbert space from the sector describing traditional spin-density-wave or spiral magnetic states. These one-electron spinor wave functions have the distinguishing property that they are antiperiodic along a closed path encircling any elementary plaquette of the lattice. This corresponds to a 2π rotation of the internal coordinate frame of the electron as it encircles the plaquette. The possibility of spinor wave functions with spatial antiperiodicity is a direct consequence of the two-valuedness of the internal electronic wave function defined on the space of Euler angles describing its spin. This internal space is the topologically, doubly-connected, group manifold of SO(3). Formally, these antiperiodic wave functions may be described by passing a flux which couples to spin (rather than charge) through each of the elementary plaquettes of the lattice. When applied to the two-dimensional Hubbard model with one electron per site, this new topological magnetic state exhibits a relativistic spectrum for charged, quasiparticle excitations with a suppressed one-electron density of states at the Fermi level. For a topological antiferromagnet on a square lattice, with the standard Hartree-Fock, spin-density-wave decoupling of the on-site Hubbard interaction, there is an exact mapping of the low-energy one-electron excitation spectrum to a relativistic Dirac continuum field theory. In this field theory, the Dirac mass gap is precisely the Mott-Hubbard charge gap and the continuum field variable is an eight-component Dirac spinor describing the components of physical electron-spin amplitude on each of the four sites of the elementary plaquette in the original Hubbard model. Within this continuum model we derive explicitly the existence of hedgehog Skyrmion textures as local minima of the classical magnetic energy. These magnetic solitons carry a topological winding number μ associated with the vortex rotation of the background magnetic moment field by a phase angle 2πμ along a path encircling the soliton. Such solitons also carry a spin flux of μπ through the plaquette on which they are centered. The μ=1 hedgehog Skyrmion describes a local transition from the topological (antiperiodic) sector of the one-electron Hilbert space to the nontopological sector. We derive from first principles the existence of deep level localized electronic states within the Mott-Hubbard charge gap for the μ=1 and 2 solitons. The spectrum of localized states is symmetric about E=0 and each subgap electronic level can be occupied by a pair of electrons in which one electron resides primarily on one sublattice and the second electron on the other sublattice. It is suggested that flux-carrying solitons and the subgap electronic structure which they induce are important in understanding the physical behavior of doped Mott insulators.
Observation of two-orbital spin-exchange interactions with ultracold SU(N)-symmetric fermions
NASA Astrophysics Data System (ADS)
Scazza, F.; Hofrichter, C.; Höfer, M.; de Groot, P. C.; Bloch, I.; Fölling, S.
2014-10-01
Spin-exchanging interactions govern the properties of strongly correlated electron systems such as many magnetic materials. When orbital degrees of freedom are present, spin exchange between different orbitals often dominates, leading to the Kondo effect, heavy fermion behaviour or magnetic ordering. Ultracold ytterbium or alkaline-earth ensembles have attracted much recent interest as model systems for these effects, with two (meta-) stable electronic configurations representing independent orbitals. We report the observation of spin-exchanging contact interactions in a two-orbital SU(N)-symmetric quantum gas realized with fermionic 173Yb. We find strong inter-orbital spin exchange by spectroscopic characterization of all interaction channels and demonstrate SU(N = 6) symmetry within our measurement precision. The spin-exchange process is also directly observed through the dynamic equilibration of spin imbalances between ensembles in separate orbitals. The realization of an SU(N)-symmetric two-orbital Hubbard Hamiltonian opens the route to quantum simulations with extended symmetries and with orbital magnetic interactions, such as the Kondo lattice model.
Direct Measurement of the Flip-Flop Rate of Electron Spins in the Solid State
NASA Astrophysics Data System (ADS)
Dikarov, Ekaterina; Zgadzai, Oleg; Artzi, Yaron; Blank, Aharon
2016-10-01
Electron spins in solids have a central role in many current and future spin-based devices, ranging from sensitive sensors to quantum computers. Many of these apparatuses rely on the formation of well-defined spin structures (e.g., a 2D array) with controlled and well-characterized spin-spin interactions. While being essential for device operation, these interactions can also result in undesirable effects, such as decoherence. Arguably, the most important pure quantum interaction that causes decoherence is known as the "flip-flop" process, where two interacting spins interchange their quantum state. Currently, for electron spins, the rate of this process can only be estimated theoretically, or measured indirectly, under limiting assumptions and approximations, via spin-relaxation data. This work experimentally demonstrates how the flip-flop rate can be directly and accurately measured by examining spin-diffusion processes in the solid state for physically fixed spins. Under such terms, diffusion can occur only through this flip-flop-mediated quantum-state exchange and not via actual spatial motion. Our approach is implemented on two types of samples, phosphorus-doped 28Si and nitrogen vacancies in diamond, both of which are significantly relevant to quantum sensors and information processing. However, while the results for the former sample are conclusive and reveal a flip-flop rate of approximately 12.3 Hz, for the latter sample only an upper limit of approximately 0.2 Hz for this rate can be estimated.
Physics of lateral triple quantum-dot molecules with controlled electron numbers.
Hsieh, Chang-Yu; Shim, Yun-Pil; Korkusinski, Marek; Hawrylak, Pawel
2012-11-01
We review the recent progress in theory and experiments with lateral triple quantum dots with controlled electron numbers down to one electron in each dot. The theory covers electronic and spin properties as a function of topology, number of electrons, gate voltage and external magnetic field. The orbital Hund's rules and Nagaoka ferromagnetism, magnetic frustration and chirality, interplay of quantum interference and electron-electron interactions and geometrical phases are described and related to charging and transport spectroscopy. Fabrication techniques and recent experiments are covered, as well as potential applications of triple quantum-dot molecule in coherent control, spin manipulation and quantum computation.
Electrical control of flying spin precession in chiral 1D edge states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakajima, Takashi; Komiyama, Susumu; Lin, Kuan-Ting
2013-12-04
Electrical control and detection of spin precession are experimentally demonstrated by using spin-resolved edge states in the integer quantum Hall regime. Spin precession is triggered at a corner of a biased metal gate, where electron orbital motion makes a sharp turn leading to a nonadiabatic change in the effective magnetic field via spin-orbit interaction. The phase of precession is controlled by the group velocity of edge-state electrons tuned by gate bias voltage: Spin-FET-like coherent control of spin precession is thus realized by all-electrical means.
Quantum ratchet in two-dimensional semiconductors with Rashba spin-orbit interaction
Ang, Yee Sin; Ma, Zhongshui; Zhang, Chao
2015-01-01
Ratchet is a device that produces direct current of particles when driven by an unbiased force. We demonstrate a simple scattering quantum ratchet based on an asymmetrical quantum tunneling effect in two-dimensional electron gas with Rashba spin-orbit interaction (R2DEG). We consider the tunneling of electrons across a square potential barrier sandwiched by interface scattering potentials of unequal strengths on its either sides. It is found that while the intra-spin tunneling probabilities remain unchanged, the inter-spin-subband tunneling probabilities of electrons crossing the barrier in one direction is unequal to that of the opposite direction. Hence, when the system is driven by an unbiased periodic force, a directional flow of electron current is generated. The scattering quantum ratchet in R2DEG is conceptually simple and is capable of converting a.c. driving force into a rectified current without the need of additional symmetry breaking mechanism or external magnetic field. PMID:25598490
Scanning nuclear resonance imaging of a hyperfine-coupled quantum Hall system.
Hashimoto, Katsushi; Tomimatsu, Toru; Sato, Ken; Hirayama, Yoshiro
2018-06-07
Nuclear resonance (NR) is widely used to detect and characterise nuclear spin polarisation and conduction electron spin polarisation coupled by a hyperfine interaction. While the macroscopic aspects of such hyperfine-coupled systems have been addressed in most relevant studies, the essential role of local variation in both types of spin polarisation has been indicated in 2D semiconductor systems. In this study, we apply a recently developed local and highly sensitive NR based on a scanning probe to a hyperfine-coupled quantum Hall (QH) system in a 2D electron gas subject to a strong magnetic field. We succeed in imaging the NR intensity and Knight shift, uncovering the spatial distribution of both the nuclear and electron spin polarisation. The results reveal the microscopic origin of the nonequilibrium QH phenomena, and highlight the potential use of our technique in microscopic studies on various electron spin systems as well as their correlations with nuclear spins.
Spin-Orbit Coupling Controlled J = 3 / 2 Electronic Ground State in 5 d 3 Oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, A. E.; Calder, S.; Morrow, R.
Entanglement of spin and orbital degrees of freedom drives the formation of novel quantum and topological physical states. Here we report resonant inelastic x-ray scattering measurements of the transition metal oxides Ca3LiOsO6 and Ba2YOsO6, which reveals a dramatic spitting of the t2g manifold. We invoke an intermediate coupling approach that incorporates both spin-orbit coupling and electron-electron interactions on an even footing and reveal that the ground state of 5d3-based compounds, which has remained elusive in previously applied models, is a novel spin-orbit entangled J=3/2 electronic ground state. This work reveals the hidden diversity of spin-orbit controlled ground states in 5dmore » systems and introduces a new arena in the search for spin-orbit controlled phases of matter.« less
Spin-orbit excitations and electronic structure of the putative Kitaev magnet α -RuCl3
NASA Astrophysics Data System (ADS)
Sandilands, Luke J.; Tian, Yao; Reijnders, Anjan A.; Kim, Heung-Sik; Plumb, K. W.; Kim, Young-June; Kee, Hae-Young; Burch, Kenneth S.
2016-02-01
Mott insulators with strong spin-orbit coupling have been proposed to host unconventional magnetic states, including the Kitaev quantum spin liquid. The 4 d system α -RuCl3 has recently come into view as a candidate Kitaev system, with evidence for unusual spin excitations in magnetic scattering experiments. We apply a combination of optical spectroscopy and Raman scattering to study the electronic structure of this material. Our measurements reveal a series of orbital excitations involving localized total angular momentum states of the Ru ion, implying that strong spin-orbit coupling and electron-electron interactions coexist in this material. Analysis of these features allows us to estimate the spin-orbit coupling strength, as well as other parameters describing the local electronic structure, revealing a well-defined hierarchy of energy scales within the Ru d states. By comparing our experimental results with density functional theory calculations, we also clarify the overall features of the optical response. Our results demonstrate that α -RuCl3 is an ideal material system to study spin-orbit coupled magnetism on the honeycomb lattice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevan, L.
1982-10-21
During this period work has focused on the structural aspects of photoinduced charge separation in micellar media with initial forays into vesicular media. The primary techniques utilized are electron spin resonance and electron spin echo spectrometry. The analysis of electron spin echo modulation gives a unique handle on very weak hyperfine interactions thus providing a new structural tool for this general problem. Electron spin resonance and electron spin echo studies of the photoionization of N,N,N',N'tetramethylbenzidine (TMB) to give the cation radical have been carried out in anionic, cationic and nonionic micellar solutions frozen to 77/sup 0/K. The photoionization efficiency ofmore » TMB has also been studied in micelles with varying alkyl chain lengths of the surfactant. Stearic acid nitroxide spin probes have also been used to determine some structural aspects of the location of the neutral TMB molecule in anionic micelles before photoionization. The nitroxide work in which the nitroxide is acting as an electron acceptor also shows that a suitable electron acceptor can be located within the micellar structure. The effect of inorganic solutes on the efficiency of the photoionization of TMB in frozen micelles has also been studied. A series of electron scavenger studies have been initiated to study the effect on TMB photoionization efficiency. Electron spin echo detection of laser photogenerated TMB cation in liquid sodium dodecyl sulfate solutions at room temperature has recently been observed.« less
Electronic structure and spectra of the RbHe van der Waals system including spin orbit interaction
NASA Astrophysics Data System (ADS)
Dhiflaoui, Jamila; Bejaoui, Mohamed; Berriche, Hamid
2017-12-01
The potential energy interaction, the spectroscopic properties and dipole functions of the RbHe van der Waals dimer have been investigated. We used a one-electron pseudopotential approach and large Gaussian basis sets to represent the two atoms Rb and He. The Rb+ core and the electron-He interactions were replaced by semi-local pseudopotentials and a core-core interaction is included. Therefore, the number of active electrons of RbHe is reduced to only one electron. Consequently, the potential energy curves and dipole moments for many electronic states dissociating into Rb(5s,5p,4d,6s,6p,5d,7s)+He are performed at the SCF level. In addition, the spin-orbit coupling is included in the calculation. The Rb+He interaction, in its ground state, is taken from accurate CCSD (T) calculations and fitted to an analytical expression for a better description of the potential in all internuclear ranges. The spectroscopic properties of the RbHe electronic states are extracted. The comparison of these constants has shown a very good agreement for the ground state as well as for the lower excited states when compared with existing theoretical and experimental studies.
Spin noise spectroscopy of donor-bound electrons in ZnO
NASA Astrophysics Data System (ADS)
Horn, H.; Balocchi, A.; Marie, X.; Bakin, A.; Waag, A.; Oestreich, M.; Hübner, J.
2013-01-01
We investigate the intrinsic spin dynamics of electrons bound to Al impurities in bulk ZnO by optical spin noise spectroscopy. Spin noise spectroscopy enables us to investigate the longitudinal and transverse spin relaxation time with respect to nuclear and external magnetic fields in a single spectrum. On one hand, the spin dynamic is dominated by the intrinsic hyperfine interaction with the nuclear spins of the naturally occurring 67Zn isotope. We measure a typical spin dephasing time of 23 ns, in agreement with the expected theoretical values. On the other hand, we measure a third, very high spin dephasing rate which is attributed to a high defect density of the investigated ZnO material. Measurements of the spin dynamics under the influence of transverse as well as longitudinal external magnetic fields unambiguously reveal the intriguing connections of the electron spin with its nuclear and structural environment.
NASA Astrophysics Data System (ADS)
Sakai, Osamu; Suzuki, Taku T.
2018-05-01
The scattering of an electron-spin-polarized 4He+ beam on paramagnetic materials has an anomalously large asymmetric scattering component (ASC) around 10%, which is 104 times that expected from the spin-orbit coupling for the potential of the target nucleus. The scattering angle (θ) dependence of the ASC has been measured. It changes sign near 90° for some materials (for example, Au and Pt), while it does not change sign for other materials (for example, Pb and Bi). It has been noted that the spin-orbit interaction of electrons on the target in the electron-transfer intermediate state causes the ASC of He nucleus motion, and it has also been predicted that the sign change in the θ dependence occurs when the d electron transfer is dominant. This seems to correspond to the cases of Au and Pt, but not to the cases of Pb and Bi. The previous approach is refined on the basis of the partial wave representation, which can give a more correct estimation of the ASC. It is shown that the sign change appears in the weak-resonance domain in the case of d electron excitation, whereas the sign change disappears in the strong-resonance domain. Our calculated results qualitatively agree with the material dependence of the ASC observed experimentally.
Spontaneous symmetry breaking in quasi one dimension
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satpathi, Urbashi, E-mail: urbashi@bose.res.in; Deo, P. Singha
2015-06-24
Electronic charge and spin separation leading to charge density wave and spin density wave is well established in one dimension in the presence and absence of Coulomb interaction. We start from quasi one dimension and show the possibility of such a transition in quasi one dimension as well as in two dimensions by going to a regime where it can be shown for electrons that just interact via Fermi statistics. Such density waves arise due to internal symmetry breaking in a many fermion quantum system. We can extend this result to very wide rings with infinitely many electrons including Coulombmore » interaction.« less
Spin manipulation and spin-lattice interaction in magnetic colloidal quantum dots
NASA Astrophysics Data System (ADS)
Moro, Fabrizio; Turyanska, Lyudmila; Granwehr, Josef; Patanè, Amalia
2014-11-01
We report on the spin-lattice interaction and coherent manipulation of electron spins in Mn-doped colloidal PbS quantum dots (QDs) by electron spin resonance. We show that the phase memory time,TM , is limited by Mn-Mn dipolar interactions, hyperfine interactions of the protons (1H) on the QD capping ligands with Mn ions in their proximity (<1 nm), and surface phonons originating from thermal fluctuations of the capping ligands. In the low Mn concentration limit and at low temperature, we achieve a long phase memory time constant TM˜0.9 μ s , thus enabling the observation of Rabi oscillations. Our findings suggest routes to the rational design of magnetic colloidal QDs with phase memory times exceeding the current limits of relevance for the implementation of QDs as qubits in quantum information processing.
NASA Astrophysics Data System (ADS)
Tsukazaki, A.; Ohtomo, A.; Kawasaki, M.; Akasaka, S.; Yuji, H.; Tamura, K.; Nakahara, K.; Tanabe, T.; Kamisawa, A.; Gokmen, T.; Shabani, J.; Shayegan, M.
2008-12-01
We report measurements of the spin susceptibility and the electron effective mass for two-dimensional electrons confined at the interfaces of MgxZn1-xO/ZnO single heterostructures ( x=0.05 , 0.08, and 0.11), grown by molecular-beam epitaxy on (0001) ZnO substrates. By tuning the built-in polarization through control of the barrier composition, the electron density was systematically varied in the range of 5.6×1011-1.6×1012cm-2 , corresponding to a range of 3.1≤rs≤5.2 , where rs is the average electron spacing measured in units of the effective Bohr radius. We used the coincidence technique, where crossings of the spin-split Landau levels occur at critical tilt angles of magnetic field, to evaluate the spin susceptibility. In addition, we determined the effective mass from the temperature dependence of the Shubnikov-de Haas oscillations measured at the coincidence conditions. The susceptibility and the effective mass both gradually increase with decreasing electron density, reflecting the role of electron-electron interaction.
Breakdown of the Wigner-Mattis theorem in semiconductor carbon-nanotube quantum dots
NASA Astrophysics Data System (ADS)
Rontani, Massimo; Secchi, Andrea; Manghi, Franca
2009-03-01
The Wigner-Mattis theorem states the ground state of two bound electrons, in the absence of the magnetic field, is always a spin-singlet. We predict the opposite result --a triplet- for two electrons in a quantum dot defined in a semiconductor carbon nanotube. The claim is supported by extensive many-body calculations based on the accurate configuration interaction code DONRODRIGO (www.s3.infm.t/donrodrigo). The crux of the matter is the peculiar two-valley structure of low-energy states, which encodes a pseudo-spin degree of freedom. The spin polarization of the ground state corresponds to a pseudo-spin singlet, which is selected by the inter-valley short-range Coulomb interaction. Single-electron excitation spectra and STM wave function images may validate this scenario, as shown by our numerical simulations.
Entanglement of Electron Spins in Two Coupled Quantum Dots
NASA Astrophysics Data System (ADS)
Chen, Yuanzhen; Webb, Richard
2004-03-01
We study the entanglement of electron spins in a coupled quantum dots system at 70 mK. Two quantum dots are fabricated in a GaAs/AlGaAs heterostructure containing a high mobility 2-D electron gas. The two dots can be tuned independently and the electron spins in the dots are coupled through an exchange interaction between them. An exchange gate is used to vary the height and width of a potential barrier between the two dots, thus controlling the strength of the exchange interaction. Electrons are injected to the coupled dots by two independent DC currents and the output of the dots is incident on a beam splitter, which introduces quantum interferences. Cross-correlations of the shot noise of currents from the two output channels are measured and compared with theory (1). *Work supported by LPS and ARDA under MDA90401C0903 and NSF under DMR 0103223. (1) Burkard, Loss, & Sukhorukov, Phys. Rev. B61, R16303 (2000).
NASA Astrophysics Data System (ADS)
Hasanirokh, K.; Phirouznia, A.; Majidi, R.
2016-02-01
The influence of the electron coupling with non-polarized optical phonons on magnetoelectric effects of a two-dimensional electron gas system has been investigated in the presence of the Rashba and Dresselhaus spin-orbit couplings. Numerical calculations have been performed in the non-equilibrium regime. In the previous studies in this field, it has been shown that the Rashba and Dresselhaus couplings cannot generate non-equilibrium spin current and the spin current vanishes identically in the absence of other relaxation mechanisms such as lattice vibrations. However, in the current study, based on a semiclassical approach, it was demonstrated that in the presence of electron-phonon coupling, the spin current and other magnetoelectric quantities have been modulated by the strength of the spin-orbit interactions.
Multi-electron double quantum dot spin qubits
NASA Astrophysics Data System (ADS)
Nielsen, Erik; Kestner, Jason; Barnes, Edwin; Das Sarma, Sankar
2013-03-01
Double quantum dot (DQD) spin quits in a solid state environment typically consist of two electron spins confined to a DQD potential. We analyze the viability and potential advantages of DQD qubits which use greater then two electrons, and present results for six-electron qubits using full configuration interaction methods. The principal results of this work are that such six electron DQDs can retain an isolated low-energy qubit space that is more robust to charge noise due to screening. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Dynamic nuclear polarization assisted spin diffusion for the solid effect case.
Hovav, Yonatan; Feintuch, Akiva; Vega, Shimon
2011-02-21
The dynamic nuclear polarization (DNP) process in solids depends on the magnitudes of hyperfine interactions between unpaired electrons and their neighboring (core) nuclei, and on the dipole-dipole interactions between all nuclei in the sample. The polarization enhancement of the bulk nuclei has been typically described in terms of a hyperfine-assisted polarization of a core nucleus by microwave irradiation followed by a dipolar-assisted spin diffusion process in the core-bulk nuclear system. This work presents a theoretical approach for the study of this combined process using a density matrix formalism. In particular, solid effect DNP on a single electron coupled to a nuclear spin system is considered, taking into account the interactions between the spins as well as the main relaxation mechanisms introduced via the electron, nuclear, and cross-relaxation rates. The basic principles of the DNP-assisted spin diffusion mechanism, polarizing the bulk nuclei, are presented, and it is shown that the polarization of the core nuclei and the spin diffusion process should not be treated separately. To emphasize this observation the coherent mechanism driving the pure spin diffusion process is also discussed. In order to demonstrate the effects of the interactions and relaxation mechanisms on the enhancement of the nuclear polarization, model systems of up to ten spins are considered and polarization buildup curves are simulated. A linear chain of spins consisting of a single electron coupled to a core nucleus, which in turn is dipolar coupled to a chain of bulk nuclei, is considered. The interaction and relaxation parameters of this model system were chosen in a way to enable a critical analysis of the polarization enhancement of all nuclei, and are not far from the values of (13)C nuclei in frozen (glassy) organic solutions containing radicals, typically used in DNP at high fields. Results from the simulations are shown, demonstrating the complex dependences of the DNP-assisted spin diffusion process on variations of the relevant parameters. In particular, the effect of the spin lattice relaxation times on the polarization buildup times and the resulting end polarization are discussed, and the quenching of the polarizations by the hyperfine interaction is demonstrated.
Doppler Velocimetry of Current Driven Spin Helices in a Two-Dimensional Electron Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Luyi
2013-05-17
Spins in semiconductors provide a pathway towards the development of spin-based electronics. The appeal of spin logic devices lies in the fact that the spin current is even under time reversal symmetry, yielding non-dissipative coupling to the electric field. To exploit the energy-saving potential of spin current it is essential to be able to control it. While recent demonstrations of electrical-gate control in spin-transistor configurations show great promise, operation at room temperature remains elusive. Further progress requires a deeper understanding of the propagation of spin polarization, particularly in the high mobility semiconductors used for devices. This dissertation presents the demonstrationmore » and application of a powerful new optical technique, Doppler spin velocimetry, for probing the motion of spin polarization at the level of 1 nm on a picosecond time scale. We discuss experiments in which this technique is used to measure the motion of spin helices in high mobility n-GaAs quantum wells as a function of temperature, in-plane electric field, and photoinduced spin polarization amplitude. We find that the spin helix velocity changes sign as a function of wave vector and is zero at the wave vector that yields the largest spin lifetime. This observation is quite striking, but can be explained by the random walk model that we have developed. We discover that coherent spin precession within a propagating spin density wave is lost at temperatures near 150 K. This finding is critical to understanding why room temperature operation of devices based on electrical gate control of spin current has so far remained elusive. We report that, at all temperatures, electron spin polarization co-propagates with the high-mobility electron sea, even when this requires an unusual form of separation of spin density from photoinjected electron density. Furthermore, although the spin packet co-propagates with the two-dimensional electron gas, spin diffusion is strongly suppressed by electron-electron interactions, leading to remarkable resistance to diffusive spreading of the drifting pulse of spin polarization. Finally, we show that spin helices continue propagate at the same speed as the Fermi sea even when the electron drift velocity exceeds the Fermi velocity of 107 cm s -1.« less
Magneto-optical studies of quantum dots
NASA Astrophysics Data System (ADS)
Russ, Andreas Hans
Significant effort in condensed matter physics has recently been devoted to the field of "spintronics" which seeks to utilize the spin degree of freedom of electrons. Unlike conventional electronics that rely on the electron charge, devices exploiting their spin have the potential to yield new and novel technological applications, including spin transistors, spin filters, and spin-based memory devices. Any such application has the following essential requirements: 1) Efficient electrical injection of spin-polarized carriers; 2) Long spin lifetimes; 3) Ability to control and manipulate electron spins; 4) Effective detection of spin-polarized carriers. Recent work has demonstrated efficient electrical injection from ferromagnetic contacts such as Fe and MnAs, utilizing a spin-Light Emitting Diode (spin-LED) as a method of detection. Semiconductor quantum dots (QDs) are attractive candidates for satisfying requirements 2 and 3 as their zero dimensionality significantly suppresses many spin-flip mechanisms leading to long spin coherence times, as well as enabling the localization and manipulation of a controlled number of electrons and holes. This thesis is composed of three projects that are all based on the optical properties of QD structures including: I) Intershell exchange between spin-polarized electrons occupying adjacent shells in InAs QDs; II) Spin-polarized multiexitons in InAs QDs in the presence of spin-orbit interactions; III) The optical Aharonov-Bohm effect in AlxGa1-xAs/AlyGa1-yAs quantum wells (QWs). In the following we introduce some of the basic optical properties of quantum dots, describe the main tool (spin-LED) employed in this thesis to inject and detect spins in these QDs, and conclude with the optical Aharonov-Bohm effect (OAB) in type-II QDs.
Cabrera-Baez, M; Iwamoto, W; Magnavita, E T; Osorio-Guillén, J M; Ribeiro, R A; Avila, M A; Rettori, C
2014-04-30
Interest in the electronic structure of the intermetallic compound YIn3 has been renewed with the recent discovery of superconductivity at T ∼ 1 K, which may be filamentary in nature. In this work we perform electron spin resonance (ESR) experiments on Gd(3+) doped YIn3 (Y1-xGdxIn3; 0.001 ⪅ x ⩽̸ 0.08), showing that the spin-lattice relaxation of the Gd(3+) ions, due to the exchange interaction between the Gd(3+) localized magnetic moment and the conduction electrons (ce), is processed via the presence of s-, p- and d-type ce at the YIn3 Fermi level. These findings are revealed by the Gd(3+) concentration dependence of the Korringa-like relaxation rate d(ΔH)/dT and g-shift (Δg = g - 1.993), that display bottleneck relaxation behavior for the s-electrons and unbottleneck behavior for the p- and d-electrons. The Korringa-like relaxation rates vary from 22(2) Oe/K for x ⪅ 0.001 to 8(2) Oe/K for x = 0.08 and the g-shift values change, respectively, from a positive Δg = +0.047(10) to a negative Δg = -0.008(4). Analysis in terms of a three-band ce model allows the extraction of the corresponding exchange interaction parameters Jfs, Jfp and Jfd.
Mixing of t2 g-eg orbitals in 4 d and 5 d transition metal oxides
NASA Astrophysics Data System (ADS)
Stamokostas, Georgios L.; Fiete, Gregory A.
2018-02-01
Using exact diagonalization, we study the spin-orbit coupling and interaction-induced mixing between t2 g and egd -orbital states in a cubic crystalline environment, as commonly occurs in transition metal oxides. We make a direct comparison with the widely used t2 g-only or eg-only models, depending on electronic filling. We consider all electron fillings of the d shell and compute the total magnetic moment, the spin, the occupancy of each orbital, and the effective spin-orbit coupling strength (renormalized through interaction effects) in terms of the bare interaction parameters, spin-orbit coupling, and crystal-field splitting, focusing on the parameter ranges relevant to 4 d and 5 d transition metal oxides. In various limits, we provide perturbative results consistent with our numerical calculations. We find that the t2 g-eg mixing can be large, with up to 20% occupation of orbitals that are nominally "empty," which has experimental implications for the interpretation of the branching ratio in experiments, and can impact the effective local moment Hamiltonian used to study magnetic phases and magnetic excitations in transition metal oxides. Our results can aid the theoretical interpretation of experiments on these materials, which often fall in a regime of intermediate coupling with respect to electron-electron interactions.
Resolving the role of femtosecond heated electrons in ultrafast spin dynamics.
Mendil, J; Nieves, P; Chubykalo-Fesenko, O; Walowski, J; Santos, T; Pisana, S; Münzenberg, M
2014-02-05
Magnetization manipulation is essential for basic research and applications. A fundamental question is, how fast can the magnetization be reversed in nanoscale magnetic storage media. When subject to an ultrafast laser pulse, the speed of the magnetization dynamics depends on the nature of the energy transfer pathway. The order of the spin system can be effectively influenced through spin-flip processes mediated by hot electrons. It has been predicted that as electrons drive spins into the regime close to almost total demagnetization, characterized by a loss of ferromagnetic correlations near criticality, a second slower demagnetization process takes place after the initial fast drop of magnetization. By studying FePt, we unravel the fundamental role of the electronic structure. As the ferromagnet Fe becomes more noble in the FePt compound, the electronic structure is changed and the density of states around the Fermi level is reduced, thereby driving the spin correlations into the limit of critical fluctuations. We demonstrate the impact of the electrons and the ferromagnetic interactions, which allows a general insight into the mechanisms of spin dynamics when the ferromagnetic state is highly excited, and identifies possible recording speed limits in heat-assisted magnetization reversal.
Fallahi, P; Yilmaz, S T; Imamoğlu, A
2010-12-17
We measure the strength and the sign of hyperfine interaction of a heavy hole with nuclear spins in single self-assembled quantum dots. Our experiments utilize the locking of a quantum dot resonance to an incident laser frequency to generate nuclear spin polarization. By monitoring the resulting Overhauser shift of optical transitions that are split either by electron or exciton Zeeman energy with respect to the locked transition using resonance fluorescence, we find that the ratio of the heavy-hole and electron hyperfine interactions is -0.09 ± 0.02 in three quantum dots. Since hyperfine interactions constitute the principal decoherence source for spin qubits, we expect our results to be important for efforts aimed at using heavy-hole spins in quantum information processing.
Electrical control of a confined electron spin in a silicene quantum dot
NASA Astrophysics Data System (ADS)
Szafran, Bartłomiej; Mreńca-Kolasińska, Alina; Rzeszotarski, Bartłomiej; Żebrowski, Dariusz
2018-04-01
We study spin control for an electron confined in a flake of silicene. We find that the lowest-energy conduction-band levels are split by the diagonal intrinsic spin-orbit coupling into Kramers doublets with a definite projection of the spin on the orbital magnetic moment. We study the spin control by AC electric fields using the nondiagonal Rashba component of the spin-orbit interactions with the time-dependent atomistic tight-binding approach. The Rashba interactions in AC electric fields produce Rabi spin-flip times of the order of a nanosecond. These times can be reduced to tens of picoseconds provided that the vertical electric field is tuned to an avoided crossing opened by the Rashba spin-orbit interaction. We demonstrate that the speedup of the spin transitions is possible due to the intervalley coupling induced by the armchair edge of the flake. The study is confronted with the results for circular quantum dots decoupled from the edge with well defined angular momentum and valley index.
Controlling Spin Coherence with Semiconductor Nanostructures
NASA Astrophysics Data System (ADS)
Awschalom, David D.
We present two emerging opportunities for manipulating and communicating coherent spin states in semiconductors. First, we show that semiconductor microcavities offer unique means of controlling light-matter interactions in confined geometries, resulting in a wide range of applications in optical communications and inspiring proposals for quantum information processing and computational schemes. Studies of spin dynamics in microcavities — a new and promising research field — have revealed novel effects such as polarization beats, stimulated spin scattering, and giant Faraday rotation. Here, we study the electron spin dynamics in optically-pumped GaAs microdisk lasers with quantum wells and interface-fluctuation quantum dots in the active region. In particular, we examine how the electron spin dynamics are modified by the stimulated emission in the disks, and observe an enhancement of the spin coherence time when the optical excitation is in resonance with a high quality (Q ~ 5000) lasing mode.1 This resonant enhancement, contrary to expectations from the observed trend in the carrier recombination time, is then manipulated by altering the cavity design and dimensions. In analogy to devices based on excitonic coherence, this ability to engineer coherent interactions between electron spins and photons may provide novel pathways towards spin dependent quantum optoelectronics. In a second example, the nitrogen-vacancy (N-V) center in diamond has garnered interest as a room-temperature solid-state system not only for exploring electronic and nuclear spin phenomena but also as a candidate for spin-based quantum information processing. Spin coherence times of up to 50 microseconds have been reported for ensembles of N-V centers and a two-qubit gate utilizing the electron spin of a N-V center and the nuclear spin of a nearby C-13 atom has been demonstrated. Here, we present experiments using angle-resolved magneto-photoluminescence microscopy to investigate anisotropic spin interactions of single N-V centers in diamond at room temperature.2 Negative peaks in the photoluminescence intensity are observed as a function of both magnetic field magnitude and angle, and can be explained by coherent spin precession and anisotropic relaxation at spin-level anticrossings. Additionally, precise field alignment with the symmetry axis of a single N-V center reveals the resonant magnetic dipolar coupling of a single "bright" electron spin of an N-V center to small numbers of "dark" spins of nitrogen defects in its immediate vicinity, which are otherwise undetected by photoluminescence. Most recently, we are exploring the possibility of utilizing this magnetic dipole coupling between bright and dark spins to couple two spatially separated single N-V center spins by means of intermediate nitrogen spins. Note from Publisher: This article contains the abstract only.
Spin precession in spin-orbit coupled weak links: Coulomb repulsion and Pauli quenching
NASA Astrophysics Data System (ADS)
Shekhter, R. I.; Entin-Wohlman, O.; Jonson, M.; Aharony, A.
2017-12-01
A simple model for the transmission of pairs of electrons through a weak electric link in the form of a nanowire made of a material with strong electron spin-orbit interaction (SOI) is presented, with emphasis on the effects of Coulomb interactions and the Pauli exclusion principle. The constraints due to the Pauli principle are shown to "quench" the coherent SOI-induced precession of the spins when the spatial wave packets of the two electrons overlap significantly. The quenching, which results from the projection of the pair's spin states onto spin-up and spin-down states on the link, breaks up the coherent propagation in the link into a sequence of coherent hops that add incoherently. Applying the model to the transmission of Cooper pairs between two superconductors, we find that in spite of Pauli quenching, the Josephson current oscillates with the strength of the SOI, but may even change its sign (compared to the limit of the Coulomb blockade, when the quenching is absent). Conditions for an experimental detection of these features are discussed.
Defect Induced Electronic Structure of Uranofullerene
Dai, Xing; Cheng, Cheng; Zhang, Wei; Xin, Minsi; Huai, Ping; Zhang, Ruiqin; Wang, Zhigang
2013-01-01
The interaction between the inner atoms/cluster and the outer fullerene cage is the source of various novel properties of endohedral metallofullerenes. Herein, we introduce an adatom-type spin polarization defect on the surface of a typical endohedral stable U2@C60 to predict the associated structure and electronic properties of U2@C61 based on the density functional theory method. We found that defect induces obvious changes in the electronic structure of this metallofullerene. More interestingly, the ground state of U2@C61 is nonet spin in contrast to the septet of U2@C60. Electronic structure analysis shows that the inner U atoms and the C ad-atom on the surface of the cage contribute together to this spin state, which is brought about by a ferromagnetic coupling between the spin of the unpaired electrons of the U atoms and the C ad-atom. This discovery may provide a possible approach to adapt the electronic structure properties of endohedral metallofullerenes. PMID:23439318
Nonlocal Polarization Feedback in a Fractional Quantum Hall Ferromagnet.
Hennel, Szymon; Braem, Beat A; Baer, Stephan; Tiemann, Lars; Sohi, Pirouz; Wehrli, Dominik; Hofmann, Andrea; Reichl, Christian; Wegscheider, Werner; Rössler, Clemens; Ihn, Thomas; Ensslin, Klaus; Rudner, Mark S; Rosenow, Bernd
2016-04-01
In a quantum Hall ferromagnet, the spin polarization of the two-dimensional electron system can be dynamically transferred to nuclear spins in its vicinity through the hyperfine interaction. The resulting nuclear field typically acts back locally, modifying the local electronic Zeeman energy. Here we report a nonlocal effect arising from the interplay between nuclear polarization and the spatial structure of electronic domains in a ν=2/3 fractional quantum Hall state. In our experiments, we use a quantum point contact to locally control and probe the domain structure of different spin configurations emerging at the spin phase transition. Feedback between nuclear and electronic degrees of freedom gives rise to memristive behavior, where electronic transport through the quantum point contact depends on the history of current flow. We propose a model for this effect which suggests a novel route to studying edge states in fractional quantum Hall systems and may account for so-far unexplained oscillatory electronic-transport features observed in previous studies.
Electron spin resonance and spin-valley physics in a silicon double quantum dot.
Hao, Xiaojie; Ruskov, Rusko; Xiao, Ming; Tahan, Charles; Jiang, HongWen
2014-05-14
Silicon quantum dots are a leading approach for solid-state quantum bits. However, developing this technology is complicated by the multi-valley nature of silicon. Here we observe transport of individual electrons in a silicon CMOS-based double quantum dot under electron spin resonance. An anticrossing of the driven dot energy levels is observed when the Zeeman and valley splittings coincide. A detected anticrossing splitting of 60 MHz is interpreted as a direct measure of spin and valley mixing, facilitated by spin-orbit interaction in the presence of non-ideal interfaces. A lower bound of spin dephasing time of 63 ns is extracted. We also describe a possible experimental evidence of an unconventional spin-valley blockade, despite the assumption of non-ideal interfaces. This understanding of silicon spin-valley physics should enable better control and read-out techniques for the spin qubits in an all CMOS silicon approach.
Electronic conduction in doped multiferroic BiFeO3
NASA Astrophysics Data System (ADS)
Yang, Chan-Ho; Seidel, Jan; Kim, Sang-Yong; Gajek, M.; Yu, P.; Holcomb, M. B.; Martin, L. W.; Ramesh, R.; Chu, Y. H.
2009-03-01
Competition between multiple ground states, that are energetically similar, plays a key role in many interesting material properties and physical phenomena as for example in high-Tc superconductors (electron kinetic energy vs. electron-electron repulsion), colossal magnetoresistance (metallic state vs. charge ordered insulating state), and magnetically frustrated systems (spin-spin interactions). We are exploring the idea of similar competing phenomena in doped multiferroics by control of band-filling. In this paper we present systematic investigations of divalent Ca doping of ferroelectric BiFeO3 in terms of structural and electronic conduction properties as well as diffusion properties of oxygen vacancies.
NASA Astrophysics Data System (ADS)
Kar, J. K.; Panda, Saswati; Rout, G. C.
2017-05-01
We propose here a tight binding model study of the interplay between charge and spin orderings in the CMR manganites taking anisotropic effect due to electron hoppings and spin exchanges. The Hamiltonian consists of the kinetic energies of eg and t2g electrons of manganese ion. It further includes double exchange and Heisenberg interactions. The charge density wave interaction (CDW) describes an extra mechanism for the insulating character of the system. The CDW gap and spin parameters are calculated using Zubarev's Green's function technique and computed self-consistently. The results are reported in this communication.
Quenching of dynamic nuclear polarization by spin-orbit coupling in GaAs quantum dots.
Nichol, John M; Harvey, Shannon P; Shulman, Michael D; Pal, Arijeet; Umansky, Vladimir; Rashba, Emmanuel I; Halperin, Bertrand I; Yacoby, Amir
2015-07-17
The central-spin problem is a widely studied model of quantum decoherence. Dynamic nuclear polarization occurs in central-spin systems when electronic angular momentum is transferred to nuclear spins and is exploited in quantum information processing for coherent spin manipulation. However, the mechanisms limiting this process remain only partially understood. Here we show that spin-orbit coupling can quench dynamic nuclear polarization in a GaAs quantum dot, because spin conservation is violated in the electron-nuclear system, despite weak spin-orbit coupling in GaAs. Using Landau-Zener sweeps to measure static and dynamic properties of the electron spin-flip probability, we observe that the size of the spin-orbit and hyperfine interactions depends on the magnitude and direction of applied magnetic field. We find that dynamic nuclear polarization is quenched when the spin-orbit contribution exceeds the hyperfine, in agreement with a theoretical model. Our results shed light on the surprisingly strong effect of spin-orbit coupling in central-spin systems.
The effect of band Jahn-Teller distortion on the magnetoresistivity of manganites: a model study.
Rout, G C; Panda, Saswati; Behera, S N
2011-10-05
We present a model study of magnetoresistance through the interplay of magnetisation, structural distortion and external magnetic field for the manganite systems. The manganite system is described by the Hamiltonian which consists of the s-d type double exchange interaction, Heisenberg spin-spin interaction among the core electrons, and the static and dynamic band Jahn-Teller (JT) interaction in the e(g) band. The relaxation time of the e(g) electron is found from the imaginary part of the Green's function using the total Hamiltonian consisting of the interactions due to the electron and phonon. The calculated resistivity exhibits a peak in the pure JT distorted insulating phase separating the low temperature metallic ferromagnetic phase and the high temperature paramagnetic phase. The resistivity is suppressed with the increase of the external magnetic field. The e(g) electron band splitting and its effect on magnetoresistivity is reported here. © 2011 IOP Publishing Ltd
Emergent Electromagnetism in Bilayer Graphene
NASA Astrophysics Data System (ADS)
Winkler, Roland; Zülicke, Ulrich
2013-03-01
Recently atomically flat layers of carbon known as graphene have become the rising star in spintronics as their electrons carry not only the ordinary spin degree of freedom, but they also have a pseudospin degree of freedom tied to the electrons' orbital motion which could enable new routes for spintronics. Here we focus on bilayer graphene (BLG). Using group theory we have established a complete description of how electrons in BLG interact with electric and magnetic fields. We show that electrons in BLG experience an unusual type of matter-field interactions where magnetic and electric fields are virtually equivalent: every coupling of an electron's degrees of freedom to a magnetic field is matched by an analogous coupling of the same degrees of freedom to an electric field. This counter-intuitive duality of matter-field interactions allows novel ways to create and manipulate spin and pseudo-spin polarizations via external fields that are not available in other materials. See arXiv:1206.4761. This work was supported by Marsden Fund contract no. VUW0719, administered by the Royal Society of New Zealand. Work at Argonne was supported by DOE BES under Contract No. DE-AC02-06CH11357.
Spin-orbit coupling and the static polarizability of single-wall carbon nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diniz, Ginetom S., E-mail: ginetom@gmail.com; Ulloa, Sergio E.
2014-07-14
We calculate the static longitudinal polarizability of single-wall carbon tubes in the long wavelength limit taking into account spin-orbit effects. We use a four-orbital orthogonal tight-binding formalism to describe the electronic states and the random phase approximation to calculate the dielectric function. We study the role of both the Rashba as well as the intrinsic spin-orbit interactions on the longitudinal dielectric response, i.e., when the probing electric field is parallel to the nanotube axis. The spin-orbit interaction modifies the nanotube electronic band dispersions, which may especially result in a small gap opening in otherwise metallic tubes. The bandgap size andmore » state features, the result of competition between Rashba and intrinsic spin-orbit interactions, result in drastic changes in the longitudinal static polarizability of the system. We discuss results for different nanotube types and the dependence on nanotube radius and spin-orbit couplings.« less
Quantum Phase Transitions in Cavity Coupled Dot systems
NASA Astrophysics Data System (ADS)
Kasisomayajula, Vijay; Russo, Onofrio
2011-03-01
We investigate a Quantum Dot System, in which the transconductance, in part, is due to spin coupling, with each dot subjected to a biasing voltage. When this system is housed in a QED cavity, the cavity dot coupling alters the spin coupling of the coupled dots significantly via the Purcell Effect. In this paper we show the extent to which one can control the various coupling parameters: the inter dot coupling, the individual dots coupling with the cavity and the coupled dots coupling with the cavity as a single entity. We show that the dots coupled to each other and to the cavity, the spin transport can be controlled selectively. We derive the conditions for such control explicitly. Further, we discuss the Quantum phase transition effects due to the charge and spin transport through the dots. The electron transport through the dots, electron-electron spin interaction and the electron-photon interaction are treated using the Non-equilibrium Green's Function Formalism. http://publish.aps.org/search/field/author/Trif_Mircea (Trif Mircea), http://publish.aps.org/search/field/author/Golovach_Vitaly_N (Vitaly N. Golovach), and http://publish.aps.org/search/field/author/Loss_Daniel (Daniel Loss), Phys. Rev. B 75, 085307 (2007)
Conductance of a quantum wire at low electron density
NASA Astrophysics Data System (ADS)
Matveev, Konstantin
2006-03-01
We study the transport of electrons through a long quantum wire connecting two bulk leads. As the electron density in the wire is lowered, the Coulomb interactions lead to short-range crystalline ordering of electrons. In this Wigner crystal state the spins of electrons form an antiferromagnetic Heisenberg spin chain with exponentially small exchange coupling J. Inhomogeneity of the electron density due to the coupling of the wire to the leads results in violation of spin-charge separation in the device. As a result the spins affect the conductance of the wire. At zero temperature the low-energy spin excitations propagate freely through the wire, and its conductance remains 2e^2/h. At finite temperature some of the spin excitations are reflected by the wire and contribute to its resistance. Since the energy of the elementary excitations in the spin chain (spinons) cannot exceed πJ/2, the conductance of the wire acquires an exponentially small negative correction δG - (-πJ/2T) at low temperatures T J. At higher temperatures, T J, most of the spin excitations in the leads are reflected by the wire, and the conductance levels off at a new universal value e^2/h. This result is consistent with experimental observations of a mini-plateau of conductance at e^2/h in quantum wires in the absence of magnetic field.
Generation of spin currents by surface plasmon resonance
Uchida, K.; Adachi, H.; Kikuchi, D.; Ito, S.; Qiu, Z.; Maekawa, S.; Saitoh, E.
2015-01-01
Surface plasmons, free-electron collective oscillations in metallic nanostructures, provide abundant routes to manipulate light–electron interactions that can localize light energy and alter electromagnetic field distributions at subwavelength scales. The research field of plasmonics thus integrates nano-photonics with electronics. In contrast, electronics is also entering a new era of spintronics, where spin currents play a central role in driving devices. However, plasmonics and spin-current physics have so far been developed independently. Here we report the generation of spin currents by surface plasmon resonance. Using Au nanoparticles embedded in Pt/BiY2Fe5O12 bilayer films, we show that, when the Au nanoparticles fulfill the surface-plasmon-resonance conditions, spin currents are generated across the Pt/BiY2Fe5O12 interface. This spin-current generation cannot be explained by conventional heating effects, requiring us to introduce nonequilibrium magnons excited by surface-plasmon-induced evanescent electromagnetic fields in BiY2Fe5O12. This plasmonic spin pumping integrates surface plasmons with spin-current physics, opening the door to plasmonic spintronics. PMID:25569821
Controlling entangled spin-orbit coupling of 5 d states with interfacial heterostructure engineering
Kim, J. -W.; Choi, Y.; Chun, S. H.; ...
2018-03-26
Here, the combination of strong electron correlations in 3d transition metal oxides and spin-orbit interactions in the 5d counterpart can give rise to exotic electronic and magnetic properties. Here, the nature of emerging phenomena at the interface between SrIrO 3 (SIO) and La 2/3Sr 1/3MnO 3 (LSMO) is presented. Nominally, SIO with strong spin-orbit interaction is metallic and nonmagnetic on the verge of a metal-insulator transition, whereas LSMO is metallic and ferromagnetic with itinerant character and high spin polarization. In the 1:1 LSMO/SIO superlattice, we observe ferromagnetic Mn moments with an insulating behavior, accompanied by antiferromagnetic ordering in SIO. Element-resolvedmore » x-ray magnetic circular dichroism proves that there is a weak net ferromagnetic Ir moment aligned antiparallel to the Mn counterpart. The branching ratio shows the formation of molecular-orbitals between the Mn and Ir layers modifying the Ir 5d electronic configuration through the mixture of t 2g and e g states, resulting in a deviation from J eff = ½. This result demonstrates a pathway to manipulate the spin-orbit entanglement in 5d states with 2-dimensional 3d spin-polarized electrons through heterostructure design.« less
Controlling entangled spin-orbit coupling of 5 d states with interfacial heterostructure engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, J. -W.; Choi, Y.; Chun, S. H.
Here, the combination of strong electron correlations in 3d transition metal oxides and spin-orbit interactions in the 5d counterpart can give rise to exotic electronic and magnetic properties. Here, the nature of emerging phenomena at the interface between SrIrO 3 (SIO) and La 2/3Sr 1/3MnO 3 (LSMO) is presented. Nominally, SIO with strong spin-orbit interaction is metallic and nonmagnetic on the verge of a metal-insulator transition, whereas LSMO is metallic and ferromagnetic with itinerant character and high spin polarization. In the 1:1 LSMO/SIO superlattice, we observe ferromagnetic Mn moments with an insulating behavior, accompanied by antiferromagnetic ordering in SIO. Element-resolvedmore » x-ray magnetic circular dichroism proves that there is a weak net ferromagnetic Ir moment aligned antiparallel to the Mn counterpart. The branching ratio shows the formation of molecular-orbitals between the Mn and Ir layers modifying the Ir 5d electronic configuration through the mixture of t 2g and e g states, resulting in a deviation from J eff = ½. This result demonstrates a pathway to manipulate the spin-orbit entanglement in 5d states with 2-dimensional 3d spin-polarized electrons through heterostructure design.« less
Controlling entangled spin-orbit coupling of 5 d states with interfacial heterostructure engineering
NASA Astrophysics Data System (ADS)
Kim, J.-W.; Choi, Y.; Chun, S. H.; Haskel, D.; Yi, D.; Ramesh, R.; Liu, J.; Ryan, P. J.
2018-03-01
The combination of strong electron correlations in 3 d transition-metal oxides and spin-orbit interactions in the 5 d counterpart can give rise to exotic electronic and magnetic properties. Here, the nature of emerging phenomena at the interface between SrIr O3 (SIO) and L a2 /3S r1 /3Mn O3 (LSMO) is presented. Nominally, SIO with strong spin-orbit interaction is metallic and nonmagnetic on the verge of a metal-insulator transition, whereas LSMO is metallic and ferromagnetic with itinerant character and high spin polarization. In the 1:1 LSMO/SIO superlattice, we observe ferromagnetic Mn moments with an insulating behavior, accompanied by antiferromagnetic ordering in SIO. Element-resolved x-ray magnetic circular dichroism proves that there is a weak net ferromagnetic Ir moment aligned antiparallel to the Mn counterpart. The branching ratio shows the formation of molecular orbitals between the Mn and Ir layers modifying the Ir 5 d electronic configuration through the mixture of t2 g and eg states, resulting in a deviation from Jeff=1 /2 . This result demonstrates a pathway to manipulate the spin-orbit entanglement in 5 d states with two-dimensional 3 d spin-polarized electrons through heterostructure design.
Li, Yang; Ngo, Anh T.; DiLullo, Andrew; ...
2017-10-16
An unusually large spin-coupling of almost 100% is found in vertically stacked molecular hetrostructures composed of cobalt-porphyrin based magnetic molecules adsorbed on semiconducting armchair graphene nanoribbon on a Au(111) surface. Although the graphene nanoribbons are electronically decoupled from the gold substrate due to their band gaps and weak adsorption, they enable spin coupling between the magnetic moment of the molecule and the electrons from the substrate exhibiting a Kondo resonance. Surprisingly, the Kondo temperatures corresponding to three adsorption sites of the molecules on Au(111) surface are reproduced on the molecules adsorb on the graphene nanoribbons although the molecules are locatedmore » 7.5 Å away from the surface. This finding suggests that the molecules on graphene nanoribbons experience almost the same environment for spin-electron interactions as the ones directly adsorb on Au(111). This puzzling effect is further confirmed by density functional theory calculations that reveal no spin electron interactions if the molecule is left at the same height from the Au(111) surface without the graphene nanoribbon in between.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yang; Ngo, Anh T.; DiLullo, Andrew
An unusually large spin-coupling of almost 100% is found in vertically stacked molecular hetrostructures composed of cobalt-porphyrin based magnetic molecules adsorbed on semiconducting armchair graphene nanoribbon on a Au(111) surface. Although the graphene nanoribbons are electronically decoupled from the gold substrate due to their band gaps and weak adsorption, they enable spin coupling between the magnetic moment of the molecule and the electrons from the substrate exhibiting a Kondo resonance. Surprisingly, the Kondo temperatures corresponding to three adsorption sites of the molecules on Au(111) surface are reproduced on the molecules adsorb on the graphene nanoribbons although the molecules are locatedmore » 7.5 Å away from the surface. This finding suggests that the molecules on graphene nanoribbons experience almost the same environment for spin-electron interactions as the ones directly adsorb on Au(111). This puzzling effect is further confirmed by density functional theory calculations that reveal no spin electron interactions if the molecule is left at the same height from the Au(111) surface without the graphene nanoribbon in between.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mawrie, Alestin; Ghosh, Tarun Kanti
We present a detailed theoretical study on zero-frequency Drude weight and optical conductivity of a two-dimensional heavy-hole gas (2DHG) with k-cubic Rashba and Dresselhaus spin-orbit interactions. The presence of k-cubic spin-orbit couplings strongly modifies the Drude weight in comparison to the electron gas with k-linear spin-orbit couplings. For large hole density and strong k-cubic spin-orbit couplings, the density dependence of Drude weight deviates from the linear behavior. We establish a relation between optical conductivity and the Berry connection. Unlike two-dimensional electron gas with k-linear spin-orbit couplings, we explicitly show that the optical conductivity does not vanish even for equal strengthmore » of the two spin-orbit couplings. We attribute this fact to the non-zero Berry phase for equal strength of k-cubic spin-orbit couplings. The least photon energy needed to set in the optical transition in hole gas is one order of magnitude smaller than that of electron gas. Types of two van Hove singularities appear in the optical spectrum are also discussed.« less
Electronic structure and the origin of the Dzyaloshinskii-Moriya interaction in MnSi
Satpathy, S.; Shanavas, K. V.
2016-05-02
Here, the metallic helimagnet MnSi has been found to exhibit skyrmionic spin textures when subjected to magnetic fields at low temperatures. The Dzyaloshinskii-Moriya (DM) interaction plays a key role in stabilizing the skyrmion state. With the help of first-principles calculations, crystal field theory and a tight-binding model we study the electronic structure and the origin of the DM interaction in the B20 phase of MnSi. The strength ofmore » $$\\vec{D}$$ parameter is determined by the magnitude of the spin-orbit interaction and the degree of orbital mixing, induced by the symmetry-breaking distortions in the B20 phase. We find that, strong coupling between Mn-$d$ and Si-$p$ states lead to a mixed valence ground state $$|d^{7-x}p^{2+x}\\rangle$$ configuration. The experimental magnetic moment of $$0.4~\\mu_B$$ is consistent with the Coulomb-corrected DFT+$U$ calculations, which redistributes electrons between the majority and minority spin channels. We derive the magnetic interaction parameters $J$ and $$\\vec{D}$$ for Mn-Si-Mn superexchange paths using Moriya's theory assuming the interaction to be mediated by $$e_g$$ electrons near the Fermi level. Finally, using parameters from our calculations, we get reasonable agreement with the observations.« less
Enhancing Spin Filters by Use of Bulk Inversion Asymmetry
NASA Technical Reports Server (NTRS)
Ting, David; Cartoixa,Xavier
2007-01-01
Theoretical calculations have shown that the degrees of spin polarization in proposed nonmagnetic semiconductor resonant tunneling spin filters could be increased through exploitation of bulk inversion asymmetry (BIA). These enhancements would be effected through suitable orientation of spin collectors (or spin-polarization- inducing lateral electric fields), as described below. Spin filters -- more precisely, sources of spin-polarized electron currents -- have been sought for research on, and development of, the emerging technological discipline of spintronics (spin-transport electronics). The proposed spin filters were to be based on the Rashba effect, which is an energy splitting of what would otherwise be degenerate quantum states, caused by a spinorbit interaction in conjunction with a structural-inversion asymmetry (SIA) in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. In a spin filter, the spin-polarized currents produced by the Rashba effect would be extracted by quantum-mechanical resonant tunneling.
Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond
NASA Astrophysics Data System (ADS)
Epstein, R. J.; Mendoza, F. M.; Kato, Y. K.; Awschalom, D. D.
2005-11-01
Experiments on single nitrogen-vacancy (N-V) centres in diamond, which include electron spin resonance, Rabi oscillations, single-shot spin readout and two-qubit operations with a nearby13C nuclear spin, show the potential of this spin system for solid-state quantum information processing. Moreover, N-V centre ensembles can have spin-coherence times exceeding 50 μs at room temperature. We have developed an angle-resolved magneto-photoluminescence microscope apparatus to investigate the anisotropic electron-spin interactions of single N-V centres at room temperature. We observe negative peaks in the photoluminescence as a function of both magnetic-field magnitude and angle that are explained by coherent spin precession and anisotropic relaxation at spin-level anti-crossings. In addition, precise field alignment unmasks the resonant coupling to neighbouring `dark' nitrogen spins, otherwise undetected by photoluminescence. These results demonstrate the capability of our spectroscopic technique for measuring small numbers of dark spins by means of a single bright spin under ambient conditions.
A Quantum Dot with Spin-Orbit Interaction--Analytical Solution
ERIC Educational Resources Information Center
Basu, B.; Roy, B.
2009-01-01
The practical applicability of a semiconductor quantum dot with spin-orbit interaction gives an impetus to study analytical solutions to one- and two-electron quantum dots with or without a magnetic field.
Chow, Colin M; Ross, Aaron M; Kim, Danny; Gammon, Daniel; Bracker, Allan S; Sham, L J; Steel, Duncan G
2016-08-12
We demonstrate the extension of coherence between all four two-electron spin ground states of an InAs quantum dot molecule (QDM) via nonlocal suppression of nuclear spin fluctuations in two vertically stacked quantum dots (QDs), while optically addressing only the top QD transitions. Long coherence times are revealed through dark-state spectroscopy as resulting from nuclear spin locking mediated by the exchange interaction between the QDs. Line shape analysis provides the first measurement of the quieting of the Overhauser field distribution correlating with reduced nuclear spin fluctuations.
NASA Astrophysics Data System (ADS)
Chow, Colin M.; Ross, Aaron M.; Kim, Danny; Gammon, Daniel; Bracker, Allan S.; Sham, L. J.; Steel, Duncan G.
2016-08-01
We demonstrate the extension of coherence between all four two-electron spin ground states of an InAs quantum dot molecule (QDM) via nonlocal suppression of nuclear spin fluctuations in two vertically stacked quantum dots (QDs), while optically addressing only the top QD transitions. Long coherence times are revealed through dark-state spectroscopy as resulting from nuclear spin locking mediated by the exchange interaction between the QDs. Line shape analysis provides the first measurement of the quieting of the Overhauser field distribution correlating with reduced nuclear spin fluctuations.
Theory of long-range interactions for Rydberg states attached to hyperfine-split cores
NASA Astrophysics Data System (ADS)
Robicheaux, F.; Booth, D. W.; Saffman, M.
2018-02-01
The theory is developed for one- and two-atom interactions when the atom has a Rydberg electron attached to a hyperfine-split core state. This situation is relevant for some of the rare-earth and alkaline-earth atoms that have been proposed for experiments on Rydberg-Rydberg interactions. For the rare-earth atoms, the core electrons can have a very substantial total angular momentum J and a nonzero nuclear spin I . In the alkaline-earth atoms there is a single (s ) core electron whose spin can couple to a nonzero nuclear spin for odd isotopes. The resulting hyperfine splitting of the core state can lead to substantial mixing between the Rydberg series attached to different thresholds. Compared to the unperturbed Rydberg series of the alkali-metal atoms, the series perturbations and near degeneracies from the different parity states could lead to qualitatively different behavior for single-atom Rydberg properties (polarizability, Zeeman mixing and splitting, etc.) as well as Rydberg-Rydberg interactions (C5 and C6 matrices).
NASA Astrophysics Data System (ADS)
Weber, Stefan; Kothe, Gerd; Norris, James R.
1997-04-01
The influence of anisotropic hyperfine interaction on transient nutation electron paramagnetic resonance (EPR) of light-induced spin-correlated radical pairs is studied theoretically using the density operator formalism. Analytical expressions for the time evolution of the transient EPR signal during selective microwave excitation of single transitions are derived for a model system comprised of a weakly coupled radical pair and one hyperfine-coupled nucleus with I=1/2. Zero-quantum electron coherence and single-quantum nuclear coherence are created as a result of the sudden light-induced generation of the radical pair state from a singlet-state precursor. Depending on the relative sizes of the nuclear Zeeman frequency and the secular and pseudo-secular parts of the hyperfine coupling, transitions between levels with different nuclear spin orientations are predicted to modulate the time-dependent EPR signal. These modulations are in addition to the well-known transient nutations and electron zero-quantum precessions. Our calculations provide insight into the mechanism of recent experimental observations of coherent nuclear modulations in the time-resolved EPR signals of doublets and radical pairs. Two distinct mechanisms of the modulations are presented for various microwave magnetic field strengths. The first modulation scheme arises from electron and nuclear coherences initiated by the laser excitation pulse and is "read out" by the weak microwave magnetic field. While the relative modulation depth of these oscillations with respect to the signal intensity is independent of the Rabi frequency, ω1, the frequencies of this coherence phenomenon are modulated by the effective microwave amplitude and determined by the nuclear Zeeman interaction and hyperfine coupling constants as well as the electron-electron spin exchange and dipolar interactions between the two radical pair halves. In a second mechanism the modulations are both created and detected by the microwave radiation. Here, the laser pulse merely defines the beginning of the microwave-induced coherent time evolution. This second mechanism appears the most consistent with current experimental observations.
Chekhovich, E.A.; Hopkinson, M.; Skolnick, M.S.; Tartakovskii, A.I.
2015-01-01
Interaction with nuclear spins leads to decoherence and information loss in solid-state electron-spin qubits. One particular, ineradicable source of electron decoherence arises from decoherence of the nuclear spin bath, driven by nuclear–nuclear dipolar interactions. Owing to its many-body nature nuclear decoherence is difficult to predict, especially for an important class of strained nanostructures where nuclear quadrupolar effects have a significant but largely unknown impact. Here, we report direct measurement of nuclear spin bath coherence in individual self-assembled InGaAs/GaAs quantum dots: spin-echo coherence times in the range 1.2–4.5 ms are found. Based on these values, we demonstrate that strain-induced quadrupolar interactions make nuclear spin fluctuations much slower compared with lattice-matched GaAs/AlGaAs structures. Our findings demonstrate that quadrupolar effects can potentially be used to engineer optically active III-V semiconductor spin-qubits with a nearly noise-free nuclear spin bath, previously achievable only in nuclear spin-0 semiconductors, where qubit network interconnection and scaling are challenging. PMID:25704639
Spin fluctations and heavy fermions in the Kondo lattice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khaliullin, G.G.
1994-09-01
This paper studies the spectrum of the spin and electronic excitations of the Kondo lattice at low temperatures. To avoid unphysical states, the Mattis {open_quotes}drone{close_quotes}-fermion representation for localized spins is employed. First, the known Fermi liquid properties of a single impurity are examined. The behavior of the correlator between a localized spin and the electron spin density at large distances shows that the effective interaction between electrons on the Fermi level and low-energy localized spin fluctuations scales as {rho}{sup {minus}1}, where {rho} is the band-state density. This fact is developed into a renormalization of the band spectrum in a periodicmore » lattice. If the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between localized spins is much smaller than the Kondo fluctuation frequency {omega}{sub k}, the temperature of the crossover to the single-parameter Fermi liquid mode is determined by {omega}{sub k}. When the RKKY interaction becomes of order {omega}{sub k}, there is a new scale {omega}{sub sf}, the energy of the (antiferromagnetic) paramagnon mode, with {omega}{sub sf}{much_lt}{omega}{sub k}. Here the coherent Fermi liquid regime is realized only below a temperature T{sub coh} of order {omega}{sub sf}, while above T{sub coh} quasiparticle damping exhibits a linear temperature dependence. Finally, the nuclear-spin relaxation rate is calculated. 42 refs.« less
Interacting Electrons and Holes in Quasi-2D Quantum Dots in Strong Magnetic Fields
NASA Astrophysics Data System (ADS)
Hawrylak, P.; Sheng, W.; Cheng, S.-J.
2004-09-01
Theory of optical properties of interacting electrons and holes in quasi-2D quantum dots in strong magnetic fields is discussed. In two dimensions and the lowest Landau level, hidden symmetries control the interaction of the interacting system with light. By confining electrons and holes into quantum dots hidden symmetries can be removed and the excitation spectrum of electrons and excitons can be observed. We discuss a theory electronic and of excitonic quantum Hall droplets at a filling factorν=2. For an excitonic quantum Hall droplet the characteristic emission spectra are predicted to be related to the total spin of electron and hole configurations. For the electronic droplet the excitation spectrum of the droplet can be mapped out by measuring the emission for increasing number of electrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruhman, Jonathan; Kozii, Vladyslav; Fu, Liang
In this work, we study how an inversion-breaking quantum critical point affects the ground state of a one-dimensional electronic liquid with repulsive interaction and spin-orbit coupling. We find that regardless of the interaction strength, the critical fluctuations always lead to a gap in the electronic spin sector. The origin of the gap is a two-particle backscattering process, which becomes relevant due to renormalization of the Luttinger parameter near the critical point. The resulting spin-gapped state is topological and can be considered as a one-dimensional version of a spin-triplet superconductor. Interestingly, in the case of a ferromagnetic critical point, the Luttingermore » parameter is renormalized in the opposite manner, such that the system remains nonsuperconducting.« less
Mechanisms of relaxation and spin decoherence in nanomagnets
NASA Astrophysics Data System (ADS)
van Tol, Johan
Relaxation in spin systems is of great interest with respect to various possible applications like quantum information processing and storage, spintronics, and dynamic nuclear polarization (DNP). The implementation of high frequencies and fields is crucial in the study of systems with large zero-field splitting or large interactions, as for example molecular magnets and low dimensional magnetic materials. Here we will focus on the implementation of pulsed Electron Paramagnetic Resonance (ERP) at multiple frequencies of 10, 95, 120, 240, and 336 GHz, and the relaxation and decoherence processes as a function of magnetic field and temperature. Firstly, at higher frequencies the direct single-phonon spin-lattice relaxation (SLR) is considerably enhanced, and will more often than not be the dominant relaxation mechanism at low temperatures, and can be much faster than at lower fields and frequencies. In principle the measurement of the SLR rates as a function of the frequency provides a means to map the phonon density of states. Secondly, the high electron spin polarization at high fields has a strong influence on the spin fluctuations in relatively concentrated spin systems, and the contribution of the electron-electron dipolar interactions to the coherence rate can be partially quenched at low temperatures. This not only allows the study of relatively concentrated spin systems by pulsed EPR (as for example magnetic nanoparticles and molecular magnets), it enables the separation of the contribution of the fluctuations of the electron spin system from other decoherence mechanisms. Besides choice of temperature and field, several strategies in sample design, pulse sequences, or clock transitions can be employed to extend the coherence time in nanomagnets. A review will be given of the decoherence mechanisms with an attempt at a quantitative comparison of experimental rates with theory.
Dissipationless transport of spin-polarized electrons and Cooper pairs in an electron waveguide
NASA Astrophysics Data System (ADS)
Levy, J.; Annadi, A.; Lu, S.; Cheng, G.; Tylan-Tyler, A.; Briggeman, M.; Tomczyk, M.; Huang, M.; Pekker, D.; Irvin, P.; Lee, H.; Lee, J.-W.; Eom, C.-B.
Electron systems undergo profound changes in their behavior when constrained to move along a single axis. To date, clean one-dimensional (1D) electron transport has only been observed in carbon-based nanotubes and nanoribbons, and compound semiconductor nanowires. Complex-oxide heterostructures can possess conductive two-dimensional (2D) interfaces with much richer chemistries and properties, e.g., superconductivity, but with mobilities that appear to preclude ballistic transport in 1D. Here we show that nearly ideal 1D electron waveguides exhibiting ballistic transport of electrons and non-superconducting Cooper pairs can be formed at the interface between the two band insulators LaAlO3 and SrTiO3. The electron waveguides possess gate and magnetic-field selectable spin and charge degrees of freedom, and can be tuned to the one-dimensional limit of a single spin-polarized quantum channel. The strong attractive electron-electron interactions enable a new mode of dissipationless transport of electron pairs that is not superconducting. The selectable spin and subband quantum numbers of these electron waveguides may be useful for quantum simulation, quantum informatio We gratefully acknowledge financial support from ONR N00014-15-1-2847 (JL), AFOSR (FA9550-15-1-0334 (CBE) and FA9550-12-1-0057 (JL, CBE)), AOARD FA2386-15-1-4046 (CBE) and NSF (DMR-1104191 (JL), DMR-1124131 (CBE, JL) and DMR-1234096 (CBE)).
Surface hopping trajectory simulations with spin-orbit and dynamical couplings
NASA Astrophysics Data System (ADS)
Granucci, Giovanni; Persico, Maurizio; Spighi, Gloria
2012-12-01
In this paper we consider the inclusion of the spin-orbit interaction in surface hopping molecular dynamics simulations to take into account spin forbidden transitions. Two alternative approaches are examined. The spin-diabatic one makes use of eigenstates of the spin-free electronic Hamiltonian and of hat{S}^2 and is commonly applied when the spin-orbit coupling is weak. We point out some inconsistencies of this approach, especially important when more than two spin multiplets are coupled. The spin-adiabatic approach is based on the eigenstates of the total electronic Hamiltonian including the spin-orbit coupling. Advantages and drawbacks of both strategies are discussed and illustrated with the help of two model systems.
NASA Astrophysics Data System (ADS)
Hoi, Bui Dinh; Yarmohammadi, Mohsen
2018-05-01
Motivated by the growing interest in solving the obstacles of spintronics applications, we study the Ruderman-Kittel-Kasuya-Yosida (RKKY) effective pairwise interaction between magnetic impurities interacting through the π -electrons embedded in both electronically doped-semiconducting and metallic armchair graphene nanoribbons. In terms of the Green's function formalism, treated in a tight-binding approximation with hopping beyond Dirac cone approximation, the RKKY coupling is an attraction or a repulsion depending on the magnetic impurities distances. Our results show that the RKKY coupling in semiconducting nanoribbons is much more affected by doping than metallic ones. Furthermore, we found that the RKKY coupling increases with ribbon width, while there exist some critical electronic concentrations in RKKY interaction oscillations. On the other hand, we find an unusual incoming wave-vector direction for electrons which describes more clearly the ferro- and antiferromagnetic spin configurations in such system. Also, the RKKY coupling at low and high-temperature regions has been addressed for both ferro- and antiferromagnetic spin arrangements.
Zero Quantum Coherence in a Series of Covalent Spin-Correlated Radical Pairs.
Nelson, Jordan N; Krzyaniak, Matthew D; Horwitz, Noah E; Rugg, Brandon K; Phelan, Brian T; Wasielewski, Michael R
2017-03-23
Photoinitiated subnanosecond electron transfer within covalently linked electron donor-acceptor molecules can result in the formation of a spin-correlated radical pair (SCRP) with a well-defined initial singlet spin configuration. Subsequent coherent mixing between the SCRP singlet and triplet m s = 0 spin states, the so-called zero quantum coherence (ZQC), is of potential interest in quantum information processing applications because the ZQC can be probed using pulse electron paramagnetic resonance (pulse-EPR) techniques. Here, pulse-EPR spectroscopy is utilized to examine the ZQC oscillation frequencies and ZQC dephasing in three structurally well-defined D-A systems. While transitions between the singlet and triplet m s = 0 spin states are formally forbidden (Δm s = 0), they can be addressed using specific microwave pulse turning angles to map information from the ZQC onto observable single quantum coherences. In addition, by using structural variations to tune the singlet-triplet energy gap, the ZQC frequencies determined for this series of molecules indicate a stronger dependence on the electronic g-factor than on electron-nuclear hyperfine interactions.
Spin-flip transitions in self-assembled quantum dots
NASA Astrophysics Data System (ADS)
Stavrou, V. N.
2017-12-01
Detailed realistic calculations of the spin-flip time (T 1) for an electron in a self-assembled quantum dot (SAQD) due to emission of an acoustic phonon, using only bulk properties with no fitting parameters, are presented. Ellipsoidal lens shaped Inx Ga1-x As quantum dots, with electronic states calculated using 8-band strain dependent {k \\cdot p} theory, are considered. The phonons are treated as bulk acoustic phonons coupled to the electron by both deformation potential and piezoelectric interactions. The dependence of T 1 on the geometry of SAQD, on the applied external magnetic field and on the lattice temperature is highlighted. The theoretical results are close to the experimental measurements on the spin-flip times for a single electron in QD.
Overhauser shift and dynamic nuclear polarization on carbon fibers
NASA Astrophysics Data System (ADS)
Herb, Konstantin; Denninger, Gert
2018-06-01
We report on the first experimental magnetic resonance determination of the coupling between electrons and nuclear spins (1H, 13C) in carbon fibers. Our results strongly support the assumption that the electronic spins are delocalized on graphene like structures in the fiber. The coupling between these electrons and the nuclei of the lattice results in dynamic nuclear polarization of the nuclei (DNP), enabling very sensitive NMR experiments on these nuclear spins. For possible applications of graphene in spintronics devices the coupling between nuclei and electrons is essential. We were able to determine the interactions down to 30 × 10-9(30 ppb) . We were even able to detect the coupling of the electrons to 13C (in natural abundance). These experiments open the way for a range of new double resonance investigations with possible applications in the field of material science.
Hot-electron effect in spin relaxation of electrically injected electrons in intrinsic Germanium.
Yu, T; Wu, M W
2015-07-01
The hot-electron effect in the spin relaxation of electrically injected electrons in intrinsic germanium is investigated by the kinetic spin Bloch equations both analytically and numerically. It is shown that in the weak-electric-field regime with E ≲ 0.5 kV cm(-1), our calculations have reasonable agreement with the recent transport experiment in the hot-electron spin-injection configuration (2013 Phys. Rev. Lett. 111 257204). We reveal that the spin relaxation is significantly enhanced at low temperature in the presence of weak electric field E ≲ 50 V cm(-1), which originates from the obvious center-of-mass drift effect due to the weak electron-phonon interaction, whereas the hot-electron effect is demonstrated to be less important. This can explain the discrepancy between the experimental observation and the previous theoretical calculation (2012 Phys. Rev. B 86 085202), which deviates from the experimental results by about two orders of magnitude at low temperature. It is further shown that in the strong-electric-field regime with 0.5 ≲ E ≲ 2 kV cm(-1), the spin relaxation is enhanced due to the hot-electron effect, whereas the drift effect is demonstrated to be marginal. Finally, we find that when 1.4 ≲ E ≲ 2 kV cm(-1) which lies in the strong-electric-field regime, a small fraction of electrons (≲5%) can be driven from the L to Γ valley, and the spin relaxation rates are the same for the Γ and L valleys in the intrinsic sample without impurity. With the negligible influence of the spin dynamics in the Γ valley to the whole system, the spin dynamics in the L valley can be measured from the Γ valley by the standard direct optical transition method.
Surface spin-electron acoustic waves in magnetically ordered metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru; Kuz'menkov, L. S., E-mail: lsk@phys.msu.ru
2016-05-09
Degenerate plasmas with motionless ions show existence of three surface waves: the Langmuir wave, the electromagnetic wave, and the zeroth sound. Applying the separated spin evolution quantum hydrodynamics to half-space plasma, we demonstrate the existence of the surface spin-electron acoustic wave (SSEAW). We study dispersion of the SSEAW. We show that there is hybridization between the surface Langmuir wave and the SSEAW at rather small spin polarization. In the hybridization area, the dispersion branches are located close to each other. In this area, there is a strong interaction between these waves leading to the energy exchange. Consequently, generating the Langmuirmore » waves with the frequencies close to hybridization area we can generate the SSEAWs. Thus, we report a method of creation of the spin-electron acoustic waves.« less
NASA Astrophysics Data System (ADS)
Bekaert, J.; Aperis, A.; Partoens, B.; Oppeneer, P. M.; Milošević, M. V.
2018-01-01
We present an advanced method to study spin fluctuations in superconductors quantitatively and entirely from first principles. This method can be generally applied to materials where electron-phonon coupling and spin fluctuations coexist. We employ it here to examine the recently synthesized superconductor iron tetraboride (FeB4) with experimental Tc˜2.4 K [H. Gou et al., Phys. Rev. Lett. 111, 157002 (2013), 10.1103/PhysRevLett.111.157002]. We prove that FeB4 is particularly prone to ferromagnetic spin fluctuations due to the presence of iron, resulting in a large Stoner interaction strength, I =1.5 eV, as calculated from first principles. The other important factor is its Fermi surface that consists of three separate sheets, among which two are nested ellipsoids. The resulting susceptibility has a ferromagnetic peak around q =0 , from which we calculated the repulsive interaction between Cooper pair electrons using the random phase approximation. Subsequently, we combined the electron-phonon interaction calculated from first principles with the spin fluctuation interaction in fully anisotropic Eliashberg theory calculations. We show that the resulting superconducting gap spectrum is conventional, yet very strongly depleted due to coupling to the spin fluctuations. The critical temperature decreases from Tc=41 K, if they are not taken into account, to Tc=1.7 K, in good agreement with the experimental value.
Coherent ultrafast spin-dynamics probed in three dimensional topological insulators
Boschini, F.; Mansurova, M.; Mussler, G.; Kampmeier, J.; Grützmacher, D.; Braun, L.; Katmis, F.; Moodera, J. S.; Dallera, C.; Carpene, E.; Franz, C.; Czerner, M.; Heiliger, C.; Kampfrath, T.; Münzenberg, M.
2015-01-01
Topological insulators are candidates to open up a novel route in spin based electronics. Different to traditional ferromagnetic materials, where the carrier spin-polarization and magnetization are based on the exchange interaction, the spin properties in topological insulators are based on the coupling of spin- and orbit interaction connected to its momentum. Specific ways to control the spin-polarization with light have been demonstrated: the energy momentum landscape of the Dirac cone provides spin-momentum locking of the charge current and its spin. We investigate a spin-related signal present only during the laser excitation studying real and imaginary part of the complex Kerr angle by disentangling spin and lattice contributions. This coherent signal is only present at the time of the pump-pulses’ light field and can be described in terms of a Raman coherence time. The Raman transition involves states at the bottom edge of the conduction band. We demonstrate a coherent femtosecond control of spin-polarization for electronic states at around the Dirac cone. PMID:26510509
Long lifetimes of ultrahot particles in interacting Fermi systems
NASA Astrophysics Data System (ADS)
Bard, M.; Protopopov, I. V.; Mirlin, A. D.
2018-05-01
The energy dependence of the relaxation rate of hot electrons due to interaction with the Fermi sea is studied. We consider 2D and 3D systems, quasi-1D quantum wires with multiple transverse bands, as well as single-channel 1D wires. Our analysis includes both spinful and spin-polarized setups, with short-range and Coulomb interactions. We show that, quite generally, the relaxation rate is a nonmonotonic function of the electron energy and decays as a power law at high energies. In other words, ultrahot electrons regain their coherence with increasing energy. Such a behavior was observed in a recent experiment on multiband quantum wires, J. Reiner et al., Phys. Rev. X 7, 021016 (2017)., 10.1103/PhysRevX.7.021016
Many-body effects in electron liquids with Rashba spin-orbit coupling
NASA Astrophysics Data System (ADS)
Simion, George E.
The main topic of the present thesis is represented by the many-body effects which characterize the physical behavior of an electron liquid in various realizations. We begin by studying the problem of the response of an otherwise homogeneous electron liquid to the potential of an impurity embedded in its bulk. The most dramatic consequence of this perturbation is the existence of so called Friedel density oscillations. We present calculations of their amplitude valid in two as well as in three dimensions. The second problem we will discuss is that of the correlation effects in a three dimensional electron liquid in the metallic density regime. A number of quasiparticle properties are evaluated: the electron self-energy, the quasiparticle effective mass and the renormalization constant. We also present an analysis of the effective Lande g-factor as well as the compressibility. The effects of the Coulomb interactions beyond the random phase approximation have been treated by means of an approach based on the many-body local field factors theory and by utilizing the latest numerical results of Quantum Monte Carlo numerical simulations. The final chapter includes the results of our extensive work on various aspects regarding the two dimensional Fermi liquid in the presence of linear Rashba spin-orbit coupling. By using a number of many-body techniques, we have studied the interplay between spin-orbit coupling and electron-electron interaction. After proving an extension to the famous Overhauser Hartree-Fock instability theorem, a considerable amount of work will be presented on the problem of the density and spin response functions. For the study of the spin response, we will present the results of extensive numerical calculations based on the time dependent mean field theory approach.
NASA Astrophysics Data System (ADS)
Varberg, Thomas D.; Field, Robert W.; Merer, Anthony J.
1991-08-01
We present a complete analysis of the hyperfine structure of the MnH A 7Π-X 7Σ+ (0,0) band near 5680 Å, studied with sub-Doppler resolution by intermodulated fluorescence spectroscopy. Magnetic hyperfine interactions involving both the 55Mn (I=5/2) and 1H (I=1/2) nuclear spins are observed as well as 55Mn electric quadrupole effects. The manganese Fermi contact interaction in the X 7Σ+ state is the dominant contributor to the observed hyperfine splittings; the ΔF=0, ΔN=0, ΔJ=±1 matrix elements of this interaction mix the electron spin components of the ground state quite strongly at low N, destroying the ``goodness'' of J as a quantum number and inducing rotationally forbidden, ΔJ=±2 and ±3 transitions. The hyperfine splittings of over 50 rotational transitions covering all 7 spin components of both states were analyzed and fitted by least squares, allowing the accurate determination of 14 different hyperfine parameters. Using single electronic configurations to describe the A 7Π and X 7Σ+ states and Herman-Skillman atomic radial wave functions to represent the molecular orbitals, we calculated a priori values for the 55Mn and 1H hyperfine parameters which agree closely with experiment. We show that the five high-spin coupled Mn 3d electrons do not contribute to the manganese hyperfine structure but are responsible for the observed proton magnetic dipolar couplings. Furthermore, the results suggest that the Mn 3d electrons are not significantly involved in bonding and demonstrate that the molecular hyperfine interactions may be quantitatively understood using simple physical interpretations.
Electrical Manipulation of Spin Qubits in Li-doped Si
NASA Astrophysics Data System (ADS)
Petukhov, Andre; Pendo, Luke; Handberg, Erin; Smelyanskiy, Vadim
2011-03-01
We propose a complete quantum computing scheme based on Li donors in Si under external biaxial stress. The qubits are encoded on the ground state Zeeman doublets and coupled via long-range spin-spin interaction mediated by acoustic phonons. This interaction is unique for Li donors in Si due to their inverted electronic structure. Our scheme takes advantage of the fact that the energy level spacing in 1 s Li-donor manifold is comparable with the magnitude of the spin-orbit interaction. As a result the Li spin qubits can be placed 100 nm apart and manipulated by a combination of external electric field and microwave field impulses. We present a specially-designed sequence of the electric field impulses which allows for a typical time of a two-qubit gate ~ ~1~ μ s and a quality factor ~10-6 . These estimates are derived from detailed microscopic calculations of the quadratic Stark effect and electron-phonon decoherence times.
Ferromagnetism in armchair graphene nanoribbons
NASA Astrophysics Data System (ADS)
Lin, Hsiu-Hau; Hikihara, Toshiya; Jeng, Horng-Tay; Huang, Bor-Luen; Mou, Chung-Yu; Hu, Xiao
2009-01-01
Due to the weak spin-orbit interaction and the peculiar relativistic dispersion in graphene, there are exciting proposals to build spin qubits in graphene nanoribbons with armchair boundaries. However, the mutual interactions between electrons are neglected in most studies so far and thus motivate us to investigate the role of electronic correlations in armchair graphene nanoribbon by both analytical and numerical methods. Here we show that the inclusion of mutual repulsions leads to drastic changes and the ground state turns ferromagnetic in a range of carrier concentrations. Our findings highlight the crucial importance of the electron-electron interaction and its subtle interplay with boundary topology in graphene nanoribbons. Furthermore, since the ferromagnetic properties sensitively depend on the carrier concentration, it can be manipulated at ease by electric gates. The resultant ferromagnetic state with metallic conductivity is not only surprising from an academic viewpoint, but also has potential applications in spintronics at nanoscale.
Thermoelectric unipolar spin battery in a suspended carbon nanotube.
Cao, Zhan; Fang, Tie-Feng; He, Wan-Xiu; Luo, Hong-Gang
2017-04-26
A quantum dot formed in a suspended carbon nanotube exposed to an external magnetic field is predicted to act as a thermoelectric unipolar spin battery which generates pure spin current. The built-in spin flip mechanism is a consequence of the spin-vibration interaction resulting from the interplay between the intrinsic spin-orbit coupling and the vibrational modes of the suspended carbon nanotube. On the other hand, utilizing thermoelectric effect, the temperature difference between the electron and the thermal bath to which the vibrational modes are coupled provides the driving force. We find that both magnitude and direction of the generated pure spin current are dependent on the strength of spin-vibration interaction, the sublevel configuration in dot, the temperatures of electron and thermal bath, and the tunneling rate between the dot and the pole. Moreover, in the linear response regime, the kinetic coefficient is non-monotonic in the temperature T and it reaches its maximum when [Formula: see text] is about one phonon energy. The existence of a strong intradot Coulomb interaction is irrelevant for our spin battery, provided that high-order cotunneling processes are suppressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Woo-Pyo; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180–3590
The influence of electron spin-interaction on the propagation of the electrostatic space-charge quantum wave is investigated in a cylindrically bounded quantum plasma. The dispersion relation of the space-charge quantum electrostatic wave is derived including the influence of the electron spin-current in a cylindrical waveguide. It is found that the influence of electron spin-interaction enhances the wave frequency for large wave number regions. It is shown that the wave frequencies with higher-solution modes are always smaller than those with lower-solution modes in small wave number domains. In addition, it is found that the wave frequency increases with an increase of themore » radius of the plasma cylinder as well as the Fermi wave number. We discuss the effects due to the quantum and geometric on the variation of the dispersion properties of the space-charge plasma wave.« less
Dynamic spin filtering at the Co/Alq3 interface mediated by weakly coupled second layer molecules.
Droghetti, Andrea; Thielen, Philip; Rungger, Ivan; Haag, Norman; Großmann, Nicolas; Stöckl, Johannes; Stadtmüller, Benjamin; Aeschlimann, Martin; Sanvito, Stefano; Cinchetti, Mirko
2016-08-31
Spin filtering at organic-metal interfaces is often determined by the details of the interaction between the organic molecules and the inorganic magnets used as electrodes. Here we demonstrate a spin-filtering mechanism based on the dynamical spin relaxation of the long-living interface states formed by the magnet and weakly physisorbed molecules. We investigate the case of Alq3 on Co and, by combining two-photon photoemission experiments with electronic structure theory, show that the observed long-time spin-dependent electron dynamics is driven by molecules in the second organic layer. The interface states formed by physisorbed molecules are not spin-split, but acquire a spin-dependent lifetime, that is the result of dynamical spin-relaxation driven by the interaction with the Co substrate. Such spin-filtering mechanism has an important role in the injection of spin-polarized carriers across the interface and their successive hopping diffusion into successive molecular layers of molecular spintronics devices.
Dynamic spin filtering at the Co/Alq3 interface mediated by weakly coupled second layer molecules
Droghetti, Andrea; Thielen, Philip; Rungger, Ivan; Haag, Norman; Großmann, Nicolas; Stöckl, Johannes; Stadtmüller, Benjamin; Aeschlimann, Martin; Sanvito, Stefano; Cinchetti, Mirko
2016-01-01
Spin filtering at organic-metal interfaces is often determined by the details of the interaction between the organic molecules and the inorganic magnets used as electrodes. Here we demonstrate a spin-filtering mechanism based on the dynamical spin relaxation of the long-living interface states formed by the magnet and weakly physisorbed molecules. We investigate the case of Alq3 on Co and, by combining two-photon photoemission experiments with electronic structure theory, show that the observed long-time spin-dependent electron dynamics is driven by molecules in the second organic layer. The interface states formed by physisorbed molecules are not spin-split, but acquire a spin-dependent lifetime, that is the result of dynamical spin-relaxation driven by the interaction with the Co substrate. Such spin-filtering mechanism has an important role in the injection of spin-polarized carriers across the interface and their successive hopping diffusion into successive molecular layers of molecular spintronics devices. PMID:27578395
Dynamic spin filtering at the Co/Alq3 interface mediated by weakly coupled second layer molecules
NASA Astrophysics Data System (ADS)
Droghetti, Andrea; Thielen, Philip; Rungger, Ivan; Haag, Norman; Großmann, Nicolas; Stöckl, Johannes; Stadtmüller, Benjamin; Aeschlimann, Martin; Sanvito, Stefano; Cinchetti, Mirko
2016-08-01
Spin filtering at organic-metal interfaces is often determined by the details of the interaction between the organic molecules and the inorganic magnets used as electrodes. Here we demonstrate a spin-filtering mechanism based on the dynamical spin relaxation of the long-living interface states formed by the magnet and weakly physisorbed molecules. We investigate the case of Alq3 on Co and, by combining two-photon photoemission experiments with electronic structure theory, show that the observed long-time spin-dependent electron dynamics is driven by molecules in the second organic layer. The interface states formed by physisorbed molecules are not spin-split, but acquire a spin-dependent lifetime, that is the result of dynamical spin-relaxation driven by the interaction with the Co substrate. Such spin-filtering mechanism has an important role in the injection of spin-polarized carriers across the interface and their successive hopping diffusion into successive molecular layers of molecular spintronics devices.
Car, B; Veissier, L; Louchet-Chauvet, A; Le Gouët, J-L; Chanelière, T
2018-05-11
In Er^{3+}:Y_{2}SiO_{5}, we demonstrate the selective optical addressing of the ^{89}Y^{3+} nuclear spins through their superhyperfine coupling with the Er^{3+} electronic spins possessing large Landé g factors. We experimentally probe the electron-nuclear spin mixing with photon echo techniques and validate our model. The site-selective optical addressing of the Y^{3+} nuclear spins is designed by adjusting the magnetic field strength and orientation. This constitutes an important step towards the realization of long-lived solid-state qubits optically addressed by telecom photons.
NASA Astrophysics Data System (ADS)
Car, B.; Veissier, L.; Louchet-Chauvet, A.; Le Gouët, J.-L.; Chanelière, T.
2018-05-01
In Er3 +:Y2SiO5 , we demonstrate the selective optical addressing of the
Bias Dependent Spin Relaxation in a [110]-InAs/AlSb Two Dimensional Electron System
NASA Astrophysics Data System (ADS)
Hicks, J.; Holabird, K.
2005-03-01
Manipulation of electron spin is a critical component of many proposed semiconductor spintronic devices. One promising approach utilizes the Rashba effect by which an applied electric field can be used to reduce the spin lifetime or rotate spin orientation through spin-orbit interaction. The large spin-orbit interaction needed for this technique to be effective typically leads to fast spin relaxation through precessional decay, which may severely limit device architectures and functionalities. An exception arises in [110]-oriented heterostructures where the crystal magnetic field associated with bulk inversion asymmetry lies along the growth direction and in which case spins oriented along the growth direction do not precess. These considerations have led to a recent proposal of a spin-FET that incorporates a [110]-oriented, gate-controlled InAs quantum well channel [1]. We report measurements of the electron spin lifetime as a function of applied electric field in a [110]-InAs 2DES. Measurements made using an ultrafast, mid-IR pump-probe technique indicate that the spin lifetime can be reduced from its maximum to minimum value over a range of less than 0.2V per quantum well at room temperature. This work is supported by DARPA, NSERC and the NSF grant ECS - 0322021. [1] K. C. Hall, W. H. Lau, K. Gundogdu, M. E. Flatte, and T. F. Boggess, Appl. Phys. Lett. 83, 2937 (2003).
Boundary conditions and transmission reflection of electron spin in a quantum well
NASA Astrophysics Data System (ADS)
Dargys, A.
2012-04-01
Boundary conditions for a spinor at the interface of hetero- and homobarrier in the presence of spin-orbit interaction are briefly reviewed and generalized. Then they are applied to 2D electron in the presence of a discontinuity of physical parameters in a quantum well. It is shown that in general case under oblique electron incidence, the problem can be solved analytically and the Fresnel-type formulae for polarization can be obtained if, in addition, the Gröbner basis algorithm is addressed to solve the problem. It is observed that the transmitted and reflected spin polarization may strongly depend on values of spin-orbit constants on both sides of the homobarrier in the quantum well.
Wierzbicki, Michał; Barnaś, Józef; Swirkowicz, Renata
2015-12-09
The effects of electron-electron and spin-orbit interactions on the ground-state magnetic configuration and on the corresponding thermoelectric and spin thermoelectric properties in zigzag nanoribbons of two-dimensional hexagonal crystals are analysed theoretically. The thermoelectric properties of quasi-stable magnetic states are also considered. Of particular interest is the influence of Coulomb and spin-orbit interactions on the topological edge states and on the transition between the topological insulator and conventional gap insulator states. It is shown that the interplay of both interactions also has a significant impact on the transport and thermoelectric characteristics of the nanoribbons. The spin-orbit interaction also determines the in-plane magnetic easy axis. The thermoelectric properties of nanoribbons with in-plane magnetic moments are compared to those of nanoribbons with edge magnetic moments oriented perpendicularly to their plane. Nanoribbons with ferromagnetic alignment of the edge moments are shown to reveal spin thermoelectricity in addition to the conventional one.
NASA Astrophysics Data System (ADS)
Edwards, Devin T.; Takahashi, Susumu; Sherwin, Mark S.; Han, Songi
2012-10-01
At 8.5 T, the polarization of an ensemble of electron spins is essentially 100% at 2 K, and decreases to 30% at 20 K. The strong temperature dependence of the electron spin polarization between 2 and 20 K leads to the phenomenon of spin bath quenching: temporal fluctuations of the dipolar magnetic fields associated with the energy-conserving spin "flip-flop" process are quenched as the temperature of the spin bath is lowered to the point of nearly complete spin polarization. This work uses pulsed electron paramagnetic resonance (EPR) at 240 GHz to investigate the effects of spin bath quenching on the phase memory times (TM) of randomly-distributed ensembles of nitroxide molecules below 20 K at 8.5 T. For a given electron spin concentration, a characteristic, dipolar flip-flop rate (W) is extracted by fitting the temperature dependence of TM to a simple model of decoherence driven by the spin flip-flop process. In frozen solutions of 4-Amino-TEMPO, a stable nitroxide radical in a deuterated water-glass, a calibration is used to quantify average spin-spin distances as large as r¯=6.6 nm from the dipolar flip-flop rate. For longer distances, nuclear spin fluctuations, which are not frozen out, begin to dominate over the electron spin flip-flop processes, placing an effective ceiling on this method for nitroxide molecules. For a bulk solution with a three-dimensional distribution of nitroxide molecules at concentration n, we find W∝n∝1/r, which is consistent with magnetic dipolar spin interactions. Alternatively, we observe W∝n for nitroxides tethered to a quasi two-dimensional surface of large (Ø ˜ 200 nm), unilamellar, lipid vesicles, demonstrating that the quantification of spin bath quenching can also be used to discern the geometry of molecular assembly or organization.
NASA Astrophysics Data System (ADS)
Shahzad, Munir; Sengupta, Pinaki
2017-08-01
We study the Shastry-Sutherland Kondo lattice model with additional Dzyaloshinskii-Moriya (DM) interactions, exploring the possible magnetic phases in its multi-dimensional parameter space. Treating the local moments as classical spins and using a variational ansatz, we identify the parameter ranges over which various common magnetic orderings are potentially stabilized. Our results reveal that the competing interactions result in a heightened susceptibility towards a wide range of spin configurations including longitudinal ferromagnetic and antiferromagnetic order, coplanar flux configurations and most interestingly, multiple non-coplanar configurations including a novel canted-flux state as the different Hamiltonian parameters like electron density, interaction strengths and degree of frustration are varied. The non-coplanar and non-collinear magnetic ordering of localized spins behave like emergent electromagnetic fields and drive unusual transport and electronic phenomena.
Non-equilibrium magnetic interactions in strongly correlated systems
NASA Astrophysics Data System (ADS)
Secchi, A.; Brener, S.; Lichtenstein, A. I.; Katsnelson, M. I.
2013-06-01
We formulate a low-energy theory for the magnetic interactions between electrons in the multi-band Hubbard model under non-equilibrium conditions determined by an external time-dependent electric field which simulates laser-induced spin dynamics. We derive expressions for dynamical exchange parameters in terms of non-equilibrium electronic Green functions and self-energies, which can be computed, e.g., with the methods of time-dependent dynamical mean-field theory. Moreover, we find that a correct description of the system requires, in addition to exchange, a new kind of magnetic interaction, that we name twist exchange, which formally resembles Dzyaloshinskii-Moriya coupling, but is not due to spin-orbit, and is actually due to an effective three-spin interaction. Our theory allows the evaluation of the related time-dependent parameters as well.
Spin-orbit coupling induced two-electron relaxation in silicon donor pairs
NASA Astrophysics Data System (ADS)
Song, Yang; Das Sarma, S.
2017-09-01
We unravel theoretically a key intrinsic relaxation mechanism among the low-lying singlet and triplet donor-pair states in silicon, an important element in the fast-developing field of spintronics and quantum computation. Despite the perceived weak spin-orbit coupling (SOC) in Si, we find that our discovered relaxation mechanism, combined with the electron-phonon and interdonor interactions, drives the transitions in the two-electron states over a large range of donor coupling regimes. The scaling of the relaxation rate with interdonor exchange interaction J goes from J5 to J4 at the low to high temperature limits. Our analytical study draws on the symmetry analysis over combined band, donor envelope, and valley configurations. It uncovers naturally the dependence on the donor-alignment direction and triplet spin orientation, and especially on the dominant SOC source from donor impurities. While a magnetic field is not necessary for this relaxation, unlike in the single-donor spin relaxation, we discuss the crossover behavior with increasing Zeeman energy in order to facilitate comparison with experiments.
Influence of the nuclear Zeeman effect on mode locking in pulsed semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Beugeling, Wouter; Uhrig, Götz S.; Anders, Frithjof B.
2017-09-01
The coherence of the electron spin in a semiconductor quantum dot is strongly enhanced by mode locking through nuclear focusing, where the synchronization of the electron spin to periodic pulsing is slowly transferred to the nuclear spins of the semiconductor material, mediated by the hyperfine interaction between these. The external magnetic field that drives the Larmor oscillations of the electron spin also subjects the nuclear spins to a Zeeman-like coupling, albeit a much weaker one. For typical magnetic fields used in experiments, the energy scale of the nuclear Zeeman effect is comparable to that of the hyperfine interaction, so that it is not negligible. In this work, we analyze the influence of the nuclear Zeeman effect on mode locking quantitatively. Within a perturbative framework, we calculate the Overhauser-field distribution after a prolonged period of pulsing. We find that the nuclear Zeeman effect can exchange resonant and nonresonant frequencies. We distinguish between models with a single type and with multiple types of nuclei. For the latter case, the positions of the resonances depend on the individual g factors, rather than on the average value.
Nematic order on the surface of a three-dimensional topological insulator
NASA Astrophysics Data System (ADS)
Lundgren, Rex; Yerzhakov, Hennadii; Maciejko, Joseph
2017-12-01
We study the spontaneous breaking of rotational symmetry in the helical surface state of three-dimensional topological insulators due to strong electron-electron interactions, focusing on time-reversal invariant nematic order. Owing to the strongly spin-orbit coupled nature of the surface state, the nematic order parameter is linear in the electron momentum and necessarily involves the electron spin, in contrast with spin-degenerate nematic Fermi liquids. For a chemical potential at the Dirac point (zero doping), we find a first-order phase transition at zero temperature between isotropic and nematic Dirac semimetals. This extends to a thermal phase transition that changes from first to second order at a finite-temperature tricritical point. At finite doping, we find a transition between isotropic and nematic helical Fermi liquids that is second order even at zero temperature. Focusing on finite doping, we discuss various observable consequences of nematic order, such as anisotropies in transport and the spin susceptibility, the partial breakdown of spin-momentum locking, collective modes and induced spin fluctuations, and non-Fermi-liquid behavior at the quantum critical point and in the nematic phase.
Optical orientation in ferromagnet/semiconductor hybrids
NASA Astrophysics Data System (ADS)
Korenev, V. L.
2008-11-01
The physics of optical pumping of semiconductor electrons in ferromagnet/semiconductor hybrids is discussed. Optically oriented semiconductor electrons detect the magnetic state of a ferromagnetic film. In turn, the ferromagnetism of the hybrid can be controlled optically with the help of a semiconductor. Spin-spin interactions near the ferromagnet/semiconductor interface play a crucial role in the optical readout and the manipulation of ferromagnetism.
Julius Edgar Lilienfeld Prize Talk: Quantum spintronics: abandoning perfection for new technologies
NASA Astrophysics Data System (ADS)
Awschalom, David D.
2015-03-01
There is a growing interest in exploiting the quantum properties of electronic and nuclear spins for the manipulation and storage of information in the solid state. Such schemes offer qualitatively new scientific and technological opportunities by leveraging elements of standard electronics to precisely control coherent interactions between electrons, nuclei, and electromagnetic fields. We provide an overview of the field, including a discussion of temporally- and spatially-resolved magneto-optical measurements designed for probing local moment dynamics in electrically and magnetically doped semiconductor nanostructures. These early studies provided a surprising proof-of-concept that quantum spin states can be created and controlled with high-speed optoelectronic techniques. However, as electronic structures approach the atomic scale, small amounts of disorder begin to have outsized negative effects. An intriguing solution to this conundrum is emerging from recent efforts to embrace semiconductor defects themselves as a route towards quantum machines. Individual defects in carbon-based materials possess an electronic spin state that can be employed as a solid state quantum bit at and above room temperature. Developments at the frontier of this field include gigahertz coherent control, nanofabricated spin arrays, nuclear spin quantum memories, and nanometer-scale sensing. We will describe advances towards quantum information processing driven by both physics and materials science to explore electronic, photonic, and magnetic control of spin. Work supported by the AFOSR, ARO, DARPA, NSF, and ONR.
Electrical detection of proton-spin motion in a polymer device at room temperature
NASA Astrophysics Data System (ADS)
Boehme, Christoph
With the emergence of spintronics concepts based on organic semiconductors there has been renewed interest in the role of both, electron as well as nuclear spin states for the magneto-optoelectronic properties of these materials. In spite of decades of research on these molecular systems, there is still much need for an understanding of some of the fundamental properties of spin-controlled charge carrier transport and recombination processes. This presentation focuses on mechanisms that allow proton spin states to influence electronic transition rates in organic semiconductors. Remarkably, even at low-magnetic field conditions and room temperature, nuclear spin states with energy splittings orders of magnitude below thermal energies are able to influence observables like magnetoresistance and fluorescence. While proton spins couple to charge carrier spins via hyperfine interaction, there has been considerable debate about the nature of the electronic processes that are highly susceptible to these weak hyperfine fields. Here, experiments are presented which show how the magnetic resonant manipulation of electron and nuclear spin states in a π-conjugated polymer device causes changes of the device current. The experiments confirm the extraordinary sensitivity of electronic transitions to very weak magnetic field changes and underscore the potential significance of spin-selection rules for highly sensitive absolute magnetic fields sensor concepts. However, the relevance of these magnetic-field sensitive spin-dependent electron transitions is not just limited to semiconductor materials but also radical pair chemistry and even avian magnetoreceptors This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award #DE-SC0000909. The Utah NSF - MRSEC program #DMR 1121252 is acknowledged for instrumentation support.
Quantum mechanical theory of dynamic nuclear polarization in solid dielectrics.
Hu, Kan-Nian; Debelouchina, Galia T; Smith, Albert A; Griffin, Robert G
2011-03-28
Microwave driven dynamic nuclear polarization (DNP) is a process in which the large polarization present in an electron spin reservoir is transferred to nuclei, thereby enhancing NMR signal intensities. In solid dielectrics there are three mechanisms that mediate this transfer--the solid effect (SE), the cross effect (CE), and thermal mixing (TM). Historically these mechanisms have been discussed theoretically using thermodynamic parameters and average spin interactions. However, the SE and the CE can also be modeled quantum mechanically with a system consisting of a small number of spins and the results provide a foundation for the calculations involving TM. In the case of the SE, a single electron-nuclear spin pair is sufficient to explain the polarization mechanism, while the CE requires participation of two electrons and a nuclear spin, and can be used to understand the improved DNP enhancements observed using biradical polarizing agents. Calculations establish the relations among the electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) frequencies and the microwave irradiation frequency that must be satisfied for polarization transfer via the SE or the CE. In particular, if δ, Δ < ω(0I), where δ and Δ are the homogeneous linewidth and inhomogeneous breadth of the EPR spectrum, respectively, we verify that the SE occurs when ω(M) = ω(0S) ± ω(0I), where ω(M), ω(0S) and ω(0I) are, respectively, the microwave, and the EPR and NMR frequencies. Alternatively, when Δ > ω(0I) > δ, the CE dominates the polarization transfer. This two-electron process is optimized when ω(0S(1))-ω(0S(2)) = ω(0I) and ω(M)~ω(0S(1)) or ω(0S(2)), where ω(0S(1)) and ω(0S(2)) are the EPR Larmor frequencies of the two electrons. Using these matching conditions, we calculate the evolution of the density operator from electron Zeeman order to nuclear Zeeman order for both the SE and the CE. The results provide insights into the influence of the microwave irradiation field, the external magnetic field, and the electron-electron and electron-nuclear interactions on DNP enhancements.
Chiral helimagnetic state in a Kondo lattice model with the Dzyaloshinskii-Moriya interaction
NASA Astrophysics Data System (ADS)
Okumura, Shun; Kato, Yasuyuki; Motome, Yukitoshi
2018-05-01
Monoaxial chiral magnets can form a noncollinear twisted spin structure called the chiral helimagnetic state. We study magnetic properties of such a chiral helimagnetic state, with emphasis on the effect of itinerant electrons. Modeling a monoaxial chiral helimagnet by a one-dimensional Kondo lattice model with the Dzyaloshinskii-Moriya interaction, we perform a variational calculation to elucidate the stable spin configuration in the ground state. We obtain a chiral helimagnetic state as a candidate for the ground state, whose helical pitch is modulated by the model parameters: the Kondo coupling, the Dzyaloshinski-Moriya interaction, and electron filling.
Electric field controlled spin interference in a system with Rashba spin-orbit coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciftja, Orion, E-mail: ogciftja@pvamu.edu
There have been intense research efforts over the last years focused on understanding the Rashba spin-orbit coupling effect from the perspective of possible spintronics applications. An important component of this line of research is aimed at control and manipulation of electron’s spin degrees of freedom in semiconductor quantum dot devices. A promising way to achieve this goal is to make use of the tunable Rashba effect that relies on the spin-orbit interaction in a two-dimensional electron system embedded in a host semiconducting material that lacks inversion-symmetry. This way, the Rashba spin-orbit coupling effect may potentially lead to fabrication of amore » new generation of spintronic devices where control of spin, thus magnetic properties, is achieved via an electric field and not a magnetic field. In this work we investigate theoretically the electron’s spin interference and accumulation process in a Rashba spin-orbit coupled system consisting of a pair of two-dimensional semiconductor quantum dots connected to each other via two conducting semi-circular channels. The strength of the confinement energy on the quantum dots is tuned by gate potentials that allow “leakage” of electrons from one dot to another. While going through the conducting channels, the electrons are spin-orbit coupled to a microscopically generated electric field applied perpendicular to the two-dimensional system. We show that interference of spin wave functions of electrons travelling through the two channels gives rise to interference/conductance patterns that lead to the observation of the geometric Berry’s phase. Achieving a predictable and measurable observation of Berry’s phase allows one to control the spin dynamics of the electrons. It is demonstrated that this system allows use of a microscopically generated electric field to control Berry’s phase, thus, enables one to tune the spin-dependent interference pattern and spintronic properties with no need for injection of spin-polarized electrons.« less
Spin Exchange Interaction in Substituted Copper Phthalocyanine Crystalline Thin Films
NASA Astrophysics Data System (ADS)
Rawat, Naveen; Pan, Zhenwen; Lamarche, Cody J.; Wetherby, Anthony; Waterman, Rory; Tokumoto, Takahisa; Cherian, Judy G.; Headrick, Randall L.; McGill, Stephen A.; Furis, Madalina I.
2015-11-01
The origins of spin exchange in crystalline thin films of Copper Octabutoxy Phthalocyanine (Cu-OBPc) are investigated using Magnetic Circular Dichroism (MCD) spectroscopy. These studies are made possible by a solution deposition technique which produces highly ordered films with macroscopic grain sizes suitable for optical studies. For temperatures lower than 2 K, the contribution of a specific state in the valence band manifold originating from the hybridized lone pair in nitrogen orbitals of the Phthalocyanine ring, bears the Brillouin-like signature of an exchange interaction with the localized d-shell Cu spins. A comprehensive MCD spectral analysis coupled with a molecular field model of a σπ - d exchange analogous to sp-d interactions in Diluted Magnetic Semiconductors (DMS) renders an enhanced Zeeman splitting and a modified g-factor of -4 for the electrons that mediate the interaction. These studies define an experimental tool for identifying electronic states involved in spin-dependent exchange interactions in organic materials.
Spin Exchange Interaction in Substituted Copper Phthalocyanine Crystalline Thin Films
Rawat, Naveen; Pan, Zhenwen; Lamarche, Cody J.; Wetherby, Anthony; Waterman, Rory; Tokumoto, Takahisa; Cherian, Judy G.; Headrick, Randall L.; McGill, Stephen A.; Furis, Madalina I.
2015-01-01
The origins of spin exchange in crystalline thin films of Copper Octabutoxy Phthalocyanine (Cu-OBPc) are investigated using Magnetic Circular Dichroism (MCD) spectroscopy. These studies are made possible by a solution deposition technique which produces highly ordered films with macroscopic grain sizes suitable for optical studies. For temperatures lower than 2 K, the contribution of a specific state in the valence band manifold originating from the hybridized lone pair in nitrogen orbitals of the Phthalocyanine ring, bears the Brillouin-like signature of an exchange interaction with the localized d-shell Cu spins. A comprehensive MCD spectral analysis coupled with a molecular field model of a σπ − d exchange analogous to sp-d interactions in Diluted Magnetic Semiconductors (DMS) renders an enhanced Zeeman splitting and a modified g-factor of −4 for the electrons that mediate the interaction. These studies define an experimental tool for identifying electronic states involved in spin-dependent exchange interactions in organic materials. PMID:26559337
Spin Exchange Interaction in Substituted Copper Phthalocyanine Crystalline Thin Films.
Rawat, Naveen; Pan, Zhenwen; Lamarche, Cody J; Wetherby, Anthony; Waterman, Rory; Tokumoto, Takahisa; Cherian, Judy G; Headrick, Randall L; McGill, Stephen A; Furis, Madalina I
2015-11-12
The origins of spin exchange in crystalline thin films of Copper Octabutoxy Phthalocyanine (Cu-OBPc) are investigated using Magnetic Circular Dichroism (MCD) spectroscopy. These studies are made possible by a solution deposition technique which produces highly ordered films with macroscopic grain sizes suitable for optical studies. For temperatures lower than 2 K, the contribution of a specific state in the valence band manifold originating from the hybridized lone pair in nitrogen orbitals of the Phthalocyanine ring, bears the Brillouin-like signature of an exchange interaction with the localized d-shell Cu spins. A comprehensive MCD spectral analysis coupled with a molecular field model of a σπ - d exchange analogous to sp-d interactions in Diluted Magnetic Semiconductors (DMS) renders an enhanced Zeeman splitting and a modified g-factor of -4 for the electrons that mediate the interaction. These studies define an experimental tool for identifying electronic states involved in spin-dependent exchange interactions in organic materials.
Spin-polarized current injection induced magnetic reconstruction at oxide interface
Fang, F.; Yin, Y. W.; Li, Qi; ...
2017-01-04
Electrical manipulation of magnetism presents a promising way towards using the spin degree of freedom in very fast, low-power electronic devices. Though there has been tremendous progress in electrical control of magnetic properties using ferromagnetic (FM) nanostructures, an opportunity of manipulating antiferromagnetic (AFM) states should offer another route for creating a broad range of new enabling technologies. Here we selectively probe the interface magnetization of SrTiO 3/La 0.5Ca 0.5MnO 3/La 0.7Sr 0.3MnO 3 heterojunctions and discover a new spin-polarized current injection induced interface magnetoelectric (ME) effect. The accumulation of majority spins at the interface causes a sudden, reversible transition ofmore » the spin alignment of interfacial Mn ions from AFM to FM exchange-coupled, while the injection of minority electron spins alters the interface magnetization from C-type to A-type AFM state. In contrast, the bulk magnetization remains unchanged. We attribute the current-induced interface ME effect to modulations of the strong double-exchange interaction between conducting electron spins and local magnetic moments. As a result, the effect is robust and may serve as a viable route for electronic and spintronic applications.« less
Spin-polarized current injection induced magnetic reconstruction at oxide interface
NASA Astrophysics Data System (ADS)
Fang, F.; Yin, Y. W.; Li, Qi; Lüpke, G.
2017-01-01
Electrical manipulation of magnetism presents a promising way towards using the spin degree of freedom in very fast, low-power electronic devices. Though there has been tremendous progress in electrical control of magnetic properties using ferromagnetic (FM) nanostructures, an opportunity of manipulating antiferromagnetic (AFM) states should offer another route for creating a broad range of new enabling technologies. Here we selectively probe the interface magnetization of SrTiO3/La0.5Ca0.5MnO3/La0.7Sr0.3MnO3 heterojunctions and discover a new spin-polarized current injection induced interface magnetoelectric (ME) effect. The accumulation of majority spins at the interface causes a sudden, reversible transition of the spin alignment of interfacial Mn ions from AFM to FM exchange-coupled, while the injection of minority electron spins alters the interface magnetization from C-type to A-type AFM state. In contrast, the bulk magnetization remains unchanged. We attribute the current-induced interface ME effect to modulations of the strong double-exchange interaction between conducting electron spins and local magnetic moments. The effect is robust and may serve as a viable route for electronic and spintronic applications.
NASA Astrophysics Data System (ADS)
Scheerer, O.; Höhne, M.; Juda, U.; Riemann, H.
1997-10-01
In this article, we report about complexes in silicon investigated by electron paramagnetic resonance (EPR). In silicon doped with C and Pt we detected two different complexes: cr-1Pt (cr: carbon-related, 1Pt: one Pt atom) and cr-3Pt. The complexes have similar EPR properties. They show a trigonal symmetry with effective g-values geff,⊥=2g⊥≈4 and geff,‖=g‖≈2 (g⊥, g‖ true g-values). The g-values can be explained by a spin Hamiltonian with large fine-structure energy (electron spin S=3/2) and smaller Zeeman interaction. The participation of platinum in the complexes is proved by the hyperfine interaction. From experiments with varying carbon concentration we conclude that the complexes contain carbon. Atomistic models based on the Watkins vacancy-model for substitutional Pt were developed.
Nonlocal spin-confinement of electrons in graphene with proximity exchange interaction
NASA Astrophysics Data System (ADS)
Ang, Yee Sin; Liang, Shi-Jun; Ooi, Kelvin J. A.; Zhang, Chao; Ma, Zhongshui; Ang, Lay Kee
In graphene-magnetic-insulator hybrid structure such as graphene-Europium-oxide (EuO-G), proximity induced exchange interaction opens up a spin-dependent bandgap and spin splitting in the Dirac band. We study the bound state formation in a hetero-interface composed of EuO-G. We theoretically predict a remarkable nonlocal spin-confinement effect in EuO-G and show that spin-polarized quasi-1D electron interface state can be generated in a magnetic-field-free channel. Quasiparticle transport mediated by the interface state can be efficiently controlled by the channel width and electrostatic gating. Our results suggest a pathway to further reduce the dimensionality of graphene quasiparticles from 2D to 1D, thus offering an exciting graphene-based platform for the search of exotic 1D physics and spintronic applications.
NASA Astrophysics Data System (ADS)
Mori, Yukie; Hoshino, Mikio; Hayashi, Hisaharu
The excited trip-sextet ( 6 T 1 ) state of chloro-(3-methylimidazol)-( meso -tetraphenylporphyrinato) chromium(III) (Cr III P) is quenched by 1,1 '-dibenzyl-4,4 '-bipyridinium (BV 2+ ) in acetonitrile through electron transfer to give 5 (Cr III P .+ ) and 2 BV .+ . The intermediate is a geminate ion pair in the sextet (Sx) state 6 [ 5 (Cr III P .+ ) 2 BV .+ ], which decays through either the escape from a solvent cage to give the free ions or the spin conversion to the quartet (Qa) state followed by back electron transfer. The free ion yield ( ΦFI ) increased with increasing magnetic field from 0 to 4 T and then slightly decreased from 4 T to 10 T. These magnetic field effects are explained as follows. Under low fields where the Zeeman splitting of the spin sublevels is lower than or comparable with the electron spin dipole-dipole interaction within 5 (Cr III P .+ ), this interaction effectively induces the Sx ⇔Qa conversion of [ 5 (Cr III P .+ ) 2 BV + ] to result in low ΦFI values. Under high fields where the Zeeman splitting is larger than the dipole-dipole interaction, the Sx Qa conversion is decreased with increasing field to cause higher ΦFI values. The slight decrease in ΦFI above 4 T may be due to the Δg mechanism.
NASA Astrophysics Data System (ADS)
Estrada, F.; Guzmán, E. J.; Navarro, O.; Avignon, M.
2018-05-01
The half-metallic ferromagnetic compound Sr2FeMoO6 is considered a fundamental material to understand the role of electronic parameters controlling the half-metallic ground state and high Curie temperature in double perovskite. We present an electronic approach using the Green's function technique and the renormalization perturbation expansion method to study the thermodynamical properties of double perovskites. The model is based on a correlated electron picture with localized Fe spins and conduction electrons interacting with the local spins via a double-exchange-type mechanism. Electron correlations within the conduction band are also included in order to study the Curie temperature TC. Our results show an increases of TC by increasing the carrier density in La-doped Sr2FeMoO6 compounds in contrast to the case of uncorrelated itinerant electrons.
Von Neumann entropy in a Rashba-Dresselhaus nanodot; dynamical electronic spin-orbit entanglement
NASA Astrophysics Data System (ADS)
Safaiee, Rosa; Golshan, Mohammad Mehdi
2017-06-01
The main purpose of the present article is to report the characteristics of von Neumann entropy, thereby, the electronic hybrid entanglement, in the heterojunction of two semiconductors, with due attention to the Rashba and Dresselhaus spin-orbit interactions. To this end, we cast the von Neumann entropy in terms of spin polarization and compute its time evolution; with a vast span of applications. It is assumed that gate potentials are applied to the heterojunction, providing a two dimensional parabolic confining potential (forming an isotropic nanodot at the junction), as well as means of controlling the spin-orbit couplings. The spin degeneracy is also removed, even at electronic zero momentum, by the presence of an external magnetic field which, in turn, leads to the appearance of Landau states. We then proceed by computing the time evolution of the corresponding von Neumann entropy from a separable (spin-polarized) initial state. The von Neumann entropy, as we show, indicates that electronic hybrid entanglement does occur between spin and two-dimensional Landau levels. Our results also show that von Neumann entropy, as well as the degree of spin-orbit entanglement, periodically collapses and revives. The characteristics of such behavior; period, amplitude, etc., are shown to be determined from the controllable external agents. Moreover, it is demonstrated that the phenomenon of collapse-revivals' in the behavior of von Neumann entropy, equivalently, electronic hybrid entanglement, is accompanied by plateaus (of great importance in quantum computation schemes) whose durations are, again, controlled by the external elements. Along these lines, we also make a comparison between effects of the two spin-orbit couplings on the entanglement (von Neumann entropy) characteristics. The finer details of the electronic hybrid entanglement, which may be easily verified through spin polarization measurements, are also accreted and discussed. The novel results of the present article, with potent applications in the field of quantum information processing, provide a deeper understanding of the electronic von Neumann entropy and hybrid entanglement that occurs in two-dimensional nanodots.
Spin polarized electronic states and spin textures at the surface of oxygen-deficient SrTiO3
NASA Astrophysics Data System (ADS)
Jeschke, Harald O.; Altmeyer, Michaela; Rozenberg, Marcelo; Gabay, Marc; Valenti, Roser
We investigate the electronic structure and spin texture at the (001) surface of SrTiO3 in the presence of oxygen vacancies by means of ab initio density functional theory (DFT) calculations of slabs. Relativistic non-magnetic DFT calculations exhibit Rashba-like spin winding with a characteristic energy scale ~ 10 meV. However, when surface magnetism on the Ti ions is included, bands become spin-split with an energy difference ~ 100 meV at the Γ point. This energy scale is comparable to the observations in SARPES experiments performed on the two-dimensional electronic states confined near the (001) surface of SrTiO3. We find the spin polarized state to be the ground state of the system, and while magnetism tends to suppress the effects of the relativistic Rashba interaction, signatures of it are still clearly visible in terms of complex spin textures. We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft through grants SFB/TR 49 and FOR 1346.
Insight into spin transport in oxide heterostructures from interface-resolved magnetic mapping
Bruno, F. Y.; Grisolia, M. N.; Visani, C.; ...
2015-02-17
At interfaces between complex oxides, electronic, orbital and magnetic reconstructions may produce states of matter absent from the materials involved, offering novel possibilities for electronic and spintronic devices. Here we show that magnetic reconstruction has a strong influence on the interfacial spin selectivity, a key parameter controlling spin transport in magnetic tunnel junctions. In epitaxial heterostructures combining layers of antiferromagnetic LaFeO 3 (LFO) and ferromagnetic La 0.7Sr 0.3MnO 3 (LSMO), we find that a net magnetic moment is induced in the first few unit planes of LFO near the interface with LSMO. Using X-ray photoemission electron microscopy, we show thatmore » the ferromagnetic domain structure of the manganite electrodes is imprinted into the antiferromagnetic tunnel barrier, endowing it with spin selectivity. Finally, we find that the spin arrangement resulting from coexisting ferromagnetic and antiferromagnetic interactions strongly influences the tunnel magnetoresistance of LSMO/LFO/LSMO junctions through competing spin-polarization and spin-filtering effects.« less
NASA Astrophysics Data System (ADS)
Dhiflaoui, J.; Bejaoui, M.; Farjallah, M.; Berriche, H.
2018-05-01
The potential energy and spectroscopic constants of the ground and many excited states of the Be+He van der Waals system have been investigated using a one-electron pseudo-potential approach, which is used to replace the effect of the Be2+ core and the electron-He interactions by effective potentials. Furthermore, the core-core interactions are incorporated. This permits the reduction of the number of active electrons of the Be+He van der Waals system to only one electron. Therefore, the potential energy of the ground state as well as the excited states is performed at the SCF level and considering the spin-orbit interaction. The core-core interaction for Be2+He ground state is included using accurate CCSD (T) calculations. Then, the spectroscopic properties of the Be+He electronic states are extracted and compared with the previous theoretical and experimental studies. This comparison has shown a very good agreement for the ground and the first excited states. Moreover, the transition dipole moment has been determined for a large and dense grid of internuclear distances including the spin orbit effect. In addition, a vibrational spacing analysis for the Be2+He and Be+He ground states is performed to extract the He atomic polarisability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turro, N.J.; Khudyakov, I.V.; Bossmann, S.H.
1993-02-11
Time-resolved electron spin resonance (TR ESR) has been used to investigate the chemically induced dynamic electron polarization (CIDEP) generated by the interaction of stable free radicals with the triplet states of benzophenone, benzil, and 2-acetylnaphthalene. The stable radicals were mono-, di-, tri-, and tetranitroxyl free radicals possessing the 2,2,6,6-tetramethylpiperidine-N-oxyl moiety. All of the stable radical systems investigated were found to be emissively polarized by interaction with the triplet states, and the phase of polarization was independent of the sign of zero-field splitting (D) of the interacting triple molecule. Possible and likely mechanisms of polarization transfer (creation) resulting from the interactionmore » of photoexcited triplet molecules with nitroxyls in the strong electron exchange are discussed. The emissive CIDEP of nitroxyls observed in the interactions with triplet benzil, which has D > 0, provides strong support for the operation of the radical-triplet pair mechanism. Within the time scale of TR ESR experiments ([approximately]10[sup [minus]7]--10[sup [minus]6] s) no significant variation in the shape of the CIDEP spectra of the nitroxyls was observed, either in viscous media or in micelles. It is concluded that intramolecular spin exchange (or conformational change) of polynitroyls occurs much faster than the time resolution of the experiment. 24 refs., 6 figs., 1 tab.« less
Self-consistent linear response for the spin-orbit interaction related properties
NASA Astrophysics Data System (ADS)
Solovyev, I. V.
2014-07-01
In many cases, the relativistic spin-orbit (SO) interaction can be regarded as a small perturbation to the electronic structure of solids and treated using regular perturbation theory. The major obstacle on this route comes from the fact that the SO interaction can also polarize the electron system and produce some additional contributions to the perturbation theory expansion, which arise from the electron-electron interactions in the same order of the SO coupling. In electronic structure calculations, it may even lead to the necessity of abandoning the perturbation theory and returning to the original self-consistent solution of Kohn-Sham-like equations with the effective potential v̂, incorporating simultaneously the effects of the electron-electron interactions and the SO coupling, even though the latter is small. In this work, we present the theory of self-consistent linear response (SCLR), which allows us to get rid of numerical self-consistency and formulate the last step fully analytically in the first order of the SO coupling. This strategy is applied to the unrestricted Hartree-Fock solution of an effective Hubbard-type model, derived from the first-principles electronic structure calculations in the basis of Wannier functions for the magnetically active states. We show that by using v̂, obtained in SCLR, one can successfully reproduce results of ordinary self-consistent calculations for the orbital magnetization and other properties, which emerge in the first order of the SO coupling. Particularly, SCLR appears to be an extremely useful approach for calculations of antisymmetric Dzyaloshinskii-Moriya (DM) interactions based on the magnetic force theorem, where only by using the total perturbation one can make a reliable estimate for the DM parameters. Furthermore, due to the powerful 2n+1 theorem, the SCLR theory allows us to obtain the total energy change up to the third order of the SO coupling, which can be used in calculations of magnetic anisotropy of compounds with low crystal symmetry. The fruitfulness of this approach for the analysis of complex magnetic structures is illustrated in a number of examples, including the quantitative description of the spin canting in YTiO3 and LaMnO3, formation of the spin-spiral order in BiFeO3, and the magnetic inversion symmetry breaking in BiMnO3, which gives rise to both ferroelectric activity and DM interactions, responsible for the ferromagnetism. In all these cases, the use of SCLR tremendously reduces the computational efforts related to the search for noncollinear magnetic structures in the ground state.
NASA Astrophysics Data System (ADS)
Sawada, A.; Faniel, S.; Mineshige, S.; Kawabata, S.; Saito, K.; Kobayashi, K.; Sekine, Y.; Sugiyama, H.; Koga, T.
2018-05-01
We report an approach for examining electron properties using information about the shape and size of a nanostructure as a measurement reference. This approach quantifies the spin precession angles per unit length directly by considering the time-reversal interferences on chaotic return trajectories within mesoscopic ring arrays (MRAs). Experimentally, we fabricated MRAs using nanolithography in InGaAs quantum wells which had a gate-controllable spin-orbit interaction (SOI). As a result, we observed an Onsager symmetry related to relativistic magnetic fields, which provided us with indispensable information for the semiclassical billiard ball simulation. Our simulations, developed based on the real-space formalism of the weak localization/antilocalization effect including the degree of freedom for electronic spin, reproduced the experimental magnetoconductivity (MC) curves with high fidelity. The values of five distinct electron parameters (Fermi wavelength, spin precession angles per unit length for two different SOIs, impurity scattering length, and phase coherence length) were thereby extracted from a single MC curve. The methodology developed here is applicable to wide ranges of nanomaterials and devices, providing a diagnostic tool for exotic properties of two-dimensional electron systems.
Electron spin relaxation in carbon nanotubes: Dyakonov-Perel mechanism
NASA Astrophysics Data System (ADS)
Semenov, Yuriy; Zavada, John; Kim, Ki Wook
2010-03-01
The long standing problem of unaccountable short spin relaxation in carbon nanotubes (CNT) meets a disclosure in terms of curvature-mediated spin-orbital interaction that leads to spin fluctuating precession analogous to Dyakonov-Perel mechanism. Strong anisotropy imposed by arbitrary directed magnetic field has been taken into account in terms of extended Bloch equations. Especially, stationary spin current through CNT can be controlled by spin-flip processes with relaxation time as less as 150 ps, the rate of transversal polarization (i.e. decoherence) runs up to 1/(70 ps) at room temperature while spin interference of the electrons related to different valleys can be responsible for shorter spin dephasing. Dependencies of spin-relaxation parameters on magnetic field strength and orientation, CNT curvature and chirality have been analyzed.
Hybrid spin and valley quantum computing with singlet-triplet qubits.
Rohling, Niklas; Russ, Maximilian; Burkard, Guido
2014-10-24
The valley degree of freedom in the electronic band structure of silicon, graphene, and other materials is often considered to be an obstacle for quantum computing (QC) based on electron spins in quantum dots. Here we show that control over the valley state opens new possibilities for quantum information processing. Combining qubits encoded in the singlet-triplet subspace of spin and valley states allows for universal QC using a universal two-qubit gate directly provided by the exchange interaction. We show how spin and valley qubits can be separated in order to allow for single-qubit rotations.
Electrical detection of electron-spin-echo envelope modulations in thin-film silicon solar cells
NASA Astrophysics Data System (ADS)
Fehr, M.; Behrends, J.; Haas, S.; Rech, B.; Lips, K.; Schnegg, A.
2011-11-01
Electrically detected electron-spin-echo envelope modulations (ED-ESEEM) were employed to detect hyperfine interactions between nuclear spins and paramagnetic sites, determining spin-dependent transport processes in multilayer thin-film microcrystalline silicon solar cells. Electrical detection in combination with a modified Hahn-echo sequence was used to measure echo modulations induced by 29Si, 31P, and 1H nuclei weakly coupled to electron spins of paramagnetic sites in the amorphous and microcrystalline solar cell layers. In the case of CE centers in the μc-Si:H i-layer, the absence of 1H ESEEM modulations indicates that the adjacencies of CE centers are depleted from hydrogen atoms. On the basis of this result, we discuss several models for the microscopic origin of the CE center and conclusively assign those centers to coherent twin boundaries inside of crystalline grains in μc-Si:H.
NASA Astrophysics Data System (ADS)
Paredes-Gutiérrez, H.; Pérez-Merchancano, S. T.; Beltran-Rios, C. L.
2017-12-01
In this work, we study the quantum electron transport through a Quantum Dots Structure (QDs), with different geometries, embedded in a Quantum Well (QW). The behaviour of the current through the nanostructure (dot and well) is studied considering the orbital spin coupling of the electrons and the Rashba effect, by means of the second quantization theory and the standard model of Green’s functions. Our results show the behaviour of the current in the quantum system as a function of the electric field, presenting resonant states for specific values of both the external field and the spin polarization. Similarly, the behaviour of the current on the nanostructure changes when the geometry of the QD and the size of the same are modified as a function of the polarization of the electron spin and the potential of quantum confinement.
Ware, M E; Stinaff, E A; Gammon, D; Doty, M F; Bracker, A S; Gershoni, D; Korenev, V L; Bădescu, S C; Lyanda-Geller, Y; Reinecke, T L
2005-10-21
We report polarized photoluminescence excitation spectroscopy of the negative trion in single charge-tunable quantum dots. The spectrum exhibits a p-shell resonance with polarized fine structure arising from the direct excitation of the electron spin triplet states. The energy splitting arises from the axially symmetric electron-hole exchange interaction. The magnitude and sign of the polarization are understood from the spin character of the triplet states and a small amount of quantum dot asymmetry, which mixes the wave functions through asymmetric e-e and e-h exchange interactions.
Costache, Marius V; Bridoux, German; Neumann, Ingmar; Valenzuela, Sergio O
2011-12-18
Thermoelectric effects in spintronics are gathering increasing attention as a means of managing heat in nanoscale structures and of controlling spin information by using heat flow. Thermal magnons (spin-wave quanta) are expected to play a major role; however, little is known about the underlying physical mechanisms involved. The reason is the lack of information about magnon interactions and of reliable methods to obtain it, in particular for electrical conductors because of the intricate influence of electrons. Here, we demonstrate a conceptually new device that enables us to gather information on magnon-electron scattering and magnon-drag effects. The device resembles a thermopile formed by a large number of pairs of ferromagnetic wires placed between a hot and a cold source and connected thermally in parallel and electrically in series. By controlling the relative orientation of the magnetization in pairs of wires, the magnon drag can be studied independently of the electron and phonon-drag thermoelectric effects. Measurements as a function of temperature reveal the effect on magnon drag following a variation of magnon and phonon populations. This information is crucial to understand the physics of electron-magnon interactions, magnon dynamics and thermal spin transport.
Palii, Andrew; Tsukerblat, Boris
2016-10-25
In this article we consider two coupled tetrameric mixed-valence (MV) units accommodating electron pairs, which play the role of cells in molecular quantum cellular automata. It is supposed that the Coulombic interaction between instantly localized electrons within the cell markedly inhibits the transfer processes between the redox centers. Under this condition, as well as due to the vibronic localization of the electron pair, the cell can encode binary information, which is controlled by neighboring cells. We show that under certain conditions the two low-lying vibronic spin levels of the cell (ground and first excited states) can be regarded as originating from an effective spin-spin interaction. This is shown to depend on the internal parameters of the cell as well as on the induced polarization. Within this simplified two-level picture we evaluate the quantum entanglement in the system represented by the two electrons in the cell and show how the entanglement within the cell and concurrence can be controlled via polarization of the neighboring cells and temperature.
Dastvan, Reza; Bode, Bela E; Karuppiah, Muruga Poopathi Raja; Marko, Andriy; Lyubenova, Sevdalina; Schwalbe, Harald; Prisner, Thomas F
2010-10-28
Pulsed electron-electron double resonance (PELDOR) spectroscopy is increasingly applied to spin-labeled membrane proteins. However, after reconstitution into liposomes, spin labels often exhibit a much faster transversal relaxation (T(m)) than in detergent micelles, thus limiting application of the method in lipid bilayers. In this study, the main reasons for enhanced transversal relaxation in phospholipid membranes were investigated systematically by use of spin-labeled derivatives of stearic acid and phosphatidylcholine as well as spin-labeled derivatives of the channel-forming peptide gramicidin A under the conditions typically employed for PELDOR distance measurements. Our results clearly show that dephasing due to instantaneous diffusion that depends on dipolar interaction among electron spins is an important contributor to the fast echo decay in cases of high local concentrations of spin labels in membranes. The main difference between spin labels in detergent micelles and membranes is their local concentration. Consequently, avoiding spin clustering and suppressing instantaneous diffusion is the key step for maximizing PELDOR sensitivity in lipid membranes. Even though proton spin diffusion is an important relaxation mechanism, only in samples of low local concentrations does deuteration of acyl chains and buffer significantly prolong T(m). In these cases, values of up to 7 μs have been achieved. Furthermore, our study revealed that membrane composition and labeling position in the membrane can also affect T(m), either by promoting the segregation of spin-labeled species or by altering their exposure to matrix protons. Effects of other experimental parameters including temperature (<50 K), presence of oxygen, and cryoprotectant type are negligible under our experimental conditions.
NASA Astrophysics Data System (ADS)
Fawzy, Wafaa M.
2010-10-01
A FORTRAN code is developed for simulation and fitting the fine structure of a planar weakly-bonded open-shell complex that consists of a diatomic radical in a Σ3 electronic state and a diatomic or a polyatomic closed-shell molecule. The program sets up the proper total Hamiltonian matrix for a given J value and takes account of electron-spin-electron-spin, electron-spin rotation interactions, and the quartic and sextic centrifugal distortion terms within the complex. Also, R-dependence of electron-spin-electron-spin and electron-spin rotation couplings are considered. The code does not take account of effects of large-amplitude internal rotation of the diatomic radical within the complex. It is assumed that the complex has a well defined equilibrium geometry so that effects of large amplitude motion are negligible. Therefore, the computer code is suitable for a near-rigid rotor. Numerical diagonalization of the matrix provides the eigenvalues and the eigenfunctions that are necessary for calculating energy levels, frequencies, relative intensities of infrared or microwave transitions, and expectation values of the quantum numbers within the complex. Goodness of all the quantum numbers, with exception of J and parity, depends on relative sizes of the product of the rotational constants and quantum numbers (i.e. BJ, CJ, and AK), electron-spin-electron-spin, and electron-spin rotation couplings, as well as the geometry of the complex. Therefore, expectation values of the quantum numbers are calculated in the eigenfunctions basis of the complex. The computational time for the least squares fits has been significantly reduced by using the Hellman-Feynman theory for calculating the derivatives. The computer code is useful for analysis of high resolution infrared and microwave spectra of a planar near-rigid weakly-bonded open-shell complex that contains a diatomic fragment in a Σ3 electronic state and a closed-shell molecule. The computer program was successfully applied to analysis and fitting the observed high resolution infrared spectra of the O 2sbnd HF/O 2sbnd DF and O 2sbnd N 2O complexes. Test input file for simulation and fitting the high resolution infrared spectrum of the O 2sbnd DF complex is provided. Program summaryProgram title: TSIG_COMP Catalogue identifier: AEGM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGM_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 10 030 No. of bytes in distributed program, including test data, etc.: 51 663 Distribution format: tar.gz Programming language: Fortran 90, free format Computer: SGI Origin 3400, workstations and PCs Operating system: Linux, UNIX and Windows (see Restrictions below) RAM: Case dependent Classification: 16.2 Nature of problem: TSIG_COMP calculates frequencies, relative intensities, and expectation values of the various quantum numbers and parities of bound states involved in allowed ro-vibrational transitions in semi-rigid planar weakly-bonded open-shell complexes. The complexes of interest contain a free radical in a Σ3 state and a closed-shell partner, where the electron-spin-electron-spin interaction, electron-spin rotation interaction, and centrifugal forces significantly modify the spectral patterns. To date, ab initio methods are incapable of taking these effects into account to provide accurate predictions for the ro-vibrational energy levels of the complexes of interest. In the TSIG_COMP program, the problem is solved by using the proper effective Hamiltonian and molecular basis set. Solution method: The program uses a Hamiltonian operator that takes into account vibration, end-over-end rotation, electron-spin-electron-spin and electron-spin rotation interactions as well as the various centrifugal distortion terms. The Hamiltonian operator and the molecular basis set are used to set up the Hamiltonian matrix in the inertial axis system of the complex of interest. Diagonalization of the Hamiltonian matrix provides the eigenvalues and the eigenfunctions for the bound ro-vibrational states. These eigenvalues and eigenfunctions are used to calculate frequencies and relative intensities of the allowed infrared or microwave transitions as well as expectation values of all the quantum numbers and parities of states involved in the transitions. The program employs the method of least squares fits to fit the observed frequencies to the calculated frequencies to provide the molecular parameters that determine the geometry of the complex of interest. Restrictions: The number of transitions and parameters included in the fits is limited to 80 parameters and 200 transitions. However, these numbers can be increased by adjusting dimensions of the arrays (not recommended). Running the program under MS windows is recommended for simulations of any number of transitions and for fitting a relatively small number of parameters and transitions (maximum 15 parameters and 82 transitions), for fitting larger number of parameters run time error may occur. Because spectra of weakly bonded complexes are recorded at low temperatures, in most of cases fittings can be performed under MS windows. Running time: Problem-dependent. The provided test input for Linux fits 82 transitions and 21 parameters, the actual run time is 62 minutes. The provided test input file for MS windows fits 82 transitions and 15 parameters; the actual runtime is 5 minutes.
Odd-Parity Superconductivity near an Inversion Breaking Quantum Critical Point in One Dimension
Ruhman, Jonathan; Kozii, Vladyslav; Fu, Liang
2017-05-31
In this work, we study how an inversion-breaking quantum critical point affects the ground state of a one-dimensional electronic liquid with repulsive interaction and spin-orbit coupling. We find that regardless of the interaction strength, the critical fluctuations always lead to a gap in the electronic spin sector. The origin of the gap is a two-particle backscattering process, which becomes relevant due to renormalization of the Luttinger parameter near the critical point. The resulting spin-gapped state is topological and can be considered as a one-dimensional version of a spin-triplet superconductor. Interestingly, in the case of a ferromagnetic critical point, the Luttingermore » parameter is renormalized in the opposite manner, such that the system remains nonsuperconducting.« less
NASA Astrophysics Data System (ADS)
Fielding, Alistair J.; Usselman, Robert J.; Watmough, Nicholas; Simkovic, Martin; Frerman, Frank E.; Eaton, Gareth R.; Eaton, Sandra S.
2008-02-01
Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is a membrane-bound electron transfer protein that links primary flavoprotein dehydrogenases with the main respiratory chain. Human, porcine, and Rhodobacter sphaeroides ETF-QO each contain a single [4Fe-4S] 2+,1+ cluster and one equivalent of FAD, which are diamagnetic in the isolated enzyme and become paramagnetic on reduction with the enzymatic electron donor or with dithionite. The anionic flavin semiquinone can be reduced further to diamagnetic hydroquinone. The redox potentials for the three redox couples are so similar that it is not possible to poise the proteins in a state where both the [4Fe-4S] + cluster and the flavoquinone are fully in the paramagnetic form. Inversion recovery was used to measure the electron spin-lattice relaxation rates for the [4Fe-4S] + between 8 and 18 K and for semiquinone between 25 and 65 K. At higher temperatures the spin-lattice relaxation rates for the [4Fe-4S] + were calculated from the temperature-dependent contributions to the continuous wave linewidths. Although mixtures of the redox states are present, it was possible to analyze the enhancement of the electron spin relaxation of the FAD semiquinone signal due to dipolar interaction with the more rapidly relaxing [4Fe-4S] + and obtain point-dipole interspin distances of 18.6 ± 1 Å for the three proteins. The point-dipole distances are within experimental uncertainty of the value calculated based on the crystal structure of porcine ETF-QO when spin delocalization is taken into account. The results demonstrate that electron spin relaxation enhancement can be used to measure distances in redox poised proteins even when several redox states are present.
Fielding, Alistair J.; Usselman, Robert J.; Watmough, Nicholas; Simkovic, Martin; Frerman, Frank E.; Eaton, Gareth R.; Eaton, Sandra S.
2008-01-01
Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is a membrane-bound electron transfer protein that links primary flavoprotein dehydrogenases with the main respiratory chain. Human, porcine, and Rhodobacter sphaeroides ETF-QO each contain a single [4Fe-4S]2+,1+ cluster and one equivalent of FAD, which are diamagnetic in the isolated enzyme and become paramagnetic on reduction with the enzymatic electron donor or with dithionite. The anionic flavin semiquinone can be reduced further to diamagnetic hydroquinone. The redox potentials for the three redox couples are so similar that it is not possible to poise the proteins in a state where both the [4Fe-4S]+ cluster and the flavoquinone are fully in the paramagnetic form. Inversion recovery was used to measure the electron spin-lattice relaxation rates for the [4Fe-4S]+ between 8 and 18 K and for semiquinone between 25 and 65 K. At higher temperatures the spin-lattice relaxation rates for the [4Fe-4S]+ were calculated from the temperature-dependent contributions to the continuous wave linewidths. Although mixtures of the redox states are present, it was possible to analyze the enhancement of the electron spin relaxation of the FAD semiquinone signal due to dipolar interaction with the more rapidly relaxing [4Fe-4S]+ and obtain point dipole interspin distances of 18.6 ± 1 Å for the three proteins. The point-dipole distances are within experimental uncertainty of the value calculated based on the crystal structure of porcine ETF-QO when spin delocalization is taken into account. The results demonstrate that electron spin relaxation enhancement can be used to measure distances in redox poised proteins even when several redox states are present. PMID:18037314
Fielding, Alistair J; Usselman, Robert J; Watmough, Nicholas; Simkovic, Martin; Frerman, Frank E; Eaton, Gareth R; Eaton, Sandra S
2008-02-01
Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is a membrane-bound electron transfer protein that links primary flavoprotein dehydrogenases with the main respiratory chain. Human, porcine, and Rhodobacter sphaeroides ETF-QO each contain a single [4Fe-4S](2+,1+) cluster and one equivalent of FAD, which are diamagnetic in the isolated enzyme and become paramagnetic on reduction with the enzymatic electron donor or with dithionite. The anionic flavin semiquinone can be reduced further to diamagnetic hydroquinone. The redox potentials for the three redox couples are so similar that it is not possible to poise the proteins in a state where both the [4Fe-4S](+) cluster and the flavoquinone are fully in the paramagnetic form. Inversion recovery was used to measure the electron spin-lattice relaxation rates for the [4Fe-4S](+) between 8 and 18K and for semiquinone between 25 and 65K. At higher temperatures the spin-lattice relaxation rates for the [4Fe-4S](+) were calculated from the temperature-dependent contributions to the continuous wave linewidths. Although mixtures of the redox states are present, it was possible to analyze the enhancement of the electron spin relaxation of the FAD semiquinone signal due to dipolar interaction with the more rapidly relaxing [4Fe-4S](+) and obtain point-dipole interspin distances of 18.6+/-1A for the three proteins. The point-dipole distances are within experimental uncertainty of the value calculated based on the crystal structure of porcine ETF-QO when spin delocalization is taken into account. The results demonstrate that electron spin relaxation enhancement can be used to measure distances in redox poised proteins even when several redox states are present.
NASA Astrophysics Data System (ADS)
Pramchu, Sittichain; Jaroenjittichai, Atchara Punya; Laosiritaworn, Yongyut
2018-03-01
In this work, density functional theory (DFT) was employed to investigate the effect of strain and interface on electronic structures and magnetic properties of L10-FePt/Ag heterojunction. Two possible interface structures of L10-FePt(001)/Ag(001), that is, interface between Fe and Ag layers (Fe/Ag) and between Pt and Ag layers (Pt/Ag), were inspected. It was found that Pt/Ag interface is more stable than Fe/Ag interface due to its lower formation energy. Further, under the lattice mismatch induced tensile strain, the enhancement of magnetism for both Fe/Ag and Pt/Ag interface structures has been found to have progressed, though the magnetic moments of "interfacial" Fe and Pt atoms have been found to have decreased. To explain this further, the local density of states (LDOS) analysis suggests that interaction between Fe (Pt) and Ag near Fe/Ag (Pt/Ag) interface leads to spin symmetry breaking of the Ag atom and hence induces magnetism magnitude. In contrast, the magnetic moments of interfacial Fe and Pt atoms reduce because of the increase in the electronic states near the Fermi level of the minority-spin electrons. In addition, the significant enhancements of the LDOS near the Fermi levels of the minority-spin electrons signify the boosting of the transport properties of the minority-spin electrons and hence the spin-dependent electron transport at this ferromagnet/metal interface. From this work, it is expected that this clarification of the interfacial magnetism may inspire new innovation on how to improve spin-dependent electron transport for enhancing the giant magnetoresistance (GMR) ratio of potential GMR-based spintronic devices.
Electron spin resonance in YbRh2Si2: local-moment, unlike-spin and quasiparticle descriptions.
Huber, D L
2012-06-06
Electron spin resonance (ESR) in the Kondo lattice compound YbRh(2)Si(2) has stimulated discussion as to whether the low-field resonance outside the Fermi liquid regime in this material is more appropriately characterized as a local-moment phenomenon or one that requires a Landau quasiparticle interpretation. In earlier work, we outlined a collective mode approach to the ESR that involves only the local 4f moments. In this paper, we extend the collective mode approach to a situation where there are two subsystems of unlike spins: the pseudospins of the ground multiplet of the Yb ions and the spins of the itinerant conduction electrons. We assume a weakly anisotropic exchange interaction between the two subsystems. With suitable approximations our expression for the g-factor also reproduces that found in recent unlike-spin quasiparticle calculations. It is pointed out that the success of the local-moment approach in describing the resonance is due to the fact that the susceptibility of the Yb subsystem dominates that of the conduction electrons with the consequence that the relative shift in the resonance frequency predicted by the unlike-spin models (and absent in the local-moment models) is ≪ 1. The connection with theoretical studies of a two-component model with like spins is also discussed.
Efficient creation of dipolar coupled nitrogen-vacancy spin qubits in diamond
NASA Astrophysics Data System (ADS)
Jakobi, I.; Momenzadeh, S. A.; Fávaro de Oliveira, F.; Michl, J.; Ziem, F.; Schreck, M.; Neumann, P.; Denisenko, A.; Wrachtrup, J.
2016-09-01
Coherently coupled pairs or multimers of nitrogen-vacancy defect electron spins in diamond have many promising applications especially in quantum information processing (QIP) but also in nanoscale sensing applications. Scalable registers of spin qubits are essential to the progress of QIP. Ion implantation is the only known technique able to produce defect pairs close enough to allow spin coupling via dipolar interaction. Although several competing methods have been proposed to increase the resulting resolution of ion implantation, the reliable creation of working registers is still to be demonstrated. The current limitation are residual radiation-induced defects, resulting in degraded qubit performance as trade-off for positioning accuracy. Here we present an optimized estimation of nanomask implantation parameters that are most likely to produce interacting qubits under standard conditions. We apply our findings to a well-established technique, namely masks written in electron-beam lithography, to create coupled defect pairs with a reasonable probability. Furthermore, we investigate the scaling behavior and necessary improvements to efficiently engineer interacting spin architectures.
Slater Insulator in Iridate Perovskites with Strong Spin-Orbit Coupling.
Cui, Q; Cheng, J-G; Fan, W; Taylor, A E; Calder, S; McGuire, M A; Yan, J-Q; Meyers, D; Li, X; Cai, Y Q; Jiao, Y Y; Choi, Y; Haskel, D; Gotou, H; Uwatoko, Y; Chakhalian, J; Christianson, A D; Yunoki, S; Goodenough, J B; Zhou, J-S
2016-10-21
The perovskite SrIrO_{3} is an exotic narrow-band metal owing to a confluence of the strengths of the spin-orbit coupling (SOC) and the electron-electron correlations. It has been proposed that topological and magnetic insulating phases can be achieved by tuning the SOC, Hubbard interactions, and/or lattice symmetry. Here, we report that the substitution of nonmagnetic, isovalent Sn^{4+} for Ir^{4+} in the SrIr_{1-x}Sn_{x}O_{3} perovskites synthesized under high pressure leads to a metal-insulator transition to an antiferromagnetic (AF) phase at T_{N}≥225 K. The continuous change of the cell volume as detected by x-ray diffraction and the λ-shape transition of the specific heat on cooling through T_{N} demonstrate that the metal-insulator transition is of second order. Neutron powder diffraction results indicate that the Sn substitution enlarges an octahedral-site distortion that reduces the SOC relative to the spin-spin exchange interaction and results in the type-G AF spin ordering below T_{N}. Measurement of high-temperature magnetic susceptibility shows the evolution of magnetic coupling in the paramagnetic phase typical of weak itinerant-electron magnetism in the Sn-substituted samples. A reduced structural symmetry in the magnetically ordered phase leads to an electron gap opening at the Brillouin zone boundary below T_{N} in the same way as proposed by Slater.
El Mkami, Hassane; Ward, Richard; Bowman, Andrew; Owen-Hughes, Tom; Norman, David G.
2014-01-01
Pulsed electron–electron double resonance (PELDOR) coupled with site-directed spin labeling is a powerful technique for the elucidation of protein or nucleic acid, macromolecular structure and interactions. The intrinsic high sensitivity of electron paramagnetic resonance enables measurement on small quantities of bio-macromolecules, however short relaxation times impose a limit on the sensitivity and size of distances that can be measured using this technique. The persistence of the electron spin-echo, in the PELDOR experiment, is one of the most crucial limitations to distance measurement. At a temperature of around 50 K one of the predominant factors affecting persistence of an echo, and as such, the sensitivity and measurable distance between spin labels, is the electron spin echo dephasing time (Tm). It has become normal practice to use deuterated solvents to extend Tm and recently it has been demonstrated that deuteration of the underlying protein significantly extends Tm. Here we examine the spatial effect of segmental deuteration of the underlying protein, and also explore the concentration and temperature dependence of highly deuterated systems. PMID:25310878
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dey, Rik, E-mail: rikdey@utexas.edu; Pramanik, Tanmoy; Roy, Anupam
We have studied angle dependent magnetoresistance of Bi{sub 2}Te{sub 3} thin film with field up to 9 T over 2–20 K temperatures. The perpendicular field magnetoresistance has been explained by the Hikami-Larkin-Nagaoka theory alone in a system with strong spin-orbit coupling, from which we have estimated the mean free path, the phase coherence length, and the spin-orbit relaxation time. We have obtained the out-of-plane spin-orbit relaxation time to be small and the in-plane spin-orbit relaxation time to be comparable to the momentum relaxation time. The estimation of these charge and spin transport parameters are useful for spintronics applications. For parallel field magnetoresistance,more » we have confirmed the presence of Zeeman effect which is otherwise suppressed in perpendicular field magnetoresistance due to strong spin-orbit coupling. The parallel field data have been explained using both the contributions from the Maekawa-Fukuyama localization theory for non-interacting electrons and Lee-Ramakrishnan theory of electron-electron interactions. The estimated Zeeman g-factor and the strength of Coulomb screening parameter agree well with the theory. Finally, the anisotropy in magnetoresistance with respect to angle has been described by the Hikami-Larkin-Nagaoka theory. This anisotropy can be used in anisotropic magnetic sensor applications.« less
NASA Astrophysics Data System (ADS)
Gálisová, Lucia; Jakubczyk, Dorota
2017-01-01
Ground-state and magnetocaloric properties of a double-tetrahedral chain, in which nodal lattice sites occupied by the localized Ising spins regularly alternate with triangular clusters half filled with mobile electrons, are exactly investigated by using the transfer-matrix method in combination with the construction of the Nth tensor power of the discrete Fourier transformation. It is shown that the ground state of the model is formed by two non-chiral phases with the zero residual entropy and two chiral phases with the finite residual entropy S = NkB ln 2. Depending on the character of the exchange interaction between the localized Ising spins and mobile electrons, one or three magnetization plateaus can be observed in the magnetization process. Their heights basically depend on the values of Landé g-factors of the Ising spins and mobile electrons. It is also evidenced that the system exhibits both the conventional and inverse magnetocaloric effect depending on values of the applied magnetic field and temperature.
Negative exchange interactions in coupled few-electron quantum dots
NASA Astrophysics Data System (ADS)
Deng, Kuangyin; Calderon-Vargas, F. A.; Mayhall, Nicholas J.; Barnes, Edwin
2018-06-01
It has been experimentally shown that negative exchange interactions can arise in a linear three-dot system when a two-electron double quantum dot is exchange coupled to a larger quantum dot containing on the order of one hundred electrons. The origin of this negative exchange can be traced to the larger quantum dot exhibiting a spin tripletlike rather than singletlike ground state. Here we show using a microscopic model based on the configuration interaction (CI) method that both tripletlike and singletlike ground states are realized depending on the number of electrons. In the case of only four electrons, a full CI calculation reveals that tripletlike ground states occur for sufficiently large dots. These results hold for symmetric and asymmetric quantum dots in both Si and GaAs, showing that negative exchange interactions are robust in few-electron double quantum dots and do not require large numbers of electrons.
Spin filtering by field-dependent resonant tunneling.
Ristivojevic, Zoran; Japaridze, George I; Nattermann, Thomas
2010-02-19
We consider theoretically transport in a spinful one-channel interacting quantum wire placed in an external magnetic field. For the case of two pointlike impurities embedded in the wire, under a small voltage bias the spin-polarized current occurs at special points in the parameter space, tunable by a single parameter. At sufficiently low temperatures complete spin polarization may be achieved, provided repulsive interaction between electrons is not too strong.
Spin-interaction effects for ultralong-range Rydberg molecules in a magnetic field
NASA Astrophysics Data System (ADS)
Hummel, Frederic; Fey, Christian; Schmelcher, Peter
2018-04-01
We investigate the fine and spin structure of ultralong-range Rydberg molecules exposed to a homogeneous magnetic field. Each molecule consists of a 87Rb Rydberg atom the outer electron of which interacts via spin-dependent s - and p -wave scattering with a polarizable 87Rb ground-state atom. Our model includes also the hyperfine structure of the ground-state atom as well as spin-orbit couplings of the Rydberg and ground-state atom. We focus on d -Rydberg states and principal quantum numbers n in the vicinity of 40. The electronic structure and vibrational states are determined in the framework of the Born-Oppenheimer approximation for varying field strengths ranging from a few up to hundred Gauss. The results show that the interplay between the scattering interactions and the spin couplings gives rise to a large variety of molecular states in different spin configurations as well as in different spatial arrangements that can be tuned by the magnetic field. This includes relatively regularly shaped energy surfaces in a regime where the Zeeman splitting is large compared to the scattering interaction but small compared to the Rydberg fine structure, as well as more complex structures for both weaker and stronger fields. We quantify the impact of spin couplings by comparing the extended theory to a spin-independent model.
Electronic structure and optical properties of GdNi2Mnx compounds
NASA Astrophysics Data System (ADS)
Knyazev, Yu. V.; Lukoyanov, A. V.; Kuz'min, Yu. I.; Gaviko, V. S.
2018-02-01
The electronic structure and optical properties of GdNi2Mnx compounds (x = 0, 0.4, 0.6) were investigated. Spin-polarized electronic structure calculations were performed in the approximation of local electron spin density corrected for strong electron correlations using the LSDA+U method. The changes in the magnetic moments and exchange interactions in GdNi2Mnx (x = 0, 0.4, 0.6) governing the increase in the Curie temperature with manganese concentration were determined. The optical constants of the compounds were measured by the ellipsometric method in the wide spectral range of 0.22-15 μm. The peculiarities of the evolution of the frequency dependences of optical conductivity with a change in the manganese content were revealed. Based on the calculated densities of electron states, the behavior of these dispersion curves in the region of interband absorption of light was discussed. The concentration dependences of several electronic characteristics were determined.
An Effective-Hamiltonian Approach to CH5+, Using Ideas from Atomic Spectroscopy
NASA Astrophysics Data System (ADS)
Hougen, Jon T.
2016-06-01
In this talk we present the first steps in the design of an effective Hamiltonian for the vibration-rotation energy levels of CH5+. Such a Hamiltonian would allow calculation of energy level patterns anywhere along the path travelled by a hypothetical CH5+ (or CD5+) molecule as it passes through various coupling cases, and might thus provide some hints for assigning the observed high-resolution spectra. The steps discussed here, which have not yet addressed computational problems, focus on mapping the vibration-rotation problem in CH5+ onto the five-electron problem in the boron atom, using ideas and mathematical machinery from Condon and Shortley's book on atomic spectroscopy. The mapping ideas are divided into: (i) a mapping of particles, (ii) a mapping of coordinates (i.e., mathematical degrees of freedom), and (iii) a mapping of quantum mechanical interaction terms. The various coupling cases along the path correspond conceptually to: (i) the analog of a free-rotor limit, where the H atoms see the central C atom but do not see each other, (ii) the low-barrier and high-barrier tunneling regimes, and (iii) the rigid-molecule limit, where the H atoms remain locked in some fixed molecular geometry. Since the mappings considered here often involve significant changes in mathematics, a number of interesting qualitative changes occur in the basic ideas when passing from B to CH5+, particularly in discussions of: (i) antisymmetrization and symmetrization ideas, (ii) n,l,ml,ms or n,l,j,mj quantum numbers, and (iii) Russell-Saunders computations and energy level patterns. Some of the mappings from B to CH5+ to be discussed are as follows. Particles: the atomic nucleus is replaced by the C atom, the electrons are replaced by protons, and the empty space between particles is replaced by an "electron soup." Coordinates: the radial coordinates of the electrons map onto the five local C-H stretching modes, the angular coordinates of the electrons map onto three rotational degrees of freedom and seven bending vibrational degrees of freedom. The half-integral electron spins map onto half-integral proton spins or onto integral deuterium spins (for CD5+). Interactions: the Coulomb attraction between nucleus and electrons maps onto a Morse-oscillator C-H stretching potential, spin-orbit interaction maps onto proton-spin-overall-rotation interaction, and Coulomb repulsion between electrons maps onto some kind of proton repulsion that leads to the equilibrium geometry.
Scattering of charge and spin excitations and equilibration of a one-dimensional Wigner crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matveev, K. A.; Andreev, A. V.; Klironomos, A. D.
2014-07-01
We study scattering of charge and spin excitations in a system of interacting electrons in one dimension. At low densities, electrons form a one-dimensional Wigner crystal. To a first approximation, the charge excitations are the phonons in the Wigner crystal, and the spin excitations are described by the Heisenberg model with nearest-neighbor exchange coupling. This model is integrable and thus incapable of describing some important phenomena, such as scattering of excitations off each other and the resulting equilibration of the system. We obtain the leading corrections to this model, including charge-spin coupling and the next-nearest-neighbor exchange in the spin subsystem.more » We apply the results to the problem of equilibration of the one-dimensional Wigner crystal and find that the leading contribution to the equilibration rate arises from scattering of spin excitations off each other. We discuss the implications of our results for the conductance of quantum wires at low electron densities« less
Magnetic and metal-insulator transitions in coupled spin-fermion systems
Mondaini, R.; Paiva, T.; Scalettar, R. T.
2014-10-14
We use quantum Monte Carlo to determine the magnetic and transport properties of coupled square lattice spin and fermionic planes as a model for a metal-insulator interface. Specifically, layers of Ising spins with an intra-layer exchange constant J interact with the electronic spins of several adjoining metallic sheets via a coupling JH. When the chemical potential cuts across the band center, that is, at half-filling, the Neel temperature of antiferromagnetic (J > 0) Ising spins is enhanced by the coupling to the metal, while in the ferromagnetic case (J < 0) the metallic degrees of freedom reduce the ordering temperature.more » In the former case, a gap opens in the fermionic spectrum, driving insulating behavior, and the electron spins also order. This induced antiferromagnetism penetrates more weakly as the distance from the interface increases, and also exhibits a non-monotonic dependence on JH. For doped lattices an interesting charge disproportionation occurs where electrons move to the interface layer to maintain half-filling there.« less
Optically controlled locking of the nuclear field via coherent dark-state spectroscopy.
Xu, Xiaodong; Yao, Wang; Sun, Bo; Steel, Duncan G; Bracker, Allan S; Gammon, Daniel; Sham, L J
2009-06-25
A single electron or hole spin trapped inside a semiconductor quantum dot forms the foundation for many proposed quantum logic devices. In group III-V materials, the resonance and coherence between two ground states of the single spin are inevitably affected by the lattice nuclear spins through the hyperfine interaction, while the dynamics of the single spin also influence the nuclear environment. Recent efforts have been made to protect the coherence of spins in quantum dots by suppressing the nuclear spin fluctuations. However, coherent control of a single spin in a single dot with simultaneous suppression of the nuclear fluctuations has yet to be achieved. Here we report the suppression of nuclear field fluctuations in a singly charged quantum dot to well below the thermal value, as shown by an enhancement of the single electron spin dephasing time T(2)*, which we measure using coherent dark-state spectroscopy. The suppression of nuclear fluctuations is found to result from a hole-spin assisted dynamic nuclear spin polarization feedback process, where the stable value of the nuclear field is determined only by the laser frequencies at fixed laser powers. This nuclear field locking is further demonstrated in a three-laser measurement, indicating a possible enhancement of the electron spin T(2)* by a factor of several hundred. This is a simple and powerful method of enhancing the electron spin coherence time without use of 'spin echo'-type techniques. We expect that our results will enable the reproducible preparation of the nuclear spin environment for repetitive control and measurement of a single spin with minimal statistical broadening.
NASA Astrophysics Data System (ADS)
Yao, Jian-Guo; Peng, Guang-Xiong
2004-11-01
The electronic structure and the magnetic properties of the non-pure organic ferromagnetic compound MnCu(pbaOH)(H2O)3 with pbaOH = 2-hydroxy-1, 3-propylenebis (oxamato) are studied by using the density-functional theory with local-spin-density approximation. The density of states, total energy, and the spin magnetic moment are calculated. The calculations reveal that the compound MnCu(pbaOH)(H20)3 has a stable metal-ferromagnetic ground state, and the spin magnetic moment per molecule is 2.208 μB, and the spin magnetic moment is mainly from Mn ion and Cu ion. An antiferromagnetic order is expected and the antiferromagnetic exchange interaction of d-electrons of Cu and Mn passes through the antiferromagnetic interaction between the adjacent C, O, and N atoms along the path linking the atoms Cu and Mn. The project supported by National Natural Science Foundation of China under Grant No. 10375074 and Hubei Automotive Industries Institute Foundation under Grant No. QY2002-16
Spin manipulation with magnetic semiconductor barriers.
Miao, Guo-Xing; Moodera, Jagadeesh S
2015-01-14
Magnetic semiconductors are a class of materials with special spin-filtering capabilities with magnetically tunable energy gaps. Many of these materials also possess another intrinsic property: indirect exchange interaction between the localized magnetic moments and the adjacent free electrons, which manifests as an extremely large effective magnetic field applying only on the spin degrees of freedom of the free electrons. Novel device concepts can be created by taking advantage of these properties. We discuss in the article the basic principles of these phenomena, and potential ways of applying them in constructing spintronic devices.
Rice, William D.; Liu, Wenyong; Baker, Thomas A.; ...
2015-11-23
Strong quantum confinement in semiconductors can compress the wavefunctions of band electrons and holes to nanometre-scale volumes, significantly enhancing interactions between themselves and individual dopants. In magnetically doped semiconductors, where paramagnetic dopants (such as Mn 2+, Co 2+ and so on) couple to band carriers via strong sp–d spin exchange, giant magneto-optical effects can therefore be realized in confined geometries using few or even single impurity spins. Importantly, however, thermodynamic spin fluctuations become increasingly relevant in this few-spin limit. In nanoscale volumes, the statistical √N fluctuations of N spins are expected to generate giant effective magnetic fields B eff, whichmore » should dramatically impact carrier spin dynamics, even in the absence of any applied field. In this paper, we directly and unambiguously reveal the large B eff that exist in Mn 2+-doped CdSe colloidal nanocrystals using ultrafast optical spectroscopy. At zero applied magnetic field, extremely rapid (300–600 GHz) spin precession of photoinjected electrons is observed, indicating B eff ~ 15-30 T for electrons. Precession frequencies exceed 2 THz in applied magnetic fields. Finally, these signals arise from electron precession about the random fields due to statistically incomplete cancellation of the embedded Mn 2+ moments, thereby revealing the initial coherent dynamics of magnetic polaron formation, and highlighting the importance of magnetization fluctuations on carrier spin dynamics in nanomaterials.« less
Dimensionality-strain phase diagram of strontium iridates
NASA Astrophysics Data System (ADS)
Kim, Bongjae; Liu, Peitao; Franchini, Cesare
2017-03-01
The competition between spin-orbit coupling, bandwidth (W ), and electron-electron interaction (U ) makes iridates highly susceptible to small external perturbations, which can trigger the onset of novel types of electronic and magnetic states. Here we employ first principles calculations based on density functional theory and on the constrained random phase approximation to study how dimensionality and strain affect the strength of U and W in (SrIrO3)m/(SrTiO3) superlattices. The result is a phase diagram explaining two different types of controllable magnetic and electronic transitions, spin-flop and insulator-to-metal, connected with the disruption of the Jeff=1 /2 state which cannot be understood within a simplified local picture.
Strong electron-hole exchange in coherently coupled quantum dots.
Fält, Stefan; Atatüre, Mete; Türeci, Hakan E; Zhao, Yong; Badolato, Antonio; Imamoglu, Atac
2008-03-14
We have investigated few-body states in vertically stacked quantum dots. Because of a small interdot tunneling rate, the coupling in our system is in a previously unexplored regime where electron-hole exchange plays a prominent role. By tuning the gate bias, we are able to turn this coupling off and study a complementary regime where total electron spin is a good quantum number. The use of differential transmission allows us to obtain unambiguous signatures of the interplay between electron and hole-spin interactions. Small tunnel coupling also enables us to demonstrate all-optical charge sensing, where a conditional exciton energy shift in one dot identifies the charging state of the coupled partner.
NASA Astrophysics Data System (ADS)
Zhou, Gang; Duan, Wenhui
2007-03-01
Spin-polarized density functional calculations show that the substitutional doping of carbon (C) atom at the mouth changes the atomic and spin configurations of open armchair boron nitride nanotubes (BNNTs). The occupied/unoccupied deep gap states are observed with the significant spin-splitting. The structures and spin-polarized properties are basically stable under the considerable electric field, which is important for practical applications. The magnetization mechanism is attributed to the interactions of s, p states between the C and its neighboring B or N atoms. Ultimately, advantageous geometrical and electronic effects mean that C-doped open armchair BNNTs would have promising applications in nano-spintronic devices.
Coulomb Correlations Intertwined with Spin and Orbital Excitations in LaCoO_{3}.
Tomiyasu, K; Okamoto, J; Huang, H Y; Chen, Z Y; Sinaga, E P; Wu, W B; Chu, Y Y; Singh, A; Wang, R-P; de Groot, F M F; Chainani, A; Ishihara, S; Chen, C T; Huang, D J
2017-11-10
We carried out temperature-dependent (20-550 K) measurements of resonant inelastic x-ray scattering on LaCoO_{3} to investigate the evolution of its electronic structure across the spin-state crossover. In combination with charge-transfer multiplet calculations, we accurately quantified the renomalized crystal-field excitation energies and spin-state populations. We show that the screening of the effective on-site Coulomb interaction of 3d electrons is orbital selective and coupled to the spin-state crossover in LaCoO_{3}. The results establish that the gradual spin-state crossover is associated with a relative change of Coulomb energy versus bandwidth, leading to a Mott-type insulator-to-metal transition.
Electron spin resonance modes in a strong-leg ladder in the Tomonaga-Luttinger liquid phase
NASA Astrophysics Data System (ADS)
Ozerov, M.; Maksymenko, M.; Wosnitza, J.; Honecker, A.; Landee, C. P.; Turnbull, M. M.; Furuya, S. C.; Giamarchi, T.; Zvyagin, S. A.
2015-12-01
Magnetic excitations in the strong-leg quantum spin ladder compound (C7H10N) 2CuBr4 (known as DIMPY) in the field-induced Tomonaga-Luttinger spin-liquid phase are studied by means of high-field electron spin resonance (ESR) spectroscopy. The presence of a gapped ESR mode with unusual nonlinear frequency-field dependence is revealed experimentally. Using a combination of analytic and exact-diagonalization methods, we compute the dynamical structure factor and identify this mode with longitudinal excitations in the antisymmetric channel. We argue that these excitations constitute a fingerprint of the spin dynamics in a strong-leg spin-1/2 Heisenberg antiferromagnetic ladder and owe their ESR observability to the uniform Dzyaloshinskii-Moriya interaction.
Spin Relaxation and Manipulation in Spin-orbit Qubits
NASA Astrophysics Data System (ADS)
Borhani, Massoud; Hu, Xuedong
2012-02-01
We derive a generalized form of the Electric Dipole Spin Resonance (EDSR) Hamiltonian in the presence of the spin-orbit interaction for single spins in an elliptic quantum dot (QD) subject to an arbitrary (in both direction and magnitude) applied magnetic field. We predict a nonlinear behavior of the Rabi frequency as a function of the magnetic field for sufficiently large Zeeman energies, and present a microscopic expression for the anisotropic electron g-tensor. Similarly, an EDSR Hamiltonian is devised for two spins confined in a double quantum dot (DQD). Finally, we calculate two-electron-spin relaxation rates due to phonon emission, for both in-plane and perpendicular magnetic fields. Our results have immediate applications to current EDSR experiments on nanowire QDs, g-factor optimization of confined carriers, and spin decay measurements in DQD spin-orbit qubits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veiga, L. S. I.; Etter, M.; Glazyrin, K.
Here, we explore the response of Ir 5d orbitals to pressure in β-Li 2IrO 3, a hyperhoneycomb iridate in proximity to a Kitaev quantum spin-liquid (QSL) ground state. X-ray absorption spectroscopy reveals a reconstruction of the electronic ground state below 2 GPa, the same pressure range where x-ray magnetic circular dichroism shows an apparent collapse of magnetic order. The electronic reconstruction, which manifests a reduction in the effective spin-orbit interaction in 5d orbitals, pushes β-Li 2IrO 3 further away from the pure J eff = 1/2 limit. Although lattice symmetry is preserved across the electronic transition, x-ray diffraction shows amore » highly anisotropic compression of the hyperhoneycomb lattice which affects the balance of bond-directional Ir-Ir exchange interactions driven by spin-orbit coupling at Ir sites. An enhancement of symmetric anisotropic exchange over Kitaev and Heisenberg exchange interactions seen in theoretical calculations that use precisely this anisotropic Ir-Ir bond compression provides one possible route to the realization of a QSL state in this hyperhoneycomb iridate at high pressures.« less
Dyakonov-Perel Effect on Spin Dephasing in n-Type GaAs
NASA Technical Reports Server (NTRS)
Ning, C. Z.; Wu, M. W.
2003-01-01
A paper presents a study of the contribution of the Dyakonov-Perel (DP) effect to spin dephasing in electron-donor-doped bulk GaAs in the presence of an applied steady, moderate magnetic field perpendicular to the growth axis of the GaAs crystal. (The DP effect is an electron-wave-vector-dependent spin-state splitting of the conduction band, caused by a spin/orbit interaction in a crystal without an inversion center.) The applicable Bloch equations of kinetics were constructed to include terms accounting for longitudinal optical and acoustic phonon scattering as well as impurity scattering. The contributions of the aforementioned scattering mechanisms to spin-dephasing time in the presence of DP effect were examined by solving the equations numerically. Spin-dephasing time was obtained from the temporal evolution of the incoherently summed spin coherence. Effects of temperature, impurity level, magnetic field, and electron density on spin-dephasing time were investigated. Spin-dephasing time was found to increase with increasing magnetic field. Contrary to predictions of previous simplified treatments of the DP effect, spin-dephasing time was found to increase with temperature in the presence of impurity scattering. These results were found to agree qualitatively with results of recent experiments.
Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates.
Banerjee-Ghosh, Koyel; Ben Dor, Oren; Tassinari, Francesco; Capua, Eyal; Yochelis, Shira; Capua, Amir; Yang, See-Hun; Parkin, Stuart S P; Sarkar, Soumyajit; Kronik, Leeor; Baczewski, Lech Tomasz; Naaman, Ron; Paltiel, Yossi
2018-06-22
It is commonly assumed that recognition and discrimination of chirality, both in nature and in artificial systems, depend solely on spatial effects. However, recent studies have suggested that charge redistribution in chiral molecules manifests an enantiospecific preference in electron spin orientation. We therefore reasoned that the induced spin polarization may affect enantiorecognition through exchange interactions. Here we show experimentally that the interaction of chiral molecules with a perpendicularly magnetized substrate is enantiospecific. Thus, one enantiomer adsorbs preferentially when the magnetic dipole is pointing up, whereas the other adsorbs faster for the opposite alignment of the magnetization. The interaction is not controlled by the magnetic field per se, but rather by the electron spin orientations, and opens prospects for a distinct approach to enantiomeric separations. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
NASA Astrophysics Data System (ADS)
Liu, Junzi; Cheng, Lan
2018-04-01
An atomic mean-field (AMF) spin-orbit (SO) approach within exact two-component theory (X2C) is reported, thereby exploiting the exact decoupling scheme of X2C, the one-electron approximation for the scalar-relativistic contributions, the mean-field approximation for the treatment of the two-electron SO contribution, and the local nature of the SO interactions. The Hamiltonian of the proposed SOX2CAMF scheme comprises the one-electron X2C Hamiltonian, the instantaneous two-electron Coulomb interaction, and an AMF SO term derived from spherically averaged Dirac-Coulomb Hartree-Fock calculations of atoms; no molecular relativistic two-electron integrals are required. Benchmark calculations for bond lengths, harmonic frequencies, dipole moments, and electric-field gradients for a set of diatomic molecules containing elements across the periodic table show that the SOX2CAMF scheme offers a balanced treatment for SO and scalar-relativistic effects and appears to be a promising candidate for applications to heavy-element containing systems. SOX2CAMF coupled-cluster calculations of molecular properties for bismuth compounds (BiN, BiP, BiF, BiCl, and BiI) are also presented and compared with experimental results to further demonstrate the accuracy and applicability of the SOX2CAMF scheme.
Spin-polarized electron emitter: Mn-doped GaN nanotubes and their arrays
NASA Astrophysics Data System (ADS)
Hao, Shaogang; Zhou, Gang; Wu, Jian; Duan, Wenhui; Gu, Bing-Lin
2004-03-01
The influences from the doping magnetic atom, Mn, on the geometry, electronic properties, and spin-polarization characteristics are demonstrated for open armchair gallium nitrogen (GaN) nanotubes and arrays by use of the first-principles calculations. The interaction between dangling bonds of Ga (Mn) and N atoms at the open-end promotes the self-close of the tube mouth and formation of a more stable open semicone top. Primarily owing to hybridization of Mn 3d and N 2p orbitals, one Mn atom introduces several impurity energy levels into the original energy gap, and the calculated magnetic moment is 4μB. The electron spin polarizations in the field emission are theoretically evaluated. We suggest that armchair open GaN nanotube arrays doped with a finite number of magnetic atoms may have application potential as the electron source of spintronic devices in the future.
Noncollinear magnetic ordering in a frustrated magnet: Metallic regime and the role of frustration
NASA Astrophysics Data System (ADS)
Shahzad, Munir; Sengupta, Pinaki
2017-12-01
We explore the magnetic phases in a Kondo lattice model on the geometrically frustrated Shastry-Sutherland lattice at metallic electron densities, searching for noncollinear and noncoplanar spin textures. Motivated by experimental observations in many rare-earth-based frustrated metallic magnets, we treat the local moments as classical spins and set the coupling between the itinerant electrons and local moments as the largest energy scale in the problem. Our results show that a noncollinear flux state is stabilized over an extended range of Hamiltonian parameters. These spin states can be quenched efficiently by external fields like temperature and magnetic field as well as by varying the degree of frustration in the electronic itinerancy and exchange coupling between local moments. Interestingly, unlike insulating electron densities that we discussed in paper I of this sequence, a Dzyaloshinskii-Moriya interaction between the local moments is not essential for the emergence of their noncollinear ordering.
NASA Astrophysics Data System (ADS)
Peters, John Archibald
While charge transport in a two-dimensional electron system (2DES) is fairly well understood, many open experimental and theoretical questions related to the spin of electrons remain. The standard 2DES embedded in Alx Ga1-xAs/GaAs heterostructures is most likely not the optimal candidate for such investigations, since spin effects as well as spin-orbit interactions are small perturbations compared to other effects. This has brought InSb- and InAs-based material systems into focus due to the possibility of large spin-orbit interactions. By utilizing elastic scattering off a lithographic barrier, we investigate the consequence of spin on different electron trajectories observed in InSb and InAs quantum wells. We focus on the physical properties of spin-dependent reflection in a 2DES and we present experimental results demonstrating a method to create spin-polarized beams of ballistic electrons in the presence of a lateral potential barrier. Spatial separation of electron spins using cyclotron motion in a weak magnetic is also achieved via transverse magnetic focusing. We also explore electrostatic gating effects in InSb/InAlSb heterostructures and demonstrate the effective use of polymethylglutarimide (PMGI) as a gate dielectric for InSb. The dependence on temperature and on front gate voltage of mobility and density are also examined, revealing a strong dependence of mobility on density. As regards front gate action, there is saturation in the density once it reaches a limiting value. Further, we investigate antidot lattices patterned on InSb/InAlSb and InAs/AlGaSb heterostructures. At higher magnetic fields, ballistic commensurability features are displayed while at smaller magnetic fields localization and quantized oscillatory phenomena appear, with marked differences between InSb and InAs. Interesting localization behavior is exhibited in InSb, with the strength of the localization peak decreasing exponentially with temperature between 0.4 K and 50 K. InAs on the other hand show a strikingly modified antilocalization behavior, with small-period oscillations in magnetic field superposed. We also observe Altshuler-Aronov-Spivak oscillations in InSb and InAs antidot lattices and extract the phase and spin coherence lengths in InAs. Our experimental results are discussed in the light of localization and anti localization as probes of disorder and of spin dephasing mechanisms, modified by the artificial potential of the antidot lattice.
Veiga, L. S. I.; Etter, M.; Glazyrin, K.; ...
2017-10-10
Here, we explore the response of Ir 5d orbitals to pressure in β-Li 2IrO 3, a hyperhoneycomb iridate in proximity to a Kitaev quantum spin-liquid (QSL) ground state. X-ray absorption spectroscopy reveals a reconstruction of the electronic ground state below 2 GPa, the same pressure range where x-ray magnetic circular dichroism shows an apparent collapse of magnetic order. The electronic reconstruction, which manifests a reduction in the effective spin-orbit interaction in 5d orbitals, pushes β-Li 2IrO 3 further away from the pure J eff = 1/2 limit. Although lattice symmetry is preserved across the electronic transition, x-ray diffraction shows amore » highly anisotropic compression of the hyperhoneycomb lattice which affects the balance of bond-directional Ir-Ir exchange interactions driven by spin-orbit coupling at Ir sites. An enhancement of symmetric anisotropic exchange over Kitaev and Heisenberg exchange interactions seen in theoretical calculations that use precisely this anisotropic Ir-Ir bond compression provides one possible route to the realization of a QSL state in this hyperhoneycomb iridate at high pressures.« less
NASA Astrophysics Data System (ADS)
Veiga, L. S. I.; Etter, M.; Glazyrin, K.; Sun, F.; Escanhoela, C. A.; Fabbris, G.; Mardegan, J. R. L.; Malavi, P. S.; Deng, Y.; Stavropoulos, P. P.; Kee, H.-Y.; Yang, W. G.; van Veenendaal, M.; Schilling, J. S.; Takayama, T.; Takagi, H.; Haskel, D.
2017-10-01
We explore the response of Ir 5 d orbitals to pressure in β -Li2IrO3 , a hyperhoneycomb iridate in proximity to a Kitaev quantum spin-liquid (QSL) ground state. X-ray absorption spectroscopy reveals a reconstruction of the electronic ground state below 2 GPa, the same pressure range where x-ray magnetic circular dichroism shows an apparent collapse of magnetic order. The electronic reconstruction, which manifests a reduction in the effective spin-orbit interaction in 5 d orbitals, pushes β -Li2IrO3 further away from the pure Jeff=1 /2 limit. Although lattice symmetry is preserved across the electronic transition, x-ray diffraction shows a highly anisotropic compression of the hyperhoneycomb lattice which affects the balance of bond-directional Ir-Ir exchange interactions driven by spin-orbit coupling at Ir sites. An enhancement of symmetric anisotropic exchange over Kitaev and Heisenberg exchange interactions seen in theoretical calculations that use precisely this anisotropic Ir-Ir bond compression provides one possible route to the realization of a QSL state in this hyperhoneycomb iridate at high pressures.
Spin Hall effect and Landau spectrum of Dirac electrons in bismuth
NASA Astrophysics Data System (ADS)
Fuseya, Yuki
2015-03-01
Bismuth has played an important role in solid-state physics. Many key phenomena were first discovered in bismuth, such as diamagnetism, Seebeck, Nernst, Shubnikov-de Haas, and de Haas-van Alphen effects. These phenomena result from particular electronic states of bismuth. The strong spin-orbit interaction (~ 1.5eV) causes strong spin-dependent interband couplings resulting in an anomalous spin magnetic moment. We investigate the spin Hall effect and the angular dependent Landau spectrum of bismuth paying special attention to the effect of the anomalous spin magnetic moment. It is shown that the spin Hall insulator is possible and there is a fundamental relationship between the spin Hall conductivity and orbital diamagnetism in the insulating state of the Dirac electrons. Based on this theoretical finding, the magnitude of spin Hall conductivity is estimated for bismuth by that of orbital susceptibility. The magnitude of spin Hall conductivity turns out to be as large as 104Ω-1 cm-1, which is about 100 times larger than that of Pt. It is also shown that the ratio of the Zeeman splitting to the cyclotron energy, which reflects the effect of crystalline spin-orbit interaction, for holes at the T-point can be larger than 1.0 (the maximum of previous theories) and exhibit strong angular dependence, which gives a possible solution to the long-standing mystery of holes at the T-point. In collaboration with Masao Ogata, Hidetoshi Fukuyama, Zengwei Zhu, Benoît Fauqué, Woun Kang, and Kamran Behnia. Supported by JSPS (KAKENHI 24244053, 25870231, and 13428660).
Role of spin polarization in FM/Al/FM trilayer film at low temperature
NASA Astrophysics Data System (ADS)
Lu, Ning; Webb, Richard
2014-03-01
Measurements of electronic transport in diffusive FM/normal metal/FM trilayer film are performed at temperature ranging from 2K to 300K to determine the behavior of the spin polarized current in normal metal under the influence of quantum phase coherence and spin-orbital interaction. Ten samples of Hall bar with length of 200 micron and width of 20 micron are fabricated through e-beam lithography followed by e-gun evaporation of Ni0.8Fe0.2, aluminum and Ni0.8Fe0.2 with different thickness (5nm to 45nm) in vacuum. At low temperature of 4.2K, coherent backscattering, Rashba spin-orbital interaction and spin flip scattering of conduction electrons contribute to magnetoresistance at low field. Quantitative analysis of magnetoresistance shows transition between weak localization and weak anti-localization for samples with different thickness ratio, which indicates the spin polarization actually affects the phase coherence length and spin-orbital scattering length. However, at temperature between 50K and 300K, only the spin polarization dominates the magnetoresistance.
Theoretical study of spin Hall effect in conjugated Organic semiconductors
NASA Astrophysics Data System (ADS)
Mahani, M. R.; Delin, A.
The spin Hall effect (SHE), a direct conversion between electronic and spin currents, is a rapidly growing branch of spintronics. The study of SHE in conjugated polymers has gained momentum recently due to the weak spin-orbit couplings and hyperfine interactions in these materials. Our calculations of SHE based on the recent work, are the result of the misalignment of pi-orbitals in triads consisting of three molecules. In disordered organics, where the electronic conduction is through hopping of the electrons among randomly oriented molecules, instead of identifying a hopping triad to represent the entire system, we numerically solve the master equations for electrical and spin hall conductivities by summing the contributions from all triads in a sufficiently large system. The interference between the direct and indirect hoppings in these triads leads to SHE proportional to the orientation vector of molecule at the first order of spin-orbit coupling. Hence, our results show, the degree of molecular alignment as well as the strength of the spin-orbit coupling can be used to control the SHE in organics.
Frkanec, Ruza; Noethig-Laslo, Vesna; Vranesić, Branka; Mirosavljević, Krunoslav; Tomasić, Jelka
2003-04-01
The interaction of immunostimulating compounds, the peptidoglycan monomer (PGM) and structurally related adamantyltripeptides (AdTP1 and AdTP2), respectively, with phospholipids in liposomal bilayers were investigated by electron paramagnetic resonance spectroscopy. (1). The fatty acids bearing the nitroxide spin label at different positions along the acyl chain were used to investigate the interaction of tested compounds with negatively charged multilamellar liposomes. Electron spin resonance (ESR) spectra were studied at 290 and 310 K. The entrapment of the adamantyltripeptides affected the motional properties of all spin labelled lipids, while the entrapment of PGM had no effect. (2). Spin labelled PGM was prepared and the novel compound bearing the spin label attached via the amino group of diaminopimelic acid was chromatographically purified and chemically characterized. The rotational correlation time of the spin labelled molecule dissolved in buffer at pH 7.4 was studied as a function of temperature. The conformational change was observed above 300 K. The same effect was observed with the spin labelled PGM incorporated into liposomes. Such effect was not observed when the spin labelled PGM was studied at alkaline pH, probably due to the hydrolysis of PGM molecule. The study of possible interaction with liposomal membrane is relevant to the use of tested compounds incorporated into liposomes, as adjuvants in vivo.
NASA Astrophysics Data System (ADS)
Dehghan, E.; Khoshnoud, D. Sanavi; Naeimi, A. S.
2018-06-01
Aim of this study is to investigate spin transportation in double quantum ring (DQR). We developed an array of DQR to measure the transmission coefficient and analyze the spin transportation through this system in the presence of Rashba spin-orbit interaction (RSOI) and magnetic flux estimated using S-matrix method. In this article, we compute the spin transport and spin-current characteristics numerically as functions of electron energy, angles between the leads, coupling constant of the leads, RSOI, and magnetic flux. Our results suggest that, for typical values of the magnetic flux (ϕ /ϕ0) and Rashba constant (αR), such system can demonstrates many spintronic properties. It is possible to design a new geometry of DQR by incoming electrons polarization in a way to optimize the system to work as a spin-filtering and spin-inverting nano-device with very high efficiency. The results prove that the spin current will strongly modulate with an increase in the magnetic flux and Rashba constant. Moreover it is shown that, when the lead coupling is weak, the perfect spin-inverter does not occur.
Double Quantum Dots in Carbon Nanotubes
2010-06-02
occupation of one dot is favored by increasing the detuning between the dots, the Coulomb interaction causes strong correlation effects realized by...al- low the measurement and manipulation of the spin de - gree of freedom of the confined electrons1. Such con- trol is at the heart of semiconductor...of an additional val- ley degree of freedom, the two-electron eigenstates can be separated in an orbital part and a spin-valley part that are, to a
NASA Astrophysics Data System (ADS)
Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic
2018-05-01
We present a state interaction spin-orbit coupling method to calculate electron paramagnetic resonance g-tensors from density matrix renormalization group wavefunctions. We apply the technique to compute g-tensors for the TiF3 and CuCl42 - complexes, a [2Fe-2S] model of the active center of ferredoxins, and a Mn4CaO5 model of the S2 state of the oxygen evolving complex. These calculations raise the prospects of determining g-tensors in multireference calculations with a large number of open shells.
NASA Astrophysics Data System (ADS)
Ware, M. E.; Stinaff, E. A.; Gammon, D.; Doty, M. F.; Bracker, A. S.; Gershoni, D.; Korenev, V. L.; Bădescu, Ş. C.; Lyanda-Geller, Y.; Reinecke, T. L.
2005-10-01
We report polarized photoluminescence excitation spectroscopy of the negative trion in single charge-tunable InAs/GaAs quantum dots. The spectrum exhibits a p-shell resonance with polarized fine structure arising from the direct excitation of the electron spin triplet states. The energy splitting arises from the axially symmetric electron-hole exchange interaction. The magnitude and sign of the polarization are understood from the spin character of the triplet states and a small amount of quantum dot asymmetry, which mixes the wave functions through asymmetric e-e and e-h exchange interactions.
Electron and Nuclear Spin Interactions in the Optical Spectra of Single GaAs Quantum Dots
2001-05-28
VOLUME 86, NUMBER 22 P H Y S I C A L R E V I E W L E T T E R S 28 MAY 2001 5 Electron and Nuclear Spin Interactions in the Optical Spectra of Single...GaAs Quantum Dots D. Gammon, Al. L. Efros, T. A. Kennedy, M. Rosen, D. S . Katzer, and D. Park Naval Research Laboratory, Washington, D.C. 20375 S . W...Brown NIST, Gaithersburg, Maryland V. L. Korenev and I. A. Merkulov A. F. Ioffe Institute, St. Petersburg, Russia (Received 18 December 2000) Fine and
Storing quantum information for 30 seconds in a nanoelectronic device.
Muhonen, Juha T; Dehollain, Juan P; Laucht, Arne; Hudson, Fay E; Kalra, Rachpon; Sekiguchi, Takeharu; Itoh, Kohei M; Jamieson, David N; McCallum, Jeffrey C; Dzurak, Andrew S; Morello, Andrea
2014-12-01
The spin of an electron or a nucleus in a semiconductor naturally implements the unit of quantum information--the qubit. In addition, because semiconductors are currently used in the electronics industry, developing qubits in semiconductors would be a promising route to realize scalable quantum information devices. The solid-state environment, however, may provide deleterious interactions between the qubit and the nuclear spins of surrounding atoms, or charge and spin fluctuations arising from defects in oxides and interfaces. For materials such as silicon, enrichment of the spin-zero (28)Si isotope drastically reduces spin-bath decoherence. Experiments on bulk spin ensembles in (28)Si crystals have indeed demonstrated extraordinary coherence times. However, it remained unclear whether these would persist at the single-spin level, in gated nanostructures near amorphous interfaces. Here, we present the coherent operation of individual (31)P electron and nuclear spin qubits in a top-gated nanostructure, fabricated on an isotopically engineered (28)Si substrate. The (31)P nuclear spin sets the new benchmark coherence time (>30 s with Carr-Purcell-Meiboom-Gill (CPMG) sequence) of any single qubit in the solid state and reaches >99.99% control fidelity. The electron spin CPMG coherence time exceeds 0.5 s, and detailed noise spectroscopy indicates that--contrary to widespread belief--it is not limited by the proximity to an interface. Instead, decoherence is probably dominated by thermal and magnetic noise external to the device, and is thus amenable to further improvement.
Space charge in nanostructure resonances
NASA Astrophysics Data System (ADS)
Price, Peter J.
1996-10-01
In quantum ballistic propagation of electrons through a variety of nanostructures, resonance in the energy-dependent transmission and reflection probabilities generically is associated with (1) a quasi-level with a decay lifetime, and (2) a bulge in electron density within the structure. It can be shown that, to a good approximation, a simple formula in all cases connects the density of states for the latter to the energy dependence of the phase angles of the eigen values of the S-matrix governing the propagation. For both the Lorentzian resonances (normal or inverted) and for the Fano-type resonances, as a consequence of this eigen value formula, the space charge due to filled states over the energy range of a resonance is just equal (for each spin state) to one electron charge. The Coulomb interaction within this space charge is known to 'distort' the electrical characteristics of resonant nanostructures. In these systems, however, the exchange effect should effectively cancel the interaction between states with parallel spins, leaving only the anti-parallel spin contribution.
Quantum logic readout and cooling of a single dark electron spin
NASA Astrophysics Data System (ADS)
Shi, Fazhan; Zhang, Qi; Naydenov, Boris; Jelezko, Fedor; Du, Jiangfeng; Reinhard, Friedemann; Wrachtrup, Jörg
2013-05-01
We study a single dark N2 electron spin defect in diamond, which is magnetically coupled to a nearby nitrogen-vacancy (NV) center. We perform pulsed electron spin resonance on this single spin by mapping its state to the NV center spin and optically reading out the latter. Moreover, we show that the NV center's spin polarization can be transferred to the electron spin by combined two decoupling control-NOT gates. These two results allow us to extend the NV center's two key properties—optical spin polarization and detection—to any electron spin in its vicinity. This enables dark electron spins to be used as local quantum registers and engineerable memories.
NASA Astrophysics Data System (ADS)
Kruk, Danuta; Kowalewski, Jozef
2002-07-01
This article describes paramagnetic relaxation enhancement (PRE) in systems with high electron spin, S, where there is molecular interaction between a paramagnetic ion and a ligand outside of the first coordination sphere. The new feature of our treatment is an improved handling of the electron-spin relaxation, making use of the Redfield theory. Following a common approach, a well-defined second coordination sphere is assumed, and the PRE contribution from these more distant and shorter-lived ligands is treated in a way similar to that used for the first coordination sphere. This model is called "ordered second sphere," OSS. In addition, we develop here a formalism similar to that of Hwang and Freed [J. Chem. Phys. 63, 4017 (1975)], but accounting for the electron-spin relaxation effects. We denote this formalism "diffuse second sphere," DSS. The description of the dynamics of the intermolecular dipole-dipole interaction is based on the Smoluchowski equation, with a potential of mean force related to the radial distribution function. We have used a finite-difference method to calculate numerically a correlation function for translational motion, taking into account the intermolecular forces leading to an arbitrary radial distribution of the ligand protons. The OSS and DSS models, including the Redfield description of the electron-spin relaxation, were used to interpret the PRE in an aqueous solution of a slowly rotating gadolinium (III) complex (S=7/2) bound to a protein.
Slater insulator in iridate perovskites with strong spin-orbit coupling
Cui, Q.; Cheng, J. -G.; Fan, W.; ...
2016-10-20
The perovskite SrIrO 3 is an exotic narrow-band metal owing to a confluence of the strengths of the spin-orbit coupling (SOC) and the electron-electron correlations. It has been proposed that topological and magnetic insulating phases can be achieved by tuning the SOC, Hubbard interactions, and/or lattice symmetry. Here, we report that the substitution of nonmagnetic, isovalent Sn 4+ for Ir 4+ in the SrIr 1–xSn xO 3 perovskites synthesized under high pressure leads to a metal-insulator transition to an antiferromagnetic (AF) phase at T N ≥ 225 K. The continuous change of the cell volume as detected by x-ray diffractionmore » and the λ-shape transition of the specific heat on cooling through T N demonstrate that the metal-insulator transition is of second order. Neutron powder diffraction results indicate that the Sn substitution enlarges an octahedral-site distortion that reduces the SOC relative to the spin-spin exchange interaction and results in the type- G AF spin ordering below T N. Measurement of high-temperature magnetic susceptibility shows the evolution of magnetic coupling in the paramagnetic phase typical of weak itinerant-electron magnetism in the Sn-substituted samples. Furthermore, a reduced structural symmetry in the magnetically ordered phase leads to an electron gap opening at the Brillouin zone boundary below T N in the same way as proposed by Slater.« less
Tuning magnetic exchange interactions in crystalline thin films of substituted Cobalt Phthalocyanine
NASA Astrophysics Data System (ADS)
Rawat, Naveen; Manning, Lane; Hua, Kim-Ngan; Headrick, Randall; Bishop, Michael; McGill, Stephen; Waterman, Rory; Furis, Madalina
Magnetic exchange interactions in diluted organometallic crystalline thin film alloys of Phthalocyanines (Pcs) made of a organo-soluble derivatives of Cobalt Pc and metal-free (H2Pc) molecule and is investigated. To this end, we synthesized a organosoluble CoPc and successfully employed a novel solution-based pen-writing deposition technique to fabricate long range ordered thin films of mixtures of different ratios ranging from 1:1 to 10:1 H2Pc:CoPc. Our previous magnetic circular dichroism (MCD) results on the parent CoPc crystalline thin films identified different electronic states mediating exchange interactions and indirect exchange interaction competing with superexchange interaction. This understanding of spin-dependent exchange interaction between delocalized π-electrons with unpaired d spins along with the excitonic delocalization character enabled the further tuning of these interactions by essentially varying the spatial distance between the spins. Furthermore, high magnetic field (B < 25 T) MCD and magneto-photoluminescence show evidence of spin-polarized band-edge excitons in the same materials. This work was possible due to support by the National Science Foundation, Division of Materials Research MRI, CAREER and EPM program Awards: DMR-0722451, DMR-0821268, DMR-1307017 and DMR-1056589, DMR-1229217.
NASA Astrophysics Data System (ADS)
Mansikkamäki, Akseli; Popov, Alexey A.; Deng, Qingming; Iwahara, Naoya; Chibotaru, Liviu F.
2017-09-01
The magnetic properties and electronic structure of the ground and excited states of two recently characterized endohedral metallo-fullerenes, [Gd2@C78]- (1) and [Gd2@C80]- (2), have been studied by theoretical methods. The systems can be considered as [Gd2]5+ dimers encapsulated in a fullerene cage with the fifteen unpaired electrons ferromagnetically coupled into an S = 15/2 high-spin configuration in the ground state. The microscopic mechanisms governing the Gd-Gd interactions leading to the ferromagnetic ground state are examined by a combination of density functional and ab initio calculations and the full energy spectrum of the ground and lowest excited states is constructed by means of ab initio model Hamiltonians. The ground state is characterized by strong electron delocalization bordering on a σ type one-electron covalent bond and minor zero-field splitting (ZFS) that is successfully described as a second order spin-orbit coupling effect. We have shown that the observed ferromagnetic interaction originates from Hund's rule coupling and not from the conventional double exchange mechanism. The calculated ZFS parameters of 1 and 2 in their optimized geometries are in qualitative agreement with experimental EPR results. The higher excited states display less electron delocalization, but at the same time they possess unquenched first-order angular momentum. This leads to strong spin-orbit coupling and highly anisotropic energy spectrum. The analysis of the excited states presented here constitutes the first detailed study of the effects of spin-dependent delocalization in the presence of first order orbital angular momentum and the obtained results can be applied to other mixed valence lanthanide systems.
Probing the spin-orbit Mott state in Sr3Ir2O7 by electron doping
NASA Astrophysics Data System (ADS)
Hogan, Thomas C.
Iridium-based members of the Ruddlesden-Popper family of oxide compounds are characterized by a unique combination of energetically comparable effects: crystal-field splitting, spin-orbit coupling, and electron-electron interactions are all present, and the combine to produce a Jeff = 1/2 ground state. In the bilayer member of this series, Sr3Ir2O7, this state manifests as electrically insulating, with unpaired Ir4+ spins aligned along the long axis of the unit cell to produce a G-type antiferromagnet with an ordered moment of 0.36 uB. In this work, this Mott state is destabilized by electron doping via La3+ substitution on the Sr-site to produce (Sr1-x Lax)3Ir2O7. The introduction of carriers initially causes nano-scale phase-separated regions to develop before driving a global insulator-to-metal transition at x=0.04. Coinciding with this transition is the disappearance of evidence of magnetic order in the system in either bulk magnetization or magnetic scattering experiments. The doping also enhances a structural order parameter observed in the parent compound at forbidden reciprocal lattice vectors. A more complete structural solution is proposed to account for this previously unresolved distortion, and also offers an explanation as to the anomalous net ferromagnetism seen prior in bulk measurements. Finally, spin dynamics are probed via a resonant x-ray technique to reveal evidence of spin-dimer-like behavior dominated by inter-plane interactions. This result supports a bond-operator treatment of the interaction Hamiltonian, and also explains the doping dependence of high temperature magnetic susceptibility.
Gradient ascent pulse engineering approach to CNOT gates in donor electron spin quantum computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, D.-B.; Goan, H.-S.
2008-11-07
In this paper, we demonstrate how gradient ascent pulse engineering (GRAPE) optimal control methods can be implemented on donor electron spin qubits in semiconductors with an architecture complementary to the original Kane's proposal. We focus on the high fidelity controlled-NOT (CNOT) gate and we explicitly find the digitized control sequences for a controlled-NOT gate by optimizing its fidelity using the effective, reduced donor electron spin Hamiltonian with external controls over the hyperfine A and exchange J interactions. We then simulate the CNOT-gate sequence with the full spin Hamiltonian and find that it has an error of 10{sup -6} that ismore » below the error threshold of 10{sup -4} required for fault-tolerant quantum computation. Also the CNOT gate operation time of 100 ns is 3 times faster than 297 ns of the proposed global control scheme.« less
Effect of spin fluctuations on the electronic structure in iron-based superconductors
NASA Astrophysics Data System (ADS)
Heimes, Andreas; Grein, Roland; Eschrig, Matthias
2012-08-01
Magnetic inelastic neutron scattering studies of iron-based superconductors reveal a strongly temperature-dependent spin-fluctuation spectrum in the normal conducting state, which develops a prominent low-energy resonance feature when entering the superconducting state. Angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling spectroscopy (STS) allow us to study the fingerprints of fluctuation modes via their interactions with electronic quasiparticles. We calculate such fingerprints in 122 iron pnictides using an experimentally motivated spin-fluctuation spectrum and make a number of predictions that can be tested in ARPES and STS experiments. This includes discussions of the quasiparticle scattering rate and the superconducting order parameter. In quantitative agreement with experiment we reproduce the quasiparticle dispersions obtained from momentum distribution curves as well as energy distribution curves. We discuss the relevance of the coupling between spin fluctuations and electronic excitations for the superconducting mechanism.
Electron spin relaxation in a transition-metal dichalcogenide quantum dot
NASA Astrophysics Data System (ADS)
Pearce, Alexander J.; Burkard, Guido
2017-06-01
We study the relaxation of a single electron spin in a circular quantum dot in a transition-metal dichalcogenide monolayer defined by electrostatic gating. Transition-metal dichalcogenides provide an interesting and promising arena for quantum dot nano-structures due to the combination of a band gap, spin-valley physics and strong spin-orbit coupling. First we will discuss which bound state solutions in different B-field regimes can be used as the basis for qubits states. We find that at low B-fields combined spin-valley Kramers qubits to be suitable, while at large magnetic fields pure spin or valley qubits can be envisioned. Then we present a discussion of the relaxation of a single electron spin mediated by electron-phonon interaction via various different relaxation channels. In the low B-field regime we consider the spin-valley Kramers qubits and include impurity mediated valley mixing which will arise in disordered quantum dots. Rashba spin-orbit admixture mechanisms allow for relaxation by in-plane phonons either via the deformation potential or by piezoelectric coupling, additionally direct spin-phonon mechanisms involving out-of-plane phonons give rise to relaxation. We find that the relaxation rates scale as \\propto B 6 for both in-plane phonons coupling via deformation potential and the piezoelectric effect, while relaxation due to the direct spin-phonon coupling scales independant to B-field to lowest order but depends strongly on device mechanical tension. We will also discuss the relaxation mechanisms for pure spin or valley qubits formed in the large B-field regime.
Magnetoresistance effect in Fe{sub 20}Ni{sub 80}/graphene/Fe{sub 20}Ni{sub 80} vertical spin valves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Entani, Shiro, E-mail: entani.shiro@qst.go.jp; Naramoto, Hiroshi; Sakai, Seiji
2016-08-22
Vertical spin valve devices with junctions of single- and bi-layer graphene interlayers sandwiched with Fe{sub 20}Ni{sub 80} (Permalloy) electrodes were fabricated by exploiting the direct growth of graphene on the Permalloy. The linear current-voltage characteristics indicated that ohmic contacts were realized at the interfaces. The systematic characterization revealed the significant modification of the electronic state of the interfacial graphene layer on the Permalloy surface, which indicates the strong interactions at the interface. The ohmic transport was attributable to the strong interface-interaction. The vertical resistivity of the graphene interlayer and the spin asymmetry coefficient at the graphene/Permalloy interface were obtained tomore » be 0.13 Ω cm and 0.06, respectively. It was found that the strong interface interaction modifies the electronic structure and metallic properties in the vertical spin valve devices with bi-layer graphene as well as single-layer graphene.« less
Spin-orbit induced electronic spin separation in semiconductor nanostructures.
Kohda, Makoto; Nakamura, Shuji; Nishihara, Yoshitaka; Kobayashi, Kensuke; Ono, Teruo; Ohe, Jun-ichiro; Tokura, Yasuhiro; Mineno, Taiki; Nitta, Junsaku
2012-01-01
The demonstration of quantized spin splitting by Stern and Gerlach is one of the most important experiments in modern physics. Their discovery was the precursor of recent developments in spin-based technologies. Although electrical spin separation of charged particles is fundamental in spintronics, in non-uniform magnetic fields it has been difficult to separate the spin states of charged particles due to the Lorentz force, as well as to the insufficient and uncontrollable field gradients. Here we demonstrate electronic spin separation in a semiconductor nanostructure. To avoid the Lorentz force, which is inevitably induced when an external magnetic field is applied, we utilized the effective non-uniform magnetic field which originates from the Rashba spin-orbit interaction in an InGaAs-based heterostructure. Using a Stern-Gerlach-inspired mechanism, together with a quantum point contact, we obtained field gradients of 10(8) T m(-1) resulting in a highly polarized spin current.
Electrical control of spin dynamics in finite one-dimensional systems
NASA Astrophysics Data System (ADS)
Pertsova, A.; Stamenova, M.; Sanvito, S.
2011-10-01
We investigate the possibility of the electrical control of spin transfer in monoatomic chains incorporating spin impurities. Our theoretical framework is the mixed quantum-classical (Ehrenfest) description of the spin dynamics, in the spirit of the s-d model, where the itinerant electrons are described by a tight-binding model while localized spins are treated classically. Our main focus is on the dynamical exchange interaction between two well-separated spins. This can be quantified by the transfer of excitations in the form of transverse spin oscillations. We systematically study the effect of an electrostatic gate bias Vg on the interconnecting channel and we map out the long-range dynamical spin transfer as a function of Vg. We identify regions of Vg giving rise to significant amplification of the spin transmission at low frequencies and relate this to the electronic structure of the channel.
Spin manipulation and relaxation in spin-orbit qubits
NASA Astrophysics Data System (ADS)
Borhani, Massoud; Hu, Xuedong
2012-03-01
We derive a generalized form of the electric dipole spin resonance (EDSR) Hamiltonian in the presence of the spin-orbit interaction for single spins in an elliptic quantum dot (QD) subject to an arbitrary (in both direction and magnitude) applied magnetic field. We predict a nonlinear behavior of the Rabi frequency as a function of the magnetic field for sufficiently large Zeeman energies, and present a microscopic expression for the anisotropic electron g tensor. Similarly, an EDSR Hamiltonian is devised for two spins confined in a double quantum dot (DQD), where coherent Rabi oscillations between the singlet and triplet states are induced by jittering the inter-dot distance at the resonance frequency. Finally, we calculate two-electron-spin relaxation rates due to phonon emission, for both in-plane and perpendicular magnetic fields. Our results have immediate applications to current EDSR experiments on nanowire QDs, g-factor optimization of confined carriers, and spin decay measurements in DQD spin-orbit qubits.
Spin-polarized surface resonances accompanying topological surface state formation
Jozwiak, Chris; Sobota, Jonathan A.; Gotlieb, Kenneth; Kemper, Alexander F.; Rotundu, Costel R.; Birgeneau, Robert J.; Hussain, Zahid; Lee, Dung-Hai; Shen, Zhi-Xun; Lanzara, Alessandra
2016-01-01
Topological insulators host spin-polarized surface states born out of the energetic inversion of bulk bands driven by the spin-orbit interaction. Here we discover previously unidentified consequences of band-inversion on the surface electronic structure of the topological insulator Bi2Se3. By performing simultaneous spin, time, and angle-resolved photoemission spectroscopy, we map the spin-polarized unoccupied electronic structure and identify a surface resonance which is distinct from the topological surface state, yet shares a similar spin-orbital texture with opposite orientation. Its momentum dependence and spin texture imply an intimate connection with the topological surface state. Calculations show these two distinct states can emerge from trivial Rashba-like states that change topology through the spin-orbit-induced band inversion. This work thus provides a compelling view of the coevolution of surface states through a topological phase transition, enabled by the unique capability of directly measuring the spin-polarized unoccupied band structure. PMID:27739428
Improper magnetic ferroelectricity of nearly pure electronic nature in helicoidal spiral CaMn7O12
NASA Astrophysics Data System (ADS)
Lim, Jin Soo; Saldana-Greco, Diomedes; Rappe, Andrew M.
2018-01-01
Helicoidal magnetic order breaks inversion symmetry in quadruple perovskite CaMn7O12 , generating one of the largest spin-induced ferroelectric polarizations measured to date. Here, the microscopic origin of the polarization, including exchange interactions, coupling to the spin helicity, and charge density redistribution, is explored via first-principles calculations. The B -site Mn4 + (Mn3) spin adopts a noncentrosymmetric configuration, stabilized not only by spin-orbit coupling (SOC), but also by the fully anisotropic Hubbard J parameter in the absence of SOC, to break inversion symmetry and generate polarization. Berry phase computed polarization (Pelec=2169 μ C /m2 ) exhibits nearly pure electronic behavior, with negligible Mn displacements (≈0.7 m Å ). Orbital-resolved density of states shows that p -d orbital mixing is microscopically driven by nonrelativistic exchange striction within the commensurate ionic structure. Persistent electronic polarization induced by helical spin order in the nearly inversion-symmetric ionic crystal lattice suggests opportunities for ultrafast magnetoelectric response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
González, Sandra Rodríguez; Nieto-Ortega, Belén; González Cano, Rafael C.
2014-04-28
We present a complete Raman spectroscopic study in two structurally well-defined diradical species of different lengths incorporating oligo p-phenylene vinylene bridges between two polychlorinated triphenylmethyl radical units, a disposition that allows sizeable conjugation between the two radicals through and with the bridge. The spectroscopic data are interpreted and supported by quantum chemical calculations. We focus the attention on the Raman frequency changes, interpretable in terms of: (i) bridge length (conjugation length); (ii) bridge conformational structure; and (iii) electronic coupling between the terminal radical units with the bridge and through the bridge, which could delineate through-bond spin polarization, or spin delocalization.more » These items are addressed by using the “oligomer approach” in conjunction with pressure and temperature dependent Raman spectroscopic data. In summary, we have attempted to translate the well-known strategy to study the electron (charge) structure of π−conjugated molecules by Raman spectroscopy to the case of electron (spin) interactions via the spin delocalization mechanism.« less
Relativistic effects on the bonding and properties of the hydrides of platinum
NASA Technical Reports Server (NTRS)
Dyall, Kenneth G.
1993-01-01
The ground state of PtH2 and several low-lying states of PtH(+) and PtH have been studied at the all-electron self-consistent-field level of theory to examine the importance of relativistic effects. The results of calculations based on Dirac-Hartree-Fock theory, nonrelativistic theory, and the spin-free no-pair relativistic approximation of Hess are compared to separate the effects of the spin-free terms and the spin-orbit terms of the Hamiltonian on the relativistic corrections to the molecular properties. Comparison is also made between first-order perturbation theory including the one-electron spin-free terms and the method of Hess to determine the size of effects beyond first order. It is found that the spin-orbit interaction significantly affects the properties and energetics of these molecules because of the participation of the Pt 5d orbitals in the bonding, and that effects beyond first order in perturbation theory are large. Any treatment of Pt compounds will have to include both the spin-free and spin-orbit interactions for an accurate description.
Is the Pauli exclusion principle the origin of electron localisation?
NASA Astrophysics Data System (ADS)
Rincón, Luis; Torres, F. Javier; Almeida, Rafael
2018-03-01
In this work, we inquire into the origins of the electron localisation as obtained from the information content of the same-spin pair density, γσ, σ(r2∣r1). To this end, we consider systems of non-interacting and interacting identical Fermions contained in two simple 1D potential models: (1) an infinite potential well and (2) the Kronig-Penney periodic potential. The interparticle interaction is considered through the Hartree-Fock approximation as well as the configuration interaction expansion. Morover, the electron localisation is described through the Kullback-Leibler divergence between γσ, σ(r2∣r1) and its associated marginal probability. The results show that, as long as the adopted method properly includes the Pauli principle, the electronic localisation depends only modestly on the interparticle interaction. In view of the latter, one may conclude that the Pauli principle is the main responsible for the electron localisation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baglioni, P.; Rivara-Minten, E.; Kevan, L.
1989-02-23
Electron spin resonance (ESR) and electron spin echo modulation (ESEM) of photoionized N,N,N{prime},N{prime}-tetramethylbenzidine (TMB) cation adsorbed at the interface of butadiene-acrylonitrile-methacrylic acid and butadiene-styrene-acrylic acid polymeric latices have been studied as a function of sodium dodecyl sulfate (SDS) concentration adsorbed at the latex interface. The photoionization yield of TMB in frozen latices mainly depends on the strength of TMB{sup +}-water interactions, which are enhanced by added SDS as measured by ESEM. An increase in the negative surface potential of the latex particles, due to the adsorption of SDS at the latex surface, does not affect the photoionization yield, showing thatmore » the particle surface potential has, for negatively charged systems, a secondary role in promoting the photoionization yield. Differences in the TMB{sup +} yield are found for the two polymeric latices and are attributed to the different latex compositions and/or different interfacial structures.« less
Terenzi, Camilla; Bouguet-Bonnet, Sabine; Canet, Daniel
2015-05-07
We report that at ambient temperature and with 100% enriched para-hydrogen (p-H2) dissolved in organic solvents, paramagnetic spin catalysis of para → ortho hydrogen conversion is accompanied at the onset by a negative ortho-hydrogen (o-H2) proton NMR signal. This novel finding indicates an electron spin polarization transfer, and we show here that this can only occur if the H2 molecule is dissociated upon its transient adsorption by the paramagnetic catalyst. Following desorption, o-H2 is created until the thermodynamic equilibrium is reached. A simple theory confirms that in the presence of a static magnetic field, the hyperfine coupling between unpaired electrons and nuclear spins is responsible for the observed polarization transfer. Owing to the negative electron gyromagnetic ratio, this explains the experimental results and ascertains an as yet unexplored mechanism for para → ortho conversion. Finally, we show that the recovery of o-H2 magnetization toward equilibrium can be simply modeled, leading to the para → ortho conversion rate.
NASA Astrophysics Data System (ADS)
Monguzzi, A.; Tubino, R.; Salamone, M. M.; Meinardi, F.
2010-09-01
Triplet-triplet energy transfer in multicomponent organic systems is usually entirely ascribed to a Dexter-type mechanism involving only short-range donor/acceptor interactions. We demonstrate that the presence of molecular oxygen introduces a perturbation to the electronic structure of one of the involved moieties which can induce a large increase in the spin-forbidden transition oscillator strength so that the otherwise negligible Förster contribution dominates the overall energy transfer rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Q.; Cheng, J. -G.; Fan, W.
The perovskite (Pv) SrIrO 3 is an exotic narrow-band metal owing to a confluence of the strengths of the spin-orbit coupling (SOC) and the electron-electron correlations. It has been proposed that topological and magnetic insulating phases can be achieved by tuning the SOC, Hubbard interactions, and/or lattice symmetry. Here, we report that the substitution of nonmagnetic, isovalent Sn 4+ for Ir 4+ in the SrIr 1-xSn xO 3 perovskites synthesized under high pressure leads to a metal-insulator transition to an antiferromagnetic phase at TN ≥ 225 K. The continuous change of the cell volume as detected by X-ray diffraction andmore » the l-shape transition of the specific heat on cooling through TN demonstrate that the metal-insulator transition is of second-order. Neutron powder diffraction results indicate that the Sn substitution enlarges an octahedral-site distortion that reduces the SOC relative to the spin-spin exchange interaction and results in the type-G AF spin ordering below TN. Measurement of high-temperature magnetic susceptibility shows the evolution of magnetic coupling in the paramagnetic phase typical of weak itinerant-electron magnetism in the Sn-substituted samples. A reduced structural symmetry in the magnetically ordered phase leads to an electron gap opening at the Brillouin zone boundary below TN in the same way as proposed by Slater.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Q.; Cheng, J. -G.; Fan, W.
The perovskite SrIrO 3 is an exotic narrow-band metal owing to a confluence of the strengths of the spin-orbit coupling (SOC) and the electron-electron correlations. It has been proposed that topological and magnetic insulating phases can be achieved by tuning the SOC, Hubbard interactions, and/or lattice symmetry. Here, we report that the substitution of nonmagnetic, isovalent Sn 4+ for Ir 4+ in the SrIr 1–xSn xO 3 perovskites synthesized under high pressure leads to a metal-insulator transition to an antiferromagnetic (AF) phase at T N ≥ 225 K. The continuous change of the cell volume as detected by x-ray diffractionmore » and the λ-shape transition of the specific heat on cooling through T N demonstrate that the metal-insulator transition is of second order. Neutron powder diffraction results indicate that the Sn substitution enlarges an octahedral-site distortion that reduces the SOC relative to the spin-spin exchange interaction and results in the type- G AF spin ordering below T N. Measurement of high-temperature magnetic susceptibility shows the evolution of magnetic coupling in the paramagnetic phase typical of weak itinerant-electron magnetism in the Sn-substituted samples. Furthermore, a reduced structural symmetry in the magnetically ordered phase leads to an electron gap opening at the Brillouin zone boundary below T N in the same way as proposed by Slater.« less
Excitations in a spin-polarized two-dimensional electron gas
NASA Astrophysics Data System (ADS)
Kreil, Dominik; Hobbiger, Raphael; Drachta, Jürgen T.; Böhm, Helga M.
2015-11-01
A remarkably long-lived spin plasmon may exist in two-dimensional electron liquids with imbalanced spin-up and spin-down population. The predictions for this interesting mode by Agarwal et al. [Phys. Rev. B 90, 155409 (2014), 10.1103/PhysRevB.90.155409] are based on the random phase approximation. Here, we show how to account for spin-dependent correlations from known ground-state pair correlation functions and study the consequences on the various spin-dependent longitudinal response functions. The spin-plasmon dispersion relation and its critical wave vector for Landau damping by minority spins turn out to be significantly lower. We further demonstrate that spin-dependent effective interactions imply a rich structure in the excitation spectrum of the partially spin-polarized system. Most notably, we find a "magnetic antiresonance," where the imaginary part of both, the spin-spin as well as the density-spin response function vanish. The resulting minimum in the double-differential cross section is awaiting experimental confirmation.
Emergence of superconductivity in heavy-electron materials
Yang, Yi-feng; Pines, David
2014-01-01
Although the pairing glue for the attractive quasiparticle interaction responsible for unconventional superconductivity in heavy-electron materials has been identified as the spin fluctuations that arise from their proximity to a magnetic quantum critical point, there has been no model to describe their superconducting transition at temperature Tc that is comparable to that found by Bardeen, Cooper, and Schrieffer (BCS) for conventional superconductors, where phonons provide the pairing glue. Here we propose such a model: a phenomenological BCS-like expression for Tc in heavy-electron materials that is based on a simple model for the effective range and strength of the spin-fluctuation-induced quasiparticle interaction and reflects the unusual properties of the heavy-electron normal state from which superconductivity emerges. We show that it provides a quantitative understanding of the pressure-induced variation of Tc in the “hydrogen atoms” of unconventional superconductivity, CeCoIn5 and CeRhIn5, predicts scaling behavior and a dome-like structure for Tc in all heavy-electron quantum critical superconductors, provides unexpected connections between members of this family, and quantifies their variations in Tc with a single parameter. PMID:25489102
The physics of quantum materials
NASA Astrophysics Data System (ADS)
Keimer, B.; Moore, J. E.
2017-11-01
The physical description of all materials is rooted in quantum mechanics, which describes how atoms bond and electrons interact at a fundamental level. Although these quantum effects can in many cases be approximated by a classical description at the macroscopic level, in recent years there has been growing interest in material systems where quantum effects remain manifest over a wider range of energy and length scales. Such quantum materials include superconductors, graphene, topological insulators, Weyl semimetals, quantum spin liquids, and spin ices. Many of them derive their properties from reduced dimensionality, in particular from confinement of electrons to two-dimensional sheets. Moreover, they tend to be materials in which electrons cannot be considered as independent particles but interact strongly and give rise to collective excitations known as quasiparticles. In all cases, however, quantum-mechanical effects fundamentally alter properties of the material. This Review surveys the electronic properties of quantum materials through the prism of the electron wavefunction, and examines how its entanglement and topology give rise to a rich variety of quantum states and phases; these are less classically describable than conventional ordered states also driven by quantum mechanics, such as ferromagnetism.
Ren, Ji-Chang; Wang, Zhigang; Zhang, Rui-Qin; Ding, Zejun; Van Hove, Michel A
2015-11-11
It is well known that the effect of Coulomb on-site repulsion can significantly alter the physical properties of the systems that contain localized d and/or f electrons. However, little attention has been paid to the Coulomb on-site repulsion between localized p electrons. In this study, we demonstrated that Coulomb on-site repulsion between localized pz electrons also plays an important role in graphene embedded with line defects. It is shown that the magnetism of the system largely depends on the choice of the effective Coulomb on-site parameter Ueff. Ueff at the edges of the defect enhances the exchange splitting, which increases the magnetic moment and stabilizes a ferromagnetic state of the system. In contrast, Ueff at the center of the defect weakens the spin polarization of the system. The behavior of the magnetism is explained with the Stoner criterion and the charge accumulation at the edges of the defect. Based on the linear response approach, we estimate reasonable values of Ueff to be 2.55 eV (2.3 eV) at the center (edges) of the defects. More importantly, using a DFT+U+J method, we find that exchange interactions between localized p electrons also play an important role in the spin polarization of the system. These results imply that Coulomb on-site repulsion is necessary to describe the strong interaction between localized pz electrons of carbon related materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burghaus, Jens; Dronskowski, Richard, E-mail: drons@HAL9000.ac.rwth-aachen.d; Miller, Gordon J.
2009-10-15
First-principles, density-functional studies of several intermetallic borides of the general type M{sub 2}M'Ru{sub 5-n}Rh{sub n}B{sub 2} (n=0-5; M=Sc, Ti, Nb; M'=Fe, Co) show that the variation in saturation magnetic moment with valence-electron count follows a Slater-Pauling curve, with a maximum moment occurring typically at 66 valence electrons. The magnetic moments in these compounds occur primarily from the 3d electrons of the magnetically active M' sites, with some contribution from the Ru/Rh sites via magnetic polarization. Electronic DOS curves reveal that a rigid-band approach is a reasonable approximation for the estimation of saturation moments and the analysis of orbital interactions inmore » this family of complex borides. COHP analyses of the M'-M' orbital interactions indicate optimized interactions in the minority spin states for Co-containing phases, but strong bonding interactions remaining in Fe-containing phases. - Graphical abstract: Theoretically determined (spin-polarized LMTO-GGA) local magnetic moments as a function of the chemical valence Z for various intermetallic borides.« less
Balanced electron-hole transport in spin-orbit semimetal SrIrO3 heterostructures
NASA Astrophysics Data System (ADS)
Manca, Nicola; Groenendijk, Dirk J.; Pallecchi, Ilaria; Autieri, Carmine; Tang, Lucas M. K.; Telesio, Francesca; Mattoni, Giordano; McCollam, Alix; Picozzi, Silvia; Caviglia, Andrea D.
2018-02-01
Relating the band structure of correlated semimetals to their transport properties is a complex and often open issue. The partial occupation of numerous electron and hole bands can result in properties that are seemingly in contrast with one another, complicating the extraction of the transport coefficients of different bands. The 5 d oxide SrIrO3 hosts parabolic bands of heavy holes and light electrons in gapped Dirac cones due to the interplay between electron-electron interactions and spin-orbit coupling. We present a multifold approach relying on different experimental techniques and theoretical calculations to disentangle its complex electronic properties. By combining magnetotransport and thermoelectric measurements in a field-effect geometry with first-principles calculations, we quantitatively determine the transport coefficients of different conduction channels. Despite their different dispersion relationships, electrons and holes are found to have strikingly similar transport coefficients, yielding a holelike response under field-effect and thermoelectric measurements and a linear electronlike Hall effect up to 33 T.
Spin splitting in band structures of BiTeX (X=Cl, Br, I) monolayers
NASA Astrophysics Data System (ADS)
Hvazdouski, D. C.; Baranava, M. S.; Stempitsky, V. R.
2018-04-01
In systems with breaking of inversion symmetry a perpendicular electric field arises that interacts with the conduction electrons. It may give rise to electron state splitting even without influence of external magnetic field due to the spin-orbital interaction (SOI). Such a removal of the spin degeneracy is called the Rashba effect. Nanostructure with the Rashba effect can be part of a spin transistor. Spin degeneracy can be realized in a channel from a material of this type without additive of magnetic ions. Lack of additive increases the charge carrier mobility and reliability of the device. Ab initio simulations of BiTeX (X=Cl, Br, I) monolayers have been carried out using VASP wherein implemented DFT method. The study of this structures is of interest because such sort of structures can be used their as spin-orbitronics materials. The crystal parameters of BiTeCl, BiTeBr, BiTeI have been determined by the ionic relaxation and static calculations. It is necessary to note that splitting of energy bands occurs in case of SOI included. The values of the Rashba coefficient aR (in the range from 6.25 to 10.00 eV·Å) have high magnitudes for spintronics materials. Band structure of monolayers structures have ideal Rashba electron gas, i.e. there no other energy states near to Fermi level except Rashba states.
NASA Astrophysics Data System (ADS)
Kuzhelev, Andrey A.; Strizhakov, Rodion K.; Krumkacheva, Olesya A.; Polienko, Yuliya F.; Morozov, Denis A.; Shevelev, Georgiy Yu.; Pyshnyi, Dmitrii V.; Kirilyuk, Igor A.; Fedin, Matvey V.; Bagryanskaya, Elena G.
2016-05-01
Trehalose has been recently promoted as efficient immobilizer of biomolecules for room-temperature EPR studies, including distance measurements between attached nitroxide spin labels. Generally, the structure of nitroxide influences the electron spin relaxation times, being crucial parameters for room-temperature pulse EPR measurements. Therefore, in this work we investigated a series of nitroxides with different substituents adjacent to NO-moiety including spirocyclohexane, spirocyclopentane, tetraethyl and tetramethyl groups. Electron spin relaxation times (T1, Tm) of these radicals immobilized in trehalose were measured at room temperature at X- and Q-bands (9/34 GHz). In addition, a comparison was made with the corresponding relaxation times in nitroxide-labeled DNA immobilized in trehalose. In all cases phase memory times Tm were close to 700 ns and did not essentially depend on structure of substituents. Comparison of temperature dependences of Tm at T = 80-300 K shows that the benefit of spirocyclohexane substituents well-known at medium temperatures (∼100-180 K) becomes negligible at 300 K. Therefore, unless there are specific interactions between spin labels and biomolecules, the room-temperature value of Tm in trehalose is weakly dependent on the structure of substituents adjacent to NO-moiety of nitroxide. The issues of specific interactions and stability of nitroxide labels in biological media might be more important for room temperature pulsed dipolar EPR than differences in intrinsic spin relaxation of radicals.
Electron spin resonance identification di-carbon-related centers in irradiated silicon
NASA Astrophysics Data System (ADS)
Hayashi, S.; Saito, H.; Itoh, K. M.; Vlasenko, M. P.; Vlasenko, L. S.
2018-04-01
A previously unreported electron spin resonance (ESR) spectrum was found in γ-ray irradiated silicon by the detection of the change in microwave photoconductivity arising from spin-dependent recombination (SDR). In the specially prepared silicon crystals doped by 13C isotope, a well resolved hyperfine structure of SDR-ESR lines due to the interaction between electrons and two equivalent carbon atoms having nuclear spin I = 1/2 was observed. The Si-KU4 spectrum is described by spin Hamiltonian for spin S = 1 and of g and D tensors of orthorhombic symmetry with principal values g1 = 2.008, g2 = 2.002, and g3 =2.007; and D1 = ± 103 MHz, D2 = ∓170 MHz, and D3 = ± 67 MHz where axes 1, 2, and 3 are parallel to the [1 1 ¯ 0 ], [110], and [001] crystal axes, respectively. The hyperfine splitting arising from 13C nuclei is about 0.35 mT. A possible microstructure of the detect leading to the Si-KU4 spectrum is discussed.
Bulk electron spin polarization generated by the spin Hall current
NASA Astrophysics Data System (ADS)
Korenev, V. L.
2006-07-01
It is shown that the spin Hall current generates a nonequilibrium spin polarization in the interior of crystals with reduced symmetry in a way that is drastically different from the previously well-known “equilibrium” polarization during the spin relaxation process. The steady state spin polarization value does not depend on the strength of spin-orbit interaction offering possibility to generate relatively high spin polarization even in the case of weak spin-orbit coupling.
Spin-lattice relaxation of individual solid-state spins
NASA Astrophysics Data System (ADS)
Norambuena, A.; Muñoz, E.; Dinani, H. T.; Jarmola, A.; Maletinsky, P.; Budker, D.; Maze, J. R.
2018-03-01
Understanding the effect of vibrations on the relaxation process of individual spins is crucial for implementing nanosystems for quantum information and quantum metrology applications. In this work, we present a theoretical microscopic model to describe the spin-lattice relaxation of individual electronic spins associated to negatively charged nitrogen-vacancy centers in diamond, although our results can be extended to other spin-boson systems. Starting from a general spin-lattice interaction Hamiltonian, we provide a detailed description and solution of the quantum master equation of an electronic spin-one system coupled to a phononic bath in thermal equilibrium. Special attention is given to the dynamics of one-phonon processes below 1 K where our results agree with recent experimental findings and analytically describe the temperature and magnetic-field scaling. At higher temperatures, linear and second-order terms in the interaction Hamiltonian are considered and the temperature scaling is discussed for acoustic and quasilocalized phonons when appropriate. Our results, in addition to confirming a T5 temperature dependence of the longitudinal relaxation rate at higher temperatures, in agreement with experimental observations, provide a theoretical background for modeling the spin-lattice relaxation at a wide range of temperatures where different temperature scalings might be expected.
Anisotropy of magnetic interactions and spin filter behavior in hexagonal (Ga,Mn)As nanoribbons
NASA Astrophysics Data System (ADS)
Nie, Ya; Lan, Mu; Zhang, Xi; Xiang, Gang
2017-09-01
The electronic and magnetic properties of Mn doped hexagonal GaAs nanoribbons ((Ga,Mn)As NRs) have been investigated using spin-polarized density functional theory (DFT), and the spin-resolved transport behaviors of (Ga,Mn)As NRs have also been studied with non-equilibrium Green function theory. The calculations show that every Mn dopant brings 4 Bohr magneton (μB) magnetic moment and the ground states of (Ga,Mn)As NRs are ferromagnetic (FM). The investigation of magnetic anisotropies shows that magnetic interactions are dependent on both the distribution directions of Mn atoms and the edge effect of the NRs. The studies of electronic structures and transport properties show that incorporation of Mn atom turns GaAs NR from semiconducting to half-metallic, which significantly enhances the spin-up conductivity and strongly weakens the spin-down conductivity, resulting in non-monatomic variations of spin-dependent conductivities. The nearly 100% spin polarization shown in (Ga,Mn)As NR may be used for low dimensional spin filters, even with as large a bias as 0.9 V. Also, (Ga,Mn)As NR can be used to generate a relatively stable spin-polarized current in a wide bias interval.
Spin-resolved inelastic mean free path of slow electrons in Fe.
Zdyb, R; Bauer, E
2013-07-10
The spin-dependent reflectivity of slow electrons from ultrathin Fe films on W(110) has been measured with spin polarized low energy electron microscopy. From the amplitude of the quantum size oscillations observed in the reflectivity curves the spin-dependent inelastic mean free path (IMFP) of electrons in Fe has been determined in the energy range from 5 to 16 eV above the vacuum level. The resulting IMFP values for the spin-up electrons are clearly larger than those for the spin-down electrons and the difference between the two values decreases with increasing electron energy in agreement with theoretical predictions.
NASA Astrophysics Data System (ADS)
Vasilopoulos, P.; Wang, X. F.
2004-03-01
Spin-polarized electron transport through waveguides, in which the strength a of the spin-orbit interaction is varied periodically, is studied using the transfer-matrix technique. It is shown that the transmission T exhibits a spin-transistor action, as a function of a or of the length of one of the two subunits of the unit cell if only one mode is allowed to propagate in the waveguide. A similar but not periodic behavior is shown by T as a function of the elec-tron energy E. In a waveguide with only one segment, of strength a2 and length l2, comprised between two segments of strength a1, the total transmission, obtained as T=1/[cos2(D2*l2)+r*sin2(D2*l2)], shows a sinusoidal dependence. The spin-up (T+) and spin-down (T-) transmissions are given by T+=T cos2x and T-=T sin2x, where x is a measure of the spin precession. The total phase acquired by electrons in different branches during propagation is x=2[d1*(L-l2)+ d2*l2] with di=2m*a1/h2 and L the waveguide length. The transmission through a superlattice, with alternating segments of lengths l1, l2, and strengths a1, a2, is also a periodic function of aj and lj, j=1,2. As the strength a can be controlled by applying gates, the structure considered is a good candidate for the establishment of a realistic spin transistor.
Transmission through a potential barrier in Luttinger liquids with a topological spin gap
NASA Astrophysics Data System (ADS)
Kainaris, Nikolaos; Carr, Sam T.; Mirlin, Alexander D.
2018-03-01
We study theoretically the transport of the one-dimensional single-channel interacting electron gas through a strong potential barrier in the parameter regime where the spin sector of the low-energy theory is gapped by interaction (Luther-Emery liquid). There are two distinct phases of this nature, of which one is of particular interest as it exhibits nontrivial interaction-induced topological properties. Focusing on this phase and using bosonization and an expansion in the tunneling strength we calculate the conductance through the barrier as a function of the temperature as well as the local density of states (LDOS) at the barrier. Our main result concerns the mechanism of bound-state-mediated tunneling. The characteristic feature of the topological phase is the emergence of protected zero-energy bound states with fractional spin located at the impurity position. By flipping this fractional spin, single electrons can tunnel across the impurity even though the bulk spectrum for spin excitations is gapped. This results in a finite LDOS below the bulk gap and in a nonmonotonic behavior of the conductance. The system represents an important physical example of an interacting symmetry-protected topological phase, which combines features of a topological spin insulator and a topological charge metal, in which the topology can be probed by measuring transport properties.
Strain engineering of the silicon-vacancy center in diamond
NASA Astrophysics Data System (ADS)
Meesala, Srujan; Sohn, Young-Ik; Pingault, Benjamin; Shao, Linbo; Atikian, Haig A.; Holzgrafe, Jeffrey; Gündoǧan, Mustafa; Stavrakas, Camille; Sipahigil, Alp; Chia, Cleaven; Evans, Ruffin; Burek, Michael J.; Zhang, Mian; Wu, Lue; Pacheco, Jose L.; Abraham, John; Bielejec, Edward; Lukin, Mikhail D.; Atatüre, Mete; Lončar, Marko
2018-05-01
We control the electronic structure of the silicon-vacancy (SiV) color-center in diamond by changing its static strain environment with a nano-electro-mechanical system. This allows deterministic and local tuning of SiV optical and spin transition frequencies over a wide range, an essential step towards multiqubit networks. In the process, we infer the strain Hamiltonian of the SiV revealing large strain susceptibilities of order 1 PHz/strain for the electronic orbital states. We identify regimes where the spin-orbit interaction results in a large strain susceptibility of order 100 THz/strain for spin transitions, and propose an experiment where the SiV spin is strongly coupled to a nanomechanical resonator.
Bowlan, P.; Trugman, S. A.; Bowlan, J.; ...
2016-09-26
Here, we demonstrate an approach for directly tracking antiferromagnetic (AFM) spin dynamics by measuring ultrafast changes in a magnon resonance. We also test this idea on the multiferroic HoMnO 3 by optically photoexciting electrons, after which changes in the spin order are probed with a THz pulse tuned to a magnon resonance. This reveals a photoinduced change in the magnon line shape that builds up over 5–12 picoseconds, which we show to be the spin-lattice thermalization time, indicating that electrons heat the spins via phonons. We compare our results to previous studies of spin-lattice thermalization in ferromagnetic manganites, giving insightmore » into fundamental differences between the two systems. Finally, our work sheds light on the microscopic mechanism governing spin-phonon interactions in AFMs and demonstrates a powerful approach for directly monitoring ultrafast spin dynamics.« less
Input-output theory for spin-photon coupling in Si double quantum dots
NASA Astrophysics Data System (ADS)
Benito, M.; Mi, X.; Taylor, J. M.; Petta, J. R.; Burkard, Guido
2017-12-01
The interaction of qubits via microwave frequency photons enables long-distance qubit-qubit coupling and facilitates the realization of a large-scale quantum processor. However, qubits based on electron spins in semiconductor quantum dots have proven challenging to couple to microwave photons. In this theoretical work we show that a sizable coupling for a single electron spin is possible via spin-charge hybridization using a magnetic field gradient in a silicon double quantum dot. Based on parameters already shown in recent experiments, we predict optimal working points to achieve a coherent spin-photon coupling, an essential ingredient for the generation of long-range entanglement. Furthermore, we employ input-output theory to identify observable signatures of spin-photon coupling in the cavity output field, which may provide guidance to the experimental search for strong coupling in such spin-photon systems and opens the way to cavity-based readout of the spin qubit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowlan, P.; Trugman, S. A.; Bowlan, J.
Here, we demonstrate an approach for directly tracking antiferromagnetic (AFM) spin dynamics by measuring ultrafast changes in a magnon resonance. We also test this idea on the multiferroic HoMnO 3 by optically photoexciting electrons, after which changes in the spin order are probed with a THz pulse tuned to a magnon resonance. This reveals a photoinduced change in the magnon line shape that builds up over 5–12 picoseconds, which we show to be the spin-lattice thermalization time, indicating that electrons heat the spins via phonons. We compare our results to previous studies of spin-lattice thermalization in ferromagnetic manganites, giving insightmore » into fundamental differences between the two systems. Finally, our work sheds light on the microscopic mechanism governing spin-phonon interactions in AFMs and demonstrates a powerful approach for directly monitoring ultrafast spin dynamics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baglioni, P.; Rivara-Minten, E.; Stenland, C.
1991-11-28
Electron spin-echo modulation (ESEM) and electron spin resonance (ESR) spectra of the photogenerated N,N,N[prime],N[prime]-tetramethylbenzidine (TMB) cation radical in frozen mixed micelles of sodium dodecyl sulfate (SDS) or dodecyltrimethylammonium chloride (DTAC) and hexakis(ethylene glycol) monododecyl ether (C[sub 12]E[sub 6]), selectively deuterated along the poly(ethylene glycol) group (C[sub 12]D[sub 6]) or along the alkyl chain ((CD)[sub 12]E[sub 6]), have been studied as a function of the mixed-micelle composition in H[sub 2]O and D[sub 2]O. ESEM effects due to TMB[sup +] interactions with deuterium in D[sub 2]O show a decrease of the TMB[sup +]-water interactions for the system DTAC/C[sub 12]E[sub 6] and anmore » increase for the system SDS/C[sub 12]E[sub 6] that depend on the composition of the mixed micelle. The location of TMB[sup +] in the mixed micelles, deduced by comparing the modulation effects due to interactions of the photocation with water deuteriums or deuteriums of deuterated surfactants, is reported for the SDS/C[sub 12]E[sub 6] and DTAC/C[sub 12]E[sub 6] mixed micelles. The efficiency of charge separation upon the photoionization of TMB to produce TMB[sup +] measured by ESR correlates with the surface charge and with the degree of water penetration into the mixed micelle.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baglioni, P.; Rivara-Minten, E.; Kevan, L.
1988-08-11
Electron spin echo modulation and electron spin resonance spectra of photogenerated N,N,N',N'-tetramethylbenzidine (TMB) cation radical and n-doxylstearic acids (n-DSA) in frozen micellar solutions of sodium and lithium dodecyl sulfate containing 15-crown-5 and 18-crown-6 ethers in D/sub 2/O have been studied as a function of crown ether concentration. Modulation effects due to N-DSA with water deuteriums give direct evidence that both crown ethers are mainly located at the micellar interface and that this causes a decrease of the hydration of the micellar interface. Crown ether complexation constants for sodium and lithium micellar counterions are reported and show that 18-crown-6 > 15-crown-5more » for sodium counterion and 15-crown-5 > 18-crown-6 for lithium counterion. Modulation effects from TMB/sup +/ interaction with water deuteriums indicate that the TMB molecule moves toward the micelle interfacial region when sodium or lithium cations are complexed by crown ethers. The TMB/sup +/ yield upon TMB photoionization increases by about 10% with crown ether addition for SDS and LDS micellar systems, but it is greater if the absolute values for the LDS system are compared to those for the SDS micellar system. This behavior correlates with the strength of TMB/sup +/-water interactions and suggests that the main factor in the photoionization efficiency is the photocation-water interaction.« less
Impact of the Tilted Detector Solenoid on the Ion Polarization at JLEIC
Kondratenko, A. M.; Kondratenko, M. A.; Filatov, Yu N.; ...
2017-12-01
Jefferson Lab Electron Ion Collider (JLEIC) is a figure-8 collider "transparent" to the spin. This allows one to control the ion polarization using a universal 3D spin rotator based on weak solenoids. Besides the 3D spin rotator, a coherent effect on the spin is produced by a detector solenoid together with the dipole correctors and anti-solenoids compensating betatron oscillation coupling. The 4 m long detector solenoid is positioned along a straight section of the electron ring and makes a 50 mrad horizontal angle with a straight section of the ion ring. Such a large crossing angle is needed for amore » quick separation of the two colliding beams near the interaction point to make sufficient space for placement of interaction region magnets and to avoid parasitic collisions of shortly-spaced 476 MHz electron and ion bunches. We present a numerical analysis of the detector solenoid effect on the proton and deuteron polarizations. We demonstrate that the effect of the detector solenoid on the proton and deuteron polarizations can be compensated globally using an additional 3D rotator located anywhere in the ring.« less
Impact of the Tilted Detector Solenoid on the Ion Polarization at JLEIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondratenko, A. M.; Kondratenko, M. A.; Filatov, Yu N.
Jefferson Lab Electron Ion Collider (JLEIC) is a figure-8 collider "transparent" to the spin. This allows one to control the ion polarization using a universal 3D spin rotator based on weak solenoids. Besides the 3D spin rotator, a coherent effect on the spin is produced by a detector solenoid together with the dipole correctors and anti-solenoids compensating betatron oscillation coupling. The 4 m long detector solenoid is positioned along a straight section of the electron ring and makes a 50 mrad horizontal angle with a straight section of the ion ring. Such a large crossing angle is needed for amore » quick separation of the two colliding beams near the interaction point to make sufficient space for placement of interaction region magnets and to avoid parasitic collisions of shortly-spaced 476 MHz electron and ion bunches. We present a numerical analysis of the detector solenoid effect on the proton and deuteron polarizations. We demonstrate that the effect of the detector solenoid on the proton and deuteron polarizations can be compensated globally using an additional 3D rotator located anywhere in the ring.« less
NASA Astrophysics Data System (ADS)
Mahfouzi, Farzad; Kioussis, Nicholas
Gilbert damping in metallic ferromagnets is mainly governed by the exchange coupling between the electrons and the magnetic degree of freedom, where the time dependent evolution of the magnetization leads to the excitation of electrons and loss of energy as a result of flow of spin and charge currents. However, it turns out that when the magnetization evolves slowly in time, in the presence of spin-orbit interaction (SOI), the resonant electronic excitations has a major contribution to the damping which leads to infinite result in ballistic regime. In this work we consider the inelastic spin-flip scattering of electrons from the magnetic moments and show that in the presence of SOI it leads to the relaxation of the excited electrons. We show that in the case of clean crystal systems such scattering leads to a linear dependence of the Gilbert on the SOI strength and in the limit of diffusive systems we get the Gilbert damping expression obtained from Kambersky's Fermi breathing approach. This research was supported by NSF-PREM Grant No. DMR-1205734
NASA Astrophysics Data System (ADS)
Maroof, R.; Ali, S.; Mushtaq, A.; Qamar, A.
2015-11-01
Linear properties of high and low frequency waves are studied in an electron-positron-ion (e-p-i) dense plasma with spin and relativity effects. In a low frequency regime, the magnetohydrodynamic (MHD) waves, namely, the magnetoacoustic and Alfven waves are presented in a magnetized plasma, in which the inertial ions are taken as spinless and non-degenerate, whereas the electrons and positrons are treated quantum mechanically due to their smaller mass. Quantum corrections associated with the spin magnetization and density correlations for electrons and positrons are re-considered and a generalized dispersion relation for the low frequency MHD waves is derived to account for relativistic degeneracy effects. On the basis of angles of propagation, the dispersion relations of different modes are discussed analytically in a degenerate relativistic plasma. Numerical results reveal that electron and positron relativistic degeneracy effects significantly modify the dispersive properties of MHD waves. Our present analysis should be useful for understanding the collective interactions in dense astrophysical compact objects, like, the white dwarfs and in atmosphere of neutron stars.
Quasiparticle dynamics and spin-orbital texture of the SrTiO3 two-dimensional electron gas.
King, P D C; McKeown Walker, S; Tamai, A; de la Torre, A; Eknapakul, T; Buaphet, P; Mo, S-K; Meevasana, W; Bahramy, M S; Baumberger, F
2014-02-27
Two-dimensional electron gases (2DEGs) in SrTiO3 have become model systems for engineering emergent behaviour in complex transition metal oxides. Understanding the collective interactions that enable this, however, has thus far proved elusive. Here we demonstrate that angle-resolved photoemission can directly image the quasiparticle dynamics of the d-electron subband ladder of this complex-oxide 2DEG. Combined with realistic tight-binding supercell calculations, we uncover how quantum confinement and inversion symmetry breaking collectively tune the delicate interplay of charge, spin, orbital and lattice degrees of freedom in this system. We reveal how they lead to pronounced orbital ordering, mediate an orbitally enhanced Rashba splitting with complex subband-dependent spin-orbital textures and markedly change the character of electron-phonon coupling, co-operatively shaping the low-energy electronic structure of the 2DEG. Our results allow for a unified understanding of spectroscopic and transport measurements across different classes of SrTiO3-based 2DEGs, and yield new microscopic insights on their functional properties.
First Principles Electronic Structure of Mn doped GaAs, GaP, and GaN Semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulthess, Thomas C; Temmerman, Walter M; Szotek, Zdzislawa
We present first-principles electronic structure calculations of Mn doped III-V semiconductors based on the local spin-density approximation (LSDA) as well as the self-interaction corrected local spin density method (SIC-LSD). We find that it is crucial to use a self-interaction free approach to properly describe the electronic ground state. The SIC-LSD calculations predict the proper electronic ground state configuration for Mn in GaAs, GaP, and GaN. Excellent quantitative agreement with experiment is found for magnetic moment and p-d exchange in (GaMn)As. These results allow us to validate commonly used models for magnetic semiconductors. Furthermore, we discuss the delicate problem of extractingmore » binding energies of localized levels from density functional theory calculations. We propose three approaches to take into account final state effects to estimate the binding energies of the Mn-d levels in GaAs. We find good agreement between computed values and estimates from photoemisison experiments.« less
Two-electron states of a group-V donor in silicon from atomistic full configuration interactions
NASA Astrophysics Data System (ADS)
Tankasala, Archana; Salfi, Joseph; Bocquel, Juanita; Voisin, Benoit; Usman, Muhammad; Klimeck, Gerhard; Simmons, Michelle Y.; Hollenberg, Lloyd C. L.; Rogge, Sven; Rahman, Rajib
2018-05-01
Two-electron states bound to donors in silicon are important for both two-qubit gates and spin readout. We present a full configuration interaction technique in the atomistic tight-binding basis to capture multielectron exchange and correlation effects taking into account the full band structure of silicon and the atomic-scale granularity of a nanoscale device. Excited s -like states of A1 symmetry are found to strongly influence the charging energy of a negative donor center. We apply the technique on subsurface dopants subjected to gate electric fields and show that bound triplet states appear in the spectrum as a result of decreased charging energy. The exchange energy, obtained for the two-electron states in various confinement regimes, may enable engineering electrical control of spins in donor-dot hybrid qubits.
Self-interaction-corrected local-spin-density calculations for rare earth materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svane, A.; Temmerman, W.M.; Szotek, Z.
2000-04-20
The ab initio self-interaction-corrected (SIC) local-spin-density (LSD) approximation is discussed with emphasis on the ability to describe localized f-electron states in rare earth solids. Two methods for minimizing the SIC-LSD total energy functional are discussed, one using a unified Hamiltonian for all electron states, thus having the advantages of Bloch's theorem, the other one employing an iterative scheme in real space. Results for cerium and cerium compounds as well as other rare earths are presented. For the cerium compounds the onset of f-electron delocalization can be accurately described, including the intricate isostructural phase transitions in elemental cerium and CeP. Inmore » Pr and Sm the equilibrium lattice constant and zero temperature equation of state is greatly improved in comparison with the LSD results.« less
Current-induced damping of nanosized quantum moments in the presence of spin-orbit interaction
NASA Astrophysics Data System (ADS)
Mahfouzi, Farzad; Kioussis, Nicholas
2017-05-01
Motivated by the need to understand current-induced magnetization dynamics at the nanoscale, we have developed a formalism, within the framework of Keldysh Green function approach, to study the current-induced dynamics of a ferromagnetic (FM) nanoisland overlayer on a spin-orbit-coupling (SOC) Rashba plane. In contrast to the commonly employed classical micromagnetic LLG simulations the magnetic moments of the FM are treated quantum mechanically. We obtain the density matrix of the whole system consisting of conduction electrons entangled with the local magnetic moments and calculate the effective damping rate of the FM. We investigate two opposite limiting regimes of FM dynamics: (1) The precessional regime where the magnetic anisotropy energy (MAE) and precessional frequency are smaller than the exchange interactions and (2) the local spin-flip regime where the MAE and precessional frequency are comparable to the exchange interactions. In the former case, we show that due to the finite size of the FM domain, the "Gilbert damping" does not diverge in the ballistic electron transport regime, in sharp contrast to Kambersky's breathing Fermi surface theory for damping in metallic FMs. In the latter case, we show that above a critical bias the excited conduction electrons can switch the local spin moments resulting in demagnetization and reversal of the magnetization. Furthermore, our calculations show that the bias-induced antidamping efficiency in the local spin-flip regime is much higher than that in the rotational excitation regime.
Graphene-diamond interface: Gap opening and electronic spin injection
NASA Astrophysics Data System (ADS)
Ma, Yandong; Dai, Ying; Guo, Meng; Huang, Baibiao
2012-06-01
Creating a finite band gap, injecting electronic spin, and finding a suitable substrate are the three important challenges for building graphene-based devices. Here, first-principles calculations are performed to investigate the electronic and magnetic properties of graphene adsorbed on the (111) surface of diamond, which is synthesized experimentally [Nature10.1038/nature09979 472, 74 (2011); J. Appl. Phys.10.1063/1.3627370 110, 044324 (2011); Nano Lett.10.1021/nl204545q 12, 1603 (2012); ACS Nano10.1021/nn204362p 6, 1018 (2012)]. Our results reveal that the graphene adsorbed on the diamond surface is a semiconductor with a finite gap depending on the adsorption arrangements due to the variation of on-site energy induced by the diamond surface, with the extra advantage of maintaining main characters of the linear band dispersion of graphene. More interestingly, different from typical graphene/semiconductor hybrid systems, we find that electronic spin can arise ``intrinsically'' in graphene owing to the exchange proximity interaction between electrons in graphene and localized electrons in the diamond surface rather than the characteristic graphene states. These predications strongly revive this new synthesized system as a viable candidate to overcome all the aforementioned challenges, providing an ideal platform for future graphene-based electronics.
Experiments on Quantum Hall Topological Phases in Ultra Low Temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Rui-Rui
2015-02-14
This project is to cool electrons in semiconductors to extremely low temperatures and to study new states of matter formed by low-dimensional electrons (or holes). At such low temperatures (and with an intense magnetic field), electronic behavior differs completely from ordinary ones observed at room temperatures or regular low temperature. Studies of electrons at such low temperatures would open the door for fundamental discoveries in condensed matter physics. Present studies have been focused on topological phases in the fractional quantum Hall effect in GaAs/AlGaAs semiconductor heterostructures, and the newly discovered (by this group) quantum spin Hall effect in InAs/GaSb materials.more » This project consists of the following components: 1) Development of efficient sample cooling techniques and electron thermometry: Our goal is to reach 1 mK electron temperature and reasonable determination of electron temperature; 2) Experiments at ultra-low temperatures: Our goal is to understand the energy scale of competing quantum phases, by measuring the temperature-dependence of transport features. Focus will be placed on such issues as the energy gap of the 5/2 state, and those of 12/5 (and possible 13/5); resistive signature of instability near 1/2 at ultra-low temperatures; 3) Measurement of the 5/2 gaps in the limit of small or large Zeeman energies: Our goal is to gain physics insight of 5/2 state at limiting experimental parameters, especially those properties concerning the spin polarization; 4) Experiments on tuning the electron-electron interaction in a screened quantum Hall system: Our goal is to gain understanding of the formation of paired fractional quantum Hall state as the interaction pseudo-potential is being modified by a nearby screening electron layer; 5) Experiments on the quantized helical edge states under a strong magnetic field and ultralow temperatures: our goal is to investigate both the bulk and edge states in a quantum spin Hall insulator under time-reversal symmetry-broken conditions.« less
Electronic and magnetic properties of magnetoelectric compound Ca2CoSi2O7: An ab initio study
NASA Astrophysics Data System (ADS)
Chakraborty, Jayita
2018-05-01
The detailed first principle density functional theory calculations are carried out to investigate the electronic and magnetic properties of magnetoelectric compound Ca2CoSi2O7. The magnetic properties of this system are analyzed by calculating various hopping integrals as well as exchange interactions and deriving the relevant spin Hamiltonian. The dominant exchange path is visualized with Wannier functions plotting. Only intra planer nearest neighbor exchange interaction is strong in this system. The magnetocrystalline anisotropy is calculated for this system, and the results of the calculation reveal that the spin quantization axis lies in the ab plane.
NASA Astrophysics Data System (ADS)
Tazai, Rina; Yamakawa, Youichi; Tsuchiizu, Masahisa; Kontani, Hiroshi
2016-09-01
In various multiorbital systems, the emergence of the orbital fluctuations and their role on the pairing mechanism attract increasing attention. To achieve deep understanding on these issues, we perform a functional renormalization group (fRG) study for the two-orbital Hubbard model. The vertex corrections for the electron-boson coupling (U -VC), which are dropped in the Migdal-Eliashberg gap equation, are obtained by solving the RG equation. We reveal that the dressed electron-boson coupling for the charge channel Ûeffc becomes much larger than the bare Coulomb interaction Û 0 due to the U -VC in the presence of moderate spin fluctuations. For this reason, the attractive pairing interaction due to the charge or orbital fluctuations is enlarged by the factor (Ûeffc/Û0) 2≫1 . In contrast, the spin fluctuation pairing interaction is suppressed by the spin-channel U -VC, because of the relation Ûeffs≪Û 0 . The present study demonstrates that the orbital or charge fluctuation pairing mechanism can be realized in various multiorbital systems thanks to the U -VC, such as in Fe-based superconductors.
Optical pumping of electron and nuclear spin in a negatively-charged quantum dot
NASA Astrophysics Data System (ADS)
Bracker, Allan; Gershoni, David; Korenev, Vladimir
2005-03-01
We report optical pumping of electron and nuclear spins in an individual negatively-charged quantum dot. With a bias-controlled heterostructure, we inject one electron into the quantum dot. Intense laser excitation produces negative photoluminescence polarization, which is easily erased by the Hanle effect, demonstrating optical pumping of a long-lived resident electron. The electron spin lifetime is consistent with the influence of nuclear spin fluctuations. Measuring the Overhauser effect in high magnetic fields, we observe a high degree of nuclear spin polarization, which is closely correlated to electron spin pumping.
Manipulation of a Nuclear Spin by a Magnetic Domain Wall in a Quantum Hall Ferromagnet.
Korkusinski, M; Hawrylak, P; Liu, H W; Hirayama, Y
2017-03-06
The manipulation of a nuclear spin by an electron spin requires the energy to flip the electron spin to be vanishingly small. This can be realized in a many electron system with degenerate ground states of opposite spin polarization in different Landau levels. We present here a microscopic theory of a domain wall between spin unpolarized and spin polarized quantum Hall ferromagnet states at filling factor two with the Zeeman energy comparable to the cyclotron energy. We determine the energies and many-body wave functions of the electronic quantum Hall droplet with up to N = 80 electrons as a function of the total spin, angular momentum, cyclotron and Zeeman energies from the spin singlet ν = 2 phase, through an intermediate polarization state exhibiting a domain wall to the fully spin-polarized phase involving the lowest and the second Landau levels. We demonstrate that the energy needed to flip one electron spin in a domain wall becomes comparable to the energy needed to flip the nuclear spin. The orthogonality of orbital electronic states is overcome by the many-electron character of the domain - the movement of the domain wall relative to the position of the nuclear spin enables the manipulation of the nuclear spin by electrical means.
Manipulation of a Nuclear Spin by a Magnetic Domain Wall in a Quantum Hall Ferromagnet
Korkusinski, M.; Hawrylak, P.; Liu, H. W.; Hirayama, Y.
2017-01-01
The manipulation of a nuclear spin by an electron spin requires the energy to flip the electron spin to be vanishingly small. This can be realized in a many electron system with degenerate ground states of opposite spin polarization in different Landau levels. We present here a microscopic theory of a domain wall between spin unpolarized and spin polarized quantum Hall ferromagnet states at filling factor two with the Zeeman energy comparable to the cyclotron energy. We determine the energies and many-body wave functions of the electronic quantum Hall droplet with up to N = 80 electrons as a function of the total spin, angular momentum, cyclotron and Zeeman energies from the spin singlet ν = 2 phase, through an intermediate polarization state exhibiting a domain wall to the fully spin-polarized phase involving the lowest and the second Landau levels. We demonstrate that the energy needed to flip one electron spin in a domain wall becomes comparable to the energy needed to flip the nuclear spin. The orthogonality of orbital electronic states is overcome by the many-electron character of the domain - the movement of the domain wall relative to the position of the nuclear spin enables the manipulation of the nuclear spin by electrical means. PMID:28262758
NASA Astrophysics Data System (ADS)
Sobków, W.; Błaut, A.
2018-03-01
In this paper we indicate a possibility of utilizing the elastic scattering of Dirac low-energy (˜ 1 MeV) electron neutrinos (ν _es) on a polarized electron target (PET) in testing the time reversal symmetry violation (TRSV). We consider a scenario in which the incoming ν _e beam is a superposition of left chiral (LC) and right chiral (RC) states. LC ν _e interact mainly by the standard V-A and small admixture of non-standard scalar S_L, pseudoscalar P_L, tensor T_L interactions, while RC ones are only detected by the exotic V + A and S_R, P_R, T_R interactions. As a result of the superposition of the two chiralities the transverse components of ν e spin polarization (T-even and T-odd) may appear. We compute the differential cross section as a function of the recoil electron azimuthal angle and scattered electron energy, and show how the interference terms between standard V-A and exotic S_R, P_R, T_R couplings depend on the various angular correlations among the transversal ν _e spin polarization, the polarization of the electron target, the incoming neutrino momentum and the outgoing electron momentum in the limit of relativistic ν _e. We illustrate how the maximal value of recoil electrons azimuthal asymmetry and the asymmetry axis location of outgoing electrons depend on the azimuthal angle of the transversal component of the ν _e spin polarization, both for the time reversal symmetry conservation (TRSC) and TRSV. Next, we display that the electron energy spectrum and polar angle distribution of the recoil electrons are also sensitive to the interference terms between V-A and S_R, P_R, T_R couplings, proportional to the T-even and T-odd angular correlations among the transversal ν _e polarization, the electron polarization of the target, and the incoming ν _e momentum, respectively. We also discuss the possibility of testing the TRSV by observing the azimuthal asymmetry of outgoing electrons, using the PET without the impact of the transversal ν polarization related to the production process. In this scenario the predicted effects depend only on the interferences between S_R and T_R couplings. Our model-independent analysis is carried out for the flavor ν _e. To make such tests feasible, the intense (polarized) artificial ν _e source, PET and the appropriate detector measuring the directionality of the outgoing electrons and/or the recoil electrons energy with a high resolution have to be identified.
Chiral magnetism of magnetic adatoms generated by Rashba electrons
NASA Astrophysics Data System (ADS)
Bouaziz, Juba; dos Santos Dias, Manuel; Ziane, Abdelhamid; Benakki, Mouloud; Blügel, Stefan; Lounis, Samir
2017-02-01
We investigate long-range chiral magnetic interactions among adatoms mediated by surface states spin-splitted by spin-orbit coupling. Using the Rashba model, the tensor of exchange interactions is extracted wherein a thepseudo-dipolar interaction is found, in addition to the usual isotropic exchange interaction and the Dzyaloshinskii-Moriya interaction. We find that, despite the latter interaction, collinear magnetic states can still be stabilized by the pseudo-dipolar interaction. The interadatom distance controls the strength of these terms, which we exploit to design chiral magnetism in Fe nanostructures deposited on a Au(111) surface. We demonstrate that these magnetic interactions are related to superpositions of the out-of-plane and in-plane components of the skyrmionic magnetic waves induced by the adatoms in the surrounding electron gas. We show that, even if the interatomic distance is large, the size and shape of the nanostructures dramatically impacts on the strength of the magnetic interactions, thereby affecting the magnetic ground state. We also derive an appealing connection between the isotropic exchange interaction and the Dzyaloshinskii-Moriya interaction, which relates the latter to the first-order change of the former with respect to spin-orbit coupling. This implies that the chirality defined by the direction of the Dzyaloshinskii-Moriya vector is driven by the variation of the isotropic exchange interaction due to the spin-orbit interaction.
Symmetry properties of the electron density and following from it limits on the KS-DFT applications
NASA Astrophysics Data System (ADS)
Kaplan, Ilya G.
2018-03-01
At present, the Density Functional Theory (DFT) approach elaborated by Kohn with co-authors more than 50 years ago became the most widely used method for study molecules and solids. Using modern computation facilities, it can be applied to systems with million atoms. In the atmosphere of such great popularity, it is particularly important to know the limits of the applicability of DFT methods. In this report, I will discuss two cases when the conventional DFT approaches, using only electron density ρ and its gradients, cannot be applied (I will not consider the Ψ-versions of DFT). The first case is quite evident. In the degenerated states, the electron density may not be defined, since electronic and nuclear motions cannot be separated, the vibronic interaction mixed them. The second case is related to the spin of the state. As it was rigorously proved by group theoretical methods at the theorem level, the electron density does not depend on the total spin S of the arbitrary N-electron state. It means that the Kohn-Sham equations have the same form for states with different S. The critical survey of elaborated DFT procedures, taking into account spin, shows that they modified only exchange functionals, the correlation functionals do not correspond to the spin of the state. The point is that the conception of spin cannot be defined in the framework of the electron density formalism, which corresponds to the one-particle reduced density matrix. This is the main reason of the problems arising in the study by DFT of magnetic properties of the transition metals. The possible way of resolving these problems can be found in the two-particle reduced density matrix formulation of DFT.
Electronic structure and microscopic model of CoNb2O6
NASA Astrophysics Data System (ADS)
Molla, Kaimujjaman; Rahaman, Badiur
2018-05-01
We present the first principle density functional calculations to figure out the underlying spin model of CoNb2O6. The first principles calculations define the main paths of superexchange interaction between Co spins in this compound. We discuss the nature of the exchange paths and provide quantitative estimates of magnetic exchange couplings. A microscopic modeling based on analysis of the electronic structure of this system puts it in the interesting class of weakly couple geometrically frustrated isosceles triangular Ising antiferromagnet.
NASA Astrophysics Data System (ADS)
Katoch, Jyoti; Ulstrup, Søren; Koch, Roland J.; Moser, Simon; McCreary, Kathleen M.; Singh, Simranjeet; Xu, Jinsong; Jonker, Berend T.; Kawakami, Roland K.; Bostwick, Aaron; Rotenberg, Eli; Jozwiak, Chris
2018-04-01
In two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDs), new electronic phenomena such as tunable bandgaps1-3 and strongly bound excitons and trions emerge from strong many-body effects4-6, beyond the spin and valley degrees of freedom induced by spin-orbit coupling and by lattice symmetry7. Combining single-layer TMDs with other 2D materials in van der Waals heterostructures offers an intriguing means of controlling the electronic properties through these many-body effects, by means of engineered interlayer interactions8-10. Here, we use micro-focused angle-resolved photoemission spectroscopy (microARPES) and in situ surface doping to manipulate the electronic structure of single-layer WS2 on hexagonal boron nitride (WS2/h-BN). Upon electron doping, we observe an unexpected giant renormalization of the spin-orbit splitting of the single-layer WS2 valence band, from 430 meV to 660 meV, together with a bandgap reduction of at least 325 meV, attributed to the formation of trionic quasiparticles. These findings suggest that the electronic, spintronic and excitonic properties are widely tunable in 2D TMD/h-BN heterostructures, as these are intimately linked to the quasiparticle dynamics of the materials11-13.
Effects of van der Waals interaction and electric field on the electronic structure of bilayer MoS2.
Xiao, Jin; Long, Mengqiu; Li, Xinmei; Zhang, Qingtian; Xu, Hui; Chan, K S
2014-10-08
The modification of the electronic structure of bilayer MoS2 by an external electric field can have potential applications in optoelectronics and valleytronics. Nevertheless, the underlying physical mechanism is not clearly understood, especially the effects of the van der Waals interaction. In this study, the spin orbit-coupled electronic structure of bilayer MoS2 has been investigated using the first-principle density functional theory. We find that the van der Waals interaction as well as the interlayer distance has significant effects on the band structure. When the interlayer distance of bilayer MoS2 increases from 0.614 nm to 0.71 nm, the indirect gap between the Γ and Λ points increases from 1.25 eV to 1.70 eV. Meanwhile, the energy gap of bilayer MoS2 transforms from an indirect one to a direct one. An external electric field can shift down (up) the energy bands of the bottom (top) MoS2 layer and also breaks the inversion symmetry of bilayer MoS2. As a result, the electric field can affect the band gaps, the spin-orbit interaction and splits the valance bands into two groups. The present study can help us understand more about the electronic structures of MoS2 materials for potential applications in electronics and optoelectronics.
Ground-state cooling of a carbon nanomechanical resonator by spin-polarized current.
Stadler, P; Belzig, W; Rastelli, G
2014-07-25
We study the nonequilibrium steady state of a mechanical resonator in the quantum regime realized by a suspended carbon nanotube quantum dot in contact with two ferromagnets. Because of the spin-orbit interaction and/or an external magnetic field gradient, the spin on the dot couples directly to the flexural eigenmodes. Accordingly, the nanomechanical motion induces inelastic spin flips of the tunneling electrons. A spin-polarized current at finite bias voltage causes either heating or active cooling of the mechanical modes. We show that maximal cooling is achieved at resonant transport when the energy splitting between two dot levels of opposite spin equals the vibrational frequency. Even for weak electron-resonator coupling and moderate polarizations we can achieve ground-state cooling with a temperature of the leads, for instance, of T = 10 ω.
NMR studies of electronic structure in crystalline and amorphous Zr2PdH/x/
NASA Technical Reports Server (NTRS)
Bowman, R. C., Jr.; Johnson, W. L.; Maeland, A. J.; Rhim, W.-K.
1983-01-01
The proton Knight shifts and spin-lattice relaxation times have been measured in crystalline and amorphous Ze2PdH(x). Core polarization from the Zr d-band dominates the proton hyperfine interactions. The density of Fermi level d-electron states is reduced in the amorphous phase relative to the electron density in crystalline Zr2PdH(x).
Tunability of the fractional quantum Hall states in buckled Dirac materials
NASA Astrophysics Data System (ADS)
Apalkov, Vadym M.; Chakraborty, Tapash
2014-12-01
We report on the fractional quantum Hall states of germanene and silicene where one expects a strong spin-orbit interaction. This interaction causes an enhancement of the electron-electron interaction strength in one of the Landau levels corresponding to the valence band of the system. This enhancement manifests itself as an increase of the fractional quantum Hall effect gaps compared to that in graphene and is due to the spin-orbit induced coupling of the Landau levels of the conduction and valence bands, which modifies the corresponding wave functions and the interaction within a single level. Due to the buckled structure, a perpendicular electric field lifts the valley degeneracy and strongly modifies the interaction effects within a single Landau level: in one valley the perpendicular electric field enhances the interaction strength in the conduction band Landau level, while in another valley, the electric field strongly suppresses the interaction effects.
New Possibilities for Magnetic Control of Chemical and Biochemical Reactions.
Buchachenko, Anatoly; Lawler, Ronald G
2017-04-18
Chemistry is controlled by Coulomb energy; magnetic energy is lower by many orders of magnitude and may be confidently ignored in the energy balance of chemical reactions. The situation becomes less clear, however, when reaction rates are considered. In this case, magnetic perturbations of nearly degenerate energy surface crossings may produce observable, and sometimes even dramatic, effects on reactions rates, product yields, and spectroscopic transitions. A case in point that has been studied for nearly five decades is electron spin-selective chemistry via the intermediacy of radical pairs. Magnetic fields, external (permanent or oscillating) and the internal magnetic fields of magnetic nuclei, have been shown to overcome electron spin selection rules for pairs of reactive paramagnetic intermediates, catalyzing or inhibiting chemical reaction pathways. The accelerating effects of magnetic stimulation may therefore be considered to be magnetic catalysis. This type of catalysis is most commonly observed for reactions of a relatively long-lived radical pair containing two weakly interacting electron spins formed by dissociation of molecules or by electron transfer. The pair may exist in singlet (total electron spin is zero) or triplet (total spin is unity) spin states. In virtually all cases, only the singlet state yields stable reaction products. Magnetic interactions with nuclear spins or applied fields may therefore affect the reactivity of radical pairs by changing the angular momentum of the pairs. Magnetic catalysis, first detected via its effect on spin state populations in nuclear and electron spin resonance, has been shown to function in a great variety of well-characterized reactions of organic free radicals. Considerably less well studied are examples suggesting that the basic mechanism may also explain magnetic effects that stimulate ATP synthesis, eliminating ATP deficiency in cardiac diseases, control cell proliferation, killing cancer cells, and control transcranial magnetic stimulation against cognitive deceases. Magnetic control has also been observed for some processes of importance in materials science and earth and environmental science and may play a role in animal navigation. In this Account, the radical pair mechanism is applied as a consistent explanation for several intriguing new magnetic phenomena. Specific examples include acceleration of solid state reactions of silicon by the magnetic isotope 29 Si, enrichment of 17 O during thermal decomposition of metal carbonates and magnetic effects on crystal plasticity. In each of these cases, the results are consistent with an initial one-electron transfer to generate a radical pair. Similar processes can account for mass-independent fractionation of isotopes of mercury, sulfur, germanium, tin, iron, and uranium in both naturally occurring samples and laboratory experiments. In the area of biochemistry, catalysis by magnetic isotopes has now been reported in several reactions of DNA and high energy phosphate. Possible medical applications of these observations are pointed out.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patra, Moumita; Maiti, Santanu K., E-mail: santanu.maiti@isical.ac.in
In the present work we investigate the behavior of all three components of persistent spin current in a quasi-periodic Fibonacci ring subjected to Rashba and Dresselhaus spin–orbit interactions. Analogous to persistent charge current in a conducting ring where electrons gain a Berry phase in presence of magnetic flux, spin Berry phase is associated during the motion of electrons in presence of a spin–orbit field which is responsible for the generation of spin current. The interplay between two spin–orbit fields along with quasi-periodic Fibonacci sequence on persistent spin current is described elaborately, and from our analysis, we can estimate the strengthmore » of any one of two spin–orbit couplings together with on-site energy, provided the other is known. - Highlights: • Determination of Rashba and Dresselhaus spin–orbit fields is discussed. • Characteristics of all three components of spin current are explored. • Possibility of estimating on-site energy is given. • Results can be generalized to any lattice models.« less
Spin–orbit induced electronic spin separation in semiconductor nanostructures
Kohda, Makoto; Nakamura, Shuji; Nishihara, Yoshitaka; Kobayashi, Kensuke; Ono, Teruo; Ohe, Jun-ichiro; Tokura, Yasuhiro; Mineno, Taiki; Nitta, Junsaku
2012-01-01
The demonstration of quantized spin splitting by Stern and Gerlach is one of the most important experiments in modern physics. Their discovery was the precursor of recent developments in spin-based technologies. Although electrical spin separation of charged particles is fundamental in spintronics, in non-uniform magnetic fields it has been difficult to separate the spin states of charged particles due to the Lorentz force, as well as to the insufficient and uncontrollable field gradients. Here we demonstrate electronic spin separation in a semiconductor nanostructure. To avoid the Lorentz force, which is inevitably induced when an external magnetic field is applied, we utilized the effective non-uniform magnetic field which originates from the Rashba spin–orbit interaction in an InGaAs-based heterostructure. Using a Stern–Gerlach-inspired mechanism, together with a quantum point contact, we obtained field gradients of 108 T m−1 resulting in a highly polarized spin current. PMID:23011136
Highly selective detection of individual nuclear spins with rotary echo on an electron spin probe
Mkhitaryan, V. V.; Jelezko, F.; Dobrovitski, V. V.
2015-01-01
We consider an electronic spin, such as a nitrogen-vacancy center in diamond, weakly coupled to a large number of nuclear spins, and subjected to the Rabi driving with a periodically alternating phase. We show that by switching the driving phase synchronously with the precession of a given nuclear spin, the interaction to this spin is selectively enhanced, while the rest of the bath remains decoupled. The enhancement is of resonant character. The key feature of the suggested scheme is that the width of the resonance is adjustable, and can be greatly decreased by increasing the driving strength. Thus, the resonance can be significantly narrowed, by a factor of 10–100 in comparison with the existing detection methods. Significant improvement in selectivity is explained analytically and confirmed by direct numerical many-spin simulations. The method can be applied to a wide range of solid-state systems. PMID:26497777
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Jiu-Ning, E-mail: hanjiuning@126.com; Luo, Jun-Hua; Li, Jun-Xiu
2015-06-15
We study the basic physical properties of composite nonlinear structure induced by the head-on collision of magnetosonic solitons. Solitary waves are assumed to propagate in a quantum electron-ion magnetoplasma with spin-1/2 degenerate electrons. The main interest of the present work is to investigate the time evolution of the merged composite structure during a specific time interval of the wave interaction process. We consider three cases of colliding-situation, namely, compressive-rarefactive solitons interaction, compressive-compressive solitons interaction, and rarefactive-rarefactive solitons interaction, respectively. Compared with the last two colliding cases, the changing process of the composite structure is more complex for the first situation.more » Moreover, it is found that they are obviously different for the last two colliding cases.« less
Numerically exact full counting statistics of the nonequilibrium Anderson impurity model
NASA Astrophysics Data System (ADS)
Ridley, Michael; Singh, Viveka N.; Gull, Emanuel; Cohen, Guy
2018-03-01
The time-dependent full counting statistics of charge transport through an interacting quantum junction is evaluated from its generating function, controllably computed with the inchworm Monte Carlo method. Exact noninteracting results are reproduced; then, we continue to explore the effect of electron-electron interactions on the time-dependent charge cumulants, first-passage time distributions, and n -electron transfer distributions. We observe a crossover in the noise from Coulomb blockade to Kondo-dominated physics as the temperature is decreased. In addition, we uncover long-tailed spin distributions in the Kondo regime and analyze queuing behavior caused by correlations between single-electron transfer events.
Numerically exact full counting statistics of the nonequilibrium Anderson impurity model
Ridley, Michael; Singh, Viveka N.; Gull, Emanuel; ...
2018-03-06
The time-dependent full counting statistics of charge transport through an interacting quantum junction is evaluated from its generating function, controllably computed with the inchworm Monte Carlo method. Exact noninteracting results are reproduced; then, we continue to explore the effect of electron-electron interactions on the time-dependent charge cumulants, first-passage time distributions, and n-electron transfer distributions. We observe a crossover in the noise from Coulomb blockade to Kondo-dominated physics as the temperature is decreased. In addition, we uncover long-tailed spin distributions in the Kondo regime and analyze queuing behavior caused by correlations between single-electron transfer events
Numerically exact full counting statistics of the nonequilibrium Anderson impurity model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ridley, Michael; Singh, Viveka N.; Gull, Emanuel
The time-dependent full counting statistics of charge transport through an interacting quantum junction is evaluated from its generating function, controllably computed with the inchworm Monte Carlo method. Exact noninteracting results are reproduced; then, we continue to explore the effect of electron-electron interactions on the time-dependent charge cumulants, first-passage time distributions, and n-electron transfer distributions. We observe a crossover in the noise from Coulomb blockade to Kondo-dominated physics as the temperature is decreased. In addition, we uncover long-tailed spin distributions in the Kondo regime and analyze queuing behavior caused by correlations between single-electron transfer events
Spin-dependent delay time in ferromagnet/insulator/ferromagnet heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, ZhengWei; Zheng Shi, De; Lv, HouXiang
2014-07-07
We study theoretically spin-dependent group delay and dwell time in ferromagnet/insulator/ferromagnet (FM/I/FM) heterostructure. The results indicate that, when the electrons with different spin orientations tunnel through the FM/I/FM junction, the spin-up process and the spin-down process are separated on the time scales. As the self-interference delay has the spin-dependent features, the variations of spin-dependent dwell-time and spin-dependent group-delay time with the structure parameters appear different features, especially, in low incident energy range. These different features show up as that the group delay times for the spin-up electrons are always longer than those for spin-down electrons when the barrier height ormore » incident energy increase. In contrast, the dwell times for the spin-up electrons are longer (shorter) than those for spin-down electrons when the barrier heights (the incident energy) are under a certain value. When the barrier heights (the incident energy) exceed a certain value, the dwell times for the spin-up electrons turn out to be shorter (longer) than those for spin-down electrons. In addition, the group delay time and the dwell time for spin-up and down electrons also relies on the comparative direction of magnetization in two FM layers and tends to saturation with the thickness of the barrier.« less
Electron-phonon interaction in efficient perovskite blue emitters
NASA Astrophysics Data System (ADS)
Gong, Xiwen; Voznyy, Oleksandr; Jain, Ankit; Liu, Wenjia; Sabatini, Randy; Piontkowski, Zachary; Walters, Grant; Bappi, Golam; Nokhrin, Sergiy; Bushuyev, Oleksandr; Yuan, Mingjian; Comin, Riccardo; McCamant, David; Kelley, Shana O.; Sargent, Edward H.
2018-06-01
Low-dimensional perovskites have—in view of their high radiative recombination rates—shown great promise in achieving high luminescence brightness and colour saturation. Here we investigate the effect of electron-phonon interactions on the luminescence of single crystals of two-dimensional perovskites, showing that reducing these interactions can lead to bright blue emission in two-dimensional perovskites. Resonance Raman spectra and deformation potential analysis show that strong electron-phonon interactions result in fast non-radiative decay, and that this lowers the photoluminescence quantum yield (PLQY). Neutron scattering, solid-state NMR measurements of spin-lattice relaxation, density functional theory simulations and experimental atomic displacement measurements reveal that molecular motion is slowest, and rigidity greatest, in the brightest emitter. By varying the molecular configuration of the ligands, we show that a PLQY up to 79% and linewidth of 20 nm can be reached by controlling crystal rigidity and electron-phonon interactions. Designing crystal structures with electron-phonon interactions in mind offers a previously underexplored avenue to improve optoelectronic materials' performance.
Quantum Theory of Orbital Magnetization and Its Generalization to Interacting Systems
NASA Astrophysics Data System (ADS)
Shi, Junren; Vignale, G.; Xiao, Di; Niu, Qian
2007-11-01
Based on standard perturbation theory, we present a full quantum derivation of the formula for the orbital magnetization in periodic systems. The derivation is generally valid for insulators with or without a Chern number, for metals at zero or finite temperatures, and at weak as well as strong magnetic fields. The formula is shown to be valid in the presence of electron-electron interaction, provided the one-electron energies and wave functions are calculated self-consistently within the framework of the exact current and spin-density functional theory.
NASA Astrophysics Data System (ADS)
Isobe, Hiroki; Fu, Liang
2015-03-01
The effects of electron-electron interaction in edge states of mirror-symmetry protected topological crystalline insulators (TCI's) are discussed. The analysis is performed by using bosonized Hamiltonian following the Tomonaga-Luttinger liquid theory. When two pairs of helical edge states exist, electron-electron interaction could gap out one edge mode, which is a possible realization of interacting symmetry-protected topological (SPT) phases. This type of SPT phase is closely related to a Luther-Emery liquid in spinful 1D system. We also propose a method of detecting the SPT phases by STM. The other focus of the study is the classification of SPT phases in mirror-symmetry protected TCI's. By adopting the Chern-Simons theory, we find that electron-electron interaction reduces the classification from Z to Z4. It means that the edge states can be gapped out when four pairs of edge states exist. In other cases, the edge modes cannot be fully gapped. Each of these states corresponds to a different SPT phase depending on the relevant interaction process.
1999-06-18
functional theory [8]. The Hamiltonian (Ĥ↑ and Ĥ↓ for spin ↑ and spin ↓ electrons, respectively) is given by: Ĥ↑(↓) = − 2 2 ∇ [ 1 m∗(r) ∇ ] + Ec(r)+ µ...the rapid vanishing of the mean spin of electrons in this state. At the same time, the electron spin polarization at higher energy levels dramat...electrons with spin −1/2 than with spin +1/2, so energy relaxation will lead to a predominant population of higher energy levels by electrons with spin
Versatile spin-polarized electron source
Jozwiak, Chris; Park, Cheol -Hwan; Gotlieb, Kenneth; Louie, Steven G.; Hussain, Zahid; Lanzara, Alessandra
2015-09-22
One or more embodiments relate generally to the field of photoelectron spin and, more specifically, to a method and system for creating a controllable spin-polarized electron source. One preferred embodiment of the invention generally comprises: method for creating a controllable spin-polarized electron source comprising the following steps: providing one or more materials, the one or more materials having at least one surface and a material layer adjacent to said surface, wherein said surface comprises highly spin-polarized surface electrons, wherein the direction and spin of the surface electrons are locked together; providing at least one incident light capable of stimulating photoemission of said surface electrons; wherein the photon polarization of said incident light is tunable; and inducing photoemission of the surface electron states.
Layered Chalcogenides beyond Graphene: from Electronic Structure Evolution to the Spin Transport
NASA Astrophysics Data System (ADS)
Yuan, Hongtao
2014-03-01
Recent efforts on graphene-like atomic layer materials, aiming at novel electronic properties and quantum phenomena beyond graphene, have attracted much attention for potential electronics/spintronics applications. Compared to the weak spin-orbit-interaction (SOI) in graphene, metal chalcogenides MX2 have heavy 4d/5d elements with strong atomic SOI, providing a unique way for generating spin polarization based on valleytronics physics. Indeed, such a spin-polarized band structure has been demonstrated theoretically and supported by optical investigations. However, despite these exciting progresses, following two important issues in MX2 community remain elusive: 1. the quantitative band structure of MX2 compounds (where are the valleys -band maxima/minima- locating in the BZ) have not been experimentally confirmed. Especially for those cleaved ultrathin mono- and bi-layer flakes hosting most of recently-reported exotic phenomena at the 2D limit, the direct detection for band dispersion becomes of great importance for valleytronics. 2. Spin transports have seldom been reported even though such a strong SOI system can serve as an ideal platform for the spin polarization and spin transport. In this work, we started from the basic electronic structures of representative MX2, obtained by ARPES, and investigated both the band variation between these compounds and their band evolution from bulk to the monolayer limit. After having a systematic understanding on band structures, we reported a giant Zeeman-type spin-polarization generated and modulated by an external electric field in WSe2 electric-double-layer transistors. The non-magnetic approach for realizing such an intriguing spin splitting not only keeps the system time-reversally invariant but also suggests a new paradigm for manipulating the spin-degrees of freedom of electrons. Acknowledge the support from DoE, BES, Division of MSE under contract DE-AC02-76SF00515.
Electronic Spin Storage in an Electrically Readable Nuclear Spin Memory with a Lifetime >100 Seconds
NASA Astrophysics Data System (ADS)
McCamey, D. R.; Van Tol, J.; Morley, G. W.; Boehme, C.
2010-12-01
Electron spins are strong candidates with which to implement spintronics because they are both mobile and able to be manipulated. The relatively short lifetimes of electron spins, however, present a problem for the long-term storage of spin information. We demonstrated an ensemble nuclear spin memory in phosphorous-doped silicon, which can be read out electrically and has a lifetime exceeding 100 seconds. The electronic spin information can be mapped onto and stored in the nuclear spin of the phosphorus donors, and the nuclear spins can then be repetitively read out electrically for time periods that exceed the electron spin lifetime. We discuss how this memory can be used in conjunction with other silicon spintronic devices.
Asymmetric band gaps in a Rashba film system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbone, C.; Moras, P.; Sheverdyaeva, P. M.
The joint effect of exchange and Rashba spin-orbit interactions is examined on the surface and quantum well states of Ag 2 Bi -terminated Ag films grown on ferromagnetic Fe(110). The system displays a particular combination of time-reversal and translational symmetry breaking that strongly influences its electronic structure. Angle-resolved photoemission reveals asymmetric band-gap openings, due to spin-selective hybridization between Rashba-split surface states and exchange-split quantum well states. This results in an unequal number of states along positive and negative reciprocal space directions. We suggest that the peculiar asymmetry of the discovered electronic structure can have significant influence on spin-polarized transport properties.
NASA Astrophysics Data System (ADS)
Suljoti, E.; de Groot, F. M. F.; Nagasono, M.; Glatzel, P.; Hennies, F.; Deppe, M.; Pietzsch, A.; Sonntag, B.; Föhlisch, A.; Wurth, W.
2009-09-01
Symmetrical fluorescence yield profiles and asymmetrical electron yield profiles of the preresonances at the La NIV,V x-ray absorption edge are experimentally observed in LaPO4 nanoparticles. Theoretical studies show that they are caused by interference effects. The spin-orbit interaction and the giant resonance produce symmetry entangled intermediate states that activate coherent scattering and alter the spectral distribution of the oscillator strength. The scattering amplitudes of the electron and fluorescence decays are further modified by the spin-orbit coupling in the final 5p5ɛl and 5p54f1 states.
Non-equilibrium STLS approach to transport properties of single impurity Anderson model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rezai, Raheleh, E-mail: R_Rezai@sbu.ac.ir; Ebrahimi, Farshad, E-mail: Ebrahimi@sbu.ac.ir
In this work, using the non-equilibrium Keldysh formalism, we study the effects of the electron–electron interaction and the electron-spin correlation on the non-equilibrium Kondo effect and the transport properties of the symmetric single impurity Anderson model (SIAM) at zero temperature by generalizing the self-consistent method of Singwi, Tosi, Land, and Sjolander (STLS) for a single-band tight-binding model with Hubbard type interaction to out of equilibrium steady-states. We at first determine in a self-consistent manner the non-equilibrium spin correlation function, the effective Hubbard interaction, and the double-occupancy at the impurity site. Then, using the non-equilibrium STLS spin polarization function in themore » non-equilibrium formalism of the iterative perturbation theory (IPT) of Yosida and Yamada, and Horvatic and Zlatic, we compute the spectral density, the current–voltage characteristics and the differential conductance as functions of the applied bias and the strength of on-site Hubbard interaction. We compare our spectral densities at zero bias with the results of numerical renormalization group (NRG) and depict the effects of the electron–electron interaction and electron-spin correlation at the impurity site on the aforementioned properties by comparing our numerical result with the order U{sup 2} IPT. Finally, we show that the obtained numerical results on the differential conductance have a quadratic universal scaling behavior and the resulting Kondo temperature shows an exponential behavior. -- Highlights: •We introduce for the first time the non-equilibrium method of STLS for Hubbard type models. •We determine the transport properties of SIAM using the non-equilibrium STLS method. •We compare our results with order-U2 IPT and NRG. •We show that non-equilibrium STLS, contrary to the GW and self-consistent RPA, produces the two Hubbard peaks in DOS. •We show that the method keeps the universal scaling behavior and correct exponential behavior of Kondo temperature.« less
NASA Astrophysics Data System (ADS)
Carmelo, J. M. P.
2012-03-01
In this paper, a general description for the Hubbard model with nearest-neighbor transfer integral t and on-site repulsion U on a square lattice with Na2≫1 sites is introduced. It refers to three types of elementary objects whose occupancy configurations generate the state representations of the model extended global SO(3)×SO(3)×U(1) symmetry recently found in Ref. [11] (Carmelo and Östlund, 2010). Such objects emerge from a suitable electron-rotated-electron unitary transformation. It is such that rotated-electron single and double occupancy are good quantum numbers for U≠0. The advantage of the description is that it accounts for the new found hidden U(1) symmetry in SO(3)×SO(3)×U(1)=[SU(2)×SU(2)×U(1)]/Z22 beyond the well-known SO(4)=[SU(2)×SU(2)]/Z2 model (partial) global symmetry. Specifically, the hidden U(1) symmetry state representations store full information on the positions of the spins of the rotated-electron singly occupied sites relative to the remaining sites. Profiting from that complementary information, for the whole U/4t>0 interaction range independent spin state representations are naturally generated in terms of spin-1/2 spinon occupancy configurations in a spin effective lattice. For all states, such an effective lattice has as many sites as spinons. This allows the extension to intermediate U/4t values of the usual large-U/4t descriptions of the spin degrees of freedom of the electrons that singly occupy sites, now in terms of the spins of the singly-occupied sites rotated electrons. The operator description introduced in this paper brings about a more suitable scenario for handling the effects of hole doping. Within this, such effects are accounted for in terms of the residual interactions of the elementary objects whose occupancy configurations generate the state representations of the charge hidden U(1) symmetry and spin SU(2) symmetry, respectively. This problem is investigated elsewhere. The most interesting physical information revealed by the description refers to the model on the subspace generated by the application of one- and two-electron operators onto zero-magnetization ground states. (This is the square-lattice quantum liquid further studied in Ref. [5] (Carmelo, 2010).) However, to access such an information, one must start from the general description introduced in this paper, which refers to the model in the full Hilbert space.
Magnon-induced superconductivity in field-cooled spin-1/2 antiferromagnets
NASA Astrophysics Data System (ADS)
Karchev, Naoum
2017-12-01
If, during the preparation, an external magnetic field is applied upon cooling we say it has been field cooled. A novel mechanism for insulator-metal transition and superconductivity in field-cooled spin-1 /2 antiferromagnets on bcc lattice is discussed. Applying a magnetic field along the sublattice B magnetization, we change the magnetic and transport properties of the material. There is a critical value Hcr1. When the magnetic field is below the critical one H
Interacting adiabatic quantum motor
NASA Astrophysics Data System (ADS)
Bruch, Anton; Kusminskiy, Silvia Viola; Refael, Gil; von Oppen, Felix
2018-05-01
We present a field-theoretic treatment of an adiabatic quantum motor. We explicitly discuss a motor called the Thouless motor which is based on a Thouless pump operating in reverse. When a sliding periodic potential is considered to be the motor degree of freedom, a bias voltage applied to the electron channel sets the motor in motion. We investigate a Thouless motor whose electron channel is modeled as a Luttinger liquid. Interactions increase the gap opened by the periodic potential. For an infinite Luttinger liquid the coupling-induced friction is enhanced by electron-electron interactions. When the Luttinger liquid is ultimately coupled to Fermi liquid reservoirs, the dissipation reduces to its value for a noninteracting electron system for a constant motor velocity. Our results can also be applied to a motor based on a nanomagnet coupled to a quantum spin Hall edge.
Unconventional superconductivity in iron pnictides: Magnon mediated pairing
NASA Astrophysics Data System (ADS)
kar, Raskesh; Paul, Bikash Chandra; Misra, Anirban
2018-02-01
We study the phenomenon of unconventional superconductivity in iron pnictides on the basis of localized-itinerant model. In this proposed model, superconductivity arises from the itinerant part of electrons, whereas antiferromagnetism arises from the localized part. The itinerant electrons move over the sea of localized electrons in antiferromagnetic alignment and interact with them resulting in excitation of magnons. We find that triplet pairing of itinerant electrons via magnons is possible in checkerboard antiferromagnetic spin configuration of the substances CaFe2As2 and BaFe2As2 in pure form for umklapp scattering with scattering wave vector Q =(1 , 1) , in the unit of π/a where a being one orthorhombic crystal parameter, which is the nesting vector between two Fermi surfaces. The interaction potential figured out in this way, increases with the decrease in nearest neighbour (NN) exchange couplings. Under ambient pressure, with stripe antiferromagnetic spin configuration, a very small value of coupling constant is obtained which does not give rise to superconductivity. The critical temperature of superconductivity of the substances CaFe2As2 and BaFe2As2 in higher pressure checkerboard antiferromagnetic spin configuration are found to be 12.12 K and 29.95 K respectively which are in agreement with the experimental results.
Engineered spin-spin interactions on a 2D array of trapped ions
NASA Astrophysics Data System (ADS)
Britton, Joe; Sawyer, Brian; Bollinger, John
2013-05-01
We work with laser cooled 9Be+ ions confined in a Penning trap to simulate quantum magnetic interactions. The valence electron of each ion behaves as an ideal spin- 1 / 2 particle. We recently demonstrated a uniform anti-ferromagnetic Ising interaction on a naturally occurring two-dimensional (2D) triangular crystal of 100 < N < 350 ions. The Ising interaction is generated by a spin-dependent optical dipole force (ODF). For spins separated by distance d, we show that the range can be tuned according to (d / d 0)-a, for 0 < a < 3 . For different operating parameters we can also generate an infinite range ferromagnetic Ising interaction. We also use the ODF for spectroscopy and thermometry of the normal modes of the trapped ion array. A detailed understanding of the modes is important because they mediate the spin-spin interactions. This work is supported by NIST and the DARPA OLE program.
Ensemble Density Functional Approach to the Quantum Hall Effect
NASA Astrophysics Data System (ADS)
Heinonen, O.
1997-03-01
The fractional quantum Hall effect (FQHE) occurs in a two-dimensional electron gas of density n when a strong magnetic field perpendicular to the plane of the electron gas takes on certain strengths B(n). At these magnetic field strengths the system is incompressible, i.e., there is a finite cost in energy for creating charge density fluctuations in the bulk. Even so the boundary of the electron gas supports gapless modes of density waves. The bulk energy gap arises because of the strong electron-electron interactions. There are very good models for infinite homogeneous systems and for the gapless excitations of the boundary of the electron gas. But in order to explain experiments on quantum Hall systems, including Hall bars and quantum dots, new approaches are needed which can accurately describe inhomogeneous systems, including Landau level mixing and the spin degree of freedom. One possibility is an ensemble density functional theory approach that we have developed.(O. Heinonen, M.I. Lubin, and M.D. Johnson, Phys. Rev. Lett. 75), 4110 (1995)(O. Heinonen, M.I. Lubin, and M.D. Johnson, Int. J. Quant. Chem, December 1996) We have applied this to study edge reconstructions of spin-polarized quantum dots. The results for a six-electron test case are in excellent agreement with numerical diagonalizations. For larger systems, compressible and incompressible strips appear as the magnetic field is increased from the region in which a dot forms a compact so-called maximum density droplet. We have recently included spin degree of freedom to study the stability of a maximum density droplet, and charge-spin textures in inhomogeneous systems. As an example, when the Zeeman coupling is decreased, we find that the maximum density droplet develops a spin-structured edge instability. This implies that the spin degree of freedom may play a significant role in the study of edge modes at low or moderate magnetic fields.
Ultrafast Magnetization of a Dense Molecular Gas with an Optical Centrifuge.
Milner, A A; Korobenko, A; Milner, V
2017-06-16
Strong laser-induced magnetization of oxygen gas at room temperature and atmospheric pressure is achieved experimentally on the subnanosecond time scale. The method is based on controlling the electronic spin of paramagnetic molecules by means of manipulating their rotation with an optical centrifuge. Spin-rotational coupling results in a high degree of spin polarization on the order of one Bohr magneton per centrifuged molecule. Owing to the nonresonant interaction with the laser pulses, the demonstrated technique is applicable to a broad class of paramagnetic rotors. Executed in a high-density gas, it may offer an efficient way of generating macroscopic magnetic fields remotely (as shown in this work) and producing a large amount of spin-polarized electrons.
Ultrafast Magnetization of a Dense Molecular Gas with an Optical Centrifuge
NASA Astrophysics Data System (ADS)
Milner, A. A.; Korobenko, A.; Milner, V.
2017-06-01
Strong laser-induced magnetization of oxygen gas at room temperature and atmospheric pressure is achieved experimentally on the subnanosecond time scale. The method is based on controlling the electronic spin of paramagnetic molecules by means of manipulating their rotation with an optical centrifuge. Spin-rotational coupling results in a high degree of spin polarization on the order of one Bohr magneton per centrifuged molecule. Owing to the nonresonant interaction with the laser pulses, the demonstrated technique is applicable to a broad class of paramagnetic rotors. Executed in a high-density gas, it may offer an efficient way of generating macroscopic magnetic fields remotely (as shown in this work) and producing a large amount of spin-polarized electrons.
Hong, Seung Hwan; Choi, Han-Yong
2013-09-11
We investigated the characteristics of spin fluctuation mediated superconductivity employing the Eliashberg formalism. The effective interaction between electrons was modeled in terms of the spin susceptibility measured by inelastic neutron scattering experiments on single crystal La(2-x)Sr(x)CuO4 superconductors. The diagonal self-energy and off-diagonal self-energy were calculated by solving the coupled Eliashberg equation self-consistently for the chosen spin susceptibility and tight-binding dispersion of electrons. The full momentum and frequency dependence of the self-energy is presented for optimally doped, overdoped, and underdoped LSCO cuprates in a superconductive state. These results may be compared with the experimentally deduced self-energy from ARPES experiments.
Dzyaloshinskii-Moriya interaction in the presence of Rashba and Dresselhaus spin-orbit coupling
NASA Astrophysics Data System (ADS)
Valizadeh, Mohammad M.; Satpathy, S.
2018-03-01
Chiral order in magnetic structures is currently an area of considerable interest and leads to skyrmion structures and domain walls with certain chirality. The chiral structure originates from the Dzyaloshinskii-Moriya interaction caused by broken inversion symmetry and the spin-orbit interaction. In addition to the Rashba or Dresselhaus interactions, there may also exist substantial spin polarization in magnetic thin films. Here, we study the exchange interaction between two localized magnetic moments in the spin-polarized electron gas with both Rashba and Dresselhaus spin-orbit interaction present. Analytical expressions are found in certain limits in addition to what is known in the literature. The stability of the Bloch and Néel domain walls in magnetic thin films is discussed in light of our results.
Quantum transport through a deformable molecular transistor
NASA Astrophysics Data System (ADS)
Cornaglia, P. S.; Grempel, D. R.; Ness, H.
2005-02-01
The linear transport properties of a model molecular transistor with electron-electron and electron-phonon interactions were investigated analytically and numerically. The model takes into account phonon modulation of the electronic energy levels and of the tunneling barrier between the molecule and the electrodes. When both effects are present they lead to asymmetries in the dependence of the conductance on gate voltage. The Kondo effect is observed in the presence of electron-phonon interactions. There are important qualitative differences between the cases of weak and strong coupling. In the first case the standard Kondo effect driven by spin fluctuations occurs. In the second case, it is driven by charge fluctuations. The Fermi-liquid relation between the spectral density of the molecule and its charge is altered by electron-phonon interactions. Remarkably, the relation between the zero-temperature conductance and the charge remains unchanged. Therefore, there is perfect transmission in all regimes whenever the average number of electrons in the molecule is an odd integer.
Ab initio calculations of potential energy curves of Hg/sub 2/ and TlHg
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celestino, K.C.; Ermler, W.C.
1984-08-15
Potential energy curves for electronic states of Hg/sub 2/ and TlHg are presented and analyzed. They are derived using large scale configuration interaction procedures for the valence electrons, with the core electrons represented by ab initio relativistic effective potentials. The effect of spin-orbit coupling are investigated for the low-lying excimer states. It is determined that neither system possesses strongly bound electronic states for which transitions to the repulsive ground states are optically allowed.
NASA Astrophysics Data System (ADS)
Fuchs, Gregory
2011-03-01
Nitrogen vacancy (NV) center spins in diamond have emerged as a promising solid-state system for quantum information processing and precision metrology at room temperature. Understanding and developing the built-in resources of this defect center for quantum logic and memory is critical to achieving these goals. In the first case, we use nanosecond duration microwave manipulation to study the electronic spin of single NV centers in their orbital excited-state (ES). We demonstrate ES Rabi oscillations and use multi-pulse resonant control to differentiate between phonon-induced dephasing, orbital relaxation, and coherent electron-nuclear interactions. A second resource, the nuclear spin of the intrinsic nitrogen atom, may be an ideal candidate for a quantum memory due to both the long coherence of nuclear spins and their deterministic presence. We investigate coherent swaps between the NV center electronic spin state and the nuclear spin state of nitrogen using Landau-Zener transitions performed outside the asymptotic regime. The swap gates are generated using lithographically fabricated waveguides that form a high-bandwidth, two-axis vector magnet on the diamond substrate. These experiments provide tools for coherently manipulating and storing quantum information in a scalable solid-state system at room temperature. We gratefully acknowledge support from AFOSR, ARO, and DARPA.
Kondo scattering in δ-doped LaTiO3/SrTiO3 interfaces: Renormalization by spin-orbit interactions
NASA Astrophysics Data System (ADS)
Das, Shubhankar; Rastogi, A.; Wu, Lijun; Zheng, Jin-Cheng; Hossain, Z.; Zhu, Yimei; Budhani, R. C.
2014-08-01
We present a study of δ doping at the LaTiO3/SrTiO3 interface with isostructural antiferromagnetic perovskite LaCrO3 that dramatically alters the properties of the two-dimensional electron gas at the interface. The effects include a reduction in sheet-carrier density, prominence of the low-temperature resistivity minimum, enhancement of weak antilocalization below 10 K, and observation of a strong anisotropic magnetoresistance (MR). The positive and negative MR for out-of-plane and in-plane fields, respectively, and the field and temperature dependencies of MR suggest Kondo scattering by localized Ti3+ moments renormalized by spin-orbit interaction at T < 10 K, with the increased δ-layer thickness. Electron-energy-loss spectroscopy and density functional calculations provide convincing evidence of blocking of electron transfer from LTO to STO by the δ layer.
Study of electronic and magnetic properties of h-BN on Ni surfaces: A DFT approach
NASA Astrophysics Data System (ADS)
Sahoo, M. R.; Sahu, S.; Kushwaha, A. K.; Nayak, S.
2018-04-01
Hexagonal boron nitride (h-BN) is a promising material for implementation in spintronics due to large band gap, low spin-orbit coupling, and a small lattice mismatch to graphene and close-packedsurfaces of fcc-Ni(111). Electronic and magnetic properties of single layer hexagonal Boron Nitride (h-BN) on Ni (111) surface have been studied with density functional calculation. Since lattice constants of nickel surfaces are very close to that of h-BN, nickel acts as a good substrate. We found that the interaction between 2Pz - 3dz2 orbitals leads to change in electronic band structure as well as density of states which results spin polarization in h-BN.
Spin-polarized surface resonances accompanying topological surface state formation
Jozwiak, Chris; Sobota, Jonathan A.; Gotlieb, Kenneth; ...
2016-10-14
Topological insulators host spin-polarized surface states born out of the energetic inversion of bulk bands driven by the spin-orbit interaction. Here we discover previously unidentified consequences of band-inversion on the surface electronic structure of the topological insulator Bi 2Se 3. By performing simultaneous spin, time, and angle-resolved photoemission spectroscopy, we map the spin-polarized unoccupied electronic structure and identify a surface resonance which is distinct from the topological surface state, yet shares a similar spin-orbital texture with opposite orientation. Its momentum dependence and spin texture imply an intimate connection with the topological surface state. Calculations show these two distinct states canmore » emerge from trivial Rashba-like states that change topology through the spin-orbit-induced band inversion. As a result, this work thus provides a compelling view of the coevolution of surface states through a topological phase transition, enabled by the unique capability of directly measuring the spin-polarized unoccupied band structure.« less
Rotational and fine structure of open-shell molecules in nearly degenerate electronic states
NASA Astrophysics Data System (ADS)
Liu, Jinjun
2018-03-01
An effective Hamiltonian without symmetry restriction has been developed to model the rotational and fine structure of two nearly degenerate electronic states of an open-shell molecule. In addition to the rotational Hamiltonian for an asymmetric top, this spectroscopic model includes the energy separation between the two states due to difference potential and zero-point energy difference, as well as the spin-orbit (SO), Coriolis, and electron spin-molecular rotation (SR) interactions. Hamiltonian matrices are computed using orbitally and fully symmetrized case (a) and case (b) basis sets. Intensity formulae and selection rules for rotational transitions between a pair of nearly degenerate states and a nondegenerate state have also been derived using all four basis sets. It is demonstrated using real examples of free radicals that the fine structure of a single electronic state can be simulated with either a SR tensor or a combination of SO and Coriolis constants. The related molecular constants can be determined precisely only when all interacting levels are simulated simultaneously. The present study suggests that analysis of rotational and fine structure can provide quantitative insights into vibronic interactions and related effects.
Electric measurement and magnetic control of spin transport in InSb-based lateral spin devices
NASA Astrophysics Data System (ADS)
Viglin, N. A.; Ustinov, V. V.; Demokritov, S. O.; Shorikov, A. O.; Bebenin, N. G.; Tsvelikhovskaya, V. M.; Pavlov, T. N.; Patrakov, E. I.
2017-12-01
Electric injection and detection of spin-polarized electrons in InSb semiconductors have been realized in nonlocal experimental geometry using an InSb-based "lateral spin valve." The valve of the InSb /MgO /C o0.9F e0.1 composition has semiconductor/insulator/ferromagnet nanoheterojunctions in which the thickness of the InSb layer considerably exceeded the spin diffusion length of conduction electrons. The spin direction in spin diffusion current has been manipulated by a magnetic field under the Hanle effect conditions. The spin polarization of the electron gas has been registered using ferromagnetic C o0.9F e0.1 probes by measuring electrical potentials arising in the probes in accordance with the Johnson-Silsbee concept of the spin-charge coupling. The developed theory is valid at any degree of degeneracy of electron gas in a semiconductor. The spin relaxation time and spin diffusion length of conduction electrons in InSb have been determined, and the electron-spin polarization in InSb has been evaluated for electrons injected from C o0.9F e0.1 through an MgO tunnel barrier.
Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae.
Jiang, L; Hodges, J S; Maze, J R; Maurer, P; Taylor, J M; Cory, D G; Hemmer, P R; Walsworth, R L; Yacoby, A; Zibrov, A S; Lukin, M D
2009-10-09
Robust measurement of single quantum bits plays a key role in the realization of quantum computation and communication as well as in quantum metrology and sensing. We have implemented a method for the improved readout of single electronic spin qubits in solid-state systems. The method makes use of quantum logic operations on a system consisting of a single electronic spin and several proximal nuclear spin ancillae in order to repetitively readout the state of the electronic spin. Using coherent manipulation of a single nitrogen vacancy center in room-temperature diamond, full quantum control of an electronic-nuclear system consisting of up to three spins was achieved. We took advantage of a single nuclear-spin memory in order to obtain a 10-fold enhancement in the signal amplitude of the electronic spin readout. We also present a two-level, concatenated procedure to improve the readout by use of a pair of nuclear spin ancillae, an important step toward the realization of robust quantum information processors using electronic- and nuclear-spin qubits. Our technique can be used to improve the sensitivity and speed of spin-based nanoscale diamond magnetometers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, A.S.W.; Kevan, L.
1983-09-07
The photoionization of N,N,N',N'-tetramethylbenzidine (TMB) in dihexadecylphosphate anionic vesicles and in dioctadecyldimethylammonium chloride cationic vesicles has been studied by optical absorption and electron spin resonance in liquid and frozen solutions. The TMB cation has been observed to be stabilized in both types of vesicles. The photoionization efficiency is about twofold greater in the cationic vesicles compared to the anionic vesicles. Shifts in the optical absorption maximum between micellar and vesicle solutions indicate that TMB is in a less polar environment in the vesicle systems. Electron spin echo modulation spectrometry has been used to detect TMB cation-water interactions that are foundmore » to be weaker than in previously studied micellar solutions. This is consistent with the optical absorption results and with an asymmetric solubilization site for TMB and TMB/sup +/ within the vesicular structure. A new absorption in the photoionized vesicles is assigned to a nonparamagnetic diamine-diimine charge-transfer complex between two TMB cations in the same vesicle. This complex is not formed in micellar systems. 5 figures.« less
Oxide double quantum dot - an answer to the qubit problem?
NASA Astrophysics Data System (ADS)
Yarlagadda, Sudhakar; Dey, Amit
We propose that oxide-based double quantum dots with only one electron (tunnelling between the dots) can be regarded as a qubit with little decoherence; these dots can possibly meet future challenges of miniaturization. The tunnelling of the eg electron between the dots and the attraction between the electron and the hole on adjacent dots can be modelled as an anisotropic Heisenberg interaction between two spins with the total z-component of the spins being zero. We study two anisotropically interacting spins coupled to optical phonons; we restrict our analysis to the regime of strong coupling to the environment, to the antiadiabatic region, and to the subspace with zero value for SzT (the z-component of the total spin). In the case where each spin is coupled to a different phonon bath, we assume that the system and the environment are initially uncorrelated (and form a simply separable state) in the polaronic frame of reference. By analyzing the polaron dynamics through a non-Markovian quantum master equation, we find that the system manifests a small amount of decoherence that decreases both with increasing nonadiabaticity and with enhancing strength of coupling g. Recently I got an invitation to visit Argonne National Lab from Jan./2106 to end of March/2016. I thought I would give a talk at APS March meeting. Please accept the submission.
NASA Astrophysics Data System (ADS)
Syryamina, V. N.; Dzuba, S. A.
2012-10-01
Electron paramagnetic resonance (EPR) spectroscopy in the form of pulsed electron-electron double resonance (ELDOR) was applied to 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) phospholipid bilayers containing lipids that were spin-labeled at different carbon positions along the lipid acyl chain. Pulsed ELDOR detects motionally induced spin flips of nitrogen nuclei in the nitroxide spin labels, which manifests itself as magnetization transfer (MT) in the nitroxide EPR spectrum. The MT effect was observed over a wide temperature range (100-225 K) on a microsecond time scale. In line with a previous study on molecular glasses [N. P. Isaev and S. A. Dzuba, J. Chem. Phys. 135, 094508 (2011), 10.1063/1.3633241], the motions that induce MT effect were suggested to have the same nature as those in dielectric secondary (β) Johari-Goldstein fast relaxation. The results were compared with literature dielectric relaxation data for POPC bilayers, revealing some common features. Molecular motions resulting in MT are faster for deeper spin labels in the membrane interior. The addition of cholesterol to the bilayer suppresses the lipid motions near the steroid nucleus and accelerates the lipid motions beyond the steroid nucleus, in the bilayer interior. This finding was attributed to the lipid acyl chains being more ordered near the steroid nucleus and less ordered in the bilayer interior. The motions are absent in dry lipids, indicating that the motions are determined by intermolecular interactions in the bilayer.
The classical and quantum dynamics of molecular spins on graphene.
Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo
2016-02-01
Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic and quantum computing devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics and electrical spin manipulation. However, the influence of the graphene environment on the spin systems has yet to be unravelled. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets on graphene. Whereas the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly developed model. Coupling to Dirac electrons introduces a dominant quantum relaxation channel that, by driving the spins over Villain's threshold, gives rise to fully coherent, resonant spin tunnelling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin manipulation in graphene nanodevices.
The classical and quantum dynamics of molecular spins on graphene
NASA Astrophysics Data System (ADS)
Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo
2016-02-01
Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic and quantum computing devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics and electrical spin manipulation. However, the influence of the graphene environment on the spin systems has yet to be unravelled. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets on graphene. Whereas the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly developed model. Coupling to Dirac electrons introduces a dominant quantum relaxation channel that, by driving the spins over Villain’s threshold, gives rise to fully coherent, resonant spin tunnelling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin manipulation in graphene nanodevices.
Optically programmable electron spin memory using semiconductor quantum dots.
Kroutvar, Miro; Ducommun, Yann; Heiss, Dominik; Bichler, Max; Schuh, Dieter; Abstreiter, Gerhard; Finley, Jonathan J
2004-11-04
The spin of a single electron subject to a static magnetic field provides a natural two-level system that is suitable for use as a quantum bit, the fundamental logical unit in a quantum computer. Semiconductor quantum dots fabricated by strain driven self-assembly are particularly attractive for the realization of spin quantum bits, as they can be controllably positioned, electronically coupled and embedded into active devices. It has been predicted that the atomic-like electronic structure of such quantum dots suppresses coupling of the spin to the solid-state quantum dot environment, thus protecting the 'spin' quantum information against decoherence. Here we demonstrate a single electron spin memory device in which the electron spin can be programmed by frequency selective optical excitation. We use the device to prepare single electron spins in semiconductor quantum dots with a well defined orientation, and directly measure the intrinsic spin flip time and its dependence on magnetic field. A very long spin lifetime is obtained, with a lower limit of about 20 milliseconds at a magnetic field of 4 tesla and at 1 kelvin.
NASA Astrophysics Data System (ADS)
Filatov, Michael; Zou, Wenli; Cremer, Dieter
2013-07-01
A new algorithm for the two-component Normalized Elimination of the Small Component (2cNESC) method is presented and tested in the calculation of spin-orbit (SO) splittings for a series of heavy atoms and their molecules. The 2cNESC is a Dirac-exact method that employs the exact two-component one-electron Hamiltonian and thus leads to exact Dirac SO splittings for one-electron atoms. For many-electron atoms and molecules, the effect of the two-electron SO interaction is modeled by a screened nucleus potential using effective nuclear charges as proposed by Boettger [Phys. Rev. B 62, 7809 (2000), 10.1103/PhysRevB.62.7809]. The use of the screened nucleus potential for the two-electron SO interaction leads to accurate spinor energy splittings, for which the deviations from the accurate Dirac Fock-Coulomb values are on the average far below the deviations observed for other effective one-electron SO operators. For hydrogen halides HX (X = F, Cl, Br, I, At, and Uus) and mercury dihalides HgX2 (X = F, Cl, Br, I) trends in spinor energies and SO splittings as obtained with the 2cNESC method are analyzed and discussed on the basis of coupling schemes and the electronegativity of X.
Electron spin dynamics and optical orientation of Mn2+ ions in GaAs
NASA Astrophysics Data System (ADS)
Akimov, I. A.; Dzhioev, R. I.; Korenev, V. L.; Kusrayev, Yu. G.; Sapega, V. F.; Yakovlev, D. R.; Bayer, M.
2013-04-01
We present an overview of spin-related phenomena in GaAs doped with low concentration of Mn-acceptors (below 1018 cm-3). We use the combination of different experimental techniques such as spin-flip Raman scattering and time-resolved photoluminescence. This allows to evaluate the time evolution of both electron and Mn spins. We show that optical orientation of Mn ions is possible under application of weak magnetic field, which is required to suppress the manganese spin relaxation. The optically oriented Mn2+ ions maintain the spin and return part of the polarization back to the electron spin system providing a long-lived electron spin memory. This leads to a bunch of spectacular effects such as non-exponential electron spin decay and spin precession in the effective exchange fields.
Effects of structural spin-orbit coupling in two dimensional electron and hole liquids
NASA Astrophysics Data System (ADS)
Chesi, Stefano
The recent interest in spin-dependent phenomena in semiconductor heterostructures motivates our detailed study of the structural spin-orbit coupling present in clean two-dimensional electron and hole liquids. Interesting polarization effects are produced in a system out of equilibrium, as when a finite current flows in the sample. In particular, the consequences of a lateral confinement creating a quasi one-dimensional wire are studied in detail, partially motivated by a recent experimental investigation of the point-contact transmission for two-dimensional holes. We also address the role of the electron-electron interaction in the presence of spin-orbit coupling, which has received little attention in the literature. We discuss the formulation of the Hartree-Fock approximation in the particular case of linear Rashba spin-orbit. We establish the form of the mean-field phase diagram in the homogeneous case, which shows a complex interplay between paramagnetic and ferromagnetic states. The latter can be polarized in the plane or in a transverse direction, and are characterized by a complex spin structure and nontrivial occupation. The generality of the Hartree-Fock method allows a simple treatment of the Pauli spin susceptibility, and the application to different forms of spin-orbit coupling. Correlation corrections can be obtained in an analytic form for particular asymptotic regimes. For linear Rashba spin-orbit we identified the relevance of the large spin-orbit limit, dominated by many-body effects, and explicitly treated the high density limit, in which the system is asymptotically noninteracting. As a special case, we derive a new exact formula for the polarization dependence of the ring-diagram correlation energy.
The Consequences of Spin-Orbit Coupling on the 5d3 Electronic Configuration
NASA Astrophysics Data System (ADS)
Christianson, A. D.
The impact of spin-orbit coupling on collective properties of matter is of considerable interest. The most intensively investigated materials in this regard are Iridium-based transition metal oxides which exhibit a host of interesting ground states that originate from a 5d5 Jeff = 1/2 electronic configuration. Moving beyond the Jeff = 1/2 paradigm to other electronic configurations where spin-orbit coupling plays a prominent role is a key objective of ongoing research. Here we focus on several Osmium-based transition metal oxides such as NaOsO3, Cd2Os2O7, Ca3LiOsO6, Sr2ScOsO6, Ba2YOsO6, and Sr2FeOsO6, which are nominally in the 5d3 electronic configuration. Within the LS coupling picture and a strong octahedral crystal field, the 5d3 configuration is expected to be an orbital singlet and spin-orbit effects should be minimal. Nevertheless, our neutron and x-ray scattering investigations of these materials as well as investigations by other groups show dramatic effects of spin-orbit coupling including reduced moment magnetic order, enhanced spin-phonon coupling, and large spin gaps. In particular, the anisotropy induced by spin-orbit coupling tips the balance of the frustrated interactions and drives the selection of particular magnetic ground states. To understand the mechanism driving the spin-orbit effects, we have explored the ground state t2g manifold with resonant inelastic x-ray scattering and observe a spectrum inexplicable by an LS coupling picture. On the other hand, an intermediate coupling approach reveals that the ground state wave function is a J =3/2 configuration which answers the question of how strong spin-orbit coupling effects arise in 5d3 systems.
Electron spin polarization by isospin ordering in correlated two-layer quantum Hall systems.
Tiemann, L; Wegscheider, W; Hauser, M
2015-05-01
Enhancement of the electron spin polarization in a correlated two-layer, two-dimensional electron system at a total Landau level filling factor of 1 is reported. Using resistively detected nuclear magnetic resonance, we demonstrate that the electron spin polarization of two closely spaced two-dimensional electron systems becomes maximized when interlayer Coulomb correlations establish spontaneous isospin ferromagnetic order. This correlation-driven polarization dominates over the spin polarizations of competing single-layer fractional quantum Hall states under electron density imbalances.
Spin current induced by a charged tip in a quantum point contact
NASA Astrophysics Data System (ADS)
Shchamkhalova, B. S.
2017-03-01
We show that the charged tip of the probe microscope, which is widely used in studying the electron transport in low-dimensional systems, induces a spin current. The effect is caused by the spin-orbit interaction arising due to an electric field produced by the charged tip. The tip acts as a spin-flip scatterer giving rise to the spin polarization of the net current and the occurrence of a spin density in the system.
Phonon induced magnetism in ionic materials
NASA Astrophysics Data System (ADS)
Restrepo, Oscar D.; Antolin, Nikolas; Jin, Hyungyu; Heremans, Joseph P.; Windl, Wolfgang
2014-03-01
Thermoelectric phenomena in magnetic materials create exciting possibilities in future spin caloritronic devices by manipulating spin information using heat. An accurate understanding of the spin-lattice interactions, i.e. the coupling between magnetic excitations (magnons) and lattice vibrations (phonons), holds the key to unraveling their underlying physics. We report ab initio frozen-phonon calculations of CsI that result in non-zero magnetization when the degeneracy between spin-up and spin-down electronic density of states is lifted for certain phonon displacement patterns. For those, the magnetization as a function of atomic displacement shows a sharp resonance due to the electronic states on the displaced Cs atoms, while the electrons on indium form a continuous background magnetization. We relate this resonance to the generation of a two-level system in the spin-polarized Cs partial density of states as a function of displacement, which we propose to be described by a simple resonant-susceptibility model. Current work extends these investigations to semiconductors such as InSb. ODR and WW are supported by the Center for Emergent Materials, an NSF MRSEC at OSU (Grant DMR-0820414).HJ and JPH are supported by AFOSR MURI Cryogenic Peltier Cooling, Contract #FA9550-10-1-0533.
Collective nuclear stabilization in single quantum dots by noncollinear hyperfine interaction
NASA Astrophysics Data System (ADS)
Yang, Wen; Sham, L. J.
2012-06-01
We present a theory of efficient suppression of the collective nuclear spin fluctuation, which prolongs the electron spin coherence time through the noncollinear hyperfine interaction between the nuclear spins and the hole spin. This provides a general paradigm to combat decoherence by direct control of environmental noise, and a possible solution to the puzzling observation of symmetric broadening of the absorption spectra in two recent experiments [Xu , Nature (London)NATUAS0028-083610.1038/nature08120 459, 1105 (2009) and Latta , Nature Phys.1745-247310.1038/nphys1363 5, 758 (2009)].
NASA Astrophysics Data System (ADS)
Kinoshita, Yuto; Kida, Noriaki; Miyamoto, Tatsuya; Kanou, Manabu; Sasagawa, Takao; Okamoto, Hiroshi
2018-04-01
The spin-splitting energy bands induced by the relativistic spin-orbit interaction in solids provide a new opportunity to manipulate the spin-polarized electrons on the subpicosecond timescale. Here, we report one such example in a bulk Rashba-type polar semiconductor BiTeBr. Strong terahertz electromagnetic waves are emitted after the resonant excitation of the interband transition between the Rashba-type spin-splitting energy bands with a femtosecond laser pulse circularly polarized. The phase of the emitted terahertz waves is reversed by switching the circular polarization. This suggests that the observed terahertz radiation originates from the subpicosecond spin-polarized photocurrents, which are generated by the asymmetric depopulation of the Dirac state. Our result provides a way for the current-induced terahertz radiation and its phase control by the circular polarization of incident light without external electric fields.
Dynamical Negative Differential Resistance in Antiferromagnetically Coupled Few-Atom Spin Chains
NASA Astrophysics Data System (ADS)
Rolf-Pissarczyk, Steffen; Yan, Shichao; Malavolti, Luigi; Burgess, Jacob A. J.; McMurtrie, Gregory; Loth, Sebastian
2017-11-01
We present the appearance of negative differential resistance (NDR) in spin-dependent electron transport through a few-atom spin chain. A chain of three antiferromagnetically coupled Fe atoms (Fe trimer) was positioned on a Cu2 N /Cu (100 ) surface and contacted with the spin-polarized tip of a scanning tunneling microscope, thus coupling the Fe trimer to one nonmagnetic and one magnetic lead. Pronounced NDR appears at the low bias of 7 mV, where inelastic electron tunneling dynamically locks the atomic spin in a long-lived excited state. This causes a rapid increase of the magnetoresistance between the spin-polarized tip and Fe trimer and quenches elastic tunneling. By varying the coupling strength between the tip and Fe trimer, we find that in this transport regime the dynamic locking of the Fe trimer competes with magnetic exchange interaction, which statically forces the Fe trimer into its high-magnetoresistance state and removes the NDR.
Topological quantum pump in serpentine-shaped semiconducting narrow channels
NASA Astrophysics Data System (ADS)
Pandey, Sudhakar; Scopigno, Niccoló; Gentile, Paola; Cuoco, Mario; Ortix, Carmine
2018-06-01
We propose and analyze theoretically a one-dimensional solid-state electronic setup that operates as a topological charge pump in the complete absence of superimposed oscillating local voltages. The system consists of a semiconducting narrow channel with a strong Rashba spin-orbit interaction patterned in a mesoscale serpentine shape. A rotating planar magnetic field serves as the external ac perturbation, and cooperates with the Rashba spin-orbit interaction, which is modulated by the geometric curvature of the electronic channel to realize the topological pumping protocol, originally introduced by Thouless, in a different fashion. We expect the precise pumping of electric charges in our mesoscopic quantum device to be relevant for quantum metrology purposes.
NASA Technical Reports Server (NTRS)
Green, S.
1972-01-01
Previous accurate dipole moment calculation techniques are modified to be applicable to higher excited states of symmetry. The self-consistent fields and configuration interactions are calculated for the X(2)Sigma(+) and B(2)Sigma(+) states of CN. Spin hyperfine constants and spin density at the nucleus are considered in the context of one-electron operator properties. The values of the self-consistent field and configuration interaction for the spin density are compared with experimental values for several diatomic molecules.
David Jebaraj, D; Utsumi, Hideo; Milton Franklin Benial, A
2018-04-01
Low-frequency electron spin resonance studies were performed for 2 mM concentration of deuterated permeable and impermeable nitroxyl spin probes, 3-methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl and 3-carboxy-2,2,5,5,-tetramethyl-1-pyrrolidinyloxy in pure water and various concentrations of corn oil solution. The electron spin resonance parameters such as the line width, hyperfine coupling constant, g factor, rotational correlation time, permeability, and partition parameter were estimated. The broadening of line width was observed for nitroxyl radicals in corn oil mixture. The rotational correlation time increases with increasing concentration of corn oil, which indicates the less mobile nature of spin probe in corn oil mixture. The membrane permeability and partition parameter values were estimated as a function of corn oil concentration, which reveals that the nitroxyl radicals permeate equally into the aqueous phase and oil phase at the corn oil concentration of 50%. The electron spin resonance spectra demonstrate the permeable and impermeable nature of nitroxyl spin probes. From these results, the corn oil concentration was optimized as 50% for phantom studies. In this work, the corn oil and pure water mixture phantom models with various viscosities correspond to plasma membrane, and whole blood membrane with different hematocrit levels was studied for monitoring the biological characteristics and their interactions with permeable nitroxyl spin probe. These results will be useful for the development of electron spin resonance and Overhauser-enhanced magnetic resonance imaging modalities in biomedical applications. Copyright © 2017 John Wiley & Sons, Ltd.
Dirac Magnons in Honeycomb Ferromagnets
NASA Astrophysics Data System (ADS)
Pershoguba, Sergey S.; Banerjee, Saikat; Lashley, J. C.; Park, Jihwey; Ågren, Hans; Aeppli, Gabriel; Balatsky, Alexander V.
2018-01-01
The discovery of the Dirac electron dispersion in graphene [A. H. Castro Neto, et al., The Electronic Properties of Graphene, Rev. Mod. Phys. 81, 109 (2009), 10.1103/RevModPhys.81.109] led to the question of the Dirac cone stability with respect to interactions. Coulomb interactions between electrons were shown to induce a logarithmic renormalization of the Dirac dispersion. With a rapid expansion of the list of compounds and quasiparticle bands with linear band touching [T. O. Wehling, et al., Dirac Materials, Adv. Phys. 63, 1 (2014), 10.1080/00018732.2014.927109], the concept of bosonic Dirac materials has emerged. We consider a specific case of ferromagnets consisting of van der Waals-bonded stacks of honeycomb layers, e.g., chromium trihalides CrX3 (X =F , Cl, Br and I), that display two spin wave modes with energy dispersion similar to that for the electrons in graphene. At the single-particle level, these materials resemble their fermionic counterparts. However, how different particle statistics and interactions affect the stability of Dirac cones has yet to be determined. To address the role of interacting Dirac magnons, we expand the theory of ferromagnets beyond the standard Dyson theory [F. J. Dyson, General Theory of Spin-Wave Interactions, Phys. Rev. 102, 1217 (1956), 10.1103/PhysRev.102.1217, F. J. Dyson, Thermodynamic Behavior of an Ideal Ferromagnet, Phys. Rev. 102, 1230 (1956), 10.1103/PhysRev.102.1230] to the case of non-Bravais honeycomb layers. We demonstrate that magnon-magnon interactions lead to a significant momentum-dependent renormalization of the bare band structure in addition to strongly momentum-dependent magnon lifetimes. We show that our theory qualitatively accounts for hitherto unexplained anomalies in nearly half-century-old magnetic neutron-scattering data for CrBr3 [W. B. Yelon and R. Silberglitt, Renormalization of Large-Wave-Vector Magnons in Ferromagnetic CrBr3 Studied by Inelastic Neutron Scattering: Spin-Wave Correlation Effects, Phys. Rev. B 4, 2280 (1971), 10.1103/PhysRevB.4.2280, E. J. Samuelsen, et al., Spin Waves in Ferromagnetic CrBr3 Studied by Inelastic Neutron Scattering, Phys. Rev. B 3, 157 (1971), 10.1103/PhysRevB.3.157]. We also show that honeycomb ferromagnets display dispersive surface and edge states, unlike their electronic analogs.
Mach-Zehnder interferometry using spin- and valley-polarized quantum Hall edge states in graphene.
Wei, Di S; van der Sar, Toeno; Sanchez-Yamagishi, Javier D; Watanabe, Kenji; Taniguchi, Takashi; Jarillo-Herrero, Pablo; Halperin, Bertrand I; Yacoby, Amir
2017-08-01
Confined to a two-dimensional plane, electrons in a strong magnetic field travel along the edge in one-dimensional quantum Hall channels that are protected against backscattering. These channels can be used as solid-state analogs of monochromatic beams of light, providing a unique platform for studying electron interference. Electron interferometry is regarded as one of the most promising routes for studying fractional and non-Abelian statistics and quantum entanglement via two-particle interference. However, creating an edge-channel interferometer in which electron-electron interactions play an important role requires a clean system and long phase coherence lengths. We realize electronic Mach-Zehnder interferometers with record visibilities of up to 98% using spin- and valley-polarized edge channels that copropagate along a pn junction in graphene. We find that interchannel scattering between same-spin edge channels along the physical graphene edge can be used to form beamsplitters, whereas the absence of interchannel scattering along gate-defined interfaces can be used to form isolated interferometer arms. Surprisingly, our interferometer is robust to dephasing effects at energies an order of magnitude larger than those observed in pioneering experiments on GaAs/AlGaAs quantum wells. Our results shed light on the nature of edge-channel equilibration and open up new possibilities for studying exotic electron statistics and quantum phenomena.
Yang, Weitao; Mori-Sánchez, Paula; Cohen, Aron J
2013-09-14
The exact conditions for density functionals and density matrix functionals in terms of fractional charges and fractional spins are known, and their violation in commonly used functionals has been shown to be the root of many major failures in practical applications. However, approximate functionals are designed for physical systems with integer charges and spins, not in terms of the fractional variables. Here we develop a general framework for extending approximate density functionals and many-electron theory to fractional-charge and fractional-spin systems. Our development allows for the fractional extension of any approximate theory that is a functional of G(0), the one-electron Green's function of the non-interacting reference system. The extension to fractional charge and fractional spin systems is based on the ensemble average of the basic variable, G(0). We demonstrate the fractional extension for the following theories: (1) any explicit functional of the one-electron density, such as the local density approximation and generalized gradient approximations; (2) any explicit functional of the one-electron density matrix of the non-interacting reference system, such as the exact exchange functional (or Hartree-Fock theory) and hybrid functionals; (3) many-body perturbation theory; and (4) random-phase approximations. A general rule for such an extension has also been derived through scaling the orbitals and should be useful for functionals where the link to the Green's function is not obvious. The development thus enables the examination of approximate theories against known exact conditions on the fractional variables and the analysis of their failures in chemical and physical applications in terms of violations of exact conditions of the energy functionals. The present work should facilitate the calculation of chemical potentials and fundamental bandgaps with approximate functionals and many-electron theories through the energy derivatives with respect to the fractional charge. It should play an important role in developing accurate approximate density functionals and many-body theory.
Charge and spin control of ultrafast electron and hole dynamics in single CdSe/ZnSe quantum dots
NASA Astrophysics Data System (ADS)
Hinz, C.; Gumbsheimer, P.; Traum, C.; Holtkemper, M.; Bauer, B.; Haase, J.; Mahapatra, S.; Frey, A.; Brunner, K.; Reiter, D. E.; Kuhn, T.; Seletskiy, D. V.; Leitenstorfer, A.
2018-01-01
We study the dynamics of photoexcited electrons and holes in single negatively charged CdSe/ZnSe quantum dots with two-color femtosecond pump-probe spectroscopy. An initial characterization of the energy level structure is performed at low temperatures and magnetic fields of up to 5 T. Emission and absorption resonances are assigned to specific transitions between few-fermion states by a theoretical model based on a configuration interaction approach. To analyze the dynamics of individual charge carriers, we initialize the quantum system into excited trion states with defined energy and spin. Subsequently, the time-dependent occupation of the trion ground state is monitored by spectrally resolved differential transmission measurements. We observe subpicosecond dynamics for a hole excited to the D shell. The energy dependence of this D -to-S shell intraband transition is investigated in quantum dots of varying size. Excitation of an electron-hole pair in the respective p shells leads to the formation of singlet and triplet spin configurations. Relaxation of the p -shell singlet is observed to occur on a time scale of a few picoseconds. Pumping of p -shell triplet transitions opens up two pathways with distinctly different scattering times. These processes are shown to be governed by the mixing of singlet and triplet states due to exchange interactions enabling simultaneous electron and hole spin flips. To isolate the relaxation channels, we align the spin of the residual electron by a magnetic field and employ laser pulses of defined helicity. This step provides ultrafast preparation of a fully inverted trion ground state of the quantum dot with near unity probability, enabling deterministic addition of a single photon to the probe pulse. Therefore our experiments represent a significant step towards using single quantum emitters with well-controled inversion to manipulate the photon statistics of ultrafast light pulses.
NASA Astrophysics Data System (ADS)
Craco, L.
2017-10-01
Using density functional dynamical mean-field theory (DFDMFT) we address the problem of antiferromagnetic spin ordering in isotropically superstrained graphene. It is shown that the interplay between strain-induced one-particle band narrowing and sizable on-site electron-electron interactions naturally stabilizes a magnetic phase with orbital-selective spin-polarized p -band electronic states. While an antiferromagnetic phase with strong local moments arises in the pz orbitals, the px ,y bands reveal a metallic state with quenched sublattice magnetization. We next investigate the possibility of superconductivity to emerge in this selective magnetoelectronic state. Our theory is expected to be an important step to understanding the next generation of flexible electronics made of Mott localized carbon-based materials as well as the ability of superstrained graphene to host coexisting superconductivity and magnetism at low temperatures.
Xu, Min; Wang, Li -Min; Peng, Rui; ...
2015-02-01
With angle-resolved photoemission spectroscopy, we studied the electronic structure of TaFe₁̣₂₃Te₃, a two-leg spin ladder compound with a novel antiferromagnetic ground state. Quasi-two-dimensional Fermi surface is observed, with sizable inter-ladder hopping. Moreover, instead of observing an energy gap at the Fermi surface in the antiferromagnetic state, we observed the shifts of various bands. Combining these observations with density-functional-theory calculations, we propose that the large scale reconstruction of the electronic structure, caused by the interactions between coexisting itinerant electrons and local moments, is most likely the driving force of the magnetic transition. Thus TaFe₁̣₂₃Te₃ serves as a simpler platform that containsmore » similar ingredients as the parent compounds of iron-based superconductors.« less
Beam-target double-spin asymmetry in quasielastic electron scattering off the deuteron with CLAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, M.; Kuhn, S. E.; Adhikari, K. P.
The deuteron plays a pivotal role in nuclear and hadronic physics, as both the simplest bound multinucleon system and as an effective neutron target. Quasielastic electron scattering on the deuteron is a benchmark reaction to test our understanding of deuteron structure and the properties and interactions of the two nucleons bound in the deuteron. The experimental data presented here can be used to test state-of-the-art models of the deuteron and the two-nucleon interaction in the final state after two-body breakup of the deuteron. Focusing on polarization degrees of freedom, we gain information on spin-momentum correlations in the deuteron ground statemore » (due to the D-state admixture) and on the limits of the impulse approximation (IA) picture as it applies to measurements of spin-dependent observables like spin structure functions for bound nucleons. Information on this reaction can also be used to reduce systematic uncertainties on the determination of neutron form factors or deuteron polarization through quasielastic polarized electron scattering. Furthermore, we measured the beam-target double-spin asymmetry (A ||) for quasielastic electron scattering off the deuteron at several beam energies (1.6–1.7, 2.5, 4.2, and 5.6–5.8GeV), using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. The deuterons were polarized along (or opposite to) the beam direction. The double-spin asymmetries were measured as a function of photon virtuality Q 2 (0.13–3.17(GeV/c) 2), missing momentum (p m=0.0–0.5GeV/c), and the angle between the (inferred) spectator neutron and the momentum transfer direction (θ nq). We compare our results with a recent model that includes final-state interactions (FSI) using a complete parametrization of nucleon-nucleon scattering, as well as a simplified model using the plane wave impulse approximation (PWIA). We find overall good agreement with both the PWIA and FSI expectations at low to medium missing momenta (p m≤0.25GeV/c), including the change of the asymmetry due to the contribution of the deuteron D state at higher momenta. At the highest missing momenta, our data clearly agree better with the calculations including FSI. Final-state interactions seem to play a lesser role for polarization observables in deuteron two-body electrodisintegration than for absolute cross sections. Our data, while limited in statistical power, indicate that PWIA models work reasonably well to understand the asymmetries at lower missing momenta. In turn, this information can be used to extract the product of beam and target polarization (P bP t) from quasielastic electron-deuteron scattering, which is useful for measurements of spin observables in electron-neutron inelastic scattering. But, at the highest missing (neutron) momenta, FSI effects become important and must be accounted for.« less
Beam-target double-spin asymmetry in quasielastic electron scattering off the deuteron with CLAS
Mayer, M.; Kuhn, S. E.; Adhikari, K. P.; ...
2017-02-24
The deuteron plays a pivotal role in nuclear and hadronic physics, as both the simplest bound multinucleon system and as an effective neutron target. Quasielastic electron scattering on the deuteron is a benchmark reaction to test our understanding of deuteron structure and the properties and interactions of the two nucleons bound in the deuteron. The experimental data presented here can be used to test state-of-the-art models of the deuteron and the two-nucleon interaction in the final state after two-body breakup of the deuteron. Focusing on polarization degrees of freedom, we gain information on spin-momentum correlations in the deuteron ground statemore » (due to the D-state admixture) and on the limits of the impulse approximation (IA) picture as it applies to measurements of spin-dependent observables like spin structure functions for bound nucleons. Information on this reaction can also be used to reduce systematic uncertainties on the determination of neutron form factors or deuteron polarization through quasielastic polarized electron scattering. Furthermore, we measured the beam-target double-spin asymmetry (A ||) for quasielastic electron scattering off the deuteron at several beam energies (1.6–1.7, 2.5, 4.2, and 5.6–5.8GeV), using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. The deuterons were polarized along (or opposite to) the beam direction. The double-spin asymmetries were measured as a function of photon virtuality Q 2 (0.13–3.17(GeV/c) 2), missing momentum (p m=0.0–0.5GeV/c), and the angle between the (inferred) spectator neutron and the momentum transfer direction (θ nq). We compare our results with a recent model that includes final-state interactions (FSI) using a complete parametrization of nucleon-nucleon scattering, as well as a simplified model using the plane wave impulse approximation (PWIA). We find overall good agreement with both the PWIA and FSI expectations at low to medium missing momenta (p m≤0.25GeV/c), including the change of the asymmetry due to the contribution of the deuteron D state at higher momenta. At the highest missing momenta, our data clearly agree better with the calculations including FSI. Final-state interactions seem to play a lesser role for polarization observables in deuteron two-body electrodisintegration than for absolute cross sections. Our data, while limited in statistical power, indicate that PWIA models work reasonably well to understand the asymmetries at lower missing momenta. In turn, this information can be used to extract the product of beam and target polarization (P bP t) from quasielastic electron-deuteron scattering, which is useful for measurements of spin observables in electron-neutron inelastic scattering. But, at the highest missing (neutron) momenta, FSI effects become important and must be accounted for.« less
Beam-target double-spin asymmetry in quasielastic electron scattering off the deuteron with CLAS
NASA Astrophysics Data System (ADS)
Mayer, M.; Kuhn, S. E.; Adhikari, K. P.; Akbar, Z.; Anefalos Pereira, S.; Asryan, G.; Avakian, H.; Badui, R. A.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Bosted, P.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Charles, G.; Chetry, T.; Ciullo, G.; Clark, L.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fanchini, E.; Fedotov, G.; Fersch, R.; Filippi, A.; Fleming, J. A.; Forest, T. A.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gleason, C.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Hakobyan, H.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jiang, H.; Keith, C.; Keller, D.; Khachatryan, G.; Khachatryan, M.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Kubarovsky, V.; Lanza, L.; Lenisa, P.; Livingston, K.; MacGregor, I. J. D.; McKinnon, B.; Meekins, D.; Mirazita, M.; Mokeev, V.; Movsisyan, A.; Net, L. A.; Niccolai, S.; Niculescu, G.; Osipenko, M.; Ostrovidov, A. I.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pogorelko, O.; Price, J. W.; Prok, Y.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Sabatié, F.; Schumacher, R. A.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stankovic, I.; Stepanyan, S.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tian, Ye; Torayev, B.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zhang, J.; Zonta, I.; CLAS Collaboration
2017-02-01
Background: The deuteron plays a pivotal role in nuclear and hadronic physics, as both the simplest bound multinucleon system and as an effective neutron target. Quasielastic electron scattering on the deuteron is a benchmark reaction to test our understanding of deuteron structure and the properties and interactions of the two nucleons bound in the deuteron. Purpose: The experimental data presented here can be used to test state-of-the-art models of the deuteron and the two-nucleon interaction in the final state after two-body breakup of the deuteron. Focusing on polarization degrees of freedom, we gain information on spin-momentum correlations in the deuteron ground state (due to the D -state admixture) and on the limits of the impulse approximation (IA) picture as it applies to measurements of spin-dependent observables like spin structure functions for bound nucleons. Information on this reaction can also be used to reduce systematic uncertainties on the determination of neutron form factors or deuteron polarization through quasielastic polarized electron scattering. Method: We measured the beam-target double-spin asymmetry (A||) for quasielastic electron scattering off the deuteron at several beam energies (1.6 -1.7 , 2.5, 4.2, and 5.6 -5.8 GeV ), using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. The deuterons were polarized along (or opposite to) the beam direction. The double-spin asymmetries were measured as a function of photon virtuality Q2(0.13 -3.17 (GeV/c ) 2) , missing momentum (pm=0.0 -0.5 GeV /c ), and the angle between the (inferred) spectator neutron and the momentum transfer direction (θn q). Results: The results are compared with a recent model that includes final-state interactions (FSI) using a complete parametrization of nucleon-nucleon scattering, as well as a simplified model using the plane wave impulse approximation (PWIA). We find overall good agreement with both the PWIA and FSI expectations at low to medium missing momenta (pm≤0.25 GeV /c ), including the change of the asymmetry due to the contribution of the deuteron D state at higher momenta. At the highest missing momenta, our data clearly agree better with the calculations including FSI. Conclusions: Final-state interactions seem to play a lesser role for polarization observables in deuteron two-body electrodisintegration than for absolute cross sections. Our data, while limited in statistical power, indicate that PWIA models work reasonably well to understand the asymmetries at lower missing momenta. In turn, this information can be used to extract the product of beam and target polarization (PbPt ) from quasielastic electron-deuteron scattering, which is useful for measurements of spin observables in electron-neutron inelastic scattering. However, at the highest missing (neutron) momenta, FSI effects become important and must be accounted for.
NASA Astrophysics Data System (ADS)
Kawakami, Takashi; Sano, Shinsuke; Saito, Toru; Sharma, Sandeep; Shoji, Mitsuo; Yamada, Satoru; Takano, Yu; Yamanaka, Shusuke; Okumura, Mitsutaka; Nakajima, Takahito; Yamaguchi, Kizashi
2017-09-01
Theoretical examinations of the ferromagnetic coupling in the m-phenylene-bis-methylene molecule and its oligomer were carried out. These systems are good candidates for exchange-coupled systems to investigate strong electronic correlations. We studied effective exchange integrals (J), which indicated magnetic coupling between interacting spins in these species. First, theoretical calculations based on a broken-symmetry single-reference procedure, i.e. the UHF, UMP2, UMP4, UCCSD(T) and UB3LYP methods, were carried out with a GAUSSIAN program code under an SR wave function. From these results, the J value by the UHF method was largely positive because of the strong ferromagnetic spin polarisation effect. The J value by the UCCSD(T) and UB3LYP methods improved an overestimation problem by correcting the dynamical electronic correlation. Next, magnetic coupling among these spins was studied using the CAS-based method of the symmetry-adapted multireference methods procedure. Thus, the UNO DMRG CASCI (UNO, unrestricted natural orbital; DMRG, density matrix renormalised group; CASCI, complete active space configuration interaction) method was mainly employed with a combination of ORCA and BLOCK program codes. DMRG CASCI calculations in valence electron counting, which included all orbitals to full valence CI, provided the most reliable result, and support the UB3LYP method for extended systems.
NASA Astrophysics Data System (ADS)
Biagini, M.; Calandra, C.; Ossicini, Stefano
1995-10-01
Electronic structure calculations based on the local-spin-density approximation (LSDA) fail to reproduce the antiferromagnetic ground state of PrBa2Cu3O7 (PBCO). We have performed linear muffin-tin orbital-atomic sphere approximation calculations, based on the local-spin-density approximation with on-site Coulomb correlation applied to Cu(1) and Cu(2) 3d states. We have found that inclusion of the on-site Coulomb interaction modifies qualitatively the electronic structure of PBCO with respect to the LSDA results, and gives Cu spin moments in good agreement with the experimental values. The Cu(2) upper Hubbard band lies about 1 eV above the Fermi energy, indicating a CuII oxidation state. On the other hand, the Cu(1) upper Hubbard band is located across the Fermi level, which implies an intermediate oxidation state for the Cu(1) ion, between CuI and CuII. The metallic character of the CuO chains is preserved, in agreement with optical reflectivity [K. Takenaka et al., Phys. Rev. B 46, 5833 (1992)] and positron annihilation experiments [L. Hoffmann et al., Phys. Rev. Lett. 71, 4047 (1993)]. These results support the view of an extrinsic origin of the insulating character of PrBa2Cu3O7.
A parity-breaking electronic nematic phase transition in the spin-orbit coupled metal Cd 2Re 2O 7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harter, J. W.; Zhao, Z. Y.; Yan, J. -Q.
Strong electron interactions can drive metallic systems toward a variety of well-known symmetry-broken phases, but the instabilities of correlated metals with strong spin-orbit coupling have only recently begun to be explored. We uncovered a multipolar nematic phase of matter in the metallic pyrochlore Cd 2Re 2O 7 using spatially resolved second-harmonic optical anisotropy measurements. Like previously discovered electronic nematic phases, this multipolar phase spontaneously breaks rotational symmetry while preserving translational invariance. However, it has the distinguishing property of being odd under spatial inversion, which is allowed only in the presence of spin-orbit coupling. By examining the critical behavior of themore » multipolar nematic order parameter, we show that it drives the thermal phase transition near 200 kelvin in Cd 2Re 2O 7 and induces a parity-breaking lattice distortion as a secondary order.« less
A parity-breaking electronic nematic phase transition in the spin-orbit coupled metal Cd2Re2O7
NASA Astrophysics Data System (ADS)
Harter, J. W.; Zhao, Z. Y.; Yan, J.-Q.; Mandrus, D. G.; Hsieh, D.
2017-04-01
Strong electron interactions can drive metallic systems toward a variety of well-known symmetry-broken phases, but the instabilities of correlated metals with strong spin-orbit coupling have only recently begun to be explored. We uncovered a multipolar nematic phase of matter in the metallic pyrochlore Cd2Re2O7 using spatially resolved second-harmonic optical anisotropy measurements. Like previously discovered electronic nematic phases, this multipolar phase spontaneously breaks rotational symmetry while preserving translational invariance. However, it has the distinguishing property of being odd under spatial inversion, which is allowed only in the presence of spin-orbit coupling. By examining the critical behavior of the multipolar nematic order parameter, we show that it drives the thermal phase transition near 200 kelvin in Cd2Re2O7 and induces a parity-breaking lattice distortion as a secondary order.
Phase separation and long-wavelength charge instabilities in spin-orbit coupled systems
NASA Astrophysics Data System (ADS)
Seibold, G.; Bucheli, D.; Caprara, S.; Grilli, M.
2015-01-01
We investigate a two-dimensional electron model with Rashba spin-orbit interaction where the coupling constant g=g(n) depends on the electronic density. It is shown that this dependence may drive the system unstable towards a long-wavelength charge density wave (CDW) where the associated second-order instability occurs in close vicinity to global phase separation. For very low electron densities the CDW instability is nesting-induced and the modulation follows the Fermi momentum kF. At higher density the instability criterion becomes independent of kF and the system may become unstable in a broad momentum range. Finally, upon filling the upper spin-orbit split band, finite momentum instabilities disappear in favor of phase separation alone. We discuss our results with regard to the inhomogeneous phases observed at the LaAlO3/SrTiO3 or LaTiO3/SrTiO3 interfaces.
A parity-breaking electronic nematic phase transition in the spin-orbit coupled metal Cd 2Re 2O 7
Harter, J. W.; Zhao, Z. Y.; Yan, J. -Q.; ...
2017-04-21
Strong electron interactions can drive metallic systems toward a variety of well-known symmetry-broken phases, but the instabilities of correlated metals with strong spin-orbit coupling have only recently begun to be explored. We uncovered a multipolar nematic phase of matter in the metallic pyrochlore Cd 2Re 2O 7 using spatially resolved second-harmonic optical anisotropy measurements. Like previously discovered electronic nematic phases, this multipolar phase spontaneously breaks rotational symmetry while preserving translational invariance. However, it has the distinguishing property of being odd under spatial inversion, which is allowed only in the presence of spin-orbit coupling. By examining the critical behavior of themore » multipolar nematic order parameter, we show that it drives the thermal phase transition near 200 kelvin in Cd 2Re 2O 7 and induces a parity-breaking lattice distortion as a secondary order.« less
Microscopic theory of longitudinal sound velocity in charge ordered manganites.
Rout, G C; Panda, S
2009-10-14
A microscopic theory of longitudinal sound velocity in a manganite system is reported here. The manganite system is described by a model Hamiltonian consisting of charge density wave (CDW) interaction in the e(g) band, an exchange interaction between spins of the itinerant e(g) band electrons and the core t(2g) electrons, and the Heisenberg interaction of the core level spins. The magnetization and the CDW order parameters are considered within mean-field approximations. The phonon Green's function was calculated by Zubarev's technique and hence the longitudinal velocity of sound was finally calculated for the manganite system. The results show that the elastic spring involved in the velocity of sound exhibits strong stiffening in the CDW phase with a decrease in temperature as observed in experiments.
Skyrmion formation and optical spin-Hall effect in an expanding coherent cloud of indirect excitons.
Vishnevsky, D V; Flayac, H; Nalitov, A V; Solnyshkov, D D; Gippius, N A; Malpuech, G
2013-06-14
We provide a theoretical description of the polarization pattern and phase singularities experimentally evidenced recently in a condensate of indirect excitons [H. High et al., Nature 483, 584 (2012)]. We show that the averaging of the electron and hole orbital motion leads to a comparable spin-orbit interaction for both types of carriers. We demonstrate that the interplay between a radial coherent flux of bright indirect excitons and the Dresselhaus spin-orbit interaction results in the formation of spin domains and of topological defects similar to Skyrmions. We reproduce qualitatively all the features of the experimental data and obtain a polarization pattern as in the optical spin-Hall effect despite the different symmetry of the spin-orbit interactions.
Detection of single electron spin resonance in a double quantum dota)
NASA Astrophysics Data System (ADS)
Koppens, F. H. L.; Buizert, C.; Vink, I. T.; Nowack, K. C.; Meunier, T.; Kouwenhoven, L. P.; Vandersypen, L. M. K.
2007-04-01
Spin-dependent transport measurements through a double quantum dot are a valuable tool for detecting both the coherent evolution of the spin state of a single electron, as well as the hybridization of two-electron spin states. In this article, we discuss a model that describes the transport cycle in this regime, including the effects of an oscillating magnetic field (causing electron spin resonance) and the effective nuclear fields on the spin states in the two dots. We numerically calculate the current flow due to the induced spin flips via electron spin resonance, and we study the detector efficiency for a range of parameters. The experimental data are compared with the model and we find a reasonable agreement.
Nuclear conversion theory: molecular hydrogen in non-magnetic insulators
NASA Astrophysics Data System (ADS)
Ilisca, Ernest; Ghiglieno, Filippo
2016-09-01
The hydrogen conversion patterns on non-magnetic solids sensitively depend upon the degree of singlet/triplet mixing in the intermediates of the catalytic reaction. Three main `symmetry-breaking' interactions are brought together. In a typical channel, the electron spin-orbit (SO) couplings introduce some magnetic excitations in the non-magnetic solid ground state. The electron spin is exchanged with a molecular one by the electric molecule-solid electron repulsion, mixing the bonding and antibonding states and affecting the molecule rotation. Finally, the magnetic hyperfine contact transfers the electron spin angular momentum to the nuclei. Two families of channels are considered and a simple criterion based on the SO coupling strength is proposed to select the most efficient one. The denoted `electronic' conversion path involves an emission of excitons that propagate and disintegrate in the bulk. In the other denoted `nuclear', the excited electron states are transients of a loop, and the electron system returns to its fundamental ground state. The described model enlarges previous studies by extending the electron basis to charge-transfer states and `continui' of band states, and focuses on the broadening of the antibonding molecular excited state by the solid conduction band that provides efficient tunnelling paths for the hydrogen conversion. After working out the general conversion algebra, the conversion rates of hydrogen on insulating and semiconductor solids are related to a few molecule-solid parameters (gap width, ionization and affinity potentials) and compared with experimental measures.
Polaron spin echo envelope modulations in an organic semiconducting polymer
Mkhitaryan, V. V.; Dobrovitski, V. V.
2017-06-01
Here, we present a theoretical analysis of the electron spin echo envelope modulation (ESEEM) spectra of polarons in semiconducting π -conjugated polymers. We show that the contact hyperfine coupling and the dipolar interaction between the polaron and the proton spins give rise to different features in the ESEEM spectra. Our theory enables direct selective probe of different groups of nuclear spins, which affect the polaron spin dynamics. Namely, we demonstrate how the signal from the distant protons (coupled to the polaron spin via dipolar interactions) can be distinguished from the signal coming from the protons residing on the polaron sitemore » (coupled to the polaron spin via contact hyperfine interaction). We propose a method for directly probing the contact hyperfine interaction, that would enable detailed study of the polaron orbital state and its immediate environment. Lastly, we also analyze the decay of the spin echo modulation, and its connection to the polaron transport.« less
Ultracoherent operation of spin qubits with superexchange coupling
NASA Astrophysics Data System (ADS)
Rančić, Marko J.; Burkard, Guido
2017-11-01
With the use of nuclear-spin-free materials such as silicon and germanium, spin-based quantum bits (qubits) have evolved to become among the most coherent systems for quantum information processing. The new frontier for spin qubits has therefore shifted to the ubiquitous charge noise and spin-orbit interaction, which are limiting the coherence times and gate fidelities of solid-state qubits. In this paper we investigate superexchange, as a means of indirect exchange interaction between two single electron spin qubits, each embedded in a single semiconductor quantum dot (QD), mediated by an intermediate, empty QD. Our results suggest the existence of "supersweet spots", in which the qubit operations implemented by superexchange interaction are simultaneously first-order-insensitive to charge noise and to errors due to spin-orbit interaction. The proposed spin-qubit architecture is scalable and within the manufacturing capabilities of semiconductor industry.
Theophilou, Iris; Lathiotakis, Nektarios N; Helbig, Nicole
2018-03-21
We investigate the structure of the one-body reduced density matrix of three electron systems, i.e., doublet and quadruplet spin configurations, corresponding to the smallest interacting system with an open-shell ground state. To this end, we use configuration interaction (CI) expansions of the exact wave function in Slater determinants built from natural orbitals in a finite dimensional Hilbert space. With the exception of maximally polarized systems, the natural orbitals of spin eigenstates are generally spin dependent, i.e., the spatial parts of the up and down natural orbitals form two different sets. A measure to quantify this spin dependence is introduced and it is shown that it varies by several orders of magnitude depending on the system. We also study the ordering issue of the spin-dependent occupation numbers which has practical implications in reduced density matrix functional theory minimization schemes, when generalized Pauli constraints (GPCs) are imposed and in the form of the CI expansion in terms of the natural orbitals. Finally, we discuss the aforementioned CI expansion when there are GPCs that are almost "pinned."
Thurber, Kent R; Tycko, Robert
2012-08-28
We present theoretical calculations of dynamic nuclear polarization (DNP) due to the cross effect in nuclear magnetic resonance under magic-angle spinning (MAS). Using a three-spin model (two electrons and one nucleus), cross effect DNP with MAS for electron spins with a large g-anisotropy can be seen as a series of spin transitions at avoided crossings of the energy levels, with varying degrees of adiabaticity. If the electron spin-lattice relaxation time T(1e) is large relative to the MAS rotation period, the cross effect can happen as two separate events: (i) partial saturation of one electron spin by the applied microwaves as one electron spin resonance (ESR) frequency crosses the microwave frequency and (ii) flip of all three spins, when the difference of the two ESR frequencies crosses the nuclear frequency, which transfers polarization to the nuclear spin if the two electron spins have different polarizations. In addition, adiabatic level crossings at which the two ESR frequencies become equal serve to maintain non-uniform saturation across the ESR line. We present analytical results based on the Landau-Zener theory of adiabatic transitions, as well as numerical quantum mechanical calculations for the evolution of the time-dependent three-spin system. These calculations provide insight into the dependence of cross effect DNP on various experimental parameters, including MAS frequency, microwave field strength, spin relaxation rates, hyperfine and electron-electron dipole coupling strengths, and the nature of the biradical dopants.
NASA Astrophysics Data System (ADS)
Wittmann, J. J.; Can, T. V.; Eckardt, M.; Harneit, W.; Griffin, R. G.; Corzilius, B.
2018-05-01
The electronic g factor carries highly useful information about the electronic structure of a paramagnetic species, such as spin-orbit coupling and dia- or paramagnetic (de-)shielding due to local fields of surrounding electron pairs. However, in many cases, a near "spin-only" case is observed, in particular for light elements, necessitating accurate and precise measurement of the g factors. Such measurement is typically impeded by a "chicken and egg situation": internal or external reference standards are used for relative comparison of electron paramagnetic resonance (EPR) Larmor frequencies. However, the g factor of the standard itself usually is subject to a significant uncertainty which directly limits the precision and/or accuracy of the sought after sample g factor. Here, we apply an EPR reference-free approach for determining the g factor of atomic nitrogen trapped within the endohedral fullerene C60:N@C60 in its polycrystalline state by measuring the 1H NMR resonance frequency of dispersing toluene at room temperature. We found a value of g = 2.00204 (4) with a finally reached relative precision of ∼20 ppm. This accurate measurement allows us to directly compare the electronic properties of N@C60 to those found in atomic nitrogen in the gas phase or trapped in other solid matrices at liquid helium temperature. We conclude that spin-orbit coupling in N@C60 at room temperature is very similar in magnitude and of same sign as found in other inert solid matrices and that interactions between the quartet spin system and the C60 molecular orbitals are thus negligible.
NASA Astrophysics Data System (ADS)
Ovchinnikov, Sergey G.; Makarov, Ilya A.; Kozlov, Peter A.
2017-03-01
In this work dependences of the electron band structure and spectral function in the HTSC cuprates on magnitude of electron-phonon interaction (EPI) and temperature are investigated. We use three-band p-d model with diagonal and offdiagonal EPI with breathing and buckling phonon mode in the frameworks of polaronic version of the generalized tight binding (GTB) method. The polaronic quasiparticle excitation in the system with EPI within this approach is formed by a hybridization of the local multiphonon Franck-Condon excitations with lower and upper Hubbard bands. Increasing EPI leads to transfer of spectral weight to high-energy multiphonon excitations and broadening of the spectral function. Temperature effects are taken into account by occupation numbers of local excited polaronic states and variations in the magnitude of spin-spin correlation functions. Increasing the temperature results in band structure reconstruction, spectral weight redistribution, broadening of the spectral function peak at the top of the valence band and the decreasing of the peak intensity. The effect of EPI with two phonon modes on the polaron spectral function is discussed.
Dodin, Dmitry V; Ivanov, Anatoly I; Burshtein, Anatoly I
2013-03-28
The magnetic field effect on the fluorescence of the photoexcited electron acceptor, (1)A∗, and the exciplex, (1)[D(+δ)A(-δ)] formed at contact of (1)A∗ with an electron donor (1)D, is theoretically explored in the framework of Integral Encounter Theory. It is assumed that the excited fluorophore is equilibrated with the exciplex that reversibly dissociates into the radical-ion pair. The magnetic field sensitive stage is the spin conversion in the resulting geminate radical-ion pair, (1, 3)[D(+)...A(-)] that proceeds due to hyperfine interaction. We confirm our earlier conclusion (obtained with a rate description of spin conversion) that in the model with a single nucleus spin 1/2 the magnitude of the Magnetic Field Effect (MFE) also vanishes in the opposite limits of low and high dielectric permittivity of the solvent. Moreover, it is shown that MFE being positive at small hyperfine interaction A, first increases with A but approaching the maximum starts to decrease and even changes the sign.
Strongly exchange-coupled triplet pairs in an organic semiconductor
NASA Astrophysics Data System (ADS)
Weiss, Leah R.; Bayliss, Sam L.; Kraffert, Felix; Thorley, Karl J.; Anthony, John E.; Bittl, Robert; Friend, Richard H.; Rao, Akshay; Greenham, Neil C.; Behrends, Jan
2017-02-01
From biological complexes to devices based on organic semiconductors, spin interactions play a key role in the function of molecular systems. For instance, triplet-pair reactions impact operation of organic light-emitting diodes as well as photovoltaic devices. Conventional models for triplet pairs assume they interact only weakly. Here, using electron spin resonance, we observe long-lived, strongly interacting triplet pairs in an organic semiconductor, generated via singlet fission. Using coherent spin manipulation of these two-triplet states, we identify exchange-coupled (spin-2) quintet complexes coexisting with weakly coupled (spin-1) triplets. We measure strongly coupled pairs with a lifetime approaching 3 μs and a spin coherence time approaching 1 μs, at 10 K. Our results pave the way for the utilization of high-spin systems in organic semiconductors.
Spin Interactions and Spin Dynamics in Electronic Nanostructures
2006-08-31
in Semiconductor Nanostructures,” D. D. Awschalom, Plenary Speaker, 36th International Symposium on Compound Semiconductors, San Diego, CA, August 25...Electrical Manipulation of Spin Orientation in Compound Semiconductors”, M. E. Flatté, W. H. Lau, C. E. Pryor, and I. Tifrea, International Symposium...on Compound Semiconductors 2003, San Diego, August 25, 2003. 73. “Spin Dynamics in Semiconductors”, M. E. Flatté, SPINTECH II: 2nd International
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jana, R. N.; Meikap, A. K.
The results of a comprehensive study of weak electron localization (WEL) and electron-electron interaction (EEI) effects in disordered V{sub 75}X{sub 25} (X = Pd, Al) alloys has been reported. The resistivity in absence of magnetic field shows a minimum at temperature T = T{sub m} and follows T{sup 1/2} law within the temperature range 5 K ≤ T ≤ T{sub m}, which suggests predominant EEI effect. Magnetoresistivity is positive due to strong spin-orbit interaction. The dephasing scattering time is dominated by the electron-phonon scattering. The electron-phonon scattering rate shows quadratic temperature dependence behavior, which is explained by the theory ofmore » incomplete dragging at the random scattering potential by phonons. The zero temperature scattering time strongly depends on the disorder and its magnitude decreases with increasing disorder.« less
NASA Astrophysics Data System (ADS)
Zhao, Hua; Meng, Wei-Feng
2017-10-01
In this paper a five layer organic electronic device with alternately placed ferromagnetic metals and organic polymers: ferromagnetic metal/organic layer/ferromagnetic metal/organic layer/ferromagnetic metal, which is injected a spin-polarized electron from outsides, is studied theoretically using one-dimensional tight binding model Hamiltonian. We calculated equilibrium state behavior after an electron with spin is injected into the organic layer of this structure, charge density distribution and spin polarization density distribution of this injected spin-polarized electron, and mainly studied possible transport behavior of the injected spin polarized electron in this multilayer structure under different external electric fields. We analyze the physical process of the injected electron in this multilayer system. It is found by our calculation that the injected spin polarized electron exists as an electron-polaron state with spin polarization in the organic layer and it can pass through the middle ferromagnetic layer from the right-hand organic layer to the left-hand organic layer by the action of increasing external electric fields, which indicates that this structure may be used as a possible spin-polarized charge electronic device and also may provide a theoretical base for the organic electronic devices and it is also found that in the boundaries between the ferromagnetic layer and the organic layer there exist induced interface local dipoles due to the external electric fields.
NASA Astrophysics Data System (ADS)
Chiu, Ying-Nan; Chiu, Lue-Yung Chow
1990-02-01
The spin-forbidden photo-ionization of diatomic molecules is proposed. Spin orbit interaction is invoked, resulting in the correction and mixing of the wave functions of different multiplicities. The rotation-electronic selection rules given by Dixit and McKoy (1986) for Hund's case a based on the conventional mechanism of electric dipole transition are rederived and expressed in a different format. This new format permits the generalization of the selection rules to other photoionization transitions caused by the magnetic dipole, the electric quadrupole, and the two- and three-photon operators. These selection rules, which are for transitions from one specific rotational level of a given Kronig reflection symmetry to another, will help understand rotational branching and the dynamics of interaction in the excited state. They will also help in the selective preparation of well-defined rovibronic states in resonant-enhanced multi-photon ionization processes.
NASA Astrophysics Data System (ADS)
Geng, Rugang; Subedi, Ram C.; Luong, Hoang M.; Pham, Minh T.; Huang, Weichuan; Li, Xiaoguang; Hong, Kunlun; Shao, Ming; Xiao, Kai; Hornak, Lawrence A.; Nguyen, Tho D.
2018-02-01
Hyperfine interaction (HFI), originating from the coupling between spins of charge carriers and nuclei, has been demonstrated to strongly influence the spin dynamics of localized charges in organic semiconductors. Nevertheless, the role of charge localization on the HFI strength in organic thin films has not yet been experimentally investigated. In this study, the statistical relation hypothesis that the effective HFI of holes in regioregular poly(3-hexylthiophene) (P3HT) is proportional to 1 /N0.5 has been examined, where N is the number of the random nuclear spins within the envelope of the hole wave function. First, by studying magnetoconductance in hole-only devices made by isotope-labeled P3HT we verify that HFI is indeed the dominant spin interaction in P3HT. Second, assuming that holes delocalize fully over the P3HT polycrystalline domain, the strength of HFI is experimentally demonstrated to be proportional to 1 /N0.52 in excellent agreement with the statistical relation. Third, the HFI of electrons in P3HT is about 3 times stronger than that of holes due to the stronger localization of the electrons. Finally, the effective HFI in organic light emitting diodes is found to be a superposition of effective electron and hole HFI. Such a statistical relation may be generally applied to other semiconducting polymers. This Letter may provide great benefits for organic optoelectronics, chemical reaction kinetics, and magnetoreception in biology.
Geng, Rugang; Subedi, Ram C; Luong, Hoang M; Pham, Minh T; Huang, Weichuan; Li, Xiaoguang; Hong, Kunlun; Shao, Ming; Xiao, Kai; Hornak, Lawrence A; Nguyen, Tho D
2018-02-23
Hyperfine interaction (HFI), originating from the coupling between spins of charge carriers and nuclei, has been demonstrated to strongly influence the spin dynamics of localized charges in organic semiconductors. Nevertheless, the role of charge localization on the HFI strength in organic thin films has not yet been experimentally investigated. In this study, the statistical relation hypothesis that the effective HFI of holes in regioregular poly(3-hexylthiophene) (P3HT) is proportional to 1/N^{0.5} has been examined, where N is the number of the random nuclear spins within the envelope of the hole wave function. First, by studying magnetoconductance in hole-only devices made by isotope-labeled P3HT we verify that HFI is indeed the dominant spin interaction in P3HT. Second, assuming that holes delocalize fully over the P3HT polycrystalline domain, the strength of HFI is experimentally demonstrated to be proportional to 1/N^{0.52} in excellent agreement with the statistical relation. Third, the HFI of electrons in P3HT is about 3 times stronger than that of holes due to the stronger localization of the electrons. Finally, the effective HFI in organic light emitting diodes is found to be a superposition of effective electron and hole HFI. Such a statistical relation may be generally applied to other semiconducting polymers. This Letter may provide great benefits for organic optoelectronics, chemical reaction kinetics, and magnetoreception in biology.
Ji, T T; Bu, N; Chen, F J; Tao, Y C; Wang, J
2016-04-14
For Entangled electron pairs superconducting spintronics, there exist two drawbacks in existing proposals of generating entangled electron pairs. One is that the two kinds of different spin entangled electron pairs mix with each other. And the other is a low efficiency of entanglement production. Herein, we report the spin entanglement state of the ferromagnetic insulator (FI)/s-wave superconductor/FI structure on a narrow quantum spin Hall insulator strip. It is shown that not only the high production of entangled electron pairs in wider energy range, but also the perfect spin filtering of entangled electron pairs in the context of no highly spin-polarized electrons, can be obtained. Moreover, the currents for the left and right leads in the antiferromagnetic alignment both can be zero, indicating 100% tunnelling magnetoresistance with highly magnetic storage efficiency. Therefore, the spin filtering for entangled electron pairs and magnetic storage with high efficiencies coexist in one setup. The results may be experimentally demonstrated by measuring the tunnelling conductance and the noise power.
Usharani, Dandamudi; Janardanan, Deepa; Li, Chunsen; Shaik, Sason
2013-02-19
Over the past decades metalloenzymes and their synthetic models have emerged as an area of increasing research interest. The metalloenzymes and their synthetic models oxidize organic molecules using oxometal complexes (OMCs), especially oxoiron(IV)-based ones. Theoretical studies have helped researchers to characterize the active species and to resolve mechanistic issues. This activity has generated massive amounts of data on the relationship between the reactivity of OMCs and the transition metal's identity, oxidation state, ligand sphere, and spin state. Theoretical studies have also produced information on transition state (TS) structures, reaction intermediates, barriers, and rate-equilibrium relationships. For example, the experimental-theoretical interplay has revealed that nonheme enzymes carry out H-abstraction from strong C-H bonds using high-spin (S = 2) oxoiron(IV) species with four unpaired electrons on the iron center. However, other reagents with higher spin states and more unpaired electrons on the metal are not as reactive. Still other reagents carry out these transformations using lower spin states with fewer unpaired electrons on the metal. The TS structures for these reactions exhibit structural selectivity depending on the reactive spin states. The barriers and thermodynamic driving forces of the reactions also depend on the spin state. H-Abstraction is preferred over the thermodynamically more favorable concerted insertion into C-H bonds. Currently, there is no unified theoretical framework that explains the totality of these fascinating trends. This Account aims to unify this rich chemistry and understand the role of unpaired electrons on chemical reactivity. We show that during an oxidative step the d-orbital block of the transition metal is enriched by one electron through proton-coupled electron transfer (PCET). That single electron elicits variable exchange interactions on the metal, which in turn depend critically on the number of unpaired electrons on the metal center. Thus, we introduce the exchange-enhanced reactivity (EER) principle, which predicts the preferred spin state during oxidation reactions, the dependence of the barrier on the number of unpaired electrons in the TS, and the dependence of the deformation energy of the reactants on the spin state. We complement EER with orbital-selection rules, which predict the structure of the preferred TS and provide a handy theory of bioinorganic oxidative reactions. These rules show how EER provides a Hund's Rule for chemical reactivity: EER controls the reactivity landscape for a great variety of transition-metal complexes and substrates. Among many reactivity patterns explained, EER rationalizes the abundance of high-spin oxoiron(IV) complexes in enzymes that carry out bond activation of the strongest bonds. The concepts used in this Account might also be applicable in other areas such as in f-block chemistry and excited-state reactivity of 4d and 5d OMCs.
Angular dependence of spin-orbit spin-transfer torques
NASA Astrophysics Data System (ADS)
Lee, Ki-Seung; Go, Dongwook; Manchon, Aurélien; Haney, Paul M.; Stiles, M. D.; Lee, Hyun-Woo; Lee, Kyung-Jin
2015-04-01
In ferromagnet/heavy-metal bilayers, an in-plane current gives rise to spin-orbit spin-transfer torque, which is usually decomposed into fieldlike and dampinglike torques. For two-dimensional free-electron and tight-binding models with Rashba spin-orbit coupling, the fieldlike torque acquires nontrivial dependence on the magnetization direction when the Rashba spin-orbit coupling becomes comparable to the exchange interaction. This nontrivial angular dependence of the fieldlike torque is related to the Fermi surface distortion, determined by the ratio of the Rashba spin-orbit coupling to the exchange interaction. On the other hand, the dampinglike torque acquires nontrivial angular dependence when the Rashba spin-orbit coupling is comparable to or stronger than the exchange interaction. It is related to the combined effects of the Fermi surface distortion and the Fermi sea contribution. The angular dependence is consistent with experimental observations and can be important to understand magnetization dynamics induced by spin-orbit spin-transfer torques.
Theoretical studies of the electronic spectrum of tellurium monosulfide.
Chattopadhyaya, Surya; Nath, Abhijit; Das, Kalyan Kumar
2013-08-01
Ab initio based multireference singles and doubles configuration interaction (MRDCI) study including spin-orbit coupling is carried out to explore the electronic structure and spectroscopic properties of tellurium monosulfide (TeS) molecule by employing relativistic effective core potentials (RECP) and suitable Gaussian basis sets of the constituent atoms. Potential energy curves correlating with the lowest and second dissociation limit are constructed and spectroscopic constants (T(e), r(e), and ω(e)) of several low-lying bound Λ-S electronic states up to 3.68 eV of energy are computed. The binding energies and electric dipole moments (μ(e)) of the ground and the low-lying excited Λ-S states are also computed. The effects of the spin-orbit coupling on the electronic spectrum of the species are studied in details and compared with the available data. The transition probabilities of some dipole-allowed and spin-forbidden transitions are computed and radiative lifetimes of some excited states at lowest vibrational level are estimated from the transition probability data. Copyright © 2013 Elsevier B.V. All rights reserved.
Theoretical Characterization of Charge Transport in Chromia (α-Cr2O3)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iordanova, Nellie I.; Dupuis, Michel; Rosso, Kevin M.
2005-08-15
Transport of conduction electrons and holes through the lattice of ?-Cr2O3 (chromia) is modeled as a valence alternation of chromium cations using ab initio electronic structure calculations and electron transfer theory. In the context of the small polaron model, a cluster approach was used to compute quantities controlling the mobility of localized electrons and holes, i.e. the reorganization energy and the electronic coupling matrix element that enter Marcus? theory. The calculation of the electronic coupling followed the Generalized Mulliken-Hush approach and the quasi-diabatic method using the complete active space self-consistent field (CASSCF) method. Our findings indicate that hole mobility ismore » more than three orders of magnitude larger than electron mobility in both (001) and [001] lattice directions. The difference arises mainly from the larger internal reorganization energy calculated for electron transport relative to hole transport processes while electronic couplings have similar magnitudes. The much larger hole mobility vs electron mobility in ?-Cr2O3 is in contrast to similar hole and electron mobility in hematite ?-Fe2O3 previously calculated. Our calculations also indicate that the electronic coupling for all charge transfer processes of interest is smaller than for the corresponding processes in hematite. This variation is attributed to weaker interaction between the metal 3d states and the O(2p) states in chromia than in hematite, leading to smaller overlap between the charge transfer donor and acceptor wavefunctions and smaller super-exchange coupling in chromia. Nevertheless, the weaker coupling in chromia is still sufficiently large to suggest that charge transport processes in chromia are adiabatic in nature. The electronic coupling is found to depend on both the superexchange interaction through the bridging oxygen atoms and the d-shell electron spin coupling within the Cr-Cr donor-acceptor pair, while the reorganization energy is essentially independent of the electron spin coupling.« less
Theoretical characterization of charge transport in chromia (α-Cr2O3)
NASA Astrophysics Data System (ADS)
Iordanova, N.; Dupuis, M.; Rosso, K. M.
2005-08-01
Transport of conduction electrons and holes through the lattice of α-Cr2O3 (chromia) is modeled as a valence alternation of chromium cations using ab initio electronic structure calculations and electron-transfer theory. In the context of the small polaron model, a cluster approach was used to compute quantities controlling the mobility of localized electrons and holes, i.e., the reorganization energy and the electronic coupling matrix element that enter Marcus' theory. The calculation of the electronic coupling followed the generalized Mulliken-Hush approach using the complete active space self-consistent-field (CASSCF) method and the quasidiabatic method. Our findings indicate that hole mobility is more than three orders of magnitude larger than electron mobility in both (001) and [001] lattice directions. The difference arises mainly from the larger internal reorganization energy calculated for electron-transport relative to hole-transport processes while electronic couplings have similar magnitudes. The much larger hole mobility versus electron mobility in α-Cr2O3 is in contrast to similar hole and electron mobilities in hematite α-Fe2O3 previously calculated. Our calculations also indicate that the electronic coupling for all charge-transfer processes of interest is smaller than for the corresponding processes in hematite. This variation is attributed to the weaker interaction between the metal 3d states and the O(2p ) states in chromia than in hematite, leading to a smaller overlap between the charge-transfer donor and acceptor wave functions and smaller superexchange coupling in chromia. Nevertheless, the weaker coupling in chromia is still sufficiently large to suggest that charge-transport processes in chromia are adiabatic in nature. The electronic coupling is found to depend on both the superexchange interaction through the bridging oxygen atoms and the d-shell electron-spin coupling within the Cr-Cr donor-acceptor pair, while the reorganization energy is essentially independent of the electron-spin coupling.
Optical Control of a Nuclear Spin in Diamond
NASA Astrophysics Data System (ADS)
Levonian, David; Goldman, Michael; Degreve, Kristiaan; Choi, Soonwon; Markham, Matthew; Twitchen, Daniel; Lukin, Mikhail
2017-04-01
The nitrogen-vacancy (NV) center in diamond has emerged as a promising candidate for quantum information and quantum communication applications. The NV center's potential as a quantum register is due to the long coherence time of its spin-triplet electronic ground state, the optical addressability of its electronic transitions, and the presence of nearby ancillary nuclear spins. The NV center's electronic spin and nearby nuclear spins are most commonly manipulated using applied microwave and RF fields, but this approach would be difficult to scale up for use with an array of NV-based quantum registers. In this context, all-optical manipulation would be more scalable, technically simpler, and potentially faster. Although all-optical control of the electronic spin has been demonstrated, it is an outstanding problem for the nuclear spins. Here, we use an optical Raman scheme to implement nuclear spin-specific control of the electronic spin and coherent control of the 14N nuclear spin.
Chattopadhyaya, Surya; Nath, Abhijit; Das, Kalyan Kumar
2014-04-24
Ab initio based relativistic configuration interaction calculations have been performed to study the electronic states and spectroscopic properties of tellurium selenide (TeSe) - the heaviest heteronuclear diatomic group 16-16 molecule. Potential energy curves of several spin-excluded (Λ-S) electronic states of TeSe have been constructed and spectroscopic constants of low-lying bound Λ-S states within 3.85 eV are reported in the first stage of calculations. The X(3)Σ(-), a(1)Δ and b(1)Σ(+) are found as the ground, first excited and second excited state, respectively, at the Λ-S level and all these three states are mainly dominated by …π(4)π(*2) configuration. The computed ground state dissociation energy is in very good agreement with the experimental results. In the next stage of calculations, effects of spin-orbit coupling on the potential energy curves and spectroscopic properties of the species are investigated in details and compared with the existing experimental results. After inclusion of spin-orbit coupling the X(3)(1)Σ(-)(0(+)) is found as the ground-state spin component of TeSe. The computed spin-orbit splitting between two components of X(3)Σ(-) state is 1285 cm(-1). Also, significant amount of spin-orbit splitting are found between spin-orbit components (Ω-components) of several other excited states. Transition moments of some important spin-allowed and spin-forbidden transitions are calculated from configuration interaction wave functions. The spin-allowed transition B(3)Σ(-)-X(3)Σ(-) and spin-forbidden transition b(1)Σ(+)(0(+))-X(3)(1)Σ(-)(0(+)) are found to be the strongest in their respective categories. Electric dipole moments of all the bound Λ-S states along with those of the two Ω-components of X(3)Σ(-) are also calculated in the present study. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Mingxing; Li, Ling; Mukherjee, Rupam
The spin on a ferromagnetic Co surface can interact with the asymmetric orbital on an organometal halide perovskite surface, leading to an anisotropic magnetodielectric effect. Here, this study presents an opportunity to integrate ferromagnetic and semiconducting properties through the Rasbha effect for achieving spin–dependent electronic functionalities based on thin–film design.
Li, Mingxing; Li, Ling; Mukherjee, Rupam; ...
2016-12-05
The spin on a ferromagnetic Co surface can interact with the asymmetric orbital on an organometal halide perovskite surface, leading to an anisotropic magnetodielectric effect. Here, this study presents an opportunity to integrate ferromagnetic and semiconducting properties through the Rasbha effect for achieving spin–dependent electronic functionalities based on thin–film design.
Design considerations for multielectron double quantum dot qubits in silicon
NASA Astrophysics Data System (ADS)
Nielsen, Erik; Barnes, Edwin; Kestner, Jason
2014-03-01
Solid state double quantum dot (DQD) spin qubits can be created by confining two electrons to a DQD potential. We present results showing the viability and potential advantages of creating a DQD spin qubit with greater than two electrons, and which suggest that silicon devices which could realize these advantages are experimentally possible. Our analysis of a six-electron DQD uses full configuration interaction methods and shows an isolated qubit space in regimes which 3D quantum device simulations indicate are accessible experimentally. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Tunnel based spin injection devices for semiconductor spintronics
NASA Astrophysics Data System (ADS)
Jiang, Xin
This dissertation summarizes the work on spin-dependent electron transport and spin injection in tunnel based spintronic devices. In particular, it focuses on a novel three terminal hot electron device combining ferromagnetic metals and semiconductors---the magnetic tunnel transistor (MTT). The MTT has extremely high magnetic field sensitivity and is a useful tool to explore spin-dependent electron transport in metals, semiconductors, and at their interfaces over a wide energy range. In Chap. 1, the basic concept and fabrication of the MTT are discussed. Two types of MTTs, with ferromagnetic single and spin-valve base layers, respectively, are introduced and compared. In the following chapters, the transport properties of the MTT are discussed in detail, including the spin-dependent hot electron attenuation lengths in CoFe and NiFe thin films on GaAs (Chap. 2), the bias voltage dependence of the magneto-current (Chap. 3), the giant magneto-current effect in MTTs with a spin-valve base (Chap. 4), and the influence of non-magnetic seed layers on magneto-electronic properties of MTTs with a Si collector (Chap. 5). Chap. 6 concentrates on electrical injection of spin-polarized electrons into semiconductors, which is an essential ingredient in semiconductor spintronics. Two types of spin injectors are discussed: an MTT injector and a CoFe/MgO tunnel injector. The spin polarization of the injected electron current is detected optically by measuring the circular polarization of electroluminescence from a quantum well light emitting diode. Using an MTT injector a spin polarization of ˜10% is found for injection electron energy of ˜2 eV at 1.4K. This moderate spin polarization is most likely limited by significant electron spin relaxation at high energy. Much higher spin injection efficiency is obtained by using a CoFe/MgO tunnel injector with spin polarization values of ˜50% at 100K. The temperature and bias dependence of the electroluminescence polarization provides insight into spin relaxation mechanisms within the semiconductor heterostructure.
Fast Single-Shot Hold Spin Readout in Double Quantum Dots
NASA Astrophysics Data System (ADS)
Bogan, Alexander; Studenikin, Sergei; Korkusinski, Marek; Aers, Geof; Gaudreau, Louis; Zawadzki, Piotr; Sachrajda, Andy; Tracy, Lisa; Reno, John; Hargett, Terry
Solid state spin qubits in quantum dots hold promise as scalable, high-density qubits in quantum information processing architectures. While much of the experimental investigation of these devices and their physics has focused on confined electron spins, hole spins in III-V semiconductors are attractive alternatives to electrons due to the reduced hyperfine coupling between the spin and the incoherent nuclear environment. In this talk, we will discuss a measurement protocol of the hole spin relaxation time T1 in a gated lateral GaAs double quantum dot tuned to the one and two-hole regimes, as well as a new technique for single-shot projective measurement of a single spin in tens of nanoseconds or less. The technique makes use of fast non-spin-conserving inter-dot transitions permitted by strong spin-orbit interactions for holes, as well as the latching of the charge state of the second quantum dot for enhanced sensitivity. This technique allows a direct measurement of the single spin relaxation time on time-scales set by physical device rather than by limitations of the measurement circuit.
Effects of strong interactions in a half-metallic magnet: A determinant quantum Monte Carlo study
Jiang, M.; Pickett, W. E.; Scalettar, R. T.
2013-04-03
Understanding the effects of electron-electron interactions in half-metallic magnets (HMs), which have band structures with one gapped spin channel and one metallic channel, poses fundamental theoretical issues as well as having importance for their potential applications. Here we use determinant quantum Monte Carlo to study the impacts of an on-site Hubbard interaction U, finite temperature, and an external (Zeeman) magnetic field on a bilayer tight-binding model which is a half-metal in the absence of interactions, by calculating the spectral density, conductivity, spin polarization of carriers, and local magnetic properties. We quantify the effect of U on the degree of thermalmore » depolarization, and follow relative band shifts and monitor when significant gap states appear, each of which can degrade the HM character. For this model, Zeeman coupling induces, at fixed particle number, two successive transitions: compensated half-metal with spin-down band gap → metallic ferromagnet → saturated ferromagnetic insulator. However, over much of the more relevant parameter regime, the half-metallic properties are rather robust to U.« less
Reduced-Density-Matrix Description of Decoherence and Relaxation Processes for Electron-Spin Systems
NASA Astrophysics Data System (ADS)
Jacobs, Verne
2017-04-01
Electron-spin systems are investigated using a reduced-density-matrix description. Applications of interest include trapped atomic systems in optical lattices, semiconductor quantum dots, and vacancy defect centers in solids. Complimentary time-domain (equation-of-motion) and frequency-domain (resolvent-operator) formulations are self-consistently developed. The general non-perturbative and non-Markovian formulations provide a fundamental framework for systematic evaluations of corrections to the standard Born (lowest-order-perturbation) and Markov (short-memory-time) approximations. Particular attention is given to decoherence and relaxation processes, as well as spectral-line broadening phenomena, that are induced by interactions with photons, phonons, nuclear spins, and external electric and magnetic fields. These processes are treated either as coherent interactions or as environmental interactions. The environmental interactions are incorporated by means of the general expressions derived for the time-domain and frequency-domain Liouville-space self-energy operators, for which the tetradic-matrix elements are explicitly evaluated in the diagonal-resolvent, lowest-order, and Markov (short-memory time) approximations. Work supported by the Office of Naval Research through the Basic Research Program at The Naval Research Laboratory.
NASA Astrophysics Data System (ADS)
Das, Santanu; Choudhary, Kamal; Chernatynskiy, Aleksandr; Choi Yim, Haein; Bandyopadhyay, Asis K.; Mukherjee, Sundeep
2016-06-01
High-performance magnetic materials have immense industrial and scientific importance in wide-ranging electronic, electromechanical, and medical device technologies. Metallic glasses with a fully amorphous structure are particularly suited for advanced soft-magnetic applications. However, fundamental scientific understanding is lacking for the spin-exchange interaction between metal and metalloid atoms, which typically constitute a metallic glass. Using an integrated experimental and molecular dynamics approach, we demonstrate the mechanism of electron interaction between transition metals and metalloids. Spin-exchange interactions were investigated for a Fe-Co metallic glass system of composition [(Co1-x Fe x )0.75B0.2Si0.05]96Cr4. The saturation magnetization increased with higher Fe concentration, but the trend significantly deviated from simple rule of mixtures. Ab initio molecular dynamics simulation was used to identify the ferromagnetic/anti-ferromagnetic interaction between the transition metals and metalloids. The overlapping band-structure and density of states represent ‘Stoner type’ magnetization for the amorphous alloys in contrast to ‘Heisenberg type’ in crystalline iron. The enhancement of magnetization by increasing iron was attributed to the interaction between Fe 3d and B 2p bands, which was further validated by valence-band study.
Spin-orbit interaction of light on the surface of atomically thin crystals
NASA Astrophysics Data System (ADS)
Zhou, Junxiao; Chen, Shizhen; Zhang, Wenshuai; Luo, Hailu; Wen, Shuangchun
2017-09-01
Two-dimensional (2D) atomic crystals have extraordinary electronic and photonic properties and hold great promise in the applications of photonic and optoelectronics. Here, we review some of our works about the spin-orbit interaction of light on the surface of 2D atomic crystals. First, we propose a general model to describe the spin-orbit interaction of light of the 2D free standing atomic crystal, and find that it is not necessary to involve the effective refractive index to describe the spin-orbit interaction. By developing the quantum weak measurements, we detect the spin-orbit interaction of light in 2D atomic crystals, which can act as a simple method for defining the layer numbers of graphene. Moreover, we find the transverse spin-dependent splitting in the photonic spin Hall effect exhibits a quantized behavior. Furthermore, the spin-orbit interaction of light for the case of air-topological insulator interface can be routed by adjusting the strength of the axion coupling. These basic finding may enhance the comprehension of the spin-orbit interaction, and find the important application in optoelectronic.
High-efficiency optical pumping of nuclear polarization in a GaAs quantum well
NASA Astrophysics Data System (ADS)
Mocek, R. W.; Korenev, V. L.; Bayer, M.; Kotur, M.; Dzhioev, R. I.; Tolmachev, D. O.; Cascio, G.; Kavokin, K. V.; Suter, D.
2017-11-01
The dynamic polarization of nuclear spins by photoexcited electrons is studied in a high quality GaAs/AlGaAs quantum well. We find a surprisingly high efficiency of the spin transfer from the electrons to the nuclei as reflected by a maximum nuclear field of 0.9 T in a tilted external magnetic field of 1 T strength only. This high efficiency is due to a low leakage of spin out of the polarized nuclear system, because mechanisms of spin relaxation other than the hyperfine interaction are strongly suppressed, leading to a long nuclear relaxation time of up to 1000 s. A key ingredient to that end is the low impurity concentration inside the heterostructure, while the electrostatic potential from charged impurities in the surrounding barriers becomes screened through illumination by which the spin relaxation time is increased compared to keeping the system in the dark. This finding indicates a strategy for obtaining high nuclear spin polarization as required for long-lasting carrier spin coherence.
Highly selective detection of individual nuclear spins with rotary echo on an electron spin probe
Mkhitaryan, V. V.; Jelezko, F.; Dobrovitski, V. V.
2015-10-26
We consider an electronic spin, such as a nitrogen-vacancy center in diamond, weakly coupled to a large number of nuclear spins, and subjected to the Rabi driving with a periodically alternating phase. We show that by switching the driving phase synchronously with the precession of a given nuclear spin, the interaction to this spin is selectively enhanced, while the rest of the bath remains decoupled. The enhancement is of resonant character. The key feature of the suggested scheme is that the width of the resonance is adjustable, and can be greatly decreased by increasing the driving strength. Thus, the resonancemore » can be significantly narrowed, by a factor of 10–100 in comparison with the existing detection methods. Significant improvement in selectivity is explained analytically and confirmed by direct numerical many-spin simulations. As a result, the method can be applied to a wide range of solid-state systems.« less
High-fidelity spin entanglement using optimal control.
Dolde, Florian; Bergholm, Ville; Wang, Ya; Jakobi, Ingmar; Naydenov, Boris; Pezzagna, Sébastien; Meijer, Jan; Jelezko, Fedor; Neumann, Philipp; Schulte-Herbrüggen, Thomas; Biamonte, Jacob; Wrachtrup, Jörg
2014-02-28
Precise control of quantum systems is of fundamental importance in quantum information processing, quantum metrology and high-resolution spectroscopy. When scaling up quantum registers, several challenges arise: individual addressing of qubits while suppressing cross-talk, entangling distant nodes and decoupling unwanted interactions. Here we experimentally demonstrate optimal control of a prototype spin qubit system consisting of two proximal nitrogen-vacancy centres in diamond. Using engineered microwave pulses, we demonstrate single electron spin operations with a fidelity F≈0.99. With additional dynamical decoupling techniques, we further realize high-quality, on-demand entangled states between two electron spins with F>0.82, mostly limited by the coherence time and imperfect initialization. Crosstalk in a crowded spectrum and unwanted dipolar couplings are simultaneously eliminated to a high extent. Finally, by high-fidelity entanglement swapping to nuclear spin quantum memory, we demonstrate nuclear spin entanglement over a length scale of 25 nm. This experiment underlines the importance of optimal control for scalable room temperature spin-based quantum information devices.
Hot Electron Injection into Uniaxially Strained Silicon
NASA Astrophysics Data System (ADS)
Kim, Hyun Soo
In semiconductor spintronics, silicon attracts great attention due to the long electron spin lifetime. Silicon is also one of the most commonly used semiconductor in microelectronics industry. The spin relaxation process of diamond crystal structure such as silicon is dominant by Elliot-Yafet mechanism. Yafet shows that intravalley scattering process is dominant. The conduction electron spin lifetime measured by electron spin resonance measurement and electronic measurement using ballistic hot electron method well agrees with Yafet's theory. However, the recent theory predicts a strong contribution of intervalley scattering process such as f-process in silicon. The conduction band minimum is close the Brillouin zone edge, X point which causes strong spin mixing at the conduction band. A recent experiment of electric field-induced hot electron spin relaxation also shows the strong effect of f-process in silicon. In uniaxially strained silicon along crystal axis [100], the suppression of f-process is predicted which leads to enhance electron spin lifetime. By inducing a change in crystal structure due to uniaxial strain, the six fold degeneracy becomes two fold degeneracy, which is valley splitting. As the valley splitting increases, intervalley scattering is reduced. A recent theory predicts 4 times longer electron spin lifetime in 0.5% uniaxially strained silicon. In this thesis, we demonstrate ballistic hot electron injection into silicon under various uniaxial strain. Spin polarized hot electron injection under strain is experimentally one of the most challenging part to measure conduction electron spin lifetime in silicon. Hot electron injection adopts tunnel junction which is a thin oxide layer between two conducting materials. Tunnel barrier, which is an oxide layer, is only 4 ˜ 5 nm thick. Also, two conducting materials are only tens of nanometer. Therefore, under high pressure to apply 0.5% strain on silicon, thin films on silicon substrate can be easily destroyed. In order to confirm the performance of tunnel junction, we use tunnel magnetoresistance(TMR). TMR consists of two kinds of ferromagnetic materials and an oxide layer as tunnel barrier in order to measure spin valve effect. Using silicon as a collector with Schottky barrier interface between metal and silicon, ballistic hot spin polarized electron injection into silicon is demonstrated. We also observed change of coercive field and magnetoresistance due to modification of local states in ferromagnetic materials and surface states at the interface between metal and silicon due to strain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laguna-Marco, M. A.; Kayser, P.; Alonso, J. A.
2015-06-01
Element- and orbital-selective x-ray absorption and magnetic circular dichroism measurements are carried out to probe the electronic structure and magnetism of Ir 5d electronic states in double perovskite Sr2MIrO6 (M = Mg, Ca, Sc, Ti, Ni, Fe, Zn, In) and La2NiIrO6 compounds. All the studied systems present a significant influence of spin-orbit interactions in the electronic ground state. In addition, we find that the Ir 5d local magnetic moment shows different character depending on the oxidation state despite the net magnetization being similar for all the compounds. Ir carries an orbital contribution comparable to the spin contribution for Ir4+ (5d(5))more » and Ir5+ (5d(4)) oxides, whereas the orbital contribution is quenched for Ir6+ (5d(3)) samples. Incorporation of a magnetic 3d atom allows getting insight into the magnetic coupling between 5d and 3d transition metals. Together with previous susceptibility and neutron diffractionmeasurements, the results indicate that Ir carries a significant local magnetic moment even in samples without a 3d metal. The size of the (small) net magnetization of these compounds is a result of predominant antiferromagnetic interactions between local moments coupled with structural details of each perovskite structure« less
Electron correlation by polarization of interacting densities
NASA Astrophysics Data System (ADS)
Whitten, Jerry L.
2017-02-01
Coulomb interactions that occur in electronic structure calculations are correlated by allowing basis function components of the interacting densities to polarize dynamically, thereby reducing the magnitude of the interaction. Exchange integrals of molecular orbitals are not correlated. The modified Coulomb interactions are used in single-determinant or configuration interaction calculations. The objective is to account for dynamical correlation effects without explicitly introducing higher spherical harmonic functions into the molecular orbital basis. Molecular orbital densities are decomposed into a distribution of spherical components that conserve the charge and each of the interacting components is considered as a two-electron wavefunction embedded in the system acted on by an average field Hamiltonian plus r12-1. A method of avoiding redundancy is described. Applications to atoms, negative ions, and molecules representing different types of bonding and spin states are discussed.
A new spin on electron liquids: Phenomena in systems with spin-orbit coupling
NASA Astrophysics Data System (ADS)
Bernevig, B. Andrei
Conventional microelectronic devices are based on the ability to store and control the flow of electronic charge. Spin-based electronics promises a radical alternative, offering the possibility of logic operations with much lower power consumption than equivalent charge-based logic operations. Our research suggests that spin transport is fundamentally different from the transport of charge. The generalized Ohm's law that governs the flow of spins indicates that the generation of spin current by an electric field can be reversible and non-dissipative. Spin-orbit coupling and spin currents appear in many other seemingly unrelated areas of physics. Spin currents are as fundamental in theoretical physics as charge currents. In strongly correlated systems such as spin-chains, one can write down the Hamiltonian as a spin-current - spin-current interaction. The research presented here shows that the fractionalized excitations of one-dimensional spin chains are gapless and carry spin current. We present the most interesting example of such a chain, the Haldane-Shastry spin chain, which is exactly solvable in terms of real-space wavefunctions. Spin-orbit coupling can be found in high-energy physics, hidden under a different name: non-trivial fibrations. Particles moving in a space which is non-trivially related to an (iso)spin space acquire a gauge connection (the condensed-matter equivalent of a Berry phase) which can be either abelian or non-abelian. In most cases, the consequences of such gauge connection are far-reaching. We present a problem where particles move on an 8-dimensional manifold and posses an isospin space with is a 7-sphere S 7. The non-trivial isospin space gives the Hamiltonian SO (8) landau-level structure, and the system exhibits a higher-dimensional Quantum Hall Effect.
The electron-spin--nuclear-spin interaction studied by polarized neutron scattering.
Stuhrmann, Heinrich B
2007-11-01
Dynamic nuclear spin polarization (DNP) is mediated by the dipolar interaction of paramagnetic centres with nuclear spins. This process is most likely to occur near paramagnetic centres at an angle close to 45 degrees with respect to the direction of the external magnetic field. The resulting distribution of polarized nuclear spins leads to an anisotropy of the polarized neutron scattering pattern, even with randomly oriented radical molecules. The corresponding cross section of polarized coherent neutron scattering in terms of a multipole expansion is derived for radical molecules in solution. An application using data of time-resolved polarized neutron scattering from an organic chromium(V) molecule is tested.
ESR imaging investigations of two-phase systems.
Herrmann, Werner; Stösser, Reinhard; Borchert, Hans-Hubert
2007-06-01
The possibilities of electron spin resonance (ESR) and electron spin resonance imaging (ESRI) for investigating the properties of the spin probes TEMPO and TEMPOL in two-phase systems have been examined in the systems water/n-octanol, Miglyol/Miglyol, and Precirol/Miglyol. Phases and regions of the phase boundary could be mapped successfully by means of the isotropic hyperfine coupling constants, and, moreover, the quantification of rotational and lateral diffusion of the spin probes was possible. For the quantitative treatment of the micropolarity, a simplified empirical model was established on the basis of the Nernst distribution and the experimentally determined isotropic hyperfine coupling constants. The model does not only describe the summarized micropolarities of coexisting phases, but also the region of the phase boundary, where solvent molecules of different polarities and tendencies to form hydrogen bonds compete to interact with the NO group of the spin probe. Copyright 2007 John Wiley & Sons, Ltd.
Landau-Zener-Stückelberg-Majorana Interferometry of a Single Hole
NASA Astrophysics Data System (ADS)
Bogan, Alex; Studenikin, Sergei; Korkusinski, Marek; Gaudreau, Louis; Zawadzki, Piotr; Sachrajda, Andy S.; Tracy, Lisa; Reno, John; Hargett, Terry
2018-05-01
We perform Landau-Zener-Stückelberg-Majorana (LZSM) spectroscopy on a system with strong spin-orbit interaction (SOI), realized as a single hole confined in a gated double quantum dot. Analogous to electron systems, at a magnetic field B =0 and high modulation frequencies, we observe photon-assisted tunneling between dots, which smoothly evolves into the typical LZSM funnel-shaped interference pattern as the frequency is decreased. In contrast to electrons, the SOI enables an additional, efficient spin-flip interdot tunneling channel, introducing a distinct interference pattern at finite B . Magnetotransport spectra at low-frequency LZSM driving show the two channels to be equally coherent. High-frequency LZSM driving reveals complex photon-assisted tunneling pathways, both spin conserving and spin flip, which form closed loops at critical magnetic fields. In one such loop, an arbitrary hole spin state is inverted, opening the way toward its all-electrical manipulation.
NASA Astrophysics Data System (ADS)
Bhat, Tahir Mohiuddin; Gupta, Dinesh C.
2017-08-01
The structural, electronic, magnetic and transport properties of a new quaternary Heusler alloy CoMnVAs have been investigated by employing generalized gradient approximation (GGA), modified Becke-Johnson (mBJ) and GGA with Hubbard U correction (GGA + U). The alloy is energetically more stable in ferromagnetic Y1 type structure. Elastic parameters reveal high anisotropy and ductile nature of the material. CoMnVAs shows half-metallic ferromagnet character with 100% spin polarization at Fermi level with band gap of 0.55 eV in the minority spin state. The alloy also possesses high electrical conductivity and Seebeck coefficients with 15 μVK-1 at room temperature, achieving a figure of merit of 0.65 at high temperatures. The high degree of ductility, 100% spin polarization and large Seebeck coefficient, makes it an attractive candidate to be used in spin voltage generators and thermoelectric materials.
NASA Astrophysics Data System (ADS)
Li, Shiqi; Sarachik, Myriam
We compare the resistivity of the dilute, strongly-interacting 2D electron system in the insulating phase of a silicon MOSFET for unpolarized electrons in the absence of magnetic field and in the presence of an in-plane magnetic field sufficient to fully polarize the electrons. In both cases the resistivity obeys Efros-Shklovskii variable range hopping ρ (T) =ρ0exp [(TES / T) 1 / 2 ] , with TES and 1 /ρ0 mapping onto each other provided one applies a shift reported earlier of the critical density nc with magnetic field: the transport properties of the insulator are the same for unpolarized and fully polarized electron spins. Interestingly, the parameters TES and 1 /ρ0 =σ0 are consistent with critical behavior approaching a metal-insulator transition. This work was supported by the National Science Foundation Grant DMR-1309008 and the Binational Science Foundation Grant 2012210.
Theory of superconductivity and spin excitations in cuprates
NASA Astrophysics Data System (ADS)
Plakida, Nikolay M.
2018-06-01
A microscopic theory of high-temperature superconductivity in strongly correlated systems as cuprates is presented. The two-subband extended Hubbard model is considered where the intersite Coulomb repulsion and electron-phonon interaction are taken into account. The low-energy spin excitations are considered within the t-J model.
Dimensionality-strain phase diagram of strontium iridates superlattices
NASA Astrophysics Data System (ADS)
Kim, Bongjae; Liu, Peitao; Franchini, Cesare
Using ab initio approach, we study the electronic and magnetic behavior of strontium iridates as a function of dimensionality and epitaxial strain by employing a (SrIrO3)m/(SrTiO3) superlattice structure. We quantitatively evaluate the dimensional and strain-dependent change of the interaction parameters U and J using the constraint random phase approximation and construct a comprehensive phase diagram describing the evolution of the electronic and magnetic ground state upon strain and dimensionality. We find that compressive strain and increasing the dimensionality perturb the insulating relativistic Mott Jeff = 1 / 2 state, a characteristic of the m = 1 system, and induce two distinct types of insulator-to-metal transition (IMT) that can be explained from the entanglement of U and the bandwidth of the Ir-t2 g manifold. The IMTs are associated with distinctive changes of the spin ordering manifested by spin-flop transitions, correlated with the modulation of the interlayer exchange interaction, and with a complete quenching of any spin-ordered state in the m -> ∞ limit. The fundamental origin of these electronic and magnetic transitions will be discussed and compared with the corresponding situation in the Ruddlesden-Popper series.
Phase diagram of the Hubbard-Holstein model on a four-leg tube system at quarter filling
NASA Astrophysics Data System (ADS)
Reja, Sahinur; Nishimoto, Satoshi
2018-06-01
We derive an effective electronic Hamiltonian for the square lattice Hubbard-Holstein model (HHM) in the strong electron-electron (e -e ) and electron-phonon (e -p h ) coupling regime and under nonadiabatic conditions (t /ω0≤1 ), t and ω0 being the electron hopping and phonon frequency respectively. Using the density matrix renormalization-group method, we simulate this effective electronic model on a four-leg cylinder system at quarter filling and present a phase diagram in the g -U plane where g and U are the e -p h coupling constant and Hubbard on-site interaction respectively. For larger g , we find that a cluster of spins, i.e., phase separation (PS), gives way to a charge density wave (CDW) phase made of nearest-neighbor singlets which abruptly goes to another CDW phase as we increase U . But for smaller g , we find a metallic phase sandwiched between PS and the singlet CDW phase. This phase is characterized by a vanishing charge gap but a finite spin gap, suggesting a singlet superconducting phase.
Large effective mass and interaction-enhanced Zeeman splitting of K -valley electrons in MoSe2
NASA Astrophysics Data System (ADS)
Larentis, Stefano; Movva, Hema C. P.; Fallahazad, Babak; Kim, Kyounghwan; Behroozi, Armand; Taniguchi, Takashi; Watanabe, Kenji; Banerjee, Sanjay K.; Tutuc, Emanuel
2018-05-01
We study the magnetotransport of high-mobility electrons in monolayer and bilayer MoSe2, which show Shubnikov-de Haas (SdH) oscillations and quantum Hall states in high magnetic fields. An electron effective mass of 0.8 me is extracted from the SdH oscillations' temperature dependence; me is the bare electron mass. At a fixed electron density the longitudinal resistance shows minima at filling factors (FFs) that are either predominantly odd, or predominantly even, with a parity that changes as the density is tuned. The SdH oscillations are insensitive to an in-plane magnetic field, consistent with an out-of-plane spin orientation of electrons at the K point. We attribute the FF parity transitions to an interaction enhancement of the Zeeman energy as the density is reduced, resulting in an increased Zeeman-to-cyclotron energy ratio.
On the temperature-dependent exchange splitting in the quasiparticle bandstructure of Ni
NASA Astrophysics Data System (ADS)
Borgiel, W.; Nolting, W.; Donath, M.
1989-11-01
A theoretical model for the bandferromagnet Ni is proposed, which takes into account the intraatomic electron interactions within the d band complex. After introducing effective spin operators the model-Hamiltonian consists of a one-particle part, an intraband interaction of Hubbard-type, and an interband exchange, formally describing electron magnon scattering (s-f model). The one particle energies are taken from a realistic bandstructure calculation for paramagnetic Ni. We use a many body procedure for a detailed inspection of the quasiparticle bandstructure in KX and XW directions, present the corresponding spectral densities, and compare the temperature dependent exchange splittings near the X and W point with recent results from spin resolved photoemission (PE) - and inverse photoemission (IPE) - experiments.
On Scaling Relations of Organic Antiferromagnets with Magnetic Anions
NASA Astrophysics Data System (ADS)
Shimahara, Hiroshi; Kono, Yuki
2017-04-01
We study a recently reported scaling relation of the specific heat of the organic compounds λ-(BETS)2FexGa1-xCl4. This relation suggests that the sublattice magnetization m of the π electrons and the antiferromagnetic transition temperature TN are proportional to x. Note that the scaling relation for TN can be explained by considering the effective interaction between the π electrons via the localized 3d spins on the FeCl4 anions. The effective interaction is analogous to the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, but the roles of the conductive electrons and the localized spins are interchanged. Using available energy scales, it is shown that the TN scaling relation indicates that the system is in the vicinity of the quantum critical point. It is argued that the scaling relation for m at low temperatures, i.e., below TN but excluding temperatures in the vicinity of TN, indicates that the mismatch between the Fermi surface and that shifted by the nesting vector is large, at least for a large part of the Fermi surface. We also discuss the scaling relation near TN.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhury, Debashree, E-mail: debashreephys@gmail.com; Basu, B., E-mail: sribbasu@gmail.com
2013-02-15
We have studied the spin dependent force and the associated momentum space Berry curvature in an accelerating system. The results are derived by taking into consideration the non-relativistic limit of a generally covariant Dirac equation with an electromagnetic field present, where the methodology of the Foldy-Wouthuysen transformation is applied to achieve the non-relativistic limit. Spin currents appear due to the combined action of the external electric field, the crystal field and the induced inertial electric field via the total effective spin-orbit interaction. In an accelerating frame, the crucial role of momentum space Berry curvature in the spin dynamics has alsomore » been addressed from the perspective of spin Hall conductivity. For time dependent acceleration, the expression for the spin polarization has been derived. - Highlights: Black-Right-Pointing-Pointer We study the effect of acceleration on the Dirac electron in the presence of an electromagnetic field, where the acceleration induces an electric field. Black-Right-Pointing-Pointer Spin currents appear due to the total effective electric field via the total spin-orbit interaction. Black-Right-Pointing-Pointer We derive the expression for the spin dependent force and the spin Hall current, which is zero for a particular acceleration. Black-Right-Pointing-Pointer The role of the momentum space Berry curvature in an accelerating system is discussed. Black-Right-Pointing-Pointer An expression for the spin polarization for time dependent acceleration is derived.« less
First-principles study of the giant magnetic anisotropy energy in bulk Na4IrO4
NASA Astrophysics Data System (ADS)
Wang, Di; Tang, Feng; Du, Yongping; Wan, Xiangang
2017-11-01
In 5 d transition-metal oxides, novel properties arise from the interplay of electron correlations and spin-orbit interactions. Na4IrO4 , where the 5 d transition-metal Ir atom occupies the center of the square-planar coordination environment, has attracted research interest. Based on density functional theory, we present a comprehensive investigation of electronic and magnetic properties of Na4IrO4 . We propose the magnetic ground-state configuration, and find that the magnetic easy axis is perpendicular to the IrO4 plane. The magnetic anisotropy energy (MAE) of Na4IrO4 is found to be giant. We estimate the magnetic parameters in the generalized symmetry-allowed spin model, and find that the next-nearest-neighbor exchange interaction J2 is much larger than other intersite exchange interactions and results in the magnetic ground-state configuration. The numerical results reveal that the anisotropy of interatomic spin-exchange interaction is quite small and the huge MAE comes from the single-ion anisotropy. This compound has a large spin gap but very narrow spin-wave dispersion, due to the large single-ion anisotropy and quite small intersite exchange couplings. We clarify that these remarkable magnetic features are originated from its highly isolated and low-symmetry IrO4 moiety. We also explore the possibility to further enhance the MAE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaitsev, S. V., E-mail: szaitsev@issp.ac.ru; Akimov, I. A.; Langer, L.
2016-09-15
The coherent spin dynamics of carriers in the heterostructures that contain an InGaAs/GaAs quantum well (QW) and an Mn δ layer, which are separated by a narrow GaAs spacer 2–10 nm thick, is comprehensively studied by the magnetooptical Kerr effect method at a picosecond time resolution. The exchange interaction of photoexcited electrons in QW with the ferromagnetic Mn δ layer manifests itself in magnetic-field and temperature dependences of the Larmor precession frequency of electron spins and is found to be very weak (several microelectron volts). Two nonoscillating components related to holes exist apart from an electron contribution to the Kerrmore » signal of polarization plane rotation. At the initial stage, a fast relaxation process, which corresponds to the spin relaxation of free photoexcited holes, is detected in the structures with a wide spacer. The second component is caused by the further spin dephasing of energyrelaxed holes, which are localized at strong QW potential fluctuations in the structures under study. The decay of all contributions to the Kerr signal in time increases substantially when the spacer thickness decreases, which correlates with the enhancement of nonradiative recombination in QW.« less
Low-dimensional materials for organic electronic applications
NASA Astrophysics Data System (ADS)
Beniwal, Sumit
This thesis explores the self-assembly, surface interactions and electronic properties of functional molecules that have potential applications in electronics. Three classes of molecules - organic ferroelectric, spin-crossover complex, and molecules that assemble into a 2D semiconductor, have been studied through scanning tunneling microscopy and surfacesensitive spectroscopic methods. The scientific goal of this thesis is to understand the self-assembly of these molecules in low-dimensional (2D) configurations and the influence of substrate on their properties.
Engineering the Eigenstates of Coupled Spin-1/2 Atoms on a Surface.
Yang, Kai; Bae, Yujeong; Paul, William; Natterer, Fabian D; Willke, Philip; Lado, Jose L; Ferrón, Alejandro; Choi, Taeyoung; Fernández-Rossier, Joaquín; Heinrich, Andreas J; Lutz, Christopher P
2017-12-01
Quantum spin networks having engineered geometries and interactions are eagerly pursued for quantum simulation and access to emergent quantum phenomena such as spin liquids. Spin-1/2 centers are particularly desirable, because they readily manifest coherent quantum fluctuations. Here we introduce a controllable spin-1/2 architecture consisting of titanium atoms on a magnesium oxide surface. We tailor the spin interactions by atomic-precision positioning using a scanning tunneling microscope (STM) and subsequently perform electron spin resonance on individual atoms to drive transitions into and out of quantum eigenstates of the coupled-spin system. Interactions between the atoms are mapped over a range of distances extending from highly anisotropic dipole coupling to strong exchange coupling. The local magnetic field of the magnetic STM tip serves to precisely tune the superposition states of a pair of spins. The precise control of the spin-spin interactions and ability to probe the states of the coupled-spin network by addressing individual spins will enable the exploration of quantum many-body systems based on networks of spin-1/2 atoms on surfaces.
Engineering the Eigenstates of Coupled Spin-1 /2 Atoms on a Surface
NASA Astrophysics Data System (ADS)
Yang, Kai; Bae, Yujeong; Paul, William; Natterer, Fabian D.; Willke, Philip; Lado, Jose L.; Ferrón, Alejandro; Choi, Taeyoung; Fernández-Rossier, Joaquín; Heinrich, Andreas J.; Lutz, Christopher P.
2017-12-01
Quantum spin networks having engineered geometries and interactions are eagerly pursued for quantum simulation and access to emergent quantum phenomena such as spin liquids. Spin-1 /2 centers are particularly desirable, because they readily manifest coherent quantum fluctuations. Here we introduce a controllable spin-1 /2 architecture consisting of titanium atoms on a magnesium oxide surface. We tailor the spin interactions by atomic-precision positioning using a scanning tunneling microscope (STM) and subsequently perform electron spin resonance on individual atoms to drive transitions into and out of quantum eigenstates of the coupled-spin system. Interactions between the atoms are mapped over a range of distances extending from highly anisotropic dipole coupling to strong exchange coupling. The local magnetic field of the magnetic STM tip serves to precisely tune the superposition states of a pair of spins. The precise control of the spin-spin interactions and ability to probe the states of the coupled-spin network by addressing individual spins will enable the exploration of quantum many-body systems based on networks of spin-1 /2 atoms on surfaces.
Calculation of the spin-polarized electronic structure of an interstitial iron impurity in silicon
NASA Astrophysics Data System (ADS)
Katayama-Yoshida, H.; Zunger, Alex
1985-06-01
We apply our self-consistent, all-electron, spin-polarized Green's-function method within an impurity-centered, dynamic basis set to study the interstitial iron impurity in silicon. We use two different formulations of the interelectron interactions: the local-spin-density (LSD) formalism and the self-interaction-corrected (SIC) local-spin-density (SIC-LSD) formalism. We find that the SIC-LSD approach is needed to obtain the correct high-spin ground state of Si:Fe+. We propose a quantitative explanation to the observed donor ionization energy and the high-spin ground states for Si:Fe+ within the SIC-LSD approach. For both Si:Fe0 and Si:Fe+, this approach leads to a hyperfine field, contact spin density, and ionization energy in better agreement with experiments than the simple LSD approach. The apparent dichotomy between the covalently delocalized nature of Si:Fe as suggested on the one hand by its reduced hyperfine field (relative to the free atom) and extended spin density and by the occurrence of two closely spaced, stable charge states (within 0.4 eV) and on the other hand by the atomically localized picture (suggested, for example, by the stability of a high-spin, ground-state configuration) is resolved. We find a large reduction in the hyperfine field and contact spin density due to the covalent hybridization between the impurity 3d orbitals and the tails of the delocalized sp3 hybrid orbitals of the surrounding silicon atoms. Using the calculated results, we discuss (i) the underlying mechanism for the stability and plurality of charged states, (ii) the covalent reduction in the hyperfine field, (iii) the remarkable constancy of the impurity Mössbauer isomer shift for different charged states, (iv) comparison with the multiple charged states in ionic crystals, and (v) some related speculation about the mechanism of (Fe2+/Fe3+) oxidation-reduction ionizations in heme proteins and electron-transporting biological systems.
Spin-dependent delay time and Hartman effect in asymmetrical graphene barrier under strain
NASA Astrophysics Data System (ADS)
Sattari, Farhad; Mirershadi, Soghra
2018-01-01
We study the spin-dependent tunneling time, including group delay and dwell time, in a graphene based asymmetrical barrier with Rashba spin-orbit interaction in the presence of strain, sandwiched between two normal leads. We find that the spin-dependent tunneling time can be efficiently tuned by the barrier width, and the bias voltage. Moreover, for the zigzag direction strain although the oscillation period of the dwell time does not change, the oscillation amplitude increases by increasing the incident electron angle. It is found that for the armchair direction strain unlike the zigzag direction the group delay time at the normal incidence depends on the spin state of electrons and Hartman effect can be observed. In addition, for the armchair direction strain the spin polarization increases with increasing the RSOI strength and the bias voltage. The magnitude and sign of spin polarization can be manipulated by strain. In particular, by applying an external electric field the efficiency of the spin polarization is improved significantly in strained graphene, and a fully spin-polarized current is generated.